Fix leakage of projective coordinates in ECC
See the comments in the code for how an attack would go, and the ChangeLog
entry for an impact assessment. (For ECDSA, leaking a few bits of the scalar
over several signatures translates to full private key recovery using a
lattice attack.)
Signed-off-by: Manuel Pégourié-Gonnard <manuel.pegourie-gonnard@arm.com>
diff --git a/library/ecp.c b/library/ecp.c
index d1ea748..108695b 100644
--- a/library/ecp.c
+++ b/library/ecp.c
@@ -1444,6 +1444,20 @@
* Now get m * P from M * P and normalize it
*/
MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, R, ! m_is_odd ) );
+
+ /*
+ * Knowledge of the jacobian coordinates may leak the last few bits of the
+ * scalar [1], and since our MPI implementation isn't constant-flow,
+ * inversion (used for coordinate normalization) may leak the full value
+ * of its input via side-channels [2].
+ *
+ * [1] https://eprint.iacr.org/2003/191
+ * [2] https://eprint.iacr.org/2020/055
+ *
+ * Avoid the leak by randomizing coordinates before we normalize them.
+ */
+ if( f_rng != 0 )
+ MBEDTLS_MPI_CHK( ecp_randomize_jac( grp, R, f_rng, p_rng ) );
MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, R ) );
cleanup:
@@ -1664,6 +1678,20 @@
MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
}
+ /*
+ * Knowledge of the projective coordinates may leak the last few bits of the
+ * scalar [1], and since our MPI implementation isn't constant-flow,
+ * inversion (used for coordinate normalization) may leak the full value
+ * of its input via side-channels [2].
+ *
+ * [1] https://eprint.iacr.org/2003/191
+ * [2] https://eprint.iacr.org/2020/055
+ *
+ * Avoid the leak by randomizing coordinates before we normalize them.
+ */
+ if( f_rng != NULL )
+ MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp, R, f_rng, p_rng ) );
+
MBEDTLS_MPI_CHK( ecp_normalize_mxz( grp, R ) );
cleanup: