Move crypto modules

Move all the modules that constitute
the crypto library as well as the
associated headers to tf-psa-crypto/core
for the PSA core modules and to
tf-psa-crypto/drivers/builtin/src for
the others.

The common.h file is copied instead of
being just moved as eventually they
will be different in mbedtls and
TF-PSA-Crypto. Some parts of it can be
shared though but this will be done later,
probably when adding the CMake build
system in tf-psa-crypto.

Signed-off-by: Ronald Cron <ronald.cron@arm.com>
diff --git a/tf-psa-crypto/core/.gitignore b/tf-psa-crypto/core/.gitignore
new file mode 100644
index 0000000..70d9d04
--- /dev/null
+++ b/tf-psa-crypto/core/.gitignore
@@ -0,0 +1,4 @@
+###START_GENERATED_FILES###
+/psa_crypto_driver_wrappers.h
+/psa_crypto_driver_wrappers_no_static.c
+###END_GENERATED_FILES###
diff --git a/tf-psa-crypto/core/alignment.h b/tf-psa-crypto/core/alignment.h
new file mode 100644
index 0000000..a17001d
--- /dev/null
+++ b/tf-psa-crypto/core/alignment.h
@@ -0,0 +1,684 @@
+/**
+ * \file alignment.h
+ *
+ * \brief Utility code for dealing with unaligned memory accesses
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_LIBRARY_ALIGNMENT_H
+#define MBEDTLS_LIBRARY_ALIGNMENT_H
+
+#include <stdint.h>
+#include <string.h>
+#include <stdlib.h>
+
+/*
+ * Define MBEDTLS_EFFICIENT_UNALIGNED_ACCESS for architectures where unaligned memory
+ * accesses are known to be efficient.
+ *
+ * All functions defined here will behave correctly regardless, but might be less
+ * efficient when this is not defined.
+ */
+#if defined(__ARM_FEATURE_UNALIGNED) \
+    || defined(MBEDTLS_ARCH_IS_X86) || defined(MBEDTLS_ARCH_IS_X64) \
+    || defined(MBEDTLS_PLATFORM_IS_WINDOWS_ON_ARM64)
+/*
+ * __ARM_FEATURE_UNALIGNED is defined where appropriate by armcc, gcc 7, clang 9
+ * (and later versions) for Arm v7 and later; all x86 platforms should have
+ * efficient unaligned access.
+ *
+ * https://learn.microsoft.com/en-us/cpp/build/arm64-windows-abi-conventions?view=msvc-170#alignment
+ * specifies that on Windows-on-Arm64, unaligned access is safe (except for uncached
+ * device memory).
+ */
+#define MBEDTLS_EFFICIENT_UNALIGNED_ACCESS
+#endif
+
+#if defined(__IAR_SYSTEMS_ICC__) && \
+    (defined(MBEDTLS_ARCH_IS_ARM64) || defined(MBEDTLS_ARCH_IS_ARM32) \
+    || defined(__ICCRX__) || defined(__ICCRL78__) || defined(__ICCRISCV__))
+#pragma language=save
+#pragma language=extended
+#define MBEDTLS_POP_IAR_LANGUAGE_PRAGMA
+/* IAR recommend this technique for accessing unaligned data in
+ * https://www.iar.com/knowledge/support/technical-notes/compiler/accessing-unaligned-data
+ * This results in a single load / store instruction (if unaligned access is supported).
+ * According to that document, this is only supported on certain architectures.
+ */
+    #define UINT_UNALIGNED
+typedef uint16_t __packed mbedtls_uint16_unaligned_t;
+typedef uint32_t __packed mbedtls_uint32_unaligned_t;
+typedef uint64_t __packed mbedtls_uint64_unaligned_t;
+#elif defined(MBEDTLS_COMPILER_IS_GCC) && (MBEDTLS_GCC_VERSION >= 40504) && \
+    ((MBEDTLS_GCC_VERSION < 60300) || (!defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS)))
+/*
+ * gcc may generate a branch to memcpy for calls like `memcpy(dest, src, 4)` rather than
+ * generating some LDR or LDRB instructions (similar for stores).
+ *
+ * This is architecture dependent: x86-64 seems fine even with old gcc; 32-bit Arm
+ * is affected. To keep it simple, we enable for all architectures.
+ *
+ * For versions of gcc < 5.4.0 this issue always happens.
+ * For gcc < 6.3.0, this issue happens at -O0
+ * For all versions, this issue happens iff unaligned access is not supported.
+ *
+ * For gcc 4.x, this implementation will generate byte-by-byte loads even if unaligned access is
+ * supported, which is correct but not optimal.
+ *
+ * For performance (and code size, in some cases), we want to avoid the branch and just generate
+ * some inline load/store instructions since the access is small and constant-size.
+ *
+ * The manual states:
+ * "The packed attribute specifies that a variable or structure field should have the smallest
+ *  possible alignment—one byte for a variable"
+ * https://gcc.gnu.org/onlinedocs/gcc-4.5.4/gcc/Variable-Attributes.html
+ *
+ * Previous implementations used __attribute__((__aligned__(1)), but had issues with a gcc bug:
+ * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94662
+ *
+ * Tested with several versions of GCC from 4.5.0 up to 13.2.0
+ * We don't enable for older than 4.5.0 as this has not been tested.
+ */
+ #define UINT_UNALIGNED_STRUCT
+typedef struct {
+    uint16_t x;
+} __attribute__((packed)) mbedtls_uint16_unaligned_t;
+typedef struct {
+    uint32_t x;
+} __attribute__((packed)) mbedtls_uint32_unaligned_t;
+typedef struct {
+    uint64_t x;
+} __attribute__((packed)) mbedtls_uint64_unaligned_t;
+ #endif
+
+/*
+ * We try to force mbedtls_(get|put)_unaligned_uintXX to be always inline, because this results
+ * in code that is both smaller and faster. IAR and gcc both benefit from this when optimising
+ * for size.
+ */
+
+/**
+ * Read the unsigned 16 bits integer from the given address, which need not
+ * be aligned.
+ *
+ * \param   p pointer to 2 bytes of data
+ * \return  Data at the given address
+ */
+#if defined(__IAR_SYSTEMS_ICC__)
+#pragma inline = forced
+#elif defined(__GNUC__)
+__attribute__((always_inline))
+#endif
+static inline uint16_t mbedtls_get_unaligned_uint16(const void *p)
+{
+    uint16_t r;
+#if defined(UINT_UNALIGNED)
+    mbedtls_uint16_unaligned_t *p16 = (mbedtls_uint16_unaligned_t *) p;
+    r = *p16;
+#elif defined(UINT_UNALIGNED_STRUCT)
+    mbedtls_uint16_unaligned_t *p16 = (mbedtls_uint16_unaligned_t *) p;
+    r = p16->x;
+#else
+    memcpy(&r, p, sizeof(r));
+#endif
+    return r;
+}
+
+/**
+ * Write the unsigned 16 bits integer to the given address, which need not
+ * be aligned.
+ *
+ * \param   p pointer to 2 bytes of data
+ * \param   x data to write
+ */
+#if defined(__IAR_SYSTEMS_ICC__)
+#pragma inline = forced
+#elif defined(__GNUC__)
+__attribute__((always_inline))
+#endif
+static inline void mbedtls_put_unaligned_uint16(void *p, uint16_t x)
+{
+#if defined(UINT_UNALIGNED)
+    mbedtls_uint16_unaligned_t *p16 = (mbedtls_uint16_unaligned_t *) p;
+    *p16 = x;
+#elif defined(UINT_UNALIGNED_STRUCT)
+    mbedtls_uint16_unaligned_t *p16 = (mbedtls_uint16_unaligned_t *) p;
+    p16->x = x;
+#else
+    memcpy(p, &x, sizeof(x));
+#endif
+}
+
+/**
+ * Read the unsigned 32 bits integer from the given address, which need not
+ * be aligned.
+ *
+ * \param   p pointer to 4 bytes of data
+ * \return  Data at the given address
+ */
+#if defined(__IAR_SYSTEMS_ICC__)
+#pragma inline = forced
+#elif defined(__GNUC__)
+__attribute__((always_inline))
+#endif
+static inline uint32_t mbedtls_get_unaligned_uint32(const void *p)
+{
+    uint32_t r;
+#if defined(UINT_UNALIGNED)
+    mbedtls_uint32_unaligned_t *p32 = (mbedtls_uint32_unaligned_t *) p;
+    r = *p32;
+#elif defined(UINT_UNALIGNED_STRUCT)
+    mbedtls_uint32_unaligned_t *p32 = (mbedtls_uint32_unaligned_t *) p;
+    r = p32->x;
+#else
+    memcpy(&r, p, sizeof(r));
+#endif
+    return r;
+}
+
+/**
+ * Write the unsigned 32 bits integer to the given address, which need not
+ * be aligned.
+ *
+ * \param   p pointer to 4 bytes of data
+ * \param   x data to write
+ */
+#if defined(__IAR_SYSTEMS_ICC__)
+#pragma inline = forced
+#elif defined(__GNUC__)
+__attribute__((always_inline))
+#endif
+static inline void mbedtls_put_unaligned_uint32(void *p, uint32_t x)
+{
+#if defined(UINT_UNALIGNED)
+    mbedtls_uint32_unaligned_t *p32 = (mbedtls_uint32_unaligned_t *) p;
+    *p32 = x;
+#elif defined(UINT_UNALIGNED_STRUCT)
+    mbedtls_uint32_unaligned_t *p32 = (mbedtls_uint32_unaligned_t *) p;
+    p32->x = x;
+#else
+    memcpy(p, &x, sizeof(x));
+#endif
+}
+
+/**
+ * Read the unsigned 64 bits integer from the given address, which need not
+ * be aligned.
+ *
+ * \param   p pointer to 8 bytes of data
+ * \return  Data at the given address
+ */
+#if defined(__IAR_SYSTEMS_ICC__)
+#pragma inline = forced
+#elif defined(__GNUC__)
+__attribute__((always_inline))
+#endif
+static inline uint64_t mbedtls_get_unaligned_uint64(const void *p)
+{
+    uint64_t r;
+#if defined(UINT_UNALIGNED)
+    mbedtls_uint64_unaligned_t *p64 = (mbedtls_uint64_unaligned_t *) p;
+    r = *p64;
+#elif defined(UINT_UNALIGNED_STRUCT)
+    mbedtls_uint64_unaligned_t *p64 = (mbedtls_uint64_unaligned_t *) p;
+    r = p64->x;
+#else
+    memcpy(&r, p, sizeof(r));
+#endif
+    return r;
+}
+
+/**
+ * Write the unsigned 64 bits integer to the given address, which need not
+ * be aligned.
+ *
+ * \param   p pointer to 8 bytes of data
+ * \param   x data to write
+ */
+#if defined(__IAR_SYSTEMS_ICC__)
+#pragma inline = forced
+#elif defined(__GNUC__)
+__attribute__((always_inline))
+#endif
+static inline void mbedtls_put_unaligned_uint64(void *p, uint64_t x)
+{
+#if defined(UINT_UNALIGNED)
+    mbedtls_uint64_unaligned_t *p64 = (mbedtls_uint64_unaligned_t *) p;
+    *p64 = x;
+#elif defined(UINT_UNALIGNED_STRUCT)
+    mbedtls_uint64_unaligned_t *p64 = (mbedtls_uint64_unaligned_t *) p;
+    p64->x = x;
+#else
+    memcpy(p, &x, sizeof(x));
+#endif
+}
+
+#if defined(MBEDTLS_POP_IAR_LANGUAGE_PRAGMA)
+#pragma language=restore
+#endif
+
+/** Byte Reading Macros
+ *
+ * Given a multi-byte integer \p x, MBEDTLS_BYTE_n retrieves the n-th
+ * byte from x, where byte 0 is the least significant byte.
+ */
+#define MBEDTLS_BYTE_0(x) ((uint8_t) ((x)         & 0xff))
+#define MBEDTLS_BYTE_1(x) ((uint8_t) (((x) >>  8) & 0xff))
+#define MBEDTLS_BYTE_2(x) ((uint8_t) (((x) >> 16) & 0xff))
+#define MBEDTLS_BYTE_3(x) ((uint8_t) (((x) >> 24) & 0xff))
+#define MBEDTLS_BYTE_4(x) ((uint8_t) (((x) >> 32) & 0xff))
+#define MBEDTLS_BYTE_5(x) ((uint8_t) (((x) >> 40) & 0xff))
+#define MBEDTLS_BYTE_6(x) ((uint8_t) (((x) >> 48) & 0xff))
+#define MBEDTLS_BYTE_7(x) ((uint8_t) (((x) >> 56) & 0xff))
+
+/*
+ * Detect GCC built-in byteswap routines
+ */
+#if defined(__GNUC__) && defined(__GNUC_PREREQ)
+#if __GNUC_PREREQ(4, 8)
+#define MBEDTLS_BSWAP16 __builtin_bswap16
+#endif /* __GNUC_PREREQ(4,8) */
+#if __GNUC_PREREQ(4, 3)
+#define MBEDTLS_BSWAP32 __builtin_bswap32
+#define MBEDTLS_BSWAP64 __builtin_bswap64
+#endif /* __GNUC_PREREQ(4,3) */
+#endif /* defined(__GNUC__) && defined(__GNUC_PREREQ) */
+
+/*
+ * Detect Clang built-in byteswap routines
+ */
+#if defined(__clang__) && defined(__has_builtin)
+#if __has_builtin(__builtin_bswap16) && !defined(MBEDTLS_BSWAP16)
+#define MBEDTLS_BSWAP16 __builtin_bswap16
+#endif /* __has_builtin(__builtin_bswap16) */
+#if __has_builtin(__builtin_bswap32) && !defined(MBEDTLS_BSWAP32)
+#define MBEDTLS_BSWAP32 __builtin_bswap32
+#endif /* __has_builtin(__builtin_bswap32) */
+#if __has_builtin(__builtin_bswap64) && !defined(MBEDTLS_BSWAP64)
+#define MBEDTLS_BSWAP64 __builtin_bswap64
+#endif /* __has_builtin(__builtin_bswap64) */
+#endif /* defined(__clang__) && defined(__has_builtin) */
+
+/*
+ * Detect MSVC built-in byteswap routines
+ */
+#if defined(_MSC_VER)
+#if !defined(MBEDTLS_BSWAP16)
+#define MBEDTLS_BSWAP16 _byteswap_ushort
+#endif
+#if !defined(MBEDTLS_BSWAP32)
+#define MBEDTLS_BSWAP32 _byteswap_ulong
+#endif
+#if !defined(MBEDTLS_BSWAP64)
+#define MBEDTLS_BSWAP64 _byteswap_uint64
+#endif
+#endif /* defined(_MSC_VER) */
+
+/* Detect armcc built-in byteswap routine */
+#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 410000) && !defined(MBEDTLS_BSWAP32)
+#if defined(__ARM_ACLE)  /* ARM Compiler 6 - earlier versions don't need a header */
+#include <arm_acle.h>
+#endif
+#define MBEDTLS_BSWAP32 __rev
+#endif
+
+/* Detect IAR built-in byteswap routine */
+#if defined(__IAR_SYSTEMS_ICC__)
+#if defined(__ARM_ACLE)
+#include <arm_acle.h>
+#define MBEDTLS_BSWAP16(x) ((uint16_t) __rev16((uint32_t) (x)))
+#define MBEDTLS_BSWAP32 __rev
+#define MBEDTLS_BSWAP64 __revll
+#endif
+#endif
+
+/*
+ * Where compiler built-ins are not present, fall back to C code that the
+ * compiler may be able to detect and transform into the relevant bswap or
+ * similar instruction.
+ */
+#if !defined(MBEDTLS_BSWAP16)
+static inline uint16_t mbedtls_bswap16(uint16_t x)
+{
+    return
+        (x & 0x00ff) << 8 |
+        (x & 0xff00) >> 8;
+}
+#define MBEDTLS_BSWAP16 mbedtls_bswap16
+#endif /* !defined(MBEDTLS_BSWAP16) */
+
+#if !defined(MBEDTLS_BSWAP32)
+static inline uint32_t mbedtls_bswap32(uint32_t x)
+{
+    return
+        (x & 0x000000ff) << 24 |
+        (x & 0x0000ff00) <<  8 |
+        (x & 0x00ff0000) >>  8 |
+        (x & 0xff000000) >> 24;
+}
+#define MBEDTLS_BSWAP32 mbedtls_bswap32
+#endif /* !defined(MBEDTLS_BSWAP32) */
+
+#if !defined(MBEDTLS_BSWAP64)
+static inline uint64_t mbedtls_bswap64(uint64_t x)
+{
+    return
+        (x & 0x00000000000000ffULL) << 56 |
+        (x & 0x000000000000ff00ULL) << 40 |
+        (x & 0x0000000000ff0000ULL) << 24 |
+        (x & 0x00000000ff000000ULL) <<  8 |
+        (x & 0x000000ff00000000ULL) >>  8 |
+        (x & 0x0000ff0000000000ULL) >> 24 |
+        (x & 0x00ff000000000000ULL) >> 40 |
+        (x & 0xff00000000000000ULL) >> 56;
+}
+#define MBEDTLS_BSWAP64 mbedtls_bswap64
+#endif /* !defined(MBEDTLS_BSWAP64) */
+
+#if !defined(__BYTE_ORDER__)
+
+#if defined(__LITTLE_ENDIAN__)
+/* IAR defines __xxx_ENDIAN__, but not __BYTE_ORDER__ */
+#define MBEDTLS_IS_BIG_ENDIAN 0
+#elif defined(__BIG_ENDIAN__)
+#define MBEDTLS_IS_BIG_ENDIAN 1
+#else
+static const uint16_t mbedtls_byte_order_detector = { 0x100 };
+#define MBEDTLS_IS_BIG_ENDIAN (*((unsigned char *) (&mbedtls_byte_order_detector)) == 0x01)
+#endif
+
+#else
+
+#if (__BYTE_ORDER__) == (__ORDER_BIG_ENDIAN__)
+#define MBEDTLS_IS_BIG_ENDIAN 1
+#else
+#define MBEDTLS_IS_BIG_ENDIAN 0
+#endif
+
+#endif /* !defined(__BYTE_ORDER__) */
+
+/**
+ * Get the unsigned 32 bits integer corresponding to four bytes in
+ * big-endian order (MSB first).
+ *
+ * \param   data    Base address of the memory to get the four bytes from.
+ * \param   offset  Offset from \p data of the first and most significant
+ *                  byte of the four bytes to build the 32 bits unsigned
+ *                  integer from.
+ */
+#define MBEDTLS_GET_UINT32_BE(data, offset)                                \
+    ((MBEDTLS_IS_BIG_ENDIAN)                                               \
+        ? mbedtls_get_unaligned_uint32((data) + (offset))                  \
+        : MBEDTLS_BSWAP32(mbedtls_get_unaligned_uint32((data) + (offset))) \
+    )
+
+/**
+ * Put in memory a 32 bits unsigned integer in big-endian order.
+ *
+ * \param   n       32 bits unsigned integer to put in memory.
+ * \param   data    Base address of the memory where to put the 32
+ *                  bits unsigned integer in.
+ * \param   offset  Offset from \p data where to put the most significant
+ *                  byte of the 32 bits unsigned integer \p n.
+ */
+#define MBEDTLS_PUT_UINT32_BE(n, data, offset)                                   \
+    {                                                                            \
+        if (MBEDTLS_IS_BIG_ENDIAN)                                               \
+        {                                                                        \
+            mbedtls_put_unaligned_uint32((data) + (offset), (uint32_t) (n));     \
+        }                                                                        \
+        else                                                                     \
+        {                                                                        \
+            mbedtls_put_unaligned_uint32((data) + (offset), MBEDTLS_BSWAP32((uint32_t) (n))); \
+        }                                                                        \
+    }
+
+/**
+ * Get the unsigned 32 bits integer corresponding to four bytes in
+ * little-endian order (LSB first).
+ *
+ * \param   data    Base address of the memory to get the four bytes from.
+ * \param   offset  Offset from \p data of the first and least significant
+ *                  byte of the four bytes to build the 32 bits unsigned
+ *                  integer from.
+ */
+#define MBEDTLS_GET_UINT32_LE(data, offset)                                \
+    ((MBEDTLS_IS_BIG_ENDIAN)                                               \
+        ? MBEDTLS_BSWAP32(mbedtls_get_unaligned_uint32((data) + (offset))) \
+        : mbedtls_get_unaligned_uint32((data) + (offset))                  \
+    )
+
+
+/**
+ * Put in memory a 32 bits unsigned integer in little-endian order.
+ *
+ * \param   n       32 bits unsigned integer to put in memory.
+ * \param   data    Base address of the memory where to put the 32
+ *                  bits unsigned integer in.
+ * \param   offset  Offset from \p data where to put the least significant
+ *                  byte of the 32 bits unsigned integer \p n.
+ */
+#define MBEDTLS_PUT_UINT32_LE(n, data, offset)                                   \
+    {                                                                            \
+        if (MBEDTLS_IS_BIG_ENDIAN)                                               \
+        {                                                                        \
+            mbedtls_put_unaligned_uint32((data) + (offset), MBEDTLS_BSWAP32((uint32_t) (n))); \
+        }                                                                        \
+        else                                                                     \
+        {                                                                        \
+            mbedtls_put_unaligned_uint32((data) + (offset), ((uint32_t) (n)));   \
+        }                                                                        \
+    }
+
+/**
+ * Get the unsigned 16 bits integer corresponding to two bytes in
+ * little-endian order (LSB first).
+ *
+ * \param   data    Base address of the memory to get the two bytes from.
+ * \param   offset  Offset from \p data of the first and least significant
+ *                  byte of the two bytes to build the 16 bits unsigned
+ *                  integer from.
+ */
+#define MBEDTLS_GET_UINT16_LE(data, offset)                                \
+    ((MBEDTLS_IS_BIG_ENDIAN)                                               \
+        ? MBEDTLS_BSWAP16(mbedtls_get_unaligned_uint16((data) + (offset))) \
+        : mbedtls_get_unaligned_uint16((data) + (offset))                  \
+    )
+
+/**
+ * Put in memory a 16 bits unsigned integer in little-endian order.
+ *
+ * \param   n       16 bits unsigned integer to put in memory.
+ * \param   data    Base address of the memory where to put the 16
+ *                  bits unsigned integer in.
+ * \param   offset  Offset from \p data where to put the least significant
+ *                  byte of the 16 bits unsigned integer \p n.
+ */
+#define MBEDTLS_PUT_UINT16_LE(n, data, offset)                                   \
+    {                                                                            \
+        if (MBEDTLS_IS_BIG_ENDIAN)                                               \
+        {                                                                        \
+            mbedtls_put_unaligned_uint16((data) + (offset), MBEDTLS_BSWAP16((uint16_t) (n))); \
+        }                                                                        \
+        else                                                                     \
+        {                                                                        \
+            mbedtls_put_unaligned_uint16((data) + (offset), (uint16_t) (n));     \
+        }                                                                        \
+    }
+
+/**
+ * Get the unsigned 16 bits integer corresponding to two bytes in
+ * big-endian order (MSB first).
+ *
+ * \param   data    Base address of the memory to get the two bytes from.
+ * \param   offset  Offset from \p data of the first and most significant
+ *                  byte of the two bytes to build the 16 bits unsigned
+ *                  integer from.
+ */
+#define MBEDTLS_GET_UINT16_BE(data, offset)                                \
+    ((MBEDTLS_IS_BIG_ENDIAN)                                               \
+        ? mbedtls_get_unaligned_uint16((data) + (offset))                  \
+        : MBEDTLS_BSWAP16(mbedtls_get_unaligned_uint16((data) + (offset))) \
+    )
+
+/**
+ * Put in memory a 16 bits unsigned integer in big-endian order.
+ *
+ * \param   n       16 bits unsigned integer to put in memory.
+ * \param   data    Base address of the memory where to put the 16
+ *                  bits unsigned integer in.
+ * \param   offset  Offset from \p data where to put the most significant
+ *                  byte of the 16 bits unsigned integer \p n.
+ */
+#define MBEDTLS_PUT_UINT16_BE(n, data, offset)                                   \
+    {                                                                            \
+        if (MBEDTLS_IS_BIG_ENDIAN)                                               \
+        {                                                                        \
+            mbedtls_put_unaligned_uint16((data) + (offset), (uint16_t) (n));     \
+        }                                                                        \
+        else                                                                     \
+        {                                                                        \
+            mbedtls_put_unaligned_uint16((data) + (offset), MBEDTLS_BSWAP16((uint16_t) (n))); \
+        }                                                                        \
+    }
+
+/**
+ * Get the unsigned 24 bits integer corresponding to three bytes in
+ * big-endian order (MSB first).
+ *
+ * \param   data    Base address of the memory to get the three bytes from.
+ * \param   offset  Offset from \p data of the first and most significant
+ *                  byte of the three bytes to build the 24 bits unsigned
+ *                  integer from.
+ */
+#define MBEDTLS_GET_UINT24_BE(data, offset)        \
+    (                                              \
+        ((uint32_t) (data)[(offset)] << 16)        \
+        | ((uint32_t) (data)[(offset) + 1] << 8)   \
+        | ((uint32_t) (data)[(offset) + 2])        \
+    )
+
+/**
+ * Put in memory a 24 bits unsigned integer in big-endian order.
+ *
+ * \param   n       24 bits unsigned integer to put in memory.
+ * \param   data    Base address of the memory where to put the 24
+ *                  bits unsigned integer in.
+ * \param   offset  Offset from \p data where to put the most significant
+ *                  byte of the 24 bits unsigned integer \p n.
+ */
+#define MBEDTLS_PUT_UINT24_BE(n, data, offset)                \
+    {                                                         \
+        (data)[(offset)] = MBEDTLS_BYTE_2(n);                 \
+        (data)[(offset) + 1] = MBEDTLS_BYTE_1(n);             \
+        (data)[(offset) + 2] = MBEDTLS_BYTE_0(n);             \
+    }
+
+/**
+ * Get the unsigned 24 bits integer corresponding to three bytes in
+ * little-endian order (LSB first).
+ *
+ * \param   data    Base address of the memory to get the three bytes from.
+ * \param   offset  Offset from \p data of the first and least significant
+ *                  byte of the three bytes to build the 24 bits unsigned
+ *                  integer from.
+ */
+#define MBEDTLS_GET_UINT24_LE(data, offset)               \
+    (                                                     \
+        ((uint32_t) (data)[(offset)])                     \
+        | ((uint32_t) (data)[(offset) + 1] <<  8)         \
+        | ((uint32_t) (data)[(offset) + 2] << 16)         \
+    )
+
+/**
+ * Put in memory a 24 bits unsigned integer in little-endian order.
+ *
+ * \param   n       24 bits unsigned integer to put in memory.
+ * \param   data    Base address of the memory where to put the 24
+ *                  bits unsigned integer in.
+ * \param   offset  Offset from \p data where to put the least significant
+ *                  byte of the 24 bits unsigned integer \p n.
+ */
+#define MBEDTLS_PUT_UINT24_LE(n, data, offset)                \
+    {                                                         \
+        (data)[(offset)] = MBEDTLS_BYTE_0(n);                 \
+        (data)[(offset) + 1] = MBEDTLS_BYTE_1(n);             \
+        (data)[(offset) + 2] = MBEDTLS_BYTE_2(n);             \
+    }
+
+/**
+ * Get the unsigned 64 bits integer corresponding to eight bytes in
+ * big-endian order (MSB first).
+ *
+ * \param   data    Base address of the memory to get the eight bytes from.
+ * \param   offset  Offset from \p data of the first and most significant
+ *                  byte of the eight bytes to build the 64 bits unsigned
+ *                  integer from.
+ */
+#define MBEDTLS_GET_UINT64_BE(data, offset)                                \
+    ((MBEDTLS_IS_BIG_ENDIAN)                                               \
+        ? mbedtls_get_unaligned_uint64((data) + (offset))                  \
+        : MBEDTLS_BSWAP64(mbedtls_get_unaligned_uint64((data) + (offset))) \
+    )
+
+/**
+ * Put in memory a 64 bits unsigned integer in big-endian order.
+ *
+ * \param   n       64 bits unsigned integer to put in memory.
+ * \param   data    Base address of the memory where to put the 64
+ *                  bits unsigned integer in.
+ * \param   offset  Offset from \p data where to put the most significant
+ *                  byte of the 64 bits unsigned integer \p n.
+ */
+#define MBEDTLS_PUT_UINT64_BE(n, data, offset)                                   \
+    {                                                                            \
+        if (MBEDTLS_IS_BIG_ENDIAN)                                               \
+        {                                                                        \
+            mbedtls_put_unaligned_uint64((data) + (offset), (uint64_t) (n));     \
+        }                                                                        \
+        else                                                                     \
+        {                                                                        \
+            mbedtls_put_unaligned_uint64((data) + (offset), MBEDTLS_BSWAP64((uint64_t) (n))); \
+        }                                                                        \
+    }
+
+/**
+ * Get the unsigned 64 bits integer corresponding to eight bytes in
+ * little-endian order (LSB first).
+ *
+ * \param   data    Base address of the memory to get the eight bytes from.
+ * \param   offset  Offset from \p data of the first and least significant
+ *                  byte of the eight bytes to build the 64 bits unsigned
+ *                  integer from.
+ */
+#define MBEDTLS_GET_UINT64_LE(data, offset)                                \
+    ((MBEDTLS_IS_BIG_ENDIAN)                                               \
+        ? MBEDTLS_BSWAP64(mbedtls_get_unaligned_uint64((data) + (offset))) \
+        : mbedtls_get_unaligned_uint64((data) + (offset))                  \
+    )
+
+/**
+ * Put in memory a 64 bits unsigned integer in little-endian order.
+ *
+ * \param   n       64 bits unsigned integer to put in memory.
+ * \param   data    Base address of the memory where to put the 64
+ *                  bits unsigned integer in.
+ * \param   offset  Offset from \p data where to put the least significant
+ *                  byte of the 64 bits unsigned integer \p n.
+ */
+#define MBEDTLS_PUT_UINT64_LE(n, data, offset)                                   \
+    {                                                                            \
+        if (MBEDTLS_IS_BIG_ENDIAN)                                               \
+        {                                                                        \
+            mbedtls_put_unaligned_uint64((data) + (offset), MBEDTLS_BSWAP64((uint64_t) (n))); \
+        }                                                                        \
+        else                                                                     \
+        {                                                                        \
+            mbedtls_put_unaligned_uint64((data) + (offset), (uint64_t) (n));     \
+        }                                                                        \
+    }
+
+#endif /* MBEDTLS_LIBRARY_ALIGNMENT_H */
diff --git a/tf-psa-crypto/core/common.h b/tf-psa-crypto/core/common.h
new file mode 100644
index 0000000..3936ffd
--- /dev/null
+++ b/tf-psa-crypto/core/common.h
@@ -0,0 +1,435 @@
+/**
+ * \file common.h
+ *
+ * \brief Utility macros for internal use in the library
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_LIBRARY_COMMON_H
+#define MBEDTLS_LIBRARY_COMMON_H
+
+#include "mbedtls/build_info.h"
+#include "alignment.h"
+
+#include <assert.h>
+#include <stddef.h>
+#include <stdint.h>
+#include <stddef.h>
+
+#if defined(__ARM_NEON)
+#include <arm_neon.h>
+#define MBEDTLS_HAVE_NEON_INTRINSICS
+#elif defined(MBEDTLS_PLATFORM_IS_WINDOWS_ON_ARM64)
+#include <arm64_neon.h>
+#define MBEDTLS_HAVE_NEON_INTRINSICS
+#endif
+
+/** Helper to define a function as static except when building invasive tests.
+ *
+ * If a function is only used inside its own source file and should be
+ * declared `static` to allow the compiler to optimize for code size,
+ * but that function has unit tests, define it with
+ * ```
+ * MBEDTLS_STATIC_TESTABLE int mbedtls_foo(...) { ... }
+ * ```
+ * and declare it in a header in the `library/` directory with
+ * ```
+ * #if defined(MBEDTLS_TEST_HOOKS)
+ * int mbedtls_foo(...);
+ * #endif
+ * ```
+ */
+#if defined(MBEDTLS_TEST_HOOKS)
+#define MBEDTLS_STATIC_TESTABLE
+#else
+#define MBEDTLS_STATIC_TESTABLE static
+#endif
+
+#if defined(MBEDTLS_TEST_HOOKS)
+extern void (*mbedtls_test_hook_test_fail)(const char *test, int line, const char *file);
+#define MBEDTLS_TEST_HOOK_TEST_ASSERT(TEST) \
+    do { \
+        if ((!(TEST)) && ((*mbedtls_test_hook_test_fail) != NULL)) \
+        { \
+            (*mbedtls_test_hook_test_fail)( #TEST, __LINE__, __FILE__); \
+        } \
+    } while (0)
+#else
+#define MBEDTLS_TEST_HOOK_TEST_ASSERT(TEST)
+#endif /* defined(MBEDTLS_TEST_HOOKS) */
+
+/** \def ARRAY_LENGTH
+ * Return the number of elements of a static or stack array.
+ *
+ * \param array         A value of array (not pointer) type.
+ *
+ * \return The number of elements of the array.
+ */
+/* A correct implementation of ARRAY_LENGTH, but which silently gives
+ * a nonsensical result if called with a pointer rather than an array. */
+#define ARRAY_LENGTH_UNSAFE(array)            \
+    (sizeof(array) / sizeof(*(array)))
+
+#if defined(__GNUC__)
+/* Test if arg and &(arg)[0] have the same type. This is true if arg is
+ * an array but not if it's a pointer. */
+#define IS_ARRAY_NOT_POINTER(arg)                                     \
+    (!__builtin_types_compatible_p(__typeof__(arg),                \
+                                   __typeof__(&(arg)[0])))
+/* A compile-time constant with the value 0. If `const_expr` is not a
+ * compile-time constant with a nonzero value, cause a compile-time error. */
+#define STATIC_ASSERT_EXPR(const_expr)                                \
+    (0 && sizeof(struct { unsigned int STATIC_ASSERT : 1 - 2 * !(const_expr); }))
+
+/* Return the scalar value `value` (possibly promoted). This is a compile-time
+ * constant if `value` is. `condition` must be a compile-time constant.
+ * If `condition` is false, arrange to cause a compile-time error. */
+#define STATIC_ASSERT_THEN_RETURN(condition, value)   \
+    (STATIC_ASSERT_EXPR(condition) ? 0 : (value))
+
+#define ARRAY_LENGTH(array)                                           \
+    (STATIC_ASSERT_THEN_RETURN(IS_ARRAY_NOT_POINTER(array),         \
+                               ARRAY_LENGTH_UNSAFE(array)))
+
+#else
+/* If we aren't sure the compiler supports our non-standard tricks,
+ * fall back to the unsafe implementation. */
+#define ARRAY_LENGTH(array) ARRAY_LENGTH_UNSAFE(array)
+#endif
+/** Allow library to access its structs' private members.
+ *
+ * Although structs defined in header files are publicly available,
+ * their members are private and should not be accessed by the user.
+ */
+#define MBEDTLS_ALLOW_PRIVATE_ACCESS
+
+/**
+ * \brief       Securely zeroize a buffer then free it.
+ *
+ *              Similar to making consecutive calls to
+ *              \c mbedtls_platform_zeroize() and \c mbedtls_free(), but has
+ *              code size savings, and potential for optimisation in the future.
+ *
+ *              Guaranteed to be a no-op if \p buf is \c NULL and \p len is 0.
+ *
+ * \param buf   Buffer to be zeroized then freed.
+ * \param len   Length of the buffer in bytes
+ */
+void mbedtls_zeroize_and_free(void *buf, size_t len);
+
+/** Return an offset into a buffer.
+ *
+ * This is just the addition of an offset to a pointer, except that this
+ * function also accepts an offset of 0 into a buffer whose pointer is null.
+ * (`p + n` has undefined behavior when `p` is null, even when `n == 0`.
+ * A null pointer is a valid buffer pointer when the size is 0, for example
+ * as the result of `malloc(0)` on some platforms.)
+ *
+ * \param p     Pointer to a buffer of at least n bytes.
+ *              This may be \p NULL if \p n is zero.
+ * \param n     An offset in bytes.
+ * \return      Pointer to offset \p n in the buffer \p p.
+ *              Note that this is only a valid pointer if the size of the
+ *              buffer is at least \p n + 1.
+ */
+static inline unsigned char *mbedtls_buffer_offset(
+    unsigned char *p, size_t n)
+{
+    return p == NULL ? NULL : p + n;
+}
+
+/** Return an offset into a read-only buffer.
+ *
+ * Similar to mbedtls_buffer_offset(), but for const pointers.
+ *
+ * \param p     Pointer to a buffer of at least n bytes.
+ *              This may be \p NULL if \p n is zero.
+ * \param n     An offset in bytes.
+ * \return      Pointer to offset \p n in the buffer \p p.
+ *              Note that this is only a valid pointer if the size of the
+ *              buffer is at least \p n + 1.
+ */
+static inline const unsigned char *mbedtls_buffer_offset_const(
+    const unsigned char *p, size_t n)
+{
+    return p == NULL ? NULL : p + n;
+}
+
+/* Always inline mbedtls_xor() for similar reasons as mbedtls_xor_no_simd(). */
+#if defined(__IAR_SYSTEMS_ICC__)
+#pragma inline = forced
+#elif defined(__GNUC__)
+__attribute__((always_inline))
+#endif
+/**
+ * Perform a fast block XOR operation, such that
+ * r[i] = a[i] ^ b[i] where 0 <= i < n
+ *
+ * \param   r Pointer to result (buffer of at least \p n bytes). \p r
+ *            may be equal to either \p a or \p b, but behaviour when
+ *            it overlaps in other ways is undefined.
+ * \param   a Pointer to input (buffer of at least \p n bytes)
+ * \param   b Pointer to input (buffer of at least \p n bytes)
+ * \param   n Number of bytes to process.
+ *
+ * \note      Depending on the situation, it may be faster to use either mbedtls_xor() or
+ *            mbedtls_xor_no_simd() (these are functionally equivalent).
+ *            If the result is used immediately after the xor operation in non-SIMD code (e.g, in
+ *            AES-CBC), there may be additional latency to transfer the data from SIMD to scalar
+ *            registers, and in this case, mbedtls_xor_no_simd() may be faster. In other cases where
+ *            the result is not used immediately (e.g., in AES-CTR), mbedtls_xor() may be faster.
+ *            For targets without SIMD support, they will behave the same.
+ */
+static inline void mbedtls_xor(unsigned char *r,
+                               const unsigned char *a,
+                               const unsigned char *b,
+                               size_t n)
+{
+    size_t i = 0;
+#if defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS)
+#if defined(MBEDTLS_HAVE_NEON_INTRINSICS) && \
+    (!(defined(MBEDTLS_COMPILER_IS_GCC) && MBEDTLS_GCC_VERSION < 70300))
+    /* Old GCC versions generate a warning here, so disable the NEON path for these compilers */
+    for (; (i + 16) <= n; i += 16) {
+        uint8x16_t v1 = vld1q_u8(a + i);
+        uint8x16_t v2 = vld1q_u8(b + i);
+        uint8x16_t x = veorq_u8(v1, v2);
+        vst1q_u8(r + i, x);
+    }
+#if defined(__IAR_SYSTEMS_ICC__)
+    /* This if statement helps some compilers (e.g., IAR) optimise out the byte-by-byte tail case
+     * where n is a constant multiple of 16.
+     * For other compilers (e.g. recent gcc and clang) it makes no difference if n is a compile-time
+     * constant, and is a very small perf regression if n is not a compile-time constant. */
+    if (n % 16 == 0) {
+        return;
+    }
+#endif
+#elif defined(MBEDTLS_ARCH_IS_X64) || defined(MBEDTLS_ARCH_IS_ARM64)
+    /* This codepath probably only makes sense on architectures with 64-bit registers */
+    for (; (i + 8) <= n; i += 8) {
+        uint64_t x = mbedtls_get_unaligned_uint64(a + i) ^ mbedtls_get_unaligned_uint64(b + i);
+        mbedtls_put_unaligned_uint64(r + i, x);
+    }
+#if defined(__IAR_SYSTEMS_ICC__)
+    if (n % 8 == 0) {
+        return;
+    }
+#endif
+#else
+    for (; (i + 4) <= n; i += 4) {
+        uint32_t x = mbedtls_get_unaligned_uint32(a + i) ^ mbedtls_get_unaligned_uint32(b + i);
+        mbedtls_put_unaligned_uint32(r + i, x);
+    }
+#if defined(__IAR_SYSTEMS_ICC__)
+    if (n % 4 == 0) {
+        return;
+    }
+#endif
+#endif
+#endif
+    for (; i < n; i++) {
+        r[i] = a[i] ^ b[i];
+    }
+}
+
+/* Always inline mbedtls_xor_no_simd() as we see significant perf regressions when it does not get
+ * inlined (e.g., observed about 3x perf difference in gcm_mult_largetable with gcc 7 - 12) */
+#if defined(__IAR_SYSTEMS_ICC__)
+#pragma inline = forced
+#elif defined(__GNUC__)
+__attribute__((always_inline))
+#endif
+/**
+ * Perform a fast block XOR operation, such that
+ * r[i] = a[i] ^ b[i] where 0 <= i < n
+ *
+ * In some situations, this can perform better than mbedtls_xor() (e.g., it's about 5%
+ * better in AES-CBC).
+ *
+ * \param   r Pointer to result (buffer of at least \p n bytes). \p r
+ *            may be equal to either \p a or \p b, but behaviour when
+ *            it overlaps in other ways is undefined.
+ * \param   a Pointer to input (buffer of at least \p n bytes)
+ * \param   b Pointer to input (buffer of at least \p n bytes)
+ * \param   n Number of bytes to process.
+ *
+ * \note      Depending on the situation, it may be faster to use either mbedtls_xor() or
+ *            mbedtls_xor_no_simd() (these are functionally equivalent).
+ *            If the result is used immediately after the xor operation in non-SIMD code (e.g, in
+ *            AES-CBC), there may be additional latency to transfer the data from SIMD to scalar
+ *            registers, and in this case, mbedtls_xor_no_simd() may be faster. In other cases where
+ *            the result is not used immediately (e.g., in AES-CTR), mbedtls_xor() may be faster.
+ *            For targets without SIMD support, they will behave the same.
+ */
+static inline void mbedtls_xor_no_simd(unsigned char *r,
+                                       const unsigned char *a,
+                                       const unsigned char *b,
+                                       size_t n)
+{
+    size_t i = 0;
+#if defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS)
+#if defined(MBEDTLS_ARCH_IS_X64) || defined(MBEDTLS_ARCH_IS_ARM64)
+    /* This codepath probably only makes sense on architectures with 64-bit registers */
+    for (; (i + 8) <= n; i += 8) {
+        uint64_t x = mbedtls_get_unaligned_uint64(a + i) ^ mbedtls_get_unaligned_uint64(b + i);
+        mbedtls_put_unaligned_uint64(r + i, x);
+    }
+#if defined(__IAR_SYSTEMS_ICC__)
+    /* This if statement helps some compilers (e.g., IAR) optimise out the byte-by-byte tail case
+     * where n is a constant multiple of 8.
+     * For other compilers (e.g. recent gcc and clang) it makes no difference if n is a compile-time
+     * constant, and is a very small perf regression if n is not a compile-time constant. */
+    if (n % 8 == 0) {
+        return;
+    }
+#endif
+#else
+    for (; (i + 4) <= n; i += 4) {
+        uint32_t x = mbedtls_get_unaligned_uint32(a + i) ^ mbedtls_get_unaligned_uint32(b + i);
+        mbedtls_put_unaligned_uint32(r + i, x);
+    }
+#if defined(__IAR_SYSTEMS_ICC__)
+    if (n % 4 == 0) {
+        return;
+    }
+#endif
+#endif
+#endif
+    for (; i < n; i++) {
+        r[i] = a[i] ^ b[i];
+    }
+}
+
+/* Fix MSVC C99 compatible issue
+ *      MSVC support __func__ from visual studio 2015( 1900 )
+ *      Use MSVC predefine macro to avoid name check fail.
+ */
+#if (defined(_MSC_VER) && (_MSC_VER <= 1900))
+#define /*no-check-names*/ __func__ __FUNCTION__
+#endif
+
+/* Define `asm` for compilers which don't define it. */
+/* *INDENT-OFF* */
+#ifndef asm
+#if defined(__IAR_SYSTEMS_ICC__)
+#define asm __asm
+#else
+#define asm __asm__
+#endif
+#endif
+/* *INDENT-ON* */
+
+/*
+ * Define the constraint used for read-only pointer operands to aarch64 asm.
+ *
+ * This is normally the usual "r", but for aarch64_32 (aka ILP32,
+ * as found in watchos), "p" is required to avoid warnings from clang.
+ *
+ * Note that clang does not recognise '+p' or '=p', and armclang
+ * does not recognise 'p' at all. Therefore, to update a pointer from
+ * aarch64 assembly, it is necessary to use something like:
+ *
+ * uintptr_t uptr = (uintptr_t) ptr;
+ * asm( "ldr x4, [%x0], #8" ... : "+r" (uptr) : : )
+ * ptr = (void*) uptr;
+ *
+ * Note that the "x" in "%x0" is neccessary; writing "%0" will cause warnings.
+ */
+#if defined(__aarch64__) && defined(MBEDTLS_HAVE_ASM)
+#if UINTPTR_MAX == 0xfffffffful
+/* ILP32: Specify the pointer operand slightly differently, as per #7787. */
+#define MBEDTLS_ASM_AARCH64_PTR_CONSTRAINT "p"
+#elif UINTPTR_MAX == 0xfffffffffffffffful
+/* Normal case (64-bit pointers): use "r" as the constraint for pointer operands to asm */
+#define MBEDTLS_ASM_AARCH64_PTR_CONSTRAINT "r"
+#else
+#error "Unrecognised pointer size for aarch64"
+#endif
+#endif
+
+/* Always provide a static assert macro, so it can be used unconditionally.
+ * It will expand to nothing on some systems.
+ * Can be used outside functions (but don't add a trailing ';' in that case:
+ * the semicolon is included here to avoid triggering -Wextra-semi when
+ * MBEDTLS_STATIC_ASSERT() expands to nothing).
+ * Can't use the C11-style `defined(static_assert)` on FreeBSD, since it
+ * defines static_assert even with -std=c99, but then complains about it.
+ */
+#if defined(static_assert) && !defined(__FreeBSD__)
+#define MBEDTLS_STATIC_ASSERT(expr, msg)    static_assert(expr, msg);
+#else
+#define MBEDTLS_STATIC_ASSERT(expr, msg)
+#endif
+
+#if defined(__has_builtin)
+#define MBEDTLS_HAS_BUILTIN(x) __has_builtin(x)
+#else
+#define MBEDTLS_HAS_BUILTIN(x) 0
+#endif
+
+/* Define compiler branch hints */
+#if MBEDTLS_HAS_BUILTIN(__builtin_expect)
+#define MBEDTLS_LIKELY(x)       __builtin_expect(!!(x), 1)
+#define MBEDTLS_UNLIKELY(x)     __builtin_expect(!!(x), 0)
+#else
+#define MBEDTLS_LIKELY(x)       x
+#define MBEDTLS_UNLIKELY(x)     x
+#endif
+
+/* MBEDTLS_ASSUME may be used to provide additional information to the compiler
+ * which can result in smaller code-size. */
+#if MBEDTLS_HAS_BUILTIN(__builtin_assume)
+/* clang provides __builtin_assume */
+#define MBEDTLS_ASSUME(x)       __builtin_assume(x)
+#elif MBEDTLS_HAS_BUILTIN(__builtin_unreachable)
+/* gcc and IAR can use __builtin_unreachable */
+#define MBEDTLS_ASSUME(x)       do { if (!(x)) __builtin_unreachable(); } while (0)
+#elif defined(_MSC_VER)
+/* Supported by MSVC since VS 2005 */
+#define MBEDTLS_ASSUME(x)       __assume(x)
+#else
+#define MBEDTLS_ASSUME(x)       do { } while (0)
+#endif
+
+/* For gcc -Os, override with -O2 for a given function.
+ *
+ * This will not affect behaviour for other optimisation settings, e.g. -O0.
+ */
+#if defined(MBEDTLS_COMPILER_IS_GCC) && defined(__OPTIMIZE_SIZE__)
+#define MBEDTLS_OPTIMIZE_FOR_PERFORMANCE __attribute__((optimize("-O2")))
+#else
+#define MBEDTLS_OPTIMIZE_FOR_PERFORMANCE
+#endif
+
+/* Suppress compiler warnings for unused functions and variables. */
+#if !defined(MBEDTLS_MAYBE_UNUSED) && defined(__has_attribute)
+#    if __has_attribute(unused)
+#        define MBEDTLS_MAYBE_UNUSED __attribute__((unused))
+#    endif
+#endif
+#if !defined(MBEDTLS_MAYBE_UNUSED) && defined(__GNUC__)
+#    define MBEDTLS_MAYBE_UNUSED __attribute__((unused))
+#endif
+#if !defined(MBEDTLS_MAYBE_UNUSED) && defined(__IAR_SYSTEMS_ICC__) && defined(__VER__)
+/* IAR does support __attribute__((unused)), but only if the -e flag (extended language support)
+ * is given; the pragma always works.
+ * Unfortunately the pragma affects the rest of the file where it is used, but this is harmless.
+ * Check for version 5.2 or later - this pragma may be supported by earlier versions, but I wasn't
+ * able to find documentation).
+ */
+#    if (__VER__ >= 5020000)
+#        define MBEDTLS_MAYBE_UNUSED _Pragma("diag_suppress=Pe177")
+#    endif
+#endif
+#if !defined(MBEDTLS_MAYBE_UNUSED) && defined(_MSC_VER)
+#    define MBEDTLS_MAYBE_UNUSED __pragma(warning(suppress:4189))
+#endif
+#if !defined(MBEDTLS_MAYBE_UNUSED)
+#    define MBEDTLS_MAYBE_UNUSED
+#endif
+
+#endif /* MBEDTLS_LIBRARY_COMMON_H */
diff --git a/tf-psa-crypto/core/psa_crypto.c b/tf-psa-crypto/core/psa_crypto.c
new file mode 100644
index 0000000..8100afc
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto.c
@@ -0,0 +1,9171 @@
+/*
+ *  PSA crypto layer on top of Mbed TLS crypto
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+#include "psa_crypto_core_common.h"
+
+#if defined(MBEDTLS_PSA_CRYPTO_C)
+
+#if defined(MBEDTLS_PSA_CRYPTO_CONFIG)
+#include "check_crypto_config.h"
+#endif
+
+#include "psa/crypto.h"
+#include "psa/crypto_values.h"
+
+#include "psa_crypto_cipher.h"
+#include "psa_crypto_core.h"
+#include "psa_crypto_invasive.h"
+#include "psa_crypto_driver_wrappers.h"
+#include "psa_crypto_driver_wrappers_no_static.h"
+#include "psa_crypto_ecp.h"
+#include "psa_crypto_ffdh.h"
+#include "psa_crypto_hash.h"
+#include "psa_crypto_mac.h"
+#include "psa_crypto_rsa.h"
+#include "psa_crypto_ecp.h"
+#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
+#include "psa_crypto_se.h"
+#endif
+#include "psa_crypto_slot_management.h"
+/* Include internal declarations that are useful for implementing persistently
+ * stored keys. */
+#include "psa_crypto_storage.h"
+
+#include "psa_crypto_random_impl.h"
+
+#include <stdlib.h>
+#include <string.h>
+#include "mbedtls/platform.h"
+
+#include "mbedtls/aes.h"
+#include "mbedtls/asn1.h"
+#include "mbedtls/asn1write.h"
+#include "mbedtls/bignum.h"
+#include "mbedtls/camellia.h"
+#include "mbedtls/chacha20.h"
+#include "mbedtls/chachapoly.h"
+#include "mbedtls/cipher.h"
+#include "mbedtls/ccm.h"
+#include "mbedtls/cmac.h"
+#include "mbedtls/constant_time.h"
+#include "mbedtls/des.h"
+#include "mbedtls/ecdh.h"
+#include "mbedtls/ecp.h"
+#include "mbedtls/entropy.h"
+#include "mbedtls/error.h"
+#include "mbedtls/gcm.h"
+#include "mbedtls/md5.h"
+#include "mbedtls/pk.h"
+#include "pk_wrap.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+#include "mbedtls/ripemd160.h"
+#include "mbedtls/rsa.h"
+#include "mbedtls/sha1.h"
+#include "mbedtls/sha256.h"
+#include "mbedtls/sha512.h"
+#include "mbedtls/psa_util.h"
+#include "mbedtls/threading.h"
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF) ||          \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT) ||  \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXPAND)
+#define BUILTIN_ALG_ANY_HKDF 1
+#endif
+
+/****************************************************************/
+/* Global data, support functions and library management */
+/****************************************************************/
+
+static int key_type_is_raw_bytes(psa_key_type_t type)
+{
+    return PSA_KEY_TYPE_IS_UNSTRUCTURED(type);
+}
+
+/* Values for psa_global_data_t::rng_state */
+#define RNG_NOT_INITIALIZED 0
+#define RNG_INITIALIZED 1
+#define RNG_SEEDED 2
+
+/* IDs for PSA crypto subsystems. Starts at 1 to catch potential uninitialized
+ * variables as arguments. */
+typedef enum {
+    PSA_CRYPTO_SUBSYSTEM_DRIVER_WRAPPERS = 1,
+    PSA_CRYPTO_SUBSYSTEM_KEY_SLOTS,
+    PSA_CRYPTO_SUBSYSTEM_RNG,
+    PSA_CRYPTO_SUBSYSTEM_TRANSACTION,
+} mbedtls_psa_crypto_subsystem;
+
+/* Initialization flags for global_data::initialized */
+#define PSA_CRYPTO_SUBSYSTEM_DRIVER_WRAPPERS_INITIALIZED    0x01
+#define PSA_CRYPTO_SUBSYSTEM_KEY_SLOTS_INITIALIZED          0x02
+#define PSA_CRYPTO_SUBSYSTEM_TRANSACTION_INITIALIZED        0x04
+
+#define PSA_CRYPTO_SUBSYSTEM_ALL_INITIALISED                ( \
+        PSA_CRYPTO_SUBSYSTEM_DRIVER_WRAPPERS_INITIALIZED | \
+        PSA_CRYPTO_SUBSYSTEM_KEY_SLOTS_INITIALIZED | \
+        PSA_CRYPTO_SUBSYSTEM_TRANSACTION_INITIALIZED)
+
+typedef struct {
+    uint8_t initialized;
+    uint8_t rng_state;
+    mbedtls_psa_random_context_t rng;
+} psa_global_data_t;
+
+static psa_global_data_t global_data;
+
+static uint8_t psa_get_initialized(void)
+{
+    uint8_t initialized;
+
+#if defined(MBEDTLS_THREADING_C)
+    mbedtls_mutex_lock(&mbedtls_threading_psa_rngdata_mutex);
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+    initialized = global_data.rng_state == RNG_SEEDED;
+
+#if defined(MBEDTLS_THREADING_C)
+    mbedtls_mutex_unlock(&mbedtls_threading_psa_rngdata_mutex);
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+#if defined(MBEDTLS_THREADING_C)
+    mbedtls_mutex_lock(&mbedtls_threading_psa_globaldata_mutex);
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+    initialized =
+        (initialized && (global_data.initialized == PSA_CRYPTO_SUBSYSTEM_ALL_INITIALISED));
+
+#if defined(MBEDTLS_THREADING_C)
+    mbedtls_mutex_unlock(&mbedtls_threading_psa_globaldata_mutex);
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+    return initialized;
+}
+
+static uint8_t psa_get_drivers_initialized(void)
+{
+    uint8_t initialized;
+
+#if defined(MBEDTLS_THREADING_C)
+    mbedtls_mutex_lock(&mbedtls_threading_psa_globaldata_mutex);
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+    initialized = (global_data.initialized & PSA_CRYPTO_SUBSYSTEM_DRIVER_WRAPPERS_INITIALIZED) != 0;
+
+#if defined(MBEDTLS_THREADING_C)
+    mbedtls_mutex_unlock(&mbedtls_threading_psa_globaldata_mutex);
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+    return initialized;
+}
+
+#define GUARD_MODULE_INITIALIZED        \
+    if (psa_get_initialized() == 0)     \
+    return PSA_ERROR_BAD_STATE;
+
+#if !defined(MBEDTLS_PSA_ASSUME_EXCLUSIVE_BUFFERS)
+
+/* Declare a local copy of an input buffer and a variable that will be used
+ * to store a pointer to the start of the buffer.
+ *
+ * Note: This macro must be called before any operations which may jump to
+ * the exit label, so that the local input copy object is safe to be freed.
+ *
+ * Assumptions:
+ * - input is the name of a pointer to the buffer to be copied
+ * - The name LOCAL_INPUT_COPY_OF_input is unused in the current scope
+ * - input_copy_name is a name that is unused in the current scope
+ */
+#define LOCAL_INPUT_DECLARE(input, input_copy_name) \
+    psa_crypto_local_input_t LOCAL_INPUT_COPY_OF_##input = PSA_CRYPTO_LOCAL_INPUT_INIT; \
+    const uint8_t *input_copy_name = NULL;
+
+/* Allocate a copy of the buffer input and set the pointer input_copy to
+ * point to the start of the copy.
+ *
+ * Assumptions:
+ * - psa_status_t status exists
+ * - An exit label is declared
+ * - input is the name of a pointer to the buffer to be copied
+ * - LOCAL_INPUT_DECLARE(input, input_copy) has previously been called
+ */
+#define LOCAL_INPUT_ALLOC(input, length, input_copy) \
+    status = psa_crypto_local_input_alloc(input, length, \
+                                          &LOCAL_INPUT_COPY_OF_##input); \
+    if (status != PSA_SUCCESS) { \
+        goto exit; \
+    } \
+    input_copy = LOCAL_INPUT_COPY_OF_##input.buffer;
+
+/* Free the local input copy allocated previously by LOCAL_INPUT_ALLOC()
+ *
+ * Assumptions:
+ * - input_copy is the name of the input copy pointer set by LOCAL_INPUT_ALLOC()
+ * - input is the name of the original buffer that was copied
+ */
+#define LOCAL_INPUT_FREE(input, input_copy) \
+    input_copy = NULL; \
+    psa_crypto_local_input_free(&LOCAL_INPUT_COPY_OF_##input);
+
+/* Declare a local copy of an output buffer and a variable that will be used
+ * to store a pointer to the start of the buffer.
+ *
+ * Note: This macro must be called before any operations which may jump to
+ * the exit label, so that the local output copy object is safe to be freed.
+ *
+ * Assumptions:
+ * - output is the name of a pointer to the buffer to be copied
+ * - The name LOCAL_OUTPUT_COPY_OF_output is unused in the current scope
+ * - output_copy_name is a name that is unused in the current scope
+ */
+#define LOCAL_OUTPUT_DECLARE(output, output_copy_name) \
+    psa_crypto_local_output_t LOCAL_OUTPUT_COPY_OF_##output = PSA_CRYPTO_LOCAL_OUTPUT_INIT; \
+    uint8_t *output_copy_name = NULL;
+
+/* Allocate a copy of the buffer output and set the pointer output_copy to
+ * point to the start of the copy.
+ *
+ * Assumptions:
+ * - psa_status_t status exists
+ * - An exit label is declared
+ * - output is the name of a pointer to the buffer to be copied
+ * - LOCAL_OUTPUT_DECLARE(output, output_copy) has previously been called
+ */
+#define LOCAL_OUTPUT_ALLOC(output, length, output_copy) \
+    status = psa_crypto_local_output_alloc(output, length, \
+                                           &LOCAL_OUTPUT_COPY_OF_##output); \
+    if (status != PSA_SUCCESS) { \
+        goto exit; \
+    } \
+    output_copy = LOCAL_OUTPUT_COPY_OF_##output.buffer;
+
+/* Free the local output copy allocated previously by LOCAL_OUTPUT_ALLOC()
+ * after first copying back its contents to the original buffer.
+ *
+ * Assumptions:
+ * - psa_status_t status exists
+ * - output_copy is the name of the output copy pointer set by LOCAL_OUTPUT_ALLOC()
+ * - output is the name of the original buffer that was copied
+ */
+#define LOCAL_OUTPUT_FREE(output, output_copy) \
+    output_copy = NULL; \
+    do { \
+        psa_status_t local_output_status; \
+        local_output_status = psa_crypto_local_output_free(&LOCAL_OUTPUT_COPY_OF_##output); \
+        if (local_output_status != PSA_SUCCESS) { \
+            /* Since this error case is an internal error, it's more serious than \
+             * any existing error code and so it's fine to overwrite the existing \
+             * status. */ \
+            status = local_output_status; \
+        } \
+    } while (0)
+#else /* !MBEDTLS_PSA_ASSUME_EXCLUSIVE_BUFFERS */
+#define LOCAL_INPUT_DECLARE(input, input_copy_name) \
+    const uint8_t *input_copy_name = NULL;
+#define LOCAL_INPUT_ALLOC(input, length, input_copy) \
+    input_copy = input;
+#define LOCAL_INPUT_FREE(input, input_copy) \
+    input_copy = NULL;
+#define LOCAL_OUTPUT_DECLARE(output, output_copy_name) \
+    uint8_t *output_copy_name = NULL;
+#define LOCAL_OUTPUT_ALLOC(output, length, output_copy) \
+    output_copy = output;
+#define LOCAL_OUTPUT_FREE(output, output_copy) \
+    output_copy = NULL;
+#endif /* !MBEDTLS_PSA_ASSUME_EXCLUSIVE_BUFFERS */
+
+
+int psa_can_do_hash(psa_algorithm_t hash_alg)
+{
+    (void) hash_alg;
+    return psa_get_drivers_initialized();
+}
+
+int psa_can_do_cipher(psa_key_type_t key_type, psa_algorithm_t cipher_alg)
+{
+    (void) key_type;
+    (void) cipher_alg;
+    return psa_get_drivers_initialized();
+}
+
+
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_KEY_PAIR_IMPORT) ||       \
+    defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_PUBLIC_KEY) ||     \
+    defined(PSA_WANT_KEY_TYPE_DH_KEY_PAIR_GENERATE)
+static int psa_is_dh_key_size_valid(size_t bits)
+{
+    switch (bits) {
+#if defined(PSA_WANT_DH_RFC7919_2048)
+        case 2048:
+            return 1;
+#endif /* PSA_WANT_DH_RFC7919_2048 */
+#if defined(PSA_WANT_DH_RFC7919_3072)
+        case 3072:
+            return 1;
+#endif /* PSA_WANT_DH_RFC7919_3072 */
+#if defined(PSA_WANT_DH_RFC7919_4096)
+        case 4096:
+            return 1;
+#endif /* PSA_WANT_DH_RFC7919_4096 */
+#if defined(PSA_WANT_DH_RFC7919_6144)
+        case 6144:
+            return 1;
+#endif /* PSA_WANT_DH_RFC7919_6144 */
+#if defined(PSA_WANT_DH_RFC7919_8192)
+        case 8192:
+            return 1;
+#endif /* PSA_WANT_DH_RFC7919_8192 */
+        default:
+            return 0;
+    }
+}
+#endif /* MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_KEY_PAIR_IMPORT ||
+          MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_PUBLIC_KEY ||
+          PSA_WANT_KEY_TYPE_DH_KEY_PAIR_GENERATE */
+
+psa_status_t mbedtls_to_psa_error(int ret)
+{
+    /* Mbed TLS error codes can combine a high-level error code and a
+     * low-level error code. The low-level error usually reflects the
+     * root cause better, so dispatch on that preferably. */
+    int low_level_ret = -(-ret & 0x007f);
+    switch (low_level_ret != 0 ? low_level_ret : ret) {
+        case 0:
+            return PSA_SUCCESS;
+
+#if defined(MBEDTLS_AES_C)
+        case MBEDTLS_ERR_AES_INVALID_KEY_LENGTH:
+        case MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH:
+            return PSA_ERROR_NOT_SUPPORTED;
+        case MBEDTLS_ERR_AES_BAD_INPUT_DATA:
+            return PSA_ERROR_INVALID_ARGUMENT;
+#endif
+
+#if defined(MBEDTLS_ASN1_PARSE_C) || defined(MBEDTLS_ASN1_WRITE_C)
+        case MBEDTLS_ERR_ASN1_OUT_OF_DATA:
+        case MBEDTLS_ERR_ASN1_UNEXPECTED_TAG:
+        case MBEDTLS_ERR_ASN1_INVALID_LENGTH:
+        case MBEDTLS_ERR_ASN1_LENGTH_MISMATCH:
+        case MBEDTLS_ERR_ASN1_INVALID_DATA:
+            return PSA_ERROR_INVALID_ARGUMENT;
+        case MBEDTLS_ERR_ASN1_ALLOC_FAILED:
+            return PSA_ERROR_INSUFFICIENT_MEMORY;
+        case MBEDTLS_ERR_ASN1_BUF_TOO_SMALL:
+            return PSA_ERROR_BUFFER_TOO_SMALL;
+#endif
+
+#if defined(MBEDTLS_CAMELLIA_C)
+        case MBEDTLS_ERR_CAMELLIA_BAD_INPUT_DATA:
+        case MBEDTLS_ERR_CAMELLIA_INVALID_INPUT_LENGTH:
+            return PSA_ERROR_NOT_SUPPORTED;
+#endif
+
+#if defined(MBEDTLS_CCM_C)
+        case MBEDTLS_ERR_CCM_BAD_INPUT:
+            return PSA_ERROR_INVALID_ARGUMENT;
+        case MBEDTLS_ERR_CCM_AUTH_FAILED:
+            return PSA_ERROR_INVALID_SIGNATURE;
+#endif
+
+#if defined(MBEDTLS_CHACHA20_C)
+        case MBEDTLS_ERR_CHACHA20_BAD_INPUT_DATA:
+            return PSA_ERROR_INVALID_ARGUMENT;
+#endif
+
+#if defined(MBEDTLS_CHACHAPOLY_C)
+        case MBEDTLS_ERR_CHACHAPOLY_BAD_STATE:
+            return PSA_ERROR_BAD_STATE;
+        case MBEDTLS_ERR_CHACHAPOLY_AUTH_FAILED:
+            return PSA_ERROR_INVALID_SIGNATURE;
+#endif
+
+#if defined(MBEDTLS_CIPHER_C)
+        case MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE:
+            return PSA_ERROR_NOT_SUPPORTED;
+        case MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA:
+            return PSA_ERROR_INVALID_ARGUMENT;
+        case MBEDTLS_ERR_CIPHER_ALLOC_FAILED:
+            return PSA_ERROR_INSUFFICIENT_MEMORY;
+        case MBEDTLS_ERR_CIPHER_INVALID_PADDING:
+            return PSA_ERROR_INVALID_PADDING;
+        case MBEDTLS_ERR_CIPHER_FULL_BLOCK_EXPECTED:
+            return PSA_ERROR_INVALID_ARGUMENT;
+        case MBEDTLS_ERR_CIPHER_AUTH_FAILED:
+            return PSA_ERROR_INVALID_SIGNATURE;
+        case MBEDTLS_ERR_CIPHER_INVALID_CONTEXT:
+            return PSA_ERROR_CORRUPTION_DETECTED;
+#endif
+
+#if !(defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG) ||      \
+            defined(MBEDTLS_PSA_HMAC_DRBG_MD_TYPE))
+        /* Only check CTR_DRBG error codes if underlying mbedtls_xxx
+         * functions are passed a CTR_DRBG instance. */
+        case MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED:
+            return PSA_ERROR_INSUFFICIENT_ENTROPY;
+        case MBEDTLS_ERR_CTR_DRBG_REQUEST_TOO_BIG:
+        case MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG:
+            return PSA_ERROR_NOT_SUPPORTED;
+        case MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR:
+            return PSA_ERROR_INSUFFICIENT_ENTROPY;
+#endif
+
+#if defined(MBEDTLS_DES_C)
+        case MBEDTLS_ERR_DES_INVALID_INPUT_LENGTH:
+            return PSA_ERROR_NOT_SUPPORTED;
+#endif
+
+        case MBEDTLS_ERR_ENTROPY_NO_SOURCES_DEFINED:
+        case MBEDTLS_ERR_ENTROPY_NO_STRONG_SOURCE:
+        case MBEDTLS_ERR_ENTROPY_SOURCE_FAILED:
+            return PSA_ERROR_INSUFFICIENT_ENTROPY;
+
+#if defined(MBEDTLS_GCM_C)
+        case MBEDTLS_ERR_GCM_AUTH_FAILED:
+            return PSA_ERROR_INVALID_SIGNATURE;
+        case MBEDTLS_ERR_GCM_BUFFER_TOO_SMALL:
+            return PSA_ERROR_BUFFER_TOO_SMALL;
+        case MBEDTLS_ERR_GCM_BAD_INPUT:
+            return PSA_ERROR_INVALID_ARGUMENT;
+#endif
+
+#if !defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG) &&        \
+            defined(MBEDTLS_PSA_HMAC_DRBG_MD_TYPE)
+        /* Only check HMAC_DRBG error codes if underlying mbedtls_xxx
+         * functions are passed a HMAC_DRBG instance. */
+        case MBEDTLS_ERR_HMAC_DRBG_ENTROPY_SOURCE_FAILED:
+            return PSA_ERROR_INSUFFICIENT_ENTROPY;
+        case MBEDTLS_ERR_HMAC_DRBG_REQUEST_TOO_BIG:
+        case MBEDTLS_ERR_HMAC_DRBG_INPUT_TOO_BIG:
+            return PSA_ERROR_NOT_SUPPORTED;
+        case MBEDTLS_ERR_HMAC_DRBG_FILE_IO_ERROR:
+            return PSA_ERROR_INSUFFICIENT_ENTROPY;
+#endif
+
+#if defined(MBEDTLS_MD_LIGHT)
+        case MBEDTLS_ERR_MD_FEATURE_UNAVAILABLE:
+            return PSA_ERROR_NOT_SUPPORTED;
+        case MBEDTLS_ERR_MD_BAD_INPUT_DATA:
+            return PSA_ERROR_INVALID_ARGUMENT;
+        case MBEDTLS_ERR_MD_ALLOC_FAILED:
+            return PSA_ERROR_INSUFFICIENT_MEMORY;
+#if defined(MBEDTLS_FS_IO)
+        case MBEDTLS_ERR_MD_FILE_IO_ERROR:
+            return PSA_ERROR_STORAGE_FAILURE;
+#endif
+#endif
+
+#if defined(MBEDTLS_BIGNUM_C)
+#if defined(MBEDTLS_FS_IO)
+        case MBEDTLS_ERR_MPI_FILE_IO_ERROR:
+            return PSA_ERROR_STORAGE_FAILURE;
+#endif
+        case MBEDTLS_ERR_MPI_BAD_INPUT_DATA:
+            return PSA_ERROR_INVALID_ARGUMENT;
+        case MBEDTLS_ERR_MPI_INVALID_CHARACTER:
+            return PSA_ERROR_INVALID_ARGUMENT;
+        case MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL:
+            return PSA_ERROR_BUFFER_TOO_SMALL;
+        case MBEDTLS_ERR_MPI_NEGATIVE_VALUE:
+            return PSA_ERROR_INVALID_ARGUMENT;
+        case MBEDTLS_ERR_MPI_DIVISION_BY_ZERO:
+            return PSA_ERROR_INVALID_ARGUMENT;
+        case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
+            return PSA_ERROR_INVALID_ARGUMENT;
+        case MBEDTLS_ERR_MPI_ALLOC_FAILED:
+            return PSA_ERROR_INSUFFICIENT_MEMORY;
+#endif
+
+#if defined(MBEDTLS_PK_C)
+        case MBEDTLS_ERR_PK_ALLOC_FAILED:
+            return PSA_ERROR_INSUFFICIENT_MEMORY;
+        case MBEDTLS_ERR_PK_TYPE_MISMATCH:
+        case MBEDTLS_ERR_PK_BAD_INPUT_DATA:
+            return PSA_ERROR_INVALID_ARGUMENT;
+#if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) || defined(MBEDTLS_FS_IO) || \
+            defined(MBEDTLS_PSA_ITS_FILE_C)
+        case MBEDTLS_ERR_PK_FILE_IO_ERROR:
+            return PSA_ERROR_STORAGE_FAILURE;
+#endif
+        case MBEDTLS_ERR_PK_KEY_INVALID_VERSION:
+        case MBEDTLS_ERR_PK_KEY_INVALID_FORMAT:
+            return PSA_ERROR_INVALID_ARGUMENT;
+        case MBEDTLS_ERR_PK_UNKNOWN_PK_ALG:
+            return PSA_ERROR_NOT_SUPPORTED;
+        case MBEDTLS_ERR_PK_PASSWORD_REQUIRED:
+        case MBEDTLS_ERR_PK_PASSWORD_MISMATCH:
+            return PSA_ERROR_NOT_PERMITTED;
+        case MBEDTLS_ERR_PK_INVALID_PUBKEY:
+            return PSA_ERROR_INVALID_ARGUMENT;
+        case MBEDTLS_ERR_PK_INVALID_ALG:
+        case MBEDTLS_ERR_PK_UNKNOWN_NAMED_CURVE:
+        case MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE:
+            return PSA_ERROR_NOT_SUPPORTED;
+        case MBEDTLS_ERR_PK_SIG_LEN_MISMATCH:
+            return PSA_ERROR_INVALID_SIGNATURE;
+        case MBEDTLS_ERR_PK_BUFFER_TOO_SMALL:
+            return PSA_ERROR_BUFFER_TOO_SMALL;
+#endif
+
+        case MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED:
+            return PSA_ERROR_HARDWARE_FAILURE;
+        case MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED:
+            return PSA_ERROR_NOT_SUPPORTED;
+
+#if defined(MBEDTLS_RSA_C)
+        case MBEDTLS_ERR_RSA_BAD_INPUT_DATA:
+            return PSA_ERROR_INVALID_ARGUMENT;
+        case MBEDTLS_ERR_RSA_INVALID_PADDING:
+            return PSA_ERROR_INVALID_PADDING;
+        case MBEDTLS_ERR_RSA_KEY_GEN_FAILED:
+            return PSA_ERROR_HARDWARE_FAILURE;
+        case MBEDTLS_ERR_RSA_KEY_CHECK_FAILED:
+            return PSA_ERROR_INVALID_ARGUMENT;
+        case MBEDTLS_ERR_RSA_PUBLIC_FAILED:
+        case MBEDTLS_ERR_RSA_PRIVATE_FAILED:
+            return PSA_ERROR_CORRUPTION_DETECTED;
+        case MBEDTLS_ERR_RSA_VERIFY_FAILED:
+            return PSA_ERROR_INVALID_SIGNATURE;
+        case MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE:
+            return PSA_ERROR_BUFFER_TOO_SMALL;
+        case MBEDTLS_ERR_RSA_RNG_FAILED:
+            return PSA_ERROR_INSUFFICIENT_ENTROPY;
+#endif
+
+#if defined(MBEDTLS_ECP_LIGHT)
+        case MBEDTLS_ERR_ECP_BAD_INPUT_DATA:
+        case MBEDTLS_ERR_ECP_INVALID_KEY:
+            return PSA_ERROR_INVALID_ARGUMENT;
+        case MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL:
+            return PSA_ERROR_BUFFER_TOO_SMALL;
+        case MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE:
+            return PSA_ERROR_NOT_SUPPORTED;
+        case MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH:
+        case MBEDTLS_ERR_ECP_VERIFY_FAILED:
+            return PSA_ERROR_INVALID_SIGNATURE;
+        case MBEDTLS_ERR_ECP_ALLOC_FAILED:
+            return PSA_ERROR_INSUFFICIENT_MEMORY;
+        case MBEDTLS_ERR_ECP_RANDOM_FAILED:
+            return PSA_ERROR_INSUFFICIENT_ENTROPY;
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+        case MBEDTLS_ERR_ECP_IN_PROGRESS:
+            return PSA_OPERATION_INCOMPLETE;
+#endif
+#endif
+
+        case MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED:
+            return PSA_ERROR_CORRUPTION_DETECTED;
+
+        default:
+            return PSA_ERROR_GENERIC_ERROR;
+    }
+}
+
+/**
+ * \brief                       For output buffers which contain "tags"
+ *                              (outputs that may be checked for validity like
+ *                              hashes, MACs and signatures), fill the unused
+ *                              part of the output buffer (the whole buffer on
+ *                              error, the trailing part on success) with
+ *                              something that isn't a valid tag (barring an
+ *                              attack on the tag and deliberately-crafted
+ *                              input), in case the caller doesn't check the
+ *                              return status properly.
+ *
+ * \param output_buffer         Pointer to buffer to wipe. May not be NULL
+ *                              unless \p output_buffer_size is zero.
+ * \param status                Status of function called to generate
+ *                              output_buffer originally
+ * \param output_buffer_size    Size of output buffer. If zero, \p output_buffer
+ *                              could be NULL.
+ * \param output_buffer_length  Length of data written to output_buffer, must be
+ *                              less than \p output_buffer_size
+ */
+static void psa_wipe_tag_output_buffer(uint8_t *output_buffer, psa_status_t status,
+                                       size_t output_buffer_size, size_t output_buffer_length)
+{
+    size_t offset = 0;
+
+    if (output_buffer_size == 0) {
+        /* If output_buffer_size is 0 then we have nothing to do. We must not
+           call memset because output_buffer may be NULL in this case */
+        return;
+    }
+
+    if (status == PSA_SUCCESS) {
+        offset = output_buffer_length;
+    }
+
+    memset(output_buffer + offset, '!', output_buffer_size - offset);
+}
+
+
+psa_status_t psa_validate_unstructured_key_bit_size(psa_key_type_t type,
+                                                    size_t bits)
+{
+    /* Check that the bit size is acceptable for the key type */
+    switch (type) {
+        case PSA_KEY_TYPE_RAW_DATA:
+        case PSA_KEY_TYPE_HMAC:
+        case PSA_KEY_TYPE_DERIVE:
+        case PSA_KEY_TYPE_PASSWORD:
+        case PSA_KEY_TYPE_PASSWORD_HASH:
+            break;
+#if defined(PSA_WANT_KEY_TYPE_AES)
+        case PSA_KEY_TYPE_AES:
+            if (bits != 128 && bits != 192 && bits != 256) {
+                return PSA_ERROR_INVALID_ARGUMENT;
+            }
+            break;
+#endif
+#if defined(PSA_WANT_KEY_TYPE_ARIA)
+        case PSA_KEY_TYPE_ARIA:
+            if (bits != 128 && bits != 192 && bits != 256) {
+                return PSA_ERROR_INVALID_ARGUMENT;
+            }
+            break;
+#endif
+#if defined(PSA_WANT_KEY_TYPE_CAMELLIA)
+        case PSA_KEY_TYPE_CAMELLIA:
+            if (bits != 128 && bits != 192 && bits != 256) {
+                return PSA_ERROR_INVALID_ARGUMENT;
+            }
+            break;
+#endif
+#if defined(PSA_WANT_KEY_TYPE_DES)
+        case PSA_KEY_TYPE_DES:
+            if (bits != 64 && bits != 128 && bits != 192) {
+                return PSA_ERROR_INVALID_ARGUMENT;
+            }
+            break;
+#endif
+#if defined(PSA_WANT_KEY_TYPE_CHACHA20)
+        case PSA_KEY_TYPE_CHACHA20:
+            if (bits != 256) {
+                return PSA_ERROR_INVALID_ARGUMENT;
+            }
+            break;
+#endif
+        default:
+            return PSA_ERROR_NOT_SUPPORTED;
+    }
+    if (bits % 8 != 0) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    return PSA_SUCCESS;
+}
+
+/** Check whether a given key type is valid for use with a given MAC algorithm
+ *
+ * Upon successful return of this function, the behavior of #PSA_MAC_LENGTH
+ * when called with the validated \p algorithm and \p key_type is well-defined.
+ *
+ * \param[in] algorithm     The specific MAC algorithm (can be wildcard).
+ * \param[in] key_type      The key type of the key to be used with the
+ *                          \p algorithm.
+ *
+ * \retval #PSA_SUCCESS
+ *         The \p key_type is valid for use with the \p algorithm
+ * \retval #PSA_ERROR_INVALID_ARGUMENT
+ *         The \p key_type is not valid for use with the \p algorithm
+ */
+MBEDTLS_STATIC_TESTABLE psa_status_t psa_mac_key_can_do(
+    psa_algorithm_t algorithm,
+    psa_key_type_t key_type)
+{
+    if (PSA_ALG_IS_HMAC(algorithm)) {
+        if (key_type == PSA_KEY_TYPE_HMAC) {
+            return PSA_SUCCESS;
+        }
+    }
+
+    if (PSA_ALG_IS_BLOCK_CIPHER_MAC(algorithm)) {
+        /* Check that we're calling PSA_BLOCK_CIPHER_BLOCK_LENGTH with a cipher
+         * key. */
+        if ((key_type & PSA_KEY_TYPE_CATEGORY_MASK) ==
+            PSA_KEY_TYPE_CATEGORY_SYMMETRIC) {
+            /* PSA_BLOCK_CIPHER_BLOCK_LENGTH returns 1 for stream ciphers and
+             * the block length (larger than 1) for block ciphers. */
+            if (PSA_BLOCK_CIPHER_BLOCK_LENGTH(key_type) > 1) {
+                return PSA_SUCCESS;
+            }
+        }
+    }
+
+    return PSA_ERROR_INVALID_ARGUMENT;
+}
+
+psa_status_t psa_allocate_buffer_to_slot(psa_key_slot_t *slot,
+                                         size_t buffer_length)
+{
+    if (slot->key.data != NULL) {
+        return PSA_ERROR_ALREADY_EXISTS;
+    }
+
+    slot->key.data = mbedtls_calloc(1, buffer_length);
+    if (slot->key.data == NULL) {
+        return PSA_ERROR_INSUFFICIENT_MEMORY;
+    }
+
+    slot->key.bytes = buffer_length;
+    return PSA_SUCCESS;
+}
+
+psa_status_t psa_copy_key_material_into_slot(psa_key_slot_t *slot,
+                                             const uint8_t *data,
+                                             size_t data_length)
+{
+    psa_status_t status = psa_allocate_buffer_to_slot(slot,
+                                                      data_length);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    memcpy(slot->key.data, data, data_length);
+    return PSA_SUCCESS;
+}
+
+psa_status_t psa_import_key_into_slot(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *data, size_t data_length,
+    uint8_t *key_buffer, size_t key_buffer_size,
+    size_t *key_buffer_length, size_t *bits)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_type_t type = attributes->type;
+
+    /* zero-length keys are never supported. */
+    if (data_length == 0) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    if (key_type_is_raw_bytes(type)) {
+        *bits = PSA_BYTES_TO_BITS(data_length);
+
+        status = psa_validate_unstructured_key_bit_size(attributes->type,
+                                                        *bits);
+        if (status != PSA_SUCCESS) {
+            return status;
+        }
+
+        /* Copy the key material. */
+        memcpy(key_buffer, data, data_length);
+        *key_buffer_length = data_length;
+        (void) key_buffer_size;
+
+        return PSA_SUCCESS;
+    } else if (PSA_KEY_TYPE_IS_ASYMMETRIC(type)) {
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_KEY_PAIR_IMPORT) || \
+        defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_PUBLIC_KEY)
+        if (PSA_KEY_TYPE_IS_DH(type)) {
+            if (psa_is_dh_key_size_valid(PSA_BYTES_TO_BITS(data_length)) == 0) {
+                return PSA_ERROR_NOT_SUPPORTED;
+            }
+            return mbedtls_psa_ffdh_import_key(attributes,
+                                               data, data_length,
+                                               key_buffer, key_buffer_size,
+                                               key_buffer_length,
+                                               bits);
+        }
+#endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_KEY_PAIR_IMPORT) ||
+        * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_PUBLIC_KEY) */
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR_IMPORT) || \
+        defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY)
+        if (PSA_KEY_TYPE_IS_ECC(type)) {
+            return mbedtls_psa_ecp_import_key(attributes,
+                                              data, data_length,
+                                              key_buffer, key_buffer_size,
+                                              key_buffer_length,
+                                              bits);
+        }
+#endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR_IMPORT) ||
+        * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY) */
+#if (defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR_IMPORT) && \
+        defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR_EXPORT)) || \
+        defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY)
+        if (PSA_KEY_TYPE_IS_RSA(type)) {
+            return mbedtls_psa_rsa_import_key(attributes,
+                                              data, data_length,
+                                              key_buffer, key_buffer_size,
+                                              key_buffer_length,
+                                              bits);
+        }
+#endif /* (defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR_IMPORT) &&
+           defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR_EXPORT)) ||
+        * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY) */
+    }
+
+    return PSA_ERROR_NOT_SUPPORTED;
+}
+
+/** Calculate the intersection of two algorithm usage policies.
+ *
+ * Return 0 (which allows no operation) on incompatibility.
+ */
+static psa_algorithm_t psa_key_policy_algorithm_intersection(
+    psa_key_type_t key_type,
+    psa_algorithm_t alg1,
+    psa_algorithm_t alg2)
+{
+    /* Common case: both sides actually specify the same policy. */
+    if (alg1 == alg2) {
+        return alg1;
+    }
+    /* If the policies are from the same hash-and-sign family, check
+     * if one is a wildcard. If so the other has the specific algorithm. */
+    if (PSA_ALG_IS_SIGN_HASH(alg1) &&
+        PSA_ALG_IS_SIGN_HASH(alg2) &&
+        (alg1 & ~PSA_ALG_HASH_MASK) == (alg2 & ~PSA_ALG_HASH_MASK)) {
+        if (PSA_ALG_SIGN_GET_HASH(alg1) == PSA_ALG_ANY_HASH) {
+            return alg2;
+        }
+        if (PSA_ALG_SIGN_GET_HASH(alg2) == PSA_ALG_ANY_HASH) {
+            return alg1;
+        }
+    }
+    /* If the policies are from the same AEAD family, check whether
+     * one of them is a minimum-tag-length wildcard. Calculate the most
+     * restrictive tag length. */
+    if (PSA_ALG_IS_AEAD(alg1) && PSA_ALG_IS_AEAD(alg2) &&
+        (PSA_ALG_AEAD_WITH_SHORTENED_TAG(alg1, 0) ==
+         PSA_ALG_AEAD_WITH_SHORTENED_TAG(alg2, 0))) {
+        size_t alg1_len = PSA_ALG_AEAD_GET_TAG_LENGTH(alg1);
+        size_t alg2_len = PSA_ALG_AEAD_GET_TAG_LENGTH(alg2);
+        size_t restricted_len = alg1_len > alg2_len ? alg1_len : alg2_len;
+
+        /* If both are wildcards, return most restrictive wildcard */
+        if (((alg1 & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0) &&
+            ((alg2 & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0)) {
+            return PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(
+                alg1, restricted_len);
+        }
+        /* If only one is a wildcard, return specific algorithm if compatible. */
+        if (((alg1 & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0) &&
+            (alg1_len <= alg2_len)) {
+            return alg2;
+        }
+        if (((alg2 & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0) &&
+            (alg2_len <= alg1_len)) {
+            return alg1;
+        }
+    }
+    /* If the policies are from the same MAC family, check whether one
+     * of them is a minimum-MAC-length policy. Calculate the most
+     * restrictive tag length. */
+    if (PSA_ALG_IS_MAC(alg1) && PSA_ALG_IS_MAC(alg2) &&
+        (PSA_ALG_FULL_LENGTH_MAC(alg1) ==
+         PSA_ALG_FULL_LENGTH_MAC(alg2))) {
+        /* Validate the combination of key type and algorithm. Since the base
+         * algorithm of alg1 and alg2 are the same, we only need this once. */
+        if (PSA_SUCCESS != psa_mac_key_can_do(alg1, key_type)) {
+            return 0;
+        }
+
+        /* Get the (exact or at-least) output lengths for both sides of the
+         * requested intersection. None of the currently supported algorithms
+         * have an output length dependent on the actual key size, so setting it
+         * to a bogus value of 0 is currently OK.
+         *
+         * Note that for at-least-this-length wildcard algorithms, the output
+         * length is set to the shortest allowed length, which allows us to
+         * calculate the most restrictive tag length for the intersection. */
+        size_t alg1_len = PSA_MAC_LENGTH(key_type, 0, alg1);
+        size_t alg2_len = PSA_MAC_LENGTH(key_type, 0, alg2);
+        size_t restricted_len = alg1_len > alg2_len ? alg1_len : alg2_len;
+
+        /* If both are wildcards, return most restrictive wildcard */
+        if (((alg1 & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0) &&
+            ((alg2 & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0)) {
+            return PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(alg1, restricted_len);
+        }
+
+        /* If only one is an at-least-this-length policy, the intersection would
+         * be the other (fixed-length) policy as long as said fixed length is
+         * equal to or larger than the shortest allowed length. */
+        if ((alg1 & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0) {
+            return (alg1_len <= alg2_len) ? alg2 : 0;
+        }
+        if ((alg2 & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0) {
+            return (alg2_len <= alg1_len) ? alg1 : 0;
+        }
+
+        /* If none of them are wildcards, check whether they define the same tag
+         * length. This is still possible here when one is default-length and
+         * the other specific-length. Ensure to always return the
+         * specific-length version for the intersection. */
+        if (alg1_len == alg2_len) {
+            return PSA_ALG_TRUNCATED_MAC(alg1, alg1_len);
+        }
+    }
+    /* If the policies are incompatible, allow nothing. */
+    return 0;
+}
+
+static int psa_key_algorithm_permits(psa_key_type_t key_type,
+                                     psa_algorithm_t policy_alg,
+                                     psa_algorithm_t requested_alg)
+{
+    /* Common case: the policy only allows requested_alg. */
+    if (requested_alg == policy_alg) {
+        return 1;
+    }
+    /* If policy_alg is a hash-and-sign with a wildcard for the hash,
+     * and requested_alg is the same hash-and-sign family with any hash,
+     * then requested_alg is compliant with policy_alg. */
+    if (PSA_ALG_IS_SIGN_HASH(requested_alg) &&
+        PSA_ALG_SIGN_GET_HASH(policy_alg) == PSA_ALG_ANY_HASH) {
+        return (policy_alg & ~PSA_ALG_HASH_MASK) ==
+               (requested_alg & ~PSA_ALG_HASH_MASK);
+    }
+    /* If policy_alg is a wildcard AEAD algorithm of the same base as
+     * the requested algorithm, check the requested tag length to be
+     * equal-length or longer than the wildcard-specified length. */
+    if (PSA_ALG_IS_AEAD(policy_alg) &&
+        PSA_ALG_IS_AEAD(requested_alg) &&
+        (PSA_ALG_AEAD_WITH_SHORTENED_TAG(policy_alg, 0) ==
+         PSA_ALG_AEAD_WITH_SHORTENED_TAG(requested_alg, 0)) &&
+        ((policy_alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0)) {
+        return PSA_ALG_AEAD_GET_TAG_LENGTH(policy_alg) <=
+               PSA_ALG_AEAD_GET_TAG_LENGTH(requested_alg);
+    }
+    /* If policy_alg is a MAC algorithm of the same base as the requested
+     * algorithm, check whether their MAC lengths are compatible. */
+    if (PSA_ALG_IS_MAC(policy_alg) &&
+        PSA_ALG_IS_MAC(requested_alg) &&
+        (PSA_ALG_FULL_LENGTH_MAC(policy_alg) ==
+         PSA_ALG_FULL_LENGTH_MAC(requested_alg))) {
+        /* Validate the combination of key type and algorithm. Since the policy
+         * and requested algorithms are the same, we only need this once. */
+        if (PSA_SUCCESS != psa_mac_key_can_do(policy_alg, key_type)) {
+            return 0;
+        }
+
+        /* Get both the requested output length for the algorithm which is to be
+         * verified, and the default output length for the base algorithm.
+         * Note that none of the currently supported algorithms have an output
+         * length dependent on actual key size, so setting it to a bogus value
+         * of 0 is currently OK. */
+        size_t requested_output_length = PSA_MAC_LENGTH(
+            key_type, 0, requested_alg);
+        size_t default_output_length = PSA_MAC_LENGTH(
+            key_type, 0,
+            PSA_ALG_FULL_LENGTH_MAC(requested_alg));
+
+        /* If the policy is default-length, only allow an algorithm with
+         * a declared exact-length matching the default. */
+        if (PSA_MAC_TRUNCATED_LENGTH(policy_alg) == 0) {
+            return requested_output_length == default_output_length;
+        }
+
+        /* If the requested algorithm is default-length, allow it if the policy
+         * length exactly matches the default length. */
+        if (PSA_MAC_TRUNCATED_LENGTH(requested_alg) == 0 &&
+            PSA_MAC_TRUNCATED_LENGTH(policy_alg) == default_output_length) {
+            return 1;
+        }
+
+        /* If policy_alg is an at-least-this-length wildcard MAC algorithm,
+         * check for the requested MAC length to be equal to or longer than the
+         * minimum allowed length. */
+        if ((policy_alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0) {
+            return PSA_MAC_TRUNCATED_LENGTH(policy_alg) <=
+                   requested_output_length;
+        }
+    }
+    /* If policy_alg is a generic key agreement operation, then using it for
+     * a key derivation with that key agreement should also be allowed. This
+     * behaviour is expected to be defined in a future specification version. */
+    if (PSA_ALG_IS_RAW_KEY_AGREEMENT(policy_alg) &&
+        PSA_ALG_IS_KEY_AGREEMENT(requested_alg)) {
+        return PSA_ALG_KEY_AGREEMENT_GET_BASE(requested_alg) ==
+               policy_alg;
+    }
+    /* If it isn't explicitly permitted, it's forbidden. */
+    return 0;
+}
+
+/** Test whether a policy permits an algorithm.
+ *
+ * The caller must test usage flags separately.
+ *
+ * \note This function requires providing the key type for which the policy is
+ *       being validated, since some algorithm policy definitions (e.g. MAC)
+ *       have different properties depending on what kind of cipher it is
+ *       combined with.
+ *
+ * \retval PSA_SUCCESS                  When \p alg is a specific algorithm
+ *                                      allowed by the \p policy.
+ * \retval PSA_ERROR_INVALID_ARGUMENT   When \p alg is not a specific algorithm
+ * \retval PSA_ERROR_NOT_PERMITTED      When \p alg is a specific algorithm, but
+ *                                      the \p policy does not allow it.
+ */
+static psa_status_t psa_key_policy_permits(const psa_key_policy_t *policy,
+                                           psa_key_type_t key_type,
+                                           psa_algorithm_t alg)
+{
+    /* '0' is not a valid algorithm */
+    if (alg == 0) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    /* A requested algorithm cannot be a wildcard. */
+    if (PSA_ALG_IS_WILDCARD(alg)) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    if (psa_key_algorithm_permits(key_type, policy->alg, alg) ||
+        psa_key_algorithm_permits(key_type, policy->alg2, alg)) {
+        return PSA_SUCCESS;
+    } else {
+        return PSA_ERROR_NOT_PERMITTED;
+    }
+}
+
+/** Restrict a key policy based on a constraint.
+ *
+ * \note This function requires providing the key type for which the policy is
+ *       being restricted, since some algorithm policy definitions (e.g. MAC)
+ *       have different properties depending on what kind of cipher it is
+ *       combined with.
+ *
+ * \param[in] key_type      The key type for which to restrict the policy
+ * \param[in,out] policy    The policy to restrict.
+ * \param[in] constraint    The policy constraint to apply.
+ *
+ * \retval #PSA_SUCCESS
+ *         \c *policy contains the intersection of the original value of
+ *         \c *policy and \c *constraint.
+ * \retval #PSA_ERROR_INVALID_ARGUMENT
+ *         \c key_type, \c *policy and \c *constraint are incompatible.
+ *         \c *policy is unchanged.
+ */
+static psa_status_t psa_restrict_key_policy(
+    psa_key_type_t key_type,
+    psa_key_policy_t *policy,
+    const psa_key_policy_t *constraint)
+{
+    psa_algorithm_t intersection_alg =
+        psa_key_policy_algorithm_intersection(key_type, policy->alg,
+                                              constraint->alg);
+    psa_algorithm_t intersection_alg2 =
+        psa_key_policy_algorithm_intersection(key_type, policy->alg2,
+                                              constraint->alg2);
+    if (intersection_alg == 0 && policy->alg != 0 && constraint->alg != 0) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+    if (intersection_alg2 == 0 && policy->alg2 != 0 && constraint->alg2 != 0) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+    policy->usage &= constraint->usage;
+    policy->alg = intersection_alg;
+    policy->alg2 = intersection_alg2;
+    return PSA_SUCCESS;
+}
+
+/** Get the description of a key given its identifier and policy constraints
+ *  and lock it.
+ *
+ * The key must have allow all the usage flags set in \p usage. If \p alg is
+ * nonzero, the key must allow operations with this algorithm. If \p alg is
+ * zero, the algorithm is not checked.
+ *
+ * In case of a persistent key, the function loads the description of the key
+ * into a key slot if not already done.
+ *
+ * On success, the returned key slot has been registered for reading.
+ * It is the responsibility of the caller to then unregister
+ * once they have finished reading the contents of the slot.
+ * The caller unregisters by calling psa_unregister_read() or
+ * psa_unregister_read_under_mutex(). psa_unregister_read() must be called
+ * if and only if the caller already holds the global key slot mutex
+ * (when mutexes are enabled). psa_unregister_read_under_mutex() encapsulates
+ * the unregister with mutex lock and unlock operations.
+ */
+static psa_status_t psa_get_and_lock_key_slot_with_policy(
+    mbedtls_svc_key_id_t key,
+    psa_key_slot_t **p_slot,
+    psa_key_usage_t usage,
+    psa_algorithm_t alg)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_slot_t *slot = NULL;
+
+    status = psa_get_and_lock_key_slot(key, p_slot);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+    slot = *p_slot;
+
+    /* Enforce that usage policy for the key slot contains all the flags
+     * required by the usage parameter. There is one exception: public
+     * keys can always be exported, so we treat public key objects as
+     * if they had the export flag. */
+    if (PSA_KEY_TYPE_IS_PUBLIC_KEY(slot->attr.type)) {
+        usage &= ~PSA_KEY_USAGE_EXPORT;
+    }
+
+    if ((slot->attr.policy.usage & usage) != usage) {
+        status = PSA_ERROR_NOT_PERMITTED;
+        goto error;
+    }
+
+    /* Enforce that the usage policy permits the requested algorithm. */
+    if (alg != 0) {
+        status = psa_key_policy_permits(&slot->attr.policy,
+                                        slot->attr.type,
+                                        alg);
+        if (status != PSA_SUCCESS) {
+            goto error;
+        }
+    }
+
+    return PSA_SUCCESS;
+
+error:
+    *p_slot = NULL;
+    psa_unregister_read_under_mutex(slot);
+
+    return status;
+}
+
+/** Get a key slot containing a transparent key and lock it.
+ *
+ * A transparent key is a key for which the key material is directly
+ * available, as opposed to a key in a secure element and/or to be used
+ * by a secure element.
+ *
+ * This is a temporary function that may be used instead of
+ * psa_get_and_lock_key_slot_with_policy() when there is no opaque key support
+ * for a cryptographic operation.
+ *
+ * On success, the returned key slot has been registered for reading.
+ * It is the responsibility of the caller to then unregister
+ * once they have finished reading the contents of the slot.
+ * The caller unregisters by calling psa_unregister_read() or
+ * psa_unregister_read_under_mutex(). psa_unregister_read() must be called
+ * if and only if the caller already holds the global key slot mutex
+ * (when mutexes are enabled). psa_unregister_read_under_mutex() encapsulates
+ * psa_unregister_read() with mutex lock and unlock operations.
+ */
+static psa_status_t psa_get_and_lock_transparent_key_slot_with_policy(
+    mbedtls_svc_key_id_t key,
+    psa_key_slot_t **p_slot,
+    psa_key_usage_t usage,
+    psa_algorithm_t alg)
+{
+    psa_status_t status = psa_get_and_lock_key_slot_with_policy(key, p_slot,
+                                                                usage, alg);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    if (psa_key_lifetime_is_external((*p_slot)->attr.lifetime)) {
+        psa_unregister_read_under_mutex(*p_slot);
+        *p_slot = NULL;
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    return PSA_SUCCESS;
+}
+
+psa_status_t psa_remove_key_data_from_memory(psa_key_slot_t *slot)
+{
+    if (slot->key.data != NULL) {
+        mbedtls_zeroize_and_free(slot->key.data, slot->key.bytes);
+    }
+
+    slot->key.data = NULL;
+    slot->key.bytes = 0;
+
+    return PSA_SUCCESS;
+}
+
+/** Completely wipe a slot in memory, including its policy.
+ * Persistent storage is not affected. */
+psa_status_t psa_wipe_key_slot(psa_key_slot_t *slot)
+{
+    psa_status_t status = psa_remove_key_data_from_memory(slot);
+
+    /*
+     * As the return error code may not be handled in case of multiple errors,
+     * do our best to report an unexpected amount of registered readers or
+     * an unexpected state.
+     * Assert with MBEDTLS_TEST_HOOK_TEST_ASSERT that the slot is valid for
+     * wiping.
+     * if the MBEDTLS_TEST_HOOKS configuration option is enabled and the
+     * function is called as part of the execution of a test suite, the
+     * execution of the test suite is stopped in error if the assertion fails.
+     */
+    switch (slot->state) {
+        case PSA_SLOT_FULL:
+        /* In this state psa_wipe_key_slot() must only be called if the
+         * caller is the last reader. */
+        case PSA_SLOT_PENDING_DELETION:
+            /* In this state psa_wipe_key_slot() must only be called if the
+             * caller is the last reader. */
+            if (slot->registered_readers != 1) {
+                MBEDTLS_TEST_HOOK_TEST_ASSERT(slot->registered_readers == 1);
+                status = PSA_ERROR_CORRUPTION_DETECTED;
+            }
+            break;
+        case PSA_SLOT_FILLING:
+            /* In this state registered_readers must be 0. */
+            if (slot->registered_readers != 0) {
+                MBEDTLS_TEST_HOOK_TEST_ASSERT(slot->registered_readers == 0);
+                status = PSA_ERROR_CORRUPTION_DETECTED;
+            }
+            break;
+        case PSA_SLOT_EMPTY:
+            /* The slot is already empty, it cannot be wiped. */
+            MBEDTLS_TEST_HOOK_TEST_ASSERT(slot->state != PSA_SLOT_EMPTY);
+            status = PSA_ERROR_CORRUPTION_DETECTED;
+            break;
+        default:
+            /* The slot's state is invalid. */
+            status = PSA_ERROR_CORRUPTION_DETECTED;
+    }
+
+    /* Multipart operations may still be using the key. This is safe
+     * because all multipart operation objects are independent from
+     * the key slot: if they need to access the key after the setup
+     * phase, they have a copy of the key. Note that this means that
+     * key material can linger until all operations are completed. */
+    /* At this point, key material and other type-specific content has
+     * been wiped. Clear remaining metadata. We can call memset and not
+     * zeroize because the metadata is not particularly sensitive.
+     * This memset also sets the slot's state to PSA_SLOT_EMPTY. */
+    memset(slot, 0, sizeof(*slot));
+    return status;
+}
+
+psa_status_t psa_destroy_key(mbedtls_svc_key_id_t key)
+{
+    psa_key_slot_t *slot;
+    psa_status_t status; /* status of the last operation */
+    psa_status_t overall_status = PSA_SUCCESS;
+#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
+    psa_se_drv_table_entry_t *driver;
+#endif /* MBEDTLS_PSA_CRYPTO_SE_C */
+
+    if (mbedtls_svc_key_id_is_null(key)) {
+        return PSA_SUCCESS;
+    }
+
+    /*
+     * Get the description of the key in a key slot, and register to read it.
+     * In the case of a persistent key, this will load the key description
+     * from persistent memory if not done yet.
+     * We cannot avoid this loading as without it we don't know if
+     * the key is operated by an SE or not and this information is needed by
+     * the current implementation. */
+    status = psa_get_and_lock_key_slot(key, &slot);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+#if defined(MBEDTLS_THREADING_C)
+    /* We cannot unlock between setting the state to PENDING_DELETION
+     * and destroying the key in storage, as otherwise another thread
+     * could load the key into a new slot and the key will not be
+     * fully destroyed. */
+    PSA_THREADING_CHK_GOTO_EXIT(mbedtls_mutex_lock(
+                                    &mbedtls_threading_key_slot_mutex));
+
+    if (slot->state == PSA_SLOT_PENDING_DELETION) {
+        /* Another thread has destroyed the key between us locking the slot
+         * and us gaining the mutex. Unregister from the slot,
+         * and report that the key does not exist. */
+        status = psa_unregister_read(slot);
+
+        PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
+                                  &mbedtls_threading_key_slot_mutex));
+        return (status == PSA_SUCCESS) ? PSA_ERROR_INVALID_HANDLE : status;
+    }
+#endif
+    /* Set the key slot containing the key description's state to
+     * PENDING_DELETION. This stops new operations from registering
+     * to read the slot. Current readers can safely continue to access
+     * the key within the slot; the last registered reader will
+     * automatically wipe the slot when they call psa_unregister_read().
+     * If the key is persistent, we can now delete the copy of the key
+     * from memory. If the key is opaque, we require the driver to
+     * deal with the deletion. */
+    overall_status = psa_key_slot_state_transition(slot, PSA_SLOT_FULL,
+                                                   PSA_SLOT_PENDING_DELETION);
+
+    if (overall_status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    if (PSA_KEY_LIFETIME_IS_READ_ONLY(slot->attr.lifetime)) {
+        /* Refuse the destruction of a read-only key (which may or may not work
+         * if we attempt it, depending on whether the key is merely read-only
+         * by policy or actually physically read-only).
+         * Just do the best we can, which is to wipe the copy in memory
+         * (done in this function's cleanup code). */
+        overall_status = PSA_ERROR_NOT_PERMITTED;
+        goto exit;
+    }
+
+#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
+    driver = psa_get_se_driver_entry(slot->attr.lifetime);
+    if (driver != NULL) {
+        /* For a key in a secure element, we need to do three things:
+         * remove the key file in internal storage, destroy the
+         * key inside the secure element, and update the driver's
+         * persistent data. Start a transaction that will encompass these
+         * three actions. */
+        psa_crypto_prepare_transaction(PSA_CRYPTO_TRANSACTION_DESTROY_KEY);
+        psa_crypto_transaction.key.lifetime = slot->attr.lifetime;
+        psa_crypto_transaction.key.slot = psa_key_slot_get_slot_number(slot);
+        psa_crypto_transaction.key.id = slot->attr.id;
+        status = psa_crypto_save_transaction();
+        if (status != PSA_SUCCESS) {
+            (void) psa_crypto_stop_transaction();
+            /* We should still try to destroy the key in the secure
+             * element and the key metadata in storage. This is especially
+             * important if the error is that the storage is full.
+             * But how to do it exactly without risking an inconsistent
+             * state after a reset?
+             * https://github.com/ARMmbed/mbed-crypto/issues/215
+             */
+            overall_status = status;
+            goto exit;
+        }
+
+        status = psa_destroy_se_key(driver,
+                                    psa_key_slot_get_slot_number(slot));
+        if (overall_status == PSA_SUCCESS) {
+            overall_status = status;
+        }
+    }
+#endif /* MBEDTLS_PSA_CRYPTO_SE_C */
+
+#if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C)
+    if (!PSA_KEY_LIFETIME_IS_VOLATILE(slot->attr.lifetime)) {
+        /* Destroy the copy of the persistent key from storage.
+         * The slot will still hold a copy of the key until the last reader
+         * unregisters. */
+        status = psa_destroy_persistent_key(slot->attr.id);
+        if (overall_status == PSA_SUCCESS) {
+            overall_status = status;
+        }
+    }
+#endif /* defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) */
+
+#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
+    if (driver != NULL) {
+        status = psa_save_se_persistent_data(driver);
+        if (overall_status == PSA_SUCCESS) {
+            overall_status = status;
+        }
+        status = psa_crypto_stop_transaction();
+        if (overall_status == PSA_SUCCESS) {
+            overall_status = status;
+        }
+    }
+#endif /* MBEDTLS_PSA_CRYPTO_SE_C */
+
+exit:
+    /* Unregister from reading the slot. If we are the last active reader
+     * then this will wipe the slot. */
+    status = psa_unregister_read(slot);
+    /* Prioritize CORRUPTION_DETECTED from unregistering over
+     * a storage error. */
+    if (status != PSA_SUCCESS) {
+        overall_status = status;
+    }
+
+#if defined(MBEDTLS_THREADING_C)
+    /* Don't overwrite existing errors if the unlock fails. */
+    status = overall_status;
+    PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
+                              &mbedtls_threading_key_slot_mutex));
+#endif
+
+    return overall_status;
+}
+
+/** Retrieve all the publicly-accessible attributes of a key.
+ */
+psa_status_t psa_get_key_attributes(mbedtls_svc_key_id_t key,
+                                    psa_key_attributes_t *attributes)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_slot_t *slot;
+
+    psa_reset_key_attributes(attributes);
+
+    status = psa_get_and_lock_key_slot_with_policy(key, &slot, 0, 0);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    *attributes = slot->attr;
+
+#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
+    if (psa_get_se_driver_entry(slot->attr.lifetime) != NULL) {
+        psa_set_key_slot_number(attributes,
+                                psa_key_slot_get_slot_number(slot));
+    }
+#endif /* MBEDTLS_PSA_CRYPTO_SE_C */
+
+    return psa_unregister_read_under_mutex(slot);
+}
+
+#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
+psa_status_t psa_get_key_slot_number(
+    const psa_key_attributes_t *attributes,
+    psa_key_slot_number_t *slot_number)
+{
+    if (attributes->has_slot_number) {
+        *slot_number = attributes->slot_number;
+        return PSA_SUCCESS;
+    } else {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+}
+#endif /* MBEDTLS_PSA_CRYPTO_SE_C */
+
+static psa_status_t psa_export_key_buffer_internal(const uint8_t *key_buffer,
+                                                   size_t key_buffer_size,
+                                                   uint8_t *data,
+                                                   size_t data_size,
+                                                   size_t *data_length)
+{
+    if (key_buffer_size > data_size) {
+        return PSA_ERROR_BUFFER_TOO_SMALL;
+    }
+    memcpy(data, key_buffer, key_buffer_size);
+    memset(data + key_buffer_size, 0,
+           data_size - key_buffer_size);
+    *data_length = key_buffer_size;
+    return PSA_SUCCESS;
+}
+
+psa_status_t psa_export_key_internal(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    uint8_t *data, size_t data_size, size_t *data_length)
+{
+    psa_key_type_t type = attributes->type;
+
+    if (key_type_is_raw_bytes(type) ||
+        PSA_KEY_TYPE_IS_RSA(type)   ||
+        PSA_KEY_TYPE_IS_ECC(type)   ||
+        PSA_KEY_TYPE_IS_DH(type)) {
+        return psa_export_key_buffer_internal(
+            key_buffer, key_buffer_size,
+            data, data_size, data_length);
+    } else {
+        /* This shouldn't happen in the reference implementation, but
+           it is valid for a special-purpose implementation to omit
+           support for exporting certain key types. */
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+}
+
+psa_status_t psa_export_key(mbedtls_svc_key_id_t key,
+                            uint8_t *data_external,
+                            size_t data_size,
+                            size_t *data_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_slot_t *slot;
+    LOCAL_OUTPUT_DECLARE(data_external, data);
+
+    /* Reject a zero-length output buffer now, since this can never be a
+     * valid key representation. This way we know that data must be a valid
+     * pointer and we can do things like memset(data, ..., data_size). */
+    if (data_size == 0) {
+        return PSA_ERROR_BUFFER_TOO_SMALL;
+    }
+
+    /* Set the key to empty now, so that even when there are errors, we always
+     * set data_length to a value between 0 and data_size. On error, setting
+     * the key to empty is a good choice because an empty key representation is
+     * unlikely to be accepted anywhere. */
+    *data_length = 0;
+
+    /* Export requires the EXPORT flag. There is an exception for public keys,
+     * which don't require any flag, but
+     * psa_get_and_lock_key_slot_with_policy() takes care of this.
+     */
+    status = psa_get_and_lock_key_slot_with_policy(key, &slot,
+                                                   PSA_KEY_USAGE_EXPORT, 0);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    LOCAL_OUTPUT_ALLOC(data_external, data_size, data);
+
+    status = psa_driver_wrapper_export_key(&slot->attr,
+                                           slot->key.data, slot->key.bytes,
+                                           data, data_size, data_length);
+
+#if !defined(MBEDTLS_PSA_ASSUME_EXCLUSIVE_BUFFERS)
+exit:
+#endif
+    unlock_status = psa_unregister_read_under_mutex(slot);
+
+    LOCAL_OUTPUT_FREE(data_external, data);
+    return (status == PSA_SUCCESS) ? unlock_status : status;
+}
+
+psa_status_t psa_export_public_key_internal(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer,
+    size_t key_buffer_size,
+    uint8_t *data,
+    size_t data_size,
+    size_t *data_length)
+{
+    psa_key_type_t type = attributes->type;
+
+    if (PSA_KEY_TYPE_IS_PUBLIC_KEY(type) &&
+        (PSA_KEY_TYPE_IS_RSA(type) || PSA_KEY_TYPE_IS_ECC(type) ||
+         PSA_KEY_TYPE_IS_DH(type))) {
+        /* Exporting public -> public */
+        return psa_export_key_buffer_internal(
+            key_buffer, key_buffer_size,
+            data, data_size, data_length);
+    } else if (PSA_KEY_TYPE_IS_RSA(type)) {
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR_EXPORT) || \
+        defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY)
+        return mbedtls_psa_rsa_export_public_key(attributes,
+                                                 key_buffer,
+                                                 key_buffer_size,
+                                                 data,
+                                                 data_size,
+                                                 data_length);
+#else
+        /* We don't know how to convert a private RSA key to public. */
+        return PSA_ERROR_NOT_SUPPORTED;
+#endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR_EXPORT) ||
+        * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY) */
+    } else if (PSA_KEY_TYPE_IS_ECC(type)) {
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR_EXPORT) || \
+        defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY)
+        return mbedtls_psa_ecp_export_public_key(attributes,
+                                                 key_buffer,
+                                                 key_buffer_size,
+                                                 data,
+                                                 data_size,
+                                                 data_length);
+#else
+        /* We don't know how to convert a private ECC key to public */
+        return PSA_ERROR_NOT_SUPPORTED;
+#endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR_EXPORT) ||
+        * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY) */
+    } else if (PSA_KEY_TYPE_IS_DH(type)) {
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_KEY_PAIR_EXPORT) || \
+        defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_PUBLIC_KEY)
+        return mbedtls_psa_ffdh_export_public_key(attributes,
+                                                  key_buffer,
+                                                  key_buffer_size,
+                                                  data, data_size,
+                                                  data_length);
+#else
+        return PSA_ERROR_NOT_SUPPORTED;
+#endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_KEY_PAIR_EXPORT) ||
+        * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_PUBLIC_KEY) */
+    } else {
+        (void) key_buffer;
+        (void) key_buffer_size;
+        (void) data;
+        (void) data_size;
+        (void) data_length;
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+}
+
+psa_status_t psa_export_public_key(mbedtls_svc_key_id_t key,
+                                   uint8_t *data_external,
+                                   size_t data_size,
+                                   size_t *data_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_slot_t *slot;
+
+    LOCAL_OUTPUT_DECLARE(data_external, data);
+
+    /* Reject a zero-length output buffer now, since this can never be a
+     * valid key representation. This way we know that data must be a valid
+     * pointer and we can do things like memset(data, ..., data_size). */
+    if (data_size == 0) {
+        return PSA_ERROR_BUFFER_TOO_SMALL;
+    }
+
+    /* Set the key to empty now, so that even when there are errors, we always
+     * set data_length to a value between 0 and data_size. On error, setting
+     * the key to empty is a good choice because an empty key representation is
+     * unlikely to be accepted anywhere. */
+    *data_length = 0;
+
+    /* Exporting a public key doesn't require a usage flag. */
+    status = psa_get_and_lock_key_slot_with_policy(key, &slot, 0, 0);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    LOCAL_OUTPUT_ALLOC(data_external, data_size, data);
+
+    if (!PSA_KEY_TYPE_IS_ASYMMETRIC(slot->attr.type)) {
+        status = PSA_ERROR_INVALID_ARGUMENT;
+        goto exit;
+    }
+
+    status = psa_driver_wrapper_export_public_key(
+        &slot->attr, slot->key.data, slot->key.bytes,
+        data, data_size, data_length);
+
+exit:
+    unlock_status = psa_unregister_read_under_mutex(slot);
+
+    LOCAL_OUTPUT_FREE(data_external, data);
+    return (status == PSA_SUCCESS) ? unlock_status : status;
+}
+
+/** Validate that a key policy is internally well-formed.
+ *
+ * This function only rejects invalid policies. It does not validate the
+ * consistency of the policy with respect to other attributes of the key
+ * such as the key type.
+ */
+static psa_status_t psa_validate_key_policy(const psa_key_policy_t *policy)
+{
+    if ((policy->usage & ~(PSA_KEY_USAGE_EXPORT |
+                           PSA_KEY_USAGE_COPY |
+                           PSA_KEY_USAGE_ENCRYPT |
+                           PSA_KEY_USAGE_DECRYPT |
+                           PSA_KEY_USAGE_SIGN_MESSAGE |
+                           PSA_KEY_USAGE_VERIFY_MESSAGE |
+                           PSA_KEY_USAGE_SIGN_HASH |
+                           PSA_KEY_USAGE_VERIFY_HASH |
+                           PSA_KEY_USAGE_VERIFY_DERIVATION |
+                           PSA_KEY_USAGE_DERIVE)) != 0) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    return PSA_SUCCESS;
+}
+
+/** Validate the internal consistency of key attributes.
+ *
+ * This function only rejects invalid attribute values. If does not
+ * validate the consistency of the attributes with any key data that may
+ * be involved in the creation of the key.
+ *
+ * Call this function early in the key creation process.
+ *
+ * \param[in] attributes    Key attributes for the new key.
+ * \param[out] p_drv        On any return, the driver for the key, if any.
+ *                          NULL for a transparent key.
+ *
+ */
+static psa_status_t psa_validate_key_attributes(
+    const psa_key_attributes_t *attributes,
+    psa_se_drv_table_entry_t **p_drv)
+{
+    psa_status_t status = PSA_ERROR_INVALID_ARGUMENT;
+    psa_key_lifetime_t lifetime = psa_get_key_lifetime(attributes);
+    mbedtls_svc_key_id_t key = psa_get_key_id(attributes);
+
+    status = psa_validate_key_location(lifetime, p_drv);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    status = psa_validate_key_persistence(lifetime);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    if (PSA_KEY_LIFETIME_IS_VOLATILE(lifetime)) {
+        if (MBEDTLS_SVC_KEY_ID_GET_KEY_ID(key) != 0) {
+            return PSA_ERROR_INVALID_ARGUMENT;
+        }
+    } else {
+        if (!psa_is_valid_key_id(psa_get_key_id(attributes), 0)) {
+            return PSA_ERROR_INVALID_ARGUMENT;
+        }
+    }
+
+    status = psa_validate_key_policy(&attributes->policy);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    /* Refuse to create overly large keys.
+     * Note that this doesn't trigger on import if the attributes don't
+     * explicitly specify a size (so psa_get_key_bits returns 0), so
+     * psa_import_key() needs its own checks. */
+    if (psa_get_key_bits(attributes) > PSA_MAX_KEY_BITS) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    return PSA_SUCCESS;
+}
+
+/** Prepare a key slot to receive key material.
+ *
+ * This function allocates a key slot and sets its metadata.
+ *
+ * If this function fails, call psa_fail_key_creation().
+ *
+ * This function is intended to be used as follows:
+ * -# Call psa_start_key_creation() to allocate a key slot, prepare
+ *    it with the specified attributes, and in case of a volatile key assign it
+ *    a volatile key identifier.
+ * -# Populate the slot with the key material.
+ * -# Call psa_finish_key_creation() to finalize the creation of the slot.
+ * In case of failure at any step, stop the sequence and call
+ * psa_fail_key_creation().
+ *
+ * On success, the key slot's state is PSA_SLOT_FILLING.
+ * It is the responsibility of the caller to change the slot's state to
+ * PSA_SLOT_EMPTY/FULL once key creation has finished.
+ *
+ * \param method            An identification of the calling function.
+ * \param[in] attributes    Key attributes for the new key.
+ * \param[out] p_slot       On success, a pointer to the prepared slot.
+ * \param[out] p_drv        On any return, the driver for the key, if any.
+ *                          NULL for a transparent key.
+ *
+ * \retval #PSA_SUCCESS
+ *         The key slot is ready to receive key material.
+ * \return If this function fails, the key slot is an invalid state.
+ *         You must call psa_fail_key_creation() to wipe and free the slot.
+ */
+static psa_status_t psa_start_key_creation(
+    psa_key_creation_method_t method,
+    const psa_key_attributes_t *attributes,
+    psa_key_slot_t **p_slot,
+    psa_se_drv_table_entry_t **p_drv)
+{
+    psa_status_t status;
+    psa_key_id_t volatile_key_id;
+    psa_key_slot_t *slot;
+
+    (void) method;
+    *p_drv = NULL;
+
+    status = psa_validate_key_attributes(attributes, p_drv);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+#if defined(MBEDTLS_THREADING_C)
+    PSA_THREADING_CHK_RET(mbedtls_mutex_lock(
+                              &mbedtls_threading_key_slot_mutex));
+#endif
+    status = psa_reserve_free_key_slot(&volatile_key_id, p_slot);
+#if defined(MBEDTLS_THREADING_C)
+    PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
+                              &mbedtls_threading_key_slot_mutex));
+#endif
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+    slot = *p_slot;
+
+    /* We're storing the declared bit-size of the key. It's up to each
+     * creation mechanism to verify that this information is correct.
+     * It's automatically correct for mechanisms that use the bit-size as
+     * an input (generate, device) but not for those where the bit-size
+     * is optional (import, copy). In case of a volatile key, assign it the
+     * volatile key identifier associated to the slot returned to contain its
+     * definition. */
+
+    slot->attr = *attributes;
+    if (PSA_KEY_LIFETIME_IS_VOLATILE(slot->attr.lifetime)) {
+#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
+        slot->attr.id = volatile_key_id;
+#else
+        slot->attr.id.key_id = volatile_key_id;
+#endif
+    }
+
+#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
+    /* For a key in a secure element, we need to do three things
+     * when creating or registering a persistent key:
+     * create the key file in internal storage, create the
+     * key inside the secure element, and update the driver's
+     * persistent data. This is done by starting a transaction that will
+     * encompass these three actions.
+     * For registering a volatile key, we just need to find an appropriate
+     * slot number inside the SE. Since the key is designated volatile, creating
+     * a transaction is not required. */
+    /* The first thing to do is to find a slot number for the new key.
+     * We save the slot number in persistent storage as part of the
+     * transaction data. It will be needed to recover if the power
+     * fails during the key creation process, to clean up on the secure
+     * element side after restarting. Obtaining a slot number from the
+     * secure element driver updates its persistent state, but we do not yet
+     * save the driver's persistent state, so that if the power fails,
+     * we can roll back to a state where the key doesn't exist. */
+    if (*p_drv != NULL) {
+        psa_key_slot_number_t slot_number;
+        status = psa_find_se_slot_for_key(attributes, method, *p_drv,
+                                          &slot_number);
+        if (status != PSA_SUCCESS) {
+            return status;
+        }
+
+        if (!PSA_KEY_LIFETIME_IS_VOLATILE(attributes->lifetime)) {
+            psa_crypto_prepare_transaction(PSA_CRYPTO_TRANSACTION_CREATE_KEY);
+            psa_crypto_transaction.key.lifetime = slot->attr.lifetime;
+            psa_crypto_transaction.key.slot = slot_number;
+            psa_crypto_transaction.key.id = slot->attr.id;
+            status = psa_crypto_save_transaction();
+            if (status != PSA_SUCCESS) {
+                (void) psa_crypto_stop_transaction();
+                return status;
+            }
+        }
+
+        status = psa_copy_key_material_into_slot(
+            slot, (uint8_t *) (&slot_number), sizeof(slot_number));
+        if (status != PSA_SUCCESS) {
+            return status;
+        }
+    }
+
+    if (*p_drv == NULL && method == PSA_KEY_CREATION_REGISTER) {
+        /* Key registration only makes sense with a secure element. */
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+#endif /* MBEDTLS_PSA_CRYPTO_SE_C */
+
+    return PSA_SUCCESS;
+}
+
+/** Finalize the creation of a key once its key material has been set.
+ *
+ * This entails writing the key to persistent storage.
+ *
+ * If this function fails, call psa_fail_key_creation().
+ * See the documentation of psa_start_key_creation() for the intended use
+ * of this function.
+ *
+ * If the finalization succeeds, the function sets the key slot's state to
+ * PSA_SLOT_FULL, and the key slot can no longer be accessed as part of the
+ * key creation process.
+ *
+ * \param[in,out] slot  Pointer to the slot with key material.
+ * \param[in] driver    The secure element driver for the key,
+ *                      or NULL for a transparent key.
+ * \param[out] key      On success, identifier of the key. Note that the
+ *                      key identifier is also stored in the key slot.
+ *
+ * \retval #PSA_SUCCESS
+ *         The key was successfully created.
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_STORAGE \emptydescription
+ * \retval #PSA_ERROR_ALREADY_EXISTS \emptydescription
+ * \retval #PSA_ERROR_DATA_INVALID \emptydescription
+ * \retval #PSA_ERROR_DATA_CORRUPT \emptydescription
+ * \retval #PSA_ERROR_STORAGE_FAILURE \emptydescription
+ *
+ * \return If this function fails, the key slot is an invalid state.
+ *         You must call psa_fail_key_creation() to wipe and free the slot.
+ */
+static psa_status_t psa_finish_key_creation(
+    psa_key_slot_t *slot,
+    psa_se_drv_table_entry_t *driver,
+    mbedtls_svc_key_id_t *key)
+{
+    psa_status_t status = PSA_SUCCESS;
+    (void) slot;
+    (void) driver;
+
+#if defined(MBEDTLS_THREADING_C)
+    PSA_THREADING_CHK_RET(mbedtls_mutex_lock(
+                              &mbedtls_threading_key_slot_mutex));
+#endif
+
+#if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C)
+    if (!PSA_KEY_LIFETIME_IS_VOLATILE(slot->attr.lifetime)) {
+#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
+        if (driver != NULL) {
+            psa_se_key_data_storage_t data;
+            psa_key_slot_number_t slot_number =
+                psa_key_slot_get_slot_number(slot);
+
+            MBEDTLS_STATIC_ASSERT(sizeof(slot_number) ==
+                                  sizeof(data.slot_number),
+                                  "Slot number size does not match psa_se_key_data_storage_t");
+
+            memcpy(&data.slot_number, &slot_number, sizeof(slot_number));
+            status = psa_save_persistent_key(&slot->attr,
+                                             (uint8_t *) &data,
+                                             sizeof(data));
+        } else
+#endif /* MBEDTLS_PSA_CRYPTO_SE_C */
+        {
+            /* Key material is saved in export representation in the slot, so
+             * just pass the slot buffer for storage. */
+            status = psa_save_persistent_key(&slot->attr,
+                                             slot->key.data,
+                                             slot->key.bytes);
+        }
+    }
+#endif /* defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) */
+
+#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
+    /* Finish the transaction for a key creation. This does not
+     * happen when registering an existing key. Detect this case
+     * by checking whether a transaction is in progress (actual
+     * creation of a persistent key in a secure element requires a transaction,
+     * but registration or volatile key creation doesn't use one). */
+    if (driver != NULL &&
+        psa_crypto_transaction.unknown.type == PSA_CRYPTO_TRANSACTION_CREATE_KEY) {
+        status = psa_save_se_persistent_data(driver);
+        if (status != PSA_SUCCESS) {
+            psa_destroy_persistent_key(slot->attr.id);
+
+#if defined(MBEDTLS_THREADING_C)
+            PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
+                                      &mbedtls_threading_key_slot_mutex));
+#endif
+            return status;
+        }
+        status = psa_crypto_stop_transaction();
+    }
+#endif /* MBEDTLS_PSA_CRYPTO_SE_C */
+
+    if (status == PSA_SUCCESS) {
+        *key = slot->attr.id;
+        status = psa_key_slot_state_transition(slot, PSA_SLOT_FILLING,
+                                               PSA_SLOT_FULL);
+        if (status != PSA_SUCCESS) {
+            *key = MBEDTLS_SVC_KEY_ID_INIT;
+        }
+    }
+
+#if defined(MBEDTLS_THREADING_C)
+    PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
+                              &mbedtls_threading_key_slot_mutex));
+#endif
+    return status;
+}
+
+/** Abort the creation of a key.
+ *
+ * You may call this function after calling psa_start_key_creation(),
+ * or after psa_finish_key_creation() fails. In other circumstances, this
+ * function may not clean up persistent storage.
+ * See the documentation of psa_start_key_creation() for the intended use
+ * of this function. Sets the slot's state to PSA_SLOT_EMPTY.
+ *
+ * \param[in,out] slot  Pointer to the slot with key material.
+ * \param[in] driver    The secure element driver for the key,
+ *                      or NULL for a transparent key.
+ */
+static void psa_fail_key_creation(psa_key_slot_t *slot,
+                                  psa_se_drv_table_entry_t *driver)
+{
+    (void) driver;
+
+    if (slot == NULL) {
+        return;
+    }
+
+#if defined(MBEDTLS_THREADING_C)
+    /* If the lock operation fails we still wipe the slot.
+     * Operations will no longer work after a failed lock,
+     * but we still need to wipe the slot of confidential data. */
+    mbedtls_mutex_lock(&mbedtls_threading_key_slot_mutex);
+#endif
+
+#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
+    /* TODO: If the key has already been created in the secure
+     * element, and the failure happened later (when saving metadata
+     * to internal storage), we need to destroy the key in the secure
+     * element.
+     * https://github.com/ARMmbed/mbed-crypto/issues/217
+     */
+
+    /* Abort the ongoing transaction if any (there may not be one if
+     * the creation process failed before starting one, or if the
+     * key creation is a registration of a key in a secure element).
+     * Earlier functions must already have done what it takes to undo any
+     * partial creation. All that's left is to update the transaction data
+     * itself. */
+    (void) psa_crypto_stop_transaction();
+#endif /* MBEDTLS_PSA_CRYPTO_SE_C */
+
+    psa_wipe_key_slot(slot);
+
+#if defined(MBEDTLS_THREADING_C)
+    mbedtls_mutex_unlock(&mbedtls_threading_key_slot_mutex);
+#endif
+}
+
+/** Validate optional attributes during key creation.
+ *
+ * Some key attributes are optional during key creation. If they are
+ * specified in the attributes structure, check that they are consistent
+ * with the data in the slot.
+ *
+ * This function should be called near the end of key creation, after
+ * the slot in memory is fully populated but before saving persistent data.
+ */
+static psa_status_t psa_validate_optional_attributes(
+    const psa_key_slot_t *slot,
+    const psa_key_attributes_t *attributes)
+{
+    if (attributes->type != 0) {
+        if (attributes->type != slot->attr.type) {
+            return PSA_ERROR_INVALID_ARGUMENT;
+        }
+    }
+
+    if (attributes->bits != 0) {
+        if (attributes->bits != slot->attr.bits) {
+            return PSA_ERROR_INVALID_ARGUMENT;
+        }
+    }
+
+    return PSA_SUCCESS;
+}
+
+psa_status_t psa_import_key(const psa_key_attributes_t *attributes,
+                            const uint8_t *data_external,
+                            size_t data_length,
+                            mbedtls_svc_key_id_t *key)
+{
+    psa_status_t status;
+    LOCAL_INPUT_DECLARE(data_external, data);
+    psa_key_slot_t *slot = NULL;
+    psa_se_drv_table_entry_t *driver = NULL;
+    size_t bits;
+    size_t storage_size = data_length;
+
+    *key = MBEDTLS_SVC_KEY_ID_INIT;
+
+    /* Reject zero-length symmetric keys (including raw data key objects).
+     * This also rejects any key which might be encoded as an empty string,
+     * which is never valid. */
+    if (data_length == 0) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    /* Ensure that the bytes-to-bits conversion cannot overflow. */
+    if (data_length > SIZE_MAX / 8) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    LOCAL_INPUT_ALLOC(data_external, data_length, data);
+
+    status = psa_start_key_creation(PSA_KEY_CREATION_IMPORT, attributes,
+                                    &slot, &driver);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    /* In the case of a transparent key or an opaque key stored in local
+     * storage ( thus not in the case of importing a key in a secure element
+     * with storage ( MBEDTLS_PSA_CRYPTO_SE_C ) ),we have to allocate a
+     * buffer to hold the imported key material. */
+    if (slot->key.data == NULL) {
+        if (psa_key_lifetime_is_external(attributes->lifetime)) {
+            status = psa_driver_wrapper_get_key_buffer_size_from_key_data(
+                attributes, data, data_length, &storage_size);
+            if (status != PSA_SUCCESS) {
+                goto exit;
+            }
+        }
+        status = psa_allocate_buffer_to_slot(slot, storage_size);
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+    }
+
+    bits = slot->attr.bits;
+    status = psa_driver_wrapper_import_key(attributes,
+                                           data, data_length,
+                                           slot->key.data,
+                                           slot->key.bytes,
+                                           &slot->key.bytes, &bits);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    if (slot->attr.bits == 0) {
+        slot->attr.bits = (psa_key_bits_t) bits;
+    } else if (bits != slot->attr.bits) {
+        status = PSA_ERROR_INVALID_ARGUMENT;
+        goto exit;
+    }
+
+    /* Enforce a size limit, and in particular ensure that the bit
+     * size fits in its representation type.*/
+    if (bits > PSA_MAX_KEY_BITS) {
+        status = PSA_ERROR_NOT_SUPPORTED;
+        goto exit;
+    }
+    status = psa_validate_optional_attributes(slot, attributes);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_finish_key_creation(slot, driver, key);
+exit:
+    LOCAL_INPUT_FREE(data_external, data);
+    if (status != PSA_SUCCESS) {
+        psa_fail_key_creation(slot, driver);
+    }
+
+    return status;
+}
+
+#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
+psa_status_t mbedtls_psa_register_se_key(
+    const psa_key_attributes_t *attributes)
+{
+    psa_status_t status;
+    psa_key_slot_t *slot = NULL;
+    psa_se_drv_table_entry_t *driver = NULL;
+    mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
+
+    /* Leaving attributes unspecified is not currently supported.
+     * It could make sense to query the key type and size from the
+     * secure element, but not all secure elements support this
+     * and the driver HAL doesn't currently support it. */
+    if (psa_get_key_type(attributes) == PSA_KEY_TYPE_NONE) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+    if (psa_get_key_bits(attributes) == 0) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    status = psa_start_key_creation(PSA_KEY_CREATION_REGISTER, attributes,
+                                    &slot, &driver);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_finish_key_creation(slot, driver, &key);
+
+exit:
+    if (status != PSA_SUCCESS) {
+        psa_fail_key_creation(slot, driver);
+    }
+
+    /* Registration doesn't keep the key in RAM. */
+    psa_close_key(key);
+    return status;
+}
+#endif /* MBEDTLS_PSA_CRYPTO_SE_C */
+
+psa_status_t psa_copy_key(mbedtls_svc_key_id_t source_key,
+                          const psa_key_attributes_t *specified_attributes,
+                          mbedtls_svc_key_id_t *target_key)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_slot_t *source_slot = NULL;
+    psa_key_slot_t *target_slot = NULL;
+    psa_key_attributes_t actual_attributes = *specified_attributes;
+    psa_se_drv_table_entry_t *driver = NULL;
+    size_t storage_size = 0;
+
+    *target_key = MBEDTLS_SVC_KEY_ID_INIT;
+
+    status = psa_get_and_lock_key_slot_with_policy(
+        source_key, &source_slot, PSA_KEY_USAGE_COPY, 0);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_validate_optional_attributes(source_slot,
+                                              specified_attributes);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    /* The target key type and number of bits have been validated by
+     * psa_validate_optional_attributes() to be either equal to zero or
+     * equal to the ones of the source key. So it is safe to inherit
+     * them from the source key now."
+     * */
+    actual_attributes.bits = source_slot->attr.bits;
+    actual_attributes.type = source_slot->attr.type;
+
+
+    status = psa_restrict_key_policy(source_slot->attr.type,
+                                     &actual_attributes.policy,
+                                     &source_slot->attr.policy);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_start_key_creation(PSA_KEY_CREATION_COPY, &actual_attributes,
+                                    &target_slot, &driver);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+    if (PSA_KEY_LIFETIME_GET_LOCATION(target_slot->attr.lifetime) !=
+        PSA_KEY_LIFETIME_GET_LOCATION(source_slot->attr.lifetime)) {
+        /*
+         * If the source and target keys are stored in different locations,
+         * the source key would need to be exported as plaintext and re-imported
+         * in the other location. This has security implications which have not
+         * been fully mapped. For now, this can be achieved through
+         * appropriate API invocations from the application, if needed.
+         * */
+        status = PSA_ERROR_NOT_SUPPORTED;
+        goto exit;
+    }
+    /*
+     * When the source and target keys are within the same location,
+     * - For transparent keys it is a blind copy without any driver invocation,
+     * - For opaque keys this translates to an invocation of the drivers'
+     *   copy_key entry point through the dispatch layer.
+     * */
+    if (psa_key_lifetime_is_external(actual_attributes.lifetime)) {
+        status = psa_driver_wrapper_get_key_buffer_size(&actual_attributes,
+                                                        &storage_size);
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+
+        status = psa_allocate_buffer_to_slot(target_slot, storage_size);
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+
+        status = psa_driver_wrapper_copy_key(&actual_attributes,
+                                             source_slot->key.data,
+                                             source_slot->key.bytes,
+                                             target_slot->key.data,
+                                             target_slot->key.bytes,
+                                             &target_slot->key.bytes);
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+    } else {
+        status = psa_copy_key_material_into_slot(target_slot,
+                                                 source_slot->key.data,
+                                                 source_slot->key.bytes);
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+    }
+    status = psa_finish_key_creation(target_slot, driver, target_key);
+exit:
+    if (status != PSA_SUCCESS) {
+        psa_fail_key_creation(target_slot, driver);
+    }
+
+    unlock_status = psa_unregister_read_under_mutex(source_slot);
+
+    return (status == PSA_SUCCESS) ? unlock_status : status;
+}
+
+
+
+/****************************************************************/
+/* Message digests */
+/****************************************************************/
+
+psa_status_t psa_hash_abort(psa_hash_operation_t *operation)
+{
+    /* Aborting a non-active operation is allowed */
+    if (operation->id == 0) {
+        return PSA_SUCCESS;
+    }
+
+    psa_status_t status = psa_driver_wrapper_hash_abort(operation);
+    operation->id = 0;
+
+    return status;
+}
+
+psa_status_t psa_hash_setup(psa_hash_operation_t *operation,
+                            psa_algorithm_t alg)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    /* A context must be freshly initialized before it can be set up. */
+    if (operation->id != 0) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    if (!PSA_ALG_IS_HASH(alg)) {
+        status = PSA_ERROR_INVALID_ARGUMENT;
+        goto exit;
+    }
+
+    /* Ensure all of the context is zeroized, since PSA_HASH_OPERATION_INIT only
+     * directly zeroes the int-sized dummy member of the context union. */
+    memset(&operation->ctx, 0, sizeof(operation->ctx));
+
+    status = psa_driver_wrapper_hash_setup(operation, alg);
+
+exit:
+    if (status != PSA_SUCCESS) {
+        psa_hash_abort(operation);
+    }
+
+    return status;
+}
+
+psa_status_t psa_hash_update(psa_hash_operation_t *operation,
+                             const uint8_t *input_external,
+                             size_t input_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    LOCAL_INPUT_DECLARE(input_external, input);
+
+    if (operation->id == 0) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    /* Don't require hash implementations to behave correctly on a
+     * zero-length input, which may have an invalid pointer. */
+    if (input_length == 0) {
+        return PSA_SUCCESS;
+    }
+
+    LOCAL_INPUT_ALLOC(input_external, input_length, input);
+    status = psa_driver_wrapper_hash_update(operation, input, input_length);
+
+exit:
+    if (status != PSA_SUCCESS) {
+        psa_hash_abort(operation);
+    }
+
+    LOCAL_INPUT_FREE(input_external, input);
+    return status;
+}
+
+static psa_status_t psa_hash_finish_internal(psa_hash_operation_t *operation,
+                                             uint8_t *hash,
+                                             size_t hash_size,
+                                             size_t *hash_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    *hash_length = 0;
+    if (operation->id == 0) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    status = psa_driver_wrapper_hash_finish(
+        operation, hash, hash_size, hash_length);
+    psa_hash_abort(operation);
+
+    return status;
+}
+
+psa_status_t psa_hash_finish(psa_hash_operation_t *operation,
+                             uint8_t *hash_external,
+                             size_t hash_size,
+                             size_t *hash_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    LOCAL_OUTPUT_DECLARE(hash_external, hash);
+
+    LOCAL_OUTPUT_ALLOC(hash_external, hash_size, hash);
+    status = psa_hash_finish_internal(operation, hash, hash_size, hash_length);
+
+#if !defined(MBEDTLS_PSA_ASSUME_EXCLUSIVE_BUFFERS)
+exit:
+#endif
+    LOCAL_OUTPUT_FREE(hash_external, hash);
+    return status;
+}
+
+psa_status_t psa_hash_verify(psa_hash_operation_t *operation,
+                             const uint8_t *hash_external,
+                             size_t hash_length)
+{
+    uint8_t actual_hash[PSA_HASH_MAX_SIZE];
+    size_t actual_hash_length;
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    LOCAL_INPUT_DECLARE(hash_external, hash);
+
+    status = psa_hash_finish_internal(
+        operation,
+        actual_hash, sizeof(actual_hash),
+        &actual_hash_length);
+
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    if (actual_hash_length != hash_length) {
+        status = PSA_ERROR_INVALID_SIGNATURE;
+        goto exit;
+    }
+
+    LOCAL_INPUT_ALLOC(hash_external, hash_length, hash);
+    if (mbedtls_ct_memcmp(hash, actual_hash, actual_hash_length) != 0) {
+        status = PSA_ERROR_INVALID_SIGNATURE;
+    }
+
+exit:
+    mbedtls_platform_zeroize(actual_hash, sizeof(actual_hash));
+    if (status != PSA_SUCCESS) {
+        psa_hash_abort(operation);
+    }
+    LOCAL_INPUT_FREE(hash_external, hash);
+    return status;
+}
+
+psa_status_t psa_hash_compute(psa_algorithm_t alg,
+                              const uint8_t *input_external, size_t input_length,
+                              uint8_t *hash_external, size_t hash_size,
+                              size_t *hash_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    LOCAL_INPUT_DECLARE(input_external, input);
+    LOCAL_OUTPUT_DECLARE(hash_external, hash);
+
+    *hash_length = 0;
+    if (!PSA_ALG_IS_HASH(alg)) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    LOCAL_INPUT_ALLOC(input_external, input_length, input);
+    LOCAL_OUTPUT_ALLOC(hash_external, hash_size, hash);
+    status = psa_driver_wrapper_hash_compute(alg, input, input_length,
+                                             hash, hash_size, hash_length);
+
+#if !defined(MBEDTLS_PSA_ASSUME_EXCLUSIVE_BUFFERS)
+exit:
+#endif
+    LOCAL_INPUT_FREE(input_external, input);
+    LOCAL_OUTPUT_FREE(hash_external, hash);
+    return status;
+}
+
+psa_status_t psa_hash_compare(psa_algorithm_t alg,
+                              const uint8_t *input_external, size_t input_length,
+                              const uint8_t *hash_external, size_t hash_length)
+{
+    uint8_t actual_hash[PSA_HASH_MAX_SIZE];
+    size_t actual_hash_length;
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    LOCAL_INPUT_DECLARE(input_external, input);
+    LOCAL_INPUT_DECLARE(hash_external, hash);
+
+    if (!PSA_ALG_IS_HASH(alg)) {
+        status = PSA_ERROR_INVALID_ARGUMENT;
+        return status;
+    }
+
+    LOCAL_INPUT_ALLOC(input_external, input_length, input);
+    status = psa_driver_wrapper_hash_compute(
+        alg, input, input_length,
+        actual_hash, sizeof(actual_hash),
+        &actual_hash_length);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+    if (actual_hash_length != hash_length) {
+        status = PSA_ERROR_INVALID_SIGNATURE;
+        goto exit;
+    }
+
+    LOCAL_INPUT_ALLOC(hash_external, hash_length, hash);
+    if (mbedtls_ct_memcmp(hash, actual_hash, actual_hash_length) != 0) {
+        status = PSA_ERROR_INVALID_SIGNATURE;
+    }
+
+exit:
+    mbedtls_platform_zeroize(actual_hash, sizeof(actual_hash));
+
+    LOCAL_INPUT_FREE(input_external, input);
+    LOCAL_INPUT_FREE(hash_external, hash);
+
+    return status;
+}
+
+psa_status_t psa_hash_clone(const psa_hash_operation_t *source_operation,
+                            psa_hash_operation_t *target_operation)
+{
+    if (source_operation->id == 0 ||
+        target_operation->id != 0) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    psa_status_t status = psa_driver_wrapper_hash_clone(source_operation,
+                                                        target_operation);
+    if (status != PSA_SUCCESS) {
+        psa_hash_abort(target_operation);
+    }
+
+    return status;
+}
+
+
+/****************************************************************/
+/* MAC */
+/****************************************************************/
+
+psa_status_t psa_mac_abort(psa_mac_operation_t *operation)
+{
+    /* Aborting a non-active operation is allowed */
+    if (operation->id == 0) {
+        return PSA_SUCCESS;
+    }
+
+    psa_status_t status = psa_driver_wrapper_mac_abort(operation);
+    operation->mac_size = 0;
+    operation->is_sign = 0;
+    operation->id = 0;
+
+    return status;
+}
+
+static psa_status_t psa_mac_finalize_alg_and_key_validation(
+    psa_algorithm_t alg,
+    const psa_key_attributes_t *attributes,
+    uint8_t *mac_size)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_type_t key_type = psa_get_key_type(attributes);
+    size_t key_bits = psa_get_key_bits(attributes);
+
+    if (!PSA_ALG_IS_MAC(alg)) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    /* Validate the combination of key type and algorithm */
+    status = psa_mac_key_can_do(alg, key_type);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    /* Get the output length for the algorithm and key combination */
+    *mac_size = PSA_MAC_LENGTH(key_type, key_bits, alg);
+
+    if (*mac_size < 4) {
+        /* A very short MAC is too short for security since it can be
+         * brute-forced. Ancient protocols with 32-bit MACs do exist,
+         * so we make this our minimum, even though 32 bits is still
+         * too small for security. */
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    if (*mac_size > PSA_MAC_LENGTH(key_type, key_bits,
+                                   PSA_ALG_FULL_LENGTH_MAC(alg))) {
+        /* It's impossible to "truncate" to a larger length than the full length
+         * of the algorithm. */
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    if (*mac_size > PSA_MAC_MAX_SIZE) {
+        /* PSA_MAC_LENGTH returns the correct length even for a MAC algorithm
+         * that is disabled in the compile-time configuration. The result can
+         * therefore be larger than PSA_MAC_MAX_SIZE, which does take the
+         * configuration into account. In this case, force a return of
+         * PSA_ERROR_NOT_SUPPORTED here. Otherwise psa_mac_verify(), or
+         * psa_mac_compute(mac_size=PSA_MAC_MAX_SIZE), would return
+         * PSA_ERROR_BUFFER_TOO_SMALL for an unsupported algorithm whose MAC size
+         * is larger than PSA_MAC_MAX_SIZE, which is misleading and which breaks
+         * systematically generated tests. */
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    return PSA_SUCCESS;
+}
+
+static psa_status_t psa_mac_setup(psa_mac_operation_t *operation,
+                                  mbedtls_svc_key_id_t key,
+                                  psa_algorithm_t alg,
+                                  int is_sign)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_slot_t *slot = NULL;
+
+    /* A context must be freshly initialized before it can be set up. */
+    if (operation->id != 0) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    status = psa_get_and_lock_key_slot_with_policy(
+        key,
+        &slot,
+        is_sign ? PSA_KEY_USAGE_SIGN_MESSAGE : PSA_KEY_USAGE_VERIFY_MESSAGE,
+        alg);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_mac_finalize_alg_and_key_validation(alg, &slot->attr,
+                                                     &operation->mac_size);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    operation->is_sign = is_sign;
+    /* Dispatch the MAC setup call with validated input */
+    if (is_sign) {
+        status = psa_driver_wrapper_mac_sign_setup(operation,
+                                                   &slot->attr,
+                                                   slot->key.data,
+                                                   slot->key.bytes,
+                                                   alg);
+    } else {
+        status = psa_driver_wrapper_mac_verify_setup(operation,
+                                                     &slot->attr,
+                                                     slot->key.data,
+                                                     slot->key.bytes,
+                                                     alg);
+    }
+
+exit:
+    if (status != PSA_SUCCESS) {
+        psa_mac_abort(operation);
+    }
+
+    unlock_status = psa_unregister_read_under_mutex(slot);
+
+    return (status == PSA_SUCCESS) ? unlock_status : status;
+}
+
+psa_status_t psa_mac_sign_setup(psa_mac_operation_t *operation,
+                                mbedtls_svc_key_id_t key,
+                                psa_algorithm_t alg)
+{
+    return psa_mac_setup(operation, key, alg, 1);
+}
+
+psa_status_t psa_mac_verify_setup(psa_mac_operation_t *operation,
+                                  mbedtls_svc_key_id_t key,
+                                  psa_algorithm_t alg)
+{
+    return psa_mac_setup(operation, key, alg, 0);
+}
+
+psa_status_t psa_mac_update(psa_mac_operation_t *operation,
+                            const uint8_t *input_external,
+                            size_t input_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    LOCAL_INPUT_DECLARE(input_external, input);
+
+    if (operation->id == 0) {
+        status = PSA_ERROR_BAD_STATE;
+        return status;
+    }
+
+    /* Don't require hash implementations to behave correctly on a
+     * zero-length input, which may have an invalid pointer. */
+    if (input_length == 0) {
+        status = PSA_SUCCESS;
+        return status;
+    }
+
+    LOCAL_INPUT_ALLOC(input_external, input_length, input);
+    status = psa_driver_wrapper_mac_update(operation, input, input_length);
+
+    if (status != PSA_SUCCESS) {
+        psa_mac_abort(operation);
+    }
+
+#if !defined(MBEDTLS_PSA_ASSUME_EXCLUSIVE_BUFFERS)
+exit:
+#endif
+    LOCAL_INPUT_FREE(input_external, input);
+
+    return status;
+}
+
+psa_status_t psa_mac_sign_finish(psa_mac_operation_t *operation,
+                                 uint8_t *mac_external,
+                                 size_t mac_size,
+                                 size_t *mac_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_status_t abort_status = PSA_ERROR_CORRUPTION_DETECTED;
+    LOCAL_OUTPUT_DECLARE(mac_external, mac);
+    LOCAL_OUTPUT_ALLOC(mac_external, mac_size, mac);
+
+    if (operation->id == 0) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    if (!operation->is_sign) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    /* Sanity check. This will guarantee that mac_size != 0 (and so mac != NULL)
+     * once all the error checks are done. */
+    if (operation->mac_size == 0) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    if (mac_size < operation->mac_size) {
+        status = PSA_ERROR_BUFFER_TOO_SMALL;
+        goto exit;
+    }
+
+
+    status = psa_driver_wrapper_mac_sign_finish(operation,
+                                                mac, operation->mac_size,
+                                                mac_length);
+
+exit:
+    /* In case of success, set the potential excess room in the output buffer
+     * to an invalid value, to avoid potentially leaking a longer MAC.
+     * In case of error, set the output length and content to a safe default,
+     * such that in case the caller misses an error check, the output would be
+     * an unachievable MAC.
+     */
+    if (status != PSA_SUCCESS) {
+        *mac_length = mac_size;
+        operation->mac_size = 0;
+    }
+
+    if (mac != NULL) {
+        psa_wipe_tag_output_buffer(mac, status, mac_size, *mac_length);
+    }
+
+    abort_status = psa_mac_abort(operation);
+    LOCAL_OUTPUT_FREE(mac_external, mac);
+
+    return status == PSA_SUCCESS ? abort_status : status;
+}
+
+psa_status_t psa_mac_verify_finish(psa_mac_operation_t *operation,
+                                   const uint8_t *mac_external,
+                                   size_t mac_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_status_t abort_status = PSA_ERROR_CORRUPTION_DETECTED;
+    LOCAL_INPUT_DECLARE(mac_external, mac);
+
+    if (operation->id == 0) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    if (operation->is_sign) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    if (operation->mac_size != mac_length) {
+        status = PSA_ERROR_INVALID_SIGNATURE;
+        goto exit;
+    }
+
+    LOCAL_INPUT_ALLOC(mac_external, mac_length, mac);
+    status = psa_driver_wrapper_mac_verify_finish(operation,
+                                                  mac, mac_length);
+
+exit:
+    abort_status = psa_mac_abort(operation);
+    LOCAL_INPUT_FREE(mac_external, mac);
+
+    return status == PSA_SUCCESS ? abort_status : status;
+}
+
+static psa_status_t psa_mac_compute_internal(mbedtls_svc_key_id_t key,
+                                             psa_algorithm_t alg,
+                                             const uint8_t *input,
+                                             size_t input_length,
+                                             uint8_t *mac,
+                                             size_t mac_size,
+                                             size_t *mac_length,
+                                             int is_sign)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_slot_t *slot;
+    uint8_t operation_mac_size = 0;
+
+    status = psa_get_and_lock_key_slot_with_policy(
+        key,
+        &slot,
+        is_sign ? PSA_KEY_USAGE_SIGN_MESSAGE : PSA_KEY_USAGE_VERIFY_MESSAGE,
+        alg);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_mac_finalize_alg_and_key_validation(alg, &slot->attr,
+                                                     &operation_mac_size);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    if (mac_size < operation_mac_size) {
+        status = PSA_ERROR_BUFFER_TOO_SMALL;
+        goto exit;
+    }
+
+    status = psa_driver_wrapper_mac_compute(
+        &slot->attr,
+        slot->key.data, slot->key.bytes,
+        alg,
+        input, input_length,
+        mac, operation_mac_size, mac_length);
+
+exit:
+    /* In case of success, set the potential excess room in the output buffer
+     * to an invalid value, to avoid potentially leaking a longer MAC.
+     * In case of error, set the output length and content to a safe default,
+     * such that in case the caller misses an error check, the output would be
+     * an unachievable MAC.
+     */
+    if (status != PSA_SUCCESS) {
+        *mac_length = mac_size;
+        operation_mac_size = 0;
+    }
+
+    psa_wipe_tag_output_buffer(mac, status, mac_size, *mac_length);
+
+    unlock_status = psa_unregister_read_under_mutex(slot);
+
+    return (status == PSA_SUCCESS) ? unlock_status : status;
+}
+
+psa_status_t psa_mac_compute(mbedtls_svc_key_id_t key,
+                             psa_algorithm_t alg,
+                             const uint8_t *input_external,
+                             size_t input_length,
+                             uint8_t *mac_external,
+                             size_t mac_size,
+                             size_t *mac_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    LOCAL_INPUT_DECLARE(input_external, input);
+    LOCAL_OUTPUT_DECLARE(mac_external, mac);
+
+    LOCAL_INPUT_ALLOC(input_external, input_length, input);
+    LOCAL_OUTPUT_ALLOC(mac_external, mac_size, mac);
+    status = psa_mac_compute_internal(key, alg,
+                                      input, input_length,
+                                      mac, mac_size, mac_length, 1);
+
+#if !defined(MBEDTLS_PSA_ASSUME_EXCLUSIVE_BUFFERS)
+exit:
+#endif
+    LOCAL_INPUT_FREE(input_external, input);
+    LOCAL_OUTPUT_FREE(mac_external, mac);
+
+    return status;
+}
+
+psa_status_t psa_mac_verify(mbedtls_svc_key_id_t key,
+                            psa_algorithm_t alg,
+                            const uint8_t *input_external,
+                            size_t input_length,
+                            const uint8_t *mac_external,
+                            size_t mac_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    uint8_t actual_mac[PSA_MAC_MAX_SIZE];
+    size_t actual_mac_length;
+    LOCAL_INPUT_DECLARE(input_external, input);
+    LOCAL_INPUT_DECLARE(mac_external, mac);
+
+    LOCAL_INPUT_ALLOC(input_external, input_length, input);
+    status = psa_mac_compute_internal(key, alg,
+                                      input, input_length,
+                                      actual_mac, sizeof(actual_mac),
+                                      &actual_mac_length, 0);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    if (mac_length != actual_mac_length) {
+        status = PSA_ERROR_INVALID_SIGNATURE;
+        goto exit;
+    }
+
+    LOCAL_INPUT_ALLOC(mac_external, mac_length, mac);
+    if (mbedtls_ct_memcmp(mac, actual_mac, actual_mac_length) != 0) {
+        status = PSA_ERROR_INVALID_SIGNATURE;
+        goto exit;
+    }
+
+exit:
+    mbedtls_platform_zeroize(actual_mac, sizeof(actual_mac));
+    LOCAL_INPUT_FREE(input_external, input);
+    LOCAL_INPUT_FREE(mac_external, mac);
+
+    return status;
+}
+
+/****************************************************************/
+/* Asymmetric cryptography */
+/****************************************************************/
+
+static psa_status_t psa_sign_verify_check_alg(int input_is_message,
+                                              psa_algorithm_t alg)
+{
+    if (input_is_message) {
+        if (!PSA_ALG_IS_SIGN_MESSAGE(alg)) {
+            return PSA_ERROR_INVALID_ARGUMENT;
+        }
+
+        if (PSA_ALG_IS_SIGN_HASH(alg)) {
+            if (!PSA_ALG_IS_HASH(PSA_ALG_SIGN_GET_HASH(alg))) {
+                return PSA_ERROR_INVALID_ARGUMENT;
+            }
+        }
+    } else {
+        if (!PSA_ALG_IS_SIGN_HASH(alg)) {
+            return PSA_ERROR_INVALID_ARGUMENT;
+        }
+    }
+
+    return PSA_SUCCESS;
+}
+
+static psa_status_t psa_sign_internal(mbedtls_svc_key_id_t key,
+                                      int input_is_message,
+                                      psa_algorithm_t alg,
+                                      const uint8_t *input,
+                                      size_t input_length,
+                                      uint8_t *signature,
+                                      size_t signature_size,
+                                      size_t *signature_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_slot_t *slot;
+
+    *signature_length = 0;
+
+    status = psa_sign_verify_check_alg(input_is_message, alg);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    /* Immediately reject a zero-length signature buffer. This guarantees
+     * that signature must be a valid pointer. (On the other hand, the input
+     * buffer can in principle be empty since it doesn't actually have
+     * to be a hash.) */
+    if (signature_size == 0) {
+        return PSA_ERROR_BUFFER_TOO_SMALL;
+    }
+
+    status = psa_get_and_lock_key_slot_with_policy(
+        key, &slot,
+        input_is_message ? PSA_KEY_USAGE_SIGN_MESSAGE :
+        PSA_KEY_USAGE_SIGN_HASH,
+        alg);
+
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    if (!PSA_KEY_TYPE_IS_KEY_PAIR(slot->attr.type)) {
+        status = PSA_ERROR_INVALID_ARGUMENT;
+        goto exit;
+    }
+
+    if (input_is_message) {
+        status = psa_driver_wrapper_sign_message(
+            &slot->attr, slot->key.data, slot->key.bytes,
+            alg, input, input_length,
+            signature, signature_size, signature_length);
+    } else {
+
+        status = psa_driver_wrapper_sign_hash(
+            &slot->attr, slot->key.data, slot->key.bytes,
+            alg, input, input_length,
+            signature, signature_size, signature_length);
+    }
+
+
+exit:
+    psa_wipe_tag_output_buffer(signature, status, signature_size,
+                               *signature_length);
+
+    unlock_status = psa_unregister_read_under_mutex(slot);
+
+    return (status == PSA_SUCCESS) ? unlock_status : status;
+}
+
+static psa_status_t psa_verify_internal(mbedtls_svc_key_id_t key,
+                                        int input_is_message,
+                                        psa_algorithm_t alg,
+                                        const uint8_t *input,
+                                        size_t input_length,
+                                        const uint8_t *signature,
+                                        size_t signature_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_slot_t *slot;
+
+    status = psa_sign_verify_check_alg(input_is_message, alg);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    status = psa_get_and_lock_key_slot_with_policy(
+        key, &slot,
+        input_is_message ? PSA_KEY_USAGE_VERIFY_MESSAGE :
+        PSA_KEY_USAGE_VERIFY_HASH,
+        alg);
+
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    if (input_is_message) {
+        status = psa_driver_wrapper_verify_message(
+            &slot->attr, slot->key.data, slot->key.bytes,
+            alg, input, input_length,
+            signature, signature_length);
+    } else {
+        status = psa_driver_wrapper_verify_hash(
+            &slot->attr, slot->key.data, slot->key.bytes,
+            alg, input, input_length,
+            signature, signature_length);
+    }
+
+    unlock_status = psa_unregister_read_under_mutex(slot);
+
+    return (status == PSA_SUCCESS) ? unlock_status : status;
+
+}
+
+psa_status_t psa_sign_message_builtin(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer,
+    size_t key_buffer_size,
+    psa_algorithm_t alg,
+    const uint8_t *input,
+    size_t input_length,
+    uint8_t *signature,
+    size_t signature_size,
+    size_t *signature_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    if (PSA_ALG_IS_SIGN_HASH(alg)) {
+        size_t hash_length;
+        uint8_t hash[PSA_HASH_MAX_SIZE];
+
+        status = psa_driver_wrapper_hash_compute(
+            PSA_ALG_SIGN_GET_HASH(alg),
+            input, input_length,
+            hash, sizeof(hash), &hash_length);
+
+        if (status != PSA_SUCCESS) {
+            return status;
+        }
+
+        return psa_driver_wrapper_sign_hash(
+            attributes, key_buffer, key_buffer_size,
+            alg, hash, hash_length,
+            signature, signature_size, signature_length);
+    }
+
+    return PSA_ERROR_NOT_SUPPORTED;
+}
+
+psa_status_t psa_sign_message(mbedtls_svc_key_id_t key,
+                              psa_algorithm_t alg,
+                              const uint8_t *input_external,
+                              size_t input_length,
+                              uint8_t *signature_external,
+                              size_t signature_size,
+                              size_t *signature_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    LOCAL_INPUT_DECLARE(input_external, input);
+    LOCAL_OUTPUT_DECLARE(signature_external, signature);
+
+    LOCAL_INPUT_ALLOC(input_external, input_length, input);
+    LOCAL_OUTPUT_ALLOC(signature_external, signature_size, signature);
+    status = psa_sign_internal(key, 1, alg, input, input_length, signature,
+                               signature_size, signature_length);
+
+#if !defined(MBEDTLS_PSA_ASSUME_EXCLUSIVE_BUFFERS)
+exit:
+#endif
+    LOCAL_INPUT_FREE(input_external, input);
+    LOCAL_OUTPUT_FREE(signature_external, signature);
+    return status;
+}
+
+psa_status_t psa_verify_message_builtin(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer,
+    size_t key_buffer_size,
+    psa_algorithm_t alg,
+    const uint8_t *input,
+    size_t input_length,
+    const uint8_t *signature,
+    size_t signature_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    if (PSA_ALG_IS_SIGN_HASH(alg)) {
+        size_t hash_length;
+        uint8_t hash[PSA_HASH_MAX_SIZE];
+
+        status = psa_driver_wrapper_hash_compute(
+            PSA_ALG_SIGN_GET_HASH(alg),
+            input, input_length,
+            hash, sizeof(hash), &hash_length);
+
+        if (status != PSA_SUCCESS) {
+            return status;
+        }
+
+        return psa_driver_wrapper_verify_hash(
+            attributes, key_buffer, key_buffer_size,
+            alg, hash, hash_length,
+            signature, signature_length);
+    }
+
+    return PSA_ERROR_NOT_SUPPORTED;
+}
+
+psa_status_t psa_verify_message(mbedtls_svc_key_id_t key,
+                                psa_algorithm_t alg,
+                                const uint8_t *input_external,
+                                size_t input_length,
+                                const uint8_t *signature_external,
+                                size_t signature_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    LOCAL_INPUT_DECLARE(input_external, input);
+    LOCAL_INPUT_DECLARE(signature_external, signature);
+
+    LOCAL_INPUT_ALLOC(input_external, input_length, input);
+    LOCAL_INPUT_ALLOC(signature_external, signature_length, signature);
+    status = psa_verify_internal(key, 1, alg, input, input_length, signature,
+                                 signature_length);
+
+#if !defined(MBEDTLS_PSA_ASSUME_EXCLUSIVE_BUFFERS)
+exit:
+#endif
+    LOCAL_INPUT_FREE(input_external, input);
+    LOCAL_INPUT_FREE(signature_external, signature);
+
+    return status;
+}
+
+psa_status_t psa_sign_hash_builtin(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg, const uint8_t *hash, size_t hash_length,
+    uint8_t *signature, size_t signature_size, size_t *signature_length)
+{
+    if (attributes->type == PSA_KEY_TYPE_RSA_KEY_PAIR) {
+        if (PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) ||
+            PSA_ALG_IS_RSA_PSS(alg)) {
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_SIGN) || \
+            defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS)
+            return mbedtls_psa_rsa_sign_hash(
+                attributes,
+                key_buffer, key_buffer_size,
+                alg, hash, hash_length,
+                signature, signature_size, signature_length);
+#endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_SIGN) ||
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS) */
+        } else {
+            return PSA_ERROR_INVALID_ARGUMENT;
+        }
+    } else if (PSA_KEY_TYPE_IS_ECC(attributes->type)) {
+        if (PSA_ALG_IS_ECDSA(alg)) {
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) || \
+            defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA)
+            return mbedtls_psa_ecdsa_sign_hash(
+                attributes,
+                key_buffer, key_buffer_size,
+                alg, hash, hash_length,
+                signature, signature_size, signature_length);
+#endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) ||
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) */
+        } else {
+            return PSA_ERROR_INVALID_ARGUMENT;
+        }
+    }
+
+    (void) key_buffer;
+    (void) key_buffer_size;
+    (void) hash;
+    (void) hash_length;
+    (void) signature;
+    (void) signature_size;
+    (void) signature_length;
+
+    return PSA_ERROR_NOT_SUPPORTED;
+}
+
+psa_status_t psa_sign_hash(mbedtls_svc_key_id_t key,
+                           psa_algorithm_t alg,
+                           const uint8_t *hash_external,
+                           size_t hash_length,
+                           uint8_t *signature_external,
+                           size_t signature_size,
+                           size_t *signature_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    LOCAL_INPUT_DECLARE(hash_external, hash);
+    LOCAL_OUTPUT_DECLARE(signature_external, signature);
+
+    LOCAL_INPUT_ALLOC(hash_external, hash_length, hash);
+    LOCAL_OUTPUT_ALLOC(signature_external, signature_size, signature);
+    status = psa_sign_internal(key, 0, alg, hash, hash_length, signature,
+                               signature_size, signature_length);
+
+#if !defined(MBEDTLS_PSA_ASSUME_EXCLUSIVE_BUFFERS)
+exit:
+#endif
+    LOCAL_INPUT_FREE(hash_external, hash);
+    LOCAL_OUTPUT_FREE(signature_external, signature);
+
+    return status;
+}
+
+psa_status_t psa_verify_hash_builtin(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg, const uint8_t *hash, size_t hash_length,
+    const uint8_t *signature, size_t signature_length)
+{
+    if (PSA_KEY_TYPE_IS_RSA(attributes->type)) {
+        if (PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) ||
+            PSA_ALG_IS_RSA_PSS(alg)) {
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_SIGN) || \
+            defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS)
+            return mbedtls_psa_rsa_verify_hash(
+                attributes,
+                key_buffer, key_buffer_size,
+                alg, hash, hash_length,
+                signature, signature_length);
+#endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_SIGN) ||
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS) */
+        } else {
+            return PSA_ERROR_INVALID_ARGUMENT;
+        }
+    } else if (PSA_KEY_TYPE_IS_ECC(attributes->type)) {
+        if (PSA_ALG_IS_ECDSA(alg)) {
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) || \
+            defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA)
+            return mbedtls_psa_ecdsa_verify_hash(
+                attributes,
+                key_buffer, key_buffer_size,
+                alg, hash, hash_length,
+                signature, signature_length);
+#endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) ||
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) */
+        } else {
+            return PSA_ERROR_INVALID_ARGUMENT;
+        }
+    }
+
+    (void) key_buffer;
+    (void) key_buffer_size;
+    (void) hash;
+    (void) hash_length;
+    (void) signature;
+    (void) signature_length;
+
+    return PSA_ERROR_NOT_SUPPORTED;
+}
+
+psa_status_t psa_verify_hash(mbedtls_svc_key_id_t key,
+                             psa_algorithm_t alg,
+                             const uint8_t *hash_external,
+                             size_t hash_length,
+                             const uint8_t *signature_external,
+                             size_t signature_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    LOCAL_INPUT_DECLARE(hash_external, hash);
+    LOCAL_INPUT_DECLARE(signature_external, signature);
+
+    LOCAL_INPUT_ALLOC(hash_external, hash_length, hash);
+    LOCAL_INPUT_ALLOC(signature_external, signature_length, signature);
+    status = psa_verify_internal(key, 0, alg, hash, hash_length, signature,
+                                 signature_length);
+
+#if !defined(MBEDTLS_PSA_ASSUME_EXCLUSIVE_BUFFERS)
+exit:
+#endif
+    LOCAL_INPUT_FREE(hash_external, hash);
+    LOCAL_INPUT_FREE(signature_external, signature);
+
+    return status;
+}
+
+psa_status_t psa_asymmetric_encrypt(mbedtls_svc_key_id_t key,
+                                    psa_algorithm_t alg,
+                                    const uint8_t *input_external,
+                                    size_t input_length,
+                                    const uint8_t *salt_external,
+                                    size_t salt_length,
+                                    uint8_t *output_external,
+                                    size_t output_size,
+                                    size_t *output_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_slot_t *slot;
+
+    LOCAL_INPUT_DECLARE(input_external, input);
+    LOCAL_INPUT_DECLARE(salt_external, salt);
+    LOCAL_OUTPUT_DECLARE(output_external, output);
+
+    (void) input;
+    (void) input_length;
+    (void) salt;
+    (void) output;
+    (void) output_size;
+
+    *output_length = 0;
+
+    if (!PSA_ALG_IS_RSA_OAEP(alg) && salt_length != 0) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    status = psa_get_and_lock_key_slot_with_policy(
+        key, &slot, PSA_KEY_USAGE_ENCRYPT, alg);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+    if (!(PSA_KEY_TYPE_IS_PUBLIC_KEY(slot->attr.type) ||
+          PSA_KEY_TYPE_IS_KEY_PAIR(slot->attr.type))) {
+        status = PSA_ERROR_INVALID_ARGUMENT;
+        goto exit;
+    }
+
+    LOCAL_INPUT_ALLOC(input_external, input_length, input);
+    LOCAL_INPUT_ALLOC(salt_external, salt_length, salt);
+    LOCAL_OUTPUT_ALLOC(output_external, output_size, output);
+
+    status = psa_driver_wrapper_asymmetric_encrypt(
+        &slot->attr, slot->key.data, slot->key.bytes,
+        alg, input, input_length, salt, salt_length,
+        output, output_size, output_length);
+exit:
+    unlock_status = psa_unregister_read_under_mutex(slot);
+
+    LOCAL_INPUT_FREE(input_external, input);
+    LOCAL_INPUT_FREE(salt_external, salt);
+    LOCAL_OUTPUT_FREE(output_external, output);
+
+    return (status == PSA_SUCCESS) ? unlock_status : status;
+}
+
+psa_status_t psa_asymmetric_decrypt(mbedtls_svc_key_id_t key,
+                                    psa_algorithm_t alg,
+                                    const uint8_t *input_external,
+                                    size_t input_length,
+                                    const uint8_t *salt_external,
+                                    size_t salt_length,
+                                    uint8_t *output_external,
+                                    size_t output_size,
+                                    size_t *output_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_slot_t *slot;
+
+    LOCAL_INPUT_DECLARE(input_external, input);
+    LOCAL_INPUT_DECLARE(salt_external, salt);
+    LOCAL_OUTPUT_DECLARE(output_external, output);
+
+    (void) input;
+    (void) input_length;
+    (void) salt;
+    (void) output;
+    (void) output_size;
+
+    *output_length = 0;
+
+    if (!PSA_ALG_IS_RSA_OAEP(alg) && salt_length != 0) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    status = psa_get_and_lock_key_slot_with_policy(
+        key, &slot, PSA_KEY_USAGE_DECRYPT, alg);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+    if (!PSA_KEY_TYPE_IS_KEY_PAIR(slot->attr.type)) {
+        status = PSA_ERROR_INVALID_ARGUMENT;
+        goto exit;
+    }
+
+    LOCAL_INPUT_ALLOC(input_external, input_length, input);
+    LOCAL_INPUT_ALLOC(salt_external, salt_length, salt);
+    LOCAL_OUTPUT_ALLOC(output_external, output_size, output);
+
+    status = psa_driver_wrapper_asymmetric_decrypt(
+        &slot->attr, slot->key.data, slot->key.bytes,
+        alg, input, input_length, salt, salt_length,
+        output, output_size, output_length);
+
+exit:
+    unlock_status = psa_unregister_read_under_mutex(slot);
+
+    LOCAL_INPUT_FREE(input_external, input);
+    LOCAL_INPUT_FREE(salt_external, salt);
+    LOCAL_OUTPUT_FREE(output_external, output);
+
+    return (status == PSA_SUCCESS) ? unlock_status : status;
+}
+
+/****************************************************************/
+/* Asymmetric interruptible cryptography                        */
+/****************************************************************/
+
+static uint32_t psa_interruptible_max_ops = PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED;
+
+void psa_interruptible_set_max_ops(uint32_t max_ops)
+{
+    psa_interruptible_max_ops = max_ops;
+}
+
+uint32_t psa_interruptible_get_max_ops(void)
+{
+    return psa_interruptible_max_ops;
+}
+
+uint32_t psa_sign_hash_get_num_ops(
+    const psa_sign_hash_interruptible_operation_t *operation)
+{
+    return operation->num_ops;
+}
+
+uint32_t psa_verify_hash_get_num_ops(
+    const psa_verify_hash_interruptible_operation_t *operation)
+{
+    return operation->num_ops;
+}
+
+static psa_status_t psa_sign_hash_abort_internal(
+    psa_sign_hash_interruptible_operation_t *operation)
+{
+    if (operation->id == 0) {
+        /* The object has (apparently) been initialized but it is not (yet)
+         * in use. It's ok to call abort on such an object, and there's
+         * nothing to do. */
+        return PSA_SUCCESS;
+    }
+
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    status = psa_driver_wrapper_sign_hash_abort(operation);
+
+    operation->id = 0;
+
+    /* Do not clear either the error_occurred or num_ops elements here as they
+     * only want to be cleared by the application calling abort, not by abort
+     * being called at completion of an operation. */
+
+    return status;
+}
+
+psa_status_t psa_sign_hash_start(
+    psa_sign_hash_interruptible_operation_t *operation,
+    mbedtls_svc_key_id_t key, psa_algorithm_t alg,
+    const uint8_t *hash_external, size_t hash_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_slot_t *slot;
+
+    LOCAL_INPUT_DECLARE(hash_external, hash);
+
+    /* Check that start has not been previously called, or operation has not
+     * previously errored. */
+    if (operation->id != 0 || operation->error_occurred) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    status = psa_sign_verify_check_alg(0, alg);
+    if (status != PSA_SUCCESS) {
+        operation->error_occurred = 1;
+        return status;
+    }
+
+    status = psa_get_and_lock_key_slot_with_policy(key, &slot,
+                                                   PSA_KEY_USAGE_SIGN_HASH,
+                                                   alg);
+
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    if (!PSA_KEY_TYPE_IS_KEY_PAIR(slot->attr.type)) {
+        status = PSA_ERROR_INVALID_ARGUMENT;
+        goto exit;
+    }
+
+    LOCAL_INPUT_ALLOC(hash_external, hash_length, hash);
+
+    /* Ensure ops count gets reset, in case of operation re-use. */
+    operation->num_ops = 0;
+
+    status = psa_driver_wrapper_sign_hash_start(operation, &slot->attr,
+                                                slot->key.data,
+                                                slot->key.bytes, alg,
+                                                hash, hash_length);
+exit:
+
+    if (status != PSA_SUCCESS) {
+        operation->error_occurred = 1;
+        psa_sign_hash_abort_internal(operation);
+    }
+
+    unlock_status = psa_unregister_read_under_mutex(slot);
+
+    if (unlock_status != PSA_SUCCESS) {
+        operation->error_occurred = 1;
+    }
+
+    LOCAL_INPUT_FREE(hash_external, hash);
+
+    return (status == PSA_SUCCESS) ? unlock_status : status;
+}
+
+
+psa_status_t psa_sign_hash_complete(
+    psa_sign_hash_interruptible_operation_t *operation,
+    uint8_t *signature_external, size_t signature_size,
+    size_t *signature_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    LOCAL_OUTPUT_DECLARE(signature_external, signature);
+
+    *signature_length = 0;
+
+    /* Check that start has been called first, and that operation has not
+     * previously errored. */
+    if (operation->id == 0 || operation->error_occurred) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    /* Immediately reject a zero-length signature buffer. This guarantees that
+     * signature must be a valid pointer. */
+    if (signature_size == 0) {
+        status = PSA_ERROR_BUFFER_TOO_SMALL;
+        goto exit;
+    }
+
+    LOCAL_OUTPUT_ALLOC(signature_external, signature_size, signature);
+
+    status = psa_driver_wrapper_sign_hash_complete(operation, signature,
+                                                   signature_size,
+                                                   signature_length);
+
+    /* Update ops count with work done. */
+    operation->num_ops = psa_driver_wrapper_sign_hash_get_num_ops(operation);
+
+exit:
+
+    if (signature != NULL) {
+        psa_wipe_tag_output_buffer(signature, status, signature_size,
+                                   *signature_length);
+    }
+
+    if (status != PSA_OPERATION_INCOMPLETE) {
+        if (status != PSA_SUCCESS) {
+            operation->error_occurred = 1;
+        }
+
+        psa_sign_hash_abort_internal(operation);
+    }
+
+    LOCAL_OUTPUT_FREE(signature_external, signature);
+
+    return status;
+}
+
+psa_status_t psa_sign_hash_abort(
+    psa_sign_hash_interruptible_operation_t *operation)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    status = psa_sign_hash_abort_internal(operation);
+
+    /* We clear the number of ops done here, so that it is not cleared when
+     * the operation fails or succeeds, only on manual abort. */
+    operation->num_ops = 0;
+
+    /* Likewise, failure state. */
+    operation->error_occurred = 0;
+
+    return status;
+}
+
+static psa_status_t psa_verify_hash_abort_internal(
+    psa_verify_hash_interruptible_operation_t *operation)
+{
+    if (operation->id == 0) {
+        /* The object has (apparently) been initialized but it is not (yet)
+         * in use. It's ok to call abort on such an object, and there's
+         * nothing to do. */
+        return PSA_SUCCESS;
+    }
+
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    status = psa_driver_wrapper_verify_hash_abort(operation);
+
+    operation->id = 0;
+
+    /* Do not clear either the error_occurred or num_ops elements here as they
+     * only want to be cleared by the application calling abort, not by abort
+     * being called at completion of an operation. */
+
+    return status;
+}
+
+psa_status_t psa_verify_hash_start(
+    psa_verify_hash_interruptible_operation_t *operation,
+    mbedtls_svc_key_id_t key, psa_algorithm_t alg,
+    const uint8_t *hash_external, size_t hash_length,
+    const uint8_t *signature_external, size_t signature_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_slot_t *slot;
+
+    LOCAL_INPUT_DECLARE(hash_external, hash);
+    LOCAL_INPUT_DECLARE(signature_external, signature);
+
+    /* Check that start has not been previously called, or operation has not
+     * previously errored. */
+    if (operation->id != 0 || operation->error_occurred) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    status = psa_sign_verify_check_alg(0, alg);
+    if (status != PSA_SUCCESS) {
+        operation->error_occurred = 1;
+        return status;
+    }
+
+    status = psa_get_and_lock_key_slot_with_policy(key, &slot,
+                                                   PSA_KEY_USAGE_VERIFY_HASH,
+                                                   alg);
+
+    if (status != PSA_SUCCESS) {
+        operation->error_occurred = 1;
+        return status;
+    }
+
+    LOCAL_INPUT_ALLOC(hash_external, hash_length, hash);
+    LOCAL_INPUT_ALLOC(signature_external, signature_length, signature);
+
+    /* Ensure ops count gets reset, in case of operation re-use. */
+    operation->num_ops = 0;
+
+    status = psa_driver_wrapper_verify_hash_start(operation, &slot->attr,
+                                                  slot->key.data,
+                                                  slot->key.bytes,
+                                                  alg, hash, hash_length,
+                                                  signature, signature_length);
+#if !defined(MBEDTLS_PSA_ASSUME_EXCLUSIVE_BUFFERS)
+exit:
+#endif
+
+    if (status != PSA_SUCCESS) {
+        operation->error_occurred = 1;
+        psa_verify_hash_abort_internal(operation);
+    }
+
+    unlock_status = psa_unregister_read_under_mutex(slot);
+
+    if (unlock_status != PSA_SUCCESS) {
+        operation->error_occurred = 1;
+    }
+
+    LOCAL_INPUT_FREE(hash_external, hash);
+    LOCAL_INPUT_FREE(signature_external, signature);
+
+    return (status == PSA_SUCCESS) ? unlock_status : status;
+}
+
+psa_status_t psa_verify_hash_complete(
+    psa_verify_hash_interruptible_operation_t *operation)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    /* Check that start has been called first, and that operation has not
+     * previously errored. */
+    if (operation->id == 0 || operation->error_occurred) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    status = psa_driver_wrapper_verify_hash_complete(operation);
+
+    /* Update ops count with work done. */
+    operation->num_ops = psa_driver_wrapper_verify_hash_get_num_ops(
+        operation);
+
+exit:
+
+    if (status != PSA_OPERATION_INCOMPLETE) {
+        if (status != PSA_SUCCESS) {
+            operation->error_occurred = 1;
+        }
+
+        psa_verify_hash_abort_internal(operation);
+    }
+
+    return status;
+}
+
+psa_status_t psa_verify_hash_abort(
+    psa_verify_hash_interruptible_operation_t *operation)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    status = psa_verify_hash_abort_internal(operation);
+
+    /* We clear the number of ops done here, so that it is not cleared when
+     * the operation fails or succeeds, only on manual abort. */
+    operation->num_ops = 0;
+
+    /* Likewise, failure state. */
+    operation->error_occurred = 0;
+
+    return status;
+}
+
+/****************************************************************/
+/* Asymmetric interruptible cryptography internal               */
+/* implementations                                              */
+/****************************************************************/
+
+void mbedtls_psa_interruptible_set_max_ops(uint32_t max_ops)
+{
+
+#if (defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA)) && \
+    defined(MBEDTLS_ECP_RESTARTABLE)
+
+    /* Internal implementation uses zero to indicate infinite number max ops,
+     * therefore avoid this value, and set to minimum possible. */
+    if (max_ops == 0) {
+        max_ops = 1;
+    }
+
+    mbedtls_ecp_set_max_ops(max_ops);
+#else
+    (void) max_ops;
+#endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) ||
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) &&
+        * defined( MBEDTLS_ECP_RESTARTABLE ) */
+}
+
+uint32_t mbedtls_psa_sign_hash_get_num_ops(
+    const mbedtls_psa_sign_hash_interruptible_operation_t *operation)
+{
+#if (defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA)) && \
+    defined(MBEDTLS_ECP_RESTARTABLE)
+
+    return operation->num_ops;
+#else
+    (void) operation;
+    return 0;
+#endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) ||
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) &&
+        * defined( MBEDTLS_ECP_RESTARTABLE ) */
+}
+
+uint32_t mbedtls_psa_verify_hash_get_num_ops(
+    const mbedtls_psa_verify_hash_interruptible_operation_t *operation)
+{
+    #if (defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA)) && \
+    defined(MBEDTLS_ECP_RESTARTABLE)
+
+    return operation->num_ops;
+#else
+    (void) operation;
+    return 0;
+#endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) ||
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) &&
+        * defined( MBEDTLS_ECP_RESTARTABLE ) */
+}
+
+psa_status_t mbedtls_psa_sign_hash_start(
+    mbedtls_psa_sign_hash_interruptible_operation_t *operation,
+    const psa_key_attributes_t *attributes, const uint8_t *key_buffer,
+    size_t key_buffer_size, psa_algorithm_t alg,
+    const uint8_t *hash, size_t hash_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    size_t required_hash_length;
+
+    if (!PSA_KEY_TYPE_IS_ECC(attributes->type)) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    if (!PSA_ALG_IS_ECDSA(alg)) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+#if (defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA)) && \
+    defined(MBEDTLS_ECP_RESTARTABLE)
+
+    mbedtls_ecdsa_restart_init(&operation->restart_ctx);
+
+    /* Ensure num_ops is zero'ed in case of context re-use. */
+    operation->num_ops = 0;
+
+    status = mbedtls_psa_ecp_load_representation(attributes->type,
+                                                 attributes->bits,
+                                                 key_buffer,
+                                                 key_buffer_size,
+                                                 &operation->ctx);
+
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    operation->coordinate_bytes = PSA_BITS_TO_BYTES(
+        operation->ctx->grp.nbits);
+
+    psa_algorithm_t hash_alg = PSA_ALG_SIGN_GET_HASH(alg);
+    operation->md_alg = mbedtls_md_type_from_psa_alg(hash_alg);
+    operation->alg = alg;
+
+    /* We only need to store the same length of hash as the private key size
+     * here, it would be truncated by the internal implementation anyway. */
+    required_hash_length = (hash_length < operation->coordinate_bytes ?
+                            hash_length : operation->coordinate_bytes);
+
+    if (required_hash_length > sizeof(operation->hash)) {
+        /* Shouldn't happen, but better safe than sorry. */
+        return PSA_ERROR_CORRUPTION_DETECTED;
+    }
+
+    memcpy(operation->hash, hash, required_hash_length);
+    operation->hash_length = required_hash_length;
+
+    return PSA_SUCCESS;
+
+#else
+    (void) operation;
+    (void) key_buffer;
+    (void) key_buffer_size;
+    (void) alg;
+    (void) hash;
+    (void) hash_length;
+    (void) status;
+    (void) required_hash_length;
+
+    return PSA_ERROR_NOT_SUPPORTED;
+#endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) ||
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) &&
+        * defined( MBEDTLS_ECP_RESTARTABLE ) */
+}
+
+psa_status_t mbedtls_psa_sign_hash_complete(
+    mbedtls_psa_sign_hash_interruptible_operation_t *operation,
+    uint8_t *signature, size_t signature_size,
+    size_t *signature_length)
+{
+#if (defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA)) && \
+    defined(MBEDTLS_ECP_RESTARTABLE)
+
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    mbedtls_mpi r;
+    mbedtls_mpi s;
+
+    mbedtls_mpi_init(&r);
+    mbedtls_mpi_init(&s);
+
+    /* Ensure max_ops is set to the current value (or default). */
+    mbedtls_psa_interruptible_set_max_ops(psa_interruptible_get_max_ops());
+
+    if (signature_size < 2 * operation->coordinate_bytes) {
+        status = PSA_ERROR_BUFFER_TOO_SMALL;
+        goto exit;
+    }
+
+    if (PSA_ALG_ECDSA_IS_DETERMINISTIC(operation->alg)) {
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA)
+        status = mbedtls_to_psa_error(
+            mbedtls_ecdsa_sign_det_restartable(&operation->ctx->grp,
+                                               &r,
+                                               &s,
+                                               &operation->ctx->d,
+                                               operation->hash,
+                                               operation->hash_length,
+                                               operation->md_alg,
+                                               mbedtls_psa_get_random,
+                                               MBEDTLS_PSA_RANDOM_STATE,
+                                               &operation->restart_ctx));
+#else /* defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) */
+        status = PSA_ERROR_NOT_SUPPORTED;
+        goto exit;
+#endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) */
+    } else {
+        status = mbedtls_to_psa_error(
+            mbedtls_ecdsa_sign_restartable(&operation->ctx->grp,
+                                           &r,
+                                           &s,
+                                           &operation->ctx->d,
+                                           operation->hash,
+                                           operation->hash_length,
+                                           mbedtls_psa_get_random,
+                                           MBEDTLS_PSA_RANDOM_STATE,
+                                           mbedtls_psa_get_random,
+                                           MBEDTLS_PSA_RANDOM_STATE,
+                                           &operation->restart_ctx));
+    }
+
+    /* Hide the fact that the restart context only holds a delta of number of
+     * ops done during the last operation, not an absolute value. */
+    operation->num_ops += operation->restart_ctx.ecp.ops_done;
+
+    if (status == PSA_SUCCESS) {
+        status =  mbedtls_to_psa_error(
+            mbedtls_mpi_write_binary(&r,
+                                     signature,
+                                     operation->coordinate_bytes)
+            );
+
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+
+        status =  mbedtls_to_psa_error(
+            mbedtls_mpi_write_binary(&s,
+                                     signature +
+                                     operation->coordinate_bytes,
+                                     operation->coordinate_bytes)
+            );
+
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+
+        *signature_length = operation->coordinate_bytes * 2;
+
+        status = PSA_SUCCESS;
+    }
+
+exit:
+
+    mbedtls_mpi_free(&r);
+    mbedtls_mpi_free(&s);
+    return status;
+
+ #else
+
+    (void) operation;
+    (void) signature;
+    (void) signature_size;
+    (void) signature_length;
+
+    return PSA_ERROR_NOT_SUPPORTED;
+
+#endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) ||
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) &&
+        * defined( MBEDTLS_ECP_RESTARTABLE ) */
+}
+
+psa_status_t mbedtls_psa_sign_hash_abort(
+    mbedtls_psa_sign_hash_interruptible_operation_t *operation)
+{
+
+#if (defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA)) && \
+    defined(MBEDTLS_ECP_RESTARTABLE)
+
+    if (operation->ctx) {
+        mbedtls_ecdsa_free(operation->ctx);
+        mbedtls_free(operation->ctx);
+        operation->ctx = NULL;
+    }
+
+    mbedtls_ecdsa_restart_free(&operation->restart_ctx);
+
+    operation->num_ops = 0;
+
+    return PSA_SUCCESS;
+
+#else
+
+    (void) operation;
+
+    return PSA_ERROR_NOT_SUPPORTED;
+
+#endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) ||
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) &&
+        * defined( MBEDTLS_ECP_RESTARTABLE ) */
+}
+
+psa_status_t mbedtls_psa_verify_hash_start(
+    mbedtls_psa_verify_hash_interruptible_operation_t *operation,
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg,
+    const uint8_t *hash, size_t hash_length,
+    const uint8_t *signature, size_t signature_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    size_t coordinate_bytes = 0;
+    size_t required_hash_length = 0;
+
+    if (!PSA_KEY_TYPE_IS_ECC(attributes->type)) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    if (!PSA_ALG_IS_ECDSA(alg)) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+#if (defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA)) && \
+    defined(MBEDTLS_ECP_RESTARTABLE)
+
+    mbedtls_ecdsa_restart_init(&operation->restart_ctx);
+    mbedtls_mpi_init(&operation->r);
+    mbedtls_mpi_init(&operation->s);
+
+    /* Ensure num_ops is zero'ed in case of context re-use. */
+    operation->num_ops = 0;
+
+    status = mbedtls_psa_ecp_load_representation(attributes->type,
+                                                 attributes->bits,
+                                                 key_buffer,
+                                                 key_buffer_size,
+                                                 &operation->ctx);
+
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    coordinate_bytes = PSA_BITS_TO_BYTES(operation->ctx->grp.nbits);
+
+    if (signature_length != 2 * coordinate_bytes) {
+        return PSA_ERROR_INVALID_SIGNATURE;
+    }
+
+    status = mbedtls_to_psa_error(
+        mbedtls_mpi_read_binary(&operation->r,
+                                signature,
+                                coordinate_bytes));
+
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    status = mbedtls_to_psa_error(
+        mbedtls_mpi_read_binary(&operation->s,
+                                signature +
+                                coordinate_bytes,
+                                coordinate_bytes));
+
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    status = mbedtls_psa_ecp_load_public_part(operation->ctx);
+
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    /* We only need to store the same length of hash as the private key size
+     * here, it would be truncated by the internal implementation anyway. */
+    required_hash_length = (hash_length < coordinate_bytes ? hash_length :
+                            coordinate_bytes);
+
+    if (required_hash_length > sizeof(operation->hash)) {
+        /* Shouldn't happen, but better safe than sorry. */
+        return PSA_ERROR_CORRUPTION_DETECTED;
+    }
+
+    memcpy(operation->hash, hash, required_hash_length);
+    operation->hash_length = required_hash_length;
+
+    return PSA_SUCCESS;
+#else
+    (void) operation;
+    (void) key_buffer;
+    (void) key_buffer_size;
+    (void) alg;
+    (void) hash;
+    (void) hash_length;
+    (void) signature;
+    (void) signature_length;
+    (void) status;
+    (void) coordinate_bytes;
+    (void) required_hash_length;
+
+    return PSA_ERROR_NOT_SUPPORTED;
+#endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) ||
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) &&
+        * defined( MBEDTLS_ECP_RESTARTABLE ) */
+}
+
+psa_status_t mbedtls_psa_verify_hash_complete(
+    mbedtls_psa_verify_hash_interruptible_operation_t *operation)
+{
+
+#if (defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA)) && \
+    defined(MBEDTLS_ECP_RESTARTABLE)
+
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    /* Ensure max_ops is set to the current value (or default). */
+    mbedtls_psa_interruptible_set_max_ops(psa_interruptible_get_max_ops());
+
+    status = mbedtls_to_psa_error(
+        mbedtls_ecdsa_verify_restartable(&operation->ctx->grp,
+                                         operation->hash,
+                                         operation->hash_length,
+                                         &operation->ctx->Q,
+                                         &operation->r,
+                                         &operation->s,
+                                         &operation->restart_ctx));
+
+    /* Hide the fact that the restart context only holds a delta of number of
+     * ops done during the last operation, not an absolute value. */
+    operation->num_ops += operation->restart_ctx.ecp.ops_done;
+
+    return status;
+#else
+    (void) operation;
+
+    return PSA_ERROR_NOT_SUPPORTED;
+
+#endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) ||
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) &&
+        * defined( MBEDTLS_ECP_RESTARTABLE ) */
+}
+
+psa_status_t mbedtls_psa_verify_hash_abort(
+    mbedtls_psa_verify_hash_interruptible_operation_t *operation)
+{
+
+#if (defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA)) && \
+    defined(MBEDTLS_ECP_RESTARTABLE)
+
+    if (operation->ctx) {
+        mbedtls_ecdsa_free(operation->ctx);
+        mbedtls_free(operation->ctx);
+        operation->ctx = NULL;
+    }
+
+    mbedtls_ecdsa_restart_free(&operation->restart_ctx);
+
+    operation->num_ops = 0;
+
+    mbedtls_mpi_free(&operation->r);
+    mbedtls_mpi_free(&operation->s);
+
+    return PSA_SUCCESS;
+
+#else
+    (void) operation;
+
+    return PSA_ERROR_NOT_SUPPORTED;
+
+#endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) ||
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) &&
+        * defined( MBEDTLS_ECP_RESTARTABLE ) */
+}
+
+static psa_status_t psa_generate_random_internal(uint8_t *output,
+                                                 size_t output_size)
+{
+    GUARD_MODULE_INITIALIZED;
+
+#if defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
+
+    psa_status_t status;
+    size_t output_length = 0;
+    status = mbedtls_psa_external_get_random(&global_data.rng,
+                                             output, output_size,
+                                             &output_length);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+    /* Breaking up a request into smaller chunks is currently not supported
+     * for the external RNG interface. */
+    if (output_length != output_size) {
+        return PSA_ERROR_INSUFFICIENT_ENTROPY;
+    }
+    return PSA_SUCCESS;
+
+#else /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
+
+    while (output_size > 0) {
+        int ret = MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED;
+        size_t request_size =
+            (output_size > MBEDTLS_PSA_RANDOM_MAX_REQUEST ?
+             MBEDTLS_PSA_RANDOM_MAX_REQUEST :
+             output_size);
+#if defined(MBEDTLS_CTR_DRBG_C)
+        ret = mbedtls_ctr_drbg_random(&global_data.rng.drbg, output, request_size);
+#elif defined(MBEDTLS_HMAC_DRBG_C)
+        ret = mbedtls_hmac_drbg_random(&global_data.rng.drbg, output, request_size);
+#endif /* !MBEDTLS_CTR_DRBG_C && !MBEDTLS_HMAC_DRBG_C */
+        if (ret != 0) {
+            return mbedtls_to_psa_error(ret);
+        }
+        output_size -= request_size;
+        output += request_size;
+    }
+    return PSA_SUCCESS;
+#endif /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
+}
+
+
+/****************************************************************/
+/* Symmetric cryptography */
+/****************************************************************/
+
+static psa_status_t psa_cipher_setup(psa_cipher_operation_t *operation,
+                                     mbedtls_svc_key_id_t key,
+                                     psa_algorithm_t alg,
+                                     mbedtls_operation_t cipher_operation)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_slot_t *slot = NULL;
+    psa_key_usage_t usage = (cipher_operation == MBEDTLS_ENCRYPT ?
+                             PSA_KEY_USAGE_ENCRYPT :
+                             PSA_KEY_USAGE_DECRYPT);
+
+    /* A context must be freshly initialized before it can be set up. */
+    if (operation->id != 0) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    if (!PSA_ALG_IS_CIPHER(alg)) {
+        status = PSA_ERROR_INVALID_ARGUMENT;
+        goto exit;
+    }
+
+    status = psa_get_and_lock_key_slot_with_policy(key, &slot, usage, alg);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    /* Initialize the operation struct members, except for id. The id member
+     * is used to indicate to psa_cipher_abort that there are resources to free,
+     * so we only set it (in the driver wrapper) after resources have been
+     * allocated/initialized. */
+    operation->iv_set = 0;
+    if (alg == PSA_ALG_ECB_NO_PADDING) {
+        operation->iv_required = 0;
+    } else {
+        operation->iv_required = 1;
+    }
+    operation->default_iv_length = PSA_CIPHER_IV_LENGTH(slot->attr.type, alg);
+
+    /* Try doing the operation through a driver before using software fallback. */
+    if (cipher_operation == MBEDTLS_ENCRYPT) {
+        status = psa_driver_wrapper_cipher_encrypt_setup(operation,
+                                                         &slot->attr,
+                                                         slot->key.data,
+                                                         slot->key.bytes,
+                                                         alg);
+    } else {
+        status = psa_driver_wrapper_cipher_decrypt_setup(operation,
+                                                         &slot->attr,
+                                                         slot->key.data,
+                                                         slot->key.bytes,
+                                                         alg);
+    }
+
+exit:
+    if (status != PSA_SUCCESS) {
+        psa_cipher_abort(operation);
+    }
+
+    unlock_status = psa_unregister_read_under_mutex(slot);
+
+    return (status == PSA_SUCCESS) ? unlock_status : status;
+}
+
+psa_status_t psa_cipher_encrypt_setup(psa_cipher_operation_t *operation,
+                                      mbedtls_svc_key_id_t key,
+                                      psa_algorithm_t alg)
+{
+    return psa_cipher_setup(operation, key, alg, MBEDTLS_ENCRYPT);
+}
+
+psa_status_t psa_cipher_decrypt_setup(psa_cipher_operation_t *operation,
+                                      mbedtls_svc_key_id_t key,
+                                      psa_algorithm_t alg)
+{
+    return psa_cipher_setup(operation, key, alg, MBEDTLS_DECRYPT);
+}
+
+psa_status_t psa_cipher_generate_iv(psa_cipher_operation_t *operation,
+                                    uint8_t *iv_external,
+                                    size_t iv_size,
+                                    size_t *iv_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    size_t default_iv_length = 0;
+
+    LOCAL_OUTPUT_DECLARE(iv_external, iv);
+
+    if (operation->id == 0) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    if (operation->iv_set || !operation->iv_required) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    default_iv_length = operation->default_iv_length;
+    if (iv_size < default_iv_length) {
+        status = PSA_ERROR_BUFFER_TOO_SMALL;
+        goto exit;
+    }
+
+    if (default_iv_length > PSA_CIPHER_IV_MAX_SIZE) {
+        status = PSA_ERROR_GENERIC_ERROR;
+        goto exit;
+    }
+
+    LOCAL_OUTPUT_ALLOC(iv_external, default_iv_length, iv);
+
+    status = psa_generate_random_internal(iv, default_iv_length);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_driver_wrapper_cipher_set_iv(operation,
+                                              iv, default_iv_length);
+
+exit:
+    if (status == PSA_SUCCESS) {
+        *iv_length = default_iv_length;
+        operation->iv_set = 1;
+    } else {
+        *iv_length = 0;
+        psa_cipher_abort(operation);
+        if (iv != NULL) {
+            mbedtls_platform_zeroize(iv, default_iv_length);
+        }
+    }
+
+    LOCAL_OUTPUT_FREE(iv_external, iv);
+    return status;
+}
+
+psa_status_t psa_cipher_set_iv(psa_cipher_operation_t *operation,
+                               const uint8_t *iv_external,
+                               size_t iv_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    LOCAL_INPUT_DECLARE(iv_external, iv);
+
+    if (operation->id == 0) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    if (operation->iv_set || !operation->iv_required) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    if (iv_length > PSA_CIPHER_IV_MAX_SIZE) {
+        status = PSA_ERROR_INVALID_ARGUMENT;
+        goto exit;
+    }
+
+    LOCAL_INPUT_ALLOC(iv_external, iv_length, iv);
+
+    status = psa_driver_wrapper_cipher_set_iv(operation,
+                                              iv,
+                                              iv_length);
+
+exit:
+    if (status == PSA_SUCCESS) {
+        operation->iv_set = 1;
+    } else {
+        psa_cipher_abort(operation);
+    }
+
+    LOCAL_INPUT_FREE(iv_external, iv);
+
+    return status;
+}
+
+psa_status_t psa_cipher_update(psa_cipher_operation_t *operation,
+                               const uint8_t *input_external,
+                               size_t input_length,
+                               uint8_t *output_external,
+                               size_t output_size,
+                               size_t *output_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    LOCAL_INPUT_DECLARE(input_external, input);
+    LOCAL_OUTPUT_DECLARE(output_external, output);
+
+    if (operation->id == 0) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    if (operation->iv_required && !operation->iv_set) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    LOCAL_INPUT_ALLOC(input_external, input_length, input);
+    LOCAL_OUTPUT_ALLOC(output_external, output_size, output);
+
+    status = psa_driver_wrapper_cipher_update(operation,
+                                              input,
+                                              input_length,
+                                              output,
+                                              output_size,
+                                              output_length);
+
+exit:
+    if (status != PSA_SUCCESS) {
+        psa_cipher_abort(operation);
+    }
+
+    LOCAL_INPUT_FREE(input_external, input);
+    LOCAL_OUTPUT_FREE(output_external, output);
+
+    return status;
+}
+
+psa_status_t psa_cipher_finish(psa_cipher_operation_t *operation,
+                               uint8_t *output_external,
+                               size_t output_size,
+                               size_t *output_length)
+{
+    psa_status_t status = PSA_ERROR_GENERIC_ERROR;
+
+    LOCAL_OUTPUT_DECLARE(output_external, output);
+
+    if (operation->id == 0) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    if (operation->iv_required && !operation->iv_set) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    LOCAL_OUTPUT_ALLOC(output_external, output_size, output);
+
+    status = psa_driver_wrapper_cipher_finish(operation,
+                                              output,
+                                              output_size,
+                                              output_length);
+
+exit:
+    if (status == PSA_SUCCESS) {
+        status = psa_cipher_abort(operation);
+    } else {
+        *output_length = 0;
+        (void) psa_cipher_abort(operation);
+    }
+
+    LOCAL_OUTPUT_FREE(output_external, output);
+
+    return status;
+}
+
+psa_status_t psa_cipher_abort(psa_cipher_operation_t *operation)
+{
+    if (operation->id == 0) {
+        /* The object has (apparently) been initialized but it is not (yet)
+         * in use. It's ok to call abort on such an object, and there's
+         * nothing to do. */
+        return PSA_SUCCESS;
+    }
+
+    psa_driver_wrapper_cipher_abort(operation);
+
+    operation->id = 0;
+    operation->iv_set = 0;
+    operation->iv_required = 0;
+
+    return PSA_SUCCESS;
+}
+
+psa_status_t psa_cipher_encrypt(mbedtls_svc_key_id_t key,
+                                psa_algorithm_t alg,
+                                const uint8_t *input_external,
+                                size_t input_length,
+                                uint8_t *output_external,
+                                size_t output_size,
+                                size_t *output_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_slot_t *slot = NULL;
+    uint8_t local_iv[PSA_CIPHER_IV_MAX_SIZE];
+    size_t default_iv_length = 0;
+
+    LOCAL_INPUT_DECLARE(input_external, input);
+    LOCAL_OUTPUT_DECLARE(output_external, output);
+
+    if (!PSA_ALG_IS_CIPHER(alg)) {
+        status = PSA_ERROR_INVALID_ARGUMENT;
+        goto exit;
+    }
+
+    status = psa_get_and_lock_key_slot_with_policy(key, &slot,
+                                                   PSA_KEY_USAGE_ENCRYPT,
+                                                   alg);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    default_iv_length = PSA_CIPHER_IV_LENGTH(slot->attr.type, alg);
+    if (default_iv_length > PSA_CIPHER_IV_MAX_SIZE) {
+        status = PSA_ERROR_GENERIC_ERROR;
+        goto exit;
+    }
+
+    if (default_iv_length > 0) {
+        if (output_size < default_iv_length) {
+            status = PSA_ERROR_BUFFER_TOO_SMALL;
+            goto exit;
+        }
+
+        status = psa_generate_random_internal(local_iv, default_iv_length);
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+    }
+
+    LOCAL_INPUT_ALLOC(input_external, input_length, input);
+    LOCAL_OUTPUT_ALLOC(output_external, output_size, output);
+
+    status = psa_driver_wrapper_cipher_encrypt(
+        &slot->attr, slot->key.data, slot->key.bytes,
+        alg, local_iv, default_iv_length, input, input_length,
+        psa_crypto_buffer_offset(output, default_iv_length),
+        output_size - default_iv_length, output_length);
+
+exit:
+    unlock_status = psa_unregister_read_under_mutex(slot);
+    if (status == PSA_SUCCESS) {
+        status = unlock_status;
+    }
+
+    if (status == PSA_SUCCESS) {
+        if (default_iv_length > 0) {
+            memcpy(output, local_iv, default_iv_length);
+        }
+        *output_length += default_iv_length;
+    } else {
+        *output_length = 0;
+    }
+
+    LOCAL_INPUT_FREE(input_external, input);
+    LOCAL_OUTPUT_FREE(output_external, output);
+
+    return status;
+}
+
+psa_status_t psa_cipher_decrypt(mbedtls_svc_key_id_t key,
+                                psa_algorithm_t alg,
+                                const uint8_t *input_external,
+                                size_t input_length,
+                                uint8_t *output_external,
+                                size_t output_size,
+                                size_t *output_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_slot_t *slot = NULL;
+
+    LOCAL_INPUT_DECLARE(input_external, input);
+    LOCAL_OUTPUT_DECLARE(output_external, output);
+
+    if (!PSA_ALG_IS_CIPHER(alg)) {
+        status = PSA_ERROR_INVALID_ARGUMENT;
+        goto exit;
+    }
+
+    status = psa_get_and_lock_key_slot_with_policy(key, &slot,
+                                                   PSA_KEY_USAGE_DECRYPT,
+                                                   alg);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    if (input_length < PSA_CIPHER_IV_LENGTH(slot->attr.type, alg)) {
+        status = PSA_ERROR_INVALID_ARGUMENT;
+        goto exit;
+    }
+
+    LOCAL_INPUT_ALLOC(input_external, input_length, input);
+    LOCAL_OUTPUT_ALLOC(output_external, output_size, output);
+
+    status = psa_driver_wrapper_cipher_decrypt(
+        &slot->attr, slot->key.data, slot->key.bytes,
+        alg, input, input_length,
+        output, output_size, output_length);
+
+exit:
+    unlock_status = psa_unregister_read_under_mutex(slot);
+    if (status == PSA_SUCCESS) {
+        status = unlock_status;
+    }
+
+    if (status != PSA_SUCCESS) {
+        *output_length = 0;
+    }
+
+    LOCAL_INPUT_FREE(input_external, input);
+    LOCAL_OUTPUT_FREE(output_external, output);
+
+    return status;
+}
+
+
+/****************************************************************/
+/* AEAD */
+/****************************************************************/
+
+/* Helper function to get the base algorithm from its variants. */
+static psa_algorithm_t psa_aead_get_base_algorithm(psa_algorithm_t alg)
+{
+    return PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(alg);
+}
+
+/* Helper function to perform common nonce length checks. */
+static psa_status_t psa_aead_check_nonce_length(psa_algorithm_t alg,
+                                                size_t nonce_length)
+{
+    psa_algorithm_t base_alg = psa_aead_get_base_algorithm(alg);
+
+    switch (base_alg) {
+#if defined(PSA_WANT_ALG_GCM)
+        case PSA_ALG_GCM:
+            /* Not checking max nonce size here as GCM spec allows almost
+             * arbitrarily large nonces. Please note that we do not generally
+             * recommend the usage of nonces of greater length than
+             * PSA_AEAD_NONCE_MAX_SIZE, as large nonces are hashed to a shorter
+             * size, which can then lead to collisions if you encrypt a very
+             * large number of messages.*/
+            if (nonce_length != 0) {
+                return PSA_SUCCESS;
+            }
+            break;
+#endif /* PSA_WANT_ALG_GCM */
+#if defined(PSA_WANT_ALG_CCM)
+        case PSA_ALG_CCM:
+            if (nonce_length >= 7 && nonce_length <= 13) {
+                return PSA_SUCCESS;
+            }
+            break;
+#endif /* PSA_WANT_ALG_CCM */
+#if defined(PSA_WANT_ALG_CHACHA20_POLY1305)
+        case PSA_ALG_CHACHA20_POLY1305:
+            if (nonce_length == 12) {
+                return PSA_SUCCESS;
+            } else if (nonce_length == 8) {
+                return PSA_ERROR_NOT_SUPPORTED;
+            }
+            break;
+#endif /* PSA_WANT_ALG_CHACHA20_POLY1305 */
+        default:
+            (void) nonce_length;
+            return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    return PSA_ERROR_INVALID_ARGUMENT;
+}
+
+static psa_status_t psa_aead_check_algorithm(psa_algorithm_t alg)
+{
+    if (!PSA_ALG_IS_AEAD(alg) || PSA_ALG_IS_WILDCARD(alg)) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    return PSA_SUCCESS;
+}
+
+psa_status_t psa_aead_encrypt(mbedtls_svc_key_id_t key,
+                              psa_algorithm_t alg,
+                              const uint8_t *nonce_external,
+                              size_t nonce_length,
+                              const uint8_t *additional_data_external,
+                              size_t additional_data_length,
+                              const uint8_t *plaintext_external,
+                              size_t plaintext_length,
+                              uint8_t *ciphertext_external,
+                              size_t ciphertext_size,
+                              size_t *ciphertext_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_slot_t *slot;
+
+    LOCAL_INPUT_DECLARE(nonce_external, nonce);
+    LOCAL_INPUT_DECLARE(additional_data_external, additional_data);
+    LOCAL_INPUT_DECLARE(plaintext_external, plaintext);
+    LOCAL_OUTPUT_DECLARE(ciphertext_external, ciphertext);
+
+    *ciphertext_length = 0;
+
+    status = psa_aead_check_algorithm(alg);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    status = psa_get_and_lock_key_slot_with_policy(
+        key, &slot, PSA_KEY_USAGE_ENCRYPT, alg);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    LOCAL_INPUT_ALLOC(nonce_external, nonce_length, nonce);
+    LOCAL_INPUT_ALLOC(additional_data_external, additional_data_length, additional_data);
+    LOCAL_INPUT_ALLOC(plaintext_external, plaintext_length, plaintext);
+    LOCAL_OUTPUT_ALLOC(ciphertext_external, ciphertext_size, ciphertext);
+
+    status = psa_aead_check_nonce_length(alg, nonce_length);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_driver_wrapper_aead_encrypt(
+        &slot->attr, slot->key.data, slot->key.bytes,
+        alg,
+        nonce, nonce_length,
+        additional_data, additional_data_length,
+        plaintext, plaintext_length,
+        ciphertext, ciphertext_size, ciphertext_length);
+
+    if (status != PSA_SUCCESS && ciphertext_size != 0) {
+        memset(ciphertext, 0, ciphertext_size);
+    }
+
+exit:
+    LOCAL_INPUT_FREE(nonce_external, nonce);
+    LOCAL_INPUT_FREE(additional_data_external, additional_data);
+    LOCAL_INPUT_FREE(plaintext_external, plaintext);
+    LOCAL_OUTPUT_FREE(ciphertext_external, ciphertext);
+
+    psa_unregister_read_under_mutex(slot);
+
+    return status;
+}
+
+psa_status_t psa_aead_decrypt(mbedtls_svc_key_id_t key,
+                              psa_algorithm_t alg,
+                              const uint8_t *nonce_external,
+                              size_t nonce_length,
+                              const uint8_t *additional_data_external,
+                              size_t additional_data_length,
+                              const uint8_t *ciphertext_external,
+                              size_t ciphertext_length,
+                              uint8_t *plaintext_external,
+                              size_t plaintext_size,
+                              size_t *plaintext_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_slot_t *slot;
+
+    LOCAL_INPUT_DECLARE(nonce_external, nonce);
+    LOCAL_INPUT_DECLARE(additional_data_external, additional_data);
+    LOCAL_INPUT_DECLARE(ciphertext_external, ciphertext);
+    LOCAL_OUTPUT_DECLARE(plaintext_external, plaintext);
+
+    *plaintext_length = 0;
+
+    status = psa_aead_check_algorithm(alg);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    status = psa_get_and_lock_key_slot_with_policy(
+        key, &slot, PSA_KEY_USAGE_DECRYPT, alg);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    LOCAL_INPUT_ALLOC(nonce_external, nonce_length, nonce);
+    LOCAL_INPUT_ALLOC(additional_data_external, additional_data_length,
+                      additional_data);
+    LOCAL_INPUT_ALLOC(ciphertext_external, ciphertext_length, ciphertext);
+    LOCAL_OUTPUT_ALLOC(plaintext_external, plaintext_size, plaintext);
+
+    status = psa_aead_check_nonce_length(alg, nonce_length);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_driver_wrapper_aead_decrypt(
+        &slot->attr, slot->key.data, slot->key.bytes,
+        alg,
+        nonce, nonce_length,
+        additional_data, additional_data_length,
+        ciphertext, ciphertext_length,
+        plaintext, plaintext_size, plaintext_length);
+
+    if (status != PSA_SUCCESS && plaintext_size != 0) {
+        memset(plaintext, 0, plaintext_size);
+    }
+
+exit:
+    LOCAL_INPUT_FREE(nonce_external, nonce);
+    LOCAL_INPUT_FREE(additional_data_external, additional_data);
+    LOCAL_INPUT_FREE(ciphertext_external, ciphertext);
+    LOCAL_OUTPUT_FREE(plaintext_external, plaintext);
+
+    psa_unregister_read_under_mutex(slot);
+
+    return status;
+}
+
+static psa_status_t psa_validate_tag_length(psa_algorithm_t alg)
+{
+    const uint8_t tag_len = PSA_ALG_AEAD_GET_TAG_LENGTH(alg);
+
+    switch (PSA_ALG_AEAD_WITH_SHORTENED_TAG(alg, 0)) {
+#if defined(PSA_WANT_ALG_CCM)
+        case PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_CCM, 0):
+            /* CCM allows the following tag lengths: 4, 6, 8, 10, 12, 14, 16.*/
+            if (tag_len < 4 || tag_len > 16 || tag_len % 2) {
+                return PSA_ERROR_INVALID_ARGUMENT;
+            }
+            break;
+#endif /* PSA_WANT_ALG_CCM */
+
+#if defined(PSA_WANT_ALG_GCM)
+        case PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_GCM, 0):
+            /* GCM allows the following tag lengths: 4, 8, 12, 13, 14, 15, 16. */
+            if (tag_len != 4 && tag_len != 8 && (tag_len < 12 || tag_len > 16)) {
+                return PSA_ERROR_INVALID_ARGUMENT;
+            }
+            break;
+#endif /* PSA_WANT_ALG_GCM */
+
+#if defined(PSA_WANT_ALG_CHACHA20_POLY1305)
+        case PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_CHACHA20_POLY1305, 0):
+            /* We only support the default tag length. */
+            if (tag_len != 16) {
+                return PSA_ERROR_INVALID_ARGUMENT;
+            }
+            break;
+#endif /* PSA_WANT_ALG_CHACHA20_POLY1305 */
+
+        default:
+            (void) tag_len;
+            return PSA_ERROR_NOT_SUPPORTED;
+    }
+    return PSA_SUCCESS;
+}
+
+/* Set the key for a multipart authenticated operation. */
+static psa_status_t psa_aead_setup(psa_aead_operation_t *operation,
+                                   int is_encrypt,
+                                   mbedtls_svc_key_id_t key,
+                                   psa_algorithm_t alg)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_slot_t *slot = NULL;
+    psa_key_usage_t key_usage = 0;
+
+    status = psa_aead_check_algorithm(alg);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    if (operation->id != 0) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    if (operation->nonce_set || operation->lengths_set ||
+        operation->ad_started || operation->body_started) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    if (is_encrypt) {
+        key_usage = PSA_KEY_USAGE_ENCRYPT;
+    } else {
+        key_usage = PSA_KEY_USAGE_DECRYPT;
+    }
+
+    status = psa_get_and_lock_key_slot_with_policy(key, &slot, key_usage,
+                                                   alg);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    if ((status = psa_validate_tag_length(alg)) != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    if (is_encrypt) {
+        status = psa_driver_wrapper_aead_encrypt_setup(operation,
+                                                       &slot->attr,
+                                                       slot->key.data,
+                                                       slot->key.bytes,
+                                                       alg);
+    } else {
+        status = psa_driver_wrapper_aead_decrypt_setup(operation,
+                                                       &slot->attr,
+                                                       slot->key.data,
+                                                       slot->key.bytes,
+                                                       alg);
+    }
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    operation->key_type = psa_get_key_type(&slot->attr);
+
+exit:
+    unlock_status = psa_unregister_read_under_mutex(slot);
+
+    if (status == PSA_SUCCESS) {
+        status = unlock_status;
+        operation->alg = psa_aead_get_base_algorithm(alg);
+        operation->is_encrypt = is_encrypt;
+    } else {
+        psa_aead_abort(operation);
+    }
+
+    return status;
+}
+
+/* Set the key for a multipart authenticated encryption operation. */
+psa_status_t psa_aead_encrypt_setup(psa_aead_operation_t *operation,
+                                    mbedtls_svc_key_id_t key,
+                                    psa_algorithm_t alg)
+{
+    return psa_aead_setup(operation, 1, key, alg);
+}
+
+/* Set the key for a multipart authenticated decryption operation. */
+psa_status_t psa_aead_decrypt_setup(psa_aead_operation_t *operation,
+                                    mbedtls_svc_key_id_t key,
+                                    psa_algorithm_t alg)
+{
+    return psa_aead_setup(operation, 0, key, alg);
+}
+
+static psa_status_t psa_aead_set_nonce_internal(psa_aead_operation_t *operation,
+                                                const uint8_t *nonce,
+                                                size_t nonce_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    if (operation->id == 0) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    if (operation->nonce_set) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    status = psa_aead_check_nonce_length(operation->alg, nonce_length);
+    if (status != PSA_SUCCESS) {
+        status = PSA_ERROR_INVALID_ARGUMENT;
+        goto exit;
+    }
+
+    status = psa_driver_wrapper_aead_set_nonce(operation, nonce,
+                                               nonce_length);
+
+exit:
+    if (status == PSA_SUCCESS) {
+        operation->nonce_set = 1;
+    } else {
+        psa_aead_abort(operation);
+    }
+
+    return status;
+}
+
+/* Generate a random nonce / IV for multipart AEAD operation */
+psa_status_t psa_aead_generate_nonce(psa_aead_operation_t *operation,
+                                     uint8_t *nonce_external,
+                                     size_t nonce_size,
+                                     size_t *nonce_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    uint8_t local_nonce[PSA_AEAD_NONCE_MAX_SIZE];
+    size_t required_nonce_size = 0;
+
+    LOCAL_OUTPUT_DECLARE(nonce_external, nonce);
+    LOCAL_OUTPUT_ALLOC(nonce_external, nonce_size, nonce);
+
+    *nonce_length = 0;
+
+    if (operation->id == 0) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    if (operation->nonce_set || !operation->is_encrypt) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    /* For CCM, this size may not be correct according to the PSA
+     * specification. The PSA Crypto 1.0.1 specification states:
+     *
+     * CCM encodes the plaintext length pLen in L octets, with L the smallest
+     * integer >= 2 where pLen < 2^(8L). The nonce length is then 15 - L bytes.
+     *
+     * However this restriction that L has to be the smallest integer is not
+     * applied in practice, and it is not implementable here since the
+     * plaintext length may or may not be known at this time. */
+    required_nonce_size = PSA_AEAD_NONCE_LENGTH(operation->key_type,
+                                                operation->alg);
+    if (nonce_size < required_nonce_size) {
+        status = PSA_ERROR_BUFFER_TOO_SMALL;
+        goto exit;
+    }
+
+    status = psa_generate_random_internal(local_nonce, required_nonce_size);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_aead_set_nonce_internal(operation, local_nonce,
+                                         required_nonce_size);
+
+exit:
+    if (status == PSA_SUCCESS) {
+        memcpy(nonce, local_nonce, required_nonce_size);
+        *nonce_length = required_nonce_size;
+    } else {
+        psa_aead_abort(operation);
+    }
+
+    LOCAL_OUTPUT_FREE(nonce_external, nonce);
+
+    return status;
+}
+
+/* Set the nonce for a multipart authenticated encryption or decryption
+   operation.*/
+psa_status_t psa_aead_set_nonce(psa_aead_operation_t *operation,
+                                const uint8_t *nonce_external,
+                                size_t nonce_length)
+{
+    psa_status_t status;
+
+    LOCAL_INPUT_DECLARE(nonce_external, nonce);
+    LOCAL_INPUT_ALLOC(nonce_external, nonce_length, nonce);
+
+    status = psa_aead_set_nonce_internal(operation, nonce, nonce_length);
+
+/* Exit label is only needed for buffer copying, prevent unused warnings. */
+#if !defined(MBEDTLS_PSA_ASSUME_EXCLUSIVE_BUFFERS)
+exit:
+#endif
+
+    LOCAL_INPUT_FREE(nonce_external, nonce);
+
+    return status;
+}
+
+/* Declare the lengths of the message and additional data for multipart AEAD. */
+psa_status_t psa_aead_set_lengths(psa_aead_operation_t *operation,
+                                  size_t ad_length,
+                                  size_t plaintext_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    if (operation->id == 0) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    if (operation->lengths_set || operation->ad_started ||
+        operation->body_started) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    switch (operation->alg) {
+#if defined(PSA_WANT_ALG_GCM)
+        case PSA_ALG_GCM:
+            /* Lengths can only be too large for GCM if size_t is bigger than 32
+             * bits. Without the guard this code will generate warnings on 32bit
+             * builds. */
+#if SIZE_MAX > UINT32_MAX
+            if (((uint64_t) ad_length) >> 61 != 0 ||
+                ((uint64_t) plaintext_length) > 0xFFFFFFFE0ull) {
+                status = PSA_ERROR_INVALID_ARGUMENT;
+                goto exit;
+            }
+#endif
+            break;
+#endif /* PSA_WANT_ALG_GCM */
+#if defined(PSA_WANT_ALG_CCM)
+        case PSA_ALG_CCM:
+            if (ad_length > 0xFF00) {
+                status = PSA_ERROR_INVALID_ARGUMENT;
+                goto exit;
+            }
+            break;
+#endif /* PSA_WANT_ALG_CCM */
+#if defined(PSA_WANT_ALG_CHACHA20_POLY1305)
+        case PSA_ALG_CHACHA20_POLY1305:
+            /* No length restrictions for ChaChaPoly. */
+            break;
+#endif /* PSA_WANT_ALG_CHACHA20_POLY1305 */
+        default:
+            break;
+    }
+
+    status = psa_driver_wrapper_aead_set_lengths(operation, ad_length,
+                                                 plaintext_length);
+
+exit:
+    if (status == PSA_SUCCESS) {
+        operation->ad_remaining = ad_length;
+        operation->body_remaining = plaintext_length;
+        operation->lengths_set = 1;
+    } else {
+        psa_aead_abort(operation);
+    }
+
+    return status;
+}
+
+/* Pass additional data to an active multipart AEAD operation. */
+psa_status_t psa_aead_update_ad(psa_aead_operation_t *operation,
+                                const uint8_t *input_external,
+                                size_t input_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    LOCAL_INPUT_DECLARE(input_external, input);
+    LOCAL_INPUT_ALLOC(input_external, input_length, input);
+
+    if (operation->id == 0) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    if (!operation->nonce_set || operation->body_started) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    /* No input to add (zero length), nothing to do. */
+    if (input_length == 0) {
+        status = PSA_SUCCESS;
+        goto exit;
+    }
+
+    if (operation->lengths_set) {
+        if (operation->ad_remaining < input_length) {
+            status = PSA_ERROR_INVALID_ARGUMENT;
+            goto exit;
+        }
+
+        operation->ad_remaining -= input_length;
+    }
+#if defined(PSA_WANT_ALG_CCM)
+    else if (operation->alg == PSA_ALG_CCM) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+#endif /* PSA_WANT_ALG_CCM */
+
+    status = psa_driver_wrapper_aead_update_ad(operation, input,
+                                               input_length);
+
+exit:
+    if (status == PSA_SUCCESS) {
+        operation->ad_started = 1;
+    } else {
+        psa_aead_abort(operation);
+    }
+
+    LOCAL_INPUT_FREE(input_external, input);
+
+    return status;
+}
+
+/* Encrypt or decrypt a message fragment in an active multipart AEAD
+   operation.*/
+psa_status_t psa_aead_update(psa_aead_operation_t *operation,
+                             const uint8_t *input_external,
+                             size_t input_length,
+                             uint8_t *output_external,
+                             size_t output_size,
+                             size_t *output_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+
+    LOCAL_INPUT_DECLARE(input_external, input);
+    LOCAL_OUTPUT_DECLARE(output_external, output);
+
+    LOCAL_INPUT_ALLOC(input_external, input_length, input);
+    LOCAL_OUTPUT_ALLOC(output_external, output_size, output);
+
+    *output_length = 0;
+
+    if (operation->id == 0) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    if (!operation->nonce_set) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    if (operation->lengths_set) {
+        /* Additional data length was supplied, but not all the additional
+           data was supplied.*/
+        if (operation->ad_remaining != 0) {
+            status = PSA_ERROR_INVALID_ARGUMENT;
+            goto exit;
+        }
+
+        /* Too much data provided. */
+        if (operation->body_remaining < input_length) {
+            status = PSA_ERROR_INVALID_ARGUMENT;
+            goto exit;
+        }
+
+        operation->body_remaining -= input_length;
+    }
+#if defined(PSA_WANT_ALG_CCM)
+    else if (operation->alg == PSA_ALG_CCM) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+#endif /* PSA_WANT_ALG_CCM */
+
+    status = psa_driver_wrapper_aead_update(operation, input, input_length,
+                                            output, output_size,
+                                            output_length);
+
+exit:
+    if (status == PSA_SUCCESS) {
+        operation->body_started = 1;
+    } else {
+        psa_aead_abort(operation);
+    }
+
+    LOCAL_INPUT_FREE(input_external, input);
+    LOCAL_OUTPUT_FREE(output_external, output);
+
+    return status;
+}
+
+static psa_status_t psa_aead_final_checks(const psa_aead_operation_t *operation)
+{
+    if (operation->id == 0 || !operation->nonce_set) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    if (operation->lengths_set && (operation->ad_remaining != 0 ||
+                                   operation->body_remaining != 0)) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    return PSA_SUCCESS;
+}
+
+/* Finish encrypting a message in a multipart AEAD operation. */
+psa_status_t psa_aead_finish(psa_aead_operation_t *operation,
+                             uint8_t *ciphertext_external,
+                             size_t ciphertext_size,
+                             size_t *ciphertext_length,
+                             uint8_t *tag_external,
+                             size_t tag_size,
+                             size_t *tag_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    LOCAL_OUTPUT_DECLARE(ciphertext_external, ciphertext);
+    LOCAL_OUTPUT_DECLARE(tag_external, tag);
+
+    LOCAL_OUTPUT_ALLOC(ciphertext_external, ciphertext_size, ciphertext);
+    LOCAL_OUTPUT_ALLOC(tag_external, tag_size, tag);
+
+    *ciphertext_length = 0;
+    *tag_length = tag_size;
+
+    status = psa_aead_final_checks(operation);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    if (!operation->is_encrypt) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    status = psa_driver_wrapper_aead_finish(operation, ciphertext,
+                                            ciphertext_size,
+                                            ciphertext_length,
+                                            tag, tag_size, tag_length);
+
+exit:
+
+
+    /* In case the operation fails and the user fails to check for failure or
+     * the zero tag size, make sure the tag is set to something implausible.
+     * Even if the operation succeeds, make sure we clear the rest of the
+     * buffer to prevent potential leakage of anything previously placed in
+     * the same buffer.*/
+    psa_wipe_tag_output_buffer(tag, status, tag_size, *tag_length);
+
+    psa_aead_abort(operation);
+
+    LOCAL_OUTPUT_FREE(ciphertext_external, ciphertext);
+    LOCAL_OUTPUT_FREE(tag_external, tag);
+
+    return status;
+}
+
+/* Finish authenticating and decrypting a message in a multipart AEAD
+   operation.*/
+psa_status_t psa_aead_verify(psa_aead_operation_t *operation,
+                             uint8_t *plaintext_external,
+                             size_t plaintext_size,
+                             size_t *plaintext_length,
+                             const uint8_t *tag_external,
+                             size_t tag_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    LOCAL_OUTPUT_DECLARE(plaintext_external, plaintext);
+    LOCAL_INPUT_DECLARE(tag_external, tag);
+
+    LOCAL_OUTPUT_ALLOC(plaintext_external, plaintext_size, plaintext);
+    LOCAL_INPUT_ALLOC(tag_external, tag_length, tag);
+
+    *plaintext_length = 0;
+
+    status = psa_aead_final_checks(operation);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    if (operation->is_encrypt) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    status = psa_driver_wrapper_aead_verify(operation, plaintext,
+                                            plaintext_size,
+                                            plaintext_length,
+                                            tag, tag_length);
+
+exit:
+    psa_aead_abort(operation);
+
+    LOCAL_OUTPUT_FREE(plaintext_external, plaintext);
+    LOCAL_INPUT_FREE(tag_external, tag);
+
+    return status;
+}
+
+/* Abort an AEAD operation. */
+psa_status_t psa_aead_abort(psa_aead_operation_t *operation)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    if (operation->id == 0) {
+        /* The object has (apparently) been initialized but it is not (yet)
+         * in use. It's ok to call abort on such an object, and there's
+         * nothing to do. */
+        return PSA_SUCCESS;
+    }
+
+    status = psa_driver_wrapper_aead_abort(operation);
+
+    memset(operation, 0, sizeof(*operation));
+
+    return status;
+}
+
+/****************************************************************/
+/* Generators */
+/****************************************************************/
+
+#if defined(BUILTIN_ALG_ANY_HKDF) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_ECJPAKE_TO_PMS) || \
+    defined(PSA_HAVE_SOFT_PBKDF2)
+#define AT_LEAST_ONE_BUILTIN_KDF
+#endif /* At least one builtin KDF */
+
+#if defined(BUILTIN_ALG_ANY_HKDF) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
+static psa_status_t psa_key_derivation_start_hmac(
+    psa_mac_operation_t *operation,
+    psa_algorithm_t hash_alg,
+    const uint8_t *hmac_key,
+    size_t hmac_key_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+    psa_set_key_type(&attributes, PSA_KEY_TYPE_HMAC);
+    psa_set_key_bits(&attributes, PSA_BYTES_TO_BITS(hmac_key_length));
+    psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH);
+
+    operation->is_sign = 1;
+    operation->mac_size = PSA_HASH_LENGTH(hash_alg);
+
+    status = psa_driver_wrapper_mac_sign_setup(operation,
+                                               &attributes,
+                                               hmac_key, hmac_key_length,
+                                               PSA_ALG_HMAC(hash_alg));
+
+    psa_reset_key_attributes(&attributes);
+    return status;
+}
+#endif /* KDF algorithms reliant on HMAC */
+
+#define HKDF_STATE_INIT 0 /* no input yet */
+#define HKDF_STATE_STARTED 1 /* got salt */
+#define HKDF_STATE_KEYED 2 /* got key */
+#define HKDF_STATE_OUTPUT 3 /* output started */
+
+static psa_algorithm_t psa_key_derivation_get_kdf_alg(
+    const psa_key_derivation_operation_t *operation)
+{
+    if (PSA_ALG_IS_KEY_AGREEMENT(operation->alg)) {
+        return PSA_ALG_KEY_AGREEMENT_GET_KDF(operation->alg);
+    } else {
+        return operation->alg;
+    }
+}
+
+psa_status_t psa_key_derivation_abort(psa_key_derivation_operation_t *operation)
+{
+    psa_status_t status = PSA_SUCCESS;
+    psa_algorithm_t kdf_alg = psa_key_derivation_get_kdf_alg(operation);
+    if (kdf_alg == 0) {
+        /* The object has (apparently) been initialized but it is not
+         * in use. It's ok to call abort on such an object, and there's
+         * nothing to do. */
+    } else
+#if defined(BUILTIN_ALG_ANY_HKDF)
+    if (PSA_ALG_IS_ANY_HKDF(kdf_alg)) {
+        mbedtls_free(operation->ctx.hkdf.info);
+        status = psa_mac_abort(&operation->ctx.hkdf.hmac);
+    } else
+#endif /* BUILTIN_ALG_ANY_HKDF */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
+    if (PSA_ALG_IS_TLS12_PRF(kdf_alg) ||
+        /* TLS-1.2 PSK-to-MS KDF uses the same core as TLS-1.2 PRF */
+        PSA_ALG_IS_TLS12_PSK_TO_MS(kdf_alg)) {
+        if (operation->ctx.tls12_prf.secret != NULL) {
+            mbedtls_zeroize_and_free(operation->ctx.tls12_prf.secret,
+                                     operation->ctx.tls12_prf.secret_length);
+        }
+
+        if (operation->ctx.tls12_prf.seed != NULL) {
+            mbedtls_zeroize_and_free(operation->ctx.tls12_prf.seed,
+                                     operation->ctx.tls12_prf.seed_length);
+        }
+
+        if (operation->ctx.tls12_prf.label != NULL) {
+            mbedtls_zeroize_and_free(operation->ctx.tls12_prf.label,
+                                     operation->ctx.tls12_prf.label_length);
+        }
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
+        if (operation->ctx.tls12_prf.other_secret != NULL) {
+            mbedtls_zeroize_and_free(operation->ctx.tls12_prf.other_secret,
+                                     operation->ctx.tls12_prf.other_secret_length);
+        }
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS */
+        status = PSA_SUCCESS;
+
+        /* We leave the fields Ai and output_block to be erased safely by the
+         * mbedtls_platform_zeroize() in the end of this function. */
+    } else
+#endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) ||
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS) */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_ECJPAKE_TO_PMS)
+    if (kdf_alg == PSA_ALG_TLS12_ECJPAKE_TO_PMS) {
+        mbedtls_platform_zeroize(operation->ctx.tls12_ecjpake_to_pms.data,
+                                 sizeof(operation->ctx.tls12_ecjpake_to_pms.data));
+    } else
+#endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_ECJPAKE_TO_PMS) */
+#if defined(PSA_HAVE_SOFT_PBKDF2)
+    if (PSA_ALG_IS_PBKDF2(kdf_alg)) {
+        if (operation->ctx.pbkdf2.salt != NULL) {
+            mbedtls_zeroize_and_free(operation->ctx.pbkdf2.salt,
+                                     operation->ctx.pbkdf2.salt_length);
+        }
+
+        status = PSA_SUCCESS;
+    } else
+#endif /* defined(PSA_HAVE_SOFT_PBKDF2) */
+    {
+        status = PSA_ERROR_BAD_STATE;
+    }
+    mbedtls_platform_zeroize(operation, sizeof(*operation));
+    return status;
+}
+
+psa_status_t psa_key_derivation_get_capacity(const psa_key_derivation_operation_t *operation,
+                                             size_t *capacity)
+{
+    if (operation->alg == 0) {
+        /* This is a blank key derivation operation. */
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    *capacity = operation->capacity;
+    return PSA_SUCCESS;
+}
+
+psa_status_t psa_key_derivation_set_capacity(psa_key_derivation_operation_t *operation,
+                                             size_t capacity)
+{
+    if (operation->alg == 0) {
+        return PSA_ERROR_BAD_STATE;
+    }
+    if (capacity > operation->capacity) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+    operation->capacity = capacity;
+    return PSA_SUCCESS;
+}
+
+#if defined(BUILTIN_ALG_ANY_HKDF)
+/* Read some bytes from an HKDF-based operation. */
+static psa_status_t psa_key_derivation_hkdf_read(psa_hkdf_key_derivation_t *hkdf,
+                                                 psa_algorithm_t kdf_alg,
+                                                 uint8_t *output,
+                                                 size_t output_length)
+{
+    psa_algorithm_t hash_alg = PSA_ALG_HKDF_GET_HASH(kdf_alg);
+    uint8_t hash_length = PSA_HASH_LENGTH(hash_alg);
+    size_t hmac_output_length;
+    psa_status_t status;
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT)
+    const uint8_t last_block = PSA_ALG_IS_HKDF_EXTRACT(kdf_alg) ? 0 : 0xff;
+#else
+    const uint8_t last_block = 0xff;
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT */
+
+    if (hkdf->state < HKDF_STATE_KEYED ||
+        (!hkdf->info_set
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT)
+         && !PSA_ALG_IS_HKDF_EXTRACT(kdf_alg)
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT */
+        )) {
+        return PSA_ERROR_BAD_STATE;
+    }
+    hkdf->state = HKDF_STATE_OUTPUT;
+
+    while (output_length != 0) {
+        /* Copy what remains of the current block */
+        uint8_t n = hash_length - hkdf->offset_in_block;
+        if (n > output_length) {
+            n = (uint8_t) output_length;
+        }
+        memcpy(output, hkdf->output_block + hkdf->offset_in_block, n);
+        output += n;
+        output_length -= n;
+        hkdf->offset_in_block += n;
+        if (output_length == 0) {
+            break;
+        }
+        /* We can't be wanting more output after the last block, otherwise
+         * the capacity check in psa_key_derivation_output_bytes() would have
+         * prevented this call. It could happen only if the operation
+         * object was corrupted or if this function is called directly
+         * inside the library. */
+        if (hkdf->block_number == last_block) {
+            return PSA_ERROR_BAD_STATE;
+        }
+
+        /* We need a new block */
+        ++hkdf->block_number;
+        hkdf->offset_in_block = 0;
+
+        status = psa_key_derivation_start_hmac(&hkdf->hmac,
+                                               hash_alg,
+                                               hkdf->prk,
+                                               hash_length);
+        if (status != PSA_SUCCESS) {
+            return status;
+        }
+
+        if (hkdf->block_number != 1) {
+            status = psa_mac_update(&hkdf->hmac,
+                                    hkdf->output_block,
+                                    hash_length);
+            if (status != PSA_SUCCESS) {
+                return status;
+            }
+        }
+        status = psa_mac_update(&hkdf->hmac,
+                                hkdf->info,
+                                hkdf->info_length);
+        if (status != PSA_SUCCESS) {
+            return status;
+        }
+        status = psa_mac_update(&hkdf->hmac,
+                                &hkdf->block_number, 1);
+        if (status != PSA_SUCCESS) {
+            return status;
+        }
+        status = psa_mac_sign_finish(&hkdf->hmac,
+                                     hkdf->output_block,
+                                     sizeof(hkdf->output_block),
+                                     &hmac_output_length);
+        if (status != PSA_SUCCESS) {
+            return status;
+        }
+    }
+
+    return PSA_SUCCESS;
+}
+#endif /* BUILTIN_ALG_ANY_HKDF */
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
+static psa_status_t psa_key_derivation_tls12_prf_generate_next_block(
+    psa_tls12_prf_key_derivation_t *tls12_prf,
+    psa_algorithm_t alg)
+{
+    psa_algorithm_t hash_alg = PSA_ALG_HKDF_GET_HASH(alg);
+    uint8_t hash_length = PSA_HASH_LENGTH(hash_alg);
+    psa_mac_operation_t hmac = PSA_MAC_OPERATION_INIT;
+    size_t hmac_output_length;
+    psa_status_t status, cleanup_status;
+
+    /* We can't be wanting more output after block 0xff, otherwise
+     * the capacity check in psa_key_derivation_output_bytes() would have
+     * prevented this call. It could happen only if the operation
+     * object was corrupted or if this function is called directly
+     * inside the library. */
+    if (tls12_prf->block_number == 0xff) {
+        return PSA_ERROR_CORRUPTION_DETECTED;
+    }
+
+    /* We need a new block */
+    ++tls12_prf->block_number;
+    tls12_prf->left_in_block = hash_length;
+
+    /* Recall the definition of the TLS-1.2-PRF from RFC 5246:
+     *
+     * PRF(secret, label, seed) = P_<hash>(secret, label + seed)
+     *
+     * P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
+     *                        HMAC_hash(secret, A(2) + seed) +
+     *                        HMAC_hash(secret, A(3) + seed) + ...
+     *
+     * A(0) = seed
+     * A(i) = HMAC_hash(secret, A(i-1))
+     *
+     * The `psa_tls12_prf_key_derivation` structure saves the block
+     * `HMAC_hash(secret, A(i) + seed)` from which the output
+     * is currently extracted as `output_block` and where i is
+     * `block_number`.
+     */
+
+    status = psa_key_derivation_start_hmac(&hmac,
+                                           hash_alg,
+                                           tls12_prf->secret,
+                                           tls12_prf->secret_length);
+    if (status != PSA_SUCCESS) {
+        goto cleanup;
+    }
+
+    /* Calculate A(i) where i = tls12_prf->block_number. */
+    if (tls12_prf->block_number == 1) {
+        /* A(1) = HMAC_hash(secret, A(0)), where A(0) = seed. (The RFC overloads
+         * the variable seed and in this instance means it in the context of the
+         * P_hash function, where seed = label + seed.) */
+        status = psa_mac_update(&hmac,
+                                tls12_prf->label,
+                                tls12_prf->label_length);
+        if (status != PSA_SUCCESS) {
+            goto cleanup;
+        }
+        status = psa_mac_update(&hmac,
+                                tls12_prf->seed,
+                                tls12_prf->seed_length);
+        if (status != PSA_SUCCESS) {
+            goto cleanup;
+        }
+    } else {
+        /* A(i) = HMAC_hash(secret, A(i-1)) */
+        status = psa_mac_update(&hmac, tls12_prf->Ai, hash_length);
+        if (status != PSA_SUCCESS) {
+            goto cleanup;
+        }
+    }
+
+    status = psa_mac_sign_finish(&hmac,
+                                 tls12_prf->Ai, hash_length,
+                                 &hmac_output_length);
+    if (hmac_output_length != hash_length) {
+        status = PSA_ERROR_CORRUPTION_DETECTED;
+    }
+    if (status != PSA_SUCCESS) {
+        goto cleanup;
+    }
+
+    /* Calculate HMAC_hash(secret, A(i) + label + seed). */
+    status = psa_key_derivation_start_hmac(&hmac,
+                                           hash_alg,
+                                           tls12_prf->secret,
+                                           tls12_prf->secret_length);
+    if (status != PSA_SUCCESS) {
+        goto cleanup;
+    }
+    status = psa_mac_update(&hmac, tls12_prf->Ai, hash_length);
+    if (status != PSA_SUCCESS) {
+        goto cleanup;
+    }
+    status = psa_mac_update(&hmac, tls12_prf->label, tls12_prf->label_length);
+    if (status != PSA_SUCCESS) {
+        goto cleanup;
+    }
+    status = psa_mac_update(&hmac, tls12_prf->seed, tls12_prf->seed_length);
+    if (status != PSA_SUCCESS) {
+        goto cleanup;
+    }
+    status = psa_mac_sign_finish(&hmac,
+                                 tls12_prf->output_block, hash_length,
+                                 &hmac_output_length);
+    if (status != PSA_SUCCESS) {
+        goto cleanup;
+    }
+
+
+cleanup:
+    cleanup_status = psa_mac_abort(&hmac);
+    if (status == PSA_SUCCESS && cleanup_status != PSA_SUCCESS) {
+        status = cleanup_status;
+    }
+
+    return status;
+}
+
+static psa_status_t psa_key_derivation_tls12_prf_read(
+    psa_tls12_prf_key_derivation_t *tls12_prf,
+    psa_algorithm_t alg,
+    uint8_t *output,
+    size_t output_length)
+{
+    psa_algorithm_t hash_alg = PSA_ALG_TLS12_PRF_GET_HASH(alg);
+    uint8_t hash_length = PSA_HASH_LENGTH(hash_alg);
+    psa_status_t status;
+    uint8_t offset, length;
+
+    switch (tls12_prf->state) {
+        case PSA_TLS12_PRF_STATE_LABEL_SET:
+            tls12_prf->state = PSA_TLS12_PRF_STATE_OUTPUT;
+            break;
+        case PSA_TLS12_PRF_STATE_OUTPUT:
+            break;
+        default:
+            return PSA_ERROR_BAD_STATE;
+    }
+
+    while (output_length != 0) {
+        /* Check if we have fully processed the current block. */
+        if (tls12_prf->left_in_block == 0) {
+            status = psa_key_derivation_tls12_prf_generate_next_block(tls12_prf,
+                                                                      alg);
+            if (status != PSA_SUCCESS) {
+                return status;
+            }
+
+            continue;
+        }
+
+        if (tls12_prf->left_in_block > output_length) {
+            length = (uint8_t) output_length;
+        } else {
+            length = tls12_prf->left_in_block;
+        }
+
+        offset = hash_length - tls12_prf->left_in_block;
+        memcpy(output, tls12_prf->output_block + offset, length);
+        output += length;
+        output_length -= length;
+        tls12_prf->left_in_block -= length;
+    }
+
+    return PSA_SUCCESS;
+}
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF ||
+        * MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS */
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_ECJPAKE_TO_PMS)
+static psa_status_t psa_key_derivation_tls12_ecjpake_to_pms_read(
+    psa_tls12_ecjpake_to_pms_t *ecjpake,
+    uint8_t *output,
+    size_t output_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    size_t output_size = 0;
+
+    if (output_length != 32) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    status = psa_hash_compute(PSA_ALG_SHA_256, ecjpake->data,
+                              PSA_TLS12_ECJPAKE_TO_PMS_DATA_SIZE, output, output_length,
+                              &output_size);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    if (output_size != output_length) {
+        return PSA_ERROR_GENERIC_ERROR;
+    }
+
+    return PSA_SUCCESS;
+}
+#endif
+
+#if defined(PSA_HAVE_SOFT_PBKDF2)
+static psa_status_t psa_key_derivation_pbkdf2_generate_block(
+    psa_pbkdf2_key_derivation_t *pbkdf2,
+    psa_algorithm_t prf_alg,
+    uint8_t prf_output_length,
+    psa_key_attributes_t *attributes)
+{
+    psa_status_t status;
+    psa_mac_operation_t mac_operation = PSA_MAC_OPERATION_INIT;
+    size_t mac_output_length;
+    uint8_t U_i[PSA_MAC_MAX_SIZE];
+    uint8_t *U_accumulator = pbkdf2->output_block;
+    uint64_t i;
+    uint8_t block_counter[4];
+
+    mac_operation.is_sign = 1;
+    mac_operation.mac_size = prf_output_length;
+    MBEDTLS_PUT_UINT32_BE(pbkdf2->block_number, block_counter, 0);
+
+    status = psa_driver_wrapper_mac_sign_setup(&mac_operation,
+                                               attributes,
+                                               pbkdf2->password,
+                                               pbkdf2->password_length,
+                                               prf_alg);
+    if (status != PSA_SUCCESS) {
+        goto cleanup;
+    }
+    status = psa_mac_update(&mac_operation, pbkdf2->salt, pbkdf2->salt_length);
+    if (status != PSA_SUCCESS) {
+        goto cleanup;
+    }
+    status = psa_mac_update(&mac_operation, block_counter, sizeof(block_counter));
+    if (status != PSA_SUCCESS) {
+        goto cleanup;
+    }
+    status = psa_mac_sign_finish(&mac_operation, U_i, sizeof(U_i),
+                                 &mac_output_length);
+    if (status != PSA_SUCCESS) {
+        goto cleanup;
+    }
+
+    if (mac_output_length != prf_output_length) {
+        status = PSA_ERROR_CORRUPTION_DETECTED;
+        goto cleanup;
+    }
+
+    memcpy(U_accumulator, U_i, prf_output_length);
+
+    for (i = 1; i < pbkdf2->input_cost; i++) {
+        /* We are passing prf_output_length as mac_size because the driver
+         * function directly sets mac_output_length as mac_size upon success.
+         * See https://github.com/Mbed-TLS/mbedtls/issues/7801 */
+        status = psa_driver_wrapper_mac_compute(attributes,
+                                                pbkdf2->password,
+                                                pbkdf2->password_length,
+                                                prf_alg, U_i, prf_output_length,
+                                                U_i, prf_output_length,
+                                                &mac_output_length);
+        if (status != PSA_SUCCESS) {
+            goto cleanup;
+        }
+
+        mbedtls_xor(U_accumulator, U_accumulator, U_i, prf_output_length);
+    }
+
+cleanup:
+    /* Zeroise buffers to clear sensitive data from memory. */
+    mbedtls_platform_zeroize(U_i, PSA_MAC_MAX_SIZE);
+    return status;
+}
+
+static psa_status_t psa_key_derivation_pbkdf2_read(
+    psa_pbkdf2_key_derivation_t *pbkdf2,
+    psa_algorithm_t kdf_alg,
+    uint8_t *output,
+    size_t output_length)
+{
+    psa_status_t status;
+    psa_algorithm_t prf_alg;
+    uint8_t prf_output_length;
+    psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+    psa_set_key_bits(&attributes, PSA_BYTES_TO_BITS(pbkdf2->password_length));
+    psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_MESSAGE);
+
+    if (PSA_ALG_IS_PBKDF2_HMAC(kdf_alg)) {
+        prf_alg = PSA_ALG_HMAC(PSA_ALG_PBKDF2_HMAC_GET_HASH(kdf_alg));
+        prf_output_length = PSA_HASH_LENGTH(prf_alg);
+        psa_set_key_type(&attributes, PSA_KEY_TYPE_HMAC);
+    } else if (kdf_alg == PSA_ALG_PBKDF2_AES_CMAC_PRF_128) {
+        prf_alg = PSA_ALG_CMAC;
+        prf_output_length = PSA_MAC_LENGTH(PSA_KEY_TYPE_AES, 128U, PSA_ALG_CMAC);
+        psa_set_key_type(&attributes, PSA_KEY_TYPE_AES);
+    } else {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    switch (pbkdf2->state) {
+        case PSA_PBKDF2_STATE_PASSWORD_SET:
+            /* Initially we need a new block so bytes_used is equal to block size*/
+            pbkdf2->bytes_used = prf_output_length;
+            pbkdf2->state = PSA_PBKDF2_STATE_OUTPUT;
+            break;
+        case PSA_PBKDF2_STATE_OUTPUT:
+            break;
+        default:
+            return PSA_ERROR_BAD_STATE;
+    }
+
+    while (output_length != 0) {
+        uint8_t n = prf_output_length - pbkdf2->bytes_used;
+        if (n > output_length) {
+            n = (uint8_t) output_length;
+        }
+        memcpy(output, pbkdf2->output_block + pbkdf2->bytes_used, n);
+        output += n;
+        output_length -= n;
+        pbkdf2->bytes_used += n;
+
+        if (output_length == 0) {
+            break;
+        }
+
+        /* We need a new block */
+        pbkdf2->bytes_used = 0;
+        pbkdf2->block_number++;
+
+        status = psa_key_derivation_pbkdf2_generate_block(pbkdf2, prf_alg,
+                                                          prf_output_length,
+                                                          &attributes);
+        if (status != PSA_SUCCESS) {
+            return status;
+        }
+    }
+
+    return PSA_SUCCESS;
+}
+#endif /* PSA_HAVE_SOFT_PBKDF2 */
+
+psa_status_t psa_key_derivation_output_bytes(
+    psa_key_derivation_operation_t *operation,
+    uint8_t *output_external,
+    size_t output_length)
+{
+    psa_status_t status;
+    LOCAL_OUTPUT_DECLARE(output_external, output);
+
+    psa_algorithm_t kdf_alg = psa_key_derivation_get_kdf_alg(operation);
+
+    if (operation->alg == 0) {
+        /* This is a blank operation. */
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    if (output_length == 0 && operation->capacity == 0) {
+        /* Edge case: this is a finished operation, and 0 bytes
+         * were requested. The right error in this case could
+         * be either INSUFFICIENT_CAPACITY or BAD_STATE. Return
+         * INSUFFICIENT_CAPACITY, which is right for a finished
+         * operation, for consistency with the case when
+         * output_length > 0. */
+        return PSA_ERROR_INSUFFICIENT_DATA;
+    }
+
+    LOCAL_OUTPUT_ALLOC(output_external, output_length, output);
+    if (output_length > operation->capacity) {
+        operation->capacity = 0;
+        /* Go through the error path to wipe all confidential data now
+         * that the operation object is useless. */
+        status = PSA_ERROR_INSUFFICIENT_DATA;
+        goto exit;
+    }
+
+    operation->capacity -= output_length;
+
+#if defined(BUILTIN_ALG_ANY_HKDF)
+    if (PSA_ALG_IS_ANY_HKDF(kdf_alg)) {
+        status = psa_key_derivation_hkdf_read(&operation->ctx.hkdf, kdf_alg,
+                                              output, output_length);
+    } else
+#endif /* BUILTIN_ALG_ANY_HKDF */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
+    if (PSA_ALG_IS_TLS12_PRF(kdf_alg) ||
+        PSA_ALG_IS_TLS12_PSK_TO_MS(kdf_alg)) {
+        status = psa_key_derivation_tls12_prf_read(&operation->ctx.tls12_prf,
+                                                   kdf_alg, output,
+                                                   output_length);
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF ||
+        * MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_ECJPAKE_TO_PMS)
+    if (kdf_alg == PSA_ALG_TLS12_ECJPAKE_TO_PMS) {
+        status = psa_key_derivation_tls12_ecjpake_to_pms_read(
+            &operation->ctx.tls12_ecjpake_to_pms, output, output_length);
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_ECJPAKE_TO_PMS */
+#if defined(PSA_HAVE_SOFT_PBKDF2)
+    if (PSA_ALG_IS_PBKDF2(kdf_alg)) {
+        status = psa_key_derivation_pbkdf2_read(&operation->ctx.pbkdf2, kdf_alg,
+                                                output, output_length);
+    } else
+#endif /* PSA_HAVE_SOFT_PBKDF2 */
+
+    {
+        (void) kdf_alg;
+        status = PSA_ERROR_BAD_STATE;
+        LOCAL_OUTPUT_FREE(output_external, output);
+
+        return status;
+    }
+
+exit:
+    if (status != PSA_SUCCESS) {
+        /* Preserve the algorithm upon errors, but clear all sensitive state.
+         * This allows us to differentiate between exhausted operations and
+         * blank operations, so we can return PSA_ERROR_BAD_STATE on blank
+         * operations. */
+        psa_algorithm_t alg = operation->alg;
+        psa_key_derivation_abort(operation);
+        operation->alg = alg;
+        if (output != NULL) {
+            memset(output, '!', output_length);
+        }
+    }
+
+    LOCAL_OUTPUT_FREE(output_external, output);
+    return status;
+}
+
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES)
+static void psa_des_set_key_parity(uint8_t *data, size_t data_size)
+{
+    if (data_size >= 8) {
+        mbedtls_des_key_set_parity(data);
+    }
+    if (data_size >= 16) {
+        mbedtls_des_key_set_parity(data + 8);
+    }
+    if (data_size >= 24) {
+        mbedtls_des_key_set_parity(data + 16);
+    }
+}
+#endif /* MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES */
+
+/*
+ * ECC keys on a Weierstrass elliptic curve require the generation
+ * of a private key which is an integer
+ * in the range [1, N - 1], where N is the boundary of the private key domain:
+ * N is the prime p for Diffie-Hellman, or the order of the
+ * curve’s base point for ECC.
+ *
+ * Let m be the bit size of N, such that 2^m > N >= 2^(m-1).
+ * This function generates the private key using the following process:
+ *
+ * 1. Draw a byte string of length ceiling(m/8) bytes.
+ * 2. If m is not a multiple of 8, set the most significant
+ *    (8 * ceiling(m/8) - m) bits of the first byte in the string to zero.
+ * 3. Convert the string to integer k by decoding it as a big-endian byte string.
+ * 4. If k > N - 2, discard the result and return to step 1.
+ * 5. Output k + 1 as the private key.
+ *
+ * This method allows compliance to NIST standards, specifically the methods titled
+ * Key-Pair Generation by Testing Candidates in the following publications:
+ * - NIST Special Publication 800-56A: Recommendation for Pair-Wise Key-Establishment
+ *   Schemes Using Discrete Logarithm Cryptography [SP800-56A] §5.6.1.1.4 for
+ *   Diffie-Hellman keys.
+ *
+ * - [SP800-56A] §5.6.1.2.2 or FIPS Publication 186-4: Digital Signature
+ *   Standard (DSS) [FIPS186-4] §B.4.2 for elliptic curve keys.
+ *
+ * Note: Function allocates memory for *data buffer, so given *data should be
+ *       always NULL.
+ */
+#if defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_DERIVE)
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR_DERIVE)
+static psa_status_t psa_generate_derived_ecc_key_weierstrass_helper(
+    psa_key_slot_t *slot,
+    size_t bits,
+    psa_key_derivation_operation_t *operation,
+    uint8_t **data
+    )
+{
+    unsigned key_out_of_range = 1;
+    mbedtls_mpi k;
+    mbedtls_mpi diff_N_2;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    size_t m;
+    size_t m_bytes;
+
+    mbedtls_mpi_init(&k);
+    mbedtls_mpi_init(&diff_N_2);
+
+    psa_ecc_family_t curve = PSA_KEY_TYPE_ECC_GET_FAMILY(
+        slot->attr.type);
+    mbedtls_ecp_group_id grp_id =
+        mbedtls_ecc_group_from_psa(curve, bits);
+
+    if (grp_id == MBEDTLS_ECP_DP_NONE) {
+        ret = MBEDTLS_ERR_ASN1_INVALID_DATA;
+        goto cleanup;
+    }
+
+    mbedtls_ecp_group ecp_group;
+    mbedtls_ecp_group_init(&ecp_group);
+
+    MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&ecp_group, grp_id));
+
+    /* N is the boundary of the private key domain (ecp_group.N). */
+    /* Let m be the bit size of N. */
+    m = ecp_group.nbits;
+
+    m_bytes = PSA_BITS_TO_BYTES(m);
+
+    /* Calculate N - 2 - it will be needed later. */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&diff_N_2, &ecp_group.N, 2));
+
+    /* Note: This function is always called with *data == NULL and it
+     * allocates memory for the data buffer. */
+    *data = mbedtls_calloc(1, m_bytes);
+    if (*data == NULL) {
+        ret = MBEDTLS_ERR_ASN1_ALLOC_FAILED;
+        goto cleanup;
+    }
+
+    while (key_out_of_range) {
+        /* 1. Draw a byte string of length ceiling(m/8) bytes. */
+        if ((status = psa_key_derivation_output_bytes(operation, *data, m_bytes)) != 0) {
+            goto cleanup;
+        }
+
+        /* 2. If m is not a multiple of 8 */
+        if (m % 8 != 0) {
+            /* Set the most significant
+             * (8 * ceiling(m/8) - m) bits of the first byte in
+             * the string to zero.
+             */
+            uint8_t clear_bit_mask = (1 << (m % 8)) - 1;
+            (*data)[0] &= clear_bit_mask;
+        }
+
+        /* 3. Convert the string to integer k by decoding it as a
+         *    big-endian byte string.
+         */
+        MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&k, *data, m_bytes));
+
+        /* 4. If k > N - 2, discard the result and return to step 1.
+         *    Result of comparison is returned. When it indicates error
+         *    then this function is called again.
+         */
+        MBEDTLS_MPI_CHK(mbedtls_mpi_lt_mpi_ct(&diff_N_2, &k, &key_out_of_range));
+    }
+
+    /* 5. Output k + 1 as the private key. */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&k, &k, 1));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&k, *data, m_bytes));
+cleanup:
+    if (ret != 0) {
+        status = mbedtls_to_psa_error(ret);
+    }
+    if (status != PSA_SUCCESS) {
+        mbedtls_free(*data);
+        *data = NULL;
+    }
+    mbedtls_mpi_free(&k);
+    mbedtls_mpi_free(&diff_N_2);
+    return status;
+}
+
+/* ECC keys on a Montgomery elliptic curve draws a byte string whose length
+ * is determined by the curve, and sets the mandatory bits accordingly. That is:
+ *
+ * - Curve25519 (PSA_ECC_FAMILY_MONTGOMERY, 255 bits):
+ *   draw a 32-byte string and process it as specified in
+ *   Elliptic Curves for Security [RFC7748] §5.
+ *
+ * - Curve448 (PSA_ECC_FAMILY_MONTGOMERY, 448 bits):
+ *   draw a 56-byte string and process it as specified in [RFC7748] §5.
+ *
+ * Note: Function allocates memory for *data buffer, so given *data should be
+ *       always NULL.
+ */
+
+static psa_status_t psa_generate_derived_ecc_key_montgomery_helper(
+    size_t bits,
+    psa_key_derivation_operation_t *operation,
+    uint8_t **data
+    )
+{
+    size_t output_length;
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    switch (bits) {
+        case 255:
+            output_length = 32;
+            break;
+        case 448:
+            output_length = 56;
+            break;
+        default:
+            return PSA_ERROR_INVALID_ARGUMENT;
+            break;
+    }
+
+    *data = mbedtls_calloc(1, output_length);
+
+    if (*data == NULL) {
+        return PSA_ERROR_INSUFFICIENT_MEMORY;
+    }
+
+    status = psa_key_derivation_output_bytes(operation, *data, output_length);
+
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    switch (bits) {
+        case 255:
+            (*data)[0] &= 248;
+            (*data)[31] &= 127;
+            (*data)[31] |= 64;
+            break;
+        case 448:
+            (*data)[0] &= 252;
+            (*data)[55] |= 128;
+            break;
+        default:
+            return PSA_ERROR_CORRUPTION_DETECTED;
+            break;
+    }
+
+    return status;
+}
+#else /* MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR_DERIVE */
+static psa_status_t psa_generate_derived_ecc_key_weierstrass_helper(
+    psa_key_slot_t *slot, size_t bits,
+    psa_key_derivation_operation_t *operation, uint8_t **data)
+{
+    (void) slot;
+    (void) bits;
+    (void) operation;
+    (void) data;
+    return PSA_ERROR_NOT_SUPPORTED;
+}
+
+static psa_status_t psa_generate_derived_ecc_key_montgomery_helper(
+    size_t bits, psa_key_derivation_operation_t *operation, uint8_t **data)
+{
+    (void) bits;
+    (void) operation;
+    (void) data;
+    return PSA_ERROR_NOT_SUPPORTED;
+}
+#endif /* MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR_DERIVE */
+#endif /* PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_DERIVE */
+
+static psa_status_t psa_generate_derived_key_internal(
+    psa_key_slot_t *slot,
+    size_t bits,
+    psa_key_derivation_operation_t *operation)
+{
+    uint8_t *data = NULL;
+    size_t bytes = PSA_BITS_TO_BYTES(bits);
+    size_t storage_size = bytes;
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    if (PSA_KEY_TYPE_IS_PUBLIC_KEY(slot->attr.type)) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+#if defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_DERIVE) || \
+    defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR_DERIVE)
+    if (PSA_KEY_TYPE_IS_ECC(slot->attr.type)) {
+        psa_ecc_family_t curve = PSA_KEY_TYPE_ECC_GET_FAMILY(slot->attr.type);
+        if (PSA_ECC_FAMILY_IS_WEIERSTRASS(curve)) {
+            /* Weierstrass elliptic curve */
+            status = psa_generate_derived_ecc_key_weierstrass_helper(slot, bits, operation, &data);
+            if (status != PSA_SUCCESS) {
+                goto exit;
+            }
+        } else {
+            /* Montgomery elliptic curve */
+            status = psa_generate_derived_ecc_key_montgomery_helper(bits, operation, &data);
+            if (status != PSA_SUCCESS) {
+                goto exit;
+            }
+        }
+    } else
+#endif /* defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_DERIVE) ||
+          defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR_DERIVE) */
+    if (key_type_is_raw_bytes(slot->attr.type)) {
+        if (bits % 8 != 0) {
+            return PSA_ERROR_INVALID_ARGUMENT;
+        }
+        data = mbedtls_calloc(1, bytes);
+        if (data == NULL) {
+            return PSA_ERROR_INSUFFICIENT_MEMORY;
+        }
+
+        status = psa_key_derivation_output_bytes(operation, data, bytes);
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES)
+        if (slot->attr.type == PSA_KEY_TYPE_DES) {
+            psa_des_set_key_parity(data, bytes);
+        }
+#endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES) */
+    } else {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    slot->attr.bits = (psa_key_bits_t) bits;
+
+    if (psa_key_lifetime_is_external(slot->attr.lifetime)) {
+        status = psa_driver_wrapper_get_key_buffer_size(&slot->attr,
+                                                        &storage_size);
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+    }
+    status = psa_allocate_buffer_to_slot(slot, storage_size);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_driver_wrapper_import_key(&slot->attr,
+                                           data, bytes,
+                                           slot->key.data,
+                                           slot->key.bytes,
+                                           &slot->key.bytes, &bits);
+    if (bits != slot->attr.bits) {
+        status = PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+exit:
+    mbedtls_free(data);
+    return status;
+}
+
+static const psa_key_production_parameters_t default_production_parameters =
+    PSA_KEY_PRODUCTION_PARAMETERS_INIT;
+
+int psa_key_production_parameters_are_default(
+    const psa_key_production_parameters_t *params,
+    size_t params_data_length)
+{
+    if (params->flags != 0) {
+        return 0;
+    }
+    if (params_data_length != 0) {
+        return 0;
+    }
+    return 1;
+}
+
+psa_status_t psa_key_derivation_output_key_ext(
+    const psa_key_attributes_t *attributes,
+    psa_key_derivation_operation_t *operation,
+    const psa_key_production_parameters_t *params,
+    size_t params_data_length,
+    mbedtls_svc_key_id_t *key)
+{
+    psa_status_t status;
+    psa_key_slot_t *slot = NULL;
+    psa_se_drv_table_entry_t *driver = NULL;
+
+    *key = MBEDTLS_SVC_KEY_ID_INIT;
+
+    /* Reject any attempt to create a zero-length key so that we don't
+     * risk tripping up later, e.g. on a malloc(0) that returns NULL. */
+    if (psa_get_key_bits(attributes) == 0) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    if (!psa_key_production_parameters_are_default(params, params_data_length)) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    if (operation->alg == PSA_ALG_NONE) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    if (!operation->can_output_key) {
+        return PSA_ERROR_NOT_PERMITTED;
+    }
+
+    status = psa_start_key_creation(PSA_KEY_CREATION_DERIVE, attributes,
+                                    &slot, &driver);
+#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
+    if (driver != NULL) {
+        /* Deriving a key in a secure element is not implemented yet. */
+        status = PSA_ERROR_NOT_SUPPORTED;
+    }
+#endif /* MBEDTLS_PSA_CRYPTO_SE_C */
+    if (status == PSA_SUCCESS) {
+        status = psa_generate_derived_key_internal(slot,
+                                                   attributes->bits,
+                                                   operation);
+    }
+    if (status == PSA_SUCCESS) {
+        status = psa_finish_key_creation(slot, driver, key);
+    }
+    if (status != PSA_SUCCESS) {
+        psa_fail_key_creation(slot, driver);
+    }
+
+    return status;
+}
+
+psa_status_t psa_key_derivation_output_key(
+    const psa_key_attributes_t *attributes,
+    psa_key_derivation_operation_t *operation,
+    mbedtls_svc_key_id_t *key)
+{
+    return psa_key_derivation_output_key_ext(attributes, operation,
+                                             &default_production_parameters, 0,
+                                             key);
+}
+
+
+/****************************************************************/
+/* Key derivation */
+/****************************************************************/
+
+#if defined(AT_LEAST_ONE_BUILTIN_KDF)
+static int is_kdf_alg_supported(psa_algorithm_t kdf_alg)
+{
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF)
+    if (PSA_ALG_IS_HKDF(kdf_alg)) {
+        return 1;
+    }
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT)
+    if (PSA_ALG_IS_HKDF_EXTRACT(kdf_alg)) {
+        return 1;
+    }
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXPAND)
+    if (PSA_ALG_IS_HKDF_EXPAND(kdf_alg)) {
+        return 1;
+    }
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF)
+    if (PSA_ALG_IS_TLS12_PRF(kdf_alg)) {
+        return 1;
+    }
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
+    if (PSA_ALG_IS_TLS12_PSK_TO_MS(kdf_alg)) {
+        return 1;
+    }
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_ECJPAKE_TO_PMS)
+    if (kdf_alg == PSA_ALG_TLS12_ECJPAKE_TO_PMS) {
+        return 1;
+    }
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_PBKDF2_HMAC)
+    if (PSA_ALG_IS_PBKDF2_HMAC(kdf_alg)) {
+        return 1;
+    }
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_PBKDF2_AES_CMAC_PRF_128)
+    if (kdf_alg == PSA_ALG_PBKDF2_AES_CMAC_PRF_128) {
+        return 1;
+    }
+#endif
+    return 0;
+}
+
+static psa_status_t psa_hash_try_support(psa_algorithm_t alg)
+{
+    psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
+    psa_status_t status = psa_hash_setup(&operation, alg);
+    psa_hash_abort(&operation);
+    return status;
+}
+
+static psa_status_t psa_key_derivation_set_maximum_capacity(
+    psa_key_derivation_operation_t *operation,
+    psa_algorithm_t kdf_alg)
+{
+#if defined(PSA_WANT_ALG_TLS12_ECJPAKE_TO_PMS)
+    if (kdf_alg == PSA_ALG_TLS12_ECJPAKE_TO_PMS) {
+        operation->capacity = PSA_HASH_LENGTH(PSA_ALG_SHA_256);
+        return PSA_SUCCESS;
+    }
+#endif
+#if defined(PSA_WANT_ALG_PBKDF2_AES_CMAC_PRF_128)
+    if (kdf_alg == PSA_ALG_PBKDF2_AES_CMAC_PRF_128) {
+#if (SIZE_MAX > UINT32_MAX)
+        operation->capacity = UINT32_MAX * (size_t) PSA_MAC_LENGTH(
+            PSA_KEY_TYPE_AES,
+            128U,
+            PSA_ALG_CMAC);
+#else
+        operation->capacity = SIZE_MAX;
+#endif
+        return PSA_SUCCESS;
+    }
+#endif /* PSA_WANT_ALG_PBKDF2_AES_CMAC_PRF_128 */
+
+    /* After this point, if kdf_alg is not valid then value of hash_alg may be
+     * invalid or meaningless but it does not affect this function */
+    psa_algorithm_t hash_alg = PSA_ALG_GET_HASH(kdf_alg);
+    size_t hash_size = PSA_HASH_LENGTH(hash_alg);
+    if (hash_size == 0) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    /* Make sure that hash_alg is a supported hash algorithm. Otherwise
+     * we might fail later, which is somewhat unfriendly and potentially
+     * risk-prone. */
+    psa_status_t status = psa_hash_try_support(hash_alg);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+#if defined(PSA_WANT_ALG_HKDF)
+    if (PSA_ALG_IS_HKDF(kdf_alg)) {
+        operation->capacity = 255 * hash_size;
+    } else
+#endif
+#if defined(PSA_WANT_ALG_HKDF_EXTRACT)
+    if (PSA_ALG_IS_HKDF_EXTRACT(kdf_alg)) {
+        operation->capacity = hash_size;
+    } else
+#endif
+#if defined(PSA_WANT_ALG_HKDF_EXPAND)
+    if (PSA_ALG_IS_HKDF_EXPAND(kdf_alg)) {
+        operation->capacity = 255 * hash_size;
+    } else
+#endif
+#if defined(PSA_WANT_ALG_TLS12_PRF)
+    if (PSA_ALG_IS_TLS12_PRF(kdf_alg) &&
+        (hash_alg == PSA_ALG_SHA_256 || hash_alg == PSA_ALG_SHA_384)) {
+        operation->capacity = SIZE_MAX;
+    } else
+#endif
+#if defined(PSA_WANT_ALG_TLS12_PSK_TO_MS)
+    if (PSA_ALG_IS_TLS12_PSK_TO_MS(kdf_alg) &&
+        (hash_alg == PSA_ALG_SHA_256 || hash_alg == PSA_ALG_SHA_384)) {
+        /* Master Secret is always 48 bytes
+         * https://datatracker.ietf.org/doc/html/rfc5246.html#section-8.1 */
+        operation->capacity = 48U;
+    } else
+#endif
+#if defined(PSA_WANT_ALG_PBKDF2_HMAC)
+    if (PSA_ALG_IS_PBKDF2_HMAC(kdf_alg)) {
+#if (SIZE_MAX > UINT32_MAX)
+        operation->capacity = UINT32_MAX * hash_size;
+#else
+        operation->capacity = SIZE_MAX;
+#endif
+    } else
+#endif /* PSA_WANT_ALG_PBKDF2_HMAC */
+    {
+        (void) hash_size;
+        status = PSA_ERROR_NOT_SUPPORTED;
+    }
+    return status;
+}
+
+static psa_status_t psa_key_derivation_setup_kdf(
+    psa_key_derivation_operation_t *operation,
+    psa_algorithm_t kdf_alg)
+{
+    /* Make sure that operation->ctx is properly zero-initialised. (Macro
+     * initialisers for this union leave some bytes unspecified.) */
+    memset(&operation->ctx, 0, sizeof(operation->ctx));
+
+    /* Make sure that kdf_alg is a supported key derivation algorithm. */
+    if (!is_kdf_alg_supported(kdf_alg)) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    psa_status_t status = psa_key_derivation_set_maximum_capacity(operation,
+                                                                  kdf_alg);
+    return status;
+}
+
+static psa_status_t psa_key_agreement_try_support(psa_algorithm_t alg)
+{
+#if defined(PSA_WANT_ALG_ECDH)
+    if (alg == PSA_ALG_ECDH) {
+        return PSA_SUCCESS;
+    }
+#endif
+#if defined(PSA_WANT_ALG_FFDH)
+    if (alg == PSA_ALG_FFDH) {
+        return PSA_SUCCESS;
+    }
+#endif
+    (void) alg;
+    return PSA_ERROR_NOT_SUPPORTED;
+}
+
+static int psa_key_derivation_allows_free_form_secret_input(
+    psa_algorithm_t kdf_alg)
+{
+#if defined(PSA_WANT_ALG_TLS12_ECJPAKE_TO_PMS)
+    if (kdf_alg == PSA_ALG_TLS12_ECJPAKE_TO_PMS) {
+        return 0;
+    }
+#endif
+    (void) kdf_alg;
+    return 1;
+}
+#endif /* AT_LEAST_ONE_BUILTIN_KDF */
+
+psa_status_t psa_key_derivation_setup(psa_key_derivation_operation_t *operation,
+                                      psa_algorithm_t alg)
+{
+    psa_status_t status;
+
+    if (operation->alg != 0) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    if (PSA_ALG_IS_RAW_KEY_AGREEMENT(alg)) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    } else if (PSA_ALG_IS_KEY_AGREEMENT(alg)) {
+#if defined(AT_LEAST_ONE_BUILTIN_KDF)
+        psa_algorithm_t kdf_alg = PSA_ALG_KEY_AGREEMENT_GET_KDF(alg);
+        psa_algorithm_t ka_alg = PSA_ALG_KEY_AGREEMENT_GET_BASE(alg);
+        status = psa_key_agreement_try_support(ka_alg);
+        if (status != PSA_SUCCESS) {
+            return status;
+        }
+        if (!psa_key_derivation_allows_free_form_secret_input(kdf_alg)) {
+            return PSA_ERROR_INVALID_ARGUMENT;
+        }
+        status = psa_key_derivation_setup_kdf(operation, kdf_alg);
+#else
+        return PSA_ERROR_NOT_SUPPORTED;
+#endif /* AT_LEAST_ONE_BUILTIN_KDF */
+    } else if (PSA_ALG_IS_KEY_DERIVATION(alg)) {
+#if defined(AT_LEAST_ONE_BUILTIN_KDF)
+        status = psa_key_derivation_setup_kdf(operation, alg);
+#else
+        return PSA_ERROR_NOT_SUPPORTED;
+#endif /* AT_LEAST_ONE_BUILTIN_KDF */
+    } else {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    if (status == PSA_SUCCESS) {
+        operation->alg = alg;
+    }
+    return status;
+}
+
+#if defined(BUILTIN_ALG_ANY_HKDF)
+static psa_status_t psa_hkdf_input(psa_hkdf_key_derivation_t *hkdf,
+                                   psa_algorithm_t kdf_alg,
+                                   psa_key_derivation_step_t step,
+                                   const uint8_t *data,
+                                   size_t data_length)
+{
+    psa_algorithm_t hash_alg = PSA_ALG_HKDF_GET_HASH(kdf_alg);
+    psa_status_t status;
+    switch (step) {
+        case PSA_KEY_DERIVATION_INPUT_SALT:
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXPAND)
+            if (PSA_ALG_IS_HKDF_EXPAND(kdf_alg)) {
+                return PSA_ERROR_INVALID_ARGUMENT;
+            }
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXPAND */
+            if (hkdf->state != HKDF_STATE_INIT) {
+                return PSA_ERROR_BAD_STATE;
+            } else {
+                status = psa_key_derivation_start_hmac(&hkdf->hmac,
+                                                       hash_alg,
+                                                       data, data_length);
+                if (status != PSA_SUCCESS) {
+                    return status;
+                }
+                hkdf->state = HKDF_STATE_STARTED;
+                return PSA_SUCCESS;
+            }
+        case PSA_KEY_DERIVATION_INPUT_SECRET:
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXPAND)
+            if (PSA_ALG_IS_HKDF_EXPAND(kdf_alg)) {
+                /* We shouldn't be in different state as HKDF_EXPAND only allows
+                 * two inputs: SECRET (this case) and INFO which does not modify
+                 * the state. It could happen only if the hkdf
+                 * object was corrupted. */
+                if (hkdf->state != HKDF_STATE_INIT) {
+                    return PSA_ERROR_BAD_STATE;
+                }
+
+                /* Allow only input that fits expected prk size */
+                if (data_length != PSA_HASH_LENGTH(hash_alg)) {
+                    return PSA_ERROR_INVALID_ARGUMENT;
+                }
+
+                memcpy(hkdf->prk, data, data_length);
+            } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXPAND */
+            {
+                /* HKDF: If no salt was provided, use an empty salt.
+                 * HKDF-EXTRACT: salt is mandatory. */
+                if (hkdf->state == HKDF_STATE_INIT) {
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT)
+                    if (PSA_ALG_IS_HKDF_EXTRACT(kdf_alg)) {
+                        return PSA_ERROR_BAD_STATE;
+                    }
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT */
+                    status = psa_key_derivation_start_hmac(&hkdf->hmac,
+                                                           hash_alg,
+                                                           NULL, 0);
+                    if (status != PSA_SUCCESS) {
+                        return status;
+                    }
+                    hkdf->state = HKDF_STATE_STARTED;
+                }
+                if (hkdf->state != HKDF_STATE_STARTED) {
+                    return PSA_ERROR_BAD_STATE;
+                }
+                status = psa_mac_update(&hkdf->hmac,
+                                        data, data_length);
+                if (status != PSA_SUCCESS) {
+                    return status;
+                }
+                status = psa_mac_sign_finish(&hkdf->hmac,
+                                             hkdf->prk,
+                                             sizeof(hkdf->prk),
+                                             &data_length);
+                if (status != PSA_SUCCESS) {
+                    return status;
+                }
+            }
+
+            hkdf->state = HKDF_STATE_KEYED;
+            hkdf->block_number = 0;
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT)
+            if (PSA_ALG_IS_HKDF_EXTRACT(kdf_alg)) {
+                /* The only block of output is the PRK. */
+                memcpy(hkdf->output_block, hkdf->prk, PSA_HASH_LENGTH(hash_alg));
+                hkdf->offset_in_block = 0;
+            } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT */
+            {
+                /* Block 0 is empty, and the next block will be
+                 * generated by psa_key_derivation_hkdf_read(). */
+                hkdf->offset_in_block = PSA_HASH_LENGTH(hash_alg);
+            }
+
+            return PSA_SUCCESS;
+        case PSA_KEY_DERIVATION_INPUT_INFO:
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT)
+            if (PSA_ALG_IS_HKDF_EXTRACT(kdf_alg)) {
+                return PSA_ERROR_INVALID_ARGUMENT;
+            }
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXPAND)
+            if (PSA_ALG_IS_HKDF_EXPAND(kdf_alg) &&
+                hkdf->state == HKDF_STATE_INIT) {
+                return PSA_ERROR_BAD_STATE;
+            }
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_HKDF_EXTRACT */
+            if (hkdf->state == HKDF_STATE_OUTPUT) {
+                return PSA_ERROR_BAD_STATE;
+            }
+            if (hkdf->info_set) {
+                return PSA_ERROR_BAD_STATE;
+            }
+            hkdf->info_length = data_length;
+            if (data_length != 0) {
+                hkdf->info = mbedtls_calloc(1, data_length);
+                if (hkdf->info == NULL) {
+                    return PSA_ERROR_INSUFFICIENT_MEMORY;
+                }
+                memcpy(hkdf->info, data, data_length);
+            }
+            hkdf->info_set = 1;
+            return PSA_SUCCESS;
+        default:
+            return PSA_ERROR_INVALID_ARGUMENT;
+    }
+}
+#endif /* BUILTIN_ALG_ANY_HKDF */
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
+static psa_status_t psa_tls12_prf_set_seed(psa_tls12_prf_key_derivation_t *prf,
+                                           const uint8_t *data,
+                                           size_t data_length)
+{
+    if (prf->state != PSA_TLS12_PRF_STATE_INIT) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    if (data_length != 0) {
+        prf->seed = mbedtls_calloc(1, data_length);
+        if (prf->seed == NULL) {
+            return PSA_ERROR_INSUFFICIENT_MEMORY;
+        }
+
+        memcpy(prf->seed, data, data_length);
+        prf->seed_length = data_length;
+    }
+
+    prf->state = PSA_TLS12_PRF_STATE_SEED_SET;
+
+    return PSA_SUCCESS;
+}
+
+static psa_status_t psa_tls12_prf_set_key(psa_tls12_prf_key_derivation_t *prf,
+                                          const uint8_t *data,
+                                          size_t data_length)
+{
+    if (prf->state != PSA_TLS12_PRF_STATE_SEED_SET &&
+        prf->state != PSA_TLS12_PRF_STATE_OTHER_KEY_SET) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    if (data_length != 0) {
+        prf->secret = mbedtls_calloc(1, data_length);
+        if (prf->secret == NULL) {
+            return PSA_ERROR_INSUFFICIENT_MEMORY;
+        }
+
+        memcpy(prf->secret, data, data_length);
+        prf->secret_length = data_length;
+    }
+
+    prf->state = PSA_TLS12_PRF_STATE_KEY_SET;
+
+    return PSA_SUCCESS;
+}
+
+static psa_status_t psa_tls12_prf_set_label(psa_tls12_prf_key_derivation_t *prf,
+                                            const uint8_t *data,
+                                            size_t data_length)
+{
+    if (prf->state != PSA_TLS12_PRF_STATE_KEY_SET) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    if (data_length != 0) {
+        prf->label = mbedtls_calloc(1, data_length);
+        if (prf->label == NULL) {
+            return PSA_ERROR_INSUFFICIENT_MEMORY;
+        }
+
+        memcpy(prf->label, data, data_length);
+        prf->label_length = data_length;
+    }
+
+    prf->state = PSA_TLS12_PRF_STATE_LABEL_SET;
+
+    return PSA_SUCCESS;
+}
+
+static psa_status_t psa_tls12_prf_input(psa_tls12_prf_key_derivation_t *prf,
+                                        psa_key_derivation_step_t step,
+                                        const uint8_t *data,
+                                        size_t data_length)
+{
+    switch (step) {
+        case PSA_KEY_DERIVATION_INPUT_SEED:
+            return psa_tls12_prf_set_seed(prf, data, data_length);
+        case PSA_KEY_DERIVATION_INPUT_SECRET:
+            return psa_tls12_prf_set_key(prf, data, data_length);
+        case PSA_KEY_DERIVATION_INPUT_LABEL:
+            return psa_tls12_prf_set_label(prf, data, data_length);
+        default:
+            return PSA_ERROR_INVALID_ARGUMENT;
+    }
+}
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF) ||
+        * MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS */
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
+static psa_status_t psa_tls12_prf_psk_to_ms_set_key(
+    psa_tls12_prf_key_derivation_t *prf,
+    const uint8_t *data,
+    size_t data_length)
+{
+    psa_status_t status;
+    const size_t pms_len = (prf->state == PSA_TLS12_PRF_STATE_OTHER_KEY_SET ?
+                            4 + data_length + prf->other_secret_length :
+                            4 + 2 * data_length);
+
+    if (data_length > PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    uint8_t *pms = mbedtls_calloc(1, pms_len);
+    if (pms == NULL) {
+        return PSA_ERROR_INSUFFICIENT_MEMORY;
+    }
+    uint8_t *cur = pms;
+
+    /* pure-PSK:
+     * Quoting RFC 4279, Section 2:
+     *
+     * The premaster secret is formed as follows: if the PSK is N octets
+     * long, concatenate a uint16 with the value N, N zero octets, a second
+     * uint16 with the value N, and the PSK itself.
+     *
+     * mixed-PSK:
+     * In a DHE-PSK, RSA-PSK, ECDHE-PSK the premaster secret is formed as
+     * follows: concatenate a uint16 with the length of the other secret,
+     * the other secret itself, uint16 with the length of PSK, and the
+     * PSK itself.
+     * For details please check:
+     * - RFC 4279, Section 4 for the definition of RSA-PSK,
+     * - RFC 4279, Section 3 for the definition of DHE-PSK,
+     * - RFC 5489 for the definition of ECDHE-PSK.
+     */
+
+    if (prf->state == PSA_TLS12_PRF_STATE_OTHER_KEY_SET) {
+        *cur++ = MBEDTLS_BYTE_1(prf->other_secret_length);
+        *cur++ = MBEDTLS_BYTE_0(prf->other_secret_length);
+        if (prf->other_secret_length != 0) {
+            memcpy(cur, prf->other_secret, prf->other_secret_length);
+            mbedtls_platform_zeroize(prf->other_secret, prf->other_secret_length);
+            cur += prf->other_secret_length;
+        }
+    } else {
+        *cur++ = MBEDTLS_BYTE_1(data_length);
+        *cur++ = MBEDTLS_BYTE_0(data_length);
+        memset(cur, 0, data_length);
+        cur += data_length;
+    }
+
+    *cur++ = MBEDTLS_BYTE_1(data_length);
+    *cur++ = MBEDTLS_BYTE_0(data_length);
+    memcpy(cur, data, data_length);
+    cur += data_length;
+
+    status = psa_tls12_prf_set_key(prf, pms, (size_t) (cur - pms));
+
+    mbedtls_zeroize_and_free(pms, pms_len);
+    return status;
+}
+
+static psa_status_t psa_tls12_prf_psk_to_ms_set_other_key(
+    psa_tls12_prf_key_derivation_t *prf,
+    const uint8_t *data,
+    size_t data_length)
+{
+    if (prf->state != PSA_TLS12_PRF_STATE_SEED_SET) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    if (data_length != 0) {
+        prf->other_secret = mbedtls_calloc(1, data_length);
+        if (prf->other_secret == NULL) {
+            return PSA_ERROR_INSUFFICIENT_MEMORY;
+        }
+
+        memcpy(prf->other_secret, data, data_length);
+        prf->other_secret_length = data_length;
+    } else {
+        prf->other_secret_length = 0;
+    }
+
+    prf->state = PSA_TLS12_PRF_STATE_OTHER_KEY_SET;
+
+    return PSA_SUCCESS;
+}
+
+static psa_status_t psa_tls12_prf_psk_to_ms_input(
+    psa_tls12_prf_key_derivation_t *prf,
+    psa_key_derivation_step_t step,
+    const uint8_t *data,
+    size_t data_length)
+{
+    switch (step) {
+        case PSA_KEY_DERIVATION_INPUT_SECRET:
+            return psa_tls12_prf_psk_to_ms_set_key(prf,
+                                                   data, data_length);
+            break;
+        case PSA_KEY_DERIVATION_INPUT_OTHER_SECRET:
+            return psa_tls12_prf_psk_to_ms_set_other_key(prf,
+                                                         data,
+                                                         data_length);
+            break;
+        default:
+            return psa_tls12_prf_input(prf, step, data, data_length);
+            break;
+
+    }
+}
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS */
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_ECJPAKE_TO_PMS)
+static psa_status_t psa_tls12_ecjpake_to_pms_input(
+    psa_tls12_ecjpake_to_pms_t *ecjpake,
+    psa_key_derivation_step_t step,
+    const uint8_t *data,
+    size_t data_length)
+{
+    if (data_length != PSA_TLS12_ECJPAKE_TO_PMS_INPUT_SIZE ||
+        step != PSA_KEY_DERIVATION_INPUT_SECRET) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    /* Check if the passed point is in an uncompressed form */
+    if (data[0] != 0x04) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    /* Only K.X has to be extracted - bytes 1 to 32 inclusive. */
+    memcpy(ecjpake->data, data + 1, PSA_TLS12_ECJPAKE_TO_PMS_DATA_SIZE);
+
+    return PSA_SUCCESS;
+}
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_ECJPAKE_TO_PMS */
+
+#if defined(PSA_HAVE_SOFT_PBKDF2)
+static psa_status_t psa_pbkdf2_set_input_cost(
+    psa_pbkdf2_key_derivation_t *pbkdf2,
+    psa_key_derivation_step_t step,
+    uint64_t data)
+{
+    if (step != PSA_KEY_DERIVATION_INPUT_COST) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    if (pbkdf2->state != PSA_PBKDF2_STATE_INIT) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    if (data > PSA_VENDOR_PBKDF2_MAX_ITERATIONS) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    if (data == 0) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    pbkdf2->input_cost = data;
+    pbkdf2->state = PSA_PBKDF2_STATE_INPUT_COST_SET;
+
+    return PSA_SUCCESS;
+}
+
+static psa_status_t psa_pbkdf2_set_salt(psa_pbkdf2_key_derivation_t *pbkdf2,
+                                        const uint8_t *data,
+                                        size_t data_length)
+{
+    if (pbkdf2->state == PSA_PBKDF2_STATE_INPUT_COST_SET) {
+        pbkdf2->state = PSA_PBKDF2_STATE_SALT_SET;
+    } else if (pbkdf2->state == PSA_PBKDF2_STATE_SALT_SET) {
+        /* Appending to existing salt. No state change. */
+    } else {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    if (data_length == 0) {
+        /* Appending an empty string, nothing to do. */
+    } else {
+        uint8_t *next_salt;
+
+        next_salt = mbedtls_calloc(1, data_length + pbkdf2->salt_length);
+        if (next_salt == NULL) {
+            return PSA_ERROR_INSUFFICIENT_MEMORY;
+        }
+
+        if (pbkdf2->salt_length != 0) {
+            memcpy(next_salt, pbkdf2->salt, pbkdf2->salt_length);
+        }
+        memcpy(next_salt + pbkdf2->salt_length, data, data_length);
+        pbkdf2->salt_length += data_length;
+        mbedtls_free(pbkdf2->salt);
+        pbkdf2->salt = next_salt;
+    }
+    return PSA_SUCCESS;
+}
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_PBKDF2_HMAC)
+static psa_status_t psa_pbkdf2_hmac_set_password(psa_algorithm_t hash_alg,
+                                                 const uint8_t *input,
+                                                 size_t input_len,
+                                                 uint8_t *output,
+                                                 size_t *output_len)
+{
+    psa_status_t status = PSA_SUCCESS;
+    if (input_len > PSA_HASH_BLOCK_LENGTH(hash_alg)) {
+        return psa_hash_compute(hash_alg, input, input_len, output,
+                                PSA_HMAC_MAX_HASH_BLOCK_SIZE, output_len);
+    } else if (input_len > 0) {
+        memcpy(output, input, input_len);
+    }
+    *output_len = PSA_HASH_BLOCK_LENGTH(hash_alg);
+    return status;
+}
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_PBKDF2_HMAC */
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_PBKDF2_AES_CMAC_PRF_128)
+static psa_status_t psa_pbkdf2_cmac_set_password(const uint8_t *input,
+                                                 size_t input_len,
+                                                 uint8_t *output,
+                                                 size_t *output_len)
+{
+    psa_status_t status = PSA_SUCCESS;
+    if (input_len != PSA_MAC_LENGTH(PSA_KEY_TYPE_AES, 128U, PSA_ALG_CMAC)) {
+        psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+        uint8_t zeros[16] = { 0 };
+        psa_set_key_type(&attributes, PSA_KEY_TYPE_AES);
+        psa_set_key_bits(&attributes, PSA_BYTES_TO_BITS(sizeof(zeros)));
+        psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_MESSAGE);
+        /* Passing PSA_MAC_LENGTH(PSA_KEY_TYPE_AES, 128U, PSA_ALG_CMAC) as
+         * mac_size as the driver function sets mac_output_length = mac_size
+         * on success. See https://github.com/Mbed-TLS/mbedtls/issues/7801 */
+        status = psa_driver_wrapper_mac_compute(&attributes,
+                                                zeros, sizeof(zeros),
+                                                PSA_ALG_CMAC, input, input_len,
+                                                output,
+                                                PSA_MAC_LENGTH(PSA_KEY_TYPE_AES,
+                                                               128U,
+                                                               PSA_ALG_CMAC),
+                                                output_len);
+    } else {
+        memcpy(output, input, input_len);
+        *output_len = PSA_MAC_LENGTH(PSA_KEY_TYPE_AES, 128U, PSA_ALG_CMAC);
+    }
+    return status;
+}
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_PBKDF2_AES_CMAC_PRF_128 */
+
+static psa_status_t psa_pbkdf2_set_password(psa_pbkdf2_key_derivation_t *pbkdf2,
+                                            psa_algorithm_t kdf_alg,
+                                            const uint8_t *data,
+                                            size_t data_length)
+{
+    psa_status_t status = PSA_SUCCESS;
+    if (pbkdf2->state != PSA_PBKDF2_STATE_SALT_SET) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_PBKDF2_HMAC)
+    if (PSA_ALG_IS_PBKDF2_HMAC(kdf_alg)) {
+        psa_algorithm_t hash_alg = PSA_ALG_PBKDF2_HMAC_GET_HASH(kdf_alg);
+        status = psa_pbkdf2_hmac_set_password(hash_alg, data, data_length,
+                                              pbkdf2->password,
+                                              &pbkdf2->password_length);
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_PBKDF2_HMAC */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_PBKDF2_AES_CMAC_PRF_128)
+    if (kdf_alg == PSA_ALG_PBKDF2_AES_CMAC_PRF_128) {
+        status = psa_pbkdf2_cmac_set_password(data, data_length,
+                                              pbkdf2->password,
+                                              &pbkdf2->password_length);
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_PBKDF2_AES_CMAC_PRF_128 */
+    {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    pbkdf2->state = PSA_PBKDF2_STATE_PASSWORD_SET;
+
+    return status;
+}
+
+static psa_status_t psa_pbkdf2_input(psa_pbkdf2_key_derivation_t *pbkdf2,
+                                     psa_algorithm_t kdf_alg,
+                                     psa_key_derivation_step_t step,
+                                     const uint8_t *data,
+                                     size_t data_length)
+{
+    switch (step) {
+        case PSA_KEY_DERIVATION_INPUT_SALT:
+            return psa_pbkdf2_set_salt(pbkdf2, data, data_length);
+        case PSA_KEY_DERIVATION_INPUT_PASSWORD:
+            return psa_pbkdf2_set_password(pbkdf2, kdf_alg, data, data_length);
+        default:
+            return PSA_ERROR_INVALID_ARGUMENT;
+    }
+}
+#endif /* PSA_HAVE_SOFT_PBKDF2 */
+
+/** Check whether the given key type is acceptable for the given
+ * input step of a key derivation.
+ *
+ * Secret inputs must have the type #PSA_KEY_TYPE_DERIVE.
+ * Non-secret inputs must have the type #PSA_KEY_TYPE_RAW_DATA.
+ * Both secret and non-secret inputs can alternatively have the type
+ * #PSA_KEY_TYPE_NONE, which is never the type of a key object, meaning
+ * that the input was passed as a buffer rather than via a key object.
+ */
+static int psa_key_derivation_check_input_type(
+    psa_key_derivation_step_t step,
+    psa_key_type_t key_type)
+{
+    switch (step) {
+        case PSA_KEY_DERIVATION_INPUT_SECRET:
+            if (key_type == PSA_KEY_TYPE_DERIVE) {
+                return PSA_SUCCESS;
+            }
+            if (key_type == PSA_KEY_TYPE_NONE) {
+                return PSA_SUCCESS;
+            }
+            break;
+        case PSA_KEY_DERIVATION_INPUT_OTHER_SECRET:
+            if (key_type == PSA_KEY_TYPE_DERIVE) {
+                return PSA_SUCCESS;
+            }
+            if (key_type == PSA_KEY_TYPE_NONE) {
+                return PSA_SUCCESS;
+            }
+            break;
+        case PSA_KEY_DERIVATION_INPUT_LABEL:
+        case PSA_KEY_DERIVATION_INPUT_SALT:
+        case PSA_KEY_DERIVATION_INPUT_INFO:
+        case PSA_KEY_DERIVATION_INPUT_SEED:
+            if (key_type == PSA_KEY_TYPE_RAW_DATA) {
+                return PSA_SUCCESS;
+            }
+            if (key_type == PSA_KEY_TYPE_NONE) {
+                return PSA_SUCCESS;
+            }
+            break;
+        case PSA_KEY_DERIVATION_INPUT_PASSWORD:
+            if (key_type == PSA_KEY_TYPE_PASSWORD) {
+                return PSA_SUCCESS;
+            }
+            if (key_type == PSA_KEY_TYPE_DERIVE) {
+                return PSA_SUCCESS;
+            }
+            if (key_type == PSA_KEY_TYPE_NONE) {
+                return PSA_SUCCESS;
+            }
+            break;
+    }
+    return PSA_ERROR_INVALID_ARGUMENT;
+}
+
+static psa_status_t psa_key_derivation_input_internal(
+    psa_key_derivation_operation_t *operation,
+    psa_key_derivation_step_t step,
+    psa_key_type_t key_type,
+    const uint8_t *data,
+    size_t data_length)
+{
+    psa_status_t status;
+    psa_algorithm_t kdf_alg = psa_key_derivation_get_kdf_alg(operation);
+
+    status = psa_key_derivation_check_input_type(step, key_type);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+#if defined(BUILTIN_ALG_ANY_HKDF)
+    if (PSA_ALG_IS_ANY_HKDF(kdf_alg)) {
+        status = psa_hkdf_input(&operation->ctx.hkdf, kdf_alg,
+                                step, data, data_length);
+    } else
+#endif /* BUILTIN_ALG_ANY_HKDF */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF)
+    if (PSA_ALG_IS_TLS12_PRF(kdf_alg)) {
+        status = psa_tls12_prf_input(&operation->ctx.tls12_prf,
+                                     step, data, data_length);
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_PRF */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS)
+    if (PSA_ALG_IS_TLS12_PSK_TO_MS(kdf_alg)) {
+        status = psa_tls12_prf_psk_to_ms_input(&operation->ctx.tls12_prf,
+                                               step, data, data_length);
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_PSK_TO_MS */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_TLS12_ECJPAKE_TO_PMS)
+    if (kdf_alg == PSA_ALG_TLS12_ECJPAKE_TO_PMS) {
+        status = psa_tls12_ecjpake_to_pms_input(
+            &operation->ctx.tls12_ecjpake_to_pms, step, data, data_length);
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_TLS12_ECJPAKE_TO_PMS */
+#if defined(PSA_HAVE_SOFT_PBKDF2)
+    if (PSA_ALG_IS_PBKDF2(kdf_alg)) {
+        status = psa_pbkdf2_input(&operation->ctx.pbkdf2, kdf_alg,
+                                  step, data, data_length);
+    } else
+#endif /* PSA_HAVE_SOFT_PBKDF2 */
+    {
+        /* This can't happen unless the operation object was not initialized */
+        (void) data;
+        (void) data_length;
+        (void) kdf_alg;
+        return PSA_ERROR_BAD_STATE;
+    }
+
+exit:
+    if (status != PSA_SUCCESS) {
+        psa_key_derivation_abort(operation);
+    }
+    return status;
+}
+
+static psa_status_t psa_key_derivation_input_integer_internal(
+    psa_key_derivation_operation_t *operation,
+    psa_key_derivation_step_t step,
+    uint64_t value)
+{
+    psa_status_t status;
+    psa_algorithm_t kdf_alg = psa_key_derivation_get_kdf_alg(operation);
+
+#if defined(PSA_HAVE_SOFT_PBKDF2)
+    if (PSA_ALG_IS_PBKDF2(kdf_alg)) {
+        status = psa_pbkdf2_set_input_cost(
+            &operation->ctx.pbkdf2, step, value);
+    } else
+#endif /* PSA_HAVE_SOFT_PBKDF2 */
+    {
+        (void) step;
+        (void) value;
+        (void) kdf_alg;
+        status = PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    if (status != PSA_SUCCESS) {
+        psa_key_derivation_abort(operation);
+    }
+    return status;
+}
+
+psa_status_t psa_key_derivation_input_bytes(
+    psa_key_derivation_operation_t *operation,
+    psa_key_derivation_step_t step,
+    const uint8_t *data_external,
+    size_t data_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    LOCAL_INPUT_DECLARE(data_external, data);
+
+    LOCAL_INPUT_ALLOC(data_external, data_length, data);
+
+    status = psa_key_derivation_input_internal(operation, step,
+                                               PSA_KEY_TYPE_NONE,
+                                               data, data_length);
+#if !defined(MBEDTLS_PSA_ASSUME_EXCLUSIVE_BUFFERS)
+exit:
+#endif
+    LOCAL_INPUT_FREE(data_external, data);
+    return status;
+}
+
+psa_status_t psa_key_derivation_input_integer(
+    psa_key_derivation_operation_t *operation,
+    psa_key_derivation_step_t step,
+    uint64_t value)
+{
+    return psa_key_derivation_input_integer_internal(operation, step, value);
+}
+
+psa_status_t psa_key_derivation_input_key(
+    psa_key_derivation_operation_t *operation,
+    psa_key_derivation_step_t step,
+    mbedtls_svc_key_id_t key)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_slot_t *slot;
+
+    status = psa_get_and_lock_transparent_key_slot_with_policy(
+        key, &slot, PSA_KEY_USAGE_DERIVE, operation->alg);
+    if (status != PSA_SUCCESS) {
+        psa_key_derivation_abort(operation);
+        return status;
+    }
+
+    /* Passing a key object as a SECRET or PASSWORD input unlocks the
+     * permission to output to a key object. */
+    if (step == PSA_KEY_DERIVATION_INPUT_SECRET ||
+        step == PSA_KEY_DERIVATION_INPUT_PASSWORD) {
+        operation->can_output_key = 1;
+    }
+
+    status = psa_key_derivation_input_internal(operation,
+                                               step, slot->attr.type,
+                                               slot->key.data,
+                                               slot->key.bytes);
+
+    unlock_status = psa_unregister_read_under_mutex(slot);
+
+    return (status == PSA_SUCCESS) ? unlock_status : status;
+}
+
+
+
+/****************************************************************/
+/* Key agreement */
+/****************************************************************/
+
+psa_status_t psa_key_agreement_raw_builtin(const psa_key_attributes_t *attributes,
+                                           const uint8_t *key_buffer,
+                                           size_t key_buffer_size,
+                                           psa_algorithm_t alg,
+                                           const uint8_t *peer_key,
+                                           size_t peer_key_length,
+                                           uint8_t *shared_secret,
+                                           size_t shared_secret_size,
+                                           size_t *shared_secret_length)
+{
+    switch (alg) {
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_ECDH)
+        case PSA_ALG_ECDH:
+            return mbedtls_psa_key_agreement_ecdh(attributes, key_buffer,
+                                                  key_buffer_size, alg,
+                                                  peer_key, peer_key_length,
+                                                  shared_secret,
+                                                  shared_secret_size,
+                                                  shared_secret_length);
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_ECDH */
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_FFDH)
+        case PSA_ALG_FFDH:
+            return mbedtls_psa_ffdh_key_agreement(attributes,
+                                                  peer_key,
+                                                  peer_key_length,
+                                                  key_buffer,
+                                                  key_buffer_size,
+                                                  shared_secret,
+                                                  shared_secret_size,
+                                                  shared_secret_length);
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_FFDH */
+
+        default:
+            (void) attributes;
+            (void) key_buffer;
+            (void) key_buffer_size;
+            (void) peer_key;
+            (void) peer_key_length;
+            (void) shared_secret;
+            (void) shared_secret_size;
+            (void) shared_secret_length;
+            return PSA_ERROR_NOT_SUPPORTED;
+    }
+}
+
+/** Internal function for raw key agreement
+ *  Calls the driver wrapper which will hand off key agreement task
+ *  to the driver's implementation if a driver is present.
+ *  Fallback specified in the driver wrapper is built-in raw key agreement
+ *  (psa_key_agreement_raw_builtin).
+ */
+static psa_status_t psa_key_agreement_raw_internal(psa_algorithm_t alg,
+                                                   psa_key_slot_t *private_key,
+                                                   const uint8_t *peer_key,
+                                                   size_t peer_key_length,
+                                                   uint8_t *shared_secret,
+                                                   size_t shared_secret_size,
+                                                   size_t *shared_secret_length)
+{
+    if (!PSA_ALG_IS_RAW_KEY_AGREEMENT(alg)) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    return psa_driver_wrapper_key_agreement(&private_key->attr,
+                                            private_key->key.data,
+                                            private_key->key.bytes, alg,
+                                            peer_key, peer_key_length,
+                                            shared_secret,
+                                            shared_secret_size,
+                                            shared_secret_length);
+}
+
+/* Note that if this function fails, you must call psa_key_derivation_abort()
+ * to potentially free embedded data structures and wipe confidential data.
+ */
+static psa_status_t psa_key_agreement_internal(psa_key_derivation_operation_t *operation,
+                                               psa_key_derivation_step_t step,
+                                               psa_key_slot_t *private_key,
+                                               const uint8_t *peer_key,
+                                               size_t peer_key_length)
+{
+    psa_status_t status;
+    uint8_t shared_secret[PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE] = { 0 };
+    size_t shared_secret_length = 0;
+    psa_algorithm_t ka_alg = PSA_ALG_KEY_AGREEMENT_GET_BASE(operation->alg);
+
+    /* Step 1: run the secret agreement algorithm to generate the shared
+     * secret. */
+    status = psa_key_agreement_raw_internal(ka_alg,
+                                            private_key,
+                                            peer_key, peer_key_length,
+                                            shared_secret,
+                                            sizeof(shared_secret),
+                                            &shared_secret_length);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    /* Step 2: set up the key derivation to generate key material from
+     * the shared secret. A shared secret is permitted wherever a key
+     * of type DERIVE is permitted. */
+    status = psa_key_derivation_input_internal(operation, step,
+                                               PSA_KEY_TYPE_DERIVE,
+                                               shared_secret,
+                                               shared_secret_length);
+exit:
+    mbedtls_platform_zeroize(shared_secret, shared_secret_length);
+    return status;
+}
+
+psa_status_t psa_key_derivation_key_agreement(psa_key_derivation_operation_t *operation,
+                                              psa_key_derivation_step_t step,
+                                              mbedtls_svc_key_id_t private_key,
+                                              const uint8_t *peer_key_external,
+                                              size_t peer_key_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_slot_t *slot;
+    LOCAL_INPUT_DECLARE(peer_key_external, peer_key);
+
+    if (!PSA_ALG_IS_KEY_AGREEMENT(operation->alg)) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+    status = psa_get_and_lock_transparent_key_slot_with_policy(
+        private_key, &slot, PSA_KEY_USAGE_DERIVE, operation->alg);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    LOCAL_INPUT_ALLOC(peer_key_external, peer_key_length, peer_key);
+    status = psa_key_agreement_internal(operation, step,
+                                        slot,
+                                        peer_key, peer_key_length);
+
+#if !defined(MBEDTLS_PSA_ASSUME_EXCLUSIVE_BUFFERS)
+exit:
+#endif
+    if (status != PSA_SUCCESS) {
+        psa_key_derivation_abort(operation);
+    } else {
+        /* If a private key has been added as SECRET, we allow the derived
+         * key material to be used as a key in PSA Crypto. */
+        if (step == PSA_KEY_DERIVATION_INPUT_SECRET) {
+            operation->can_output_key = 1;
+        }
+    }
+
+    unlock_status = psa_unregister_read_under_mutex(slot);
+    LOCAL_INPUT_FREE(peer_key_external, peer_key);
+
+    return (status == PSA_SUCCESS) ? unlock_status : status;
+}
+
+psa_status_t psa_raw_key_agreement(psa_algorithm_t alg,
+                                   mbedtls_svc_key_id_t private_key,
+                                   const uint8_t *peer_key_external,
+                                   size_t peer_key_length,
+                                   uint8_t *output_external,
+                                   size_t output_size,
+                                   size_t *output_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_slot_t *slot = NULL;
+    size_t expected_length;
+    LOCAL_INPUT_DECLARE(peer_key_external, peer_key);
+    LOCAL_OUTPUT_DECLARE(output_external, output);
+    LOCAL_OUTPUT_ALLOC(output_external, output_size, output);
+
+    if (!PSA_ALG_IS_KEY_AGREEMENT(alg)) {
+        status = PSA_ERROR_INVALID_ARGUMENT;
+        goto exit;
+    }
+    status = psa_get_and_lock_transparent_key_slot_with_policy(
+        private_key, &slot, PSA_KEY_USAGE_DERIVE, alg);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    /* PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE() is in general an upper bound
+     * for the output size. The PSA specification only guarantees that this
+     * function works if output_size >= PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE(...),
+     * but it might be nice to allow smaller buffers if the output fits.
+     * At the time of writing this comment, with only ECDH implemented,
+     * PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE() is exact so the point is moot.
+     * If FFDH is implemented, PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE() can easily
+     * be exact for it as well. */
+    expected_length =
+        PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE(slot->attr.type, slot->attr.bits);
+    if (output_size < expected_length) {
+        status = PSA_ERROR_BUFFER_TOO_SMALL;
+        goto exit;
+    }
+
+    LOCAL_INPUT_ALLOC(peer_key_external, peer_key_length, peer_key);
+    status = psa_key_agreement_raw_internal(alg, slot,
+                                            peer_key, peer_key_length,
+                                            output, output_size,
+                                            output_length);
+
+exit:
+    /* Check for successful allocation of output,
+     * with an unsuccessful status. */
+    if (output != NULL && status != PSA_SUCCESS) {
+        /* If an error happens and is not handled properly, the output
+         * may be used as a key to protect sensitive data. Arrange for such
+         * a key to be random, which is likely to result in decryption or
+         * verification errors. This is better than filling the buffer with
+         * some constant data such as zeros, which would result in the data
+         * being protected with a reproducible, easily knowable key.
+         */
+        psa_generate_random_internal(output, output_size);
+        *output_length = output_size;
+    }
+
+    if (output == NULL) {
+        /* output allocation failed. */
+        *output_length = 0;
+    }
+
+    unlock_status = psa_unregister_read_under_mutex(slot);
+
+    LOCAL_INPUT_FREE(peer_key_external, peer_key);
+    LOCAL_OUTPUT_FREE(output_external, output);
+    return (status == PSA_SUCCESS) ? unlock_status : status;
+}
+
+
+/****************************************************************/
+/* Random generation */
+/****************************************************************/
+
+#if defined(MBEDTLS_PSA_INJECT_ENTROPY)
+#include "entropy_poll.h"
+#endif
+
+/** Initialize the PSA random generator.
+ *
+ *  Note: the mbedtls_threading_psa_rngdata_mutex should be held when calling
+ *  this function if mutexes are enabled.
+ */
+static void mbedtls_psa_random_init(mbedtls_psa_random_context_t *rng)
+{
+#if defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
+    memset(rng, 0, sizeof(*rng));
+#else /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
+
+    /* Set default configuration if
+     * mbedtls_psa_crypto_configure_entropy_sources() hasn't been called. */
+    if (rng->entropy_init == NULL) {
+        rng->entropy_init = mbedtls_entropy_init;
+    }
+    if (rng->entropy_free == NULL) {
+        rng->entropy_free = mbedtls_entropy_free;
+    }
+
+    rng->entropy_init(&rng->entropy);
+#if defined(MBEDTLS_PSA_INJECT_ENTROPY) && \
+    defined(MBEDTLS_NO_DEFAULT_ENTROPY_SOURCES)
+    /* The PSA entropy injection feature depends on using NV seed as an entropy
+     * source. Add NV seed as an entropy source for PSA entropy injection. */
+    mbedtls_entropy_add_source(&rng->entropy,
+                               mbedtls_nv_seed_poll, NULL,
+                               MBEDTLS_ENTROPY_BLOCK_SIZE,
+                               MBEDTLS_ENTROPY_SOURCE_STRONG);
+#endif
+
+    mbedtls_psa_drbg_init(&rng->drbg);
+#endif /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
+}
+
+/** Deinitialize the PSA random generator.
+ *
+ *  Note: the mbedtls_threading_psa_rngdata_mutex should be held when calling
+ *  this function if mutexes are enabled.
+ */
+static void mbedtls_psa_random_free(mbedtls_psa_random_context_t *rng)
+{
+#if defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
+    memset(rng, 0, sizeof(*rng));
+#else /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
+    mbedtls_psa_drbg_free(&rng->drbg);
+    rng->entropy_free(&rng->entropy);
+#endif /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
+}
+
+/** Seed the PSA random generator.
+ */
+static psa_status_t mbedtls_psa_random_seed(mbedtls_psa_random_context_t *rng)
+{
+#if defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
+    /* Do nothing: the external RNG seeds itself. */
+    (void) rng;
+    return PSA_SUCCESS;
+#else /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
+    const unsigned char drbg_seed[] = "PSA";
+    int ret = mbedtls_psa_drbg_seed(&rng->drbg, &rng->entropy,
+                                    drbg_seed, sizeof(drbg_seed) - 1);
+    return mbedtls_to_psa_error(ret);
+#endif /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
+}
+
+psa_status_t psa_generate_random(uint8_t *output_external,
+                                 size_t output_size)
+{
+    psa_status_t status;
+
+    LOCAL_OUTPUT_DECLARE(output_external, output);
+    LOCAL_OUTPUT_ALLOC(output_external, output_size, output);
+
+    status = psa_generate_random_internal(output, output_size);
+
+#if !defined(MBEDTLS_PSA_ASSUME_EXCLUSIVE_BUFFERS)
+exit:
+#endif
+    LOCAL_OUTPUT_FREE(output_external, output);
+    return status;
+}
+
+#if defined(MBEDTLS_PSA_INJECT_ENTROPY)
+psa_status_t mbedtls_psa_inject_entropy(const uint8_t *seed,
+                                        size_t seed_size)
+{
+    if (psa_get_initialized()) {
+        return PSA_ERROR_NOT_PERMITTED;
+    }
+
+    if (((seed_size < MBEDTLS_ENTROPY_MIN_PLATFORM) ||
+         (seed_size < MBEDTLS_ENTROPY_BLOCK_SIZE)) ||
+        (seed_size > MBEDTLS_ENTROPY_MAX_SEED_SIZE)) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    return mbedtls_psa_storage_inject_entropy(seed, seed_size);
+}
+#endif /* MBEDTLS_PSA_INJECT_ENTROPY */
+
+/** Validate the key type and size for key generation
+ *
+ * \param  type  The key type
+ * \param  bits  The number of bits of the key
+ *
+ * \retval #PSA_SUCCESS
+ *         The key type and size are valid.
+ * \retval #PSA_ERROR_INVALID_ARGUMENT
+ *         The size in bits of the key is not valid.
+ * \retval #PSA_ERROR_NOT_SUPPORTED
+ *         The type and/or the size in bits of the key or the combination of
+ *         the two is not supported.
+ */
+static psa_status_t psa_validate_key_type_and_size_for_key_generation(
+    psa_key_type_t type, size_t bits)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    if (key_type_is_raw_bytes(type)) {
+        status = psa_validate_unstructured_key_bit_size(type, bits);
+        if (status != PSA_SUCCESS) {
+            return status;
+        }
+    } else
+#if defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_GENERATE)
+    if (PSA_KEY_TYPE_IS_RSA(type) && PSA_KEY_TYPE_IS_KEY_PAIR(type)) {
+        if (bits > PSA_VENDOR_RSA_MAX_KEY_BITS) {
+            return PSA_ERROR_NOT_SUPPORTED;
+        }
+        if (bits < PSA_VENDOR_RSA_GENERATE_MIN_KEY_BITS) {
+            return PSA_ERROR_NOT_SUPPORTED;
+        }
+
+        /* Accept only byte-aligned keys, for the same reasons as
+         * in psa_import_rsa_key(). */
+        if (bits % 8 != 0) {
+            return PSA_ERROR_NOT_SUPPORTED;
+        }
+    } else
+#endif /* defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_GENERATE) */
+
+#if defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_GENERATE)
+    if (PSA_KEY_TYPE_IS_ECC(type) && PSA_KEY_TYPE_IS_KEY_PAIR(type)) {
+        /* To avoid empty block, return successfully here. */
+        return PSA_SUCCESS;
+    } else
+#endif /* defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_GENERATE) */
+
+#if defined(PSA_WANT_KEY_TYPE_DH_KEY_PAIR_GENERATE)
+    if (PSA_KEY_TYPE_IS_DH(type) && PSA_KEY_TYPE_IS_KEY_PAIR(type)) {
+        if (psa_is_dh_key_size_valid(bits) == 0) {
+            return PSA_ERROR_NOT_SUPPORTED;
+        }
+    } else
+#endif /* defined(PSA_WANT_KEY_TYPE_DH_KEY_PAIR_GENERATE) */
+    {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    return PSA_SUCCESS;
+}
+
+psa_status_t psa_generate_key_internal(
+    const psa_key_attributes_t *attributes,
+    const psa_key_production_parameters_t *params, size_t params_data_length,
+    uint8_t *key_buffer, size_t key_buffer_size, size_t *key_buffer_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_type_t type = attributes->type;
+
+    /* Only used for RSA */
+    (void) params;
+    (void) params_data_length;
+
+    if (key_type_is_raw_bytes(type)) {
+        status = psa_generate_random_internal(key_buffer, key_buffer_size);
+        if (status != PSA_SUCCESS) {
+            return status;
+        }
+
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES)
+        if (type == PSA_KEY_TYPE_DES) {
+            psa_des_set_key_parity(key_buffer, key_buffer_size);
+        }
+#endif /* MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES */
+    } else
+
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR_GENERATE)
+    if (type == PSA_KEY_TYPE_RSA_KEY_PAIR) {
+        return mbedtls_psa_rsa_generate_key(attributes,
+                                            params, params_data_length,
+                                            key_buffer,
+                                            key_buffer_size,
+                                            key_buffer_length);
+    } else
+#endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR_GENERATE) */
+
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR_GENERATE)
+    if (PSA_KEY_TYPE_IS_ECC(type) && PSA_KEY_TYPE_IS_KEY_PAIR(type)) {
+        return mbedtls_psa_ecp_generate_key(attributes,
+                                            key_buffer,
+                                            key_buffer_size,
+                                            key_buffer_length);
+    } else
+#endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR_GENERATE) */
+
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_KEY_PAIR_GENERATE)
+    if (PSA_KEY_TYPE_IS_DH(type) && PSA_KEY_TYPE_IS_KEY_PAIR(type)) {
+        return mbedtls_psa_ffdh_generate_key(attributes,
+                                             key_buffer,
+                                             key_buffer_size,
+                                             key_buffer_length);
+    } else
+#endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_KEY_PAIR_GENERATE) */
+    {
+        (void) key_buffer_length;
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    return PSA_SUCCESS;
+}
+
+psa_status_t psa_generate_key_ext(const psa_key_attributes_t *attributes,
+                                  const psa_key_production_parameters_t *params,
+                                  size_t params_data_length,
+                                  mbedtls_svc_key_id_t *key)
+{
+    psa_status_t status;
+    psa_key_slot_t *slot = NULL;
+    psa_se_drv_table_entry_t *driver = NULL;
+    size_t key_buffer_size;
+
+    *key = MBEDTLS_SVC_KEY_ID_INIT;
+
+    /* Reject any attempt to create a zero-length key so that we don't
+     * risk tripping up later, e.g. on a malloc(0) that returns NULL. */
+    if (psa_get_key_bits(attributes) == 0) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    /* Reject any attempt to create a public key. */
+    if (PSA_KEY_TYPE_IS_PUBLIC_KEY(attributes->type)) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+#if defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_GENERATE)
+    if (attributes->type == PSA_KEY_TYPE_RSA_KEY_PAIR) {
+        if (params->flags != 0) {
+            return PSA_ERROR_INVALID_ARGUMENT;
+        }
+    } else
+#endif
+    if (!psa_key_production_parameters_are_default(params, params_data_length)) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    status = psa_start_key_creation(PSA_KEY_CREATION_GENERATE, attributes,
+                                    &slot, &driver);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    /* In the case of a transparent key or an opaque key stored in local
+     * storage ( thus not in the case of generating a key in a secure element
+     * with storage ( MBEDTLS_PSA_CRYPTO_SE_C ) ),we have to allocate a
+     * buffer to hold the generated key material. */
+    if (slot->key.data == NULL) {
+        if (PSA_KEY_LIFETIME_GET_LOCATION(attributes->lifetime) ==
+            PSA_KEY_LOCATION_LOCAL_STORAGE) {
+            status = psa_validate_key_type_and_size_for_key_generation(
+                attributes->type, attributes->bits);
+            if (status != PSA_SUCCESS) {
+                goto exit;
+            }
+
+            key_buffer_size = PSA_EXPORT_KEY_OUTPUT_SIZE(
+                attributes->type,
+                attributes->bits);
+        } else {
+            status = psa_driver_wrapper_get_key_buffer_size(
+                attributes, &key_buffer_size);
+            if (status != PSA_SUCCESS) {
+                goto exit;
+            }
+        }
+
+        status = psa_allocate_buffer_to_slot(slot, key_buffer_size);
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+    }
+
+    status = psa_driver_wrapper_generate_key(attributes,
+                                             params, params_data_length,
+                                             slot->key.data, slot->key.bytes,
+                                             &slot->key.bytes);
+    if (status != PSA_SUCCESS) {
+        psa_remove_key_data_from_memory(slot);
+    }
+
+exit:
+    if (status == PSA_SUCCESS) {
+        status = psa_finish_key_creation(slot, driver, key);
+    }
+    if (status != PSA_SUCCESS) {
+        psa_fail_key_creation(slot, driver);
+    }
+
+    return status;
+}
+
+psa_status_t psa_generate_key(const psa_key_attributes_t *attributes,
+                              mbedtls_svc_key_id_t *key)
+{
+    return psa_generate_key_ext(attributes,
+                                &default_production_parameters, 0,
+                                key);
+}
+
+/****************************************************************/
+/* Module setup */
+/****************************************************************/
+
+#if !defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
+psa_status_t mbedtls_psa_crypto_configure_entropy_sources(
+    void (* entropy_init)(mbedtls_entropy_context *ctx),
+    void (* entropy_free)(mbedtls_entropy_context *ctx))
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+#if defined(MBEDTLS_THREADING_C)
+    mbedtls_mutex_lock(&mbedtls_threading_psa_rngdata_mutex);
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+    if (global_data.rng_state != RNG_NOT_INITIALIZED) {
+        status = PSA_ERROR_BAD_STATE;
+    } else {
+        global_data.rng.entropy_init = entropy_init;
+        global_data.rng.entropy_free = entropy_free;
+        status = PSA_SUCCESS;
+    }
+
+#if defined(MBEDTLS_THREADING_C)
+    mbedtls_mutex_unlock(&mbedtls_threading_psa_rngdata_mutex);
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+    return status;
+}
+#endif /* !defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG) */
+
+void mbedtls_psa_crypto_free(void)
+{
+
+#if defined(MBEDTLS_THREADING_C)
+    mbedtls_mutex_lock(&mbedtls_threading_psa_globaldata_mutex);
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+    /* Nothing to do to free transaction. */
+    if (global_data.initialized & PSA_CRYPTO_SUBSYSTEM_TRANSACTION_INITIALIZED) {
+        global_data.initialized &= ~PSA_CRYPTO_SUBSYSTEM_TRANSACTION_INITIALIZED;
+    }
+
+    if (global_data.initialized & PSA_CRYPTO_SUBSYSTEM_KEY_SLOTS_INITIALIZED) {
+        psa_wipe_all_key_slots();
+        global_data.initialized &= ~PSA_CRYPTO_SUBSYSTEM_KEY_SLOTS_INITIALIZED;
+    }
+
+#if defined(MBEDTLS_THREADING_C)
+    mbedtls_mutex_unlock(&mbedtls_threading_psa_globaldata_mutex);
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+#if defined(MBEDTLS_THREADING_C)
+    mbedtls_mutex_lock(&mbedtls_threading_psa_rngdata_mutex);
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+    if (global_data.rng_state != RNG_NOT_INITIALIZED) {
+        mbedtls_psa_random_free(&global_data.rng);
+    }
+    global_data.rng_state = RNG_NOT_INITIALIZED;
+    mbedtls_platform_zeroize(&global_data.rng, sizeof(global_data.rng));
+
+#if defined(MBEDTLS_THREADING_C)
+    mbedtls_mutex_unlock(&mbedtls_threading_psa_rngdata_mutex);
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+#if defined(MBEDTLS_THREADING_C)
+    mbedtls_mutex_lock(&mbedtls_threading_psa_globaldata_mutex);
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+    /* Terminate drivers */
+    if (global_data.initialized & PSA_CRYPTO_SUBSYSTEM_DRIVER_WRAPPERS_INITIALIZED) {
+        psa_driver_wrapper_free();
+        global_data.initialized &= ~PSA_CRYPTO_SUBSYSTEM_DRIVER_WRAPPERS_INITIALIZED;
+    }
+
+#if defined(MBEDTLS_THREADING_C)
+    mbedtls_mutex_unlock(&mbedtls_threading_psa_globaldata_mutex);
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+}
+
+#if defined(PSA_CRYPTO_STORAGE_HAS_TRANSACTIONS)
+/** Recover a transaction that was interrupted by a power failure.
+ *
+ * This function is called during initialization, before psa_crypto_init()
+ * returns. If this function returns a failure status, the initialization
+ * fails.
+ */
+static psa_status_t psa_crypto_recover_transaction(
+    const psa_crypto_transaction_t *transaction)
+{
+    switch (transaction->unknown.type) {
+        case PSA_CRYPTO_TRANSACTION_CREATE_KEY:
+        case PSA_CRYPTO_TRANSACTION_DESTROY_KEY:
+        /* TODO - fall through to the failure case until this
+         * is implemented.
+         * https://github.com/ARMmbed/mbed-crypto/issues/218
+         */
+        default:
+            /* We found an unsupported transaction in the storage.
+             * We don't know what state the storage is in. Give up. */
+            return PSA_ERROR_DATA_INVALID;
+    }
+}
+#endif /* PSA_CRYPTO_STORAGE_HAS_TRANSACTIONS */
+
+static psa_status_t mbedtls_psa_crypto_init_subsystem(mbedtls_psa_crypto_subsystem subsystem)
+{
+    psa_status_t status = PSA_SUCCESS;
+    uint8_t driver_wrappers_initialized = 0;
+
+    switch (subsystem) {
+        case PSA_CRYPTO_SUBSYSTEM_DRIVER_WRAPPERS:
+
+#if defined(MBEDTLS_THREADING_C)
+            PSA_THREADING_CHK_GOTO_EXIT(mbedtls_mutex_lock(&mbedtls_threading_psa_globaldata_mutex));
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+            if (!(global_data.initialized & PSA_CRYPTO_SUBSYSTEM_DRIVER_WRAPPERS_INITIALIZED)) {
+                /* Init drivers */
+                status = psa_driver_wrapper_init();
+
+                /* Drivers need shutdown regardless of startup errors. */
+                global_data.initialized |= PSA_CRYPTO_SUBSYSTEM_DRIVER_WRAPPERS_INITIALIZED;
+
+
+            }
+#if defined(MBEDTLS_THREADING_C)
+            PSA_THREADING_CHK_GOTO_EXIT(mbedtls_mutex_unlock(
+                                            &mbedtls_threading_psa_globaldata_mutex));
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+            break;
+
+        case PSA_CRYPTO_SUBSYSTEM_KEY_SLOTS:
+
+#if defined(MBEDTLS_THREADING_C)
+            PSA_THREADING_CHK_GOTO_EXIT(mbedtls_mutex_lock(&mbedtls_threading_psa_globaldata_mutex));
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+            if (!(global_data.initialized & PSA_CRYPTO_SUBSYSTEM_KEY_SLOTS_INITIALIZED)) {
+                status = psa_initialize_key_slots();
+
+                /* Need to wipe keys even if initialization fails. */
+                global_data.initialized |= PSA_CRYPTO_SUBSYSTEM_KEY_SLOTS_INITIALIZED;
+
+            }
+#if defined(MBEDTLS_THREADING_C)
+            PSA_THREADING_CHK_GOTO_EXIT(mbedtls_mutex_unlock(
+                                            &mbedtls_threading_psa_globaldata_mutex));
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+            break;
+
+        case PSA_CRYPTO_SUBSYSTEM_RNG:
+
+#if defined(MBEDTLS_THREADING_C)
+            PSA_THREADING_CHK_GOTO_EXIT(mbedtls_mutex_lock(&mbedtls_threading_psa_globaldata_mutex));
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+            driver_wrappers_initialized =
+                (global_data.initialized & PSA_CRYPTO_SUBSYSTEM_DRIVER_WRAPPERS_INITIALIZED);
+
+#if defined(MBEDTLS_THREADING_C)
+            PSA_THREADING_CHK_GOTO_EXIT(mbedtls_mutex_unlock(
+                                            &mbedtls_threading_psa_globaldata_mutex));
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+            /* Need to use separate mutex here, as initialisation can require
+             * testing of init flags, which requires locking the global data
+             * mutex. */
+#if defined(MBEDTLS_THREADING_C)
+            PSA_THREADING_CHK_GOTO_EXIT(mbedtls_mutex_lock(&mbedtls_threading_psa_rngdata_mutex));
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+            /* Initialize and seed the random generator. */
+            if (global_data.rng_state == RNG_NOT_INITIALIZED && driver_wrappers_initialized) {
+                mbedtls_psa_random_init(&global_data.rng);
+                global_data.rng_state = RNG_INITIALIZED;
+
+                status = mbedtls_psa_random_seed(&global_data.rng);
+                if (status == PSA_SUCCESS) {
+                    global_data.rng_state = RNG_SEEDED;
+                }
+            }
+
+#if defined(MBEDTLS_THREADING_C)
+            PSA_THREADING_CHK_GOTO_EXIT(mbedtls_mutex_unlock(
+                                            &mbedtls_threading_psa_rngdata_mutex));
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+            break;
+
+        case PSA_CRYPTO_SUBSYSTEM_TRANSACTION:
+
+#if defined(MBEDTLS_THREADING_C)
+            PSA_THREADING_CHK_GOTO_EXIT(mbedtls_mutex_lock(&mbedtls_threading_psa_globaldata_mutex));
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+            if (!(global_data.initialized & PSA_CRYPTO_SUBSYSTEM_TRANSACTION_INITIALIZED)) {
+#if defined(PSA_CRYPTO_STORAGE_HAS_TRANSACTIONS)
+                status = psa_crypto_load_transaction();
+                if (status == PSA_SUCCESS) {
+                    status = psa_crypto_recover_transaction(&psa_crypto_transaction);
+                    if (status == PSA_SUCCESS) {
+                        global_data.initialized |= PSA_CRYPTO_SUBSYSTEM_TRANSACTION_INITIALIZED;
+                    }
+                    status = psa_crypto_stop_transaction();
+                } else if (status == PSA_ERROR_DOES_NOT_EXIST) {
+                    /* There's no transaction to complete. It's all good. */
+                    global_data.initialized |= PSA_CRYPTO_SUBSYSTEM_TRANSACTION_INITIALIZED;
+                    status = PSA_SUCCESS;
+                }
+#else /* defined(PSA_CRYPTO_STORAGE_HAS_TRANSACTIONS) */
+                global_data.initialized |= PSA_CRYPTO_SUBSYSTEM_TRANSACTION_INITIALIZED;
+                status = PSA_SUCCESS;
+#endif /* defined(PSA_CRYPTO_STORAGE_HAS_TRANSACTIONS) */
+            }
+
+#if defined(MBEDTLS_THREADING_C)
+            PSA_THREADING_CHK_GOTO_EXIT(mbedtls_mutex_unlock(
+                                            &mbedtls_threading_psa_globaldata_mutex));
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+            break;
+
+        default:
+            status = PSA_ERROR_CORRUPTION_DETECTED;
+    }
+
+    /* Exit label only required when using threading macros. */
+#if defined(MBEDTLS_THREADING_C)
+exit:
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+    return status;
+}
+
+psa_status_t psa_crypto_init(void)
+{
+    psa_status_t status;
+
+    /* Double initialization is explicitly allowed. Early out if everything is
+     * done. */
+    if (psa_get_initialized()) {
+        return PSA_SUCCESS;
+    }
+
+    status = mbedtls_psa_crypto_init_subsystem(PSA_CRYPTO_SUBSYSTEM_DRIVER_WRAPPERS);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = mbedtls_psa_crypto_init_subsystem(PSA_CRYPTO_SUBSYSTEM_KEY_SLOTS);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = mbedtls_psa_crypto_init_subsystem(PSA_CRYPTO_SUBSYSTEM_RNG);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = mbedtls_psa_crypto_init_subsystem(PSA_CRYPTO_SUBSYSTEM_TRANSACTION);
+
+exit:
+
+    if (status != PSA_SUCCESS) {
+        mbedtls_psa_crypto_free();
+    }
+
+    return status;
+}
+
+#if defined(PSA_WANT_ALG_SOME_PAKE)
+psa_status_t psa_crypto_driver_pake_get_password_len(
+    const psa_crypto_driver_pake_inputs_t *inputs,
+    size_t *password_len)
+{
+    if (inputs->password_len == 0) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    *password_len = inputs->password_len;
+
+    return PSA_SUCCESS;
+}
+
+psa_status_t psa_crypto_driver_pake_get_password(
+    const psa_crypto_driver_pake_inputs_t *inputs,
+    uint8_t *buffer, size_t buffer_size, size_t *buffer_length)
+{
+    if (inputs->password_len == 0) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    if (buffer_size < inputs->password_len) {
+        return PSA_ERROR_BUFFER_TOO_SMALL;
+    }
+
+    memcpy(buffer, inputs->password, inputs->password_len);
+    *buffer_length = inputs->password_len;
+
+    return PSA_SUCCESS;
+}
+
+psa_status_t psa_crypto_driver_pake_get_user_len(
+    const psa_crypto_driver_pake_inputs_t *inputs,
+    size_t *user_len)
+{
+    if (inputs->user_len == 0) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    *user_len = inputs->user_len;
+
+    return PSA_SUCCESS;
+}
+
+psa_status_t psa_crypto_driver_pake_get_user(
+    const psa_crypto_driver_pake_inputs_t *inputs,
+    uint8_t *user_id, size_t user_id_size, size_t *user_id_len)
+{
+    if (inputs->user_len == 0) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    if (user_id_size < inputs->user_len) {
+        return PSA_ERROR_BUFFER_TOO_SMALL;
+    }
+
+    memcpy(user_id, inputs->user, inputs->user_len);
+    *user_id_len = inputs->user_len;
+
+    return PSA_SUCCESS;
+}
+
+psa_status_t psa_crypto_driver_pake_get_peer_len(
+    const psa_crypto_driver_pake_inputs_t *inputs,
+    size_t *peer_len)
+{
+    if (inputs->peer_len == 0) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    *peer_len = inputs->peer_len;
+
+    return PSA_SUCCESS;
+}
+
+psa_status_t psa_crypto_driver_pake_get_peer(
+    const psa_crypto_driver_pake_inputs_t *inputs,
+    uint8_t *peer_id, size_t peer_id_size, size_t *peer_id_length)
+{
+    if (inputs->peer_len == 0) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    if (peer_id_size < inputs->peer_len) {
+        return PSA_ERROR_BUFFER_TOO_SMALL;
+    }
+
+    memcpy(peer_id, inputs->peer, inputs->peer_len);
+    *peer_id_length = inputs->peer_len;
+
+    return PSA_SUCCESS;
+}
+
+psa_status_t psa_crypto_driver_pake_get_cipher_suite(
+    const psa_crypto_driver_pake_inputs_t *inputs,
+    psa_pake_cipher_suite_t *cipher_suite)
+{
+    if (inputs->cipher_suite.algorithm == PSA_ALG_NONE) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    *cipher_suite = inputs->cipher_suite;
+
+    return PSA_SUCCESS;
+}
+
+psa_status_t psa_pake_setup(
+    psa_pake_operation_t *operation,
+    const psa_pake_cipher_suite_t *cipher_suite)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    if (operation->stage != PSA_PAKE_OPERATION_STAGE_SETUP) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    if (PSA_ALG_IS_PAKE(cipher_suite->algorithm) == 0 ||
+        PSA_ALG_IS_HASH(cipher_suite->hash) == 0) {
+        status = PSA_ERROR_INVALID_ARGUMENT;
+        goto exit;
+    }
+
+    memset(&operation->data.inputs, 0, sizeof(operation->data.inputs));
+
+    operation->alg = cipher_suite->algorithm;
+    operation->primitive = PSA_PAKE_PRIMITIVE(cipher_suite->type,
+                                              cipher_suite->family, cipher_suite->bits);
+    operation->data.inputs.cipher_suite = *cipher_suite;
+
+#if defined(PSA_WANT_ALG_JPAKE)
+    if (operation->alg == PSA_ALG_JPAKE) {
+        psa_jpake_computation_stage_t *computation_stage =
+            &operation->computation_stage.jpake;
+
+        memset(computation_stage, 0, sizeof(*computation_stage));
+        computation_stage->step = PSA_PAKE_STEP_KEY_SHARE;
+    } else
+#endif /* PSA_WANT_ALG_JPAKE */
+    {
+        status = PSA_ERROR_NOT_SUPPORTED;
+        goto exit;
+    }
+
+    operation->stage = PSA_PAKE_OPERATION_STAGE_COLLECT_INPUTS;
+
+    return PSA_SUCCESS;
+exit:
+    psa_pake_abort(operation);
+    return status;
+}
+
+psa_status_t psa_pake_set_password_key(
+    psa_pake_operation_t *operation,
+    mbedtls_svc_key_id_t password)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_status_t unlock_status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_slot_t *slot = NULL;
+    psa_key_type_t type;
+
+    if (operation->stage != PSA_PAKE_OPERATION_STAGE_COLLECT_INPUTS) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    status = psa_get_and_lock_key_slot_with_policy(password, &slot,
+                                                   PSA_KEY_USAGE_DERIVE,
+                                                   operation->alg);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    type = psa_get_key_type(&slot->attr);
+
+    if (type != PSA_KEY_TYPE_PASSWORD &&
+        type != PSA_KEY_TYPE_PASSWORD_HASH) {
+        status = PSA_ERROR_INVALID_ARGUMENT;
+        goto exit;
+    }
+
+    operation->data.inputs.password = mbedtls_calloc(1, slot->key.bytes);
+    if (operation->data.inputs.password == NULL) {
+        status = PSA_ERROR_INSUFFICIENT_MEMORY;
+        goto exit;
+    }
+
+    memcpy(operation->data.inputs.password, slot->key.data, slot->key.bytes);
+    operation->data.inputs.password_len = slot->key.bytes;
+    operation->data.inputs.attributes = slot->attr;
+
+exit:
+    if (status != PSA_SUCCESS) {
+        psa_pake_abort(operation);
+    }
+    unlock_status = psa_unregister_read_under_mutex(slot);
+    return (status == PSA_SUCCESS) ? unlock_status : status;
+}
+
+psa_status_t psa_pake_set_user(
+    psa_pake_operation_t *operation,
+    const uint8_t *user_id_external,
+    size_t user_id_len)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    LOCAL_INPUT_DECLARE(user_id_external, user_id);
+
+    if (operation->stage != PSA_PAKE_OPERATION_STAGE_COLLECT_INPUTS) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    if (user_id_len == 0) {
+        status = PSA_ERROR_INVALID_ARGUMENT;
+        goto exit;
+    }
+
+    if (operation->data.inputs.user_len != 0) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    operation->data.inputs.user = mbedtls_calloc(1, user_id_len);
+    if (operation->data.inputs.user == NULL) {
+        status = PSA_ERROR_INSUFFICIENT_MEMORY;
+        goto exit;
+    }
+
+    LOCAL_INPUT_ALLOC(user_id_external, user_id_len, user_id);
+
+    memcpy(operation->data.inputs.user, user_id, user_id_len);
+    operation->data.inputs.user_len = user_id_len;
+
+    status = PSA_SUCCESS;
+
+exit:
+    LOCAL_INPUT_FREE(user_id_external, user_id);
+    if (status != PSA_SUCCESS) {
+        psa_pake_abort(operation);
+    }
+    return status;
+}
+
+psa_status_t psa_pake_set_peer(
+    psa_pake_operation_t *operation,
+    const uint8_t *peer_id_external,
+    size_t peer_id_len)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    LOCAL_INPUT_DECLARE(peer_id_external, peer_id);
+
+    if (operation->stage != PSA_PAKE_OPERATION_STAGE_COLLECT_INPUTS) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    if (peer_id_len == 0) {
+        status = PSA_ERROR_INVALID_ARGUMENT;
+        goto exit;
+    }
+
+    if (operation->data.inputs.peer_len != 0) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    operation->data.inputs.peer = mbedtls_calloc(1, peer_id_len);
+    if (operation->data.inputs.peer == NULL) {
+        status = PSA_ERROR_INSUFFICIENT_MEMORY;
+        goto exit;
+    }
+
+    LOCAL_INPUT_ALLOC(peer_id_external, peer_id_len, peer_id);
+
+    memcpy(operation->data.inputs.peer, peer_id, peer_id_len);
+    operation->data.inputs.peer_len = peer_id_len;
+
+    status = PSA_SUCCESS;
+
+exit:
+    LOCAL_INPUT_FREE(peer_id_external, peer_id);
+    if (status != PSA_SUCCESS) {
+        psa_pake_abort(operation);
+    }
+    return status;
+}
+
+psa_status_t psa_pake_set_role(
+    psa_pake_operation_t *operation,
+    psa_pake_role_t role)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    if (operation->stage != PSA_PAKE_OPERATION_STAGE_COLLECT_INPUTS) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    switch (operation->alg) {
+#if defined(PSA_WANT_ALG_JPAKE)
+        case PSA_ALG_JPAKE:
+            if (role == PSA_PAKE_ROLE_NONE) {
+                return PSA_SUCCESS;
+            }
+            status = PSA_ERROR_INVALID_ARGUMENT;
+            break;
+#endif
+        default:
+            (void) role;
+            status = PSA_ERROR_NOT_SUPPORTED;
+            goto exit;
+    }
+exit:
+    psa_pake_abort(operation);
+    return status;
+}
+
+/* Auxiliary function to convert core computation stage to single driver step. */
+#if defined(PSA_WANT_ALG_JPAKE)
+static psa_crypto_driver_pake_step_t convert_jpake_computation_stage_to_driver_step(
+    psa_jpake_computation_stage_t *stage)
+{
+    psa_crypto_driver_pake_step_t key_share_step;
+    if (stage->round == PSA_JPAKE_FIRST) {
+        int is_x1;
+
+        if (stage->io_mode == PSA_JPAKE_OUTPUT) {
+            is_x1 = (stage->outputs < 1);
+        } else {
+            is_x1 = (stage->inputs < 1);
+        }
+
+        key_share_step = is_x1 ?
+                         PSA_JPAKE_X1_STEP_KEY_SHARE :
+                         PSA_JPAKE_X2_STEP_KEY_SHARE;
+    } else if (stage->round == PSA_JPAKE_SECOND) {
+        key_share_step = (stage->io_mode == PSA_JPAKE_OUTPUT) ?
+                         PSA_JPAKE_X2S_STEP_KEY_SHARE :
+                         PSA_JPAKE_X4S_STEP_KEY_SHARE;
+    } else {
+        return PSA_JPAKE_STEP_INVALID;
+    }
+    return (psa_crypto_driver_pake_step_t) (key_share_step + stage->step - PSA_PAKE_STEP_KEY_SHARE);
+}
+#endif /* PSA_WANT_ALG_JPAKE */
+
+static psa_status_t psa_pake_complete_inputs(
+    psa_pake_operation_t *operation)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    /* Create copy of the inputs on stack as inputs share memory
+       with the driver context which will be setup by the driver. */
+    psa_crypto_driver_pake_inputs_t inputs = operation->data.inputs;
+
+    if (inputs.password_len == 0) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    if (operation->alg == PSA_ALG_JPAKE) {
+        if (inputs.user_len == 0 || inputs.peer_len == 0) {
+            return PSA_ERROR_BAD_STATE;
+        }
+    }
+
+    /* Clear driver context */
+    mbedtls_platform_zeroize(&operation->data, sizeof(operation->data));
+
+    status = psa_driver_wrapper_pake_setup(operation, &inputs);
+
+    /* Driver is responsible for creating its own copy of the password. */
+    mbedtls_zeroize_and_free(inputs.password, inputs.password_len);
+
+    /* User and peer are translated to role. */
+    mbedtls_free(inputs.user);
+    mbedtls_free(inputs.peer);
+
+    if (status == PSA_SUCCESS) {
+#if defined(PSA_WANT_ALG_JPAKE)
+        if (operation->alg == PSA_ALG_JPAKE) {
+            operation->stage = PSA_PAKE_OPERATION_STAGE_COMPUTATION;
+        } else
+#endif /* PSA_WANT_ALG_JPAKE */
+        {
+            status = PSA_ERROR_NOT_SUPPORTED;
+        }
+    }
+    return status;
+}
+
+#if defined(PSA_WANT_ALG_JPAKE)
+static psa_status_t psa_jpake_prologue(
+    psa_pake_operation_t *operation,
+    psa_pake_step_t step,
+    psa_jpake_io_mode_t io_mode)
+{
+    if (step != PSA_PAKE_STEP_KEY_SHARE &&
+        step != PSA_PAKE_STEP_ZK_PUBLIC &&
+        step != PSA_PAKE_STEP_ZK_PROOF) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    psa_jpake_computation_stage_t *computation_stage =
+        &operation->computation_stage.jpake;
+
+    if (computation_stage->round != PSA_JPAKE_FIRST &&
+        computation_stage->round != PSA_JPAKE_SECOND) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    /* Check that the step we are given is the one we were expecting */
+    if (step != computation_stage->step) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    if (step == PSA_PAKE_STEP_KEY_SHARE &&
+        computation_stage->inputs == 0 &&
+        computation_stage->outputs == 0) {
+        /* Start of the round, so function decides whether we are inputting
+         * or outputting */
+        computation_stage->io_mode = io_mode;
+    } else if (computation_stage->io_mode != io_mode) {
+        /* Middle of the round so the mode we are in must match the function
+         * called by the user */
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    return PSA_SUCCESS;
+}
+
+static psa_status_t psa_jpake_epilogue(
+    psa_pake_operation_t *operation,
+    psa_jpake_io_mode_t io_mode)
+{
+    psa_jpake_computation_stage_t *stage =
+        &operation->computation_stage.jpake;
+
+    if (stage->step == PSA_PAKE_STEP_ZK_PROOF) {
+        /* End of an input/output */
+        if (io_mode == PSA_JPAKE_INPUT) {
+            stage->inputs++;
+            if (stage->inputs == PSA_JPAKE_EXPECTED_INPUTS(stage->round)) {
+                stage->io_mode = PSA_JPAKE_OUTPUT;
+            }
+        }
+        if (io_mode == PSA_JPAKE_OUTPUT) {
+            stage->outputs++;
+            if (stage->outputs == PSA_JPAKE_EXPECTED_OUTPUTS(stage->round)) {
+                stage->io_mode = PSA_JPAKE_INPUT;
+            }
+        }
+        if (stage->inputs == PSA_JPAKE_EXPECTED_INPUTS(stage->round) &&
+            stage->outputs == PSA_JPAKE_EXPECTED_OUTPUTS(stage->round)) {
+            /* End of a round, move to the next round */
+            stage->inputs = 0;
+            stage->outputs = 0;
+            stage->round++;
+        }
+        stage->step = PSA_PAKE_STEP_KEY_SHARE;
+    } else {
+        stage->step++;
+    }
+    return PSA_SUCCESS;
+}
+
+#endif /* PSA_WANT_ALG_JPAKE */
+
+psa_status_t psa_pake_output(
+    psa_pake_operation_t *operation,
+    psa_pake_step_t step,
+    uint8_t *output_external,
+    size_t output_size,
+    size_t *output_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_crypto_driver_pake_step_t driver_step = PSA_JPAKE_STEP_INVALID;
+    LOCAL_OUTPUT_DECLARE(output_external, output);
+    *output_length = 0;
+
+    if (operation->stage == PSA_PAKE_OPERATION_STAGE_COLLECT_INPUTS) {
+        status = psa_pake_complete_inputs(operation);
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+    }
+
+    if (operation->stage != PSA_PAKE_OPERATION_STAGE_COMPUTATION) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    if (output_size == 0) {
+        status = PSA_ERROR_INVALID_ARGUMENT;
+        goto exit;
+    }
+
+    switch (operation->alg) {
+#if defined(PSA_WANT_ALG_JPAKE)
+        case PSA_ALG_JPAKE:
+            status = psa_jpake_prologue(operation, step, PSA_JPAKE_OUTPUT);
+            if (status != PSA_SUCCESS) {
+                goto exit;
+            }
+            driver_step = convert_jpake_computation_stage_to_driver_step(
+                &operation->computation_stage.jpake);
+            break;
+#endif /* PSA_WANT_ALG_JPAKE */
+        default:
+            (void) step;
+            status = PSA_ERROR_NOT_SUPPORTED;
+            goto exit;
+    }
+
+    LOCAL_OUTPUT_ALLOC(output_external, output_size, output);
+
+    status = psa_driver_wrapper_pake_output(operation, driver_step,
+                                            output, output_size, output_length);
+
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    switch (operation->alg) {
+#if defined(PSA_WANT_ALG_JPAKE)
+        case PSA_ALG_JPAKE:
+            status = psa_jpake_epilogue(operation, PSA_JPAKE_OUTPUT);
+            if (status != PSA_SUCCESS) {
+                goto exit;
+            }
+            break;
+#endif /* PSA_WANT_ALG_JPAKE */
+        default:
+            status = PSA_ERROR_NOT_SUPPORTED;
+            goto exit;
+    }
+
+exit:
+    LOCAL_OUTPUT_FREE(output_external, output);
+    if (status != PSA_SUCCESS) {
+        psa_pake_abort(operation);
+    }
+    return status;
+}
+
+psa_status_t psa_pake_input(
+    psa_pake_operation_t *operation,
+    psa_pake_step_t step,
+    const uint8_t *input_external,
+    size_t input_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_crypto_driver_pake_step_t driver_step = PSA_JPAKE_STEP_INVALID;
+    const size_t max_input_length = (size_t) PSA_PAKE_INPUT_SIZE(operation->alg,
+                                                                 operation->primitive,
+                                                                 step);
+    LOCAL_INPUT_DECLARE(input_external, input);
+
+    if (operation->stage == PSA_PAKE_OPERATION_STAGE_COLLECT_INPUTS) {
+        status = psa_pake_complete_inputs(operation);
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+    }
+
+    if (operation->stage != PSA_PAKE_OPERATION_STAGE_COMPUTATION) {
+        status =  PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+    if (input_length == 0 || input_length > max_input_length) {
+        status = PSA_ERROR_INVALID_ARGUMENT;
+        goto exit;
+    }
+
+    switch (operation->alg) {
+#if defined(PSA_WANT_ALG_JPAKE)
+        case PSA_ALG_JPAKE:
+            status = psa_jpake_prologue(operation, step, PSA_JPAKE_INPUT);
+            if (status != PSA_SUCCESS) {
+                goto exit;
+            }
+            driver_step = convert_jpake_computation_stage_to_driver_step(
+                &operation->computation_stage.jpake);
+            break;
+#endif /* PSA_WANT_ALG_JPAKE */
+        default:
+            (void) step;
+            status = PSA_ERROR_NOT_SUPPORTED;
+            goto exit;
+    }
+
+    LOCAL_INPUT_ALLOC(input_external, input_length, input);
+    status = psa_driver_wrapper_pake_input(operation, driver_step,
+                                           input, input_length);
+
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    switch (operation->alg) {
+#if defined(PSA_WANT_ALG_JPAKE)
+        case PSA_ALG_JPAKE:
+            status = psa_jpake_epilogue(operation, PSA_JPAKE_INPUT);
+            if (status != PSA_SUCCESS) {
+                goto exit;
+            }
+            break;
+#endif /* PSA_WANT_ALG_JPAKE */
+        default:
+            status = PSA_ERROR_NOT_SUPPORTED;
+            goto exit;
+    }
+
+exit:
+    LOCAL_INPUT_FREE(input_external, input);
+    if (status != PSA_SUCCESS) {
+        psa_pake_abort(operation);
+    }
+    return status;
+}
+
+psa_status_t psa_pake_get_implicit_key(
+    psa_pake_operation_t *operation,
+    psa_key_derivation_operation_t *output)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_status_t abort_status = PSA_ERROR_CORRUPTION_DETECTED;
+    uint8_t shared_key[MBEDTLS_PSA_JPAKE_BUFFER_SIZE];
+    size_t shared_key_len = 0;
+
+    if (operation->stage != PSA_PAKE_OPERATION_STAGE_COMPUTATION) {
+        status = PSA_ERROR_BAD_STATE;
+        goto exit;
+    }
+
+#if defined(PSA_WANT_ALG_JPAKE)
+    if (operation->alg == PSA_ALG_JPAKE) {
+        psa_jpake_computation_stage_t *computation_stage =
+            &operation->computation_stage.jpake;
+        if (computation_stage->round != PSA_JPAKE_FINISHED) {
+            status = PSA_ERROR_BAD_STATE;
+            goto exit;
+        }
+    } else
+#endif /* PSA_WANT_ALG_JPAKE */
+    {
+        status = PSA_ERROR_NOT_SUPPORTED;
+        goto exit;
+    }
+
+    status = psa_driver_wrapper_pake_get_implicit_key(operation,
+                                                      shared_key,
+                                                      sizeof(shared_key),
+                                                      &shared_key_len);
+
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_key_derivation_input_bytes(output,
+                                            PSA_KEY_DERIVATION_INPUT_SECRET,
+                                            shared_key,
+                                            shared_key_len);
+
+    mbedtls_platform_zeroize(shared_key, sizeof(shared_key));
+exit:
+    abort_status = psa_pake_abort(operation);
+    return status == PSA_SUCCESS ? abort_status : status;
+}
+
+psa_status_t psa_pake_abort(
+    psa_pake_operation_t *operation)
+{
+    psa_status_t status = PSA_SUCCESS;
+
+    if (operation->stage == PSA_PAKE_OPERATION_STAGE_COMPUTATION) {
+        status = psa_driver_wrapper_pake_abort(operation);
+    }
+
+    if (operation->stage == PSA_PAKE_OPERATION_STAGE_COLLECT_INPUTS) {
+        if (operation->data.inputs.password != NULL) {
+            mbedtls_zeroize_and_free(operation->data.inputs.password,
+                                     operation->data.inputs.password_len);
+        }
+        if (operation->data.inputs.user != NULL) {
+            mbedtls_free(operation->data.inputs.user);
+        }
+        if (operation->data.inputs.peer != NULL) {
+            mbedtls_free(operation->data.inputs.peer);
+        }
+    }
+    memset(operation, 0, sizeof(psa_pake_operation_t));
+
+    return status;
+}
+#endif /* PSA_WANT_ALG_SOME_PAKE */
+
+/* Memory copying test hooks. These are called before input copy, after input
+ * copy, before output copy and after output copy, respectively.
+ * They are used by memory-poisoning tests to temporarily unpoison buffers
+ * while they are copied. */
+#if defined(MBEDTLS_TEST_HOOKS)
+void (*psa_input_pre_copy_hook)(const uint8_t *input, size_t input_len) = NULL;
+void (*psa_input_post_copy_hook)(const uint8_t *input, size_t input_len) = NULL;
+void (*psa_output_pre_copy_hook)(const uint8_t *output, size_t output_len) = NULL;
+void (*psa_output_post_copy_hook)(const uint8_t *output, size_t output_len) = NULL;
+#endif
+
+/** Copy from an input buffer to a local copy.
+ *
+ * \param[in] input             Pointer to input buffer.
+ * \param[in] input_len         Length of the input buffer.
+ * \param[out] input_copy       Pointer to a local copy in which to store the input data.
+ * \param[out] input_copy_len   Length of the local copy buffer.
+ * \return                      #PSA_SUCCESS, if the buffer was successfully
+ *                              copied.
+ * \return                      #PSA_ERROR_CORRUPTION_DETECTED, if the local
+ *                              copy is too small to hold contents of the
+ *                              input buffer.
+ */
+MBEDTLS_STATIC_TESTABLE
+psa_status_t psa_crypto_copy_input(const uint8_t *input, size_t input_len,
+                                   uint8_t *input_copy, size_t input_copy_len)
+{
+    if (input_len > input_copy_len) {
+        return PSA_ERROR_CORRUPTION_DETECTED;
+    }
+
+#if defined(MBEDTLS_TEST_HOOKS)
+    if (psa_input_pre_copy_hook != NULL) {
+        psa_input_pre_copy_hook(input, input_len);
+    }
+#endif
+
+    if (input_len > 0) {
+        memcpy(input_copy, input, input_len);
+    }
+
+#if defined(MBEDTLS_TEST_HOOKS)
+    if (psa_input_post_copy_hook != NULL) {
+        psa_input_post_copy_hook(input, input_len);
+    }
+#endif
+
+    return PSA_SUCCESS;
+}
+
+/** Copy from a local output buffer into a user-supplied one.
+ *
+ * \param[in] output_copy       Pointer to a local buffer containing the output.
+ * \param[in] output_copy_len   Length of the local buffer.
+ * \param[out] output           Pointer to user-supplied output buffer.
+ * \param[out] output_len       Length of the user-supplied output buffer.
+ * \return                      #PSA_SUCCESS, if the buffer was successfully
+ *                              copied.
+ * \return                      #PSA_ERROR_BUFFER_TOO_SMALL, if the
+ *                              user-supplied output buffer is too small to
+ *                              hold the contents of the local buffer.
+ */
+MBEDTLS_STATIC_TESTABLE
+psa_status_t psa_crypto_copy_output(const uint8_t *output_copy, size_t output_copy_len,
+                                    uint8_t *output, size_t output_len)
+{
+    if (output_len < output_copy_len) {
+        return PSA_ERROR_BUFFER_TOO_SMALL;
+    }
+
+#if defined(MBEDTLS_TEST_HOOKS)
+    if (psa_output_pre_copy_hook != NULL) {
+        psa_output_pre_copy_hook(output, output_len);
+    }
+#endif
+
+    if (output_copy_len > 0) {
+        memcpy(output, output_copy, output_copy_len);
+    }
+
+#if defined(MBEDTLS_TEST_HOOKS)
+    if (psa_output_post_copy_hook != NULL) {
+        psa_output_post_copy_hook(output, output_len);
+    }
+#endif
+
+    return PSA_SUCCESS;
+}
+
+psa_status_t psa_crypto_local_input_alloc(const uint8_t *input, size_t input_len,
+                                          psa_crypto_local_input_t *local_input)
+{
+    psa_status_t status;
+
+    *local_input = PSA_CRYPTO_LOCAL_INPUT_INIT;
+
+    if (input_len == 0) {
+        return PSA_SUCCESS;
+    }
+
+    local_input->buffer = mbedtls_calloc(input_len, 1);
+    if (local_input->buffer == NULL) {
+        /* Since we dealt with the zero-length case above, we know that
+         * a NULL return value means a failure of allocation. */
+        return PSA_ERROR_INSUFFICIENT_MEMORY;
+    }
+    /* From now on, we must free local_input->buffer on error. */
+
+    local_input->length = input_len;
+
+    status = psa_crypto_copy_input(input, input_len,
+                                   local_input->buffer, local_input->length);
+    if (status != PSA_SUCCESS) {
+        goto error;
+    }
+
+    return PSA_SUCCESS;
+
+error:
+    mbedtls_free(local_input->buffer);
+    local_input->buffer = NULL;
+    local_input->length = 0;
+    return status;
+}
+
+void psa_crypto_local_input_free(psa_crypto_local_input_t *local_input)
+{
+    mbedtls_free(local_input->buffer);
+    local_input->buffer = NULL;
+    local_input->length = 0;
+}
+
+psa_status_t psa_crypto_local_output_alloc(uint8_t *output, size_t output_len,
+                                           psa_crypto_local_output_t *local_output)
+{
+    *local_output = PSA_CRYPTO_LOCAL_OUTPUT_INIT;
+
+    if (output_len == 0) {
+        return PSA_SUCCESS;
+    }
+    local_output->buffer = mbedtls_calloc(output_len, 1);
+    if (local_output->buffer == NULL) {
+        /* Since we dealt with the zero-length case above, we know that
+         * a NULL return value means a failure of allocation. */
+        return PSA_ERROR_INSUFFICIENT_MEMORY;
+    }
+    local_output->length = output_len;
+    local_output->original = output;
+
+    return PSA_SUCCESS;
+}
+
+psa_status_t psa_crypto_local_output_free(psa_crypto_local_output_t *local_output)
+{
+    psa_status_t status;
+
+    if (local_output->buffer == NULL) {
+        local_output->length = 0;
+        return PSA_SUCCESS;
+    }
+    if (local_output->original == NULL) {
+        /* We have an internal copy but nothing to copy back to. */
+        return PSA_ERROR_CORRUPTION_DETECTED;
+    }
+
+    status = psa_crypto_copy_output(local_output->buffer, local_output->length,
+                                    local_output->original, local_output->length);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    mbedtls_free(local_output->buffer);
+    local_output->buffer = NULL;
+    local_output->length = 0;
+
+    return PSA_SUCCESS;
+}
+
+#endif /* MBEDTLS_PSA_CRYPTO_C */
diff --git a/tf-psa-crypto/core/psa_crypto_aead.c b/tf-psa-crypto/core/psa_crypto_aead.c
new file mode 100644
index 0000000..a201985
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_aead.c
@@ -0,0 +1,649 @@
+/*
+ *  PSA AEAD entry points
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PSA_CRYPTO_C)
+
+#include "psa_crypto_aead.h"
+#include "psa_crypto_core.h"
+#include "psa_crypto_cipher.h"
+
+#include <string.h>
+#include "mbedtls/platform.h"
+
+#include "mbedtls/ccm.h"
+#include "mbedtls/chachapoly.h"
+#include "mbedtls/cipher.h"
+#include "mbedtls/gcm.h"
+#include "mbedtls/error.h"
+
+static psa_status_t psa_aead_setup(
+    mbedtls_psa_aead_operation_t *operation,
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer,
+    size_t key_buffer_size,
+    psa_algorithm_t alg)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    mbedtls_cipher_id_t cipher_id;
+    mbedtls_cipher_mode_t mode;
+    size_t key_bits = attributes->bits;
+    (void) key_buffer_size;
+
+    status = mbedtls_cipher_values_from_psa(alg, attributes->type,
+                                            &key_bits, &mode, &cipher_id);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    switch (PSA_ALG_AEAD_WITH_SHORTENED_TAG(alg, 0)) {
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CCM)
+        case PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_CCM, 0):
+            operation->alg = PSA_ALG_CCM;
+            /* CCM allows the following tag lengths: 4, 6, 8, 10, 12, 14, 16.
+             * The call to mbedtls_ccm_encrypt_and_tag or
+             * mbedtls_ccm_auth_decrypt will validate the tag length. */
+            if (PSA_BLOCK_CIPHER_BLOCK_LENGTH(attributes->type) != 16) {
+                return PSA_ERROR_INVALID_ARGUMENT;
+            }
+
+            mbedtls_ccm_init(&operation->ctx.ccm);
+            status = mbedtls_to_psa_error(
+                mbedtls_ccm_setkey(&operation->ctx.ccm, cipher_id,
+                                   key_buffer, (unsigned int) key_bits));
+            if (status != PSA_SUCCESS) {
+                return status;
+            }
+            break;
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_CCM */
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_GCM)
+        case PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_GCM, 0):
+            operation->alg = PSA_ALG_GCM;
+            /* GCM allows the following tag lengths: 4, 8, 12, 13, 14, 15, 16.
+             * The call to mbedtls_gcm_crypt_and_tag or
+             * mbedtls_gcm_auth_decrypt will validate the tag length. */
+            if (PSA_BLOCK_CIPHER_BLOCK_LENGTH(attributes->type) != 16) {
+                return PSA_ERROR_INVALID_ARGUMENT;
+            }
+
+            mbedtls_gcm_init(&operation->ctx.gcm);
+            status = mbedtls_to_psa_error(
+                mbedtls_gcm_setkey(&operation->ctx.gcm, cipher_id,
+                                   key_buffer, (unsigned int) key_bits));
+            if (status != PSA_SUCCESS) {
+                return status;
+            }
+            break;
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_GCM */
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CHACHA20_POLY1305)
+        case PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_CHACHA20_POLY1305, 0):
+            operation->alg = PSA_ALG_CHACHA20_POLY1305;
+            /* We only support the default tag length. */
+            if (alg != PSA_ALG_CHACHA20_POLY1305) {
+                return PSA_ERROR_NOT_SUPPORTED;
+            }
+
+            mbedtls_chachapoly_init(&operation->ctx.chachapoly);
+            status = mbedtls_to_psa_error(
+                mbedtls_chachapoly_setkey(&operation->ctx.chachapoly,
+                                          key_buffer));
+            if (status != PSA_SUCCESS) {
+                return status;
+            }
+            break;
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_CHACHA20_POLY1305 */
+
+        default:
+            (void) status;
+            (void) key_buffer;
+            return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    operation->key_type = psa_get_key_type(attributes);
+
+    operation->tag_length = PSA_ALG_AEAD_GET_TAG_LENGTH(alg);
+
+    return PSA_SUCCESS;
+}
+
+psa_status_t mbedtls_psa_aead_encrypt(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg,
+    const uint8_t *nonce, size_t nonce_length,
+    const uint8_t *additional_data, size_t additional_data_length,
+    const uint8_t *plaintext, size_t plaintext_length,
+    uint8_t *ciphertext, size_t ciphertext_size, size_t *ciphertext_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    mbedtls_psa_aead_operation_t operation = MBEDTLS_PSA_AEAD_OPERATION_INIT;
+    uint8_t *tag;
+
+    status = psa_aead_setup(&operation, attributes, key_buffer,
+                            key_buffer_size, alg);
+
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    /* For all currently supported modes, the tag is at the end of the
+     * ciphertext. */
+    if (ciphertext_size < (plaintext_length + operation.tag_length)) {
+        status = PSA_ERROR_BUFFER_TOO_SMALL;
+        goto exit;
+    }
+    tag = ciphertext + plaintext_length;
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CCM)
+    if (operation.alg == PSA_ALG_CCM) {
+        status = mbedtls_to_psa_error(
+            mbedtls_ccm_encrypt_and_tag(&operation.ctx.ccm,
+                                        plaintext_length,
+                                        nonce, nonce_length,
+                                        additional_data,
+                                        additional_data_length,
+                                        plaintext, ciphertext,
+                                        tag, operation.tag_length));
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_CCM */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_GCM)
+    if (operation.alg == PSA_ALG_GCM) {
+        status = mbedtls_to_psa_error(
+            mbedtls_gcm_crypt_and_tag(&operation.ctx.gcm,
+                                      MBEDTLS_GCM_ENCRYPT,
+                                      plaintext_length,
+                                      nonce, nonce_length,
+                                      additional_data, additional_data_length,
+                                      plaintext, ciphertext,
+                                      operation.tag_length, tag));
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_GCM */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CHACHA20_POLY1305)
+    if (operation.alg == PSA_ALG_CHACHA20_POLY1305) {
+        if (operation.tag_length != 16) {
+            status = PSA_ERROR_NOT_SUPPORTED;
+            goto exit;
+        }
+        status = mbedtls_to_psa_error(
+            mbedtls_chachapoly_encrypt_and_tag(&operation.ctx.chachapoly,
+                                               plaintext_length,
+                                               nonce,
+                                               additional_data,
+                                               additional_data_length,
+                                               plaintext,
+                                               ciphertext,
+                                               tag));
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_CHACHA20_POLY1305 */
+    {
+        (void) tag;
+        (void) nonce;
+        (void) nonce_length;
+        (void) additional_data;
+        (void) additional_data_length;
+        (void) plaintext;
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    if (status == PSA_SUCCESS) {
+        *ciphertext_length = plaintext_length + operation.tag_length;
+    }
+
+exit:
+    mbedtls_psa_aead_abort(&operation);
+
+    return status;
+}
+
+/* Locate the tag in a ciphertext buffer containing the encrypted data
+ * followed by the tag. Return the length of the part preceding the tag in
+ * *plaintext_length. This is the size of the plaintext in modes where
+ * the encrypted data has the same size as the plaintext, such as
+ * CCM and GCM. */
+static psa_status_t psa_aead_unpadded_locate_tag(size_t tag_length,
+                                                 const uint8_t *ciphertext,
+                                                 size_t ciphertext_length,
+                                                 size_t plaintext_size,
+                                                 const uint8_t **p_tag)
+{
+    size_t payload_length;
+    if (tag_length > ciphertext_length) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+    payload_length = ciphertext_length - tag_length;
+    if (payload_length > plaintext_size) {
+        return PSA_ERROR_BUFFER_TOO_SMALL;
+    }
+    *p_tag = ciphertext + payload_length;
+    return PSA_SUCCESS;
+}
+
+psa_status_t mbedtls_psa_aead_decrypt(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg,
+    const uint8_t *nonce, size_t nonce_length,
+    const uint8_t *additional_data, size_t additional_data_length,
+    const uint8_t *ciphertext, size_t ciphertext_length,
+    uint8_t *plaintext, size_t plaintext_size, size_t *plaintext_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    mbedtls_psa_aead_operation_t operation = MBEDTLS_PSA_AEAD_OPERATION_INIT;
+    const uint8_t *tag = NULL;
+
+    status = psa_aead_setup(&operation, attributes, key_buffer,
+                            key_buffer_size, alg);
+
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_aead_unpadded_locate_tag(operation.tag_length,
+                                          ciphertext, ciphertext_length,
+                                          plaintext_size, &tag);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CCM)
+    if (operation.alg == PSA_ALG_CCM) {
+        status = mbedtls_to_psa_error(
+            mbedtls_ccm_auth_decrypt(&operation.ctx.ccm,
+                                     ciphertext_length - operation.tag_length,
+                                     nonce, nonce_length,
+                                     additional_data,
+                                     additional_data_length,
+                                     ciphertext, plaintext,
+                                     tag, operation.tag_length));
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_CCM */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_GCM)
+    if (operation.alg == PSA_ALG_GCM) {
+        status = mbedtls_to_psa_error(
+            mbedtls_gcm_auth_decrypt(&operation.ctx.gcm,
+                                     ciphertext_length - operation.tag_length,
+                                     nonce, nonce_length,
+                                     additional_data,
+                                     additional_data_length,
+                                     tag, operation.tag_length,
+                                     ciphertext, plaintext));
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_GCM */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CHACHA20_POLY1305)
+    if (operation.alg == PSA_ALG_CHACHA20_POLY1305) {
+        if (operation.tag_length != 16) {
+            status = PSA_ERROR_NOT_SUPPORTED;
+            goto exit;
+        }
+        status = mbedtls_to_psa_error(
+            mbedtls_chachapoly_auth_decrypt(&operation.ctx.chachapoly,
+                                            ciphertext_length - operation.tag_length,
+                                            nonce,
+                                            additional_data,
+                                            additional_data_length,
+                                            tag,
+                                            ciphertext,
+                                            plaintext));
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_CHACHA20_POLY1305 */
+    {
+        (void) nonce;
+        (void) nonce_length;
+        (void) additional_data;
+        (void) additional_data_length;
+        (void) plaintext;
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    if (status == PSA_SUCCESS) {
+        *plaintext_length = ciphertext_length - operation.tag_length;
+    }
+
+exit:
+    mbedtls_psa_aead_abort(&operation);
+
+    if (status == PSA_SUCCESS) {
+        *plaintext_length = ciphertext_length - operation.tag_length;
+    }
+    return status;
+}
+
+/* Set the key and algorithm for a multipart authenticated encryption
+ * operation. */
+psa_status_t mbedtls_psa_aead_encrypt_setup(
+    mbedtls_psa_aead_operation_t *operation,
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer,
+    size_t key_buffer_size,
+    psa_algorithm_t alg)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    status = psa_aead_setup(operation, attributes, key_buffer,
+                            key_buffer_size, alg);
+
+    if (status == PSA_SUCCESS) {
+        operation->is_encrypt = 1;
+    }
+
+    return status;
+}
+
+/* Set the key and algorithm for a multipart authenticated decryption
+ * operation. */
+psa_status_t mbedtls_psa_aead_decrypt_setup(
+    mbedtls_psa_aead_operation_t *operation,
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer,
+    size_t key_buffer_size,
+    psa_algorithm_t alg)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    status = psa_aead_setup(operation, attributes, key_buffer,
+                            key_buffer_size, alg);
+
+    if (status == PSA_SUCCESS) {
+        operation->is_encrypt = 0;
+    }
+
+    return status;
+}
+
+/* Set a nonce for the multipart AEAD operation*/
+psa_status_t mbedtls_psa_aead_set_nonce(
+    mbedtls_psa_aead_operation_t *operation,
+    const uint8_t *nonce,
+    size_t nonce_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_GCM)
+    if (operation->alg == PSA_ALG_GCM) {
+        status = mbedtls_to_psa_error(
+            mbedtls_gcm_starts(&operation->ctx.gcm,
+                               operation->is_encrypt ?
+                               MBEDTLS_GCM_ENCRYPT : MBEDTLS_GCM_DECRYPT,
+                               nonce,
+                               nonce_length));
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_GCM */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CCM)
+    if (operation->alg == PSA_ALG_CCM) {
+        status = mbedtls_to_psa_error(
+            mbedtls_ccm_starts(&operation->ctx.ccm,
+                               operation->is_encrypt ?
+                               MBEDTLS_CCM_ENCRYPT : MBEDTLS_CCM_DECRYPT,
+                               nonce,
+                               nonce_length));
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_CCM */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CHACHA20_POLY1305)
+    if (operation->alg == PSA_ALG_CHACHA20_POLY1305) {
+        /* Note - ChaChaPoly allows an 8 byte nonce, but we would have to
+         * allocate a buffer in the operation, copy the nonce to it and pad
+         * it, so for now check the nonce is 12 bytes, as
+         * mbedtls_chachapoly_starts() assumes it can read 12 bytes from the
+         * passed in buffer. */
+        if (nonce_length != 12) {
+            return PSA_ERROR_INVALID_ARGUMENT;
+        }
+
+        status = mbedtls_to_psa_error(
+            mbedtls_chachapoly_starts(&operation->ctx.chachapoly,
+                                      nonce,
+                                      operation->is_encrypt ?
+                                      MBEDTLS_CHACHAPOLY_ENCRYPT :
+                                      MBEDTLS_CHACHAPOLY_DECRYPT));
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_CHACHA20_POLY1305 */
+    {
+        (void) operation;
+        (void) nonce;
+        (void) nonce_length;
+
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    return status;
+}
+
+/* Declare the lengths of the message and additional data for AEAD. */
+psa_status_t mbedtls_psa_aead_set_lengths(
+    mbedtls_psa_aead_operation_t *operation,
+    size_t ad_length,
+    size_t plaintext_length)
+{
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CCM)
+    if (operation->alg == PSA_ALG_CCM) {
+        return mbedtls_to_psa_error(
+            mbedtls_ccm_set_lengths(&operation->ctx.ccm,
+                                    ad_length,
+                                    plaintext_length,
+                                    operation->tag_length));
+
+    }
+#else /* MBEDTLS_PSA_BUILTIN_ALG_CCM */
+    (void) operation;
+    (void) ad_length;
+    (void) plaintext_length;
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_CCM */
+
+    return PSA_SUCCESS;
+}
+
+/* Pass additional data to an active multipart AEAD operation. */
+psa_status_t mbedtls_psa_aead_update_ad(
+    mbedtls_psa_aead_operation_t *operation,
+    const uint8_t *input,
+    size_t input_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_GCM)
+    if (operation->alg == PSA_ALG_GCM) {
+        status = mbedtls_to_psa_error(
+            mbedtls_gcm_update_ad(&operation->ctx.gcm, input, input_length));
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_GCM */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CCM)
+    if (operation->alg == PSA_ALG_CCM) {
+        status = mbedtls_to_psa_error(
+            mbedtls_ccm_update_ad(&operation->ctx.ccm, input, input_length));
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_CCM */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CHACHA20_POLY1305)
+    if (operation->alg == PSA_ALG_CHACHA20_POLY1305) {
+        status = mbedtls_to_psa_error(
+            mbedtls_chachapoly_update_aad(&operation->ctx.chachapoly,
+                                          input,
+                                          input_length));
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_CHACHA20_POLY1305 */
+    {
+        (void) operation;
+        (void) input;
+        (void) input_length;
+
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    return status;
+}
+
+/* Encrypt or decrypt a message fragment in an active multipart AEAD
+ * operation.*/
+psa_status_t mbedtls_psa_aead_update(
+    mbedtls_psa_aead_operation_t *operation,
+    const uint8_t *input,
+    size_t input_length,
+    uint8_t *output,
+    size_t output_size,
+    size_t *output_length)
+{
+    size_t update_output_length;
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    update_output_length = input_length;
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_GCM)
+    if (operation->alg == PSA_ALG_GCM) {
+        status =  mbedtls_to_psa_error(
+            mbedtls_gcm_update(&operation->ctx.gcm,
+                               input, input_length,
+                               output, output_size,
+                               &update_output_length));
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_GCM */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CCM)
+    if (operation->alg == PSA_ALG_CCM) {
+        if (output_size < input_length) {
+            return PSA_ERROR_BUFFER_TOO_SMALL;
+        }
+
+        status = mbedtls_to_psa_error(
+            mbedtls_ccm_update(&operation->ctx.ccm,
+                               input, input_length,
+                               output, output_size,
+                               &update_output_length));
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_CCM */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CHACHA20_POLY1305)
+    if (operation->alg == PSA_ALG_CHACHA20_POLY1305) {
+        if (output_size < input_length) {
+            return PSA_ERROR_BUFFER_TOO_SMALL;
+        }
+
+        status = mbedtls_to_psa_error(
+            mbedtls_chachapoly_update(&operation->ctx.chachapoly,
+                                      input_length,
+                                      input,
+                                      output));
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_CHACHA20_POLY1305 */
+    {
+        (void) operation;
+        (void) input;
+        (void) output;
+        (void) output_size;
+
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    if (status == PSA_SUCCESS) {
+        *output_length = update_output_length;
+    }
+
+    return status;
+}
+
+/* Finish encrypting a message in a multipart AEAD operation. */
+psa_status_t mbedtls_psa_aead_finish(
+    mbedtls_psa_aead_operation_t *operation,
+    uint8_t *ciphertext,
+    size_t ciphertext_size,
+    size_t *ciphertext_length,
+    uint8_t *tag,
+    size_t tag_size,
+    size_t *tag_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    size_t finish_output_size = 0;
+
+    if (tag_size < operation->tag_length) {
+        return PSA_ERROR_BUFFER_TOO_SMALL;
+    }
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_GCM)
+    if (operation->alg == PSA_ALG_GCM) {
+        status =  mbedtls_to_psa_error(
+            mbedtls_gcm_finish(&operation->ctx.gcm,
+                               ciphertext, ciphertext_size, ciphertext_length,
+                               tag, operation->tag_length));
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_GCM */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CCM)
+    if (operation->alg == PSA_ALG_CCM) {
+        /* tag must be big enough to store a tag of size passed into set
+         * lengths. */
+        if (tag_size < operation->tag_length) {
+            return PSA_ERROR_BUFFER_TOO_SMALL;
+        }
+
+        status = mbedtls_to_psa_error(
+            mbedtls_ccm_finish(&operation->ctx.ccm,
+                               tag, operation->tag_length));
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_CCM */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CHACHA20_POLY1305)
+    if (operation->alg == PSA_ALG_CHACHA20_POLY1305) {
+        /* Belt and braces. Although the above tag_size check should have
+         * already done this, if we later start supporting smaller tag sizes
+         * for chachapoly, then passing a tag buffer smaller than 16 into here
+         * could cause a buffer overflow, so better safe than sorry. */
+        if (tag_size < 16) {
+            return PSA_ERROR_BUFFER_TOO_SMALL;
+        }
+
+        status = mbedtls_to_psa_error(
+            mbedtls_chachapoly_finish(&operation->ctx.chachapoly,
+                                      tag));
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_CHACHA20_POLY1305 */
+    {
+        (void) ciphertext;
+        (void) ciphertext_size;
+        (void) ciphertext_length;
+        (void) tag;
+        (void) tag_size;
+        (void) tag_length;
+
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    if (status == PSA_SUCCESS) {
+        /* This will be zero for all supported algorithms currently, but left
+         * here for future support. */
+        *ciphertext_length = finish_output_size;
+        *tag_length = operation->tag_length;
+    }
+
+    return status;
+}
+
+/* Abort an AEAD operation */
+psa_status_t mbedtls_psa_aead_abort(
+    mbedtls_psa_aead_operation_t *operation)
+{
+    switch (operation->alg) {
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CCM)
+        case PSA_ALG_CCM:
+            mbedtls_ccm_free(&operation->ctx.ccm);
+            break;
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_CCM */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_GCM)
+        case PSA_ALG_GCM:
+            mbedtls_gcm_free(&operation->ctx.gcm);
+            break;
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_GCM */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CHACHA20_POLY1305)
+        case PSA_ALG_CHACHA20_POLY1305:
+            mbedtls_chachapoly_free(&operation->ctx.chachapoly);
+            break;
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_CHACHA20_POLY1305 */
+    }
+
+    operation->is_encrypt = 0;
+
+    return PSA_SUCCESS;
+}
+
+#endif /* MBEDTLS_PSA_CRYPTO_C */
diff --git a/tf-psa-crypto/core/psa_crypto_aead.h b/tf-psa-crypto/core/psa_crypto_aead.h
new file mode 100644
index 0000000..a339219
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_aead.h
@@ -0,0 +1,499 @@
+/*
+ *  PSA AEAD driver entry points
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef PSA_CRYPTO_AEAD_H
+#define PSA_CRYPTO_AEAD_H
+
+#include <psa/crypto.h>
+
+/**
+ * \brief Process an authenticated encryption operation.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       aead_encrypt entry point. This function behaves as an aead_encrypt
+ *       entry point as defined in the PSA driver interface specification for
+ *       transparent drivers.
+ *
+ * \param[in]  attributes         The attributes of the key to use for the
+ *                                operation.
+ * \param[in]  key_buffer         The buffer containing the key context.
+ * \param      key_buffer_size    Size of the \p key_buffer buffer in bytes.
+ * \param      alg                The AEAD algorithm to compute.
+ * \param[in]  nonce              Nonce or IV to use.
+ * \param      nonce_length       Size of the nonce buffer in bytes. This must
+ *                                be appropriate for the selected algorithm.
+ *                                The default nonce size is
+ *                                PSA_AEAD_NONCE_LENGTH(key_type, alg) where
+ *                                key_type is the type of key.
+ * \param[in]  additional_data    Additional data that will be authenticated
+ *                                but not encrypted.
+ * \param      additional_data_length  Size of additional_data in bytes.
+ * \param[in]  plaintext          Data that will be authenticated and encrypted.
+ * \param      plaintext_length   Size of plaintext in bytes.
+ * \param[out] ciphertext         Output buffer for the authenticated and
+ *                                encrypted data. The additional data is not
+ *                                part of this output. For algorithms where the
+ *                                encrypted data and the authentication tag are
+ *                                defined as separate outputs, the
+ *                                authentication tag is appended to the
+ *                                encrypted data.
+ * \param      ciphertext_size    Size of the ciphertext buffer in bytes. This
+ *                                must be appropriate for the selected algorithm
+ *                                and key:
+ *                                - A sufficient output size is
+ *                                  PSA_AEAD_ENCRYPT_OUTPUT_SIZE(key_type, alg,
+ *                                  plaintext_length) where key_type is the type
+ *                                  of key.
+ *                                - PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE(
+ *                                  plaintext_length) evaluates to the maximum
+ *                                  ciphertext size of any supported AEAD
+ *                                  encryption.
+ * \param[out] ciphertext_length  On success, the size of the output in the
+ *                                ciphertext buffer.
+ *
+ * \retval #PSA_SUCCESS Success.
+ * \retval #PSA_ERROR_NOT_SUPPORTED
+ *         \p alg is not supported.
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         ciphertext_size is too small.
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ */
+psa_status_t mbedtls_psa_aead_encrypt(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg,
+    const uint8_t *nonce, size_t nonce_length,
+    const uint8_t *additional_data, size_t additional_data_length,
+    const uint8_t *plaintext, size_t plaintext_length,
+    uint8_t *ciphertext, size_t ciphertext_size, size_t *ciphertext_length);
+
+/**
+ * \brief Process an authenticated decryption operation.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       aead_decrypt entry point. This function behaves as an aead_decrypt
+ *       entry point as defined in the PSA driver interface specification for
+ *       transparent drivers.
+ *
+ * \param[in]  attributes         The attributes of the key to use for the
+ *                                operation.
+ * \param[in]  key_buffer         The buffer containing the key context.
+ * \param      key_buffer_size    Size of the \p key_buffer buffer in bytes.
+ * \param      alg                The AEAD algorithm to compute.
+ * \param[in]  nonce              Nonce or IV to use.
+ * \param      nonce_length       Size of the nonce buffer in bytes. This must
+ *                                be appropriate for the selected algorithm.
+ *                                The default nonce size is
+ *                                PSA_AEAD_NONCE_LENGTH(key_type, alg) where
+ *                                key_type is the type of key.
+ * \param[in]  additional_data    Additional data that has been authenticated
+ *                                but not encrypted.
+ * \param      additional_data_length  Size of additional_data in bytes.
+ * \param[in]  ciphertext         Data that has been authenticated and
+ *                                encrypted. For algorithms where the encrypted
+ *                                data and the authentication tag are defined
+ *                                as separate inputs, the buffer contains
+ *                                encrypted data followed by the authentication
+ *                                tag.
+ * \param      ciphertext_length  Size of ciphertext in bytes.
+ * \param[out] plaintext          Output buffer for the decrypted data.
+ * \param      plaintext_size     Size of the plaintext buffer in bytes. This
+ *                                must be appropriate for the selected algorithm
+ *                                and key:
+ *                                - A sufficient output size is
+ *                                  PSA_AEAD_DECRYPT_OUTPUT_SIZE(key_type, alg,
+ *                                  ciphertext_length) where key_type is the
+ *                                  type of key.
+ *                                - PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE(
+ *                                  ciphertext_length) evaluates to the maximum
+ *                                  plaintext size of any supported AEAD
+ *                                  decryption.
+ * \param[out] plaintext_length   On success, the size of the output in the
+ *                                plaintext buffer.
+ *
+ * \retval #PSA_SUCCESS Success.
+ * \retval #PSA_ERROR_INVALID_SIGNATURE
+ *         The cipher is not authentic.
+ * \retval #PSA_ERROR_NOT_SUPPORTED
+ *         \p alg is not supported.
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         plaintext_size is too small.
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ */
+psa_status_t mbedtls_psa_aead_decrypt(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg,
+    const uint8_t *nonce, size_t nonce_length,
+    const uint8_t *additional_data, size_t additional_data_length,
+    const uint8_t *ciphertext, size_t ciphertext_length,
+    uint8_t *plaintext, size_t plaintext_size, size_t *plaintext_length);
+
+/** Set the key for a multipart authenticated encryption operation.
+ *
+ *  \note The signature of this function is that of a PSA driver
+ *       aead_encrypt_setup entry point. This function behaves as an
+ *       aead_encrypt_setup entry point as defined in the PSA driver interface
+ *       specification for transparent drivers.
+ *
+ * If an error occurs at any step after a call to
+ * mbedtls_psa_aead_encrypt_setup(), the operation is reset by the PSA core by a
+ * call to mbedtls_psa_aead_abort(). The PSA core may call
+ * mbedtls_psa_aead_abort() at any time after the operation has been
+ * initialized, and is required to when the operation is no longer needed.
+ *
+ * \param[in,out] operation     The operation object to set up. It must have
+ *                              been initialized as per the documentation for
+ *                              #mbedtls_psa_aead_operation_t and not yet in
+ *                              use.
+ * \param[in]  attributes       The attributes of the key to use for the
+ *                              operation.
+ * \param[in]  key_buffer       The buffer containing the key context.
+ * \param      key_buffer_size  Size of the \p key_buffer buffer in bytes.
+                                It must be consistent with the size in bits
+                                recorded in \p attributes.
+ * \param alg                   The AEAD algorithm to compute
+ *                              (\c PSA_ALG_XXX value such that
+ *                              #PSA_ALG_IS_AEAD(\p alg) is true).
+ *
+ * \retval #PSA_SUCCESS
+ *         Success.
+ * \retval #PSA_ERROR_INVALID_ARGUMENT
+ *         An invalid block length was supplied.
+ * \retval #PSA_ERROR_NOT_SUPPORTED
+ *         \p alg is not supported.
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY
+ *         Failed to allocate memory for key material
+ */
+psa_status_t mbedtls_psa_aead_encrypt_setup(
+    mbedtls_psa_aead_operation_t *operation,
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer,
+    size_t key_buffer_size,
+    psa_algorithm_t alg);
+
+/** Set the key for a multipart authenticated decryption operation.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       aead_decrypt_setup entry point. This function behaves as an
+ *       aead_decrypt_setup entry point as defined in the PSA driver interface
+ *       specification for transparent drivers.
+ *
+ * If an error occurs at any step after a call to
+ * mbedtls_psa_aead_decrypt_setup(), the PSA core resets the operation by a
+ * call to mbedtls_psa_aead_abort(). The PSA core may call
+ * mbedtls_psa_aead_abort() at any time after the operation has been
+ * initialized, and is required to when the operation is no longer needed.
+ *
+ * \param[in,out] operation     The operation object to set up. It must have
+ *                              been initialized as per the documentation for
+ *                              #mbedtls_psa_aead_operation_t and not yet in
+ *                              use.
+ * \param[in]  attributes       The attributes of the key to use for the
+ *                              operation.
+ * \param[in]  key_buffer       The buffer containing the key context.
+ * \param      key_buffer_size  Size of the \p key_buffer buffer in bytes.
+                                It must be consistent with the size in bits
+                                recorded in \p attributes.
+ * \param alg                   The AEAD algorithm to compute
+ *                              (\c PSA_ALG_XXX value such that
+ *                              #PSA_ALG_IS_AEAD(\p alg) is true).
+ *
+ * \retval #PSA_SUCCESS
+ *         Success.
+ * \retval #PSA_ERROR_INVALID_ARGUMENT
+ *         An invalid block length was supplied.
+ * \retval #PSA_ERROR_NOT_SUPPORTED
+ *         \p alg is not supported.
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY
+ *         Failed to allocate memory for key material
+ */
+psa_status_t mbedtls_psa_aead_decrypt_setup(
+    mbedtls_psa_aead_operation_t *operation,
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer,
+    size_t key_buffer_size,
+    psa_algorithm_t alg);
+
+/** Set the nonce for an authenticated encryption or decryption operation.
+ *
+ * \note The signature of this function is that of a PSA driver aead_set_nonce
+ *       entry point. This function behaves as an aead_set_nonce entry point as
+ *       defined in the PSA driver interface specification for transparent
+ *       drivers.
+ *
+ * This function sets the nonce for the authenticated
+ * encryption or decryption operation.
+ *
+ * The PSA core calls mbedtls_psa_aead_encrypt_setup() or
+ * mbedtls_psa_aead_decrypt_setup() before calling this function.
+ *
+ * If this function returns an error status, the PSA core will call
+ * mbedtls_psa_aead_abort().
+ *
+ * \param[in,out] operation     Active AEAD operation.
+ * \param[in] nonce             Buffer containing the nonce to use.
+ * \param nonce_length          Size of the nonce in bytes.
+ *
+ * \retval #PSA_SUCCESS
+ *         Success.
+ * \retval #PSA_ERROR_INVALID_ARGUMENT
+ *         The size of \p nonce is not acceptable for the chosen algorithm.
+ * \retval #PSA_ERROR_NOT_SUPPORTED
+ *         Algorithm previously set is not supported in this configuration of
+ *         the library.
+ */
+psa_status_t mbedtls_psa_aead_set_nonce(
+    mbedtls_psa_aead_operation_t *operation,
+    const uint8_t *nonce,
+    size_t nonce_length);
+
+/** Declare the lengths of the message and additional data for AEAD.
+ *
+ * \note The signature of this function is that of a PSA driver aead_set_lengths
+ *       entry point. This function behaves as an aead_set_lengths entry point
+ *       as defined in the PSA driver interface specification for transparent
+ *       drivers.
+ *
+ * The PSA core calls this function before calling mbedtls_psa_aead_update_ad()
+ * or mbedtls_psa_aead_update() if the algorithm for the operation requires it.
+ * If the algorithm does not require it, calling this function is optional, but
+ * if this function is called then the implementation must enforce the lengths.
+ *
+ * The PSA core may call this function before or after setting the nonce with
+ * mbedtls_psa_aead_set_nonce().
+ *
+ * - For #PSA_ALG_CCM, calling this function is required.
+ * - For the other AEAD algorithms defined in this specification, calling
+ *   this function is not required.
+ *
+ * If this function returns an error status, the PSA core calls
+ * mbedtls_psa_aead_abort().
+ *
+ * \param[in,out] operation     Active AEAD operation.
+ * \param ad_length             Size of the non-encrypted additional
+ *                              authenticated data in bytes.
+ * \param plaintext_length      Size of the plaintext to encrypt in bytes.
+ *
+ * \retval #PSA_SUCCESS
+ *         Success.
+ * \retval #PSA_ERROR_INVALID_ARGUMENT
+ *         At least one of the lengths is not acceptable for the chosen
+ *         algorithm.
+ * \retval #PSA_ERROR_NOT_SUPPORTED
+ *         Algorithm previously set is not supported in this configuration of
+ *         the library.
+ */
+psa_status_t mbedtls_psa_aead_set_lengths(
+    mbedtls_psa_aead_operation_t *operation,
+    size_t ad_length,
+    size_t plaintext_length);
+
+/** Pass additional data to an active AEAD operation.
+ *
+ *  \note The signature of this function is that of a PSA driver
+ *       aead_update_ad entry point. This function behaves as an aead_update_ad
+ *       entry point as defined in the PSA driver interface specification for
+ *       transparent drivers.
+ *
+ * Additional data is authenticated, but not encrypted.
+ *
+ * The PSA core can call this function multiple times to pass successive
+ * fragments of the additional data. It will not call this function after
+ * passing data to encrypt or decrypt with mbedtls_psa_aead_update().
+ *
+ * Before calling this function, the PSA core will:
+ *    1. Call either mbedtls_psa_aead_encrypt_setup() or
+ *       mbedtls_psa_aead_decrypt_setup().
+ *    2. Set the nonce with mbedtls_psa_aead_set_nonce().
+ *
+ * If this function returns an error status, the PSA core will call
+ * mbedtls_psa_aead_abort().
+ *
+ * \param[in,out] operation     Active AEAD operation.
+ * \param[in] input             Buffer containing the fragment of
+ *                              additional data.
+ * \param input_length          Size of the \p input buffer in bytes.
+ *
+ * \retval #PSA_SUCCESS
+ *         Success.
+ * \retval #PSA_ERROR_NOT_SUPPORTED
+ *         Algorithm previously set is not supported in this configuration of
+ *         the library.
+ */
+psa_status_t mbedtls_psa_aead_update_ad(
+    mbedtls_psa_aead_operation_t *operation,
+    const uint8_t *input,
+    size_t input_length);
+
+/** Encrypt or decrypt a message fragment in an active AEAD operation.
+ *
+ *  \note The signature of this function is that of a PSA driver
+ *       aead_update entry point. This function behaves as an aead_update entry
+ *       point as defined in the PSA driver interface specification for
+ *       transparent drivers.
+ *
+ * Before calling this function, the PSA core will:
+ *    1. Call either mbedtls_psa_aead_encrypt_setup() or
+ *       mbedtls_psa_aead_decrypt_setup(). The choice of setup function
+ *       determines whether this function encrypts or decrypts its input.
+ *    2. Set the nonce with mbedtls_psa_aead_set_nonce().
+ *    3. Call mbedtls_psa_aead_update_ad() to pass all the additional data.
+ *
+ * If this function returns an error status, the PSA core will call
+ * mbedtls_psa_aead_abort().
+ *
+ * This function does not require the input to be aligned to any
+ * particular block boundary. If the implementation can only process
+ * a whole block at a time, it must consume all the input provided, but
+ * it may delay the end of the corresponding output until a subsequent
+ * call to mbedtls_psa_aead_update(), mbedtls_psa_aead_finish() provides
+ * sufficient input. The amount of data that can be delayed in this way is
+ * bounded by #PSA_AEAD_UPDATE_OUTPUT_SIZE.
+ *
+ * \param[in,out] operation     Active AEAD operation.
+ * \param[in] input             Buffer containing the message fragment to
+ *                              encrypt or decrypt.
+ * \param input_length          Size of the \p input buffer in bytes.
+ * \param[out] output           Buffer where the output is to be written.
+ * \param output_size           Size of the \p output buffer in bytes.
+ *                              This must be appropriate for the selected
+ *                                algorithm and key:
+ *                                - A sufficient output size is
+ *                                  #PSA_AEAD_UPDATE_OUTPUT_SIZE(\c key_type,
+ *                                  \c alg, \p input_length) where
+ *                                  \c key_type is the type of key and \c alg is
+ *                                  the algorithm that were used to set up the
+ *                                  operation.
+ *                                - #PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE(\p
+ *                                  input_length) evaluates to the maximum
+ *                                  output size of any supported AEAD
+ *                                  algorithm.
+ * \param[out] output_length    On success, the number of bytes
+ *                              that make up the returned output.
+ *
+ * \retval #PSA_SUCCESS
+ *         Success.
+ *
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         The size of the \p output buffer is too small.
+ *         #PSA_AEAD_UPDATE_OUTPUT_SIZE(\c key_type, \c alg, \p input_length) or
+ *         #PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE(\p input_length) can be used to
+ *         determine the required buffer size.
+ */
+psa_status_t mbedtls_psa_aead_update(
+    mbedtls_psa_aead_operation_t *operation,
+    const uint8_t *input,
+    size_t input_length,
+    uint8_t *output,
+    size_t output_size,
+    size_t *output_length);
+
+/** Finish encrypting a message in an AEAD operation.
+ *
+ *  \note The signature of this function is that of a PSA driver
+ *       aead_finish entry point. This function behaves as an aead_finish entry
+ *       point as defined in the PSA driver interface specification for
+ *       transparent drivers.
+ *
+ * The operation must have been set up by the PSA core with
+ * mbedtls_psa_aead_encrypt_setup().
+ *
+ * This function finishes the authentication of the additional data
+ * formed by concatenating the inputs passed to preceding calls to
+ * mbedtls_psa_aead_update_ad() with the plaintext formed by concatenating the
+ * inputs passed to preceding calls to mbedtls_psa_aead_update().
+ *
+ * This function has two output buffers:
+ * - \p ciphertext contains trailing ciphertext that was buffered from
+ *   preceding calls to mbedtls_psa_aead_update().
+ * - \p tag contains the authentication tag.
+ *
+ * Whether or not this function returns successfully, the PSA core subsequently
+ * calls mbedtls_psa_aead_abort() to deactivate the operation.
+ *
+ * \param[in,out] operation     Active AEAD operation.
+ * \param[out] ciphertext       Buffer where the last part of the ciphertext
+ *                              is to be written.
+ * \param ciphertext_size       Size of the \p ciphertext buffer in bytes.
+ *                              This must be appropriate for the selected
+ *                              algorithm and key:
+ *                              - A sufficient output size is
+ *                                #PSA_AEAD_FINISH_OUTPUT_SIZE(\c key_type,
+ *                                \c alg) where \c key_type is the type of key
+ *                                and \c alg is the algorithm that were used to
+ *                                set up the operation.
+ *                              - #PSA_AEAD_FINISH_OUTPUT_MAX_SIZE evaluates to
+ *                                the maximum output size of any supported AEAD
+ *                                algorithm.
+ * \param[out] ciphertext_length On success, the number of bytes of
+ *                              returned ciphertext.
+ * \param[out] tag              Buffer where the authentication tag is
+ *                              to be written.
+ * \param tag_size              Size of the \p tag buffer in bytes.
+ *                              This must be appropriate for the selected
+ *                              algorithm and key:
+ *                              - The exact tag size is #PSA_AEAD_TAG_LENGTH(\c
+ *                                key_type, \c key_bits, \c alg) where
+ *                                \c key_type and \c key_bits are the type and
+ *                                bit-size of the key, and \c alg are the
+ *                                algorithm that were used in the call to
+ *                                mbedtls_psa_aead_encrypt_setup().
+ *                              - #PSA_AEAD_TAG_MAX_SIZE evaluates to the
+ *                                maximum tag size of any supported AEAD
+ *                                algorithm.
+ * \param[out] tag_length       On success, the number of bytes
+ *                              that make up the returned tag.
+ *
+ * \retval #PSA_SUCCESS
+ *         Success.
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         The size of the \p tag buffer is too small.
+ *         #PSA_AEAD_TAG_LENGTH(\c key_type, key_bits, \c alg) or
+ *         #PSA_AEAD_TAG_MAX_SIZE can be used to determine the required \p tag
+ *         buffer size.
+ */
+psa_status_t mbedtls_psa_aead_finish(
+    mbedtls_psa_aead_operation_t *operation,
+    uint8_t *ciphertext,
+    size_t ciphertext_size,
+    size_t *ciphertext_length,
+    uint8_t *tag,
+    size_t tag_size,
+    size_t *tag_length);
+
+/** Abort an AEAD operation.
+ *
+ *  \note The signature of this function is that of a PSA driver
+ *       aead_abort entry point. This function behaves as an aead_abort entry
+ *       point as defined in the PSA driver interface specification for
+ *       transparent drivers.
+ *
+ * Aborting an operation frees all associated resources except for the
+ * \p operation structure itself. Once aborted, the operation object
+ * can be reused for another operation by the PSA core by it calling
+ * mbedtls_psa_aead_encrypt_setup() or mbedtls_psa_aead_decrypt_setup() again.
+ *
+ * The PSA core may call this function any time after the operation object has
+ * been initialized as described in #mbedtls_psa_aead_operation_t.
+ *
+ * In particular, calling mbedtls_psa_aead_abort() after the operation has been
+ * terminated by a call to mbedtls_psa_aead_abort() or
+ * mbedtls_psa_aead_finish() is safe and has no effect.
+ *
+ * \param[in,out] operation     Initialized AEAD operation.
+ *
+ * \retval #PSA_SUCCESS
+ *         Success.
+ */
+psa_status_t mbedtls_psa_aead_abort(
+    mbedtls_psa_aead_operation_t *operation);
+
+#endif /* PSA_CRYPTO_AEAD_H */
diff --git a/tf-psa-crypto/core/psa_crypto_cipher.c b/tf-psa-crypto/core/psa_crypto_cipher.c
new file mode 100644
index 0000000..3216c94
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_cipher.c
@@ -0,0 +1,724 @@
+/*
+ *  PSA cipher driver entry points
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PSA_CRYPTO_C)
+
+#include "psa_crypto_cipher.h"
+#include "psa_crypto_core.h"
+#include "psa_crypto_random_impl.h"
+
+#include "mbedtls/cipher.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+/* mbedtls_cipher_values_from_psa() below only checks if the proper build symbols
+ * are enabled, but it does not provide any compatibility check between them
+ * (i.e. if the specified key works with the specified algorithm). This helper
+ * function is meant to provide this support.
+ * mbedtls_cipher_info_from_psa() might be used for the same purpose, but it
+ * requires CIPHER_C to be enabled.
+ */
+static psa_status_t mbedtls_cipher_validate_values(
+    psa_algorithm_t alg,
+    psa_key_type_t key_type)
+{
+    /* Reduce code size - hinting to the compiler about what it can assume allows the compiler to
+       eliminate bits of the logic below. */
+#if !defined(PSA_WANT_KEY_TYPE_AES)
+    MBEDTLS_ASSUME(key_type != PSA_KEY_TYPE_AES);
+#endif
+#if !defined(PSA_WANT_KEY_TYPE_ARIA)
+    MBEDTLS_ASSUME(key_type != PSA_KEY_TYPE_ARIA);
+#endif
+#if !defined(PSA_WANT_KEY_TYPE_CAMELLIA)
+    MBEDTLS_ASSUME(key_type != PSA_KEY_TYPE_CAMELLIA);
+#endif
+#if !defined(PSA_WANT_KEY_TYPE_CHACHA20)
+    MBEDTLS_ASSUME(key_type != PSA_KEY_TYPE_CHACHA20);
+#endif
+#if !defined(PSA_WANT_KEY_TYPE_DES)
+    MBEDTLS_ASSUME(key_type != PSA_KEY_TYPE_DES);
+#endif
+#if !defined(PSA_WANT_ALG_CCM)
+    MBEDTLS_ASSUME(alg != PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_CCM, 0));
+#endif
+#if !defined(PSA_WANT_ALG_GCM)
+    MBEDTLS_ASSUME(alg != PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_GCM, 0));
+#endif
+#if !defined(PSA_WANT_ALG_STREAM_CIPHER)
+    MBEDTLS_ASSUME(alg != PSA_ALG_STREAM_CIPHER);
+#endif
+#if !defined(PSA_WANT_ALG_CHACHA20_POLY1305)
+    MBEDTLS_ASSUME(alg != PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_CHACHA20_POLY1305, 0));
+#endif
+#if !defined(PSA_WANT_ALG_CCM_STAR_NO_TAG)
+    MBEDTLS_ASSUME(alg != PSA_ALG_CCM_STAR_NO_TAG);
+#endif
+#if !defined(PSA_WANT_ALG_CTR)
+    MBEDTLS_ASSUME(alg != PSA_ALG_CTR);
+#endif
+#if !defined(PSA_WANT_ALG_CFB)
+    MBEDTLS_ASSUME(alg != PSA_ALG_CFB);
+#endif
+#if !defined(PSA_WANT_ALG_OFB)
+    MBEDTLS_ASSUME(alg != PSA_ALG_OFB);
+#endif
+#if !defined(PSA_WANT_ALG_XTS)
+    MBEDTLS_ASSUME(alg != PSA_ALG_XTS);
+#endif
+#if !defined(PSA_WANT_ALG_ECB_NO_PADDING)
+    MBEDTLS_ASSUME(alg != PSA_ALG_ECB_NO_PADDING);
+#endif
+#if !defined(PSA_WANT_ALG_CBC_NO_PADDING)
+    MBEDTLS_ASSUME(alg != PSA_ALG_CBC_NO_PADDING);
+#endif
+#if !defined(PSA_WANT_ALG_CBC_PKCS7)
+    MBEDTLS_ASSUME(alg != PSA_ALG_CBC_PKCS7);
+#endif
+#if !defined(PSA_WANT_ALG_CMAC)
+    MBEDTLS_ASSUME(alg != PSA_ALG_CMAC);
+#endif
+
+    if (alg == PSA_ALG_STREAM_CIPHER ||
+        alg == PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_CHACHA20_POLY1305, 0)) {
+        if (key_type == PSA_KEY_TYPE_CHACHA20) {
+            return PSA_SUCCESS;
+        }
+    }
+
+    if (alg == PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_CCM, 0) ||
+        alg == PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_GCM, 0) ||
+        alg == PSA_ALG_CCM_STAR_NO_TAG) {
+        if (key_type == PSA_KEY_TYPE_AES ||
+            key_type == PSA_KEY_TYPE_ARIA ||
+            key_type == PSA_KEY_TYPE_CAMELLIA) {
+            return PSA_SUCCESS;
+        }
+    }
+
+    if (alg == PSA_ALG_CTR ||
+        alg == PSA_ALG_CFB ||
+        alg == PSA_ALG_OFB ||
+        alg == PSA_ALG_XTS ||
+        alg == PSA_ALG_ECB_NO_PADDING ||
+        alg == PSA_ALG_CBC_NO_PADDING ||
+        alg == PSA_ALG_CBC_PKCS7 ||
+        alg == PSA_ALG_CMAC) {
+        if (key_type == PSA_KEY_TYPE_AES ||
+            key_type == PSA_KEY_TYPE_ARIA ||
+            key_type == PSA_KEY_TYPE_DES ||
+            key_type == PSA_KEY_TYPE_CAMELLIA) {
+            return PSA_SUCCESS;
+        }
+    }
+
+    return PSA_ERROR_NOT_SUPPORTED;
+}
+
+psa_status_t mbedtls_cipher_values_from_psa(
+    psa_algorithm_t alg,
+    psa_key_type_t key_type,
+    size_t *key_bits,
+    mbedtls_cipher_mode_t *mode,
+    mbedtls_cipher_id_t *cipher_id)
+{
+    mbedtls_cipher_id_t cipher_id_tmp;
+    /* Only DES modifies key_bits */
+#if !defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES)
+    (void) key_bits;
+#endif
+
+    if (PSA_ALG_IS_AEAD(alg)) {
+        alg = PSA_ALG_AEAD_WITH_SHORTENED_TAG(alg, 0);
+    }
+
+    if (PSA_ALG_IS_CIPHER(alg) || PSA_ALG_IS_AEAD(alg)) {
+        switch (alg) {
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_STREAM_CIPHER)
+            case PSA_ALG_STREAM_CIPHER:
+                *mode = MBEDTLS_MODE_STREAM;
+                break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CTR)
+            case PSA_ALG_CTR:
+                *mode = MBEDTLS_MODE_CTR;
+                break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CFB)
+            case PSA_ALG_CFB:
+                *mode = MBEDTLS_MODE_CFB;
+                break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_OFB)
+            case PSA_ALG_OFB:
+                *mode = MBEDTLS_MODE_OFB;
+                break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_ECB_NO_PADDING)
+            case PSA_ALG_ECB_NO_PADDING:
+                *mode = MBEDTLS_MODE_ECB;
+                break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CBC_NO_PADDING)
+            case PSA_ALG_CBC_NO_PADDING:
+                *mode = MBEDTLS_MODE_CBC;
+                break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CBC_PKCS7)
+            case PSA_ALG_CBC_PKCS7:
+                *mode = MBEDTLS_MODE_CBC;
+                break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CCM_STAR_NO_TAG)
+            case PSA_ALG_CCM_STAR_NO_TAG:
+                *mode = MBEDTLS_MODE_CCM_STAR_NO_TAG;
+                break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CCM)
+            case PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_CCM, 0):
+                *mode = MBEDTLS_MODE_CCM;
+                break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_GCM)
+            case PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_GCM, 0):
+                *mode = MBEDTLS_MODE_GCM;
+                break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CHACHA20_POLY1305)
+            case PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_CHACHA20_POLY1305, 0):
+                *mode = MBEDTLS_MODE_CHACHAPOLY;
+                break;
+#endif
+            default:
+                return PSA_ERROR_NOT_SUPPORTED;
+        }
+    } else if (alg == PSA_ALG_CMAC) {
+        *mode = MBEDTLS_MODE_ECB;
+    } else {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    switch (key_type) {
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_AES)
+        case PSA_KEY_TYPE_AES:
+            cipher_id_tmp = MBEDTLS_CIPHER_ID_AES;
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ARIA)
+        case PSA_KEY_TYPE_ARIA:
+            cipher_id_tmp = MBEDTLS_CIPHER_ID_ARIA;
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES)
+        case PSA_KEY_TYPE_DES:
+            /* key_bits is 64 for Single-DES, 128 for two-key Triple-DES,
+             * and 192 for three-key Triple-DES. */
+            if (*key_bits == 64) {
+                cipher_id_tmp = MBEDTLS_CIPHER_ID_DES;
+            } else {
+                cipher_id_tmp = MBEDTLS_CIPHER_ID_3DES;
+            }
+            /* mbedtls doesn't recognize two-key Triple-DES as an algorithm,
+             * but two-key Triple-DES is functionally three-key Triple-DES
+             * with K1=K3, so that's how we present it to mbedtls. */
+            if (*key_bits == 128) {
+                *key_bits = 192;
+            }
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_CAMELLIA)
+        case PSA_KEY_TYPE_CAMELLIA:
+            cipher_id_tmp = MBEDTLS_CIPHER_ID_CAMELLIA;
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_CHACHA20)
+        case PSA_KEY_TYPE_CHACHA20:
+            cipher_id_tmp = MBEDTLS_CIPHER_ID_CHACHA20;
+            break;
+#endif
+        default:
+            return PSA_ERROR_NOT_SUPPORTED;
+    }
+    if (cipher_id != NULL) {
+        *cipher_id = cipher_id_tmp;
+    }
+
+    return mbedtls_cipher_validate_values(alg, key_type);
+}
+
+#if defined(MBEDTLS_CIPHER_C)
+const mbedtls_cipher_info_t *mbedtls_cipher_info_from_psa(
+    psa_algorithm_t alg,
+    psa_key_type_t key_type,
+    size_t key_bits,
+    mbedtls_cipher_id_t *cipher_id)
+{
+    mbedtls_cipher_mode_t mode;
+    psa_status_t status;
+    mbedtls_cipher_id_t cipher_id_tmp = MBEDTLS_CIPHER_ID_NONE;
+
+    status = mbedtls_cipher_values_from_psa(alg, key_type, &key_bits, &mode, &cipher_id_tmp);
+    if (status != PSA_SUCCESS) {
+        return NULL;
+    }
+    if (cipher_id != NULL) {
+        *cipher_id = cipher_id_tmp;
+    }
+
+    return mbedtls_cipher_info_from_values(cipher_id_tmp, (int) key_bits, mode);
+}
+#endif /* MBEDTLS_CIPHER_C */
+
+#if defined(MBEDTLS_PSA_BUILTIN_CIPHER)
+
+static psa_status_t psa_cipher_setup(
+    mbedtls_psa_cipher_operation_t *operation,
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg,
+    mbedtls_operation_t cipher_operation)
+{
+    int ret = 0;
+    size_t key_bits;
+    const mbedtls_cipher_info_t *cipher_info = NULL;
+    psa_key_type_t key_type = attributes->type;
+
+    (void) key_buffer_size;
+
+    mbedtls_cipher_init(&operation->ctx.cipher);
+
+    operation->alg = alg;
+    key_bits = attributes->bits;
+    cipher_info = mbedtls_cipher_info_from_psa(alg, key_type,
+                                               key_bits, NULL);
+    if (cipher_info == NULL) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    ret = mbedtls_cipher_setup(&operation->ctx.cipher, cipher_info);
+    if (ret != 0) {
+        goto exit;
+    }
+
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DES)
+    if (key_type == PSA_KEY_TYPE_DES && key_bits == 128) {
+        /* Two-key Triple-DES is 3-key Triple-DES with K1=K3 */
+        uint8_t keys[24];
+        memcpy(keys, key_buffer, 16);
+        memcpy(keys + 16, key_buffer, 8);
+        ret = mbedtls_cipher_setkey(&operation->ctx.cipher,
+                                    keys,
+                                    192, cipher_operation);
+    } else
+#endif
+    {
+        ret = mbedtls_cipher_setkey(&operation->ctx.cipher, key_buffer,
+                                    (int) key_bits, cipher_operation);
+    }
+    if (ret != 0) {
+        goto exit;
+    }
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CBC_NO_PADDING) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_CBC_PKCS7)
+    switch (alg) {
+        case PSA_ALG_CBC_NO_PADDING:
+            ret = mbedtls_cipher_set_padding_mode(&operation->ctx.cipher,
+                                                  MBEDTLS_PADDING_NONE);
+            break;
+        case PSA_ALG_CBC_PKCS7:
+            ret = mbedtls_cipher_set_padding_mode(&operation->ctx.cipher,
+                                                  MBEDTLS_PADDING_PKCS7);
+            break;
+        default:
+            /* The algorithm doesn't involve padding. */
+            ret = 0;
+            break;
+    }
+    if (ret != 0) {
+        goto exit;
+    }
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_CBC_NO_PADDING ||
+          MBEDTLS_PSA_BUILTIN_ALG_CBC_PKCS7 */
+
+    operation->block_length = (PSA_ALG_IS_STREAM_CIPHER(alg) ? 1 :
+                               PSA_BLOCK_CIPHER_BLOCK_LENGTH(key_type));
+    operation->iv_length = PSA_CIPHER_IV_LENGTH(key_type, alg);
+
+exit:
+    return mbedtls_to_psa_error(ret);
+}
+
+psa_status_t mbedtls_psa_cipher_encrypt_setup(
+    mbedtls_psa_cipher_operation_t *operation,
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg)
+{
+    return psa_cipher_setup(operation, attributes,
+                            key_buffer, key_buffer_size,
+                            alg, MBEDTLS_ENCRYPT);
+}
+
+psa_status_t mbedtls_psa_cipher_decrypt_setup(
+    mbedtls_psa_cipher_operation_t *operation,
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg)
+{
+    return psa_cipher_setup(operation, attributes,
+                            key_buffer, key_buffer_size,
+                            alg, MBEDTLS_DECRYPT);
+}
+
+psa_status_t mbedtls_psa_cipher_set_iv(
+    mbedtls_psa_cipher_operation_t *operation,
+    const uint8_t *iv, size_t iv_length)
+{
+    if (iv_length != operation->iv_length) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    return mbedtls_to_psa_error(
+        mbedtls_cipher_set_iv(&operation->ctx.cipher,
+                              iv, iv_length));
+}
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_ECB_NO_PADDING)
+/** Process input for which the algorithm is set to ECB mode.
+ *
+ * This requires manual processing, since the PSA API is defined as being
+ * able to process arbitrary-length calls to psa_cipher_update() with ECB mode,
+ * but the underlying mbedtls_cipher_update only takes full blocks.
+ *
+ * \param ctx           The mbedtls cipher context to use. It must have been
+ *                      set up for ECB.
+ * \param[in] input     The input plaintext or ciphertext to process.
+ * \param input_length  The number of bytes to process from \p input.
+ *                      This does not need to be aligned to a block boundary.
+ *                      If there is a partial block at the end of the input,
+ *                      it is stored in \p ctx for future processing.
+ * \param output        The buffer where the output is written. It must be
+ *                      at least `BS * floor((p + input_length) / BS)` bytes
+ *                      long, where `p` is the number of bytes in the
+ *                      unprocessed partial block in \p ctx (with
+ *                      `0 <= p <= BS - 1`) and `BS` is the block size.
+ * \param output_length On success, the number of bytes written to \p output.
+ *                      \c 0 on error.
+ *
+ * \return #PSA_SUCCESS or an error from a hardware accelerator
+ */
+static psa_status_t psa_cipher_update_ecb(
+    mbedtls_cipher_context_t *ctx,
+    const uint8_t *input,
+    size_t input_length,
+    uint8_t *output,
+    size_t *output_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    size_t block_size = mbedtls_cipher_info_get_block_size(ctx->cipher_info);
+    size_t internal_output_length = 0;
+    *output_length = 0;
+
+    if (input_length == 0) {
+        status = PSA_SUCCESS;
+        goto exit;
+    }
+
+    if (ctx->unprocessed_len > 0) {
+        /* Fill up to block size, and run the block if there's a full one. */
+        size_t bytes_to_copy = block_size - ctx->unprocessed_len;
+
+        if (input_length < bytes_to_copy) {
+            bytes_to_copy = input_length;
+        }
+
+        memcpy(&(ctx->unprocessed_data[ctx->unprocessed_len]),
+               input, bytes_to_copy);
+        input_length -= bytes_to_copy;
+        input += bytes_to_copy;
+        ctx->unprocessed_len += bytes_to_copy;
+
+        if (ctx->unprocessed_len == block_size) {
+            status = mbedtls_to_psa_error(
+                mbedtls_cipher_update(ctx,
+                                      ctx->unprocessed_data,
+                                      block_size,
+                                      output, &internal_output_length));
+
+            if (status != PSA_SUCCESS) {
+                goto exit;
+            }
+
+            output += internal_output_length;
+            *output_length += internal_output_length;
+            ctx->unprocessed_len = 0;
+        }
+    }
+
+    while (input_length >= block_size) {
+        /* Run all full blocks we have, one by one */
+        status = mbedtls_to_psa_error(
+            mbedtls_cipher_update(ctx, input,
+                                  block_size,
+                                  output, &internal_output_length));
+
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+
+        input_length -= block_size;
+        input += block_size;
+
+        output += internal_output_length;
+        *output_length += internal_output_length;
+    }
+
+    if (input_length > 0) {
+        /* Save unprocessed bytes for later processing */
+        memcpy(&(ctx->unprocessed_data[ctx->unprocessed_len]),
+               input, input_length);
+        ctx->unprocessed_len += input_length;
+    }
+
+    status = PSA_SUCCESS;
+
+exit:
+    return status;
+}
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_ECB_NO_PADDING */
+
+psa_status_t mbedtls_psa_cipher_update(
+    mbedtls_psa_cipher_operation_t *operation,
+    const uint8_t *input, size_t input_length,
+    uint8_t *output, size_t output_size, size_t *output_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    size_t expected_output_size;
+
+    if (!PSA_ALG_IS_STREAM_CIPHER(operation->alg)) {
+        /* Take the unprocessed partial block left over from previous
+         * update calls, if any, plus the input to this call. Remove
+         * the last partial block, if any. You get the data that will be
+         * output in this call. */
+        expected_output_size =
+            (operation->ctx.cipher.unprocessed_len + input_length)
+            / operation->block_length * operation->block_length;
+    } else {
+        expected_output_size = input_length;
+    }
+
+    if (output_size < expected_output_size) {
+        return PSA_ERROR_BUFFER_TOO_SMALL;
+    }
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_ECB_NO_PADDING)
+    if (operation->alg == PSA_ALG_ECB_NO_PADDING) {
+        /* mbedtls_cipher_update has an API inconsistency: it will only
+         * process a single block at a time in ECB mode. Abstract away that
+         * inconsistency here to match the PSA API behaviour. */
+        status = psa_cipher_update_ecb(&operation->ctx.cipher,
+                                       input,
+                                       input_length,
+                                       output,
+                                       output_length);
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_ECB_NO_PADDING */
+    if (input_length == 0) {
+        /* There is no input, nothing to be done */
+        *output_length = 0;
+        status = PSA_SUCCESS;
+    } else {
+        status = mbedtls_to_psa_error(
+            mbedtls_cipher_update(&operation->ctx.cipher, input,
+                                  input_length, output, output_length));
+
+        if (*output_length > output_size) {
+            return PSA_ERROR_CORRUPTION_DETECTED;
+        }
+    }
+
+    return status;
+}
+
+psa_status_t mbedtls_psa_cipher_finish(
+    mbedtls_psa_cipher_operation_t *operation,
+    uint8_t *output, size_t output_size, size_t *output_length)
+{
+    psa_status_t status = PSA_ERROR_GENERIC_ERROR;
+    uint8_t temp_output_buffer[MBEDTLS_MAX_BLOCK_LENGTH];
+
+    if (operation->ctx.cipher.unprocessed_len != 0) {
+        if (operation->alg == PSA_ALG_ECB_NO_PADDING ||
+            operation->alg == PSA_ALG_CBC_NO_PADDING) {
+            status = PSA_ERROR_INVALID_ARGUMENT;
+            goto exit;
+        }
+    }
+
+    status = mbedtls_to_psa_error(
+        mbedtls_cipher_finish(&operation->ctx.cipher,
+                              temp_output_buffer,
+                              output_length));
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    if (*output_length == 0) {
+        ; /* Nothing to copy. Note that output may be NULL in this case. */
+    } else if (output_size >= *output_length) {
+        memcpy(output, temp_output_buffer, *output_length);
+    } else {
+        status = PSA_ERROR_BUFFER_TOO_SMALL;
+    }
+
+exit:
+    mbedtls_platform_zeroize(temp_output_buffer,
+                             sizeof(temp_output_buffer));
+
+    return status;
+}
+
+psa_status_t mbedtls_psa_cipher_abort(
+    mbedtls_psa_cipher_operation_t *operation)
+{
+    /* Sanity check (shouldn't happen: operation->alg should
+     * always have been initialized to a valid value). */
+    if (!PSA_ALG_IS_CIPHER(operation->alg)) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    mbedtls_cipher_free(&operation->ctx.cipher);
+
+    return PSA_SUCCESS;
+}
+
+psa_status_t mbedtls_psa_cipher_encrypt(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer,
+    size_t key_buffer_size,
+    psa_algorithm_t alg,
+    const uint8_t *iv,
+    size_t iv_length,
+    const uint8_t *input,
+    size_t input_length,
+    uint8_t *output,
+    size_t output_size,
+    size_t *output_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    mbedtls_psa_cipher_operation_t operation = MBEDTLS_PSA_CIPHER_OPERATION_INIT;
+    size_t update_output_length, finish_output_length;
+
+    status = mbedtls_psa_cipher_encrypt_setup(&operation, attributes,
+                                              key_buffer, key_buffer_size,
+                                              alg);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    if (iv_length > 0) {
+        status = mbedtls_psa_cipher_set_iv(&operation, iv, iv_length);
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+    }
+
+    status = mbedtls_psa_cipher_update(&operation, input, input_length,
+                                       output, output_size,
+                                       &update_output_length);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = mbedtls_psa_cipher_finish(
+        &operation,
+        mbedtls_buffer_offset(output, update_output_length),
+        output_size - update_output_length, &finish_output_length);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    *output_length = update_output_length + finish_output_length;
+
+exit:
+    if (status == PSA_SUCCESS) {
+        status = mbedtls_psa_cipher_abort(&operation);
+    } else {
+        mbedtls_psa_cipher_abort(&operation);
+    }
+
+    return status;
+}
+
+psa_status_t mbedtls_psa_cipher_decrypt(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer,
+    size_t key_buffer_size,
+    psa_algorithm_t alg,
+    const uint8_t *input,
+    size_t input_length,
+    uint8_t *output,
+    size_t output_size,
+    size_t *output_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    mbedtls_psa_cipher_operation_t operation = MBEDTLS_PSA_CIPHER_OPERATION_INIT;
+    size_t olength, accumulated_length;
+
+    status = mbedtls_psa_cipher_decrypt_setup(&operation, attributes,
+                                              key_buffer, key_buffer_size,
+                                              alg);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    if (operation.iv_length > 0) {
+        status = mbedtls_psa_cipher_set_iv(&operation,
+                                           input, operation.iv_length);
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+    }
+
+    status = mbedtls_psa_cipher_update(
+        &operation,
+        mbedtls_buffer_offset_const(input, operation.iv_length),
+        input_length - operation.iv_length,
+        output, output_size, &olength);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    accumulated_length = olength;
+
+    status = mbedtls_psa_cipher_finish(
+        &operation,
+        mbedtls_buffer_offset(output, accumulated_length),
+        output_size - accumulated_length, &olength);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    *output_length = accumulated_length + olength;
+
+exit:
+    if (status == PSA_SUCCESS) {
+        status = mbedtls_psa_cipher_abort(&operation);
+    } else {
+        mbedtls_psa_cipher_abort(&operation);
+    }
+
+    return status;
+}
+#endif /* MBEDTLS_PSA_BUILTIN_CIPHER */
+
+#endif /* MBEDTLS_PSA_CRYPTO_C */
diff --git a/tf-psa-crypto/core/psa_crypto_cipher.h b/tf-psa-crypto/core/psa_crypto_cipher.h
new file mode 100644
index 0000000..cc56585
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_cipher.h
@@ -0,0 +1,316 @@
+/*
+ *  PSA cipher driver entry points and associated auxiliary functions
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef PSA_CRYPTO_CIPHER_H
+#define PSA_CRYPTO_CIPHER_H
+
+#include <mbedtls/cipher.h>
+#include <psa/crypto.h>
+
+/** Get Mbed TLS cipher information given the cipher algorithm PSA identifier
+ *  as well as the PSA type and size of the key to be used with the cipher
+ *  algorithm.
+ *
+ * \param[in]      alg          PSA cipher algorithm identifier
+ * \param[in]      key_type     PSA key type
+ * \param[in,out]  key_bits     Size of the key in bits. The value provided in input
+ *                              might be updated if necessary.
+ * \param[out]     mode         Mbed TLS cipher mode
+ * \param[out]     cipher_id    Mbed TLS cipher algorithm identifier
+ *
+ * \return  On success \c PSA_SUCCESS is returned and key_bits, mode and cipher_id
+ *          are properly updated.
+ *          \c PSA_ERROR_NOT_SUPPORTED is returned if the cipher algorithm is not
+ *          supported.
+ */
+
+psa_status_t mbedtls_cipher_values_from_psa(psa_algorithm_t alg, psa_key_type_t key_type,
+                                            size_t *key_bits, mbedtls_cipher_mode_t *mode,
+                                            mbedtls_cipher_id_t *cipher_id);
+
+#if defined(MBEDTLS_CIPHER_C)
+/** Get Mbed TLS cipher information given the cipher algorithm PSA identifier
+ *  as well as the PSA type and size of the key to be used with the cipher
+ *  algorithm.
+ *
+ * \param       alg        PSA cipher algorithm identifier
+ * \param       key_type   PSA key type
+ * \param       key_bits   Size of the key in bits
+ * \param[out]  cipher_id  Mbed TLS cipher algorithm identifier
+ *
+ * \return  The Mbed TLS cipher information of the cipher algorithm.
+ *          \c NULL if the PSA cipher algorithm is not supported.
+ */
+const mbedtls_cipher_info_t *mbedtls_cipher_info_from_psa(
+    psa_algorithm_t alg, psa_key_type_t key_type, size_t key_bits,
+    mbedtls_cipher_id_t *cipher_id);
+#endif /* MBEDTLS_CIPHER_C */
+
+/**
+ * \brief Set the key for a multipart symmetric encryption operation.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       cipher_encrypt_setup entry point. This function behaves as a
+ *       cipher_encrypt_setup entry point as defined in the PSA driver
+ *       interface specification for transparent drivers.
+ *
+ * \param[in,out] operation     The operation object to set up. It has been
+ *                              initialized as per the documentation for
+ *                              #psa_cipher_operation_t and not yet in use.
+ * \param[in] attributes        The attributes of the key to use for the
+ *                              operation.
+ * \param[in] key_buffer        The buffer containing the key context.
+ * \param[in] key_buffer_size   Size of the \p key_buffer buffer in bytes.
+ * \param[in] alg               The cipher algorithm to compute
+ *                              (\c PSA_ALG_XXX value such that
+ *                              #PSA_ALG_IS_CIPHER(\p alg) is true).
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ */
+psa_status_t mbedtls_psa_cipher_encrypt_setup(
+    mbedtls_psa_cipher_operation_t *operation,
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg);
+
+/**
+ * \brief Set the key for a multipart symmetric decryption operation.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       cipher_decrypt_setup entry point. This function behaves as a
+ *       cipher_decrypt_setup entry point as defined in the PSA driver
+ *       interface specification for transparent drivers.
+ *
+ * \param[in,out] operation     The operation object to set up. It has been
+ *                              initialized as per the documentation for
+ *                              #psa_cipher_operation_t and not yet in use.
+ * \param[in] attributes        The attributes of the key to use for the
+ *                              operation.
+ * \param[in] key_buffer        The buffer containing the key context.
+ * \param[in] key_buffer_size   Size of the \p key_buffer buffer in bytes.
+ * \param[in] alg               The cipher algorithm to compute
+ *                              (\c PSA_ALG_XXX value such that
+ *                              #PSA_ALG_IS_CIPHER(\p alg) is true).
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ */
+psa_status_t mbedtls_psa_cipher_decrypt_setup(
+    mbedtls_psa_cipher_operation_t *operation,
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg);
+
+/** Set the IV for a symmetric encryption or decryption operation.
+ *
+ * This function sets the IV (initialization vector), nonce
+ * or initial counter value for the encryption or decryption operation.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       cipher_set_iv entry point. This function behaves as a
+ *       cipher_set_iv entry point as defined in the PSA driver
+ *       interface specification for transparent drivers.
+ *
+ * \param[in,out] operation     Active cipher operation.
+ * \param[in] iv                Buffer containing the IV to use.
+ * \param[in] iv_length         Size of the IV in bytes. It is guaranteed by
+ *                              the core to be less or equal to
+ *                              PSA_CIPHER_IV_MAX_SIZE.
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_INVALID_ARGUMENT
+ *         The size of \p iv is not acceptable for the chosen algorithm,
+ *         or the chosen algorithm does not use an IV.
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ */
+psa_status_t mbedtls_psa_cipher_set_iv(
+    mbedtls_psa_cipher_operation_t *operation,
+    const uint8_t *iv, size_t iv_length);
+
+/** Encrypt or decrypt a message fragment in an active cipher operation.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       cipher_update entry point. This function behaves as a
+ *       cipher_update entry point as defined in the PSA driver
+ *       interface specification for transparent drivers.
+ *
+ * \param[in,out] operation     Active cipher operation.
+ * \param[in] input             Buffer containing the message fragment to
+ *                              encrypt or decrypt.
+ * \param[in] input_length      Size of the \p input buffer in bytes.
+ * \param[out] output           Buffer where the output is to be written.
+ * \param[in]  output_size      Size of the \p output buffer in bytes.
+ * \param[out] output_length    On success, the number of bytes
+ *                              that make up the returned output.
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         The size of the \p output buffer is too small.
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ */
+psa_status_t mbedtls_psa_cipher_update(
+    mbedtls_psa_cipher_operation_t *operation,
+    const uint8_t *input, size_t input_length,
+    uint8_t *output, size_t output_size, size_t *output_length);
+
+/** Finish encrypting or decrypting a message in a cipher operation.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       cipher_finish entry point. This function behaves as a
+ *       cipher_finish entry point as defined in the PSA driver
+ *       interface specification for transparent drivers.
+ *
+ * \param[in,out] operation     Active cipher operation.
+ * \param[out] output           Buffer where the output is to be written.
+ * \param[in]  output_size      Size of the \p output buffer in bytes.
+ * \param[out] output_length    On success, the number of bytes
+ *                              that make up the returned output.
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_INVALID_ARGUMENT
+ *         The total input size passed to this operation is not valid for
+ *         this particular algorithm. For example, the algorithm is a based
+ *         on block cipher and requires a whole number of blocks, but the
+ *         total input size is not a multiple of the block size.
+ * \retval #PSA_ERROR_INVALID_PADDING
+ *         This is a decryption operation for an algorithm that includes
+ *         padding, and the ciphertext does not contain valid padding.
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         The size of the \p output buffer is too small.
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ */
+psa_status_t mbedtls_psa_cipher_finish(
+    mbedtls_psa_cipher_operation_t *operation,
+    uint8_t *output, size_t output_size, size_t *output_length);
+
+/** Abort a cipher operation.
+ *
+ * Aborting an operation frees all associated resources except for the
+ * \p operation structure itself. Once aborted, the operation object
+ * can be reused for another operation.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       cipher_abort entry point. This function behaves as a
+ *       cipher_abort entry point as defined in the PSA driver
+ *       interface specification for transparent drivers.
+ *
+ * \param[in,out] operation     Initialized cipher operation.
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ */
+psa_status_t mbedtls_psa_cipher_abort(mbedtls_psa_cipher_operation_t *operation);
+
+/** Encrypt a message using a symmetric cipher.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       cipher_encrypt entry point. This function behaves as a
+ *       cipher_encrypt entry point as defined in the PSA driver
+ *       interface specification for transparent drivers.
+ *
+ * \param[in] attributes        The attributes of the key to use for the
+ *                              operation.
+ * \param[in] key_buffer        The buffer containing the key context.
+ * \param[in] key_buffer_size   Size of the \p key_buffer buffer in bytes.
+ * \param[in] alg               The cipher algorithm to compute
+ *                              (\c PSA_ALG_XXX value such that
+ *                              #PSA_ALG_IS_CIPHER(\p alg) is true).
+ * \param[in] iv                Buffer containing the IV for encryption. The
+ *                              IV has been generated by the core.
+ * \param[in] iv_length         Size of the \p iv in bytes.
+ * \param[in] input             Buffer containing the message to encrypt.
+ * \param[in] input_length      Size of the \p input buffer in bytes.
+ * \param[in,out] output        Buffer where the output is to be written.
+ * \param[in]  output_size      Size of the \p output buffer in bytes.
+ * \param[out] output_length    On success, the number of bytes that make up
+ *                              the returned output. Initialized to zero
+ *                              by the core.
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         The size of the \p output buffer is too small.
+ * \retval #PSA_ERROR_INVALID_ARGUMENT
+ *         The size \p iv_length is not acceptable for the chosen algorithm,
+ *         or the chosen algorithm does not use an IV.
+ *         The total input size passed to this operation is not valid for
+ *         this particular algorithm. For example, the algorithm is a based
+ *         on block cipher and requires a whole number of blocks, but the
+ *         total input size is not a multiple of the block size.
+ * \retval #PSA_ERROR_INVALID_PADDING
+ *         This is a decryption operation for an algorithm that includes
+ *         padding, and the ciphertext does not contain valid padding.
+ */
+psa_status_t mbedtls_psa_cipher_encrypt(const psa_key_attributes_t *attributes,
+                                        const uint8_t *key_buffer,
+                                        size_t key_buffer_size,
+                                        psa_algorithm_t alg,
+                                        const uint8_t *iv,
+                                        size_t iv_length,
+                                        const uint8_t *input,
+                                        size_t input_length,
+                                        uint8_t *output,
+                                        size_t output_size,
+                                        size_t *output_length);
+
+/** Decrypt a message using a symmetric cipher.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       cipher_decrypt entry point. This function behaves as a
+ *       cipher_decrypt entry point as defined in the PSA driver
+ *       interface specification for transparent drivers.
+ *
+ * \param[in]  attributes       The attributes of the key to use for the
+ *                              operation.
+ * \param[in]  key_buffer       The buffer containing the key context.
+ * \param[in]  key_buffer_size  Size of the \p key_buffer buffer in bytes.
+ * \param[in]  alg              The cipher algorithm to compute
+ *                              (\c PSA_ALG_XXX value such that
+ *                              #PSA_ALG_IS_CIPHER(\p alg) is true).
+ * \param[in]  input            Buffer containing the iv and the ciphertext.
+ * \param[in]  input_length     Size of the \p input buffer in bytes.
+ * \param[out] output           Buffer where the output is to be written.
+ * \param[in]  output_size      Size of the \p output buffer in bytes.
+ * \param[out] output_length    On success, the number of bytes that make up
+ *                              the returned output. Initialized to zero
+ *                              by the core.
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         The size of the \p output buffer is too small.
+ * \retval #PSA_ERROR_INVALID_ARGUMENT
+ *         The size of \p iv is not acceptable for the chosen algorithm,
+ *         or the chosen algorithm does not use an IV.
+ *         The total input size passed to this operation is not valid for
+ *         this particular algorithm. For example, the algorithm is a based
+ *         on block cipher and requires a whole number of blocks, but the
+ *         total input size is not a multiple of the block size.
+ * \retval #PSA_ERROR_INVALID_PADDING
+ *         This is a decryption operation for an algorithm that includes
+ *         padding, and the ciphertext does not contain valid padding.
+ */
+psa_status_t mbedtls_psa_cipher_decrypt(const psa_key_attributes_t *attributes,
+                                        const uint8_t *key_buffer,
+                                        size_t key_buffer_size,
+                                        psa_algorithm_t alg,
+                                        const uint8_t *input,
+                                        size_t input_length,
+                                        uint8_t *output,
+                                        size_t output_size,
+                                        size_t *output_length);
+
+#endif /* PSA_CRYPTO_CIPHER_H */
diff --git a/tf-psa-crypto/core/psa_crypto_client.c b/tf-psa-crypto/core/psa_crypto_client.c
new file mode 100644
index 0000000..72f671d
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_client.c
@@ -0,0 +1,22 @@
+/*
+ *  PSA crypto client code
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+#include "psa/crypto.h"
+
+#if defined(MBEDTLS_PSA_CRYPTO_CLIENT)
+
+#include <string.h>
+#include "mbedtls/platform.h"
+
+void psa_reset_key_attributes(psa_key_attributes_t *attributes)
+{
+    memset(attributes, 0, sizeof(*attributes));
+}
+
+#endif /* MBEDTLS_PSA_CRYPTO_CLIENT */
diff --git a/tf-psa-crypto/core/psa_crypto_core.h b/tf-psa-crypto/core/psa_crypto_core.h
new file mode 100644
index 0000000..9462d2e
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_core.h
@@ -0,0 +1,957 @@
+/*
+ *  PSA crypto core internal interfaces
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef PSA_CRYPTO_CORE_H
+#define PSA_CRYPTO_CORE_H
+
+/*
+ * Include the build-time configuration information header. Here, we do not
+ * include `"mbedtls/build_info.h"` directly but `"psa/build_info.h"`, which
+ * is basically just an alias to it. This is to ease the maintenance of the
+ * TF-PSA-Crypto repository which has a different build system and
+ * configuration.
+ */
+#include "psa/build_info.h"
+
+#include "psa/crypto.h"
+#include "psa/crypto_se_driver.h"
+#if defined(MBEDTLS_THREADING_C)
+#include "mbedtls/threading.h"
+#endif
+
+/**
+ * Tell if PSA is ready for this hash.
+ *
+ * \note            For now, only checks the state of the driver subsystem,
+ *                  not the algorithm. Might do more in the future.
+ *
+ * \param hash_alg  The hash algorithm (ignored for now).
+ *
+ * \return 1 if the driver subsytem is ready, 0 otherwise.
+ */
+int psa_can_do_hash(psa_algorithm_t hash_alg);
+
+/**
+ * Tell if PSA is ready for this cipher.
+ *
+ * \note            For now, only checks the state of the driver subsystem,
+ *                  not the algorithm. Might do more in the future.
+ *
+ * \param cipher_alg  The cipher algorithm (ignored for now).
+ *
+ * \return 1 if the driver subsytem is ready, 0 otherwise.
+ */
+int psa_can_do_cipher(psa_key_type_t key_type, psa_algorithm_t cipher_alg);
+
+typedef enum {
+    PSA_SLOT_EMPTY = 0,
+    PSA_SLOT_FILLING,
+    PSA_SLOT_FULL,
+    PSA_SLOT_PENDING_DELETION,
+} psa_key_slot_state_t;
+
+/** The data structure representing a key slot, containing key material
+ * and metadata for one key.
+ */
+typedef struct {
+    psa_key_attributes_t attr;
+
+    /*
+     * The current state of the key slot, as described in
+     * docs/architecture/psa-thread-safety/psa-thread-safety.md.
+     *
+     * Library functions can modify the state of a key slot by calling
+     * psa_key_slot_state_transition.
+     *
+     * The state variable is used to help determine whether library functions
+     * which operate on the slot succeed. For example, psa_finish_key_creation,
+     * which transfers the state of a slot from PSA_SLOT_FILLING to
+     * PSA_SLOT_FULL, must fail with error code PSA_ERROR_CORRUPTION_DETECTED
+     * if the state of the slot is not PSA_SLOT_FILLING.
+     *
+     * Library functions which traverse the array of key slots only consider
+     * slots that are in a suitable state for the function.
+     * For example, psa_get_and_lock_key_slot_in_memory, which finds a slot
+     * containing a given key ID, will only check slots whose state variable is
+     * PSA_SLOT_FULL. */
+    psa_key_slot_state_t state;
+
+    /*
+     * Number of functions registered as reading the material in the key slot.
+     *
+     * Library functions must not write directly to registered_readers
+     *
+     * A function must call psa_register_read(slot) before reading the current
+     * contents of the slot for an operation.
+     * They then must call psa_unregister_read(slot) once they have finished
+     * reading the current contents of the slot. If the key slot mutex is not
+     * held (when mutexes are enabled), this call must be done via a call to
+     * psa_unregister_read_under_mutex(slot).
+     * A function must call psa_key_slot_has_readers(slot) to check if
+     * the slot is in use for reading.
+     *
+     * This counter is used to prevent resetting the key slot while the library
+     * may access it. For example, such control is needed in the following
+     * scenarios:
+     * . In case of key slot starvation, all key slots contain the description
+     *   of a key, and the library asks for the description of a persistent
+     *   key not present in the key slots, the key slots currently accessed by
+     *   the library cannot be reclaimed to free a key slot to load the
+     *   persistent key.
+     * . In case of a multi-threaded application where one thread asks to close
+     *   or purge or destroy a key while it is in use by the library through
+     *   another thread. */
+    size_t registered_readers;
+
+    /* Dynamically allocated key data buffer.
+     * Format as specified in psa_export_key(). */
+    struct key_data {
+        uint8_t *data;
+        size_t bytes;
+    } key;
+} psa_key_slot_t;
+
+#if defined(MBEDTLS_THREADING_C)
+
+/** Perform a mutex operation and return immediately upon failure.
+ *
+ * Returns PSA_ERROR_SERVICE_FAILURE if the operation fails
+ * and status was PSA_SUCCESS.
+ *
+ * Assumptions:
+ *  psa_status_t status exists.
+ *  f is a mutex operation which returns 0 upon success.
+ */
+#define PSA_THREADING_CHK_RET(f)                       \
+    do                                                 \
+    {                                                  \
+        if ((f) != 0) {                                \
+            if (status == PSA_SUCCESS) {               \
+                return PSA_ERROR_SERVICE_FAILURE;      \
+            }                                          \
+            return status;                             \
+        }                                              \
+    } while (0);
+
+/** Perform a mutex operation and goto exit on failure.
+ *
+ * Sets status to PSA_ERROR_SERVICE_FAILURE if status was PSA_SUCCESS.
+ *
+ * Assumptions:
+ *  psa_status_t status exists.
+ *  Label exit: exists.
+ *  f is a mutex operation which returns 0 upon success.
+ */
+#define PSA_THREADING_CHK_GOTO_EXIT(f)                 \
+    do                                                 \
+    {                                                  \
+        if ((f) != 0) {                                \
+            if (status == PSA_SUCCESS) {               \
+                status = PSA_ERROR_SERVICE_FAILURE;    \
+            }                                          \
+            goto exit;                                 \
+        }                                              \
+    } while (0);
+#endif
+
+/** Test whether a key slot has any registered readers.
+ * If multi-threading is enabled, the caller must hold the
+ * global key slot mutex.
+ *
+ * \param[in] slot      The key slot to test.
+ *
+ * \return 1 if the slot has any registered readers, 0 otherwise.
+ */
+static inline int psa_key_slot_has_readers(const psa_key_slot_t *slot)
+{
+    return slot->registered_readers > 0;
+}
+
+#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
+/** Get the SE slot number of a key from the key slot storing its description.
+ *
+ * \param[in]  slot  The key slot to query. This must be a key slot storing
+ *                   the description of a key of a dynamically registered
+ *                   secure element, otherwise the behaviour is undefined.
+ */
+static inline psa_key_slot_number_t psa_key_slot_get_slot_number(
+    const psa_key_slot_t *slot)
+{
+    return *((psa_key_slot_number_t *) (slot->key.data));
+}
+#endif
+
+/** Completely wipe a slot in memory, including its policy.
+ *
+ * Persistent storage is not affected.
+ * Sets the slot's state to PSA_SLOT_EMPTY.
+ * If multi-threading is enabled, the caller must hold the
+ * global key slot mutex.
+ *
+ * \param[in,out] slot  The key slot to wipe.
+ *
+ * \retval #PSA_SUCCESS
+ *         The slot has been successfully wiped.
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED
+ *         The slot's state was PSA_SLOT_FULL or PSA_SLOT_PENDING_DELETION, and
+ *         the amount of registered readers was not equal to 1. Or,
+ *         the slot's state was PSA_SLOT_EMPTY. Or,
+ *         the slot's state was PSA_SLOT_FILLING, and the amount
+ *         of registered readers was not equal to 0.
+ */
+psa_status_t psa_wipe_key_slot(psa_key_slot_t *slot);
+
+/** Try to allocate a buffer to an empty key slot.
+ *
+ * \param[in,out] slot          Key slot to attach buffer to.
+ * \param[in] buffer_length     Requested size of the buffer.
+ *
+ * \retval #PSA_SUCCESS
+ *         The buffer has been successfully allocated.
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY
+ *         Not enough memory was available for allocation.
+ * \retval #PSA_ERROR_ALREADY_EXISTS
+ *         Trying to allocate a buffer to a non-empty key slot.
+ */
+psa_status_t psa_allocate_buffer_to_slot(psa_key_slot_t *slot,
+                                         size_t buffer_length);
+
+/** Wipe key data from a slot. Preserves metadata such as the policy. */
+psa_status_t psa_remove_key_data_from_memory(psa_key_slot_t *slot);
+
+/** Copy key data (in export format) into an empty key slot.
+ *
+ * This function assumes that the slot does not contain
+ * any key material yet. On failure, the slot content is unchanged.
+ *
+ * \param[in,out] slot          Key slot to copy the key into.
+ * \param[in] data              Buffer containing the key material.
+ * \param data_length           Size of the key buffer.
+ *
+ * \retval #PSA_SUCCESS
+ *         The key has been copied successfully.
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY
+ *         Not enough memory was available for allocation of the
+ *         copy buffer.
+ * \retval #PSA_ERROR_ALREADY_EXISTS
+ *         There was other key material already present in the slot.
+ */
+psa_status_t psa_copy_key_material_into_slot(psa_key_slot_t *slot,
+                                             const uint8_t *data,
+                                             size_t data_length);
+
+/** Convert an Mbed TLS error code to a PSA error code
+ *
+ * \note This function is provided solely for the convenience of
+ *       Mbed TLS and may be removed at any time without notice.
+ *
+ * \param ret           An Mbed TLS-thrown error code
+ *
+ * \return              The corresponding PSA error code
+ */
+psa_status_t mbedtls_to_psa_error(int ret);
+
+/** Import a key in binary format.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       import_key entry point. This function behaves as an import_key
+ *       entry point as defined in the PSA driver interface specification for
+ *       transparent drivers.
+ *
+ * \param[in]  attributes       The attributes for the key to import.
+ * \param[in]  data             The buffer containing the key data in import
+ *                              format.
+ * \param[in]  data_length      Size of the \p data buffer in bytes.
+ * \param[out] key_buffer       The buffer to contain the key data in output
+ *                              format upon successful return.
+ * \param[in]  key_buffer_size  Size of the \p key_buffer buffer in bytes. This
+ *                              size is greater or equal to \p data_length.
+ * \param[out] key_buffer_length  The length of the data written in \p
+ *                                key_buffer in bytes.
+ * \param[out] bits             The key size in number of bits.
+ *
+ * \retval #PSA_SUCCESS  The key was imported successfully.
+ * \retval #PSA_ERROR_INVALID_ARGUMENT
+ *         The key data is not correctly formatted.
+ * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ */
+psa_status_t psa_import_key_into_slot(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *data, size_t data_length,
+    uint8_t *key_buffer, size_t key_buffer_size,
+    size_t *key_buffer_length, size_t *bits);
+
+/** Export a key in binary format
+ *
+ * \note The signature of this function is that of a PSA driver export_key
+ *       entry point. This function behaves as an export_key entry point as
+ *       defined in the PSA driver interface specification.
+ *
+ * \param[in]  attributes       The attributes for the key to export.
+ * \param[in]  key_buffer       Material or context of the key to export.
+ * \param[in]  key_buffer_size  Size of the \p key_buffer buffer in bytes.
+ * \param[out] data             Buffer where the key data is to be written.
+ * \param[in]  data_size        Size of the \p data buffer in bytes.
+ * \param[out] data_length      On success, the number of bytes written in
+ *                              \p data
+ *
+ * \retval #PSA_SUCCESS  The key was exported successfully.
+ * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
+ * \retval #PSA_ERROR_COMMUNICATION_FAILURE \emptydescription
+ * \retval #PSA_ERROR_HARDWARE_FAILURE \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ * \retval #PSA_ERROR_STORAGE_FAILURE \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ */
+psa_status_t psa_export_key_internal(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    uint8_t *data, size_t data_size, size_t *data_length);
+
+/** Export a public key or the public part of a key pair in binary format.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       export_public_key entry point. This function behaves as an
+ *       export_public_key entry point as defined in the PSA driver interface
+ *       specification.
+ *
+ * \param[in]  attributes       The attributes for the key to export.
+ * \param[in]  key_buffer       Material or context of the key to export.
+ * \param[in]  key_buffer_size  Size of the \p key_buffer buffer in bytes.
+ * \param[out] data             Buffer where the key data is to be written.
+ * \param[in]  data_size        Size of the \p data buffer in bytes.
+ * \param[out] data_length      On success, the number of bytes written in
+ *                              \p data
+ *
+ * \retval #PSA_SUCCESS  The public key was exported successfully.
+ * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
+ * \retval #PSA_ERROR_COMMUNICATION_FAILURE \emptydescription
+ * \retval #PSA_ERROR_HARDWARE_FAILURE \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ * \retval #PSA_ERROR_STORAGE_FAILURE \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ */
+psa_status_t psa_export_public_key_internal(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    uint8_t *data, size_t data_size, size_t *data_length);
+
+/** Whether a key production parameters structure is the default.
+ *
+ * Calls to a key generation driver with non-default production parameters
+ * require a driver supporting custom production parameters.
+ *
+ * \param[in] params            The key production parameters to check.
+ * \param params_data_length    Size of `params->data` in bytes.
+ */
+int psa_key_production_parameters_are_default(
+    const psa_key_production_parameters_t *params,
+    size_t params_data_length);
+
+/**
+ * \brief Generate a key.
+ *
+ * \note The signature of the function is that of a PSA driver generate_key
+ *       entry point.
+ *
+ * \param[in]  attributes         The attributes for the key to generate.
+ * \param[in]  params             The production parameters from
+ *                                psa_generate_key_ext().
+ * \param      params_data_length The size of `params->data` in bytes.
+ * \param[out] key_buffer         Buffer where the key data is to be written.
+ * \param[in]  key_buffer_size    Size of \p key_buffer in bytes.
+ * \param[out] key_buffer_length  On success, the number of bytes written in
+ *                                \p key_buffer.
+ *
+ * \retval #PSA_SUCCESS
+ *         The key was generated successfully.
+ * \retval #PSA_ERROR_INVALID_ARGUMENT \emptydescription
+ * \retval #PSA_ERROR_NOT_SUPPORTED
+ *         Key size in bits or type not supported.
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         The size of \p key_buffer is too small.
+ */
+psa_status_t psa_generate_key_internal(const psa_key_attributes_t *attributes,
+                                       const psa_key_production_parameters_t *params,
+                                       size_t params_data_length,
+                                       uint8_t *key_buffer,
+                                       size_t key_buffer_size,
+                                       size_t *key_buffer_length);
+
+/** Sign a message with a private key. For hash-and-sign algorithms,
+ *  this includes the hashing step.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       sign_message entry point. This function behaves as a sign_message
+ *       entry point as defined in the PSA driver interface specification for
+ *       transparent drivers.
+ *
+ * \note This function will call the driver for psa_sign_hash
+ *       and go through driver dispatch again.
+ *
+ * \param[in]  attributes       The attributes of the key to use for the
+ *                              operation.
+ * \param[in]  key_buffer       The buffer containing the key context.
+ * \param[in]  key_buffer_size  Size of the \p key_buffer buffer in bytes.
+ * \param[in]  alg              A signature algorithm that is compatible with
+ *                              the type of the key.
+ * \param[in]  input            The input message to sign.
+ * \param[in]  input_length     Size of the \p input buffer in bytes.
+ * \param[out] signature        Buffer where the signature is to be written.
+ * \param[in]  signature_size   Size of the \p signature buffer in bytes.
+ * \param[out] signature_length On success, the number of bytes
+ *                              that make up the returned signature value.
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         The size of the \p signature buffer is too small. You can
+ *         determine a sufficient buffer size by calling
+ *         #PSA_SIGN_OUTPUT_SIZE(\c key_type, \c key_bits, \p alg)
+ *         where \c key_type and \c key_bits are the type and bit-size
+ *         respectively of the key.
+ * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
+ * \retval #PSA_ERROR_INVALID_ARGUMENT \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY \emptydescription
+ */
+psa_status_t psa_sign_message_builtin(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg, const uint8_t *input, size_t input_length,
+    uint8_t *signature, size_t signature_size, size_t *signature_length);
+
+/** Verify the signature of a message with a public key, using
+ *  a hash-and-sign verification algorithm.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       verify_message entry point. This function behaves as a verify_message
+ *       entry point as defined in the PSA driver interface specification for
+ *       transparent drivers.
+ *
+ * \note This function will call the driver for psa_verify_hash
+ *       and go through driver dispatch again.
+ *
+ * \param[in]  attributes       The attributes of the key to use for the
+ *                              operation.
+ * \param[in]  key_buffer       The buffer containing the key context.
+ * \param[in]  key_buffer_size  Size of the \p key_buffer buffer in bytes.
+ * \param[in]  alg              A signature algorithm that is compatible with
+ *                              the type of the key.
+ * \param[in]  input            The message whose signature is to be verified.
+ * \param[in]  input_length     Size of the \p input buffer in bytes.
+ * \param[in]  signature        Buffer containing the signature to verify.
+ * \param[in]  signature_length Size of the \p signature buffer in bytes.
+ *
+ * \retval #PSA_SUCCESS
+ *         The signature is valid.
+ * \retval #PSA_ERROR_INVALID_SIGNATURE
+ *         The calculation was performed successfully, but the passed
+ *         signature is not a valid signature.
+ * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
+ * \retval #PSA_ERROR_INVALID_ARGUMENT \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ */
+psa_status_t psa_verify_message_builtin(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg, const uint8_t *input, size_t input_length,
+    const uint8_t *signature, size_t signature_length);
+
+/** Sign an already-calculated hash with a private key.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       sign_hash entry point. This function behaves as a sign_hash
+ *       entry point as defined in the PSA driver interface specification for
+ *       transparent drivers.
+ *
+ * \param[in]  attributes       The attributes of the key to use for the
+ *                              operation.
+ * \param[in]  key_buffer       The buffer containing the key context.
+ * \param[in]  key_buffer_size  Size of the \p key_buffer buffer in bytes.
+ * \param[in]  alg              A signature algorithm that is compatible with
+ *                              the type of the key.
+ * \param[in]  hash             The hash or message to sign.
+ * \param[in]  hash_length      Size of the \p hash buffer in bytes.
+ * \param[out] signature        Buffer where the signature is to be written.
+ * \param[in]  signature_size   Size of the \p signature buffer in bytes.
+ * \param[out] signature_length On success, the number of bytes
+ *                              that make up the returned signature value.
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         The size of the \p signature buffer is too small. You can
+ *         determine a sufficient buffer size by calling
+ *         #PSA_SIGN_OUTPUT_SIZE(\c key_type, \c key_bits, \p alg)
+ *         where \c key_type and \c key_bits are the type and bit-size
+ *         respectively of the key.
+ * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
+ * \retval #PSA_ERROR_INVALID_ARGUMENT \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY \emptydescription
+ */
+psa_status_t psa_sign_hash_builtin(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg, const uint8_t *hash, size_t hash_length,
+    uint8_t *signature, size_t signature_size, size_t *signature_length);
+
+/**
+ * \brief Verify the signature a hash or short message using a public key.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       verify_hash entry point. This function behaves as a verify_hash
+ *       entry point as defined in the PSA driver interface specification for
+ *       transparent drivers.
+ *
+ * \param[in]  attributes       The attributes of the key to use for the
+ *                              operation.
+ * \param[in]  key_buffer       The buffer containing the key context.
+ * \param[in]  key_buffer_size  Size of the \p key_buffer buffer in bytes.
+ * \param[in]  alg              A signature algorithm that is compatible with
+ *                              the type of the key.
+ * \param[in]  hash             The hash or message whose signature is to be
+ *                              verified.
+ * \param[in]  hash_length      Size of the \p hash buffer in bytes.
+ * \param[in]  signature        Buffer containing the signature to verify.
+ * \param[in]  signature_length Size of the \p signature buffer in bytes.
+ *
+ * \retval #PSA_SUCCESS
+ *         The signature is valid.
+ * \retval #PSA_ERROR_INVALID_SIGNATURE
+ *         The calculation was performed successfully, but the passed
+ *         signature is not a valid signature.
+ * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
+ * \retval #PSA_ERROR_INVALID_ARGUMENT \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ */
+psa_status_t psa_verify_hash_builtin(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg, const uint8_t *hash, size_t hash_length,
+    const uint8_t *signature, size_t signature_length);
+
+/**
+ * \brief Validate the key bit size for unstructured keys.
+ *
+ * \note  Check that the bit size is acceptable for a given key type for
+ *        unstructured keys.
+ *
+ * \param[in]  type  The key type
+ * \param[in]  bits  The number of bits of the key
+ *
+ * \retval #PSA_SUCCESS
+ *         The key type and size are valid.
+ * \retval #PSA_ERROR_INVALID_ARGUMENT
+ *         The size in bits of the key is not valid.
+ * \retval #PSA_ERROR_NOT_SUPPORTED
+ *         The type and/or the size in bits of the key or the combination of
+ *         the two is not supported.
+ */
+psa_status_t psa_validate_unstructured_key_bit_size(psa_key_type_t type,
+                                                    size_t bits);
+
+/** Perform a key agreement and return the raw shared secret, using
+    built-in raw key agreement functions.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       key_agreement entry point. This function behaves as a key_agreement
+ *       entry point as defined in the PSA driver interface specification for
+ *       transparent drivers.
+ *
+ * \param[in]  attributes           The attributes of the key to use for the
+ *                                  operation.
+ * \param[in]  key_buffer           The buffer containing the private key
+ *                                  context.
+ * \param[in]  key_buffer_size      Size of the \p key_buffer buffer in
+ *                                  bytes.
+ * \param[in]  alg                  A key agreement algorithm that is
+ *                                  compatible with the type of the key.
+ * \param[in]  peer_key             The buffer containing the key context
+ *                                  of the peer's public key.
+ * \param[in]  peer_key_length      Size of the \p peer_key buffer in
+ *                                  bytes.
+ * \param[out] shared_secret        The buffer to which the shared secret
+ *                                  is to be written.
+ * \param[in]  shared_secret_size   Size of the \p shared_secret buffer in
+ *                                  bytes.
+ * \param[out] shared_secret_length On success, the number of bytes that make
+ *                                  up the returned shared secret.
+ * \retval #PSA_SUCCESS
+ *         Success. Shared secret successfully calculated.
+ * \retval #PSA_ERROR_INVALID_HANDLE \emptydescription
+ * \retval #PSA_ERROR_NOT_PERMITTED \emptydescription
+ * \retval #PSA_ERROR_INVALID_ARGUMENT
+ *         \p alg is not a key agreement algorithm, or
+ *         \p private_key is not compatible with \p alg,
+ *         or \p peer_key is not valid for \p alg or not compatible with
+ *         \p private_key.
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         \p shared_secret_size is too small
+ * \retval #PSA_ERROR_NOT_SUPPORTED
+ *         \p alg is not a supported key agreement algorithm.
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_COMMUNICATION_FAILURE \emptydescription
+ * \retval #PSA_ERROR_HARDWARE_FAILURE \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ * \retval #PSA_ERROR_STORAGE_FAILURE \emptydescription
+ * \retval #PSA_ERROR_BAD_STATE \emptydescription
+ */
+psa_status_t psa_key_agreement_raw_builtin(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer,
+    size_t key_buffer_size,
+    psa_algorithm_t alg,
+    const uint8_t *peer_key,
+    size_t peer_key_length,
+    uint8_t *shared_secret,
+    size_t shared_secret_size,
+    size_t *shared_secret_length);
+
+/**
+ * \brief Set the maximum number of ops allowed to be executed by an
+ *        interruptible function in a single call.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       interruptible_set_max_ops entry point. This function behaves as an
+ *       interruptible_set_max_ops entry point as defined in the PSA driver
+ *       interface specification for transparent drivers.
+ *
+ * \param[in]  max_ops          The maximum number of ops to be executed in a
+ *                              single call, this can be a number from 0 to
+ *                              #PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED, where 0
+ *                              is obviously the least amount of work done per
+ *                              call.
+ */
+void mbedtls_psa_interruptible_set_max_ops(uint32_t max_ops);
+
+/**
+ * \brief Get the maximum number of ops allowed to be executed by an
+ *        interruptible function in a single call.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       interruptible_get_max_ops entry point. This function behaves as an
+ *       interruptible_get_max_ops entry point as defined in the PSA driver
+ *       interface specification for transparent drivers.
+ *
+ * \return                      Maximum number of ops allowed to be executed
+ *                              by an interruptible function in a single call.
+ */
+uint32_t mbedtls_psa_interruptible_get_max_ops(void);
+
+/**
+ * \brief Get the number of ops that a hash signing operation has taken for the
+ *        previous call. If no call or work has taken place, this will return
+ *        zero.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       sign_hash_get_num_ops entry point. This function behaves as an
+ *       sign_hash_get_num_ops entry point as defined in the PSA driver
+ *       interface specification for transparent drivers.
+ *
+ * \param   operation           The \c
+ *                              mbedtls_psa_sign_hash_interruptible_operation_t
+ *                              to use. This must be initialized first.
+ *
+ * \return                      Number of ops that were completed
+ *                              in the last call to \c
+ *                              mbedtls_psa_sign_hash_complete().
+ */
+uint32_t mbedtls_psa_sign_hash_get_num_ops(
+    const mbedtls_psa_sign_hash_interruptible_operation_t *operation);
+
+/**
+ * \brief Get the number of ops that a hash verification operation has taken for
+ *        the previous call. If no call or work has taken place, this will
+ *        return zero.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       verify_hash_get_num_ops entry point. This function behaves as an
+ *       verify_hash_get_num_ops entry point as defined in the PSA driver
+ *       interface specification for transparent drivers.
+ *
+ * \param   operation           The \c
+ *                              mbedtls_psa_verify_hash_interruptible_operation_t
+ *                              to use. This must be initialized first.
+ *
+ * \return                      Number of ops that were completed
+ *                              in the last call to \c
+ *                              mbedtls_psa_verify_hash_complete().
+ */
+uint32_t mbedtls_psa_verify_hash_get_num_ops(
+    const mbedtls_psa_verify_hash_interruptible_operation_t *operation);
+
+/**
+ * \brief  Start signing a hash or short message with a private key, in an
+ *         interruptible manner.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       sign_hash_start entry point. This function behaves as a
+ *       sign_hash_start entry point as defined in the PSA driver interface
+ *       specification for transparent drivers.
+ *
+ * \param[in]  operation        The \c
+ *                              mbedtls_psa_sign_hash_interruptible_operation_t
+ *                              to use. This must be initialized first.
+ * \param[in]  attributes       The attributes of the key to use for the
+ *                              operation.
+ * \param[in]  key_buffer       The buffer containing the key context.
+ * \param[in]  key_buffer_size  Size of the \p key_buffer buffer in bytes.
+ * \param[in]  alg              A signature algorithm that is compatible with
+ *                              the type of the key.
+ * \param[in] hash              The hash or message to sign.
+ * \param hash_length           Size of the \p hash buffer in bytes.
+ *
+ * \retval #PSA_SUCCESS
+ *         The operation started successfully - call \c psa_sign_hash_complete()
+ *         with the same context to complete the operation
+ * \retval #PSA_ERROR_INVALID_ARGUMENT
+ *         An unsupported, incorrectly formatted or incorrect type of key was
+ *         used.
+ * \retval #PSA_ERROR_NOT_SUPPORTED Either no internal interruptible operations
+ *         are currently supported, or the key type is currently unsupported.
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY
+ *         There was insufficient memory to load the key representation.
+ */
+psa_status_t mbedtls_psa_sign_hash_start(
+    mbedtls_psa_sign_hash_interruptible_operation_t *operation,
+    const psa_key_attributes_t *attributes, const uint8_t *key_buffer,
+    size_t key_buffer_size, psa_algorithm_t alg,
+    const uint8_t *hash, size_t hash_length);
+
+/**
+ * \brief Continue and eventually complete the action of signing a hash or
+ *        short message with a private key, in an interruptible manner.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       sign_hash_complete entry point. This function behaves as a
+ *       sign_hash_complete entry point as defined in the PSA driver interface
+ *       specification for transparent drivers.
+ *
+ * \param[in]  operation        The \c
+ *                              mbedtls_psa_sign_hash_interruptible_operation_t
+ *                              to use. This must be initialized first.
+ *
+ * \param[out] signature        Buffer where the signature is to be written.
+ * \param signature_size        Size of the \p signature buffer in bytes. This
+ *                              must be appropriate for the selected
+ *                              algorithm and key.
+ * \param[out] signature_length On success, the number of bytes that make up
+ *                              the returned signature value.
+ *
+ * \retval #PSA_SUCCESS
+ *         Operation completed successfully
+ *
+ * \retval #PSA_OPERATION_INCOMPLETE
+ *         Operation was interrupted due to the setting of \c
+ *         psa_interruptible_set_max_ops(), there is still work to be done,
+ *         please call this function again with the same operation object.
+ *
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         The size of the \p signature buffer is too small. You can
+ *         determine a sufficient buffer size by calling
+ *         #PSA_SIGN_OUTPUT_SIZE(\c key_type, \c key_bits, \p alg)
+ *         where \c key_type and \c key_bits are the type and bit-size
+ *         respectively of \p key.
+ *
+ * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
+ * \retval #PSA_ERROR_INVALID_ARGUMENT \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY \emptydescription
+ */
+psa_status_t mbedtls_psa_sign_hash_complete(
+    mbedtls_psa_sign_hash_interruptible_operation_t *operation,
+    uint8_t *signature, size_t signature_size,
+    size_t *signature_length);
+
+/**
+ * \brief Abort a sign hash operation.
+ *
+ * \note The signature of this function is that of a PSA driver sign_hash_abort
+ *       entry point. This function behaves as a sign_hash_abort entry point as
+ *       defined in the PSA driver interface specification for transparent
+ *       drivers.
+ *
+ * \param[in]  operation        The \c
+ *                              mbedtls_psa_sign_hash_interruptible_operation_t
+ *                              to abort.
+ *
+ * \retval #PSA_SUCCESS
+ *         The operation was aborted successfully.
+ */
+psa_status_t mbedtls_psa_sign_hash_abort(
+    mbedtls_psa_sign_hash_interruptible_operation_t *operation);
+
+/**
+ * \brief  Start reading and verifying a hash or short message, in an
+ *         interruptible manner.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       verify_hash_start entry point. This function behaves as a
+ *       verify_hash_start entry point as defined in the PSA driver interface
+ *       specification for transparent drivers.
+ *
+ * \param[in]  operation        The \c
+ *                              mbedtls_psa_verify_hash_interruptible_operation_t
+ *                              to use. This must be initialized first.
+ * \param[in]  attributes       The attributes of the key to use for the
+ *                              operation.
+ * \param[in]  key_buffer       The buffer containing the key context.
+ * \param[in]  key_buffer_size  Size of the \p key_buffer buffer in bytes.
+ * \param[in]  alg              A signature algorithm that is compatible with
+ *                              the type of the key.
+ * \param[in] hash              The hash whose signature is to be verified.
+ * \param hash_length           Size of the \p hash buffer in bytes.
+ * \param[in] signature         Buffer containing the signature to verify.
+ * \param signature_length      Size of the \p signature buffer in bytes.
+ *
+ * \retval #PSA_SUCCESS
+ *         The operation started successfully - call \c psa_sign_hash_complete()
+ *         with the same context to complete the operation
+ * \retval #PSA_ERROR_INVALID_ARGUMENT
+ *         An unsupported or incorrect type of key was used.
+ * \retval #PSA_ERROR_NOT_SUPPORTED
+ *        Either no internal interruptible operations are currently supported,
+ *         or the key type is currently unsupported.
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY
+ *        There was insufficient memory either to load the key representation,
+ *        or to prepare the operation.
+ */
+psa_status_t mbedtls_psa_verify_hash_start(
+    mbedtls_psa_verify_hash_interruptible_operation_t *operation,
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg,
+    const uint8_t *hash, size_t hash_length,
+    const uint8_t *signature, size_t signature_length);
+
+/**
+ * \brief Continue and eventually complete the action of signing a hash or
+ *        short message with a private key, in an interruptible manner.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       sign_hash_complete entry point. This function behaves as a
+ *       sign_hash_complete entry point as defined in the PSA driver interface
+ *       specification for transparent drivers.
+ *
+ * \param[in]  operation        The \c
+ *                              mbedtls_psa_sign_hash_interruptible_operation_t
+ *                              to use. This must be initialized first.
+ *
+ * \retval #PSA_SUCCESS
+ *         Operation completed successfully, and the passed signature is valid.
+ *
+ * \retval #PSA_OPERATION_INCOMPLETE
+ *         Operation was interrupted due to the setting of \c
+ *         psa_interruptible_set_max_ops(), there is still work to be done,
+ *         please call this function again with the same operation object.
+ *
+ * \retval #PSA_ERROR_INVALID_SIGNATURE
+ *         The calculation was performed successfully, but the passed
+ *         signature is not a valid signature.
+ *
+ * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
+ * \retval #PSA_ERROR_INVALID_ARGUMENT \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ */
+psa_status_t mbedtls_psa_verify_hash_complete(
+    mbedtls_psa_verify_hash_interruptible_operation_t *operation);
+
+/**
+ * \brief Abort a verify signed hash operation.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       verify_hash_abort entry point. This function behaves as a
+ *       verify_hash_abort entry point as defined in the PSA driver interface
+ *       specification for transparent drivers.
+ *
+ * \param[in]  operation        The \c
+ *                              mbedtls_psa_verify_hash_interruptible_operation_t
+ *                              to abort.
+ *
+ * \retval #PSA_SUCCESS
+ *         The operation was aborted successfully.
+ */
+psa_status_t mbedtls_psa_verify_hash_abort(
+    mbedtls_psa_verify_hash_interruptible_operation_t *operation);
+
+typedef struct psa_crypto_local_input_s {
+    uint8_t *buffer;
+    size_t length;
+} psa_crypto_local_input_t;
+
+#define PSA_CRYPTO_LOCAL_INPUT_INIT ((psa_crypto_local_input_t) { NULL, 0 })
+
+/** Allocate a local copy of an input buffer and copy the contents into it.
+ *
+ * \param[in] input             Pointer to input buffer.
+ * \param[in] input_len         Length of the input buffer.
+ * \param[out] local_input      Pointer to a psa_crypto_local_input_t struct
+ *                              containing a local input copy.
+ * \return                      #PSA_SUCCESS, if the buffer was successfully
+ *                              copied.
+ * \return                      #PSA_ERROR_INSUFFICIENT_MEMORY, if a copy of
+ *                              the buffer cannot be allocated.
+ */
+psa_status_t psa_crypto_local_input_alloc(const uint8_t *input, size_t input_len,
+                                          psa_crypto_local_input_t *local_input);
+
+/** Free a local copy of an input buffer.
+ *
+ * \param[in] local_input       Pointer to a psa_crypto_local_input_t struct
+ *                              populated by a previous call to
+ *                              psa_crypto_local_input_alloc().
+ */
+void psa_crypto_local_input_free(psa_crypto_local_input_t *local_input);
+
+typedef struct psa_crypto_local_output_s {
+    uint8_t *original;
+    uint8_t *buffer;
+    size_t length;
+} psa_crypto_local_output_t;
+
+#define PSA_CRYPTO_LOCAL_OUTPUT_INIT ((psa_crypto_local_output_t) { NULL, NULL, 0 })
+
+/** Allocate a local copy of an output buffer.
+ *
+ * \note                        This does not copy any data from the original
+ *                              output buffer but only allocates a buffer
+ *                              whose contents will be copied back to the
+ *                              original in a future call to
+ *                              psa_crypto_local_output_free().
+ *
+ * \param[in] output            Pointer to output buffer.
+ * \param[in] output_len        Length of the output buffer.
+ * \param[out] local_output     Pointer to a psa_crypto_local_output_t struct to
+ *                              populate with the local output copy.
+ * \return                      #PSA_SUCCESS, if the buffer was successfully
+ *                              copied.
+ * \return                      #PSA_ERROR_INSUFFICIENT_MEMORY, if a copy of
+ *                              the buffer cannot be allocated.
+ */
+psa_status_t psa_crypto_local_output_alloc(uint8_t *output, size_t output_len,
+                                           psa_crypto_local_output_t *local_output);
+
+/** Copy from a local copy of an output buffer back to the original, then
+ *  free the local copy.
+ *
+ * \param[in] local_output      Pointer to a psa_crypto_local_output_t struct
+ *                              populated by a previous call to
+ *                              psa_crypto_local_output_alloc().
+ * \return                      #PSA_SUCCESS, if the local output was
+ *                              successfully copied back to the original.
+ * \return                      #PSA_ERROR_CORRUPTION_DETECTED, if the output
+ *                              could not be copied back to the original.
+ */
+psa_status_t psa_crypto_local_output_free(psa_crypto_local_output_t *local_output);
+
+#endif /* PSA_CRYPTO_CORE_H */
diff --git a/tf-psa-crypto/core/psa_crypto_core_common.h b/tf-psa-crypto/core/psa_crypto_core_common.h
new file mode 100644
index 0000000..98fce2c
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_core_common.h
@@ -0,0 +1,52 @@
+/**
+ * \file psa_crypto_core_common.h
+ *
+ * \brief Utility macros for internal use in the PSA cryptography core.
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef PSA_CRYPTO_CORE_COMMON_H
+#define PSA_CRYPTO_CORE_COMMON_H
+
+/** Return an offset into a buffer.
+ *
+ * This is just the addition of an offset to a pointer, except that this
+ * function also accepts an offset of 0 into a buffer whose pointer is null.
+ * (`p + n` has undefined behavior when `p` is null, even when `n == 0`.
+ * A null pointer is a valid buffer pointer when the size is 0, for example
+ * as the result of `malloc(0)` on some platforms.)
+ *
+ * \param p     Pointer to a buffer of at least n bytes.
+ *              This may be \p NULL if \p n is zero.
+ * \param n     An offset in bytes.
+ * \return      Pointer to offset \p n in the buffer \p p.
+ *              Note that this is only a valid pointer if the size of the
+ *              buffer is at least \p n + 1.
+ */
+static inline unsigned char *psa_crypto_buffer_offset(
+    unsigned char *p, size_t n)
+{
+    return p == NULL ? NULL : p + n;
+}
+
+/** Return an offset into a read-only buffer.
+ *
+ * Similar to mbedtls_buffer_offset(), but for const pointers.
+ *
+ * \param p     Pointer to a buffer of at least n bytes.
+ *              This may be \p NULL if \p n is zero.
+ * \param n     An offset in bytes.
+ * \return      Pointer to offset \p n in the buffer \p p.
+ *              Note that this is only a valid pointer if the size of the
+ *              buffer is at least \p n + 1.
+ */
+static inline const unsigned char *psa_crypto_buffer_offset_const(
+    const unsigned char *p, size_t n)
+{
+    return p == NULL ? NULL : p + n;
+}
+
+#endif /* PSA_CRYPTO_CORE_COMMON_H */
diff --git a/tf-psa-crypto/core/psa_crypto_driver_wrappers_no_static.h b/tf-psa-crypto/core/psa_crypto_driver_wrappers_no_static.h
new file mode 100644
index 0000000..cd617f6
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_driver_wrappers_no_static.h
@@ -0,0 +1,31 @@
+/*
+ *  Function signatures for functionality that can be provided by
+ *  cryptographic accelerators.
+ */
+/*  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef PSA_CRYPTO_DRIVER_WRAPPERS_NO_STATIC_H
+#define PSA_CRYPTO_DRIVER_WRAPPERS_NO_STATIC_H
+
+#include "psa/crypto.h"
+#include "psa/crypto_driver_common.h"
+
+psa_status_t psa_driver_wrapper_export_public_key(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    uint8_t *data, size_t data_size, size_t *data_length);
+
+psa_status_t psa_driver_wrapper_get_key_buffer_size(
+    const psa_key_attributes_t *attributes,
+    size_t *key_buffer_size);
+
+psa_status_t psa_driver_wrapper_get_builtin_key(
+    psa_drv_slot_number_t slot_number,
+    psa_key_attributes_t *attributes,
+    uint8_t *key_buffer, size_t key_buffer_size, size_t *key_buffer_length);
+
+#endif /* PSA_CRYPTO_DRIVER_WRAPPERS_NO_STATIC_H */
+
+/* End of automatically generated file. */
diff --git a/tf-psa-crypto/core/psa_crypto_ecp.c b/tf-psa-crypto/core/psa_crypto_ecp.c
new file mode 100644
index 0000000..95baff6
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_ecp.c
@@ -0,0 +1,596 @@
+/*
+ *  PSA ECP layer on top of Mbed TLS crypto
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PSA_CRYPTO_C)
+
+#include <psa/crypto.h>
+#include "psa_crypto_core.h"
+#include "psa_crypto_ecp.h"
+#include "psa_crypto_random_impl.h"
+#include "mbedtls/psa_util.h"
+
+#include <stdlib.h>
+#include <string.h>
+#include "mbedtls/platform.h"
+
+#include <mbedtls/ecdsa.h>
+#include <mbedtls/ecdh.h>
+#include <mbedtls/ecp.h>
+#include <mbedtls/error.h>
+
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR_BASIC) || \
+    defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR_IMPORT) || \
+    defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR_EXPORT) || \
+    defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_ECDH)
+/* Helper function to verify if the provided EC's family and key bit size are valid.
+ *
+ * Note: "bits" parameter is used both as input and output and it might be updated
+ *       in case provided input value is not multiple of 8 ("sloppy" bits).
+ */
+static int check_ecc_parameters(psa_ecc_family_t family, size_t *bits)
+{
+    switch (family) {
+        case PSA_ECC_FAMILY_SECP_R1:
+            switch (*bits) {
+                case 192:
+                case 224:
+                case 256:
+                case 384:
+                case 521:
+                    return PSA_SUCCESS;
+                case 528:
+                    *bits = 521;
+                    return PSA_SUCCESS;
+            }
+            break;
+
+        case PSA_ECC_FAMILY_BRAINPOOL_P_R1:
+            switch (*bits) {
+                case 256:
+                case 384:
+                case 512:
+                    return PSA_SUCCESS;
+            }
+            break;
+
+        case PSA_ECC_FAMILY_MONTGOMERY:
+            switch (*bits) {
+                case 448:
+                case 255:
+                    return PSA_SUCCESS;
+                case 256:
+                    *bits = 255;
+                    return PSA_SUCCESS;
+            }
+            break;
+
+        case PSA_ECC_FAMILY_SECP_K1:
+            switch (*bits) {
+                case 192:
+                /* secp224k1 is not and will not be supported in PSA (#3541). */
+                case 256:
+                    return PSA_SUCCESS;
+            }
+            break;
+    }
+
+    return PSA_ERROR_INVALID_ARGUMENT;
+}
+
+psa_status_t mbedtls_psa_ecp_load_representation(
+    psa_key_type_t type, size_t curve_bits,
+    const uint8_t *data, size_t data_length,
+    mbedtls_ecp_keypair **p_ecp)
+{
+    mbedtls_ecp_group_id grp_id = MBEDTLS_ECP_DP_NONE;
+    psa_status_t status;
+    mbedtls_ecp_keypair *ecp = NULL;
+    size_t curve_bytes = data_length;
+    int explicit_bits = (curve_bits != 0);
+
+    if (PSA_KEY_TYPE_IS_PUBLIC_KEY(type) &&
+        PSA_KEY_TYPE_ECC_GET_FAMILY(type) != PSA_ECC_FAMILY_MONTGOMERY) {
+        /* A Weierstrass public key is represented as:
+         * - The byte 0x04;
+         * - `x_P` as a `ceiling(m/8)`-byte string, big-endian;
+         * - `y_P` as a `ceiling(m/8)`-byte string, big-endian.
+         * So its data length is 2m+1 where m is the curve size in bits.
+         */
+        if ((data_length & 1) == 0) {
+            return PSA_ERROR_INVALID_ARGUMENT;
+        }
+        curve_bytes = data_length / 2;
+
+        /* Montgomery public keys are represented in compressed format, meaning
+         * their curve_bytes is equal to the amount of input. */
+
+        /* Private keys are represented in uncompressed private random integer
+         * format, meaning their curve_bytes is equal to the amount of input. */
+    }
+
+    if (explicit_bits) {
+        /* With an explicit bit-size, the data must have the matching length. */
+        if (curve_bytes != PSA_BITS_TO_BYTES(curve_bits)) {
+            return PSA_ERROR_INVALID_ARGUMENT;
+        }
+    } else {
+        /* We need to infer the bit-size from the data. Since the only
+         * information we have is the length in bytes, the value of curve_bits
+         * at this stage is rounded up to the nearest multiple of 8. */
+        curve_bits = PSA_BYTES_TO_BITS(curve_bytes);
+    }
+
+    /* Allocate and initialize a key representation. */
+    ecp = mbedtls_calloc(1, sizeof(mbedtls_ecp_keypair));
+    if (ecp == NULL) {
+        return PSA_ERROR_INSUFFICIENT_MEMORY;
+    }
+    mbedtls_ecp_keypair_init(ecp);
+
+    status = check_ecc_parameters(PSA_KEY_TYPE_ECC_GET_FAMILY(type), &curve_bits);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    /* Load the group. */
+    grp_id = mbedtls_ecc_group_from_psa(PSA_KEY_TYPE_ECC_GET_FAMILY(type),
+                                        curve_bits);
+    if (grp_id == MBEDTLS_ECP_DP_NONE) {
+        status = PSA_ERROR_NOT_SUPPORTED;
+        goto exit;
+    }
+
+    status = mbedtls_to_psa_error(
+        mbedtls_ecp_group_load(&ecp->grp, grp_id));
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    /* Load the key material. */
+    if (PSA_KEY_TYPE_IS_PUBLIC_KEY(type)) {
+        /* Load the public value. */
+        status = mbedtls_to_psa_error(
+            mbedtls_ecp_point_read_binary(&ecp->grp, &ecp->Q,
+                                          data,
+                                          data_length));
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+
+        /* Check that the point is on the curve. */
+        status = mbedtls_to_psa_error(
+            mbedtls_ecp_check_pubkey(&ecp->grp, &ecp->Q));
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+    } else {
+        /* Load and validate the secret value. */
+        status = mbedtls_to_psa_error(
+            mbedtls_ecp_read_key(ecp->grp.id,
+                                 ecp,
+                                 data,
+                                 data_length));
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+    }
+
+    *p_ecp = ecp;
+exit:
+    if (status != PSA_SUCCESS) {
+        mbedtls_ecp_keypair_free(ecp);
+        mbedtls_free(ecp);
+    }
+
+    return status;
+}
+#endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR_BASIC) ||
+        * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR_IMPORT) ||
+        * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR_EXPORT) ||
+        * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY) ||
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) ||
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) ||
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_ECDH) */
+
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR_IMPORT) || \
+    defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR_EXPORT) || \
+    defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY)
+
+psa_status_t mbedtls_psa_ecp_import_key(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *data, size_t data_length,
+    uint8_t *key_buffer, size_t key_buffer_size,
+    size_t *key_buffer_length, size_t *bits)
+{
+    psa_status_t status;
+    mbedtls_ecp_keypair *ecp = NULL;
+
+    /* Parse input */
+    status = mbedtls_psa_ecp_load_representation(attributes->type,
+                                                 attributes->bits,
+                                                 data,
+                                                 data_length,
+                                                 &ecp);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    if (PSA_KEY_TYPE_ECC_GET_FAMILY(attributes->type) ==
+        PSA_ECC_FAMILY_MONTGOMERY) {
+        *bits = ecp->grp.nbits + 1;
+    } else {
+        *bits = ecp->grp.nbits;
+    }
+
+    /* Re-export the data to PSA export format. There is currently no support
+     * for other input formats then the export format, so this is a 1-1
+     * copy operation. */
+    status = mbedtls_psa_ecp_export_key(attributes->type,
+                                        ecp,
+                                        key_buffer,
+                                        key_buffer_size,
+                                        key_buffer_length);
+exit:
+    /* Always free the PK object (will also free contained ECP context) */
+    mbedtls_ecp_keypair_free(ecp);
+    mbedtls_free(ecp);
+
+    return status;
+}
+
+psa_status_t mbedtls_psa_ecp_export_key(psa_key_type_t type,
+                                        mbedtls_ecp_keypair *ecp,
+                                        uint8_t *data,
+                                        size_t data_size,
+                                        size_t *data_length)
+{
+    psa_status_t status;
+
+    if (PSA_KEY_TYPE_IS_PUBLIC_KEY(type)) {
+        /* Check whether the public part is loaded */
+        if (mbedtls_ecp_is_zero(&ecp->Q)) {
+            /* Calculate the public key */
+            status = mbedtls_to_psa_error(
+                mbedtls_ecp_mul(&ecp->grp, &ecp->Q, &ecp->d, &ecp->grp.G,
+                                mbedtls_psa_get_random,
+                                MBEDTLS_PSA_RANDOM_STATE));
+            if (status != PSA_SUCCESS) {
+                return status;
+            }
+        }
+
+        status = mbedtls_to_psa_error(
+            mbedtls_ecp_point_write_binary(&ecp->grp, &ecp->Q,
+                                           MBEDTLS_ECP_PF_UNCOMPRESSED,
+                                           data_length,
+                                           data,
+                                           data_size));
+        if (status != PSA_SUCCESS) {
+            memset(data, 0, data_size);
+        }
+
+        return status;
+    } else {
+        status = mbedtls_to_psa_error(
+            mbedtls_ecp_write_key_ext(ecp, data_length, data, data_size));
+        return status;
+    }
+}
+
+psa_status_t mbedtls_psa_ecp_export_public_key(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    uint8_t *data, size_t data_size, size_t *data_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    mbedtls_ecp_keypair *ecp = NULL;
+
+    status = mbedtls_psa_ecp_load_representation(
+        attributes->type, attributes->bits,
+        key_buffer, key_buffer_size, &ecp);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    status = mbedtls_psa_ecp_export_key(
+        PSA_KEY_TYPE_ECC_PUBLIC_KEY(
+            PSA_KEY_TYPE_ECC_GET_FAMILY(attributes->type)),
+        ecp, data, data_size, data_length);
+
+    mbedtls_ecp_keypair_free(ecp);
+    mbedtls_free(ecp);
+
+    return status;
+}
+#endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR_IMPORT) ||
+        * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR_EXPORT) ||
+        * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_PUBLIC_KEY) */
+
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR_GENERATE)
+psa_status_t mbedtls_psa_ecp_generate_key(
+    const psa_key_attributes_t *attributes,
+    uint8_t *key_buffer, size_t key_buffer_size, size_t *key_buffer_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    psa_ecc_family_t curve = PSA_KEY_TYPE_ECC_GET_FAMILY(
+        attributes->type);
+    mbedtls_ecp_group_id grp_id =
+        mbedtls_ecc_group_from_psa(curve, attributes->bits);
+
+    const mbedtls_ecp_curve_info *curve_info =
+        mbedtls_ecp_curve_info_from_grp_id(grp_id);
+    mbedtls_ecp_keypair ecp;
+
+    if (grp_id == MBEDTLS_ECP_DP_NONE || curve_info == NULL) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    mbedtls_ecp_keypair_init(&ecp);
+    ret = mbedtls_ecp_gen_key(grp_id, &ecp,
+                              mbedtls_psa_get_random,
+                              MBEDTLS_PSA_RANDOM_STATE);
+    if (ret != 0) {
+        mbedtls_ecp_keypair_free(&ecp);
+        return mbedtls_to_psa_error(ret);
+    }
+
+    status = mbedtls_to_psa_error(
+        mbedtls_ecp_write_key_ext(&ecp, key_buffer_length,
+                                  key_buffer, key_buffer_size));
+
+    mbedtls_ecp_keypair_free(&ecp);
+
+    return status;
+}
+#endif /* MBEDTLS_PSA_BUILTIN_KEY_TYPE_ECC_KEY_PAIR_GENERATE */
+
+/****************************************************************/
+/* ECDSA sign/verify */
+/****************************************************************/
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA)
+psa_status_t mbedtls_psa_ecdsa_sign_hash(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg, const uint8_t *hash, size_t hash_length,
+    uint8_t *signature, size_t signature_size, size_t *signature_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    mbedtls_ecp_keypair *ecp = NULL;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t curve_bytes;
+    mbedtls_mpi r, s;
+
+    status = mbedtls_psa_ecp_load_representation(attributes->type,
+                                                 attributes->bits,
+                                                 key_buffer,
+                                                 key_buffer_size,
+                                                 &ecp);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    curve_bytes = PSA_BITS_TO_BYTES(ecp->grp.pbits);
+    mbedtls_mpi_init(&r);
+    mbedtls_mpi_init(&s);
+
+    if (signature_size < 2 * curve_bytes) {
+        ret = MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+        goto cleanup;
+    }
+
+    if (PSA_ALG_ECDSA_IS_DETERMINISTIC(alg)) {
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA)
+        psa_algorithm_t hash_alg = PSA_ALG_SIGN_GET_HASH(alg);
+        mbedtls_md_type_t md_alg = mbedtls_md_type_from_psa_alg(hash_alg);
+        MBEDTLS_MPI_CHK(mbedtls_ecdsa_sign_det_ext(
+                            &ecp->grp, &r, &s,
+                            &ecp->d, hash,
+                            hash_length, md_alg,
+                            mbedtls_psa_get_random,
+                            MBEDTLS_PSA_RANDOM_STATE));
+#else
+        ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+        goto cleanup;
+#endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) */
+    } else {
+        (void) alg;
+        MBEDTLS_MPI_CHK(mbedtls_ecdsa_sign(&ecp->grp, &r, &s, &ecp->d,
+                                           hash, hash_length,
+                                           mbedtls_psa_get_random,
+                                           MBEDTLS_PSA_RANDOM_STATE));
+    }
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&r,
+                                             signature,
+                                             curve_bytes));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&s,
+                                             signature + curve_bytes,
+                                             curve_bytes));
+cleanup:
+    mbedtls_mpi_free(&r);
+    mbedtls_mpi_free(&s);
+    if (ret == 0) {
+        *signature_length = 2 * curve_bytes;
+    }
+
+    mbedtls_ecp_keypair_free(ecp);
+    mbedtls_free(ecp);
+
+    return mbedtls_to_psa_error(ret);
+}
+
+psa_status_t mbedtls_psa_ecp_load_public_part(mbedtls_ecp_keypair *ecp)
+{
+    int ret = 0;
+
+    /* Check whether the public part is loaded. If not, load it. */
+    if (mbedtls_ecp_is_zero(&ecp->Q)) {
+        ret = mbedtls_ecp_mul(&ecp->grp, &ecp->Q,
+                              &ecp->d, &ecp->grp.G,
+                              mbedtls_psa_get_random,
+                              MBEDTLS_PSA_RANDOM_STATE);
+    }
+
+    return mbedtls_to_psa_error(ret);
+}
+
+psa_status_t mbedtls_psa_ecdsa_verify_hash(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg, const uint8_t *hash, size_t hash_length,
+    const uint8_t *signature, size_t signature_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    mbedtls_ecp_keypair *ecp = NULL;
+    size_t curve_bytes;
+    mbedtls_mpi r, s;
+
+    (void) alg;
+
+    status = mbedtls_psa_ecp_load_representation(attributes->type,
+                                                 attributes->bits,
+                                                 key_buffer,
+                                                 key_buffer_size,
+                                                 &ecp);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    curve_bytes = PSA_BITS_TO_BYTES(ecp->grp.pbits);
+    mbedtls_mpi_init(&r);
+    mbedtls_mpi_init(&s);
+
+    if (signature_length != 2 * curve_bytes) {
+        status = PSA_ERROR_INVALID_SIGNATURE;
+        goto cleanup;
+    }
+
+    status = mbedtls_to_psa_error(mbedtls_mpi_read_binary(&r,
+                                                          signature,
+                                                          curve_bytes));
+    if (status != PSA_SUCCESS) {
+        goto cleanup;
+    }
+
+    status = mbedtls_to_psa_error(mbedtls_mpi_read_binary(&s,
+                                                          signature + curve_bytes,
+                                                          curve_bytes));
+    if (status != PSA_SUCCESS) {
+        goto cleanup;
+    }
+
+    status = mbedtls_psa_ecp_load_public_part(ecp);
+    if (status != PSA_SUCCESS) {
+        goto cleanup;
+    }
+
+    status = mbedtls_to_psa_error(mbedtls_ecdsa_verify(&ecp->grp, hash,
+                                                       hash_length, &ecp->Q,
+                                                       &r, &s));
+cleanup:
+    mbedtls_mpi_free(&r);
+    mbedtls_mpi_free(&s);
+    mbedtls_ecp_keypair_free(ecp);
+    mbedtls_free(ecp);
+
+    return status;
+}
+
+#endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_ECDSA) || \
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_DETERMINISTIC_ECDSA) */
+
+/****************************************************************/
+/* ECDH Key Agreement */
+/****************************************************************/
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_ECDH)
+psa_status_t mbedtls_psa_key_agreement_ecdh(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg, const uint8_t *peer_key, size_t peer_key_length,
+    uint8_t *shared_secret, size_t shared_secret_size,
+    size_t *shared_secret_length)
+{
+    psa_status_t status;
+    if (!PSA_KEY_TYPE_IS_ECC_KEY_PAIR(attributes->type) ||
+        !PSA_ALG_IS_ECDH(alg)) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+    mbedtls_ecp_keypair *ecp = NULL;
+    status = mbedtls_psa_ecp_load_representation(
+        attributes->type,
+        attributes->bits,
+        key_buffer,
+        key_buffer_size,
+        &ecp);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+    mbedtls_ecp_keypair *their_key = NULL;
+    mbedtls_ecdh_context ecdh;
+    size_t bits = 0;
+    psa_ecc_family_t curve = mbedtls_ecc_group_to_psa(ecp->grp.id, &bits);
+    mbedtls_ecdh_init(&ecdh);
+
+    status = mbedtls_psa_ecp_load_representation(
+        PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve),
+        bits,
+        peer_key,
+        peer_key_length,
+        &their_key);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = mbedtls_to_psa_error(
+        mbedtls_ecdh_get_params(&ecdh, their_key, MBEDTLS_ECDH_THEIRS));
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+    status = mbedtls_to_psa_error(
+        mbedtls_ecdh_get_params(&ecdh, ecp, MBEDTLS_ECDH_OURS));
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = mbedtls_to_psa_error(
+        mbedtls_ecdh_calc_secret(&ecdh,
+                                 shared_secret_length,
+                                 shared_secret, shared_secret_size,
+                                 mbedtls_psa_get_random,
+                                 MBEDTLS_PSA_RANDOM_STATE));
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+    if (PSA_BITS_TO_BYTES(bits) != *shared_secret_length) {
+        status = PSA_ERROR_CORRUPTION_DETECTED;
+    }
+exit:
+    if (status != PSA_SUCCESS) {
+        mbedtls_platform_zeroize(shared_secret, shared_secret_size);
+    }
+    mbedtls_ecdh_free(&ecdh);
+    mbedtls_ecp_keypair_free(their_key);
+    mbedtls_free(their_key);
+    mbedtls_ecp_keypair_free(ecp);
+    mbedtls_free(ecp);
+    return status;
+}
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_ECDH */
+
+
+#endif /* MBEDTLS_PSA_CRYPTO_C */
diff --git a/tf-psa-crypto/core/psa_crypto_ecp.h b/tf-psa-crypto/core/psa_crypto_ecp.h
new file mode 100644
index 0000000..a9f5d59
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_ecp.h
@@ -0,0 +1,267 @@
+/*
+ *  PSA ECP layer on top of Mbed TLS crypto
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef PSA_CRYPTO_ECP_H
+#define PSA_CRYPTO_ECP_H
+
+#include <psa/crypto.h>
+#include <mbedtls/ecp.h>
+
+/** Load the contents of a key buffer into an internal ECP representation
+ *
+ * \param[in] type          The type of key contained in \p data.
+ * \param[in] curve_bits    The nominal bit-size of the curve.
+ *                          It must be consistent with the representation
+ *                          passed in \p data.
+ *                          This can be 0, in which case the bit-size
+ *                          is inferred from \p data_length (which is possible
+ *                          for all key types and representation formats
+ *                          formats that are currently supported or will
+ *                          be in the foreseeable future).
+ * \param[in] data          The buffer from which to load the representation.
+ * \param[in] data_length   The size in bytes of \p data.
+ * \param[out] p_ecp        Returns a pointer to an ECP context on success.
+ *                          The caller is responsible for freeing both the
+ *                          contents of the context and the context itself
+ *                          when done.
+ */
+psa_status_t mbedtls_psa_ecp_load_representation(psa_key_type_t type,
+                                                 size_t curve_bits,
+                                                 const uint8_t *data,
+                                                 size_t data_length,
+                                                 mbedtls_ecp_keypair **p_ecp);
+
+/** Load the public part of an internal ECP, if required.
+ *
+ * \param ecp               The ECP context to load the public part for.
+ *
+ * \return PSA_SUCCESS on success, otherwise an MPI error.
+ */
+
+psa_status_t mbedtls_psa_ecp_load_public_part(mbedtls_ecp_keypair *ecp);
+
+/** Import an ECP key in binary format.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       import_key entry point. This function behaves as an import_key
+ *       entry point as defined in the PSA driver interface specification for
+ *       transparent drivers.
+ *
+ * \param[in]  attributes       The attributes for the key to import.
+ * \param[in]  data             The buffer containing the key data in import
+ *                              format.
+ * \param[in]  data_length      Size of the \p data buffer in bytes.
+ * \param[out] key_buffer       The buffer containing the key data in output
+ *                              format.
+ * \param[in]  key_buffer_size  Size of the \p key_buffer buffer in bytes. This
+ *                              size is greater or equal to \p data_length.
+ * \param[out] key_buffer_length  The length of the data written in \p
+ *                                key_buffer in bytes.
+ * \param[out] bits             The key size in number of bits.
+ *
+ * \retval #PSA_SUCCESS  The ECP key was imported successfully.
+ * \retval #PSA_ERROR_INVALID_ARGUMENT
+ *         The key data is not correctly formatted.
+ * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ */
+psa_status_t mbedtls_psa_ecp_import_key(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *data, size_t data_length,
+    uint8_t *key_buffer, size_t key_buffer_size,
+    size_t *key_buffer_length, size_t *bits);
+
+/** Export an ECP key to export representation
+ *
+ * \param[in] type          The type of key (public/private) to export
+ * \param[in] ecp           The internal ECP representation from which to export
+ * \param[out] data         The buffer to export to
+ * \param[in] data_size     The length of the buffer to export to
+ * \param[out] data_length  The amount of bytes written to \p data
+ */
+psa_status_t mbedtls_psa_ecp_export_key(psa_key_type_t type,
+                                        mbedtls_ecp_keypair *ecp,
+                                        uint8_t *data,
+                                        size_t data_size,
+                                        size_t *data_length);
+
+/** Export an ECP public key or the public part of an ECP key pair in binary
+ *  format.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       export_public_key entry point. This function behaves as an
+ *       export_public_key entry point as defined in the PSA driver interface
+ *       specification.
+ *
+ * \param[in]  attributes       The attributes for the key to export.
+ * \param[in]  key_buffer       Material or context of the key to export.
+ * \param[in]  key_buffer_size  Size of the \p key_buffer buffer in bytes.
+ * \param[out] data             Buffer where the key data is to be written.
+ * \param[in]  data_size        Size of the \p data buffer in bytes.
+ * \param[out] data_length      On success, the number of bytes written in
+ *                              \p data
+ *
+ * \retval #PSA_SUCCESS  The ECP public key was exported successfully.
+ * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
+ * \retval #PSA_ERROR_COMMUNICATION_FAILURE \emptydescription
+ * \retval #PSA_ERROR_HARDWARE_FAILURE \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ * \retval #PSA_ERROR_STORAGE_FAILURE \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ */
+psa_status_t mbedtls_psa_ecp_export_public_key(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    uint8_t *data, size_t data_size, size_t *data_length);
+
+/**
+ * \brief Generate an ECP key.
+ *
+ * \note The signature of the function is that of a PSA driver generate_key
+ *       entry point.
+ *
+ * \param[in]  attributes         The attributes for the ECP key to generate.
+ * \param[out] key_buffer         Buffer where the key data is to be written.
+ * \param[in]  key_buffer_size    Size of \p key_buffer in bytes.
+ * \param[out] key_buffer_length  On success, the number of bytes written in
+ *                                \p key_buffer.
+ *
+ * \retval #PSA_SUCCESS
+ *         The key was successfully generated.
+ * \retval #PSA_ERROR_NOT_SUPPORTED
+ *         Key length or type not supported.
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         The size of \p key_buffer is too small.
+ */
+psa_status_t mbedtls_psa_ecp_generate_key(
+    const psa_key_attributes_t *attributes,
+    uint8_t *key_buffer, size_t key_buffer_size, size_t *key_buffer_length);
+
+/** Sign an already-calculated hash with ECDSA.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       sign_hash entry point. This function behaves as a sign_hash
+ *       entry point as defined in the PSA driver interface specification for
+ *       transparent drivers.
+ *
+ * \param[in]  attributes       The attributes of the ECC key to use for the
+ *                              operation.
+ * \param[in]  key_buffer       The buffer containing the ECC key context.
+ *                              format.
+ * \param[in]  key_buffer_size  Size of the \p key_buffer buffer in bytes.
+ * \param[in]  alg              Randomized or deterministic ECDSA algorithm.
+ * \param[in]  hash             The hash or message to sign.
+ * \param[in]  hash_length      Size of the \p hash buffer in bytes.
+ * \param[out] signature        Buffer where the signature is to be written.
+ * \param[in]  signature_size   Size of the \p signature buffer in bytes.
+ * \param[out] signature_length On success, the number of bytes
+ *                              that make up the returned signature value.
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         The size of the \p signature buffer is too small. You can
+ *         determine a sufficient buffer size by calling
+ *         #PSA_SIGN_OUTPUT_SIZE(\c PSA_KEY_TYPE_ECC_KEY_PAIR, \c key_bits,
+ *         \p alg) where \c key_bits is the bit-size of the ECC key.
+ * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
+ * \retval #PSA_ERROR_INVALID_ARGUMENT \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY \emptydescription
+ */
+psa_status_t mbedtls_psa_ecdsa_sign_hash(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg, const uint8_t *hash, size_t hash_length,
+    uint8_t *signature, size_t signature_size, size_t *signature_length);
+
+/**
+ * \brief Verify an ECDSA hash or short message signature.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       verify_hash entry point. This function behaves as a verify_hash
+ *       entry point as defined in the PSA driver interface specification for
+ *       transparent drivers.
+ *
+ * \param[in]  attributes       The attributes of the ECC key to use for the
+ *                              operation.
+ * \param[in]  key_buffer       The buffer containing the ECC key context.
+ *                              format.
+ * \param[in]  key_buffer_size  Size of the \p key_buffer buffer in bytes.
+ * \param[in]  alg              Randomized or deterministic ECDSA algorithm.
+ * \param[in]  hash             The hash or message whose signature is to be
+ *                              verified.
+ * \param[in]  hash_length      Size of the \p hash buffer in bytes.
+ * \param[in]  signature        Buffer containing the signature to verify.
+ * \param[in]  signature_length Size of the \p signature buffer in bytes.
+ *
+ * \retval #PSA_SUCCESS
+ *         The signature is valid.
+ * \retval #PSA_ERROR_INVALID_SIGNATURE
+ *         The calculation was performed successfully, but the passed
+ *         signature is not a valid signature.
+ * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
+ * \retval #PSA_ERROR_INVALID_ARGUMENT \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ */
+psa_status_t mbedtls_psa_ecdsa_verify_hash(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg, const uint8_t *hash, size_t hash_length,
+    const uint8_t *signature, size_t signature_length);
+
+
+/** Perform a key agreement and return the raw ECDH shared secret.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       key_agreement entry point. This function behaves as a key_agreement
+ *       entry point as defined in the PSA driver interface specification for
+ *       transparent drivers.
+ *
+ * \param[in]  attributes           The attributes of the key to use for the
+ *                                  operation.
+ * \param[in]  key_buffer           The buffer containing the private key
+ *                                  context.
+ * \param[in]  key_buffer_size      Size of the \p key_buffer buffer in
+ *                                  bytes.
+ * \param[in]  alg                  A key agreement algorithm that is
+ *                                  compatible with the type of the key.
+ * \param[in]  peer_key             The buffer containing the key context
+ *                                  of the peer's public key.
+ * \param[in]  peer_key_length      Size of the \p peer_key buffer in
+ *                                  bytes.
+ * \param[out] shared_secret        The buffer to which the shared secret
+ *                                  is to be written.
+ * \param[in]  shared_secret_size   Size of the \p shared_secret buffer in
+ *                                  bytes.
+ * \param[out] shared_secret_length On success, the number of bytes that make
+ *                                  up the returned shared secret.
+ * \retval #PSA_SUCCESS
+ *         Success. Shared secret successfully calculated.
+ * \retval #PSA_ERROR_INVALID_HANDLE \emptydescription
+ * \retval #PSA_ERROR_NOT_PERMITTED \emptydescription
+ * \retval #PSA_ERROR_INVALID_ARGUMENT
+ *         \p alg is not a key agreement algorithm, or
+ *         \p private_key is not compatible with \p alg,
+ *         or \p peer_key is not valid for \p alg or not compatible with
+ *         \p private_key.
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         \p shared_secret_size is too small
+ * \retval #PSA_ERROR_NOT_SUPPORTED
+ *         \p alg is not a supported key agreement algorithm.
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ */
+psa_status_t mbedtls_psa_key_agreement_ecdh(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg, const uint8_t *peer_key, size_t peer_key_length,
+    uint8_t *shared_secret, size_t shared_secret_size,
+    size_t *shared_secret_length);
+#endif /* PSA_CRYPTO_ECP_H */
diff --git a/tf-psa-crypto/core/psa_crypto_ffdh.c b/tf-psa-crypto/core/psa_crypto_ffdh.c
new file mode 100644
index 0000000..ae38f6d
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_ffdh.c
@@ -0,0 +1,321 @@
+/*
+ *  PSA FFDH layer on top of Mbed TLS crypto
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PSA_CRYPTO_C)
+
+/* This header is only needed because it defines
+ * MBEDTLS_DHM_RFC7919_FFDHEXXXX_[P|G]_BIN symbols that are used in
+ * mbedtls_psa_ffdh_set_prime_generator(). Apart from that, this module
+ * only uses bignum functions for arithmetic. */
+#include <mbedtls/dhm.h>
+
+#include <psa/crypto.h>
+#include "psa_crypto_core.h"
+#include "psa_crypto_ffdh.h"
+#include "psa_crypto_random_impl.h"
+#include "mbedtls/platform.h"
+#include "mbedtls/error.h"
+
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_KEY_PAIR_EXPORT) ||   \
+    defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_KEY_PAIR_GENERATE) ||   \
+    defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_PUBLIC_KEY) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_FFDH)
+static psa_status_t mbedtls_psa_ffdh_set_prime_generator(size_t key_size,
+                                                         mbedtls_mpi *P,
+                                                         mbedtls_mpi *G)
+{
+    const unsigned char *dhm_P = NULL;
+    const unsigned char *dhm_G = NULL;
+    size_t dhm_size_P = 0;
+    size_t dhm_size_G = 0;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if (P == NULL && G == NULL) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+#if defined(MBEDTLS_PSA_BUILTIN_DH_RFC7919_2048)
+    static const unsigned char dhm_P_2048[] =
+        MBEDTLS_DHM_RFC7919_FFDHE2048_P_BIN;
+    static const unsigned char dhm_G_2048[] =
+        MBEDTLS_DHM_RFC7919_FFDHE2048_G_BIN;
+#endif /* MBEDTLS_PSA_BUILTIN_DH_RFC7919_2048 */
+#if defined(MBEDTLS_PSA_BUILTIN_DH_RFC7919_3072)
+    static const unsigned char dhm_P_3072[] =
+        MBEDTLS_DHM_RFC7919_FFDHE3072_P_BIN;
+    static const unsigned char dhm_G_3072[] =
+        MBEDTLS_DHM_RFC7919_FFDHE3072_G_BIN;
+#endif /* MBEDTLS_PSA_BUILTIN_DH_RFC7919_3072 */
+#if defined(MBEDTLS_PSA_BUILTIN_DH_RFC7919_4096)
+    static const unsigned char dhm_P_4096[] =
+        MBEDTLS_DHM_RFC7919_FFDHE4096_P_BIN;
+    static const unsigned char dhm_G_4096[] =
+        MBEDTLS_DHM_RFC7919_FFDHE4096_G_BIN;
+#endif /* MBEDTLS_PSA_BUILTIN_DH_RFC7919_4096 */
+#if defined(MBEDTLS_PSA_BUILTIN_DH_RFC7919_6144)
+    static const unsigned char dhm_P_6144[] =
+        MBEDTLS_DHM_RFC7919_FFDHE6144_P_BIN;
+    static const unsigned char dhm_G_6144[] =
+        MBEDTLS_DHM_RFC7919_FFDHE6144_G_BIN;
+#endif /* MBEDTLS_PSA_BUILTIN_DH_RFC7919_6144 */
+#if defined(MBEDTLS_PSA_BUILTIN_DH_RFC7919_8192)
+    static const unsigned char dhm_P_8192[] =
+        MBEDTLS_DHM_RFC7919_FFDHE8192_P_BIN;
+    static const unsigned char dhm_G_8192[] =
+        MBEDTLS_DHM_RFC7919_FFDHE8192_G_BIN;
+#endif /* MBEDTLS_PSA_BUILTIN_DH_RFC7919_8192 */
+
+    switch (key_size) {
+#if defined(MBEDTLS_PSA_BUILTIN_DH_RFC7919_2048)
+        case sizeof(dhm_P_2048):
+            dhm_P = dhm_P_2048;
+            dhm_G = dhm_G_2048;
+            dhm_size_P = sizeof(dhm_P_2048);
+            dhm_size_G = sizeof(dhm_G_2048);
+            break;
+#endif /* MBEDTLS_PSA_BUILTIN_DH_RFC7919_2048 */
+#if defined(MBEDTLS_PSA_BUILTIN_DH_RFC7919_3072)
+        case sizeof(dhm_P_3072):
+            dhm_P = dhm_P_3072;
+            dhm_G = dhm_G_3072;
+            dhm_size_P = sizeof(dhm_P_3072);
+            dhm_size_G = sizeof(dhm_G_3072);
+            break;
+#endif /* MBEDTLS_PSA_BUILTIN_DH_RFC7919_3072 */
+#if defined(MBEDTLS_PSA_BUILTIN_DH_RFC7919_4096)
+        case sizeof(dhm_P_4096):
+            dhm_P = dhm_P_4096;
+            dhm_G = dhm_G_4096;
+            dhm_size_P = sizeof(dhm_P_4096);
+            dhm_size_G = sizeof(dhm_G_4096);
+            break;
+#endif /* MBEDTLS_PSA_BUILTIN_DH_RFC7919_4096 */
+#if defined(MBEDTLS_PSA_BUILTIN_DH_RFC7919_6144)
+        case sizeof(dhm_P_6144):
+            dhm_P = dhm_P_6144;
+            dhm_G = dhm_G_6144;
+            dhm_size_P = sizeof(dhm_P_6144);
+            dhm_size_G = sizeof(dhm_G_6144);
+            break;
+#endif /* MBEDTLS_PSA_BUILTIN_DH_RFC7919_6144 */
+#if defined(MBEDTLS_PSA_BUILTIN_DH_RFC7919_8192)
+        case sizeof(dhm_P_8192):
+            dhm_P = dhm_P_8192;
+            dhm_G = dhm_G_8192;
+            dhm_size_P = sizeof(dhm_P_8192);
+            dhm_size_G = sizeof(dhm_G_8192);
+            break;
+#endif /* MBEDTLS_PSA_BUILTIN_DH_RFC7919_8192 */
+        default:
+            return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    if (P != NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(P, dhm_P,
+                                                dhm_size_P));
+    }
+    if (G != NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(G, dhm_G,
+                                                dhm_size_G));
+    }
+
+cleanup:
+    if (ret != 0) {
+        return mbedtls_to_psa_error(ret);
+    }
+
+    return PSA_SUCCESS;
+}
+#endif /* MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_KEY_PAIR_EXPORT ||
+          MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_KEY_PAIR_GENERATE ||
+          MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_PUBLIC_KEY ||
+          MBEDTLS_PSA_BUILTIN_ALG_FFDH */
+
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_KEY_PAIR_EXPORT) || \
+    defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_PUBLIC_KEY)
+psa_status_t mbedtls_psa_ffdh_export_public_key(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer,
+    size_t key_buffer_size,
+    uint8_t *data,
+    size_t data_size,
+    size_t *data_length)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    mbedtls_mpi GX, G, X, P;
+    psa_key_type_t type = attributes->type;
+
+    if (PSA_KEY_TYPE_IS_PUBLIC_KEY(type)) {
+        if (key_buffer_size > data_size) {
+            return PSA_ERROR_BUFFER_TOO_SMALL;
+        }
+        memcpy(data, key_buffer, key_buffer_size);
+        memset(data + key_buffer_size, 0,
+               data_size - key_buffer_size);
+        *data_length = key_buffer_size;
+        return PSA_SUCCESS;
+    }
+
+    mbedtls_mpi_init(&GX); mbedtls_mpi_init(&G);
+    mbedtls_mpi_init(&X); mbedtls_mpi_init(&P);
+
+    size_t key_len = PSA_BITS_TO_BYTES(attributes->bits);
+
+    status = mbedtls_psa_ffdh_set_prime_generator(key_len, &P, &G);
+
+    if (status != PSA_SUCCESS) {
+        goto cleanup;
+    }
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&X, key_buffer,
+                                            key_buffer_size));
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&GX, &G, &X, &P, NULL));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&GX, data, key_len));
+
+    *data_length = key_len;
+
+    ret = 0;
+cleanup:
+    mbedtls_mpi_free(&P); mbedtls_mpi_free(&G);
+    mbedtls_mpi_free(&X); mbedtls_mpi_free(&GX);
+
+    if (status == PSA_SUCCESS && ret != 0) {
+        status = mbedtls_to_psa_error(ret);
+    }
+
+    return status;
+}
+#endif /* MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_KEY_PAIR_EXPORT ||
+          MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_PUBLIC_KEY */
+
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_KEY_PAIR_GENERATE)
+psa_status_t mbedtls_psa_ffdh_generate_key(
+    const psa_key_attributes_t *attributes,
+    uint8_t *key_buffer, size_t key_buffer_size, size_t *key_buffer_length)
+{
+    mbedtls_mpi X, P;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    mbedtls_mpi_init(&P); mbedtls_mpi_init(&X);
+    (void) attributes;
+
+    status = mbedtls_psa_ffdh_set_prime_generator(key_buffer_size, &P, NULL);
+
+    if (status != PSA_SUCCESS) {
+        goto cleanup;
+    }
+
+    /* RFC7919: Traditional finite field Diffie-Hellman has each peer choose their
+        secret exponent from the range [2, P-2].
+        Select random value in range [3, P-1] and decrease it by 1. */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_random(&X, 3, &P, mbedtls_psa_get_random,
+                                       MBEDTLS_PSA_RANDOM_STATE));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&X, &X, 1));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&X, key_buffer, key_buffer_size));
+    *key_buffer_length = key_buffer_size;
+
+cleanup:
+    mbedtls_mpi_free(&P); mbedtls_mpi_free(&X);
+    if (status == PSA_SUCCESS && ret != 0) {
+        return mbedtls_to_psa_error(ret);
+    }
+
+    return status;
+}
+#endif /* MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_KEY_PAIR_GENERATE */
+
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_KEY_PAIR_IMPORT)
+psa_status_t mbedtls_psa_ffdh_import_key(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *data, size_t data_length,
+    uint8_t *key_buffer, size_t key_buffer_size,
+    size_t *key_buffer_length, size_t *bits)
+{
+    (void) attributes;
+
+    if (key_buffer_size < data_length) {
+        return PSA_ERROR_BUFFER_TOO_SMALL;
+    }
+    memcpy(key_buffer, data, data_length);
+    *key_buffer_length = data_length;
+    *bits = PSA_BYTES_TO_BITS(data_length);
+
+    return PSA_SUCCESS;
+}
+#endif /* MBEDTLS_PSA_BUILTIN_KEY_TYPE_DH_KEY_PAIR_IMPORT */
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_FFDH)
+psa_status_t mbedtls_psa_ffdh_key_agreement(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *peer_key,
+    size_t peer_key_length,
+    const uint8_t *key_buffer,
+    size_t key_buffer_size,
+    uint8_t *shared_secret,
+    size_t shared_secret_size,
+    size_t *shared_secret_length)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    mbedtls_mpi P, G, X, GY, K;
+    const size_t calculated_shared_secret_size = peer_key_length;
+
+    if (peer_key_length != key_buffer_size ||
+        calculated_shared_secret_size > shared_secret_size) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    if (!PSA_KEY_TYPE_IS_DH_KEY_PAIR(psa_get_key_type(attributes))) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    mbedtls_mpi_init(&P); mbedtls_mpi_init(&G);
+    mbedtls_mpi_init(&X); mbedtls_mpi_init(&GY);
+    mbedtls_mpi_init(&K);
+
+    status = mbedtls_psa_ffdh_set_prime_generator(
+        PSA_BITS_TO_BYTES(attributes->bits), &P, &G);
+
+    if (status != PSA_SUCCESS) {
+        goto cleanup;
+    }
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&X, key_buffer,
+                                            key_buffer_size));
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&GY, peer_key,
+                                            peer_key_length));
+
+    /* Calculate shared secret public key: K = G^(XY) mod P = GY^X mod P */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&K, &GY, &X, &P, NULL));
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&K, shared_secret,
+                                             calculated_shared_secret_size));
+
+    *shared_secret_length = calculated_shared_secret_size;
+
+    ret = 0;
+
+cleanup:
+    mbedtls_mpi_free(&P); mbedtls_mpi_free(&G);
+    mbedtls_mpi_free(&X); mbedtls_mpi_free(&GY);
+    mbedtls_mpi_free(&K);
+
+    if (status == PSA_SUCCESS && ret != 0) {
+        status = mbedtls_to_psa_error(ret);
+    }
+
+    return status;
+}
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_FFDH */
+
+#endif /* MBEDTLS_PSA_CRYPTO_C */
diff --git a/tf-psa-crypto/core/psa_crypto_ffdh.h b/tf-psa-crypto/core/psa_crypto_ffdh.h
new file mode 100644
index 0000000..79accd1
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_ffdh.h
@@ -0,0 +1,131 @@
+/*
+ *  PSA FFDH layer on top of Mbed TLS crypto
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef PSA_CRYPTO_FFDH_H
+#define PSA_CRYPTO_FFDH_H
+
+#include <psa/crypto.h>
+
+/** Perform a key agreement and return the FFDH shared secret.
+ *
+ * \param[in]  attributes           The attributes of the key to use for the
+ *                                  operation.
+ * \param[in]  peer_key             The buffer containing the key context
+ *                                  of the peer's public key.
+ * \param[in]  peer_key_length      Size of the \p peer_key buffer in
+ *                                  bytes.
+ * \param[in]  key_buffer           The buffer containing the private key
+ *                                  context.
+ * \param[in]  key_buffer_size      Size of the \p key_buffer buffer in
+ *                                  bytes.
+ * \param[out] shared_secret        The buffer to which the shared secret
+ *                                  is to be written.
+ * \param[in]  shared_secret_size   Size of the \p shared_secret buffer in
+ *                                  bytes.
+ * \param[out] shared_secret_length On success, the number of bytes that make
+ *                                  up the returned shared secret.
+ * \retval #PSA_SUCCESS
+ *         Success. Shared secret successfully calculated.
+ * \retval #PSA_ERROR_INVALID_ARGUMENT
+ *         \p key_buffer_size, \p peer_key_length, \p shared_secret_size
+ *         do not match
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY   \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED   \emptydescription
+ */
+psa_status_t mbedtls_psa_ffdh_key_agreement(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *peer_key,
+    size_t peer_key_length,
+    const uint8_t *key_buffer,
+    size_t key_buffer_size,
+    uint8_t *shared_secret,
+    size_t shared_secret_size,
+    size_t *shared_secret_length);
+
+/** Export a public key or the public part of a DH key pair in binary format.
+ *
+ * \param[in]  attributes       The attributes for the key to export.
+ * \param[in]  key_buffer       Material or context of the key to export.
+ * \param[in]  key_buffer_size  Size of the \p key_buffer buffer in bytes.
+ * \param[out] data             Buffer where the key data is to be written.
+ * \param[in]  data_size        Size of the \p data buffer in bytes.
+ * \param[out] data_length      On success, the number of bytes written in
+ *                              \p data
+ *
+ * \retval #PSA_SUCCESS  The public key was exported successfully.
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         The size of \p key_buffer is too small.
+ * \retval #PSA_ERROR_NOT_PERMITTED         \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY   \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED   \emptydescription
+ */
+psa_status_t mbedtls_psa_ffdh_export_public_key(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer,
+    size_t key_buffer_size,
+    uint8_t *data,
+    size_t data_size,
+    size_t *data_length);
+
+/**
+ * \brief Generate DH key.
+ *
+ * \note The signature of the function is that of a PSA driver generate_key
+ *       entry point.
+ *
+ * \param[in]  attributes         The attributes for the key to generate.
+ * \param[out] key_buffer         Buffer where the key data is to be written.
+ * \param[in]  key_buffer_size    Size of \p key_buffer in bytes.
+ * \param[out] key_buffer_length  On success, the number of bytes written in
+ *                                \p key_buffer.
+ *
+ * \retval #PSA_SUCCESS
+ *         The key was generated successfully.
+ * \retval #PSA_ERROR_NOT_SUPPORTED
+ *         Key size in bits is invalid.
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         The size of \p key_buffer is too small.
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY   \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED   \emptydescription
+ */
+psa_status_t mbedtls_psa_ffdh_generate_key(
+    const psa_key_attributes_t *attributes,
+    uint8_t *key_buffer,
+    size_t key_buffer_size,
+    size_t *key_buffer_length);
+
+/**
+ * \brief Import DH key.
+ *
+ * \note The signature of the function is that of a PSA driver import_key
+ *       entry point.
+ *
+ * \param[in]  attributes       The attributes for the key to import.
+ * \param[in]  data             The buffer containing the key data in import
+ *                              format.
+ * \param[in]  data_length      Size of the \p data buffer in bytes.
+ * \param[out] key_buffer       The buffer containing the key data in output
+ *                              format.
+ * \param[in]  key_buffer_size  Size of the \p key_buffer buffer in bytes. This
+ *                              size is greater or equal to \p data_length.
+ * \param[out] key_buffer_length  The length of the data written in \p
+ *                                key_buffer in bytes.
+ * \param[out] bits             The key size in number of bits.
+ *
+ * \retval #PSA_SUCCESS
+ *         The key was generated successfully.
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         The size of \p key_buffer is too small.
+ */
+psa_status_t mbedtls_psa_ffdh_import_key(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *data, size_t data_length,
+    uint8_t *key_buffer, size_t key_buffer_size,
+    size_t *key_buffer_length, size_t *bits);
+
+#endif /* PSA_CRYPTO_FFDH_H */
diff --git a/tf-psa-crypto/core/psa_crypto_hash.c b/tf-psa-crypto/core/psa_crypto_hash.c
new file mode 100644
index 0000000..eeb7666
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_hash.c
@@ -0,0 +1,470 @@
+/*
+ *  PSA hashing layer on top of Mbed TLS software crypto
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PSA_CRYPTO_C)
+
+#include <psa/crypto.h>
+#include "psa_crypto_core.h"
+#include "psa_crypto_hash.h"
+
+#include <mbedtls/error.h>
+#include <string.h>
+
+#if defined(MBEDTLS_PSA_BUILTIN_HASH)
+psa_status_t mbedtls_psa_hash_abort(
+    mbedtls_psa_hash_operation_t *operation)
+{
+    switch (operation->alg) {
+        case 0:
+            /* The object has (apparently) been initialized but it is not
+             * in use. It's ok to call abort on such an object, and there's
+             * nothing to do. */
+            break;
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_MD5)
+        case PSA_ALG_MD5:
+            mbedtls_md5_free(&operation->ctx.md5);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_RIPEMD160)
+        case PSA_ALG_RIPEMD160:
+            mbedtls_ripemd160_free(&operation->ctx.ripemd160);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA_1)
+        case PSA_ALG_SHA_1:
+            mbedtls_sha1_free(&operation->ctx.sha1);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA_224)
+        case PSA_ALG_SHA_224:
+            mbedtls_sha256_free(&operation->ctx.sha256);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA_256)
+        case PSA_ALG_SHA_256:
+            mbedtls_sha256_free(&operation->ctx.sha256);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA_384)
+        case PSA_ALG_SHA_384:
+            mbedtls_sha512_free(&operation->ctx.sha512);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA_512)
+        case PSA_ALG_SHA_512:
+            mbedtls_sha512_free(&operation->ctx.sha512);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_224)
+        case PSA_ALG_SHA3_224:
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_256)
+        case PSA_ALG_SHA3_256:
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_384)
+        case PSA_ALG_SHA3_384:
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_512)
+        case PSA_ALG_SHA3_512:
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_224) || \
+            defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_256) || \
+            defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_384) || \
+            defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_512)
+            mbedtls_sha3_free(&operation->ctx.sha3);
+            break;
+#endif
+        default:
+            return PSA_ERROR_BAD_STATE;
+    }
+    operation->alg = 0;
+    return PSA_SUCCESS;
+}
+
+psa_status_t mbedtls_psa_hash_setup(
+    mbedtls_psa_hash_operation_t *operation,
+    psa_algorithm_t alg)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    /* A context must be freshly initialized before it can be set up. */
+    if (operation->alg != 0) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    switch (alg) {
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_MD5)
+        case PSA_ALG_MD5:
+            mbedtls_md5_init(&operation->ctx.md5);
+            ret = mbedtls_md5_starts(&operation->ctx.md5);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_RIPEMD160)
+        case PSA_ALG_RIPEMD160:
+            mbedtls_ripemd160_init(&operation->ctx.ripemd160);
+            ret = mbedtls_ripemd160_starts(&operation->ctx.ripemd160);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA_1)
+        case PSA_ALG_SHA_1:
+            mbedtls_sha1_init(&operation->ctx.sha1);
+            ret = mbedtls_sha1_starts(&operation->ctx.sha1);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA_224)
+        case PSA_ALG_SHA_224:
+            mbedtls_sha256_init(&operation->ctx.sha256);
+            ret = mbedtls_sha256_starts(&operation->ctx.sha256, 1);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA_256)
+        case PSA_ALG_SHA_256:
+            mbedtls_sha256_init(&operation->ctx.sha256);
+            ret = mbedtls_sha256_starts(&operation->ctx.sha256, 0);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA_384)
+        case PSA_ALG_SHA_384:
+            mbedtls_sha512_init(&operation->ctx.sha512);
+            ret = mbedtls_sha512_starts(&operation->ctx.sha512, 1);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA_512)
+        case PSA_ALG_SHA_512:
+            mbedtls_sha512_init(&operation->ctx.sha512);
+            ret = mbedtls_sha512_starts(&operation->ctx.sha512, 0);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_224)
+        case PSA_ALG_SHA3_224:
+            mbedtls_sha3_init(&operation->ctx.sha3);
+            ret = mbedtls_sha3_starts(&operation->ctx.sha3, MBEDTLS_SHA3_224);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_256)
+        case PSA_ALG_SHA3_256:
+            mbedtls_sha3_init(&operation->ctx.sha3);
+            ret = mbedtls_sha3_starts(&operation->ctx.sha3, MBEDTLS_SHA3_256);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_384)
+        case PSA_ALG_SHA3_384:
+            mbedtls_sha3_init(&operation->ctx.sha3);
+            ret = mbedtls_sha3_starts(&operation->ctx.sha3, MBEDTLS_SHA3_384);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_512)
+        case PSA_ALG_SHA3_512:
+            mbedtls_sha3_init(&operation->ctx.sha3);
+            ret = mbedtls_sha3_starts(&operation->ctx.sha3, MBEDTLS_SHA3_512);
+            break;
+#endif
+        default:
+            return PSA_ALG_IS_HASH(alg) ?
+                   PSA_ERROR_NOT_SUPPORTED :
+                   PSA_ERROR_INVALID_ARGUMENT;
+    }
+    if (ret == 0) {
+        operation->alg = alg;
+    } else {
+        mbedtls_psa_hash_abort(operation);
+    }
+    return mbedtls_to_psa_error(ret);
+}
+
+psa_status_t mbedtls_psa_hash_clone(
+    const mbedtls_psa_hash_operation_t *source_operation,
+    mbedtls_psa_hash_operation_t *target_operation)
+{
+    switch (source_operation->alg) {
+        case 0:
+            return PSA_ERROR_BAD_STATE;
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_MD5)
+        case PSA_ALG_MD5:
+            mbedtls_md5_clone(&target_operation->ctx.md5,
+                              &source_operation->ctx.md5);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_RIPEMD160)
+        case PSA_ALG_RIPEMD160:
+            mbedtls_ripemd160_clone(&target_operation->ctx.ripemd160,
+                                    &source_operation->ctx.ripemd160);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA_1)
+        case PSA_ALG_SHA_1:
+            mbedtls_sha1_clone(&target_operation->ctx.sha1,
+                               &source_operation->ctx.sha1);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA_224)
+        case PSA_ALG_SHA_224:
+            mbedtls_sha256_clone(&target_operation->ctx.sha256,
+                                 &source_operation->ctx.sha256);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA_256)
+        case PSA_ALG_SHA_256:
+            mbedtls_sha256_clone(&target_operation->ctx.sha256,
+                                 &source_operation->ctx.sha256);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA_384)
+        case PSA_ALG_SHA_384:
+            mbedtls_sha512_clone(&target_operation->ctx.sha512,
+                                 &source_operation->ctx.sha512);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA_512)
+        case PSA_ALG_SHA_512:
+            mbedtls_sha512_clone(&target_operation->ctx.sha512,
+                                 &source_operation->ctx.sha512);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_224)
+        case PSA_ALG_SHA3_224:
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_256)
+        case PSA_ALG_SHA3_256:
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_384)
+        case PSA_ALG_SHA3_384:
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_512)
+        case PSA_ALG_SHA3_512:
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_224) || \
+            defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_256) || \
+            defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_384) || \
+            defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_512)
+            mbedtls_sha3_clone(&target_operation->ctx.sha3,
+                               &source_operation->ctx.sha3);
+            break;
+#endif
+        default:
+            (void) source_operation;
+            (void) target_operation;
+            return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    target_operation->alg = source_operation->alg;
+    return PSA_SUCCESS;
+}
+
+psa_status_t mbedtls_psa_hash_update(
+    mbedtls_psa_hash_operation_t *operation,
+    const uint8_t *input,
+    size_t input_length)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    switch (operation->alg) {
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_MD5)
+        case PSA_ALG_MD5:
+            ret = mbedtls_md5_update(&operation->ctx.md5,
+                                     input, input_length);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_RIPEMD160)
+        case PSA_ALG_RIPEMD160:
+            ret = mbedtls_ripemd160_update(&operation->ctx.ripemd160,
+                                           input, input_length);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA_1)
+        case PSA_ALG_SHA_1:
+            ret = mbedtls_sha1_update(&operation->ctx.sha1,
+                                      input, input_length);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA_224)
+        case PSA_ALG_SHA_224:
+            ret = mbedtls_sha256_update(&operation->ctx.sha256,
+                                        input, input_length);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA_256)
+        case PSA_ALG_SHA_256:
+            ret = mbedtls_sha256_update(&operation->ctx.sha256,
+                                        input, input_length);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA_384)
+        case PSA_ALG_SHA_384:
+            ret = mbedtls_sha512_update(&operation->ctx.sha512,
+                                        input, input_length);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA_512)
+        case PSA_ALG_SHA_512:
+            ret = mbedtls_sha512_update(&operation->ctx.sha512,
+                                        input, input_length);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_224)
+        case PSA_ALG_SHA3_224:
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_256)
+        case PSA_ALG_SHA3_256:
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_384)
+        case PSA_ALG_SHA3_384:
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_512)
+        case PSA_ALG_SHA3_512:
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_224) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_256) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_384) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_512)
+    ret = mbedtls_sha3_update(&operation->ctx.sha3,
+                              input, input_length);
+    break;
+#endif
+        default:
+            (void) input;
+            (void) input_length;
+            return PSA_ERROR_BAD_STATE;
+    }
+
+    return mbedtls_to_psa_error(ret);
+}
+
+psa_status_t mbedtls_psa_hash_finish(
+    mbedtls_psa_hash_operation_t *operation,
+    uint8_t *hash,
+    size_t hash_size,
+    size_t *hash_length)
+{
+    psa_status_t status;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t actual_hash_length = PSA_HASH_LENGTH(operation->alg);
+
+    /* Fill the output buffer with something that isn't a valid hash
+     * (barring an attack on the hash and deliberately-crafted input),
+     * in case the caller doesn't check the return status properly. */
+    *hash_length = hash_size;
+    /* If hash_size is 0 then hash may be NULL and then the
+     * call to memset would have undefined behavior. */
+    if (hash_size != 0) {
+        memset(hash, '!', hash_size);
+    }
+
+    if (hash_size < actual_hash_length) {
+        status = PSA_ERROR_BUFFER_TOO_SMALL;
+        goto exit;
+    }
+
+    switch (operation->alg) {
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_MD5)
+        case PSA_ALG_MD5:
+            ret = mbedtls_md5_finish(&operation->ctx.md5, hash);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_RIPEMD160)
+        case PSA_ALG_RIPEMD160:
+            ret = mbedtls_ripemd160_finish(&operation->ctx.ripemd160, hash);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA_1)
+        case PSA_ALG_SHA_1:
+            ret = mbedtls_sha1_finish(&operation->ctx.sha1, hash);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA_224)
+        case PSA_ALG_SHA_224:
+            ret = mbedtls_sha256_finish(&operation->ctx.sha256, hash);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA_256)
+        case PSA_ALG_SHA_256:
+            ret = mbedtls_sha256_finish(&operation->ctx.sha256, hash);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA_384)
+        case PSA_ALG_SHA_384:
+            ret = mbedtls_sha512_finish(&operation->ctx.sha512, hash);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA_512)
+        case PSA_ALG_SHA_512:
+            ret = mbedtls_sha512_finish(&operation->ctx.sha512, hash);
+            break;
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_224)
+        case PSA_ALG_SHA3_224:
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_256)
+        case PSA_ALG_SHA3_256:
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_384)
+        case PSA_ALG_SHA3_384:
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_512)
+        case PSA_ALG_SHA3_512:
+#endif
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_224) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_256) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_384) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_SHA3_512)
+    ret = mbedtls_sha3_finish(&operation->ctx.sha3, hash, hash_size);
+    break;
+#endif
+        default:
+            (void) hash;
+            return PSA_ERROR_BAD_STATE;
+    }
+    status = mbedtls_to_psa_error(ret);
+
+exit:
+    if (status == PSA_SUCCESS) {
+        *hash_length = actual_hash_length;
+    }
+    return status;
+}
+
+psa_status_t mbedtls_psa_hash_compute(
+    psa_algorithm_t alg,
+    const uint8_t *input,
+    size_t input_length,
+    uint8_t *hash,
+    size_t hash_size,
+    size_t *hash_length)
+{
+    mbedtls_psa_hash_operation_t operation = MBEDTLS_PSA_HASH_OPERATION_INIT;
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_status_t abort_status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    *hash_length = hash_size;
+    status = mbedtls_psa_hash_setup(&operation, alg);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+    status = mbedtls_psa_hash_update(&operation, input, input_length);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+    status = mbedtls_psa_hash_finish(&operation, hash, hash_size, hash_length);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+exit:
+    abort_status = mbedtls_psa_hash_abort(&operation);
+    if (status == PSA_SUCCESS) {
+        return abort_status;
+    } else {
+        return status;
+    }
+
+}
+#endif /* MBEDTLS_PSA_BUILTIN_HASH */
+
+#endif /* MBEDTLS_PSA_CRYPTO_C */
diff --git a/tf-psa-crypto/core/psa_crypto_hash.h b/tf-psa-crypto/core/psa_crypto_hash.h
new file mode 100644
index 0000000..0a7be80
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_hash.h
@@ -0,0 +1,211 @@
+/*
+ *  PSA hashing layer on top of Mbed TLS software crypto
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef PSA_CRYPTO_HASH_H
+#define PSA_CRYPTO_HASH_H
+
+#include <psa/crypto.h>
+
+/** Calculate the hash (digest) of a message using Mbed TLS routines.
+ *
+ * \note The signature of this function is that of a PSA driver hash_compute
+ *       entry point. This function behaves as a hash_compute entry point as
+ *       defined in the PSA driver interface specification for transparent
+ *       drivers.
+ *
+ * \param alg               The hash algorithm to compute (\c PSA_ALG_XXX value
+ *                          such that #PSA_ALG_IS_HASH(\p alg) is true).
+ * \param[in] input         Buffer containing the message to hash.
+ * \param input_length      Size of the \p input buffer in bytes.
+ * \param[out] hash         Buffer where the hash is to be written.
+ * \param hash_size         Size of the \p hash buffer in bytes.
+ * \param[out] hash_length  On success, the number of bytes
+ *                          that make up the hash value. This is always
+ *                          #PSA_HASH_LENGTH(\p alg).
+ *
+ * \retval #PSA_SUCCESS
+ *         Success.
+ * \retval #PSA_ERROR_NOT_SUPPORTED
+ *         \p alg is not supported
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         \p hash_size is too small
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ */
+psa_status_t mbedtls_psa_hash_compute(
+    psa_algorithm_t alg,
+    const uint8_t *input,
+    size_t input_length,
+    uint8_t *hash,
+    size_t hash_size,
+    size_t *hash_length);
+
+/** Set up a multipart hash operation using Mbed TLS routines.
+ *
+ * \note The signature of this function is that of a PSA driver hash_setup
+ *       entry point. This function behaves as a hash_setup entry point as
+ *       defined in the PSA driver interface specification for transparent
+ *       drivers.
+ *
+ * If an error occurs at any step after a call to mbedtls_psa_hash_setup(), the
+ * operation will need to be reset by a call to mbedtls_psa_hash_abort(). The
+ * core may call mbedtls_psa_hash_abort() at any time after the operation
+ * has been initialized.
+ *
+ * After a successful call to mbedtls_psa_hash_setup(), the core must
+ * eventually terminate the operation. The following events terminate an
+ * operation:
+ * - A successful call to mbedtls_psa_hash_finish() or mbedtls_psa_hash_verify().
+ * - A call to mbedtls_psa_hash_abort().
+ *
+ * \param[in,out] operation The operation object to set up. It must have
+ *                          been initialized to all-zero and not yet be in use.
+ * \param alg               The hash algorithm to compute (\c PSA_ALG_XXX value
+ *                          such that #PSA_ALG_IS_HASH(\p alg) is true).
+ *
+ * \retval #PSA_SUCCESS
+ *         Success.
+ * \retval #PSA_ERROR_NOT_SUPPORTED
+ *         \p alg is not supported
+ * \retval #PSA_ERROR_BAD_STATE
+ *         The operation state is not valid (it must be inactive).
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ */
+psa_status_t mbedtls_psa_hash_setup(
+    mbedtls_psa_hash_operation_t *operation,
+    psa_algorithm_t alg);
+
+/** Clone an Mbed TLS hash operation.
+ *
+ * \note The signature of this function is that of a PSA driver hash_clone
+ *       entry point. This function behaves as a hash_clone entry point as
+ *       defined in the PSA driver interface specification for transparent
+ *       drivers.
+ *
+ * This function copies the state of an ongoing hash operation to
+ * a new operation object. In other words, this function is equivalent
+ * to calling mbedtls_psa_hash_setup() on \p target_operation with the same
+ * algorithm that \p source_operation was set up for, then
+ * mbedtls_psa_hash_update() on \p target_operation with the same input that
+ * that was passed to \p source_operation. After this function returns, the
+ * two objects are independent, i.e. subsequent calls involving one of
+ * the objects do not affect the other object.
+ *
+ * \param[in] source_operation      The active hash operation to clone.
+ * \param[in,out] target_operation  The operation object to set up.
+ *                                  It must be initialized but not active.
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_BAD_STATE
+ *         The \p source_operation state is not valid (it must be active).
+ * \retval #PSA_ERROR_BAD_STATE
+ *         The \p target_operation state is not valid (it must be inactive).
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ */
+psa_status_t mbedtls_psa_hash_clone(
+    const mbedtls_psa_hash_operation_t *source_operation,
+    mbedtls_psa_hash_operation_t *target_operation);
+
+/** Add a message fragment to a multipart Mbed TLS hash operation.
+ *
+ * \note The signature of this function is that of a PSA driver hash_update
+ *       entry point. This function behaves as a hash_update entry point as
+ *       defined in the PSA driver interface specification for transparent
+ *       drivers.
+ *
+ * The application must call mbedtls_psa_hash_setup() before calling this function.
+ *
+ * If this function returns an error status, the operation enters an error
+ * state and must be aborted by calling mbedtls_psa_hash_abort().
+ *
+ * \param[in,out] operation Active hash operation.
+ * \param[in] input         Buffer containing the message fragment to hash.
+ * \param input_length      Size of the \p input buffer in bytes.
+ *
+ * \retval #PSA_SUCCESS
+ *         Success.
+ * \retval #PSA_ERROR_BAD_STATE
+ *         The operation state is not valid (it must be active).
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ */
+psa_status_t mbedtls_psa_hash_update(
+    mbedtls_psa_hash_operation_t *operation,
+    const uint8_t *input,
+    size_t input_length);
+
+/** Finish the calculation of the Mbed TLS-calculated hash of a message.
+ *
+ * \note The signature of this function is that of a PSA driver hash_finish
+ *       entry point. This function behaves as a hash_finish entry point as
+ *       defined in the PSA driver interface specification for transparent
+ *       drivers.
+ *
+ * The application must call mbedtls_psa_hash_setup() before calling this function.
+ * This function calculates the hash of the message formed by concatenating
+ * the inputs passed to preceding calls to mbedtls_psa_hash_update().
+ *
+ * When this function returns successfully, the operation becomes inactive.
+ * If this function returns an error status, the operation enters an error
+ * state and must be aborted by calling mbedtls_psa_hash_abort().
+ *
+ * \param[in,out] operation     Active hash operation.
+ * \param[out] hash             Buffer where the hash is to be written.
+ * \param hash_size             Size of the \p hash buffer in bytes.
+ * \param[out] hash_length      On success, the number of bytes
+ *                              that make up the hash value. This is always
+ *                              #PSA_HASH_LENGTH(\c alg) where \c alg is the
+ *                              hash algorithm that is calculated.
+ *
+ * \retval #PSA_SUCCESS
+ *         Success.
+ * \retval #PSA_ERROR_BAD_STATE
+ *         The operation state is not valid (it must be active).
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         The size of the \p hash buffer is too small. You can determine a
+ *         sufficient buffer size by calling #PSA_HASH_LENGTH(\c alg)
+ *         where \c alg is the hash algorithm that is calculated.
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ */
+psa_status_t mbedtls_psa_hash_finish(
+    mbedtls_psa_hash_operation_t *operation,
+    uint8_t *hash,
+    size_t hash_size,
+    size_t *hash_length);
+
+/** Abort an Mbed TLS hash operation.
+ *
+ * \note The signature of this function is that of a PSA driver hash_abort
+ *       entry point. This function behaves as a hash_abort entry point as
+ *       defined in the PSA driver interface specification for transparent
+ *       drivers.
+ *
+ * Aborting an operation frees all associated resources except for the
+ * \p operation structure itself. Once aborted, the operation object
+ * can be reused for another operation by calling
+ * mbedtls_psa_hash_setup() again.
+ *
+ * You may call this function any time after the operation object has
+ * been initialized by one of the methods described in #psa_hash_operation_t.
+ *
+ * In particular, calling mbedtls_psa_hash_abort() after the operation has been
+ * terminated by a call to mbedtls_psa_hash_abort(), mbedtls_psa_hash_finish() or
+ * mbedtls_psa_hash_verify() is safe and has no effect.
+ *
+ * \param[in,out] operation     Initialized hash operation.
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ */
+psa_status_t mbedtls_psa_hash_abort(
+    mbedtls_psa_hash_operation_t *operation);
+
+#endif /* PSA_CRYPTO_HASH_H */
diff --git a/tf-psa-crypto/core/psa_crypto_invasive.h b/tf-psa-crypto/core/psa_crypto_invasive.h
new file mode 100644
index 0000000..51c90c6
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_invasive.h
@@ -0,0 +1,92 @@
+/**
+ * \file psa_crypto_invasive.h
+ *
+ * \brief PSA cryptography module: invasive interfaces for test only.
+ *
+ * The interfaces in this file are intended for testing purposes only.
+ * They MUST NOT be made available to clients over IPC in integrations
+ * with isolation, and they SHOULD NOT be made available in library
+ * integrations except when building the library for testing.
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef PSA_CRYPTO_INVASIVE_H
+#define PSA_CRYPTO_INVASIVE_H
+
+/*
+ * Include the build-time configuration information header. Here, we do not
+ * include `"mbedtls/build_info.h"` directly but `"psa/build_info.h"`, which
+ * is basically just an alias to it. This is to ease the maintenance of the
+ * TF-PSA-Crypto repository which has a different build system and
+ * configuration.
+ */
+#include "psa/build_info.h"
+
+#include "psa/crypto.h"
+#include "common.h"
+
+#include "mbedtls/entropy.h"
+
+#if !defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
+/** \brief Configure entropy sources.
+ *
+ * This function may only be called before a call to psa_crypto_init(),
+ * or after a call to mbedtls_psa_crypto_free() and before any
+ * subsequent call to psa_crypto_init().
+ *
+ * This function is only intended for test purposes. The functionality
+ * it provides is also useful for system integrators, but
+ * system integrators should configure entropy drivers instead of
+ * breaking through to the Mbed TLS API.
+ *
+ * \param entropy_init  Function to initialize the entropy context
+ *                      and set up the desired entropy sources.
+ *                      It is called by psa_crypto_init().
+ *                      By default this is mbedtls_entropy_init().
+ *                      This function cannot report failures directly.
+ *                      To indicate a failure, set the entropy context
+ *                      to a state where mbedtls_entropy_func() will
+ *                      return an error.
+ * \param entropy_free  Function to free the entropy context
+ *                      and associated resources.
+ *                      It is called by mbedtls_psa_crypto_free().
+ *                      By default this is mbedtls_entropy_free().
+ *
+ * \retval #PSA_SUCCESS
+ *         Success.
+ * \retval #PSA_ERROR_NOT_PERMITTED
+ *         The caller does not have the permission to configure
+ *         entropy sources.
+ * \retval #PSA_ERROR_BAD_STATE
+ *         The library has already been initialized.
+ */
+psa_status_t mbedtls_psa_crypto_configure_entropy_sources(
+    void (* entropy_init)(mbedtls_entropy_context *ctx),
+    void (* entropy_free)(mbedtls_entropy_context *ctx));
+#endif /* !defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG) */
+
+#if defined(MBEDTLS_TEST_HOOKS) && defined(MBEDTLS_PSA_CRYPTO_C)
+psa_status_t psa_mac_key_can_do(
+    psa_algorithm_t algorithm,
+    psa_key_type_t key_type);
+
+psa_status_t psa_crypto_copy_input(const uint8_t *input, size_t input_len,
+                                   uint8_t *input_copy, size_t input_copy_len);
+
+psa_status_t psa_crypto_copy_output(const uint8_t *output_copy, size_t output_copy_len,
+                                    uint8_t *output, size_t output_len);
+
+/*
+ * Test hooks to use for memory unpoisoning/poisoning in copy functions.
+ */
+extern void (*psa_input_pre_copy_hook)(const uint8_t *input, size_t input_len);
+extern void (*psa_input_post_copy_hook)(const uint8_t *input, size_t input_len);
+extern void (*psa_output_pre_copy_hook)(const uint8_t *output, size_t output_len);
+extern void (*psa_output_post_copy_hook)(const uint8_t *output, size_t output_len);
+
+#endif /* MBEDTLS_TEST_HOOKS && MBEDTLS_PSA_CRYPTO_C */
+
+#endif /* PSA_CRYPTO_INVASIVE_H */
diff --git a/tf-psa-crypto/core/psa_crypto_its.h b/tf-psa-crypto/core/psa_crypto_its.h
new file mode 100644
index 0000000..877063b
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_its.h
@@ -0,0 +1,131 @@
+/** \file psa_crypto_its.h
+ * \brief Interface of trusted storage that crypto is built on.
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef PSA_CRYPTO_ITS_H
+#define PSA_CRYPTO_ITS_H
+
+#include <stddef.h>
+#include <stdint.h>
+
+#include <psa/crypto_types.h>
+#include <psa/crypto_values.h>
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/** \brief Flags used when creating a data entry
+ */
+typedef uint32_t psa_storage_create_flags_t;
+
+/** \brief A type for UIDs used for identifying data
+ */
+typedef uint64_t psa_storage_uid_t;
+
+#define PSA_STORAGE_FLAG_NONE        0         /**< No flags to pass */
+#define PSA_STORAGE_FLAG_WRITE_ONCE (1 << 0) /**< The data associated with the uid will not be able to be modified or deleted. Intended to be used to set bits in `psa_storage_create_flags_t`*/
+
+/**
+ * \brief A container for metadata associated with a specific uid
+ */
+struct psa_storage_info_t {
+    uint32_t size;                  /**< The size of the data associated with a uid **/
+    psa_storage_create_flags_t flags;    /**< The flags set when the uid was created **/
+};
+
+/** Flag indicating that \ref psa_storage_create and \ref psa_storage_set_extended are supported */
+#define PSA_STORAGE_SUPPORT_SET_EXTENDED (1 << 0)
+
+#define PSA_ITS_API_VERSION_MAJOR  1  /**< The major version number of the PSA ITS API. It will be incremented on significant updates that may include breaking changes */
+#define PSA_ITS_API_VERSION_MINOR  1  /**< The minor version number of the PSA ITS API. It will be incremented in small updates that are unlikely to include breaking changes */
+
+/**
+ * \brief create a new or modify an existing uid/value pair
+ *
+ * \param[in] uid           the identifier for the data
+ * \param[in] data_length   The size in bytes of the data in `p_data`
+ * \param[in] p_data        A buffer containing the data
+ * \param[in] create_flags  The flags that the data will be stored with
+ *
+ * \return      A status indicating the success/failure of the operation
+ *
+ * \retval      #PSA_SUCCESS                     The operation completed successfully
+ * \retval      #PSA_ERROR_NOT_PERMITTED         The operation failed because the provided `uid` value was already created with PSA_STORAGE_FLAG_WRITE_ONCE
+ * \retval      #PSA_ERROR_NOT_SUPPORTED         The operation failed because one or more of the flags provided in `create_flags` is not supported or is not valid
+ * \retval      #PSA_ERROR_INSUFFICIENT_STORAGE  The operation failed because there was insufficient space on the storage medium
+ * \retval      #PSA_ERROR_STORAGE_FAILURE       The operation failed because the physical storage has failed (Fatal error)
+ * \retval      #PSA_ERROR_INVALID_ARGUMENT      The operation failed because one of the provided pointers(`p_data`)
+ *                                               is invalid, for example is `NULL` or references memory the caller cannot access
+ */
+psa_status_t psa_its_set(psa_storage_uid_t uid,
+                         uint32_t data_length,
+                         const void *p_data,
+                         psa_storage_create_flags_t create_flags);
+
+/**
+ * \brief Retrieve the value associated with a provided uid
+ *
+ * \param[in] uid               The uid value
+ * \param[in] data_offset       The starting offset of the data requested
+ * \param[in] data_length       the amount of data requested (and the minimum allocated size of the `p_data` buffer)
+ * \param[out] p_data           The buffer where the data will be placed upon successful completion
+ * \param[out] p_data_length    The amount of data returned in the p_data buffer
+ *
+ *
+ * \return      A status indicating the success/failure of the operation
+ *
+ * \retval      #PSA_SUCCESS                 The operation completed successfully
+ * \retval      #PSA_ERROR_DOES_NOT_EXIST    The operation failed because the provided `uid` value was not found in the storage
+ * \retval      #PSA_ERROR_STORAGE_FAILURE   The operation failed because the physical storage has failed (Fatal error)
+ * \retval      #PSA_ERROR_DATA_CORRUPT      The operation failed because stored data has been corrupted
+ * \retval      #PSA_ERROR_INVALID_ARGUMENT  The operation failed because one of the provided pointers(`p_data`, `p_data_length`)
+ *                                           is invalid. For example is `NULL` or references memory the caller cannot access.
+ *                                           In addition, this can also happen if an invalid offset was provided.
+ */
+psa_status_t psa_its_get(psa_storage_uid_t uid,
+                         uint32_t data_offset,
+                         uint32_t data_length,
+                         void *p_data,
+                         size_t *p_data_length);
+
+/**
+ * \brief Retrieve the metadata about the provided uid
+ *
+ * \param[in] uid           The uid value
+ * \param[out] p_info       A pointer to the `psa_storage_info_t` struct that will be populated with the metadata
+ *
+ * \return      A status indicating the success/failure of the operation
+ *
+ * \retval      #PSA_SUCCESS                 The operation completed successfully
+ * \retval      #PSA_ERROR_DOES_NOT_EXIST    The operation failed because the provided uid value was not found in the storage
+ * \retval      #PSA_ERROR_DATA_CORRUPT      The operation failed because stored data has been corrupted
+ * \retval      #PSA_ERROR_INVALID_ARGUMENT  The operation failed because one of the provided pointers(`p_info`)
+ *                                           is invalid, for example is `NULL` or references memory the caller cannot access
+ */
+psa_status_t psa_its_get_info(psa_storage_uid_t uid,
+                              struct psa_storage_info_t *p_info);
+
+/**
+ * \brief Remove the provided key and its associated data from the storage
+ *
+ * \param[in] uid   The uid value
+ *
+ * \return  A status indicating the success/failure of the operation
+ *
+ * \retval      #PSA_SUCCESS                  The operation completed successfully
+ * \retval      #PSA_ERROR_DOES_NOT_EXIST     The operation failed because the provided key value was not found in the storage
+ * \retval      #PSA_ERROR_NOT_PERMITTED      The operation failed because the provided key value was created with PSA_STORAGE_FLAG_WRITE_ONCE
+ * \retval      #PSA_ERROR_STORAGE_FAILURE    The operation failed because the physical storage has failed (Fatal error)
+ */
+psa_status_t psa_its_remove(psa_storage_uid_t uid);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* PSA_CRYPTO_ITS_H */
diff --git a/tf-psa-crypto/core/psa_crypto_mac.c b/tf-psa-crypto/core/psa_crypto_mac.c
new file mode 100644
index 0000000..8fe6218
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_mac.c
@@ -0,0 +1,496 @@
+/*
+ *  PSA MAC layer on top of Mbed TLS software crypto
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PSA_CRYPTO_C)
+
+#include <psa/crypto.h>
+#include "psa_crypto_core.h"
+#include "psa_crypto_cipher.h"
+#include "psa_crypto_mac.h"
+#include <mbedtls/md.h>
+
+#include <mbedtls/error.h>
+#include "mbedtls/constant_time.h"
+#include <string.h>
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_HMAC)
+static psa_status_t psa_hmac_abort_internal(
+    mbedtls_psa_hmac_operation_t *hmac)
+{
+    mbedtls_platform_zeroize(hmac->opad, sizeof(hmac->opad));
+    return psa_hash_abort(&hmac->hash_ctx);
+}
+
+static psa_status_t psa_hmac_setup_internal(
+    mbedtls_psa_hmac_operation_t *hmac,
+    const uint8_t *key,
+    size_t key_length,
+    psa_algorithm_t hash_alg)
+{
+    uint8_t ipad[PSA_HMAC_MAX_HASH_BLOCK_SIZE];
+    size_t i;
+    size_t hash_size = PSA_HASH_LENGTH(hash_alg);
+    size_t block_size = PSA_HASH_BLOCK_LENGTH(hash_alg);
+    psa_status_t status;
+
+    hmac->alg = hash_alg;
+
+    /* Sanity checks on block_size, to guarantee that there won't be a buffer
+     * overflow below. This should never trigger if the hash algorithm
+     * is implemented correctly. */
+    /* The size checks against the ipad and opad buffers cannot be written
+     * `block_size > sizeof( ipad ) || block_size > sizeof( hmac->opad )`
+     * because that triggers -Wlogical-op on GCC 7.3. */
+    if (block_size > sizeof(ipad)) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+    if (block_size > sizeof(hmac->opad)) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+    if (block_size < hash_size) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    if (key_length > block_size) {
+        status = psa_hash_compute(hash_alg, key, key_length,
+                                  ipad, sizeof(ipad), &key_length);
+        if (status != PSA_SUCCESS) {
+            goto cleanup;
+        }
+    }
+    /* A 0-length key is not commonly used in HMAC when used as a MAC,
+     * but it is permitted. It is common when HMAC is used in HKDF, for
+     * example. Don't call `memcpy` in the 0-length because `key` could be
+     * an invalid pointer which would make the behavior undefined. */
+    else if (key_length != 0) {
+        memcpy(ipad, key, key_length);
+    }
+
+    /* ipad contains the key followed by garbage. Xor and fill with 0x36
+     * to create the ipad value. */
+    for (i = 0; i < key_length; i++) {
+        ipad[i] ^= 0x36;
+    }
+    memset(ipad + key_length, 0x36, block_size - key_length);
+
+    /* Copy the key material from ipad to opad, flipping the requisite bits,
+     * and filling the rest of opad with the requisite constant. */
+    for (i = 0; i < key_length; i++) {
+        hmac->opad[i] = ipad[i] ^ 0x36 ^ 0x5C;
+    }
+    memset(hmac->opad + key_length, 0x5C, block_size - key_length);
+
+    status = psa_hash_setup(&hmac->hash_ctx, hash_alg);
+    if (status != PSA_SUCCESS) {
+        goto cleanup;
+    }
+
+    status = psa_hash_update(&hmac->hash_ctx, ipad, block_size);
+
+cleanup:
+    mbedtls_platform_zeroize(ipad, sizeof(ipad));
+
+    return status;
+}
+
+static psa_status_t psa_hmac_update_internal(
+    mbedtls_psa_hmac_operation_t *hmac,
+    const uint8_t *data,
+    size_t data_length)
+{
+    return psa_hash_update(&hmac->hash_ctx, data, data_length);
+}
+
+static psa_status_t psa_hmac_finish_internal(
+    mbedtls_psa_hmac_operation_t *hmac,
+    uint8_t *mac,
+    size_t mac_size)
+{
+    uint8_t tmp[PSA_HASH_MAX_SIZE];
+    psa_algorithm_t hash_alg = hmac->alg;
+    size_t hash_size = 0;
+    size_t block_size = PSA_HASH_BLOCK_LENGTH(hash_alg);
+    psa_status_t status;
+
+    status = psa_hash_finish(&hmac->hash_ctx, tmp, sizeof(tmp), &hash_size);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+    /* From here on, tmp needs to be wiped. */
+
+    status = psa_hash_setup(&hmac->hash_ctx, hash_alg);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_hash_update(&hmac->hash_ctx, hmac->opad, block_size);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_hash_update(&hmac->hash_ctx, tmp, hash_size);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_hash_finish(&hmac->hash_ctx, tmp, sizeof(tmp), &hash_size);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    memcpy(mac, tmp, mac_size);
+
+exit:
+    mbedtls_platform_zeroize(tmp, hash_size);
+    return status;
+}
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_HMAC */
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CMAC)
+static psa_status_t cmac_setup(mbedtls_psa_mac_operation_t *operation,
+                               const psa_key_attributes_t *attributes,
+                               const uint8_t *key_buffer)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+#if defined(PSA_WANT_KEY_TYPE_DES)
+    /* Mbed TLS CMAC does not accept 3DES with only two keys, nor does it accept
+     * to do CMAC with pure DES, so return NOT_SUPPORTED here. */
+    if (psa_get_key_type(attributes) == PSA_KEY_TYPE_DES &&
+        (psa_get_key_bits(attributes) == 64 ||
+         psa_get_key_bits(attributes) == 128)) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+#endif
+
+    const mbedtls_cipher_info_t *cipher_info =
+        mbedtls_cipher_info_from_psa(
+            PSA_ALG_CMAC,
+            psa_get_key_type(attributes),
+            psa_get_key_bits(attributes),
+            NULL);
+
+    if (cipher_info == NULL) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    ret = mbedtls_cipher_setup(&operation->ctx.cmac, cipher_info);
+    if (ret != 0) {
+        goto exit;
+    }
+
+    ret = mbedtls_cipher_cmac_starts(&operation->ctx.cmac,
+                                     key_buffer,
+                                     psa_get_key_bits(attributes));
+exit:
+    return mbedtls_to_psa_error(ret);
+}
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_CMAC */
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_HMAC) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_CMAC)
+
+/* Initialize this driver's MAC operation structure. Once this function has been
+ * called, mbedtls_psa_mac_abort can run and will do the right thing. */
+static psa_status_t mac_init(
+    mbedtls_psa_mac_operation_t *operation,
+    psa_algorithm_t alg)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    operation->alg = alg;
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CMAC)
+    if (PSA_ALG_FULL_LENGTH_MAC(operation->alg) == PSA_ALG_CMAC) {
+        mbedtls_cipher_init(&operation->ctx.cmac);
+        status = PSA_SUCCESS;
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_CMAC */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_HMAC)
+    if (PSA_ALG_IS_HMAC(operation->alg)) {
+        /* We'll set up the hash operation later in psa_hmac_setup_internal. */
+        operation->ctx.hmac.alg = 0;
+        status = PSA_SUCCESS;
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_HMAC */
+    {
+        (void) operation;
+        status = PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    if (status != PSA_SUCCESS) {
+        memset(operation, 0, sizeof(*operation));
+    }
+    return status;
+}
+
+psa_status_t mbedtls_psa_mac_abort(mbedtls_psa_mac_operation_t *operation)
+{
+    if (operation->alg == 0) {
+        /* The object has (apparently) been initialized but it is not
+         * in use. It's ok to call abort on such an object, and there's
+         * nothing to do. */
+        return PSA_SUCCESS;
+    } else
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CMAC)
+    if (PSA_ALG_FULL_LENGTH_MAC(operation->alg) == PSA_ALG_CMAC) {
+        mbedtls_cipher_free(&operation->ctx.cmac);
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_CMAC */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_HMAC)
+    if (PSA_ALG_IS_HMAC(operation->alg)) {
+        psa_hmac_abort_internal(&operation->ctx.hmac);
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_HMAC */
+    {
+        /* Sanity check (shouldn't happen: operation->alg should
+         * always have been initialized to a valid value). */
+        goto bad_state;
+    }
+
+    operation->alg = 0;
+
+    return PSA_SUCCESS;
+
+bad_state:
+    /* If abort is called on an uninitialized object, we can't trust
+     * anything. Wipe the object in case it contains confidential data.
+     * This may result in a memory leak if a pointer gets overwritten,
+     * but it's too late to do anything about this. */
+    memset(operation, 0, sizeof(*operation));
+    return PSA_ERROR_BAD_STATE;
+}
+
+static psa_status_t psa_mac_setup(mbedtls_psa_mac_operation_t *operation,
+                                  const psa_key_attributes_t *attributes,
+                                  const uint8_t *key_buffer,
+                                  size_t key_buffer_size,
+                                  psa_algorithm_t alg)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    /* A context must be freshly initialized before it can be set up. */
+    if (operation->alg != 0) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    status = mac_init(operation, alg);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CMAC)
+    if (PSA_ALG_FULL_LENGTH_MAC(alg) == PSA_ALG_CMAC) {
+        /* Key buffer size for CMAC is dictated by the key bits set on the
+         * attributes, and previously validated by the core on key import. */
+        (void) key_buffer_size;
+        status = cmac_setup(operation, attributes, key_buffer);
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_CMAC */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_HMAC)
+    if (PSA_ALG_IS_HMAC(alg)) {
+        status = psa_hmac_setup_internal(&operation->ctx.hmac,
+                                         key_buffer,
+                                         key_buffer_size,
+                                         PSA_ALG_HMAC_GET_HASH(alg));
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_HMAC */
+    {
+        (void) attributes;
+        (void) key_buffer;
+        (void) key_buffer_size;
+        status = PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    if (status != PSA_SUCCESS) {
+        mbedtls_psa_mac_abort(operation);
+    }
+
+    return status;
+}
+
+psa_status_t mbedtls_psa_mac_sign_setup(
+    mbedtls_psa_mac_operation_t *operation,
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer,
+    size_t key_buffer_size,
+    psa_algorithm_t alg)
+{
+    return psa_mac_setup(operation, attributes,
+                         key_buffer, key_buffer_size, alg);
+}
+
+psa_status_t mbedtls_psa_mac_verify_setup(
+    mbedtls_psa_mac_operation_t *operation,
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer,
+    size_t key_buffer_size,
+    psa_algorithm_t alg)
+{
+    return psa_mac_setup(operation, attributes,
+                         key_buffer, key_buffer_size, alg);
+}
+
+psa_status_t mbedtls_psa_mac_update(
+    mbedtls_psa_mac_operation_t *operation,
+    const uint8_t *input,
+    size_t input_length)
+{
+    if (operation->alg == 0) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CMAC)
+    if (PSA_ALG_FULL_LENGTH_MAC(operation->alg) == PSA_ALG_CMAC) {
+        return mbedtls_to_psa_error(
+            mbedtls_cipher_cmac_update(&operation->ctx.cmac,
+                                       input, input_length));
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_CMAC */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_HMAC)
+    if (PSA_ALG_IS_HMAC(operation->alg)) {
+        return psa_hmac_update_internal(&operation->ctx.hmac,
+                                        input, input_length);
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_HMAC */
+    {
+        /* This shouldn't happen if `operation` was initialized by
+         * a setup function. */
+        (void) input;
+        (void) input_length;
+        return PSA_ERROR_BAD_STATE;
+    }
+}
+
+static psa_status_t psa_mac_finish_internal(
+    mbedtls_psa_mac_operation_t *operation,
+    uint8_t *mac, size_t mac_size)
+{
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_CMAC)
+    if (PSA_ALG_FULL_LENGTH_MAC(operation->alg) == PSA_ALG_CMAC) {
+        uint8_t tmp[PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE];
+        int ret = mbedtls_cipher_cmac_finish(&operation->ctx.cmac, tmp);
+        if (ret == 0) {
+            memcpy(mac, tmp, mac_size);
+        }
+        mbedtls_platform_zeroize(tmp, sizeof(tmp));
+        return mbedtls_to_psa_error(ret);
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_CMAC */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_HMAC)
+    if (PSA_ALG_IS_HMAC(operation->alg)) {
+        return psa_hmac_finish_internal(&operation->ctx.hmac,
+                                        mac, mac_size);
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_HMAC */
+    {
+        /* This shouldn't happen if `operation` was initialized by
+         * a setup function. */
+        (void) operation;
+        (void) mac;
+        (void) mac_size;
+        return PSA_ERROR_BAD_STATE;
+    }
+}
+
+psa_status_t mbedtls_psa_mac_sign_finish(
+    mbedtls_psa_mac_operation_t *operation,
+    uint8_t *mac,
+    size_t mac_size,
+    size_t *mac_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    if (operation->alg == 0) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    status = psa_mac_finish_internal(operation, mac, mac_size);
+    if (status == PSA_SUCCESS) {
+        *mac_length = mac_size;
+    }
+
+    return status;
+}
+
+psa_status_t mbedtls_psa_mac_verify_finish(
+    mbedtls_psa_mac_operation_t *operation,
+    const uint8_t *mac,
+    size_t mac_length)
+{
+    uint8_t actual_mac[PSA_MAC_MAX_SIZE];
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    if (operation->alg == 0) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+    /* Consistency check: requested MAC length fits our local buffer */
+    if (mac_length > sizeof(actual_mac)) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    status = psa_mac_finish_internal(operation, actual_mac, mac_length);
+    if (status != PSA_SUCCESS) {
+        goto cleanup;
+    }
+
+    if (mbedtls_ct_memcmp(mac, actual_mac, mac_length) != 0) {
+        status = PSA_ERROR_INVALID_SIGNATURE;
+    }
+
+cleanup:
+    mbedtls_platform_zeroize(actual_mac, sizeof(actual_mac));
+
+    return status;
+}
+
+psa_status_t mbedtls_psa_mac_compute(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer,
+    size_t key_buffer_size,
+    psa_algorithm_t alg,
+    const uint8_t *input,
+    size_t input_length,
+    uint8_t *mac,
+    size_t mac_size,
+    size_t *mac_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    mbedtls_psa_mac_operation_t operation = MBEDTLS_PSA_MAC_OPERATION_INIT;
+
+    status = psa_mac_setup(&operation,
+                           attributes, key_buffer, key_buffer_size,
+                           alg);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    if (input_length > 0) {
+        status = mbedtls_psa_mac_update(&operation, input, input_length);
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+    }
+
+    status = psa_mac_finish_internal(&operation, mac, mac_size);
+    if (status == PSA_SUCCESS) {
+        *mac_length = mac_size;
+    }
+
+exit:
+    mbedtls_psa_mac_abort(&operation);
+
+    return status;
+}
+
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_HMAC || MBEDTLS_PSA_BUILTIN_ALG_CMAC */
+
+#endif /* MBEDTLS_PSA_CRYPTO_C */
diff --git a/tf-psa-crypto/core/psa_crypto_mac.h b/tf-psa-crypto/core/psa_crypto_mac.h
new file mode 100644
index 0000000..2f614bc
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_mac.h
@@ -0,0 +1,264 @@
+/*
+ *  PSA MAC layer on top of Mbed TLS software crypto
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef PSA_CRYPTO_MAC_H
+#define PSA_CRYPTO_MAC_H
+
+#include <psa/crypto.h>
+
+/** Calculate the MAC (message authentication code) of a message using Mbed TLS.
+ *
+ * \note The signature of this function is that of a PSA driver mac_compute
+ *       entry point. This function behaves as a mac_compute entry point as
+ *       defined in the PSA driver interface specification for transparent
+ *       drivers.
+ *
+ * \param[in] attributes        The attributes of the key to use for the
+ *                              operation.
+ * \param[in] key_buffer        The buffer containing the key to use for
+ *                              computing the MAC. This buffer contains the key
+ *                              in export representation as defined by
+ *                              psa_export_key() (i.e. the raw key bytes).
+ * \param key_buffer_size       Size of the \p key_buffer buffer in bytes.
+ * \param alg                   The MAC algorithm to use (\c PSA_ALG_XXX value
+ *                              such that #PSA_ALG_IS_MAC(\p alg) is true).
+ * \param[in] input             Buffer containing the input message.
+ * \param input_length          Size of the \p input buffer in bytes.
+ * \param[out] mac              Buffer where the MAC value is to be written.
+ * \param mac_size              Size of the \p mac buffer in bytes.
+ * \param[out] mac_length       On success, the number of bytes
+ *                              that make up the MAC value.
+ *
+ * \retval #PSA_SUCCESS
+ *         Success.
+ * \retval #PSA_ERROR_NOT_SUPPORTED
+ *         \p alg is not supported.
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         \p mac_size is too small
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ */
+psa_status_t mbedtls_psa_mac_compute(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer,
+    size_t key_buffer_size,
+    psa_algorithm_t alg,
+    const uint8_t *input,
+    size_t input_length,
+    uint8_t *mac,
+    size_t mac_size,
+    size_t *mac_length);
+
+/** Set up a multipart MAC calculation operation using Mbed TLS.
+ *
+ * \note The signature of this function is that of a PSA driver mac_sign_setup
+ *       entry point. This function behaves as a mac_sign_setup entry point as
+ *       defined in the PSA driver interface specification for transparent
+ *       drivers.
+ *
+ * \param[in,out] operation     The operation object to set up. It must have
+ *                              been initialized and not yet in use.
+ * \param[in] attributes        The attributes of the key to use for the
+ *                              operation.
+ * \param[in] key_buffer        The buffer containing the key to use for
+ *                              computing the MAC. This buffer contains the key
+ *                              in export representation as defined by
+ *                              psa_export_key() (i.e. the raw key bytes).
+ * \param key_buffer_size       Size of the \p key_buffer buffer in bytes.
+ * \param alg                   The MAC algorithm to use (\c PSA_ALG_XXX value
+ *                              such that #PSA_ALG_IS_MAC(\p alg) is true).
+ *
+ * \retval #PSA_SUCCESS
+ *         Success.
+ * \retval #PSA_ERROR_NOT_SUPPORTED
+ *         \p alg is not supported.
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ * \retval #PSA_ERROR_BAD_STATE
+ *         The operation state is not valid (it must be inactive).
+ */
+psa_status_t mbedtls_psa_mac_sign_setup(
+    mbedtls_psa_mac_operation_t *operation,
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer,
+    size_t key_buffer_size,
+    psa_algorithm_t alg);
+
+/** Set up a multipart MAC verification operation using Mbed TLS.
+ *
+ * \note The signature of this function is that of a PSA driver mac_verify_setup
+ *       entry point. This function behaves as a mac_verify_setup entry point as
+ *       defined in the PSA driver interface specification for transparent
+ *       drivers.
+ *
+ * \param[in,out] operation     The operation object to set up. It must have
+ *                              been initialized and not yet in use.
+ * \param[in] attributes        The attributes of the key to use for the
+ *                              operation.
+ * \param[in] key_buffer        The buffer containing the key to use for
+ *                              computing the MAC. This buffer contains the key
+ *                              in export representation as defined by
+ *                              psa_export_key() (i.e. the raw key bytes).
+ * \param key_buffer_size       Size of the \p key_buffer buffer in bytes.
+ * \param alg                   The MAC algorithm to use (\c PSA_ALG_XXX value
+ *                              such that #PSA_ALG_IS_MAC(\p alg) is true).
+ *
+ * \retval #PSA_SUCCESS
+ *         Success.
+ * \retval #PSA_ERROR_NOT_SUPPORTED
+ *         \p alg is not supported.
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ * \retval #PSA_ERROR_BAD_STATE
+ *         The operation state is not valid (it must be inactive).
+ */
+psa_status_t mbedtls_psa_mac_verify_setup(
+    mbedtls_psa_mac_operation_t *operation,
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer,
+    size_t key_buffer_size,
+    psa_algorithm_t alg);
+
+/** Add a message fragment to a multipart MAC operation using Mbed TLS.
+ *
+ * \note The signature of this function is that of a PSA driver mac_update
+ *       entry point. This function behaves as a mac_update entry point as
+ *       defined in the PSA driver interface specification for transparent
+ *       drivers.
+ *
+ * The PSA core calls mbedtls_psa_mac_sign_setup() or
+ * mbedtls_psa_mac_verify_setup() before calling this function.
+ *
+ * If this function returns an error status, the PSA core aborts the
+ * operation by calling mbedtls_psa_mac_abort().
+ *
+ * \param[in,out] operation Active MAC operation.
+ * \param[in] input         Buffer containing the message fragment to add to
+ *                          the MAC calculation.
+ * \param input_length      Size of the \p input buffer in bytes.
+ *
+ * \retval #PSA_SUCCESS
+ *         Success.
+ * \retval #PSA_ERROR_BAD_STATE
+ *         The operation state is not valid (it must be active).
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ */
+psa_status_t mbedtls_psa_mac_update(
+    mbedtls_psa_mac_operation_t *operation,
+    const uint8_t *input,
+    size_t input_length);
+
+/** Finish the calculation of the MAC of a message using Mbed TLS.
+ *
+ * \note The signature of this function is that of a PSA driver mac_sign_finish
+ *       entry point. This function behaves as a mac_sign_finish entry point as
+ *       defined in the PSA driver interface specification for transparent
+ *       drivers.
+ *
+ * The PSA core calls mbedtls_psa_mac_sign_setup() before calling this function.
+ * This function calculates the MAC of the message formed by concatenating
+ * the inputs passed to preceding calls to mbedtls_psa_mac_update().
+ *
+ * Whether this function returns successfully or not, the PSA core subsequently
+ * aborts the operation by calling mbedtls_psa_mac_abort().
+ *
+ * \param[in,out] operation Active MAC operation.
+ * \param[out] mac          Buffer where the MAC value is to be written.
+ * \param mac_size          Output size requested for the MAC algorithm. The PSA
+ *                          core guarantees this is a valid MAC length for the
+ *                          algorithm and key combination passed to
+ *                          mbedtls_psa_mac_sign_setup(). It also guarantees the
+ *                          \p mac buffer is large enough to contain the
+ *                          requested output size.
+ * \param[out] mac_length   On success, the number of bytes output to buffer
+ *                          \p mac, which will be equal to the requested length
+ *                          \p mac_size.
+ *
+ * \retval #PSA_SUCCESS
+ *         Success.
+ * \retval #PSA_ERROR_BAD_STATE
+ *         The operation state is not valid (it must be an active mac sign
+ *         operation).
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         The size of the \p mac buffer is too small. A sufficient buffer size
+ *         can be determined by calling PSA_MAC_LENGTH().
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ */
+psa_status_t mbedtls_psa_mac_sign_finish(
+    mbedtls_psa_mac_operation_t *operation,
+    uint8_t *mac,
+    size_t mac_size,
+    size_t *mac_length);
+
+/** Finish the calculation of the MAC of a message and compare it with
+ * an expected value using Mbed TLS.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       mac_verify_finish entry point. This function behaves as a
+ *       mac_verify_finish entry point as defined in the PSA driver interface
+ *       specification for transparent drivers.
+ *
+ * The PSA core calls mbedtls_psa_mac_verify_setup() before calling this
+ * function. This function calculates the MAC of the message formed by
+ * concatenating the inputs passed to preceding calls to
+ * mbedtls_psa_mac_update(). It then compares the calculated MAC with the
+ * expected MAC passed as a parameter to this function.
+ *
+ * Whether this function returns successfully or not, the PSA core subsequently
+ * aborts the operation by calling mbedtls_psa_mac_abort().
+ *
+ * \param[in,out] operation Active MAC operation.
+ * \param[in] mac           Buffer containing the expected MAC value.
+ * \param mac_length        Length in bytes of the expected MAC value. The PSA
+ *                          core guarantees that this length is a valid MAC
+ *                          length for the algorithm and key combination passed
+ *                          to mbedtls_psa_mac_verify_setup().
+ *
+ * \retval #PSA_SUCCESS
+ *         The expected MAC is identical to the actual MAC of the message.
+ * \retval #PSA_ERROR_INVALID_SIGNATURE
+ *         The MAC of the message was calculated successfully, but it
+ *         differs from the expected MAC.
+ * \retval #PSA_ERROR_BAD_STATE
+ *         The operation state is not valid (it must be an active mac verify
+ *         operation).
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ */
+psa_status_t mbedtls_psa_mac_verify_finish(
+    mbedtls_psa_mac_operation_t *operation,
+    const uint8_t *mac,
+    size_t mac_length);
+
+/** Abort a MAC operation using Mbed TLS.
+ *
+ * Aborting an operation frees all associated resources except for the
+ * \p operation structure itself. Once aborted, the operation object
+ * can be reused for another operation by calling
+ * mbedtls_psa_mac_sign_setup() or mbedtls_psa_mac_verify_setup() again.
+ *
+ * The PSA core may call this function any time after the operation object has
+ * been initialized by one of the methods described in
+ * #mbedtls_psa_mac_operation_t.
+ *
+ * In particular, calling mbedtls_psa_mac_abort() after the operation has been
+ * terminated by a call to mbedtls_psa_mac_abort(),
+ * mbedtls_psa_mac_sign_finish() or mbedtls_psa_mac_verify_finish() is safe and
+ * has no effect.
+ *
+ * \param[in,out] operation Initialized MAC operation.
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ */
+psa_status_t mbedtls_psa_mac_abort(
+    mbedtls_psa_mac_operation_t *operation);
+
+#endif /* PSA_CRYPTO_MAC_H */
diff --git a/tf-psa-crypto/core/psa_crypto_pake.c b/tf-psa-crypto/core/psa_crypto_pake.c
new file mode 100644
index 0000000..9ac2e8c
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_pake.c
@@ -0,0 +1,571 @@
+/*
+ *  PSA PAKE layer on top of Mbed TLS software crypto
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PSA_CRYPTO_C)
+
+#include <psa/crypto.h>
+#include "psa_crypto_core.h"
+#include "psa_crypto_pake.h"
+#include "psa_crypto_slot_management.h"
+
+#include <mbedtls/ecjpake.h>
+#include "psa_util_internal.h"
+
+#include <mbedtls/platform.h>
+#include <mbedtls/error.h>
+#include <string.h>
+
+/*
+ * State sequence:
+ *
+ *   psa_pake_setup()
+ *   |
+ *   |-- In any order:
+ *   |   | psa_pake_set_password_key()
+ *   |   | psa_pake_set_user()
+ *   |   | psa_pake_set_peer()
+ *   |   | psa_pake_set_role()
+ *   |
+ *   |--- In any order: (First round input before or after first round output)
+ *   |   |
+ *   |   |------ In Order
+ *   |   |       | psa_pake_output(PSA_PAKE_STEP_KEY_SHARE)
+ *   |   |       | psa_pake_output(PSA_PAKE_STEP_ZK_PUBLIC)
+ *   |   |       | psa_pake_output(PSA_PAKE_STEP_ZK_PROOF)
+ *   |   |       | psa_pake_output(PSA_PAKE_STEP_KEY_SHARE)
+ *   |   |       | psa_pake_output(PSA_PAKE_STEP_ZK_PUBLIC)
+ *   |   |       | psa_pake_output(PSA_PAKE_STEP_ZK_PROOF)
+ *   |   |
+ *   |   |------ In Order:
+ *   |           | psa_pake_input(PSA_PAKE_STEP_KEY_SHARE)
+ *   |           | psa_pake_input(PSA_PAKE_STEP_ZK_PUBLIC)
+ *   |           | psa_pake_input(PSA_PAKE_STEP_ZK_PROOF)
+ *   |           | psa_pake_input(PSA_PAKE_STEP_KEY_SHARE)
+ *   |           | psa_pake_input(PSA_PAKE_STEP_ZK_PUBLIC)
+ *   |           | psa_pake_input(PSA_PAKE_STEP_ZK_PROOF)
+ *   |
+ *   |--- In any order: (Second round input before or after second round output)
+ *   |   |
+ *   |   |------ In Order
+ *   |   |       | psa_pake_output(PSA_PAKE_STEP_KEY_SHARE)
+ *   |   |       | psa_pake_output(PSA_PAKE_STEP_ZK_PUBLIC)
+ *   |   |       | psa_pake_output(PSA_PAKE_STEP_ZK_PROOF)
+ *   |   |
+ *   |   |------ In Order:
+ *   |           | psa_pake_input(PSA_PAKE_STEP_KEY_SHARE)
+ *   |           | psa_pake_input(PSA_PAKE_STEP_ZK_PUBLIC)
+ *   |           | psa_pake_input(PSA_PAKE_STEP_ZK_PROOF)
+ *   |
+ *   psa_pake_get_implicit_key()
+ *   psa_pake_abort()
+ */
+
+/*
+ * Possible sequence of calls to implementation:
+ *
+ * |--- In any order:
+ * |   |
+ * |   |------ In Order
+ * |   |       | mbedtls_psa_pake_output(PSA_JPAKE_X1_STEP_KEY_SHARE)
+ * |   |       | mbedtls_psa_pake_output(PSA_JPAKE_X1_STEP_ZK_PUBLIC)
+ * |   |       | mbedtls_psa_pake_output(PSA_JPAKE_X1_STEP_ZK_PROOF)
+ * |   |       | mbedtls_psa_pake_output(PSA_JPAKE_X2_STEP_KEY_SHARE)
+ * |   |       | mbedtls_psa_pake_output(PSA_JPAKE_X2_STEP_ZK_PUBLIC)
+ * |   |       | mbedtls_psa_pake_output(PSA_JPAKE_X2_STEP_ZK_PROOF)
+ * |   |
+ * |   |------ In Order:
+ * |           | mbedtls_psa_pake_input(PSA_JPAKE_X1_STEP_KEY_SHARE)
+ * |           | mbedtls_psa_pake_input(PSA_JPAKE_X1_STEP_ZK_PUBLIC)
+ * |           | mbedtls_psa_pake_input(PSA_JPAKE_X1_STEP_ZK_PROOF)
+ * |           | mbedtls_psa_pake_input(PSA_JPAKE_X2_STEP_KEY_SHARE)
+ * |           | mbedtls_psa_pake_input(PSA_JPAKE_X2_STEP_ZK_PUBLIC)
+ * |           | mbedtls_psa_pake_input(PSA_JPAKE_X2_STEP_ZK_PROOF)
+ * |
+ * |--- In any order:
+ * |   |
+ * |   |------ In Order
+ * |   |       | mbedtls_psa_pake_output(PSA_JPAKE_X2S_STEP_KEY_SHARE)
+ * |   |       | mbedtls_psa_pake_output(PSA_JPAKE_X2S_STEP_ZK_PUBLIC)
+ * |   |       | mbedtls_psa_pake_output(PSA_JPAKE_X2S_STEP_ZK_PROOF)
+ * |   |
+ * |   |------ In Order:
+ * |           | mbedtls_psa_pake_input(PSA_JPAKE_X4S_STEP_KEY_SHARE)
+ * |           | mbedtls_psa_pake_input(PSA_JPAKE_X4S_STEP_ZK_PUBLIC)
+ * |           | mbedtls_psa_pake_input(PSA_JPAKE_X4S_STEP_ZK_PROOF)
+ */
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_JPAKE)
+static psa_status_t mbedtls_ecjpake_to_psa_error(int ret)
+{
+    switch (ret) {
+        case MBEDTLS_ERR_MPI_BAD_INPUT_DATA:
+        case MBEDTLS_ERR_ECP_BAD_INPUT_DATA:
+        case MBEDTLS_ERR_ECP_INVALID_KEY:
+        case MBEDTLS_ERR_ECP_VERIFY_FAILED:
+            return PSA_ERROR_DATA_INVALID;
+        case MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL:
+        case MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL:
+            return PSA_ERROR_BUFFER_TOO_SMALL;
+        case MBEDTLS_ERR_MD_FEATURE_UNAVAILABLE:
+            return PSA_ERROR_NOT_SUPPORTED;
+        case MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED:
+            return PSA_ERROR_CORRUPTION_DETECTED;
+        default:
+            return PSA_ERROR_GENERIC_ERROR;
+    }
+}
+#endif
+
+#if defined(MBEDTLS_PSA_BUILTIN_PAKE)
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_JPAKE)
+static psa_status_t psa_pake_ecjpake_setup(mbedtls_psa_pake_operation_t *operation)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    mbedtls_ecjpake_init(&operation->ctx.jpake);
+
+    ret = mbedtls_ecjpake_setup(&operation->ctx.jpake,
+                                operation->role,
+                                MBEDTLS_MD_SHA256,
+                                MBEDTLS_ECP_DP_SECP256R1,
+                                operation->password,
+                                operation->password_len);
+
+    mbedtls_platform_zeroize(operation->password, operation->password_len);
+
+    if (ret != 0) {
+        return mbedtls_ecjpake_to_psa_error(ret);
+    }
+
+    return PSA_SUCCESS;
+}
+#endif
+
+/* The only two JPAKE user/peer identifiers supported in built-in implementation. */
+static const uint8_t jpake_server_id[] = { 's', 'e', 'r', 'v', 'e', 'r' };
+static const uint8_t jpake_client_id[] = { 'c', 'l', 'i', 'e', 'n', 't' };
+
+psa_status_t mbedtls_psa_pake_setup(mbedtls_psa_pake_operation_t *operation,
+                                    const psa_crypto_driver_pake_inputs_t *inputs)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    size_t user_len = 0, peer_len = 0, password_len = 0;
+    uint8_t *peer = NULL, *user = NULL;
+    size_t actual_user_len = 0, actual_peer_len = 0, actual_password_len = 0;
+    psa_pake_cipher_suite_t cipher_suite = psa_pake_cipher_suite_init();
+
+    status = psa_crypto_driver_pake_get_password_len(inputs, &password_len);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    status = psa_crypto_driver_pake_get_user_len(inputs, &user_len);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    status = psa_crypto_driver_pake_get_peer_len(inputs, &peer_len);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    status = psa_crypto_driver_pake_get_cipher_suite(inputs, &cipher_suite);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    operation->password = mbedtls_calloc(1, password_len);
+    if (operation->password == NULL) {
+        status = PSA_ERROR_INSUFFICIENT_MEMORY;
+        goto error;
+    }
+
+    user = mbedtls_calloc(1, user_len);
+    if (user == NULL) {
+        status = PSA_ERROR_INSUFFICIENT_MEMORY;
+        goto error;
+    }
+
+    peer = mbedtls_calloc(1, peer_len);
+    if (peer == NULL) {
+        status = PSA_ERROR_INSUFFICIENT_MEMORY;
+        goto error;
+    }
+
+    status = psa_crypto_driver_pake_get_password(inputs, operation->password,
+                                                 password_len, &actual_password_len);
+    if (status != PSA_SUCCESS) {
+        goto error;
+    }
+
+    status = psa_crypto_driver_pake_get_user(inputs, user,
+                                             user_len, &actual_user_len);
+    if (status != PSA_SUCCESS) {
+        goto error;
+    }
+
+    status = psa_crypto_driver_pake_get_peer(inputs, peer,
+                                             peer_len, &actual_peer_len);
+    if (status != PSA_SUCCESS) {
+        goto error;
+    }
+
+    operation->password_len = actual_password_len;
+    operation->alg = cipher_suite.algorithm;
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_JPAKE)
+    if (cipher_suite.algorithm == PSA_ALG_JPAKE) {
+        if (cipher_suite.type != PSA_PAKE_PRIMITIVE_TYPE_ECC ||
+            cipher_suite.family != PSA_ECC_FAMILY_SECP_R1 ||
+            cipher_suite.bits != 256 ||
+            cipher_suite.hash != PSA_ALG_SHA_256) {
+            status = PSA_ERROR_NOT_SUPPORTED;
+            goto error;
+        }
+
+        const size_t user_peer_len = sizeof(jpake_client_id); // client and server have the same length
+        if (actual_user_len != user_peer_len ||
+            actual_peer_len != user_peer_len) {
+            status = PSA_ERROR_NOT_SUPPORTED;
+            goto error;
+        }
+
+        if (memcmp(user, jpake_client_id, actual_user_len) == 0 &&
+            memcmp(peer, jpake_server_id, actual_peer_len) == 0) {
+            operation->role = MBEDTLS_ECJPAKE_CLIENT;
+        } else
+        if (memcmp(user, jpake_server_id, actual_user_len) == 0 &&
+            memcmp(peer, jpake_client_id, actual_peer_len) == 0) {
+            operation->role = MBEDTLS_ECJPAKE_SERVER;
+        } else {
+            status = PSA_ERROR_NOT_SUPPORTED;
+            goto error;
+        }
+
+        operation->buffer_length = 0;
+        operation->buffer_offset = 0;
+
+        status = psa_pake_ecjpake_setup(operation);
+        if (status != PSA_SUCCESS) {
+            goto error;
+        }
+
+        /* Role has been set, release user/peer buffers. */
+        mbedtls_free(user); mbedtls_free(peer);
+
+        return PSA_SUCCESS;
+    } else
+#else
+    (void) operation;
+    (void) inputs;
+#endif
+    { status = PSA_ERROR_NOT_SUPPORTED; }
+
+error:
+    mbedtls_free(user); mbedtls_free(peer);
+    /* In case of failure of the setup of a multipart operation, the PSA driver interface
+     * specifies that the core does not call any other driver entry point thus does not
+     * call mbedtls_psa_pake_abort(). Therefore call it here to do the needed clean
+     * up like freeing the memory that may have been allocated to store the password.
+     */
+    mbedtls_psa_pake_abort(operation);
+    return status;
+}
+
+static psa_status_t mbedtls_psa_pake_output_internal(
+    mbedtls_psa_pake_operation_t *operation,
+    psa_crypto_driver_pake_step_t step,
+    uint8_t *output,
+    size_t output_size,
+    size_t *output_length)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t length;
+    (void) step; // Unused parameter
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_JPAKE)
+    /*
+     * The PSA CRYPTO PAKE and Mbed TLS JPAKE API have a different
+     * handling of output sequencing.
+     *
+     * The Mbed TLS JPAKE API outputs the whole X1+X2 and X2S steps data
+     * at once, on the other side the PSA CRYPTO PAKE api requires
+     * the KEY_SHARE/ZP_PUBLIC/ZK_PROOF parts of X1, X2 & X2S to be
+     * retrieved in sequence.
+     *
+     * In order to achieve API compatibility, the whole X1+X2 or X2S steps
+     * data is stored in an intermediate buffer at first step output call,
+     * and data is sliced down by parsing the ECPoint records in order
+     * to return the right parts on each step.
+     */
+    if (operation->alg == PSA_ALG_JPAKE) {
+        /* Initialize & write round on KEY_SHARE sequences */
+        if (step == PSA_JPAKE_X1_STEP_KEY_SHARE) {
+            ret = mbedtls_ecjpake_write_round_one(&operation->ctx.jpake,
+                                                  operation->buffer,
+                                                  sizeof(operation->buffer),
+                                                  &operation->buffer_length,
+                                                  mbedtls_psa_get_random,
+                                                  MBEDTLS_PSA_RANDOM_STATE);
+            if (ret != 0) {
+                return mbedtls_ecjpake_to_psa_error(ret);
+            }
+
+            operation->buffer_offset = 0;
+        } else if (step == PSA_JPAKE_X2S_STEP_KEY_SHARE) {
+            ret = mbedtls_ecjpake_write_round_two(&operation->ctx.jpake,
+                                                  operation->buffer,
+                                                  sizeof(operation->buffer),
+                                                  &operation->buffer_length,
+                                                  mbedtls_psa_get_random,
+                                                  MBEDTLS_PSA_RANDOM_STATE);
+            if (ret != 0) {
+                return mbedtls_ecjpake_to_psa_error(ret);
+            }
+
+            operation->buffer_offset = 0;
+        }
+
+        /*
+         * mbedtls_ecjpake_write_round_xxx() outputs thing in the format
+         * defined by draft-cragie-tls-ecjpake-01 section 7. The summary is
+         * that the data for each step is prepended with a length byte, and
+         * then they're concatenated. Additionally, the server's second round
+         * output is prepended with a 3-bytes ECParameters structure.
+         *
+         * In PSA, we output each step separately, and don't prepend the
+         * output with a length byte, even less a curve identifier, as that
+         * information is already available.
+         */
+        if (step == PSA_JPAKE_X2S_STEP_KEY_SHARE &&
+            operation->role == MBEDTLS_ECJPAKE_SERVER) {
+            /* Skip ECParameters, with is 3 bytes (RFC 8422) */
+            operation->buffer_offset += 3;
+        }
+
+        /* Read the length byte then move past it to the data */
+        length = operation->buffer[operation->buffer_offset];
+        operation->buffer_offset += 1;
+
+        if (operation->buffer_offset + length > operation->buffer_length) {
+            return PSA_ERROR_DATA_CORRUPT;
+        }
+
+        if (output_size < length) {
+            return PSA_ERROR_BUFFER_TOO_SMALL;
+        }
+
+        memcpy(output,
+               operation->buffer + operation->buffer_offset,
+               length);
+        *output_length = length;
+
+        operation->buffer_offset += length;
+
+        /* Reset buffer after ZK_PROOF sequence */
+        if ((step == PSA_JPAKE_X2_STEP_ZK_PROOF) ||
+            (step == PSA_JPAKE_X2S_STEP_ZK_PROOF)) {
+            mbedtls_platform_zeroize(operation->buffer, sizeof(operation->buffer));
+            operation->buffer_length = 0;
+            operation->buffer_offset = 0;
+        }
+
+        return PSA_SUCCESS;
+    } else
+#else
+    (void) step;
+    (void) output;
+    (void) output_size;
+    (void) output_length;
+#endif
+    { return PSA_ERROR_NOT_SUPPORTED; }
+}
+
+psa_status_t mbedtls_psa_pake_output(mbedtls_psa_pake_operation_t *operation,
+                                     psa_crypto_driver_pake_step_t step,
+                                     uint8_t *output,
+                                     size_t output_size,
+                                     size_t *output_length)
+{
+    psa_status_t status = mbedtls_psa_pake_output_internal(
+        operation, step, output, output_size, output_length);
+
+    return status;
+}
+
+static psa_status_t mbedtls_psa_pake_input_internal(
+    mbedtls_psa_pake_operation_t *operation,
+    psa_crypto_driver_pake_step_t step,
+    const uint8_t *input,
+    size_t input_length)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    (void) step; // Unused parameter
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_JPAKE)
+    /*
+     * The PSA CRYPTO PAKE and Mbed TLS JPAKE API have a different
+     * handling of input sequencing.
+     *
+     * The Mbed TLS JPAKE API takes the whole X1+X2 or X4S steps data
+     * at once as input, on the other side the PSA CRYPTO PAKE api requires
+     * the KEY_SHARE/ZP_PUBLIC/ZK_PROOF parts of X1, X2 & X4S to be
+     * given in sequence.
+     *
+     * In order to achieve API compatibility, each X1+X2 or X4S step data
+     * is stored sequentially in an intermediate buffer and given to the
+     * Mbed TLS JPAKE API on the last step.
+     *
+     * This causes any input error to be only detected on the last step.
+     */
+    if (operation->alg == PSA_ALG_JPAKE) {
+        /*
+         * Copy input to local buffer and format it as the Mbed TLS API
+         * expects, i.e. as defined by draft-cragie-tls-ecjpake-01 section 7.
+         * The summary is that the data for each step is prepended with a
+         * length byte, and then they're concatenated. Additionally, the
+         * server's second round output is prepended with a 3-bytes
+         * ECParameters structure - which means we have to prepend that when
+         * we're a client.
+         */
+        if (step == PSA_JPAKE_X4S_STEP_KEY_SHARE &&
+            operation->role == MBEDTLS_ECJPAKE_CLIENT) {
+            /* We only support secp256r1. */
+            /* This is the ECParameters structure defined by RFC 8422. */
+            unsigned char ecparameters[3] = {
+                3, /* named_curve */
+                0, 23 /* secp256r1 */
+            };
+
+            if (operation->buffer_length + sizeof(ecparameters) >
+                sizeof(operation->buffer)) {
+                return PSA_ERROR_BUFFER_TOO_SMALL;
+            }
+
+            memcpy(operation->buffer + operation->buffer_length,
+                   ecparameters, sizeof(ecparameters));
+            operation->buffer_length += sizeof(ecparameters);
+        }
+
+        /*
+         * The core checks that input_length is smaller than
+         * PSA_PAKE_INPUT_MAX_SIZE.
+         * Thus no risk of integer overflow here.
+         */
+        if (operation->buffer_length + input_length + 1 > sizeof(operation->buffer)) {
+            return PSA_ERROR_BUFFER_TOO_SMALL;
+        }
+
+        /* Write the length byte */
+        operation->buffer[operation->buffer_length] = (uint8_t) input_length;
+        operation->buffer_length += 1;
+
+        /* Finally copy the data */
+        memcpy(operation->buffer + operation->buffer_length,
+               input, input_length);
+        operation->buffer_length += input_length;
+
+        /* Load buffer at each last round ZK_PROOF */
+        if (step == PSA_JPAKE_X2_STEP_ZK_PROOF) {
+            ret = mbedtls_ecjpake_read_round_one(&operation->ctx.jpake,
+                                                 operation->buffer,
+                                                 operation->buffer_length);
+
+            mbedtls_platform_zeroize(operation->buffer, sizeof(operation->buffer));
+            operation->buffer_length = 0;
+
+            if (ret != 0) {
+                return mbedtls_ecjpake_to_psa_error(ret);
+            }
+        } else if (step == PSA_JPAKE_X4S_STEP_ZK_PROOF) {
+            ret = mbedtls_ecjpake_read_round_two(&operation->ctx.jpake,
+                                                 operation->buffer,
+                                                 operation->buffer_length);
+
+            mbedtls_platform_zeroize(operation->buffer, sizeof(operation->buffer));
+            operation->buffer_length = 0;
+
+            if (ret != 0) {
+                return mbedtls_ecjpake_to_psa_error(ret);
+            }
+        }
+
+        return PSA_SUCCESS;
+    } else
+#else
+    (void) step;
+    (void) input;
+    (void) input_length;
+#endif
+    { return PSA_ERROR_NOT_SUPPORTED; }
+}
+
+psa_status_t mbedtls_psa_pake_input(mbedtls_psa_pake_operation_t *operation,
+                                    psa_crypto_driver_pake_step_t step,
+                                    const uint8_t *input,
+                                    size_t input_length)
+{
+    psa_status_t status = mbedtls_psa_pake_input_internal(
+        operation, step, input, input_length);
+
+    return status;
+}
+
+psa_status_t mbedtls_psa_pake_get_implicit_key(
+    mbedtls_psa_pake_operation_t *operation,
+    uint8_t *output, size_t output_size,
+    size_t *output_length)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_JPAKE)
+    if (operation->alg == PSA_ALG_JPAKE) {
+        ret = mbedtls_ecjpake_write_shared_key(&operation->ctx.jpake,
+                                               output,
+                                               output_size,
+                                               output_length,
+                                               mbedtls_psa_get_random,
+                                               MBEDTLS_PSA_RANDOM_STATE);
+        if (ret != 0) {
+            return mbedtls_ecjpake_to_psa_error(ret);
+        }
+
+        return PSA_SUCCESS;
+    } else
+#else
+    (void) output;
+#endif
+    { return PSA_ERROR_NOT_SUPPORTED; }
+}
+
+psa_status_t mbedtls_psa_pake_abort(mbedtls_psa_pake_operation_t *operation)
+{
+    mbedtls_zeroize_and_free(operation->password, operation->password_len);
+    operation->password = NULL;
+    operation->password_len = 0;
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_JPAKE)
+    if (operation->alg == PSA_ALG_JPAKE) {
+        operation->role = MBEDTLS_ECJPAKE_NONE;
+        mbedtls_platform_zeroize(operation->buffer, sizeof(operation->buffer));
+        operation->buffer_length = 0;
+        operation->buffer_offset = 0;
+        mbedtls_ecjpake_free(&operation->ctx.jpake);
+    }
+#endif
+
+    operation->alg = PSA_ALG_NONE;
+
+    return PSA_SUCCESS;
+}
+
+#endif /* MBEDTLS_PSA_BUILTIN_PAKE */
+
+#endif /* MBEDTLS_PSA_CRYPTO_C */
diff --git a/tf-psa-crypto/core/psa_crypto_pake.h b/tf-psa-crypto/core/psa_crypto_pake.h
new file mode 100644
index 0000000..3d3ee0c
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_pake.h
@@ -0,0 +1,159 @@
+/*
+ *  PSA PAKE layer on top of Mbed TLS software crypto
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef PSA_CRYPTO_PAKE_H
+#define PSA_CRYPTO_PAKE_H
+
+#include <psa/crypto.h>
+
+/** Set the session information for a password-authenticated key exchange.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       pake_setup entry point. This function behaves as a pake_setup
+ *       entry point as defined in the PSA driver interface specification for
+ *       transparent drivers.
+ *
+ * \param[in,out] operation     The operation object to set up. It must have
+ *                              been initialized but not set up yet.
+ * \param[in] inputs            Inputs required for PAKE operation (role, password,
+ *                              key lifetime, cipher suite)
+ *
+ * \retval #PSA_SUCCESS
+ *         Success.
+ * \retval #PSA_ERROR_NOT_SUPPORTED
+ *         The algorithm in \p cipher_suite is not a supported PAKE algorithm,
+ *         or the PAKE primitive in \p cipher_suite is not supported or not
+ *         compatible with the PAKE algorithm, or the hash algorithm in
+ *         \p cipher_suite is not supported or not compatible with the PAKE
+ *         algorithm and primitive.
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY   \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED   \emptydescription
+ */
+psa_status_t mbedtls_psa_pake_setup(mbedtls_psa_pake_operation_t *operation,
+                                    const psa_crypto_driver_pake_inputs_t *inputs);
+
+
+/** Get output for a step of a password-authenticated key exchange.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       pake_output entry point. This function behaves as a pake_output
+ *       entry point as defined in the PSA driver interface specification for
+ *       transparent drivers.
+ *
+ * \param[in,out] operation    Active PAKE operation.
+ * \param step                 The step of the algorithm for which the output is
+ *                             requested.
+ * \param[out] output          Buffer where the output is to be written in the
+ *                             format appropriate for this driver \p step. Refer to
+ *                             the documentation of psa_crypto_driver_pake_step_t for
+ *                             more information.
+ * \param output_size          Size of the \p output buffer in bytes. This must
+ *                             be at least #PSA_PAKE_OUTPUT_SIZE(\p alg, \p
+ *                             primitive, \p step) where \p alg and
+ *                             \p primitive are the PAKE algorithm and primitive
+ *                             in the operation's cipher suite, and \p step is
+ *                             the output step.
+ *
+ * \param[out] output_length   On success, the number of bytes of the returned
+ *                             output.
+ *
+ * \retval #PSA_SUCCESS
+ *         Success.
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         The size of the \p output buffer is too small.
+ * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY  \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED   \emptydescription
+ * \retval #PSA_ERROR_DATA_CORRUPT          \emptydescription
+ * \retval #PSA_ERROR_DATA_INVALID          \emptydescription
+ */
+psa_status_t mbedtls_psa_pake_output(mbedtls_psa_pake_operation_t *operation,
+                                     psa_crypto_driver_pake_step_t step,
+                                     uint8_t *output,
+                                     size_t output_size,
+                                     size_t *output_length);
+
+/** Provide input for a step of a password-authenticated key exchange.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       pake_input entry point. This function behaves as a pake_input
+ *       entry point as defined in the PSA driver interface specification for
+ *       transparent drivers.
+ *
+ * \note The core checks that input_length is smaller than PSA_PAKE_INPUT_MAX_SIZE.
+ *
+ * \param[in,out] operation    Active PAKE operation.
+ * \param step                 The driver step for which the input is provided.
+ * \param[in] input            Buffer containing the input in the format
+ *                             appropriate for this \p step. Refer to the
+ *                             documentation of psa_crypto_driver_pake_step_t
+ *                             for more information.
+ * \param input_length         Size of the \p input buffer in bytes.
+ *
+ * \retval #PSA_SUCCESS
+ *         Success.
+ * \retval #PSA_ERROR_INVALID_SIGNATURE
+ *         The verification fails for a zero-knowledge input step.
+ * \retval #PSA_ERROR_INVALID_ARGUMENT
+ *         the \p input is not valid for the \p operation's algorithm, cipher suite
+ *         or \p step.
+ * \retval #PSA_ERROR_NOT_SUPPORTED
+ *         the \p input is not supported for the \p operation's algorithm, cipher
+ *         suite or \p step.
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY   \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED   \emptydescription
+ * \retval #PSA_ERROR_DATA_CORRUPT          \emptydescription
+ * \retval #PSA_ERROR_DATA_INVALID          \emptydescription
+ */
+psa_status_t mbedtls_psa_pake_input(mbedtls_psa_pake_operation_t *operation,
+                                    psa_crypto_driver_pake_step_t step,
+                                    const uint8_t *input,
+                                    size_t input_length);
+
+/** Get implicitly confirmed shared secret from a PAKE.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       pake_get_implicit_key entry point. This function behaves as a
+ *       pake_get_implicit_key entry point as defined in the PSA driver
+ *       interface specification for transparent drivers.
+ *
+ * \param[in,out] operation    Active PAKE operation.
+ * \param[out] output          Output buffer for implicit key.
+ * \param      output_size     Size of the output buffer in bytes.
+ * \param[out] output_length   On success, the number of bytes of the implicit key.
+ *
+ * \retval #PSA_SUCCESS
+ *         Success.
+ * \retval #PSA_ERROR_NOT_SUPPORTED
+ *         Input from a PAKE is not supported by the algorithm in the \p output
+ *         key derivation operation.
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY   \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED   \emptydescription
+ * \retval #PSA_ERROR_DATA_CORRUPT          \emptydescription
+ * \retval #PSA_ERROR_DATA_INVALID          \emptydescription
+ */
+psa_status_t mbedtls_psa_pake_get_implicit_key(
+    mbedtls_psa_pake_operation_t *operation,
+    uint8_t *output, size_t output_size,
+    size_t *output_length);
+
+/** Abort a PAKE operation.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       pake_abort entry point. This function behaves as a pake_abort
+ *       entry point as defined in the PSA driver interface specification for
+ *       transparent drivers.
+ *
+ * \param[in,out] operation    The operation to abort.
+ *
+ * \retval #PSA_SUCCESS
+ *         Success.
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED   \emptydescription
+ */
+psa_status_t mbedtls_psa_pake_abort(mbedtls_psa_pake_operation_t *operation);
+
+#endif /* PSA_CRYPTO_PAKE_H */
diff --git a/tf-psa-crypto/core/psa_crypto_random_impl.h b/tf-psa-crypto/core/psa_crypto_random_impl.h
new file mode 100644
index 0000000..533fb2e
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_random_impl.h
@@ -0,0 +1,135 @@
+/** \file psa_crypto_random_impl.h
+ *
+ * \brief PSA crypto random generator implementation abstraction.
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef PSA_CRYPTO_RANDOM_IMPL_H
+#define PSA_CRYPTO_RANDOM_IMPL_H
+
+#include "psa_util_internal.h"
+
+#if defined(MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG)
+
+typedef mbedtls_psa_external_random_context_t mbedtls_psa_random_context_t;
+
+#else /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
+
+#include "mbedtls/entropy.h"
+
+/* Choose a DRBG based on configuration and availability */
+#if defined(MBEDTLS_PSA_HMAC_DRBG_MD_TYPE)
+
+#include "mbedtls/hmac_drbg.h"
+
+#elif defined(MBEDTLS_CTR_DRBG_C)
+
+#include "mbedtls/ctr_drbg.h"
+
+#elif defined(MBEDTLS_HMAC_DRBG_C)
+
+#include "mbedtls/hmac_drbg.h"
+#if defined(MBEDTLS_MD_CAN_SHA512) && defined(MBEDTLS_MD_CAN_SHA256)
+#include <limits.h>
+#if SIZE_MAX > 0xffffffff
+/* Looks like a 64-bit system, so prefer SHA-512. */
+#define MBEDTLS_PSA_HMAC_DRBG_MD_TYPE MBEDTLS_MD_SHA512
+#else
+/* Looks like a 32-bit system, so prefer SHA-256. */
+#define MBEDTLS_PSA_HMAC_DRBG_MD_TYPE MBEDTLS_MD_SHA256
+#endif
+#elif defined(MBEDTLS_MD_CAN_SHA512)
+#define MBEDTLS_PSA_HMAC_DRBG_MD_TYPE MBEDTLS_MD_SHA512
+#elif defined(MBEDTLS_MD_CAN_SHA256)
+#define MBEDTLS_PSA_HMAC_DRBG_MD_TYPE MBEDTLS_MD_SHA256
+#else
+#error "No hash algorithm available for HMAC_DBRG."
+#endif
+
+#else /* !MBEDTLS_PSA_HMAC_DRBG_MD_TYPE && !MBEDTLS_CTR_DRBG_C && !MBEDTLS_HMAC_DRBG_C*/
+
+#error "No DRBG module available for the psa_crypto module."
+
+#endif /* !MBEDTLS_PSA_HMAC_DRBG_MD_TYPE && !MBEDTLS_CTR_DRBG_C && !MBEDTLS_HMAC_DRBG_C*/
+
+#if defined(MBEDTLS_CTR_DRBG_C)
+#include "mbedtls/ctr_drbg.h"
+#elif defined(MBEDTLS_HMAC_DRBG_C)
+#include "mbedtls/hmac_drbg.h"
+#endif /* !MBEDTLS_CTR_DRBG_C && !MBEDTLS_HMAC_DRBG_C */
+
+/* The maximum number of bytes that mbedtls_psa_get_random() is expected to return. */
+#if defined(MBEDTLS_CTR_DRBG_C)
+#define MBEDTLS_PSA_RANDOM_MAX_REQUEST MBEDTLS_CTR_DRBG_MAX_REQUEST
+#elif defined(MBEDTLS_HMAC_DRBG_C)
+#define MBEDTLS_PSA_RANDOM_MAX_REQUEST MBEDTLS_HMAC_DRBG_MAX_REQUEST
+#endif
+
+#if defined(MBEDTLS_CTR_DRBG_C)
+typedef mbedtls_ctr_drbg_context            mbedtls_psa_drbg_context_t;
+#elif defined(MBEDTLS_HMAC_DRBG_C)
+typedef mbedtls_hmac_drbg_context           mbedtls_psa_drbg_context_t;
+#endif /* !MBEDTLS_CTR_DRBG_C && !MBEDTLS_HMAC_DRBG_C */
+
+typedef struct {
+    void (* entropy_init)(mbedtls_entropy_context *ctx);
+    void (* entropy_free)(mbedtls_entropy_context *ctx);
+    mbedtls_entropy_context entropy;
+    mbedtls_psa_drbg_context_t drbg;
+} mbedtls_psa_random_context_t;
+
+/** Initialize the PSA DRBG.
+ *
+ * \param p_rng        Pointer to the Mbed TLS DRBG state.
+ */
+static inline void mbedtls_psa_drbg_init(mbedtls_psa_drbg_context_t *p_rng)
+{
+#if defined(MBEDTLS_CTR_DRBG_C)
+    mbedtls_ctr_drbg_init(p_rng);
+#elif defined(MBEDTLS_HMAC_DRBG_C)
+    mbedtls_hmac_drbg_init(p_rng);
+#endif
+}
+
+/** Deinitialize the PSA DRBG.
+ *
+ * \param p_rng        Pointer to the Mbed TLS DRBG state.
+ */
+static inline void mbedtls_psa_drbg_free(mbedtls_psa_drbg_context_t *p_rng)
+{
+#if defined(MBEDTLS_CTR_DRBG_C)
+    mbedtls_ctr_drbg_free(p_rng);
+#elif defined(MBEDTLS_HMAC_DRBG_C)
+    mbedtls_hmac_drbg_free(p_rng);
+#endif
+}
+
+/** Seed the PSA DRBG.
+ *
+ * \param entropy       An entropy context to read the seed from.
+ * \param custom        The personalization string.
+ *                      This can be \c NULL, in which case the personalization
+ *                      string is empty regardless of the value of \p len.
+ * \param len           The length of the personalization string.
+ *
+ * \return              \c 0 on success.
+ * \return              An Mbed TLS error code (\c MBEDTLS_ERR_xxx) on failure.
+ */
+static inline int mbedtls_psa_drbg_seed(mbedtls_psa_drbg_context_t *drbg_ctx,
+                                        mbedtls_entropy_context *entropy,
+                                        const unsigned char *custom, size_t len)
+{
+#if defined(MBEDTLS_CTR_DRBG_C)
+    return mbedtls_ctr_drbg_seed(drbg_ctx, mbedtls_entropy_func, entropy, custom, len);
+#elif defined(MBEDTLS_HMAC_DRBG_C)
+    const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type(MBEDTLS_PSA_HMAC_DRBG_MD_TYPE);
+    return mbedtls_hmac_drbg_seed(drbg_ctx, md_info, mbedtls_entropy_func, entropy, custom, len);
+#endif
+}
+
+#endif /* MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG */
+
+#endif /* PSA_CRYPTO_RANDOM_IMPL_H */
diff --git a/tf-psa-crypto/core/psa_crypto_rsa.c b/tf-psa-crypto/core/psa_crypto_rsa.c
new file mode 100644
index 0000000..2f613b3
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_rsa.c
@@ -0,0 +1,706 @@
+/*
+ *  PSA RSA layer on top of Mbed TLS crypto
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PSA_CRYPTO_C)
+
+#include <psa/crypto.h>
+#include "psa/crypto_values.h"
+#include "psa_crypto_core.h"
+#include "psa_crypto_random_impl.h"
+#include "psa_crypto_rsa.h"
+#include "psa_crypto_hash.h"
+#include "mbedtls/psa_util.h"
+
+#include <stdlib.h>
+#include <string.h>
+#include "mbedtls/platform.h"
+
+#include <mbedtls/rsa.h>
+#include <mbedtls/error.h>
+#include "rsa_internal.h"
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_SIGN) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS) || \
+    defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR_IMPORT) || \
+    defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR_EXPORT) || \
+    defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY)
+
+/* Mbed TLS doesn't support non-byte-aligned key sizes (i.e. key sizes
+ * that are not a multiple of 8) well. For example, there is only
+ * mbedtls_rsa_get_len(), which returns a number of bytes, and no
+ * way to return the exact bit size of a key.
+ * To keep things simple, reject non-byte-aligned key sizes. */
+static psa_status_t psa_check_rsa_key_byte_aligned(
+    const mbedtls_rsa_context *rsa)
+{
+    mbedtls_mpi n;
+    psa_status_t status;
+    mbedtls_mpi_init(&n);
+    status = mbedtls_to_psa_error(
+        mbedtls_rsa_export(rsa, &n, NULL, NULL, NULL, NULL));
+    if (status == PSA_SUCCESS) {
+        if (mbedtls_mpi_bitlen(&n) % 8 != 0) {
+            status = PSA_ERROR_NOT_SUPPORTED;
+        }
+    }
+    mbedtls_mpi_free(&n);
+    return status;
+}
+
+psa_status_t mbedtls_psa_rsa_load_representation(
+    psa_key_type_t type, const uint8_t *data, size_t data_length,
+    mbedtls_rsa_context **p_rsa)
+{
+    psa_status_t status;
+    size_t bits;
+
+    *p_rsa = mbedtls_calloc(1, sizeof(mbedtls_rsa_context));
+    if (*p_rsa == NULL) {
+        return PSA_ERROR_INSUFFICIENT_MEMORY;
+    }
+    mbedtls_rsa_init(*p_rsa);
+
+    /* Parse the data. */
+    if (PSA_KEY_TYPE_IS_KEY_PAIR(type)) {
+        status = mbedtls_to_psa_error(mbedtls_rsa_parse_key(*p_rsa, data, data_length));
+    } else {
+        status = mbedtls_to_psa_error(mbedtls_rsa_parse_pubkey(*p_rsa, data, data_length));
+    }
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    /* The size of an RSA key doesn't have to be a multiple of 8. Mbed TLS
+     * supports non-byte-aligned key sizes, but not well. For example,
+     * mbedtls_rsa_get_len() returns the key size in bytes, not in bits. */
+    bits = PSA_BYTES_TO_BITS(mbedtls_rsa_get_len(*p_rsa));
+    if (bits > PSA_VENDOR_RSA_MAX_KEY_BITS) {
+        status = PSA_ERROR_NOT_SUPPORTED;
+        goto exit;
+    }
+    status = psa_check_rsa_key_byte_aligned(*p_rsa);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+exit:
+    return status;
+}
+#endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) ||
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP) ||
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_SIGN) ||
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS) ||
+        * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR_IMPORT) ||
+        * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR_EXPORT) ||
+        * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY) */
+
+#if (defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR_IMPORT) && \
+    defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR_EXPORT)) || \
+    defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY)
+psa_status_t mbedtls_psa_rsa_import_key(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *data, size_t data_length,
+    uint8_t *key_buffer, size_t key_buffer_size,
+    size_t *key_buffer_length, size_t *bits)
+{
+    psa_status_t status;
+    mbedtls_rsa_context *rsa = NULL;
+
+    /* Parse input */
+    status = mbedtls_psa_rsa_load_representation(attributes->type,
+                                                 data,
+                                                 data_length,
+                                                 &rsa);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    *bits = (psa_key_bits_t) PSA_BYTES_TO_BITS(mbedtls_rsa_get_len(rsa));
+
+    /* Re-export the data to PSA export format, such that we can store export
+     * representation in the key slot. Export representation in case of RSA is
+     * the smallest representation that's allowed as input, so a straight-up
+     * allocation of the same size as the input buffer will be large enough. */
+    status = mbedtls_psa_rsa_export_key(attributes->type,
+                                        rsa,
+                                        key_buffer,
+                                        key_buffer_size,
+                                        key_buffer_length);
+exit:
+    /* Always free the RSA object */
+    mbedtls_rsa_free(rsa);
+    mbedtls_free(rsa);
+
+    return status;
+}
+#endif /* (defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR_IMPORT) &&
+        *  defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR_EXPORT)) ||
+        * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY) */
+
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR_EXPORT) || \
+    defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY)
+psa_status_t mbedtls_psa_rsa_export_key(psa_key_type_t type,
+                                        mbedtls_rsa_context *rsa,
+                                        uint8_t *data,
+                                        size_t data_size,
+                                        size_t *data_length)
+{
+    int ret;
+    uint8_t *end = data + data_size;
+
+    /* PSA Crypto API defines the format of an RSA key as a DER-encoded
+     * representation of the non-encrypted PKCS#1 RSAPrivateKey for a
+     * private key and of the RFC3279 RSAPublicKey for a public key. */
+    if (PSA_KEY_TYPE_IS_KEY_PAIR(type)) {
+        ret = mbedtls_rsa_write_key(rsa, data, &end);
+    } else {
+        ret = mbedtls_rsa_write_pubkey(rsa, data, &end);
+    }
+
+    if (ret < 0) {
+        /* Clean up in case pk_write failed halfway through. */
+        memset(data, 0, data_size);
+        return mbedtls_to_psa_error(ret);
+    }
+
+    /* The mbedtls_pk_xxx functions write to the end of the buffer.
+     * Move the data to the beginning and erase remaining data
+     * at the original location. */
+    if (2 * (size_t) ret <= data_size) {
+        memcpy(data, data + data_size - ret, ret);
+        memset(data + data_size - ret, 0, ret);
+    } else if ((size_t) ret < data_size) {
+        memmove(data, data + data_size - ret, ret);
+        memset(data + ret, 0, data_size - ret);
+    }
+
+    *data_length = ret;
+    return PSA_SUCCESS;
+}
+
+psa_status_t mbedtls_psa_rsa_export_public_key(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    uint8_t *data, size_t data_size, size_t *data_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    mbedtls_rsa_context *rsa = NULL;
+
+    status = mbedtls_psa_rsa_load_representation(
+        attributes->type, key_buffer, key_buffer_size, &rsa);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    status = mbedtls_psa_rsa_export_key(PSA_KEY_TYPE_RSA_PUBLIC_KEY,
+                                        rsa,
+                                        data,
+                                        data_size,
+                                        data_length);
+
+    mbedtls_rsa_free(rsa);
+    mbedtls_free(rsa);
+
+    return status;
+}
+#endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR_EXPORT) ||
+        * defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_PUBLIC_KEY) */
+
+#if defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR_GENERATE)
+static psa_status_t psa_rsa_read_exponent(const uint8_t *e_bytes,
+                                          size_t e_length,
+                                          int *exponent)
+{
+    size_t i;
+    uint32_t acc = 0;
+
+    /* Mbed TLS encodes the public exponent as an int. For simplicity, only
+     * support values that fit in a 32-bit integer, which is larger than
+     * int on just about every platform anyway. */
+    if (e_length > sizeof(acc)) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+    for (i = 0; i < e_length; i++) {
+        acc = (acc << 8) | e_bytes[i];
+    }
+    if (acc > INT_MAX) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+    *exponent = acc;
+    return PSA_SUCCESS;
+}
+
+psa_status_t mbedtls_psa_rsa_generate_key(
+    const psa_key_attributes_t *attributes,
+    const psa_key_production_parameters_t *params, size_t params_data_length,
+    uint8_t *key_buffer, size_t key_buffer_size, size_t *key_buffer_length)
+{
+    psa_status_t status;
+    mbedtls_rsa_context rsa;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    int exponent = 65537;
+
+    if (params_data_length != 0) {
+        status = psa_rsa_read_exponent(params->data, params_data_length,
+                                       &exponent);
+        if (status != PSA_SUCCESS) {
+            return status;
+        }
+    }
+
+    mbedtls_rsa_init(&rsa);
+    ret = mbedtls_rsa_gen_key(&rsa,
+                              mbedtls_psa_get_random,
+                              MBEDTLS_PSA_RANDOM_STATE,
+                              (unsigned int) attributes->bits,
+                              exponent);
+    if (ret != 0) {
+        return mbedtls_to_psa_error(ret);
+    }
+
+    status = mbedtls_psa_rsa_export_key(attributes->type,
+                                        &rsa, key_buffer, key_buffer_size,
+                                        key_buffer_length);
+    mbedtls_rsa_free(&rsa);
+
+    return status;
+}
+#endif /* defined(MBEDTLS_PSA_BUILTIN_KEY_TYPE_RSA_KEY_PAIR_GENERATE) */
+
+/****************************************************************/
+/* Sign/verify hashes */
+/****************************************************************/
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_SIGN) || \
+    defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS)
+
+/* Decode the hash algorithm from alg and store the mbedtls encoding in
+ * md_alg. Verify that the hash length is acceptable. */
+static psa_status_t psa_rsa_decode_md_type(psa_algorithm_t alg,
+                                           size_t hash_length,
+                                           mbedtls_md_type_t *md_alg)
+{
+    psa_algorithm_t hash_alg = PSA_ALG_SIGN_GET_HASH(alg);
+    *md_alg = mbedtls_md_type_from_psa_alg(hash_alg);
+
+    /* The Mbed TLS RSA module uses an unsigned int for hash length
+     * parameters. Validate that it fits so that we don't risk an
+     * overflow later. */
+#if SIZE_MAX > UINT_MAX
+    if (hash_length > UINT_MAX) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+#endif
+
+    /* For signatures using a hash, the hash length must be correct. */
+    if (alg != PSA_ALG_RSA_PKCS1V15_SIGN_RAW) {
+        if (*md_alg == MBEDTLS_MD_NONE) {
+            return PSA_ERROR_NOT_SUPPORTED;
+        }
+        if (mbedtls_md_get_size_from_type(*md_alg) != hash_length) {
+            return PSA_ERROR_INVALID_ARGUMENT;
+        }
+    }
+
+    return PSA_SUCCESS;
+}
+
+psa_status_t mbedtls_psa_rsa_sign_hash(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg, const uint8_t *hash, size_t hash_length,
+    uint8_t *signature, size_t signature_size, size_t *signature_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    mbedtls_rsa_context *rsa = NULL;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_md_type_t md_alg;
+
+    status = mbedtls_psa_rsa_load_representation(attributes->type,
+                                                 key_buffer,
+                                                 key_buffer_size,
+                                                 &rsa);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    status = psa_rsa_decode_md_type(alg, hash_length, &md_alg);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    if (signature_size < mbedtls_rsa_get_len(rsa)) {
+        status = PSA_ERROR_BUFFER_TOO_SMALL;
+        goto exit;
+    }
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_SIGN)
+    if (PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg)) {
+        ret = mbedtls_rsa_set_padding(rsa, MBEDTLS_RSA_PKCS_V15,
+                                      MBEDTLS_MD_NONE);
+        if (ret == 0) {
+            ret = mbedtls_rsa_pkcs1_sign(rsa,
+                                         mbedtls_psa_get_random,
+                                         MBEDTLS_PSA_RANDOM_STATE,
+                                         md_alg,
+                                         (unsigned int) hash_length,
+                                         hash,
+                                         signature);
+        }
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_SIGN */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS)
+    if (PSA_ALG_IS_RSA_PSS(alg)) {
+        ret = mbedtls_rsa_set_padding(rsa, MBEDTLS_RSA_PKCS_V21, md_alg);
+
+        if (ret == 0) {
+            ret = mbedtls_rsa_rsassa_pss_sign(rsa,
+                                              mbedtls_psa_get_random,
+                                              MBEDTLS_PSA_RANDOM_STATE,
+                                              MBEDTLS_MD_NONE,
+                                              (unsigned int) hash_length,
+                                              hash,
+                                              signature);
+        }
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS */
+    {
+        status = PSA_ERROR_INVALID_ARGUMENT;
+        goto exit;
+    }
+
+    if (ret == 0) {
+        *signature_length = mbedtls_rsa_get_len(rsa);
+    }
+    status = mbedtls_to_psa_error(ret);
+
+exit:
+    mbedtls_rsa_free(rsa);
+    mbedtls_free(rsa);
+
+    return status;
+}
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS)
+static int rsa_pss_expected_salt_len(psa_algorithm_t alg,
+                                     const mbedtls_rsa_context *rsa,
+                                     size_t hash_length)
+{
+    if (PSA_ALG_IS_RSA_PSS_ANY_SALT(alg)) {
+        return MBEDTLS_RSA_SALT_LEN_ANY;
+    }
+    /* Otherwise: standard salt length, i.e. largest possible salt length
+     * up to the hash length. */
+    int klen = (int) mbedtls_rsa_get_len(rsa);   // known to fit
+    int hlen = (int) hash_length; // known to fit
+    int room = klen - 2 - hlen;
+    if (room < 0) {
+        return 0;  // there is no valid signature in this case anyway
+    } else if (room > hlen) {
+        return hlen;
+    } else {
+        return room;
+    }
+}
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS */
+
+psa_status_t mbedtls_psa_rsa_verify_hash(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg, const uint8_t *hash, size_t hash_length,
+    const uint8_t *signature, size_t signature_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    mbedtls_rsa_context *rsa = NULL;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_md_type_t md_alg;
+
+    status = mbedtls_psa_rsa_load_representation(attributes->type,
+                                                 key_buffer,
+                                                 key_buffer_size,
+                                                 &rsa);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_rsa_decode_md_type(alg, hash_length, &md_alg);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    if (signature_length != mbedtls_rsa_get_len(rsa)) {
+        status = PSA_ERROR_INVALID_SIGNATURE;
+        goto exit;
+    }
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_SIGN)
+    if (PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg)) {
+        ret = mbedtls_rsa_set_padding(rsa, MBEDTLS_RSA_PKCS_V15,
+                                      MBEDTLS_MD_NONE);
+        if (ret == 0) {
+            ret = mbedtls_rsa_pkcs1_verify(rsa,
+                                           md_alg,
+                                           (unsigned int) hash_length,
+                                           hash,
+                                           signature);
+        }
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_SIGN */
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS)
+    if (PSA_ALG_IS_RSA_PSS(alg)) {
+        ret = mbedtls_rsa_set_padding(rsa, MBEDTLS_RSA_PKCS_V21, md_alg);
+        if (ret == 0) {
+            int slen = rsa_pss_expected_salt_len(alg, rsa, hash_length);
+            ret = mbedtls_rsa_rsassa_pss_verify_ext(rsa,
+                                                    md_alg,
+                                                    (unsigned) hash_length,
+                                                    hash,
+                                                    md_alg,
+                                                    slen,
+                                                    signature);
+        }
+    } else
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS */
+    {
+        status = PSA_ERROR_INVALID_ARGUMENT;
+        goto exit;
+    }
+
+    /* Mbed TLS distinguishes "invalid padding" from "valid padding but
+     * the rest of the signature is invalid". This has little use in
+     * practice and PSA doesn't report this distinction. */
+    status = (ret == MBEDTLS_ERR_RSA_INVALID_PADDING) ?
+             PSA_ERROR_INVALID_SIGNATURE :
+             mbedtls_to_psa_error(ret);
+
+exit:
+    mbedtls_rsa_free(rsa);
+    mbedtls_free(rsa);
+
+    return status;
+}
+
+#endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_SIGN) ||
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PSS) */
+
+/****************************************************************/
+/* Asymmetric cryptography */
+/****************************************************************/
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP)
+static int psa_rsa_oaep_set_padding_mode(psa_algorithm_t alg,
+                                         mbedtls_rsa_context *rsa)
+{
+    psa_algorithm_t hash_alg = PSA_ALG_RSA_OAEP_GET_HASH(alg);
+    mbedtls_md_type_t md_alg = mbedtls_md_type_from_psa_alg(hash_alg);
+
+    /* Just to get the error status right, as rsa_set_padding() doesn't
+     * distinguish between "bad RSA algorithm" and "unknown hash". */
+    if (mbedtls_md_info_from_type(md_alg) == NULL) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    return mbedtls_rsa_set_padding(rsa, MBEDTLS_RSA_PKCS_V21, md_alg);
+}
+#endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP) */
+
+psa_status_t mbedtls_psa_asymmetric_encrypt(const psa_key_attributes_t *attributes,
+                                            const uint8_t *key_buffer,
+                                            size_t key_buffer_size,
+                                            psa_algorithm_t alg,
+                                            const uint8_t *input,
+                                            size_t input_length,
+                                            const uint8_t *salt,
+                                            size_t salt_length,
+                                            uint8_t *output,
+                                            size_t output_size,
+                                            size_t *output_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    (void) key_buffer;
+    (void) key_buffer_size;
+    (void) input;
+    (void) input_length;
+    (void) salt;
+    (void) salt_length;
+    (void) output;
+    (void) output_size;
+    (void) output_length;
+
+    if (PSA_KEY_TYPE_IS_RSA(attributes->type)) {
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) || \
+        defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP)
+        mbedtls_rsa_context *rsa = NULL;
+        status = mbedtls_psa_rsa_load_representation(attributes->type,
+                                                     key_buffer,
+                                                     key_buffer_size,
+                                                     &rsa);
+        if (status != PSA_SUCCESS) {
+            goto rsa_exit;
+        }
+
+        if (output_size < mbedtls_rsa_get_len(rsa)) {
+            status = PSA_ERROR_BUFFER_TOO_SMALL;
+            goto rsa_exit;
+        }
+#endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) ||
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP) */
+        if (alg == PSA_ALG_RSA_PKCS1V15_CRYPT) {
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT)
+            status = mbedtls_to_psa_error(
+                mbedtls_rsa_pkcs1_encrypt(rsa,
+                                          mbedtls_psa_get_random,
+                                          MBEDTLS_PSA_RANDOM_STATE,
+                                          input_length,
+                                          input,
+                                          output));
+#else
+            status = PSA_ERROR_NOT_SUPPORTED;
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT */
+        } else
+        if (PSA_ALG_IS_RSA_OAEP(alg)) {
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP)
+            status = mbedtls_to_psa_error(
+                psa_rsa_oaep_set_padding_mode(alg, rsa));
+            if (status != PSA_SUCCESS) {
+                goto rsa_exit;
+            }
+
+            status = mbedtls_to_psa_error(
+                mbedtls_rsa_rsaes_oaep_encrypt(rsa,
+                                               mbedtls_psa_get_random,
+                                               MBEDTLS_PSA_RANDOM_STATE,
+                                               salt, salt_length,
+                                               input_length,
+                                               input,
+                                               output));
+#else
+            status = PSA_ERROR_NOT_SUPPORTED;
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP */
+        } else {
+            status = PSA_ERROR_INVALID_ARGUMENT;
+        }
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) || \
+        defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP)
+rsa_exit:
+        if (status == PSA_SUCCESS) {
+            *output_length = mbedtls_rsa_get_len(rsa);
+        }
+
+        mbedtls_rsa_free(rsa);
+        mbedtls_free(rsa);
+#endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) ||
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP) */
+    } else {
+        status = PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    return status;
+}
+
+psa_status_t mbedtls_psa_asymmetric_decrypt(const psa_key_attributes_t *attributes,
+                                            const uint8_t *key_buffer,
+                                            size_t key_buffer_size,
+                                            psa_algorithm_t alg,
+                                            const uint8_t *input,
+                                            size_t input_length,
+                                            const uint8_t *salt,
+                                            size_t salt_length,
+                                            uint8_t *output,
+                                            size_t output_size,
+                                            size_t *output_length)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    (void) key_buffer;
+    (void) key_buffer_size;
+    (void) input;
+    (void) input_length;
+    (void) salt;
+    (void) salt_length;
+    (void) output;
+    (void) output_size;
+    (void) output_length;
+
+    *output_length = 0;
+
+    if (attributes->type == PSA_KEY_TYPE_RSA_KEY_PAIR) {
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) || \
+        defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP)
+        mbedtls_rsa_context *rsa = NULL;
+        status = mbedtls_psa_rsa_load_representation(attributes->type,
+                                                     key_buffer,
+                                                     key_buffer_size,
+                                                     &rsa);
+        if (status != PSA_SUCCESS) {
+            goto rsa_exit;
+        }
+
+        if (input_length != mbedtls_rsa_get_len(rsa)) {
+            status = PSA_ERROR_INVALID_ARGUMENT;
+            goto rsa_exit;
+        }
+#endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) ||
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP) */
+
+        if (alg == PSA_ALG_RSA_PKCS1V15_CRYPT) {
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT)
+            status = mbedtls_to_psa_error(
+                mbedtls_rsa_pkcs1_decrypt(rsa,
+                                          mbedtls_psa_get_random,
+                                          MBEDTLS_PSA_RANDOM_STATE,
+                                          output_length,
+                                          input,
+                                          output,
+                                          output_size));
+#else
+            status = PSA_ERROR_NOT_SUPPORTED;
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT */
+        } else
+        if (PSA_ALG_IS_RSA_OAEP(alg)) {
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP)
+            status = mbedtls_to_psa_error(
+                psa_rsa_oaep_set_padding_mode(alg, rsa));
+            if (status != PSA_SUCCESS) {
+                goto rsa_exit;
+            }
+
+            status = mbedtls_to_psa_error(
+                mbedtls_rsa_rsaes_oaep_decrypt(rsa,
+                                               mbedtls_psa_get_random,
+                                               MBEDTLS_PSA_RANDOM_STATE,
+                                               salt, salt_length,
+                                               output_length,
+                                               input,
+                                               output,
+                                               output_size));
+#else
+            status = PSA_ERROR_NOT_SUPPORTED;
+#endif /* MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP */
+        } else {
+            status = PSA_ERROR_INVALID_ARGUMENT;
+        }
+
+#if defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) || \
+        defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP)
+rsa_exit:
+        mbedtls_rsa_free(rsa);
+        mbedtls_free(rsa);
+#endif /* defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_PKCS1V15_CRYPT) ||
+        * defined(MBEDTLS_PSA_BUILTIN_ALG_RSA_OAEP) */
+    } else {
+        status = PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    return status;
+}
+
+#endif /* MBEDTLS_PSA_CRYPTO_C */
diff --git a/tf-psa-crypto/core/psa_crypto_rsa.h b/tf-psa-crypto/core/psa_crypto_rsa.h
new file mode 100644
index 0000000..ffeef26
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_rsa.h
@@ -0,0 +1,327 @@
+/*
+ *  PSA RSA layer on top of Mbed TLS crypto
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef PSA_CRYPTO_RSA_H
+#define PSA_CRYPTO_RSA_H
+
+#include <psa/crypto.h>
+#include <mbedtls/rsa.h>
+
+/** Load the contents of a key buffer into an internal RSA representation
+ *
+ * \param[in] type          The type of key contained in \p data.
+ * \param[in] data          The buffer from which to load the representation.
+ * \param[in] data_length   The size in bytes of \p data.
+ * \param[out] p_rsa        Returns a pointer to an RSA context on success.
+ *                          The caller is responsible for freeing both the
+ *                          contents of the context and the context itself
+ *                          when done.
+ */
+psa_status_t mbedtls_psa_rsa_load_representation(psa_key_type_t type,
+                                                 const uint8_t *data,
+                                                 size_t data_length,
+                                                 mbedtls_rsa_context **p_rsa);
+
+/** Import an RSA key in binary format.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       import_key entry point. This function behaves as an import_key
+ *       entry point as defined in the PSA driver interface specification for
+ *       transparent drivers.
+ *
+ * \param[in]  attributes       The attributes for the key to import.
+ * \param[in]  data             The buffer containing the key data in import
+ *                              format.
+ * \param[in]  data_length      Size of the \p data buffer in bytes.
+ * \param[out] key_buffer       The buffer containing the key data in output
+ *                              format.
+ * \param[in]  key_buffer_size  Size of the \p key_buffer buffer in bytes. This
+ *                              size is greater or equal to \p data_length.
+ * \param[out] key_buffer_length  The length of the data written in \p
+ *                                key_buffer in bytes.
+ * \param[out] bits             The key size in number of bits.
+ *
+ * \retval #PSA_SUCCESS  The RSA key was imported successfully.
+ * \retval #PSA_ERROR_INVALID_ARGUMENT
+ *         The key data is not correctly formatted.
+ * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ */
+psa_status_t mbedtls_psa_rsa_import_key(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *data, size_t data_length,
+    uint8_t *key_buffer, size_t key_buffer_size,
+    size_t *key_buffer_length, size_t *bits);
+
+/** Export an RSA key to export representation
+ *
+ * \param[in] type          The type of key (public/private) to export
+ * \param[in] rsa           The internal RSA representation from which to export
+ * \param[out] data         The buffer to export to
+ * \param[in] data_size     The length of the buffer to export to
+ * \param[out] data_length  The amount of bytes written to \p data
+ */
+psa_status_t mbedtls_psa_rsa_export_key(psa_key_type_t type,
+                                        mbedtls_rsa_context *rsa,
+                                        uint8_t *data,
+                                        size_t data_size,
+                                        size_t *data_length);
+
+/** Export a public RSA key or the public part of an RSA key pair in binary
+ *  format.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       export_public_key entry point. This function behaves as an
+ *       export_public_key entry point as defined in the PSA driver interface
+ *       specification.
+ *
+ * \param[in]  attributes       The attributes for the key to export.
+ * \param[in]  key_buffer       Material or context of the key to export.
+ * \param[in]  key_buffer_size  Size of the \p key_buffer buffer in bytes.
+ * \param[out] data             Buffer where the key data is to be written.
+ * \param[in]  data_size        Size of the \p data buffer in bytes.
+ * \param[out] data_length      On success, the number of bytes written in
+ *                              \p data.
+ *
+ * \retval #PSA_SUCCESS  The RSA public key was exported successfully.
+ * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
+ * \retval #PSA_ERROR_COMMUNICATION_FAILURE \emptydescription
+ * \retval #PSA_ERROR_HARDWARE_FAILURE \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ * \retval #PSA_ERROR_STORAGE_FAILURE \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ */
+psa_status_t mbedtls_psa_rsa_export_public_key(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    uint8_t *data, size_t data_size, size_t *data_length);
+
+/**
+ * \brief Generate an RSA key.
+ *
+ * \note The signature of the function is that of a PSA driver generate_key
+ *       entry point.
+ *
+ * \param[in]  attributes         The attributes for the RSA key to generate.
+ * \param[in]  params             Production parameters for the key
+ *                                generation. This function only uses
+ *                                `params->data`,
+ *                                which contains the public exponent.
+ *                                This can be a null pointer if
+ *                                \c params_data_length is 0.
+ * \param params_data_length      Length of `params->data` in bytes.
+ *                                This can be 0, in which case the
+ *                                public exponent will be 65537.
+ * \param[out] key_buffer         Buffer where the key data is to be written.
+ * \param[in]  key_buffer_size    Size of \p key_buffer in bytes.
+ * \param[out] key_buffer_length  On success, the number of bytes written in
+ *                                \p key_buffer.
+ *
+ * \retval #PSA_SUCCESS
+ *         The key was successfully generated.
+ * \retval #PSA_ERROR_NOT_SUPPORTED
+ *         Key length or type not supported.
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         The size of \p key_buffer is too small.
+ */
+psa_status_t mbedtls_psa_rsa_generate_key(
+    const psa_key_attributes_t *attributes,
+    const psa_key_production_parameters_t *params, size_t params_data_length,
+    uint8_t *key_buffer, size_t key_buffer_size, size_t *key_buffer_length);
+
+/** Sign an already-calculated hash with an RSA private key.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       sign_hash entry point. This function behaves as a sign_hash
+ *       entry point as defined in the PSA driver interface specification for
+ *       transparent drivers.
+ *
+ * \param[in]  attributes       The attributes of the RSA key to use for the
+ *                              operation.
+ * \param[in]  key_buffer       The buffer containing the RSA key context.
+ *                              format.
+ * \param[in]  key_buffer_size  Size of the \p key_buffer buffer in bytes.
+ * \param[in]  alg              A signature algorithm that is compatible with
+ *                              an RSA key.
+ * \param[in]  hash             The hash or message to sign.
+ * \param[in]  hash_length      Size of the \p hash buffer in bytes.
+ * \param[out] signature        Buffer where the signature is to be written.
+ * \param[in]  signature_size   Size of the \p signature buffer in bytes.
+ * \param[out] signature_length On success, the number of bytes
+ *                              that make up the returned signature value.
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         The size of the \p signature buffer is too small. You can
+ *         determine a sufficient buffer size by calling
+ *         #PSA_SIGN_OUTPUT_SIZE(\c PSA_KEY_TYPE_RSA_KEY_PAIR, \c key_bits,
+ *         \p alg) where \c key_bits is the bit-size of the RSA key.
+ * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
+ * \retval #PSA_ERROR_INVALID_ARGUMENT \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY \emptydescription
+ */
+psa_status_t mbedtls_psa_rsa_sign_hash(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg, const uint8_t *hash, size_t hash_length,
+    uint8_t *signature, size_t signature_size, size_t *signature_length);
+
+/**
+ * \brief Verify the signature a hash or short message using a public RSA key.
+ *
+ * \note The signature of this function is that of a PSA driver
+ *       verify_hash entry point. This function behaves as a verify_hash
+ *       entry point as defined in the PSA driver interface specification for
+ *       transparent drivers.
+ *
+ * \param[in]  attributes       The attributes of the RSA key to use for the
+ *                              operation.
+ * \param[in]  key_buffer       The buffer containing the RSA key context.
+ *                              format.
+ * \param[in]  key_buffer_size  Size of the \p key_buffer buffer in bytes.
+ * \param[in]  alg              A signature algorithm that is compatible with
+ *                              an RSA key.
+ * \param[in]  hash             The hash or message whose signature is to be
+ *                              verified.
+ * \param[in]  hash_length      Size of the \p hash buffer in bytes.
+ * \param[in]  signature        Buffer containing the signature to verify.
+ * \param[in]  signature_length Size of the \p signature buffer in bytes.
+ *
+ * \retval #PSA_SUCCESS
+ *         The signature is valid.
+ * \retval #PSA_ERROR_INVALID_SIGNATURE
+ *         The calculation was performed successfully, but the passed
+ *         signature is not a valid signature.
+ * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
+ * \retval #PSA_ERROR_INVALID_ARGUMENT \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ */
+psa_status_t mbedtls_psa_rsa_verify_hash(
+    const psa_key_attributes_t *attributes,
+    const uint8_t *key_buffer, size_t key_buffer_size,
+    psa_algorithm_t alg, const uint8_t *hash, size_t hash_length,
+    const uint8_t *signature, size_t signature_length);
+
+/**
+ * \brief Encrypt a short message with a public key.
+ *
+ * \param attributes            The attributes for the key to import.
+ * \param key_buffer            Buffer where the key data is to be written.
+ * \param key_buffer_size       Size of the \p key_buffer buffer in bytes.
+ * \param input_length          Size of the \p input buffer in bytes.
+ * \param[in] salt              A salt or label, if supported by the
+ *                              encryption algorithm.
+ *                              If the algorithm does not support a
+ *                              salt, pass \c NULL.
+ *                              If the algorithm supports an optional
+ *                              salt and you do not want to pass a salt,
+ *                              pass \c NULL.
+ *
+ *                              - For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is
+ *                                supported.
+ * \param salt_length           Size of the \p salt buffer in bytes.
+ *                              If \p salt is \c NULL, pass 0.
+ * \param[out] output           Buffer where the encrypted message is to
+ *                              be written.
+ * \param output_size           Size of the \p output buffer in bytes.
+ * \param[out] output_length    On success, the number of bytes
+ *                              that make up the returned output.
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         The size of the \p output buffer is too small. You can
+ *         determine a sufficient buffer size by calling
+ *         #PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE(\c key_type, \c key_bits, \p alg)
+ *         where \c key_type and \c key_bits are the type and bit-size
+ *         respectively of \p key.
+ * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
+ * \retval #PSA_ERROR_INVALID_ARGUMENT \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_COMMUNICATION_FAILURE \emptydescription
+ * \retval #PSA_ERROR_HARDWARE_FAILURE \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY \emptydescription
+ * \retval #PSA_ERROR_BAD_STATE
+ *         The library has not been previously initialized by psa_crypto_init().
+ *         It is implementation-dependent whether a failure to initialize
+ *         results in this error code.
+ */
+psa_status_t mbedtls_psa_asymmetric_encrypt(const psa_key_attributes_t *attributes,
+                                            const uint8_t *key_buffer,
+                                            size_t key_buffer_size,
+                                            psa_algorithm_t alg,
+                                            const uint8_t *input,
+                                            size_t input_length,
+                                            const uint8_t *salt,
+                                            size_t salt_length,
+                                            uint8_t *output,
+                                            size_t output_size,
+                                            size_t *output_length);
+
+/**
+ * \brief Decrypt a short message with a private key.
+ *
+ * \param attributes            The attributes for the key to import.
+ * \param key_buffer            Buffer where the key data is to be written.
+ * \param key_buffer_size       Size of the \p key_buffer buffer in bytes.
+ * \param[in] input             The message to decrypt.
+ * \param input_length          Size of the \p input buffer in bytes.
+ * \param[in] salt              A salt or label, if supported by the
+ *                              encryption algorithm.
+ *                              If the algorithm does not support a
+ *                              salt, pass \c NULL.
+ *                              If the algorithm supports an optional
+ *                              salt and you do not want to pass a salt,
+ *                              pass \c NULL.
+ *
+ *                              - For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is
+ *                                supported.
+ * \param salt_length           Size of the \p salt buffer in bytes.
+ *                              If \p salt is \c NULL, pass 0.
+ * \param[out] output           Buffer where the decrypted message is to
+ *                              be written.
+ * \param output_size           Size of the \c output buffer in bytes.
+ * \param[out] output_length    On success, the number of bytes
+ *                              that make up the returned output.
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_BUFFER_TOO_SMALL
+ *         The size of the \p output buffer is too small. You can
+ *         determine a sufficient buffer size by calling
+ *         #PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE(\c key_type, \c key_bits, \p alg)
+ *         where \c key_type and \c key_bits are the type and bit-size
+ *         respectively of \p key.
+ * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
+ * \retval #PSA_ERROR_INVALID_ARGUMENT \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_COMMUNICATION_FAILURE \emptydescription
+ * \retval #PSA_ERROR_HARDWARE_FAILURE \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY \emptydescription
+ * \retval #PSA_ERROR_INVALID_PADDING \emptydescription
+ * \retval #PSA_ERROR_BAD_STATE
+ *         The library has not been previously initialized by psa_crypto_init().
+ *         It is implementation-dependent whether a failure to initialize
+ *         results in this error code.
+ */
+psa_status_t mbedtls_psa_asymmetric_decrypt(const psa_key_attributes_t *attributes,
+                                            const uint8_t *key_buffer,
+                                            size_t key_buffer_size,
+                                            psa_algorithm_t alg,
+                                            const uint8_t *input,
+                                            size_t input_length,
+                                            const uint8_t *salt,
+                                            size_t salt_length,
+                                            uint8_t *output,
+                                            size_t output_size,
+                                            size_t *output_length);
+
+#endif /* PSA_CRYPTO_RSA_H */
diff --git a/tf-psa-crypto/core/psa_crypto_se.c b/tf-psa-crypto/core/psa_crypto_se.c
new file mode 100644
index 0000000..7a36a4f
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_se.c
@@ -0,0 +1,373 @@
+/*
+ *  PSA crypto support for secure element drivers
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
+
+#include <stdint.h>
+#include <string.h>
+
+#include "psa/crypto_se_driver.h"
+
+#include "psa_crypto_se.h"
+
+#if defined(MBEDTLS_PSA_ITS_FILE_C)
+#include "psa_crypto_its.h"
+#else /* Native ITS implementation */
+#include "psa/error.h"
+#include "psa/internal_trusted_storage.h"
+#endif
+
+#include "mbedtls/platform.h"
+
+
+
+/****************************************************************/
+/* Driver lookup */
+/****************************************************************/
+
+/* This structure is identical to psa_drv_se_context_t declared in
+ * `crypto_se_driver.h`, except that some parts are writable here
+ * (non-const, or pointer to non-const). */
+typedef struct {
+    void *persistent_data;
+    size_t persistent_data_size;
+    uintptr_t transient_data;
+} psa_drv_se_internal_context_t;
+
+struct psa_se_drv_table_entry_s {
+    psa_key_location_t location;
+    const psa_drv_se_t *methods;
+    union {
+        psa_drv_se_internal_context_t internal;
+        psa_drv_se_context_t context;
+    } u;
+};
+
+static psa_se_drv_table_entry_t driver_table[PSA_MAX_SE_DRIVERS];
+
+psa_se_drv_table_entry_t *psa_get_se_driver_entry(
+    psa_key_lifetime_t lifetime)
+{
+    size_t i;
+    psa_key_location_t location = PSA_KEY_LIFETIME_GET_LOCATION(lifetime);
+    /* In the driver table, location=0 means an entry that isn't used.
+     * No driver has a location of 0 because it's a reserved value
+     * (which designates transparent keys). Make sure we never return
+     * a driver entry for location 0. */
+    if (location == 0) {
+        return NULL;
+    }
+    for (i = 0; i < PSA_MAX_SE_DRIVERS; i++) {
+        if (driver_table[i].location == location) {
+            return &driver_table[i];
+        }
+    }
+    return NULL;
+}
+
+const psa_drv_se_t *psa_get_se_driver_methods(
+    const psa_se_drv_table_entry_t *driver)
+{
+    return driver->methods;
+}
+
+psa_drv_se_context_t *psa_get_se_driver_context(
+    psa_se_drv_table_entry_t *driver)
+{
+    return &driver->u.context;
+}
+
+int psa_get_se_driver(psa_key_lifetime_t lifetime,
+                      const psa_drv_se_t **p_methods,
+                      psa_drv_se_context_t **p_drv_context)
+{
+    psa_se_drv_table_entry_t *driver = psa_get_se_driver_entry(lifetime);
+    if (p_methods != NULL) {
+        *p_methods = (driver ? driver->methods : NULL);
+    }
+    if (p_drv_context != NULL) {
+        *p_drv_context = (driver ? &driver->u.context : NULL);
+    }
+    return driver != NULL;
+}
+
+
+
+/****************************************************************/
+/* Persistent data management */
+/****************************************************************/
+
+static psa_status_t psa_get_se_driver_its_file_uid(
+    const psa_se_drv_table_entry_t *driver,
+    psa_storage_uid_t *uid)
+{
+    if (driver->location > PSA_MAX_SE_LOCATION) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    /* ITS file sizes are limited to 32 bits. */
+    if (driver->u.internal.persistent_data_size > UINT32_MAX) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    /* See the documentation of PSA_CRYPTO_SE_DRIVER_ITS_UID_BASE. */
+    *uid = PSA_CRYPTO_SE_DRIVER_ITS_UID_BASE + driver->location;
+    return PSA_SUCCESS;
+}
+
+psa_status_t psa_load_se_persistent_data(
+    const psa_se_drv_table_entry_t *driver)
+{
+    psa_status_t status;
+    psa_storage_uid_t uid;
+    size_t length;
+
+    status = psa_get_se_driver_its_file_uid(driver, &uid);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    /* Read the amount of persistent data that the driver requests.
+     * If the data in storage is larger, it is truncated. If the data
+     * in storage is smaller, silently keep what is already at the end
+     * of the output buffer. */
+    /* psa_get_se_driver_its_file_uid ensures that the size_t
+     * persistent_data_size is in range, but compilers don't know that,
+     * so cast to reassure them. */
+    return psa_its_get(uid, 0,
+                       (uint32_t) driver->u.internal.persistent_data_size,
+                       driver->u.internal.persistent_data,
+                       &length);
+}
+
+psa_status_t psa_save_se_persistent_data(
+    const psa_se_drv_table_entry_t *driver)
+{
+    psa_status_t status;
+    psa_storage_uid_t uid;
+
+    status = psa_get_se_driver_its_file_uid(driver, &uid);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    /* psa_get_se_driver_its_file_uid ensures that the size_t
+     * persistent_data_size is in range, but compilers don't know that,
+     * so cast to reassure them. */
+    return psa_its_set(uid,
+                       (uint32_t) driver->u.internal.persistent_data_size,
+                       driver->u.internal.persistent_data,
+                       0);
+}
+
+psa_status_t psa_destroy_se_persistent_data(psa_key_location_t location)
+{
+    psa_storage_uid_t uid;
+    if (location > PSA_MAX_SE_LOCATION) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+    uid = PSA_CRYPTO_SE_DRIVER_ITS_UID_BASE + location;
+    return psa_its_remove(uid);
+}
+
+psa_status_t psa_find_se_slot_for_key(
+    const psa_key_attributes_t *attributes,
+    psa_key_creation_method_t method,
+    psa_se_drv_table_entry_t *driver,
+    psa_key_slot_number_t *slot_number)
+{
+    psa_status_t status;
+    psa_key_location_t key_location =
+        PSA_KEY_LIFETIME_GET_LOCATION(psa_get_key_lifetime(attributes));
+
+    /* If the location is wrong, it's a bug in the library. */
+    if (driver->location != key_location) {
+        return PSA_ERROR_CORRUPTION_DETECTED;
+    }
+
+    /* If the driver doesn't support key creation in any way, give up now. */
+    if (driver->methods->key_management == NULL) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    if (psa_get_key_slot_number(attributes, slot_number) == PSA_SUCCESS) {
+        /* The application wants to use a specific slot. Allow it if
+         * the driver supports it. On a system with isolation,
+         * the crypto service must check that the application is
+         * permitted to request this slot. */
+        psa_drv_se_validate_slot_number_t p_validate_slot_number =
+            driver->methods->key_management->p_validate_slot_number;
+        if (p_validate_slot_number == NULL) {
+            return PSA_ERROR_NOT_SUPPORTED;
+        }
+        status = p_validate_slot_number(&driver->u.context,
+                                        driver->u.internal.persistent_data,
+                                        attributes, method,
+                                        *slot_number);
+    } else if (method == PSA_KEY_CREATION_REGISTER) {
+        /* The application didn't specify a slot number. This doesn't
+         * make sense when registering a slot. */
+        return PSA_ERROR_INVALID_ARGUMENT;
+    } else {
+        /* The application didn't tell us which slot to use. Let the driver
+         * choose. This is the normal case. */
+        psa_drv_se_allocate_key_t p_allocate =
+            driver->methods->key_management->p_allocate;
+        if (p_allocate == NULL) {
+            return PSA_ERROR_NOT_SUPPORTED;
+        }
+        status = p_allocate(&driver->u.context,
+                            driver->u.internal.persistent_data,
+                            attributes, method,
+                            slot_number);
+    }
+    return status;
+}
+
+psa_status_t psa_destroy_se_key(psa_se_drv_table_entry_t *driver,
+                                psa_key_slot_number_t slot_number)
+{
+    psa_status_t status;
+    psa_status_t storage_status;
+    /* Normally a missing method would mean that the action is not
+     * supported. But psa_destroy_key() is not supposed to return
+     * PSA_ERROR_NOT_SUPPORTED: if you can create a key, you should
+     * be able to destroy it. The only use case for a driver that
+     * does not have a way to destroy keys at all is if the keys are
+     * locked in a read-only state: we can use the keys but not
+     * destroy them. Hence, if the driver doesn't support destroying
+     * keys, it's really a lack of permission. */
+    if (driver->methods->key_management == NULL ||
+        driver->methods->key_management->p_destroy == NULL) {
+        return PSA_ERROR_NOT_PERMITTED;
+    }
+    status = driver->methods->key_management->p_destroy(
+        &driver->u.context,
+        driver->u.internal.persistent_data,
+        slot_number);
+    storage_status = psa_save_se_persistent_data(driver);
+    return status == PSA_SUCCESS ? storage_status : status;
+}
+
+psa_status_t psa_init_all_se_drivers(void)
+{
+    size_t i;
+    for (i = 0; i < PSA_MAX_SE_DRIVERS; i++) {
+        psa_se_drv_table_entry_t *driver = &driver_table[i];
+        if (driver->location == 0) {
+            continue; /* skipping unused entry */
+        }
+        const psa_drv_se_t *methods = psa_get_se_driver_methods(driver);
+        if (methods->p_init != NULL) {
+            psa_status_t status = methods->p_init(
+                &driver->u.context,
+                driver->u.internal.persistent_data,
+                driver->location);
+            if (status != PSA_SUCCESS) {
+                return status;
+            }
+            status = psa_save_se_persistent_data(driver);
+            if (status != PSA_SUCCESS) {
+                return status;
+            }
+        }
+    }
+    return PSA_SUCCESS;
+}
+
+
+
+/****************************************************************/
+/* Driver registration */
+/****************************************************************/
+
+psa_status_t psa_register_se_driver(
+    psa_key_location_t location,
+    const psa_drv_se_t *methods)
+{
+    size_t i;
+    psa_status_t status;
+
+    if (methods->hal_version != PSA_DRV_SE_HAL_VERSION) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+    /* Driver table entries are 0-initialized. 0 is not a valid driver
+     * location because it means a transparent key. */
+    MBEDTLS_STATIC_ASSERT(PSA_KEY_LOCATION_LOCAL_STORAGE == 0,
+                          "Secure element support requires 0 to mean a local key");
+
+    if (location == PSA_KEY_LOCATION_LOCAL_STORAGE) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+    if (location > PSA_MAX_SE_LOCATION) {
+        return PSA_ERROR_NOT_SUPPORTED;
+    }
+
+    for (i = 0; i < PSA_MAX_SE_DRIVERS; i++) {
+        if (driver_table[i].location == 0) {
+            break;
+        }
+        /* Check that location isn't already in use up to the first free
+         * entry. Since entries are created in order and never deleted,
+         * there can't be a used entry after the first free entry. */
+        if (driver_table[i].location == location) {
+            return PSA_ERROR_ALREADY_EXISTS;
+        }
+    }
+    if (i == PSA_MAX_SE_DRIVERS) {
+        return PSA_ERROR_INSUFFICIENT_MEMORY;
+    }
+
+    driver_table[i].location = location;
+    driver_table[i].methods = methods;
+    driver_table[i].u.internal.persistent_data_size =
+        methods->persistent_data_size;
+
+    if (methods->persistent_data_size != 0) {
+        driver_table[i].u.internal.persistent_data =
+            mbedtls_calloc(1, methods->persistent_data_size);
+        if (driver_table[i].u.internal.persistent_data == NULL) {
+            status = PSA_ERROR_INSUFFICIENT_MEMORY;
+            goto error;
+        }
+        /* Load the driver's persistent data. On first use, the persistent
+         * data does not exist in storage, and is initialized to
+         * all-bits-zero by the calloc call just above. */
+        status = psa_load_se_persistent_data(&driver_table[i]);
+        if (status != PSA_SUCCESS && status != PSA_ERROR_DOES_NOT_EXIST) {
+            goto error;
+        }
+    }
+
+    return PSA_SUCCESS;
+
+error:
+    memset(&driver_table[i], 0, sizeof(driver_table[i]));
+    return status;
+}
+
+void psa_unregister_all_se_drivers(void)
+{
+    size_t i;
+    for (i = 0; i < PSA_MAX_SE_DRIVERS; i++) {
+        if (driver_table[i].u.internal.persistent_data != NULL) {
+            mbedtls_free(driver_table[i].u.internal.persistent_data);
+        }
+    }
+    memset(driver_table, 0, sizeof(driver_table));
+}
+
+
+
+/****************************************************************/
+/* The end */
+/****************************************************************/
+
+#endif /* MBEDTLS_PSA_CRYPTO_SE_C */
diff --git a/tf-psa-crypto/core/psa_crypto_se.h b/tf-psa-crypto/core/psa_crypto_se.h
new file mode 100644
index 0000000..e0bd5ac
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_se.h
@@ -0,0 +1,192 @@
+/*
+ *  PSA crypto support for secure element drivers
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef PSA_CRYPTO_SE_H
+#define PSA_CRYPTO_SE_H
+
+/*
+ * Include the build-time configuration information header. Here, we do not
+ * include `"mbedtls/build_info.h"` directly but `"psa/build_info.h"`, which
+ * is basically just an alias to it. This is to ease the maintenance of the
+ * TF-PSA-Crypto repository which has a different build system and
+ * configuration.
+ */
+#include "psa/build_info.h"
+
+#include "psa/crypto.h"
+#include "psa/crypto_se_driver.h"
+
+/** The maximum location value that this implementation supports
+ * for a secure element.
+ *
+ * This is not a characteristic that each PSA implementation has, but a
+ * limitation of the current implementation due to the constraints imposed
+ * by storage. See #PSA_CRYPTO_SE_DRIVER_ITS_UID_BASE.
+ *
+ * The minimum location value for a secure element is 1, like on any
+ * PSA implementation (0 means a transparent key).
+ */
+#define PSA_MAX_SE_LOCATION 255
+
+/** The base of the range of ITS file identifiers for secure element
+ * driver persistent data.
+ *
+ * We use a slice of the implementation reserved range 0xffff0000..0xffffffff,
+ * specifically the range 0xfffffe00..0xfffffeff. The length of this range
+ * drives the value of #PSA_MAX_SE_LOCATION. The identifier 0xfffffe00 is
+ * actually not used since it corresponds to #PSA_KEY_LOCATION_LOCAL_STORAGE
+ * which doesn't have a driver.
+ */
+#define PSA_CRYPTO_SE_DRIVER_ITS_UID_BASE ((psa_key_id_t) 0xfffffe00)
+
+/** The maximum number of registered secure element driver locations. */
+#define PSA_MAX_SE_DRIVERS 4
+
+/** Unregister all secure element drivers.
+ *
+ * \warning Do not call this function while the library is in the initialized
+ *          state. This function is only intended to be called at the end
+ *          of mbedtls_psa_crypto_free().
+ */
+void psa_unregister_all_se_drivers(void);
+
+/** Initialize all secure element drivers.
+ *
+ * Called from psa_crypto_init().
+ */
+psa_status_t psa_init_all_se_drivers(void);
+
+/** A structure that describes a registered secure element driver.
+ *
+ * A secure element driver table entry contains a pointer to the
+ * driver's method table as well as the driver context structure.
+ */
+typedef struct psa_se_drv_table_entry_s psa_se_drv_table_entry_t;
+
+/** Return the secure element driver information for a lifetime value.
+ *
+ * \param lifetime              The lifetime value to query.
+ * \param[out] p_methods        On output, if there is a driver,
+ *                              \c *methods points to its method table.
+ *                              Otherwise \c *methods is \c NULL.
+ * \param[out] p_drv_context    On output, if there is a driver,
+ *                              \c *drv_context points to its context
+ *                              structure.
+ *                              Otherwise \c *drv_context is \c NULL.
+ *
+ * \retval 1
+ *         \p lifetime corresponds to a registered driver.
+ * \retval 0
+ *         \p lifetime does not correspond to a registered driver.
+ */
+int psa_get_se_driver(psa_key_lifetime_t lifetime,
+                      const psa_drv_se_t **p_methods,
+                      psa_drv_se_context_t **p_drv_context);
+
+/** Return the secure element driver table entry for a lifetime value.
+ *
+ * \param lifetime      The lifetime value to query.
+ *
+ * \return The driver table entry for \p lifetime, or
+ *         \p NULL if \p lifetime does not correspond to a registered driver.
+ */
+psa_se_drv_table_entry_t *psa_get_se_driver_entry(
+    psa_key_lifetime_t lifetime);
+
+/** Return the method table for a secure element driver.
+ *
+ * \param[in] driver    The driver table entry to access, or \c NULL.
+ *
+ * \return The driver's method table.
+ *         \c NULL if \p driver is \c NULL.
+ */
+const psa_drv_se_t *psa_get_se_driver_methods(
+    const psa_se_drv_table_entry_t *driver);
+
+/** Return the context of a secure element driver.
+ *
+ * \param[in] driver    The driver table entry to access, or \c NULL.
+ *
+ * \return A pointer to the driver context.
+ *         \c NULL if \p driver is \c NULL.
+ */
+psa_drv_se_context_t *psa_get_se_driver_context(
+    psa_se_drv_table_entry_t *driver);
+
+/** Find a free slot for a key that is to be created.
+ *
+ * This function calls the relevant method in the driver to find a suitable
+ * slot for a key with the given attributes.
+ *
+ * \param[in] attributes    Metadata about the key that is about to be created.
+ * \param[in] driver        The driver table entry to query.
+ * \param[out] slot_number  On success, a slot number that is free in this
+ *                          secure element.
+ */
+psa_status_t psa_find_se_slot_for_key(
+    const psa_key_attributes_t *attributes,
+    psa_key_creation_method_t method,
+    psa_se_drv_table_entry_t *driver,
+    psa_key_slot_number_t *slot_number);
+
+/** Destroy a key in a secure element.
+ *
+ * This function calls the relevant driver method to destroy a key
+ * and updates the driver's persistent data.
+ */
+psa_status_t psa_destroy_se_key(psa_se_drv_table_entry_t *driver,
+                                psa_key_slot_number_t slot_number);
+
+/** Load the persistent data of a secure element driver.
+ *
+ * \param driver        The driver table entry containing the persistent
+ *                      data to load from storage.
+ *
+ * \return #PSA_SUCCESS
+ * \return #PSA_ERROR_NOT_SUPPORTED
+ * \return #PSA_ERROR_DOES_NOT_EXIST
+ * \return #PSA_ERROR_STORAGE_FAILURE
+ * \return #PSA_ERROR_DATA_CORRUPT
+ * \return #PSA_ERROR_INVALID_ARGUMENT
+ */
+psa_status_t psa_load_se_persistent_data(
+    const psa_se_drv_table_entry_t *driver);
+
+/** Save the persistent data of a secure element driver.
+ *
+ * \param[in] driver    The driver table entry containing the persistent
+ *                      data to save to storage.
+ *
+ * \return #PSA_SUCCESS
+ * \return #PSA_ERROR_NOT_SUPPORTED
+ * \return #PSA_ERROR_NOT_PERMITTED
+ * \return #PSA_ERROR_NOT_SUPPORTED
+ * \return #PSA_ERROR_INSUFFICIENT_STORAGE
+ * \return #PSA_ERROR_STORAGE_FAILURE
+ * \return #PSA_ERROR_INVALID_ARGUMENT
+ */
+psa_status_t psa_save_se_persistent_data(
+    const psa_se_drv_table_entry_t *driver);
+
+/** Destroy the persistent data of a secure element driver.
+ *
+ * This is currently only used for testing.
+ *
+ * \param[in] location  The location identifier for the driver whose
+ *                      persistent data is to be erased.
+ */
+psa_status_t psa_destroy_se_persistent_data(psa_key_location_t location);
+
+
+/** The storage representation of a key whose data is in a secure element.
+ */
+typedef struct {
+    uint8_t slot_number[sizeof(psa_key_slot_number_t)];
+} psa_se_key_data_storage_t;
+
+#endif /* PSA_CRYPTO_SE_H */
diff --git a/tf-psa-crypto/core/psa_crypto_slot_management.c b/tf-psa-crypto/core/psa_crypto_slot_management.c
new file mode 100644
index 0000000..9986a44
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_slot_management.c
@@ -0,0 +1,690 @@
+/*
+ *  PSA crypto layer on top of Mbed TLS crypto
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PSA_CRYPTO_C)
+
+#include "psa/crypto.h"
+
+#include "psa_crypto_core.h"
+#include "psa_crypto_driver_wrappers_no_static.h"
+#include "psa_crypto_slot_management.h"
+#include "psa_crypto_storage.h"
+#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
+#include "psa_crypto_se.h"
+#endif
+
+#include <stdlib.h>
+#include <string.h>
+#include "mbedtls/platform.h"
+#if defined(MBEDTLS_THREADING_C)
+#include "mbedtls/threading.h"
+#endif
+
+typedef struct {
+    psa_key_slot_t key_slots[MBEDTLS_PSA_KEY_SLOT_COUNT];
+    uint8_t key_slots_initialized;
+} psa_global_data_t;
+
+static psa_global_data_t global_data;
+
+static uint8_t psa_get_key_slots_initialized(void)
+{
+    uint8_t initialized;
+
+#if defined(MBEDTLS_THREADING_C)
+    mbedtls_mutex_lock(&mbedtls_threading_psa_globaldata_mutex);
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+    initialized = global_data.key_slots_initialized;
+
+#if defined(MBEDTLS_THREADING_C)
+    mbedtls_mutex_unlock(&mbedtls_threading_psa_globaldata_mutex);
+#endif /* defined(MBEDTLS_THREADING_C) */
+
+    return initialized;
+}
+
+int psa_is_valid_key_id(mbedtls_svc_key_id_t key, int vendor_ok)
+{
+    psa_key_id_t key_id = MBEDTLS_SVC_KEY_ID_GET_KEY_ID(key);
+
+    if ((PSA_KEY_ID_USER_MIN <= key_id) &&
+        (key_id <= PSA_KEY_ID_USER_MAX)) {
+        return 1;
+    }
+
+    if (vendor_ok &&
+        (PSA_KEY_ID_VENDOR_MIN <= key_id) &&
+        (key_id <= PSA_KEY_ID_VENDOR_MAX)) {
+        return 1;
+    }
+
+    return 0;
+}
+
+/** Get the description in memory of a key given its identifier and lock it.
+ *
+ * The descriptions of volatile keys and loaded persistent keys are
+ * stored in key slots. This function returns a pointer to the key slot
+ * containing the description of a key given its identifier.
+ *
+ * The function searches the key slots containing the description of the key
+ * with \p key identifier. The function does only read accesses to the key
+ * slots. The function does not load any persistent key thus does not access
+ * any storage.
+ *
+ * For volatile key identifiers, only one key slot is queried as a volatile
+ * key with identifier key_id can only be stored in slot of index
+ * ( key_id - #PSA_KEY_ID_VOLATILE_MIN ).
+ *
+ * On success, the function locks the key slot. It is the responsibility of
+ * the caller to unlock the key slot when it does not access it anymore.
+ *
+ * If multi-threading is enabled, the caller must hold the
+ * global key slot mutex.
+ *
+ * \param key           Key identifier to query.
+ * \param[out] p_slot   On success, `*p_slot` contains a pointer to the
+ *                      key slot containing the description of the key
+ *                      identified by \p key.
+ *
+ * \retval #PSA_SUCCESS
+ *         The pointer to the key slot containing the description of the key
+ *         identified by \p key was returned.
+ * \retval #PSA_ERROR_INVALID_HANDLE
+ *         \p key is not a valid key identifier.
+ * \retval #PSA_ERROR_DOES_NOT_EXIST
+ *         There is no key with key identifier \p key in the key slots.
+ */
+static psa_status_t psa_get_and_lock_key_slot_in_memory(
+    mbedtls_svc_key_id_t key, psa_key_slot_t **p_slot)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_id_t key_id = MBEDTLS_SVC_KEY_ID_GET_KEY_ID(key);
+    size_t slot_idx;
+    psa_key_slot_t *slot = NULL;
+
+    if (psa_key_id_is_volatile(key_id)) {
+        slot = &global_data.key_slots[key_id - PSA_KEY_ID_VOLATILE_MIN];
+
+        /* Check if both the PSA key identifier key_id and the owner
+         * identifier of key match those of the key slot. */
+        if ((slot->state == PSA_SLOT_FULL) &&
+            (mbedtls_svc_key_id_equal(key, slot->attr.id))) {
+            status = PSA_SUCCESS;
+        } else {
+            status = PSA_ERROR_DOES_NOT_EXIST;
+        }
+    } else {
+        if (!psa_is_valid_key_id(key, 1)) {
+            return PSA_ERROR_INVALID_HANDLE;
+        }
+
+        for (slot_idx = 0; slot_idx < MBEDTLS_PSA_KEY_SLOT_COUNT; slot_idx++) {
+            slot = &global_data.key_slots[slot_idx];
+            /* Only consider slots which are in a full state. */
+            if ((slot->state == PSA_SLOT_FULL) &&
+                (mbedtls_svc_key_id_equal(key, slot->attr.id))) {
+                break;
+            }
+        }
+        status = (slot_idx < MBEDTLS_PSA_KEY_SLOT_COUNT) ?
+                 PSA_SUCCESS : PSA_ERROR_DOES_NOT_EXIST;
+    }
+
+    if (status == PSA_SUCCESS) {
+        status = psa_register_read(slot);
+        if (status == PSA_SUCCESS) {
+            *p_slot = slot;
+        }
+    }
+
+    return status;
+}
+
+psa_status_t psa_initialize_key_slots(void)
+{
+    /* Nothing to do: program startup and psa_wipe_all_key_slots() both
+     * guarantee that the key slots are initialized to all-zero, which
+     * means that all the key slots are in a valid, empty state. The global
+     * data mutex is already held when calling this function, so no need to
+     * lock it here, to set the flag. */
+    global_data.key_slots_initialized = 1;
+    return PSA_SUCCESS;
+}
+
+void psa_wipe_all_key_slots(void)
+{
+    size_t slot_idx;
+
+    for (slot_idx = 0; slot_idx < MBEDTLS_PSA_KEY_SLOT_COUNT; slot_idx++) {
+        psa_key_slot_t *slot = &global_data.key_slots[slot_idx];
+        slot->registered_readers = 1;
+        slot->state = PSA_SLOT_PENDING_DELETION;
+        (void) psa_wipe_key_slot(slot);
+    }
+    /* The global data mutex is already held when calling this function. */
+    global_data.key_slots_initialized = 0;
+}
+
+psa_status_t psa_reserve_free_key_slot(psa_key_id_t *volatile_key_id,
+                                       psa_key_slot_t **p_slot)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    size_t slot_idx;
+    psa_key_slot_t *selected_slot, *unused_persistent_key_slot;
+
+    if (!psa_get_key_slots_initialized()) {
+        status = PSA_ERROR_BAD_STATE;
+        goto error;
+    }
+
+    selected_slot = unused_persistent_key_slot = NULL;
+    for (slot_idx = 0; slot_idx < MBEDTLS_PSA_KEY_SLOT_COUNT; slot_idx++) {
+        psa_key_slot_t *slot = &global_data.key_slots[slot_idx];
+        if (slot->state == PSA_SLOT_EMPTY) {
+            selected_slot = slot;
+            break;
+        }
+
+        if ((unused_persistent_key_slot == NULL) &&
+            (slot->state == PSA_SLOT_FULL) &&
+            (!psa_key_slot_has_readers(slot)) &&
+            (!PSA_KEY_LIFETIME_IS_VOLATILE(slot->attr.lifetime))) {
+            unused_persistent_key_slot = slot;
+        }
+    }
+
+    /*
+     * If there is no unused key slot and there is at least one unlocked key
+     * slot containing the description of a persistent key, recycle the first
+     * such key slot we encountered. If we later need to operate on the
+     * persistent key we are evicting now, we will reload its description from
+     * storage.
+     */
+    if ((selected_slot == NULL) &&
+        (unused_persistent_key_slot != NULL)) {
+        selected_slot = unused_persistent_key_slot;
+        psa_register_read(selected_slot);
+        status = psa_wipe_key_slot(selected_slot);
+        if (status != PSA_SUCCESS) {
+            goto error;
+        }
+    }
+
+    if (selected_slot != NULL) {
+        status = psa_key_slot_state_transition(selected_slot, PSA_SLOT_EMPTY,
+                                               PSA_SLOT_FILLING);
+        if (status != PSA_SUCCESS) {
+            goto error;
+        }
+
+        *volatile_key_id = PSA_KEY_ID_VOLATILE_MIN +
+                           ((psa_key_id_t) (selected_slot - global_data.key_slots));
+        *p_slot = selected_slot;
+
+        return PSA_SUCCESS;
+    }
+    status = PSA_ERROR_INSUFFICIENT_MEMORY;
+
+error:
+    *p_slot = NULL;
+    *volatile_key_id = 0;
+
+    return status;
+}
+
+#if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C)
+static psa_status_t psa_load_persistent_key_into_slot(psa_key_slot_t *slot)
+{
+    psa_status_t status = PSA_SUCCESS;
+    uint8_t *key_data = NULL;
+    size_t key_data_length = 0;
+
+    status = psa_load_persistent_key(&slot->attr,
+                                     &key_data, &key_data_length);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
+    /* Special handling is required for loading keys associated with a
+     * dynamically registered SE interface. */
+    const psa_drv_se_t *drv;
+    psa_drv_se_context_t *drv_context;
+    if (psa_get_se_driver(slot->attr.lifetime, &drv, &drv_context)) {
+        psa_se_key_data_storage_t *data;
+
+        if (key_data_length != sizeof(*data)) {
+            status = PSA_ERROR_DATA_INVALID;
+            goto exit;
+        }
+        data = (psa_se_key_data_storage_t *) key_data;
+        status = psa_copy_key_material_into_slot(
+            slot, data->slot_number, sizeof(data->slot_number));
+        goto exit;
+    }
+#endif /* MBEDTLS_PSA_CRYPTO_SE_C */
+
+    status = psa_copy_key_material_into_slot(slot, key_data, key_data_length);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+exit:
+    psa_free_persistent_key_data(key_data, key_data_length);
+    return status;
+}
+#endif /* MBEDTLS_PSA_CRYPTO_STORAGE_C */
+
+#if defined(MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS)
+
+static psa_status_t psa_load_builtin_key_into_slot(psa_key_slot_t *slot)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+    psa_key_lifetime_t lifetime = PSA_KEY_LIFETIME_VOLATILE;
+    psa_drv_slot_number_t slot_number = 0;
+    size_t key_buffer_size = 0;
+    size_t key_buffer_length = 0;
+
+    if (!psa_key_id_is_builtin(
+            MBEDTLS_SVC_KEY_ID_GET_KEY_ID(slot->attr.id))) {
+        return PSA_ERROR_DOES_NOT_EXIST;
+    }
+
+    /* Check the platform function to see whether this key actually exists */
+    status = mbedtls_psa_platform_get_builtin_key(
+        slot->attr.id, &lifetime, &slot_number);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    /* Set required key attributes to ensure get_builtin_key can retrieve the
+     * full attributes. */
+    psa_set_key_id(&attributes, slot->attr.id);
+    psa_set_key_lifetime(&attributes, lifetime);
+
+    /* Get the full key attributes from the driver in order to be able to
+     * calculate the required buffer size. */
+    status = psa_driver_wrapper_get_builtin_key(
+        slot_number, &attributes,
+        NULL, 0, NULL);
+    if (status != PSA_ERROR_BUFFER_TOO_SMALL) {
+        /* Builtin keys cannot be defined by the attributes alone */
+        if (status == PSA_SUCCESS) {
+            status = PSA_ERROR_CORRUPTION_DETECTED;
+        }
+        return status;
+    }
+
+    /* If the key should exist according to the platform, then ask the driver
+     * what its expected size is. */
+    status = psa_driver_wrapper_get_key_buffer_size(&attributes,
+                                                    &key_buffer_size);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    /* Allocate a buffer of the required size and load the builtin key directly
+     * into the (now properly sized) slot buffer. */
+    status = psa_allocate_buffer_to_slot(slot, key_buffer_size);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    status = psa_driver_wrapper_get_builtin_key(
+        slot_number, &attributes,
+        slot->key.data, slot->key.bytes, &key_buffer_length);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    /* Copy actual key length and core attributes into the slot on success */
+    slot->key.bytes = key_buffer_length;
+    slot->attr = attributes;
+exit:
+    if (status != PSA_SUCCESS) {
+        psa_remove_key_data_from_memory(slot);
+    }
+    return status;
+}
+#endif /* MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */
+
+psa_status_t psa_get_and_lock_key_slot(mbedtls_svc_key_id_t key,
+                                       psa_key_slot_t **p_slot)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+
+    *p_slot = NULL;
+    if (!psa_get_key_slots_initialized()) {
+        return PSA_ERROR_BAD_STATE;
+    }
+
+#if defined(MBEDTLS_THREADING_C)
+    /* We need to set status as success, otherwise CORRUPTION_DETECTED
+     * would be returned if the lock fails. */
+    status = PSA_SUCCESS;
+    /* If the key is persistent and not loaded, we cannot unlock the mutex
+     * between checking if the key is loaded and setting the slot as FULL,
+     * as otherwise another thread may load and then destroy the key
+     * in the meantime. */
+    PSA_THREADING_CHK_RET(mbedtls_mutex_lock(
+                              &mbedtls_threading_key_slot_mutex));
+#endif
+    /*
+     * On success, the pointer to the slot is passed directly to the caller
+     * thus no need to unlock the key slot here.
+     */
+    status = psa_get_and_lock_key_slot_in_memory(key, p_slot);
+    if (status != PSA_ERROR_DOES_NOT_EXIST) {
+#if defined(MBEDTLS_THREADING_C)
+        PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
+                                  &mbedtls_threading_key_slot_mutex));
+#endif
+        return status;
+    }
+
+    /* Loading keys from storage requires support for such a mechanism */
+#if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) || \
+    defined(MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS)
+    psa_key_id_t volatile_key_id;
+
+    status = psa_reserve_free_key_slot(&volatile_key_id, p_slot);
+    if (status != PSA_SUCCESS) {
+#if defined(MBEDTLS_THREADING_C)
+        PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
+                                  &mbedtls_threading_key_slot_mutex));
+#endif
+        return status;
+    }
+
+    (*p_slot)->attr.id = key;
+    (*p_slot)->attr.lifetime = PSA_KEY_LIFETIME_PERSISTENT;
+
+    status = PSA_ERROR_DOES_NOT_EXIST;
+#if defined(MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS)
+    /* Load keys in the 'builtin' range through their own interface */
+    status = psa_load_builtin_key_into_slot(*p_slot);
+#endif /* MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */
+
+#if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C)
+    if (status == PSA_ERROR_DOES_NOT_EXIST) {
+        status = psa_load_persistent_key_into_slot(*p_slot);
+    }
+#endif /* defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) */
+
+    if (status != PSA_SUCCESS) {
+        psa_wipe_key_slot(*p_slot);
+
+        /* If the key does not exist, we need to return
+         * PSA_ERROR_INVALID_HANDLE. */
+        if (status == PSA_ERROR_DOES_NOT_EXIST) {
+            status = PSA_ERROR_INVALID_HANDLE;
+        }
+    } else {
+        /* Add implicit usage flags. */
+        psa_extend_key_usage_flags(&(*p_slot)->attr.policy.usage);
+
+        psa_key_slot_state_transition((*p_slot), PSA_SLOT_FILLING,
+                                      PSA_SLOT_FULL);
+        status = psa_register_read(*p_slot);
+    }
+
+#else /* MBEDTLS_PSA_CRYPTO_STORAGE_C || MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */
+    status = PSA_ERROR_INVALID_HANDLE;
+#endif /* MBEDTLS_PSA_CRYPTO_STORAGE_C || MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */
+
+    if (status != PSA_SUCCESS) {
+        *p_slot = NULL;
+    }
+#if defined(MBEDTLS_THREADING_C)
+    PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
+                              &mbedtls_threading_key_slot_mutex));
+#endif
+    return status;
+}
+
+psa_status_t psa_unregister_read(psa_key_slot_t *slot)
+{
+    if (slot == NULL) {
+        return PSA_SUCCESS;
+    }
+    if ((slot->state != PSA_SLOT_FULL) &&
+        (slot->state != PSA_SLOT_PENDING_DELETION)) {
+        return PSA_ERROR_CORRUPTION_DETECTED;
+    }
+
+    /* If we are the last reader and the slot is marked for deletion,
+     * we must wipe the slot here. */
+    if ((slot->state == PSA_SLOT_PENDING_DELETION) &&
+        (slot->registered_readers == 1)) {
+        return psa_wipe_key_slot(slot);
+    }
+
+    if (psa_key_slot_has_readers(slot)) {
+        slot->registered_readers--;
+        return PSA_SUCCESS;
+    }
+
+    /*
+     * As the return error code may not be handled in case of multiple errors,
+     * do our best to report if there are no registered readers. Assert with
+     * MBEDTLS_TEST_HOOK_TEST_ASSERT that there are registered readers:
+     * if the MBEDTLS_TEST_HOOKS configuration option is enabled and
+     * the function is called as part of the execution of a test suite, the
+     * execution of the test suite is stopped in error if the assertion fails.
+     */
+    MBEDTLS_TEST_HOOK_TEST_ASSERT(psa_key_slot_has_readers(slot));
+    return PSA_ERROR_CORRUPTION_DETECTED;
+}
+
+psa_status_t psa_unregister_read_under_mutex(psa_key_slot_t *slot)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+#if defined(MBEDTLS_THREADING_C)
+    /* We need to set status as success, otherwise CORRUPTION_DETECTED
+     * would be returned if the lock fails. */
+    status = PSA_SUCCESS;
+    PSA_THREADING_CHK_RET(mbedtls_mutex_lock(
+                              &mbedtls_threading_key_slot_mutex));
+#endif
+    status = psa_unregister_read(slot);
+#if defined(MBEDTLS_THREADING_C)
+    PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
+                              &mbedtls_threading_key_slot_mutex));
+#endif
+    return status;
+}
+
+psa_status_t psa_validate_key_location(psa_key_lifetime_t lifetime,
+                                       psa_se_drv_table_entry_t **p_drv)
+{
+    if (psa_key_lifetime_is_external(lifetime)) {
+#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
+        /* Check whether a driver is registered against this lifetime */
+        psa_se_drv_table_entry_t *driver = psa_get_se_driver_entry(lifetime);
+        if (driver != NULL) {
+            if (p_drv != NULL) {
+                *p_drv = driver;
+            }
+            return PSA_SUCCESS;
+        }
+#else /* MBEDTLS_PSA_CRYPTO_SE_C */
+        (void) p_drv;
+#endif /* MBEDTLS_PSA_CRYPTO_SE_C */
+
+        /* Key location for external keys gets checked by the wrapper */
+        return PSA_SUCCESS;
+    } else {
+        /* Local/internal keys are always valid */
+        return PSA_SUCCESS;
+    }
+}
+
+psa_status_t psa_validate_key_persistence(psa_key_lifetime_t lifetime)
+{
+    if (PSA_KEY_LIFETIME_IS_VOLATILE(lifetime)) {
+        /* Volatile keys are always supported */
+        return PSA_SUCCESS;
+    } else {
+        /* Persistent keys require storage support */
+#if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C)
+        if (PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime)) {
+            return PSA_ERROR_INVALID_ARGUMENT;
+        } else {
+            return PSA_SUCCESS;
+        }
+#else /* MBEDTLS_PSA_CRYPTO_STORAGE_C */
+        return PSA_ERROR_NOT_SUPPORTED;
+#endif /* !MBEDTLS_PSA_CRYPTO_STORAGE_C */
+    }
+}
+
+psa_status_t psa_open_key(mbedtls_svc_key_id_t key, psa_key_handle_t *handle)
+{
+#if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) || \
+    defined(MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS)
+    psa_status_t status;
+    psa_key_slot_t *slot;
+
+    status = psa_get_and_lock_key_slot(key, &slot);
+    if (status != PSA_SUCCESS) {
+        *handle = PSA_KEY_HANDLE_INIT;
+        if (status == PSA_ERROR_INVALID_HANDLE) {
+            status = PSA_ERROR_DOES_NOT_EXIST;
+        }
+
+        return status;
+    }
+
+    *handle = key;
+
+    return psa_unregister_read_under_mutex(slot);
+
+#else /* MBEDTLS_PSA_CRYPTO_STORAGE_C || MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */
+    (void) key;
+    *handle = PSA_KEY_HANDLE_INIT;
+    return PSA_ERROR_NOT_SUPPORTED;
+#endif /* MBEDTLS_PSA_CRYPTO_STORAGE_C || MBEDTLS_PSA_CRYPTO_BUILTIN_KEYS */
+}
+
+psa_status_t psa_close_key(psa_key_handle_t handle)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_slot_t *slot;
+
+    if (psa_key_handle_is_null(handle)) {
+        return PSA_SUCCESS;
+    }
+
+#if defined(MBEDTLS_THREADING_C)
+    /* We need to set status as success, otherwise CORRUPTION_DETECTED
+     * would be returned if the lock fails. */
+    status = PSA_SUCCESS;
+    PSA_THREADING_CHK_RET(mbedtls_mutex_lock(
+                              &mbedtls_threading_key_slot_mutex));
+#endif
+    status = psa_get_and_lock_key_slot_in_memory(handle, &slot);
+    if (status != PSA_SUCCESS) {
+        if (status == PSA_ERROR_DOES_NOT_EXIST) {
+            status = PSA_ERROR_INVALID_HANDLE;
+        }
+#if defined(MBEDTLS_THREADING_C)
+        PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
+                                  &mbedtls_threading_key_slot_mutex));
+#endif
+        return status;
+    }
+
+    if (slot->registered_readers == 1) {
+        status = psa_wipe_key_slot(slot);
+    } else {
+        status = psa_unregister_read(slot);
+    }
+#if defined(MBEDTLS_THREADING_C)
+    PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
+                              &mbedtls_threading_key_slot_mutex));
+#endif
+
+    return status;
+}
+
+psa_status_t psa_purge_key(mbedtls_svc_key_id_t key)
+{
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    psa_key_slot_t *slot;
+
+#if defined(MBEDTLS_THREADING_C)
+    /* We need to set status as success, otherwise CORRUPTION_DETECTED
+     * would be returned if the lock fails. */
+    status = PSA_SUCCESS;
+    PSA_THREADING_CHK_RET(mbedtls_mutex_lock(
+                              &mbedtls_threading_key_slot_mutex));
+#endif
+    status = psa_get_and_lock_key_slot_in_memory(key, &slot);
+    if (status != PSA_SUCCESS) {
+#if defined(MBEDTLS_THREADING_C)
+        PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
+                                  &mbedtls_threading_key_slot_mutex));
+#endif
+        return status;
+    }
+
+    if ((!PSA_KEY_LIFETIME_IS_VOLATILE(slot->attr.lifetime)) &&
+        (slot->registered_readers == 1)) {
+        status = psa_wipe_key_slot(slot);
+    } else {
+        status = psa_unregister_read(slot);
+    }
+#if defined(MBEDTLS_THREADING_C)
+    PSA_THREADING_CHK_RET(mbedtls_mutex_unlock(
+                              &mbedtls_threading_key_slot_mutex));
+#endif
+
+    return status;
+}
+
+void mbedtls_psa_get_stats(mbedtls_psa_stats_t *stats)
+{
+    size_t slot_idx;
+
+    memset(stats, 0, sizeof(*stats));
+
+    for (slot_idx = 0; slot_idx < MBEDTLS_PSA_KEY_SLOT_COUNT; slot_idx++) {
+        const psa_key_slot_t *slot = &global_data.key_slots[slot_idx];
+        if (psa_key_slot_has_readers(slot)) {
+            ++stats->locked_slots;
+        }
+        if (slot->state == PSA_SLOT_EMPTY) {
+            ++stats->empty_slots;
+            continue;
+        }
+        if (PSA_KEY_LIFETIME_IS_VOLATILE(slot->attr.lifetime)) {
+            ++stats->volatile_slots;
+        } else {
+            psa_key_id_t id = MBEDTLS_SVC_KEY_ID_GET_KEY_ID(slot->attr.id);
+            ++stats->persistent_slots;
+            if (id > stats->max_open_internal_key_id) {
+                stats->max_open_internal_key_id = id;
+            }
+        }
+        if (PSA_KEY_LIFETIME_GET_LOCATION(slot->attr.lifetime) !=
+            PSA_KEY_LOCATION_LOCAL_STORAGE) {
+            psa_key_id_t id = MBEDTLS_SVC_KEY_ID_GET_KEY_ID(slot->attr.id);
+            ++stats->external_slots;
+            if (id > stats->max_open_external_key_id) {
+                stats->max_open_external_key_id = id;
+            }
+        }
+    }
+}
+
+#endif /* MBEDTLS_PSA_CRYPTO_C */
diff --git a/tf-psa-crypto/core/psa_crypto_slot_management.h b/tf-psa-crypto/core/psa_crypto_slot_management.h
new file mode 100644
index 0000000..a84be7d
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_slot_management.h
@@ -0,0 +1,288 @@
+/*
+ *  PSA crypto layer on top of Mbed TLS crypto
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef PSA_CRYPTO_SLOT_MANAGEMENT_H
+#define PSA_CRYPTO_SLOT_MANAGEMENT_H
+
+#include "psa/crypto.h"
+#include "psa_crypto_core.h"
+#include "psa_crypto_se.h"
+
+/** Range of volatile key identifiers.
+ *
+ *  The last #MBEDTLS_PSA_KEY_SLOT_COUNT identifiers of the implementation
+ *  range of key identifiers are reserved for volatile key identifiers.
+ *  A volatile key identifier is equal to #PSA_KEY_ID_VOLATILE_MIN plus the
+ *  index of the key slot containing the volatile key definition.
+ */
+
+/** The minimum value for a volatile key identifier.
+ */
+#define PSA_KEY_ID_VOLATILE_MIN  (PSA_KEY_ID_VENDOR_MAX - \
+                                  MBEDTLS_PSA_KEY_SLOT_COUNT + 1)
+
+/** The maximum value for a volatile key identifier.
+ */
+#define PSA_KEY_ID_VOLATILE_MAX  PSA_KEY_ID_VENDOR_MAX
+
+/** Test whether a key identifier is a volatile key identifier.
+ *
+ * \param key_id  Key identifier to test.
+ *
+ * \retval 1
+ *         The key identifier is a volatile key identifier.
+ * \retval 0
+ *         The key identifier is not a volatile key identifier.
+ */
+static inline int psa_key_id_is_volatile(psa_key_id_t key_id)
+{
+    return (key_id >= PSA_KEY_ID_VOLATILE_MIN) &&
+           (key_id <= PSA_KEY_ID_VOLATILE_MAX);
+}
+
+/** Get the description of a key given its identifier and lock it.
+ *
+ * The descriptions of volatile keys and loaded persistent keys are stored in
+ * key slots. This function returns a pointer to the key slot containing the
+ * description of a key given its identifier.
+ *
+ * In case of a persistent key, the function loads the description of the key
+ * into a key slot if not already done.
+ *
+ * On success, the returned key slot has been registered for reading.
+ * It is the responsibility of the caller to call psa_unregister_read(slot)
+ * when they have finished reading the contents of the slot.
+ *
+ * On failure, `*p_slot` is set to NULL. This ensures that it is always valid
+ * to call psa_unregister_read on the returned slot.
+ *
+ * \param key           Key identifier to query.
+ * \param[out] p_slot   On success, `*p_slot` contains a pointer to the
+ *                      key slot containing the description of the key
+ *                      identified by \p key.
+ *
+ * \retval #PSA_SUCCESS
+ *         \p *p_slot contains a pointer to the key slot containing the
+ *         description of the key identified by \p key.
+ *         The key slot counter has been incremented.
+ * \retval #PSA_ERROR_BAD_STATE
+ *         The library has not been initialized.
+ * \retval #PSA_ERROR_INVALID_HANDLE
+ *         \p key is not a valid key identifier.
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY
+ *         \p key is a persistent key identifier. The implementation does not
+ *         have sufficient resources to load the persistent key. This can be
+ *         due to a lack of empty key slot, or available memory.
+ * \retval #PSA_ERROR_DOES_NOT_EXIST
+ *         There is no key with key identifier \p key.
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
+ * \retval #PSA_ERROR_STORAGE_FAILURE \emptydescription
+ * \retval #PSA_ERROR_DATA_CORRUPT \emptydescription
+ */
+psa_status_t psa_get_and_lock_key_slot(mbedtls_svc_key_id_t key,
+                                       psa_key_slot_t **p_slot);
+
+/** Initialize the key slot structures.
+ *
+ * \retval #PSA_SUCCESS
+ *         Currently this function always succeeds.
+ */
+psa_status_t psa_initialize_key_slots(void);
+
+/** Delete all data from key slots in memory.
+ * This function is not thread safe, it wipes every key slot regardless of
+ * state and reader count. It should only be called when no slot is in use.
+ *
+ * This does not affect persistent storage. */
+void psa_wipe_all_key_slots(void);
+
+/** Find a free key slot and reserve it to be filled with a key.
+ *
+ * This function finds a key slot that is free,
+ * sets its state to PSA_SLOT_FILLING and then returns the slot.
+ *
+ * On success, the key slot's state is PSA_SLOT_FILLING.
+ * It is the responsibility of the caller to change the slot's state to
+ * PSA_SLOT_EMPTY/FULL once key creation has finished.
+ *
+ * If multi-threading is enabled, the caller must hold the
+ * global key slot mutex.
+ *
+ * \param[out] volatile_key_id   On success, volatile key identifier
+ *                               associated to the returned slot.
+ * \param[out] p_slot            On success, a pointer to the slot.
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY
+ *         There were no free key slots.
+ * \retval #PSA_ERROR_BAD_STATE \emptydescription
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED
+ *         This function attempted to operate on a key slot which was in an
+ *         unexpected state.
+ */
+psa_status_t psa_reserve_free_key_slot(psa_key_id_t *volatile_key_id,
+                                       psa_key_slot_t **p_slot);
+
+/** Change the state of a key slot.
+ *
+ * This function changes the state of the key slot from expected_state to
+ * new state. If the state of the slot was not expected_state, the state is
+ * unchanged.
+ *
+ * If multi-threading is enabled, the caller must hold the
+ * global key slot mutex.
+ *
+ * \param[in] slot            The key slot.
+ * \param[in] expected_state  The current state of the slot.
+ * \param[in] new_state       The new state of the slot.
+ *
+ * \retval #PSA_SUCCESS
+               The key slot's state variable is new_state.
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED
+ *             The slot's state was not expected_state.
+ */
+static inline psa_status_t psa_key_slot_state_transition(
+    psa_key_slot_t *slot, psa_key_slot_state_t expected_state,
+    psa_key_slot_state_t new_state)
+{
+    if (slot->state != expected_state) {
+        return PSA_ERROR_CORRUPTION_DETECTED;
+    }
+    slot->state = new_state;
+    return PSA_SUCCESS;
+}
+
+/** Register as a reader of a key slot.
+ *
+ * This function increments the key slot registered reader counter by one.
+ * If multi-threading is enabled, the caller must hold the
+ * global key slot mutex.
+ *
+ * \param[in] slot  The key slot.
+ *
+ * \retval #PSA_SUCCESS
+               The key slot registered reader counter was incremented.
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED
+ *             The reader counter already reached its maximum value and was not
+ *             increased, or the slot's state was not PSA_SLOT_FULL.
+ */
+static inline psa_status_t psa_register_read(psa_key_slot_t *slot)
+{
+    if ((slot->state != PSA_SLOT_FULL) ||
+        (slot->registered_readers >= SIZE_MAX)) {
+        return PSA_ERROR_CORRUPTION_DETECTED;
+    }
+    slot->registered_readers++;
+
+    return PSA_SUCCESS;
+}
+
+/** Unregister from reading a key slot.
+ *
+ * This function decrements the key slot registered reader counter by one.
+ * If the state of the slot is PSA_SLOT_PENDING_DELETION,
+ * and there is only one registered reader (the caller),
+ * this function will call psa_wipe_key_slot().
+ * If multi-threading is enabled, the caller must hold the
+ * global key slot mutex.
+ *
+ * \note To ease the handling of errors in retrieving a key slot
+ *       a NULL input pointer is valid, and the function returns
+ *       successfully without doing anything in that case.
+ *
+ * \param[in] slot  The key slot.
+ * \retval #PSA_SUCCESS
+ *             \p slot is NULL or the key slot reader counter has been
+ *             decremented (and potentially wiped) successfully.
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED
+ *             The slot's state was neither PSA_SLOT_FULL nor
+ *             PSA_SLOT_PENDING_DELETION.
+ *             Or a wipe was attempted and the slot's state was not
+ *             PSA_SLOT_PENDING_DELETION.
+ *             Or registered_readers was equal to 0.
+ */
+psa_status_t psa_unregister_read(psa_key_slot_t *slot);
+
+/** Wrap a call to psa_unregister_read in the global key slot mutex.
+ *
+ * If threading is disabled, this simply calls psa_unregister_read.
+ *
+ * \note To ease the handling of errors in retrieving a key slot
+ *       a NULL input pointer is valid, and the function returns
+ *       successfully without doing anything in that case.
+ *
+ * \param[in] slot  The key slot.
+ * \retval #PSA_SUCCESS
+ *             \p slot is NULL or the key slot reader counter has been
+ *             decremented (and potentially wiped) successfully.
+ * \retval #PSA_ERROR_CORRUPTION_DETECTED
+ *             The slot's state was neither PSA_SLOT_FULL nor
+ *             PSA_SLOT_PENDING_DELETION.
+ *             Or a wipe was attempted and the slot's state was not
+ *             PSA_SLOT_PENDING_DELETION.
+ *             Or registered_readers was equal to 0.
+ */
+psa_status_t psa_unregister_read_under_mutex(psa_key_slot_t *slot);
+
+/** Test whether a lifetime designates a key in an external cryptoprocessor.
+ *
+ * \param lifetime      The lifetime to test.
+ *
+ * \retval 1
+ *         The lifetime designates an external key. There should be a
+ *         registered driver for this lifetime, otherwise the key cannot
+ *         be created or manipulated.
+ * \retval 0
+ *         The lifetime designates a key that is volatile or in internal
+ *         storage.
+ */
+static inline int psa_key_lifetime_is_external(psa_key_lifetime_t lifetime)
+{
+    return PSA_KEY_LIFETIME_GET_LOCATION(lifetime)
+           != PSA_KEY_LOCATION_LOCAL_STORAGE;
+}
+
+/** Validate a key's location.
+ *
+ * This function checks whether the key's attributes point to a location that
+ * is known to the PSA Core, and returns the driver function table if the key
+ * is to be found in an external location.
+ *
+ * \param[in] lifetime      The key lifetime attribute.
+ * \param[out] p_drv        On success, when a key is located in external
+ *                          storage, returns a pointer to the driver table
+ *                          associated with the key's storage location.
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_INVALID_ARGUMENT \emptydescription
+ */
+psa_status_t psa_validate_key_location(psa_key_lifetime_t lifetime,
+                                       psa_se_drv_table_entry_t **p_drv);
+
+/** Validate the persistence of a key.
+ *
+ * \param[in] lifetime  The key lifetime attribute.
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_NOT_SUPPORTED The key is persistent but persistent keys
+ *             are not supported.
+ */
+psa_status_t psa_validate_key_persistence(psa_key_lifetime_t lifetime);
+
+/** Validate a key identifier.
+ *
+ * \param[in] key           The key identifier.
+ * \param[in] vendor_ok     Non-zero to indicate that key identifiers in the
+ *                          vendor range are allowed, volatile key identifiers
+ *                          excepted \c 0 otherwise.
+ *
+ * \retval <> 0 if the key identifier is valid, 0 otherwise.
+ */
+int psa_is_valid_key_id(mbedtls_svc_key_id_t key, int vendor_ok);
+
+#endif /* PSA_CRYPTO_SLOT_MANAGEMENT_H */
diff --git a/tf-psa-crypto/core/psa_crypto_storage.c b/tf-psa-crypto/core/psa_crypto_storage.c
new file mode 100644
index 0000000..7d1317b
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_storage.c
@@ -0,0 +1,481 @@
+/*
+ *  PSA persistent key storage
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C)
+
+#include <stdlib.h>
+#include <string.h>
+
+#include "psa/crypto.h"
+#include "psa_crypto_storage.h"
+#include "mbedtls/platform_util.h"
+
+#if defined(MBEDTLS_PSA_ITS_FILE_C)
+#include "psa_crypto_its.h"
+#else /* Native ITS implementation */
+#include "psa/error.h"
+#include "psa/internal_trusted_storage.h"
+#endif
+
+#include "mbedtls/platform.h"
+
+
+
+/****************************************************************/
+/* Key storage */
+/****************************************************************/
+
+/* Determine a file name (ITS file identifier) for the given key identifier.
+ * The file name must be distinct from any file that is used for a purpose
+ * other than storing a key. Currently, the only such file is the random seed
+ * file whose name is PSA_CRYPTO_ITS_RANDOM_SEED_UID and whose value is
+ * 0xFFFFFF52. */
+static psa_storage_uid_t psa_its_identifier_of_slot(mbedtls_svc_key_id_t key)
+{
+#if defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
+    /* Encode the owner in the upper 32 bits. This means that if
+     * owner values are nonzero (as they are on a PSA platform),
+     * no key file will ever have a value less than 0x100000000, so
+     * the whole range 0..0xffffffff is available for non-key files. */
+    uint32_t unsigned_owner_id = MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(key);
+    return ((uint64_t) unsigned_owner_id << 32) |
+           MBEDTLS_SVC_KEY_ID_GET_KEY_ID(key);
+#else
+    /* Use the key id directly as a file name.
+     * psa_is_key_id_valid() in psa_crypto_slot_management.c
+     * is responsible for ensuring that key identifiers do not have a
+     * value that is reserved for non-key files. */
+    return key;
+#endif
+}
+
+/**
+ * \brief Load persistent data for the given key slot number.
+ *
+ * This function reads data from a storage backend and returns the data in a
+ * buffer.
+ *
+ * \param key               Persistent identifier of the key to be loaded. This
+ *                          should be an occupied storage location.
+ * \param[out] data         Buffer where the data is to be written.
+ * \param data_size         Size of the \c data buffer in bytes.
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_DATA_INVALID \emptydescription
+ * \retval #PSA_ERROR_DATA_CORRUPT \emptydescription
+ * \retval #PSA_ERROR_STORAGE_FAILURE \emptydescription
+ * \retval #PSA_ERROR_DOES_NOT_EXIST \emptydescription
+ */
+static psa_status_t psa_crypto_storage_load(
+    const mbedtls_svc_key_id_t key, uint8_t *data, size_t data_size)
+{
+    psa_status_t status;
+    psa_storage_uid_t data_identifier = psa_its_identifier_of_slot(key);
+    struct psa_storage_info_t data_identifier_info;
+    size_t data_length = 0;
+
+    status = psa_its_get_info(data_identifier, &data_identifier_info);
+    if (status  != PSA_SUCCESS) {
+        return status;
+    }
+
+    status = psa_its_get(data_identifier, 0, (uint32_t) data_size, data, &data_length);
+    if (data_size  != data_length) {
+        return PSA_ERROR_DATA_INVALID;
+    }
+
+    return status;
+}
+
+int psa_is_key_present_in_storage(const mbedtls_svc_key_id_t key)
+{
+    psa_status_t ret;
+    psa_storage_uid_t data_identifier = psa_its_identifier_of_slot(key);
+    struct psa_storage_info_t data_identifier_info;
+
+    ret = psa_its_get_info(data_identifier, &data_identifier_info);
+
+    if (ret == PSA_ERROR_DOES_NOT_EXIST) {
+        return 0;
+    }
+    return 1;
+}
+
+/**
+ * \brief Store persistent data for the given key slot number.
+ *
+ * This function stores the given data buffer to a persistent storage.
+ *
+ * \param key           Persistent identifier of the key to be stored. This
+ *                      should be an unoccupied storage location.
+ * \param[in] data      Buffer containing the data to be stored.
+ * \param data_length   The number of bytes
+ *                      that make up the data.
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_STORAGE \emptydescription
+ * \retval #PSA_ERROR_ALREADY_EXISTS \emptydescription
+ * \retval #PSA_ERROR_STORAGE_FAILURE \emptydescription
+ * \retval #PSA_ERROR_DATA_INVALID \emptydescription
+ */
+static psa_status_t psa_crypto_storage_store(const mbedtls_svc_key_id_t key,
+                                             const uint8_t *data,
+                                             size_t data_length)
+{
+    psa_status_t status;
+    psa_storage_uid_t data_identifier = psa_its_identifier_of_slot(key);
+    struct psa_storage_info_t data_identifier_info;
+
+    if (psa_is_key_present_in_storage(key) == 1) {
+        return PSA_ERROR_ALREADY_EXISTS;
+    }
+
+    status = psa_its_set(data_identifier, (uint32_t) data_length, data, 0);
+    if (status != PSA_SUCCESS) {
+        return PSA_ERROR_DATA_INVALID;
+    }
+
+    status = psa_its_get_info(data_identifier, &data_identifier_info);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    if (data_identifier_info.size != data_length) {
+        status = PSA_ERROR_DATA_INVALID;
+        goto exit;
+    }
+
+exit:
+    if (status != PSA_SUCCESS) {
+        /* Remove the file in case we managed to create it but something
+         * went wrong. It's ok if the file doesn't exist. If the file exists
+         * but the removal fails, we're already reporting an error so there's
+         * nothing else we can do. */
+        (void) psa_its_remove(data_identifier);
+    }
+    return status;
+}
+
+psa_status_t psa_destroy_persistent_key(const mbedtls_svc_key_id_t key)
+{
+    psa_status_t ret;
+    psa_storage_uid_t data_identifier = psa_its_identifier_of_slot(key);
+    struct psa_storage_info_t data_identifier_info;
+
+    ret = psa_its_get_info(data_identifier, &data_identifier_info);
+    if (ret == PSA_ERROR_DOES_NOT_EXIST) {
+        return PSA_SUCCESS;
+    }
+
+    if (psa_its_remove(data_identifier) != PSA_SUCCESS) {
+        return PSA_ERROR_DATA_INVALID;
+    }
+
+    ret = psa_its_get_info(data_identifier, &data_identifier_info);
+    if (ret != PSA_ERROR_DOES_NOT_EXIST) {
+        return PSA_ERROR_DATA_INVALID;
+    }
+
+    return PSA_SUCCESS;
+}
+
+/**
+ * \brief Get data length for given key slot number.
+ *
+ * \param key               Persistent identifier whose stored data length
+ *                          is to be obtained.
+ * \param[out] data_length  The number of bytes that make up the data.
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_STORAGE_FAILURE \emptydescription
+ * \retval #PSA_ERROR_DOES_NOT_EXIST \emptydescription
+ * \retval #PSA_ERROR_DATA_CORRUPT \emptydescription
+ */
+static psa_status_t psa_crypto_storage_get_data_length(
+    const mbedtls_svc_key_id_t key,
+    size_t *data_length)
+{
+    psa_status_t status;
+    psa_storage_uid_t data_identifier = psa_its_identifier_of_slot(key);
+    struct psa_storage_info_t data_identifier_info;
+
+    status = psa_its_get_info(data_identifier, &data_identifier_info);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    *data_length = (size_t) data_identifier_info.size;
+
+    return PSA_SUCCESS;
+}
+
+/**
+ * Persistent key storage magic header.
+ */
+#define PSA_KEY_STORAGE_MAGIC_HEADER "PSA\0KEY"
+#define PSA_KEY_STORAGE_MAGIC_HEADER_LENGTH (sizeof(PSA_KEY_STORAGE_MAGIC_HEADER))
+
+typedef struct {
+    uint8_t magic[PSA_KEY_STORAGE_MAGIC_HEADER_LENGTH];
+    uint8_t version[4];
+    uint8_t lifetime[sizeof(psa_key_lifetime_t)];
+    uint8_t type[2];
+    uint8_t bits[2];
+    uint8_t policy[sizeof(psa_key_policy_t)];
+    uint8_t data_len[4];
+    uint8_t key_data[];
+} psa_persistent_key_storage_format;
+
+void psa_format_key_data_for_storage(const uint8_t *data,
+                                     const size_t data_length,
+                                     const psa_key_attributes_t *attr,
+                                     uint8_t *storage_data)
+{
+    psa_persistent_key_storage_format *storage_format =
+        (psa_persistent_key_storage_format *) storage_data;
+
+    memcpy(storage_format->magic, PSA_KEY_STORAGE_MAGIC_HEADER,
+           PSA_KEY_STORAGE_MAGIC_HEADER_LENGTH);
+    MBEDTLS_PUT_UINT32_LE(0, storage_format->version, 0);
+    MBEDTLS_PUT_UINT32_LE(attr->lifetime, storage_format->lifetime, 0);
+    MBEDTLS_PUT_UINT16_LE((uint16_t) attr->type, storage_format->type, 0);
+    MBEDTLS_PUT_UINT16_LE((uint16_t) attr->bits, storage_format->bits, 0);
+    MBEDTLS_PUT_UINT32_LE(attr->policy.usage, storage_format->policy, 0);
+    MBEDTLS_PUT_UINT32_LE(attr->policy.alg, storage_format->policy, sizeof(uint32_t));
+    MBEDTLS_PUT_UINT32_LE(attr->policy.alg2, storage_format->policy, 2 * sizeof(uint32_t));
+    MBEDTLS_PUT_UINT32_LE(data_length, storage_format->data_len, 0);
+    memcpy(storage_format->key_data, data, data_length);
+}
+
+static psa_status_t check_magic_header(const uint8_t *data)
+{
+    if (memcmp(data, PSA_KEY_STORAGE_MAGIC_HEADER,
+               PSA_KEY_STORAGE_MAGIC_HEADER_LENGTH) != 0) {
+        return PSA_ERROR_DATA_INVALID;
+    }
+    return PSA_SUCCESS;
+}
+
+psa_status_t psa_parse_key_data_from_storage(const uint8_t *storage_data,
+                                             size_t storage_data_length,
+                                             uint8_t **key_data,
+                                             size_t *key_data_length,
+                                             psa_key_attributes_t *attr)
+{
+    psa_status_t status;
+    const psa_persistent_key_storage_format *storage_format =
+        (const psa_persistent_key_storage_format *) storage_data;
+    uint32_t version;
+
+    if (storage_data_length < sizeof(*storage_format)) {
+        return PSA_ERROR_DATA_INVALID;
+    }
+
+    status = check_magic_header(storage_data);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    version = MBEDTLS_GET_UINT32_LE(storage_format->version, 0);
+    if (version != 0) {
+        return PSA_ERROR_DATA_INVALID;
+    }
+
+    *key_data_length = MBEDTLS_GET_UINT32_LE(storage_format->data_len, 0);
+    if (*key_data_length > (storage_data_length - sizeof(*storage_format)) ||
+        *key_data_length > PSA_CRYPTO_MAX_STORAGE_SIZE) {
+        return PSA_ERROR_DATA_INVALID;
+    }
+
+    if (*key_data_length == 0) {
+        *key_data = NULL;
+    } else {
+        *key_data = mbedtls_calloc(1, *key_data_length);
+        if (*key_data == NULL) {
+            return PSA_ERROR_INSUFFICIENT_MEMORY;
+        }
+        memcpy(*key_data, storage_format->key_data, *key_data_length);
+    }
+
+    attr->lifetime = MBEDTLS_GET_UINT32_LE(storage_format->lifetime, 0);
+    attr->type = MBEDTLS_GET_UINT16_LE(storage_format->type, 0);
+    attr->bits = MBEDTLS_GET_UINT16_LE(storage_format->bits, 0);
+    attr->policy.usage = MBEDTLS_GET_UINT32_LE(storage_format->policy, 0);
+    attr->policy.alg = MBEDTLS_GET_UINT32_LE(storage_format->policy, sizeof(uint32_t));
+    attr->policy.alg2 = MBEDTLS_GET_UINT32_LE(storage_format->policy, 2 * sizeof(uint32_t));
+
+    return PSA_SUCCESS;
+}
+
+psa_status_t psa_save_persistent_key(const psa_key_attributes_t *attr,
+                                     const uint8_t *data,
+                                     const size_t data_length)
+{
+    size_t storage_data_length;
+    uint8_t *storage_data;
+    psa_status_t status;
+
+    /* All keys saved to persistent storage always have a key context */
+    if (data == NULL || data_length == 0) {
+        return PSA_ERROR_INVALID_ARGUMENT;
+    }
+
+    if (data_length > PSA_CRYPTO_MAX_STORAGE_SIZE) {
+        return PSA_ERROR_INSUFFICIENT_STORAGE;
+    }
+    storage_data_length = data_length + sizeof(psa_persistent_key_storage_format);
+
+    storage_data = mbedtls_calloc(1, storage_data_length);
+    if (storage_data == NULL) {
+        return PSA_ERROR_INSUFFICIENT_MEMORY;
+    }
+
+    psa_format_key_data_for_storage(data, data_length, attr, storage_data);
+
+    status = psa_crypto_storage_store(attr->id,
+                                      storage_data, storage_data_length);
+
+    mbedtls_zeroize_and_free(storage_data, storage_data_length);
+
+    return status;
+}
+
+void psa_free_persistent_key_data(uint8_t *key_data, size_t key_data_length)
+{
+    mbedtls_zeroize_and_free(key_data, key_data_length);
+}
+
+psa_status_t psa_load_persistent_key(psa_key_attributes_t *attr,
+                                     uint8_t **data,
+                                     size_t *data_length)
+{
+    psa_status_t status = PSA_SUCCESS;
+    uint8_t *loaded_data;
+    size_t storage_data_length = 0;
+    mbedtls_svc_key_id_t key = attr->id;
+
+    status = psa_crypto_storage_get_data_length(key, &storage_data_length);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+
+    loaded_data = mbedtls_calloc(1, storage_data_length);
+
+    if (loaded_data == NULL) {
+        return PSA_ERROR_INSUFFICIENT_MEMORY;
+    }
+
+    status = psa_crypto_storage_load(key, loaded_data, storage_data_length);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_parse_key_data_from_storage(loaded_data, storage_data_length,
+                                             data, data_length, attr);
+
+    /* All keys saved to persistent storage always have a key context */
+    if (status == PSA_SUCCESS &&
+        (*data == NULL || *data_length == 0)) {
+        status = PSA_ERROR_STORAGE_FAILURE;
+    }
+
+exit:
+    mbedtls_zeroize_and_free(loaded_data, storage_data_length);
+    return status;
+}
+
+
+
+/****************************************************************/
+/* Transactions */
+/****************************************************************/
+
+#if defined(PSA_CRYPTO_STORAGE_HAS_TRANSACTIONS)
+
+psa_crypto_transaction_t psa_crypto_transaction;
+
+psa_status_t psa_crypto_save_transaction(void)
+{
+    struct psa_storage_info_t p_info;
+    psa_status_t status;
+    status = psa_its_get_info(PSA_CRYPTO_ITS_TRANSACTION_UID, &p_info);
+    if (status == PSA_SUCCESS) {
+        /* This shouldn't happen: we're trying to start a transaction while
+         * there is still a transaction that hasn't been replayed. */
+        return PSA_ERROR_CORRUPTION_DETECTED;
+    } else if (status != PSA_ERROR_DOES_NOT_EXIST) {
+        return status;
+    }
+    return psa_its_set(PSA_CRYPTO_ITS_TRANSACTION_UID,
+                       sizeof(psa_crypto_transaction),
+                       &psa_crypto_transaction,
+                       0);
+}
+
+psa_status_t psa_crypto_load_transaction(void)
+{
+    psa_status_t status;
+    size_t length;
+    status = psa_its_get(PSA_CRYPTO_ITS_TRANSACTION_UID, 0,
+                         sizeof(psa_crypto_transaction),
+                         &psa_crypto_transaction, &length);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+    if (length != sizeof(psa_crypto_transaction)) {
+        return PSA_ERROR_DATA_INVALID;
+    }
+    return PSA_SUCCESS;
+}
+
+psa_status_t psa_crypto_stop_transaction(void)
+{
+    psa_status_t status = psa_its_remove(PSA_CRYPTO_ITS_TRANSACTION_UID);
+    /* Whether or not updating the storage succeeded, the transaction is
+     * finished now. It's too late to go back, so zero out the in-memory
+     * data. */
+    memset(&psa_crypto_transaction, 0, sizeof(psa_crypto_transaction));
+    return status;
+}
+
+#endif /* PSA_CRYPTO_STORAGE_HAS_TRANSACTIONS */
+
+
+
+/****************************************************************/
+/* Random generator state */
+/****************************************************************/
+
+#if defined(MBEDTLS_PSA_INJECT_ENTROPY)
+psa_status_t mbedtls_psa_storage_inject_entropy(const unsigned char *seed,
+                                                size_t seed_size)
+{
+    psa_status_t status;
+    struct psa_storage_info_t p_info;
+
+    status = psa_its_get_info(PSA_CRYPTO_ITS_RANDOM_SEED_UID, &p_info);
+
+    if (PSA_ERROR_DOES_NOT_EXIST == status) { /* No seed exists */
+        status = psa_its_set(PSA_CRYPTO_ITS_RANDOM_SEED_UID, seed_size, seed, 0);
+    } else if (PSA_SUCCESS == status) {
+        /* You should not be here. Seed needs to be injected only once */
+        status = PSA_ERROR_NOT_PERMITTED;
+    }
+    return status;
+}
+#endif /* MBEDTLS_PSA_INJECT_ENTROPY */
+
+
+
+/****************************************************************/
+/* The end */
+/****************************************************************/
+
+#endif /* MBEDTLS_PSA_CRYPTO_STORAGE_C */
diff --git a/tf-psa-crypto/core/psa_crypto_storage.h b/tf-psa-crypto/core/psa_crypto_storage.h
new file mode 100644
index 0000000..d7f5b18
--- /dev/null
+++ b/tf-psa-crypto/core/psa_crypto_storage.h
@@ -0,0 +1,385 @@
+/**
+ * \file psa_crypto_storage.h
+ *
+ * \brief PSA cryptography module: Mbed TLS key storage
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef PSA_CRYPTO_STORAGE_H
+#define PSA_CRYPTO_STORAGE_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include "psa/crypto.h"
+#include "psa/crypto_se_driver.h"
+
+#include <stdint.h>
+#include <string.h>
+
+/* Limit the maximum key size in storage. This should have no effect
+ * since the key size is limited in memory. */
+#define PSA_CRYPTO_MAX_STORAGE_SIZE (PSA_BITS_TO_BYTES(PSA_MAX_KEY_BITS))
+/* Sanity check: a file size must fit in 32 bits. Allow a generous
+ * 64kB of metadata. */
+#if PSA_CRYPTO_MAX_STORAGE_SIZE > 0xffff0000
+#error "PSA_CRYPTO_MAX_STORAGE_SIZE > 0xffff0000"
+#endif
+
+/** The maximum permitted persistent slot number.
+ *
+ * In Mbed Crypto 0.1.0b:
+ * - Using the file backend, all key ids are ok except 0.
+ * - Using the ITS backend, all key ids are ok except 0xFFFFFF52
+ *   (#PSA_CRYPTO_ITS_RANDOM_SEED_UID) for which the file contains the
+ *   device's random seed (if this feature is enabled).
+ * - Only key ids from 1 to #MBEDTLS_PSA_KEY_SLOT_COUNT are actually used.
+ *
+ * Since we need to preserve the random seed, avoid using that key slot.
+ * Reserve a whole range of key slots just in case something else comes up.
+ *
+ * This limitation will probably become moot when we implement client
+ * separation for key storage.
+ */
+#define PSA_MAX_PERSISTENT_KEY_IDENTIFIER PSA_KEY_ID_VENDOR_MAX
+
+/**
+ * \brief Checks if persistent data is stored for the given key slot number
+ *
+ * This function checks if any key data or metadata exists for the key slot in
+ * the persistent storage.
+ *
+ * \param key           Persistent identifier to check.
+ *
+ * \retval 0
+ *         No persistent data present for slot number
+ * \retval 1
+ *         Persistent data present for slot number
+ */
+int psa_is_key_present_in_storage(const mbedtls_svc_key_id_t key);
+
+/**
+ * \brief Format key data and metadata and save to a location for given key
+ *        slot.
+ *
+ * This function formats the key data and metadata and saves it to a
+ * persistent storage backend. The storage location corresponding to the
+ * key slot must be empty, otherwise this function will fail. This function
+ * should be called after loading the key into an internal slot to ensure the
+ * persistent key is not saved into a storage location corresponding to an
+ * already occupied non-persistent key, as well as ensuring the key data is
+ * validated.
+ *
+ * Note: This function will only succeed for key buffers which are not
+ * empty. If passed a NULL pointer or zero-length, the function will fail
+ * with #PSA_ERROR_INVALID_ARGUMENT.
+ *
+ * \param[in] attr          The attributes of the key to save.
+ *                          The key identifier field in the attributes
+ *                          determines the key's location.
+ * \param[in] data          Buffer containing the key data.
+ * \param data_length       The number of bytes that make up the key data.
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_INVALID_ARGUMENT \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_STORAGE \emptydescription
+ * \retval #PSA_ERROR_STORAGE_FAILURE \emptydescription
+ * \retval #PSA_ERROR_ALREADY_EXISTS \emptydescription
+ * \retval #PSA_ERROR_DATA_INVALID \emptydescription
+ * \retval #PSA_ERROR_DATA_CORRUPT \emptydescription
+ */
+psa_status_t psa_save_persistent_key(const psa_key_attributes_t *attr,
+                                     const uint8_t *data,
+                                     const size_t data_length);
+
+/**
+ * \brief Parses key data and metadata and load persistent key for given
+ * key slot number.
+ *
+ * This function reads from a storage backend, parses the key data and
+ * metadata and writes them to the appropriate output parameters.
+ *
+ * Note: This function allocates a buffer and returns a pointer to it through
+ * the data parameter. On successful return, the pointer is guaranteed to be
+ * valid and the buffer contains at least one byte of data.
+ * psa_free_persistent_key_data() must be called on the data buffer
+ * afterwards to zeroize and free this buffer.
+ *
+ * \param[in,out] attr      On input, the key identifier field identifies
+ *                          the key to load. Other fields are ignored.
+ *                          On success, the attribute structure contains
+ *                          the key metadata that was loaded from storage.
+ * \param[out] data         Pointer to an allocated key data buffer on return.
+ * \param[out] data_length  The number of bytes that make up the key data.
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_DATA_INVALID \emptydescription
+ * \retval #PSA_ERROR_DATA_CORRUPT \emptydescription
+ * \retval #PSA_ERROR_DOES_NOT_EXIST \emptydescription
+ */
+psa_status_t psa_load_persistent_key(psa_key_attributes_t *attr,
+                                     uint8_t **data,
+                                     size_t *data_length);
+
+/**
+ * \brief Remove persistent data for the given key slot number.
+ *
+ * \param key           Persistent identifier of the key to remove
+ *                      from persistent storage.
+ *
+ * \retval #PSA_SUCCESS
+ *         The key was successfully removed,
+ *         or the key did not exist.
+ * \retval #PSA_ERROR_DATA_INVALID \emptydescription
+ */
+psa_status_t psa_destroy_persistent_key(const mbedtls_svc_key_id_t key);
+
+/**
+ * \brief Free the temporary buffer allocated by psa_load_persistent_key().
+ *
+ * This function must be called at some point after psa_load_persistent_key()
+ * to zeroize and free the memory allocated to the buffer in that function.
+ *
+ * \param key_data        Buffer for the key data.
+ * \param key_data_length Size of the key data buffer.
+ *
+ */
+void psa_free_persistent_key_data(uint8_t *key_data, size_t key_data_length);
+
+/**
+ * \brief Formats key data and metadata for persistent storage
+ *
+ * \param[in] data          Buffer containing the key data.
+ * \param data_length       Length of the key data buffer.
+ * \param[in] attr          The core attributes of the key.
+ * \param[out] storage_data Output buffer for the formatted data.
+ *
+ */
+void psa_format_key_data_for_storage(const uint8_t *data,
+                                     const size_t data_length,
+                                     const psa_key_attributes_t *attr,
+                                     uint8_t *storage_data);
+
+/**
+ * \brief Parses persistent storage data into key data and metadata
+ *
+ * \param[in] storage_data     Buffer for the storage data.
+ * \param storage_data_length  Length of the storage data buffer
+ * \param[out] key_data        On output, pointer to a newly allocated buffer
+ *                             containing the key data. This must be freed
+ *                             using psa_free_persistent_key_data()
+ * \param[out] key_data_length Length of the key data buffer
+ * \param[out] attr            On success, the attribute structure is filled
+ *                             with the loaded key metadata.
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_MEMORY \emptydescription
+ * \retval #PSA_ERROR_DATA_INVALID \emptydescription
+ */
+psa_status_t psa_parse_key_data_from_storage(const uint8_t *storage_data,
+                                             size_t storage_data_length,
+                                             uint8_t **key_data,
+                                             size_t *key_data_length,
+                                             psa_key_attributes_t *attr);
+
+#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
+/** This symbol is defined if transaction support is required. */
+#define PSA_CRYPTO_STORAGE_HAS_TRANSACTIONS 1
+#endif
+
+#if defined(PSA_CRYPTO_STORAGE_HAS_TRANSACTIONS)
+
+/** The type of transaction that is in progress.
+ */
+/* This is an integer type rather than an enum for two reasons: to support
+ * unknown values when loading a transaction file, and to ensure that the
+ * type has a known size.
+ */
+typedef uint16_t psa_crypto_transaction_type_t;
+
+/** No transaction is in progress.
+ *
+ * This has the value 0, so zero-initialization sets a transaction's type to
+ * this value.
+ */
+#define PSA_CRYPTO_TRANSACTION_NONE             ((psa_crypto_transaction_type_t) 0x0000)
+
+/** A key creation transaction.
+ *
+ * This is only used for keys in an external cryptoprocessor (secure element).
+ * Keys in RAM or in internal storage are created atomically in storage
+ * (simple file creation), so they do not need a transaction mechanism.
+ */
+#define PSA_CRYPTO_TRANSACTION_CREATE_KEY       ((psa_crypto_transaction_type_t) 0x0001)
+
+/** A key destruction transaction.
+ *
+ * This is only used for keys in an external cryptoprocessor (secure element).
+ * Keys in RAM or in internal storage are destroyed atomically in storage
+ * (simple file deletion), so they do not need a transaction mechanism.
+ */
+#define PSA_CRYPTO_TRANSACTION_DESTROY_KEY      ((psa_crypto_transaction_type_t) 0x0002)
+
+/** Transaction data.
+ *
+ * This type is designed to be serialized by writing the memory representation
+ * and reading it back on the same device.
+ *
+ * \note The transaction mechanism is not thread-safe. There can only be one
+ *       single active transaction at a time.
+ *       The transaction object is #psa_crypto_transaction.
+ *
+ * \note If an API call starts a transaction, it must complete this transaction
+ *       before returning to the application.
+ *
+ * The lifetime of a transaction is the following (note that only one
+ * transaction may be active at a time):
+ *
+ * -# Call psa_crypto_prepare_transaction() to initialize the transaction
+ *    object in memory and declare the type of transaction that is starting.
+ * -# Fill in the type-specific fields of #psa_crypto_transaction.
+ * -# Call psa_crypto_save_transaction() to start the transaction. This
+ *    saves the transaction data to internal storage.
+ * -# Perform the work of the transaction by modifying files, contacting
+ *    external entities, or whatever needs doing. Note that the transaction
+ *    may be interrupted by a power failure, so you need to have a way
+ *    recover from interruptions either by undoing what has been done
+ *    so far or by resuming where you left off.
+ * -# If there are intermediate stages in the transaction, update
+ *    the fields of #psa_crypto_transaction and call
+ *    psa_crypto_save_transaction() again when each stage is reached.
+ * -# When the transaction is over, call psa_crypto_stop_transaction() to
+ *    remove the transaction data in storage and in memory.
+ *
+ * If the system crashes while a transaction is in progress, psa_crypto_init()
+ * calls psa_crypto_load_transaction() and takes care of completing or
+ * rewinding the transaction. This is done in psa_crypto_recover_transaction()
+ * in psa_crypto.c. If you add a new type of transaction, be
+ * sure to add code for it in psa_crypto_recover_transaction().
+ */
+typedef union {
+    /* Each element of this union must have the following properties
+     * to facilitate serialization and deserialization:
+     *
+     * - The element is a struct.
+     * - The first field of the struct is `psa_crypto_transaction_type_t type`.
+     * - Elements of the struct are arranged such a way that there is
+     *   no padding.
+     */
+    struct psa_crypto_transaction_unknown_s {
+        psa_crypto_transaction_type_t type;
+        uint16_t unused1;
+        uint32_t unused2;
+        uint64_t unused3;
+        uint64_t unused4;
+    } unknown;
+    /* ::type is #PSA_CRYPTO_TRANSACTION_CREATE_KEY or
+     * #PSA_CRYPTO_TRANSACTION_DESTROY_KEY. */
+    struct psa_crypto_transaction_key_s {
+        psa_crypto_transaction_type_t type;
+        uint16_t unused1;
+        psa_key_lifetime_t lifetime;
+        psa_key_slot_number_t slot;
+        mbedtls_svc_key_id_t id;
+    } key;
+} psa_crypto_transaction_t;
+
+/** The single active transaction.
+ */
+extern psa_crypto_transaction_t psa_crypto_transaction;
+
+/** Prepare for a transaction.
+ *
+ * There must not be an ongoing transaction.
+ *
+ * \param type          The type of transaction to start.
+ */
+static inline void psa_crypto_prepare_transaction(
+    psa_crypto_transaction_type_t type)
+{
+    psa_crypto_transaction.unknown.type = type;
+}
+
+/** Save the transaction data to storage.
+ *
+ * You may call this function multiple times during a transaction to
+ * atomically update the transaction state.
+ *
+ * \retval #PSA_SUCCESS \emptydescription
+ * \retval #PSA_ERROR_DATA_CORRUPT \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_STORAGE \emptydescription
+ * \retval #PSA_ERROR_STORAGE_FAILURE \emptydescription
+ */
+psa_status_t psa_crypto_save_transaction(void);
+
+/** Load the transaction data from storage, if any.
+ *
+ * This function is meant to be called from psa_crypto_init() to recover
+ * in case a transaction was interrupted by a system crash.
+ *
+ * \retval #PSA_SUCCESS
+ *         The data about the ongoing transaction has been loaded to
+ *         #psa_crypto_transaction.
+ * \retval #PSA_ERROR_DOES_NOT_EXIST
+ *         There is no ongoing transaction.
+ * \retval #PSA_ERROR_STORAGE_FAILURE \emptydescription
+ * \retval #PSA_ERROR_DATA_INVALID \emptydescription
+ * \retval #PSA_ERROR_DATA_CORRUPT \emptydescription
+ */
+psa_status_t psa_crypto_load_transaction(void);
+
+/** Indicate that the current transaction is finished.
+ *
+ * Call this function at the very end of transaction processing.
+ * This function does not "commit" or "abort" the transaction: the storage
+ * subsystem has no concept of "commit" and "abort", just saving and
+ * removing the transaction information in storage.
+ *
+ * This function erases the transaction data in storage (if any) and
+ * resets the transaction data in memory.
+ *
+ * \retval #PSA_SUCCESS
+ *         There was transaction data in storage.
+ * \retval #PSA_ERROR_DOES_NOT_EXIST
+ *         There was no transaction data in storage.
+ * \retval #PSA_ERROR_STORAGE_FAILURE
+ *         It was impossible to determine whether there was transaction data
+ *         in storage, or the transaction data could not be erased.
+ */
+psa_status_t psa_crypto_stop_transaction(void);
+
+/** The ITS file identifier for the transaction data.
+ *
+ * 0xffffffNN = special file; 0x74 = 't' for transaction.
+ */
+#define PSA_CRYPTO_ITS_TRANSACTION_UID ((psa_key_id_t) 0xffffff74)
+
+#endif /* PSA_CRYPTO_STORAGE_HAS_TRANSACTIONS */
+
+#if defined(MBEDTLS_PSA_INJECT_ENTROPY)
+/** Backend side of mbedtls_psa_inject_entropy().
+ *
+ * This function stores the supplied data into the entropy seed file.
+ *
+ * \retval #PSA_SUCCESS
+ *         Success
+ * \retval #PSA_ERROR_STORAGE_FAILURE \emptydescription
+ * \retval #PSA_ERROR_INSUFFICIENT_STORAGE \emptydescription
+ * \retval #PSA_ERROR_NOT_PERMITTED
+ *         The entropy seed file already exists.
+ */
+psa_status_t mbedtls_psa_storage_inject_entropy(const unsigned char *seed,
+                                                size_t seed_size);
+#endif /* MBEDTLS_PSA_INJECT_ENTROPY */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* PSA_CRYPTO_STORAGE_H */
diff --git a/tf-psa-crypto/core/psa_its_file.c b/tf-psa-crypto/core/psa_its_file.c
new file mode 100644
index 0000000..9567137
--- /dev/null
+++ b/tf-psa-crypto/core/psa_its_file.c
@@ -0,0 +1,254 @@
+/*
+ *  PSA ITS simulator over stdio files.
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PSA_ITS_FILE_C)
+
+#include "mbedtls/platform.h"
+
+#if defined(_WIN32)
+#include <windows.h>
+#endif
+
+#include "psa_crypto_its.h"
+
+#include <limits.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <string.h>
+
+#if !defined(PSA_ITS_STORAGE_PREFIX)
+#define PSA_ITS_STORAGE_PREFIX ""
+#endif
+
+#define PSA_ITS_STORAGE_FILENAME_PATTERN "%08x%08x"
+#define PSA_ITS_STORAGE_SUFFIX ".psa_its"
+#define PSA_ITS_STORAGE_FILENAME_LENGTH         \
+    (sizeof(PSA_ITS_STORAGE_PREFIX) - 1 +    /*prefix without terminating 0*/ \
+     16 +  /*UID (64-bit number in hex)*/                               \
+     sizeof(PSA_ITS_STORAGE_SUFFIX) - 1 +    /*suffix without terminating 0*/ \
+     1 /*terminating null byte*/)
+#define PSA_ITS_STORAGE_TEMP \
+    PSA_ITS_STORAGE_PREFIX "tempfile" PSA_ITS_STORAGE_SUFFIX
+
+/* The maximum value of psa_storage_info_t.size */
+#define PSA_ITS_MAX_SIZE 0xffffffff
+
+#define PSA_ITS_MAGIC_STRING "PSA\0ITS\0"
+#define PSA_ITS_MAGIC_LENGTH 8
+
+/* As rename fails on Windows if the new filepath already exists,
+ * use MoveFileExA with the MOVEFILE_REPLACE_EXISTING flag instead.
+ * Returns 0 on success, nonzero on failure. */
+#if defined(_WIN32)
+#define rename_replace_existing(oldpath, newpath) \
+    (!MoveFileExA(oldpath, newpath, MOVEFILE_REPLACE_EXISTING))
+#else
+#define rename_replace_existing(oldpath, newpath) rename(oldpath, newpath)
+#endif
+
+typedef struct {
+    uint8_t magic[PSA_ITS_MAGIC_LENGTH];
+    uint8_t size[sizeof(uint32_t)];
+    uint8_t flags[sizeof(psa_storage_create_flags_t)];
+} psa_its_file_header_t;
+
+static void psa_its_fill_filename(psa_storage_uid_t uid, char *filename)
+{
+    /* Break up the UID into two 32-bit pieces so as not to rely on
+     * long long support in snprintf. */
+    mbedtls_snprintf(filename, PSA_ITS_STORAGE_FILENAME_LENGTH,
+                     "%s" PSA_ITS_STORAGE_FILENAME_PATTERN "%s",
+                     PSA_ITS_STORAGE_PREFIX,
+                     (unsigned) (uid >> 32),
+                     (unsigned) (uid & 0xffffffff),
+                     PSA_ITS_STORAGE_SUFFIX);
+}
+
+static psa_status_t psa_its_read_file(psa_storage_uid_t uid,
+                                      struct psa_storage_info_t *p_info,
+                                      FILE **p_stream)
+{
+    char filename[PSA_ITS_STORAGE_FILENAME_LENGTH];
+    psa_its_file_header_t header;
+    size_t n;
+
+    *p_stream = NULL;
+    psa_its_fill_filename(uid, filename);
+    *p_stream = fopen(filename, "rb");
+    if (*p_stream == NULL) {
+        return PSA_ERROR_DOES_NOT_EXIST;
+    }
+
+    /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */
+    mbedtls_setbuf(*p_stream, NULL);
+
+    n = fread(&header, 1, sizeof(header), *p_stream);
+    if (n != sizeof(header)) {
+        return PSA_ERROR_DATA_CORRUPT;
+    }
+    if (memcmp(header.magic, PSA_ITS_MAGIC_STRING,
+               PSA_ITS_MAGIC_LENGTH) != 0) {
+        return PSA_ERROR_DATA_CORRUPT;
+    }
+
+    p_info->size  = MBEDTLS_GET_UINT32_LE(header.size, 0);
+    p_info->flags = MBEDTLS_GET_UINT32_LE(header.flags, 0);
+
+    return PSA_SUCCESS;
+}
+
+psa_status_t psa_its_get_info(psa_storage_uid_t uid,
+                              struct psa_storage_info_t *p_info)
+{
+    psa_status_t status;
+    FILE *stream = NULL;
+    status = psa_its_read_file(uid, p_info, &stream);
+    if (stream != NULL) {
+        fclose(stream);
+    }
+    return status;
+}
+
+psa_status_t psa_its_get(psa_storage_uid_t uid,
+                         uint32_t data_offset,
+                         uint32_t data_length,
+                         void *p_data,
+                         size_t *p_data_length)
+{
+    psa_status_t status;
+    FILE *stream = NULL;
+    size_t n;
+    struct psa_storage_info_t info;
+
+    status = psa_its_read_file(uid, &info, &stream);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+    status = PSA_ERROR_INVALID_ARGUMENT;
+    if (data_offset + data_length < data_offset) {
+        goto exit;
+    }
+#if SIZE_MAX < 0xffffffff
+    if (data_offset + data_length > SIZE_MAX) {
+        goto exit;
+    }
+#endif
+    if (data_offset + data_length > info.size) {
+        goto exit;
+    }
+
+    status = PSA_ERROR_STORAGE_FAILURE;
+#if LONG_MAX < 0xffffffff
+    while (data_offset > LONG_MAX) {
+        if (fseek(stream, LONG_MAX, SEEK_CUR) != 0) {
+            goto exit;
+        }
+        data_offset -= LONG_MAX;
+    }
+#endif
+    if (fseek(stream, data_offset, SEEK_CUR) != 0) {
+        goto exit;
+    }
+    n = fread(p_data, 1, data_length, stream);
+    if (n != data_length) {
+        goto exit;
+    }
+    status = PSA_SUCCESS;
+    if (p_data_length != NULL) {
+        *p_data_length = n;
+    }
+
+exit:
+    if (stream != NULL) {
+        fclose(stream);
+    }
+    return status;
+}
+
+psa_status_t psa_its_set(psa_storage_uid_t uid,
+                         uint32_t data_length,
+                         const void *p_data,
+                         psa_storage_create_flags_t create_flags)
+{
+    if (uid == 0) {
+        return PSA_ERROR_INVALID_HANDLE;
+    }
+
+    psa_status_t status = PSA_ERROR_STORAGE_FAILURE;
+    char filename[PSA_ITS_STORAGE_FILENAME_LENGTH];
+    FILE *stream = NULL;
+    psa_its_file_header_t header;
+    size_t n;
+
+    memcpy(header.magic, PSA_ITS_MAGIC_STRING, PSA_ITS_MAGIC_LENGTH);
+    MBEDTLS_PUT_UINT32_LE(data_length, header.size, 0);
+    MBEDTLS_PUT_UINT32_LE(create_flags, header.flags, 0);
+
+    psa_its_fill_filename(uid, filename);
+    stream = fopen(PSA_ITS_STORAGE_TEMP, "wb");
+
+    if (stream == NULL) {
+        goto exit;
+    }
+
+    /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */
+    mbedtls_setbuf(stream, NULL);
+
+    status = PSA_ERROR_INSUFFICIENT_STORAGE;
+    n = fwrite(&header, 1, sizeof(header), stream);
+    if (n != sizeof(header)) {
+        goto exit;
+    }
+    if (data_length != 0) {
+        n = fwrite(p_data, 1, data_length, stream);
+        if (n != data_length) {
+            goto exit;
+        }
+    }
+    status = PSA_SUCCESS;
+
+exit:
+    if (stream != NULL) {
+        int ret = fclose(stream);
+        if (status == PSA_SUCCESS && ret != 0) {
+            status = PSA_ERROR_INSUFFICIENT_STORAGE;
+        }
+    }
+    if (status == PSA_SUCCESS) {
+        if (rename_replace_existing(PSA_ITS_STORAGE_TEMP, filename) != 0) {
+            status = PSA_ERROR_STORAGE_FAILURE;
+        }
+    }
+    /* The temporary file may still exist, but only in failure cases where
+     * we're already reporting an error. So there's nothing we can do on
+     * failure. If the function succeeded, and in some error cases, the
+     * temporary file doesn't exist and so remove() is expected to fail.
+     * Thus we just ignore the return status of remove(). */
+    (void) remove(PSA_ITS_STORAGE_TEMP);
+    return status;
+}
+
+psa_status_t psa_its_remove(psa_storage_uid_t uid)
+{
+    char filename[PSA_ITS_STORAGE_FILENAME_LENGTH];
+    FILE *stream;
+    psa_its_fill_filename(uid, filename);
+    stream = fopen(filename, "rb");
+    if (stream == NULL) {
+        return PSA_ERROR_DOES_NOT_EXIST;
+    }
+    fclose(stream);
+    if (remove(filename) != 0) {
+        return PSA_ERROR_STORAGE_FAILURE;
+    }
+    return PSA_SUCCESS;
+}
+
+#endif /* MBEDTLS_PSA_ITS_FILE_C */
diff --git a/tf-psa-crypto/core/psa_util.c b/tf-psa-crypto/core/psa_util.c
new file mode 100644
index 0000000..4ccc5b0
--- /dev/null
+++ b/tf-psa-crypto/core/psa_util.c
@@ -0,0 +1,602 @@
+/*
+ *  PSA hashing layer on top of Mbed TLS software crypto
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+/* This is needed for MBEDTLS_ERR_XXX macros */
+#include <mbedtls/error.h>
+
+#if defined(MBEDTLS_ASN1_WRITE_C)
+#include <mbedtls/asn1write.h>
+#include <psa/crypto_sizes.h>
+#endif
+
+#include "psa_util_internal.h"
+
+#if defined(MBEDTLS_PSA_CRYPTO_CLIENT)
+
+#include <psa/crypto.h>
+
+#if defined(MBEDTLS_MD_LIGHT)
+#include <mbedtls/md.h>
+#endif
+#if defined(MBEDTLS_LMS_C)
+#include <mbedtls/lms.h>
+#endif
+#if defined(MBEDTLS_SSL_TLS_C) && \
+    (defined(MBEDTLS_USE_PSA_CRYPTO) || defined(MBEDTLS_SSL_PROTO_TLS1_3))
+#include <mbedtls/ssl.h>
+#endif
+#if defined(PSA_WANT_KEY_TYPE_RSA_PUBLIC_KEY) ||    \
+    defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC)
+#include <mbedtls/rsa.h>
+#endif
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && \
+    defined(PSA_WANT_KEY_TYPE_ECC_PUBLIC_KEY)
+#include <mbedtls/ecp.h>
+#endif
+#if defined(MBEDTLS_PK_C)
+#include <mbedtls/pk.h>
+#endif
+#if defined(MBEDTLS_BLOCK_CIPHER_SOME_PSA)
+#include <mbedtls/cipher.h>
+#endif
+#include <mbedtls/entropy.h>
+
+/* PSA_SUCCESS is kept at the top of each error table since
+ * it's the most common status when everything functions properly. */
+#if defined(MBEDTLS_MD_LIGHT)
+const mbedtls_error_pair_t psa_to_md_errors[] =
+{
+    { PSA_SUCCESS,                     0 },
+    { PSA_ERROR_NOT_SUPPORTED,         MBEDTLS_ERR_MD_FEATURE_UNAVAILABLE },
+    { PSA_ERROR_INVALID_ARGUMENT,      MBEDTLS_ERR_MD_BAD_INPUT_DATA },
+    { PSA_ERROR_INSUFFICIENT_MEMORY,   MBEDTLS_ERR_MD_ALLOC_FAILED }
+};
+#endif
+
+#if defined(MBEDTLS_BLOCK_CIPHER_SOME_PSA)
+const mbedtls_error_pair_t psa_to_cipher_errors[] =
+{
+    { PSA_SUCCESS,                     0 },
+    { PSA_ERROR_NOT_SUPPORTED,         MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE },
+    { PSA_ERROR_INVALID_ARGUMENT,      MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA },
+    { PSA_ERROR_INSUFFICIENT_MEMORY,   MBEDTLS_ERR_CIPHER_ALLOC_FAILED }
+};
+#endif
+
+#if defined(MBEDTLS_LMS_C)
+const mbedtls_error_pair_t psa_to_lms_errors[] =
+{
+    { PSA_SUCCESS,                     0 },
+    { PSA_ERROR_BUFFER_TOO_SMALL,      MBEDTLS_ERR_LMS_BUFFER_TOO_SMALL },
+    { PSA_ERROR_INVALID_ARGUMENT,      MBEDTLS_ERR_LMS_BAD_INPUT_DATA }
+};
+#endif
+
+#if defined(MBEDTLS_SSL_TLS_C) && \
+    (defined(MBEDTLS_USE_PSA_CRYPTO) || defined(MBEDTLS_SSL_PROTO_TLS1_3))
+const mbedtls_error_pair_t psa_to_ssl_errors[] =
+{
+    { PSA_SUCCESS,                     0 },
+    { PSA_ERROR_INSUFFICIENT_MEMORY,   MBEDTLS_ERR_SSL_ALLOC_FAILED },
+    { PSA_ERROR_NOT_SUPPORTED,         MBEDTLS_ERR_SSL_FEATURE_UNAVAILABLE },
+    { PSA_ERROR_INVALID_SIGNATURE,     MBEDTLS_ERR_SSL_INVALID_MAC },
+    { PSA_ERROR_INVALID_ARGUMENT,      MBEDTLS_ERR_SSL_BAD_INPUT_DATA },
+    { PSA_ERROR_BAD_STATE,             MBEDTLS_ERR_SSL_INTERNAL_ERROR },
+    { PSA_ERROR_BUFFER_TOO_SMALL,      MBEDTLS_ERR_SSL_BUFFER_TOO_SMALL }
+};
+#endif
+
+#if defined(PSA_WANT_KEY_TYPE_RSA_PUBLIC_KEY) ||    \
+    defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC)
+const mbedtls_error_pair_t psa_to_pk_rsa_errors[] =
+{
+    { PSA_SUCCESS,                     0 },
+    { PSA_ERROR_NOT_PERMITTED,         MBEDTLS_ERR_RSA_BAD_INPUT_DATA },
+    { PSA_ERROR_INVALID_ARGUMENT,      MBEDTLS_ERR_RSA_BAD_INPUT_DATA },
+    { PSA_ERROR_INVALID_HANDLE,        MBEDTLS_ERR_RSA_BAD_INPUT_DATA },
+    { PSA_ERROR_BUFFER_TOO_SMALL,      MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE },
+    { PSA_ERROR_INSUFFICIENT_ENTROPY,  MBEDTLS_ERR_RSA_RNG_FAILED },
+    { PSA_ERROR_INVALID_SIGNATURE,     MBEDTLS_ERR_RSA_VERIFY_FAILED },
+    { PSA_ERROR_INVALID_PADDING,       MBEDTLS_ERR_RSA_INVALID_PADDING }
+};
+#endif
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && \
+    defined(PSA_WANT_KEY_TYPE_ECC_PUBLIC_KEY)
+const mbedtls_error_pair_t psa_to_pk_ecdsa_errors[] =
+{
+    { PSA_SUCCESS,                     0 },
+    { PSA_ERROR_NOT_PERMITTED,         MBEDTLS_ERR_ECP_BAD_INPUT_DATA },
+    { PSA_ERROR_INVALID_ARGUMENT,      MBEDTLS_ERR_ECP_BAD_INPUT_DATA },
+    { PSA_ERROR_INVALID_HANDLE,        MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE },
+    { PSA_ERROR_BUFFER_TOO_SMALL,      MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL },
+    { PSA_ERROR_INSUFFICIENT_ENTROPY,  MBEDTLS_ERR_ECP_RANDOM_FAILED },
+    { PSA_ERROR_INVALID_SIGNATURE,     MBEDTLS_ERR_ECP_VERIFY_FAILED }
+};
+#endif
+
+int psa_generic_status_to_mbedtls(psa_status_t status)
+{
+    switch (status) {
+        case PSA_SUCCESS:
+            return 0;
+        case PSA_ERROR_NOT_SUPPORTED:
+            return MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED;
+        case PSA_ERROR_CORRUPTION_DETECTED:
+            return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+        case PSA_ERROR_COMMUNICATION_FAILURE:
+        case PSA_ERROR_HARDWARE_FAILURE:
+            return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED;
+        case PSA_ERROR_NOT_PERMITTED:
+        default:
+            return MBEDTLS_ERR_ERROR_GENERIC_ERROR;
+    }
+}
+
+int psa_status_to_mbedtls(psa_status_t status,
+                          const mbedtls_error_pair_t *local_translations,
+                          size_t local_errors_num,
+                          int (*fallback_f)(psa_status_t))
+{
+    for (size_t i = 0; i < local_errors_num; i++) {
+        if (status == local_translations[i].psa_status) {
+            return local_translations[i].mbedtls_error;
+        }
+    }
+    return fallback_f(status);
+}
+
+#if defined(MBEDTLS_PK_C)
+int psa_pk_status_to_mbedtls(psa_status_t status)
+{
+    switch (status) {
+        case PSA_ERROR_INVALID_HANDLE:
+            return MBEDTLS_ERR_PK_KEY_INVALID_FORMAT;
+        case PSA_ERROR_BUFFER_TOO_SMALL:
+            return MBEDTLS_ERR_PK_BUFFER_TOO_SMALL;
+        case PSA_ERROR_NOT_SUPPORTED:
+            return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+        case PSA_ERROR_INVALID_ARGUMENT:
+            return MBEDTLS_ERR_PK_INVALID_ALG;
+        case PSA_ERROR_NOT_PERMITTED:
+            return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+        case PSA_ERROR_INSUFFICIENT_MEMORY:
+            return MBEDTLS_ERR_PK_ALLOC_FAILED;
+        case PSA_ERROR_BAD_STATE:
+            return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+        case PSA_ERROR_DATA_CORRUPT:
+        case PSA_ERROR_DATA_INVALID:
+        case PSA_ERROR_STORAGE_FAILURE:
+            return MBEDTLS_ERR_PK_FILE_IO_ERROR;
+        default:
+            return psa_generic_status_to_mbedtls(status);
+    }
+}
+#endif /* MBEDTLS_PK_C */
+
+/****************************************************************/
+/* Key management */
+/****************************************************************/
+
+#if defined(PSA_WANT_KEY_TYPE_ECC_PUBLIC_KEY)
+psa_ecc_family_t mbedtls_ecc_group_to_psa(mbedtls_ecp_group_id grpid,
+                                          size_t *bits)
+{
+    switch (grpid) {
+#if defined(MBEDTLS_ECP_HAVE_SECP192R1)
+        case MBEDTLS_ECP_DP_SECP192R1:
+            *bits = 192;
+            return PSA_ECC_FAMILY_SECP_R1;
+#endif
+#if defined(MBEDTLS_ECP_HAVE_SECP224R1)
+        case MBEDTLS_ECP_DP_SECP224R1:
+            *bits = 224;
+            return PSA_ECC_FAMILY_SECP_R1;
+#endif
+#if defined(MBEDTLS_ECP_HAVE_SECP256R1)
+        case MBEDTLS_ECP_DP_SECP256R1:
+            *bits = 256;
+            return PSA_ECC_FAMILY_SECP_R1;
+#endif
+#if defined(MBEDTLS_ECP_HAVE_SECP384R1)
+        case MBEDTLS_ECP_DP_SECP384R1:
+            *bits = 384;
+            return PSA_ECC_FAMILY_SECP_R1;
+#endif
+#if defined(MBEDTLS_ECP_HAVE_SECP521R1)
+        case MBEDTLS_ECP_DP_SECP521R1:
+            *bits = 521;
+            return PSA_ECC_FAMILY_SECP_R1;
+#endif
+#if defined(MBEDTLS_ECP_HAVE_BP256R1)
+        case MBEDTLS_ECP_DP_BP256R1:
+            *bits = 256;
+            return PSA_ECC_FAMILY_BRAINPOOL_P_R1;
+#endif
+#if defined(MBEDTLS_ECP_HAVE_BP384R1)
+        case MBEDTLS_ECP_DP_BP384R1:
+            *bits = 384;
+            return PSA_ECC_FAMILY_BRAINPOOL_P_R1;
+#endif
+#if defined(MBEDTLS_ECP_HAVE_BP512R1)
+        case MBEDTLS_ECP_DP_BP512R1:
+            *bits = 512;
+            return PSA_ECC_FAMILY_BRAINPOOL_P_R1;
+#endif
+#if defined(MBEDTLS_ECP_HAVE_CURVE25519)
+        case MBEDTLS_ECP_DP_CURVE25519:
+            *bits = 255;
+            return PSA_ECC_FAMILY_MONTGOMERY;
+#endif
+#if defined(MBEDTLS_ECP_HAVE_SECP192K1)
+        case MBEDTLS_ECP_DP_SECP192K1:
+            *bits = 192;
+            return PSA_ECC_FAMILY_SECP_K1;
+#endif
+#if defined(MBEDTLS_ECP_HAVE_SECP224K1)
+    /* secp224k1 is not and will not be supported in PSA (#3541). */
+#endif
+#if defined(MBEDTLS_ECP_HAVE_SECP256K1)
+        case MBEDTLS_ECP_DP_SECP256K1:
+            *bits = 256;
+            return PSA_ECC_FAMILY_SECP_K1;
+#endif
+#if defined(MBEDTLS_ECP_HAVE_CURVE448)
+        case MBEDTLS_ECP_DP_CURVE448:
+            *bits = 448;
+            return PSA_ECC_FAMILY_MONTGOMERY;
+#endif
+        default:
+            *bits = 0;
+            return 0;
+    }
+}
+
+mbedtls_ecp_group_id mbedtls_ecc_group_from_psa(psa_ecc_family_t family,
+                                                size_t bits)
+{
+    switch (family) {
+        case PSA_ECC_FAMILY_SECP_R1:
+            switch (bits) {
+#if defined(PSA_WANT_ECC_SECP_R1_192)
+                case 192:
+                    return MBEDTLS_ECP_DP_SECP192R1;
+#endif
+#if defined(PSA_WANT_ECC_SECP_R1_224)
+                case 224:
+                    return MBEDTLS_ECP_DP_SECP224R1;
+#endif
+#if defined(PSA_WANT_ECC_SECP_R1_256)
+                case 256:
+                    return MBEDTLS_ECP_DP_SECP256R1;
+#endif
+#if defined(PSA_WANT_ECC_SECP_R1_384)
+                case 384:
+                    return MBEDTLS_ECP_DP_SECP384R1;
+#endif
+#if defined(PSA_WANT_ECC_SECP_R1_521)
+                case 521:
+                    return MBEDTLS_ECP_DP_SECP521R1;
+#endif
+            }
+            break;
+
+        case PSA_ECC_FAMILY_BRAINPOOL_P_R1:
+            switch (bits) {
+#if defined(PSA_WANT_ECC_BRAINPOOL_P_R1_256)
+                case 256:
+                    return MBEDTLS_ECP_DP_BP256R1;
+#endif
+#if defined(PSA_WANT_ECC_BRAINPOOL_P_R1_384)
+                case 384:
+                    return MBEDTLS_ECP_DP_BP384R1;
+#endif
+#if defined(PSA_WANT_ECC_BRAINPOOL_P_R1_512)
+                case 512:
+                    return MBEDTLS_ECP_DP_BP512R1;
+#endif
+            }
+            break;
+
+        case PSA_ECC_FAMILY_MONTGOMERY:
+            switch (bits) {
+#if defined(PSA_WANT_ECC_MONTGOMERY_255)
+                case 255:
+                    return MBEDTLS_ECP_DP_CURVE25519;
+#endif
+#if defined(PSA_WANT_ECC_MONTGOMERY_448)
+                case 448:
+                    return MBEDTLS_ECP_DP_CURVE448;
+#endif
+            }
+            break;
+
+        case PSA_ECC_FAMILY_SECP_K1:
+            switch (bits) {
+#if defined(PSA_WANT_ECC_SECP_K1_192)
+                case 192:
+                    return MBEDTLS_ECP_DP_SECP192K1;
+#endif
+#if defined(PSA_WANT_ECC_SECP_K1_224)
+            /* secp224k1 is not and will not be supported in PSA (#3541). */
+#endif
+#if defined(PSA_WANT_ECC_SECP_K1_256)
+                case 256:
+                    return MBEDTLS_ECP_DP_SECP256K1;
+#endif
+            }
+            break;
+    }
+
+    return MBEDTLS_ECP_DP_NONE;
+}
+#endif /* PSA_WANT_KEY_TYPE_ECC_PUBLIC_KEY */
+
+/* Wrapper function allowing the classic API to use the PSA RNG.
+ *
+ * `mbedtls_psa_get_random(MBEDTLS_PSA_RANDOM_STATE, ...)` calls
+ * `psa_generate_random(...)`. The state parameter is ignored since the
+ * PSA API doesn't support passing an explicit state.
+ */
+int mbedtls_psa_get_random(void *p_rng,
+                           unsigned char *output,
+                           size_t output_size)
+{
+    /* This function takes a pointer to the RNG state because that's what
+     * classic mbedtls functions using an RNG expect. The PSA RNG manages
+     * its own state internally and doesn't let the caller access that state.
+     * So we just ignore the state parameter, and in practice we'll pass
+     * NULL. */
+    (void) p_rng;
+    psa_status_t status = psa_generate_random(output, output_size);
+    if (status == PSA_SUCCESS) {
+        return 0;
+    } else {
+        return MBEDTLS_ERR_ENTROPY_SOURCE_FAILED;
+    }
+}
+
+#endif /* MBEDTLS_PSA_CRYPTO_CLIENT */
+
+#if defined(MBEDTLS_PSA_UTIL_HAVE_ECDSA)
+
+/**
+ * \brief  Convert a single raw coordinate to DER ASN.1 format. The output der
+ *         buffer is filled backward (i.e. starting from its end).
+ *
+ * \param raw_buf           Buffer containing the raw coordinate to be
+ *                          converted.
+ * \param raw_len           Length of raw_buf in bytes. This must be > 0.
+ * \param der_buf_start     Pointer to the beginning of the buffer which
+ *                          will be filled with the DER converted data.
+ * \param der_buf_end       End of the buffer used to store the DER output.
+ *
+ * \return                  On success, the amount of data (in bytes) written to
+ *                          the DER buffer.
+ * \return                  MBEDTLS_ERR_ASN1_BUF_TOO_SMALL if the provided der
+ *                          buffer is too small to contain all the converted data.
+ * \return                  MBEDTLS_ERR_ASN1_INVALID_DATA if the input raw
+ *                          coordinate is null (i.e. all zeros).
+ *
+ * \warning                 Raw and der buffer must not be overlapping.
+ */
+static int convert_raw_to_der_single_int(const unsigned char *raw_buf, size_t raw_len,
+                                         unsigned char *der_buf_start,
+                                         unsigned char *der_buf_end)
+{
+    unsigned char *p = der_buf_end;
+    int len;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    /* ASN.1 DER encoding requires minimal length, so skip leading 0s.
+     * Provided input MPIs should not be 0, but as a failsafe measure, still
+     * detect that and return error in case. */
+    while (*raw_buf == 0x00) {
+        ++raw_buf;
+        --raw_len;
+        if (raw_len == 0) {
+            return MBEDTLS_ERR_ASN1_INVALID_DATA;
+        }
+    }
+    len = (int) raw_len;
+
+    /* Copy the raw coordinate to the end of der_buf. */
+    if ((p - der_buf_start) < len) {
+        return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+    }
+    p -= len;
+    memcpy(p, raw_buf, len);
+
+    /* If MSb is 1, ASN.1 requires that we prepend a 0. */
+    if (*p & 0x80) {
+        if ((p - der_buf_start) < 1) {
+            return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+        }
+        --p;
+        *p = 0x00;
+        ++len;
+    }
+
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(&p, der_buf_start, len));
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(&p, der_buf_start, MBEDTLS_ASN1_INTEGER));
+
+    return len;
+}
+
+int mbedtls_ecdsa_raw_to_der(size_t bits, const unsigned char *raw, size_t raw_len,
+                             unsigned char *der, size_t der_size, size_t *der_len)
+{
+    unsigned char r[PSA_BITS_TO_BYTES(PSA_VENDOR_ECC_MAX_CURVE_BITS)];
+    unsigned char s[PSA_BITS_TO_BYTES(PSA_VENDOR_ECC_MAX_CURVE_BITS)];
+    const size_t coordinate_len = PSA_BITS_TO_BYTES(bits);
+    size_t len = 0;
+    unsigned char *p = der + der_size;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if (raw_len != (2 * coordinate_len)) {
+        return MBEDTLS_ERR_ASN1_INVALID_DATA;
+    }
+
+    /* Since raw and der buffers might overlap, dump r and s before starting
+     * the conversion. */
+    memcpy(r, raw, coordinate_len);
+    memcpy(s, raw + coordinate_len, coordinate_len);
+
+    /* der buffer will initially be written starting from its end so we pick s
+     * first and then r. */
+    ret = convert_raw_to_der_single_int(s, coordinate_len, der, p);
+    if (ret < 0) {
+        return ret;
+    }
+    p -= ret;
+    len += ret;
+
+    ret = convert_raw_to_der_single_int(r, coordinate_len, der, p);
+    if (ret < 0) {
+        return ret;
+    }
+    p -= ret;
+    len += ret;
+
+    /* Add ASN.1 header (len + tag). */
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(&p, der, len));
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(&p, der,
+                                                     MBEDTLS_ASN1_CONSTRUCTED |
+                                                     MBEDTLS_ASN1_SEQUENCE));
+
+    /* memmove the content of der buffer to its beginnig. */
+    memmove(der, p, len);
+    *der_len = len;
+
+    return 0;
+}
+
+/**
+ * \brief Convert a single integer from ASN.1 DER format to raw.
+ *
+ * \param der               Buffer containing the DER integer value to be
+ *                          converted.
+ * \param der_len           Length of the der buffer in bytes.
+ * \param raw               Output buffer that will be filled with the
+ *                          converted data. This should be at least
+ *                          coordinate_size bytes and it must be zeroed before
+ *                          calling this function.
+ * \param coordinate_size   Size (in bytes) of a single coordinate in raw
+ *                          format.
+ *
+ * \return                  On success, the amount of DER data parsed from the
+ *                          provided der buffer.
+ * \return                  MBEDTLS_ERR_ASN1_UNEXPECTED_TAG if the integer tag
+ *                          is missing in the der buffer.
+ * \return                  MBEDTLS_ERR_ASN1_LENGTH_MISMATCH if the integer
+ *                          is null (i.e. all zeros) or if the output raw buffer
+ *                          is too small to contain the converted raw value.
+ *
+ * \warning                 Der and raw buffers must not be overlapping.
+ */
+static int convert_der_to_raw_single_int(unsigned char *der, size_t der_len,
+                                         unsigned char *raw, size_t coordinate_size)
+{
+    unsigned char *p = der;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t unpadded_len, padding_len = 0;
+
+    /* Get the length of ASN.1 element (i.e. the integer we need to parse). */
+    ret = mbedtls_asn1_get_tag(&p, p + der_len, &unpadded_len,
+                               MBEDTLS_ASN1_INTEGER);
+    if (ret != 0) {
+        return ret;
+    }
+
+    /* It's invalid to have:
+     * - unpadded_len == 0.
+     * - MSb set without a leading 0x00 (leading 0x00 is checked below). */
+    if (((unpadded_len == 0) || (*p & 0x80) != 0)) {
+        return MBEDTLS_ERR_ASN1_INVALID_DATA;
+    }
+
+    /* Skip possible leading zero */
+    if (*p == 0x00) {
+        p++;
+        unpadded_len--;
+        /* It is not allowed to have more than 1 leading zero.
+         * Ignore the case in which unpadded_len = 0 because that's a 0 encoded
+         * in ASN.1 format (i.e. 020100). */
+        if ((unpadded_len > 0) && (*p == 0x00)) {
+            return MBEDTLS_ERR_ASN1_INVALID_DATA;
+        }
+    }
+
+    if (unpadded_len > coordinate_size) {
+        /* Parsed number is longer than the maximum expected value. */
+        return MBEDTLS_ERR_ASN1_INVALID_DATA;
+    }
+    padding_len = coordinate_size - unpadded_len;
+    /* raw buffer was already zeroed by the calling function so zero-padding
+     * operation is skipped here. */
+    memcpy(raw + padding_len, p, unpadded_len);
+    p += unpadded_len;
+
+    return (int) (p - der);
+}
+
+int mbedtls_ecdsa_der_to_raw(size_t bits, const unsigned char *der, size_t der_len,
+                             unsigned char *raw, size_t raw_size, size_t *raw_len)
+{
+    unsigned char raw_tmp[PSA_VENDOR_ECDSA_SIGNATURE_MAX_SIZE];
+    unsigned char *p = (unsigned char *) der;
+    size_t data_len;
+    size_t coordinate_size = PSA_BITS_TO_BYTES(bits);
+    int ret;
+
+    /* The output raw buffer should be at least twice the size of a raw
+     * coordinate in order to store r and s. */
+    if (raw_size < coordinate_size * 2) {
+        return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+    }
+
+    /* Check that the provided input DER buffer has the right header. */
+    ret = mbedtls_asn1_get_tag(&p, der + der_len, &data_len,
+                               MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE);
+    if (ret != 0) {
+        return ret;
+    }
+
+    memset(raw_tmp, 0, 2 * coordinate_size);
+
+    /* Extract r */
+    ret = convert_der_to_raw_single_int(p, data_len, raw_tmp, coordinate_size);
+    if (ret < 0) {
+        return ret;
+    }
+    p += ret;
+    data_len -= ret;
+
+    /* Extract s */
+    ret = convert_der_to_raw_single_int(p, data_len, raw_tmp + coordinate_size,
+                                        coordinate_size);
+    if (ret < 0) {
+        return ret;
+    }
+    p += ret;
+    data_len -= ret;
+
+    /* Check that we consumed all the input der data. */
+    if ((size_t) (p - der) != der_len) {
+        return MBEDTLS_ERR_ASN1_LENGTH_MISMATCH;
+    }
+
+    memcpy(raw, raw_tmp, 2 * coordinate_size);
+    *raw_len = 2 * coordinate_size;
+
+    return 0;
+}
+
+#endif /* MBEDTLS_PSA_UTIL_HAVE_ECDSA */
diff --git a/tf-psa-crypto/core/psa_util_internal.h b/tf-psa-crypto/core/psa_util_internal.h
new file mode 100644
index 0000000..70a08a0
--- /dev/null
+++ b/tf-psa-crypto/core/psa_util_internal.h
@@ -0,0 +1,100 @@
+/**
+ * \file psa_util_internal.h
+ *
+ * \brief Internal utility functions for use of PSA Crypto.
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_PSA_UTIL_INTERNAL_H
+#define MBEDTLS_PSA_UTIL_INTERNAL_H
+
+/* Include the public header so that users only need one include. */
+#include "mbedtls/psa_util.h"
+
+#include "psa/crypto.h"
+
+#if defined(MBEDTLS_PSA_CRYPTO_CLIENT)
+
+/*************************************************************************
+ * FFDH
+ ************************************************************************/
+
+#define MBEDTLS_PSA_MAX_FFDH_PUBKEY_LENGTH \
+    PSA_KEY_EXPORT_FFDH_PUBLIC_KEY_MAX_SIZE(PSA_VENDOR_FFDH_MAX_KEY_BITS)
+
+/*************************************************************************
+ * ECC
+ ************************************************************************/
+
+#define MBEDTLS_PSA_MAX_EC_PUBKEY_LENGTH \
+    PSA_KEY_EXPORT_ECC_PUBLIC_KEY_MAX_SIZE(PSA_VENDOR_ECC_MAX_CURVE_BITS)
+
+#define MBEDTLS_PSA_MAX_EC_KEY_PAIR_LENGTH \
+    PSA_KEY_EXPORT_ECC_KEY_PAIR_MAX_SIZE(PSA_VENDOR_ECC_MAX_CURVE_BITS)
+
+/*************************************************************************
+ * Error translation
+ ************************************************************************/
+
+typedef struct {
+    /* Error codes used by PSA crypto are in -255..-128, fitting in 16 bits. */
+    int16_t psa_status;
+    /* Error codes used by Mbed TLS are in one of the ranges
+     * -127..-1 (low-level) or -32767..-4096 (high-level with a low-level
+     * code optionally added), fitting in 16 bits. */
+    int16_t mbedtls_error;
+} mbedtls_error_pair_t;
+
+#if defined(MBEDTLS_MD_LIGHT)
+extern const mbedtls_error_pair_t psa_to_md_errors[4];
+#endif
+
+#if defined(MBEDTLS_BLOCK_CIPHER_SOME_PSA)
+extern const mbedtls_error_pair_t psa_to_cipher_errors[4];
+#endif
+
+#if defined(MBEDTLS_LMS_C)
+extern const mbedtls_error_pair_t psa_to_lms_errors[3];
+#endif
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) || defined(MBEDTLS_SSL_PROTO_TLS1_3)
+extern const mbedtls_error_pair_t psa_to_ssl_errors[7];
+#endif
+
+#if defined(PSA_WANT_KEY_TYPE_RSA_PUBLIC_KEY) ||    \
+    defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC)
+extern const mbedtls_error_pair_t psa_to_pk_rsa_errors[8];
+#endif
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && \
+    defined(PSA_WANT_KEY_TYPE_ECC_PUBLIC_KEY)
+extern const mbedtls_error_pair_t psa_to_pk_ecdsa_errors[7];
+#endif
+
+/* Generic fallback function for error translation,
+ * when the received state was not module-specific. */
+int psa_generic_status_to_mbedtls(psa_status_t status);
+
+/* This function iterates over provided local error translations,
+ * and if no match was found - calls the fallback error translation function. */
+int psa_status_to_mbedtls(psa_status_t status,
+                          const mbedtls_error_pair_t *local_translations,
+                          size_t local_errors_num,
+                          int (*fallback_f)(psa_status_t));
+
+/* The second out of three-stage error handling functions of the pk module,
+ * acts as a fallback after RSA / ECDSA error translation, and if no match
+ * is found, it itself calls psa_generic_status_to_mbedtls. */
+int psa_pk_status_to_mbedtls(psa_status_t status);
+
+/* Utility macro to shorten the defines of error translator in modules. */
+#define PSA_TO_MBEDTLS_ERR_LIST(status, error_list, fallback_f)       \
+    psa_status_to_mbedtls(status, error_list,                         \
+                          sizeof(error_list)/sizeof(error_list[0]),   \
+                          fallback_f)
+
+#endif /* MBEDTLS_PSA_CRYPTO_CLIENT */
+#endif /* MBEDTLS_PSA_UTIL_INTERNAL_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/.gitignore b/tf-psa-crypto/drivers/builtin/src/.gitignore
new file mode 100644
index 0000000..f3923b1
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/.gitignore
@@ -0,0 +1,4 @@
+###START_GENERATED_FILES###
+/error.c
+/version_features.c
+###END_GENERATED_FILES###
diff --git a/tf-psa-crypto/drivers/builtin/src/aes.c b/tf-psa-crypto/drivers/builtin/src/aes.c
new file mode 100644
index 0000000..72e2c57
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/aes.c
@@ -0,0 +1,2244 @@
+/*
+ *  FIPS-197 compliant AES implementation
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ *  The AES block cipher was designed by Vincent Rijmen and Joan Daemen.
+ *
+ *  https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
+ *  http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_AES_C)
+
+#include <string.h>
+
+#include "mbedtls/aes.h"
+#include "mbedtls/platform.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#if defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
+#if !((defined(MBEDTLS_ARCH_IS_ARMV8_A) && defined(MBEDTLS_AESCE_C)) || \
+    (defined(MBEDTLS_ARCH_IS_X64)       && defined(MBEDTLS_AESNI_C)) || \
+    (defined(MBEDTLS_ARCH_IS_X86)       && defined(MBEDTLS_AESNI_C)))
+#error "MBEDTLS_AES_USE_HARDWARE_ONLY defined, but not all prerequisites"
+#endif
+#endif
+
+#if defined(MBEDTLS_AESNI_C)
+#include "aesni.h"
+#endif
+#if defined(MBEDTLS_AESCE_C)
+#include "aesce.h"
+#endif
+
+#include "mbedtls/platform.h"
+#include "ctr.h"
+
+/*
+ * This is a convenience shorthand macro to check if we need reverse S-box and
+ * reverse tables. It's private and only defined in this file.
+ */
+#if (!defined(MBEDTLS_AES_DECRYPT_ALT) || \
+    (!defined(MBEDTLS_AES_SETKEY_DEC_ALT) && !defined(MBEDTLS_AES_USE_HARDWARE_ONLY))) && \
+    !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+#define MBEDTLS_AES_NEED_REVERSE_TABLES
+#endif
+
+#if !defined(MBEDTLS_AES_ALT)
+
+#if defined(MBEDTLS_AES_ROM_TABLES)
+/*
+ * Forward S-box
+ */
+MBEDTLS_MAYBE_UNUSED static const unsigned char FSb[256] =
+{
+    0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5,
+    0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
+    0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0,
+    0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
+    0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC,
+    0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
+    0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A,
+    0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
+    0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0,
+    0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
+    0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B,
+    0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
+    0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85,
+    0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
+    0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,
+    0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
+    0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17,
+    0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
+    0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88,
+    0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
+    0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C,
+    0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
+    0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9,
+    0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
+    0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6,
+    0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
+    0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E,
+    0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
+    0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94,
+    0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
+    0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68,
+    0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
+};
+
+/*
+ * Forward tables
+ */
+#define FT \
+\
+    V(A5, 63, 63, C6), V(84, 7C, 7C, F8), V(99, 77, 77, EE), V(8D, 7B, 7B, F6), \
+    V(0D, F2, F2, FF), V(BD, 6B, 6B, D6), V(B1, 6F, 6F, DE), V(54, C5, C5, 91), \
+    V(50, 30, 30, 60), V(03, 01, 01, 02), V(A9, 67, 67, CE), V(7D, 2B, 2B, 56), \
+    V(19, FE, FE, E7), V(62, D7, D7, B5), V(E6, AB, AB, 4D), V(9A, 76, 76, EC), \
+    V(45, CA, CA, 8F), V(9D, 82, 82, 1F), V(40, C9, C9, 89), V(87, 7D, 7D, FA), \
+    V(15, FA, FA, EF), V(EB, 59, 59, B2), V(C9, 47, 47, 8E), V(0B, F0, F0, FB), \
+    V(EC, AD, AD, 41), V(67, D4, D4, B3), V(FD, A2, A2, 5F), V(EA, AF, AF, 45), \
+    V(BF, 9C, 9C, 23), V(F7, A4, A4, 53), V(96, 72, 72, E4), V(5B, C0, C0, 9B), \
+    V(C2, B7, B7, 75), V(1C, FD, FD, E1), V(AE, 93, 93, 3D), V(6A, 26, 26, 4C), \
+    V(5A, 36, 36, 6C), V(41, 3F, 3F, 7E), V(02, F7, F7, F5), V(4F, CC, CC, 83), \
+    V(5C, 34, 34, 68), V(F4, A5, A5, 51), V(34, E5, E5, D1), V(08, F1, F1, F9), \
+    V(93, 71, 71, E2), V(73, D8, D8, AB), V(53, 31, 31, 62), V(3F, 15, 15, 2A), \
+    V(0C, 04, 04, 08), V(52, C7, C7, 95), V(65, 23, 23, 46), V(5E, C3, C3, 9D), \
+    V(28, 18, 18, 30), V(A1, 96, 96, 37), V(0F, 05, 05, 0A), V(B5, 9A, 9A, 2F), \
+    V(09, 07, 07, 0E), V(36, 12, 12, 24), V(9B, 80, 80, 1B), V(3D, E2, E2, DF), \
+    V(26, EB, EB, CD), V(69, 27, 27, 4E), V(CD, B2, B2, 7F), V(9F, 75, 75, EA), \
+    V(1B, 09, 09, 12), V(9E, 83, 83, 1D), V(74, 2C, 2C, 58), V(2E, 1A, 1A, 34), \
+    V(2D, 1B, 1B, 36), V(B2, 6E, 6E, DC), V(EE, 5A, 5A, B4), V(FB, A0, A0, 5B), \
+    V(F6, 52, 52, A4), V(4D, 3B, 3B, 76), V(61, D6, D6, B7), V(CE, B3, B3, 7D), \
+    V(7B, 29, 29, 52), V(3E, E3, E3, DD), V(71, 2F, 2F, 5E), V(97, 84, 84, 13), \
+    V(F5, 53, 53, A6), V(68, D1, D1, B9), V(00, 00, 00, 00), V(2C, ED, ED, C1), \
+    V(60, 20, 20, 40), V(1F, FC, FC, E3), V(C8, B1, B1, 79), V(ED, 5B, 5B, B6), \
+    V(BE, 6A, 6A, D4), V(46, CB, CB, 8D), V(D9, BE, BE, 67), V(4B, 39, 39, 72), \
+    V(DE, 4A, 4A, 94), V(D4, 4C, 4C, 98), V(E8, 58, 58, B0), V(4A, CF, CF, 85), \
+    V(6B, D0, D0, BB), V(2A, EF, EF, C5), V(E5, AA, AA, 4F), V(16, FB, FB, ED), \
+    V(C5, 43, 43, 86), V(D7, 4D, 4D, 9A), V(55, 33, 33, 66), V(94, 85, 85, 11), \
+    V(CF, 45, 45, 8A), V(10, F9, F9, E9), V(06, 02, 02, 04), V(81, 7F, 7F, FE), \
+    V(F0, 50, 50, A0), V(44, 3C, 3C, 78), V(BA, 9F, 9F, 25), V(E3, A8, A8, 4B), \
+    V(F3, 51, 51, A2), V(FE, A3, A3, 5D), V(C0, 40, 40, 80), V(8A, 8F, 8F, 05), \
+    V(AD, 92, 92, 3F), V(BC, 9D, 9D, 21), V(48, 38, 38, 70), V(04, F5, F5, F1), \
+    V(DF, BC, BC, 63), V(C1, B6, B6, 77), V(75, DA, DA, AF), V(63, 21, 21, 42), \
+    V(30, 10, 10, 20), V(1A, FF, FF, E5), V(0E, F3, F3, FD), V(6D, D2, D2, BF), \
+    V(4C, CD, CD, 81), V(14, 0C, 0C, 18), V(35, 13, 13, 26), V(2F, EC, EC, C3), \
+    V(E1, 5F, 5F, BE), V(A2, 97, 97, 35), V(CC, 44, 44, 88), V(39, 17, 17, 2E), \
+    V(57, C4, C4, 93), V(F2, A7, A7, 55), V(82, 7E, 7E, FC), V(47, 3D, 3D, 7A), \
+    V(AC, 64, 64, C8), V(E7, 5D, 5D, BA), V(2B, 19, 19, 32), V(95, 73, 73, E6), \
+    V(A0, 60, 60, C0), V(98, 81, 81, 19), V(D1, 4F, 4F, 9E), V(7F, DC, DC, A3), \
+    V(66, 22, 22, 44), V(7E, 2A, 2A, 54), V(AB, 90, 90, 3B), V(83, 88, 88, 0B), \
+    V(CA, 46, 46, 8C), V(29, EE, EE, C7), V(D3, B8, B8, 6B), V(3C, 14, 14, 28), \
+    V(79, DE, DE, A7), V(E2, 5E, 5E, BC), V(1D, 0B, 0B, 16), V(76, DB, DB, AD), \
+    V(3B, E0, E0, DB), V(56, 32, 32, 64), V(4E, 3A, 3A, 74), V(1E, 0A, 0A, 14), \
+    V(DB, 49, 49, 92), V(0A, 06, 06, 0C), V(6C, 24, 24, 48), V(E4, 5C, 5C, B8), \
+    V(5D, C2, C2, 9F), V(6E, D3, D3, BD), V(EF, AC, AC, 43), V(A6, 62, 62, C4), \
+    V(A8, 91, 91, 39), V(A4, 95, 95, 31), V(37, E4, E4, D3), V(8B, 79, 79, F2), \
+    V(32, E7, E7, D5), V(43, C8, C8, 8B), V(59, 37, 37, 6E), V(B7, 6D, 6D, DA), \
+    V(8C, 8D, 8D, 01), V(64, D5, D5, B1), V(D2, 4E, 4E, 9C), V(E0, A9, A9, 49), \
+    V(B4, 6C, 6C, D8), V(FA, 56, 56, AC), V(07, F4, F4, F3), V(25, EA, EA, CF), \
+    V(AF, 65, 65, CA), V(8E, 7A, 7A, F4), V(E9, AE, AE, 47), V(18, 08, 08, 10), \
+    V(D5, BA, BA, 6F), V(88, 78, 78, F0), V(6F, 25, 25, 4A), V(72, 2E, 2E, 5C), \
+    V(24, 1C, 1C, 38), V(F1, A6, A6, 57), V(C7, B4, B4, 73), V(51, C6, C6, 97), \
+    V(23, E8, E8, CB), V(7C, DD, DD, A1), V(9C, 74, 74, E8), V(21, 1F, 1F, 3E), \
+    V(DD, 4B, 4B, 96), V(DC, BD, BD, 61), V(86, 8B, 8B, 0D), V(85, 8A, 8A, 0F), \
+    V(90, 70, 70, E0), V(42, 3E, 3E, 7C), V(C4, B5, B5, 71), V(AA, 66, 66, CC), \
+    V(D8, 48, 48, 90), V(05, 03, 03, 06), V(01, F6, F6, F7), V(12, 0E, 0E, 1C), \
+    V(A3, 61, 61, C2), V(5F, 35, 35, 6A), V(F9, 57, 57, AE), V(D0, B9, B9, 69), \
+    V(91, 86, 86, 17), V(58, C1, C1, 99), V(27, 1D, 1D, 3A), V(B9, 9E, 9E, 27), \
+    V(38, E1, E1, D9), V(13, F8, F8, EB), V(B3, 98, 98, 2B), V(33, 11, 11, 22), \
+    V(BB, 69, 69, D2), V(70, D9, D9, A9), V(89, 8E, 8E, 07), V(A7, 94, 94, 33), \
+    V(B6, 9B, 9B, 2D), V(22, 1E, 1E, 3C), V(92, 87, 87, 15), V(20, E9, E9, C9), \
+    V(49, CE, CE, 87), V(FF, 55, 55, AA), V(78, 28, 28, 50), V(7A, DF, DF, A5), \
+    V(8F, 8C, 8C, 03), V(F8, A1, A1, 59), V(80, 89, 89, 09), V(17, 0D, 0D, 1A), \
+    V(DA, BF, BF, 65), V(31, E6, E6, D7), V(C6, 42, 42, 84), V(B8, 68, 68, D0), \
+    V(C3, 41, 41, 82), V(B0, 99, 99, 29), V(77, 2D, 2D, 5A), V(11, 0F, 0F, 1E), \
+    V(CB, B0, B0, 7B), V(FC, 54, 54, A8), V(D6, BB, BB, 6D), V(3A, 16, 16, 2C)
+
+#define V(a, b, c, d) 0x##a##b##c##d
+MBEDTLS_MAYBE_UNUSED static const uint32_t FT0[256] = { FT };
+#undef V
+
+#define V(a, b, c, d) 0x##b##c##d##a
+MBEDTLS_MAYBE_UNUSED static const uint32_t FT1[256] = { FT };
+#undef V
+
+#define V(a, b, c, d) 0x##c##d##a##b
+MBEDTLS_MAYBE_UNUSED static const uint32_t FT2[256] = { FT };
+#undef V
+
+#define V(a, b, c, d) 0x##d##a##b##c
+MBEDTLS_MAYBE_UNUSED static const uint32_t FT3[256] = { FT };
+#undef V
+
+#undef FT
+
+/*
+ * Reverse S-box
+ */
+MBEDTLS_MAYBE_UNUSED static const unsigned char RSb[256] =
+{
+    0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38,
+    0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
+    0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87,
+    0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
+    0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D,
+    0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
+    0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2,
+    0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
+    0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16,
+    0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
+    0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA,
+    0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
+    0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A,
+    0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
+    0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02,
+    0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
+    0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA,
+    0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
+    0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85,
+    0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
+    0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89,
+    0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
+    0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20,
+    0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
+    0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31,
+    0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
+    0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D,
+    0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
+    0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0,
+    0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
+    0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26,
+    0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
+};
+
+/*
+ * Reverse tables
+ */
+#define RT \
+\
+    V(50, A7, F4, 51), V(53, 65, 41, 7E), V(C3, A4, 17, 1A), V(96, 5E, 27, 3A), \
+    V(CB, 6B, AB, 3B), V(F1, 45, 9D, 1F), V(AB, 58, FA, AC), V(93, 03, E3, 4B), \
+    V(55, FA, 30, 20), V(F6, 6D, 76, AD), V(91, 76, CC, 88), V(25, 4C, 02, F5), \
+    V(FC, D7, E5, 4F), V(D7, CB, 2A, C5), V(80, 44, 35, 26), V(8F, A3, 62, B5), \
+    V(49, 5A, B1, DE), V(67, 1B, BA, 25), V(98, 0E, EA, 45), V(E1, C0, FE, 5D), \
+    V(02, 75, 2F, C3), V(12, F0, 4C, 81), V(A3, 97, 46, 8D), V(C6, F9, D3, 6B), \
+    V(E7, 5F, 8F, 03), V(95, 9C, 92, 15), V(EB, 7A, 6D, BF), V(DA, 59, 52, 95), \
+    V(2D, 83, BE, D4), V(D3, 21, 74, 58), V(29, 69, E0, 49), V(44, C8, C9, 8E), \
+    V(6A, 89, C2, 75), V(78, 79, 8E, F4), V(6B, 3E, 58, 99), V(DD, 71, B9, 27), \
+    V(B6, 4F, E1, BE), V(17, AD, 88, F0), V(66, AC, 20, C9), V(B4, 3A, CE, 7D), \
+    V(18, 4A, DF, 63), V(82, 31, 1A, E5), V(60, 33, 51, 97), V(45, 7F, 53, 62), \
+    V(E0, 77, 64, B1), V(84, AE, 6B, BB), V(1C, A0, 81, FE), V(94, 2B, 08, F9), \
+    V(58, 68, 48, 70), V(19, FD, 45, 8F), V(87, 6C, DE, 94), V(B7, F8, 7B, 52), \
+    V(23, D3, 73, AB), V(E2, 02, 4B, 72), V(57, 8F, 1F, E3), V(2A, AB, 55, 66), \
+    V(07, 28, EB, B2), V(03, C2, B5, 2F), V(9A, 7B, C5, 86), V(A5, 08, 37, D3), \
+    V(F2, 87, 28, 30), V(B2, A5, BF, 23), V(BA, 6A, 03, 02), V(5C, 82, 16, ED), \
+    V(2B, 1C, CF, 8A), V(92, B4, 79, A7), V(F0, F2, 07, F3), V(A1, E2, 69, 4E), \
+    V(CD, F4, DA, 65), V(D5, BE, 05, 06), V(1F, 62, 34, D1), V(8A, FE, A6, C4), \
+    V(9D, 53, 2E, 34), V(A0, 55, F3, A2), V(32, E1, 8A, 05), V(75, EB, F6, A4), \
+    V(39, EC, 83, 0B), V(AA, EF, 60, 40), V(06, 9F, 71, 5E), V(51, 10, 6E, BD), \
+    V(F9, 8A, 21, 3E), V(3D, 06, DD, 96), V(AE, 05, 3E, DD), V(46, BD, E6, 4D), \
+    V(B5, 8D, 54, 91), V(05, 5D, C4, 71), V(6F, D4, 06, 04), V(FF, 15, 50, 60), \
+    V(24, FB, 98, 19), V(97, E9, BD, D6), V(CC, 43, 40, 89), V(77, 9E, D9, 67), \
+    V(BD, 42, E8, B0), V(88, 8B, 89, 07), V(38, 5B, 19, E7), V(DB, EE, C8, 79), \
+    V(47, 0A, 7C, A1), V(E9, 0F, 42, 7C), V(C9, 1E, 84, F8), V(00, 00, 00, 00), \
+    V(83, 86, 80, 09), V(48, ED, 2B, 32), V(AC, 70, 11, 1E), V(4E, 72, 5A, 6C), \
+    V(FB, FF, 0E, FD), V(56, 38, 85, 0F), V(1E, D5, AE, 3D), V(27, 39, 2D, 36), \
+    V(64, D9, 0F, 0A), V(21, A6, 5C, 68), V(D1, 54, 5B, 9B), V(3A, 2E, 36, 24), \
+    V(B1, 67, 0A, 0C), V(0F, E7, 57, 93), V(D2, 96, EE, B4), V(9E, 91, 9B, 1B), \
+    V(4F, C5, C0, 80), V(A2, 20, DC, 61), V(69, 4B, 77, 5A), V(16, 1A, 12, 1C), \
+    V(0A, BA, 93, E2), V(E5, 2A, A0, C0), V(43, E0, 22, 3C), V(1D, 17, 1B, 12), \
+    V(0B, 0D, 09, 0E), V(AD, C7, 8B, F2), V(B9, A8, B6, 2D), V(C8, A9, 1E, 14), \
+    V(85, 19, F1, 57), V(4C, 07, 75, AF), V(BB, DD, 99, EE), V(FD, 60, 7F, A3), \
+    V(9F, 26, 01, F7), V(BC, F5, 72, 5C), V(C5, 3B, 66, 44), V(34, 7E, FB, 5B), \
+    V(76, 29, 43, 8B), V(DC, C6, 23, CB), V(68, FC, ED, B6), V(63, F1, E4, B8), \
+    V(CA, DC, 31, D7), V(10, 85, 63, 42), V(40, 22, 97, 13), V(20, 11, C6, 84), \
+    V(7D, 24, 4A, 85), V(F8, 3D, BB, D2), V(11, 32, F9, AE), V(6D, A1, 29, C7), \
+    V(4B, 2F, 9E, 1D), V(F3, 30, B2, DC), V(EC, 52, 86, 0D), V(D0, E3, C1, 77), \
+    V(6C, 16, B3, 2B), V(99, B9, 70, A9), V(FA, 48, 94, 11), V(22, 64, E9, 47), \
+    V(C4, 8C, FC, A8), V(1A, 3F, F0, A0), V(D8, 2C, 7D, 56), V(EF, 90, 33, 22), \
+    V(C7, 4E, 49, 87), V(C1, D1, 38, D9), V(FE, A2, CA, 8C), V(36, 0B, D4, 98), \
+    V(CF, 81, F5, A6), V(28, DE, 7A, A5), V(26, 8E, B7, DA), V(A4, BF, AD, 3F), \
+    V(E4, 9D, 3A, 2C), V(0D, 92, 78, 50), V(9B, CC, 5F, 6A), V(62, 46, 7E, 54), \
+    V(C2, 13, 8D, F6), V(E8, B8, D8, 90), V(5E, F7, 39, 2E), V(F5, AF, C3, 82), \
+    V(BE, 80, 5D, 9F), V(7C, 93, D0, 69), V(A9, 2D, D5, 6F), V(B3, 12, 25, CF), \
+    V(3B, 99, AC, C8), V(A7, 7D, 18, 10), V(6E, 63, 9C, E8), V(7B, BB, 3B, DB), \
+    V(09, 78, 26, CD), V(F4, 18, 59, 6E), V(01, B7, 9A, EC), V(A8, 9A, 4F, 83), \
+    V(65, 6E, 95, E6), V(7E, E6, FF, AA), V(08, CF, BC, 21), V(E6, E8, 15, EF), \
+    V(D9, 9B, E7, BA), V(CE, 36, 6F, 4A), V(D4, 09, 9F, EA), V(D6, 7C, B0, 29), \
+    V(AF, B2, A4, 31), V(31, 23, 3F, 2A), V(30, 94, A5, C6), V(C0, 66, A2, 35), \
+    V(37, BC, 4E, 74), V(A6, CA, 82, FC), V(B0, D0, 90, E0), V(15, D8, A7, 33), \
+    V(4A, 98, 04, F1), V(F7, DA, EC, 41), V(0E, 50, CD, 7F), V(2F, F6, 91, 17), \
+    V(8D, D6, 4D, 76), V(4D, B0, EF, 43), V(54, 4D, AA, CC), V(DF, 04, 96, E4), \
+    V(E3, B5, D1, 9E), V(1B, 88, 6A, 4C), V(B8, 1F, 2C, C1), V(7F, 51, 65, 46), \
+    V(04, EA, 5E, 9D), V(5D, 35, 8C, 01), V(73, 74, 87, FA), V(2E, 41, 0B, FB), \
+    V(5A, 1D, 67, B3), V(52, D2, DB, 92), V(33, 56, 10, E9), V(13, 47, D6, 6D), \
+    V(8C, 61, D7, 9A), V(7A, 0C, A1, 37), V(8E, 14, F8, 59), V(89, 3C, 13, EB), \
+    V(EE, 27, A9, CE), V(35, C9, 61, B7), V(ED, E5, 1C, E1), V(3C, B1, 47, 7A), \
+    V(59, DF, D2, 9C), V(3F, 73, F2, 55), V(79, CE, 14, 18), V(BF, 37, C7, 73), \
+    V(EA, CD, F7, 53), V(5B, AA, FD, 5F), V(14, 6F, 3D, DF), V(86, DB, 44, 78), \
+    V(81, F3, AF, CA), V(3E, C4, 68, B9), V(2C, 34, 24, 38), V(5F, 40, A3, C2), \
+    V(72, C3, 1D, 16), V(0C, 25, E2, BC), V(8B, 49, 3C, 28), V(41, 95, 0D, FF), \
+    V(71, 01, A8, 39), V(DE, B3, 0C, 08), V(9C, E4, B4, D8), V(90, C1, 56, 64), \
+    V(61, 84, CB, 7B), V(70, B6, 32, D5), V(74, 5C, 6C, 48), V(42, 57, B8, D0)
+
+
+#define V(a, b, c, d) 0x##a##b##c##d
+MBEDTLS_MAYBE_UNUSED static const uint32_t RT0[256] = { RT };
+#undef V
+
+#define V(a, b, c, d) 0x##b##c##d##a
+MBEDTLS_MAYBE_UNUSED static const uint32_t RT1[256] = { RT };
+#undef V
+
+#define V(a, b, c, d) 0x##c##d##a##b
+MBEDTLS_MAYBE_UNUSED static const uint32_t RT2[256] = { RT };
+#undef V
+
+#define V(a, b, c, d) 0x##d##a##b##c
+MBEDTLS_MAYBE_UNUSED static const uint32_t RT3[256] = { RT };
+#undef V
+
+#undef RT
+
+/*
+ * Round constants
+ */
+MBEDTLS_MAYBE_UNUSED static const uint32_t round_constants[10] =
+{
+    0x00000001, 0x00000002, 0x00000004, 0x00000008,
+    0x00000010, 0x00000020, 0x00000040, 0x00000080,
+    0x0000001B, 0x00000036
+};
+
+#else /* MBEDTLS_AES_ROM_TABLES */
+
+/*
+ * Forward S-box & tables
+ */
+MBEDTLS_MAYBE_UNUSED static unsigned char FSb[256];
+MBEDTLS_MAYBE_UNUSED static uint32_t FT0[256];
+MBEDTLS_MAYBE_UNUSED static uint32_t FT1[256];
+MBEDTLS_MAYBE_UNUSED static uint32_t FT2[256];
+MBEDTLS_MAYBE_UNUSED static uint32_t FT3[256];
+
+/*
+ * Reverse S-box & tables
+ */
+MBEDTLS_MAYBE_UNUSED static unsigned char RSb[256];
+
+MBEDTLS_MAYBE_UNUSED static uint32_t RT0[256];
+MBEDTLS_MAYBE_UNUSED static uint32_t RT1[256];
+MBEDTLS_MAYBE_UNUSED static uint32_t RT2[256];
+MBEDTLS_MAYBE_UNUSED static uint32_t RT3[256];
+
+/*
+ * Round constants
+ */
+MBEDTLS_MAYBE_UNUSED static uint32_t round_constants[10];
+
+/*
+ * Tables generation code
+ */
+#define ROTL8(x) (((x) << 8) & 0xFFFFFFFF) | ((x) >> 24)
+#define XTIME(x) (((x) << 1) ^ (((x) & 0x80) ? 0x1B : 0x00))
+#define MUL(x, y) (((x) && (y)) ? pow[(log[(x)]+log[(y)]) % 255] : 0)
+
+MBEDTLS_MAYBE_UNUSED static int aes_init_done = 0;
+
+MBEDTLS_MAYBE_UNUSED static void aes_gen_tables(void)
+{
+    int i;
+    uint8_t x, y, z;
+    uint8_t pow[256];
+    uint8_t log[256];
+
+    /*
+     * compute pow and log tables over GF(2^8)
+     */
+    for (i = 0, x = 1; i < 256; i++) {
+        pow[i] = x;
+        log[x] = (uint8_t) i;
+        x ^= XTIME(x);
+    }
+
+    /*
+     * calculate the round constants
+     */
+    for (i = 0, x = 1; i < 10; i++) {
+        round_constants[i] = x;
+        x = XTIME(x);
+    }
+
+    /*
+     * generate the forward and reverse S-boxes
+     */
+    FSb[0x00] = 0x63;
+#if defined(MBEDTLS_AES_NEED_REVERSE_TABLES)
+    RSb[0x63] = 0x00;
+#endif
+
+    for (i = 1; i < 256; i++) {
+        x = pow[255 - log[i]];
+
+        y  = x; y = (y << 1) | (y >> 7);
+        x ^= y; y = (y << 1) | (y >> 7);
+        x ^= y; y = (y << 1) | (y >> 7);
+        x ^= y; y = (y << 1) | (y >> 7);
+        x ^= y ^ 0x63;
+
+        FSb[i] = x;
+#if defined(MBEDTLS_AES_NEED_REVERSE_TABLES)
+        RSb[x] = (unsigned char) i;
+#endif
+    }
+
+    /*
+     * generate the forward and reverse tables
+     */
+    for (i = 0; i < 256; i++) {
+        x = FSb[i];
+        y = XTIME(x);
+        z = y ^ x;
+
+        FT0[i] = ((uint32_t) y) ^
+                 ((uint32_t) x <<  8) ^
+                 ((uint32_t) x << 16) ^
+                 ((uint32_t) z << 24);
+
+#if !defined(MBEDTLS_AES_FEWER_TABLES)
+        FT1[i] = ROTL8(FT0[i]);
+        FT2[i] = ROTL8(FT1[i]);
+        FT3[i] = ROTL8(FT2[i]);
+#endif /* !MBEDTLS_AES_FEWER_TABLES */
+
+#if defined(MBEDTLS_AES_NEED_REVERSE_TABLES)
+        x = RSb[i];
+
+        RT0[i] = ((uint32_t) MUL(0x0E, x)) ^
+                 ((uint32_t) MUL(0x09, x) <<  8) ^
+                 ((uint32_t) MUL(0x0D, x) << 16) ^
+                 ((uint32_t) MUL(0x0B, x) << 24);
+
+#if !defined(MBEDTLS_AES_FEWER_TABLES)
+        RT1[i] = ROTL8(RT0[i]);
+        RT2[i] = ROTL8(RT1[i]);
+        RT3[i] = ROTL8(RT2[i]);
+#endif /* !MBEDTLS_AES_FEWER_TABLES */
+#endif /* MBEDTLS_AES_NEED_REVERSE_TABLES */
+    }
+}
+
+#undef ROTL8
+
+#endif /* MBEDTLS_AES_ROM_TABLES */
+
+#if defined(MBEDTLS_AES_FEWER_TABLES)
+
+#define ROTL8(x)  ((uint32_t) ((x) <<  8) + (uint32_t) ((x) >> 24))
+#define ROTL16(x) ((uint32_t) ((x) << 16) + (uint32_t) ((x) >> 16))
+#define ROTL24(x) ((uint32_t) ((x) << 24) + (uint32_t) ((x) >>  8))
+
+#define AES_RT0(idx) RT0[idx]
+#define AES_RT1(idx) ROTL8(RT0[idx])
+#define AES_RT2(idx) ROTL16(RT0[idx])
+#define AES_RT3(idx) ROTL24(RT0[idx])
+
+#define AES_FT0(idx) FT0[idx]
+#define AES_FT1(idx) ROTL8(FT0[idx])
+#define AES_FT2(idx) ROTL16(FT0[idx])
+#define AES_FT3(idx) ROTL24(FT0[idx])
+
+#else /* MBEDTLS_AES_FEWER_TABLES */
+
+#define AES_RT0(idx) RT0[idx]
+#define AES_RT1(idx) RT1[idx]
+#define AES_RT2(idx) RT2[idx]
+#define AES_RT3(idx) RT3[idx]
+
+#define AES_FT0(idx) FT0[idx]
+#define AES_FT1(idx) FT1[idx]
+#define AES_FT2(idx) FT2[idx]
+#define AES_FT3(idx) FT3[idx]
+
+#endif /* MBEDTLS_AES_FEWER_TABLES */
+
+void mbedtls_aes_init(mbedtls_aes_context *ctx)
+{
+    memset(ctx, 0, sizeof(mbedtls_aes_context));
+}
+
+void mbedtls_aes_free(mbedtls_aes_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_platform_zeroize(ctx, sizeof(mbedtls_aes_context));
+}
+
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+void mbedtls_aes_xts_init(mbedtls_aes_xts_context *ctx)
+{
+    mbedtls_aes_init(&ctx->crypt);
+    mbedtls_aes_init(&ctx->tweak);
+}
+
+void mbedtls_aes_xts_free(mbedtls_aes_xts_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_aes_free(&ctx->crypt);
+    mbedtls_aes_free(&ctx->tweak);
+}
+#endif /* MBEDTLS_CIPHER_MODE_XTS */
+
+/* Some implementations need the round keys to be aligned.
+ * Return an offset to be added to buf, such that (buf + offset) is
+ * correctly aligned.
+ * Note that the offset is in units of elements of buf, i.e. 32-bit words,
+ * i.e. an offset of 1 means 4 bytes and so on.
+ */
+#if defined(MBEDTLS_AESNI_C) && MBEDTLS_AESNI_HAVE_CODE == 2
+#define MAY_NEED_TO_ALIGN
+#endif
+
+MBEDTLS_MAYBE_UNUSED static unsigned mbedtls_aes_rk_offset(uint32_t *buf)
+{
+#if defined(MAY_NEED_TO_ALIGN)
+    int align_16_bytes = 0;
+
+#if defined(MBEDTLS_AESNI_C) && MBEDTLS_AESNI_HAVE_CODE == 2
+    if (mbedtls_aesni_has_support(MBEDTLS_AESNI_AES)) {
+        align_16_bytes = 1;
+    }
+#endif
+
+    if (align_16_bytes) {
+        /* These implementations needs 16-byte alignment
+         * for the round key array. */
+        unsigned delta = ((uintptr_t) buf & 0x0000000fU) / 4;
+        if (delta == 0) {
+            return 0;
+        } else {
+            return 4 - delta; // 16 bytes = 4 uint32_t
+        }
+    }
+#else /* MAY_NEED_TO_ALIGN */
+    (void) buf;
+#endif /* MAY_NEED_TO_ALIGN */
+
+    return 0;
+}
+
+/*
+ * AES key schedule (encryption)
+ */
+#if !defined(MBEDTLS_AES_SETKEY_ENC_ALT)
+int mbedtls_aes_setkey_enc(mbedtls_aes_context *ctx, const unsigned char *key,
+                           unsigned int keybits)
+{
+    uint32_t *RK;
+
+    switch (keybits) {
+        case 128: ctx->nr = 10; break;
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+        case 192: ctx->nr = 12; break;
+        case 256: ctx->nr = 14; break;
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+        default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
+    }
+
+#if !defined(MBEDTLS_AES_ROM_TABLES)
+    if (aes_init_done == 0) {
+        aes_gen_tables();
+        aes_init_done = 1;
+    }
+#endif
+
+    ctx->rk_offset = mbedtls_aes_rk_offset(ctx->buf);
+    RK = ctx->buf + ctx->rk_offset;
+
+#if defined(MBEDTLS_AESNI_HAVE_CODE)
+    if (mbedtls_aesni_has_support(MBEDTLS_AESNI_AES)) {
+        return mbedtls_aesni_setkey_enc((unsigned char *) RK, key, keybits);
+    }
+#endif
+
+#if defined(MBEDTLS_AESCE_HAVE_CODE)
+    if (MBEDTLS_AESCE_HAS_SUPPORT()) {
+        return mbedtls_aesce_setkey_enc((unsigned char *) RK, key, keybits);
+    }
+#endif
+
+#if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
+    for (unsigned int i = 0; i < (keybits >> 5); i++) {
+        RK[i] = MBEDTLS_GET_UINT32_LE(key, i << 2);
+    }
+
+    switch (ctx->nr) {
+        case 10:
+
+            for (unsigned int i = 0; i < 10; i++, RK += 4) {
+                RK[4]  = RK[0] ^ round_constants[i] ^
+                         ((uint32_t) FSb[MBEDTLS_BYTE_1(RK[3])]) ^
+                         ((uint32_t) FSb[MBEDTLS_BYTE_2(RK[3])] <<  8) ^
+                         ((uint32_t) FSb[MBEDTLS_BYTE_3(RK[3])] << 16) ^
+                         ((uint32_t) FSb[MBEDTLS_BYTE_0(RK[3])] << 24);
+
+                RK[5]  = RK[1] ^ RK[4];
+                RK[6]  = RK[2] ^ RK[5];
+                RK[7]  = RK[3] ^ RK[6];
+            }
+            break;
+
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+        case 12:
+
+            for (unsigned int i = 0; i < 8; i++, RK += 6) {
+                RK[6]  = RK[0] ^ round_constants[i] ^
+                         ((uint32_t) FSb[MBEDTLS_BYTE_1(RK[5])]) ^
+                         ((uint32_t) FSb[MBEDTLS_BYTE_2(RK[5])] <<  8) ^
+                         ((uint32_t) FSb[MBEDTLS_BYTE_3(RK[5])] << 16) ^
+                         ((uint32_t) FSb[MBEDTLS_BYTE_0(RK[5])] << 24);
+
+                RK[7]  = RK[1] ^ RK[6];
+                RK[8]  = RK[2] ^ RK[7];
+                RK[9]  = RK[3] ^ RK[8];
+                RK[10] = RK[4] ^ RK[9];
+                RK[11] = RK[5] ^ RK[10];
+            }
+            break;
+
+        case 14:
+
+            for (unsigned int i = 0; i < 7; i++, RK += 8) {
+                RK[8]  = RK[0] ^ round_constants[i] ^
+                         ((uint32_t) FSb[MBEDTLS_BYTE_1(RK[7])]) ^
+                         ((uint32_t) FSb[MBEDTLS_BYTE_2(RK[7])] <<  8) ^
+                         ((uint32_t) FSb[MBEDTLS_BYTE_3(RK[7])] << 16) ^
+                         ((uint32_t) FSb[MBEDTLS_BYTE_0(RK[7])] << 24);
+
+                RK[9]  = RK[1] ^ RK[8];
+                RK[10] = RK[2] ^ RK[9];
+                RK[11] = RK[3] ^ RK[10];
+
+                RK[12] = RK[4] ^
+                         ((uint32_t) FSb[MBEDTLS_BYTE_0(RK[11])]) ^
+                         ((uint32_t) FSb[MBEDTLS_BYTE_1(RK[11])] <<  8) ^
+                         ((uint32_t) FSb[MBEDTLS_BYTE_2(RK[11])] << 16) ^
+                         ((uint32_t) FSb[MBEDTLS_BYTE_3(RK[11])] << 24);
+
+                RK[13] = RK[5] ^ RK[12];
+                RK[14] = RK[6] ^ RK[13];
+                RK[15] = RK[7] ^ RK[14];
+            }
+            break;
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+    }
+
+    return 0;
+#endif /* !MBEDTLS_AES_USE_HARDWARE_ONLY */
+}
+#endif /* !MBEDTLS_AES_SETKEY_ENC_ALT */
+
+/*
+ * AES key schedule (decryption)
+ */
+#if !defined(MBEDTLS_AES_SETKEY_DEC_ALT) && !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+int mbedtls_aes_setkey_dec(mbedtls_aes_context *ctx, const unsigned char *key,
+                           unsigned int keybits)
+{
+#if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
+    uint32_t *SK;
+#endif
+    int ret;
+    mbedtls_aes_context cty;
+    uint32_t *RK;
+
+
+    mbedtls_aes_init(&cty);
+
+    ctx->rk_offset = mbedtls_aes_rk_offset(ctx->buf);
+    RK = ctx->buf + ctx->rk_offset;
+
+    /* Also checks keybits */
+    if ((ret = mbedtls_aes_setkey_enc(&cty, key, keybits)) != 0) {
+        goto exit;
+    }
+
+    ctx->nr = cty.nr;
+
+#if defined(MBEDTLS_AESNI_HAVE_CODE)
+    if (mbedtls_aesni_has_support(MBEDTLS_AESNI_AES)) {
+        mbedtls_aesni_inverse_key((unsigned char *) RK,
+                                  (const unsigned char *) (cty.buf + cty.rk_offset), ctx->nr);
+        goto exit;
+    }
+#endif
+
+#if defined(MBEDTLS_AESCE_HAVE_CODE)
+    if (MBEDTLS_AESCE_HAS_SUPPORT()) {
+        mbedtls_aesce_inverse_key(
+            (unsigned char *) RK,
+            (const unsigned char *) (cty.buf + cty.rk_offset),
+            ctx->nr);
+        goto exit;
+    }
+#endif
+
+#if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
+    SK = cty.buf + cty.rk_offset + cty.nr * 4;
+
+    *RK++ = *SK++;
+    *RK++ = *SK++;
+    *RK++ = *SK++;
+    *RK++ = *SK++;
+    SK -= 8;
+    for (int i = ctx->nr - 1; i > 0; i--, SK -= 8) {
+        for (int j = 0; j < 4; j++, SK++) {
+            *RK++ = AES_RT0(FSb[MBEDTLS_BYTE_0(*SK)]) ^
+                    AES_RT1(FSb[MBEDTLS_BYTE_1(*SK)]) ^
+                    AES_RT2(FSb[MBEDTLS_BYTE_2(*SK)]) ^
+                    AES_RT3(FSb[MBEDTLS_BYTE_3(*SK)]);
+        }
+    }
+
+    *RK++ = *SK++;
+    *RK++ = *SK++;
+    *RK++ = *SK++;
+    *RK++ = *SK++;
+#endif /* !MBEDTLS_AES_USE_HARDWARE_ONLY */
+exit:
+    mbedtls_aes_free(&cty);
+
+    return ret;
+}
+#endif /* !MBEDTLS_AES_SETKEY_DEC_ALT && !MBEDTLS_BLOCK_CIPHER_NO_DECRYPT */
+
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+static int mbedtls_aes_xts_decode_keys(const unsigned char *key,
+                                       unsigned int keybits,
+                                       const unsigned char **key1,
+                                       unsigned int *key1bits,
+                                       const unsigned char **key2,
+                                       unsigned int *key2bits)
+{
+    const unsigned int half_keybits = keybits / 2;
+    const unsigned int half_keybytes = half_keybits / 8;
+
+    switch (keybits) {
+        case 256: break;
+        case 512: break;
+        default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
+    }
+
+    *key1bits = half_keybits;
+    *key2bits = half_keybits;
+    *key1 = &key[0];
+    *key2 = &key[half_keybytes];
+
+    return 0;
+}
+
+int mbedtls_aes_xts_setkey_enc(mbedtls_aes_xts_context *ctx,
+                               const unsigned char *key,
+                               unsigned int keybits)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    const unsigned char *key1, *key2;
+    unsigned int key1bits, key2bits;
+
+    ret = mbedtls_aes_xts_decode_keys(key, keybits, &key1, &key1bits,
+                                      &key2, &key2bits);
+    if (ret != 0) {
+        return ret;
+    }
+
+    /* Set the tweak key. Always set tweak key for the encryption mode. */
+    ret = mbedtls_aes_setkey_enc(&ctx->tweak, key2, key2bits);
+    if (ret != 0) {
+        return ret;
+    }
+
+    /* Set crypt key for encryption. */
+    return mbedtls_aes_setkey_enc(&ctx->crypt, key1, key1bits);
+}
+
+int mbedtls_aes_xts_setkey_dec(mbedtls_aes_xts_context *ctx,
+                               const unsigned char *key,
+                               unsigned int keybits)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    const unsigned char *key1, *key2;
+    unsigned int key1bits, key2bits;
+
+    ret = mbedtls_aes_xts_decode_keys(key, keybits, &key1, &key1bits,
+                                      &key2, &key2bits);
+    if (ret != 0) {
+        return ret;
+    }
+
+    /* Set the tweak key. Always set tweak key for encryption. */
+    ret = mbedtls_aes_setkey_enc(&ctx->tweak, key2, key2bits);
+    if (ret != 0) {
+        return ret;
+    }
+
+    /* Set crypt key for decryption. */
+    return mbedtls_aes_setkey_dec(&ctx->crypt, key1, key1bits);
+}
+#endif /* MBEDTLS_CIPHER_MODE_XTS */
+
+#define AES_FROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3)                 \
+    do                                                      \
+    {                                                       \
+        (X0) = *RK++ ^ AES_FT0(MBEDTLS_BYTE_0(Y0)) ^    \
+               AES_FT1(MBEDTLS_BYTE_1(Y1)) ^    \
+               AES_FT2(MBEDTLS_BYTE_2(Y2)) ^    \
+               AES_FT3(MBEDTLS_BYTE_3(Y3));     \
+                                                            \
+        (X1) = *RK++ ^ AES_FT0(MBEDTLS_BYTE_0(Y1)) ^    \
+               AES_FT1(MBEDTLS_BYTE_1(Y2)) ^    \
+               AES_FT2(MBEDTLS_BYTE_2(Y3)) ^    \
+               AES_FT3(MBEDTLS_BYTE_3(Y0));     \
+                                                            \
+        (X2) = *RK++ ^ AES_FT0(MBEDTLS_BYTE_0(Y2)) ^    \
+               AES_FT1(MBEDTLS_BYTE_1(Y3)) ^    \
+               AES_FT2(MBEDTLS_BYTE_2(Y0)) ^    \
+               AES_FT3(MBEDTLS_BYTE_3(Y1));     \
+                                                            \
+        (X3) = *RK++ ^ AES_FT0(MBEDTLS_BYTE_0(Y3)) ^    \
+               AES_FT1(MBEDTLS_BYTE_1(Y0)) ^    \
+               AES_FT2(MBEDTLS_BYTE_2(Y1)) ^    \
+               AES_FT3(MBEDTLS_BYTE_3(Y2));     \
+    } while (0)
+
+#define AES_RROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3)                 \
+    do                                                      \
+    {                                                       \
+        (X0) = *RK++ ^ AES_RT0(MBEDTLS_BYTE_0(Y0)) ^    \
+               AES_RT1(MBEDTLS_BYTE_1(Y3)) ^    \
+               AES_RT2(MBEDTLS_BYTE_2(Y2)) ^    \
+               AES_RT3(MBEDTLS_BYTE_3(Y1));     \
+                                                            \
+        (X1) = *RK++ ^ AES_RT0(MBEDTLS_BYTE_0(Y1)) ^    \
+               AES_RT1(MBEDTLS_BYTE_1(Y0)) ^    \
+               AES_RT2(MBEDTLS_BYTE_2(Y3)) ^    \
+               AES_RT3(MBEDTLS_BYTE_3(Y2));     \
+                                                            \
+        (X2) = *RK++ ^ AES_RT0(MBEDTLS_BYTE_0(Y2)) ^    \
+               AES_RT1(MBEDTLS_BYTE_1(Y1)) ^    \
+               AES_RT2(MBEDTLS_BYTE_2(Y0)) ^    \
+               AES_RT3(MBEDTLS_BYTE_3(Y3));     \
+                                                            \
+        (X3) = *RK++ ^ AES_RT0(MBEDTLS_BYTE_0(Y3)) ^    \
+               AES_RT1(MBEDTLS_BYTE_1(Y2)) ^    \
+               AES_RT2(MBEDTLS_BYTE_2(Y1)) ^    \
+               AES_RT3(MBEDTLS_BYTE_3(Y0));     \
+    } while (0)
+
+/*
+ * AES-ECB block encryption
+ */
+#if !defined(MBEDTLS_AES_ENCRYPT_ALT)
+int mbedtls_internal_aes_encrypt(mbedtls_aes_context *ctx,
+                                 const unsigned char input[16],
+                                 unsigned char output[16])
+{
+    int i;
+    uint32_t *RK = ctx->buf + ctx->rk_offset;
+    struct {
+        uint32_t X[4];
+        uint32_t Y[4];
+    } t;
+
+    t.X[0] = MBEDTLS_GET_UINT32_LE(input,  0); t.X[0] ^= *RK++;
+    t.X[1] = MBEDTLS_GET_UINT32_LE(input,  4); t.X[1] ^= *RK++;
+    t.X[2] = MBEDTLS_GET_UINT32_LE(input,  8); t.X[2] ^= *RK++;
+    t.X[3] = MBEDTLS_GET_UINT32_LE(input, 12); t.X[3] ^= *RK++;
+
+    for (i = (ctx->nr >> 1) - 1; i > 0; i--) {
+        AES_FROUND(t.Y[0], t.Y[1], t.Y[2], t.Y[3], t.X[0], t.X[1], t.X[2], t.X[3]);
+        AES_FROUND(t.X[0], t.X[1], t.X[2], t.X[3], t.Y[0], t.Y[1], t.Y[2], t.Y[3]);
+    }
+
+    AES_FROUND(t.Y[0], t.Y[1], t.Y[2], t.Y[3], t.X[0], t.X[1], t.X[2], t.X[3]);
+
+    t.X[0] = *RK++ ^ \
+             ((uint32_t) FSb[MBEDTLS_BYTE_0(t.Y[0])]) ^
+             ((uint32_t) FSb[MBEDTLS_BYTE_1(t.Y[1])] <<  8) ^
+             ((uint32_t) FSb[MBEDTLS_BYTE_2(t.Y[2])] << 16) ^
+             ((uint32_t) FSb[MBEDTLS_BYTE_3(t.Y[3])] << 24);
+
+    t.X[1] = *RK++ ^ \
+             ((uint32_t) FSb[MBEDTLS_BYTE_0(t.Y[1])]) ^
+             ((uint32_t) FSb[MBEDTLS_BYTE_1(t.Y[2])] <<  8) ^
+             ((uint32_t) FSb[MBEDTLS_BYTE_2(t.Y[3])] << 16) ^
+             ((uint32_t) FSb[MBEDTLS_BYTE_3(t.Y[0])] << 24);
+
+    t.X[2] = *RK++ ^ \
+             ((uint32_t) FSb[MBEDTLS_BYTE_0(t.Y[2])]) ^
+             ((uint32_t) FSb[MBEDTLS_BYTE_1(t.Y[3])] <<  8) ^
+             ((uint32_t) FSb[MBEDTLS_BYTE_2(t.Y[0])] << 16) ^
+             ((uint32_t) FSb[MBEDTLS_BYTE_3(t.Y[1])] << 24);
+
+    t.X[3] = *RK++ ^ \
+             ((uint32_t) FSb[MBEDTLS_BYTE_0(t.Y[3])]) ^
+             ((uint32_t) FSb[MBEDTLS_BYTE_1(t.Y[0])] <<  8) ^
+             ((uint32_t) FSb[MBEDTLS_BYTE_2(t.Y[1])] << 16) ^
+             ((uint32_t) FSb[MBEDTLS_BYTE_3(t.Y[2])] << 24);
+
+    MBEDTLS_PUT_UINT32_LE(t.X[0], output,  0);
+    MBEDTLS_PUT_UINT32_LE(t.X[1], output,  4);
+    MBEDTLS_PUT_UINT32_LE(t.X[2], output,  8);
+    MBEDTLS_PUT_UINT32_LE(t.X[3], output, 12);
+
+    mbedtls_platform_zeroize(&t, sizeof(t));
+
+    return 0;
+}
+#endif /* !MBEDTLS_AES_ENCRYPT_ALT */
+
+/*
+ * AES-ECB block decryption
+ */
+#if !defined(MBEDTLS_AES_DECRYPT_ALT) && !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+int mbedtls_internal_aes_decrypt(mbedtls_aes_context *ctx,
+                                 const unsigned char input[16],
+                                 unsigned char output[16])
+{
+    int i;
+    uint32_t *RK = ctx->buf + ctx->rk_offset;
+    struct {
+        uint32_t X[4];
+        uint32_t Y[4];
+    } t;
+
+    t.X[0] = MBEDTLS_GET_UINT32_LE(input,  0); t.X[0] ^= *RK++;
+    t.X[1] = MBEDTLS_GET_UINT32_LE(input,  4); t.X[1] ^= *RK++;
+    t.X[2] = MBEDTLS_GET_UINT32_LE(input,  8); t.X[2] ^= *RK++;
+    t.X[3] = MBEDTLS_GET_UINT32_LE(input, 12); t.X[3] ^= *RK++;
+
+    for (i = (ctx->nr >> 1) - 1; i > 0; i--) {
+        AES_RROUND(t.Y[0], t.Y[1], t.Y[2], t.Y[3], t.X[0], t.X[1], t.X[2], t.X[3]);
+        AES_RROUND(t.X[0], t.X[1], t.X[2], t.X[3], t.Y[0], t.Y[1], t.Y[2], t.Y[3]);
+    }
+
+    AES_RROUND(t.Y[0], t.Y[1], t.Y[2], t.Y[3], t.X[0], t.X[1], t.X[2], t.X[3]);
+
+    t.X[0] = *RK++ ^ \
+             ((uint32_t) RSb[MBEDTLS_BYTE_0(t.Y[0])]) ^
+             ((uint32_t) RSb[MBEDTLS_BYTE_1(t.Y[3])] <<  8) ^
+             ((uint32_t) RSb[MBEDTLS_BYTE_2(t.Y[2])] << 16) ^
+             ((uint32_t) RSb[MBEDTLS_BYTE_3(t.Y[1])] << 24);
+
+    t.X[1] = *RK++ ^ \
+             ((uint32_t) RSb[MBEDTLS_BYTE_0(t.Y[1])]) ^
+             ((uint32_t) RSb[MBEDTLS_BYTE_1(t.Y[0])] <<  8) ^
+             ((uint32_t) RSb[MBEDTLS_BYTE_2(t.Y[3])] << 16) ^
+             ((uint32_t) RSb[MBEDTLS_BYTE_3(t.Y[2])] << 24);
+
+    t.X[2] = *RK++ ^ \
+             ((uint32_t) RSb[MBEDTLS_BYTE_0(t.Y[2])]) ^
+             ((uint32_t) RSb[MBEDTLS_BYTE_1(t.Y[1])] <<  8) ^
+             ((uint32_t) RSb[MBEDTLS_BYTE_2(t.Y[0])] << 16) ^
+             ((uint32_t) RSb[MBEDTLS_BYTE_3(t.Y[3])] << 24);
+
+    t.X[3] = *RK++ ^ \
+             ((uint32_t) RSb[MBEDTLS_BYTE_0(t.Y[3])]) ^
+             ((uint32_t) RSb[MBEDTLS_BYTE_1(t.Y[2])] <<  8) ^
+             ((uint32_t) RSb[MBEDTLS_BYTE_2(t.Y[1])] << 16) ^
+             ((uint32_t) RSb[MBEDTLS_BYTE_3(t.Y[0])] << 24);
+
+    MBEDTLS_PUT_UINT32_LE(t.X[0], output,  0);
+    MBEDTLS_PUT_UINT32_LE(t.X[1], output,  4);
+    MBEDTLS_PUT_UINT32_LE(t.X[2], output,  8);
+    MBEDTLS_PUT_UINT32_LE(t.X[3], output, 12);
+
+    mbedtls_platform_zeroize(&t, sizeof(t));
+
+    return 0;
+}
+#endif /* !MBEDTLS_AES_DECRYPT_ALT && !MBEDTLS_BLOCK_CIPHER_NO_DECRYPT */
+
+/*
+ * Our intrinsics-based implementation of AESNI requires the round keys to be
+ * aligned on a 16-byte boundary. We take care of this before creating them,
+ * but the AES context may have moved (this can happen if the library is
+ * called from a language with managed memory), and in later calls it might
+ * have a different alignment with respect to 16-byte memory. So we may need
+ * to realign.
+ */
+#if defined(MAY_NEED_TO_ALIGN)
+MBEDTLS_MAYBE_UNUSED static void aes_maybe_realign(mbedtls_aes_context *ctx)
+{
+    unsigned new_offset = mbedtls_aes_rk_offset(ctx->buf);
+    if (new_offset != ctx->rk_offset) {
+        memmove(ctx->buf + new_offset,     // new address
+                ctx->buf + ctx->rk_offset, // current address
+                (ctx->nr + 1) * 16);       // number of round keys * bytes per rk
+        ctx->rk_offset = new_offset;
+    }
+}
+#endif /* MAY_NEED_TO_ALIGN */
+/*
+ * AES-ECB block encryption/decryption
+ */
+int mbedtls_aes_crypt_ecb(mbedtls_aes_context *ctx,
+                          int mode,
+                          const unsigned char input[16],
+                          unsigned char output[16])
+{
+    if (mode != MBEDTLS_AES_ENCRYPT && mode != MBEDTLS_AES_DECRYPT) {
+        return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
+    }
+
+#if defined(MAY_NEED_TO_ALIGN)
+    aes_maybe_realign(ctx);
+#endif
+
+#if defined(MBEDTLS_AESNI_HAVE_CODE)
+    if (mbedtls_aesni_has_support(MBEDTLS_AESNI_AES)) {
+        return mbedtls_aesni_crypt_ecb(ctx, mode, input, output);
+    }
+#endif
+
+#if defined(MBEDTLS_AESCE_HAVE_CODE)
+    if (MBEDTLS_AESCE_HAS_SUPPORT()) {
+        return mbedtls_aesce_crypt_ecb(ctx, mode, input, output);
+    }
+#endif
+
+#if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+    if (mode == MBEDTLS_AES_DECRYPT) {
+        return mbedtls_internal_aes_decrypt(ctx, input, output);
+    } else
+#endif
+    {
+        return mbedtls_internal_aes_encrypt(ctx, input, output);
+    }
+#endif /* !MBEDTLS_AES_USE_HARDWARE_ONLY */
+}
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+
+/*
+ * AES-CBC buffer encryption/decryption
+ */
+int mbedtls_aes_crypt_cbc(mbedtls_aes_context *ctx,
+                          int mode,
+                          size_t length,
+                          unsigned char iv[16],
+                          const unsigned char *input,
+                          unsigned char *output)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char temp[16];
+
+    if (mode != MBEDTLS_AES_ENCRYPT && mode != MBEDTLS_AES_DECRYPT) {
+        return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
+    }
+
+    /* Nothing to do if length is zero. */
+    if (length == 0) {
+        return 0;
+    }
+
+    if (length % 16) {
+        return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
+    }
+
+    const unsigned char *ivp = iv;
+
+    if (mode == MBEDTLS_AES_DECRYPT) {
+        while (length > 0) {
+            memcpy(temp, input, 16);
+            ret = mbedtls_aes_crypt_ecb(ctx, mode, input, output);
+            if (ret != 0) {
+                goto exit;
+            }
+            /* Avoid using the NEON implementation of mbedtls_xor. Because of the dependency on
+             * the result for the next block in CBC, and the cost of transferring that data from
+             * NEON registers, NEON is slower on aarch64. */
+            mbedtls_xor_no_simd(output, output, iv, 16);
+
+            memcpy(iv, temp, 16);
+
+            input  += 16;
+            output += 16;
+            length -= 16;
+        }
+    } else {
+        while (length > 0) {
+            mbedtls_xor_no_simd(output, input, ivp, 16);
+
+            ret = mbedtls_aes_crypt_ecb(ctx, mode, output, output);
+            if (ret != 0) {
+                goto exit;
+            }
+            ivp = output;
+
+            input  += 16;
+            output += 16;
+            length -= 16;
+        }
+        memcpy(iv, ivp, 16);
+    }
+    ret = 0;
+
+exit:
+    return ret;
+}
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+
+typedef unsigned char mbedtls_be128[16];
+
+/*
+ * GF(2^128) multiplication function
+ *
+ * This function multiplies a field element by x in the polynomial field
+ * representation. It uses 64-bit word operations to gain speed but compensates
+ * for machine endianness and hence works correctly on both big and little
+ * endian machines.
+ */
+#if defined(MBEDTLS_AESCE_C) || defined(MBEDTLS_AESNI_C)
+MBEDTLS_OPTIMIZE_FOR_PERFORMANCE
+#endif
+static inline void mbedtls_gf128mul_x_ble(unsigned char r[16],
+                                          const unsigned char x[16])
+{
+    uint64_t a, b, ra, rb;
+
+    a = MBEDTLS_GET_UINT64_LE(x, 0);
+    b = MBEDTLS_GET_UINT64_LE(x, 8);
+
+    ra = (a << 1)  ^ 0x0087 >> (8 - ((b >> 63) << 3));
+    rb = (a >> 63) | (b << 1);
+
+    MBEDTLS_PUT_UINT64_LE(ra, r, 0);
+    MBEDTLS_PUT_UINT64_LE(rb, r, 8);
+}
+
+/*
+ * AES-XTS buffer encryption/decryption
+ *
+ * Use of MBEDTLS_OPTIMIZE_FOR_PERFORMANCE here and for mbedtls_gf128mul_x_ble()
+ * is a 3x performance improvement for gcc -Os, if we have hardware AES support.
+ */
+#if defined(MBEDTLS_AESCE_C) || defined(MBEDTLS_AESNI_C)
+MBEDTLS_OPTIMIZE_FOR_PERFORMANCE
+#endif
+int mbedtls_aes_crypt_xts(mbedtls_aes_xts_context *ctx,
+                          int mode,
+                          size_t length,
+                          const unsigned char data_unit[16],
+                          const unsigned char *input,
+                          unsigned char *output)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t blocks = length / 16;
+    size_t leftover = length % 16;
+    unsigned char tweak[16];
+    unsigned char prev_tweak[16];
+    unsigned char tmp[16];
+
+    if (mode != MBEDTLS_AES_ENCRYPT && mode != MBEDTLS_AES_DECRYPT) {
+        return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
+    }
+
+    /* Data units must be at least 16 bytes long. */
+    if (length < 16) {
+        return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
+    }
+
+    /* NIST SP 800-38E disallows data units larger than 2**20 blocks. */
+    if (length > (1 << 20) * 16) {
+        return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
+    }
+
+    /* Compute the tweak. */
+    ret = mbedtls_aes_crypt_ecb(&ctx->tweak, MBEDTLS_AES_ENCRYPT,
+                                data_unit, tweak);
+    if (ret != 0) {
+        return ret;
+    }
+
+    while (blocks--) {
+        if (MBEDTLS_UNLIKELY(leftover && (mode == MBEDTLS_AES_DECRYPT) && blocks == 0)) {
+            /* We are on the last block in a decrypt operation that has
+             * leftover bytes, so we need to use the next tweak for this block,
+             * and this tweak for the leftover bytes. Save the current tweak for
+             * the leftovers and then update the current tweak for use on this,
+             * the last full block. */
+            memcpy(prev_tweak, tweak, sizeof(tweak));
+            mbedtls_gf128mul_x_ble(tweak, tweak);
+        }
+
+        mbedtls_xor(tmp, input, tweak, 16);
+
+        ret = mbedtls_aes_crypt_ecb(&ctx->crypt, mode, tmp, tmp);
+        if (ret != 0) {
+            return ret;
+        }
+
+        mbedtls_xor(output, tmp, tweak, 16);
+
+        /* Update the tweak for the next block. */
+        mbedtls_gf128mul_x_ble(tweak, tweak);
+
+        output += 16;
+        input += 16;
+    }
+
+    if (leftover) {
+        /* If we are on the leftover bytes in a decrypt operation, we need to
+         * use the previous tweak for these bytes (as saved in prev_tweak). */
+        unsigned char *t = mode == MBEDTLS_AES_DECRYPT ? prev_tweak : tweak;
+
+        /* We are now on the final part of the data unit, which doesn't divide
+         * evenly by 16. It's time for ciphertext stealing. */
+        size_t i;
+        unsigned char *prev_output = output - 16;
+
+        /* Copy ciphertext bytes from the previous block to our output for each
+         * byte of ciphertext we won't steal. */
+        for (i = 0; i < leftover; i++) {
+            output[i] = prev_output[i];
+        }
+
+        /* Copy the remainder of the input for this final round. */
+        mbedtls_xor(tmp, input, t, leftover);
+
+        /* Copy ciphertext bytes from the previous block for input in this
+         * round. */
+        mbedtls_xor(tmp + i, prev_output + i, t + i, 16 - i);
+
+        ret = mbedtls_aes_crypt_ecb(&ctx->crypt, mode, tmp, tmp);
+        if (ret != 0) {
+            return ret;
+        }
+
+        /* Write the result back to the previous block, overriding the previous
+         * output we copied. */
+        mbedtls_xor(prev_output, tmp, t, 16);
+    }
+
+    return 0;
+}
+#endif /* MBEDTLS_CIPHER_MODE_XTS */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+/*
+ * AES-CFB128 buffer encryption/decryption
+ */
+int mbedtls_aes_crypt_cfb128(mbedtls_aes_context *ctx,
+                             int mode,
+                             size_t length,
+                             size_t *iv_off,
+                             unsigned char iv[16],
+                             const unsigned char *input,
+                             unsigned char *output)
+{
+    int c;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t n;
+
+    if (mode != MBEDTLS_AES_ENCRYPT && mode != MBEDTLS_AES_DECRYPT) {
+        return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
+    }
+
+    n = *iv_off;
+
+    if (n > 15) {
+        return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
+    }
+
+    if (mode == MBEDTLS_AES_DECRYPT) {
+        while (length--) {
+            if (n == 0) {
+                ret = mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, iv, iv);
+                if (ret != 0) {
+                    goto exit;
+                }
+            }
+
+            c = *input++;
+            *output++ = (unsigned char) (c ^ iv[n]);
+            iv[n] = (unsigned char) c;
+
+            n = (n + 1) & 0x0F;
+        }
+    } else {
+        while (length--) {
+            if (n == 0) {
+                ret = mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, iv, iv);
+                if (ret != 0) {
+                    goto exit;
+                }
+            }
+
+            iv[n] = *output++ = (unsigned char) (iv[n] ^ *input++);
+
+            n = (n + 1) & 0x0F;
+        }
+    }
+
+    *iv_off = n;
+    ret = 0;
+
+exit:
+    return ret;
+}
+
+/*
+ * AES-CFB8 buffer encryption/decryption
+ */
+int mbedtls_aes_crypt_cfb8(mbedtls_aes_context *ctx,
+                           int mode,
+                           size_t length,
+                           unsigned char iv[16],
+                           const unsigned char *input,
+                           unsigned char *output)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char c;
+    unsigned char ov[17];
+
+    if (mode != MBEDTLS_AES_ENCRYPT && mode != MBEDTLS_AES_DECRYPT) {
+        return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
+    }
+    while (length--) {
+        memcpy(ov, iv, 16);
+        ret = mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, iv, iv);
+        if (ret != 0) {
+            goto exit;
+        }
+
+        if (mode == MBEDTLS_AES_DECRYPT) {
+            ov[16] = *input;
+        }
+
+        c = *output++ = (unsigned char) (iv[0] ^ *input++);
+
+        if (mode == MBEDTLS_AES_ENCRYPT) {
+            ov[16] = c;
+        }
+
+        memcpy(iv, ov + 1, 16);
+    }
+    ret = 0;
+
+exit:
+    return ret;
+}
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+/*
+ * AES-OFB (Output Feedback Mode) buffer encryption/decryption
+ */
+int mbedtls_aes_crypt_ofb(mbedtls_aes_context *ctx,
+                          size_t length,
+                          size_t *iv_off,
+                          unsigned char iv[16],
+                          const unsigned char *input,
+                          unsigned char *output)
+{
+    int ret = 0;
+    size_t n;
+
+    n = *iv_off;
+
+    if (n > 15) {
+        return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
+    }
+
+    while (length--) {
+        if (n == 0) {
+            ret = mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, iv, iv);
+            if (ret != 0) {
+                goto exit;
+            }
+        }
+        *output++ =  *input++ ^ iv[n];
+
+        n = (n + 1) & 0x0F;
+    }
+
+    *iv_off = n;
+
+exit:
+    return ret;
+}
+#endif /* MBEDTLS_CIPHER_MODE_OFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+/*
+ * AES-CTR buffer encryption/decryption
+ */
+int mbedtls_aes_crypt_ctr(mbedtls_aes_context *ctx,
+                          size_t length,
+                          size_t *nc_off,
+                          unsigned char nonce_counter[16],
+                          unsigned char stream_block[16],
+                          const unsigned char *input,
+                          unsigned char *output)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    size_t offset = *nc_off;
+
+    if (offset > 0x0F) {
+        return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
+    }
+
+    for (size_t i = 0; i < length;) {
+        size_t n = 16;
+        if (offset == 0) {
+            ret = mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, nonce_counter, stream_block);
+            if (ret != 0) {
+                goto exit;
+            }
+            mbedtls_ctr_increment_counter(nonce_counter);
+        } else {
+            n -= offset;
+        }
+
+        if (n > (length - i)) {
+            n = (length - i);
+        }
+        mbedtls_xor(&output[i], &input[i], &stream_block[offset], n);
+        // offset might be non-zero for the last block, but in that case, we don't use it again
+        offset = 0;
+        i += n;
+    }
+
+    // capture offset for future resumption
+    *nc_off = (*nc_off + length) % 16;
+
+    ret = 0;
+
+exit:
+    return ret;
+}
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+#endif /* !MBEDTLS_AES_ALT */
+
+#if defined(MBEDTLS_SELF_TEST)
+/*
+ * AES test vectors from:
+ *
+ * http://csrc.nist.gov/archive/aes/rijndael/rijndael-vals.zip
+ */
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+static const unsigned char aes_test_ecb_dec[][16] =
+{
+    { 0x44, 0x41, 0x6A, 0xC2, 0xD1, 0xF5, 0x3C, 0x58,
+      0x33, 0x03, 0x91, 0x7E, 0x6B, 0xE9, 0xEB, 0xE0 },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { 0x48, 0xE3, 0x1E, 0x9E, 0x25, 0x67, 0x18, 0xF2,
+      0x92, 0x29, 0x31, 0x9C, 0x19, 0xF1, 0x5B, 0xA4 },
+    { 0x05, 0x8C, 0xCF, 0xFD, 0xBB, 0xCB, 0x38, 0x2D,
+      0x1F, 0x6F, 0x56, 0x58, 0x5D, 0x8A, 0x4A, 0xDE }
+#endif
+};
+#endif
+
+static const unsigned char aes_test_ecb_enc[][16] =
+{
+    { 0xC3, 0x4C, 0x05, 0x2C, 0xC0, 0xDA, 0x8D, 0x73,
+      0x45, 0x1A, 0xFE, 0x5F, 0x03, 0xBE, 0x29, 0x7F },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { 0xF3, 0xF6, 0x75, 0x2A, 0xE8, 0xD7, 0x83, 0x11,
+      0x38, 0xF0, 0x41, 0x56, 0x06, 0x31, 0xB1, 0x14 },
+    { 0x8B, 0x79, 0xEE, 0xCC, 0x93, 0xA0, 0xEE, 0x5D,
+      0xFF, 0x30, 0xB4, 0xEA, 0x21, 0x63, 0x6D, 0xA4 }
+#endif
+};
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static const unsigned char aes_test_cbc_dec[][16] =
+{
+    { 0xFA, 0xCA, 0x37, 0xE0, 0xB0, 0xC8, 0x53, 0x73,
+      0xDF, 0x70, 0x6E, 0x73, 0xF7, 0xC9, 0xAF, 0x86 },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { 0x5D, 0xF6, 0x78, 0xDD, 0x17, 0xBA, 0x4E, 0x75,
+      0xB6, 0x17, 0x68, 0xC6, 0xAD, 0xEF, 0x7C, 0x7B },
+    { 0x48, 0x04, 0xE1, 0x81, 0x8F, 0xE6, 0x29, 0x75,
+      0x19, 0xA3, 0xE8, 0x8C, 0x57, 0x31, 0x04, 0x13 }
+#endif
+};
+
+static const unsigned char aes_test_cbc_enc[][16] =
+{
+    { 0x8A, 0x05, 0xFC, 0x5E, 0x09, 0x5A, 0xF4, 0x84,
+      0x8A, 0x08, 0xD3, 0x28, 0xD3, 0x68, 0x8E, 0x3D },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { 0x7B, 0xD9, 0x66, 0xD5, 0x3A, 0xD8, 0xC1, 0xBB,
+      0x85, 0xD2, 0xAD, 0xFA, 0xE8, 0x7B, 0xB1, 0x04 },
+    { 0xFE, 0x3C, 0x53, 0x65, 0x3E, 0x2F, 0x45, 0xB5,
+      0x6F, 0xCD, 0x88, 0xB2, 0xCC, 0x89, 0x8F, 0xF0 }
+#endif
+};
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+/*
+ * AES-CFB128 test vectors from:
+ *
+ * http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
+ */
+static const unsigned char aes_test_cfb128_key[][32] =
+{
+    { 0x2B, 0x7E, 0x15, 0x16, 0x28, 0xAE, 0xD2, 0xA6,
+      0xAB, 0xF7, 0x15, 0x88, 0x09, 0xCF, 0x4F, 0x3C },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { 0x8E, 0x73, 0xB0, 0xF7, 0xDA, 0x0E, 0x64, 0x52,
+      0xC8, 0x10, 0xF3, 0x2B, 0x80, 0x90, 0x79, 0xE5,
+      0x62, 0xF8, 0xEA, 0xD2, 0x52, 0x2C, 0x6B, 0x7B },
+    { 0x60, 0x3D, 0xEB, 0x10, 0x15, 0xCA, 0x71, 0xBE,
+      0x2B, 0x73, 0xAE, 0xF0, 0x85, 0x7D, 0x77, 0x81,
+      0x1F, 0x35, 0x2C, 0x07, 0x3B, 0x61, 0x08, 0xD7,
+      0x2D, 0x98, 0x10, 0xA3, 0x09, 0x14, 0xDF, 0xF4 }
+#endif
+};
+
+static const unsigned char aes_test_cfb128_iv[16] =
+{
+    0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+    0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F
+};
+
+static const unsigned char aes_test_cfb128_pt[64] =
+{
+    0x6B, 0xC1, 0xBE, 0xE2, 0x2E, 0x40, 0x9F, 0x96,
+    0xE9, 0x3D, 0x7E, 0x11, 0x73, 0x93, 0x17, 0x2A,
+    0xAE, 0x2D, 0x8A, 0x57, 0x1E, 0x03, 0xAC, 0x9C,
+    0x9E, 0xB7, 0x6F, 0xAC, 0x45, 0xAF, 0x8E, 0x51,
+    0x30, 0xC8, 0x1C, 0x46, 0xA3, 0x5C, 0xE4, 0x11,
+    0xE5, 0xFB, 0xC1, 0x19, 0x1A, 0x0A, 0x52, 0xEF,
+    0xF6, 0x9F, 0x24, 0x45, 0xDF, 0x4F, 0x9B, 0x17,
+    0xAD, 0x2B, 0x41, 0x7B, 0xE6, 0x6C, 0x37, 0x10
+};
+
+static const unsigned char aes_test_cfb128_ct[][64] =
+{
+    { 0x3B, 0x3F, 0xD9, 0x2E, 0xB7, 0x2D, 0xAD, 0x20,
+      0x33, 0x34, 0x49, 0xF8, 0xE8, 0x3C, 0xFB, 0x4A,
+      0xC8, 0xA6, 0x45, 0x37, 0xA0, 0xB3, 0xA9, 0x3F,
+      0xCD, 0xE3, 0xCD, 0xAD, 0x9F, 0x1C, 0xE5, 0x8B,
+      0x26, 0x75, 0x1F, 0x67, 0xA3, 0xCB, 0xB1, 0x40,
+      0xB1, 0x80, 0x8C, 0xF1, 0x87, 0xA4, 0xF4, 0xDF,
+      0xC0, 0x4B, 0x05, 0x35, 0x7C, 0x5D, 0x1C, 0x0E,
+      0xEA, 0xC4, 0xC6, 0x6F, 0x9F, 0xF7, 0xF2, 0xE6 },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { 0xCD, 0xC8, 0x0D, 0x6F, 0xDD, 0xF1, 0x8C, 0xAB,
+      0x34, 0xC2, 0x59, 0x09, 0xC9, 0x9A, 0x41, 0x74,
+      0x67, 0xCE, 0x7F, 0x7F, 0x81, 0x17, 0x36, 0x21,
+      0x96, 0x1A, 0x2B, 0x70, 0x17, 0x1D, 0x3D, 0x7A,
+      0x2E, 0x1E, 0x8A, 0x1D, 0xD5, 0x9B, 0x88, 0xB1,
+      0xC8, 0xE6, 0x0F, 0xED, 0x1E, 0xFA, 0xC4, 0xC9,
+      0xC0, 0x5F, 0x9F, 0x9C, 0xA9, 0x83, 0x4F, 0xA0,
+      0x42, 0xAE, 0x8F, 0xBA, 0x58, 0x4B, 0x09, 0xFF },
+    { 0xDC, 0x7E, 0x84, 0xBF, 0xDA, 0x79, 0x16, 0x4B,
+      0x7E, 0xCD, 0x84, 0x86, 0x98, 0x5D, 0x38, 0x60,
+      0x39, 0xFF, 0xED, 0x14, 0x3B, 0x28, 0xB1, 0xC8,
+      0x32, 0x11, 0x3C, 0x63, 0x31, 0xE5, 0x40, 0x7B,
+      0xDF, 0x10, 0x13, 0x24, 0x15, 0xE5, 0x4B, 0x92,
+      0xA1, 0x3E, 0xD0, 0xA8, 0x26, 0x7A, 0xE2, 0xF9,
+      0x75, 0xA3, 0x85, 0x74, 0x1A, 0xB9, 0xCE, 0xF8,
+      0x20, 0x31, 0x62, 0x3D, 0x55, 0xB1, 0xE4, 0x71 }
+#endif
+};
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+/*
+ * AES-OFB test vectors from:
+ *
+ * https://csrc.nist.gov/publications/detail/sp/800-38a/final
+ */
+static const unsigned char aes_test_ofb_key[][32] =
+{
+    { 0x2B, 0x7E, 0x15, 0x16, 0x28, 0xAE, 0xD2, 0xA6,
+      0xAB, 0xF7, 0x15, 0x88, 0x09, 0xCF, 0x4F, 0x3C },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { 0x8E, 0x73, 0xB0, 0xF7, 0xDA, 0x0E, 0x64, 0x52,
+      0xC8, 0x10, 0xF3, 0x2B, 0x80, 0x90, 0x79, 0xE5,
+      0x62, 0xF8, 0xEA, 0xD2, 0x52, 0x2C, 0x6B, 0x7B },
+    { 0x60, 0x3D, 0xEB, 0x10, 0x15, 0xCA, 0x71, 0xBE,
+      0x2B, 0x73, 0xAE, 0xF0, 0x85, 0x7D, 0x77, 0x81,
+      0x1F, 0x35, 0x2C, 0x07, 0x3B, 0x61, 0x08, 0xD7,
+      0x2D, 0x98, 0x10, 0xA3, 0x09, 0x14, 0xDF, 0xF4 }
+#endif
+};
+
+static const unsigned char aes_test_ofb_iv[16] =
+{
+    0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+    0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F
+};
+
+static const unsigned char aes_test_ofb_pt[64] =
+{
+    0x6B, 0xC1, 0xBE, 0xE2, 0x2E, 0x40, 0x9F, 0x96,
+    0xE9, 0x3D, 0x7E, 0x11, 0x73, 0x93, 0x17, 0x2A,
+    0xAE, 0x2D, 0x8A, 0x57, 0x1E, 0x03, 0xAC, 0x9C,
+    0x9E, 0xB7, 0x6F, 0xAC, 0x45, 0xAF, 0x8E, 0x51,
+    0x30, 0xC8, 0x1C, 0x46, 0xA3, 0x5C, 0xE4, 0x11,
+    0xE5, 0xFB, 0xC1, 0x19, 0x1A, 0x0A, 0x52, 0xEF,
+    0xF6, 0x9F, 0x24, 0x45, 0xDF, 0x4F, 0x9B, 0x17,
+    0xAD, 0x2B, 0x41, 0x7B, 0xE6, 0x6C, 0x37, 0x10
+};
+
+static const unsigned char aes_test_ofb_ct[][64] =
+{
+    { 0x3B, 0x3F, 0xD9, 0x2E, 0xB7, 0x2D, 0xAD, 0x20,
+      0x33, 0x34, 0x49, 0xF8, 0xE8, 0x3C, 0xFB, 0x4A,
+      0x77, 0x89, 0x50, 0x8d, 0x16, 0x91, 0x8f, 0x03,
+      0xf5, 0x3c, 0x52, 0xda, 0xc5, 0x4e, 0xd8, 0x25,
+      0x97, 0x40, 0x05, 0x1e, 0x9c, 0x5f, 0xec, 0xf6,
+      0x43, 0x44, 0xf7, 0xa8, 0x22, 0x60, 0xed, 0xcc,
+      0x30, 0x4c, 0x65, 0x28, 0xf6, 0x59, 0xc7, 0x78,
+      0x66, 0xa5, 0x10, 0xd9, 0xc1, 0xd6, 0xae, 0x5e },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { 0xCD, 0xC8, 0x0D, 0x6F, 0xDD, 0xF1, 0x8C, 0xAB,
+      0x34, 0xC2, 0x59, 0x09, 0xC9, 0x9A, 0x41, 0x74,
+      0xfc, 0xc2, 0x8b, 0x8d, 0x4c, 0x63, 0x83, 0x7c,
+      0x09, 0xe8, 0x17, 0x00, 0xc1, 0x10, 0x04, 0x01,
+      0x8d, 0x9a, 0x9a, 0xea, 0xc0, 0xf6, 0x59, 0x6f,
+      0x55, 0x9c, 0x6d, 0x4d, 0xaf, 0x59, 0xa5, 0xf2,
+      0x6d, 0x9f, 0x20, 0x08, 0x57, 0xca, 0x6c, 0x3e,
+      0x9c, 0xac, 0x52, 0x4b, 0xd9, 0xac, 0xc9, 0x2a },
+    { 0xDC, 0x7E, 0x84, 0xBF, 0xDA, 0x79, 0x16, 0x4B,
+      0x7E, 0xCD, 0x84, 0x86, 0x98, 0x5D, 0x38, 0x60,
+      0x4f, 0xeb, 0xdc, 0x67, 0x40, 0xd2, 0x0b, 0x3a,
+      0xc8, 0x8f, 0x6a, 0xd8, 0x2a, 0x4f, 0xb0, 0x8d,
+      0x71, 0xab, 0x47, 0xa0, 0x86, 0xe8, 0x6e, 0xed,
+      0xf3, 0x9d, 0x1c, 0x5b, 0xba, 0x97, 0xc4, 0x08,
+      0x01, 0x26, 0x14, 0x1d, 0x67, 0xf3, 0x7b, 0xe8,
+      0x53, 0x8f, 0x5a, 0x8b, 0xe7, 0x40, 0xe4, 0x84 }
+#endif
+};
+#endif /* MBEDTLS_CIPHER_MODE_OFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+/*
+ * AES-CTR test vectors from:
+ *
+ * http://www.faqs.org/rfcs/rfc3686.html
+ */
+
+static const unsigned char aes_test_ctr_key[][16] =
+{
+    { 0xAE, 0x68, 0x52, 0xF8, 0x12, 0x10, 0x67, 0xCC,
+      0x4B, 0xF7, 0xA5, 0x76, 0x55, 0x77, 0xF3, 0x9E },
+    { 0x7E, 0x24, 0x06, 0x78, 0x17, 0xFA, 0xE0, 0xD7,
+      0x43, 0xD6, 0xCE, 0x1F, 0x32, 0x53, 0x91, 0x63 },
+    { 0x76, 0x91, 0xBE, 0x03, 0x5E, 0x50, 0x20, 0xA8,
+      0xAC, 0x6E, 0x61, 0x85, 0x29, 0xF9, 0xA0, 0xDC }
+};
+
+static const unsigned char aes_test_ctr_nonce_counter[][16] =
+{
+    { 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x00,
+      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 },
+    { 0x00, 0x6C, 0xB6, 0xDB, 0xC0, 0x54, 0x3B, 0x59,
+      0xDA, 0x48, 0xD9, 0x0B, 0x00, 0x00, 0x00, 0x01 },
+    { 0x00, 0xE0, 0x01, 0x7B, 0x27, 0x77, 0x7F, 0x3F,
+      0x4A, 0x17, 0x86, 0xF0, 0x00, 0x00, 0x00, 0x01 }
+};
+
+static const unsigned char aes_test_ctr_pt[][48] =
+{
+    { 0x53, 0x69, 0x6E, 0x67, 0x6C, 0x65, 0x20, 0x62,
+      0x6C, 0x6F, 0x63, 0x6B, 0x20, 0x6D, 0x73, 0x67 },
+    { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+      0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
+      0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+      0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F },
+
+    { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+      0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
+      0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+      0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F,
+      0x20, 0x21, 0x22, 0x23 }
+};
+
+static const unsigned char aes_test_ctr_ct[][48] =
+{
+    { 0xE4, 0x09, 0x5D, 0x4F, 0xB7, 0xA7, 0xB3, 0x79,
+      0x2D, 0x61, 0x75, 0xA3, 0x26, 0x13, 0x11, 0xB8 },
+    { 0x51, 0x04, 0xA1, 0x06, 0x16, 0x8A, 0x72, 0xD9,
+      0x79, 0x0D, 0x41, 0xEE, 0x8E, 0xDA, 0xD3, 0x88,
+      0xEB, 0x2E, 0x1E, 0xFC, 0x46, 0xDA, 0x57, 0xC8,
+      0xFC, 0xE6, 0x30, 0xDF, 0x91, 0x41, 0xBE, 0x28 },
+    { 0xC1, 0xCF, 0x48, 0xA8, 0x9F, 0x2F, 0xFD, 0xD9,
+      0xCF, 0x46, 0x52, 0xE9, 0xEF, 0xDB, 0x72, 0xD7,
+      0x45, 0x40, 0xA4, 0x2B, 0xDE, 0x6D, 0x78, 0x36,
+      0xD5, 0x9A, 0x5C, 0xEA, 0xAE, 0xF3, 0x10, 0x53,
+      0x25, 0xB2, 0x07, 0x2F }
+};
+
+static const int aes_test_ctr_len[3] =
+{ 16, 32, 36 };
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+/*
+ * AES-XTS test vectors from:
+ *
+ * IEEE P1619/D16 Annex B
+ * https://web.archive.org/web/20150629024421/http://grouper.ieee.org/groups/1619/email/pdf00086.pdf
+ * (Archived from original at http://grouper.ieee.org/groups/1619/email/pdf00086.pdf)
+ */
+static const unsigned char aes_test_xts_key[][32] =
+{
+    { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+    { 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
+      0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
+      0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22,
+      0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22 },
+    { 0xff, 0xfe, 0xfd, 0xfc, 0xfb, 0xfa, 0xf9, 0xf8,
+      0xf7, 0xf6, 0xf5, 0xf4, 0xf3, 0xf2, 0xf1, 0xf0,
+      0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22,
+      0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22 },
+};
+
+static const unsigned char aes_test_xts_pt32[][32] =
+{
+    { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+    { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44,
+      0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44,
+      0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44,
+      0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44 },
+    { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44,
+      0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44,
+      0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44,
+      0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44 },
+};
+
+static const unsigned char aes_test_xts_ct32[][32] =
+{
+    { 0x91, 0x7c, 0xf6, 0x9e, 0xbd, 0x68, 0xb2, 0xec,
+      0x9b, 0x9f, 0xe9, 0xa3, 0xea, 0xdd, 0xa6, 0x92,
+      0xcd, 0x43, 0xd2, 0xf5, 0x95, 0x98, 0xed, 0x85,
+      0x8c, 0x02, 0xc2, 0x65, 0x2f, 0xbf, 0x92, 0x2e },
+    { 0xc4, 0x54, 0x18, 0x5e, 0x6a, 0x16, 0x93, 0x6e,
+      0x39, 0x33, 0x40, 0x38, 0xac, 0xef, 0x83, 0x8b,
+      0xfb, 0x18, 0x6f, 0xff, 0x74, 0x80, 0xad, 0xc4,
+      0x28, 0x93, 0x82, 0xec, 0xd6, 0xd3, 0x94, 0xf0 },
+    { 0xaf, 0x85, 0x33, 0x6b, 0x59, 0x7a, 0xfc, 0x1a,
+      0x90, 0x0b, 0x2e, 0xb2, 0x1e, 0xc9, 0x49, 0xd2,
+      0x92, 0xdf, 0x4c, 0x04, 0x7e, 0x0b, 0x21, 0x53,
+      0x21, 0x86, 0xa5, 0x97, 0x1a, 0x22, 0x7a, 0x89 },
+};
+
+static const unsigned char aes_test_xts_data_unit[][16] =
+{
+    { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+    { 0x33, 0x33, 0x33, 0x33, 0x33, 0x00, 0x00, 0x00,
+      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+    { 0x33, 0x33, 0x33, 0x33, 0x33, 0x00, 0x00, 0x00,
+      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+};
+
+#endif /* MBEDTLS_CIPHER_MODE_XTS */
+
+/*
+ * Checkup routine
+ */
+int mbedtls_aes_self_test(int verbose)
+{
+    int ret = 0, i, j, u, mode;
+    unsigned int keybits;
+    unsigned char key[32];
+    unsigned char buf[64];
+    const unsigned char *aes_tests;
+#if defined(MBEDTLS_CIPHER_MODE_CBC) || defined(MBEDTLS_CIPHER_MODE_CFB) || \
+    defined(MBEDTLS_CIPHER_MODE_OFB)
+    unsigned char iv[16];
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    unsigned char prv[16];
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR) || defined(MBEDTLS_CIPHER_MODE_CFB) || \
+    defined(MBEDTLS_CIPHER_MODE_OFB)
+    size_t offset;
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR) || defined(MBEDTLS_CIPHER_MODE_XTS)
+    int len;
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    unsigned char nonce_counter[16];
+    unsigned char stream_block[16];
+#endif
+    mbedtls_aes_context ctx;
+
+    memset(key, 0, 32);
+    mbedtls_aes_init(&ctx);
+
+    if (verbose != 0) {
+#if defined(MBEDTLS_AES_ALT)
+        mbedtls_printf("  AES note: alternative implementation.\n");
+#else /* MBEDTLS_AES_ALT */
+#if defined(MBEDTLS_AESNI_HAVE_CODE)
+#if MBEDTLS_AESNI_HAVE_CODE == 1
+        mbedtls_printf("  AES note: AESNI code present (assembly implementation).\n");
+#elif MBEDTLS_AESNI_HAVE_CODE == 2
+        mbedtls_printf("  AES note: AESNI code present (intrinsics implementation).\n");
+#else
+#error "Unrecognised value for MBEDTLS_AESNI_HAVE_CODE"
+#endif
+        if (mbedtls_aesni_has_support(MBEDTLS_AESNI_AES)) {
+            mbedtls_printf("  AES note: using AESNI.\n");
+        } else
+#endif
+#if defined(MBEDTLS_AESCE_HAVE_CODE)
+        if (MBEDTLS_AESCE_HAS_SUPPORT()) {
+            mbedtls_printf("  AES note: using AESCE.\n");
+        } else
+#endif
+        {
+#if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
+            mbedtls_printf("  AES note: built-in implementation.\n");
+#endif
+        }
+#endif /* MBEDTLS_AES_ALT */
+    }
+
+    /*
+     * ECB mode
+     */
+    {
+        static const int num_tests =
+            sizeof(aes_test_ecb_enc) / sizeof(*aes_test_ecb_enc);
+
+        for (i = 0; i < num_tests << 1; i++) {
+            u = i >> 1;
+            keybits = 128 + u * 64;
+            mode = i & 1;
+
+            if (verbose != 0) {
+                mbedtls_printf("  AES-ECB-%3u (%s): ", keybits,
+                               (mode == MBEDTLS_AES_DECRYPT) ? "dec" : "enc");
+            }
+#if defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+            if (mode == MBEDTLS_AES_DECRYPT) {
+                if (verbose != 0) {
+                    mbedtls_printf("skipped\n");
+                }
+                continue;
+            }
+#endif
+
+            memset(buf, 0, 16);
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+            if (mode == MBEDTLS_AES_DECRYPT) {
+                ret = mbedtls_aes_setkey_dec(&ctx, key, keybits);
+                aes_tests = aes_test_ecb_dec[u];
+            } else
+#endif
+            {
+                ret = mbedtls_aes_setkey_enc(&ctx, key, keybits);
+                aes_tests = aes_test_ecb_enc[u];
+            }
+
+            /*
+             * AES-192 is an optional feature that may be unavailable when
+             * there is an alternative underlying implementation i.e. when
+             * MBEDTLS_AES_ALT is defined.
+             */
+            if (ret == MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED && keybits == 192) {
+                mbedtls_printf("skipped\n");
+                continue;
+            } else if (ret != 0) {
+                goto exit;
+            }
+
+            for (j = 0; j < 10000; j++) {
+                ret = mbedtls_aes_crypt_ecb(&ctx, mode, buf, buf);
+                if (ret != 0) {
+                    goto exit;
+                }
+            }
+
+            if (memcmp(buf, aes_tests, 16) != 0) {
+                ret = 1;
+                goto exit;
+            }
+
+            if (verbose != 0) {
+                mbedtls_printf("passed\n");
+            }
+        }
+
+        if (verbose != 0) {
+            mbedtls_printf("\n");
+        }
+    }
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    /*
+     * CBC mode
+     */
+    {
+        static const int num_tests =
+            sizeof(aes_test_cbc_dec) / sizeof(*aes_test_cbc_dec);
+
+        for (i = 0; i < num_tests << 1; i++) {
+            u = i >> 1;
+            keybits = 128 + u * 64;
+            mode = i & 1;
+
+            if (verbose != 0) {
+                mbedtls_printf("  AES-CBC-%3u (%s): ", keybits,
+                               (mode == MBEDTLS_AES_DECRYPT) ? "dec" : "enc");
+            }
+
+            memset(iv, 0, 16);
+            memset(prv, 0, 16);
+            memset(buf, 0, 16);
+
+            if (mode == MBEDTLS_AES_DECRYPT) {
+                ret = mbedtls_aes_setkey_dec(&ctx, key, keybits);
+                aes_tests = aes_test_cbc_dec[u];
+            } else {
+                ret = mbedtls_aes_setkey_enc(&ctx, key, keybits);
+                aes_tests = aes_test_cbc_enc[u];
+            }
+
+            /*
+             * AES-192 is an optional feature that may be unavailable when
+             * there is an alternative underlying implementation i.e. when
+             * MBEDTLS_AES_ALT is defined.
+             */
+            if (ret == MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED && keybits == 192) {
+                mbedtls_printf("skipped\n");
+                continue;
+            } else if (ret != 0) {
+                goto exit;
+            }
+
+            for (j = 0; j < 10000; j++) {
+                if (mode == MBEDTLS_AES_ENCRYPT) {
+                    unsigned char tmp[16];
+
+                    memcpy(tmp, prv, 16);
+                    memcpy(prv, buf, 16);
+                    memcpy(buf, tmp, 16);
+                }
+
+                ret = mbedtls_aes_crypt_cbc(&ctx, mode, 16, iv, buf, buf);
+                if (ret != 0) {
+                    goto exit;
+                }
+
+            }
+
+            if (memcmp(buf, aes_tests, 16) != 0) {
+                ret = 1;
+                goto exit;
+            }
+
+            if (verbose != 0) {
+                mbedtls_printf("passed\n");
+            }
+        }
+
+        if (verbose != 0) {
+            mbedtls_printf("\n");
+        }
+    }
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+    /*
+     * CFB128 mode
+     */
+    {
+        static const int num_tests =
+            sizeof(aes_test_cfb128_key) / sizeof(*aes_test_cfb128_key);
+
+        for (i = 0; i < num_tests << 1; i++) {
+            u = i >> 1;
+            keybits = 128 + u * 64;
+            mode = i & 1;
+
+            if (verbose != 0) {
+                mbedtls_printf("  AES-CFB128-%3u (%s): ", keybits,
+                               (mode == MBEDTLS_AES_DECRYPT) ? "dec" : "enc");
+            }
+
+            memcpy(iv,  aes_test_cfb128_iv, 16);
+            memcpy(key, aes_test_cfb128_key[u], keybits / 8);
+
+            offset = 0;
+            ret = mbedtls_aes_setkey_enc(&ctx, key, keybits);
+            /*
+             * AES-192 is an optional feature that may be unavailable when
+             * there is an alternative underlying implementation i.e. when
+             * MBEDTLS_AES_ALT is defined.
+             */
+            if (ret == MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED && keybits == 192) {
+                mbedtls_printf("skipped\n");
+                continue;
+            } else if (ret != 0) {
+                goto exit;
+            }
+
+            if (mode == MBEDTLS_AES_DECRYPT) {
+                memcpy(buf, aes_test_cfb128_ct[u], 64);
+                aes_tests = aes_test_cfb128_pt;
+            } else {
+                memcpy(buf, aes_test_cfb128_pt, 64);
+                aes_tests = aes_test_cfb128_ct[u];
+            }
+
+            ret = mbedtls_aes_crypt_cfb128(&ctx, mode, 64, &offset, iv, buf, buf);
+            if (ret != 0) {
+                goto exit;
+            }
+
+            if (memcmp(buf, aes_tests, 64) != 0) {
+                ret = 1;
+                goto exit;
+            }
+
+            if (verbose != 0) {
+                mbedtls_printf("passed\n");
+            }
+        }
+
+        if (verbose != 0) {
+            mbedtls_printf("\n");
+        }
+    }
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+    /*
+     * OFB mode
+     */
+    {
+        static const int num_tests =
+            sizeof(aes_test_ofb_key) / sizeof(*aes_test_ofb_key);
+
+        for (i = 0; i < num_tests << 1; i++) {
+            u = i >> 1;
+            keybits = 128 + u * 64;
+            mode = i & 1;
+
+            if (verbose != 0) {
+                mbedtls_printf("  AES-OFB-%3u (%s): ", keybits,
+                               (mode == MBEDTLS_AES_DECRYPT) ? "dec" : "enc");
+            }
+
+            memcpy(iv,  aes_test_ofb_iv, 16);
+            memcpy(key, aes_test_ofb_key[u], keybits / 8);
+
+            offset = 0;
+            ret = mbedtls_aes_setkey_enc(&ctx, key, keybits);
+            /*
+             * AES-192 is an optional feature that may be unavailable when
+             * there is an alternative underlying implementation i.e. when
+             * MBEDTLS_AES_ALT is defined.
+             */
+            if (ret == MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED && keybits == 192) {
+                mbedtls_printf("skipped\n");
+                continue;
+            } else if (ret != 0) {
+                goto exit;
+            }
+
+            if (mode == MBEDTLS_AES_DECRYPT) {
+                memcpy(buf, aes_test_ofb_ct[u], 64);
+                aes_tests = aes_test_ofb_pt;
+            } else {
+                memcpy(buf, aes_test_ofb_pt, 64);
+                aes_tests = aes_test_ofb_ct[u];
+            }
+
+            ret = mbedtls_aes_crypt_ofb(&ctx, 64, &offset, iv, buf, buf);
+            if (ret != 0) {
+                goto exit;
+            }
+
+            if (memcmp(buf, aes_tests, 64) != 0) {
+                ret = 1;
+                goto exit;
+            }
+
+            if (verbose != 0) {
+                mbedtls_printf("passed\n");
+            }
+        }
+
+        if (verbose != 0) {
+            mbedtls_printf("\n");
+        }
+    }
+#endif /* MBEDTLS_CIPHER_MODE_OFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    /*
+     * CTR mode
+     */
+    {
+        static const int num_tests =
+            sizeof(aes_test_ctr_key) / sizeof(*aes_test_ctr_key);
+
+        for (i = 0; i < num_tests << 1; i++) {
+            u = i >> 1;
+            mode = i & 1;
+
+            if (verbose != 0) {
+                mbedtls_printf("  AES-CTR-128 (%s): ",
+                               (mode == MBEDTLS_AES_DECRYPT) ? "dec" : "enc");
+            }
+
+            memcpy(nonce_counter, aes_test_ctr_nonce_counter[u], 16);
+            memcpy(key, aes_test_ctr_key[u], 16);
+
+            offset = 0;
+            if ((ret = mbedtls_aes_setkey_enc(&ctx, key, 128)) != 0) {
+                goto exit;
+            }
+
+            len = aes_test_ctr_len[u];
+
+            if (mode == MBEDTLS_AES_DECRYPT) {
+                memcpy(buf, aes_test_ctr_ct[u], len);
+                aes_tests = aes_test_ctr_pt[u];
+            } else {
+                memcpy(buf, aes_test_ctr_pt[u], len);
+                aes_tests = aes_test_ctr_ct[u];
+            }
+
+            ret = mbedtls_aes_crypt_ctr(&ctx, len, &offset, nonce_counter,
+                                        stream_block, buf, buf);
+            if (ret != 0) {
+                goto exit;
+            }
+
+            if (memcmp(buf, aes_tests, len) != 0) {
+                ret = 1;
+                goto exit;
+            }
+
+            if (verbose != 0) {
+                mbedtls_printf("passed\n");
+            }
+        }
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+    /*
+     * XTS mode
+     */
+    {
+        static const int num_tests =
+            sizeof(aes_test_xts_key) / sizeof(*aes_test_xts_key);
+        mbedtls_aes_xts_context ctx_xts;
+
+        mbedtls_aes_xts_init(&ctx_xts);
+
+        for (i = 0; i < num_tests << 1; i++) {
+            const unsigned char *data_unit;
+            u = i >> 1;
+            mode = i & 1;
+
+            if (verbose != 0) {
+                mbedtls_printf("  AES-XTS-128 (%s): ",
+                               (mode == MBEDTLS_AES_DECRYPT) ? "dec" : "enc");
+            }
+
+            memset(key, 0, sizeof(key));
+            memcpy(key, aes_test_xts_key[u], 32);
+            data_unit = aes_test_xts_data_unit[u];
+
+            len = sizeof(*aes_test_xts_ct32);
+
+            if (mode == MBEDTLS_AES_DECRYPT) {
+                ret = mbedtls_aes_xts_setkey_dec(&ctx_xts, key, 256);
+                if (ret != 0) {
+                    goto exit;
+                }
+                memcpy(buf, aes_test_xts_ct32[u], len);
+                aes_tests = aes_test_xts_pt32[u];
+            } else {
+                ret = mbedtls_aes_xts_setkey_enc(&ctx_xts, key, 256);
+                if (ret != 0) {
+                    goto exit;
+                }
+                memcpy(buf, aes_test_xts_pt32[u], len);
+                aes_tests = aes_test_xts_ct32[u];
+            }
+
+
+            ret = mbedtls_aes_crypt_xts(&ctx_xts, mode, len, data_unit,
+                                        buf, buf);
+            if (ret != 0) {
+                goto exit;
+            }
+
+            if (memcmp(buf, aes_tests, len) != 0) {
+                ret = 1;
+                goto exit;
+            }
+
+            if (verbose != 0) {
+                mbedtls_printf("passed\n");
+            }
+        }
+
+        if (verbose != 0) {
+            mbedtls_printf("\n");
+        }
+
+        mbedtls_aes_xts_free(&ctx_xts);
+    }
+#endif /* MBEDTLS_CIPHER_MODE_XTS */
+
+    ret = 0;
+
+exit:
+    if (ret != 0 && verbose != 0) {
+        mbedtls_printf("failed\n");
+    }
+
+    mbedtls_aes_free(&ctx);
+
+    return ret;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_AES_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/aesce.c b/tf-psa-crypto/drivers/builtin/src/aesce.c
new file mode 100644
index 0000000..6a9e0a1
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/aesce.c
@@ -0,0 +1,618 @@
+/*
+ *  Armv8-A Cryptographic Extension support functions for Aarch64
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#if defined(__clang__) &&  (__clang_major__ >= 4)
+
+/* Ideally, we would simply use MBEDTLS_ARCH_IS_ARMV8_A in the following #if,
+ * but that is defined by build_info.h, and we need this block to happen first. */
+#if defined(__ARM_ARCH)
+#if __ARM_ARCH >= 8
+#define MBEDTLS_AESCE_ARCH_IS_ARMV8_A
+#endif
+#endif
+
+#if defined(MBEDTLS_AESCE_ARCH_IS_ARMV8_A) && !defined(__ARM_FEATURE_CRYPTO)
+/* TODO: Re-consider above after https://reviews.llvm.org/D131064 merged.
+ *
+ * The intrinsic declaration are guarded by predefined ACLE macros in clang:
+ * these are normally only enabled by the -march option on the command line.
+ * By defining the macros ourselves we gain access to those declarations without
+ * requiring -march on the command line.
+ *
+ * `arm_neon.h` is included by common.h, so we put these defines
+ * at the top of this file, before any includes.
+ */
+#define __ARM_FEATURE_CRYPTO 1
+/* See: https://arm-software.github.io/acle/main/acle.html#cryptographic-extensions
+ *
+ * `__ARM_FEATURE_CRYPTO` is deprecated, but we need to continue to specify it
+ * for older compilers.
+ */
+#define __ARM_FEATURE_AES    1
+#define MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG
+#endif
+
+#endif /* defined(__clang__) &&  (__clang_major__ >= 4) */
+
+#include <string.h>
+#include "common.h"
+
+#if defined(MBEDTLS_AESCE_C)
+
+#include "aesce.h"
+
+#if defined(MBEDTLS_AESCE_HAVE_CODE)
+
+/* Compiler version checks. */
+#if defined(__clang__)
+#   if defined(MBEDTLS_ARCH_IS_ARM32) && (__clang_major__ < 11)
+#       error "Minimum version of Clang for MBEDTLS_AESCE_C on 32-bit Arm or Thumb is 11.0."
+#   elif defined(MBEDTLS_ARCH_IS_ARM64) && (__clang_major__ < 4)
+#       error "Minimum version of Clang for MBEDTLS_AESCE_C on aarch64 is 4.0."
+#   endif
+#elif defined(__GNUC__)
+#   if __GNUC__ < 6
+#       error "Minimum version of GCC for MBEDTLS_AESCE_C is 6.0."
+#   endif
+#elif defined(_MSC_VER)
+/* TODO: We haven't verified MSVC from 1920 to 1928. If someone verified that,
+ *       please update this and document of `MBEDTLS_AESCE_C` in
+ *       `mbedtls_config.h`. */
+#   if _MSC_VER < 1929
+#       error "Minimum version of MSVC for MBEDTLS_AESCE_C is 2019 version 16.11.2."
+#   endif
+#elif defined(__ARMCC_VERSION)
+#    if defined(MBEDTLS_ARCH_IS_ARM32) && (__ARMCC_VERSION < 6200002)
+/* TODO: We haven't verified armclang for 32-bit Arm/Thumb prior to 6.20.
+ * If someone verified that, please update this and document of
+ * `MBEDTLS_AESCE_C` in `mbedtls_config.h`. */
+#         error "Minimum version of armclang for MBEDTLS_AESCE_C on 32-bit Arm is 6.20."
+#    elif defined(MBEDTLS_ARCH_IS_ARM64) && (__ARMCC_VERSION < 6060000)
+#         error "Minimum version of armclang for MBEDTLS_AESCE_C on aarch64 is 6.6."
+#    endif
+#endif
+
+#if !(defined(__ARM_FEATURE_CRYPTO) || defined(__ARM_FEATURE_AES)) || \
+    defined(MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG)
+#   if defined(__ARMCOMPILER_VERSION)
+#       if __ARMCOMPILER_VERSION <= 6090000
+#           error "Must use minimum -march=armv8-a+crypto for MBEDTLS_AESCE_C"
+#       else
+#           pragma clang attribute push (__attribute__((target("aes"))), apply_to=function)
+#           define MBEDTLS_POP_TARGET_PRAGMA
+#       endif
+#   elif defined(__clang__)
+#       pragma clang attribute push (__attribute__((target("aes"))), apply_to=function)
+#       define MBEDTLS_POP_TARGET_PRAGMA
+#   elif defined(__GNUC__)
+#       pragma GCC push_options
+#       pragma GCC target ("+crypto")
+#       define MBEDTLS_POP_TARGET_PRAGMA
+#   elif defined(_MSC_VER)
+#       error "Required feature(__ARM_FEATURE_AES) is not enabled."
+#   endif
+#endif /* !(__ARM_FEATURE_CRYPTO || __ARM_FEATURE_AES) ||
+          MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG */
+
+#if defined(__linux__) && !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
+
+#include <sys/auxv.h>
+#if !defined(HWCAP_NEON)
+#define HWCAP_NEON  (1 << 12)
+#endif
+#if !defined(HWCAP2_AES)
+#define HWCAP2_AES  (1 << 0)
+#endif
+#if !defined(HWCAP_AES)
+#define HWCAP_AES   (1 << 3)
+#endif
+#if !defined(HWCAP_ASIMD)
+#define HWCAP_ASIMD (1 << 1)
+#endif
+
+signed char mbedtls_aesce_has_support_result = -1;
+
+#if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
+/*
+ * AES instruction support detection routine
+ */
+int mbedtls_aesce_has_support_impl(void)
+{
+    /* To avoid many calls to getauxval, cache the result. This is
+     * thread-safe, because we store the result in a char so cannot
+     * be vulnerable to non-atomic updates.
+     * It is possible that we could end up setting result more than
+     * once, but that is harmless.
+     */
+    if (mbedtls_aesce_has_support_result == -1) {
+#if defined(MBEDTLS_ARCH_IS_ARM32)
+        unsigned long auxval  = getauxval(AT_HWCAP);
+        unsigned long auxval2 = getauxval(AT_HWCAP2);
+        if (((auxval  & HWCAP_NEON) == HWCAP_NEON) &&
+            ((auxval2 & HWCAP2_AES) == HWCAP2_AES)) {
+            mbedtls_aesce_has_support_result = 1;
+        } else {
+            mbedtls_aesce_has_support_result = 0;
+        }
+#else
+        unsigned long auxval = getauxval(AT_HWCAP);
+        if ((auxval & (HWCAP_ASIMD | HWCAP_AES)) ==
+            (HWCAP_ASIMD | HWCAP_AES)) {
+            mbedtls_aesce_has_support_result = 1;
+        } else {
+            mbedtls_aesce_has_support_result = 0;
+        }
+#endif
+    }
+    return mbedtls_aesce_has_support_result;
+}
+#endif
+
+#endif /* defined(__linux__) && !defined(MBEDTLS_AES_USE_HARDWARE_ONLY) */
+
+/* Single round of AESCE encryption */
+#define AESCE_ENCRYPT_ROUND                   \
+    block = vaeseq_u8(block, vld1q_u8(keys)); \
+    block = vaesmcq_u8(block);                \
+    keys += 16
+/* Two rounds of AESCE encryption */
+#define AESCE_ENCRYPT_ROUND_X2        AESCE_ENCRYPT_ROUND; AESCE_ENCRYPT_ROUND
+
+MBEDTLS_OPTIMIZE_FOR_PERFORMANCE
+static uint8x16_t aesce_encrypt_block(uint8x16_t block,
+                                      unsigned char *keys,
+                                      int rounds)
+{
+    /* 10, 12 or 14 rounds. Unroll loop. */
+    if (rounds == 10) {
+        goto rounds_10;
+    }
+    if (rounds == 12) {
+        goto rounds_12;
+    }
+    AESCE_ENCRYPT_ROUND_X2;
+rounds_12:
+    AESCE_ENCRYPT_ROUND_X2;
+rounds_10:
+    AESCE_ENCRYPT_ROUND_X2;
+    AESCE_ENCRYPT_ROUND_X2;
+    AESCE_ENCRYPT_ROUND_X2;
+    AESCE_ENCRYPT_ROUND_X2;
+    AESCE_ENCRYPT_ROUND;
+
+    /* AES AddRoundKey for the previous round.
+     * SubBytes, ShiftRows for the final round.  */
+    block = vaeseq_u8(block, vld1q_u8(keys));
+    keys += 16;
+
+    /* Final round: no MixColumns */
+
+    /* Final AddRoundKey */
+    block = veorq_u8(block, vld1q_u8(keys));
+
+    return block;
+}
+
+/* Single round of AESCE decryption
+ *
+ * AES AddRoundKey, SubBytes, ShiftRows
+ *
+ *      block = vaesdq_u8(block, vld1q_u8(keys));
+ *
+ * AES inverse MixColumns for the next round.
+ *
+ * This means that we switch the order of the inverse AddRoundKey and
+ * inverse MixColumns operations. We have to do this as AddRoundKey is
+ * done in an atomic instruction together with the inverses of SubBytes
+ * and ShiftRows.
+ *
+ * It works because MixColumns is a linear operation over GF(2^8) and
+ * AddRoundKey is an exclusive or, which is equivalent to addition over
+ * GF(2^8). (The inverse of MixColumns needs to be applied to the
+ * affected round keys separately which has been done when the
+ * decryption round keys were calculated.)
+ *
+ *      block = vaesimcq_u8(block);
+ */
+#define AESCE_DECRYPT_ROUND                   \
+    block = vaesdq_u8(block, vld1q_u8(keys)); \
+    block = vaesimcq_u8(block);               \
+    keys += 16
+/* Two rounds of AESCE decryption */
+#define AESCE_DECRYPT_ROUND_X2        AESCE_DECRYPT_ROUND; AESCE_DECRYPT_ROUND
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+static uint8x16_t aesce_decrypt_block(uint8x16_t block,
+                                      unsigned char *keys,
+                                      int rounds)
+{
+    /* 10, 12 or 14 rounds. Unroll loop. */
+    if (rounds == 10) {
+        goto rounds_10;
+    }
+    if (rounds == 12) {
+        goto rounds_12;
+    }
+    AESCE_DECRYPT_ROUND_X2;
+rounds_12:
+    AESCE_DECRYPT_ROUND_X2;
+rounds_10:
+    AESCE_DECRYPT_ROUND_X2;
+    AESCE_DECRYPT_ROUND_X2;
+    AESCE_DECRYPT_ROUND_X2;
+    AESCE_DECRYPT_ROUND_X2;
+    AESCE_DECRYPT_ROUND;
+
+    /* The inverses of AES AddRoundKey, SubBytes, ShiftRows finishing up the
+     * last full round. */
+    block = vaesdq_u8(block, vld1q_u8(keys));
+    keys += 16;
+
+    /* Inverse AddRoundKey for inverting the initial round key addition. */
+    block = veorq_u8(block, vld1q_u8(keys));
+
+    return block;
+}
+#endif
+
+/*
+ * AES-ECB block en(de)cryption
+ */
+int mbedtls_aesce_crypt_ecb(mbedtls_aes_context *ctx,
+                            int mode,
+                            const unsigned char input[16],
+                            unsigned char output[16])
+{
+    uint8x16_t block = vld1q_u8(&input[0]);
+    unsigned char *keys = (unsigned char *) (ctx->buf + ctx->rk_offset);
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+    if (mode == MBEDTLS_AES_DECRYPT) {
+        block = aesce_decrypt_block(block, keys, ctx->nr);
+    } else
+#else
+    (void) mode;
+#endif
+    {
+        block = aesce_encrypt_block(block, keys, ctx->nr);
+    }
+    vst1q_u8(&output[0], block);
+
+    return 0;
+}
+
+/*
+ * Compute decryption round keys from encryption round keys
+ */
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+void mbedtls_aesce_inverse_key(unsigned char *invkey,
+                               const unsigned char *fwdkey,
+                               int nr)
+{
+    int i, j;
+    j = nr;
+    vst1q_u8(invkey, vld1q_u8(fwdkey + j * 16));
+    for (i = 1, j--; j > 0; i++, j--) {
+        vst1q_u8(invkey + i * 16,
+                 vaesimcq_u8(vld1q_u8(fwdkey + j * 16)));
+    }
+    vst1q_u8(invkey + i * 16, vld1q_u8(fwdkey + j * 16));
+
+}
+#endif
+
+static inline uint32_t aes_rot_word(uint32_t word)
+{
+    return (word << (32 - 8)) | (word >> 8);
+}
+
+static inline uint32_t aes_sub_word(uint32_t in)
+{
+    uint8x16_t v = vreinterpretq_u8_u32(vdupq_n_u32(in));
+    uint8x16_t zero = vdupq_n_u8(0);
+
+    /* vaeseq_u8 does both SubBytes and ShiftRows. Taking the first row yields
+     * the correct result as ShiftRows doesn't change the first row. */
+    v = vaeseq_u8(zero, v);
+    return vgetq_lane_u32(vreinterpretq_u32_u8(v), 0);
+}
+
+/*
+ * Key expansion function
+ */
+static void aesce_setkey_enc(unsigned char *rk,
+                             const unsigned char *key,
+                             const size_t key_bit_length)
+{
+    static uint8_t const rcon[] = { 0x01, 0x02, 0x04, 0x08, 0x10,
+                                    0x20, 0x40, 0x80, 0x1b, 0x36 };
+    /* See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
+     *   - Section 5, Nr = Nk + 6
+     *   - Section 5.2, the length of round keys is Nb*(Nr+1)
+     */
+    const size_t key_len_in_words = key_bit_length / 32;    /* Nk */
+    const size_t round_key_len_in_words = 4;                /* Nb */
+    const size_t rounds_needed = key_len_in_words + 6;      /* Nr */
+    const size_t round_keys_len_in_words =
+        round_key_len_in_words * (rounds_needed + 1);       /* Nb*(Nr+1) */
+    const uint32_t *rko_end = (uint32_t *) rk + round_keys_len_in_words;
+
+    memcpy(rk, key, key_len_in_words * 4);
+
+    for (uint32_t *rki = (uint32_t *) rk;
+         rki + key_len_in_words < rko_end;
+         rki += key_len_in_words) {
+
+        size_t iteration = (size_t) (rki - (uint32_t *) rk) / key_len_in_words;
+        uint32_t *rko;
+        rko = rki + key_len_in_words;
+        rko[0] = aes_rot_word(aes_sub_word(rki[key_len_in_words - 1]));
+        rko[0] ^= rcon[iteration] ^ rki[0];
+        rko[1] = rko[0] ^ rki[1];
+        rko[2] = rko[1] ^ rki[2];
+        rko[3] = rko[2] ^ rki[3];
+        if (rko + key_len_in_words > rko_end) {
+            /* Do not write overflow words.*/
+            continue;
+        }
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+        switch (key_bit_length) {
+            case 128:
+                break;
+            case 192:
+                rko[4] = rko[3] ^ rki[4];
+                rko[5] = rko[4] ^ rki[5];
+                break;
+            case 256:
+                rko[4] = aes_sub_word(rko[3]) ^ rki[4];
+                rko[5] = rko[4] ^ rki[5];
+                rko[6] = rko[5] ^ rki[6];
+                rko[7] = rko[6] ^ rki[7];
+                break;
+        }
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+    }
+}
+
+/*
+ * Key expansion, wrapper
+ */
+int mbedtls_aesce_setkey_enc(unsigned char *rk,
+                             const unsigned char *key,
+                             size_t bits)
+{
+    switch (bits) {
+        case 128:
+        case 192:
+        case 256:
+            aesce_setkey_enc(rk, key, bits);
+            break;
+        default:
+            return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
+    }
+
+    return 0;
+}
+
+#if defined(MBEDTLS_GCM_C)
+
+#if defined(MBEDTLS_ARCH_IS_ARM32)
+
+#if defined(__clang__)
+/* On clang for A32/T32, work around some missing intrinsics and types which are listed in
+ * [ACLE](https://arm-software.github.io/acle/neon_intrinsics/advsimd.html#polynomial-1)
+ * These are only required for GCM.
+ */
+#define vreinterpretq_u64_p64(a) ((uint64x2_t) a)
+
+typedef uint8x16_t poly128_t;
+
+static inline poly128_t vmull_p64(poly64_t a, poly64_t b)
+{
+    poly128_t r;
+    asm ("vmull.p64 %[r], %[a], %[b]" : [r] "=w" (r) : [a] "w" (a), [b] "w" (b) :);
+    return r;
+}
+
+/* This is set to cause some more missing intrinsics to be defined below */
+#define COMMON_MISSING_INTRINSICS
+
+static inline poly128_t vmull_high_p64(poly64x2_t a, poly64x2_t b)
+{
+    return vmull_p64((poly64_t) (vget_high_u64((uint64x2_t) a)),
+                     (poly64_t) (vget_high_u64((uint64x2_t) b)));
+}
+
+#endif /* defined(__clang__) */
+
+static inline uint8x16_t vrbitq_u8(uint8x16_t x)
+{
+    /* There is no vrbitq_u8 instruction in A32/T32, so provide
+     * an equivalent non-Neon implementation. Reverse bit order in each
+     * byte with 4x rbit, rev. */
+    asm ("ldm  %[p], { r2-r5 } \n\t"
+         "rbit r2, r2          \n\t"
+         "rev  r2, r2          \n\t"
+         "rbit r3, r3          \n\t"
+         "rev  r3, r3          \n\t"
+         "rbit r4, r4          \n\t"
+         "rev  r4, r4          \n\t"
+         "rbit r5, r5          \n\t"
+         "rev  r5, r5          \n\t"
+         "stm  %[p], { r2-r5 } \n\t"
+         :
+         /* Output: 16 bytes of memory pointed to by &x */
+         "+m" (*(uint8_t(*)[16]) &x)
+         :
+         [p] "r" (&x)
+         :
+         "r2", "r3", "r4", "r5"
+         );
+    return x;
+}
+
+#endif /* defined(MBEDTLS_ARCH_IS_ARM32) */
+
+#if defined(MBEDTLS_COMPILER_IS_GCC) && __GNUC__ == 5
+/* Some intrinsics are not available for GCC 5.X. */
+#define COMMON_MISSING_INTRINSICS
+#endif /* MBEDTLS_COMPILER_IS_GCC && __GNUC__ == 5 */
+
+
+#if defined(COMMON_MISSING_INTRINSICS)
+
+/* Missing intrinsics common to both GCC 5, and Clang on 32-bit */
+
+#define vreinterpretq_p64_u8(a)  ((poly64x2_t) a)
+#define vreinterpretq_u8_p128(a) ((uint8x16_t) a)
+
+static inline poly64x1_t vget_low_p64(poly64x2_t a)
+{
+    uint64x1_t r = vget_low_u64(vreinterpretq_u64_p64(a));
+    return (poly64x1_t) r;
+
+}
+
+#endif /* COMMON_MISSING_INTRINSICS */
+
+/* vmull_p64/vmull_high_p64 wrappers.
+ *
+ * Older compilers miss some intrinsic functions for `poly*_t`. We use
+ * uint8x16_t and uint8x16x3_t as input/output parameters.
+ */
+#if defined(MBEDTLS_COMPILER_IS_GCC)
+/* GCC reports incompatible type error without cast. GCC think poly64_t and
+ * poly64x1_t are different, that is different with MSVC and Clang. */
+#define MBEDTLS_VMULL_P64(a, b) vmull_p64((poly64_t) a, (poly64_t) b)
+#else
+/* MSVC reports `error C2440: 'type cast'` with cast. Clang does not report
+ * error with/without cast. And I think poly64_t and poly64x1_t are same, no
+ * cast for clang also. */
+#define MBEDTLS_VMULL_P64(a, b) vmull_p64(a, b)
+#endif /* MBEDTLS_COMPILER_IS_GCC */
+
+static inline uint8x16_t pmull_low(uint8x16_t a, uint8x16_t b)
+{
+
+    return vreinterpretq_u8_p128(
+        MBEDTLS_VMULL_P64(
+            (poly64_t) vget_low_p64(vreinterpretq_p64_u8(a)),
+            (poly64_t) vget_low_p64(vreinterpretq_p64_u8(b))
+            ));
+}
+
+static inline uint8x16_t pmull_high(uint8x16_t a, uint8x16_t b)
+{
+    return vreinterpretq_u8_p128(
+        vmull_high_p64(vreinterpretq_p64_u8(a),
+                       vreinterpretq_p64_u8(b)));
+}
+
+/* GHASH does 128b polynomial multiplication on block in GF(2^128) defined by
+ * `x^128 + x^7 + x^2 + x + 1`.
+ *
+ * Arm64 only has 64b->128b polynomial multipliers, we need to do 4 64b
+ * multiplies to generate a 128b.
+ *
+ * `poly_mult_128` executes polynomial multiplication and outputs 256b that
+ * represented by 3 128b due to code size optimization.
+ *
+ * Output layout:
+ * |            |             |             |
+ * |------------|-------------|-------------|
+ * | ret.val[0] | h3:h2:00:00 | high   128b |
+ * | ret.val[1] |   :m2:m1:00 | middle 128b |
+ * | ret.val[2] |   :  :l1:l0 | low    128b |
+ */
+static inline uint8x16x3_t poly_mult_128(uint8x16_t a, uint8x16_t b)
+{
+    uint8x16x3_t ret;
+    uint8x16_t h, m, l; /* retval high/middle/low */
+    uint8x16_t c, d, e;
+
+    h = pmull_high(a, b);                       /* h3:h2:00:00 = a1*b1 */
+    l = pmull_low(a, b);                        /*   :  :l1:l0 = a0*b0 */
+    c = vextq_u8(b, b, 8);                      /*      :c1:c0 = b0:b1 */
+    d = pmull_high(a, c);                       /*   :d2:d1:00 = a1*b0 */
+    e = pmull_low(a, c);                        /*   :e2:e1:00 = a0*b1 */
+    m = veorq_u8(d, e);                         /*   :m2:m1:00 = d + e */
+
+    ret.val[0] = h;
+    ret.val[1] = m;
+    ret.val[2] = l;
+    return ret;
+}
+
+/*
+ * Modulo reduction.
+ *
+ * See: https://www.researchgate.net/publication/285612706_Implementing_GCM_on_ARMv8
+ *
+ * Section 4.3
+ *
+ * Modular reduction is slightly more complex. Write the GCM modulus as f(z) =
+ * z^128 +r(z), where r(z) = z^7+z^2+z+ 1. The well known approach is to
+ * consider that z^128 ≡r(z) (mod z^128 +r(z)), allowing us to write the 256-bit
+ * operand to be reduced as a(z) = h(z)z^128 +l(z)≡h(z)r(z) + l(z). That is, we
+ * simply multiply the higher part of the operand by r(z) and add it to l(z). If
+ * the result is still larger than 128 bits, we reduce again.
+ */
+static inline uint8x16_t poly_mult_reduce(uint8x16x3_t input)
+{
+    uint8x16_t const ZERO = vdupq_n_u8(0);
+
+    uint64x2_t r = vreinterpretq_u64_u8(vdupq_n_u8(0x87));
+#if defined(__GNUC__)
+    /* use 'asm' as an optimisation barrier to prevent loading MODULO from
+     * memory. It is for GNUC compatible compilers.
+     */
+    asm volatile ("" : "+w" (r));
+#endif
+    uint8x16_t const MODULO = vreinterpretq_u8_u64(vshrq_n_u64(r, 64 - 8));
+    uint8x16_t h, m, l; /* input high/middle/low 128b */
+    uint8x16_t c, d, e, f, g, n, o;
+    h = input.val[0];            /* h3:h2:00:00                          */
+    m = input.val[1];            /*   :m2:m1:00                          */
+    l = input.val[2];            /*   :  :l1:l0                          */
+    c = pmull_high(h, MODULO);   /*   :c2:c1:00 = reduction of h3        */
+    d = pmull_low(h, MODULO);    /*   :  :d1:d0 = reduction of h2        */
+    e = veorq_u8(c, m);          /*   :e2:e1:00 = m2:m1:00 + c2:c1:00    */
+    f = pmull_high(e, MODULO);   /*   :  :f1:f0 = reduction of e2        */
+    g = vextq_u8(ZERO, e, 8);    /*   :  :g1:00 = e1:00                  */
+    n = veorq_u8(d, l);          /*   :  :n1:n0 = d1:d0 + l1:l0          */
+    o = veorq_u8(n, f);          /*       o1:o0 = f1:f0 + n1:n0          */
+    return veorq_u8(o, g);       /*             = o1:o0 + g1:00          */
+}
+
+/*
+ * GCM multiplication: c = a times b in GF(2^128)
+ */
+void mbedtls_aesce_gcm_mult(unsigned char c[16],
+                            const unsigned char a[16],
+                            const unsigned char b[16])
+{
+    uint8x16_t va, vb, vc;
+    va = vrbitq_u8(vld1q_u8(&a[0]));
+    vb = vrbitq_u8(vld1q_u8(&b[0]));
+    vc = vrbitq_u8(poly_mult_reduce(poly_mult_128(va, vb)));
+    vst1q_u8(&c[0], vc);
+}
+
+#endif /* MBEDTLS_GCM_C */
+
+#if defined(MBEDTLS_POP_TARGET_PRAGMA)
+#if defined(__clang__)
+#pragma clang attribute pop
+#elif defined(__GNUC__)
+#pragma GCC pop_options
+#endif
+#undef MBEDTLS_POP_TARGET_PRAGMA
+#endif
+
+#endif /* MBEDTLS_AESCE_HAVE_CODE */
+
+#endif /* MBEDTLS_AESCE_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/aesce.h b/tf-psa-crypto/drivers/builtin/src/aesce.h
new file mode 100644
index 0000000..a14d085
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/aesce.h
@@ -0,0 +1,136 @@
+/**
+ * \file aesce.h
+ *
+ * \brief Support hardware AES acceleration on Armv8-A processors with
+ *        the Armv8-A Cryptographic Extension.
+ *
+ * \warning These functions are only for internal use by other library
+ *          functions; you must not call them directly.
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#ifndef MBEDTLS_AESCE_H
+#define MBEDTLS_AESCE_H
+
+#include "mbedtls/build_info.h"
+#include "common.h"
+
+#include "mbedtls/aes.h"
+
+
+#if defined(MBEDTLS_AESCE_C) \
+    && defined(MBEDTLS_ARCH_IS_ARMV8_A) && defined(MBEDTLS_HAVE_NEON_INTRINSICS) \
+    && (defined(MBEDTLS_COMPILER_IS_GCC) || defined(__clang__) || defined(MSC_VER))
+
+/* MBEDTLS_AESCE_HAVE_CODE is defined if we have a suitable target platform, and a
+ * potentially suitable compiler (compiler version & flags are not checked when defining
+ * this). */
+#define MBEDTLS_AESCE_HAVE_CODE
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#if defined(__linux__) && !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
+
+extern signed char mbedtls_aesce_has_support_result;
+
+/**
+ * \brief          Internal function to detect the crypto extension in CPUs.
+ *
+ * \return         1 if CPU has support for the feature, 0 otherwise
+ */
+int mbedtls_aesce_has_support_impl(void);
+
+#define MBEDTLS_AESCE_HAS_SUPPORT() (mbedtls_aesce_has_support_result == -1 ? \
+                                     mbedtls_aesce_has_support_impl() : \
+                                     mbedtls_aesce_has_support_result)
+
+#else /* defined(__linux__) && !defined(MBEDTLS_AES_USE_HARDWARE_ONLY) */
+
+/* If we are not on Linux, we can't detect support so assume that it's supported.
+ * Similarly, assume support if MBEDTLS_AES_USE_HARDWARE_ONLY is set.
+ */
+#define MBEDTLS_AESCE_HAS_SUPPORT() 1
+
+#endif /* defined(__linux__) && !defined(MBEDTLS_AES_USE_HARDWARE_ONLY) */
+
+/**
+ * \brief          Internal AES-ECB block encryption and decryption
+ *
+ * \warning        This assumes that the context specifies either 10, 12 or 14
+ *                 rounds and will behave incorrectly if this is not the case.
+ *
+ * \param ctx      AES context
+ * \param mode     MBEDTLS_AES_ENCRYPT or MBEDTLS_AES_DECRYPT
+ * \param input    16-byte input block
+ * \param output   16-byte output block
+ *
+ * \return         0 on success (cannot fail)
+ */
+int mbedtls_aesce_crypt_ecb(mbedtls_aes_context *ctx,
+                            int mode,
+                            const unsigned char input[16],
+                            unsigned char output[16]);
+
+/**
+ * \brief          Internal GCM multiplication: c = a * b in GF(2^128)
+ *
+ * \note           This function is only for internal use by other library
+ *                 functions; you must not call it directly.
+ *
+ * \param c        Result
+ * \param a        First operand
+ * \param b        Second operand
+ *
+ * \note           Both operands and result are bit strings interpreted as
+ *                 elements of GF(2^128) as per the GCM spec.
+ */
+void mbedtls_aesce_gcm_mult(unsigned char c[16],
+                            const unsigned char a[16],
+                            const unsigned char b[16]);
+
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+/**
+ * \brief           Internal round key inversion. This function computes
+ *                  decryption round keys from the encryption round keys.
+ *
+ * \param invkey    Round keys for the equivalent inverse cipher
+ * \param fwdkey    Original round keys (for encryption)
+ * \param nr        Number of rounds (that is, number of round keys minus one)
+ */
+void mbedtls_aesce_inverse_key(unsigned char *invkey,
+                               const unsigned char *fwdkey,
+                               int nr);
+#endif /* !MBEDTLS_BLOCK_CIPHER_NO_DECRYPT */
+
+/**
+ * \brief           Internal key expansion for encryption
+ *
+ * \param rk        Destination buffer where the round keys are written
+ * \param key       Encryption key
+ * \param bits      Key size in bits (must be 128, 192 or 256)
+ *
+ * \return          0 if successful, or MBEDTLS_ERR_AES_INVALID_KEY_LENGTH
+ */
+int mbedtls_aesce_setkey_enc(unsigned char *rk,
+                             const unsigned char *key,
+                             size_t bits);
+
+#ifdef __cplusplus
+}
+#endif
+
+#else
+
+#if defined(MBEDTLS_AES_USE_HARDWARE_ONLY) && defined(MBEDTLS_ARCH_IS_ARMV8_A)
+#error "AES hardware acceleration not supported on this platform / compiler"
+#endif
+
+#endif /* MBEDTLS_AESCE_C && MBEDTLS_ARCH_IS_ARMV8_A && MBEDTLS_HAVE_NEON_INTRINSICS &&
+          (MBEDTLS_COMPILER_IS_GCC || __clang__ || MSC_VER) */
+
+#endif /* MBEDTLS_AESCE_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/aesni.c b/tf-psa-crypto/drivers/builtin/src/aesni.c
new file mode 100644
index 0000000..8e5bd55
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/aesni.c
@@ -0,0 +1,835 @@
+/*
+ *  AES-NI support functions
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * [AES-WP] https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
+ * [CLMUL-WP] https://www.intel.com/content/www/us/en/develop/download/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode.html
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_AESNI_C)
+
+#include "aesni.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_AESNI_HAVE_CODE)
+
+#if MBEDTLS_AESNI_HAVE_CODE == 2
+#if defined(__GNUC__)
+#include <cpuid.h>
+#elif defined(_MSC_VER)
+#include <intrin.h>
+#else
+#error "`__cpuid` required by MBEDTLS_AESNI_C is not supported by the compiler"
+#endif
+#include <immintrin.h>
+#endif
+
+#if defined(MBEDTLS_ARCH_IS_X86)
+#if defined(MBEDTLS_COMPILER_IS_GCC)
+#pragma GCC push_options
+#pragma GCC target ("pclmul,sse2,aes")
+#define MBEDTLS_POP_TARGET_PRAGMA
+#elif defined(__clang__) && (__clang_major__ >= 5)
+#pragma clang attribute push (__attribute__((target("pclmul,sse2,aes"))), apply_to=function)
+#define MBEDTLS_POP_TARGET_PRAGMA
+#endif
+#endif
+
+#if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
+/*
+ * AES-NI support detection routine
+ */
+int mbedtls_aesni_has_support(unsigned int what)
+{
+    static int done = 0;
+    static unsigned int c = 0;
+
+    if (!done) {
+#if MBEDTLS_AESNI_HAVE_CODE == 2
+        static int info[4] = { 0, 0, 0, 0 };
+#if defined(_MSC_VER)
+        __cpuid(info, 1);
+#else
+        __cpuid(1, info[0], info[1], info[2], info[3]);
+#endif
+        c = info[2];
+#else /* AESNI using asm */
+        asm ("movl  $1, %%eax   \n\t"
+             "cpuid             \n\t"
+             : "=c" (c)
+             :
+             : "eax", "ebx", "edx");
+#endif /* MBEDTLS_AESNI_HAVE_CODE */
+        done = 1;
+    }
+
+    return (c & what) != 0;
+}
+#endif /* !MBEDTLS_AES_USE_HARDWARE_ONLY */
+
+#if MBEDTLS_AESNI_HAVE_CODE == 2
+
+/*
+ * AES-NI AES-ECB block en(de)cryption
+ */
+int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
+                            int mode,
+                            const unsigned char input[16],
+                            unsigned char output[16])
+{
+    const __m128i *rk = (const __m128i *) (ctx->buf + ctx->rk_offset);
+    unsigned nr = ctx->nr; // Number of remaining rounds
+
+    // Load round key 0
+    __m128i state;
+    memcpy(&state, input, 16);
+    state = _mm_xor_si128(state, rk[0]);  // state ^= *rk;
+    ++rk;
+    --nr;
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+    if (mode == MBEDTLS_AES_DECRYPT) {
+        while (nr != 0) {
+            state = _mm_aesdec_si128(state, *rk);
+            ++rk;
+            --nr;
+        }
+        state = _mm_aesdeclast_si128(state, *rk);
+    } else
+#else
+    (void) mode;
+#endif
+    {
+        while (nr != 0) {
+            state = _mm_aesenc_si128(state, *rk);
+            ++rk;
+            --nr;
+        }
+        state = _mm_aesenclast_si128(state, *rk);
+    }
+
+    memcpy(output, &state, 16);
+    return 0;
+}
+
+/*
+ * GCM multiplication: c = a times b in GF(2^128)
+ * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
+ */
+
+static void gcm_clmul(const __m128i aa, const __m128i bb,
+                      __m128i *cc, __m128i *dd)
+{
+    /*
+     * Caryless multiplication dd:cc = aa * bb
+     * using [CLMUL-WP] algorithm 1 (p. 12).
+     */
+    *cc = _mm_clmulepi64_si128(aa, bb, 0x00); // a0*b0 = c1:c0
+    *dd = _mm_clmulepi64_si128(aa, bb, 0x11); // a1*b1 = d1:d0
+    __m128i ee = _mm_clmulepi64_si128(aa, bb, 0x10); // a0*b1 = e1:e0
+    __m128i ff = _mm_clmulepi64_si128(aa, bb, 0x01); // a1*b0 = f1:f0
+    ff = _mm_xor_si128(ff, ee);                      // e1+f1:e0+f0
+    ee = ff;                                         // e1+f1:e0+f0
+    ff = _mm_srli_si128(ff, 8);                      // 0:e1+f1
+    ee = _mm_slli_si128(ee, 8);                      // e0+f0:0
+    *dd = _mm_xor_si128(*dd, ff);                    // d1:d0+e1+f1
+    *cc = _mm_xor_si128(*cc, ee);                    // c1+e0+f0:c0
+}
+
+static void gcm_shift(__m128i *cc, __m128i *dd)
+{
+    /* [CMUCL-WP] Algorithm 5 Step 1: shift cc:dd one bit to the left,
+     * taking advantage of [CLMUL-WP] eq 27 (p. 18). */
+    //                                        // *cc = r1:r0
+    //                                        // *dd = r3:r2
+    __m128i cc_lo = _mm_slli_epi64(*cc, 1);   // r1<<1:r0<<1
+    __m128i dd_lo = _mm_slli_epi64(*dd, 1);   // r3<<1:r2<<1
+    __m128i cc_hi = _mm_srli_epi64(*cc, 63);  // r1>>63:r0>>63
+    __m128i dd_hi = _mm_srli_epi64(*dd, 63);  // r3>>63:r2>>63
+    __m128i xmm5 = _mm_srli_si128(cc_hi, 8);  // 0:r1>>63
+    cc_hi = _mm_slli_si128(cc_hi, 8);         // r0>>63:0
+    dd_hi = _mm_slli_si128(dd_hi, 8);         // 0:r1>>63
+
+    *cc = _mm_or_si128(cc_lo, cc_hi);         // r1<<1|r0>>63:r0<<1
+    *dd = _mm_or_si128(_mm_or_si128(dd_lo, dd_hi), xmm5); // r3<<1|r2>>62:r2<<1|r1>>63
+}
+
+static __m128i gcm_reduce(__m128i xx)
+{
+    //                                            // xx = x1:x0
+    /* [CLMUL-WP] Algorithm 5 Step 2 */
+    __m128i aa = _mm_slli_epi64(xx, 63);          // x1<<63:x0<<63 = stuff:a
+    __m128i bb = _mm_slli_epi64(xx, 62);          // x1<<62:x0<<62 = stuff:b
+    __m128i cc = _mm_slli_epi64(xx, 57);          // x1<<57:x0<<57 = stuff:c
+    __m128i dd = _mm_slli_si128(_mm_xor_si128(_mm_xor_si128(aa, bb), cc), 8); // a+b+c:0
+    return _mm_xor_si128(dd, xx);                 // x1+a+b+c:x0 = d:x0
+}
+
+static __m128i gcm_mix(__m128i dx)
+{
+    /* [CLMUL-WP] Algorithm 5 Steps 3 and 4 */
+    __m128i ee = _mm_srli_epi64(dx, 1);           // e1:x0>>1 = e1:e0'
+    __m128i ff = _mm_srli_epi64(dx, 2);           // f1:x0>>2 = f1:f0'
+    __m128i gg = _mm_srli_epi64(dx, 7);           // g1:x0>>7 = g1:g0'
+
+    // e0'+f0'+g0' is almost e0+f0+g0, except for some missing
+    // bits carried from d. Now get those bits back in.
+    __m128i eh = _mm_slli_epi64(dx, 63);          // d<<63:stuff
+    __m128i fh = _mm_slli_epi64(dx, 62);          // d<<62:stuff
+    __m128i gh = _mm_slli_epi64(dx, 57);          // d<<57:stuff
+    __m128i hh = _mm_srli_si128(_mm_xor_si128(_mm_xor_si128(eh, fh), gh), 8); // 0:missing bits of d
+
+    return _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(ee, ff), gg), hh), dx);
+}
+
+void mbedtls_aesni_gcm_mult(unsigned char c[16],
+                            const unsigned char a[16],
+                            const unsigned char b[16])
+{
+    __m128i aa = { 0 }, bb = { 0 }, cc, dd;
+
+    /* The inputs are in big-endian order, so byte-reverse them */
+    for (size_t i = 0; i < 16; i++) {
+        ((uint8_t *) &aa)[i] = a[15 - i];
+        ((uint8_t *) &bb)[i] = b[15 - i];
+    }
+
+    gcm_clmul(aa, bb, &cc, &dd);
+    gcm_shift(&cc, &dd);
+    /*
+     * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
+     * using [CLMUL-WP] algorithm 5 (p. 18).
+     * Currently dd:cc holds x3:x2:x1:x0 (already shifted).
+     */
+    __m128i dx = gcm_reduce(cc);
+    __m128i xh = gcm_mix(dx);
+    cc = _mm_xor_si128(xh, dd); // x3+h1:x2+h0
+
+    /* Now byte-reverse the outputs */
+    for (size_t i = 0; i < 16; i++) {
+        c[i] = ((uint8_t *) &cc)[15 - i];
+    }
+
+    return;
+}
+
+/*
+ * Compute decryption round keys from encryption round keys
+ */
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+void mbedtls_aesni_inverse_key(unsigned char *invkey,
+                               const unsigned char *fwdkey, int nr)
+{
+    __m128i *ik = (__m128i *) invkey;
+    const __m128i *fk = (const __m128i *) fwdkey + nr;
+
+    *ik = *fk;
+    for (--fk, ++ik; fk > (const __m128i *) fwdkey; --fk, ++ik) {
+        *ik = _mm_aesimc_si128(*fk);
+    }
+    *ik = *fk;
+}
+#endif
+
+/*
+ * Key expansion, 128-bit case
+ */
+static __m128i aesni_set_rk_128(__m128i state, __m128i xword)
+{
+    /*
+     * Finish generating the next round key.
+     *
+     * On entry state is r3:r2:r1:r0 and xword is X:stuff:stuff:stuff
+     * with X = rot( sub( r3 ) ) ^ RCON (obtained with AESKEYGENASSIST).
+     *
+     * On exit, xword is r7:r6:r5:r4
+     * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
+     * and this is returned, to be written to the round key buffer.
+     */
+    xword = _mm_shuffle_epi32(xword, 0xff);   // X:X:X:X
+    xword = _mm_xor_si128(xword, state);      // X+r3:X+r2:X+r1:r4
+    state = _mm_slli_si128(state, 4);         // r2:r1:r0:0
+    xword = _mm_xor_si128(xword, state);      // X+r3+r2:X+r2+r1:r5:r4
+    state = _mm_slli_si128(state, 4);         // r1:r0:0:0
+    xword = _mm_xor_si128(xword, state);      // X+r3+r2+r1:r6:r5:r4
+    state = _mm_slli_si128(state, 4);         // r0:0:0:0
+    state = _mm_xor_si128(xword, state);      // r7:r6:r5:r4
+    return state;
+}
+
+static void aesni_setkey_enc_128(unsigned char *rk_bytes,
+                                 const unsigned char *key)
+{
+    __m128i *rk = (__m128i *) rk_bytes;
+
+    memcpy(&rk[0], key, 16);
+    rk[1] = aesni_set_rk_128(rk[0], _mm_aeskeygenassist_si128(rk[0], 0x01));
+    rk[2] = aesni_set_rk_128(rk[1], _mm_aeskeygenassist_si128(rk[1], 0x02));
+    rk[3] = aesni_set_rk_128(rk[2], _mm_aeskeygenassist_si128(rk[2], 0x04));
+    rk[4] = aesni_set_rk_128(rk[3], _mm_aeskeygenassist_si128(rk[3], 0x08));
+    rk[5] = aesni_set_rk_128(rk[4], _mm_aeskeygenassist_si128(rk[4], 0x10));
+    rk[6] = aesni_set_rk_128(rk[5], _mm_aeskeygenassist_si128(rk[5], 0x20));
+    rk[7] = aesni_set_rk_128(rk[6], _mm_aeskeygenassist_si128(rk[6], 0x40));
+    rk[8] = aesni_set_rk_128(rk[7], _mm_aeskeygenassist_si128(rk[7], 0x80));
+    rk[9] = aesni_set_rk_128(rk[8], _mm_aeskeygenassist_si128(rk[8], 0x1B));
+    rk[10] = aesni_set_rk_128(rk[9], _mm_aeskeygenassist_si128(rk[9], 0x36));
+}
+
+/*
+ * Key expansion, 192-bit case
+ */
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static void aesni_set_rk_192(__m128i *state0, __m128i *state1, __m128i xword,
+                             unsigned char *rk)
+{
+    /*
+     * Finish generating the next 6 quarter-keys.
+     *
+     * On entry state0 is r3:r2:r1:r0, state1 is stuff:stuff:r5:r4
+     * and xword is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON
+     * (obtained with AESKEYGENASSIST).
+     *
+     * On exit, state0 is r9:r8:r7:r6 and state1 is stuff:stuff:r11:r10
+     * and those are written to the round key buffer.
+     */
+    xword = _mm_shuffle_epi32(xword, 0x55);   // X:X:X:X
+    xword = _mm_xor_si128(xword, *state0);    // X+r3:X+r2:X+r1:X+r0
+    *state0 = _mm_slli_si128(*state0, 4);     // r2:r1:r0:0
+    xword = _mm_xor_si128(xword, *state0);    // X+r3+r2:X+r2+r1:X+r1+r0:X+r0
+    *state0 = _mm_slli_si128(*state0, 4);     // r1:r0:0:0
+    xword = _mm_xor_si128(xword, *state0);    // X+r3+r2+r1:X+r2+r1+r0:X+r1+r0:X+r0
+    *state0 = _mm_slli_si128(*state0, 4);     // r0:0:0:0
+    xword = _mm_xor_si128(xword, *state0);    // X+r3+r2+r1+r0:X+r2+r1+r0:X+r1+r0:X+r0
+    *state0 = xword;                          // = r9:r8:r7:r6
+
+    xword = _mm_shuffle_epi32(xword, 0xff);   // r9:r9:r9:r9
+    xword = _mm_xor_si128(xword, *state1);    // stuff:stuff:r9+r5:r9+r4
+    *state1 = _mm_slli_si128(*state1, 4);     // stuff:stuff:r4:0
+    xword = _mm_xor_si128(xword, *state1);    // stuff:stuff:r9+r5+r4:r9+r4
+    *state1 = xword;                          // = stuff:stuff:r11:r10
+
+    /* Store state0 and the low half of state1 into rk, which is conceptually
+     * an array of 24-byte elements. Since 24 is not a multiple of 16,
+     * rk is not necessarily aligned so just `*rk = *state0` doesn't work. */
+    memcpy(rk, state0, 16);
+    memcpy(rk + 16, state1, 8);
+}
+
+static void aesni_setkey_enc_192(unsigned char *rk,
+                                 const unsigned char *key)
+{
+    /* First round: use original key */
+    memcpy(rk, key, 24);
+    /* aes.c guarantees that rk is aligned on a 16-byte boundary. */
+    __m128i state0 = ((__m128i *) rk)[0];
+    __m128i state1 = _mm_loadl_epi64(((__m128i *) rk) + 1);
+
+    aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x01), rk + 24 * 1);
+    aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x02), rk + 24 * 2);
+    aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x04), rk + 24 * 3);
+    aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x08), rk + 24 * 4);
+    aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x10), rk + 24 * 5);
+    aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x20), rk + 24 * 6);
+    aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x40), rk + 24 * 7);
+    aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x80), rk + 24 * 8);
+}
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+
+/*
+ * Key expansion, 256-bit case
+ */
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static void aesni_set_rk_256(__m128i state0, __m128i state1, __m128i xword,
+                             __m128i *rk0, __m128i *rk1)
+{
+    /*
+     * Finish generating the next two round keys.
+     *
+     * On entry state0 is r3:r2:r1:r0, state1 is r7:r6:r5:r4 and
+     * xword is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
+     * (obtained with AESKEYGENASSIST).
+     *
+     * On exit, *rk0 is r11:r10:r9:r8 and *rk1 is r15:r14:r13:r12
+     */
+    xword = _mm_shuffle_epi32(xword, 0xff);
+    xword = _mm_xor_si128(xword, state0);
+    state0 = _mm_slli_si128(state0, 4);
+    xword = _mm_xor_si128(xword, state0);
+    state0 = _mm_slli_si128(state0, 4);
+    xword = _mm_xor_si128(xword, state0);
+    state0 = _mm_slli_si128(state0, 4);
+    state0 = _mm_xor_si128(state0, xword);
+    *rk0 = state0;
+
+    /* Set xword to stuff:Y:stuff:stuff with Y = subword( r11 )
+     * and proceed to generate next round key from there */
+    xword = _mm_aeskeygenassist_si128(state0, 0x00);
+    xword = _mm_shuffle_epi32(xword, 0xaa);
+    xword = _mm_xor_si128(xword, state1);
+    state1 = _mm_slli_si128(state1, 4);
+    xword = _mm_xor_si128(xword, state1);
+    state1 = _mm_slli_si128(state1, 4);
+    xword = _mm_xor_si128(xword, state1);
+    state1 = _mm_slli_si128(state1, 4);
+    state1 = _mm_xor_si128(state1, xword);
+    *rk1 = state1;
+}
+
+static void aesni_setkey_enc_256(unsigned char *rk_bytes,
+                                 const unsigned char *key)
+{
+    __m128i *rk = (__m128i *) rk_bytes;
+
+    memcpy(&rk[0], key, 16);
+    memcpy(&rk[1], key + 16, 16);
+
+    /*
+     * Main "loop" - Generating one more key than necessary,
+     * see definition of mbedtls_aes_context.buf
+     */
+    aesni_set_rk_256(rk[0], rk[1], _mm_aeskeygenassist_si128(rk[1], 0x01), &rk[2], &rk[3]);
+    aesni_set_rk_256(rk[2], rk[3], _mm_aeskeygenassist_si128(rk[3], 0x02), &rk[4], &rk[5]);
+    aesni_set_rk_256(rk[4], rk[5], _mm_aeskeygenassist_si128(rk[5], 0x04), &rk[6], &rk[7]);
+    aesni_set_rk_256(rk[6], rk[7], _mm_aeskeygenassist_si128(rk[7], 0x08), &rk[8], &rk[9]);
+    aesni_set_rk_256(rk[8], rk[9], _mm_aeskeygenassist_si128(rk[9], 0x10), &rk[10], &rk[11]);
+    aesni_set_rk_256(rk[10], rk[11], _mm_aeskeygenassist_si128(rk[11], 0x20), &rk[12], &rk[13]);
+    aesni_set_rk_256(rk[12], rk[13], _mm_aeskeygenassist_si128(rk[13], 0x40), &rk[14], &rk[15]);
+}
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+
+#if defined(MBEDTLS_POP_TARGET_PRAGMA)
+#if defined(__clang__)
+#pragma clang attribute pop
+#elif defined(__GNUC__)
+#pragma GCC pop_options
+#endif
+#undef MBEDTLS_POP_TARGET_PRAGMA
+#endif
+
+#else /* MBEDTLS_AESNI_HAVE_CODE == 1 */
+
+#if defined(__has_feature)
+#if __has_feature(memory_sanitizer)
+#warning \
+    "MBEDTLS_AESNI_C is known to cause spurious error reports with some memory sanitizers as they do not understand the assembly code."
+#endif
+#endif
+
+/*
+ * Binutils needs to be at least 2.19 to support AES-NI instructions.
+ * Unfortunately, a lot of users have a lower version now (2014-04).
+ * Emit bytecode directly in order to support "old" version of gas.
+ *
+ * Opcodes from the Intel architecture reference manual, vol. 3.
+ * We always use registers, so we don't need prefixes for memory operands.
+ * Operand macros are in gas order (src, dst) as opposed to Intel order
+ * (dst, src) in order to blend better into the surrounding assembly code.
+ */
+#define AESDEC(regs)      ".byte 0x66,0x0F,0x38,0xDE," regs "\n\t"
+#define AESDECLAST(regs)  ".byte 0x66,0x0F,0x38,0xDF," regs "\n\t"
+#define AESENC(regs)      ".byte 0x66,0x0F,0x38,0xDC," regs "\n\t"
+#define AESENCLAST(regs)  ".byte 0x66,0x0F,0x38,0xDD," regs "\n\t"
+#define AESIMC(regs)      ".byte 0x66,0x0F,0x38,0xDB," regs "\n\t"
+#define AESKEYGENA(regs, imm)  ".byte 0x66,0x0F,0x3A,0xDF," regs "," imm "\n\t"
+#define PCLMULQDQ(regs, imm)   ".byte 0x66,0x0F,0x3A,0x44," regs "," imm "\n\t"
+
+#define xmm0_xmm0   "0xC0"
+#define xmm0_xmm1   "0xC8"
+#define xmm0_xmm2   "0xD0"
+#define xmm0_xmm3   "0xD8"
+#define xmm0_xmm4   "0xE0"
+#define xmm1_xmm0   "0xC1"
+#define xmm1_xmm2   "0xD1"
+
+/*
+ * AES-NI AES-ECB block en(de)cryption
+ */
+int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
+                            int mode,
+                            const unsigned char input[16],
+                            unsigned char output[16])
+{
+    asm ("movdqu    (%3), %%xmm0    \n\t" // load input
+         "movdqu    (%1), %%xmm1    \n\t" // load round key 0
+         "pxor      %%xmm1, %%xmm0  \n\t" // round 0
+         "add       $16, %1         \n\t" // point to next round key
+         "subl      $1, %0          \n\t" // normal rounds = nr - 1
+         "test      %2, %2          \n\t" // mode?
+         "jz        2f              \n\t" // 0 = decrypt
+
+         "1:                        \n\t" // encryption loop
+         "movdqu    (%1), %%xmm1    \n\t" // load round key
+         AESENC(xmm1_xmm0)                // do round
+         "add       $16, %1         \n\t" // point to next round key
+         "subl      $1, %0          \n\t" // loop
+         "jnz       1b              \n\t"
+         "movdqu    (%1), %%xmm1    \n\t" // load round key
+         AESENCLAST(xmm1_xmm0)            // last round
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+         "jmp       3f              \n\t"
+
+         "2:                        \n\t" // decryption loop
+         "movdqu    (%1), %%xmm1    \n\t"
+         AESDEC(xmm1_xmm0)                // do round
+         "add       $16, %1         \n\t"
+         "subl      $1, %0          \n\t"
+         "jnz       2b              \n\t"
+         "movdqu    (%1), %%xmm1    \n\t" // load round key
+         AESDECLAST(xmm1_xmm0)            // last round
+#endif
+
+         "3:                        \n\t"
+         "movdqu    %%xmm0, (%4)    \n\t" // export output
+         :
+         : "r" (ctx->nr), "r" (ctx->buf + ctx->rk_offset), "r" (mode), "r" (input), "r" (output)
+         : "memory", "cc", "xmm0", "xmm1");
+
+
+    return 0;
+}
+
+/*
+ * GCM multiplication: c = a times b in GF(2^128)
+ * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
+ */
+void mbedtls_aesni_gcm_mult(unsigned char c[16],
+                            const unsigned char a[16],
+                            const unsigned char b[16])
+{
+    unsigned char aa[16], bb[16], cc[16];
+    size_t i;
+
+    /* The inputs are in big-endian order, so byte-reverse them */
+    for (i = 0; i < 16; i++) {
+        aa[i] = a[15 - i];
+        bb[i] = b[15 - i];
+    }
+
+    asm ("movdqu (%0), %%xmm0               \n\t" // a1:a0
+         "movdqu (%1), %%xmm1               \n\t" // b1:b0
+
+         /*
+          * Caryless multiplication xmm2:xmm1 = xmm0 * xmm1
+          * using [CLMUL-WP] algorithm 1 (p. 12).
+          */
+         "movdqa %%xmm1, %%xmm2             \n\t" // copy of b1:b0
+         "movdqa %%xmm1, %%xmm3             \n\t" // same
+         "movdqa %%xmm1, %%xmm4             \n\t" // same
+         PCLMULQDQ(xmm0_xmm1, "0x00")             // a0*b0 = c1:c0
+         PCLMULQDQ(xmm0_xmm2, "0x11")             // a1*b1 = d1:d0
+         PCLMULQDQ(xmm0_xmm3, "0x10")             // a0*b1 = e1:e0
+         PCLMULQDQ(xmm0_xmm4, "0x01")             // a1*b0 = f1:f0
+         "pxor %%xmm3, %%xmm4               \n\t" // e1+f1:e0+f0
+         "movdqa %%xmm4, %%xmm3             \n\t" // same
+         "psrldq $8, %%xmm4                 \n\t" // 0:e1+f1
+         "pslldq $8, %%xmm3                 \n\t" // e0+f0:0
+         "pxor %%xmm4, %%xmm2               \n\t" // d1:d0+e1+f1
+         "pxor %%xmm3, %%xmm1               \n\t" // c1+e0+f1:c0
+
+         /*
+          * Now shift the result one bit to the left,
+          * taking advantage of [CLMUL-WP] eq 27 (p. 18)
+          */
+         "movdqa %%xmm1, %%xmm3             \n\t" // r1:r0
+         "movdqa %%xmm2, %%xmm4             \n\t" // r3:r2
+         "psllq $1, %%xmm1                  \n\t" // r1<<1:r0<<1
+         "psllq $1, %%xmm2                  \n\t" // r3<<1:r2<<1
+         "psrlq $63, %%xmm3                 \n\t" // r1>>63:r0>>63
+         "psrlq $63, %%xmm4                 \n\t" // r3>>63:r2>>63
+         "movdqa %%xmm3, %%xmm5             \n\t" // r1>>63:r0>>63
+         "pslldq $8, %%xmm3                 \n\t" // r0>>63:0
+         "pslldq $8, %%xmm4                 \n\t" // r2>>63:0
+         "psrldq $8, %%xmm5                 \n\t" // 0:r1>>63
+         "por %%xmm3, %%xmm1                \n\t" // r1<<1|r0>>63:r0<<1
+         "por %%xmm4, %%xmm2                \n\t" // r3<<1|r2>>62:r2<<1
+         "por %%xmm5, %%xmm2                \n\t" // r3<<1|r2>>62:r2<<1|r1>>63
+
+         /*
+          * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
+          * using [CLMUL-WP] algorithm 5 (p. 18).
+          * Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted).
+          */
+         /* Step 2 (1) */
+         "movdqa %%xmm1, %%xmm3             \n\t" // x1:x0
+         "movdqa %%xmm1, %%xmm4             \n\t" // same
+         "movdqa %%xmm1, %%xmm5             \n\t" // same
+         "psllq $63, %%xmm3                 \n\t" // x1<<63:x0<<63 = stuff:a
+         "psllq $62, %%xmm4                 \n\t" // x1<<62:x0<<62 = stuff:b
+         "psllq $57, %%xmm5                 \n\t" // x1<<57:x0<<57 = stuff:c
+
+         /* Step 2 (2) */
+         "pxor %%xmm4, %%xmm3               \n\t" // stuff:a+b
+         "pxor %%xmm5, %%xmm3               \n\t" // stuff:a+b+c
+         "pslldq $8, %%xmm3                 \n\t" // a+b+c:0
+         "pxor %%xmm3, %%xmm1               \n\t" // x1+a+b+c:x0 = d:x0
+
+         /* Steps 3 and 4 */
+         "movdqa %%xmm1,%%xmm0              \n\t" // d:x0
+         "movdqa %%xmm1,%%xmm4              \n\t" // same
+         "movdqa %%xmm1,%%xmm5              \n\t" // same
+         "psrlq $1, %%xmm0                  \n\t" // e1:x0>>1 = e1:e0'
+         "psrlq $2, %%xmm4                  \n\t" // f1:x0>>2 = f1:f0'
+         "psrlq $7, %%xmm5                  \n\t" // g1:x0>>7 = g1:g0'
+         "pxor %%xmm4, %%xmm0               \n\t" // e1+f1:e0'+f0'
+         "pxor %%xmm5, %%xmm0               \n\t" // e1+f1+g1:e0'+f0'+g0'
+         // e0'+f0'+g0' is almost e0+f0+g0, ex\tcept for some missing
+         // bits carried from d. Now get those\t bits back in.
+         "movdqa %%xmm1,%%xmm3              \n\t" // d:x0
+         "movdqa %%xmm1,%%xmm4              \n\t" // same
+         "movdqa %%xmm1,%%xmm5              \n\t" // same
+         "psllq $63, %%xmm3                 \n\t" // d<<63:stuff
+         "psllq $62, %%xmm4                 \n\t" // d<<62:stuff
+         "psllq $57, %%xmm5                 \n\t" // d<<57:stuff
+         "pxor %%xmm4, %%xmm3               \n\t" // d<<63+d<<62:stuff
+         "pxor %%xmm5, %%xmm3               \n\t" // missing bits of d:stuff
+         "psrldq $8, %%xmm3                 \n\t" // 0:missing bits of d
+         "pxor %%xmm3, %%xmm0               \n\t" // e1+f1+g1:e0+f0+g0
+         "pxor %%xmm1, %%xmm0               \n\t" // h1:h0
+         "pxor %%xmm2, %%xmm0               \n\t" // x3+h1:x2+h0
+
+         "movdqu %%xmm0, (%2)               \n\t" // done
+         :
+         : "r" (aa), "r" (bb), "r" (cc)
+         : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5");
+
+    /* Now byte-reverse the outputs */
+    for (i = 0; i < 16; i++) {
+        c[i] = cc[15 - i];
+    }
+
+    return;
+}
+
+/*
+ * Compute decryption round keys from encryption round keys
+ */
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+void mbedtls_aesni_inverse_key(unsigned char *invkey,
+                               const unsigned char *fwdkey, int nr)
+{
+    unsigned char *ik = invkey;
+    const unsigned char *fk = fwdkey + 16 * nr;
+
+    memcpy(ik, fk, 16);
+
+    for (fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16) {
+        asm ("movdqu (%0), %%xmm0       \n\t"
+             AESIMC(xmm0_xmm0)
+             "movdqu %%xmm0, (%1)       \n\t"
+             :
+             : "r" (fk), "r" (ik)
+             : "memory", "xmm0");
+    }
+
+    memcpy(ik, fk, 16);
+}
+#endif
+
+/*
+ * Key expansion, 128-bit case
+ */
+static void aesni_setkey_enc_128(unsigned char *rk,
+                                 const unsigned char *key)
+{
+    asm ("movdqu (%1), %%xmm0               \n\t" // copy the original key
+         "movdqu %%xmm0, (%0)               \n\t" // as round key 0
+         "jmp 2f                            \n\t" // skip auxiliary routine
+
+         /*
+          * Finish generating the next round key.
+          *
+          * On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff
+          * with X = rot( sub( r3 ) ) ^ RCON.
+          *
+          * On exit, xmm0 is r7:r6:r5:r4
+          * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
+          * and those are written to the round key buffer.
+          */
+         "1:                                \n\t"
+         "pshufd $0xff, %%xmm1, %%xmm1      \n\t" // X:X:X:X
+         "pxor %%xmm0, %%xmm1               \n\t" // X+r3:X+r2:X+r1:r4
+         "pslldq $4, %%xmm0                 \n\t" // r2:r1:r0:0
+         "pxor %%xmm0, %%xmm1               \n\t" // X+r3+r2:X+r2+r1:r5:r4
+         "pslldq $4, %%xmm0                 \n\t" // etc
+         "pxor %%xmm0, %%xmm1               \n\t"
+         "pslldq $4, %%xmm0                 \n\t"
+         "pxor %%xmm1, %%xmm0               \n\t" // update xmm0 for next time!
+         "add $16, %0                       \n\t" // point to next round key
+         "movdqu %%xmm0, (%0)               \n\t" // write it
+         "ret                               \n\t"
+
+         /* Main "loop" */
+         "2:                                \n\t"
+         AESKEYGENA(xmm0_xmm1, "0x01")      "call 1b \n\t"
+         AESKEYGENA(xmm0_xmm1, "0x02")      "call 1b \n\t"
+         AESKEYGENA(xmm0_xmm1, "0x04")      "call 1b \n\t"
+         AESKEYGENA(xmm0_xmm1, "0x08")      "call 1b \n\t"
+         AESKEYGENA(xmm0_xmm1, "0x10")      "call 1b \n\t"
+         AESKEYGENA(xmm0_xmm1, "0x20")      "call 1b \n\t"
+         AESKEYGENA(xmm0_xmm1, "0x40")      "call 1b \n\t"
+         AESKEYGENA(xmm0_xmm1, "0x80")      "call 1b \n\t"
+         AESKEYGENA(xmm0_xmm1, "0x1B")      "call 1b \n\t"
+         AESKEYGENA(xmm0_xmm1, "0x36")      "call 1b \n\t"
+         :
+         : "r" (rk), "r" (key)
+         : "memory", "cc", "0");
+}
+
+/*
+ * Key expansion, 192-bit case
+ */
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static void aesni_setkey_enc_192(unsigned char *rk,
+                                 const unsigned char *key)
+{
+    asm ("movdqu (%1), %%xmm0   \n\t" // copy original round key
+         "movdqu %%xmm0, (%0)   \n\t"
+         "add $16, %0           \n\t"
+         "movq 16(%1), %%xmm1   \n\t"
+         "movq %%xmm1, (%0)     \n\t"
+         "add $8, %0            \n\t"
+         "jmp 2f                \n\t" // skip auxiliary routine
+
+         /*
+          * Finish generating the next 6 quarter-keys.
+          *
+          * On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4
+          * and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON.
+          *
+          * On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10
+          * and those are written to the round key buffer.
+          */
+         "1:                            \n\t"
+         "pshufd $0x55, %%xmm2, %%xmm2  \n\t" // X:X:X:X
+         "pxor %%xmm0, %%xmm2           \n\t" // X+r3:X+r2:X+r1:r4
+         "pslldq $4, %%xmm0             \n\t" // etc
+         "pxor %%xmm0, %%xmm2           \n\t"
+         "pslldq $4, %%xmm0             \n\t"
+         "pxor %%xmm0, %%xmm2           \n\t"
+         "pslldq $4, %%xmm0             \n\t"
+         "pxor %%xmm2, %%xmm0           \n\t" // update xmm0 = r9:r8:r7:r6
+         "movdqu %%xmm0, (%0)           \n\t"
+         "add $16, %0                   \n\t"
+         "pshufd $0xff, %%xmm0, %%xmm2  \n\t" // r9:r9:r9:r9
+         "pxor %%xmm1, %%xmm2           \n\t" // stuff:stuff:r9+r5:r10
+         "pslldq $4, %%xmm1             \n\t" // r2:r1:r0:0
+         "pxor %%xmm2, %%xmm1           \n\t" // xmm1 = stuff:stuff:r11:r10
+         "movq %%xmm1, (%0)             \n\t"
+         "add $8, %0                    \n\t"
+         "ret                           \n\t"
+
+         "2:                            \n\t"
+         AESKEYGENA(xmm1_xmm2, "0x01")  "call 1b \n\t"
+         AESKEYGENA(xmm1_xmm2, "0x02")  "call 1b \n\t"
+         AESKEYGENA(xmm1_xmm2, "0x04")  "call 1b \n\t"
+         AESKEYGENA(xmm1_xmm2, "0x08")  "call 1b \n\t"
+         AESKEYGENA(xmm1_xmm2, "0x10")  "call 1b \n\t"
+         AESKEYGENA(xmm1_xmm2, "0x20")  "call 1b \n\t"
+         AESKEYGENA(xmm1_xmm2, "0x40")  "call 1b \n\t"
+         AESKEYGENA(xmm1_xmm2, "0x80")  "call 1b \n\t"
+
+         :
+         : "r" (rk), "r" (key)
+         : "memory", "cc", "0");
+}
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+
+/*
+ * Key expansion, 256-bit case
+ */
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static void aesni_setkey_enc_256(unsigned char *rk,
+                                 const unsigned char *key)
+{
+    asm ("movdqu (%1), %%xmm0           \n\t"
+         "movdqu %%xmm0, (%0)           \n\t"
+         "add $16, %0                   \n\t"
+         "movdqu 16(%1), %%xmm1         \n\t"
+         "movdqu %%xmm1, (%0)           \n\t"
+         "jmp 2f                        \n\t" // skip auxiliary routine
+
+         /*
+          * Finish generating the next two round keys.
+          *
+          * On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and
+          * xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
+          *
+          * On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12
+          * and those have been written to the output buffer.
+          */
+         "1:                                \n\t"
+         "pshufd $0xff, %%xmm2, %%xmm2      \n\t"
+         "pxor %%xmm0, %%xmm2               \n\t"
+         "pslldq $4, %%xmm0                 \n\t"
+         "pxor %%xmm0, %%xmm2               \n\t"
+         "pslldq $4, %%xmm0                 \n\t"
+         "pxor %%xmm0, %%xmm2               \n\t"
+         "pslldq $4, %%xmm0                 \n\t"
+         "pxor %%xmm2, %%xmm0               \n\t"
+         "add $16, %0                       \n\t"
+         "movdqu %%xmm0, (%0)               \n\t"
+
+         /* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 )
+          * and proceed to generate next round key from there */
+         AESKEYGENA(xmm0_xmm2, "0x00")
+         "pshufd $0xaa, %%xmm2, %%xmm2      \n\t"
+         "pxor %%xmm1, %%xmm2               \n\t"
+         "pslldq $4, %%xmm1                 \n\t"
+         "pxor %%xmm1, %%xmm2               \n\t"
+         "pslldq $4, %%xmm1                 \n\t"
+         "pxor %%xmm1, %%xmm2               \n\t"
+         "pslldq $4, %%xmm1                 \n\t"
+         "pxor %%xmm2, %%xmm1               \n\t"
+         "add $16, %0                       \n\t"
+         "movdqu %%xmm1, (%0)               \n\t"
+         "ret                               \n\t"
+
+         /*
+          * Main "loop" - Generating one more key than necessary,
+          * see definition of mbedtls_aes_context.buf
+          */
+         "2:                                \n\t"
+         AESKEYGENA(xmm1_xmm2, "0x01")      "call 1b \n\t"
+         AESKEYGENA(xmm1_xmm2, "0x02")      "call 1b \n\t"
+         AESKEYGENA(xmm1_xmm2, "0x04")      "call 1b \n\t"
+         AESKEYGENA(xmm1_xmm2, "0x08")      "call 1b \n\t"
+         AESKEYGENA(xmm1_xmm2, "0x10")      "call 1b \n\t"
+         AESKEYGENA(xmm1_xmm2, "0x20")      "call 1b \n\t"
+         AESKEYGENA(xmm1_xmm2, "0x40")      "call 1b \n\t"
+         :
+         : "r" (rk), "r" (key)
+         : "memory", "cc", "0");
+}
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+
+#endif  /* MBEDTLS_AESNI_HAVE_CODE */
+
+/*
+ * Key expansion, wrapper
+ */
+int mbedtls_aesni_setkey_enc(unsigned char *rk,
+                             const unsigned char *key,
+                             size_t bits)
+{
+    switch (bits) {
+        case 128: aesni_setkey_enc_128(rk, key); break;
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+        case 192: aesni_setkey_enc_192(rk, key); break;
+        case 256: aesni_setkey_enc_256(rk, key); break;
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+        default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
+    }
+
+    return 0;
+}
+
+#endif /* MBEDTLS_AESNI_HAVE_CODE */
+
+#endif /* MBEDTLS_AESNI_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/aesni.h b/tf-psa-crypto/drivers/builtin/src/aesni.h
new file mode 100644
index 0000000..59e27af
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/aesni.h
@@ -0,0 +1,162 @@
+/**
+ * \file aesni.h
+ *
+ * \brief AES-NI for hardware AES acceleration on some Intel processors
+ *
+ * \warning These functions are only for internal use by other library
+ *          functions; you must not call them directly.
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#ifndef MBEDTLS_AESNI_H
+#define MBEDTLS_AESNI_H
+
+#include "mbedtls/build_info.h"
+
+#include "mbedtls/aes.h"
+
+#define MBEDTLS_AESNI_AES      0x02000000u
+#define MBEDTLS_AESNI_CLMUL    0x00000002u
+
+#if defined(MBEDTLS_AESNI_C) && \
+    (defined(MBEDTLS_ARCH_IS_X64) || defined(MBEDTLS_ARCH_IS_X86))
+
+/* Can we do AESNI with intrinsics?
+ * (Only implemented with certain compilers, only for certain targets.)
+ */
+#undef MBEDTLS_AESNI_HAVE_INTRINSICS
+#if defined(_MSC_VER) && !defined(__clang__)
+/* Visual Studio supports AESNI intrinsics since VS 2008 SP1. We only support
+ * VS 2013 and up for other reasons anyway, so no need to check the version. */
+#define MBEDTLS_AESNI_HAVE_INTRINSICS
+#endif
+/* GCC-like compilers: currently, we only support intrinsics if the requisite
+ * target flag is enabled when building the library (e.g. `gcc -mpclmul -msse2`
+ * or `clang -maes -mpclmul`). */
+#if (defined(__GNUC__) || defined(__clang__)) && defined(__AES__) && defined(__PCLMUL__)
+#define MBEDTLS_AESNI_HAVE_INTRINSICS
+#endif
+/* For 32-bit, we only support intrinsics */
+#if defined(MBEDTLS_ARCH_IS_X86) && (defined(__GNUC__) || defined(__clang__))
+#define MBEDTLS_AESNI_HAVE_INTRINSICS
+#endif
+
+/* Choose the implementation of AESNI, if one is available.
+ *
+ * Favor the intrinsics-based implementation if it's available, for better
+ * maintainability.
+ * Performance is about the same (see #7380).
+ * In the long run, we will likely remove the assembly implementation. */
+#if defined(MBEDTLS_AESNI_HAVE_INTRINSICS)
+#define MBEDTLS_AESNI_HAVE_CODE 2 // via intrinsics
+#elif defined(MBEDTLS_HAVE_ASM) && \
+    (defined(__GNUC__) || defined(__clang__)) && defined(MBEDTLS_ARCH_IS_X64)
+/* Can we do AESNI with inline assembly?
+ * (Only implemented with gas syntax, only for 64-bit.)
+ */
+#define MBEDTLS_AESNI_HAVE_CODE 1 // via assembly
+#else
+#error "MBEDTLS_AESNI_C defined, but neither intrinsics nor assembly available"
+#endif
+
+#if defined(MBEDTLS_AESNI_HAVE_CODE)
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/**
+ * \brief          Internal function to detect the AES-NI feature in CPUs.
+ *
+ * \note           This function is only for internal use by other library
+ *                 functions; you must not call it directly.
+ *
+ * \param what     The feature to detect
+ *                 (MBEDTLS_AESNI_AES or MBEDTLS_AESNI_CLMUL)
+ *
+ * \return         1 if CPU has support for the feature, 0 otherwise
+ */
+#if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
+int mbedtls_aesni_has_support(unsigned int what);
+#else
+#define mbedtls_aesni_has_support(what) 1
+#endif
+
+/**
+ * \brief          Internal AES-NI AES-ECB block encryption and decryption
+ *
+ * \note           This function is only for internal use by other library
+ *                 functions; you must not call it directly.
+ *
+ * \param ctx      AES context
+ * \param mode     MBEDTLS_AES_ENCRYPT or MBEDTLS_AES_DECRYPT
+ * \param input    16-byte input block
+ * \param output   16-byte output block
+ *
+ * \return         0 on success (cannot fail)
+ */
+int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
+                            int mode,
+                            const unsigned char input[16],
+                            unsigned char output[16]);
+
+/**
+ * \brief          Internal GCM multiplication: c = a * b in GF(2^128)
+ *
+ * \note           This function is only for internal use by other library
+ *                 functions; you must not call it directly.
+ *
+ * \param c        Result
+ * \param a        First operand
+ * \param b        Second operand
+ *
+ * \note           Both operands and result are bit strings interpreted as
+ *                 elements of GF(2^128) as per the GCM spec.
+ */
+void mbedtls_aesni_gcm_mult(unsigned char c[16],
+                            const unsigned char a[16],
+                            const unsigned char b[16]);
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+/**
+ * \brief           Internal round key inversion. This function computes
+ *                  decryption round keys from the encryption round keys.
+ *
+ * \note            This function is only for internal use by other library
+ *                  functions; you must not call it directly.
+ *
+ * \param invkey    Round keys for the equivalent inverse cipher
+ * \param fwdkey    Original round keys (for encryption)
+ * \param nr        Number of rounds (that is, number of round keys minus one)
+ */
+void mbedtls_aesni_inverse_key(unsigned char *invkey,
+                               const unsigned char *fwdkey,
+                               int nr);
+#endif /* !MBEDTLS_BLOCK_CIPHER_NO_DECRYPT */
+
+/**
+ * \brief           Internal key expansion for encryption
+ *
+ * \note            This function is only for internal use by other library
+ *                  functions; you must not call it directly.
+ *
+ * \param rk        Destination buffer where the round keys are written
+ * \param key       Encryption key
+ * \param bits      Key size in bits (must be 128, 192 or 256)
+ *
+ * \return          0 if successful, or MBEDTLS_ERR_AES_INVALID_KEY_LENGTH
+ */
+int mbedtls_aesni_setkey_enc(unsigned char *rk,
+                             const unsigned char *key,
+                             size_t bits);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* MBEDTLS_AESNI_HAVE_CODE */
+#endif  /* MBEDTLS_AESNI_C && (MBEDTLS_ARCH_IS_X64 || MBEDTLS_ARCH_IS_X86) */
+
+#endif /* MBEDTLS_AESNI_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/aria.c b/tf-psa-crypto/drivers/builtin/src/aria.c
new file mode 100644
index 0000000..d9f84cc
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/aria.c
@@ -0,0 +1,969 @@
+/*
+ *  ARIA implementation
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * This implementation is based on the following standards:
+ * [1] http://210.104.33.10/ARIA/doc/ARIA-specification-e.pdf
+ * [2] https://tools.ietf.org/html/rfc5794
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_ARIA_C)
+
+#include "mbedtls/aria.h"
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_ARIA_ALT)
+
+#include "mbedtls/platform_util.h"
+
+/*
+ * modify byte order: ( A B C D ) -> ( B A D C ), i.e. swap pairs of bytes
+ *
+ * This is submatrix P1 in [1] Appendix B.1
+ *
+ * Common compilers fail to translate this to minimal number of instructions,
+ * so let's provide asm versions for common platforms with C fallback.
+ */
+#if defined(MBEDTLS_HAVE_ASM)
+#if defined(__arm__) /* rev16 available from v6 up */
+/* armcc5 --gnu defines __GNUC__ but doesn't support GNU's extended asm */
+#if defined(__GNUC__) && \
+    (!defined(__ARMCC_VERSION) || __ARMCC_VERSION >= 6000000) && \
+    __ARM_ARCH >= 6
+static inline uint32_t aria_p1(uint32_t x)
+{
+    uint32_t r;
+    __asm("rev16 %0, %1" : "=l" (r) : "l" (x));
+    return r;
+}
+#define ARIA_P1 aria_p1
+#elif defined(__ARMCC_VERSION) && __ARMCC_VERSION < 6000000 && \
+    (__TARGET_ARCH_ARM >= 6 || __TARGET_ARCH_THUMB >= 3)
+static inline uint32_t aria_p1(uint32_t x)
+{
+    uint32_t r;
+    __asm("rev16 r, x");
+    return r;
+}
+#define ARIA_P1 aria_p1
+#endif
+#endif /* arm */
+#if defined(__GNUC__) && \
+    defined(__i386__) || defined(__amd64__) || defined(__x86_64__)
+/* I couldn't find an Intel equivalent of rev16, so two instructions */
+#define ARIA_P1(x) ARIA_P2(ARIA_P3(x))
+#endif /* x86 gnuc */
+#endif /* MBEDTLS_HAVE_ASM && GNUC */
+#if !defined(ARIA_P1)
+#define ARIA_P1(x) ((((x) >> 8) & 0x00FF00FF) ^ (((x) & 0x00FF00FF) << 8))
+#endif
+
+/*
+ * modify byte order: ( A B C D ) -> ( C D A B ), i.e. rotate by 16 bits
+ *
+ * This is submatrix P2 in [1] Appendix B.1
+ *
+ * Common compilers will translate this to a single instruction.
+ */
+#define ARIA_P2(x) (((x) >> 16) ^ ((x) << 16))
+
+/*
+ * modify byte order: ( A B C D ) -> ( D C B A ), i.e. change endianness
+ *
+ * This is submatrix P3 in [1] Appendix B.1
+ */
+#define ARIA_P3(x) MBEDTLS_BSWAP32(x)
+
+/*
+ * ARIA Affine Transform
+ * (a, b, c, d) = state in/out
+ *
+ * If we denote the first byte of input by 0, ..., the last byte by f,
+ * then inputs are: a = 0123, b = 4567, c = 89ab, d = cdef.
+ *
+ * Reading [1] 2.4 or [2] 2.4.3 in columns and performing simple
+ * rearrangements on adjacent pairs, output is:
+ *
+ * a = 3210 + 4545 + 6767 + 88aa + 99bb + dccd + effe
+ *   = 3210 + 4567 + 6745 + 89ab + 98ba + dcfe + efcd
+ * b = 0101 + 2323 + 5476 + 8998 + baab + eecc + ffdd
+ *   = 0123 + 2301 + 5476 + 89ab + ba98 + efcd + fedc
+ * c = 0022 + 1133 + 4554 + 7667 + ab89 + dcdc + fefe
+ *   = 0123 + 1032 + 4567 + 7654 + ab89 + dcfe + fedc
+ * d = 1001 + 2332 + 6644 + 7755 + 9898 + baba + cdef
+ *   = 1032 + 2301 + 6745 + 7654 + 98ba + ba98 + cdef
+ *
+ * Note: another presentation of the A transform can be found as the first
+ * half of App. B.1 in [1] in terms of 4-byte operators P1, P2, P3 and P4.
+ * The implementation below uses only P1 and P2 as they are sufficient.
+ */
+static inline void aria_a(uint32_t *a, uint32_t *b,
+                          uint32_t *c, uint32_t *d)
+{
+    uint32_t ta, tb, tc;
+    ta  =  *b;                      // 4567
+    *b  =  *a;                      // 0123
+    *a  =  ARIA_P2(ta);             // 6745
+    tb  =  ARIA_P2(*d);             // efcd
+    *d  =  ARIA_P1(*c);             // 98ba
+    *c  =  ARIA_P1(tb);             // fedc
+    ta  ^= *d;                      // 4567+98ba
+    tc  =  ARIA_P2(*b);             // 2301
+    ta  =  ARIA_P1(ta) ^ tc ^ *c;   // 2301+5476+89ab+fedc
+    tb  ^= ARIA_P2(*d);             // ba98+efcd
+    tc  ^= ARIA_P1(*a);             // 2301+7654
+    *b  ^= ta ^ tb;                 // 0123+2301+5476+89ab+ba98+efcd+fedc OUT
+    tb  =  ARIA_P2(tb) ^ ta;        // 2301+5476+89ab+98ba+cdef+fedc
+    *a  ^= ARIA_P1(tb);             // 3210+4567+6745+89ab+98ba+dcfe+efcd OUT
+    ta  =  ARIA_P2(ta);             // 0123+7654+ab89+dcfe
+    *d  ^= ARIA_P1(ta) ^ tc;        // 1032+2301+6745+7654+98ba+ba98+cdef OUT
+    tc  =  ARIA_P2(tc);             // 0123+5476
+    *c  ^= ARIA_P1(tc) ^ ta;        // 0123+1032+4567+7654+ab89+dcfe+fedc OUT
+}
+
+/*
+ * ARIA Substitution Layer SL1 / SL2
+ * (a, b, c, d) = state in/out
+ * (sa, sb, sc, sd) = 256 8-bit S-Boxes (see below)
+ *
+ * By passing sb1, sb2, is1, is2 as S-Boxes you get SL1
+ * By passing is1, is2, sb1, sb2 as S-Boxes you get SL2
+ */
+static inline void aria_sl(uint32_t *a, uint32_t *b,
+                           uint32_t *c, uint32_t *d,
+                           const uint8_t sa[256], const uint8_t sb[256],
+                           const uint8_t sc[256], const uint8_t sd[256])
+{
+    *a = ((uint32_t) sa[MBEDTLS_BYTE_0(*a)]) ^
+         (((uint32_t) sb[MBEDTLS_BYTE_1(*a)]) <<  8) ^
+         (((uint32_t) sc[MBEDTLS_BYTE_2(*a)]) << 16) ^
+         (((uint32_t) sd[MBEDTLS_BYTE_3(*a)]) << 24);
+    *b = ((uint32_t) sa[MBEDTLS_BYTE_0(*b)]) ^
+         (((uint32_t) sb[MBEDTLS_BYTE_1(*b)]) <<  8) ^
+         (((uint32_t) sc[MBEDTLS_BYTE_2(*b)]) << 16) ^
+         (((uint32_t) sd[MBEDTLS_BYTE_3(*b)]) << 24);
+    *c = ((uint32_t) sa[MBEDTLS_BYTE_0(*c)]) ^
+         (((uint32_t) sb[MBEDTLS_BYTE_1(*c)]) <<  8) ^
+         (((uint32_t) sc[MBEDTLS_BYTE_2(*c)]) << 16) ^
+         (((uint32_t) sd[MBEDTLS_BYTE_3(*c)]) << 24);
+    *d = ((uint32_t) sa[MBEDTLS_BYTE_0(*d)]) ^
+         (((uint32_t) sb[MBEDTLS_BYTE_1(*d)]) <<  8) ^
+         (((uint32_t) sc[MBEDTLS_BYTE_2(*d)]) << 16) ^
+         (((uint32_t) sd[MBEDTLS_BYTE_3(*d)]) << 24);
+}
+
+/*
+ * S-Boxes
+ */
+static const uint8_t aria_sb1[256] =
+{
+    0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B,
+    0xFE, 0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0,
+    0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, 0xB7, 0xFD, 0x93, 0x26,
+    0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
+    0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2,
+    0xEB, 0x27, 0xB2, 0x75, 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0,
+    0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, 0x53, 0xD1, 0x00, 0xED,
+    0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
+    0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F,
+    0x50, 0x3C, 0x9F, 0xA8, 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,
+    0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD, 0x0C, 0x13, 0xEC,
+    0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
+    0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14,
+    0xDE, 0x5E, 0x0B, 0xDB, 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C,
+    0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79, 0xE7, 0xC8, 0x37, 0x6D,
+    0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
+    0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F,
+    0x4B, 0xBD, 0x8B, 0x8A, 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E,
+    0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11,
+    0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
+    0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F,
+    0xB0, 0x54, 0xBB, 0x16
+};
+
+static const uint8_t aria_sb2[256] =
+{
+    0xE2, 0x4E, 0x54, 0xFC, 0x94, 0xC2, 0x4A, 0xCC, 0x62, 0x0D, 0x6A, 0x46,
+    0x3C, 0x4D, 0x8B, 0xD1, 0x5E, 0xFA, 0x64, 0xCB, 0xB4, 0x97, 0xBE, 0x2B,
+    0xBC, 0x77, 0x2E, 0x03, 0xD3, 0x19, 0x59, 0xC1, 0x1D, 0x06, 0x41, 0x6B,
+    0x55, 0xF0, 0x99, 0x69, 0xEA, 0x9C, 0x18, 0xAE, 0x63, 0xDF, 0xE7, 0xBB,
+    0x00, 0x73, 0x66, 0xFB, 0x96, 0x4C, 0x85, 0xE4, 0x3A, 0x09, 0x45, 0xAA,
+    0x0F, 0xEE, 0x10, 0xEB, 0x2D, 0x7F, 0xF4, 0x29, 0xAC, 0xCF, 0xAD, 0x91,
+    0x8D, 0x78, 0xC8, 0x95, 0xF9, 0x2F, 0xCE, 0xCD, 0x08, 0x7A, 0x88, 0x38,
+    0x5C, 0x83, 0x2A, 0x28, 0x47, 0xDB, 0xB8, 0xC7, 0x93, 0xA4, 0x12, 0x53,
+    0xFF, 0x87, 0x0E, 0x31, 0x36, 0x21, 0x58, 0x48, 0x01, 0x8E, 0x37, 0x74,
+    0x32, 0xCA, 0xE9, 0xB1, 0xB7, 0xAB, 0x0C, 0xD7, 0xC4, 0x56, 0x42, 0x26,
+    0x07, 0x98, 0x60, 0xD9, 0xB6, 0xB9, 0x11, 0x40, 0xEC, 0x20, 0x8C, 0xBD,
+    0xA0, 0xC9, 0x84, 0x04, 0x49, 0x23, 0xF1, 0x4F, 0x50, 0x1F, 0x13, 0xDC,
+    0xD8, 0xC0, 0x9E, 0x57, 0xE3, 0xC3, 0x7B, 0x65, 0x3B, 0x02, 0x8F, 0x3E,
+    0xE8, 0x25, 0x92, 0xE5, 0x15, 0xDD, 0xFD, 0x17, 0xA9, 0xBF, 0xD4, 0x9A,
+    0x7E, 0xC5, 0x39, 0x67, 0xFE, 0x76, 0x9D, 0x43, 0xA7, 0xE1, 0xD0, 0xF5,
+    0x68, 0xF2, 0x1B, 0x34, 0x70, 0x05, 0xA3, 0x8A, 0xD5, 0x79, 0x86, 0xA8,
+    0x30, 0xC6, 0x51, 0x4B, 0x1E, 0xA6, 0x27, 0xF6, 0x35, 0xD2, 0x6E, 0x24,
+    0x16, 0x82, 0x5F, 0xDA, 0xE6, 0x75, 0xA2, 0xEF, 0x2C, 0xB2, 0x1C, 0x9F,
+    0x5D, 0x6F, 0x80, 0x0A, 0x72, 0x44, 0x9B, 0x6C, 0x90, 0x0B, 0x5B, 0x33,
+    0x7D, 0x5A, 0x52, 0xF3, 0x61, 0xA1, 0xF7, 0xB0, 0xD6, 0x3F, 0x7C, 0x6D,
+    0xED, 0x14, 0xE0, 0xA5, 0x3D, 0x22, 0xB3, 0xF8, 0x89, 0xDE, 0x71, 0x1A,
+    0xAF, 0xBA, 0xB5, 0x81
+};
+
+static const uint8_t aria_is1[256] =
+{
+    0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E,
+    0x81, 0xF3, 0xD7, 0xFB, 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87,
+    0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB, 0x54, 0x7B, 0x94, 0x32,
+    0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
+    0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49,
+    0x6D, 0x8B, 0xD1, 0x25, 0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16,
+    0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92, 0x6C, 0x70, 0x48, 0x50,
+    0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
+    0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05,
+    0xB8, 0xB3, 0x45, 0x06, 0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02,
+    0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, 0x3A, 0x91, 0x11, 0x41,
+    0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
+    0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8,
+    0x1C, 0x75, 0xDF, 0x6E, 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89,
+    0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B, 0xFC, 0x56, 0x3E, 0x4B,
+    0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
+    0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59,
+    0x27, 0x80, 0xEC, 0x5F, 0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D,
+    0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF, 0xA0, 0xE0, 0x3B, 0x4D,
+    0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
+    0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63,
+    0x55, 0x21, 0x0C, 0x7D
+};
+
+static const uint8_t aria_is2[256] =
+{
+    0x30, 0x68, 0x99, 0x1B, 0x87, 0xB9, 0x21, 0x78, 0x50, 0x39, 0xDB, 0xE1,
+    0x72, 0x09, 0x62, 0x3C, 0x3E, 0x7E, 0x5E, 0x8E, 0xF1, 0xA0, 0xCC, 0xA3,
+    0x2A, 0x1D, 0xFB, 0xB6, 0xD6, 0x20, 0xC4, 0x8D, 0x81, 0x65, 0xF5, 0x89,
+    0xCB, 0x9D, 0x77, 0xC6, 0x57, 0x43, 0x56, 0x17, 0xD4, 0x40, 0x1A, 0x4D,
+    0xC0, 0x63, 0x6C, 0xE3, 0xB7, 0xC8, 0x64, 0x6A, 0x53, 0xAA, 0x38, 0x98,
+    0x0C, 0xF4, 0x9B, 0xED, 0x7F, 0x22, 0x76, 0xAF, 0xDD, 0x3A, 0x0B, 0x58,
+    0x67, 0x88, 0x06, 0xC3, 0x35, 0x0D, 0x01, 0x8B, 0x8C, 0xC2, 0xE6, 0x5F,
+    0x02, 0x24, 0x75, 0x93, 0x66, 0x1E, 0xE5, 0xE2, 0x54, 0xD8, 0x10, 0xCE,
+    0x7A, 0xE8, 0x08, 0x2C, 0x12, 0x97, 0x32, 0xAB, 0xB4, 0x27, 0x0A, 0x23,
+    0xDF, 0xEF, 0xCA, 0xD9, 0xB8, 0xFA, 0xDC, 0x31, 0x6B, 0xD1, 0xAD, 0x19,
+    0x49, 0xBD, 0x51, 0x96, 0xEE, 0xE4, 0xA8, 0x41, 0xDA, 0xFF, 0xCD, 0x55,
+    0x86, 0x36, 0xBE, 0x61, 0x52, 0xF8, 0xBB, 0x0E, 0x82, 0x48, 0x69, 0x9A,
+    0xE0, 0x47, 0x9E, 0x5C, 0x04, 0x4B, 0x34, 0x15, 0x79, 0x26, 0xA7, 0xDE,
+    0x29, 0xAE, 0x92, 0xD7, 0x84, 0xE9, 0xD2, 0xBA, 0x5D, 0xF3, 0xC5, 0xB0,
+    0xBF, 0xA4, 0x3B, 0x71, 0x44, 0x46, 0x2B, 0xFC, 0xEB, 0x6F, 0xD5, 0xF6,
+    0x14, 0xFE, 0x7C, 0x70, 0x5A, 0x7D, 0xFD, 0x2F, 0x18, 0x83, 0x16, 0xA5,
+    0x91, 0x1F, 0x05, 0x95, 0x74, 0xA9, 0xC1, 0x5B, 0x4A, 0x85, 0x6D, 0x13,
+    0x07, 0x4F, 0x4E, 0x45, 0xB2, 0x0F, 0xC9, 0x1C, 0xA6, 0xBC, 0xEC, 0x73,
+    0x90, 0x7B, 0xCF, 0x59, 0x8F, 0xA1, 0xF9, 0x2D, 0xF2, 0xB1, 0x00, 0x94,
+    0x37, 0x9F, 0xD0, 0x2E, 0x9C, 0x6E, 0x28, 0x3F, 0x80, 0xF0, 0x3D, 0xD3,
+    0x25, 0x8A, 0xB5, 0xE7, 0x42, 0xB3, 0xC7, 0xEA, 0xF7, 0x4C, 0x11, 0x33,
+    0x03, 0xA2, 0xAC, 0x60
+};
+
+/*
+ * Helper for key schedule: r = FO( p, k ) ^ x
+ */
+static void aria_fo_xor(uint32_t r[4], const uint32_t p[4],
+                        const uint32_t k[4], const uint32_t x[4])
+{
+    uint32_t a, b, c, d;
+
+    a = p[0] ^ k[0];
+    b = p[1] ^ k[1];
+    c = p[2] ^ k[2];
+    d = p[3] ^ k[3];
+
+    aria_sl(&a, &b, &c, &d, aria_sb1, aria_sb2, aria_is1, aria_is2);
+    aria_a(&a, &b, &c, &d);
+
+    r[0] = a ^ x[0];
+    r[1] = b ^ x[1];
+    r[2] = c ^ x[2];
+    r[3] = d ^ x[3];
+}
+
+/*
+ * Helper for key schedule: r = FE( p, k ) ^ x
+ */
+static void aria_fe_xor(uint32_t r[4], const uint32_t p[4],
+                        const uint32_t k[4], const uint32_t x[4])
+{
+    uint32_t a, b, c, d;
+
+    a = p[0] ^ k[0];
+    b = p[1] ^ k[1];
+    c = p[2] ^ k[2];
+    d = p[3] ^ k[3];
+
+    aria_sl(&a, &b, &c, &d, aria_is1, aria_is2, aria_sb1, aria_sb2);
+    aria_a(&a, &b, &c, &d);
+
+    r[0] = a ^ x[0];
+    r[1] = b ^ x[1];
+    r[2] = c ^ x[2];
+    r[3] = d ^ x[3];
+}
+
+/*
+ * Big endian 128-bit rotation: r = a ^ (b <<< n), used only in key setup.
+ *
+ * We chose to store bytes into 32-bit words in little-endian format (see
+ * MBEDTLS_GET_UINT32_LE / MBEDTLS_PUT_UINT32_LE ) so we need to reverse
+ * bytes here.
+ */
+static void aria_rot128(uint32_t r[4], const uint32_t a[4],
+                        const uint32_t b[4], uint8_t n)
+{
+    uint8_t i, j;
+    uint32_t t, u;
+
+    const uint8_t n1 = n % 32;              // bit offset
+    const uint8_t n2 = n1 ? 32 - n1 : 0;    // reverse bit offset
+
+    j = (n / 32) % 4;                       // initial word offset
+    t = ARIA_P3(b[j]);                      // big endian
+    for (i = 0; i < 4; i++) {
+        j = (j + 1) % 4;                    // get next word, big endian
+        u = ARIA_P3(b[j]);
+        t <<= n1;                           // rotate
+        t |= u >> n2;
+        t = ARIA_P3(t);                     // back to little endian
+        r[i] = a[i] ^ t;                    // store
+        t = u;                              // move to next word
+    }
+}
+
+/*
+ * Set encryption key
+ */
+int mbedtls_aria_setkey_enc(mbedtls_aria_context *ctx,
+                            const unsigned char *key, unsigned int keybits)
+{
+    /* round constant masks */
+    const uint32_t rc[3][4] =
+    {
+        {   0xB7C17C51, 0x940A2227, 0xE8AB13FE, 0xE06E9AFA  },
+        {   0xCC4AB16D, 0x20C8219E, 0xD5B128FF, 0xB0E25DEF  },
+        {   0x1D3792DB, 0x70E92621, 0x75972403, 0x0EC9E804  }
+    };
+
+    int i;
+    uint32_t w[4][4], *w2;
+
+    if (keybits != 128 && keybits != 192 && keybits != 256) {
+        return MBEDTLS_ERR_ARIA_BAD_INPUT_DATA;
+    }
+
+    /* Copy key to W0 (and potential remainder to W1) */
+    w[0][0] = MBEDTLS_GET_UINT32_LE(key,  0);
+    w[0][1] = MBEDTLS_GET_UINT32_LE(key,  4);
+    w[0][2] = MBEDTLS_GET_UINT32_LE(key,  8);
+    w[0][3] = MBEDTLS_GET_UINT32_LE(key, 12);
+
+    memset(w[1], 0, 16);
+    if (keybits >= 192) {
+        w[1][0] = MBEDTLS_GET_UINT32_LE(key, 16);    // 192 bit key
+        w[1][1] = MBEDTLS_GET_UINT32_LE(key, 20);
+    }
+    if (keybits == 256) {
+        w[1][2] = MBEDTLS_GET_UINT32_LE(key, 24);    // 256 bit key
+        w[1][3] = MBEDTLS_GET_UINT32_LE(key, 28);
+    }
+
+    i = (keybits - 128) >> 6;               // index: 0, 1, 2
+    ctx->nr = 12 + 2 * i;                   // no. rounds: 12, 14, 16
+
+    aria_fo_xor(w[1], w[0], rc[i], w[1]);   // W1 = FO(W0, CK1) ^ KR
+    i = i < 2 ? i + 1 : 0;
+    aria_fe_xor(w[2], w[1], rc[i], w[0]);   // W2 = FE(W1, CK2) ^ W0
+    i = i < 2 ? i + 1 : 0;
+    aria_fo_xor(w[3], w[2], rc[i], w[1]);   // W3 = FO(W2, CK3) ^ W1
+
+    for (i = 0; i < 4; i++) {               // create round keys
+        w2 = w[(i + 1) & 3];
+        aria_rot128(ctx->rk[i], w[i], w2, 128 - 19);
+        aria_rot128(ctx->rk[i +  4], w[i], w2, 128 - 31);
+        aria_rot128(ctx->rk[i +  8], w[i], w2,       61);
+        aria_rot128(ctx->rk[i + 12], w[i], w2,       31);
+    }
+    aria_rot128(ctx->rk[16], w[0], w[1], 19);
+
+    /* w holds enough info to reconstruct the round keys */
+    mbedtls_platform_zeroize(w, sizeof(w));
+
+    return 0;
+}
+
+/*
+ * Set decryption key
+ */
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+int mbedtls_aria_setkey_dec(mbedtls_aria_context *ctx,
+                            const unsigned char *key, unsigned int keybits)
+{
+    int i, j, k, ret;
+
+    ret = mbedtls_aria_setkey_enc(ctx, key, keybits);
+    if (ret != 0) {
+        return ret;
+    }
+
+    /* flip the order of round keys */
+    for (i = 0, j = ctx->nr; i < j; i++, j--) {
+        for (k = 0; k < 4; k++) {
+            uint32_t t = ctx->rk[i][k];
+            ctx->rk[i][k] = ctx->rk[j][k];
+            ctx->rk[j][k] = t;
+        }
+    }
+
+    /* apply affine transform to middle keys */
+    for (i = 1; i < ctx->nr; i++) {
+        aria_a(&ctx->rk[i][0], &ctx->rk[i][1],
+               &ctx->rk[i][2], &ctx->rk[i][3]);
+    }
+
+    return 0;
+}
+#endif /* !MBEDTLS_BLOCK_CIPHER_NO_DECRYPT */
+
+/*
+ * Encrypt a block
+ */
+int mbedtls_aria_crypt_ecb(mbedtls_aria_context *ctx,
+                           const unsigned char input[MBEDTLS_ARIA_BLOCKSIZE],
+                           unsigned char output[MBEDTLS_ARIA_BLOCKSIZE])
+{
+    int i;
+
+    uint32_t a, b, c, d;
+
+    a = MBEDTLS_GET_UINT32_LE(input,  0);
+    b = MBEDTLS_GET_UINT32_LE(input,  4);
+    c = MBEDTLS_GET_UINT32_LE(input,  8);
+    d = MBEDTLS_GET_UINT32_LE(input, 12);
+
+    i = 0;
+    while (1) {
+        a ^= ctx->rk[i][0];
+        b ^= ctx->rk[i][1];
+        c ^= ctx->rk[i][2];
+        d ^= ctx->rk[i][3];
+        i++;
+
+        aria_sl(&a, &b, &c, &d, aria_sb1, aria_sb2, aria_is1, aria_is2);
+        aria_a(&a, &b, &c, &d);
+
+        a ^= ctx->rk[i][0];
+        b ^= ctx->rk[i][1];
+        c ^= ctx->rk[i][2];
+        d ^= ctx->rk[i][3];
+        i++;
+
+        aria_sl(&a, &b, &c, &d, aria_is1, aria_is2, aria_sb1, aria_sb2);
+        if (i >= ctx->nr) {
+            break;
+        }
+        aria_a(&a, &b, &c, &d);
+    }
+
+    /* final key mixing */
+    a ^= ctx->rk[i][0];
+    b ^= ctx->rk[i][1];
+    c ^= ctx->rk[i][2];
+    d ^= ctx->rk[i][3];
+
+    MBEDTLS_PUT_UINT32_LE(a, output,  0);
+    MBEDTLS_PUT_UINT32_LE(b, output,  4);
+    MBEDTLS_PUT_UINT32_LE(c, output,  8);
+    MBEDTLS_PUT_UINT32_LE(d, output, 12);
+
+    return 0;
+}
+
+/* Initialize context */
+void mbedtls_aria_init(mbedtls_aria_context *ctx)
+{
+    memset(ctx, 0, sizeof(mbedtls_aria_context));
+}
+
+/* Clear context */
+void mbedtls_aria_free(mbedtls_aria_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_platform_zeroize(ctx, sizeof(mbedtls_aria_context));
+}
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+/*
+ * ARIA-CBC buffer encryption/decryption
+ */
+int mbedtls_aria_crypt_cbc(mbedtls_aria_context *ctx,
+                           int mode,
+                           size_t length,
+                           unsigned char iv[MBEDTLS_ARIA_BLOCKSIZE],
+                           const unsigned char *input,
+                           unsigned char *output)
+{
+    unsigned char temp[MBEDTLS_ARIA_BLOCKSIZE];
+
+    if ((mode != MBEDTLS_ARIA_ENCRYPT) && (mode != MBEDTLS_ARIA_DECRYPT)) {
+        return MBEDTLS_ERR_ARIA_BAD_INPUT_DATA;
+    }
+
+    if (length % MBEDTLS_ARIA_BLOCKSIZE) {
+        return MBEDTLS_ERR_ARIA_INVALID_INPUT_LENGTH;
+    }
+
+    if (mode == MBEDTLS_ARIA_DECRYPT) {
+        while (length > 0) {
+            memcpy(temp, input, MBEDTLS_ARIA_BLOCKSIZE);
+            mbedtls_aria_crypt_ecb(ctx, input, output);
+
+            mbedtls_xor(output, output, iv, MBEDTLS_ARIA_BLOCKSIZE);
+
+            memcpy(iv, temp, MBEDTLS_ARIA_BLOCKSIZE);
+
+            input  += MBEDTLS_ARIA_BLOCKSIZE;
+            output += MBEDTLS_ARIA_BLOCKSIZE;
+            length -= MBEDTLS_ARIA_BLOCKSIZE;
+        }
+    } else {
+        while (length > 0) {
+            mbedtls_xor(output, input, iv, MBEDTLS_ARIA_BLOCKSIZE);
+
+            mbedtls_aria_crypt_ecb(ctx, output, output);
+            memcpy(iv, output, MBEDTLS_ARIA_BLOCKSIZE);
+
+            input  += MBEDTLS_ARIA_BLOCKSIZE;
+            output += MBEDTLS_ARIA_BLOCKSIZE;
+            length -= MBEDTLS_ARIA_BLOCKSIZE;
+        }
+    }
+
+    return 0;
+}
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+/*
+ * ARIA-CFB128 buffer encryption/decryption
+ */
+int mbedtls_aria_crypt_cfb128(mbedtls_aria_context *ctx,
+                              int mode,
+                              size_t length,
+                              size_t *iv_off,
+                              unsigned char iv[MBEDTLS_ARIA_BLOCKSIZE],
+                              const unsigned char *input,
+                              unsigned char *output)
+{
+    unsigned char c;
+    size_t n;
+
+    if ((mode != MBEDTLS_ARIA_ENCRYPT) && (mode != MBEDTLS_ARIA_DECRYPT)) {
+        return MBEDTLS_ERR_ARIA_BAD_INPUT_DATA;
+    }
+
+    n = *iv_off;
+
+    /* An overly large value of n can lead to an unlimited
+     * buffer overflow. */
+    if (n >= MBEDTLS_ARIA_BLOCKSIZE) {
+        return MBEDTLS_ERR_ARIA_BAD_INPUT_DATA;
+    }
+
+    if (mode == MBEDTLS_ARIA_DECRYPT) {
+        while (length--) {
+            if (n == 0) {
+                mbedtls_aria_crypt_ecb(ctx, iv, iv);
+            }
+
+            c = *input++;
+            *output++ = c ^ iv[n];
+            iv[n] = c;
+
+            n = (n + 1) & 0x0F;
+        }
+    } else {
+        while (length--) {
+            if (n == 0) {
+                mbedtls_aria_crypt_ecb(ctx, iv, iv);
+            }
+
+            iv[n] = *output++ = (unsigned char) (iv[n] ^ *input++);
+
+            n = (n + 1) & 0x0F;
+        }
+    }
+
+    *iv_off = n;
+
+    return 0;
+}
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+/*
+ * ARIA-CTR buffer encryption/decryption
+ */
+int mbedtls_aria_crypt_ctr(mbedtls_aria_context *ctx,
+                           size_t length,
+                           size_t *nc_off,
+                           unsigned char nonce_counter[MBEDTLS_ARIA_BLOCKSIZE],
+                           unsigned char stream_block[MBEDTLS_ARIA_BLOCKSIZE],
+                           const unsigned char *input,
+                           unsigned char *output)
+{
+    int c, i;
+    size_t n;
+
+    n = *nc_off;
+    /* An overly large value of n can lead to an unlimited
+     * buffer overflow. */
+    if (n >= MBEDTLS_ARIA_BLOCKSIZE) {
+        return MBEDTLS_ERR_ARIA_BAD_INPUT_DATA;
+    }
+
+    while (length--) {
+        if (n == 0) {
+            mbedtls_aria_crypt_ecb(ctx, nonce_counter,
+                                   stream_block);
+
+            for (i = MBEDTLS_ARIA_BLOCKSIZE; i > 0; i--) {
+                if (++nonce_counter[i - 1] != 0) {
+                    break;
+                }
+            }
+        }
+        c = *input++;
+        *output++ = (unsigned char) (c ^ stream_block[n]);
+
+        n = (n + 1) & 0x0F;
+    }
+
+    *nc_off = n;
+
+    return 0;
+}
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+#endif /* !MBEDTLS_ARIA_ALT */
+
+#if defined(MBEDTLS_SELF_TEST)
+
+/*
+ * Basic ARIA ECB test vectors from RFC 5794
+ */
+static const uint8_t aria_test1_ecb_key[32] =           // test key
+{
+    0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,     // 128 bit
+    0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
+    0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,     // 192 bit
+    0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F      // 256 bit
+};
+
+static const uint8_t aria_test1_ecb_pt[MBEDTLS_ARIA_BLOCKSIZE] =            // plaintext
+{
+    0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,     // same for all
+    0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF      // key sizes
+};
+
+static const uint8_t aria_test1_ecb_ct[3][MBEDTLS_ARIA_BLOCKSIZE] =         // ciphertext
+{
+    { 0xD7, 0x18, 0xFB, 0xD6, 0xAB, 0x64, 0x4C, 0x73,   // 128 bit
+      0x9D, 0xA9, 0x5F, 0x3B, 0xE6, 0x45, 0x17, 0x78 },
+    { 0x26, 0x44, 0x9C, 0x18, 0x05, 0xDB, 0xE7, 0xAA,   // 192 bit
+      0x25, 0xA4, 0x68, 0xCE, 0x26, 0x3A, 0x9E, 0x79 },
+    { 0xF9, 0x2B, 0xD7, 0xC7, 0x9F, 0xB7, 0x2E, 0x2F,   // 256 bit
+      0x2B, 0x8F, 0x80, 0xC1, 0x97, 0x2D, 0x24, 0xFC }
+};
+
+/*
+ * Mode tests from "Test Vectors for ARIA"  Version 1.0
+ * http://210.104.33.10/ARIA/doc/ARIA-testvector-e.pdf
+ */
+#if (defined(MBEDTLS_CIPHER_MODE_CBC) || defined(MBEDTLS_CIPHER_MODE_CFB) || \
+    defined(MBEDTLS_CIPHER_MODE_CTR))
+static const uint8_t aria_test2_key[32] =
+{
+    0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,     // 128 bit
+    0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff,
+    0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,     // 192 bit
+    0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff      // 256 bit
+};
+
+static const uint8_t aria_test2_pt[48] =
+{
+    0x11, 0x11, 0x11, 0x11, 0xaa, 0xaa, 0xaa, 0xaa,     // same for all
+    0x11, 0x11, 0x11, 0x11, 0xbb, 0xbb, 0xbb, 0xbb,
+    0x11, 0x11, 0x11, 0x11, 0xcc, 0xcc, 0xcc, 0xcc,
+    0x11, 0x11, 0x11, 0x11, 0xdd, 0xdd, 0xdd, 0xdd,
+    0x22, 0x22, 0x22, 0x22, 0xaa, 0xaa, 0xaa, 0xaa,
+    0x22, 0x22, 0x22, 0x22, 0xbb, 0xbb, 0xbb, 0xbb,
+};
+#endif
+
+#if (defined(MBEDTLS_CIPHER_MODE_CBC) || defined(MBEDTLS_CIPHER_MODE_CFB))
+static const uint8_t aria_test2_iv[MBEDTLS_ARIA_BLOCKSIZE] =
+{
+    0x0f, 0x1e, 0x2d, 0x3c, 0x4b, 0x5a, 0x69, 0x78,     // same for CBC, CFB
+    0x87, 0x96, 0xa5, 0xb4, 0xc3, 0xd2, 0xe1, 0xf0      // CTR has zero IV
+};
+#endif
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static const uint8_t aria_test2_cbc_ct[3][48] =         // CBC ciphertext
+{
+    { 0x49, 0xd6, 0x18, 0x60, 0xb1, 0x49, 0x09, 0x10,   // 128-bit key
+      0x9c, 0xef, 0x0d, 0x22, 0xa9, 0x26, 0x81, 0x34,
+      0xfa, 0xdf, 0x9f, 0xb2, 0x31, 0x51, 0xe9, 0x64,
+      0x5f, 0xba, 0x75, 0x01, 0x8b, 0xdb, 0x15, 0x38,
+      0xb5, 0x33, 0x34, 0x63, 0x4b, 0xbf, 0x7d, 0x4c,
+      0xd4, 0xb5, 0x37, 0x70, 0x33, 0x06, 0x0c, 0x15 },
+    { 0xaf, 0xe6, 0xcf, 0x23, 0x97, 0x4b, 0x53, 0x3c,   // 192-bit key
+      0x67, 0x2a, 0x82, 0x62, 0x64, 0xea, 0x78, 0x5f,
+      0x4e, 0x4f, 0x7f, 0x78, 0x0d, 0xc7, 0xf3, 0xf1,
+      0xe0, 0x96, 0x2b, 0x80, 0x90, 0x23, 0x86, 0xd5,
+      0x14, 0xe9, 0xc3, 0xe7, 0x72, 0x59, 0xde, 0x92,
+      0xdd, 0x11, 0x02, 0xff, 0xab, 0x08, 0x6c, 0x1e },
+    { 0x52, 0x3a, 0x8a, 0x80, 0x6a, 0xe6, 0x21, 0xf1,   // 256-bit key
+      0x55, 0xfd, 0xd2, 0x8d, 0xbc, 0x34, 0xe1, 0xab,
+      0x7b, 0x9b, 0x42, 0x43, 0x2a, 0xd8, 0xb2, 0xef,
+      0xb9, 0x6e, 0x23, 0xb1, 0x3f, 0x0a, 0x6e, 0x52,
+      0xf3, 0x61, 0x85, 0xd5, 0x0a, 0xd0, 0x02, 0xc5,
+      0xf6, 0x01, 0xbe, 0xe5, 0x49, 0x3f, 0x11, 0x8b }
+};
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+static const uint8_t aria_test2_cfb_ct[3][48] =         // CFB ciphertext
+{
+    { 0x37, 0x20, 0xe5, 0x3b, 0xa7, 0xd6, 0x15, 0x38,   // 128-bit key
+      0x34, 0x06, 0xb0, 0x9f, 0x0a, 0x05, 0xa2, 0x00,
+      0xc0, 0x7c, 0x21, 0xe6, 0x37, 0x0f, 0x41, 0x3a,
+      0x5d, 0x13, 0x25, 0x00, 0xa6, 0x82, 0x85, 0x01,
+      0x7c, 0x61, 0xb4, 0x34, 0xc7, 0xb7, 0xca, 0x96,
+      0x85, 0xa5, 0x10, 0x71, 0x86, 0x1e, 0x4d, 0x4b },
+    { 0x41, 0x71, 0xf7, 0x19, 0x2b, 0xf4, 0x49, 0x54,   // 192-bit key
+      0x94, 0xd2, 0x73, 0x61, 0x29, 0x64, 0x0f, 0x5c,
+      0x4d, 0x87, 0xa9, 0xa2, 0x13, 0x66, 0x4c, 0x94,
+      0x48, 0x47, 0x7c, 0x6e, 0xcc, 0x20, 0x13, 0x59,
+      0x8d, 0x97, 0x66, 0x95, 0x2d, 0xd8, 0xc3, 0x86,
+      0x8f, 0x17, 0xe3, 0x6e, 0xf6, 0x6f, 0xd8, 0x4b },
+    { 0x26, 0x83, 0x47, 0x05, 0xb0, 0xf2, 0xc0, 0xe2,   // 256-bit key
+      0x58, 0x8d, 0x4a, 0x7f, 0x09, 0x00, 0x96, 0x35,
+      0xf2, 0x8b, 0xb9, 0x3d, 0x8c, 0x31, 0xf8, 0x70,
+      0xec, 0x1e, 0x0b, 0xdb, 0x08, 0x2b, 0x66, 0xfa,
+      0x40, 0x2d, 0xd9, 0xc2, 0x02, 0xbe, 0x30, 0x0c,
+      0x45, 0x17, 0xd1, 0x96, 0xb1, 0x4d, 0x4c, 0xe1 }
+};
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+static const uint8_t aria_test2_ctr_ct[3][48] =         // CTR ciphertext
+{
+    { 0xac, 0x5d, 0x7d, 0xe8, 0x05, 0xa0, 0xbf, 0x1c,   // 128-bit key
+      0x57, 0xc8, 0x54, 0x50, 0x1a, 0xf6, 0x0f, 0xa1,
+      0x14, 0x97, 0xe2, 0xa3, 0x45, 0x19, 0xde, 0xa1,
+      0x56, 0x9e, 0x91, 0xe5, 0xb5, 0xcc, 0xae, 0x2f,
+      0xf3, 0xbf, 0xa1, 0xbf, 0x97, 0x5f, 0x45, 0x71,
+      0xf4, 0x8b, 0xe1, 0x91, 0x61, 0x35, 0x46, 0xc3 },
+    { 0x08, 0x62, 0x5c, 0xa8, 0xfe, 0x56, 0x9c, 0x19,   // 192-bit key
+      0xba, 0x7a, 0xf3, 0x76, 0x0a, 0x6e, 0xd1, 0xce,
+      0xf4, 0xd1, 0x99, 0x26, 0x3e, 0x99, 0x9d, 0xde,
+      0x14, 0x08, 0x2d, 0xbb, 0xa7, 0x56, 0x0b, 0x79,
+      0xa4, 0xc6, 0xb4, 0x56, 0xb8, 0x70, 0x7d, 0xce,
+      0x75, 0x1f, 0x98, 0x54, 0xf1, 0x88, 0x93, 0xdf },
+    { 0x30, 0x02, 0x6c, 0x32, 0x96, 0x66, 0x14, 0x17,   // 256-bit key
+      0x21, 0x17, 0x8b, 0x99, 0xc0, 0xa1, 0xf1, 0xb2,
+      0xf0, 0x69, 0x40, 0x25, 0x3f, 0x7b, 0x30, 0x89,
+      0xe2, 0xa3, 0x0e, 0xa8, 0x6a, 0xa3, 0xc8, 0x8f,
+      0x59, 0x40, 0xf0, 0x5a, 0xd7, 0xee, 0x41, 0xd7,
+      0x13, 0x47, 0xbb, 0x72, 0x61, 0xe3, 0x48, 0xf1 }
+};
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#define ARIA_SELF_TEST_ASSERT(cond)                   \
+    do {                                            \
+        if (cond) {                                \
+            if (verbose)                           \
+            mbedtls_printf("failed\n");       \
+            goto exit;                              \
+        } else {                                    \
+            if (verbose)                           \
+            mbedtls_printf("passed\n");       \
+        }                                           \
+    } while (0)
+
+/*
+ * Checkup routine
+ */
+int mbedtls_aria_self_test(int verbose)
+{
+    int i;
+    uint8_t blk[MBEDTLS_ARIA_BLOCKSIZE];
+    mbedtls_aria_context ctx;
+    int ret = 1;
+
+#if (defined(MBEDTLS_CIPHER_MODE_CFB) || defined(MBEDTLS_CIPHER_MODE_CTR))
+    size_t j;
+#endif
+
+#if (defined(MBEDTLS_CIPHER_MODE_CBC) || \
+    defined(MBEDTLS_CIPHER_MODE_CFB) || \
+    defined(MBEDTLS_CIPHER_MODE_CTR))
+    uint8_t buf[48], iv[MBEDTLS_ARIA_BLOCKSIZE];
+#endif
+
+    mbedtls_aria_init(&ctx);
+
+    /*
+     * Test set 1
+     */
+    for (i = 0; i < 3; i++) {
+        /* test ECB encryption */
+        if (verbose) {
+            mbedtls_printf("  ARIA-ECB-%d (enc): ", 128 + 64 * i);
+        }
+        mbedtls_aria_setkey_enc(&ctx, aria_test1_ecb_key, 128 + 64 * i);
+        mbedtls_aria_crypt_ecb(&ctx, aria_test1_ecb_pt, blk);
+        ARIA_SELF_TEST_ASSERT(
+            memcmp(blk, aria_test1_ecb_ct[i], MBEDTLS_ARIA_BLOCKSIZE)
+            != 0);
+
+        /* test ECB decryption */
+        if (verbose) {
+            mbedtls_printf("  ARIA-ECB-%d (dec): ", 128 + 64 * i);
+#if defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+            mbedtls_printf("skipped\n");
+#endif
+        }
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+        mbedtls_aria_setkey_dec(&ctx, aria_test1_ecb_key, 128 + 64 * i);
+        mbedtls_aria_crypt_ecb(&ctx, aria_test1_ecb_ct[i], blk);
+        ARIA_SELF_TEST_ASSERT(
+            memcmp(blk, aria_test1_ecb_pt, MBEDTLS_ARIA_BLOCKSIZE)
+            != 0);
+#endif
+    }
+    if (verbose) {
+        mbedtls_printf("\n");
+    }
+
+    /*
+     * Test set 2
+     */
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    for (i = 0; i < 3; i++) {
+        /* Test CBC encryption */
+        if (verbose) {
+            mbedtls_printf("  ARIA-CBC-%d (enc): ", 128 + 64 * i);
+        }
+        mbedtls_aria_setkey_enc(&ctx, aria_test2_key, 128 + 64 * i);
+        memcpy(iv, aria_test2_iv, MBEDTLS_ARIA_BLOCKSIZE);
+        memset(buf, 0x55, sizeof(buf));
+        mbedtls_aria_crypt_cbc(&ctx, MBEDTLS_ARIA_ENCRYPT, 48, iv,
+                               aria_test2_pt, buf);
+        ARIA_SELF_TEST_ASSERT(memcmp(buf, aria_test2_cbc_ct[i], 48)
+                              != 0);
+
+        /* Test CBC decryption */
+        if (verbose) {
+            mbedtls_printf("  ARIA-CBC-%d (dec): ", 128 + 64 * i);
+        }
+        mbedtls_aria_setkey_dec(&ctx, aria_test2_key, 128 + 64 * i);
+        memcpy(iv, aria_test2_iv, MBEDTLS_ARIA_BLOCKSIZE);
+        memset(buf, 0xAA, sizeof(buf));
+        mbedtls_aria_crypt_cbc(&ctx, MBEDTLS_ARIA_DECRYPT, 48, iv,
+                               aria_test2_cbc_ct[i], buf);
+        ARIA_SELF_TEST_ASSERT(memcmp(buf, aria_test2_pt, 48) != 0);
+    }
+    if (verbose) {
+        mbedtls_printf("\n");
+    }
+
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+    for (i = 0; i < 3; i++) {
+        /* Test CFB encryption */
+        if (verbose) {
+            mbedtls_printf("  ARIA-CFB-%d (enc): ", 128 + 64 * i);
+        }
+        mbedtls_aria_setkey_enc(&ctx, aria_test2_key, 128 + 64 * i);
+        memcpy(iv, aria_test2_iv, MBEDTLS_ARIA_BLOCKSIZE);
+        memset(buf, 0x55, sizeof(buf));
+        j = 0;
+        mbedtls_aria_crypt_cfb128(&ctx, MBEDTLS_ARIA_ENCRYPT, 48, &j, iv,
+                                  aria_test2_pt, buf);
+        ARIA_SELF_TEST_ASSERT(memcmp(buf, aria_test2_cfb_ct[i], 48) != 0);
+
+        /* Test CFB decryption */
+        if (verbose) {
+            mbedtls_printf("  ARIA-CFB-%d (dec): ", 128 + 64 * i);
+        }
+        mbedtls_aria_setkey_enc(&ctx, aria_test2_key, 128 + 64 * i);
+        memcpy(iv, aria_test2_iv, MBEDTLS_ARIA_BLOCKSIZE);
+        memset(buf, 0xAA, sizeof(buf));
+        j = 0;
+        mbedtls_aria_crypt_cfb128(&ctx, MBEDTLS_ARIA_DECRYPT, 48, &j,
+                                  iv, aria_test2_cfb_ct[i], buf);
+        ARIA_SELF_TEST_ASSERT(memcmp(buf, aria_test2_pt, 48) != 0);
+    }
+    if (verbose) {
+        mbedtls_printf("\n");
+    }
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    for (i = 0; i < 3; i++) {
+        /* Test CTR encryption */
+        if (verbose) {
+            mbedtls_printf("  ARIA-CTR-%d (enc): ", 128 + 64 * i);
+        }
+        mbedtls_aria_setkey_enc(&ctx, aria_test2_key, 128 + 64 * i);
+        memset(iv, 0, MBEDTLS_ARIA_BLOCKSIZE);                      // IV = 0
+        memset(buf, 0x55, sizeof(buf));
+        j = 0;
+        mbedtls_aria_crypt_ctr(&ctx, 48, &j, iv, blk,
+                               aria_test2_pt, buf);
+        ARIA_SELF_TEST_ASSERT(memcmp(buf, aria_test2_ctr_ct[i], 48) != 0);
+
+        /* Test CTR decryption */
+        if (verbose) {
+            mbedtls_printf("  ARIA-CTR-%d (dec): ", 128 + 64 * i);
+        }
+        mbedtls_aria_setkey_enc(&ctx, aria_test2_key, 128 + 64 * i);
+        memset(iv, 0, MBEDTLS_ARIA_BLOCKSIZE);                      // IV = 0
+        memset(buf, 0xAA, sizeof(buf));
+        j = 0;
+        mbedtls_aria_crypt_ctr(&ctx, 48, &j, iv, blk,
+                               aria_test2_ctr_ct[i], buf);
+        ARIA_SELF_TEST_ASSERT(memcmp(buf, aria_test2_pt, 48) != 0);
+    }
+    if (verbose) {
+        mbedtls_printf("\n");
+    }
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+    ret = 0;
+
+exit:
+    mbedtls_aria_free(&ctx);
+    return ret;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_ARIA_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/asn1parse.c b/tf-psa-crypto/drivers/builtin/src/asn1parse.c
new file mode 100644
index 0000000..e33fdf7
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/asn1parse.c
@@ -0,0 +1,468 @@
+/*
+ *  Generic ASN.1 parsing
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_ASN1_PARSE_C) || defined(MBEDTLS_X509_CREATE_C) || \
+    defined(MBEDTLS_PSA_UTIL_HAVE_ECDSA)
+
+#include "mbedtls/asn1.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_BIGNUM_C)
+#include "mbedtls/bignum.h"
+#endif
+
+#include "mbedtls/platform.h"
+
+/*
+ * ASN.1 DER decoding routines
+ */
+int mbedtls_asn1_get_len(unsigned char **p,
+                         const unsigned char *end,
+                         size_t *len)
+{
+    if ((end - *p) < 1) {
+        return MBEDTLS_ERR_ASN1_OUT_OF_DATA;
+    }
+
+    if ((**p & 0x80) == 0) {
+        *len = *(*p)++;
+    } else {
+        int n = (**p) & 0x7F;
+        if (n == 0 || n > 4) {
+            return MBEDTLS_ERR_ASN1_INVALID_LENGTH;
+        }
+        if ((end - *p) <= n) {
+            return MBEDTLS_ERR_ASN1_OUT_OF_DATA;
+        }
+        *len = 0;
+        (*p)++;
+        while (n--) {
+            *len = (*len << 8) | **p;
+            (*p)++;
+        }
+    }
+
+    if (*len > (size_t) (end - *p)) {
+        return MBEDTLS_ERR_ASN1_OUT_OF_DATA;
+    }
+
+    return 0;
+}
+
+int mbedtls_asn1_get_tag(unsigned char **p,
+                         const unsigned char *end,
+                         size_t *len, int tag)
+{
+    if ((end - *p) < 1) {
+        return MBEDTLS_ERR_ASN1_OUT_OF_DATA;
+    }
+
+    if (**p != tag) {
+        return MBEDTLS_ERR_ASN1_UNEXPECTED_TAG;
+    }
+
+    (*p)++;
+
+    return mbedtls_asn1_get_len(p, end, len);
+}
+#endif /* MBEDTLS_ASN1_PARSE_C || MBEDTLS_X509_CREATE_C || MBEDTLS_PSA_UTIL_HAVE_ECDSA */
+
+#if defined(MBEDTLS_ASN1_PARSE_C)
+int mbedtls_asn1_get_bool(unsigned char **p,
+                          const unsigned char *end,
+                          int *val)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t len;
+
+    if ((ret = mbedtls_asn1_get_tag(p, end, &len, MBEDTLS_ASN1_BOOLEAN)) != 0) {
+        return ret;
+    }
+
+    if (len != 1) {
+        return MBEDTLS_ERR_ASN1_INVALID_LENGTH;
+    }
+
+    *val = (**p != 0) ? 1 : 0;
+    (*p)++;
+
+    return 0;
+}
+
+static int asn1_get_tagged_int(unsigned char **p,
+                               const unsigned char *end,
+                               int tag, int *val)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t len;
+
+    if ((ret = mbedtls_asn1_get_tag(p, end, &len, tag)) != 0) {
+        return ret;
+    }
+
+    /*
+     * len==0 is malformed (0 must be represented as 020100 for INTEGER,
+     * or 0A0100 for ENUMERATED tags
+     */
+    if (len == 0) {
+        return MBEDTLS_ERR_ASN1_INVALID_LENGTH;
+    }
+    /* This is a cryptography library. Reject negative integers. */
+    if ((**p & 0x80) != 0) {
+        return MBEDTLS_ERR_ASN1_INVALID_LENGTH;
+    }
+
+    /* Skip leading zeros. */
+    while (len > 0 && **p == 0) {
+        ++(*p);
+        --len;
+    }
+
+    /* Reject integers that don't fit in an int. This code assumes that
+     * the int type has no padding bit. */
+    if (len > sizeof(int)) {
+        return MBEDTLS_ERR_ASN1_INVALID_LENGTH;
+    }
+    if (len == sizeof(int) && (**p & 0x80) != 0) {
+        return MBEDTLS_ERR_ASN1_INVALID_LENGTH;
+    }
+
+    *val = 0;
+    while (len-- > 0) {
+        *val = (*val << 8) | **p;
+        (*p)++;
+    }
+
+    return 0;
+}
+
+int mbedtls_asn1_get_int(unsigned char **p,
+                         const unsigned char *end,
+                         int *val)
+{
+    return asn1_get_tagged_int(p, end, MBEDTLS_ASN1_INTEGER, val);
+}
+
+int mbedtls_asn1_get_enum(unsigned char **p,
+                          const unsigned char *end,
+                          int *val)
+{
+    return asn1_get_tagged_int(p, end, MBEDTLS_ASN1_ENUMERATED, val);
+}
+
+#if defined(MBEDTLS_BIGNUM_C)
+int mbedtls_asn1_get_mpi(unsigned char **p,
+                         const unsigned char *end,
+                         mbedtls_mpi *X)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t len;
+
+    if ((ret = mbedtls_asn1_get_tag(p, end, &len, MBEDTLS_ASN1_INTEGER)) != 0) {
+        return ret;
+    }
+
+    ret = mbedtls_mpi_read_binary(X, *p, len);
+
+    *p += len;
+
+    return ret;
+}
+#endif /* MBEDTLS_BIGNUM_C */
+
+int mbedtls_asn1_get_bitstring(unsigned char **p, const unsigned char *end,
+                               mbedtls_asn1_bitstring *bs)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    /* Certificate type is a single byte bitstring */
+    if ((ret = mbedtls_asn1_get_tag(p, end, &bs->len, MBEDTLS_ASN1_BIT_STRING)) != 0) {
+        return ret;
+    }
+
+    /* Check length, subtract one for actual bit string length */
+    if (bs->len < 1) {
+        return MBEDTLS_ERR_ASN1_OUT_OF_DATA;
+    }
+    bs->len -= 1;
+
+    /* Get number of unused bits, ensure unused bits <= 7 */
+    bs->unused_bits = **p;
+    if (bs->unused_bits > 7) {
+        return MBEDTLS_ERR_ASN1_INVALID_LENGTH;
+    }
+    (*p)++;
+
+    /* Get actual bitstring */
+    bs->p = *p;
+    *p += bs->len;
+
+    if (*p != end) {
+        return MBEDTLS_ERR_ASN1_LENGTH_MISMATCH;
+    }
+
+    return 0;
+}
+
+/*
+ * Traverse an ASN.1 "SEQUENCE OF <tag>"
+ * and call a callback for each entry found.
+ */
+int mbedtls_asn1_traverse_sequence_of(
+    unsigned char **p,
+    const unsigned char *end,
+    unsigned char tag_must_mask, unsigned char tag_must_val,
+    unsigned char tag_may_mask, unsigned char tag_may_val,
+    int (*cb)(void *ctx, int tag,
+              unsigned char *start, size_t len),
+    void *ctx)
+{
+    int ret;
+    size_t len;
+
+    /* Get main sequence tag */
+    if ((ret = mbedtls_asn1_get_tag(p, end, &len,
+                                    MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
+        return ret;
+    }
+
+    if (*p + len != end) {
+        return MBEDTLS_ERR_ASN1_LENGTH_MISMATCH;
+    }
+
+    while (*p < end) {
+        unsigned char const tag = *(*p)++;
+
+        if ((tag & tag_must_mask) != tag_must_val) {
+            return MBEDTLS_ERR_ASN1_UNEXPECTED_TAG;
+        }
+
+        if ((ret = mbedtls_asn1_get_len(p, end, &len)) != 0) {
+            return ret;
+        }
+
+        if ((tag & tag_may_mask) == tag_may_val) {
+            if (cb != NULL) {
+                ret = cb(ctx, tag, *p, len);
+                if (ret != 0) {
+                    return ret;
+                }
+            }
+        }
+
+        *p += len;
+    }
+
+    return 0;
+}
+
+/*
+ * Get a bit string without unused bits
+ */
+int mbedtls_asn1_get_bitstring_null(unsigned char **p, const unsigned char *end,
+                                    size_t *len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if ((ret = mbedtls_asn1_get_tag(p, end, len, MBEDTLS_ASN1_BIT_STRING)) != 0) {
+        return ret;
+    }
+
+    if (*len == 0) {
+        return MBEDTLS_ERR_ASN1_INVALID_DATA;
+    }
+    --(*len);
+
+    if (**p != 0) {
+        return MBEDTLS_ERR_ASN1_INVALID_DATA;
+    }
+    ++(*p);
+
+    return 0;
+}
+
+void mbedtls_asn1_sequence_free(mbedtls_asn1_sequence *seq)
+{
+    while (seq != NULL) {
+        mbedtls_asn1_sequence *next = seq->next;
+        mbedtls_free(seq);
+        seq = next;
+    }
+}
+
+typedef struct {
+    int tag;
+    mbedtls_asn1_sequence *cur;
+} asn1_get_sequence_of_cb_ctx_t;
+
+static int asn1_get_sequence_of_cb(void *ctx,
+                                   int tag,
+                                   unsigned char *start,
+                                   size_t len)
+{
+    asn1_get_sequence_of_cb_ctx_t *cb_ctx =
+        (asn1_get_sequence_of_cb_ctx_t *) ctx;
+    mbedtls_asn1_sequence *cur =
+        cb_ctx->cur;
+
+    if (cur->buf.p != NULL) {
+        cur->next =
+            mbedtls_calloc(1, sizeof(mbedtls_asn1_sequence));
+
+        if (cur->next == NULL) {
+            return MBEDTLS_ERR_ASN1_ALLOC_FAILED;
+        }
+
+        cur = cur->next;
+    }
+
+    cur->buf.p = start;
+    cur->buf.len = len;
+    cur->buf.tag = tag;
+
+    cb_ctx->cur = cur;
+    return 0;
+}
+
+/*
+ *  Parses and splits an ASN.1 "SEQUENCE OF <tag>"
+ */
+int mbedtls_asn1_get_sequence_of(unsigned char **p,
+                                 const unsigned char *end,
+                                 mbedtls_asn1_sequence *cur,
+                                 int tag)
+{
+    asn1_get_sequence_of_cb_ctx_t cb_ctx = { tag, cur };
+    memset(cur, 0, sizeof(mbedtls_asn1_sequence));
+    return mbedtls_asn1_traverse_sequence_of(
+        p, end, 0xFF, tag, 0, 0,
+        asn1_get_sequence_of_cb, &cb_ctx);
+}
+
+int mbedtls_asn1_get_alg(unsigned char **p,
+                         const unsigned char *end,
+                         mbedtls_asn1_buf *alg, mbedtls_asn1_buf *params)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t len;
+
+    if ((ret = mbedtls_asn1_get_tag(p, end, &len,
+                                    MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
+        return ret;
+    }
+
+    if ((end - *p) < 1) {
+        return MBEDTLS_ERR_ASN1_OUT_OF_DATA;
+    }
+
+    alg->tag = **p;
+    end = *p + len;
+
+    if ((ret = mbedtls_asn1_get_tag(p, end, &alg->len, MBEDTLS_ASN1_OID)) != 0) {
+        return ret;
+    }
+
+    alg->p = *p;
+    *p += alg->len;
+
+    if (*p == end) {
+        mbedtls_platform_zeroize(params, sizeof(mbedtls_asn1_buf));
+        return 0;
+    }
+
+    params->tag = **p;
+    (*p)++;
+
+    if ((ret = mbedtls_asn1_get_len(p, end, &params->len)) != 0) {
+        return ret;
+    }
+
+    params->p = *p;
+    *p += params->len;
+
+    if (*p != end) {
+        return MBEDTLS_ERR_ASN1_LENGTH_MISMATCH;
+    }
+
+    return 0;
+}
+
+int mbedtls_asn1_get_alg_null(unsigned char **p,
+                              const unsigned char *end,
+                              mbedtls_asn1_buf *alg)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_asn1_buf params;
+
+    memset(&params, 0, sizeof(mbedtls_asn1_buf));
+
+    if ((ret = mbedtls_asn1_get_alg(p, end, alg, &params)) != 0) {
+        return ret;
+    }
+
+    if ((params.tag != MBEDTLS_ASN1_NULL && params.tag != 0) || params.len != 0) {
+        return MBEDTLS_ERR_ASN1_INVALID_DATA;
+    }
+
+    return 0;
+}
+
+#if !defined(MBEDTLS_DEPRECATED_REMOVED)
+void mbedtls_asn1_free_named_data(mbedtls_asn1_named_data *cur)
+{
+    if (cur == NULL) {
+        return;
+    }
+
+    mbedtls_free(cur->oid.p);
+    mbedtls_free(cur->val.p);
+
+    mbedtls_platform_zeroize(cur, sizeof(mbedtls_asn1_named_data));
+}
+#endif /* MBEDTLS_DEPRECATED_REMOVED */
+
+void mbedtls_asn1_free_named_data_list(mbedtls_asn1_named_data **head)
+{
+    mbedtls_asn1_named_data *cur;
+
+    while ((cur = *head) != NULL) {
+        *head = cur->next;
+        mbedtls_free(cur->oid.p);
+        mbedtls_free(cur->val.p);
+        mbedtls_free(cur);
+    }
+}
+
+void mbedtls_asn1_free_named_data_list_shallow(mbedtls_asn1_named_data *name)
+{
+    for (mbedtls_asn1_named_data *next; name != NULL; name = next) {
+        next = name->next;
+        mbedtls_free(name);
+    }
+}
+
+const mbedtls_asn1_named_data *mbedtls_asn1_find_named_data(const mbedtls_asn1_named_data *list,
+                                                            const char *oid, size_t len)
+{
+    while (list != NULL) {
+        if (list->oid.len == len &&
+            memcmp(list->oid.p, oid, len) == 0) {
+            break;
+        }
+
+        list = list->next;
+    }
+
+    return list;
+}
+
+#endif /* MBEDTLS_ASN1_PARSE_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/asn1write.c b/tf-psa-crypto/drivers/builtin/src/asn1write.c
new file mode 100644
index 0000000..775a9ef
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/asn1write.c
@@ -0,0 +1,437 @@
+/*
+ * ASN.1 buffer writing functionality
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_ASN1_WRITE_C) || defined(MBEDTLS_X509_USE_C) || \
+    defined(MBEDTLS_PSA_UTIL_HAVE_ECDSA)
+
+#include "mbedtls/asn1write.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if defined(MBEDTLS_ASN1_PARSE_C)
+#include "mbedtls/asn1.h"
+#endif
+
+int mbedtls_asn1_write_len(unsigned char **p, const unsigned char *start, size_t len)
+{
+#if SIZE_MAX > 0xFFFFFFFF
+    if (len > 0xFFFFFFFF) {
+        return MBEDTLS_ERR_ASN1_INVALID_LENGTH;
+    }
+#endif
+
+    int required = 1;
+
+    if (len >= 0x80) {
+        for (size_t l = len; l != 0; l >>= 8) {
+            required++;
+        }
+    }
+
+    if (required > (*p - start)) {
+        return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+    }
+
+    do {
+        *--(*p) = MBEDTLS_BYTE_0(len);
+        len >>= 8;
+    } while (len);
+
+    if (required > 1) {
+        *--(*p) = (unsigned char) (0x80 + required - 1);
+    }
+
+    return required;
+}
+
+int mbedtls_asn1_write_tag(unsigned char **p, const unsigned char *start, unsigned char tag)
+{
+    if (*p - start < 1) {
+        return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+    }
+
+    *--(*p) = tag;
+
+    return 1;
+}
+#endif /* MBEDTLS_ASN1_WRITE_C || MBEDTLS_X509_USE_C || MBEDTLS_PSA_UTIL_HAVE_ECDSA */
+
+#if defined(MBEDTLS_ASN1_WRITE_C)
+static int mbedtls_asn1_write_len_and_tag(unsigned char **p,
+                                          const unsigned char *start,
+                                          size_t len,
+                                          unsigned char tag)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(p, start, len));
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(p, start, tag));
+
+    return (int) len;
+}
+
+int mbedtls_asn1_write_raw_buffer(unsigned char **p, const unsigned char *start,
+                                  const unsigned char *buf, size_t size)
+{
+    size_t len = 0;
+
+    if (*p < start || (size_t) (*p - start) < size) {
+        return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+    }
+
+    len = size;
+    (*p) -= len;
+    memcpy(*p, buf, len);
+
+    return (int) len;
+}
+
+#if defined(MBEDTLS_BIGNUM_C)
+int mbedtls_asn1_write_mpi(unsigned char **p, const unsigned char *start, const mbedtls_mpi *X)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t len = 0;
+
+    // Write the MPI
+    //
+    len = mbedtls_mpi_size(X);
+
+    /* DER represents 0 with a sign bit (0=nonnegative) and 7 value bits, not
+     * as 0 digits. We need to end up with 020100, not with 0200. */
+    if (len == 0) {
+        len = 1;
+    }
+
+    if (*p < start || (size_t) (*p - start) < len) {
+        return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+    }
+
+    (*p) -= len;
+    MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(X, *p, len));
+
+    // DER format assumes 2s complement for numbers, so the leftmost bit
+    // should be 0 for positive numbers and 1 for negative numbers.
+    //
+    if (X->s == 1 && **p & 0x80) {
+        if (*p - start < 1) {
+            return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+        }
+
+        *--(*p) = 0x00;
+        len += 1;
+    }
+
+    ret = mbedtls_asn1_write_len_and_tag(p, start, len, MBEDTLS_ASN1_INTEGER);
+
+cleanup:
+    return ret;
+}
+#endif /* MBEDTLS_BIGNUM_C */
+
+int mbedtls_asn1_write_null(unsigned char **p, const unsigned char *start)
+{
+    // Write NULL
+    //
+    return mbedtls_asn1_write_len_and_tag(p, start, 0, MBEDTLS_ASN1_NULL);
+}
+
+int mbedtls_asn1_write_oid(unsigned char **p, const unsigned char *start,
+                           const char *oid, size_t oid_len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t len = 0;
+
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_raw_buffer(p, start,
+                                                            (const unsigned char *) oid, oid_len));
+    return mbedtls_asn1_write_len_and_tag(p, start, len, MBEDTLS_ASN1_OID);
+}
+
+int mbedtls_asn1_write_algorithm_identifier(unsigned char **p, const unsigned char *start,
+                                            const char *oid, size_t oid_len,
+                                            size_t par_len)
+{
+    return mbedtls_asn1_write_algorithm_identifier_ext(p, start, oid, oid_len, par_len, 1);
+}
+
+int mbedtls_asn1_write_algorithm_identifier_ext(unsigned char **p, const unsigned char *start,
+                                                const char *oid, size_t oid_len,
+                                                size_t par_len, int has_par)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t len = 0;
+
+    if (has_par) {
+        if (par_len == 0) {
+            MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_null(p, start));
+        } else {
+            len += par_len;
+        }
+    }
+
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_oid(p, start, oid, oid_len));
+
+    return mbedtls_asn1_write_len_and_tag(p, start, len,
+                                          MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE);
+}
+
+int mbedtls_asn1_write_bool(unsigned char **p, const unsigned char *start, int boolean)
+{
+    size_t len = 0;
+
+    if (*p - start < 1) {
+        return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+    }
+
+    *--(*p) = (boolean) ? 255 : 0;
+    len++;
+
+    return mbedtls_asn1_write_len_and_tag(p, start, len, MBEDTLS_ASN1_BOOLEAN);
+}
+
+static int asn1_write_tagged_int(unsigned char **p, const unsigned char *start, int val, int tag)
+{
+    size_t len = 0;
+
+    do {
+        if (*p - start < 1) {
+            return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+        }
+        len += 1;
+        *--(*p) = val & 0xff;
+        val >>= 8;
+    } while (val > 0);
+
+    if (**p & 0x80) {
+        if (*p - start < 1) {
+            return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+        }
+        *--(*p) = 0x00;
+        len += 1;
+    }
+
+    return mbedtls_asn1_write_len_and_tag(p, start, len, tag);
+}
+
+int mbedtls_asn1_write_int(unsigned char **p, const unsigned char *start, int val)
+{
+    return asn1_write_tagged_int(p, start, val, MBEDTLS_ASN1_INTEGER);
+}
+
+int mbedtls_asn1_write_enum(unsigned char **p, const unsigned char *start, int val)
+{
+    return asn1_write_tagged_int(p, start, val, MBEDTLS_ASN1_ENUMERATED);
+}
+
+int mbedtls_asn1_write_tagged_string(unsigned char **p, const unsigned char *start, int tag,
+                                     const char *text, size_t text_len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t len = 0;
+
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_raw_buffer(p, start,
+                                                            (const unsigned char *) text,
+                                                            text_len));
+
+    return mbedtls_asn1_write_len_and_tag(p, start, len, tag);
+}
+
+int mbedtls_asn1_write_utf8_string(unsigned char **p, const unsigned char *start,
+                                   const char *text, size_t text_len)
+{
+    return mbedtls_asn1_write_tagged_string(p, start, MBEDTLS_ASN1_UTF8_STRING, text, text_len);
+}
+
+int mbedtls_asn1_write_printable_string(unsigned char **p, const unsigned char *start,
+                                        const char *text, size_t text_len)
+{
+    return mbedtls_asn1_write_tagged_string(p, start, MBEDTLS_ASN1_PRINTABLE_STRING, text,
+                                            text_len);
+}
+
+int mbedtls_asn1_write_ia5_string(unsigned char **p, const unsigned char *start,
+                                  const char *text, size_t text_len)
+{
+    return mbedtls_asn1_write_tagged_string(p, start, MBEDTLS_ASN1_IA5_STRING, text, text_len);
+}
+
+int mbedtls_asn1_write_named_bitstring(unsigned char **p,
+                                       const unsigned char *start,
+                                       const unsigned char *buf,
+                                       size_t bits)
+{
+    size_t unused_bits, byte_len;
+    const unsigned char *cur_byte;
+    unsigned char cur_byte_shifted;
+    unsigned char bit;
+
+    byte_len = (bits + 7) / 8;
+    unused_bits = (byte_len * 8) - bits;
+
+    /*
+     * Named bitstrings require that trailing 0s are excluded in the encoding
+     * of the bitstring. Trailing 0s are considered part of the 'unused' bits
+     * when encoding this value in the first content octet
+     */
+    if (bits != 0) {
+        cur_byte = buf + byte_len - 1;
+        cur_byte_shifted = *cur_byte >> unused_bits;
+
+        for (;;) {
+            bit = cur_byte_shifted & 0x1;
+            cur_byte_shifted >>= 1;
+
+            if (bit != 0) {
+                break;
+            }
+
+            bits--;
+            if (bits == 0) {
+                break;
+            }
+
+            if (bits % 8 == 0) {
+                cur_byte_shifted = *--cur_byte;
+            }
+        }
+    }
+
+    return mbedtls_asn1_write_bitstring(p, start, buf, bits);
+}
+
+int mbedtls_asn1_write_bitstring(unsigned char **p, const unsigned char *start,
+                                 const unsigned char *buf, size_t bits)
+{
+    size_t len = 0;
+    size_t unused_bits, byte_len;
+
+    byte_len = (bits + 7) / 8;
+    unused_bits = (byte_len * 8) - bits;
+
+    if (*p < start || (size_t) (*p - start) < byte_len + 1) {
+        return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+    }
+
+    len = byte_len + 1;
+
+    /* Write the bitstring. Ensure the unused bits are zeroed */
+    if (byte_len > 0) {
+        byte_len--;
+        *--(*p) = buf[byte_len] & ~((0x1 << unused_bits) - 1);
+        (*p) -= byte_len;
+        memcpy(*p, buf, byte_len);
+    }
+
+    /* Write unused bits */
+    *--(*p) = (unsigned char) unused_bits;
+
+    return mbedtls_asn1_write_len_and_tag(p, start, len, MBEDTLS_ASN1_BIT_STRING);
+}
+
+int mbedtls_asn1_write_octet_string(unsigned char **p, const unsigned char *start,
+                                    const unsigned char *buf, size_t size)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t len = 0;
+
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_raw_buffer(p, start, buf, size));
+
+    return mbedtls_asn1_write_len_and_tag(p, start, len, MBEDTLS_ASN1_OCTET_STRING);
+}
+
+
+#if !defined(MBEDTLS_ASN1_PARSE_C)
+/* This is a copy of the ASN.1 parsing function mbedtls_asn1_find_named_data(),
+ * which is replicated to avoid a dependency ASN1_WRITE_C on ASN1_PARSE_C. */
+static mbedtls_asn1_named_data *asn1_find_named_data(
+    mbedtls_asn1_named_data *list,
+    const char *oid, size_t len)
+{
+    while (list != NULL) {
+        if (list->oid.len == len &&
+            memcmp(list->oid.p, oid, len) == 0) {
+            break;
+        }
+
+        list = list->next;
+    }
+
+    return list;
+}
+#else
+#define asn1_find_named_data(list, oid, len) \
+    ((mbedtls_asn1_named_data *) mbedtls_asn1_find_named_data(list, oid, len))
+#endif
+
+mbedtls_asn1_named_data *mbedtls_asn1_store_named_data(
+    mbedtls_asn1_named_data **head,
+    const char *oid, size_t oid_len,
+    const unsigned char *val,
+    size_t val_len)
+{
+    mbedtls_asn1_named_data *cur;
+
+    if ((cur = asn1_find_named_data(*head, oid, oid_len)) == NULL) {
+        // Add new entry if not present yet based on OID
+        //
+        cur = (mbedtls_asn1_named_data *) mbedtls_calloc(1,
+                                                         sizeof(mbedtls_asn1_named_data));
+        if (cur == NULL) {
+            return NULL;
+        }
+
+        cur->oid.len = oid_len;
+        cur->oid.p = mbedtls_calloc(1, oid_len);
+        if (cur->oid.p == NULL) {
+            mbedtls_free(cur);
+            return NULL;
+        }
+
+        memcpy(cur->oid.p, oid, oid_len);
+
+        cur->val.len = val_len;
+        if (val_len != 0) {
+            cur->val.p = mbedtls_calloc(1, val_len);
+            if (cur->val.p == NULL) {
+                mbedtls_free(cur->oid.p);
+                mbedtls_free(cur);
+                return NULL;
+            }
+        }
+
+        cur->next = *head;
+        *head = cur;
+    } else if (val_len == 0) {
+        mbedtls_free(cur->val.p);
+        cur->val.p = NULL;
+    } else if (cur->val.len != val_len) {
+        /*
+         * Enlarge existing value buffer if needed
+         * Preserve old data until the allocation succeeded, to leave list in
+         * a consistent state in case allocation fails.
+         */
+        void *p = mbedtls_calloc(1, val_len);
+        if (p == NULL) {
+            return NULL;
+        }
+
+        mbedtls_free(cur->val.p);
+        cur->val.p = p;
+        cur->val.len = val_len;
+    }
+
+    if (val != NULL && val_len != 0) {
+        memcpy(cur->val.p, val, val_len);
+    }
+
+    return cur;
+}
+#endif /* MBEDTLS_ASN1_WRITE_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/base64.c b/tf-psa-crypto/drivers/builtin/src/base64.c
new file mode 100644
index 0000000..9677dee
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/base64.c
@@ -0,0 +1,299 @@
+/*
+ *  RFC 1521 base64 encoding/decoding
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include <limits.h>
+
+#include "common.h"
+
+#if defined(MBEDTLS_BASE64_C)
+
+#include "mbedtls/base64.h"
+#include "base64_internal.h"
+#include "constant_time_internal.h"
+
+#include <stdint.h>
+
+#if defined(MBEDTLS_SELF_TEST)
+#include <string.h>
+#include "mbedtls/platform.h"
+#endif /* MBEDTLS_SELF_TEST */
+
+MBEDTLS_STATIC_TESTABLE
+unsigned char mbedtls_ct_base64_enc_char(unsigned char value)
+{
+    unsigned char digit = 0;
+    /* For each range of values, if value is in that range, mask digit with
+     * the corresponding value. Since value can only be in a single range,
+     * only at most one masking will change digit. */
+    digit |= mbedtls_ct_uchar_in_range_if(0, 25, value, 'A' + value);
+    digit |= mbedtls_ct_uchar_in_range_if(26, 51, value, 'a' + value - 26);
+    digit |= mbedtls_ct_uchar_in_range_if(52, 61, value, '0' + value - 52);
+    digit |= mbedtls_ct_uchar_in_range_if(62, 62, value, '+');
+    digit |= mbedtls_ct_uchar_in_range_if(63, 63, value, '/');
+    return digit;
+}
+
+MBEDTLS_STATIC_TESTABLE
+signed char mbedtls_ct_base64_dec_value(unsigned char c)
+{
+    unsigned char val = 0;
+    /* For each range of digits, if c is in that range, mask val with
+     * the corresponding value. Since c can only be in a single range,
+     * only at most one masking will change val. Set val to one plus
+     * the desired value so that it stays 0 if c is in none of the ranges. */
+    val |= mbedtls_ct_uchar_in_range_if('A', 'Z', c, c - 'A' +  0 + 1);
+    val |= mbedtls_ct_uchar_in_range_if('a', 'z', c, c - 'a' + 26 + 1);
+    val |= mbedtls_ct_uchar_in_range_if('0', '9', c, c - '0' + 52 + 1);
+    val |= mbedtls_ct_uchar_in_range_if('+', '+', c, c - '+' + 62 + 1);
+    val |= mbedtls_ct_uchar_in_range_if('/', '/', c, c - '/' + 63 + 1);
+    /* At this point, val is 0 if c is an invalid digit and v+1 if c is
+     * a digit with the value v. */
+    return val - 1;
+}
+
+/*
+ * Encode a buffer into base64 format
+ */
+int mbedtls_base64_encode(unsigned char *dst, size_t dlen, size_t *olen,
+                          const unsigned char *src, size_t slen)
+{
+    size_t i, n;
+    int C1, C2, C3;
+    unsigned char *p;
+
+    if (slen == 0) {
+        *olen = 0;
+        return 0;
+    }
+
+    n = slen / 3 + (slen % 3 != 0);
+
+    if (n > (SIZE_MAX - 1) / 4) {
+        *olen = SIZE_MAX;
+        return MBEDTLS_ERR_BASE64_BUFFER_TOO_SMALL;
+    }
+
+    n *= 4;
+
+    if ((dlen < n + 1) || (NULL == dst)) {
+        *olen = n + 1;
+        return MBEDTLS_ERR_BASE64_BUFFER_TOO_SMALL;
+    }
+
+    n = (slen / 3) * 3;
+
+    for (i = 0, p = dst; i < n; i += 3) {
+        C1 = *src++;
+        C2 = *src++;
+        C3 = *src++;
+
+        *p++ = mbedtls_ct_base64_enc_char((C1 >> 2) & 0x3F);
+        *p++ = mbedtls_ct_base64_enc_char((((C1 &  3) << 4) + (C2 >> 4))
+                                          & 0x3F);
+        *p++ = mbedtls_ct_base64_enc_char((((C2 & 15) << 2) + (C3 >> 6))
+                                          & 0x3F);
+        *p++ = mbedtls_ct_base64_enc_char(C3 & 0x3F);
+    }
+
+    if (i < slen) {
+        C1 = *src++;
+        C2 = ((i + 1) < slen) ? *src++ : 0;
+
+        *p++ = mbedtls_ct_base64_enc_char((C1 >> 2) & 0x3F);
+        *p++ = mbedtls_ct_base64_enc_char((((C1 & 3) << 4) + (C2 >> 4))
+                                          & 0x3F);
+
+        if ((i + 1) < slen) {
+            *p++ = mbedtls_ct_base64_enc_char(((C2 & 15) << 2) & 0x3F);
+        } else {
+            *p++ = '=';
+        }
+
+        *p++ = '=';
+    }
+
+    *olen = (size_t) (p - dst);
+    *p = 0;
+
+    return 0;
+}
+
+/*
+ * Decode a base64-formatted buffer
+ */
+int mbedtls_base64_decode(unsigned char *dst, size_t dlen, size_t *olen,
+                          const unsigned char *src, size_t slen)
+{
+    size_t i; /* index in source */
+    size_t n; /* number of digits or trailing = in source */
+    uint32_t x; /* value accumulator */
+    unsigned accumulated_digits = 0;
+    unsigned equals = 0;
+    int spaces_present = 0;
+    unsigned char *p;
+
+    /* First pass: check for validity and get output length */
+    for (i = n = 0; i < slen; i++) {
+        /* Skip spaces before checking for EOL */
+        spaces_present = 0;
+        while (i < slen && src[i] == ' ') {
+            ++i;
+            spaces_present = 1;
+        }
+
+        /* Spaces at end of buffer are OK */
+        if (i == slen) {
+            break;
+        }
+
+        if ((slen - i) >= 2 &&
+            src[i] == '\r' && src[i + 1] == '\n') {
+            continue;
+        }
+
+        if (src[i] == '\n') {
+            continue;
+        }
+
+        /* Space inside a line is an error */
+        if (spaces_present) {
+            return MBEDTLS_ERR_BASE64_INVALID_CHARACTER;
+        }
+
+        if (src[i] > 127) {
+            return MBEDTLS_ERR_BASE64_INVALID_CHARACTER;
+        }
+
+        if (src[i] == '=') {
+            if (++equals > 2) {
+                return MBEDTLS_ERR_BASE64_INVALID_CHARACTER;
+            }
+        } else {
+            if (equals != 0) {
+                return MBEDTLS_ERR_BASE64_INVALID_CHARACTER;
+            }
+            if (mbedtls_ct_base64_dec_value(src[i]) < 0) {
+                return MBEDTLS_ERR_BASE64_INVALID_CHARACTER;
+            }
+        }
+        n++;
+    }
+
+    if (n == 0) {
+        *olen = 0;
+        return 0;
+    }
+
+    /* The following expression is to calculate the following formula without
+     * risk of integer overflow in n:
+     *     n = ( ( n * 6 ) + 7 ) >> 3;
+     */
+    n = (6 * (n >> 3)) + ((6 * (n & 0x7) + 7) >> 3);
+    n -= equals;
+
+    if (dst == NULL || dlen < n) {
+        *olen = n;
+        return MBEDTLS_ERR_BASE64_BUFFER_TOO_SMALL;
+    }
+
+    equals = 0;
+    for (x = 0, p = dst; i > 0; i--, src++) {
+        if (*src == '\r' || *src == '\n' || *src == ' ') {
+            continue;
+        }
+
+        x = x << 6;
+        if (*src == '=') {
+            ++equals;
+        } else {
+            x |= mbedtls_ct_base64_dec_value(*src);
+        }
+
+        if (++accumulated_digits == 4) {
+            accumulated_digits = 0;
+            *p++ = MBEDTLS_BYTE_2(x);
+            if (equals <= 1) {
+                *p++ = MBEDTLS_BYTE_1(x);
+            }
+            if (equals <= 0) {
+                *p++ = MBEDTLS_BYTE_0(x);
+            }
+        }
+    }
+
+    *olen = (size_t) (p - dst);
+
+    return 0;
+}
+
+#if defined(MBEDTLS_SELF_TEST)
+
+static const unsigned char base64_test_dec[64] =
+{
+    0x24, 0x48, 0x6E, 0x56, 0x87, 0x62, 0x5A, 0xBD,
+    0xBF, 0x17, 0xD9, 0xA2, 0xC4, 0x17, 0x1A, 0x01,
+    0x94, 0xED, 0x8F, 0x1E, 0x11, 0xB3, 0xD7, 0x09,
+    0x0C, 0xB6, 0xE9, 0x10, 0x6F, 0x22, 0xEE, 0x13,
+    0xCA, 0xB3, 0x07, 0x05, 0x76, 0xC9, 0xFA, 0x31,
+    0x6C, 0x08, 0x34, 0xFF, 0x8D, 0xC2, 0x6C, 0x38,
+    0x00, 0x43, 0xE9, 0x54, 0x97, 0xAF, 0x50, 0x4B,
+    0xD1, 0x41, 0xBA, 0x95, 0x31, 0x5A, 0x0B, 0x97
+};
+
+static const unsigned char base64_test_enc[] =
+    "JEhuVodiWr2/F9mixBcaAZTtjx4Rs9cJDLbpEG8i7hPK"
+    "swcFdsn6MWwINP+Nwmw4AEPpVJevUEvRQbqVMVoLlw==";
+
+/*
+ * Checkup routine
+ */
+int mbedtls_base64_self_test(int verbose)
+{
+    size_t len;
+    const unsigned char *src;
+    unsigned char buffer[128];
+
+    if (verbose != 0) {
+        mbedtls_printf("  Base64 encoding test: ");
+    }
+
+    src = base64_test_dec;
+
+    if (mbedtls_base64_encode(buffer, sizeof(buffer), &len, src, 64) != 0 ||
+        memcmp(base64_test_enc, buffer, 88) != 0) {
+        if (verbose != 0) {
+            mbedtls_printf("failed\n");
+        }
+
+        return 1;
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("passed\n  Base64 decoding test: ");
+    }
+
+    src = base64_test_enc;
+
+    if (mbedtls_base64_decode(buffer, sizeof(buffer), &len, src, 88) != 0 ||
+        memcmp(base64_test_dec, buffer, 64) != 0) {
+        if (verbose != 0) {
+            mbedtls_printf("failed\n");
+        }
+
+        return 1;
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("passed\n\n");
+    }
+
+    return 0;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_BASE64_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/base64_internal.h b/tf-psa-crypto/drivers/builtin/src/base64_internal.h
new file mode 100644
index 0000000..a09bd23
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/base64_internal.h
@@ -0,0 +1,45 @@
+/**
+ * \file base64_internal.h
+ *
+ * \brief RFC 1521 base64 encoding/decoding: interfaces for invasive testing
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_BASE64_INTERNAL
+#define MBEDTLS_BASE64_INTERNAL
+
+#include "common.h"
+
+#if defined(MBEDTLS_TEST_HOOKS)
+
+/** Given a value in the range 0..63, return the corresponding Base64 digit.
+ *
+ * The implementation assumes that letters are consecutive (e.g. ASCII
+ * but not EBCDIC).
+ *
+ * \param value     A value in the range 0..63.
+ *
+ * \return          A base64 digit converted from \p value.
+ */
+unsigned char mbedtls_ct_base64_enc_char(unsigned char value);
+
+/** Given a Base64 digit, return its value.
+ *
+ * If c is not a Base64 digit ('A'..'Z', 'a'..'z', '0'..'9', '+' or '/'),
+ * return -1.
+ *
+ * The implementation assumes that letters are consecutive (e.g. ASCII
+ * but not EBCDIC).
+ *
+ * \param c     A base64 digit.
+ *
+ * \return      The value of the base64 digit \p c.
+ */
+signed char mbedtls_ct_base64_dec_value(unsigned char c);
+
+#endif /* MBEDTLS_TEST_HOOKS */
+
+#endif /* MBEDTLS_BASE64_INTERNAL */
diff --git a/tf-psa-crypto/drivers/builtin/src/bignum.c b/tf-psa-crypto/drivers/builtin/src/bignum.c
new file mode 100644
index 0000000..c45fd5b
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/bignum.c
@@ -0,0 +1,2464 @@
+/*
+ *  Multi-precision integer library
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ *  The following sources were referenced in the design of this Multi-precision
+ *  Integer library:
+ *
+ *  [1] Handbook of Applied Cryptography - 1997
+ *      Menezes, van Oorschot and Vanstone
+ *
+ *  [2] Multi-Precision Math
+ *      Tom St Denis
+ *      https://github.com/libtom/libtommath/blob/develop/tommath.pdf
+ *
+ *  [3] GNU Multi-Precision Arithmetic Library
+ *      https://gmplib.org/manual/index.html
+ *
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_BIGNUM_C)
+
+#include "mbedtls/bignum.h"
+#include "bignum_core.h"
+#include "bn_mul.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+#include "constant_time_internal.h"
+
+#include <limits.h>
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+
+
+/*
+ * Conditionally select an MPI sign in constant time.
+ * (MPI sign is the field s in mbedtls_mpi. It is unsigned short and only 1 and -1 are valid
+ * values.)
+ */
+static inline signed short mbedtls_ct_mpi_sign_if(mbedtls_ct_condition_t cond,
+                                                  signed short sign1, signed short sign2)
+{
+    return (signed short) mbedtls_ct_uint_if(cond, sign1 + 1, sign2 + 1) - 1;
+}
+
+/*
+ * Compare signed values in constant time
+ */
+int mbedtls_mpi_lt_mpi_ct(const mbedtls_mpi *X,
+                          const mbedtls_mpi *Y,
+                          unsigned *ret)
+{
+    mbedtls_ct_condition_t different_sign, X_is_negative, Y_is_negative, result;
+
+    if (X->n != Y->n) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    /*
+     * Set N_is_negative to MBEDTLS_CT_FALSE if N >= 0, MBEDTLS_CT_TRUE if N < 0.
+     * We know that N->s == 1 if N >= 0 and N->s == -1 if N < 0.
+     */
+    X_is_negative = mbedtls_ct_bool((X->s & 2) >> 1);
+    Y_is_negative = mbedtls_ct_bool((Y->s & 2) >> 1);
+
+    /*
+     * If the signs are different, then the positive operand is the bigger.
+     * That is if X is negative (X_is_negative == 1), then X < Y is true and it
+     * is false if X is positive (X_is_negative == 0).
+     */
+    different_sign = mbedtls_ct_bool_ne(X_is_negative, Y_is_negative); // true if different sign
+    result = mbedtls_ct_bool_and(different_sign, X_is_negative);
+
+    /*
+     * Assuming signs are the same, compare X and Y. We switch the comparison
+     * order if they are negative so that we get the right result, regardles of
+     * sign.
+     */
+
+    /* This array is used to conditionally swap the pointers in const time */
+    void * const p[2] = { X->p, Y->p };
+    size_t i = mbedtls_ct_size_if_else_0(X_is_negative, 1);
+    mbedtls_ct_condition_t lt = mbedtls_mpi_core_lt_ct(p[i], p[i ^ 1], X->n);
+
+    /*
+     * Store in result iff the signs are the same (i.e., iff different_sign == false). If
+     * the signs differ, result has already been set, so we don't change it.
+     */
+    result = mbedtls_ct_bool_or(result,
+                                mbedtls_ct_bool_and(mbedtls_ct_bool_not(different_sign), lt));
+
+    *ret = mbedtls_ct_uint_if_else_0(result, 1);
+
+    return 0;
+}
+
+/*
+ * Conditionally assign X = Y, without leaking information
+ * about whether the assignment was made or not.
+ * (Leaking information about the respective sizes of X and Y is ok however.)
+ */
+#if defined(_MSC_VER) && defined(MBEDTLS_PLATFORM_IS_WINDOWS_ON_ARM64) && \
+    (_MSC_FULL_VER < 193131103)
+/*
+ * MSVC miscompiles this function if it's inlined prior to Visual Studio 2022 version 17.1. See:
+ * https://developercommunity.visualstudio.com/t/c-compiler-miscompiles-part-of-mbedtls-library-on/1646989
+ */
+__declspec(noinline)
+#endif
+int mbedtls_mpi_safe_cond_assign(mbedtls_mpi *X,
+                                 const mbedtls_mpi *Y,
+                                 unsigned char assign)
+{
+    int ret = 0;
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
+
+    {
+        mbedtls_ct_condition_t do_assign = mbedtls_ct_bool(assign);
+
+        X->s = mbedtls_ct_mpi_sign_if(do_assign, Y->s, X->s);
+
+        mbedtls_mpi_core_cond_assign(X->p, Y->p, Y->n, do_assign);
+
+        mbedtls_ct_condition_t do_not_assign = mbedtls_ct_bool_not(do_assign);
+        for (size_t i = Y->n; i < X->n; i++) {
+            X->p[i] = mbedtls_ct_mpi_uint_if_else_0(do_not_assign, X->p[i]);
+        }
+    }
+
+cleanup:
+    return ret;
+}
+
+/*
+ * Conditionally swap X and Y, without leaking information
+ * about whether the swap was made or not.
+ * Here it is not ok to simply swap the pointers, which would lead to
+ * different memory access patterns when X and Y are used afterwards.
+ */
+int mbedtls_mpi_safe_cond_swap(mbedtls_mpi *X,
+                               mbedtls_mpi *Y,
+                               unsigned char swap)
+{
+    int ret = 0;
+    int s;
+
+    if (X == Y) {
+        return 0;
+    }
+
+    mbedtls_ct_condition_t do_swap = mbedtls_ct_bool(swap);
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Y, X->n));
+
+    s = X->s;
+    X->s = mbedtls_ct_mpi_sign_if(do_swap, Y->s, X->s);
+    Y->s = mbedtls_ct_mpi_sign_if(do_swap, s, Y->s);
+
+    mbedtls_mpi_core_cond_swap(X->p, Y->p, X->n, do_swap);
+
+cleanup:
+    return ret;
+}
+
+/* Implementation that should never be optimized out by the compiler */
+#define mbedtls_mpi_zeroize_and_free(v, n) mbedtls_zeroize_and_free(v, ciL * (n))
+
+/*
+ * Initialize one MPI
+ */
+void mbedtls_mpi_init(mbedtls_mpi *X)
+{
+    X->s = 1;
+    X->n = 0;
+    X->p = NULL;
+}
+
+/*
+ * Unallocate one MPI
+ */
+void mbedtls_mpi_free(mbedtls_mpi *X)
+{
+    if (X == NULL) {
+        return;
+    }
+
+    if (X->p != NULL) {
+        mbedtls_mpi_zeroize_and_free(X->p, X->n);
+    }
+
+    X->s = 1;
+    X->n = 0;
+    X->p = NULL;
+}
+
+/*
+ * Enlarge to the specified number of limbs
+ */
+int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs)
+{
+    mbedtls_mpi_uint *p;
+
+    if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
+        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+    }
+
+    if (X->n < nblimbs) {
+        if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(nblimbs, ciL)) == NULL) {
+            return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+        }
+
+        if (X->p != NULL) {
+            memcpy(p, X->p, X->n * ciL);
+            mbedtls_mpi_zeroize_and_free(X->p, X->n);
+        }
+
+        /* nblimbs fits in n because we ensure that MBEDTLS_MPI_MAX_LIMBS
+         * fits, and we've checked that nblimbs <= MBEDTLS_MPI_MAX_LIMBS. */
+        X->n = (unsigned short) nblimbs;
+        X->p = p;
+    }
+
+    return 0;
+}
+
+/*
+ * Resize down as much as possible,
+ * while keeping at least the specified number of limbs
+ */
+int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs)
+{
+    mbedtls_mpi_uint *p;
+    size_t i;
+
+    if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
+        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+    }
+
+    /* Actually resize up if there are currently fewer than nblimbs limbs. */
+    if (X->n <= nblimbs) {
+        return mbedtls_mpi_grow(X, nblimbs);
+    }
+    /* After this point, then X->n > nblimbs and in particular X->n > 0. */
+
+    for (i = X->n - 1; i > 0; i--) {
+        if (X->p[i] != 0) {
+            break;
+        }
+    }
+    i++;
+
+    if (i < nblimbs) {
+        i = nblimbs;
+    }
+
+    if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(i, ciL)) == NULL) {
+        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+    }
+
+    if (X->p != NULL) {
+        memcpy(p, X->p, i * ciL);
+        mbedtls_mpi_zeroize_and_free(X->p, X->n);
+    }
+
+    /* i fits in n because we ensure that MBEDTLS_MPI_MAX_LIMBS
+     * fits, and we've checked that i <= nblimbs <= MBEDTLS_MPI_MAX_LIMBS. */
+    X->n = (unsigned short) i;
+    X->p = p;
+
+    return 0;
+}
+
+/* Resize X to have exactly n limbs and set it to 0. */
+static int mbedtls_mpi_resize_clear(mbedtls_mpi *X, size_t limbs)
+{
+    if (limbs == 0) {
+        mbedtls_mpi_free(X);
+        return 0;
+    } else if (X->n == limbs) {
+        memset(X->p, 0, limbs * ciL);
+        X->s = 1;
+        return 0;
+    } else {
+        mbedtls_mpi_free(X);
+        return mbedtls_mpi_grow(X, limbs);
+    }
+}
+
+/*
+ * Copy the contents of Y into X.
+ *
+ * This function is not constant-time. Leading zeros in Y may be removed.
+ *
+ * Ensure that X does not shrink. This is not guaranteed by the public API,
+ * but some code in the bignum module might still rely on this property.
+ */
+int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y)
+{
+    int ret = 0;
+    size_t i;
+
+    if (X == Y) {
+        return 0;
+    }
+
+    if (Y->n == 0) {
+        if (X->n != 0) {
+            X->s = 1;
+            memset(X->p, 0, X->n * ciL);
+        }
+        return 0;
+    }
+
+    for (i = Y->n - 1; i > 0; i--) {
+        if (Y->p[i] != 0) {
+            break;
+        }
+    }
+    i++;
+
+    X->s = Y->s;
+
+    if (X->n < i) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i));
+    } else {
+        memset(X->p + i, 0, (X->n - i) * ciL);
+    }
+
+    memcpy(X->p, Y->p, i * ciL);
+
+cleanup:
+
+    return ret;
+}
+
+/*
+ * Swap the contents of X and Y
+ */
+void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y)
+{
+    mbedtls_mpi T;
+
+    memcpy(&T,  X, sizeof(mbedtls_mpi));
+    memcpy(X,  Y, sizeof(mbedtls_mpi));
+    memcpy(Y, &T, sizeof(mbedtls_mpi));
+}
+
+static inline mbedtls_mpi_uint mpi_sint_abs(mbedtls_mpi_sint z)
+{
+    if (z >= 0) {
+        return z;
+    }
+    /* Take care to handle the most negative value (-2^(biL-1)) correctly.
+     * A naive -z would have undefined behavior.
+     * Write this in a way that makes popular compilers happy (GCC, Clang,
+     * MSVC). */
+    return (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z;
+}
+
+/* Convert x to a sign, i.e. to 1, if x is positive, or -1, if x is negative.
+ * This looks awkward but generates smaller code than (x < 0 ? -1 : 1) */
+#define TO_SIGN(x) ((mbedtls_mpi_sint) (((mbedtls_mpi_uint) x) >> (biL - 1)) * -2 + 1)
+
+/*
+ * Set value from integer
+ */
+int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1));
+    memset(X->p, 0, X->n * ciL);
+
+    X->p[0] = mpi_sint_abs(z);
+    X->s    = TO_SIGN(z);
+
+cleanup:
+
+    return ret;
+}
+
+/*
+ * Get a specific bit
+ */
+int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos)
+{
+    if (X->n * biL <= pos) {
+        return 0;
+    }
+
+    return (X->p[pos / biL] >> (pos % biL)) & 0x01;
+}
+
+/*
+ * Set a bit to a specific value of 0 or 1
+ */
+int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val)
+{
+    int ret = 0;
+    size_t off = pos / biL;
+    size_t idx = pos % biL;
+
+    if (val != 0 && val != 1) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    if (X->n * biL <= pos) {
+        if (val == 0) {
+            return 0;
+        }
+
+        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1));
+    }
+
+    X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx);
+    X->p[off] |= (mbedtls_mpi_uint) val << idx;
+
+cleanup:
+
+    return ret;
+}
+
+/*
+ * Return the number of less significant zero-bits
+ */
+size_t mbedtls_mpi_lsb(const mbedtls_mpi *X)
+{
+    size_t i;
+
+#if defined(__has_builtin)
+#if (MBEDTLS_MPI_UINT_MAX == UINT_MAX) && __has_builtin(__builtin_ctz)
+    #define mbedtls_mpi_uint_ctz __builtin_ctz
+#elif (MBEDTLS_MPI_UINT_MAX == ULONG_MAX) && __has_builtin(__builtin_ctzl)
+    #define mbedtls_mpi_uint_ctz __builtin_ctzl
+#elif (MBEDTLS_MPI_UINT_MAX == ULLONG_MAX) && __has_builtin(__builtin_ctzll)
+    #define mbedtls_mpi_uint_ctz __builtin_ctzll
+#endif
+#endif
+
+#if defined(mbedtls_mpi_uint_ctz)
+    for (i = 0; i < X->n; i++) {
+        if (X->p[i] != 0) {
+            return i * biL + mbedtls_mpi_uint_ctz(X->p[i]);
+        }
+    }
+#else
+    size_t count = 0;
+    for (i = 0; i < X->n; i++) {
+        for (size_t j = 0; j < biL; j++, count++) {
+            if (((X->p[i] >> j) & 1) != 0) {
+                return count;
+            }
+        }
+    }
+#endif
+
+    return 0;
+}
+
+/*
+ * Return the number of bits
+ */
+size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X)
+{
+    return mbedtls_mpi_core_bitlen(X->p, X->n);
+}
+
+/*
+ * Return the total size in bytes
+ */
+size_t mbedtls_mpi_size(const mbedtls_mpi *X)
+{
+    return (mbedtls_mpi_bitlen(X) + 7) >> 3;
+}
+
+/*
+ * Convert an ASCII character to digit value
+ */
+static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c)
+{
+    *d = 255;
+
+    if (c >= 0x30 && c <= 0x39) {
+        *d = c - 0x30;
+    }
+    if (c >= 0x41 && c <= 0x46) {
+        *d = c - 0x37;
+    }
+    if (c >= 0x61 && c <= 0x66) {
+        *d = c - 0x57;
+    }
+
+    if (*d >= (mbedtls_mpi_uint) radix) {
+        return MBEDTLS_ERR_MPI_INVALID_CHARACTER;
+    }
+
+    return 0;
+}
+
+/*
+ * Import from an ASCII string
+ */
+int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t i, j, slen, n;
+    int sign = 1;
+    mbedtls_mpi_uint d;
+    mbedtls_mpi T;
+
+    if (radix < 2 || radix > 16) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    mbedtls_mpi_init(&T);
+
+    if (s[0] == 0) {
+        mbedtls_mpi_free(X);
+        return 0;
+    }
+
+    if (s[0] == '-') {
+        ++s;
+        sign = -1;
+    }
+
+    slen = strlen(s);
+
+    if (radix == 16) {
+        if (slen > SIZE_MAX >> 2) {
+            return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+        }
+
+        n = BITS_TO_LIMBS(slen << 2);
+
+        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
+
+        for (i = slen, j = 0; i > 0; i--, j++) {
+            MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1]));
+            X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2);
+        }
+    } else {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
+
+        for (i = 0; i < slen; i++) {
+            MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i]));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d));
+        }
+    }
+
+    if (sign < 0 && mbedtls_mpi_bitlen(X) != 0) {
+        X->s = -1;
+    }
+
+cleanup:
+
+    mbedtls_mpi_free(&T);
+
+    return ret;
+}
+
+/*
+ * Helper to write the digits high-order first.
+ */
+static int mpi_write_hlp(mbedtls_mpi *X, int radix,
+                         char **p, const size_t buflen)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_mpi_uint r;
+    size_t length = 0;
+    char *p_end = *p + buflen;
+
+    do {
+        if (length >= buflen) {
+            return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
+        }
+
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix));
+        /*
+         * Write the residue in the current position, as an ASCII character.
+         */
+        if (r < 0xA) {
+            *(--p_end) = (char) ('0' + r);
+        } else {
+            *(--p_end) = (char) ('A' + (r - 0xA));
+        }
+
+        length++;
+    } while (mbedtls_mpi_cmp_int(X, 0) != 0);
+
+    memmove(*p, p_end, length);
+    *p += length;
+
+cleanup:
+
+    return ret;
+}
+
+/*
+ * Export into an ASCII string
+ */
+int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix,
+                             char *buf, size_t buflen, size_t *olen)
+{
+    int ret = 0;
+    size_t n;
+    char *p;
+    mbedtls_mpi T;
+
+    if (radix < 2 || radix > 16) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    n = mbedtls_mpi_bitlen(X);   /* Number of bits necessary to present `n`. */
+    if (radix >=  4) {
+        n >>= 1;                 /* Number of 4-adic digits necessary to present
+                                  * `n`. If radix > 4, this might be a strict
+                                  * overapproximation of the number of
+                                  * radix-adic digits needed to present `n`. */
+    }
+    if (radix >= 16) {
+        n >>= 1;                 /* Number of hexadecimal digits necessary to
+                                  * present `n`. */
+
+    }
+    n += 1; /* Terminating null byte */
+    n += 1; /* Compensate for the divisions above, which round down `n`
+             * in case it's not even. */
+    n += 1; /* Potential '-'-sign. */
+    n += (n & 1);   /* Make n even to have enough space for hexadecimal writing,
+                     * which always uses an even number of hex-digits. */
+
+    if (buflen < n) {
+        *olen = n;
+        return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
+    }
+
+    p = buf;
+    mbedtls_mpi_init(&T);
+
+    if (X->s == -1) {
+        *p++ = '-';
+        buflen--;
+    }
+
+    if (radix == 16) {
+        int c;
+        size_t i, j, k;
+
+        for (i = X->n, k = 0; i > 0; i--) {
+            for (j = ciL; j > 0; j--) {
+                c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF;
+
+                if (c == 0 && k == 0 && (i + j) != 2) {
+                    continue;
+                }
+
+                *(p++) = "0123456789ABCDEF" [c / 16];
+                *(p++) = "0123456789ABCDEF" [c % 16];
+                k = 1;
+            }
+        }
+    } else {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X));
+
+        if (T.s == -1) {
+            T.s = 1;
+        }
+
+        MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p, buflen));
+    }
+
+    *p++ = '\0';
+    *olen = (size_t) (p - buf);
+
+cleanup:
+
+    mbedtls_mpi_free(&T);
+
+    return ret;
+}
+
+#if defined(MBEDTLS_FS_IO)
+/*
+ * Read X from an opened file
+ */
+int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin)
+{
+    mbedtls_mpi_uint d;
+    size_t slen;
+    char *p;
+    /*
+     * Buffer should have space for (short) label and decimal formatted MPI,
+     * newline characters and '\0'
+     */
+    char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
+
+    if (radix < 2 || radix > 16) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    memset(s, 0, sizeof(s));
+    if (fgets(s, sizeof(s) - 1, fin) == NULL) {
+        return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
+    }
+
+    slen = strlen(s);
+    if (slen == sizeof(s) - 2) {
+        return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
+    }
+
+    if (slen > 0 && s[slen - 1] == '\n') {
+        slen--; s[slen] = '\0';
+    }
+    if (slen > 0 && s[slen - 1] == '\r') {
+        slen--; s[slen] = '\0';
+    }
+
+    p = s + slen;
+    while (p-- > s) {
+        if (mpi_get_digit(&d, radix, *p) != 0) {
+            break;
+        }
+    }
+
+    return mbedtls_mpi_read_string(X, radix, p + 1);
+}
+
+/*
+ * Write X into an opened file (or stdout if fout == NULL)
+ */
+int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t n, slen, plen;
+    /*
+     * Buffer should have space for (short) label and decimal formatted MPI,
+     * newline characters and '\0'
+     */
+    char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
+
+    if (radix < 2 || radix > 16) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    memset(s, 0, sizeof(s));
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n));
+
+    if (p == NULL) {
+        p = "";
+    }
+
+    plen = strlen(p);
+    slen = strlen(s);
+    s[slen++] = '\r';
+    s[slen++] = '\n';
+
+    if (fout != NULL) {
+        if (fwrite(p, 1, plen, fout) != plen ||
+            fwrite(s, 1, slen, fout) != slen) {
+            return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
+        }
+    } else {
+        mbedtls_printf("%s%s", p, s);
+    }
+
+cleanup:
+
+    return ret;
+}
+#endif /* MBEDTLS_FS_IO */
+
+/*
+ * Import X from unsigned binary data, little endian
+ *
+ * This function is guaranteed to return an MPI with exactly the necessary
+ * number of limbs (in particular, it does not skip 0s in the input).
+ */
+int mbedtls_mpi_read_binary_le(mbedtls_mpi *X,
+                               const unsigned char *buf, size_t buflen)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    const size_t limbs = CHARS_TO_LIMBS(buflen);
+
+    /* Ensure that target MPI has exactly the necessary number of limbs */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_le(X->p, X->n, buf, buflen));
+
+cleanup:
+
+    /*
+     * This function is also used to import keys. However, wiping the buffers
+     * upon failure is not necessary because failure only can happen before any
+     * input is copied.
+     */
+    return ret;
+}
+
+/*
+ * Import X from unsigned binary data, big endian
+ *
+ * This function is guaranteed to return an MPI with exactly the necessary
+ * number of limbs (in particular, it does not skip 0s in the input).
+ */
+int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    const size_t limbs = CHARS_TO_LIMBS(buflen);
+
+    /* Ensure that target MPI has exactly the necessary number of limbs */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_be(X->p, X->n, buf, buflen));
+
+cleanup:
+
+    /*
+     * This function is also used to import keys. However, wiping the buffers
+     * upon failure is not necessary because failure only can happen before any
+     * input is copied.
+     */
+    return ret;
+}
+
+/*
+ * Export X into unsigned binary data, little endian
+ */
+int mbedtls_mpi_write_binary_le(const mbedtls_mpi *X,
+                                unsigned char *buf, size_t buflen)
+{
+    return mbedtls_mpi_core_write_le(X->p, X->n, buf, buflen);
+}
+
+/*
+ * Export X into unsigned binary data, big endian
+ */
+int mbedtls_mpi_write_binary(const mbedtls_mpi *X,
+                             unsigned char *buf, size_t buflen)
+{
+    return mbedtls_mpi_core_write_be(X->p, X->n, buf, buflen);
+}
+
+/*
+ * Left-shift: X <<= count
+ */
+int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t i;
+
+    i = mbedtls_mpi_bitlen(X) + count;
+
+    if (X->n * biL < i) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i)));
+    }
+
+    ret = 0;
+
+    mbedtls_mpi_core_shift_l(X->p, X->n, count);
+cleanup:
+
+    return ret;
+}
+
+/*
+ * Right-shift: X >>= count
+ */
+int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count)
+{
+    if (X->n != 0) {
+        mbedtls_mpi_core_shift_r(X->p, X->n, count);
+    }
+    return 0;
+}
+
+/*
+ * Compare unsigned values
+ */
+int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y)
+{
+    size_t i, j;
+
+    for (i = X->n; i > 0; i--) {
+        if (X->p[i - 1] != 0) {
+            break;
+        }
+    }
+
+    for (j = Y->n; j > 0; j--) {
+        if (Y->p[j - 1] != 0) {
+            break;
+        }
+    }
+
+    /* If i == j == 0, i.e. abs(X) == abs(Y),
+     * we end up returning 0 at the end of the function. */
+
+    if (i > j) {
+        return 1;
+    }
+    if (j > i) {
+        return -1;
+    }
+
+    for (; i > 0; i--) {
+        if (X->p[i - 1] > Y->p[i - 1]) {
+            return 1;
+        }
+        if (X->p[i - 1] < Y->p[i - 1]) {
+            return -1;
+        }
+    }
+
+    return 0;
+}
+
+/*
+ * Compare signed values
+ */
+int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y)
+{
+    size_t i, j;
+
+    for (i = X->n; i > 0; i--) {
+        if (X->p[i - 1] != 0) {
+            break;
+        }
+    }
+
+    for (j = Y->n; j > 0; j--) {
+        if (Y->p[j - 1] != 0) {
+            break;
+        }
+    }
+
+    if (i == 0 && j == 0) {
+        return 0;
+    }
+
+    if (i > j) {
+        return X->s;
+    }
+    if (j > i) {
+        return -Y->s;
+    }
+
+    if (X->s > 0 && Y->s < 0) {
+        return 1;
+    }
+    if (Y->s > 0 && X->s < 0) {
+        return -1;
+    }
+
+    for (; i > 0; i--) {
+        if (X->p[i - 1] > Y->p[i - 1]) {
+            return X->s;
+        }
+        if (X->p[i - 1] < Y->p[i - 1]) {
+            return -X->s;
+        }
+    }
+
+    return 0;
+}
+
+/*
+ * Compare signed values
+ */
+int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z)
+{
+    mbedtls_mpi Y;
+    mbedtls_mpi_uint p[1];
+
+    *p  = mpi_sint_abs(z);
+    Y.s = TO_SIGN(z);
+    Y.n = 1;
+    Y.p = p;
+
+    return mbedtls_mpi_cmp_mpi(X, &Y);
+}
+
+/*
+ * Unsigned addition: X = |A| + |B|  (HAC 14.7)
+ */
+int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t j;
+    mbedtls_mpi_uint *p;
+    mbedtls_mpi_uint c;
+
+    if (X == B) {
+        const mbedtls_mpi *T = A; A = X; B = T;
+    }
+
+    if (X != A) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
+    }
+
+    /*
+     * X must always be positive as a result of unsigned additions.
+     */
+    X->s = 1;
+
+    for (j = B->n; j > 0; j--) {
+        if (B->p[j - 1] != 0) {
+            break;
+        }
+    }
+
+    /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0
+     * and B is 0 (of any size). */
+    if (j == 0) {
+        return 0;
+    }
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j));
+
+    /* j is the number of non-zero limbs of B. Add those to X. */
+
+    p = X->p;
+
+    c = mbedtls_mpi_core_add(p, p, B->p, j);
+
+    p += j;
+
+    /* Now propagate any carry */
+
+    while (c != 0) {
+        if (j >= X->n) {
+            MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j + 1));
+            p = X->p + j;
+        }
+
+        *p += c; c = (*p < c); j++; p++;
+    }
+
+cleanup:
+
+    return ret;
+}
+
+/*
+ * Unsigned subtraction: X = |A| - |B|  (HAC 14.9, 14.10)
+ */
+int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t n;
+    mbedtls_mpi_uint carry;
+
+    for (n = B->n; n > 0; n--) {
+        if (B->p[n - 1] != 0) {
+            break;
+        }
+    }
+    if (n > A->n) {
+        /* B >= (2^ciL)^n > A */
+        ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
+        goto cleanup;
+    }
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, A->n));
+
+    /* Set the high limbs of X to match A. Don't touch the lower limbs
+     * because X might be aliased to B, and we must not overwrite the
+     * significant digits of B. */
+    if (A->n > n && A != X) {
+        memcpy(X->p + n, A->p + n, (A->n - n) * ciL);
+    }
+    if (X->n > A->n) {
+        memset(X->p + A->n, 0, (X->n - A->n) * ciL);
+    }
+
+    carry = mbedtls_mpi_core_sub(X->p, A->p, B->p, n);
+    if (carry != 0) {
+        /* Propagate the carry through the rest of X. */
+        carry = mbedtls_mpi_core_sub_int(X->p + n, X->p + n, carry, X->n - n);
+
+        /* If we have further carry/borrow, the result is negative. */
+        if (carry != 0) {
+            ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
+            goto cleanup;
+        }
+    }
+
+    /* X should always be positive as a result of unsigned subtractions. */
+    X->s = 1;
+
+cleanup:
+    return ret;
+}
+
+/* Common function for signed addition and subtraction.
+ * Calculate A + B * flip_B where flip_B is 1 or -1.
+ */
+static int add_sub_mpi(mbedtls_mpi *X,
+                       const mbedtls_mpi *A, const mbedtls_mpi *B,
+                       int flip_B)
+{
+    int ret, s;
+
+    s = A->s;
+    if (A->s * B->s * flip_B < 0) {
+        int cmp = mbedtls_mpi_cmp_abs(A, B);
+        if (cmp >= 0) {
+            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B));
+            /* If |A| = |B|, the result is 0 and we must set the sign bit
+             * to +1 regardless of which of A or B was negative. Otherwise,
+             * since |A| > |B|, the sign is the sign of A. */
+            X->s = cmp == 0 ? 1 : s;
+        } else {
+            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A));
+            /* Since |A| < |B|, the sign is the opposite of A. */
+            X->s = -s;
+        }
+    } else {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B));
+        X->s = s;
+    }
+
+cleanup:
+
+    return ret;
+}
+
+/*
+ * Signed addition: X = A + B
+ */
+int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
+{
+    return add_sub_mpi(X, A, B, 1);
+}
+
+/*
+ * Signed subtraction: X = A - B
+ */
+int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
+{
+    return add_sub_mpi(X, A, B, -1);
+}
+
+/*
+ * Signed addition: X = A + b
+ */
+int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
+{
+    mbedtls_mpi B;
+    mbedtls_mpi_uint p[1];
+
+    p[0] = mpi_sint_abs(b);
+    B.s = TO_SIGN(b);
+    B.n = 1;
+    B.p = p;
+
+    return mbedtls_mpi_add_mpi(X, A, &B);
+}
+
+/*
+ * Signed subtraction: X = A - b
+ */
+int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
+{
+    mbedtls_mpi B;
+    mbedtls_mpi_uint p[1];
+
+    p[0] = mpi_sint_abs(b);
+    B.s = TO_SIGN(b);
+    B.n = 1;
+    B.p = p;
+
+    return mbedtls_mpi_sub_mpi(X, A, &B);
+}
+
+/*
+ * Baseline multiplication: X = A * B  (HAC 14.12)
+ */
+int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t i, j;
+    mbedtls_mpi TA, TB;
+    int result_is_zero = 0;
+
+    mbedtls_mpi_init(&TA);
+    mbedtls_mpi_init(&TB);
+
+    if (X == A) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA;
+    }
+    if (X == B) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB;
+    }
+
+    for (i = A->n; i > 0; i--) {
+        if (A->p[i - 1] != 0) {
+            break;
+        }
+    }
+    if (i == 0) {
+        result_is_zero = 1;
+    }
+
+    for (j = B->n; j > 0; j--) {
+        if (B->p[j - 1] != 0) {
+            break;
+        }
+    }
+    if (j == 0) {
+        result_is_zero = 1;
+    }
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
+
+    mbedtls_mpi_core_mul(X->p, A->p, i, B->p, j);
+
+    /* If the result is 0, we don't shortcut the operation, which reduces
+     * but does not eliminate side channels leaking the zero-ness. We do
+     * need to take care to set the sign bit properly since the library does
+     * not fully support an MPI object with a value of 0 and s == -1. */
+    if (result_is_zero) {
+        X->s = 1;
+    } else {
+        X->s = A->s * B->s;
+    }
+
+cleanup:
+
+    mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TA);
+
+    return ret;
+}
+
+/*
+ * Baseline multiplication: X = A * b
+ */
+int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b)
+{
+    size_t n = A->n;
+    while (n > 0 && A->p[n - 1] == 0) {
+        --n;
+    }
+
+    /* The general method below doesn't work if b==0. */
+    if (b == 0 || n == 0) {
+        return mbedtls_mpi_lset(X, 0);
+    }
+
+    /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    /* In general, A * b requires 1 limb more than b. If
+     * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
+     * number of limbs as A and the call to grow() is not required since
+     * copy() will take care of the growth if needed. However, experimentally,
+     * making the call to grow() unconditional causes slightly fewer
+     * calls to calloc() in ECP code, presumably because it reuses the
+     * same mpi for a while and this way the mpi is more likely to directly
+     * grow to its final size.
+     *
+     * Note that calculating A*b as 0 + A*b doesn't work as-is because
+     * A,X can be the same. */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n + 1));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
+    mbedtls_mpi_core_mla(X->p, X->n, A->p, n, b - 1);
+
+cleanup:
+    return ret;
+}
+
+/*
+ * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
+ * mbedtls_mpi_uint divisor, d
+ */
+static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1,
+                                            mbedtls_mpi_uint u0,
+                                            mbedtls_mpi_uint d,
+                                            mbedtls_mpi_uint *r)
+{
+#if defined(MBEDTLS_HAVE_UDBL)
+    mbedtls_t_udbl dividend, quotient;
+#else
+    const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
+    const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1;
+    mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
+    mbedtls_mpi_uint u0_msw, u0_lsw;
+    size_t s;
+#endif
+
+    /*
+     * Check for overflow
+     */
+    if (0 == d || u1 >= d) {
+        if (r != NULL) {
+            *r = ~(mbedtls_mpi_uint) 0u;
+        }
+
+        return ~(mbedtls_mpi_uint) 0u;
+    }
+
+#if defined(MBEDTLS_HAVE_UDBL)
+    dividend  = (mbedtls_t_udbl) u1 << biL;
+    dividend |= (mbedtls_t_udbl) u0;
+    quotient = dividend / d;
+    if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1) {
+        quotient = ((mbedtls_t_udbl) 1 << biL) - 1;
+    }
+
+    if (r != NULL) {
+        *r = (mbedtls_mpi_uint) (dividend - (quotient * d));
+    }
+
+    return (mbedtls_mpi_uint) quotient;
+#else
+
+    /*
+     * Algorithm D, Section 4.3.1 - The Art of Computer Programming
+     *   Vol. 2 - Seminumerical Algorithms, Knuth
+     */
+
+    /*
+     * Normalize the divisor, d, and dividend, u0, u1
+     */
+    s = mbedtls_mpi_core_clz(d);
+    d = d << s;
+
+    u1 = u1 << s;
+    u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint) s >> (biL - 1));
+    u0 =  u0 << s;
+
+    d1 = d >> biH;
+    d0 = d & uint_halfword_mask;
+
+    u0_msw = u0 >> biH;
+    u0_lsw = u0 & uint_halfword_mask;
+
+    /*
+     * Find the first quotient and remainder
+     */
+    q1 = u1 / d1;
+    r0 = u1 - d1 * q1;
+
+    while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) {
+        q1 -= 1;
+        r0 += d1;
+
+        if (r0 >= radix) {
+            break;
+        }
+    }
+
+    rAX = (u1 * radix) + (u0_msw - q1 * d);
+    q0 = rAX / d1;
+    r0 = rAX - q0 * d1;
+
+    while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) {
+        q0 -= 1;
+        r0 += d1;
+
+        if (r0 >= radix) {
+            break;
+        }
+    }
+
+    if (r != NULL) {
+        *r = (rAX * radix + u0_lsw - q0 * d) >> s;
+    }
+
+    quotient = q1 * radix + q0;
+
+    return quotient;
+#endif
+}
+
+/*
+ * Division by mbedtls_mpi: A = Q * B + R  (HAC 14.20)
+ */
+int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
+                        const mbedtls_mpi *B)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t i, n, t, k;
+    mbedtls_mpi X, Y, Z, T1, T2;
+    mbedtls_mpi_uint TP2[3];
+
+    if (mbedtls_mpi_cmp_int(B, 0) == 0) {
+        return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
+    }
+
+    mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z);
+    mbedtls_mpi_init(&T1);
+    /*
+     * Avoid dynamic memory allocations for constant-size T2.
+     *
+     * T2 is used for comparison only and the 3 limbs are assigned explicitly,
+     * so nobody increase the size of the MPI and we're safe to use an on-stack
+     * buffer.
+     */
+    T2.s = 1;
+    T2.n = sizeof(TP2) / sizeof(*TP2);
+    T2.p = TP2;
+
+    if (mbedtls_mpi_cmp_abs(A, B) < 0) {
+        if (Q != NULL) {
+            MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0));
+        }
+        if (R != NULL) {
+            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A));
+        }
+        return 0;
+    }
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B));
+    X.s = Y.s = 1;
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z,  0));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, A->n + 2));
+
+    k = mbedtls_mpi_bitlen(&Y) % biL;
+    if (k < biL - 1) {
+        k = biL - 1 - k;
+        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k));
+    } else {
+        k = 0;
+    }
+
+    n = X.n - 1;
+    t = Y.n - 1;
+    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t)));
+
+    while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) {
+        Z.p[n - t]++;
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y));
+    }
+    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t)));
+
+    for (i = n; i > t; i--) {
+        if (X.p[i] >= Y.p[t]) {
+            Z.p[i - t - 1] = ~(mbedtls_mpi_uint) 0u;
+        } else {
+            Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1],
+                                                 Y.p[t], NULL);
+        }
+
+        T2.p[0] = (i < 2) ? 0 : X.p[i - 2];
+        T2.p[1] = (i < 1) ? 0 : X.p[i - 1];
+        T2.p[2] = X.p[i];
+
+        Z.p[i - t - 1]++;
+        do {
+            Z.p[i - t - 1]--;
+
+            MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0));
+            T1.p[0] = (t < 1) ? 0 : Y.p[t - 1];
+            T1.p[1] = Y.p[t];
+            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1]));
+        } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0);
+
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1]));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1,  biL * (i - t - 1)));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1));
+
+        if (mbedtls_mpi_cmp_int(&X, 0) < 0) {
+            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1));
+            Z.p[i - t - 1]--;
+        }
+    }
+
+    if (Q != NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z));
+        Q->s = A->s * B->s;
+    }
+
+    if (R != NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k));
+        X.s = A->s;
+        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X));
+
+        if (mbedtls_mpi_cmp_int(R, 0) == 0) {
+            R->s = 1;
+        }
+    }
+
+cleanup:
+
+    mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z);
+    mbedtls_mpi_free(&T1);
+    mbedtls_platform_zeroize(TP2, sizeof(TP2));
+
+    return ret;
+}
+
+/*
+ * Division by int: A = Q * b + R
+ */
+int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R,
+                        const mbedtls_mpi *A,
+                        mbedtls_mpi_sint b)
+{
+    mbedtls_mpi B;
+    mbedtls_mpi_uint p[1];
+
+    p[0] = mpi_sint_abs(b);
+    B.s = TO_SIGN(b);
+    B.n = 1;
+    B.p = p;
+
+    return mbedtls_mpi_div_mpi(Q, R, A, &B);
+}
+
+/*
+ * Modulo: R = A mod B
+ */
+int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if (mbedtls_mpi_cmp_int(B, 0) < 0) {
+        return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
+    }
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B));
+
+    while (mbedtls_mpi_cmp_int(R, 0) < 0) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B));
+    }
+
+    while (mbedtls_mpi_cmp_mpi(R, B) >= 0) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B));
+    }
+
+cleanup:
+
+    return ret;
+}
+
+/*
+ * Modulo: r = A mod b
+ */
+int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b)
+{
+    size_t i;
+    mbedtls_mpi_uint x, y, z;
+
+    if (b == 0) {
+        return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
+    }
+
+    if (b < 0) {
+        return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
+    }
+
+    /*
+     * handle trivial cases
+     */
+    if (b == 1 || A->n == 0) {
+        *r = 0;
+        return 0;
+    }
+
+    if (b == 2) {
+        *r = A->p[0] & 1;
+        return 0;
+    }
+
+    /*
+     * general case
+     */
+    for (i = A->n, y = 0; i > 0; i--) {
+        x  = A->p[i - 1];
+        y  = (y << biH) | (x >> biH);
+        z  = y / b;
+        y -= z * b;
+
+        x <<= biH;
+        y  = (y << biH) | (x >> biH);
+        z  = y / b;
+        y -= z * b;
+    }
+
+    /*
+     * If A is negative, then the current y represents a negative value.
+     * Flipping it to the positive side.
+     */
+    if (A->s < 0 && y != 0) {
+        y = b - y;
+    }
+
+    *r = y;
+
+    return 0;
+}
+
+int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,
+                        const mbedtls_mpi *E, const mbedtls_mpi *N,
+                        mbedtls_mpi *prec_RR)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    if (mbedtls_mpi_cmp_int(E, 0) < 0) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    if (mbedtls_mpi_bitlen(E) > MBEDTLS_MPI_MAX_BITS ||
+        mbedtls_mpi_bitlen(N) > MBEDTLS_MPI_MAX_BITS) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    /*
+     * Ensure that the exponent that we are passing to the core is not NULL.
+     */
+    if (E->n == 0) {
+        ret = mbedtls_mpi_lset(X, 1);
+        return ret;
+    }
+
+    /*
+     * Allocate working memory for mbedtls_mpi_core_exp_mod()
+     */
+    size_t T_limbs = mbedtls_mpi_core_exp_mod_working_limbs(N->n, E->n);
+    mbedtls_mpi_uint *T = (mbedtls_mpi_uint *) mbedtls_calloc(T_limbs, sizeof(mbedtls_mpi_uint));
+    if (T == NULL) {
+        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+    }
+
+    mbedtls_mpi RR;
+    mbedtls_mpi_init(&RR);
+
+    /*
+     * If 1st call, pre-compute R^2 mod N
+     */
+    if (prec_RR == NULL || prec_RR->p == NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_core_get_mont_r2_unsafe(&RR, N));
+
+        if (prec_RR != NULL) {
+            *prec_RR = RR;
+        }
+    } else {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(prec_RR, N->n));
+        RR = *prec_RR;
+    }
+
+    /*
+     * To preserve constness we need to make a copy of A. Using X for this to
+     * save memory.
+     */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
+
+    /*
+     * Compensate for negative A (and correct at the end).
+     */
+    X->s = 1;
+
+    /*
+     * Make sure that X is in a form that is safe for consumption by
+     * the core functions.
+     *
+     * - The core functions will not touch the limbs of X above N->n. The
+     *   result will be correct if those limbs are 0, which the mod call
+     *   ensures.
+     * - Also, X must have at least as many limbs as N for the calls to the
+     *   core functions.
+     */
+    if (mbedtls_mpi_cmp_mpi(X, N) >= 0) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(X, X, N));
+    }
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, N->n));
+
+    /*
+     * Convert to and from Montgomery around mbedtls_mpi_core_exp_mod().
+     */
+    {
+        mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N->p);
+        mbedtls_mpi_core_to_mont_rep(X->p, X->p, N->p, N->n, mm, RR.p, T);
+        mbedtls_mpi_core_exp_mod(X->p, X->p, N->p, N->n, E->p, E->n, RR.p, T);
+        mbedtls_mpi_core_from_mont_rep(X->p, X->p, N->p, N->n, mm, T);
+    }
+
+    /*
+     * Correct for negative A.
+     */
+    if (A->s == -1 && (E->p[0] & 1) != 0) {
+        mbedtls_ct_condition_t is_x_non_zero = mbedtls_mpi_core_check_zero_ct(X->p, X->n);
+        X->s = mbedtls_ct_mpi_sign_if(is_x_non_zero, -1, 1);
+
+        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, N, X));
+    }
+
+cleanup:
+
+    mbedtls_mpi_zeroize_and_free(T, T_limbs);
+
+    if (prec_RR == NULL || prec_RR->p == NULL) {
+        mbedtls_mpi_free(&RR);
+    }
+
+    return ret;
+}
+
+/*
+ * Greatest common divisor: G = gcd(A, B)  (HAC 14.54)
+ */
+int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t lz, lzt;
+    mbedtls_mpi TA, TB;
+
+    mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B));
+
+    lz = mbedtls_mpi_lsb(&TA);
+    lzt = mbedtls_mpi_lsb(&TB);
+
+    /* The loop below gives the correct result when A==0 but not when B==0.
+     * So have a special case for B==0. Leverage the fact that we just
+     * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
+     * slightly more efficient than cmp_int(). */
+    if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) {
+        ret = mbedtls_mpi_copy(G, A);
+        goto cleanup;
+    }
+
+    if (lzt < lz) {
+        lz = lzt;
+    }
+
+    TA.s = TB.s = 1;
+
+    /* We mostly follow the procedure described in HAC 14.54, but with some
+     * minor differences:
+     * - Sequences of multiplications or divisions by 2 are grouped into a
+     *   single shift operation.
+     * - The procedure in HAC assumes that 0 < TB <= TA.
+     *     - The condition TB <= TA is not actually necessary for correctness.
+     *       TA and TB have symmetric roles except for the loop termination
+     *       condition, and the shifts at the beginning of the loop body
+     *       remove any significance from the ordering of TA vs TB before
+     *       the shifts.
+     *     - If TA = 0, the loop goes through 0 iterations and the result is
+     *       correctly TB.
+     *     - The case TB = 0 was short-circuited above.
+     *
+     * For the correctness proof below, decompose the original values of
+     * A and B as
+     *   A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
+     *   B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
+     * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
+     * and gcd(A',B') is odd or 0.
+     *
+     * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
+     * The code maintains the following invariant:
+     *     gcd(A,B) = 2^k * gcd(TA,TB) for some k   (I)
+     */
+
+    /* Proof that the loop terminates:
+     * At each iteration, either the right-shift by 1 is made on a nonzero
+     * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
+     * by at least 1, or the right-shift by 1 is made on zero and then
+     * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
+     * since in that case TB is calculated from TB-TA with the condition TB>TA).
+     */
+    while (mbedtls_mpi_cmp_int(&TA, 0) != 0) {
+        /* Divisions by 2 preserve the invariant (I). */
+        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA)));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB)));
+
+        /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
+         * TA-TB is even so the division by 2 has an integer result.
+         * Invariant (I) is preserved since any odd divisor of both TA and TB
+         * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
+         * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
+         * divides TA.
+         */
+        if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) {
+            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1));
+        } else {
+            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1));
+        }
+        /* Note that one of TA or TB is still odd. */
+    }
+
+    /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
+     * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
+     * - If there was at least one loop iteration, then one of TA or TB is odd,
+     *   and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
+     *   lz = min(a,b) so gcd(A,B) = 2^lz * TB.
+     * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
+     *   In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
+     */
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB));
+
+cleanup:
+
+    mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TB);
+
+    return ret;
+}
+
+/*
+ * Fill X with size bytes of random.
+ * The bytes returned from the RNG are used in a specific order which
+ * is suitable for deterministic ECDSA (see the specification of
+ * mbedtls_mpi_random() and the implementation in mbedtls_mpi_fill_random()).
+ */
+int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size,
+                            int (*f_rng)(void *, unsigned char *, size_t),
+                            void *p_rng)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    const size_t limbs = CHARS_TO_LIMBS(size);
+
+    /* Ensure that target MPI has exactly the necessary number of limbs */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
+    if (size == 0) {
+        return 0;
+    }
+
+    ret = mbedtls_mpi_core_fill_random(X->p, X->n, size, f_rng, p_rng);
+
+cleanup:
+    return ret;
+}
+
+int mbedtls_mpi_random(mbedtls_mpi *X,
+                       mbedtls_mpi_sint min,
+                       const mbedtls_mpi *N,
+                       int (*f_rng)(void *, unsigned char *, size_t),
+                       void *p_rng)
+{
+    if (min < 0) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+    if (mbedtls_mpi_cmp_int(N, min) <= 0) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    /* Ensure that target MPI has exactly the same number of limbs
+     * as the upper bound, even if the upper bound has leading zeros.
+     * This is necessary for mbedtls_mpi_core_random. */
+    int ret = mbedtls_mpi_resize_clear(X, N->n);
+    if (ret != 0) {
+        return ret;
+    }
+
+    return mbedtls_mpi_core_random(X->p, min, N->p, X->n, f_rng, p_rng);
+}
+
+/*
+ * Modular inverse: X = A^-1 mod N  (HAC 14.61 / 14.64)
+ */
+int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
+
+    if (mbedtls_mpi_cmp_int(N, 1) <= 0) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2);
+    mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV);
+    mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2);
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N));
+
+    if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
+        ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+        goto cleanup;
+    }
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N));
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1));
+
+    do {
+        while ((TU.p[0] & 1) == 0) {
+            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1));
+
+            if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) {
+                MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB));
+                MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA));
+            }
+
+            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1));
+        }
+
+        while ((TV.p[0] & 1) == 0) {
+            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1));
+
+            if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) {
+                MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB));
+                MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA));
+            }
+
+            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1));
+        }
+
+        if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) {
+            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2));
+        } else {
+            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2));
+        }
+    } while (mbedtls_mpi_cmp_int(&TU, 0) != 0);
+
+    while (mbedtls_mpi_cmp_int(&V1, 0) < 0) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N));
+    }
+
+    while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N));
+    }
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1));
+
+cleanup:
+
+    mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2);
+    mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV);
+    mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2);
+
+    return ret;
+}
+
+#if defined(MBEDTLS_GENPRIME)
+
+/* Gaps between primes, starting at 3. https://oeis.org/A001223 */
+static const unsigned char small_prime_gaps[] = {
+    2, 2, 4, 2, 4, 2, 4, 6,
+    2, 6, 4, 2, 4, 6, 6, 2,
+    6, 4, 2, 6, 4, 6, 8, 4,
+    2, 4, 2, 4, 14, 4, 6, 2,
+    10, 2, 6, 6, 4, 6, 6, 2,
+    10, 2, 4, 2, 12, 12, 4, 2,
+    4, 6, 2, 10, 6, 6, 6, 2,
+    6, 4, 2, 10, 14, 4, 2, 4,
+    14, 6, 10, 2, 4, 6, 8, 6,
+    6, 4, 6, 8, 4, 8, 10, 2,
+    10, 2, 6, 4, 6, 8, 4, 2,
+    4, 12, 8, 4, 8, 4, 6, 12,
+    2, 18, 6, 10, 6, 6, 2, 6,
+    10, 6, 6, 2, 6, 6, 4, 2,
+    12, 10, 2, 4, 6, 6, 2, 12,
+    4, 6, 8, 10, 8, 10, 8, 6,
+    6, 4, 8, 6, 4, 8, 4, 14,
+    10, 12, 2, 10, 2, 4, 2, 10,
+    14, 4, 2, 4, 14, 4, 2, 4,
+    20, 4, 8, 10, 8, 4, 6, 6,
+    14, 4, 6, 6, 8, 6, /*reaches 997*/
+    0 /* the last entry is effectively unused */
+};
+
+/*
+ * Small divisors test (X must be positive)
+ *
+ * Return values:
+ * 0: no small factor (possible prime, more tests needed)
+ * 1: certain prime
+ * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
+ * other negative: error
+ */
+static int mpi_check_small_factors(const mbedtls_mpi *X)
+{
+    int ret = 0;
+    size_t i;
+    mbedtls_mpi_uint r;
+    unsigned p = 3; /* The first odd prime */
+
+    if ((X->p[0] & 1) == 0) {
+        return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+    }
+
+    for (i = 0; i < sizeof(small_prime_gaps); p += small_prime_gaps[i], i++) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, p));
+        if (r == 0) {
+            if (mbedtls_mpi_cmp_int(X, p) == 0) {
+                return 1;
+            } else {
+                return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+            }
+        }
+    }
+
+cleanup:
+    return ret;
+}
+
+/*
+ * Miller-Rabin pseudo-primality test  (HAC 4.24)
+ */
+static int mpi_miller_rabin(const mbedtls_mpi *X, size_t rounds,
+                            int (*f_rng)(void *, unsigned char *, size_t),
+                            void *p_rng)
+{
+    int ret, count;
+    size_t i, j, k, s;
+    mbedtls_mpi W, R, T, A, RR;
+
+    mbedtls_mpi_init(&W); mbedtls_mpi_init(&R);
+    mbedtls_mpi_init(&T); mbedtls_mpi_init(&A);
+    mbedtls_mpi_init(&RR);
+
+    /*
+     * W = |X| - 1
+     * R = W >> lsb( W )
+     */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1));
+    s = mbedtls_mpi_lsb(&W);
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s));
+
+    for (i = 0; i < rounds; i++) {
+        /*
+         * pick a random A, 1 < A < |X| - 1
+         */
+        count = 0;
+        do {
+            MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng));
+
+            j = mbedtls_mpi_bitlen(&A);
+            k = mbedtls_mpi_bitlen(&W);
+            if (j > k) {
+                A.p[A.n - 1] &= ((mbedtls_mpi_uint) 1 << (k - (A.n - 1) * biL - 1)) - 1;
+            }
+
+            if (count++ > 30) {
+                ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+                goto cleanup;
+            }
+
+        } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 ||
+                 mbedtls_mpi_cmp_int(&A, 1)  <= 0);
+
+        /*
+         * A = A^R mod |X|
+         */
+        MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR));
+
+        if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 ||
+            mbedtls_mpi_cmp_int(&A,  1) == 0) {
+            continue;
+        }
+
+        j = 1;
+        while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) {
+            /*
+             * A = A * A mod |X|
+             */
+            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X));
+
+            if (mbedtls_mpi_cmp_int(&A, 1) == 0) {
+                break;
+            }
+
+            j++;
+        }
+
+        /*
+         * not prime if A != |X| - 1 or A == 1
+         */
+        if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 ||
+            mbedtls_mpi_cmp_int(&A,  1) == 0) {
+            ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+            break;
+        }
+    }
+
+cleanup:
+    mbedtls_mpi_free(&W); mbedtls_mpi_free(&R);
+    mbedtls_mpi_free(&T); mbedtls_mpi_free(&A);
+    mbedtls_mpi_free(&RR);
+
+    return ret;
+}
+
+/*
+ * Pseudo-primality test: small factors, then Miller-Rabin
+ */
+int mbedtls_mpi_is_prime_ext(const mbedtls_mpi *X, int rounds,
+                             int (*f_rng)(void *, unsigned char *, size_t),
+                             void *p_rng)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_mpi XX;
+
+    XX.s = 1;
+    XX.n = X->n;
+    XX.p = X->p;
+
+    if (mbedtls_mpi_cmp_int(&XX, 0) == 0 ||
+        mbedtls_mpi_cmp_int(&XX, 1) == 0) {
+        return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+    }
+
+    if (mbedtls_mpi_cmp_int(&XX, 2) == 0) {
+        return 0;
+    }
+
+    if ((ret = mpi_check_small_factors(&XX)) != 0) {
+        if (ret == 1) {
+            return 0;
+        }
+
+        return ret;
+    }
+
+    return mpi_miller_rabin(&XX, rounds, f_rng, p_rng);
+}
+
+/*
+ * Prime number generation
+ *
+ * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
+ * be either 1024 bits or 1536 bits long, and flags must contain
+ * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
+ */
+int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int flags,
+                          int (*f_rng)(void *, unsigned char *, size_t),
+                          void *p_rng)
+{
+#ifdef MBEDTLS_HAVE_INT64
+// ceil(2^63.5)
+#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
+#else
+// ceil(2^31.5)
+#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
+#endif
+    int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+    size_t k, n;
+    int rounds;
+    mbedtls_mpi_uint r;
+    mbedtls_mpi Y;
+
+    if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    mbedtls_mpi_init(&Y);
+
+    n = BITS_TO_LIMBS(nbits);
+
+    if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR) == 0) {
+        /*
+         * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
+         */
+        rounds = ((nbits >= 1300) ?  2 : (nbits >=  850) ?  3 :
+                  (nbits >=  650) ?  4 : (nbits >=  350) ?  8 :
+                  (nbits >=  250) ? 12 : (nbits >=  150) ? 18 : 27);
+    } else {
+        /*
+         * 2^-100 error probability, number of rounds computed based on HAC,
+         * fact 4.48
+         */
+        rounds = ((nbits >= 1450) ?  4 : (nbits >=  1150) ?  5 :
+                  (nbits >= 1000) ?  6 : (nbits >=   850) ?  7 :
+                  (nbits >=  750) ?  8 : (nbits >=   500) ? 13 :
+                  (nbits >=  250) ? 28 : (nbits >=   150) ? 40 : 51);
+    }
+
+    while (1) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng));
+        /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
+        if (X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2) {
+            continue;
+        }
+
+        k = n * biL;
+        if (k > nbits) {
+            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits));
+        }
+        X->p[0] |= 1;
+
+        if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH) == 0) {
+            ret = mbedtls_mpi_is_prime_ext(X, rounds, f_rng, p_rng);
+
+            if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
+                goto cleanup;
+            }
+        } else {
+            /*
+             * A necessary condition for Y and X = 2Y + 1 to be prime
+             * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
+             * Make sure it is satisfied, while keeping X = 3 mod 4
+             */
+
+            X->p[0] |= 2;
+
+            MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3));
+            if (r == 0) {
+                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8));
+            } else if (r == 1) {
+                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4));
+            }
+
+            /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
+            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1));
+
+            while (1) {
+                /*
+                 * First, check small factors for X and Y
+                 * before doing Miller-Rabin on any of them
+                 */
+                if ((ret = mpi_check_small_factors(X)) == 0 &&
+                    (ret = mpi_check_small_factors(&Y)) == 0 &&
+                    (ret = mpi_miller_rabin(X, rounds, f_rng, p_rng))
+                    == 0 &&
+                    (ret = mpi_miller_rabin(&Y, rounds, f_rng, p_rng))
+                    == 0) {
+                    goto cleanup;
+                }
+
+                if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
+                    goto cleanup;
+                }
+
+                /*
+                 * Next candidates. We want to preserve Y = (X-1) / 2 and
+                 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
+                 * so up Y by 6 and X by 12.
+                 */
+                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X,  X, 12));
+                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6));
+            }
+        }
+    }
+
+cleanup:
+
+    mbedtls_mpi_free(&Y);
+
+    return ret;
+}
+
+#endif /* MBEDTLS_GENPRIME */
+
+#if defined(MBEDTLS_SELF_TEST)
+
+#define GCD_PAIR_COUNT  3
+
+static const int gcd_pairs[GCD_PAIR_COUNT][3] =
+{
+    { 693, 609, 21 },
+    { 1764, 868, 28 },
+    { 768454923, 542167814, 1 }
+};
+
+/*
+ * Checkup routine
+ */
+int mbedtls_mpi_self_test(int verbose)
+{
+    int ret, i;
+    mbedtls_mpi A, E, N, X, Y, U, V;
+
+    mbedtls_mpi_init(&A); mbedtls_mpi_init(&E); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X);
+    mbedtls_mpi_init(&Y); mbedtls_mpi_init(&U); mbedtls_mpi_init(&V);
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16,
+                                            "EFE021C2645FD1DC586E69184AF4A31E" \
+                                            "D5F53E93B5F123FA41680867BA110131" \
+                                            "944FE7952E2517337780CB0DB80E61AA" \
+                                            "E7C8DDC6C5C6AADEB34EB38A2F40D5E6"));
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16,
+                                            "B2E7EFD37075B9F03FF989C7C5051C20" \
+                                            "34D2A323810251127E7BF8625A4F49A5" \
+                                            "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
+                                            "5B5C25763222FEFCCFC38B832366C29E"));
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16,
+                                            "0066A198186C18C10B2F5ED9B522752A" \
+                                            "9830B69916E535C8F047518A889A43A5" \
+                                            "94B6BED27A168D31D4A52F88925AA8F5"));
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N));
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
+                                            "602AB7ECA597A3D6B56FF9829A5E8B85" \
+                                            "9E857EA95A03512E2BAE7391688D264A" \
+                                            "A5663B0341DB9CCFD2C4C5F421FEC814" \
+                                            "8001B72E848A38CAE1C65F78E56ABDEF" \
+                                            "E12D3C039B8A02D6BE593F0BBBDA56F1" \
+                                            "ECF677152EF804370C1A305CAF3B5BF1" \
+                                            "30879B56C61DE584A0F53A2447A51E"));
+
+    if (verbose != 0) {
+        mbedtls_printf("  MPI test #1 (mul_mpi): ");
+    }
+
+    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
+        if (verbose != 0) {
+            mbedtls_printf("failed\n");
+        }
+
+        ret = 1;
+        goto cleanup;
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("passed\n");
+    }
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N));
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
+                                            "256567336059E52CAE22925474705F39A94"));
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16,
+                                            "6613F26162223DF488E9CD48CC132C7A" \
+                                            "0AC93C701B001B092E4E5B9F73BCD27B" \
+                                            "9EE50D0657C77F374E903CDFA4C642"));
+
+    if (verbose != 0) {
+        mbedtls_printf("  MPI test #2 (div_mpi): ");
+    }
+
+    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 ||
+        mbedtls_mpi_cmp_mpi(&Y, &V) != 0) {
+        if (verbose != 0) {
+            mbedtls_printf("failed\n");
+        }
+
+        ret = 1;
+        goto cleanup;
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("passed\n");
+    }
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL));
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
+                                            "36E139AEA55215609D2816998ED020BB" \
+                                            "BD96C37890F65171D948E9BC7CBAA4D9" \
+                                            "325D24D6A3C12710F10A09FA08AB87"));
+
+    if (verbose != 0) {
+        mbedtls_printf("  MPI test #3 (exp_mod): ");
+    }
+
+    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
+        if (verbose != 0) {
+            mbedtls_printf("failed\n");
+        }
+
+        ret = 1;
+        goto cleanup;
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("passed\n");
+    }
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N));
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
+                                            "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
+                                            "C3DBA76456363A10869622EAC2DD84EC" \
+                                            "C5B8A74DAC4D09E03B5E0BE779F2DF61"));
+
+    if (verbose != 0) {
+        mbedtls_printf("  MPI test #4 (inv_mod): ");
+    }
+
+    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
+        if (verbose != 0) {
+            mbedtls_printf("failed\n");
+        }
+
+        ret = 1;
+        goto cleanup;
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("passed\n");
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("  MPI test #5 (simple gcd): ");
+    }
+
+    for (i = 0; i < GCD_PAIR_COUNT; i++) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0]));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1]));
+
+        MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y));
+
+        if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) {
+            if (verbose != 0) {
+                mbedtls_printf("failed at %d\n", i);
+            }
+
+            ret = 1;
+            goto cleanup;
+        }
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("passed\n");
+    }
+
+cleanup:
+
+    if (ret != 0 && verbose != 0) {
+        mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
+    }
+
+    mbedtls_mpi_free(&A); mbedtls_mpi_free(&E); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X);
+    mbedtls_mpi_free(&Y); mbedtls_mpi_free(&U); mbedtls_mpi_free(&V);
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+
+    return ret;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_BIGNUM_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/bignum_core.c b/tf-psa-crypto/drivers/builtin/src/bignum_core.c
new file mode 100644
index 0000000..1a3e0b9
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/bignum_core.c
@@ -0,0 +1,895 @@
+/*
+ *  Core bignum functions
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_BIGNUM_C)
+
+#include <string.h>
+
+#include "mbedtls/error.h"
+#include "mbedtls/platform_util.h"
+#include "constant_time_internal.h"
+
+#include "mbedtls/platform.h"
+
+#include "bignum_core.h"
+#include "bn_mul.h"
+#include "constant_time_internal.h"
+
+size_t mbedtls_mpi_core_clz(mbedtls_mpi_uint a)
+{
+#if defined(__has_builtin)
+#if (MBEDTLS_MPI_UINT_MAX == UINT_MAX) && __has_builtin(__builtin_clz)
+    #define core_clz __builtin_clz
+#elif (MBEDTLS_MPI_UINT_MAX == ULONG_MAX) && __has_builtin(__builtin_clzl)
+    #define core_clz __builtin_clzl
+#elif (MBEDTLS_MPI_UINT_MAX == ULLONG_MAX) && __has_builtin(__builtin_clzll)
+    #define core_clz __builtin_clzll
+#endif
+#endif
+#if defined(core_clz)
+    return (size_t) core_clz(a);
+#else
+    size_t j;
+    mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
+
+    for (j = 0; j < biL; j++) {
+        if (a & mask) {
+            break;
+        }
+
+        mask >>= 1;
+    }
+
+    return j;
+#endif
+}
+
+size_t mbedtls_mpi_core_bitlen(const mbedtls_mpi_uint *A, size_t A_limbs)
+{
+    int i;
+    size_t j;
+
+    for (i = ((int) A_limbs) - 1; i >= 0; i--) {
+        if (A[i] != 0) {
+            j = biL - mbedtls_mpi_core_clz(A[i]);
+            return (i * biL) + j;
+        }
+    }
+
+    return 0;
+}
+
+static mbedtls_mpi_uint mpi_bigendian_to_host(mbedtls_mpi_uint a)
+{
+    if (MBEDTLS_IS_BIG_ENDIAN) {
+        /* Nothing to do on bigendian systems. */
+        return a;
+    } else {
+#if defined(MBEDTLS_HAVE_INT32)
+        return (mbedtls_mpi_uint) MBEDTLS_BSWAP32(a);
+#elif defined(MBEDTLS_HAVE_INT64)
+        return (mbedtls_mpi_uint) MBEDTLS_BSWAP64(a);
+#endif
+    }
+}
+
+void mbedtls_mpi_core_bigendian_to_host(mbedtls_mpi_uint *A,
+                                        size_t A_limbs)
+{
+    mbedtls_mpi_uint *cur_limb_left;
+    mbedtls_mpi_uint *cur_limb_right;
+    if (A_limbs == 0) {
+        return;
+    }
+
+    /*
+     * Traverse limbs and
+     * - adapt byte-order in each limb
+     * - swap the limbs themselves.
+     * For that, simultaneously traverse the limbs from left to right
+     * and from right to left, as long as the left index is not bigger
+     * than the right index (it's not a problem if limbs is odd and the
+     * indices coincide in the last iteration).
+     */
+    for (cur_limb_left = A, cur_limb_right = A + (A_limbs - 1);
+         cur_limb_left <= cur_limb_right;
+         cur_limb_left++, cur_limb_right--) {
+        mbedtls_mpi_uint tmp;
+        /* Note that if cur_limb_left == cur_limb_right,
+         * this code effectively swaps the bytes only once. */
+        tmp             = mpi_bigendian_to_host(*cur_limb_left);
+        *cur_limb_left  = mpi_bigendian_to_host(*cur_limb_right);
+        *cur_limb_right = tmp;
+    }
+}
+
+/* Whether min <= A, in constant time.
+ * A_limbs must be at least 1. */
+mbedtls_ct_condition_t mbedtls_mpi_core_uint_le_mpi(mbedtls_mpi_uint min,
+                                                    const mbedtls_mpi_uint *A,
+                                                    size_t A_limbs)
+{
+    /* min <= least significant limb? */
+    mbedtls_ct_condition_t min_le_lsl = mbedtls_ct_uint_ge(A[0], min);
+
+    /* limbs other than the least significant one are all zero? */
+    mbedtls_ct_condition_t msll_mask = MBEDTLS_CT_FALSE;
+    for (size_t i = 1; i < A_limbs; i++) {
+        msll_mask = mbedtls_ct_bool_or(msll_mask, mbedtls_ct_bool(A[i]));
+    }
+
+    /* min <= A iff the lowest limb of A is >= min or the other limbs
+     * are not all zero. */
+    return mbedtls_ct_bool_or(msll_mask, min_le_lsl);
+}
+
+mbedtls_ct_condition_t mbedtls_mpi_core_lt_ct(const mbedtls_mpi_uint *A,
+                                              const mbedtls_mpi_uint *B,
+                                              size_t limbs)
+{
+    mbedtls_ct_condition_t ret = MBEDTLS_CT_FALSE, cond = MBEDTLS_CT_FALSE, done = MBEDTLS_CT_FALSE;
+
+    for (size_t i = limbs; i > 0; i--) {
+        /*
+         * If B[i - 1] < A[i - 1] then A < B is false and the result must
+         * remain 0.
+         *
+         * Again even if we can make a decision, we just mark the result and
+         * the fact that we are done and continue looping.
+         */
+        cond = mbedtls_ct_uint_lt(B[i - 1], A[i - 1]);
+        done = mbedtls_ct_bool_or(done, cond);
+
+        /*
+         * If A[i - 1] < B[i - 1] then A < B is true.
+         *
+         * Again even if we can make a decision, we just mark the result and
+         * the fact that we are done and continue looping.
+         */
+        cond = mbedtls_ct_uint_lt(A[i - 1], B[i - 1]);
+        ret  = mbedtls_ct_bool_or(ret, mbedtls_ct_bool_and(cond, mbedtls_ct_bool_not(done)));
+        done = mbedtls_ct_bool_or(done, cond);
+    }
+
+    /*
+     * If all the limbs were equal, then the numbers are equal, A < B is false
+     * and leaving the result 0 is correct.
+     */
+
+    return ret;
+}
+
+void mbedtls_mpi_core_cond_assign(mbedtls_mpi_uint *X,
+                                  const mbedtls_mpi_uint *A,
+                                  size_t limbs,
+                                  mbedtls_ct_condition_t assign)
+{
+    if (X == A) {
+        return;
+    }
+
+    /* This function is very performance-sensitive for RSA. For this reason
+     * we have the loop below, instead of calling mbedtls_ct_memcpy_if
+     * (this is more optimal since here we don't have to handle the case where
+     * we copy awkwardly sized data).
+     */
+    for (size_t i = 0; i < limbs; i++) {
+        X[i] = mbedtls_ct_mpi_uint_if(assign, A[i], X[i]);
+    }
+}
+
+void mbedtls_mpi_core_cond_swap(mbedtls_mpi_uint *X,
+                                mbedtls_mpi_uint *Y,
+                                size_t limbs,
+                                mbedtls_ct_condition_t swap)
+{
+    if (X == Y) {
+        return;
+    }
+
+    for (size_t i = 0; i < limbs; i++) {
+        mbedtls_mpi_uint tmp = X[i];
+        X[i] = mbedtls_ct_mpi_uint_if(swap, Y[i], X[i]);
+        Y[i] = mbedtls_ct_mpi_uint_if(swap, tmp, Y[i]);
+    }
+}
+
+int mbedtls_mpi_core_read_le(mbedtls_mpi_uint *X,
+                             size_t X_limbs,
+                             const unsigned char *input,
+                             size_t input_length)
+{
+    const size_t limbs = CHARS_TO_LIMBS(input_length);
+
+    if (X_limbs < limbs) {
+        return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
+    }
+
+    if (X != NULL) {
+        memset(X, 0, X_limbs * ciL);
+
+        for (size_t i = 0; i < input_length; i++) {
+            size_t offset = ((i % ciL) << 3);
+            X[i / ciL] |= ((mbedtls_mpi_uint) input[i]) << offset;
+        }
+    }
+
+    return 0;
+}
+
+int mbedtls_mpi_core_read_be(mbedtls_mpi_uint *X,
+                             size_t X_limbs,
+                             const unsigned char *input,
+                             size_t input_length)
+{
+    const size_t limbs = CHARS_TO_LIMBS(input_length);
+
+    if (X_limbs < limbs) {
+        return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
+    }
+
+    /* If X_limbs is 0, input_length must also be 0 (from previous test).
+     * Nothing to do. */
+    if (X_limbs == 0) {
+        return 0;
+    }
+
+    memset(X, 0, X_limbs * ciL);
+
+    /* memcpy() with (NULL, 0) is undefined behaviour */
+    if (input_length != 0) {
+        size_t overhead = (X_limbs * ciL) - input_length;
+        unsigned char *Xp = (unsigned char *) X;
+        memcpy(Xp + overhead, input, input_length);
+    }
+
+    mbedtls_mpi_core_bigendian_to_host(X, X_limbs);
+
+    return 0;
+}
+
+int mbedtls_mpi_core_write_le(const mbedtls_mpi_uint *A,
+                              size_t A_limbs,
+                              unsigned char *output,
+                              size_t output_length)
+{
+    size_t stored_bytes = A_limbs * ciL;
+    size_t bytes_to_copy;
+
+    if (stored_bytes < output_length) {
+        bytes_to_copy = stored_bytes;
+    } else {
+        bytes_to_copy = output_length;
+
+        /* The output buffer is smaller than the allocated size of A.
+         * However A may fit if its leading bytes are zero. */
+        for (size_t i = bytes_to_copy; i < stored_bytes; i++) {
+            if (GET_BYTE(A, i) != 0) {
+                return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
+            }
+        }
+    }
+
+    for (size_t i = 0; i < bytes_to_copy; i++) {
+        output[i] = GET_BYTE(A, i);
+    }
+
+    if (stored_bytes < output_length) {
+        /* Write trailing 0 bytes */
+        memset(output + stored_bytes, 0, output_length - stored_bytes);
+    }
+
+    return 0;
+}
+
+int mbedtls_mpi_core_write_be(const mbedtls_mpi_uint *X,
+                              size_t X_limbs,
+                              unsigned char *output,
+                              size_t output_length)
+{
+    size_t stored_bytes;
+    size_t bytes_to_copy;
+    unsigned char *p;
+
+    stored_bytes = X_limbs * ciL;
+
+    if (stored_bytes < output_length) {
+        /* There is enough space in the output buffer. Write initial
+         * null bytes and record the position at which to start
+         * writing the significant bytes. In this case, the execution
+         * trace of this function does not depend on the value of the
+         * number. */
+        bytes_to_copy = stored_bytes;
+        p = output + output_length - stored_bytes;
+        memset(output, 0, output_length - stored_bytes);
+    } else {
+        /* The output buffer is smaller than the allocated size of X.
+         * However X may fit if its leading bytes are zero. */
+        bytes_to_copy = output_length;
+        p = output;
+        for (size_t i = bytes_to_copy; i < stored_bytes; i++) {
+            if (GET_BYTE(X, i) != 0) {
+                return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
+            }
+        }
+    }
+
+    for (size_t i = 0; i < bytes_to_copy; i++) {
+        p[bytes_to_copy - i - 1] = GET_BYTE(X, i);
+    }
+
+    return 0;
+}
+
+void mbedtls_mpi_core_shift_r(mbedtls_mpi_uint *X, size_t limbs,
+                              size_t count)
+{
+    size_t i, v0, v1;
+    mbedtls_mpi_uint r0 = 0, r1;
+
+    v0 = count /  biL;
+    v1 = count & (biL - 1);
+
+    if (v0 > limbs || (v0 == limbs && v1 > 0)) {
+        memset(X, 0, limbs * ciL);
+        return;
+    }
+
+    /*
+     * shift by count / limb_size
+     */
+    if (v0 > 0) {
+        for (i = 0; i < limbs - v0; i++) {
+            X[i] = X[i + v0];
+        }
+
+        for (; i < limbs; i++) {
+            X[i] = 0;
+        }
+    }
+
+    /*
+     * shift by count % limb_size
+     */
+    if (v1 > 0) {
+        for (i = limbs; i > 0; i--) {
+            r1 = X[i - 1] << (biL - v1);
+            X[i - 1] >>= v1;
+            X[i - 1] |= r0;
+            r0 = r1;
+        }
+    }
+}
+
+void mbedtls_mpi_core_shift_l(mbedtls_mpi_uint *X, size_t limbs,
+                              size_t count)
+{
+    size_t i, v0, v1;
+    mbedtls_mpi_uint r0 = 0, r1;
+
+    v0 = count / (biL);
+    v1 = count & (biL - 1);
+
+    /*
+     * shift by count / limb_size
+     */
+    if (v0 > 0) {
+        for (i = limbs; i > v0; i--) {
+            X[i - 1] = X[i - v0 - 1];
+        }
+
+        for (; i > 0; i--) {
+            X[i - 1] = 0;
+        }
+    }
+
+    /*
+     * shift by count % limb_size
+     */
+    if (v1 > 0) {
+        for (i = v0; i < limbs; i++) {
+            r1 = X[i] >> (biL - v1);
+            X[i] <<= v1;
+            X[i] |= r0;
+            r0 = r1;
+        }
+    }
+}
+
+mbedtls_mpi_uint mbedtls_mpi_core_add(mbedtls_mpi_uint *X,
+                                      const mbedtls_mpi_uint *A,
+                                      const mbedtls_mpi_uint *B,
+                                      size_t limbs)
+{
+    mbedtls_mpi_uint c = 0;
+
+    for (size_t i = 0; i < limbs; i++) {
+        mbedtls_mpi_uint t = c + A[i];
+        c = (t < A[i]);
+        t += B[i];
+        c += (t < B[i]);
+        X[i] = t;
+    }
+
+    return c;
+}
+
+mbedtls_mpi_uint mbedtls_mpi_core_add_if(mbedtls_mpi_uint *X,
+                                         const mbedtls_mpi_uint *A,
+                                         size_t limbs,
+                                         unsigned cond)
+{
+    mbedtls_mpi_uint c = 0;
+
+    mbedtls_ct_condition_t do_add = mbedtls_ct_bool(cond);
+
+    for (size_t i = 0; i < limbs; i++) {
+        mbedtls_mpi_uint add = mbedtls_ct_mpi_uint_if_else_0(do_add, A[i]);
+        mbedtls_mpi_uint t = c + X[i];
+        c = (t < X[i]);
+        t += add;
+        c += (t < add);
+        X[i] = t;
+    }
+
+    return c;
+}
+
+mbedtls_mpi_uint mbedtls_mpi_core_sub(mbedtls_mpi_uint *X,
+                                      const mbedtls_mpi_uint *A,
+                                      const mbedtls_mpi_uint *B,
+                                      size_t limbs)
+{
+    mbedtls_mpi_uint c = 0;
+
+    for (size_t i = 0; i < limbs; i++) {
+        mbedtls_mpi_uint z = (A[i] < c);
+        mbedtls_mpi_uint t = A[i] - c;
+        c = (t < B[i]) + z;
+        X[i] = t - B[i];
+    }
+
+    return c;
+}
+
+mbedtls_mpi_uint mbedtls_mpi_core_mla(mbedtls_mpi_uint *d, size_t d_len,
+                                      const mbedtls_mpi_uint *s, size_t s_len,
+                                      mbedtls_mpi_uint b)
+{
+    mbedtls_mpi_uint c = 0; /* carry */
+    /*
+     * It is a documented precondition of this function that d_len >= s_len.
+     * If that's not the case, we swap these round: this turns what would be
+     * a buffer overflow into an incorrect result.
+     */
+    if (d_len < s_len) {
+        s_len = d_len;
+    }
+    size_t excess_len = d_len - s_len;
+    size_t steps_x8 = s_len / 8;
+    size_t steps_x1 = s_len & 7;
+
+    while (steps_x8--) {
+        MULADDC_X8_INIT
+        MULADDC_X8_CORE
+            MULADDC_X8_STOP
+    }
+
+    while (steps_x1--) {
+        MULADDC_X1_INIT
+        MULADDC_X1_CORE
+            MULADDC_X1_STOP
+    }
+
+    while (excess_len--) {
+        *d += c;
+        c = (*d < c);
+        d++;
+    }
+
+    return c;
+}
+
+void mbedtls_mpi_core_mul(mbedtls_mpi_uint *X,
+                          const mbedtls_mpi_uint *A, size_t A_limbs,
+                          const mbedtls_mpi_uint *B, size_t B_limbs)
+{
+    memset(X, 0, (A_limbs + B_limbs) * ciL);
+
+    for (size_t i = 0; i < B_limbs; i++) {
+        (void) mbedtls_mpi_core_mla(X + i, A_limbs + 1, A, A_limbs, B[i]);
+    }
+}
+
+/*
+ * Fast Montgomery initialization (thanks to Tom St Denis).
+ */
+mbedtls_mpi_uint mbedtls_mpi_core_montmul_init(const mbedtls_mpi_uint *N)
+{
+    mbedtls_mpi_uint x = N[0];
+
+    x += ((N[0] + 2) & 4) << 1;
+
+    for (unsigned int i = biL; i >= 8; i /= 2) {
+        x *= (2 - (N[0] * x));
+    }
+
+    return ~x + 1;
+}
+
+void mbedtls_mpi_core_montmul(mbedtls_mpi_uint *X,
+                              const mbedtls_mpi_uint *A,
+                              const mbedtls_mpi_uint *B,
+                              size_t B_limbs,
+                              const mbedtls_mpi_uint *N,
+                              size_t AN_limbs,
+                              mbedtls_mpi_uint mm,
+                              mbedtls_mpi_uint *T)
+{
+    memset(T, 0, (2 * AN_limbs + 1) * ciL);
+
+    for (size_t i = 0; i < AN_limbs; i++) {
+        /* T = (T + u0*B + u1*N) / 2^biL */
+        mbedtls_mpi_uint u0 = A[i];
+        mbedtls_mpi_uint u1 = (T[0] + u0 * B[0]) * mm;
+
+        (void) mbedtls_mpi_core_mla(T, AN_limbs + 2, B, B_limbs, u0);
+        (void) mbedtls_mpi_core_mla(T, AN_limbs + 2, N, AN_limbs, u1);
+
+        T++;
+    }
+
+    /*
+     * The result we want is (T >= N) ? T - N : T.
+     *
+     * For better constant-time properties in this function, we always do the
+     * subtraction, with the result in X.
+     *
+     * We also look to see if there was any carry in the final additions in the
+     * loop above.
+     */
+
+    mbedtls_mpi_uint carry  = T[AN_limbs];
+    mbedtls_mpi_uint borrow = mbedtls_mpi_core_sub(X, T, N, AN_limbs);
+
+    /*
+     * Using R as the Montgomery radix (auxiliary modulus) i.e. 2^(biL*AN_limbs):
+     *
+     * T can be in one of 3 ranges:
+     *
+     * 1) T < N      : (carry, borrow) = (0, 1): we want T
+     * 2) N <= T < R : (carry, borrow) = (0, 0): we want X
+     * 3) T >= R     : (carry, borrow) = (1, 1): we want X
+     *
+     * and (carry, borrow) = (1, 0) can't happen.
+     *
+     * So the correct return value is already in X if (carry ^ borrow) = 0,
+     * but is in (the lower AN_limbs limbs of) T if (carry ^ borrow) = 1.
+     */
+    mbedtls_ct_memcpy_if(mbedtls_ct_bool(carry ^ borrow),
+                         (unsigned char *) X,
+                         (unsigned char *) T,
+                         NULL,
+                         AN_limbs * sizeof(mbedtls_mpi_uint));
+}
+
+int mbedtls_mpi_core_get_mont_r2_unsafe(mbedtls_mpi *X,
+                                        const mbedtls_mpi *N)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 1));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, N->n * 2 * biL));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(X, X, N));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(X, N->n));
+
+cleanup:
+    return ret;
+}
+
+MBEDTLS_STATIC_TESTABLE
+void mbedtls_mpi_core_ct_uint_table_lookup(mbedtls_mpi_uint *dest,
+                                           const mbedtls_mpi_uint *table,
+                                           size_t limbs,
+                                           size_t count,
+                                           size_t index)
+{
+    for (size_t i = 0; i < count; i++, table += limbs) {
+        mbedtls_ct_condition_t assign = mbedtls_ct_uint_eq(i, index);
+        mbedtls_mpi_core_cond_assign(dest, table, limbs, assign);
+    }
+}
+
+/* Fill X with n_bytes random bytes.
+ * X must already have room for those bytes.
+ * The ordering of the bytes returned from the RNG is suitable for
+ * deterministic ECDSA (see RFC 6979 §3.3 and the specification of
+ * mbedtls_mpi_core_random()).
+ */
+int mbedtls_mpi_core_fill_random(
+    mbedtls_mpi_uint *X, size_t X_limbs,
+    size_t n_bytes,
+    int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    const size_t limbs = CHARS_TO_LIMBS(n_bytes);
+    const size_t overhead = (limbs * ciL) - n_bytes;
+
+    if (X_limbs < limbs) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    memset(X, 0, overhead);
+    memset((unsigned char *) X + limbs * ciL, 0, (X_limbs - limbs) * ciL);
+    MBEDTLS_MPI_CHK(f_rng(p_rng, (unsigned char *) X + overhead, n_bytes));
+    mbedtls_mpi_core_bigendian_to_host(X, limbs);
+
+cleanup:
+    return ret;
+}
+
+int mbedtls_mpi_core_random(mbedtls_mpi_uint *X,
+                            mbedtls_mpi_uint min,
+                            const mbedtls_mpi_uint *N,
+                            size_t limbs,
+                            int (*f_rng)(void *, unsigned char *, size_t),
+                            void *p_rng)
+{
+    mbedtls_ct_condition_t ge_lower = MBEDTLS_CT_TRUE, lt_upper = MBEDTLS_CT_FALSE;
+    size_t n_bits = mbedtls_mpi_core_bitlen(N, limbs);
+    size_t n_bytes = (n_bits + 7) / 8;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    /*
+     * When min == 0, each try has at worst a probability 1/2 of failing
+     * (the msb has a probability 1/2 of being 0, and then the result will
+     * be < N), so after 30 tries failure probability is a most 2**(-30).
+     *
+     * When N is just below a power of 2, as is the case when generating
+     * a random scalar on most elliptic curves, 1 try is enough with
+     * overwhelming probability. When N is just above a power of 2,
+     * as when generating a random scalar on secp224k1, each try has
+     * a probability of failing that is almost 1/2.
+     *
+     * The probabilities are almost the same if min is nonzero but negligible
+     * compared to N. This is always the case when N is crypto-sized, but
+     * it's convenient to support small N for testing purposes. When N
+     * is small, use a higher repeat count, otherwise the probability of
+     * failure is macroscopic.
+     */
+    int count = (n_bytes > 4 ? 30 : 250);
+
+    /*
+     * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
+     * when f_rng is a suitably parametrized instance of HMAC_DRBG:
+     * - use the same byte ordering;
+     * - keep the leftmost n_bits bits of the generated octet string;
+     * - try until result is in the desired range.
+     * This also avoids any bias, which is especially important for ECDSA.
+     */
+    do {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_core_fill_random(X, limbs,
+                                                     n_bytes,
+                                                     f_rng, p_rng));
+        mbedtls_mpi_core_shift_r(X, limbs, 8 * n_bytes - n_bits);
+
+        if (--count == 0) {
+            ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+            goto cleanup;
+        }
+
+        ge_lower = mbedtls_mpi_core_uint_le_mpi(min, X, limbs);
+        lt_upper = mbedtls_mpi_core_lt_ct(X, N, limbs);
+    } while (mbedtls_ct_bool_and(ge_lower, lt_upper) == MBEDTLS_CT_FALSE);
+
+cleanup:
+    return ret;
+}
+
+static size_t exp_mod_get_window_size(size_t Ebits)
+{
+#if MBEDTLS_MPI_WINDOW_SIZE >= 6
+    return (Ebits > 671) ? 6 : (Ebits > 239) ? 5 : (Ebits >  79) ? 4 : 1;
+#elif MBEDTLS_MPI_WINDOW_SIZE == 5
+    return (Ebits > 239) ? 5 : (Ebits >  79) ? 4 : 1;
+#elif MBEDTLS_MPI_WINDOW_SIZE > 1
+    return (Ebits >  79) ? MBEDTLS_MPI_WINDOW_SIZE : 1;
+#else
+    (void) Ebits;
+    return 1;
+#endif
+}
+
+size_t mbedtls_mpi_core_exp_mod_working_limbs(size_t AN_limbs, size_t E_limbs)
+{
+    const size_t wsize = exp_mod_get_window_size(E_limbs * biL);
+    const size_t welem = ((size_t) 1) << wsize;
+
+    /* How big does each part of the working memory pool need to be? */
+    const size_t table_limbs   = welem * AN_limbs;
+    const size_t select_limbs  = AN_limbs;
+    const size_t temp_limbs    = 2 * AN_limbs + 1;
+
+    return table_limbs + select_limbs + temp_limbs;
+}
+
+static void exp_mod_precompute_window(const mbedtls_mpi_uint *A,
+                                      const mbedtls_mpi_uint *N,
+                                      size_t AN_limbs,
+                                      mbedtls_mpi_uint mm,
+                                      const mbedtls_mpi_uint *RR,
+                                      size_t welem,
+                                      mbedtls_mpi_uint *Wtable,
+                                      mbedtls_mpi_uint *temp)
+{
+    /* W[0] = 1 (in Montgomery presentation) */
+    memset(Wtable, 0, AN_limbs * ciL);
+    Wtable[0] = 1;
+    mbedtls_mpi_core_montmul(Wtable, Wtable, RR, AN_limbs, N, AN_limbs, mm, temp);
+
+    /* W[1] = A (already in Montgomery presentation) */
+    mbedtls_mpi_uint *W1 = Wtable + AN_limbs;
+    memcpy(W1, A, AN_limbs * ciL);
+
+    /* W[i+1] = W[i] * W[1], i >= 2 */
+    mbedtls_mpi_uint *Wprev = W1;
+    for (size_t i = 2; i < welem; i++) {
+        mbedtls_mpi_uint *Wcur = Wprev + AN_limbs;
+        mbedtls_mpi_core_montmul(Wcur, Wprev, W1, AN_limbs, N, AN_limbs, mm, temp);
+        Wprev = Wcur;
+    }
+}
+
+/* Exponentiation: X := A^E mod N.
+ *
+ * A must already be in Montgomery form.
+ *
+ * As in other bignum functions, assume that AN_limbs and E_limbs are nonzero.
+ *
+ * RR must contain 2^{2*biL} mod N.
+ *
+ * The algorithm is a variant of Left-to-right k-ary exponentiation: HAC 14.82
+ * (The difference is that the body in our loop processes a single bit instead
+ * of a full window.)
+ */
+void mbedtls_mpi_core_exp_mod(mbedtls_mpi_uint *X,
+                              const mbedtls_mpi_uint *A,
+                              const mbedtls_mpi_uint *N,
+                              size_t AN_limbs,
+                              const mbedtls_mpi_uint *E,
+                              size_t E_limbs,
+                              const mbedtls_mpi_uint *RR,
+                              mbedtls_mpi_uint *T)
+{
+    const size_t wsize = exp_mod_get_window_size(E_limbs * biL);
+    const size_t welem = ((size_t) 1) << wsize;
+
+    /* This is how we will use the temporary storage T, which must have space
+     * for table_limbs, select_limbs and (2 * AN_limbs + 1) for montmul. */
+    const size_t table_limbs  = welem * AN_limbs;
+    const size_t select_limbs = AN_limbs;
+
+    /* Pointers to specific parts of the temporary working memory pool */
+    mbedtls_mpi_uint *const Wtable  = T;
+    mbedtls_mpi_uint *const Wselect = Wtable  +  table_limbs;
+    mbedtls_mpi_uint *const temp    = Wselect + select_limbs;
+
+    /*
+     * Window precomputation
+     */
+
+    const mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N);
+
+    /* Set Wtable[i] = A^(2^i) (in Montgomery representation) */
+    exp_mod_precompute_window(A, N, AN_limbs,
+                              mm, RR,
+                              welem, Wtable, temp);
+
+    /*
+     * Fixed window exponentiation
+     */
+
+    /* X = 1 (in Montgomery presentation) initially */
+    memcpy(X, Wtable, AN_limbs * ciL);
+
+    /* We'll process the bits of E from most significant
+     * (limb_index=E_limbs-1, E_bit_index=biL-1) to least significant
+     * (limb_index=0, E_bit_index=0). */
+    size_t E_limb_index = E_limbs;
+    size_t E_bit_index = 0;
+    /* At any given time, window contains window_bits bits from E.
+     * window_bits can go up to wsize. */
+    size_t window_bits = 0;
+    mbedtls_mpi_uint window = 0;
+
+    do {
+        /* Square */
+        mbedtls_mpi_core_montmul(X, X, X, AN_limbs, N, AN_limbs, mm, temp);
+
+        /* Move to the next bit of the exponent */
+        if (E_bit_index == 0) {
+            --E_limb_index;
+            E_bit_index = biL - 1;
+        } else {
+            --E_bit_index;
+        }
+        /* Insert next exponent bit into window */
+        ++window_bits;
+        window <<= 1;
+        window |= (E[E_limb_index] >> E_bit_index) & 1;
+
+        /* Clear window if it's full. Also clear the window at the end,
+         * when we've finished processing the exponent. */
+        if (window_bits == wsize ||
+            (E_bit_index == 0 && E_limb_index == 0)) {
+            /* Select Wtable[window] without leaking window through
+             * memory access patterns. */
+            mbedtls_mpi_core_ct_uint_table_lookup(Wselect, Wtable,
+                                                  AN_limbs, welem, window);
+            /* Multiply X by the selected element. */
+            mbedtls_mpi_core_montmul(X, X, Wselect, AN_limbs, N, AN_limbs, mm,
+                                     temp);
+            window = 0;
+            window_bits = 0;
+        }
+    } while (!(E_bit_index == 0 && E_limb_index == 0));
+}
+
+mbedtls_mpi_uint mbedtls_mpi_core_sub_int(mbedtls_mpi_uint *X,
+                                          const mbedtls_mpi_uint *A,
+                                          mbedtls_mpi_uint c,  /* doubles as carry */
+                                          size_t limbs)
+{
+    for (size_t i = 0; i < limbs; i++) {
+        mbedtls_mpi_uint s = A[i];
+        mbedtls_mpi_uint t = s - c;
+        c = (t > s);
+        X[i] = t;
+    }
+
+    return c;
+}
+
+mbedtls_ct_condition_t mbedtls_mpi_core_check_zero_ct(const mbedtls_mpi_uint *A,
+                                                      size_t limbs)
+{
+    volatile const mbedtls_mpi_uint *force_read_A = A;
+    mbedtls_mpi_uint bits = 0;
+
+    for (size_t i = 0; i < limbs; i++) {
+        bits |= force_read_A[i];
+    }
+
+    return mbedtls_ct_bool(bits);
+}
+
+void mbedtls_mpi_core_to_mont_rep(mbedtls_mpi_uint *X,
+                                  const mbedtls_mpi_uint *A,
+                                  const mbedtls_mpi_uint *N,
+                                  size_t AN_limbs,
+                                  mbedtls_mpi_uint mm,
+                                  const mbedtls_mpi_uint *rr,
+                                  mbedtls_mpi_uint *T)
+{
+    mbedtls_mpi_core_montmul(X, A, rr, AN_limbs, N, AN_limbs, mm, T);
+}
+
+void mbedtls_mpi_core_from_mont_rep(mbedtls_mpi_uint *X,
+                                    const mbedtls_mpi_uint *A,
+                                    const mbedtls_mpi_uint *N,
+                                    size_t AN_limbs,
+                                    mbedtls_mpi_uint mm,
+                                    mbedtls_mpi_uint *T)
+{
+    const mbedtls_mpi_uint Rinv = 1;    /* 1/R in Mont. rep => 1 */
+
+    mbedtls_mpi_core_montmul(X, A, &Rinv, 1, N, AN_limbs, mm, T);
+}
+
+#endif /* MBEDTLS_BIGNUM_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/bignum_core.h b/tf-psa-crypto/drivers/builtin/src/bignum_core.h
new file mode 100644
index 0000000..92c8d47
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/bignum_core.h
@@ -0,0 +1,763 @@
+/**
+ *  Core bignum functions
+ *
+ *  This interface should only be used by the legacy bignum module (bignum.h)
+ *  and the modular bignum modules (bignum_mod.c, bignum_mod_raw.c). All other
+ *  modules should use the high-level modular bignum interface (bignum_mod.h)
+ *  or the legacy bignum interface (bignum.h).
+ *
+ * This module is about processing non-negative integers with a fixed upper
+ * bound that's of the form 2^n-1 where n is a multiple of #biL.
+ * These can be thought of integers written in base 2^#biL with a fixed
+ * number of digits. Digits in this base are called *limbs*.
+ * Many operations treat these numbers as the principal representation of
+ * a number modulo 2^n or a smaller bound.
+ *
+ * The functions in this module obey the following conventions unless
+ * explicitly indicated otherwise:
+ *
+ * - **Overflow**: some functions indicate overflow from the range
+ *   [0, 2^n-1] by returning carry parameters, while others operate
+ *   modulo and so cannot overflow. This should be clear from the function
+ *   documentation.
+ * - **Bignum parameters**: Bignums are passed as pointers to an array of
+ *   limbs. A limb has the type #mbedtls_mpi_uint. Unless otherwise specified:
+ *     - Bignum parameters called \p A, \p B, ... are inputs, and are
+ *       not modified by the function.
+ *     - For operations modulo some number, the modulus is called \p N
+ *       and is input-only.
+ *     - Bignum parameters called \p X, \p Y are outputs or input-output.
+ *       The initial content of output-only parameters is ignored.
+ *     - Some functions use different names that reflect traditional
+ *       naming of operands of certain operations (e.g.
+ *       divisor/dividend/quotient/remainder).
+ *     - \p T is a temporary storage area. The initial content of such
+ *       parameter is ignored and the final content is unspecified.
+ * - **Bignum sizes**: bignum sizes are always expressed in limbs.
+ *   Most functions work on bignums of a given size and take a single
+ *   \p limbs parameter that applies to all parameters that are limb arrays.
+ *   All bignum sizes must be at least 1 and must be significantly less than
+ *   #SIZE_MAX. The behavior if a size is 0 is undefined. The behavior if the
+ *   total size of all parameters overflows #SIZE_MAX is undefined.
+ * - **Parameter ordering**: for bignum parameters, outputs come before inputs.
+ *   Temporaries come last.
+ * - **Aliasing**: in general, output bignums may be aliased to one or more
+ *   inputs. As an exception, parameters that are documented as a modulus value
+ *   may not be aliased to an output. Outputs may not be aliased to one another.
+ *   Temporaries may not be aliased to any other parameter.
+ * - **Overlap**: apart from aliasing of limb array pointers (where two
+ *   arguments are equal pointers), overlap is not supported and may result
+ *   in undefined behavior.
+ * - **Error handling**: This is a low-level module. Functions generally do not
+ *   try to protect against invalid arguments such as nonsensical sizes or
+ *   null pointers. Note that some functions that operate on bignums of
+ *   different sizes have constraints about their size, and violating those
+ *   constraints may lead to buffer overflows.
+ * - **Modular representatives**: functions that operate modulo \p N expect
+ *   all modular inputs to be in the range [0, \p N - 1] and guarantee outputs
+ *   in the range [0, \p N - 1]. If an input is out of range, outputs are
+ *   fully unspecified, though bignum values out of range should not cause
+ *   buffer overflows (beware that this is not extensively tested).
+ */
+
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_BIGNUM_CORE_H
+#define MBEDTLS_BIGNUM_CORE_H
+
+#include "common.h"
+
+#if defined(MBEDTLS_BIGNUM_C)
+#include "mbedtls/bignum.h"
+#endif
+
+#include "constant_time_internal.h"
+
+#define ciL    (sizeof(mbedtls_mpi_uint))     /** chars in limb  */
+#define biL    (ciL << 3)                     /** bits  in limb  */
+#define biH    (ciL << 2)                     /** half limb size */
+
+/*
+ * Convert between bits/chars and number of limbs
+ * Divide first in order to avoid potential overflows
+ */
+#define BITS_TO_LIMBS(i)  ((i) / biL + ((i) % biL != 0))
+#define CHARS_TO_LIMBS(i) ((i) / ciL + ((i) % ciL != 0))
+/* Get a specific byte, without range checks. */
+#define GET_BYTE(X, i)                                \
+    (((X)[(i) / ciL] >> (((i) % ciL) * 8)) & 0xff)
+
+/** Count leading zero bits in a given integer.
+ *
+ * \warning     The result is undefined if \p a == 0
+ *
+ * \param a     Integer to count leading zero bits.
+ *
+ * \return      The number of leading zero bits in \p a, if \p a != 0.
+ *              If \p a == 0, the result is undefined.
+ */
+size_t mbedtls_mpi_core_clz(mbedtls_mpi_uint a);
+
+/** Return the minimum number of bits required to represent the value held
+ * in the MPI.
+ *
+ * \note This function returns 0 if all the limbs of \p A are 0.
+ *
+ * \param[in] A     The address of the MPI.
+ * \param A_limbs   The number of limbs of \p A.
+ *
+ * \return      The number of bits in \p A.
+ */
+size_t mbedtls_mpi_core_bitlen(const mbedtls_mpi_uint *A, size_t A_limbs);
+
+/** Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint
+ * into the storage form used by mbedtls_mpi.
+ *
+ * \param[in,out] A     The address of the MPI.
+ * \param A_limbs       The number of limbs of \p A.
+ */
+void mbedtls_mpi_core_bigendian_to_host(mbedtls_mpi_uint *A,
+                                        size_t A_limbs);
+
+/** \brief         Compare a machine integer with an MPI.
+ *
+ *                 This function operates in constant time with respect
+ *                 to the values of \p min and \p A.
+ *
+ * \param min      A machine integer.
+ * \param[in] A    An MPI.
+ * \param A_limbs  The number of limbs of \p A.
+ *                 This must be at least 1.
+ *
+ * \return         MBEDTLS_CT_TRUE if \p min is less than or equal to \p A, otherwise MBEDTLS_CT_FALSE.
+ */
+mbedtls_ct_condition_t mbedtls_mpi_core_uint_le_mpi(mbedtls_mpi_uint min,
+                                                    const mbedtls_mpi_uint *A,
+                                                    size_t A_limbs);
+
+/**
+ * \brief          Check if one unsigned MPI is less than another in constant
+ *                 time.
+ *
+ * \param A        The left-hand MPI. This must point to an array of limbs
+ *                 with the same allocated length as \p B.
+ * \param B        The right-hand MPI. This must point to an array of limbs
+ *                 with the same allocated length as \p A.
+ * \param limbs    The number of limbs in \p A and \p B.
+ *                 This must not be 0.
+ *
+ * \return         MBEDTLS_CT_TRUE  if \p A is less than \p B.
+ *                 MBEDTLS_CT_FALSE if \p A is greater than or equal to \p B.
+ */
+mbedtls_ct_condition_t mbedtls_mpi_core_lt_ct(const mbedtls_mpi_uint *A,
+                                              const mbedtls_mpi_uint *B,
+                                              size_t limbs);
+
+/**
+ * \brief   Perform a safe conditional copy of an MPI which doesn't reveal
+ *          whether assignment was done or not.
+ *
+ * \param[out] X        The address of the destination MPI.
+ *                      This must be initialized. Must have enough limbs to
+ *                      store the full value of \p A.
+ * \param[in]  A        The address of the source MPI. This must be initialized.
+ * \param      limbs    The number of limbs of \p A.
+ * \param      assign   The condition deciding whether to perform the
+ *                      assignment or not. Callers will need to use
+ *                      the constant time interface (e.g. `mbedtls_ct_bool()`)
+ *                      to construct this argument.
+ *
+ * \note           This function avoids leaking any information about whether
+ *                 the assignment was done or not.
+ */
+void mbedtls_mpi_core_cond_assign(mbedtls_mpi_uint *X,
+                                  const mbedtls_mpi_uint *A,
+                                  size_t limbs,
+                                  mbedtls_ct_condition_t assign);
+
+/**
+ * \brief   Perform a safe conditional swap of two MPIs which doesn't reveal
+ *          whether the swap was done or not.
+ *
+ * \param[in,out] X         The address of the first MPI.
+ *                          This must be initialized.
+ * \param[in,out] Y         The address of the second MPI.
+ *                          This must be initialized.
+ * \param         limbs     The number of limbs of \p X and \p Y.
+ * \param         swap      The condition deciding whether to perform
+ *                          the swap or not.
+ *
+ * \note           This function avoids leaking any information about whether
+ *                 the swap was done or not.
+ */
+void mbedtls_mpi_core_cond_swap(mbedtls_mpi_uint *X,
+                                mbedtls_mpi_uint *Y,
+                                size_t limbs,
+                                mbedtls_ct_condition_t swap);
+
+/** Import X from unsigned binary data, little-endian.
+ *
+ * The MPI needs to have enough limbs to store the full value (including any
+ * most significant zero bytes in the input).
+ *
+ * \param[out] X         The address of the MPI.
+ * \param X_limbs        The number of limbs of \p X.
+ * \param[in] input      The input buffer to import from.
+ * \param input_length   The length bytes of \p input.
+ *
+ * \return       \c 0 if successful.
+ * \return       #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p X isn't
+ *               large enough to hold the value in \p input.
+ */
+int mbedtls_mpi_core_read_le(mbedtls_mpi_uint *X,
+                             size_t X_limbs,
+                             const unsigned char *input,
+                             size_t input_length);
+
+/** Import X from unsigned binary data, big-endian.
+ *
+ * The MPI needs to have enough limbs to store the full value (including any
+ * most significant zero bytes in the input).
+ *
+ * \param[out] X        The address of the MPI.
+ *                      May only be #NULL if \p X_limbs is 0 and \p input_length
+ *                      is 0.
+ * \param X_limbs       The number of limbs of \p X.
+ * \param[in] input     The input buffer to import from.
+ *                      May only be #NULL if \p input_length is 0.
+ * \param input_length  The length in bytes of \p input.
+ *
+ * \return       \c 0 if successful.
+ * \return       #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p X isn't
+ *               large enough to hold the value in \p input.
+ */
+int mbedtls_mpi_core_read_be(mbedtls_mpi_uint *X,
+                             size_t X_limbs,
+                             const unsigned char *input,
+                             size_t input_length);
+
+/** Export A into unsigned binary data, little-endian.
+ *
+ * \note If \p output is shorter than \p A the export is still successful if the
+ *       value held in \p A fits in the buffer (that is, if enough of the most
+ *       significant bytes of \p A are 0).
+ *
+ * \param[in] A         The address of the MPI.
+ * \param A_limbs       The number of limbs of \p A.
+ * \param[out] output   The output buffer to export to.
+ * \param output_length The length in bytes of \p output.
+ *
+ * \return       \c 0 if successful.
+ * \return       #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p output isn't
+ *               large enough to hold the value of \p A.
+ */
+int mbedtls_mpi_core_write_le(const mbedtls_mpi_uint *A,
+                              size_t A_limbs,
+                              unsigned char *output,
+                              size_t output_length);
+
+/** Export A into unsigned binary data, big-endian.
+ *
+ * \note If \p output is shorter than \p A the export is still successful if the
+ *       value held in \p A fits in the buffer (that is, if enough of the most
+ *       significant bytes of \p A are 0).
+ *
+ * \param[in] A         The address of the MPI.
+ * \param A_limbs       The number of limbs of \p A.
+ * \param[out] output   The output buffer to export to.
+ * \param output_length The length in bytes of \p output.
+ *
+ * \return       \c 0 if successful.
+ * \return       #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p output isn't
+ *               large enough to hold the value of \p A.
+ */
+int mbedtls_mpi_core_write_be(const mbedtls_mpi_uint *A,
+                              size_t A_limbs,
+                              unsigned char *output,
+                              size_t output_length);
+
+/** \brief              Shift an MPI in-place right by a number of bits.
+ *
+ *                      Shifting by more bits than there are bit positions
+ *                      in \p X is valid and results in setting \p X to 0.
+ *
+ *                      This function's execution time depends on the value
+ *                      of \p count (and of course \p limbs).
+ *
+ * \param[in,out] X     The number to shift.
+ * \param limbs         The number of limbs of \p X. This must be at least 1.
+ * \param count         The number of bits to shift by.
+ */
+void mbedtls_mpi_core_shift_r(mbedtls_mpi_uint *X, size_t limbs,
+                              size_t count);
+
+/**
+ * \brief               Shift an MPI in-place left by a number of bits.
+ *
+ *                      Shifting by more bits than there are bit positions
+ *                      in \p X will produce an unspecified result.
+ *
+ *                      This function's execution time depends on the value
+ *                      of \p count (and of course \p limbs).
+ * \param[in,out] X     The number to shift.
+ * \param limbs         The number of limbs of \p X. This must be at least 1.
+ * \param count         The number of bits to shift by.
+ */
+void mbedtls_mpi_core_shift_l(mbedtls_mpi_uint *X, size_t limbs,
+                              size_t count);
+
+/**
+ * \brief Add two fixed-size large unsigned integers, returning the carry.
+ *
+ * Calculates `A + B` where `A` and `B` have the same size.
+ *
+ * This function operates modulo `2^(biL*limbs)` and returns the carry
+ * (1 if there was a wraparound, and 0 otherwise).
+ *
+ * \p X may be aliased to \p A or \p B.
+ *
+ * \param[out] X    The result of the addition.
+ * \param[in] A     Little-endian presentation of the left operand.
+ * \param[in] B     Little-endian presentation of the right operand.
+ * \param limbs     Number of limbs of \p X, \p A and \p B.
+ *
+ * \return          1 if `A + B >= 2^(biL*limbs)`, 0 otherwise.
+ */
+mbedtls_mpi_uint mbedtls_mpi_core_add(mbedtls_mpi_uint *X,
+                                      const mbedtls_mpi_uint *A,
+                                      const mbedtls_mpi_uint *B,
+                                      size_t limbs);
+
+/**
+ * \brief Conditional addition of two fixed-size large unsigned integers,
+ *        returning the carry.
+ *
+ * Functionally equivalent to
+ *
+ * ```
+ * if( cond )
+ *    X += A;
+ * return carry;
+ * ```
+ *
+ * This function operates modulo `2^(biL*limbs)`.
+ *
+ * \param[in,out] X  The pointer to the (little-endian) array
+ *                   representing the bignum to accumulate onto.
+ * \param[in] A      The pointer to the (little-endian) array
+ *                   representing the bignum to conditionally add
+ *                   to \p X. This may be aliased to \p X but may not
+ *                   overlap otherwise.
+ * \param limbs      Number of limbs of \p X and \p A.
+ * \param cond       Condition bit dictating whether addition should
+ *                   happen or not. This must be \c 0 or \c 1.
+ *
+ * \warning          If \p cond is neither 0 nor 1, the result of this function
+ *                   is unspecified, and the resulting value in \p X might be
+ *                   neither its original value nor \p X + \p A.
+ *
+ * \return           1 if `X + cond * A >= 2^(biL*limbs)`, 0 otherwise.
+ */
+mbedtls_mpi_uint mbedtls_mpi_core_add_if(mbedtls_mpi_uint *X,
+                                         const mbedtls_mpi_uint *A,
+                                         size_t limbs,
+                                         unsigned cond);
+
+/**
+ * \brief Subtract two fixed-size large unsigned integers, returning the borrow.
+ *
+ * Calculate `A - B` where \p A and \p B have the same size.
+ * This function operates modulo `2^(biL*limbs)` and returns the carry
+ * (1 if there was a wraparound, i.e. if `A < B`, and 0 otherwise).
+ *
+ * \p X may be aliased to \p A or \p B, or even both, but may not overlap
+ * either otherwise.
+ *
+ * \param[out] X    The result of the subtraction.
+ * \param[in] A     Little-endian presentation of left operand.
+ * \param[in] B     Little-endian presentation of right operand.
+ * \param limbs     Number of limbs of \p X, \p A and \p B.
+ *
+ * \return          1 if `A < B`.
+ *                  0 if `A >= B`.
+ */
+mbedtls_mpi_uint mbedtls_mpi_core_sub(mbedtls_mpi_uint *X,
+                                      const mbedtls_mpi_uint *A,
+                                      const mbedtls_mpi_uint *B,
+                                      size_t limbs);
+
+/**
+ * \brief Perform a fixed-size multiply accumulate operation: X += b * A
+ *
+ * \p X may be aliased to \p A (when \p X_limbs == \p A_limbs), but may not
+ * otherwise overlap.
+ *
+ * This function operates modulo `2^(biL*X_limbs)`.
+ *
+ * \param[in,out] X  The pointer to the (little-endian) array
+ *                   representing the bignum to accumulate onto.
+ * \param X_limbs    The number of limbs of \p X. This must be
+ *                   at least \p A_limbs.
+ * \param[in] A      The pointer to the (little-endian) array
+ *                   representing the bignum to multiply with.
+ *                   This may be aliased to \p X but may not overlap
+ *                   otherwise.
+ * \param A_limbs    The number of limbs of \p A.
+ * \param b          X scalar to multiply with.
+ *
+ * \return           The carry at the end of the operation.
+ */
+mbedtls_mpi_uint mbedtls_mpi_core_mla(mbedtls_mpi_uint *X, size_t X_limbs,
+                                      const mbedtls_mpi_uint *A, size_t A_limbs,
+                                      mbedtls_mpi_uint b);
+
+/**
+ * \brief Perform a known-size multiplication
+ *
+ * \p X may not be aliased to any of the inputs for this function.
+ * \p A may be aliased to \p B.
+ *
+ * \param[out] X     The pointer to the (little-endian) array to receive
+ *                   the product of \p A_limbs and \p B_limbs.
+ *                   This must be of length \p A_limbs + \p B_limbs.
+ * \param[in] A      The pointer to the (little-endian) array
+ *                   representing the first factor.
+ * \param A_limbs    The number of limbs in \p A.
+ * \param[in] B      The pointer to the (little-endian) array
+ *                   representing the second factor.
+ * \param B_limbs    The number of limbs in \p B.
+ */
+void mbedtls_mpi_core_mul(mbedtls_mpi_uint *X,
+                          const mbedtls_mpi_uint *A, size_t A_limbs,
+                          const mbedtls_mpi_uint *B, size_t B_limbs);
+
+/**
+ * \brief Calculate initialisation value for fast Montgomery modular
+ *        multiplication
+ *
+ * \param[in] N  Little-endian presentation of the modulus. This must have
+ *               at least one limb.
+ *
+ * \return       The initialisation value for fast Montgomery modular multiplication
+ */
+mbedtls_mpi_uint mbedtls_mpi_core_montmul_init(const mbedtls_mpi_uint *N);
+
+/**
+ * \brief Montgomery multiplication: X = A * B * R^-1 mod N (HAC 14.36)
+ *
+ * \p A and \p B must be in canonical form. That is, < \p N.
+ *
+ * \p X may be aliased to \p A or \p N, or even \p B (if \p AN_limbs ==
+ * \p B_limbs) but may not overlap any parameters otherwise.
+ *
+ * \p A and \p B may alias each other, if \p AN_limbs == \p B_limbs. They may
+ * not alias \p N (since they must be in canonical form, they cannot == \p N).
+ *
+ * \param[out]    X         The destination MPI, as a little-endian array of
+ *                          length \p AN_limbs.
+ *                          On successful completion, X contains the result of
+ *                          the multiplication `A * B * R^-1` mod N where
+ *                          `R = 2^(biL*AN_limbs)`.
+ * \param[in]     A         Little-endian presentation of first operand.
+ *                          Must have the same number of limbs as \p N.
+ * \param[in]     B         Little-endian presentation of second operand.
+ * \param[in]     B_limbs   The number of limbs in \p B.
+ *                          Must be <= \p AN_limbs.
+ * \param[in]     N         Little-endian presentation of the modulus.
+ *                          This must be odd, and have exactly the same number
+ *                          of limbs as \p A.
+ *                          It may alias \p X, but must not alias or otherwise
+ *                          overlap any of the other parameters.
+ * \param[in]     AN_limbs  The number of limbs in \p X, \p A and \p N.
+ * \param         mm        The Montgomery constant for \p N: -N^-1 mod 2^biL.
+ *                          This can be calculated by `mbedtls_mpi_core_montmul_init()`.
+ * \param[in,out] T         Temporary storage of size at least 2*AN_limbs+1 limbs.
+ *                          Its initial content is unused and
+ *                          its final content is indeterminate.
+ *                          It must not alias or otherwise overlap any of the
+ *                          other parameters.
+ */
+void mbedtls_mpi_core_montmul(mbedtls_mpi_uint *X,
+                              const mbedtls_mpi_uint *A,
+                              const mbedtls_mpi_uint *B, size_t B_limbs,
+                              const mbedtls_mpi_uint *N, size_t AN_limbs,
+                              mbedtls_mpi_uint mm, mbedtls_mpi_uint *T);
+
+/**
+ * \brief Calculate the square of the Montgomery constant. (Needed
+ *        for conversion and operations in Montgomery form.)
+ *
+ * \param[out] X  A pointer to the result of the calculation of
+ *                the square of the Montgomery constant:
+ *                2^{2*n*biL} mod N.
+ * \param[in]  N  Little-endian presentation of the modulus, which must be odd.
+ *
+ * \return        0 if successful.
+ * \return        #MBEDTLS_ERR_MPI_ALLOC_FAILED if there is not enough space
+ *                to store the value of Montgomery constant squared.
+ * \return        #MBEDTLS_ERR_MPI_DIVISION_BY_ZERO if \p N modulus is zero.
+ * \return        #MBEDTLS_ERR_MPI_NEGATIVE_VALUE if \p N modulus is negative.
+ */
+int mbedtls_mpi_core_get_mont_r2_unsafe(mbedtls_mpi *X,
+                                        const mbedtls_mpi *N);
+
+#if defined(MBEDTLS_TEST_HOOKS)
+/**
+ * Copy an MPI from a table without leaking the index.
+ *
+ * \param dest              The destination buffer. This must point to a writable
+ *                          buffer of at least \p limbs limbs.
+ * \param table             The address of the table. This must point to a readable
+ *                          array of \p count elements of \p limbs limbs each.
+ * \param limbs             The number of limbs in each table entry.
+ * \param count             The number of entries in \p table.
+ * \param index             The (secret) table index to look up. This must be in the
+ *                          range `0 .. count-1`.
+ */
+void mbedtls_mpi_core_ct_uint_table_lookup(mbedtls_mpi_uint *dest,
+                                           const mbedtls_mpi_uint *table,
+                                           size_t limbs,
+                                           size_t count,
+                                           size_t index);
+#endif /* MBEDTLS_TEST_HOOKS */
+
+/**
+ * \brief          Fill an integer with a number of random bytes.
+ *
+ * \param X        The destination MPI.
+ * \param X_limbs  The number of limbs of \p X.
+ * \param bytes    The number of random bytes to generate.
+ * \param f_rng    The RNG function to use. This must not be \c NULL.
+ * \param p_rng    The RNG parameter to be passed to \p f_rng. This may be
+ *                 \c NULL if \p f_rng doesn't need a context argument.
+ *
+ * \return         \c 0 if successful.
+ * \return         #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if \p X does not have
+ *                 enough room for \p bytes bytes.
+ * \return         A negative error code on RNG failure.
+ *
+ * \note           The bytes obtained from the RNG are interpreted
+ *                 as a big-endian representation of an MPI; this can
+ *                 be relevant in applications like deterministic ECDSA.
+ */
+int mbedtls_mpi_core_fill_random(mbedtls_mpi_uint *X, size_t X_limbs,
+                                 size_t bytes,
+                                 int (*f_rng)(void *, unsigned char *, size_t),
+                                 void *p_rng);
+
+/** Generate a random number uniformly in a range.
+ *
+ * This function generates a random number between \p min inclusive and
+ * \p N exclusive.
+ *
+ * The procedure complies with RFC 6979 §3.3 (deterministic ECDSA)
+ * when the RNG is a suitably parametrized instance of HMAC_DRBG
+ * and \p min is \c 1.
+ *
+ * \note           There are `N - min` possible outputs. The lower bound
+ *                 \p min can be reached, but the upper bound \p N cannot.
+ *
+ * \param X        The destination MPI, with \p limbs limbs.
+ *                 It must not be aliased with \p N or otherwise overlap it.
+ * \param min      The minimum value to return.
+ * \param N        The upper bound of the range, exclusive, with \p limbs limbs.
+ *                 In other words, this is one plus the maximum value to return.
+ *                 \p N must be strictly larger than \p min.
+ * \param limbs    The number of limbs of \p N and \p X.
+ *                 This must not be 0.
+ * \param f_rng    The RNG function to use. This must not be \c NULL.
+ * \param p_rng    The RNG parameter to be passed to \p f_rng.
+ *
+ * \return         \c 0 if successful.
+ * \return         #MBEDTLS_ERR_MPI_NOT_ACCEPTABLE if the implementation was
+ *                 unable to find a suitable value within a limited number
+ *                 of attempts. This has a negligible probability if \p N
+ *                 is significantly larger than \p min, which is the case
+ *                 for all usual cryptographic applications.
+ */
+int mbedtls_mpi_core_random(mbedtls_mpi_uint *X,
+                            mbedtls_mpi_uint min,
+                            const mbedtls_mpi_uint *N,
+                            size_t limbs,
+                            int (*f_rng)(void *, unsigned char *, size_t),
+                            void *p_rng);
+
+/**
+ * \brief          Returns the number of limbs of working memory required for
+ *                 a call to `mbedtls_mpi_core_exp_mod()`.
+ *
+ * \note           This will always be at least
+ *                 `mbedtls_mpi_core_montmul_working_limbs(AN_limbs)`,
+ *                 i.e. sufficient for a call to `mbedtls_mpi_core_montmul()`.
+ *
+ * \param AN_limbs The number of limbs in the input `A` and the modulus `N`
+ *                 (they must be the same size) that will be given to
+ *                 `mbedtls_mpi_core_exp_mod()`.
+ * \param E_limbs  The number of limbs in the exponent `E` that will be given
+ *                 to `mbedtls_mpi_core_exp_mod()`.
+ *
+ * \return         The number of limbs of working memory required by
+ *                 `mbedtls_mpi_core_exp_mod()`.
+ */
+size_t mbedtls_mpi_core_exp_mod_working_limbs(size_t AN_limbs, size_t E_limbs);
+
+/**
+ * \brief            Perform a modular exponentiation with secret exponent:
+ *                   X = A^E mod N, where \p A is already in Montgomery form.
+ *
+ * \p X may be aliased to \p A, but not to \p RR or \p E, even if \p E_limbs ==
+ * \p AN_limbs.
+ *
+ * \param[out] X     The destination MPI, as a little endian array of length
+ *                   \p AN_limbs.
+ * \param[in] A      The base MPI, as a little endian array of length \p AN_limbs.
+ *                   Must be in Montgomery form.
+ * \param[in] N      The modulus, as a little endian array of length \p AN_limbs.
+ * \param AN_limbs   The number of limbs in \p X, \p A, \p N, \p RR.
+ * \param[in] E      The exponent, as a little endian array of length \p E_limbs.
+ * \param E_limbs    The number of limbs in \p E.
+ * \param[in] RR     The precomputed residue of 2^{2*biL} modulo N, as a little
+ *                   endian array of length \p AN_limbs.
+ * \param[in,out] T  Temporary storage of at least the number of limbs returned
+ *                   by `mbedtls_mpi_core_exp_mod_working_limbs()`.
+ *                   Its initial content is unused and its final content is
+ *                   indeterminate.
+ *                   It must not alias or otherwise overlap any of the other
+ *                   parameters.
+ *                   It is up to the caller to zeroize \p T when it is no
+ *                   longer needed, and before freeing it if it was dynamically
+ *                   allocated.
+ */
+void mbedtls_mpi_core_exp_mod(mbedtls_mpi_uint *X,
+                              const mbedtls_mpi_uint *A,
+                              const mbedtls_mpi_uint *N, size_t AN_limbs,
+                              const mbedtls_mpi_uint *E, size_t E_limbs,
+                              const mbedtls_mpi_uint *RR,
+                              mbedtls_mpi_uint *T);
+
+/**
+ * \brief Subtract unsigned integer from known-size large unsigned integers.
+ *        Return the borrow.
+ *
+ * \param[out] X    The result of the subtraction.
+ * \param[in] A     The left operand.
+ * \param b         The unsigned scalar to subtract.
+ * \param limbs     Number of limbs of \p X and \p A.
+ *
+ * \return          1 if `A < b`.
+ *                  0 if `A >= b`.
+ */
+mbedtls_mpi_uint mbedtls_mpi_core_sub_int(mbedtls_mpi_uint *X,
+                                          const mbedtls_mpi_uint *A,
+                                          mbedtls_mpi_uint b,
+                                          size_t limbs);
+
+/**
+ * \brief Determine if a given MPI has the value \c 0 in constant time with
+ *        respect to the value (but not with respect to the number of limbs).
+ *
+ * \param[in] A   The MPI to test.
+ * \param limbs   Number of limbs in \p A.
+ *
+ * \return        MBEDTLS_CT_FALSE if `A == 0`
+ *                MBEDTLS_CT_TRUE  if `A != 0`.
+ */
+mbedtls_ct_condition_t mbedtls_mpi_core_check_zero_ct(const mbedtls_mpi_uint *A,
+                                                      size_t limbs);
+
+/**
+ * \brief          Returns the number of limbs of working memory required for
+ *                 a call to `mbedtls_mpi_core_montmul()`.
+ *
+ * \param AN_limbs The number of limbs in the input `A` and the modulus `N`
+ *                 (they must be the same size) that will be given to
+ *                 `mbedtls_mpi_core_montmul()` or one of the other functions
+ *                 that specifies this as the amount of working memory needed.
+ *
+ * \return         The number of limbs of working memory required by
+ *                 `mbedtls_mpi_core_montmul()` (or other similar function).
+ */
+static inline size_t mbedtls_mpi_core_montmul_working_limbs(size_t AN_limbs)
+{
+    return 2 * AN_limbs + 1;
+}
+
+/** Convert an MPI into Montgomery form.
+ *
+ * \p X may be aliased to \p A, but may not otherwise overlap it.
+ *
+ * \p X may not alias \p N (it is in canonical form, so must be strictly less
+ * than \p N). Nor may it alias or overlap \p rr (this is unlikely to be
+ * required in practice.)
+ *
+ * This function is a thin wrapper around `mbedtls_mpi_core_montmul()` that is
+ * an alternative to calling `mbedtls_mpi_mod_raw_to_mont_rep()` when we
+ * don't want to allocate memory.
+ *
+ * \param[out]    X         The result of the conversion.
+ *                          Must have the same number of limbs as \p A.
+ * \param[in]     A         The MPI to convert into Montgomery form.
+ *                          Must have the same number of limbs as the modulus.
+ * \param[in]     N         The address of the modulus, which gives the size of
+ *                          the base `R` = 2^(biL*N->limbs).
+ * \param[in]     AN_limbs  The number of limbs in \p X, \p A, \p N and \p rr.
+ * \param         mm        The Montgomery constant for \p N: -N^-1 mod 2^biL.
+ *                          This can be determined by calling
+ *                          `mbedtls_mpi_core_montmul_init()`.
+ * \param[in]     rr        The residue for `2^{2*n*biL} mod N`.
+ * \param[in,out] T         Temporary storage of size at least
+ *                          `mbedtls_mpi_core_montmul_working_limbs(AN_limbs)`
+ *                          limbs.
+ *                          Its initial content is unused and
+ *                          its final content is indeterminate.
+ *                          It must not alias or otherwise overlap any of the
+ *                          other parameters.
+ */
+void mbedtls_mpi_core_to_mont_rep(mbedtls_mpi_uint *X,
+                                  const mbedtls_mpi_uint *A,
+                                  const mbedtls_mpi_uint *N,
+                                  size_t AN_limbs,
+                                  mbedtls_mpi_uint mm,
+                                  const mbedtls_mpi_uint *rr,
+                                  mbedtls_mpi_uint *T);
+
+/** Convert an MPI from Montgomery form.
+ *
+ * \p X may be aliased to \p A, but may not otherwise overlap it.
+ *
+ * \p X may not alias \p N (it is in canonical form, so must be strictly less
+ * than \p N).
+ *
+ * This function is a thin wrapper around `mbedtls_mpi_core_montmul()` that is
+ * an alternative to calling `mbedtls_mpi_mod_raw_from_mont_rep()` when we
+ * don't want to allocate memory.
+ *
+ * \param[out]    X         The result of the conversion.
+ *                          Must have the same number of limbs as \p A.
+ * \param[in]     A         The MPI to convert from Montgomery form.
+ *                          Must have the same number of limbs as the modulus.
+ * \param[in]     N         The address of the modulus, which gives the size of
+ *                          the base `R` = 2^(biL*N->limbs).
+ * \param[in]     AN_limbs  The number of limbs in \p X, \p A and \p N.
+ * \param         mm        The Montgomery constant for \p N: -N^-1 mod 2^biL.
+ *                          This can be determined by calling
+ *                          `mbedtls_mpi_core_montmul_init()`.
+ * \param[in,out] T         Temporary storage of size at least
+ *                          `mbedtls_mpi_core_montmul_working_limbs(AN_limbs)`
+ *                          limbs.
+ *                          Its initial content is unused and
+ *                          its final content is indeterminate.
+ *                          It must not alias or otherwise overlap any of the
+ *                          other parameters.
+ */
+void mbedtls_mpi_core_from_mont_rep(mbedtls_mpi_uint *X,
+                                    const mbedtls_mpi_uint *A,
+                                    const mbedtls_mpi_uint *N,
+                                    size_t AN_limbs,
+                                    mbedtls_mpi_uint mm,
+                                    mbedtls_mpi_uint *T);
+
+#endif /* MBEDTLS_BIGNUM_CORE_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/bignum_mod.c b/tf-psa-crypto/drivers/builtin/src/bignum_mod.c
new file mode 100644
index 0000000..dfd332a
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/bignum_mod.c
@@ -0,0 +1,394 @@
+/**
+ *  Modular bignum functions
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_BIGNUM_C) && defined(MBEDTLS_ECP_WITH_MPI_UINT)
+
+#include <string.h>
+
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+#include "mbedtls/bignum.h"
+
+#include "mbedtls/platform.h"
+
+#include "bignum_core.h"
+#include "bignum_mod.h"
+#include "bignum_mod_raw.h"
+#include "constant_time_internal.h"
+
+int mbedtls_mpi_mod_residue_setup(mbedtls_mpi_mod_residue *r,
+                                  const mbedtls_mpi_mod_modulus *N,
+                                  mbedtls_mpi_uint *p,
+                                  size_t p_limbs)
+{
+    if (p_limbs != N->limbs || !mbedtls_mpi_core_lt_ct(p, N->p, N->limbs)) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    r->limbs = N->limbs;
+    r->p = p;
+
+    return 0;
+}
+
+void mbedtls_mpi_mod_residue_release(mbedtls_mpi_mod_residue *r)
+{
+    if (r == NULL) {
+        return;
+    }
+
+    r->limbs = 0;
+    r->p = NULL;
+}
+
+void mbedtls_mpi_mod_modulus_init(mbedtls_mpi_mod_modulus *N)
+{
+    if (N == NULL) {
+        return;
+    }
+
+    N->p = NULL;
+    N->limbs = 0;
+    N->bits = 0;
+    N->int_rep = MBEDTLS_MPI_MOD_REP_INVALID;
+}
+
+void mbedtls_mpi_mod_modulus_free(mbedtls_mpi_mod_modulus *N)
+{
+    if (N == NULL) {
+        return;
+    }
+
+    switch (N->int_rep) {
+        case MBEDTLS_MPI_MOD_REP_MONTGOMERY:
+            if (N->rep.mont.rr != NULL) {
+                mbedtls_zeroize_and_free((mbedtls_mpi_uint *) N->rep.mont.rr,
+                                         N->limbs * sizeof(mbedtls_mpi_uint));
+                N->rep.mont.rr = NULL;
+            }
+            N->rep.mont.mm = 0;
+            break;
+        case MBEDTLS_MPI_MOD_REP_OPT_RED:
+            N->rep.ored.modp = NULL;
+            break;
+        case MBEDTLS_MPI_MOD_REP_INVALID:
+            break;
+    }
+
+    N->p = NULL;
+    N->limbs = 0;
+    N->bits = 0;
+    N->int_rep = MBEDTLS_MPI_MOD_REP_INVALID;
+}
+
+static int set_mont_const_square(const mbedtls_mpi_uint **X,
+                                 const mbedtls_mpi_uint *A,
+                                 size_t limbs)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_mpi N;
+    mbedtls_mpi RR;
+    *X = NULL;
+
+    mbedtls_mpi_init(&N);
+    mbedtls_mpi_init(&RR);
+
+    if (A == NULL || limbs == 0 || limbs >= (MBEDTLS_MPI_MAX_LIMBS / 2) - 2) {
+        goto cleanup;
+    }
+
+    if (mbedtls_mpi_grow(&N, limbs)) {
+        goto cleanup;
+    }
+
+    memcpy(N.p, A, sizeof(mbedtls_mpi_uint) * limbs);
+
+    ret = mbedtls_mpi_core_get_mont_r2_unsafe(&RR, &N);
+
+    if (ret == 0) {
+        *X = RR.p;
+        RR.p = NULL;
+    }
+
+cleanup:
+    mbedtls_mpi_free(&N);
+    mbedtls_mpi_free(&RR);
+    ret = (ret != 0) ? MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED : 0;
+    return ret;
+}
+
+static inline void standard_modulus_setup(mbedtls_mpi_mod_modulus *N,
+                                          const mbedtls_mpi_uint *p,
+                                          size_t p_limbs,
+                                          mbedtls_mpi_mod_rep_selector int_rep)
+{
+    N->p = p;
+    N->limbs = p_limbs;
+    N->bits = mbedtls_mpi_core_bitlen(p, p_limbs);
+    N->int_rep = int_rep;
+}
+
+int mbedtls_mpi_mod_modulus_setup(mbedtls_mpi_mod_modulus *N,
+                                  const mbedtls_mpi_uint *p,
+                                  size_t p_limbs)
+{
+    int ret = 0;
+    standard_modulus_setup(N, p, p_limbs, MBEDTLS_MPI_MOD_REP_MONTGOMERY);
+    N->rep.mont.mm = mbedtls_mpi_core_montmul_init(N->p);
+    ret = set_mont_const_square(&N->rep.mont.rr, N->p, N->limbs);
+
+    if (ret != 0) {
+        mbedtls_mpi_mod_modulus_free(N);
+    }
+
+    return ret;
+}
+
+int mbedtls_mpi_mod_optred_modulus_setup(mbedtls_mpi_mod_modulus *N,
+                                         const mbedtls_mpi_uint *p,
+                                         size_t p_limbs,
+                                         mbedtls_mpi_modp_fn modp)
+{
+    standard_modulus_setup(N, p, p_limbs, MBEDTLS_MPI_MOD_REP_OPT_RED);
+    N->rep.ored.modp = modp;
+    return 0;
+}
+
+int mbedtls_mpi_mod_mul(mbedtls_mpi_mod_residue *X,
+                        const mbedtls_mpi_mod_residue *A,
+                        const mbedtls_mpi_mod_residue *B,
+                        const mbedtls_mpi_mod_modulus *N)
+{
+    if (N->limbs == 0) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    if (X->limbs != N->limbs || A->limbs != N->limbs || B->limbs != N->limbs) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    mbedtls_mpi_uint *T = mbedtls_calloc(N->limbs * 2 + 1, ciL);
+    if (T == NULL) {
+        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+    }
+
+    mbedtls_mpi_mod_raw_mul(X->p, A->p, B->p, N, T);
+
+    mbedtls_free(T);
+
+    return 0;
+}
+
+int mbedtls_mpi_mod_sub(mbedtls_mpi_mod_residue *X,
+                        const mbedtls_mpi_mod_residue *A,
+                        const mbedtls_mpi_mod_residue *B,
+                        const mbedtls_mpi_mod_modulus *N)
+{
+    if (X->limbs != N->limbs || A->limbs != N->limbs || B->limbs != N->limbs) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    mbedtls_mpi_mod_raw_sub(X->p, A->p, B->p, N);
+
+    return 0;
+}
+
+static int mbedtls_mpi_mod_inv_mont(mbedtls_mpi_mod_residue *X,
+                                    const mbedtls_mpi_mod_residue *A,
+                                    const mbedtls_mpi_mod_modulus *N,
+                                    mbedtls_mpi_uint *working_memory)
+{
+    /* Input already in Montgomery form, so there's little to do */
+    mbedtls_mpi_mod_raw_inv_prime(X->p, A->p,
+                                  N->p, N->limbs,
+                                  N->rep.mont.rr,
+                                  working_memory);
+    return 0;
+}
+
+static int mbedtls_mpi_mod_inv_non_mont(mbedtls_mpi_mod_residue *X,
+                                        const mbedtls_mpi_mod_residue *A,
+                                        const mbedtls_mpi_mod_modulus *N,
+                                        mbedtls_mpi_uint *working_memory)
+{
+    /* Need to convert input into Montgomery form */
+
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    mbedtls_mpi_mod_modulus Nmont;
+    mbedtls_mpi_mod_modulus_init(&Nmont);
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_modulus_setup(&Nmont, N->p, N->limbs));
+
+    /* We'll use X->p to hold the Montgomery form of the input A->p */
+    mbedtls_mpi_core_to_mont_rep(X->p, A->p, Nmont.p, Nmont.limbs,
+                                 Nmont.rep.mont.mm, Nmont.rep.mont.rr,
+                                 working_memory);
+
+    mbedtls_mpi_mod_raw_inv_prime(X->p, X->p,
+                                  Nmont.p, Nmont.limbs,
+                                  Nmont.rep.mont.rr,
+                                  working_memory);
+
+    /* And convert back from Montgomery form */
+
+    mbedtls_mpi_core_from_mont_rep(X->p, X->p, Nmont.p, Nmont.limbs,
+                                   Nmont.rep.mont.mm, working_memory);
+
+cleanup:
+    mbedtls_mpi_mod_modulus_free(&Nmont);
+    return ret;
+}
+
+int mbedtls_mpi_mod_inv(mbedtls_mpi_mod_residue *X,
+                        const mbedtls_mpi_mod_residue *A,
+                        const mbedtls_mpi_mod_modulus *N)
+{
+    if (X->limbs != N->limbs || A->limbs != N->limbs) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    /* Zero has the same value regardless of Montgomery form or not */
+    if (mbedtls_mpi_core_check_zero_ct(A->p, A->limbs) == 0) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    size_t working_limbs =
+        mbedtls_mpi_mod_raw_inv_prime_working_limbs(N->limbs);
+
+    mbedtls_mpi_uint *working_memory = mbedtls_calloc(working_limbs,
+                                                      sizeof(mbedtls_mpi_uint));
+    if (working_memory == NULL) {
+        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+    }
+
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    switch (N->int_rep) {
+        case MBEDTLS_MPI_MOD_REP_MONTGOMERY:
+            ret = mbedtls_mpi_mod_inv_mont(X, A, N, working_memory);
+            break;
+        case MBEDTLS_MPI_MOD_REP_OPT_RED:
+            ret = mbedtls_mpi_mod_inv_non_mont(X, A, N, working_memory);
+            break;
+        default:
+            ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+            break;
+    }
+
+    mbedtls_zeroize_and_free(working_memory,
+                             working_limbs * sizeof(mbedtls_mpi_uint));
+
+    return ret;
+}
+
+int mbedtls_mpi_mod_add(mbedtls_mpi_mod_residue *X,
+                        const mbedtls_mpi_mod_residue *A,
+                        const mbedtls_mpi_mod_residue *B,
+                        const mbedtls_mpi_mod_modulus *N)
+{
+    if (X->limbs != N->limbs || A->limbs != N->limbs || B->limbs != N->limbs) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    mbedtls_mpi_mod_raw_add(X->p, A->p, B->p, N);
+
+    return 0;
+}
+
+int mbedtls_mpi_mod_random(mbedtls_mpi_mod_residue *X,
+                           mbedtls_mpi_uint min,
+                           const mbedtls_mpi_mod_modulus *N,
+                           int (*f_rng)(void *, unsigned char *, size_t),
+                           void *p_rng)
+{
+    if (X->limbs != N->limbs) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+    return mbedtls_mpi_mod_raw_random(X->p, min, N, f_rng, p_rng);
+}
+
+int mbedtls_mpi_mod_read(mbedtls_mpi_mod_residue *r,
+                         const mbedtls_mpi_mod_modulus *N,
+                         const unsigned char *buf,
+                         size_t buflen,
+                         mbedtls_mpi_mod_ext_rep ext_rep)
+{
+    int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+
+    /* Do our best to check if r and m have been set up */
+    if (r->limbs == 0 || N->limbs == 0) {
+        goto cleanup;
+    }
+    if (r->limbs != N->limbs) {
+        goto cleanup;
+    }
+
+    ret = mbedtls_mpi_mod_raw_read(r->p, N, buf, buflen, ext_rep);
+    if (ret != 0) {
+        goto cleanup;
+    }
+
+    r->limbs = N->limbs;
+
+    ret = mbedtls_mpi_mod_raw_canonical_to_modulus_rep(r->p, N);
+
+cleanup:
+    return ret;
+}
+
+int mbedtls_mpi_mod_write(const mbedtls_mpi_mod_residue *r,
+                          const mbedtls_mpi_mod_modulus *N,
+                          unsigned char *buf,
+                          size_t buflen,
+                          mbedtls_mpi_mod_ext_rep ext_rep)
+{
+    /* Do our best to check if r and m have been set up */
+    if (r->limbs == 0 || N->limbs == 0) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+    if (r->limbs != N->limbs) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_mpi_uint *working_memory = r->p;
+    size_t working_memory_len = sizeof(mbedtls_mpi_uint) * r->limbs;
+
+    if (N->int_rep == MBEDTLS_MPI_MOD_REP_MONTGOMERY) {
+
+        working_memory = mbedtls_calloc(r->limbs, sizeof(mbedtls_mpi_uint));
+
+        if (working_memory == NULL) {
+            ret = MBEDTLS_ERR_MPI_ALLOC_FAILED;
+            goto cleanup;
+        }
+
+        memcpy(working_memory, r->p, working_memory_len);
+
+        ret = mbedtls_mpi_mod_raw_from_mont_rep(working_memory, N);
+        if (ret != 0) {
+            goto cleanup;
+        }
+    }
+
+    ret = mbedtls_mpi_mod_raw_write(working_memory, N, buf, buflen, ext_rep);
+
+cleanup:
+
+    if (N->int_rep == MBEDTLS_MPI_MOD_REP_MONTGOMERY &&
+        working_memory != NULL) {
+
+        mbedtls_zeroize_and_free(working_memory, working_memory_len);
+    }
+
+    return ret;
+}
+
+#endif /* MBEDTLS_BIGNUM_C && MBEDTLS_ECP_WITH_MPI_UINT */
diff --git a/tf-psa-crypto/drivers/builtin/src/bignum_mod.h b/tf-psa-crypto/drivers/builtin/src/bignum_mod.h
new file mode 100644
index 0000000..963d888
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/bignum_mod.h
@@ -0,0 +1,452 @@
+/**
+ *  Modular bignum functions
+ *
+ * This module implements operations on integers modulo some fixed modulus.
+ *
+ * The functions in this module obey the following conventions unless
+ * explicitly indicated otherwise:
+ *
+ * - **Modulus parameters**: the modulus is passed as a pointer to a structure
+ *   of type #mbedtls_mpi_mod_modulus. The structure must be set up with an
+ *   array of limbs storing the bignum value of the modulus. The modulus must
+ *   be odd and is assumed to have no leading zeroes. The modulus is usually
+ *   named \c N and is usually input-only. Functions which take a parameter
+ *   of type \c const #mbedtls_mpi_mod_modulus* must not modify its value.
+ * - **Bignum parameters**: Bignums are passed as pointers to an array of
+ *   limbs or to a #mbedtls_mpi_mod_residue structure. A limb has the type
+ *   #mbedtls_mpi_uint. Residues must be initialized before use, and must be
+ *   associated with the modulus \c N. Unless otherwise specified:
+ *     - Bignum parameters called \c A, \c B, ... are inputs and are not
+ *       modified by the function. Functions which take a parameter of
+ *       type \c const #mbedtls_mpi_mod_residue* must not modify its value.
+ *     - Bignum parameters called \c X, \c Y, ... are outputs or input-output.
+ *       The initial bignum value of output-only parameters is ignored, but
+ *       they must be set up and associated with the modulus \c N. Some
+ *       functions (typically constant-flow) require that the limbs in an
+ *       output residue are initialized.
+ *     - Bignum parameters called \c p are inputs used to set up a modulus or
+ *       residue. These must be pointers to an array of limbs.
+ *     - \c T is a temporary storage area. The initial content of such a
+ *       parameter is ignored and the final content is unspecified.
+ *     - Some functions use different names, such as \c r for the residue.
+ * - **Bignum sizes**: bignum sizes are always expressed in limbs. Both
+ *   #mbedtls_mpi_mod_modulus and #mbedtls_mpi_mod_residue have a \c limbs
+ *   member storing its size. All bignum parameters must have the same
+ *   number of limbs as the modulus. All bignum sizes must be at least 1 and
+ *   must be significantly less than #SIZE_MAX. The behavior if a size is 0 is
+ *   undefined.
+ * - **Bignum representation**: the representation of inputs and outputs is
+ *   specified by the \c int_rep field of the modulus.
+ * - **Parameter ordering**: for bignum parameters, outputs come before inputs.
+ *   The modulus is passed after residues. Temporaries come last.
+ * - **Aliasing**: in general, output bignums may be aliased to one or more
+ *   inputs. Modulus values may not be aliased to any other parameter. Outputs
+ *   may not be aliased to one another. Temporaries may not be aliased to any
+ *   other parameter.
+ * - **Overlap**: apart from aliasing of residue pointers (where two residue
+ *   arguments are equal pointers), overlap is not supported and may result
+ *   in undefined behavior.
+ * - **Error handling**: functions generally check compatibility of input
+ *   sizes. Most functions will not check that input values are in canonical
+ *   form (i.e. that \c A < \c N), this is only checked during setup of a
+ *   residue structure.
+ * - **Modular representatives**: all functions expect inputs to be in the
+ *   range [0, \c N - 1] and guarantee outputs in the range [0, \c N - 1].
+ *   Residues are set up with an associated modulus, and operations are only
+ *   guaranteed to work if the modulus is associated with all residue
+ *   parameters. If a residue is passed with a modulus other than the one it
+ *   is associated with, then it may be out of range. If an input is out of
+ *   range, outputs are fully unspecified, though bignum values out of range
+ *   should not cause buffer overflows (beware that this is not extensively
+ *   tested).
+ */
+
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_BIGNUM_MOD_H
+#define MBEDTLS_BIGNUM_MOD_H
+
+#include "common.h"
+
+#if defined(MBEDTLS_BIGNUM_C)
+#include "mbedtls/bignum.h"
+#endif
+
+/** How residues associated with a modulus are represented.
+ *
+ * This also determines which fields of the modulus structure are valid and
+ * what their contents are (see #mbedtls_mpi_mod_modulus).
+ */
+typedef enum {
+    /** Representation not chosen (makes the modulus structure invalid). */
+    MBEDTLS_MPI_MOD_REP_INVALID    = 0,
+    /* Skip 1 as it is slightly easier to accidentally pass to functions. */
+    /** Montgomery representation. */
+    MBEDTLS_MPI_MOD_REP_MONTGOMERY = 2,
+    /* Optimised reduction available. This indicates a coordinate modulus (P)
+     * and one or more of the following have been configured:
+     * - A nist curve (MBEDTLS_ECP_DP_SECPXXXR1_ENABLED) & MBEDTLS_ECP_NIST_OPTIM.
+     * - A Kobliz Curve.
+     * - A Fast Reduction Curve CURVE25519 or CURVE448. */
+    MBEDTLS_MPI_MOD_REP_OPT_RED,
+} mbedtls_mpi_mod_rep_selector;
+
+/* Make mbedtls_mpi_mod_rep_selector and mbedtls_mpi_mod_ext_rep disjoint to
+ * make it easier to catch when they are accidentally swapped. */
+typedef enum {
+    MBEDTLS_MPI_MOD_EXT_REP_INVALID = 0,
+    MBEDTLS_MPI_MOD_EXT_REP_LE      = 8,
+    MBEDTLS_MPI_MOD_EXT_REP_BE
+} mbedtls_mpi_mod_ext_rep;
+
+typedef struct {
+    mbedtls_mpi_uint *p;
+    size_t limbs;
+} mbedtls_mpi_mod_residue;
+
+typedef struct {
+    mbedtls_mpi_uint const *rr;  /* The residue for 2^{2*n*biL} mod N */
+    mbedtls_mpi_uint mm;         /* Montgomery const for -N^{-1} mod 2^{ciL} */
+} mbedtls_mpi_mont_struct;
+
+typedef int (*mbedtls_mpi_modp_fn)(mbedtls_mpi_uint *X, size_t X_limbs);
+
+typedef struct {
+    mbedtls_mpi_modp_fn modp;    /* The optimised reduction function pointer */
+} mbedtls_mpi_opt_red_struct;
+
+typedef struct {
+    const mbedtls_mpi_uint *p;
+    size_t limbs;                            // number of limbs
+    size_t bits;                             // bitlen of p
+    mbedtls_mpi_mod_rep_selector int_rep;    // selector to signal the active member of the union
+    union rep {
+        /* if int_rep == #MBEDTLS_MPI_MOD_REP_MONTGOMERY */
+        mbedtls_mpi_mont_struct mont;
+        /* if int_rep == #MBEDTLS_MPI_MOD_REP_OPT_RED */
+        mbedtls_mpi_opt_red_struct ored;
+    } rep;
+} mbedtls_mpi_mod_modulus;
+
+/** Setup a residue structure.
+ *
+ * The residue will be set up with the buffer \p p and modulus \p N.
+ *
+ * The memory pointed to by \p p will be used by the resulting residue structure.
+ * The value at the pointed-to memory will be the initial value of \p r and must
+ * hold a value that is less than the modulus. This value will be used as-is
+ * and interpreted according to the value of the `N->int_rep` field.
+ *
+ * The modulus \p N will be the modulus associated with \p r. The residue \p r
+ * should only be used in operations where the modulus is \p N.
+ *
+ * \param[out] r    The address of the residue to setup.
+ * \param[in] N     The address of the modulus related to \p r.
+ * \param[in] p     The address of the limb array containing the value of \p r.
+ *                  The memory pointed to by \p p will be used by \p r and must
+ *                  not be modified in any way until after
+ *                  mbedtls_mpi_mod_residue_release() is called. The data
+ *                  pointed to by \p p must be less than the modulus (the value
+ *                  pointed to by `N->p`) and already in the representation
+ *                  indicated by `N->int_rep`.
+ * \param p_limbs   The number of limbs of \p p. Must be the same as the number
+ *                  of limbs in the modulus \p N.
+ *
+ * \return      \c 0 if successful.
+ * \return      #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if \p p_limbs is less than the
+ *              limbs in \p N or if \p p is not less than \p N.
+ */
+int mbedtls_mpi_mod_residue_setup(mbedtls_mpi_mod_residue *r,
+                                  const mbedtls_mpi_mod_modulus *N,
+                                  mbedtls_mpi_uint *p,
+                                  size_t p_limbs);
+
+/** Unbind elements of a residue structure.
+ *
+ * This function removes the reference to the limb array that was passed to
+ * mbedtls_mpi_mod_residue_setup() to make it safe to free or use again.
+ *
+ * This function invalidates \p r and it must not be used until after
+ * mbedtls_mpi_mod_residue_setup() is called on it again.
+ *
+ * \param[out] r     The address of residue to release.
+ */
+void mbedtls_mpi_mod_residue_release(mbedtls_mpi_mod_residue *r);
+
+/** Initialize a modulus structure.
+ *
+ * \param[out] N     The address of the modulus structure to initialize.
+ */
+void mbedtls_mpi_mod_modulus_init(mbedtls_mpi_mod_modulus *N);
+
+/** Setup a modulus structure.
+ *
+ * \param[out] N    The address of the modulus structure to populate.
+ * \param[in] p     The address of the limb array storing the value of \p N.
+ *                  The memory pointed to by \p p will be used by \p N and must
+ *                  not be modified in any way until after
+ *                  mbedtls_mpi_mod_modulus_free() is called.
+ * \param p_limbs   The number of limbs of \p p.
+ *
+ * \return      \c 0 if successful.
+ */
+int mbedtls_mpi_mod_modulus_setup(mbedtls_mpi_mod_modulus *N,
+                                  const mbedtls_mpi_uint *p,
+                                  size_t p_limbs);
+
+/** Setup an optimised-reduction compatible modulus structure.
+ *
+ * \param[out] N    The address of the modulus structure to populate.
+ * \param[in] p     The address of the limb array storing the value of \p N.
+ *                  The memory pointed to by \p p will be used by \p N and must
+ *                  not be modified in any way until after
+ *                  mbedtls_mpi_mod_modulus_free() is called.
+ * \param p_limbs   The number of limbs of \p p.
+ * \param modp      A pointer to the optimised reduction function to use. \p p.
+ *
+ * \return      \c 0 if successful.
+ */
+int mbedtls_mpi_mod_optred_modulus_setup(mbedtls_mpi_mod_modulus *N,
+                                         const mbedtls_mpi_uint *p,
+                                         size_t p_limbs,
+                                         mbedtls_mpi_modp_fn modp);
+
+/** Free elements of a modulus structure.
+ *
+ * This function frees any memory allocated by mbedtls_mpi_mod_modulus_setup().
+ *
+ * \warning This function does not free the limb array passed to
+ *          mbedtls_mpi_mod_modulus_setup() only removes the reference to it,
+ *          making it safe to free or to use it again.
+ *
+ * \param[in,out] N     The address of the modulus structure to free.
+ */
+void mbedtls_mpi_mod_modulus_free(mbedtls_mpi_mod_modulus *N);
+
+/** \brief  Multiply two residues, returning the residue modulo the specified
+ *          modulus.
+ *
+ * \note Currently handles the case when `N->int_rep` is
+ * MBEDTLS_MPI_MOD_REP_MONTGOMERY.
+ *
+ * The size of the operation is determined by \p N. \p A, \p B and \p X must
+ * all be associated with the modulus \p N and must all have the same number
+ * of limbs as \p N.
+ *
+ * \p X may be aliased to \p A or \p B, or even both, but may not overlap
+ * either otherwise. They may not alias \p N (since they must be in canonical
+ * form, they cannot == \p N).
+ *
+ * \param[out] X        The address of the result MPI. Must have the same
+ *                      number of limbs as \p N.
+ *                      On successful completion, \p X contains the result of
+ *                      the multiplication `A * B * R^-1` mod N where
+ *                      `R = 2^(biL * N->limbs)`.
+ * \param[in]  A        The address of the first MPI.
+ * \param[in]  B        The address of the second MPI.
+ * \param[in]  N        The address of the modulus. Used to perform a modulo
+ *                      operation on the result of the multiplication.
+ *
+ * \return      \c 0 if successful.
+ * \return      #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if all the parameters do not
+ *              have the same number of limbs or \p N is invalid.
+ * \return      #MBEDTLS_ERR_MPI_ALLOC_FAILED on memory-allocation failure.
+ */
+int mbedtls_mpi_mod_mul(mbedtls_mpi_mod_residue *X,
+                        const mbedtls_mpi_mod_residue *A,
+                        const mbedtls_mpi_mod_residue *B,
+                        const mbedtls_mpi_mod_modulus *N);
+
+/**
+ * \brief Perform a fixed-size modular subtraction.
+ *
+ * Calculate `A - B modulo N`.
+ *
+ * \p A, \p B and \p X must all have the same number of limbs as \p N.
+ *
+ * \p X may be aliased to \p A or \p B, or even both, but may not overlap
+ * either otherwise.
+ *
+ * \note This function does not check that \p A or \p B are in canonical
+ *       form (that is, are < \p N) - that will have been done by
+ *       mbedtls_mpi_mod_residue_setup().
+ *
+ * \param[out] X    The address of the result MPI. Must be initialized.
+ *                  Must have the same number of limbs as the modulus \p N.
+ * \param[in]  A    The address of the first MPI.
+ * \param[in]  B    The address of the second MPI.
+ * \param[in]  N    The address of the modulus. Used to perform a modulo
+ *                  operation on the result of the subtraction.
+ *
+ * \return          \c 0 if successful.
+ * \return          #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if the given MPIs do not
+ *                  have the correct number of limbs.
+ */
+int mbedtls_mpi_mod_sub(mbedtls_mpi_mod_residue *X,
+                        const mbedtls_mpi_mod_residue *A,
+                        const mbedtls_mpi_mod_residue *B,
+                        const mbedtls_mpi_mod_modulus *N);
+
+/**
+ * \brief Perform modular inversion of an MPI with respect to a modulus \p N.
+ *
+ * \p A and \p X must be associated with the modulus \p N and will therefore
+ * have the same number of limbs as \p N.
+ *
+ * \p X may be aliased to \p A.
+ *
+ * \warning  Currently only supports prime moduli, but does not check for them.
+ *
+ * \param[out] X   The modular inverse of \p A with respect to \p N.
+ * \param[in] A    The number to calculate the modular inverse of.
+ *                 Must not be 0.
+ * \param[in] N    The modulus to use.
+ *
+ * \return         \c 0 if successful.
+ * \return         #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if \p A and \p N do not
+ *                 have the same number of limbs.
+ * \return         #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if \p A is zero.
+ * \return         #MBEDTLS_ERR_MPI_ALLOC_FAILED if couldn't allocate enough
+ *                 memory (needed for conversion to and from Mongtomery form
+ *                 when not in Montgomery form already, and for temporary use
+ *                 by the inversion calculation itself).
+ */
+
+int mbedtls_mpi_mod_inv(mbedtls_mpi_mod_residue *X,
+                        const mbedtls_mpi_mod_residue *A,
+                        const mbedtls_mpi_mod_modulus *N);
+/**
+ * \brief Perform a fixed-size modular addition.
+ *
+ * Calculate `A + B modulo N`.
+ *
+ * \p A, \p B and \p X must all be associated with the modulus \p N and must
+ * all have the same number of limbs as \p N.
+ *
+ * \p X may be aliased to \p A or \p B, or even both, but may not overlap
+ * either otherwise.
+ *
+ * \note This function does not check that \p A or \p B are in canonical
+ *       form (that is, are < \p N) - that will have been done by
+ *       mbedtls_mpi_mod_residue_setup().
+ *
+ * \param[out] X    The address of the result residue. Must be initialized.
+ *                  Must have the same number of limbs as the modulus \p N.
+ * \param[in]  A    The address of the first input residue.
+ * \param[in]  B    The address of the second input residue.
+ * \param[in]  N    The address of the modulus. Used to perform a modulo
+ *                  operation on the result of the addition.
+ *
+ * \return          \c 0 if successful.
+ * \return          #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if the given MPIs do not
+ *                  have the correct number of limbs.
+ */
+int mbedtls_mpi_mod_add(mbedtls_mpi_mod_residue *X,
+                        const mbedtls_mpi_mod_residue *A,
+                        const mbedtls_mpi_mod_residue *B,
+                        const mbedtls_mpi_mod_modulus *N);
+
+/** Generate a random number uniformly in a range.
+ *
+ * This function generates a random number between \p min inclusive and
+ * \p N exclusive.
+ *
+ * The procedure complies with RFC 6979 §3.3 (deterministic ECDSA)
+ * when the RNG is a suitably parametrized instance of HMAC_DRBG
+ * and \p min is \c 1.
+ *
+ * \note           There are `N - min` possible outputs. The lower bound
+ *                 \p min can be reached, but the upper bound \p N cannot.
+ *
+ * \param X        The destination residue.
+ * \param min      The minimum value to return. It must be strictly smaller
+ *                 than \b N.
+ * \param N        The modulus.
+ *                 This is the upper bound of the output range, exclusive.
+ * \param f_rng    The RNG function to use. This must not be \c NULL.
+ * \param p_rng    The RNG parameter to be passed to \p f_rng.
+ *
+ * \return         \c 0 if successful.
+ * \return         #MBEDTLS_ERR_MPI_NOT_ACCEPTABLE if the implementation was
+ *                 unable to find a suitable value within a limited number
+ *                 of attempts. This has a negligible probability if \p N
+ *                 is significantly larger than \p min, which is the case
+ *                 for all usual cryptographic applications.
+ */
+int mbedtls_mpi_mod_random(mbedtls_mpi_mod_residue *X,
+                           mbedtls_mpi_uint min,
+                           const mbedtls_mpi_mod_modulus *N,
+                           int (*f_rng)(void *, unsigned char *, size_t),
+                           void *p_rng);
+
+/** Read a residue from a byte buffer.
+ *
+ * The residue will be automatically converted to the internal representation
+ * based on the value of the `N->int_rep` field.
+ *
+ * The modulus \p N will be the modulus associated with \p r. The residue \p r
+ * should only be used in operations where the modulus is \p N or a modulus
+ * equivalent to \p N (in the sense that all their fields or memory pointed by
+ * their fields hold the same value).
+ *
+ * \param[out] r    The address of the residue. It must have exactly the same
+ *                  number of limbs as the modulus \p N.
+ * \param[in] N     The address of the modulus.
+ * \param[in] buf   The input buffer to import from.
+ * \param buflen    The length in bytes of \p buf.
+ * \param ext_rep   The endianness of the number in the input buffer.
+ *
+ * \return       \c 0 if successful.
+ * \return       #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p r isn't
+ *               large enough to hold the value in \p buf.
+ * \return       #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if \p ext_rep
+ *               is invalid or the value in the buffer is not less than \p N.
+ */
+int mbedtls_mpi_mod_read(mbedtls_mpi_mod_residue *r,
+                         const mbedtls_mpi_mod_modulus *N,
+                         const unsigned char *buf,
+                         size_t buflen,
+                         mbedtls_mpi_mod_ext_rep ext_rep);
+
+/** Write a residue into a byte buffer.
+ *
+ * The modulus \p N must be the modulus associated with \p r (see
+ * mbedtls_mpi_mod_residue_setup() and mbedtls_mpi_mod_read()).
+ *
+ * The residue will be automatically converted from the internal representation
+ * based on the value of `N->int_rep` field.
+ *
+ * \warning     If the buffer is smaller than `N->bits`, the number of
+ *              leading zeroes is leaked through timing. If \p r is
+ *              secret, the caller must ensure that \p buflen is at least
+ *              (`N->bits`+7)/8.
+ *
+ * \param[in] r     The address of the residue. It must have the same number of
+ *                  limbs as the modulus \p N. (\p r is an input parameter, but
+ *                  its value will be modified during execution and restored
+ *                  before the function returns.)
+ * \param[in] N     The address of the modulus associated with \p r.
+ * \param[out] buf  The output buffer to export to.
+ * \param buflen    The length in bytes of \p buf.
+ * \param ext_rep   The endianness in which the number should be written into
+ *                  the output buffer.
+ *
+ * \return       \c 0 if successful.
+ * \return       #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p buf isn't
+ *               large enough to hold the value of \p r (without leading
+ *               zeroes).
+ * \return       #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if \p ext_rep is invalid.
+ * \return       #MBEDTLS_ERR_MPI_ALLOC_FAILED if couldn't allocate enough
+ *               memory for conversion. Can occur only for moduli with
+ *               MBEDTLS_MPI_MOD_REP_MONTGOMERY.
+ */
+int mbedtls_mpi_mod_write(const mbedtls_mpi_mod_residue *r,
+                          const mbedtls_mpi_mod_modulus *N,
+                          unsigned char *buf,
+                          size_t buflen,
+                          mbedtls_mpi_mod_ext_rep ext_rep);
+
+#endif /* MBEDTLS_BIGNUM_MOD_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/bignum_mod_raw.c b/tf-psa-crypto/drivers/builtin/src/bignum_mod_raw.c
new file mode 100644
index 0000000..5343bc6
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/bignum_mod_raw.c
@@ -0,0 +1,276 @@
+/*
+ *  Low-level modular bignum functions
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_BIGNUM_C) && defined(MBEDTLS_ECP_WITH_MPI_UINT)
+
+#include <string.h>
+
+#include "mbedtls/error.h"
+#include "mbedtls/platform_util.h"
+
+#include "mbedtls/platform.h"
+
+#include "bignum_core.h"
+#include "bignum_mod_raw.h"
+#include "bignum_mod.h"
+#include "constant_time_internal.h"
+
+#include "bignum_mod_raw_invasive.h"
+
+void mbedtls_mpi_mod_raw_cond_assign(mbedtls_mpi_uint *X,
+                                     const mbedtls_mpi_uint *A,
+                                     const mbedtls_mpi_mod_modulus *N,
+                                     unsigned char assign)
+{
+    mbedtls_mpi_core_cond_assign(X, A, N->limbs, mbedtls_ct_bool(assign));
+}
+
+void mbedtls_mpi_mod_raw_cond_swap(mbedtls_mpi_uint *X,
+                                   mbedtls_mpi_uint *Y,
+                                   const mbedtls_mpi_mod_modulus *N,
+                                   unsigned char swap)
+{
+    mbedtls_mpi_core_cond_swap(X, Y, N->limbs, mbedtls_ct_bool(swap));
+}
+
+int mbedtls_mpi_mod_raw_read(mbedtls_mpi_uint *X,
+                             const mbedtls_mpi_mod_modulus *N,
+                             const unsigned char *input,
+                             size_t input_length,
+                             mbedtls_mpi_mod_ext_rep ext_rep)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    switch (ext_rep) {
+        case MBEDTLS_MPI_MOD_EXT_REP_LE:
+            ret = mbedtls_mpi_core_read_le(X, N->limbs,
+                                           input, input_length);
+            break;
+        case MBEDTLS_MPI_MOD_EXT_REP_BE:
+            ret = mbedtls_mpi_core_read_be(X, N->limbs,
+                                           input, input_length);
+            break;
+        default:
+            return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    if (ret != 0) {
+        goto cleanup;
+    }
+
+    if (!mbedtls_mpi_core_lt_ct(X, N->p, N->limbs)) {
+        ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+        goto cleanup;
+    }
+
+cleanup:
+
+    return ret;
+}
+
+int mbedtls_mpi_mod_raw_write(const mbedtls_mpi_uint *A,
+                              const mbedtls_mpi_mod_modulus *N,
+                              unsigned char *output,
+                              size_t output_length,
+                              mbedtls_mpi_mod_ext_rep ext_rep)
+{
+    switch (ext_rep) {
+        case MBEDTLS_MPI_MOD_EXT_REP_LE:
+            return mbedtls_mpi_core_write_le(A, N->limbs,
+                                             output, output_length);
+        case MBEDTLS_MPI_MOD_EXT_REP_BE:
+            return mbedtls_mpi_core_write_be(A, N->limbs,
+                                             output, output_length);
+        default:
+            return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+}
+
+void mbedtls_mpi_mod_raw_sub(mbedtls_mpi_uint *X,
+                             const mbedtls_mpi_uint *A,
+                             const mbedtls_mpi_uint *B,
+                             const mbedtls_mpi_mod_modulus *N)
+{
+    mbedtls_mpi_uint c = mbedtls_mpi_core_sub(X, A, B, N->limbs);
+
+    (void) mbedtls_mpi_core_add_if(X, N->p, N->limbs, (unsigned) c);
+}
+
+MBEDTLS_STATIC_TESTABLE
+void mbedtls_mpi_mod_raw_fix_quasi_reduction(mbedtls_mpi_uint *X,
+                                             const mbedtls_mpi_mod_modulus *N)
+{
+    mbedtls_mpi_uint c = mbedtls_mpi_core_sub(X, X, N->p, N->limbs);
+
+    (void) mbedtls_mpi_core_add_if(X, N->p, N->limbs, (unsigned) c);
+}
+
+
+void mbedtls_mpi_mod_raw_mul(mbedtls_mpi_uint *X,
+                             const mbedtls_mpi_uint *A,
+                             const mbedtls_mpi_uint *B,
+                             const mbedtls_mpi_mod_modulus *N,
+                             mbedtls_mpi_uint *T)
+{
+    /* Standard (A * B) multiplication stored into pre-allocated T
+     * buffer of fixed limb size of (2N + 1).
+     *
+     * The space may not not fully filled by when
+     * MBEDTLS_MPI_MOD_REP_OPT_RED is used. */
+    const size_t T_limbs = BITS_TO_LIMBS(N->bits) * 2;
+    switch (N->int_rep) {
+        case MBEDTLS_MPI_MOD_REP_MONTGOMERY:
+            mbedtls_mpi_core_montmul(X, A, B, N->limbs, N->p, N->limbs,
+                                     N->rep.mont.mm, T);
+            break;
+        case MBEDTLS_MPI_MOD_REP_OPT_RED:
+            mbedtls_mpi_core_mul(T, A, N->limbs, B, N->limbs);
+
+            /* Optimised Reduction */
+            (*N->rep.ored.modp)(T, T_limbs);
+
+            /* Convert back to canonical representation */
+            mbedtls_mpi_mod_raw_fix_quasi_reduction(T, N);
+            memcpy(X, T, N->limbs * sizeof(mbedtls_mpi_uint));
+            break;
+        default:
+            break;
+    }
+
+}
+
+size_t mbedtls_mpi_mod_raw_inv_prime_working_limbs(size_t AN_limbs)
+{
+    /* mbedtls_mpi_mod_raw_inv_prime() needs a temporary for the exponent,
+     * which will be the same size as the modulus and input (AN_limbs),
+     * and additional space to pass to mbedtls_mpi_core_exp_mod(). */
+    return AN_limbs +
+           mbedtls_mpi_core_exp_mod_working_limbs(AN_limbs, AN_limbs);
+}
+
+void mbedtls_mpi_mod_raw_inv_prime(mbedtls_mpi_uint *X,
+                                   const mbedtls_mpi_uint *A,
+                                   const mbedtls_mpi_uint *N,
+                                   size_t AN_limbs,
+                                   const mbedtls_mpi_uint *RR,
+                                   mbedtls_mpi_uint *T)
+{
+    /* Inversion by power: g^|G| = 1 => g^(-1) = g^(|G|-1), and
+     *                       |G| = N - 1, so we want
+     *                 g^(|G|-1) = g^(N - 2)
+     */
+
+    /* Use the first AN_limbs of T to hold N - 2 */
+    mbedtls_mpi_uint *Nminus2 = T;
+    (void) mbedtls_mpi_core_sub_int(Nminus2, N, 2, AN_limbs);
+
+    /* Rest of T is given to exp_mod for its working space */
+    mbedtls_mpi_core_exp_mod(X,
+                             A, N, AN_limbs, Nminus2, AN_limbs,
+                             RR, T + AN_limbs);
+}
+
+void mbedtls_mpi_mod_raw_add(mbedtls_mpi_uint *X,
+                             const mbedtls_mpi_uint *A,
+                             const mbedtls_mpi_uint *B,
+                             const mbedtls_mpi_mod_modulus *N)
+{
+    mbedtls_mpi_uint carry, borrow;
+    carry  = mbedtls_mpi_core_add(X, A, B, N->limbs);
+    borrow = mbedtls_mpi_core_sub(X, X, N->p, N->limbs);
+    (void) mbedtls_mpi_core_add_if(X, N->p, N->limbs, (unsigned) (carry ^ borrow));
+}
+
+int mbedtls_mpi_mod_raw_canonical_to_modulus_rep(
+    mbedtls_mpi_uint *X,
+    const mbedtls_mpi_mod_modulus *N)
+{
+    switch (N->int_rep) {
+        case MBEDTLS_MPI_MOD_REP_MONTGOMERY:
+            return mbedtls_mpi_mod_raw_to_mont_rep(X, N);
+        case MBEDTLS_MPI_MOD_REP_OPT_RED:
+            return 0;
+        default:
+            return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+}
+
+int mbedtls_mpi_mod_raw_modulus_to_canonical_rep(
+    mbedtls_mpi_uint *X,
+    const mbedtls_mpi_mod_modulus *N)
+{
+    switch (N->int_rep) {
+        case MBEDTLS_MPI_MOD_REP_MONTGOMERY:
+            return mbedtls_mpi_mod_raw_from_mont_rep(X, N);
+        case MBEDTLS_MPI_MOD_REP_OPT_RED:
+            return 0;
+        default:
+            return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+}
+
+int mbedtls_mpi_mod_raw_random(mbedtls_mpi_uint *X,
+                               mbedtls_mpi_uint min,
+                               const mbedtls_mpi_mod_modulus *N,
+                               int (*f_rng)(void *, unsigned char *, size_t),
+                               void *p_rng)
+{
+    int ret = mbedtls_mpi_core_random(X, min, N->p, N->limbs, f_rng, p_rng);
+    if (ret != 0) {
+        return ret;
+    }
+    return mbedtls_mpi_mod_raw_canonical_to_modulus_rep(X, N);
+}
+
+int mbedtls_mpi_mod_raw_to_mont_rep(mbedtls_mpi_uint *X,
+                                    const mbedtls_mpi_mod_modulus *N)
+{
+    mbedtls_mpi_uint *T;
+    const size_t t_limbs = mbedtls_mpi_core_montmul_working_limbs(N->limbs);
+
+    if ((T = (mbedtls_mpi_uint *) mbedtls_calloc(t_limbs, ciL)) == NULL) {
+        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+    }
+
+    mbedtls_mpi_core_to_mont_rep(X, X, N->p, N->limbs,
+                                 N->rep.mont.mm, N->rep.mont.rr, T);
+
+    mbedtls_zeroize_and_free(T, t_limbs * ciL);
+    return 0;
+}
+
+int mbedtls_mpi_mod_raw_from_mont_rep(mbedtls_mpi_uint *X,
+                                      const mbedtls_mpi_mod_modulus *N)
+{
+    const size_t t_limbs = mbedtls_mpi_core_montmul_working_limbs(N->limbs);
+    mbedtls_mpi_uint *T;
+
+    if ((T = (mbedtls_mpi_uint *) mbedtls_calloc(t_limbs, ciL)) == NULL) {
+        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+    }
+
+    mbedtls_mpi_core_from_mont_rep(X, X, N->p, N->limbs, N->rep.mont.mm, T);
+
+    mbedtls_zeroize_and_free(T, t_limbs * ciL);
+    return 0;
+}
+
+void mbedtls_mpi_mod_raw_neg(mbedtls_mpi_uint *X,
+                             const mbedtls_mpi_uint *A,
+                             const mbedtls_mpi_mod_modulus *N)
+{
+    mbedtls_mpi_core_sub(X, N->p, A, N->limbs);
+
+    /* If A=0 initially, then X=N now. Detect this by
+     * subtracting N and catching the carry. */
+    mbedtls_mpi_uint borrow = mbedtls_mpi_core_sub(X, X, N->p, N->limbs);
+    (void) mbedtls_mpi_core_add_if(X, N->p, N->limbs, (unsigned) borrow);
+}
+
+#endif /* MBEDTLS_BIGNUM_C && MBEDTLS_ECP_WITH_MPI_UINT */
diff --git a/tf-psa-crypto/drivers/builtin/src/bignum_mod_raw.h b/tf-psa-crypto/drivers/builtin/src/bignum_mod_raw.h
new file mode 100644
index 0000000..7bb4ca3
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/bignum_mod_raw.h
@@ -0,0 +1,416 @@
+/**
+ *  Low-level modular bignum functions
+ *
+ *  This interface should only be used by the higher-level modular bignum
+ *  module (bignum_mod.c) and the ECP module (ecp.c, ecp_curves.c). All other
+ *  modules should use the high-level modular bignum interface (bignum_mod.h)
+ *  or the legacy bignum interface (bignum.h).
+ *
+ * This is a low-level interface to operations on integers modulo which
+ * has no protection against passing invalid arguments such as arrays of
+ * the wrong size. The functions in bignum_mod.h provide a higher-level
+ * interface that includes protections against accidental misuse, at the
+ * expense of code size and sometimes more cumbersome memory management.
+ *
+ * The functions in this module obey the following conventions unless
+ * explicitly indicated otherwise:
+ * - **Modulus parameters**: the modulus is passed as a pointer to a structure
+ *   of type #mbedtls_mpi_mod_modulus. The structure must be set up with an
+ *   array of limbs storing the bignum value of the modulus. The modulus must
+ *   be odd and is assumed to have no leading zeroes. The modulus is usually
+ *   named \c N and is usually input-only.
+ * - **Bignum parameters**: Bignums are passed as pointers to an array of
+ *   limbs. A limb has the type #mbedtls_mpi_uint. Unless otherwise specified:
+ *     - Bignum parameters called \c A, \c B, ... are inputs, and are not
+ *       modified by the function.
+ *     - Bignum parameters called \c X, \c Y are outputs or input-output.
+ *       The initial content of output-only parameters is ignored.
+ *     - \c T is a temporary storage area. The initial content of such a
+ *       parameter is ignored and the final content is unspecified.
+ * - **Bignum sizes**: bignum sizes are usually expressed by the \c limbs
+ *   member of the modulus argument. All bignum parameters must have the same
+ *   number of limbs as the modulus. All bignum sizes must be at least 1 and
+ *   must be significantly less than #SIZE_MAX. The behavior if a size is 0 is
+ *   undefined.
+ * - **Bignum representation**: the representation of inputs and outputs is
+ *   specified by the \c int_rep field of the modulus for arithmetic
+ *   functions. Utility functions may allow for different representation.
+ * - **Parameter ordering**: for bignum parameters, outputs come before inputs.
+ *   The modulus is passed after other bignum input parameters. Temporaries
+ *   come last.
+ * - **Aliasing**: in general, output bignums may be aliased to one or more
+ *   inputs. Modulus values may not be aliased to any other parameter. Outputs
+ *   may not be aliased to one another. Temporaries may not be aliased to any
+ *   other parameter.
+ * - **Overlap**: apart from aliasing of limb array pointers (where two
+ *   arguments are equal pointers), overlap is not supported and may result
+ *   in undefined behavior.
+ * - **Error handling**: This is a low-level module. Functions generally do not
+ *   try to protect against invalid arguments such as nonsensical sizes or
+ *   null pointers. Note that passing bignums with a different size than the
+ *   modulus may lead to buffer overflows. Some functions which allocate
+ *   memory or handle reading/writing of bignums will return an error if
+ *   memory allocation fails or if buffer sizes are invalid.
+ * - **Modular representatives**: all functions expect inputs to be in the
+ *   range [0, \c N - 1] and guarantee outputs in the range [0, \c N - 1]. If
+ *   an input is out of range, outputs are fully unspecified, though bignum
+ *   values out of range should not cause buffer overflows (beware that this is
+ *   not extensively tested).
+ */
+
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_BIGNUM_MOD_RAW_H
+#define MBEDTLS_BIGNUM_MOD_RAW_H
+
+#include "common.h"
+
+#if defined(MBEDTLS_BIGNUM_C)
+#include "mbedtls/bignum.h"
+#endif
+
+#include "bignum_mod.h"
+
+/**
+ * \brief   Perform a safe conditional copy of an MPI which doesn't reveal
+ *          whether the assignment was done or not.
+ *
+ * The size to copy is determined by \p N.
+ *
+ * \param[out] X        The address of the destination MPI.
+ *                      This must be initialized. Must have enough limbs to
+ *                      store the full value of \p A.
+ * \param[in]  A        The address of the source MPI. This must be initialized.
+ * \param[in]  N        The address of the modulus related to \p X and \p A.
+ * \param      assign   The condition deciding whether to perform the
+ *                      assignment or not. Must be either 0 or 1:
+ *                      * \c 1: Perform the assignment `X = A`.
+ *                      * \c 0: Keep the original value of \p X.
+ *
+ * \note           This function avoids leaking any information about whether
+ *                 the assignment was done or not.
+ *
+ * \warning        If \p assign is neither 0 nor 1, the result of this function
+ *                 is indeterminate, and the resulting value in \p X might be
+ *                 neither its original value nor the value in \p A.
+ */
+void mbedtls_mpi_mod_raw_cond_assign(mbedtls_mpi_uint *X,
+                                     const mbedtls_mpi_uint *A,
+                                     const mbedtls_mpi_mod_modulus *N,
+                                     unsigned char assign);
+
+/**
+ * \brief   Perform a safe conditional swap of two MPIs which doesn't reveal
+ *          whether the swap was done or not.
+ *
+ * The size to swap is determined by \p N.
+ *
+ * \param[in,out] X     The address of the first MPI. This must be initialized.
+ * \param[in,out] Y     The address of the second MPI. This must be initialized.
+ * \param[in]     N     The address of the modulus related to \p X and \p Y.
+ * \param         swap  The condition deciding whether to perform
+ *                      the swap or not. Must be either 0 or 1:
+ *                      * \c 1: Swap the values of \p X and \p Y.
+ *                      * \c 0: Keep the original values of \p X and \p Y.
+ *
+ * \note           This function avoids leaking any information about whether
+ *                 the swap was done or not.
+ *
+ * \warning        If \p swap is neither 0 nor 1, the result of this function
+ *                 is indeterminate, and both \p X and \p Y might end up with
+ *                 values different to either of the original ones.
+ */
+void mbedtls_mpi_mod_raw_cond_swap(mbedtls_mpi_uint *X,
+                                   mbedtls_mpi_uint *Y,
+                                   const mbedtls_mpi_mod_modulus *N,
+                                   unsigned char swap);
+
+/** Import X from unsigned binary data.
+ *
+ * The MPI needs to have enough limbs to store the full value (including any
+ * most significant zero bytes in the input).
+ *
+ * \param[out] X        The address of the MPI. The size is determined by \p N.
+ *                      (In particular, it must have at least as many limbs as
+ *                      the modulus \p N.)
+ * \param[in] N         The address of the modulus related to \p X.
+ * \param[in] input     The input buffer to import from.
+ * \param input_length  The length in bytes of \p input.
+ * \param ext_rep       The endianness of the number in the input buffer.
+ *
+ * \return       \c 0 if successful.
+ * \return       #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p X isn't
+ *               large enough to hold the value in \p input.
+ * \return       #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if the external representation
+ *               of \p N is invalid or \p X is not less than \p N.
+ */
+int mbedtls_mpi_mod_raw_read(mbedtls_mpi_uint *X,
+                             const mbedtls_mpi_mod_modulus *N,
+                             const unsigned char *input,
+                             size_t input_length,
+                             mbedtls_mpi_mod_ext_rep ext_rep);
+
+/** Export A into unsigned binary data.
+ *
+ * \param[in] A         The address of the MPI. The size is determined by \p N.
+ *                      (In particular, it must have at least as many limbs as
+ *                      the modulus \p N.)
+ * \param[in] N         The address of the modulus related to \p A.
+ * \param[out] output   The output buffer to export to.
+ * \param output_length The length in bytes of \p output.
+ * \param ext_rep       The endianness in which the number should be written into the output buffer.
+ *
+ * \return       \c 0 if successful.
+ * \return       #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p output isn't
+ *               large enough to hold the value of \p A.
+ * \return       #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if the external representation
+ *               of \p N is invalid.
+ */
+int mbedtls_mpi_mod_raw_write(const mbedtls_mpi_uint *A,
+                              const mbedtls_mpi_mod_modulus *N,
+                              unsigned char *output,
+                              size_t output_length,
+                              mbedtls_mpi_mod_ext_rep ext_rep);
+
+/** \brief  Subtract two MPIs, returning the residue modulo the specified
+ *          modulus.
+ *
+ * The size of the operation is determined by \p N. \p A and \p B must have
+ * the same number of limbs as \p N.
+ *
+ * \p X may be aliased to \p A or \p B, or even both, but may not overlap
+ * either otherwise.
+ *
+ * \param[out] X        The address of the result MPI.
+ *                      This must be initialized. Must have enough limbs to
+ *                      store the full value of the result.
+ * \param[in]  A        The address of the first MPI. This must be initialized.
+ * \param[in]  B        The address of the second MPI. This must be initialized.
+ * \param[in]  N        The address of the modulus. Used to perform a modulo
+ *                      operation on the result of the subtraction.
+ */
+void mbedtls_mpi_mod_raw_sub(mbedtls_mpi_uint *X,
+                             const mbedtls_mpi_uint *A,
+                             const mbedtls_mpi_uint *B,
+                             const mbedtls_mpi_mod_modulus *N);
+
+/** \brief  Multiply two MPIs, returning the residue modulo the specified
+ *          modulus.
+ *
+ * \note Currently handles the case when `N->int_rep` is
+ * MBEDTLS_MPI_MOD_REP_MONTGOMERY.
+ *
+ * The size of the operation is determined by \p N. \p A, \p B and \p X must
+ * all be associated with the modulus \p N and must all have the same number
+ * of limbs as \p N.
+ *
+ * \p X may be aliased to \p A or \p B, or even both, but may not overlap
+ * either otherwise. They may not alias \p N (since they must be in canonical
+ * form, they cannot == \p N).
+ *
+ * \param[out] X        The address of the result MPI. Must have the same
+ *                      number of limbs as \p N.
+ *                      On successful completion, \p X contains the result of
+ *                      the multiplication `A * B * R^-1` mod N where
+ *                      `R = 2^(biL * N->limbs)`.
+ * \param[in]  A        The address of the first MPI.
+ * \param[in]  B        The address of the second MPI.
+ * \param[in]  N        The address of the modulus. Used to perform a modulo
+ *                      operation on the result of the multiplication.
+ * \param[in,out] T     Temporary storage of size at least 2 * N->limbs + 1
+ *                      limbs. Its initial content is unused and
+ *                      its final content is indeterminate.
+ *                      It must not alias or otherwise overlap any of the
+ *                      other parameters.
+ */
+void mbedtls_mpi_mod_raw_mul(mbedtls_mpi_uint *X,
+                             const mbedtls_mpi_uint *A,
+                             const mbedtls_mpi_uint *B,
+                             const mbedtls_mpi_mod_modulus *N,
+                             mbedtls_mpi_uint *T);
+
+/**
+ * \brief          Returns the number of limbs of working memory required for
+ *                 a call to `mbedtls_mpi_mod_raw_inv_prime()`.
+ *
+ * \note           This will always be at least
+ *                 `mbedtls_mpi_core_montmul_working_limbs(AN_limbs)`,
+ *                 i.e. sufficient for a call to `mbedtls_mpi_core_montmul()`.
+ *
+ * \param AN_limbs The number of limbs in the input `A` and the modulus `N`
+ *                 (they must be the same size) that will be given to
+ *                 `mbedtls_mpi_mod_raw_inv_prime()`.
+ *
+ * \return         The number of limbs of working memory required by
+ *                 `mbedtls_mpi_mod_raw_inv_prime()`.
+ */
+size_t mbedtls_mpi_mod_raw_inv_prime_working_limbs(size_t AN_limbs);
+
+/**
+ * \brief Perform fixed-width modular inversion of a Montgomery-form MPI with
+ *        respect to a modulus \p N that must be prime.
+ *
+ * \p X may be aliased to \p A, but not to \p N or \p RR.
+ *
+ * \param[out] X     The modular inverse of \p A with respect to \p N.
+ *                   Will be in Montgomery form.
+ * \param[in] A      The number to calculate the modular inverse of.
+ *                   Must be in Montgomery form. Must not be 0.
+ * \param[in] N      The modulus, as a little-endian array of length \p AN_limbs.
+ *                   Must be prime.
+ * \param AN_limbs   The number of limbs in \p A, \p N and \p RR.
+ * \param[in] RR     The precomputed residue of 2^{2*biL} modulo N, as a little-
+ *                   endian array of length \p AN_limbs.
+ * \param[in,out] T  Temporary storage of at least the number of limbs returned
+ *                   by `mbedtls_mpi_mod_raw_inv_prime_working_limbs()`.
+ *                   Its initial content is unused and its final content is
+ *                   indeterminate.
+ *                   It must not alias or otherwise overlap any of the other
+ *                   parameters.
+ *                   It is up to the caller to zeroize \p T when it is no
+ *                   longer needed, and before freeing it if it was dynamically
+ *                   allocated.
+ */
+void mbedtls_mpi_mod_raw_inv_prime(mbedtls_mpi_uint *X,
+                                   const mbedtls_mpi_uint *A,
+                                   const mbedtls_mpi_uint *N,
+                                   size_t AN_limbs,
+                                   const mbedtls_mpi_uint *RR,
+                                   mbedtls_mpi_uint *T);
+
+/**
+ * \brief Perform a known-size modular addition.
+ *
+ * Calculate `A + B modulo N`.
+ *
+ * The number of limbs in each operand, and the result, is given by the
+ * modulus \p N.
+ *
+ * \p X may be aliased to \p A or \p B, or even both, but may not overlap
+ * either otherwise.
+ *
+ * \param[out] X    The result of the modular addition.
+ * \param[in] A     Little-endian presentation of the left operand. This
+ *                  must be smaller than \p N.
+ * \param[in] B     Little-endian presentation of the right operand. This
+ *                  must be smaller than \p N.
+ * \param[in] N     The address of the modulus.
+ */
+void mbedtls_mpi_mod_raw_add(mbedtls_mpi_uint *X,
+                             const mbedtls_mpi_uint *A,
+                             const mbedtls_mpi_uint *B,
+                             const mbedtls_mpi_mod_modulus *N);
+
+/** Convert an MPI from canonical representation (little-endian limb array)
+ * to the representation associated with the modulus.
+ *
+ * \param[in,out] X The limb array to convert.
+ *                  It must have as many limbs as \p N.
+ *                  It is converted in place.
+ *                  If this function returns an error, the content of \p X
+ *                  is unspecified.
+ * \param[in] N     The modulus structure.
+ *
+ * \return          \c 0 if successful.
+ *                  Otherwise an \c MBEDTLS_ERR_MPI_xxx error code.
+ */
+int mbedtls_mpi_mod_raw_canonical_to_modulus_rep(
+    mbedtls_mpi_uint *X,
+    const mbedtls_mpi_mod_modulus *N);
+
+/** Convert an MPI from the representation associated with the modulus
+ * to canonical representation (little-endian limb array).
+ *
+ * \param[in,out] X The limb array to convert.
+ *                  It must have as many limbs as \p N.
+ *                  It is converted in place.
+ *                  If this function returns an error, the content of \p X
+ *                  is unspecified.
+ * \param[in] N     The modulus structure.
+ *
+ * \return          \c 0 if successful.
+ *                  Otherwise an \c MBEDTLS_ERR_MPI_xxx error code.
+ */
+int mbedtls_mpi_mod_raw_modulus_to_canonical_rep(
+    mbedtls_mpi_uint *X,
+    const mbedtls_mpi_mod_modulus *N);
+
+/** Generate a random number uniformly in a range.
+ *
+ * This function generates a random number between \p min inclusive and
+ * \p N exclusive.
+ *
+ * The procedure complies with RFC 6979 §3.3 (deterministic ECDSA)
+ * when the RNG is a suitably parametrized instance of HMAC_DRBG
+ * and \p min is \c 1.
+ *
+ * \note           There are `N - min` possible outputs. The lower bound
+ *                 \p min can be reached, but the upper bound \p N cannot.
+ *
+ * \param X        The destination MPI, in canonical representation modulo \p N.
+ *                 It must not be aliased with \p N or otherwise overlap it.
+ * \param min      The minimum value to return. It must be strictly smaller
+ *                 than \b N.
+ * \param N        The modulus.
+ *                 This is the upper bound of the output range, exclusive.
+ * \param f_rng    The RNG function to use. This must not be \c NULL.
+ * \param p_rng    The RNG parameter to be passed to \p f_rng.
+ *
+ * \return         \c 0 if successful.
+ * \return         #MBEDTLS_ERR_MPI_NOT_ACCEPTABLE if the implementation was
+ *                 unable to find a suitable value within a limited number
+ *                 of attempts. This has a negligible probability if \p N
+ *                 is significantly larger than \p min, which is the case
+ *                 for all usual cryptographic applications.
+ */
+int mbedtls_mpi_mod_raw_random(mbedtls_mpi_uint *X,
+                               mbedtls_mpi_uint min,
+                               const mbedtls_mpi_mod_modulus *N,
+                               int (*f_rng)(void *, unsigned char *, size_t),
+                               void *p_rng);
+
+/** Convert an MPI into Montgomery form.
+ *
+ * \param X      The address of the MPI.
+ *               Must have the same number of limbs as \p N.
+ * \param N      The address of the modulus, which gives the size of
+ *               the base `R` = 2^(biL*N->limbs).
+ *
+ * \return       \c 0 if successful.
+ */
+int mbedtls_mpi_mod_raw_to_mont_rep(mbedtls_mpi_uint *X,
+                                    const mbedtls_mpi_mod_modulus *N);
+
+/** Convert an MPI back from Montgomery representation.
+ *
+ * \param X      The address of the MPI.
+ *               Must have the same number of limbs as \p N.
+ * \param N      The address of the modulus, which gives the size of
+ *               the base `R`= 2^(biL*N->limbs).
+ *
+ * \return       \c 0 if successful.
+ */
+int mbedtls_mpi_mod_raw_from_mont_rep(mbedtls_mpi_uint *X,
+                                      const mbedtls_mpi_mod_modulus *N);
+
+/** \brief  Perform fixed width modular negation.
+ *
+ * The size of the operation is determined by \p N. \p A must have
+ * the same number of limbs as \p N.
+ *
+ * \p X may be aliased to \p A.
+ *
+ * \param[out] X        The result of the modular negation.
+ *                      This must be initialized.
+ * \param[in] A         Little-endian presentation of the input operand. This
+ *                      must be less than or equal to \p N.
+ * \param[in] N         The modulus to use.
+ */
+void mbedtls_mpi_mod_raw_neg(mbedtls_mpi_uint *X,
+                             const mbedtls_mpi_uint *A,
+                             const mbedtls_mpi_mod_modulus *N);
+
+#endif /* MBEDTLS_BIGNUM_MOD_RAW_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/bignum_mod_raw_invasive.h b/tf-psa-crypto/drivers/builtin/src/bignum_mod_raw_invasive.h
new file mode 100644
index 0000000..94a0d06
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/bignum_mod_raw_invasive.h
@@ -0,0 +1,34 @@
+/**
+ * \file bignum_mod_raw_invasive.h
+ *
+ * \brief Function declarations for invasive functions of Low-level
+ *        modular bignum.
+ */
+/**
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_BIGNUM_MOD_RAW_INVASIVE_H
+#define MBEDTLS_BIGNUM_MOD_RAW_INVASIVE_H
+
+#include "common.h"
+#include "mbedtls/bignum.h"
+#include "bignum_mod.h"
+
+#if defined(MBEDTLS_TEST_HOOKS)
+
+/** Convert the result of a quasi-reduction to its canonical representative.
+ *
+ * \param[in,out] X     The address of the MPI to be converted. Must have the
+ *                      same number of limbs as \p N. The input value must
+ *                      be in range 0 <= X < 2N.
+ * \param[in]     N     The address of the modulus.
+ */
+MBEDTLS_STATIC_TESTABLE
+void mbedtls_mpi_mod_raw_fix_quasi_reduction(mbedtls_mpi_uint *X,
+                                             const mbedtls_mpi_mod_modulus *N);
+
+#endif /* MBEDTLS_TEST_HOOKS */
+
+#endif /* MBEDTLS_BIGNUM_MOD_RAW_INVASIVE_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/block_cipher.c b/tf-psa-crypto/drivers/builtin/src/block_cipher.c
new file mode 100644
index 0000000..51cdcdf
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/block_cipher.c
@@ -0,0 +1,207 @@
+/**
+ * \file block_cipher.c
+ *
+ * \brief Lightweight abstraction layer for block ciphers with 128 bit blocks,
+ * for use by the GCM and CCM modules.
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_BLOCK_CIPHER_SOME_PSA)
+#include "psa/crypto.h"
+#include "psa_crypto_core.h"
+#include "psa_util_internal.h"
+#endif
+
+#include "block_cipher_internal.h"
+
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+
+#if defined(MBEDTLS_BLOCK_CIPHER_SOME_PSA)
+static psa_key_type_t psa_key_type_from_block_cipher_id(mbedtls_block_cipher_id_t cipher_id)
+{
+    switch (cipher_id) {
+#if defined(MBEDTLS_BLOCK_CIPHER_AES_VIA_PSA)
+        case MBEDTLS_BLOCK_CIPHER_ID_AES:
+            return PSA_KEY_TYPE_AES;
+#endif
+#if defined(MBEDTLS_BLOCK_CIPHER_ARIA_VIA_PSA)
+        case MBEDTLS_BLOCK_CIPHER_ID_ARIA:
+            return PSA_KEY_TYPE_ARIA;
+#endif
+#if defined(MBEDTLS_BLOCK_CIPHER_CAMELLIA_VIA_PSA)
+        case MBEDTLS_BLOCK_CIPHER_ID_CAMELLIA:
+            return PSA_KEY_TYPE_CAMELLIA;
+#endif
+        default:
+            return PSA_KEY_TYPE_NONE;
+    }
+}
+
+static int mbedtls_cipher_error_from_psa(psa_status_t status)
+{
+    return PSA_TO_MBEDTLS_ERR_LIST(status, psa_to_cipher_errors,
+                                   psa_generic_status_to_mbedtls);
+}
+#endif /* MBEDTLS_BLOCK_CIPHER_SOME_PSA */
+
+void mbedtls_block_cipher_free(mbedtls_block_cipher_context_t *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+#if defined(MBEDTLS_BLOCK_CIPHER_SOME_PSA)
+    if (ctx->engine == MBEDTLS_BLOCK_CIPHER_ENGINE_PSA) {
+        psa_destroy_key(ctx->psa_key_id);
+        return;
+    }
+#endif
+    switch (ctx->id) {
+#if defined(MBEDTLS_AES_C)
+        case MBEDTLS_BLOCK_CIPHER_ID_AES:
+            mbedtls_aes_free(&ctx->ctx.aes);
+            break;
+#endif
+#if defined(MBEDTLS_ARIA_C)
+        case MBEDTLS_BLOCK_CIPHER_ID_ARIA:
+            mbedtls_aria_free(&ctx->ctx.aria);
+            break;
+#endif
+#if defined(MBEDTLS_CAMELLIA_C)
+        case MBEDTLS_BLOCK_CIPHER_ID_CAMELLIA:
+            mbedtls_camellia_free(&ctx->ctx.camellia);
+            break;
+#endif
+        default:
+            break;
+    }
+    ctx->id = MBEDTLS_BLOCK_CIPHER_ID_NONE;
+}
+
+int mbedtls_block_cipher_setup(mbedtls_block_cipher_context_t *ctx,
+                               mbedtls_cipher_id_t cipher_id)
+{
+    ctx->id = (cipher_id == MBEDTLS_CIPHER_ID_AES) ? MBEDTLS_BLOCK_CIPHER_ID_AES :
+              (cipher_id == MBEDTLS_CIPHER_ID_ARIA) ? MBEDTLS_BLOCK_CIPHER_ID_ARIA :
+              (cipher_id == MBEDTLS_CIPHER_ID_CAMELLIA) ? MBEDTLS_BLOCK_CIPHER_ID_CAMELLIA :
+              MBEDTLS_BLOCK_CIPHER_ID_NONE;
+
+#if defined(MBEDTLS_BLOCK_CIPHER_SOME_PSA)
+    psa_key_type_t psa_key_type = psa_key_type_from_block_cipher_id(ctx->id);
+    if (psa_key_type != PSA_KEY_TYPE_NONE &&
+        psa_can_do_cipher(psa_key_type, PSA_ALG_ECB_NO_PADDING)) {
+        ctx->engine = MBEDTLS_BLOCK_CIPHER_ENGINE_PSA;
+        return 0;
+    }
+    ctx->engine = MBEDTLS_BLOCK_CIPHER_ENGINE_LEGACY;
+#endif
+
+    switch (ctx->id) {
+#if defined(MBEDTLS_AES_C)
+        case MBEDTLS_BLOCK_CIPHER_ID_AES:
+            mbedtls_aes_init(&ctx->ctx.aes);
+            return 0;
+#endif
+#if defined(MBEDTLS_ARIA_C)
+        case MBEDTLS_BLOCK_CIPHER_ID_ARIA:
+            mbedtls_aria_init(&ctx->ctx.aria);
+            return 0;
+#endif
+#if defined(MBEDTLS_CAMELLIA_C)
+        case MBEDTLS_BLOCK_CIPHER_ID_CAMELLIA:
+            mbedtls_camellia_init(&ctx->ctx.camellia);
+            return 0;
+#endif
+        default:
+            ctx->id = MBEDTLS_BLOCK_CIPHER_ID_NONE;
+            return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+}
+
+int mbedtls_block_cipher_setkey(mbedtls_block_cipher_context_t *ctx,
+                                const unsigned char *key,
+                                unsigned key_bitlen)
+{
+#if defined(MBEDTLS_BLOCK_CIPHER_SOME_PSA)
+    if (ctx->engine == MBEDTLS_BLOCK_CIPHER_ENGINE_PSA) {
+        psa_key_attributes_t key_attr = PSA_KEY_ATTRIBUTES_INIT;
+        psa_status_t status;
+
+        psa_set_key_type(&key_attr, psa_key_type_from_block_cipher_id(ctx->id));
+        psa_set_key_bits(&key_attr, key_bitlen);
+        psa_set_key_algorithm(&key_attr, PSA_ALG_ECB_NO_PADDING);
+        psa_set_key_usage_flags(&key_attr, PSA_KEY_USAGE_ENCRYPT);
+
+        status = psa_import_key(&key_attr, key, PSA_BITS_TO_BYTES(key_bitlen), &ctx->psa_key_id);
+        if (status != PSA_SUCCESS) {
+            return mbedtls_cipher_error_from_psa(status);
+        }
+        psa_reset_key_attributes(&key_attr);
+
+        return 0;
+    }
+#endif /* MBEDTLS_BLOCK_CIPHER_SOME_PSA */
+
+    switch (ctx->id) {
+#if defined(MBEDTLS_AES_C)
+        case MBEDTLS_BLOCK_CIPHER_ID_AES:
+            return mbedtls_aes_setkey_enc(&ctx->ctx.aes, key, key_bitlen);
+#endif
+#if defined(MBEDTLS_ARIA_C)
+        case MBEDTLS_BLOCK_CIPHER_ID_ARIA:
+            return mbedtls_aria_setkey_enc(&ctx->ctx.aria, key, key_bitlen);
+#endif
+#if defined(MBEDTLS_CAMELLIA_C)
+        case MBEDTLS_BLOCK_CIPHER_ID_CAMELLIA:
+            return mbedtls_camellia_setkey_enc(&ctx->ctx.camellia, key, key_bitlen);
+#endif
+        default:
+            return MBEDTLS_ERR_CIPHER_INVALID_CONTEXT;
+    }
+}
+
+int mbedtls_block_cipher_encrypt(mbedtls_block_cipher_context_t *ctx,
+                                 const unsigned char input[16],
+                                 unsigned char output[16])
+{
+#if defined(MBEDTLS_BLOCK_CIPHER_SOME_PSA)
+    if (ctx->engine == MBEDTLS_BLOCK_CIPHER_ENGINE_PSA) {
+        psa_status_t status;
+        size_t olen;
+
+        status = psa_cipher_encrypt(ctx->psa_key_id, PSA_ALG_ECB_NO_PADDING,
+                                    input, 16, output, 16, &olen);
+        if (status != PSA_SUCCESS) {
+            return mbedtls_cipher_error_from_psa(status);
+        }
+        return 0;
+    }
+#endif /* MBEDTLS_BLOCK_CIPHER_SOME_PSA */
+
+    switch (ctx->id) {
+#if defined(MBEDTLS_AES_C)
+        case MBEDTLS_BLOCK_CIPHER_ID_AES:
+            return mbedtls_aes_crypt_ecb(&ctx->ctx.aes, MBEDTLS_AES_ENCRYPT,
+                                         input, output);
+#endif
+#if defined(MBEDTLS_ARIA_C)
+        case MBEDTLS_BLOCK_CIPHER_ID_ARIA:
+            return mbedtls_aria_crypt_ecb(&ctx->ctx.aria, input, output);
+#endif
+#if defined(MBEDTLS_CAMELLIA_C)
+        case MBEDTLS_BLOCK_CIPHER_ID_CAMELLIA:
+            return mbedtls_camellia_crypt_ecb(&ctx->ctx.camellia,
+                                              MBEDTLS_CAMELLIA_ENCRYPT,
+                                              input, output);
+#endif
+        default:
+            return MBEDTLS_ERR_CIPHER_INVALID_CONTEXT;
+    }
+}
+
+#endif /* MBEDTLS_BLOCK_CIPHER_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/block_cipher_internal.h b/tf-psa-crypto/drivers/builtin/src/block_cipher_internal.h
new file mode 100644
index 0000000..c57338b
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/block_cipher_internal.h
@@ -0,0 +1,99 @@
+/**
+ * \file block_cipher_internal.h
+ *
+ * \brief Lightweight abstraction layer for block ciphers with 128 bit blocks,
+ * for use by the GCM and CCM modules.
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#ifndef MBEDTLS_BLOCK_CIPHER_INTERNAL_H
+#define MBEDTLS_BLOCK_CIPHER_INTERNAL_H
+
+#include "mbedtls/build_info.h"
+
+#include "mbedtls/cipher.h"
+
+#include "mbedtls/block_cipher.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/**
+ * \brief           Initialize the context.
+ *                  This must be the first API call before using the context.
+ *
+ * \param ctx       The context to initialize.
+ */
+static inline void mbedtls_block_cipher_init(mbedtls_block_cipher_context_t *ctx)
+{
+    memset(ctx, 0, sizeof(*ctx));
+}
+
+/**
+ * \brief           Set the block cipher to use with this context.
+ *                  This must be called after mbedtls_block_cipher_init().
+ *
+ * \param ctx       The context to set up.
+ * \param cipher_id The identifier of the cipher to use.
+ *                  This must be either AES, ARIA or Camellia.
+ *                  Warning: this is a ::mbedtls_cipher_id_t,
+ *                  not a ::mbedtls_block_cipher_id_t!
+ *
+ * \retval          \c 0 on success.
+ * \retval          #MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA if \p cipher_id was
+ *                  invalid.
+ */
+int mbedtls_block_cipher_setup(mbedtls_block_cipher_context_t *ctx,
+                               mbedtls_cipher_id_t cipher_id);
+
+/**
+ * \brief           Set the key into the context.
+ *
+ * \param ctx       The context to configure.
+ * \param key       The buffer holding the key material.
+ * \param key_bitlen    The size of the key in bits.
+ *
+ * \retval          \c 0 on success.
+ * \retval          #MBEDTLS_ERR_CIPHER_INVALID_CONTEXT if the context was not
+ *                  properly set up before calling this function.
+ * \retval          One of #MBEDTLS_ERR_AES_INVALID_KEY_LENGTH,
+ *                  #MBEDTLS_ERR_ARIA_BAD_INPUT_DATA,
+ *                  #MBEDTLS_ERR_CAMELLIA_BAD_INPUT_DATA if \p key_bitlen is
+ *                  invalid.
+ */
+int mbedtls_block_cipher_setkey(mbedtls_block_cipher_context_t *ctx,
+                                const unsigned char *key,
+                                unsigned key_bitlen);
+
+/**
+ * \brief           Encrypt one block (16 bytes) with the configured key.
+ *
+ * \param ctx       The context holding the key.
+ * \param input     The buffer holding the input block. Must be 16 bytes.
+ * \param output    The buffer to which the output block will be written.
+ *                  Must be writable and 16 bytes long.
+ *                  This must either not overlap with \p input, or be equal.
+ *
+ * \retval          \c 0 on success.
+ * \retval          #MBEDTLS_ERR_CIPHER_INVALID_CONTEXT if the context was not
+ *                  properly set up before calling this function.
+ * \retval          Another negative value if encryption failed.
+ */
+int mbedtls_block_cipher_encrypt(mbedtls_block_cipher_context_t *ctx,
+                                 const unsigned char input[16],
+                                 unsigned char output[16]);
+/**
+ * \brief           Clear the context.
+ *
+ * \param ctx       The context to clear.
+ */
+void mbedtls_block_cipher_free(mbedtls_block_cipher_context_t *ctx);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* MBEDTLS_BLOCK_CIPHER_INTERNAL_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/bn_mul.h b/tf-psa-crypto/drivers/builtin/src/bn_mul.h
new file mode 100644
index 0000000..0738469
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/bn_mul.h
@@ -0,0 +1,1094 @@
+/**
+ * \file bn_mul.h
+ *
+ * \brief Multi-precision integer library
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ *      Multiply source vector [s] with b, add result
+ *       to destination vector [d] and set carry c.
+ *
+ *      Currently supports:
+ *
+ *         . IA-32 (386+)         . AMD64 / EM64T
+ *         . IA-32 (SSE2)         . Motorola 68000
+ *         . PowerPC, 32-bit      . MicroBlaze
+ *         . PowerPC, 64-bit      . TriCore
+ *         . SPARC v8             . ARM v3+
+ *         . Alpha                . MIPS32
+ *         . C, longlong          . C, generic
+ */
+#ifndef MBEDTLS_BN_MUL_H
+#define MBEDTLS_BN_MUL_H
+
+#include "mbedtls/build_info.h"
+
+#include "mbedtls/bignum.h"
+
+
+/*
+ * Conversion macros for embedded constants:
+ * build lists of mbedtls_mpi_uint's from lists of unsigned char's grouped by 8, 4 or 2
+ */
+#if defined(MBEDTLS_HAVE_INT32)
+
+#define MBEDTLS_BYTES_TO_T_UINT_4(a, b, c, d)               \
+    ((mbedtls_mpi_uint) (a) <<  0) |                        \
+    ((mbedtls_mpi_uint) (b) <<  8) |                        \
+    ((mbedtls_mpi_uint) (c) << 16) |                        \
+    ((mbedtls_mpi_uint) (d) << 24)
+
+#define MBEDTLS_BYTES_TO_T_UINT_2(a, b)                   \
+    MBEDTLS_BYTES_TO_T_UINT_4(a, b, 0, 0)
+
+#define MBEDTLS_BYTES_TO_T_UINT_8(a, b, c, d, e, f, g, h) \
+    MBEDTLS_BYTES_TO_T_UINT_4(a, b, c, d),                \
+    MBEDTLS_BYTES_TO_T_UINT_4(e, f, g, h)
+
+#else /* 64-bits */
+
+#define MBEDTLS_BYTES_TO_T_UINT_8(a, b, c, d, e, f, g, h)   \
+    ((mbedtls_mpi_uint) (a) <<  0) |                        \
+    ((mbedtls_mpi_uint) (b) <<  8) |                        \
+    ((mbedtls_mpi_uint) (c) << 16) |                        \
+    ((mbedtls_mpi_uint) (d) << 24) |                        \
+    ((mbedtls_mpi_uint) (e) << 32) |                        \
+    ((mbedtls_mpi_uint) (f) << 40) |                        \
+    ((mbedtls_mpi_uint) (g) << 48) |                        \
+    ((mbedtls_mpi_uint) (h) << 56)
+
+#define MBEDTLS_BYTES_TO_T_UINT_4(a, b, c, d)             \
+    MBEDTLS_BYTES_TO_T_UINT_8(a, b, c, d, 0, 0, 0, 0)
+
+#define MBEDTLS_BYTES_TO_T_UINT_2(a, b)                   \
+    MBEDTLS_BYTES_TO_T_UINT_8(a, b, 0, 0, 0, 0, 0, 0)
+
+#endif /* bits in mbedtls_mpi_uint */
+
+/* *INDENT-OFF* */
+#if defined(MBEDTLS_HAVE_ASM)
+
+/* armcc5 --gnu defines __GNUC__ but doesn't support GNU's extended asm */
+#if defined(__GNUC__) && \
+    ( !defined(__ARMCC_VERSION) || __ARMCC_VERSION >= 6000000 )
+
+/*
+ * GCC < 5.0 treated the x86 ebx (which is used for the GOT) as a
+ * fixed reserved register when building as PIC, leading to errors
+ * like: bn_mul.h:46:13: error: PIC register clobbered by 'ebx' in 'asm'
+ *
+ * This is fixed by an improved register allocator in GCC 5+. From the
+ * release notes:
+ * Register allocation improvements: Reuse of the PIC hard register,
+ * instead of using a fixed register, was implemented on x86/x86-64
+ * targets. This improves generated PIC code performance as more hard
+ * registers can be used.
+ */
+#if defined(__GNUC__) && __GNUC__ < 5 && defined(__PIC__)
+#define MULADDC_CANNOT_USE_EBX
+#endif
+
+/*
+ * Disable use of the i386 assembly code below if option -O0, to disable all
+ * compiler optimisations, is passed, detected with __OPTIMIZE__
+ * This is done as the number of registers used in the assembly code doesn't
+ * work with the -O0 option.
+ */
+#if defined(__i386__) && defined(__OPTIMIZE__) && !defined(MULADDC_CANNOT_USE_EBX)
+
+#define MULADDC_X1_INIT                     \
+    { mbedtls_mpi_uint t;                   \
+    asm(                                    \
+        "movl   %%ebx, %0           \n\t"   \
+        "movl   %5, %%esi           \n\t"   \
+        "movl   %6, %%edi           \n\t"   \
+        "movl   %7, %%ecx           \n\t"   \
+        "movl   %8, %%ebx           \n\t"
+
+#define MULADDC_X1_CORE                     \
+        "lodsl                      \n\t"   \
+        "mull   %%ebx               \n\t"   \
+        "addl   %%ecx,   %%eax      \n\t"   \
+        "adcl   $0,      %%edx      \n\t"   \
+        "addl   (%%edi), %%eax      \n\t"   \
+        "adcl   $0,      %%edx      \n\t"   \
+        "movl   %%edx,   %%ecx      \n\t"   \
+        "stosl                      \n\t"
+
+#define MULADDC_X1_STOP                                 \
+        "movl   %4, %%ebx       \n\t"                   \
+        "movl   %%ecx, %1       \n\t"                   \
+        "movl   %%edi, %2       \n\t"                   \
+        "movl   %%esi, %3       \n\t"                   \
+        : "=m" (t), "=m" (c), "=m" (d), "=m" (s)        \
+        : "m" (t), "m" (s), "m" (d), "m" (c), "m" (b)   \
+        : "eax", "ebx", "ecx", "edx", "esi", "edi"      \
+    ); }
+
+#if defined(MBEDTLS_HAVE_SSE2)
+
+#define MULADDC_X8_INIT MULADDC_X1_INIT
+
+#define MULADDC_X8_CORE                         \
+        "movd     %%ecx,     %%mm1      \n\t"   \
+        "movd     %%ebx,     %%mm0      \n\t"   \
+        "movd     (%%edi),   %%mm3      \n\t"   \
+        "paddq    %%mm3,     %%mm1      \n\t"   \
+        "movd     (%%esi),   %%mm2      \n\t"   \
+        "pmuludq  %%mm0,     %%mm2      \n\t"   \
+        "movd     4(%%esi),  %%mm4      \n\t"   \
+        "pmuludq  %%mm0,     %%mm4      \n\t"   \
+        "movd     8(%%esi),  %%mm6      \n\t"   \
+        "pmuludq  %%mm0,     %%mm6      \n\t"   \
+        "movd     12(%%esi), %%mm7      \n\t"   \
+        "pmuludq  %%mm0,     %%mm7      \n\t"   \
+        "paddq    %%mm2,     %%mm1      \n\t"   \
+        "movd     4(%%edi),  %%mm3      \n\t"   \
+        "paddq    %%mm4,     %%mm3      \n\t"   \
+        "movd     8(%%edi),  %%mm5      \n\t"   \
+        "paddq    %%mm6,     %%mm5      \n\t"   \
+        "movd     12(%%edi), %%mm4      \n\t"   \
+        "paddq    %%mm4,     %%mm7      \n\t"   \
+        "movd     %%mm1,     (%%edi)    \n\t"   \
+        "movd     16(%%esi), %%mm2      \n\t"   \
+        "pmuludq  %%mm0,     %%mm2      \n\t"   \
+        "psrlq    $32,       %%mm1      \n\t"   \
+        "movd     20(%%esi), %%mm4      \n\t"   \
+        "pmuludq  %%mm0,     %%mm4      \n\t"   \
+        "paddq    %%mm3,     %%mm1      \n\t"   \
+        "movd     24(%%esi), %%mm6      \n\t"   \
+        "pmuludq  %%mm0,     %%mm6      \n\t"   \
+        "movd     %%mm1,     4(%%edi)   \n\t"   \
+        "psrlq    $32,       %%mm1      \n\t"   \
+        "movd     28(%%esi), %%mm3      \n\t"   \
+        "pmuludq  %%mm0,     %%mm3      \n\t"   \
+        "paddq    %%mm5,     %%mm1      \n\t"   \
+        "movd     16(%%edi), %%mm5      \n\t"   \
+        "paddq    %%mm5,     %%mm2      \n\t"   \
+        "movd     %%mm1,     8(%%edi)   \n\t"   \
+        "psrlq    $32,       %%mm1      \n\t"   \
+        "paddq    %%mm7,     %%mm1      \n\t"   \
+        "movd     20(%%edi), %%mm5      \n\t"   \
+        "paddq    %%mm5,     %%mm4      \n\t"   \
+        "movd     %%mm1,     12(%%edi)  \n\t"   \
+        "psrlq    $32,       %%mm1      \n\t"   \
+        "paddq    %%mm2,     %%mm1      \n\t"   \
+        "movd     24(%%edi), %%mm5      \n\t"   \
+        "paddq    %%mm5,     %%mm6      \n\t"   \
+        "movd     %%mm1,     16(%%edi)  \n\t"   \
+        "psrlq    $32,       %%mm1      \n\t"   \
+        "paddq    %%mm4,     %%mm1      \n\t"   \
+        "movd     28(%%edi), %%mm5      \n\t"   \
+        "paddq    %%mm5,     %%mm3      \n\t"   \
+        "movd     %%mm1,     20(%%edi)  \n\t"   \
+        "psrlq    $32,       %%mm1      \n\t"   \
+        "paddq    %%mm6,     %%mm1      \n\t"   \
+        "movd     %%mm1,     24(%%edi)  \n\t"   \
+        "psrlq    $32,       %%mm1      \n\t"   \
+        "paddq    %%mm3,     %%mm1      \n\t"   \
+        "movd     %%mm1,     28(%%edi)  \n\t"   \
+        "addl     $32,       %%edi      \n\t"   \
+        "addl     $32,       %%esi      \n\t"   \
+        "psrlq    $32,       %%mm1      \n\t"   \
+        "movd     %%mm1,     %%ecx      \n\t"
+
+#define MULADDC_X8_STOP                 \
+        "emms                   \n\t"   \
+        "movl   %4, %%ebx       \n\t"   \
+        "movl   %%ecx, %1       \n\t"   \
+        "movl   %%edi, %2       \n\t"   \
+        "movl   %%esi, %3       \n\t"   \
+        : "=m" (t), "=m" (c), "=m" (d), "=m" (s)        \
+        : "m" (t), "m" (s), "m" (d), "m" (c), "m" (b)   \
+        : "eax", "ebx", "ecx", "edx", "esi", "edi"      \
+    ); }                                                \
+
+#endif /* SSE2 */
+
+#endif /* i386 */
+
+#if defined(__amd64__) || defined (__x86_64__)
+
+#define MULADDC_X1_INIT                        \
+    asm(                                    \
+        "xorq   %%r8, %%r8\n"
+
+#define MULADDC_X1_CORE                        \
+        "movq   (%%rsi), %%rax\n"           \
+        "mulq   %%rbx\n"                    \
+        "addq   $8, %%rsi\n"                \
+        "addq   %%rcx, %%rax\n"             \
+        "movq   %%r8, %%rcx\n"              \
+        "adcq   $0, %%rdx\n"                \
+        "nop    \n"                         \
+        "addq   %%rax, (%%rdi)\n"           \
+        "adcq   %%rdx, %%rcx\n"             \
+        "addq   $8, %%rdi\n"
+
+#define MULADDC_X1_STOP                                              \
+        : "+c" (c), "+D" (d), "+S" (s), "+m" (*(uint64_t (*)[16]) d) \
+        : "b" (b), "m" (*(const uint64_t (*)[16]) s)                 \
+        : "rax", "rdx", "r8"                                         \
+    );
+
+#endif /* AMD64 */
+
+// The following assembly code assumes that a pointer will fit in a 64-bit register
+// (including ILP32 __aarch64__ ABIs such as on watchOS, hence the 2^32 - 1)
+#if defined(__aarch64__) && (UINTPTR_MAX == 0xfffffffful || UINTPTR_MAX == 0xfffffffffffffffful)
+
+/*
+ * There are some issues around different compilers requiring different constraint
+ * syntax for updating pointers from assembly code (see notes for
+ * MBEDTLS_ASM_AARCH64_PTR_CONSTRAINT in common.h), especially on aarch64_32 (aka ILP32).
+ *
+ * For this reason we cast the pointers to/from uintptr_t here.
+ */
+#define MULADDC_X1_INIT             \
+    do { uintptr_t muladdc_d = (uintptr_t) d, muladdc_s = (uintptr_t) s; asm(
+
+#define MULADDC_X1_CORE             \
+        "ldr x4, [%x2], #8  \n\t"   \
+        "ldr x5, [%x1]      \n\t"   \
+        "mul x6, x4, %4     \n\t"   \
+        "umulh x7, x4, %4   \n\t"   \
+        "adds x5, x5, x6    \n\t"   \
+        "adc x7, x7, xzr    \n\t"   \
+        "adds x5, x5, %0    \n\t"   \
+        "adc %0, x7, xzr    \n\t"   \
+        "str x5, [%x1], #8  \n\t"
+
+#define MULADDC_X1_STOP                                                 \
+         : "+r" (c),                                                    \
+           "+r" (muladdc_d),                                            \
+           "+r" (muladdc_s),                                            \
+           "+m" (*(uint64_t (*)[16]) d)                                 \
+         : "r" (b), "m" (*(const uint64_t (*)[16]) s)                   \
+         : "x4", "x5", "x6", "x7", "cc"                                 \
+    ); d = (mbedtls_mpi_uint *)muladdc_d; s = (mbedtls_mpi_uint *)muladdc_s; } while (0);
+
+#endif /* Aarch64 */
+
+#if defined(__mc68020__) || defined(__mcpu32__)
+
+#define MULADDC_X1_INIT                 \
+    asm(                                \
+        "movl   %3, %%a2        \n\t"   \
+        "movl   %4, %%a3        \n\t"   \
+        "movl   %5, %%d3        \n\t"   \
+        "movl   %6, %%d2        \n\t"   \
+        "moveq  #0, %%d0        \n\t"
+
+#define MULADDC_X1_CORE                 \
+        "movel  %%a2@+, %%d1    \n\t"   \
+        "mulul  %%d2, %%d4:%%d1 \n\t"   \
+        "addl   %%d3, %%d1      \n\t"   \
+        "addxl  %%d0, %%d4      \n\t"   \
+        "moveq  #0,   %%d3      \n\t"   \
+        "addl   %%d1, %%a3@+    \n\t"   \
+        "addxl  %%d4, %%d3      \n\t"
+
+#define MULADDC_X1_STOP                 \
+        "movl   %%d3, %0        \n\t"   \
+        "movl   %%a3, %1        \n\t"   \
+        "movl   %%a2, %2        \n\t"   \
+        : "=m" (c), "=m" (d), "=m" (s)              \
+        : "m" (s), "m" (d), "m" (c), "m" (b)        \
+        : "d0", "d1", "d2", "d3", "d4", "a2", "a3"  \
+    );
+
+#define MULADDC_X8_INIT MULADDC_X1_INIT
+
+#define MULADDC_X8_CORE                     \
+        "movel  %%a2@+,  %%d1       \n\t"   \
+        "mulul  %%d2,    %%d4:%%d1  \n\t"   \
+        "addxl  %%d3,    %%d1       \n\t"   \
+        "addxl  %%d0,    %%d4       \n\t"   \
+        "addl   %%d1,    %%a3@+     \n\t"   \
+        "movel  %%a2@+,  %%d1       \n\t"   \
+        "mulul  %%d2,    %%d3:%%d1  \n\t"   \
+        "addxl  %%d4,    %%d1       \n\t"   \
+        "addxl  %%d0,    %%d3       \n\t"   \
+        "addl   %%d1,    %%a3@+     \n\t"   \
+        "movel  %%a2@+,  %%d1       \n\t"   \
+        "mulul  %%d2,    %%d4:%%d1  \n\t"   \
+        "addxl  %%d3,    %%d1       \n\t"   \
+        "addxl  %%d0,    %%d4       \n\t"   \
+        "addl   %%d1,    %%a3@+     \n\t"   \
+        "movel  %%a2@+,  %%d1       \n\t"   \
+        "mulul  %%d2,    %%d3:%%d1  \n\t"   \
+        "addxl  %%d4,    %%d1       \n\t"   \
+        "addxl  %%d0,    %%d3       \n\t"   \
+        "addl   %%d1,    %%a3@+     \n\t"   \
+        "movel  %%a2@+,  %%d1       \n\t"   \
+        "mulul  %%d2,    %%d4:%%d1  \n\t"   \
+        "addxl  %%d3,    %%d1       \n\t"   \
+        "addxl  %%d0,    %%d4       \n\t"   \
+        "addl   %%d1,    %%a3@+     \n\t"   \
+        "movel  %%a2@+,  %%d1       \n\t"   \
+        "mulul  %%d2,    %%d3:%%d1  \n\t"   \
+        "addxl  %%d4,    %%d1       \n\t"   \
+        "addxl  %%d0,    %%d3       \n\t"   \
+        "addl   %%d1,    %%a3@+     \n\t"   \
+        "movel  %%a2@+,  %%d1       \n\t"   \
+        "mulul  %%d2,    %%d4:%%d1  \n\t"   \
+        "addxl  %%d3,    %%d1       \n\t"   \
+        "addxl  %%d0,    %%d4       \n\t"   \
+        "addl   %%d1,    %%a3@+     \n\t"   \
+        "movel  %%a2@+,  %%d1       \n\t"   \
+        "mulul  %%d2,    %%d3:%%d1  \n\t"   \
+        "addxl  %%d4,    %%d1       \n\t"   \
+        "addxl  %%d0,    %%d3       \n\t"   \
+        "addl   %%d1,    %%a3@+     \n\t"   \
+        "addxl  %%d0,    %%d3       \n\t"
+
+#define MULADDC_X8_STOP MULADDC_X1_STOP
+
+#endif /* MC68000 */
+
+#if defined(__powerpc64__) || defined(__ppc64__)
+
+#if defined(__MACH__) && defined(__APPLE__)
+
+#define MULADDC_X1_INIT                     \
+    asm(                                    \
+        "ld     r3, %3              \n\t"   \
+        "ld     r4, %4              \n\t"   \
+        "ld     r5, %5              \n\t"   \
+        "ld     r6, %6              \n\t"   \
+        "addi   r3, r3, -8          \n\t"   \
+        "addi   r4, r4, -8          \n\t"   \
+        "addic  r5, r5,  0          \n\t"
+
+#define MULADDC_X1_CORE                     \
+        "ldu    r7, 8(r3)           \n\t"   \
+        "mulld  r8, r7, r6          \n\t"   \
+        "mulhdu r9, r7, r6          \n\t"   \
+        "adde   r8, r8, r5          \n\t"   \
+        "ld     r7, 8(r4)           \n\t"   \
+        "addze  r5, r9              \n\t"   \
+        "addc   r8, r8, r7          \n\t"   \
+        "stdu   r8, 8(r4)           \n\t"
+
+#define MULADDC_X1_STOP                     \
+        "addze  r5, r5              \n\t"   \
+        "addi   r4, r4, 8           \n\t"   \
+        "addi   r3, r3, 8           \n\t"   \
+        "std    r5, %0              \n\t"   \
+        "std    r4, %1              \n\t"   \
+        "std    r3, %2              \n\t"   \
+        : "=m" (c), "=m" (d), "=m" (s)              \
+        : "m" (s), "m" (d), "m" (c), "m" (b)        \
+        : "r3", "r4", "r5", "r6", "r7", "r8", "r9"  \
+    );
+
+
+#else /* __MACH__ && __APPLE__ */
+
+#define MULADDC_X1_INIT                     \
+    asm(                                    \
+        "ld     %%r3, %3            \n\t"   \
+        "ld     %%r4, %4            \n\t"   \
+        "ld     %%r5, %5            \n\t"   \
+        "ld     %%r6, %6            \n\t"   \
+        "addi   %%r3, %%r3, -8      \n\t"   \
+        "addi   %%r4, %%r4, -8      \n\t"   \
+        "addic  %%r5, %%r5,  0      \n\t"
+
+#define MULADDC_X1_CORE                     \
+        "ldu    %%r7, 8(%%r3)       \n\t"   \
+        "mulld  %%r8, %%r7, %%r6    \n\t"   \
+        "mulhdu %%r9, %%r7, %%r6    \n\t"   \
+        "adde   %%r8, %%r8, %%r5    \n\t"   \
+        "ld     %%r7, 8(%%r4)       \n\t"   \
+        "addze  %%r5, %%r9          \n\t"   \
+        "addc   %%r8, %%r8, %%r7    \n\t"   \
+        "stdu   %%r8, 8(%%r4)       \n\t"
+
+#define MULADDC_X1_STOP                     \
+        "addze  %%r5, %%r5          \n\t"   \
+        "addi   %%r4, %%r4, 8       \n\t"   \
+        "addi   %%r3, %%r3, 8       \n\t"   \
+        "std    %%r5, %0            \n\t"   \
+        "std    %%r4, %1            \n\t"   \
+        "std    %%r3, %2            \n\t"   \
+        : "=m" (c), "=m" (d), "=m" (s)              \
+        : "m" (s), "m" (d), "m" (c), "m" (b)        \
+        : "r3", "r4", "r5", "r6", "r7", "r8", "r9"  \
+    );
+
+#endif /* __MACH__ && __APPLE__ */
+
+#elif defined(__powerpc__) || defined(__ppc__) /* end PPC64/begin PPC32  */
+
+#if defined(__MACH__) && defined(__APPLE__)
+
+#define MULADDC_X1_INIT                 \
+    asm(                                \
+        "lwz    r3, %3          \n\t"   \
+        "lwz    r4, %4          \n\t"   \
+        "lwz    r5, %5          \n\t"   \
+        "lwz    r6, %6          \n\t"   \
+        "addi   r3, r3, -4      \n\t"   \
+        "addi   r4, r4, -4      \n\t"   \
+        "addic  r5, r5,  0      \n\t"
+
+#define MULADDC_X1_CORE                 \
+        "lwzu   r7, 4(r3)       \n\t"   \
+        "mullw  r8, r7, r6      \n\t"   \
+        "mulhwu r9, r7, r6      \n\t"   \
+        "adde   r8, r8, r5      \n\t"   \
+        "lwz    r7, 4(r4)       \n\t"   \
+        "addze  r5, r9          \n\t"   \
+        "addc   r8, r8, r7      \n\t"   \
+        "stwu   r8, 4(r4)       \n\t"
+
+#define MULADDC_X1_STOP                 \
+        "addze  r5, r5          \n\t"   \
+        "addi   r4, r4, 4       \n\t"   \
+        "addi   r3, r3, 4       \n\t"   \
+        "stw    r5, %0          \n\t"   \
+        "stw    r4, %1          \n\t"   \
+        "stw    r3, %2          \n\t"   \
+        : "=m" (c), "=m" (d), "=m" (s)              \
+        : "m" (s), "m" (d), "m" (c), "m" (b)        \
+        : "r3", "r4", "r5", "r6", "r7", "r8", "r9"  \
+    );
+
+#else /* __MACH__ && __APPLE__ */
+
+#define MULADDC_X1_INIT                     \
+    asm(                                    \
+        "lwz    %%r3, %3            \n\t"   \
+        "lwz    %%r4, %4            \n\t"   \
+        "lwz    %%r5, %5            \n\t"   \
+        "lwz    %%r6, %6            \n\t"   \
+        "addi   %%r3, %%r3, -4      \n\t"   \
+        "addi   %%r4, %%r4, -4      \n\t"   \
+        "addic  %%r5, %%r5,  0      \n\t"
+
+#define MULADDC_X1_CORE                     \
+        "lwzu   %%r7, 4(%%r3)       \n\t"   \
+        "mullw  %%r8, %%r7, %%r6    \n\t"   \
+        "mulhwu %%r9, %%r7, %%r6    \n\t"   \
+        "adde   %%r8, %%r8, %%r5    \n\t"   \
+        "lwz    %%r7, 4(%%r4)       \n\t"   \
+        "addze  %%r5, %%r9          \n\t"   \
+        "addc   %%r8, %%r8, %%r7    \n\t"   \
+        "stwu   %%r8, 4(%%r4)       \n\t"
+
+#define MULADDC_X1_STOP                     \
+        "addze  %%r5, %%r5          \n\t"   \
+        "addi   %%r4, %%r4, 4       \n\t"   \
+        "addi   %%r3, %%r3, 4       \n\t"   \
+        "stw    %%r5, %0            \n\t"   \
+        "stw    %%r4, %1            \n\t"   \
+        "stw    %%r3, %2            \n\t"   \
+        : "=m" (c), "=m" (d), "=m" (s)              \
+        : "m" (s), "m" (d), "m" (c), "m" (b)        \
+        : "r3", "r4", "r5", "r6", "r7", "r8", "r9"  \
+    );
+
+#endif /* __MACH__ && __APPLE__ */
+
+#endif /* PPC32 */
+
+/*
+ * The Sparc(64) assembly is reported to be broken.
+ * Disable it for now, until we're able to fix it.
+ */
+#if 0 && defined(__sparc__)
+#if defined(__sparc64__)
+
+#define MULADDC_X1_INIT                                 \
+    asm(                                                \
+                "ldx     %3, %%o0               \n\t"   \
+                "ldx     %4, %%o1               \n\t"   \
+                "ld      %5, %%o2               \n\t"   \
+                "ld      %6, %%o3               \n\t"
+
+#define MULADDC_X1_CORE                                 \
+                "ld      [%%o0], %%o4           \n\t"   \
+                "inc     4, %%o0                \n\t"   \
+                "ld      [%%o1], %%o5           \n\t"   \
+                "umul    %%o3, %%o4, %%o4       \n\t"   \
+                "addcc   %%o4, %%o2, %%o4       \n\t"   \
+                "rd      %%y, %%g1              \n\t"   \
+                "addx    %%g1, 0, %%g1          \n\t"   \
+                "addcc   %%o4, %%o5, %%o4       \n\t"   \
+                "st      %%o4, [%%o1]           \n\t"   \
+                "addx    %%g1, 0, %%o2          \n\t"   \
+                "inc     4, %%o1                \n\t"
+
+#define MULADDC_X1_STOP                                 \
+                "st      %%o2, %0               \n\t"   \
+                "stx     %%o1, %1               \n\t"   \
+                "stx     %%o0, %2               \n\t"   \
+        : "=m" (c), "=m" (d), "=m" (s)          \
+        : "m" (s), "m" (d), "m" (c), "m" (b)    \
+        : "g1", "o0", "o1", "o2", "o3", "o4",   \
+          "o5"                                  \
+        );
+
+#else /* __sparc64__ */
+
+#define MULADDC_X1_INIT                                 \
+    asm(                                                \
+                "ld      %3, %%o0               \n\t"   \
+                "ld      %4, %%o1               \n\t"   \
+                "ld      %5, %%o2               \n\t"   \
+                "ld      %6, %%o3               \n\t"
+
+#define MULADDC_X1_CORE                                 \
+                "ld      [%%o0], %%o4           \n\t"   \
+                "inc     4, %%o0                \n\t"   \
+                "ld      [%%o1], %%o5           \n\t"   \
+                "umul    %%o3, %%o4, %%o4       \n\t"   \
+                "addcc   %%o4, %%o2, %%o4       \n\t"   \
+                "rd      %%y, %%g1              \n\t"   \
+                "addx    %%g1, 0, %%g1          \n\t"   \
+                "addcc   %%o4, %%o5, %%o4       \n\t"   \
+                "st      %%o4, [%%o1]           \n\t"   \
+                "addx    %%g1, 0, %%o2          \n\t"   \
+                "inc     4, %%o1                \n\t"
+
+#define MULADDC_X1_STOP                                 \
+                "st      %%o2, %0               \n\t"   \
+                "st      %%o1, %1               \n\t"   \
+                "st      %%o0, %2               \n\t"   \
+        : "=m" (c), "=m" (d), "=m" (s)          \
+        : "m" (s), "m" (d), "m" (c), "m" (b)    \
+        : "g1", "o0", "o1", "o2", "o3", "o4",   \
+          "o5"                                  \
+        );
+
+#endif /* __sparc64__ */
+#endif /* __sparc__ */
+
+#if defined(__microblaze__) || defined(microblaze)
+
+#define MULADDC_X1_INIT                 \
+    asm(                                \
+        "lwi   r3,   %3         \n\t"   \
+        "lwi   r4,   %4         \n\t"   \
+        "lwi   r5,   %5         \n\t"   \
+        "lwi   r6,   %6         \n\t"   \
+        "andi  r7,   r6, 0xffff \n\t"   \
+        "bsrli r6,   r6, 16     \n\t"
+
+#if(__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
+#define MULADDC_LHUI                    \
+        "lhui  r9,   r3,   0    \n\t"   \
+        "addi  r3,   r3,   2    \n\t"   \
+        "lhui  r8,   r3,   0    \n\t"
+#else
+#define MULADDC_LHUI                    \
+        "lhui  r8,   r3,   0    \n\t"   \
+        "addi  r3,   r3,   2    \n\t"   \
+        "lhui  r9,   r3,   0    \n\t"
+#endif
+
+#define MULADDC_X1_CORE                    \
+        MULADDC_LHUI                    \
+        "addi  r3,   r3,   2    \n\t"   \
+        "mul   r10,  r9,  r6    \n\t"   \
+        "mul   r11,  r8,  r7    \n\t"   \
+        "mul   r12,  r9,  r7    \n\t"   \
+        "mul   r13,  r8,  r6    \n\t"   \
+        "bsrli  r8, r10,  16    \n\t"   \
+        "bsrli  r9, r11,  16    \n\t"   \
+        "add   r13, r13,  r8    \n\t"   \
+        "add   r13, r13,  r9    \n\t"   \
+        "bslli r10, r10,  16    \n\t"   \
+        "bslli r11, r11,  16    \n\t"   \
+        "add   r12, r12, r10    \n\t"   \
+        "addc  r13, r13,  r0    \n\t"   \
+        "add   r12, r12, r11    \n\t"   \
+        "addc  r13, r13,  r0    \n\t"   \
+        "lwi   r10,  r4,   0    \n\t"   \
+        "add   r12, r12, r10    \n\t"   \
+        "addc  r13, r13,  r0    \n\t"   \
+        "add   r12, r12,  r5    \n\t"   \
+        "addc   r5, r13,  r0    \n\t"   \
+        "swi   r12,  r4,   0    \n\t"   \
+        "addi   r4,  r4,   4    \n\t"
+
+#define MULADDC_X1_STOP                 \
+        "swi   r5,   %0         \n\t"   \
+        "swi   r4,   %1         \n\t"   \
+        "swi   r3,   %2         \n\t"   \
+        : "=m" (c), "=m" (d), "=m" (s)              \
+        : "m" (s), "m" (d), "m" (c), "m" (b)        \
+        : "r3", "r4", "r5", "r6", "r7", "r8",       \
+          "r9", "r10", "r11", "r12", "r13"          \
+    );
+
+#endif /* MicroBlaze */
+
+#if defined(__tricore__)
+
+#define MULADDC_X1_INIT                         \
+    asm(                                        \
+        "ld.a   %%a2, %3                \n\t"   \
+        "ld.a   %%a3, %4                \n\t"   \
+        "ld.w   %%d4, %5                \n\t"   \
+        "ld.w   %%d1, %6                \n\t"   \
+        "xor    %%d5, %%d5              \n\t"
+
+#define MULADDC_X1_CORE                         \
+        "ld.w   %%d0,   [%%a2+]         \n\t"   \
+        "madd.u %%e2, %%e4, %%d0, %%d1  \n\t"   \
+        "ld.w   %%d0,   [%%a3]          \n\t"   \
+        "addx   %%d2,    %%d2,  %%d0    \n\t"   \
+        "addc   %%d3,    %%d3,    0     \n\t"   \
+        "mov    %%d4,    %%d3           \n\t"   \
+        "st.w  [%%a3+],  %%d2           \n\t"
+
+#define MULADDC_X1_STOP                         \
+        "st.w   %0, %%d4                \n\t"   \
+        "st.a   %1, %%a3                \n\t"   \
+        "st.a   %2, %%a2                \n\t"   \
+        : "=m" (c), "=m" (d), "=m" (s)          \
+        : "m" (s), "m" (d), "m" (c), "m" (b)    \
+        : "d0", "d1", "e2", "d4", "a2", "a3"    \
+    );
+
+#endif /* TriCore */
+
+#if defined(__arm__)
+
+#if defined(__thumb__) && !defined(__thumb2__)
+#if defined(MBEDTLS_COMPILER_IS_GCC)
+/*
+ * Thumb 1 ISA. This code path has only been tested successfully on gcc;
+ * it does not compile on clang or armclang.
+ */
+
+#if !defined(__OPTIMIZE__) && defined(__GNUC__)
+/*
+ * Note, gcc -O0 by default uses r7 for the frame pointer, so it complains about
+ * our use of r7 below, unless -fomit-frame-pointer is passed.
+ *
+ * On the other hand, -fomit-frame-pointer is implied by any -Ox options with
+ * x !=0, which we can detect using __OPTIMIZE__ (which is also defined by
+ * clang and armcc5 under the same conditions).
+ *
+ * If gcc needs to use r7, we use r1 as a scratch register and have a few extra
+ * instructions to preserve/restore it; otherwise, we can use r7 and avoid
+ * the preserve/restore overhead.
+ */
+#define MULADDC_SCRATCH              "RS .req r1         \n\t"
+#define MULADDC_PRESERVE_SCRATCH     "mov    r10, r1     \n\t"
+#define MULADDC_RESTORE_SCRATCH      "mov    r1, r10     \n\t"
+#define MULADDC_SCRATCH_CLOBBER      "r10"
+#else /* !defined(__OPTIMIZE__) && defined(__GNUC__) */
+#define MULADDC_SCRATCH              "RS .req r7         \n\t"
+#define MULADDC_PRESERVE_SCRATCH     ""
+#define MULADDC_RESTORE_SCRATCH      ""
+#define MULADDC_SCRATCH_CLOBBER      "r7"
+#endif /* !defined(__OPTIMIZE__) && defined(__GNUC__) */
+
+#define MULADDC_X1_INIT                                 \
+    asm(                                                \
+    MULADDC_SCRATCH                                     \
+            "ldr    r0, %3                      \n\t"   \
+            "ldr    r1, %4                      \n\t"   \
+            "ldr    r2, %5                      \n\t"   \
+            "ldr    r3, %6                      \n\t"   \
+            "lsr    r4, r3, #16                 \n\t"   \
+            "mov    r9, r4                      \n\t"   \
+            "lsl    r4, r3, #16                 \n\t"   \
+            "lsr    r4, r4, #16                 \n\t"   \
+            "mov    r8, r4                      \n\t"   \
+
+
+#define MULADDC_X1_CORE                                 \
+            MULADDC_PRESERVE_SCRATCH                    \
+            "ldmia  r0!, {r6}                   \n\t"   \
+            "lsr    RS, r6, #16                 \n\t"   \
+            "lsl    r6, r6, #16                 \n\t"   \
+            "lsr    r6, r6, #16                 \n\t"   \
+            "mov    r4, r8                      \n\t"   \
+            "mul    r4, r6                      \n\t"   \
+            "mov    r3, r9                      \n\t"   \
+            "mul    r6, r3                      \n\t"   \
+            "mov    r5, r9                      \n\t"   \
+            "mul    r5, RS                      \n\t"   \
+            "mov    r3, r8                      \n\t"   \
+            "mul    RS, r3                      \n\t"   \
+            "lsr    r3, r6, #16                 \n\t"   \
+            "add    r5, r5, r3                  \n\t"   \
+            "lsr    r3, RS, #16                 \n\t"   \
+            "add    r5, r5, r3                  \n\t"   \
+            "add    r4, r4, r2                  \n\t"   \
+            "mov    r2, #0                      \n\t"   \
+            "adc    r5, r2                      \n\t"   \
+            "lsl    r3, r6, #16                 \n\t"   \
+            "add    r4, r4, r3                  \n\t"   \
+            "adc    r5, r2                      \n\t"   \
+            "lsl    r3, RS, #16                 \n\t"   \
+            "add    r4, r4, r3                  \n\t"   \
+            "adc    r5, r2                      \n\t"   \
+            MULADDC_RESTORE_SCRATCH                     \
+            "ldr    r3, [r1]                    \n\t"   \
+            "add    r4, r4, r3                  \n\t"   \
+            "adc    r2, r5                      \n\t"   \
+            "stmia  r1!, {r4}                   \n\t"
+
+#define MULADDC_X1_STOP                                 \
+            "str    r2, %0                      \n\t"   \
+            "str    r1, %1                      \n\t"   \
+            "str    r0, %2                      \n\t"   \
+         : "=m" (c),  "=m" (d), "=m" (s)        \
+         : "m" (s), "m" (d), "m" (c), "m" (b)   \
+         : "r0", "r1", "r2", "r3", "r4", "r5",  \
+           "r6", MULADDC_SCRATCH_CLOBBER, "r8", "r9", "cc" \
+         );
+#endif /* !defined(__ARMCC_VERSION) && !defined(__clang__) */
+
+#elif (__ARM_ARCH >= 6) && \
+    defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1)
+/* Armv6-M (or later) with DSP Instruction Set Extensions.
+ * Requires support for either Thumb 2 or Arm ISA.
+ */
+
+#define MULADDC_X1_INIT                            \
+    {                                              \
+        mbedtls_mpi_uint tmp_a, tmp_b;             \
+        asm volatile (
+
+#define MULADDC_X1_CORE                                         \
+           ".p2align  2                                 \n\t"   \
+            "ldr      %[a], [%[in]], #4                 \n\t"   \
+            "ldr      %[b], [%[acc]]                    \n\t"   \
+            "umaal    %[b], %[carry], %[scalar], %[a]   \n\t"   \
+            "str      %[b], [%[acc]], #4                \n\t"
+
+#define MULADDC_X1_STOP                                      \
+            : [a]      "=&r" (tmp_a),                        \
+              [b]      "=&r" (tmp_b),                        \
+              [in]     "+r"  (s),                            \
+              [acc]    "+r"  (d),                            \
+              [carry]  "+l"  (c)                             \
+            : [scalar] "r"   (b)                             \
+            : "memory"                                       \
+        );                                                   \
+    }
+
+#define MULADDC_X2_INIT                              \
+    {                                                \
+        mbedtls_mpi_uint tmp_a0, tmp_b0;             \
+        mbedtls_mpi_uint tmp_a1, tmp_b1;             \
+        asm volatile (
+
+            /* - Make sure loop is 4-byte aligned to avoid stalls
+             *   upon repeated non-word aligned instructions in
+             *   some microarchitectures.
+             * - Don't use ldm with post-increment or back-to-back
+             *   loads with post-increment and same address register
+             *   to avoid stalls on some microarchitectures.
+             * - Bunch loads and stores to reduce latency on some
+             *   microarchitectures. E.g., on Cortex-M4, the first
+             *   in a series of load/store operations has latency
+             *   2 cycles, while subsequent loads/stores are single-cycle. */
+#define MULADDC_X2_CORE                                           \
+           ".p2align  2                                   \n\t"   \
+            "ldr      %[a0], [%[in]],  #+8                \n\t"   \
+            "ldr      %[b0], [%[acc]], #+8                \n\t"   \
+            "ldr      %[a1], [%[in],  #-4]                \n\t"   \
+            "ldr      %[b1], [%[acc], #-4]                \n\t"   \
+            "umaal    %[b0], %[carry], %[scalar], %[a0]   \n\t"   \
+            "umaal    %[b1], %[carry], %[scalar], %[a1]   \n\t"   \
+            "str      %[b0], [%[acc], #-8]                \n\t"   \
+            "str      %[b1], [%[acc], #-4]                \n\t"
+
+#define MULADDC_X2_STOP                                      \
+            : [a0]     "=&r" (tmp_a0),                       \
+              [b0]     "=&r" (tmp_b0),                       \
+              [a1]     "=&r" (tmp_a1),                       \
+              [b1]     "=&r" (tmp_b1),                       \
+              [in]     "+r"  (s),                            \
+              [acc]    "+r"  (d),                            \
+              [carry]  "+l"  (c)                             \
+            : [scalar] "r"   (b)                             \
+            : "memory"                                       \
+        );                                                   \
+    }
+
+#else /* Thumb 2 or Arm ISA, without DSP extensions */
+
+#define MULADDC_X1_INIT                                 \
+    asm(                                                \
+            "ldr    r0, %3                      \n\t"   \
+            "ldr    r1, %4                      \n\t"   \
+            "ldr    r2, %5                      \n\t"   \
+            "ldr    r3, %6                      \n\t"
+
+#define MULADDC_X1_CORE                                 \
+            "ldr    r4, [r0], #4                \n\t"   \
+            "mov    r5, #0                      \n\t"   \
+            "ldr    r6, [r1]                    \n\t"   \
+            "umlal  r2, r5, r3, r4              \n\t"   \
+            "adds   r4, r6, r2                  \n\t"   \
+            "adc    r2, r5, #0                  \n\t"   \
+            "str    r4, [r1], #4                \n\t"
+
+#define MULADDC_X1_STOP                                 \
+            "str    r2, %0                      \n\t"   \
+            "str    r1, %1                      \n\t"   \
+            "str    r0, %2                      \n\t"   \
+         : "=m" (c),  "=m" (d), "=m" (s)        \
+         : "m" (s), "m" (d), "m" (c), "m" (b)   \
+         : "r0", "r1", "r2", "r3", "r4", "r5",  \
+           "r6", "cc"                     \
+         );
+
+#endif /* ISA codepath selection */
+
+#endif /* defined(__arm__) */
+
+#if defined(__alpha__)
+
+#define MULADDC_X1_INIT                 \
+    asm(                                \
+        "ldq    $1, %3          \n\t"   \
+        "ldq    $2, %4          \n\t"   \
+        "ldq    $3, %5          \n\t"   \
+        "ldq    $4, %6          \n\t"
+
+#define MULADDC_X1_CORE                 \
+        "ldq    $6,  0($1)      \n\t"   \
+        "addq   $1,  8, $1      \n\t"   \
+        "mulq   $6, $4, $7      \n\t"   \
+        "umulh  $6, $4, $6      \n\t"   \
+        "addq   $7, $3, $7      \n\t"   \
+        "cmpult $7, $3, $3      \n\t"   \
+        "ldq    $5,  0($2)      \n\t"   \
+        "addq   $7, $5, $7      \n\t"   \
+        "cmpult $7, $5, $5      \n\t"   \
+        "stq    $7,  0($2)      \n\t"   \
+        "addq   $2,  8, $2      \n\t"   \
+        "addq   $6, $3, $3      \n\t"   \
+        "addq   $5, $3, $3      \n\t"
+
+#define MULADDC_X1_STOP                 \
+        "stq    $3, %0          \n\t"   \
+        "stq    $2, %1          \n\t"   \
+        "stq    $1, %2          \n\t"   \
+        : "=m" (c), "=m" (d), "=m" (s)              \
+        : "m" (s), "m" (d), "m" (c), "m" (b)        \
+        : "$1", "$2", "$3", "$4", "$5", "$6", "$7"  \
+    );
+#endif /* Alpha */
+
+#if defined(__mips__) && !defined(__mips64)
+
+#define MULADDC_X1_INIT                 \
+    asm(                                \
+        "lw     $10, %3         \n\t"   \
+        "lw     $11, %4         \n\t"   \
+        "lw     $12, %5         \n\t"   \
+        "lw     $13, %6         \n\t"
+
+#define MULADDC_X1_CORE                 \
+        "lw     $14, 0($10)     \n\t"   \
+        "multu  $13, $14        \n\t"   \
+        "addi   $10, $10, 4     \n\t"   \
+        "mflo   $14             \n\t"   \
+        "mfhi   $9              \n\t"   \
+        "addu   $14, $12, $14   \n\t"   \
+        "lw     $15, 0($11)     \n\t"   \
+        "sltu   $12, $14, $12   \n\t"   \
+        "addu   $15, $14, $15   \n\t"   \
+        "sltu   $14, $15, $14   \n\t"   \
+        "addu   $12, $12, $9    \n\t"   \
+        "sw     $15, 0($11)     \n\t"   \
+        "addu   $12, $12, $14   \n\t"   \
+        "addi   $11, $11, 4     \n\t"
+
+#define MULADDC_X1_STOP                 \
+        "sw     $12, %0         \n\t"   \
+        "sw     $11, %1         \n\t"   \
+        "sw     $10, %2         \n\t"   \
+        : "=m" (c), "=m" (d), "=m" (s)                      \
+        : "m" (s), "m" (d), "m" (c), "m" (b)                \
+        : "$9", "$10", "$11", "$12", "$13", "$14", "$15", "lo", "hi" \
+    );
+
+#endif /* MIPS */
+#endif /* GNUC */
+
+#if (defined(_MSC_VER) && defined(_M_IX86)) || defined(__WATCOMC__)
+
+#define MULADDC_X1_INIT                         \
+    __asm   mov     esi, s                      \
+    __asm   mov     edi, d                      \
+    __asm   mov     ecx, c                      \
+    __asm   mov     ebx, b
+
+#define MULADDC_X1_CORE                         \
+    __asm   lodsd                               \
+    __asm   mul     ebx                         \
+    __asm   add     eax, ecx                    \
+    __asm   adc     edx, 0                      \
+    __asm   add     eax, [edi]                  \
+    __asm   adc     edx, 0                      \
+    __asm   mov     ecx, edx                    \
+    __asm   stosd
+
+#define MULADDC_X1_STOP                         \
+    __asm   mov     c, ecx                      \
+    __asm   mov     d, edi                      \
+    __asm   mov     s, esi
+
+#if defined(MBEDTLS_HAVE_SSE2)
+
+#define EMIT __asm _emit
+
+#define MULADDC_X8_INIT MULADDC_X1_INIT
+
+#define MULADDC_X8_CORE                         \
+    EMIT 0x0F  EMIT 0x6E  EMIT 0xC9             \
+    EMIT 0x0F  EMIT 0x6E  EMIT 0xC3             \
+    EMIT 0x0F  EMIT 0x6E  EMIT 0x1F             \
+    EMIT 0x0F  EMIT 0xD4  EMIT 0xCB             \
+    EMIT 0x0F  EMIT 0x6E  EMIT 0x16             \
+    EMIT 0x0F  EMIT 0xF4  EMIT 0xD0             \
+    EMIT 0x0F  EMIT 0x6E  EMIT 0x66  EMIT 0x04  \
+    EMIT 0x0F  EMIT 0xF4  EMIT 0xE0             \
+    EMIT 0x0F  EMIT 0x6E  EMIT 0x76  EMIT 0x08  \
+    EMIT 0x0F  EMIT 0xF4  EMIT 0xF0             \
+    EMIT 0x0F  EMIT 0x6E  EMIT 0x7E  EMIT 0x0C  \
+    EMIT 0x0F  EMIT 0xF4  EMIT 0xF8             \
+    EMIT 0x0F  EMIT 0xD4  EMIT 0xCA             \
+    EMIT 0x0F  EMIT 0x6E  EMIT 0x5F  EMIT 0x04  \
+    EMIT 0x0F  EMIT 0xD4  EMIT 0xDC             \
+    EMIT 0x0F  EMIT 0x6E  EMIT 0x6F  EMIT 0x08  \
+    EMIT 0x0F  EMIT 0xD4  EMIT 0xEE             \
+    EMIT 0x0F  EMIT 0x6E  EMIT 0x67  EMIT 0x0C  \
+    EMIT 0x0F  EMIT 0xD4  EMIT 0xFC             \
+    EMIT 0x0F  EMIT 0x7E  EMIT 0x0F             \
+    EMIT 0x0F  EMIT 0x6E  EMIT 0x56  EMIT 0x10  \
+    EMIT 0x0F  EMIT 0xF4  EMIT 0xD0             \
+    EMIT 0x0F  EMIT 0x73  EMIT 0xD1  EMIT 0x20  \
+    EMIT 0x0F  EMIT 0x6E  EMIT 0x66  EMIT 0x14  \
+    EMIT 0x0F  EMIT 0xF4  EMIT 0xE0             \
+    EMIT 0x0F  EMIT 0xD4  EMIT 0xCB             \
+    EMIT 0x0F  EMIT 0x6E  EMIT 0x76  EMIT 0x18  \
+    EMIT 0x0F  EMIT 0xF4  EMIT 0xF0             \
+    EMIT 0x0F  EMIT 0x7E  EMIT 0x4F  EMIT 0x04  \
+    EMIT 0x0F  EMIT 0x73  EMIT 0xD1  EMIT 0x20  \
+    EMIT 0x0F  EMIT 0x6E  EMIT 0x5E  EMIT 0x1C  \
+    EMIT 0x0F  EMIT 0xF4  EMIT 0xD8             \
+    EMIT 0x0F  EMIT 0xD4  EMIT 0xCD             \
+    EMIT 0x0F  EMIT 0x6E  EMIT 0x6F  EMIT 0x10  \
+    EMIT 0x0F  EMIT 0xD4  EMIT 0xD5             \
+    EMIT 0x0F  EMIT 0x7E  EMIT 0x4F  EMIT 0x08  \
+    EMIT 0x0F  EMIT 0x73  EMIT 0xD1  EMIT 0x20  \
+    EMIT 0x0F  EMIT 0xD4  EMIT 0xCF             \
+    EMIT 0x0F  EMIT 0x6E  EMIT 0x6F  EMIT 0x14  \
+    EMIT 0x0F  EMIT 0xD4  EMIT 0xE5             \
+    EMIT 0x0F  EMIT 0x7E  EMIT 0x4F  EMIT 0x0C  \
+    EMIT 0x0F  EMIT 0x73  EMIT 0xD1  EMIT 0x20  \
+    EMIT 0x0F  EMIT 0xD4  EMIT 0xCA             \
+    EMIT 0x0F  EMIT 0x6E  EMIT 0x6F  EMIT 0x18  \
+    EMIT 0x0F  EMIT 0xD4  EMIT 0xF5             \
+    EMIT 0x0F  EMIT 0x7E  EMIT 0x4F  EMIT 0x10  \
+    EMIT 0x0F  EMIT 0x73  EMIT 0xD1  EMIT 0x20  \
+    EMIT 0x0F  EMIT 0xD4  EMIT 0xCC             \
+    EMIT 0x0F  EMIT 0x6E  EMIT 0x6F  EMIT 0x1C  \
+    EMIT 0x0F  EMIT 0xD4  EMIT 0xDD             \
+    EMIT 0x0F  EMIT 0x7E  EMIT 0x4F  EMIT 0x14  \
+    EMIT 0x0F  EMIT 0x73  EMIT 0xD1  EMIT 0x20  \
+    EMIT 0x0F  EMIT 0xD4  EMIT 0xCE             \
+    EMIT 0x0F  EMIT 0x7E  EMIT 0x4F  EMIT 0x18  \
+    EMIT 0x0F  EMIT 0x73  EMIT 0xD1  EMIT 0x20  \
+    EMIT 0x0F  EMIT 0xD4  EMIT 0xCB             \
+    EMIT 0x0F  EMIT 0x7E  EMIT 0x4F  EMIT 0x1C  \
+    EMIT 0x83  EMIT 0xC7  EMIT 0x20             \
+    EMIT 0x83  EMIT 0xC6  EMIT 0x20             \
+    EMIT 0x0F  EMIT 0x73  EMIT 0xD1  EMIT 0x20  \
+    EMIT 0x0F  EMIT 0x7E  EMIT 0xC9
+
+#define MULADDC_X8_STOP                         \
+    EMIT 0x0F  EMIT 0x77                        \
+    __asm   mov     c, ecx                      \
+    __asm   mov     d, edi                      \
+    __asm   mov     s, esi
+
+#endif /* SSE2 */
+#endif /* MSVC */
+
+#endif /* MBEDTLS_HAVE_ASM */
+
+#if !defined(MULADDC_X1_CORE)
+#if defined(MBEDTLS_HAVE_UDBL)
+
+#define MULADDC_X1_INIT                 \
+{                                       \
+    mbedtls_t_udbl r;                           \
+    mbedtls_mpi_uint r0, r1;
+
+#define MULADDC_X1_CORE                 \
+    r   = *(s++) * (mbedtls_t_udbl) b;          \
+    r0  = (mbedtls_mpi_uint) r;                   \
+    r1  = (mbedtls_mpi_uint)( r >> biL );         \
+    r0 += c;  r1 += (r0 <  c);          \
+    r0 += *d; r1 += (r0 < *d);          \
+    c = r1; *(d++) = r0;
+
+#define MULADDC_X1_STOP                 \
+}
+
+#else /* MBEDTLS_HAVE_UDBL */
+
+#define MULADDC_X1_INIT                 \
+{                                       \
+    mbedtls_mpi_uint s0, s1, b0, b1;              \
+    mbedtls_mpi_uint r0, r1, rx, ry;              \
+    b0 = ( b << biH ) >> biH;           \
+    b1 = ( b >> biH );
+
+#define MULADDC_X1_CORE                 \
+    s0 = ( *s << biH ) >> biH;          \
+    s1 = ( *s >> biH ); s++;            \
+    rx = s0 * b1; r0 = s0 * b0;         \
+    ry = s1 * b0; r1 = s1 * b1;         \
+    r1 += ( rx >> biH );                \
+    r1 += ( ry >> biH );                \
+    rx <<= biH; ry <<= biH;             \
+    r0 += rx; r1 += (r0 < rx);          \
+    r0 += ry; r1 += (r0 < ry);          \
+    r0 +=  c; r1 += (r0 <  c);          \
+    r0 += *d; r1 += (r0 < *d);          \
+    c = r1; *(d++) = r0;
+
+#define MULADDC_X1_STOP                 \
+}
+
+#endif /* C (longlong) */
+#endif /* C (generic)  */
+
+#if !defined(MULADDC_X2_CORE)
+#define MULADDC_X2_INIT MULADDC_X1_INIT
+#define MULADDC_X2_STOP MULADDC_X1_STOP
+#define MULADDC_X2_CORE MULADDC_X1_CORE MULADDC_X1_CORE
+#endif /* MULADDC_X2_CORE */
+
+#if !defined(MULADDC_X4_CORE)
+#define MULADDC_X4_INIT MULADDC_X2_INIT
+#define MULADDC_X4_STOP MULADDC_X2_STOP
+#define MULADDC_X4_CORE MULADDC_X2_CORE MULADDC_X2_CORE
+#endif /* MULADDC_X4_CORE */
+
+#if !defined(MULADDC_X8_CORE)
+#define MULADDC_X8_INIT MULADDC_X4_INIT
+#define MULADDC_X8_STOP MULADDC_X4_STOP
+#define MULADDC_X8_CORE MULADDC_X4_CORE MULADDC_X4_CORE
+#endif /* MULADDC_X8_CORE */
+
+/* *INDENT-ON* */
+#endif /* bn_mul.h */
diff --git a/tf-psa-crypto/drivers/builtin/src/camellia.c b/tf-psa-crypto/drivers/builtin/src/camellia.c
new file mode 100644
index 0000000..b1c0a08
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/camellia.c
@@ -0,0 +1,1058 @@
+/*
+ *  Camellia implementation
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ *  The Camellia block cipher was designed by NTT and Mitsubishi Electric
+ *  Corporation.
+ *
+ *  http://info.isl.ntt.co.jp/crypt/eng/camellia/dl/01espec.pdf
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_CAMELLIA_C)
+
+#include "mbedtls/camellia.h"
+#include "mbedtls/platform_util.h"
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_CAMELLIA_ALT)
+
+static const unsigned char SIGMA_CHARS[6][8] =
+{
+    { 0xa0, 0x9e, 0x66, 0x7f, 0x3b, 0xcc, 0x90, 0x8b },
+    { 0xb6, 0x7a, 0xe8, 0x58, 0x4c, 0xaa, 0x73, 0xb2 },
+    { 0xc6, 0xef, 0x37, 0x2f, 0xe9, 0x4f, 0x82, 0xbe },
+    { 0x54, 0xff, 0x53, 0xa5, 0xf1, 0xd3, 0x6f, 0x1c },
+    { 0x10, 0xe5, 0x27, 0xfa, 0xde, 0x68, 0x2d, 0x1d },
+    { 0xb0, 0x56, 0x88, 0xc2, 0xb3, 0xe6, 0xc1, 0xfd }
+};
+
+#if defined(MBEDTLS_CAMELLIA_SMALL_MEMORY)
+
+static const unsigned char FSb[256] =
+{
+    112, 130, 44, 236, 179, 39, 192, 229, 228, 133, 87, 53, 234, 12, 174, 65,
+    35, 239, 107, 147, 69, 25, 165, 33, 237, 14, 79, 78, 29, 101, 146, 189,
+    134, 184, 175, 143, 124, 235, 31, 206, 62, 48, 220, 95, 94, 197, 11, 26,
+    166, 225, 57, 202, 213, 71, 93, 61, 217,  1, 90, 214, 81, 86, 108, 77,
+    139, 13, 154, 102, 251, 204, 176, 45, 116, 18, 43, 32, 240, 177, 132, 153,
+    223, 76, 203, 194, 52, 126, 118,  5, 109, 183, 169, 49, 209, 23,  4, 215,
+    20, 88, 58, 97, 222, 27, 17, 28, 50, 15, 156, 22, 83, 24, 242, 34,
+    254, 68, 207, 178, 195, 181, 122, 145, 36,  8, 232, 168, 96, 252, 105, 80,
+    170, 208, 160, 125, 161, 137, 98, 151, 84, 91, 30, 149, 224, 255, 100, 210,
+    16, 196,  0, 72, 163, 247, 117, 219, 138,  3, 230, 218,  9, 63, 221, 148,
+    135, 92, 131,  2, 205, 74, 144, 51, 115, 103, 246, 243, 157, 127, 191, 226,
+    82, 155, 216, 38, 200, 55, 198, 59, 129, 150, 111, 75, 19, 190, 99, 46,
+    233, 121, 167, 140, 159, 110, 188, 142, 41, 245, 249, 182, 47, 253, 180, 89,
+    120, 152,  6, 106, 231, 70, 113, 186, 212, 37, 171, 66, 136, 162, 141, 250,
+    114,  7, 185, 85, 248, 238, 172, 10, 54, 73, 42, 104, 60, 56, 241, 164,
+    64, 40, 211, 123, 187, 201, 67, 193, 21, 227, 173, 244, 119, 199, 128, 158
+};
+
+#define SBOX1(n) FSb[(n)]
+#define SBOX2(n) (unsigned char) ((FSb[(n)] >> 7 ^ FSb[(n)] << 1) & 0xff)
+#define SBOX3(n) (unsigned char) ((FSb[(n)] >> 1 ^ FSb[(n)] << 7) & 0xff)
+#define SBOX4(n) FSb[((n) << 1 ^ (n) >> 7) &0xff]
+
+#else /* MBEDTLS_CAMELLIA_SMALL_MEMORY */
+
+static const unsigned char FSb[256] =
+{
+    112, 130,  44, 236, 179,  39, 192, 229, 228, 133,  87,  53, 234,  12, 174,  65,
+    35, 239, 107, 147,  69,  25, 165,  33, 237,  14,  79,  78,  29, 101, 146, 189,
+    134, 184, 175, 143, 124, 235,  31, 206,  62,  48, 220,  95,  94, 197,  11,  26,
+    166, 225,  57, 202, 213,  71,  93,  61, 217,   1,  90, 214,  81,  86, 108,  77,
+    139,  13, 154, 102, 251, 204, 176,  45, 116,  18,  43,  32, 240, 177, 132, 153,
+    223,  76, 203, 194,  52, 126, 118,   5, 109, 183, 169,  49, 209,  23,   4, 215,
+    20,  88,  58,  97, 222,  27,  17,  28,  50,  15, 156,  22,  83,  24, 242,  34,
+    254,  68, 207, 178, 195, 181, 122, 145,  36,   8, 232, 168,  96, 252, 105,  80,
+    170, 208, 160, 125, 161, 137,  98, 151,  84,  91,  30, 149, 224, 255, 100, 210,
+    16, 196,   0,  72, 163, 247, 117, 219, 138,   3, 230, 218,   9,  63, 221, 148,
+    135,  92, 131,   2, 205,  74, 144,  51, 115, 103, 246, 243, 157, 127, 191, 226,
+    82, 155, 216,  38, 200,  55, 198,  59, 129, 150, 111,  75,  19, 190,  99,  46,
+    233, 121, 167, 140, 159, 110, 188, 142,  41, 245, 249, 182,  47, 253, 180,  89,
+    120, 152,   6, 106, 231,  70, 113, 186, 212,  37, 171,  66, 136, 162, 141, 250,
+    114,   7, 185,  85, 248, 238, 172,  10,  54,  73,  42, 104,  60,  56, 241, 164,
+    64,  40, 211, 123, 187, 201,  67, 193,  21, 227, 173, 244, 119, 199, 128, 158
+};
+
+static const unsigned char FSb2[256] =
+{
+    224,   5,  88, 217, 103,  78, 129, 203, 201,  11, 174, 106, 213,  24,  93, 130,
+    70, 223, 214,  39, 138,  50,  75,  66, 219,  28, 158, 156,  58, 202,  37, 123,
+    13, 113,  95,  31, 248, 215,  62, 157, 124,  96, 185, 190, 188, 139,  22,  52,
+    77, 195, 114, 149, 171, 142, 186, 122, 179,   2, 180, 173, 162, 172, 216, 154,
+    23,  26,  53, 204, 247, 153,  97,  90, 232,  36,  86,  64, 225,  99,   9,  51,
+    191, 152, 151, 133, 104, 252, 236,  10, 218, 111,  83,  98, 163,  46,   8, 175,
+    40, 176, 116, 194, 189,  54,  34,  56, 100,  30,  57,  44, 166,  48, 229,  68,
+    253, 136, 159, 101, 135, 107, 244,  35,  72,  16, 209,  81, 192, 249, 210, 160,
+    85, 161,  65, 250,  67,  19, 196,  47, 168, 182,  60,  43, 193, 255, 200, 165,
+    32, 137,   0, 144,  71, 239, 234, 183,  21,   6, 205, 181,  18, 126, 187,  41,
+    15, 184,   7,   4, 155, 148,  33, 102, 230, 206, 237, 231,  59, 254, 127, 197,
+    164,  55, 177,  76, 145, 110, 141, 118,   3,  45, 222, 150,  38, 125, 198,  92,
+    211, 242,  79,  25,  63, 220, 121,  29,  82, 235, 243, 109,  94, 251, 105, 178,
+    240,  49,  12, 212, 207, 140, 226, 117, 169,  74,  87, 132,  17,  69,  27, 245,
+    228,  14, 115, 170, 241, 221,  89,  20, 108, 146,  84, 208, 120, 112, 227,  73,
+    128,  80, 167, 246, 119, 147, 134, 131,  42, 199,  91, 233, 238, 143,   1,  61
+};
+
+static const unsigned char FSb3[256] =
+{
+    56,  65,  22, 118, 217, 147,  96, 242, 114, 194, 171, 154, 117,   6,  87, 160,
+    145, 247, 181, 201, 162, 140, 210, 144, 246,   7, 167,  39, 142, 178,  73, 222,
+    67,  92, 215, 199,  62, 245, 143, 103,  31,  24, 110, 175,  47, 226, 133,  13,
+    83, 240, 156, 101, 234, 163, 174, 158, 236, 128,  45, 107, 168,  43,  54, 166,
+    197, 134,  77,  51, 253, 102,  88, 150,  58,   9, 149,  16, 120, 216,  66, 204,
+    239,  38, 229,  97,  26,  63,  59, 130, 182, 219, 212, 152, 232, 139,   2, 235,
+    10,  44,  29, 176, 111, 141, 136,  14,  25, 135,  78,  11, 169,  12, 121,  17,
+    127,  34, 231,  89, 225, 218,  61, 200,  18,   4, 116,  84,  48, 126, 180,  40,
+    85, 104,  80, 190, 208, 196,  49, 203,  42, 173,  15, 202, 112, 255,  50, 105,
+    8,  98,   0,  36, 209, 251, 186, 237,  69, 129, 115, 109, 132, 159, 238,  74,
+    195,  46, 193,   1, 230,  37,  72, 153, 185, 179, 123, 249, 206, 191, 223, 113,
+    41, 205, 108,  19, 100, 155,  99, 157, 192,  75, 183, 165, 137,  95, 177,  23,
+    244, 188, 211,  70, 207,  55,  94,  71, 148, 250, 252,  91, 151, 254,  90, 172,
+    60,  76,   3,  53, 243,  35, 184,  93, 106, 146, 213,  33,  68,  81, 198, 125,
+    57, 131, 220, 170, 124, 119,  86,   5,  27, 164,  21,  52,  30,  28, 248,  82,
+    32,  20, 233, 189, 221, 228, 161, 224, 138, 241, 214, 122, 187, 227,  64,  79
+};
+
+static const unsigned char FSb4[256] =
+{
+    112,  44, 179, 192, 228,  87, 234, 174,  35, 107,  69, 165, 237,  79,  29, 146,
+    134, 175, 124,  31,  62, 220,  94,  11, 166,  57, 213,  93, 217,  90,  81, 108,
+    139, 154, 251, 176, 116,  43, 240, 132, 223, 203,  52, 118, 109, 169, 209,   4,
+    20,  58, 222,  17,  50, 156,  83, 242, 254, 207, 195, 122,  36, 232,  96, 105,
+    170, 160, 161,  98,  84,  30, 224, 100,  16,   0, 163, 117, 138, 230,   9, 221,
+    135, 131, 205, 144, 115, 246, 157, 191,  82, 216, 200, 198, 129, 111,  19,  99,
+    233, 167, 159, 188,  41, 249,  47, 180, 120,   6, 231, 113, 212, 171, 136, 141,
+    114, 185, 248, 172,  54,  42,  60, 241,  64, 211, 187,  67,  21, 173, 119, 128,
+    130, 236,  39, 229, 133,  53,  12,  65, 239, 147,  25,  33,  14,  78, 101, 189,
+    184, 143, 235, 206,  48,  95, 197,  26, 225, 202,  71,  61,   1, 214,  86,  77,
+    13, 102, 204,  45,  18,  32, 177, 153,  76, 194, 126,   5, 183,  49,  23, 215,
+    88,  97,  27,  28,  15,  22,  24,  34,  68, 178, 181, 145,   8, 168, 252,  80,
+    208, 125, 137, 151,  91, 149, 255, 210, 196,  72, 247, 219,   3, 218,  63, 148,
+    92,   2,  74,  51, 103, 243, 127, 226, 155,  38,  55,  59, 150,  75, 190,  46,
+    121, 140, 110, 142, 245, 182, 253,  89, 152, 106,  70, 186,  37,  66, 162, 250,
+    7,  85, 238,  10,  73, 104,  56, 164,  40, 123, 201, 193, 227, 244, 199, 158
+};
+
+#define SBOX1(n) FSb[(n)]
+#define SBOX2(n) FSb2[(n)]
+#define SBOX3(n) FSb3[(n)]
+#define SBOX4(n) FSb4[(n)]
+
+#endif /* MBEDTLS_CAMELLIA_SMALL_MEMORY */
+
+static const unsigned char shifts[2][4][4] =
+{
+    {
+        { 1, 1, 1, 1 }, /* KL */
+        { 0, 0, 0, 0 }, /* KR */
+        { 1, 1, 1, 1 }, /* KA */
+        { 0, 0, 0, 0 }  /* KB */
+    },
+    {
+        { 1, 0, 1, 1 }, /* KL */
+        { 1, 1, 0, 1 }, /* KR */
+        { 1, 1, 1, 0 }, /* KA */
+        { 1, 1, 0, 1 }  /* KB */
+    }
+};
+
+static const signed char indexes[2][4][20] =
+{
+    {
+        {  0,  1,  2,  3,  8,  9, 10, 11, 38, 39,
+           36, 37, 23, 20, 21, 22, 27, -1, -1, 26 }, /* KL -> RK */
+        { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+          -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, /* KR -> RK */
+        {  4,  5,  6,  7, 12, 13, 14, 15, 16, 17,
+           18, 19, -1, 24, 25, -1, 31, 28, 29, 30 }, /* KA -> RK */
+        { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+          -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }  /* KB -> RK */
+    },
+    {
+        {  0,  1,  2,  3, 61, 62, 63, 60, -1, -1,
+           -1, -1, 27, 24, 25, 26, 35, 32, 33, 34 }, /* KL -> RK */
+        { -1, -1, -1, -1,  8,  9, 10, 11, 16, 17,
+          18, 19, -1, -1, -1, -1, 39, 36, 37, 38 }, /* KR -> RK */
+        { -1, -1, -1, -1, 12, 13, 14, 15, 58, 59,
+          56, 57, 31, 28, 29, 30, -1, -1, -1, -1 }, /* KA -> RK */
+        {  4,  5,  6,  7, 65, 66, 67, 64, 20, 21,
+           22, 23, -1, -1, -1, -1, 43, 40, 41, 42 } /* KB -> RK */
+    }
+};
+
+static const signed char transposes[2][20] =
+{
+    {
+        21, 22, 23, 20,
+        -1, -1, -1, -1,
+        18, 19, 16, 17,
+        11,  8,  9, 10,
+        15, 12, 13, 14
+    },
+    {
+        25, 26, 27, 24,
+        29, 30, 31, 28,
+        18, 19, 16, 17,
+        -1, -1, -1, -1,
+        -1, -1, -1, -1
+    }
+};
+
+/* Shift macro for 128 bit strings with rotation smaller than 32 bits (!) */
+#define ROTL(DEST, SRC, SHIFT)                                      \
+    {                                                                   \
+        (DEST)[0] = (SRC)[0] << (SHIFT) ^ (SRC)[1] >> (32 - (SHIFT));   \
+        (DEST)[1] = (SRC)[1] << (SHIFT) ^ (SRC)[2] >> (32 - (SHIFT));   \
+        (DEST)[2] = (SRC)[2] << (SHIFT) ^ (SRC)[3] >> (32 - (SHIFT));   \
+        (DEST)[3] = (SRC)[3] << (SHIFT) ^ (SRC)[0] >> (32 - (SHIFT));   \
+    }
+
+#define FL(XL, XR, KL, KR)                                          \
+    {                                                                   \
+        (XR) = ((((XL) &(KL)) << 1) | (((XL) &(KL)) >> 31)) ^ (XR);   \
+        (XL) = ((XR) | (KR)) ^ (XL);                                    \
+    }
+
+#define FLInv(YL, YR, KL, KR)                                       \
+    {                                                                   \
+        (YL) = ((YR) | (KR)) ^ (YL);                                    \
+        (YR) = ((((YL) &(KL)) << 1) | (((YL) &(KL)) >> 31)) ^ (YR);   \
+    }
+
+#define SHIFT_AND_PLACE(INDEX, OFFSET)                      \
+    {                                                           \
+        TK[0] = KC[(OFFSET) * 4 + 0];                           \
+        TK[1] = KC[(OFFSET) * 4 + 1];                           \
+        TK[2] = KC[(OFFSET) * 4 + 2];                           \
+        TK[3] = KC[(OFFSET) * 4 + 3];                           \
+                                                            \
+        for (i = 1; i <= 4; i++)                               \
+        if (shifts[(INDEX)][(OFFSET)][i -1])               \
+        ROTL(TK + i * 4, TK, (15 * i) % 32);          \
+                                                            \
+        for (i = 0; i < 20; i++)                               \
+        if (indexes[(INDEX)][(OFFSET)][i] != -1) {         \
+            RK[indexes[(INDEX)][(OFFSET)][i]] = TK[i];    \
+        }                                                   \
+    }
+
+static void camellia_feistel(const uint32_t x[2], const uint32_t k[2],
+                             uint32_t z[2])
+{
+    uint32_t I0, I1;
+    I0 = x[0] ^ k[0];
+    I1 = x[1] ^ k[1];
+
+    I0 = ((uint32_t) SBOX1(MBEDTLS_BYTE_3(I0)) << 24) |
+         ((uint32_t) SBOX2(MBEDTLS_BYTE_2(I0)) << 16) |
+         ((uint32_t) SBOX3(MBEDTLS_BYTE_1(I0)) <<  8) |
+         ((uint32_t) SBOX4(MBEDTLS_BYTE_0(I0)));
+    I1 = ((uint32_t) SBOX2(MBEDTLS_BYTE_3(I1)) << 24) |
+         ((uint32_t) SBOX3(MBEDTLS_BYTE_2(I1)) << 16) |
+         ((uint32_t) SBOX4(MBEDTLS_BYTE_1(I1)) <<  8) |
+         ((uint32_t) SBOX1(MBEDTLS_BYTE_0(I1)));
+
+    I0 ^= (I1 << 8) | (I1 >> 24);
+    I1 ^= (I0 << 16) | (I0 >> 16);
+    I0 ^= (I1 >> 8) | (I1 << 24);
+    I1 ^= (I0 >> 8) | (I0 << 24);
+
+    z[0] ^= I1;
+    z[1] ^= I0;
+}
+
+void mbedtls_camellia_init(mbedtls_camellia_context *ctx)
+{
+    memset(ctx, 0, sizeof(mbedtls_camellia_context));
+}
+
+void mbedtls_camellia_free(mbedtls_camellia_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_platform_zeroize(ctx, sizeof(mbedtls_camellia_context));
+}
+
+/*
+ * Camellia key schedule (encryption)
+ */
+int mbedtls_camellia_setkey_enc(mbedtls_camellia_context *ctx,
+                                const unsigned char *key,
+                                unsigned int keybits)
+{
+    int idx;
+    size_t i;
+    uint32_t *RK;
+    unsigned char t[64];
+    uint32_t SIGMA[6][2];
+    uint32_t KC[16];
+    uint32_t TK[20];
+
+    RK = ctx->rk;
+
+    memset(t, 0, 64);
+    memset(RK, 0, sizeof(ctx->rk));
+
+    switch (keybits) {
+        case 128: ctx->nr = 3; idx = 0; break;
+        case 192:
+        case 256: ctx->nr = 4; idx = 1; break;
+        default: return MBEDTLS_ERR_CAMELLIA_BAD_INPUT_DATA;
+    }
+
+    for (i = 0; i < keybits / 8; ++i) {
+        t[i] = key[i];
+    }
+
+    if (keybits == 192) {
+        for (i = 0; i < 8; i++) {
+            t[24 + i] = ~t[16 + i];
+        }
+    }
+
+    /*
+     * Prepare SIGMA values
+     */
+    for (i = 0; i < 6; i++) {
+        SIGMA[i][0] = MBEDTLS_GET_UINT32_BE(SIGMA_CHARS[i], 0);
+        SIGMA[i][1] = MBEDTLS_GET_UINT32_BE(SIGMA_CHARS[i], 4);
+    }
+
+    /*
+     * Key storage in KC
+     * Order: KL, KR, KA, KB
+     */
+    memset(KC, 0, sizeof(KC));
+
+    /* Store KL, KR */
+    for (i = 0; i < 8; i++) {
+        KC[i] = MBEDTLS_GET_UINT32_BE(t, i * 4);
+    }
+
+    /* Generate KA */
+    for (i = 0; i < 4; ++i) {
+        KC[8 + i] = KC[i] ^ KC[4 + i];
+    }
+
+    camellia_feistel(KC + 8, SIGMA[0], KC + 10);
+    camellia_feistel(KC + 10, SIGMA[1], KC + 8);
+
+    for (i = 0; i < 4; ++i) {
+        KC[8 + i] ^= KC[i];
+    }
+
+    camellia_feistel(KC + 8, SIGMA[2], KC + 10);
+    camellia_feistel(KC + 10, SIGMA[3], KC + 8);
+
+    if (keybits > 128) {
+        /* Generate KB */
+        for (i = 0; i < 4; ++i) {
+            KC[12 + i] = KC[4 + i] ^ KC[8 + i];
+        }
+
+        camellia_feistel(KC + 12, SIGMA[4], KC + 14);
+        camellia_feistel(KC + 14, SIGMA[5], KC + 12);
+    }
+
+    /*
+     * Generating subkeys
+     */
+
+    /* Manipulating KL */
+    SHIFT_AND_PLACE(idx, 0);
+
+    /* Manipulating KR */
+    if (keybits > 128) {
+        SHIFT_AND_PLACE(idx, 1);
+    }
+
+    /* Manipulating KA */
+    SHIFT_AND_PLACE(idx, 2);
+
+    /* Manipulating KB */
+    if (keybits > 128) {
+        SHIFT_AND_PLACE(idx, 3);
+    }
+
+    /* Do transpositions */
+    for (i = 0; i < 20; i++) {
+        if (transposes[idx][i] != -1) {
+            RK[32 + 12 * idx + i] = RK[transposes[idx][i]];
+        }
+    }
+
+    return 0;
+}
+
+/*
+ * Camellia key schedule (decryption)
+ */
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+int mbedtls_camellia_setkey_dec(mbedtls_camellia_context *ctx,
+                                const unsigned char *key,
+                                unsigned int keybits)
+{
+    int idx, ret;
+    size_t i;
+    mbedtls_camellia_context cty;
+    uint32_t *RK;
+    uint32_t *SK;
+
+    mbedtls_camellia_init(&cty);
+
+    /* Also checks keybits */
+    if ((ret = mbedtls_camellia_setkey_enc(&cty, key, keybits)) != 0) {
+        goto exit;
+    }
+
+    ctx->nr = cty.nr;
+    idx = (ctx->nr == 4);
+
+    RK = ctx->rk;
+    SK = cty.rk + 24 * 2 + 8 * idx * 2;
+
+    *RK++ = *SK++;
+    *RK++ = *SK++;
+    *RK++ = *SK++;
+    *RK++ = *SK++;
+
+    for (i = 22 + 8 * idx, SK -= 6; i > 0; i--, SK -= 4) {
+        *RK++ = *SK++;
+        *RK++ = *SK++;
+    }
+
+    SK -= 2;
+
+    *RK++ = *SK++;
+    *RK++ = *SK++;
+    *RK++ = *SK++;
+    *RK++ = *SK++;
+
+exit:
+    mbedtls_camellia_free(&cty);
+
+    return ret;
+}
+#endif /* !MBEDTLS_BLOCK_CIPHER_NO_DECRYPT */
+
+/*
+ * Camellia-ECB block encryption/decryption
+ */
+int mbedtls_camellia_crypt_ecb(mbedtls_camellia_context *ctx,
+                               int mode,
+                               const unsigned char input[16],
+                               unsigned char output[16])
+{
+    int NR;
+    uint32_t *RK, X[4];
+    if (mode != MBEDTLS_CAMELLIA_ENCRYPT && mode != MBEDTLS_CAMELLIA_DECRYPT) {
+        return MBEDTLS_ERR_CAMELLIA_BAD_INPUT_DATA;
+    }
+
+    ((void) mode);
+
+    NR = ctx->nr;
+    RK = ctx->rk;
+
+    X[0] = MBEDTLS_GET_UINT32_BE(input,  0);
+    X[1] = MBEDTLS_GET_UINT32_BE(input,  4);
+    X[2] = MBEDTLS_GET_UINT32_BE(input,  8);
+    X[3] = MBEDTLS_GET_UINT32_BE(input, 12);
+
+    X[0] ^= *RK++;
+    X[1] ^= *RK++;
+    X[2] ^= *RK++;
+    X[3] ^= *RK++;
+
+    while (NR) {
+        --NR;
+        camellia_feistel(X, RK, X + 2);
+        RK += 2;
+        camellia_feistel(X + 2, RK, X);
+        RK += 2;
+        camellia_feistel(X, RK, X + 2);
+        RK += 2;
+        camellia_feistel(X + 2, RK, X);
+        RK += 2;
+        camellia_feistel(X, RK, X + 2);
+        RK += 2;
+        camellia_feistel(X + 2, RK, X);
+        RK += 2;
+
+        if (NR) {
+            FL(X[0], X[1], RK[0], RK[1]);
+            RK += 2;
+            FLInv(X[2], X[3], RK[0], RK[1]);
+            RK += 2;
+        }
+    }
+
+    X[2] ^= *RK++;
+    X[3] ^= *RK++;
+    X[0] ^= *RK++;
+    X[1] ^= *RK++;
+
+    MBEDTLS_PUT_UINT32_BE(X[2], output,  0);
+    MBEDTLS_PUT_UINT32_BE(X[3], output,  4);
+    MBEDTLS_PUT_UINT32_BE(X[0], output,  8);
+    MBEDTLS_PUT_UINT32_BE(X[1], output, 12);
+
+    return 0;
+}
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+/*
+ * Camellia-CBC buffer encryption/decryption
+ */
+int mbedtls_camellia_crypt_cbc(mbedtls_camellia_context *ctx,
+                               int mode,
+                               size_t length,
+                               unsigned char iv[16],
+                               const unsigned char *input,
+                               unsigned char *output)
+{
+    unsigned char temp[16];
+    if (mode != MBEDTLS_CAMELLIA_ENCRYPT && mode != MBEDTLS_CAMELLIA_DECRYPT) {
+        return MBEDTLS_ERR_CAMELLIA_BAD_INPUT_DATA;
+    }
+
+    if (length % 16) {
+        return MBEDTLS_ERR_CAMELLIA_INVALID_INPUT_LENGTH;
+    }
+
+    if (mode == MBEDTLS_CAMELLIA_DECRYPT) {
+        while (length > 0) {
+            memcpy(temp, input, 16);
+            mbedtls_camellia_crypt_ecb(ctx, mode, input, output);
+
+            mbedtls_xor(output, output, iv, 16);
+
+            memcpy(iv, temp, 16);
+
+            input  += 16;
+            output += 16;
+            length -= 16;
+        }
+    } else {
+        while (length > 0) {
+            mbedtls_xor(output, input, iv, 16);
+
+            mbedtls_camellia_crypt_ecb(ctx, mode, output, output);
+            memcpy(iv, output, 16);
+
+            input  += 16;
+            output += 16;
+            length -= 16;
+        }
+    }
+
+    return 0;
+}
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+/*
+ * Camellia-CFB128 buffer encryption/decryption
+ */
+int mbedtls_camellia_crypt_cfb128(mbedtls_camellia_context *ctx,
+                                  int mode,
+                                  size_t length,
+                                  size_t *iv_off,
+                                  unsigned char iv[16],
+                                  const unsigned char *input,
+                                  unsigned char *output)
+{
+    int c;
+    size_t n;
+    if (mode != MBEDTLS_CAMELLIA_ENCRYPT && mode != MBEDTLS_CAMELLIA_DECRYPT) {
+        return MBEDTLS_ERR_CAMELLIA_BAD_INPUT_DATA;
+    }
+
+    n = *iv_off;
+    if (n >= 16) {
+        return MBEDTLS_ERR_CAMELLIA_BAD_INPUT_DATA;
+    }
+
+    if (mode == MBEDTLS_CAMELLIA_DECRYPT) {
+        while (length--) {
+            if (n == 0) {
+                mbedtls_camellia_crypt_ecb(ctx, MBEDTLS_CAMELLIA_ENCRYPT, iv, iv);
+            }
+
+            c = *input++;
+            *output++ = (unsigned char) (c ^ iv[n]);
+            iv[n] = (unsigned char) c;
+
+            n = (n + 1) & 0x0F;
+        }
+    } else {
+        while (length--) {
+            if (n == 0) {
+                mbedtls_camellia_crypt_ecb(ctx, MBEDTLS_CAMELLIA_ENCRYPT, iv, iv);
+            }
+
+            iv[n] = *output++ = (unsigned char) (iv[n] ^ *input++);
+
+            n = (n + 1) & 0x0F;
+        }
+    }
+
+    *iv_off = n;
+
+    return 0;
+}
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+/*
+ * Camellia-CTR buffer encryption/decryption
+ */
+int mbedtls_camellia_crypt_ctr(mbedtls_camellia_context *ctx,
+                               size_t length,
+                               size_t *nc_off,
+                               unsigned char nonce_counter[16],
+                               unsigned char stream_block[16],
+                               const unsigned char *input,
+                               unsigned char *output)
+{
+    int c, i;
+    size_t n;
+
+    n = *nc_off;
+    if (n >= 16) {
+        return MBEDTLS_ERR_CAMELLIA_BAD_INPUT_DATA;
+    }
+
+    while (length--) {
+        if (n == 0) {
+            mbedtls_camellia_crypt_ecb(ctx, MBEDTLS_CAMELLIA_ENCRYPT, nonce_counter,
+                                       stream_block);
+
+            for (i = 16; i > 0; i--) {
+                if (++nonce_counter[i - 1] != 0) {
+                    break;
+                }
+            }
+        }
+        c = *input++;
+        *output++ = (unsigned char) (c ^ stream_block[n]);
+
+        n = (n + 1) & 0x0F;
+    }
+
+    *nc_off = n;
+
+    return 0;
+}
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+#endif /* !MBEDTLS_CAMELLIA_ALT */
+
+#if defined(MBEDTLS_SELF_TEST)
+
+/*
+ * Camellia test vectors from:
+ *
+ * http://info.isl.ntt.co.jp/crypt/eng/camellia/technology.html:
+ *   http://info.isl.ntt.co.jp/crypt/eng/camellia/dl/cryptrec/intermediate.txt
+ *   http://info.isl.ntt.co.jp/crypt/eng/camellia/dl/cryptrec/t_camellia.txt
+ *                      (For each bitlength: Key 0, Nr 39)
+ */
+#define CAMELLIA_TESTS_ECB  2
+
+static const unsigned char camellia_test_ecb_key[3][CAMELLIA_TESTS_ECB][32] =
+{
+    {
+        { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
+          0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10 },
+        { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+          0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
+    },
+    {
+        { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
+          0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10,
+          0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 },
+        { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+          0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+          0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
+    },
+    {
+        { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
+          0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10,
+          0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
+          0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
+        { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+          0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+          0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+          0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
+    },
+};
+
+static const unsigned char camellia_test_ecb_plain[CAMELLIA_TESTS_ECB][16] =
+{
+    { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
+      0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10 },
+    { 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00,
+      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
+};
+
+static const unsigned char camellia_test_ecb_cipher[3][CAMELLIA_TESTS_ECB][16] =
+{
+    {
+        { 0x67, 0x67, 0x31, 0x38, 0x54, 0x96, 0x69, 0x73,
+          0x08, 0x57, 0x06, 0x56, 0x48, 0xea, 0xbe, 0x43 },
+        { 0x38, 0x3C, 0x6C, 0x2A, 0xAB, 0xEF, 0x7F, 0xDE,
+          0x25, 0xCD, 0x47, 0x0B, 0xF7, 0x74, 0xA3, 0x31 }
+    },
+    {
+        { 0xb4, 0x99, 0x34, 0x01, 0xb3, 0xe9, 0x96, 0xf8,
+          0x4e, 0xe5, 0xce, 0xe7, 0xd7, 0x9b, 0x09, 0xb9 },
+        { 0xD1, 0x76, 0x3F, 0xC0, 0x19, 0xD7, 0x7C, 0xC9,
+          0x30, 0xBF, 0xF2, 0xA5, 0x6F, 0x7C, 0x93, 0x64 }
+    },
+    {
+        { 0x9a, 0xcc, 0x23, 0x7d, 0xff, 0x16, 0xd7, 0x6c,
+          0x20, 0xef, 0x7c, 0x91, 0x9e, 0x3a, 0x75, 0x09 },
+        { 0x05, 0x03, 0xFB, 0x10, 0xAB, 0x24, 0x1E, 0x7C,
+          0xF4, 0x5D, 0x8C, 0xDE, 0xEE, 0x47, 0x43, 0x35 }
+    }
+};
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+#define CAMELLIA_TESTS_CBC  3
+
+static const unsigned char camellia_test_cbc_key[3][32] =
+{
+    { 0x2B, 0x7E, 0x15, 0x16, 0x28, 0xAE, 0xD2, 0xA6,
+      0xAB, 0xF7, 0x15, 0x88, 0x09, 0xCF, 0x4F, 0x3C }
+    ,
+    { 0x8E, 0x73, 0xB0, 0xF7, 0xDA, 0x0E, 0x64, 0x52,
+      0xC8, 0x10, 0xF3, 0x2B, 0x80, 0x90, 0x79, 0xE5,
+      0x62, 0xF8, 0xEA, 0xD2, 0x52, 0x2C, 0x6B, 0x7B }
+    ,
+    { 0x60, 0x3D, 0xEB, 0x10, 0x15, 0xCA, 0x71, 0xBE,
+      0x2B, 0x73, 0xAE, 0xF0, 0x85, 0x7D, 0x77, 0x81,
+      0x1F, 0x35, 0x2C, 0x07, 0x3B, 0x61, 0x08, 0xD7,
+      0x2D, 0x98, 0x10, 0xA3, 0x09, 0x14, 0xDF, 0xF4 }
+};
+
+static const unsigned char camellia_test_cbc_iv[16] =
+
+{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+  0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F }
+;
+
+static const unsigned char camellia_test_cbc_plain[CAMELLIA_TESTS_CBC][16] =
+{
+    { 0x6B, 0xC1, 0xBE, 0xE2, 0x2E, 0x40, 0x9F, 0x96,
+      0xE9, 0x3D, 0x7E, 0x11, 0x73, 0x93, 0x17, 0x2A },
+    { 0xAE, 0x2D, 0x8A, 0x57, 0x1E, 0x03, 0xAC, 0x9C,
+      0x9E, 0xB7, 0x6F, 0xAC, 0x45, 0xAF, 0x8E, 0x51 },
+    { 0x30, 0xC8, 0x1C, 0x46, 0xA3, 0x5C, 0xE4, 0x11,
+      0xE5, 0xFB, 0xC1, 0x19, 0x1A, 0x0A, 0x52, 0xEF }
+
+};
+
+static const unsigned char camellia_test_cbc_cipher[3][CAMELLIA_TESTS_CBC][16] =
+{
+    {
+        { 0x16, 0x07, 0xCF, 0x49, 0x4B, 0x36, 0xBB, 0xF0,
+          0x0D, 0xAE, 0xB0, 0xB5, 0x03, 0xC8, 0x31, 0xAB },
+        { 0xA2, 0xF2, 0xCF, 0x67, 0x16, 0x29, 0xEF, 0x78,
+          0x40, 0xC5, 0xA5, 0xDF, 0xB5, 0x07, 0x48, 0x87 },
+        { 0x0F, 0x06, 0x16, 0x50, 0x08, 0xCF, 0x8B, 0x8B,
+          0x5A, 0x63, 0x58, 0x63, 0x62, 0x54, 0x3E, 0x54 }
+    },
+    {
+        { 0x2A, 0x48, 0x30, 0xAB, 0x5A, 0xC4, 0xA1, 0xA2,
+          0x40, 0x59, 0x55, 0xFD, 0x21, 0x95, 0xCF, 0x93 },
+        { 0x5D, 0x5A, 0x86, 0x9B, 0xD1, 0x4C, 0xE5, 0x42,
+          0x64, 0xF8, 0x92, 0xA6, 0xDD, 0x2E, 0xC3, 0xD5 },
+        { 0x37, 0xD3, 0x59, 0xC3, 0x34, 0x98, 0x36, 0xD8,
+          0x84, 0xE3, 0x10, 0xAD, 0xDF, 0x68, 0xC4, 0x49 }
+    },
+    {
+        { 0xE6, 0xCF, 0xA3, 0x5F, 0xC0, 0x2B, 0x13, 0x4A,
+          0x4D, 0x2C, 0x0B, 0x67, 0x37, 0xAC, 0x3E, 0xDA },
+        { 0x36, 0xCB, 0xEB, 0x73, 0xBD, 0x50, 0x4B, 0x40,
+          0x70, 0xB1, 0xB7, 0xDE, 0x2B, 0x21, 0xEB, 0x50 },
+        { 0xE3, 0x1A, 0x60, 0x55, 0x29, 0x7D, 0x96, 0xCA,
+          0x33, 0x30, 0xCD, 0xF1, 0xB1, 0x86, 0x0A, 0x83 }
+    }
+};
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+/*
+ * Camellia-CTR test vectors from:
+ *
+ * http://www.faqs.org/rfcs/rfc5528.html
+ */
+
+static const unsigned char camellia_test_ctr_key[3][16] =
+{
+    { 0xAE, 0x68, 0x52, 0xF8, 0x12, 0x10, 0x67, 0xCC,
+      0x4B, 0xF7, 0xA5, 0x76, 0x55, 0x77, 0xF3, 0x9E },
+    { 0x7E, 0x24, 0x06, 0x78, 0x17, 0xFA, 0xE0, 0xD7,
+      0x43, 0xD6, 0xCE, 0x1F, 0x32, 0x53, 0x91, 0x63 },
+    { 0x76, 0x91, 0xBE, 0x03, 0x5E, 0x50, 0x20, 0xA8,
+      0xAC, 0x6E, 0x61, 0x85, 0x29, 0xF9, 0xA0, 0xDC }
+};
+
+static const unsigned char camellia_test_ctr_nonce_counter[3][16] =
+{
+    { 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x00,
+      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 },
+    { 0x00, 0x6C, 0xB6, 0xDB, 0xC0, 0x54, 0x3B, 0x59,
+      0xDA, 0x48, 0xD9, 0x0B, 0x00, 0x00, 0x00, 0x01 },
+    { 0x00, 0xE0, 0x01, 0x7B, 0x27, 0x77, 0x7F, 0x3F,
+      0x4A, 0x17, 0x86, 0xF0, 0x00, 0x00, 0x00, 0x01 }
+};
+
+static const unsigned char camellia_test_ctr_pt[3][48] =
+{
+    { 0x53, 0x69, 0x6E, 0x67, 0x6C, 0x65, 0x20, 0x62,
+      0x6C, 0x6F, 0x63, 0x6B, 0x20, 0x6D, 0x73, 0x67 },
+
+    { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+      0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
+      0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+      0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F },
+
+    { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+      0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
+      0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+      0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F,
+      0x20, 0x21, 0x22, 0x23 }
+};
+
+static const unsigned char camellia_test_ctr_ct[3][48] =
+{
+    { 0xD0, 0x9D, 0xC2, 0x9A, 0x82, 0x14, 0x61, 0x9A,
+      0x20, 0x87, 0x7C, 0x76, 0xDB, 0x1F, 0x0B, 0x3F },
+    { 0xDB, 0xF3, 0xC7, 0x8D, 0xC0, 0x83, 0x96, 0xD4,
+      0xDA, 0x7C, 0x90, 0x77, 0x65, 0xBB, 0xCB, 0x44,
+      0x2B, 0x8E, 0x8E, 0x0F, 0x31, 0xF0, 0xDC, 0xA7,
+      0x2C, 0x74, 0x17, 0xE3, 0x53, 0x60, 0xE0, 0x48 },
+    { 0xB1, 0x9D, 0x1F, 0xCD, 0xCB, 0x75, 0xEB, 0x88,
+      0x2F, 0x84, 0x9C, 0xE2, 0x4D, 0x85, 0xCF, 0x73,
+      0x9C, 0xE6, 0x4B, 0x2B, 0x5C, 0x9D, 0x73, 0xF1,
+      0x4F, 0x2D, 0x5D, 0x9D, 0xCE, 0x98, 0x89, 0xCD,
+      0xDF, 0x50, 0x86, 0x96 }
+};
+
+static const int camellia_test_ctr_len[3] =
+{ 16, 32, 36 };
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+/*
+ * Checkup routine
+ */
+int mbedtls_camellia_self_test(int verbose)
+{
+    int i, j, u, v;
+    unsigned char key[32];
+    unsigned char buf[64];
+    unsigned char src[16];
+    unsigned char dst[16];
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    unsigned char iv[16];
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    size_t offset, len;
+    unsigned char nonce_counter[16];
+    unsigned char stream_block[16];
+#endif
+    int ret = 1;
+
+    mbedtls_camellia_context ctx;
+
+    mbedtls_camellia_init(&ctx);
+    memset(key, 0, 32);
+
+    for (j = 0; j < 6; j++) {
+        u = j >> 1;
+        v = j & 1;
+
+        if (verbose != 0) {
+            mbedtls_printf("  CAMELLIA-ECB-%3d (%s): ", 128 + u * 64,
+                           (v == MBEDTLS_CAMELLIA_DECRYPT) ? "dec" : "enc");
+        }
+
+#if defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+        if (v == MBEDTLS_CAMELLIA_DECRYPT) {
+            if (verbose != 0) {
+                mbedtls_printf("skipped\n");
+            }
+            continue;
+        }
+#endif
+
+        for (i = 0; i < CAMELLIA_TESTS_ECB; i++) {
+            memcpy(key, camellia_test_ecb_key[u][i], 16 + 8 * u);
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+            if (v == MBEDTLS_CAMELLIA_DECRYPT) {
+                mbedtls_camellia_setkey_dec(&ctx, key, 128 + u * 64);
+                memcpy(src, camellia_test_ecb_cipher[u][i], 16);
+                memcpy(dst, camellia_test_ecb_plain[i], 16);
+            } else
+#endif
+            { /* MBEDTLS_CAMELLIA_ENCRYPT */
+                mbedtls_camellia_setkey_enc(&ctx, key, 128 + u * 64);
+                memcpy(src, camellia_test_ecb_plain[i], 16);
+                memcpy(dst, camellia_test_ecb_cipher[u][i], 16);
+            }
+
+            mbedtls_camellia_crypt_ecb(&ctx, v, src, buf);
+
+            if (memcmp(buf, dst, 16) != 0) {
+                if (verbose != 0) {
+                    mbedtls_printf("failed\n");
+                }
+                goto exit;
+            }
+        }
+
+        if (verbose != 0) {
+            mbedtls_printf("passed\n");
+        }
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    /*
+     * CBC mode
+     */
+    for (j = 0; j < 6; j++) {
+        u = j >> 1;
+        v = j  & 1;
+
+        if (verbose != 0) {
+            mbedtls_printf("  CAMELLIA-CBC-%3d (%s): ", 128 + u * 64,
+                           (v == MBEDTLS_CAMELLIA_DECRYPT) ? "dec" : "enc");
+        }
+
+        memcpy(src, camellia_test_cbc_iv, 16);
+        memcpy(dst, camellia_test_cbc_iv, 16);
+        memcpy(key, camellia_test_cbc_key[u], 16 + 8 * u);
+
+        if (v == MBEDTLS_CAMELLIA_DECRYPT) {
+            mbedtls_camellia_setkey_dec(&ctx, key, 128 + u * 64);
+        } else {
+            mbedtls_camellia_setkey_enc(&ctx, key, 128 + u * 64);
+        }
+
+        for (i = 0; i < CAMELLIA_TESTS_CBC; i++) {
+
+            if (v == MBEDTLS_CAMELLIA_DECRYPT) {
+                memcpy(iv, src, 16);
+                memcpy(src, camellia_test_cbc_cipher[u][i], 16);
+                memcpy(dst, camellia_test_cbc_plain[i], 16);
+            } else { /* MBEDTLS_CAMELLIA_ENCRYPT */
+                memcpy(iv, dst, 16);
+                memcpy(src, camellia_test_cbc_plain[i], 16);
+                memcpy(dst, camellia_test_cbc_cipher[u][i], 16);
+            }
+
+            mbedtls_camellia_crypt_cbc(&ctx, v, 16, iv, src, buf);
+
+            if (memcmp(buf, dst, 16) != 0) {
+                if (verbose != 0) {
+                    mbedtls_printf("failed\n");
+                }
+                goto exit;
+            }
+        }
+
+        if (verbose != 0) {
+            mbedtls_printf("passed\n");
+        }
+    }
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    /*
+     * CTR mode
+     */
+    for (i = 0; i < 6; i++) {
+        u = i >> 1;
+        v = i  & 1;
+
+        if (verbose != 0) {
+            mbedtls_printf("  CAMELLIA-CTR-128 (%s): ",
+                           (v == MBEDTLS_CAMELLIA_DECRYPT) ? "dec" : "enc");
+        }
+
+        memcpy(nonce_counter, camellia_test_ctr_nonce_counter[u], 16);
+        memcpy(key, camellia_test_ctr_key[u], 16);
+
+        offset = 0;
+        mbedtls_camellia_setkey_enc(&ctx, key, 128);
+
+        if (v == MBEDTLS_CAMELLIA_DECRYPT) {
+            len = camellia_test_ctr_len[u];
+            memcpy(buf, camellia_test_ctr_ct[u], len);
+
+            mbedtls_camellia_crypt_ctr(&ctx, len, &offset, nonce_counter, stream_block,
+                                       buf, buf);
+
+            if (memcmp(buf, camellia_test_ctr_pt[u], len) != 0) {
+                if (verbose != 0) {
+                    mbedtls_printf("failed\n");
+                }
+                goto exit;
+            }
+        } else {
+            len = camellia_test_ctr_len[u];
+            memcpy(buf, camellia_test_ctr_pt[u], len);
+
+            mbedtls_camellia_crypt_ctr(&ctx, len, &offset, nonce_counter, stream_block,
+                                       buf, buf);
+
+            if (memcmp(buf, camellia_test_ctr_ct[u], len) != 0) {
+                if (verbose != 0) {
+                    mbedtls_printf("failed\n");
+                }
+                goto exit;
+            }
+        }
+
+        if (verbose != 0) {
+            mbedtls_printf("passed\n");
+        }
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+    ret = 0;
+
+exit:
+    mbedtls_camellia_free(&ctx);
+    return ret;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_CAMELLIA_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/ccm.c b/tf-psa-crypto/drivers/builtin/src/ccm.c
new file mode 100644
index 0000000..45ed697
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/ccm.c
@@ -0,0 +1,763 @@
+/*
+ *  NIST SP800-38C compliant CCM implementation
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * Definition of CCM:
+ * http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
+ * RFC 3610 "Counter with CBC-MAC (CCM)"
+ *
+ * Related:
+ * RFC 5116 "An Interface and Algorithms for Authenticated Encryption"
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_CCM_C)
+
+#include "mbedtls/ccm.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+#include "mbedtls/constant_time.h"
+
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+#include "block_cipher_internal.h"
+#endif
+
+#include <string.h>
+
+#if defined(MBEDTLS_PLATFORM_C)
+#include "mbedtls/platform.h"
+#else
+#if defined(MBEDTLS_SELF_TEST) && defined(MBEDTLS_AES_C)
+#include <stdio.h>
+#define mbedtls_printf printf
+#endif /* MBEDTLS_SELF_TEST && MBEDTLS_AES_C */
+#endif /* MBEDTLS_PLATFORM_C */
+
+#if !defined(MBEDTLS_CCM_ALT)
+
+
+/*
+ * Initialize context
+ */
+void mbedtls_ccm_init(mbedtls_ccm_context *ctx)
+{
+    memset(ctx, 0, sizeof(mbedtls_ccm_context));
+}
+
+int mbedtls_ccm_setkey(mbedtls_ccm_context *ctx,
+                       mbedtls_cipher_id_t cipher,
+                       const unsigned char *key,
+                       unsigned int keybits)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+    mbedtls_block_cipher_free(&ctx->block_cipher_ctx);
+
+    if ((ret = mbedtls_block_cipher_setup(&ctx->block_cipher_ctx, cipher)) != 0) {
+        return MBEDTLS_ERR_CCM_BAD_INPUT;
+    }
+
+    if ((ret = mbedtls_block_cipher_setkey(&ctx->block_cipher_ctx, key, keybits)) != 0) {
+        return MBEDTLS_ERR_CCM_BAD_INPUT;
+    }
+#else
+    const mbedtls_cipher_info_t *cipher_info;
+
+    cipher_info = mbedtls_cipher_info_from_values(cipher, keybits,
+                                                  MBEDTLS_MODE_ECB);
+    if (cipher_info == NULL) {
+        return MBEDTLS_ERR_CCM_BAD_INPUT;
+    }
+
+    if (mbedtls_cipher_info_get_block_size(cipher_info) != 16) {
+        return MBEDTLS_ERR_CCM_BAD_INPUT;
+    }
+
+    mbedtls_cipher_free(&ctx->cipher_ctx);
+
+    if ((ret = mbedtls_cipher_setup(&ctx->cipher_ctx, cipher_info)) != 0) {
+        return ret;
+    }
+
+    if ((ret = mbedtls_cipher_setkey(&ctx->cipher_ctx, key, keybits,
+                                     MBEDTLS_ENCRYPT)) != 0) {
+        return ret;
+    }
+#endif
+
+    return ret;
+}
+
+/*
+ * Free context
+ */
+void mbedtls_ccm_free(mbedtls_ccm_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+    mbedtls_block_cipher_free(&ctx->block_cipher_ctx);
+#else
+    mbedtls_cipher_free(&ctx->cipher_ctx);
+#endif
+    mbedtls_platform_zeroize(ctx, sizeof(mbedtls_ccm_context));
+}
+
+#define CCM_STATE__CLEAR                0
+#define CCM_STATE__STARTED              (1 << 0)
+#define CCM_STATE__LENGTHS_SET          (1 << 1)
+#define CCM_STATE__AUTH_DATA_STARTED    (1 << 2)
+#define CCM_STATE__AUTH_DATA_FINISHED   (1 << 3)
+#define CCM_STATE__ERROR                (1 << 4)
+
+/*
+ * Encrypt or decrypt a partial block with CTR
+ */
+static int mbedtls_ccm_crypt(mbedtls_ccm_context *ctx,
+                             size_t offset, size_t use_len,
+                             const unsigned char *input,
+                             unsigned char *output)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char tmp_buf[16] = { 0 };
+
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+    ret = mbedtls_block_cipher_encrypt(&ctx->block_cipher_ctx, ctx->ctr, tmp_buf);
+#else
+    size_t olen = 0;
+    ret = mbedtls_cipher_update(&ctx->cipher_ctx, ctx->ctr, 16, tmp_buf, &olen);
+#endif
+    if (ret != 0) {
+        ctx->state |= CCM_STATE__ERROR;
+        mbedtls_platform_zeroize(tmp_buf, sizeof(tmp_buf));
+        return ret;
+    }
+
+    mbedtls_xor(output, input, tmp_buf + offset, use_len);
+
+    mbedtls_platform_zeroize(tmp_buf, sizeof(tmp_buf));
+    return ret;
+}
+
+static void mbedtls_ccm_clear_state(mbedtls_ccm_context *ctx)
+{
+    ctx->state = CCM_STATE__CLEAR;
+    memset(ctx->y, 0, 16);
+    memset(ctx->ctr, 0, 16);
+}
+
+static int ccm_calculate_first_block_if_ready(mbedtls_ccm_context *ctx)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char i;
+    size_t len_left;
+#if !defined(MBEDTLS_BLOCK_CIPHER_C)
+    size_t olen;
+#endif
+
+    /* length calculation can be done only after both
+     * mbedtls_ccm_starts() and mbedtls_ccm_set_lengths() have been executed
+     */
+    if (!(ctx->state & CCM_STATE__STARTED) || !(ctx->state & CCM_STATE__LENGTHS_SET)) {
+        return 0;
+    }
+
+    /* CCM expects non-empty tag.
+     * CCM* allows empty tag. For CCM* without tag, ignore plaintext length.
+     */
+    if (ctx->tag_len == 0) {
+        if (ctx->mode == MBEDTLS_CCM_STAR_ENCRYPT || ctx->mode == MBEDTLS_CCM_STAR_DECRYPT) {
+            ctx->plaintext_len = 0;
+        } else {
+            return MBEDTLS_ERR_CCM_BAD_INPUT;
+        }
+    }
+
+    /*
+     * First block:
+     * 0        .. 0        flags
+     * 1        .. iv_len   nonce (aka iv)  - set by: mbedtls_ccm_starts()
+     * iv_len+1 .. 15       length
+     *
+     * With flags as (bits):
+     * 7        0
+     * 6        add present?
+     * 5 .. 3   (t - 2) / 2
+     * 2 .. 0   q - 1
+     */
+    ctx->y[0] |= (ctx->add_len > 0) << 6;
+    ctx->y[0] |= ((ctx->tag_len - 2) / 2) << 3;
+    ctx->y[0] |= ctx->q - 1;
+
+    for (i = 0, len_left = ctx->plaintext_len; i < ctx->q; i++, len_left >>= 8) {
+        ctx->y[15-i] = MBEDTLS_BYTE_0(len_left);
+    }
+
+    if (len_left > 0) {
+        ctx->state |= CCM_STATE__ERROR;
+        return MBEDTLS_ERR_CCM_BAD_INPUT;
+    }
+
+    /* Start CBC-MAC with first block*/
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+    ret = mbedtls_block_cipher_encrypt(&ctx->block_cipher_ctx, ctx->y, ctx->y);
+#else
+    ret = mbedtls_cipher_update(&ctx->cipher_ctx, ctx->y, 16, ctx->y, &olen);
+#endif
+    if (ret != 0) {
+        ctx->state |= CCM_STATE__ERROR;
+        return ret;
+    }
+
+    return 0;
+}
+
+int mbedtls_ccm_starts(mbedtls_ccm_context *ctx,
+                       int mode,
+                       const unsigned char *iv,
+                       size_t iv_len)
+{
+    /* Also implies q is within bounds */
+    if (iv_len < 7 || iv_len > 13) {
+        return MBEDTLS_ERR_CCM_BAD_INPUT;
+    }
+
+    ctx->mode = mode;
+    ctx->q = 16 - 1 - (unsigned char) iv_len;
+
+    /*
+     * Prepare counter block for encryption:
+     * 0        .. 0        flags
+     * 1        .. iv_len   nonce (aka iv)
+     * iv_len+1 .. 15       counter (initially 1)
+     *
+     * With flags as (bits):
+     * 7 .. 3   0
+     * 2 .. 0   q - 1
+     */
+    memset(ctx->ctr, 0, 16);
+    ctx->ctr[0] = ctx->q - 1;
+    memcpy(ctx->ctr + 1, iv, iv_len);
+    memset(ctx->ctr + 1 + iv_len, 0, ctx->q);
+    ctx->ctr[15] = 1;
+
+    /*
+     * See ccm_calculate_first_block_if_ready() for block layout description
+     */
+    memcpy(ctx->y + 1, iv, iv_len);
+
+    ctx->state |= CCM_STATE__STARTED;
+    return ccm_calculate_first_block_if_ready(ctx);
+}
+
+int mbedtls_ccm_set_lengths(mbedtls_ccm_context *ctx,
+                            size_t total_ad_len,
+                            size_t plaintext_len,
+                            size_t tag_len)
+{
+    /*
+     * Check length requirements: SP800-38C A.1
+     * Additional requirement: a < 2^16 - 2^8 to simplify the code.
+     * 'length' checked later (when writing it to the first block)
+     *
+     * Also, loosen the requirements to enable support for CCM* (IEEE 802.15.4).
+     */
+    if (tag_len == 2 || tag_len > 16 || tag_len % 2 != 0) {
+        return MBEDTLS_ERR_CCM_BAD_INPUT;
+    }
+
+    if (total_ad_len >= 0xFF00) {
+        return MBEDTLS_ERR_CCM_BAD_INPUT;
+    }
+
+    ctx->plaintext_len = plaintext_len;
+    ctx->add_len = total_ad_len;
+    ctx->tag_len = tag_len;
+    ctx->processed = 0;
+
+    ctx->state |= CCM_STATE__LENGTHS_SET;
+    return ccm_calculate_first_block_if_ready(ctx);
+}
+
+int mbedtls_ccm_update_ad(mbedtls_ccm_context *ctx,
+                          const unsigned char *add,
+                          size_t add_len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t use_len, offset;
+#if !defined(MBEDTLS_BLOCK_CIPHER_C)
+    size_t olen;
+#endif
+
+    if (ctx->state & CCM_STATE__ERROR) {
+        return MBEDTLS_ERR_CCM_BAD_INPUT;
+    }
+
+    if (add_len > 0) {
+        if (ctx->state & CCM_STATE__AUTH_DATA_FINISHED) {
+            return MBEDTLS_ERR_CCM_BAD_INPUT;
+        }
+
+        if (!(ctx->state & CCM_STATE__AUTH_DATA_STARTED)) {
+            if (add_len > ctx->add_len) {
+                return MBEDTLS_ERR_CCM_BAD_INPUT;
+            }
+
+            ctx->y[0] ^= (unsigned char) ((ctx->add_len >> 8) & 0xFF);
+            ctx->y[1] ^= (unsigned char) ((ctx->add_len) & 0xFF);
+
+            ctx->state |= CCM_STATE__AUTH_DATA_STARTED;
+        } else if (ctx->processed + add_len > ctx->add_len) {
+            return MBEDTLS_ERR_CCM_BAD_INPUT;
+        }
+
+        while (add_len > 0) {
+            offset = (ctx->processed + 2) % 16; /* account for y[0] and y[1]
+                                                 * holding total auth data length */
+            use_len = 16 - offset;
+
+            if (use_len > add_len) {
+                use_len = add_len;
+            }
+
+            mbedtls_xor(ctx->y + offset, ctx->y + offset, add, use_len);
+
+            ctx->processed += use_len;
+            add_len -= use_len;
+            add += use_len;
+
+            if (use_len + offset == 16 || ctx->processed == ctx->add_len) {
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+                ret = mbedtls_block_cipher_encrypt(&ctx->block_cipher_ctx, ctx->y, ctx->y);
+#else
+                ret = mbedtls_cipher_update(&ctx->cipher_ctx, ctx->y, 16, ctx->y, &olen);
+#endif
+                if (ret != 0) {
+                    ctx->state |= CCM_STATE__ERROR;
+                    return ret;
+                }
+            }
+        }
+
+        if (ctx->processed == ctx->add_len) {
+            ctx->state |= CCM_STATE__AUTH_DATA_FINISHED;
+            ctx->processed = 0; // prepare for mbedtls_ccm_update()
+        }
+    }
+
+    return 0;
+}
+
+int mbedtls_ccm_update(mbedtls_ccm_context *ctx,
+                       const unsigned char *input, size_t input_len,
+                       unsigned char *output, size_t output_size,
+                       size_t *output_len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char i;
+    size_t use_len, offset;
+#if !defined(MBEDTLS_BLOCK_CIPHER_C)
+    size_t olen;
+#endif
+
+    unsigned char local_output[16];
+
+    if (ctx->state & CCM_STATE__ERROR) {
+        return MBEDTLS_ERR_CCM_BAD_INPUT;
+    }
+
+    /* Check against plaintext length only if performing operation with
+     * authentication
+     */
+    if (ctx->tag_len != 0 && ctx->processed + input_len > ctx->plaintext_len) {
+        return MBEDTLS_ERR_CCM_BAD_INPUT;
+    }
+
+    if (output_size < input_len) {
+        return MBEDTLS_ERR_CCM_BAD_INPUT;
+    }
+    *output_len = input_len;
+
+    ret = 0;
+
+    while (input_len > 0) {
+        offset = ctx->processed % 16;
+
+        use_len = 16 - offset;
+
+        if (use_len > input_len) {
+            use_len = input_len;
+        }
+
+        ctx->processed += use_len;
+
+        if (ctx->mode == MBEDTLS_CCM_ENCRYPT || \
+            ctx->mode == MBEDTLS_CCM_STAR_ENCRYPT) {
+            mbedtls_xor(ctx->y + offset, ctx->y + offset, input, use_len);
+
+            if (use_len + offset == 16 || ctx->processed == ctx->plaintext_len) {
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+                ret = mbedtls_block_cipher_encrypt(&ctx->block_cipher_ctx, ctx->y, ctx->y);
+#else
+                ret = mbedtls_cipher_update(&ctx->cipher_ctx, ctx->y, 16, ctx->y, &olen);
+#endif
+                if (ret != 0) {
+                    ctx->state |= CCM_STATE__ERROR;
+                    goto exit;
+                }
+            }
+
+            ret = mbedtls_ccm_crypt(ctx, offset, use_len, input, output);
+            if (ret != 0) {
+                goto exit;
+            }
+        }
+
+        if (ctx->mode == MBEDTLS_CCM_DECRYPT || \
+            ctx->mode == MBEDTLS_CCM_STAR_DECRYPT) {
+            /* Since output may be in shared memory, we cannot be sure that
+             * it will contain what we wrote to it. Therefore, we should avoid using
+             * it as input to any operations.
+             * Write decrypted data to local_output to avoid using output variable as
+             * input in the XOR operation for Y.
+             */
+            ret = mbedtls_ccm_crypt(ctx, offset, use_len, input, local_output);
+            if (ret != 0) {
+                goto exit;
+            }
+
+            mbedtls_xor(ctx->y + offset, ctx->y + offset, local_output, use_len);
+
+            memcpy(output, local_output, use_len);
+
+            if (use_len + offset == 16 || ctx->processed == ctx->plaintext_len) {
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+                ret = mbedtls_block_cipher_encrypt(&ctx->block_cipher_ctx, ctx->y, ctx->y);
+#else
+                ret = mbedtls_cipher_update(&ctx->cipher_ctx, ctx->y, 16, ctx->y, &olen);
+#endif
+                if (ret != 0) {
+                    ctx->state |= CCM_STATE__ERROR;
+                    goto exit;
+                }
+            }
+        }
+
+        if (use_len + offset == 16 || ctx->processed == ctx->plaintext_len) {
+            for (i = 0; i < ctx->q; i++) {
+                if (++(ctx->ctr)[15-i] != 0) {
+                    break;
+                }
+            }
+        }
+
+        input_len -= use_len;
+        input += use_len;
+        output += use_len;
+    }
+
+exit:
+    mbedtls_platform_zeroize(local_output, 16);
+
+    return ret;
+}
+
+int mbedtls_ccm_finish(mbedtls_ccm_context *ctx,
+                       unsigned char *tag, size_t tag_len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char i;
+
+    if (ctx->state & CCM_STATE__ERROR) {
+        return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    }
+
+    if (ctx->add_len > 0 && !(ctx->state & CCM_STATE__AUTH_DATA_FINISHED)) {
+        return MBEDTLS_ERR_CCM_BAD_INPUT;
+    }
+
+    if (ctx->plaintext_len > 0 && ctx->processed != ctx->plaintext_len) {
+        return MBEDTLS_ERR_CCM_BAD_INPUT;
+    }
+
+    /*
+     * Authentication: reset counter and crypt/mask internal tag
+     */
+    for (i = 0; i < ctx->q; i++) {
+        ctx->ctr[15-i] = 0;
+    }
+
+    ret = mbedtls_ccm_crypt(ctx, 0, 16, ctx->y, ctx->y);
+    if (ret != 0) {
+        return ret;
+    }
+    if (tag != NULL) {
+        memcpy(tag, ctx->y, tag_len);
+    }
+    mbedtls_ccm_clear_state(ctx);
+
+    return 0;
+}
+
+/*
+ * Authenticated encryption or decryption
+ */
+static int ccm_auth_crypt(mbedtls_ccm_context *ctx, int mode, size_t length,
+                          const unsigned char *iv, size_t iv_len,
+                          const unsigned char *add, size_t add_len,
+                          const unsigned char *input, unsigned char *output,
+                          unsigned char *tag, size_t tag_len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t olen;
+
+    if ((ret = mbedtls_ccm_starts(ctx, mode, iv, iv_len)) != 0) {
+        return ret;
+    }
+
+    if ((ret = mbedtls_ccm_set_lengths(ctx, add_len, length, tag_len)) != 0) {
+        return ret;
+    }
+
+    if ((ret = mbedtls_ccm_update_ad(ctx, add, add_len)) != 0) {
+        return ret;
+    }
+
+    if ((ret = mbedtls_ccm_update(ctx, input, length,
+                                  output, length, &olen)) != 0) {
+        return ret;
+    }
+
+    if ((ret = mbedtls_ccm_finish(ctx, tag, tag_len)) != 0) {
+        return ret;
+    }
+
+    return 0;
+}
+
+/*
+ * Authenticated encryption
+ */
+int mbedtls_ccm_star_encrypt_and_tag(mbedtls_ccm_context *ctx, size_t length,
+                                     const unsigned char *iv, size_t iv_len,
+                                     const unsigned char *add, size_t add_len,
+                                     const unsigned char *input, unsigned char *output,
+                                     unsigned char *tag, size_t tag_len)
+{
+    return ccm_auth_crypt(ctx, MBEDTLS_CCM_STAR_ENCRYPT, length, iv, iv_len,
+                          add, add_len, input, output, tag, tag_len);
+}
+
+int mbedtls_ccm_encrypt_and_tag(mbedtls_ccm_context *ctx, size_t length,
+                                const unsigned char *iv, size_t iv_len,
+                                const unsigned char *add, size_t add_len,
+                                const unsigned char *input, unsigned char *output,
+                                unsigned char *tag, size_t tag_len)
+{
+    return ccm_auth_crypt(ctx, MBEDTLS_CCM_ENCRYPT, length, iv, iv_len,
+                          add, add_len, input, output, tag, tag_len);
+}
+
+/*
+ * Authenticated decryption
+ */
+static int mbedtls_ccm_compare_tags(const unsigned char *tag1,
+                                    const unsigned char *tag2,
+                                    size_t tag_len)
+{
+    /* Check tag in "constant-time" */
+    int diff = mbedtls_ct_memcmp(tag1, tag2, tag_len);
+
+    if (diff != 0) {
+        return MBEDTLS_ERR_CCM_AUTH_FAILED;
+    }
+
+    return 0;
+}
+
+static int ccm_auth_decrypt(mbedtls_ccm_context *ctx, int mode, size_t length,
+                            const unsigned char *iv, size_t iv_len,
+                            const unsigned char *add, size_t add_len,
+                            const unsigned char *input, unsigned char *output,
+                            const unsigned char *tag, size_t tag_len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char check_tag[16];
+
+    if ((ret = ccm_auth_crypt(ctx, mode, length,
+                              iv, iv_len, add, add_len,
+                              input, output, check_tag, tag_len)) != 0) {
+        return ret;
+    }
+
+    if ((ret = mbedtls_ccm_compare_tags(tag, check_tag, tag_len)) != 0) {
+        mbedtls_platform_zeroize(output, length);
+        return ret;
+    }
+
+    return 0;
+}
+
+int mbedtls_ccm_star_auth_decrypt(mbedtls_ccm_context *ctx, size_t length,
+                                  const unsigned char *iv, size_t iv_len,
+                                  const unsigned char *add, size_t add_len,
+                                  const unsigned char *input, unsigned char *output,
+                                  const unsigned char *tag, size_t tag_len)
+{
+    return ccm_auth_decrypt(ctx, MBEDTLS_CCM_STAR_DECRYPT, length,
+                            iv, iv_len, add, add_len,
+                            input, output, tag, tag_len);
+}
+
+int mbedtls_ccm_auth_decrypt(mbedtls_ccm_context *ctx, size_t length,
+                             const unsigned char *iv, size_t iv_len,
+                             const unsigned char *add, size_t add_len,
+                             const unsigned char *input, unsigned char *output,
+                             const unsigned char *tag, size_t tag_len)
+{
+    return ccm_auth_decrypt(ctx, MBEDTLS_CCM_DECRYPT, length,
+                            iv, iv_len, add, add_len,
+                            input, output, tag, tag_len);
+}
+#endif /* !MBEDTLS_CCM_ALT */
+
+#if defined(MBEDTLS_SELF_TEST) && defined(MBEDTLS_CCM_GCM_CAN_AES)
+/*
+ * Examples 1 to 3 from SP800-38C Appendix C
+ */
+
+#define NB_TESTS 3
+#define CCM_SELFTEST_PT_MAX_LEN 24
+#define CCM_SELFTEST_CT_MAX_LEN 32
+/*
+ * The data is the same for all tests, only the used length changes
+ */
+static const unsigned char key_test_data[] = {
+    0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
+    0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f
+};
+
+static const unsigned char iv_test_data[] = {
+    0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+    0x18, 0x19, 0x1a, 0x1b
+};
+
+static const unsigned char ad_test_data[] = {
+    0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+    0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+    0x10, 0x11, 0x12, 0x13
+};
+
+static const unsigned char msg_test_data[CCM_SELFTEST_PT_MAX_LEN] = {
+    0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
+    0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
+    0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
+};
+
+static const size_t iv_len_test_data[NB_TESTS] = { 7, 8,  12 };
+static const size_t add_len_test_data[NB_TESTS] = { 8, 16, 20 };
+static const size_t msg_len_test_data[NB_TESTS] = { 4, 16, 24 };
+static const size_t tag_len_test_data[NB_TESTS] = { 4, 6,  8  };
+
+static const unsigned char res_test_data[NB_TESTS][CCM_SELFTEST_CT_MAX_LEN] = {
+    {   0x71, 0x62, 0x01, 0x5b, 0x4d, 0xac, 0x25, 0x5d },
+    {   0xd2, 0xa1, 0xf0, 0xe0, 0x51, 0xea, 0x5f, 0x62,
+        0x08, 0x1a, 0x77, 0x92, 0x07, 0x3d, 0x59, 0x3d,
+        0x1f, 0xc6, 0x4f, 0xbf, 0xac, 0xcd },
+    {   0xe3, 0xb2, 0x01, 0xa9, 0xf5, 0xb7, 0x1a, 0x7a,
+        0x9b, 0x1c, 0xea, 0xec, 0xcd, 0x97, 0xe7, 0x0b,
+        0x61, 0x76, 0xaa, 0xd9, 0xa4, 0x42, 0x8a, 0xa5,
+        0x48, 0x43, 0x92, 0xfb, 0xc1, 0xb0, 0x99, 0x51 }
+};
+
+int mbedtls_ccm_self_test(int verbose)
+{
+    mbedtls_ccm_context ctx;
+    /*
+     * Some hardware accelerators require the input and output buffers
+     * would be in RAM, because the flash is not accessible.
+     * Use buffers on the stack to hold the test vectors data.
+     */
+    unsigned char plaintext[CCM_SELFTEST_PT_MAX_LEN];
+    unsigned char ciphertext[CCM_SELFTEST_CT_MAX_LEN];
+    size_t i;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    mbedtls_ccm_init(&ctx);
+
+    if (mbedtls_ccm_setkey(&ctx, MBEDTLS_CIPHER_ID_AES, key_test_data,
+                           8 * sizeof(key_test_data)) != 0) {
+        if (verbose != 0) {
+            mbedtls_printf("  CCM: setup failed");
+        }
+
+        return 1;
+    }
+
+    for (i = 0; i < NB_TESTS; i++) {
+        if (verbose != 0) {
+            mbedtls_printf("  CCM-AES #%u: ", (unsigned int) i + 1);
+        }
+
+        memset(plaintext, 0, CCM_SELFTEST_PT_MAX_LEN);
+        memset(ciphertext, 0, CCM_SELFTEST_CT_MAX_LEN);
+        memcpy(plaintext, msg_test_data, msg_len_test_data[i]);
+
+        ret = mbedtls_ccm_encrypt_and_tag(&ctx, msg_len_test_data[i],
+                                          iv_test_data, iv_len_test_data[i],
+                                          ad_test_data, add_len_test_data[i],
+                                          plaintext, ciphertext,
+                                          ciphertext + msg_len_test_data[i],
+                                          tag_len_test_data[i]);
+
+        if (ret != 0 ||
+            memcmp(ciphertext, res_test_data[i],
+                   msg_len_test_data[i] + tag_len_test_data[i]) != 0) {
+            if (verbose != 0) {
+                mbedtls_printf("failed\n");
+            }
+
+            return 1;
+        }
+        memset(plaintext, 0, CCM_SELFTEST_PT_MAX_LEN);
+
+        ret = mbedtls_ccm_auth_decrypt(&ctx, msg_len_test_data[i],
+                                       iv_test_data, iv_len_test_data[i],
+                                       ad_test_data, add_len_test_data[i],
+                                       ciphertext, plaintext,
+                                       ciphertext + msg_len_test_data[i],
+                                       tag_len_test_data[i]);
+
+        if (ret != 0 ||
+            memcmp(plaintext, msg_test_data, msg_len_test_data[i]) != 0) {
+            if (verbose != 0) {
+                mbedtls_printf("failed\n");
+            }
+
+            return 1;
+        }
+
+        if (verbose != 0) {
+            mbedtls_printf("passed\n");
+        }
+    }
+
+    mbedtls_ccm_free(&ctx);
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+
+    return 0;
+}
+
+#endif /* MBEDTLS_SELF_TEST && MBEDTLS_AES_C */
+
+#endif /* MBEDTLS_CCM_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/chacha20.c b/tf-psa-crypto/drivers/builtin/src/chacha20.c
new file mode 100644
index 0000000..acaae5b
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/chacha20.c
@@ -0,0 +1,497 @@
+/**
+ * \file chacha20.c
+ *
+ * \brief ChaCha20 cipher.
+ *
+ * \author Daniel King <damaki.gh@gmail.com>
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_CHACHA20_C)
+
+#include "mbedtls/chacha20.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <stddef.h>
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_CHACHA20_ALT)
+
+#define ROTL32(value, amount) \
+    ((uint32_t) ((value) << (amount)) | ((value) >> (32 - (amount))))
+
+#define CHACHA20_CTR_INDEX (12U)
+
+#define CHACHA20_BLOCK_SIZE_BYTES (4U * 16U)
+
+/**
+ * \brief           ChaCha20 quarter round operation.
+ *
+ *                  The quarter round is defined as follows (from RFC 7539):
+ *                      1.  a += b; d ^= a; d <<<= 16;
+ *                      2.  c += d; b ^= c; b <<<= 12;
+ *                      3.  a += b; d ^= a; d <<<= 8;
+ *                      4.  c += d; b ^= c; b <<<= 7;
+ *
+ * \param state     ChaCha20 state to modify.
+ * \param a         The index of 'a' in the state.
+ * \param b         The index of 'b' in the state.
+ * \param c         The index of 'c' in the state.
+ * \param d         The index of 'd' in the state.
+ */
+static inline void chacha20_quarter_round(uint32_t state[16],
+                                          size_t a,
+                                          size_t b,
+                                          size_t c,
+                                          size_t d)
+{
+    /* a += b; d ^= a; d <<<= 16; */
+    state[a] += state[b];
+    state[d] ^= state[a];
+    state[d] = ROTL32(state[d], 16);
+
+    /* c += d; b ^= c; b <<<= 12 */
+    state[c] += state[d];
+    state[b] ^= state[c];
+    state[b] = ROTL32(state[b], 12);
+
+    /* a += b; d ^= a; d <<<= 8; */
+    state[a] += state[b];
+    state[d] ^= state[a];
+    state[d] = ROTL32(state[d], 8);
+
+    /* c += d; b ^= c; b <<<= 7; */
+    state[c] += state[d];
+    state[b] ^= state[c];
+    state[b] = ROTL32(state[b], 7);
+}
+
+/**
+ * \brief           Perform the ChaCha20 inner block operation.
+ *
+ *                  This function performs two rounds: the column round and the
+ *                  diagonal round.
+ *
+ * \param state     The ChaCha20 state to update.
+ */
+static void chacha20_inner_block(uint32_t state[16])
+{
+    chacha20_quarter_round(state, 0, 4, 8,  12);
+    chacha20_quarter_round(state, 1, 5, 9,  13);
+    chacha20_quarter_round(state, 2, 6, 10, 14);
+    chacha20_quarter_round(state, 3, 7, 11, 15);
+
+    chacha20_quarter_round(state, 0, 5, 10, 15);
+    chacha20_quarter_round(state, 1, 6, 11, 12);
+    chacha20_quarter_round(state, 2, 7, 8,  13);
+    chacha20_quarter_round(state, 3, 4, 9,  14);
+}
+
+/**
+ * \brief               Generates a keystream block.
+ *
+ * \param initial_state The initial ChaCha20 state (key, nonce, counter).
+ * \param keystream     Generated keystream bytes are written to this buffer.
+ */
+static void chacha20_block(const uint32_t initial_state[16],
+                           unsigned char keystream[64])
+{
+    uint32_t working_state[16];
+    size_t i;
+
+    memcpy(working_state,
+           initial_state,
+           CHACHA20_BLOCK_SIZE_BYTES);
+
+    for (i = 0U; i < 10U; i++) {
+        chacha20_inner_block(working_state);
+    }
+
+    working_state[0] += initial_state[0];
+    working_state[1] += initial_state[1];
+    working_state[2] += initial_state[2];
+    working_state[3] += initial_state[3];
+    working_state[4] += initial_state[4];
+    working_state[5] += initial_state[5];
+    working_state[6] += initial_state[6];
+    working_state[7] += initial_state[7];
+    working_state[8] += initial_state[8];
+    working_state[9] += initial_state[9];
+    working_state[10] += initial_state[10];
+    working_state[11] += initial_state[11];
+    working_state[12] += initial_state[12];
+    working_state[13] += initial_state[13];
+    working_state[14] += initial_state[14];
+    working_state[15] += initial_state[15];
+
+    for (i = 0U; i < 16; i++) {
+        size_t offset = i * 4U;
+
+        MBEDTLS_PUT_UINT32_LE(working_state[i], keystream, offset);
+    }
+
+    mbedtls_platform_zeroize(working_state, sizeof(working_state));
+}
+
+void mbedtls_chacha20_init(mbedtls_chacha20_context *ctx)
+{
+    mbedtls_platform_zeroize(ctx->state, sizeof(ctx->state));
+    mbedtls_platform_zeroize(ctx->keystream8, sizeof(ctx->keystream8));
+
+    /* Initially, there's no keystream bytes available */
+    ctx->keystream_bytes_used = CHACHA20_BLOCK_SIZE_BYTES;
+}
+
+void mbedtls_chacha20_free(mbedtls_chacha20_context *ctx)
+{
+    if (ctx != NULL) {
+        mbedtls_platform_zeroize(ctx, sizeof(mbedtls_chacha20_context));
+    }
+}
+
+int mbedtls_chacha20_setkey(mbedtls_chacha20_context *ctx,
+                            const unsigned char key[32])
+{
+    /* ChaCha20 constants - the string "expand 32-byte k" */
+    ctx->state[0] = 0x61707865;
+    ctx->state[1] = 0x3320646e;
+    ctx->state[2] = 0x79622d32;
+    ctx->state[3] = 0x6b206574;
+
+    /* Set key */
+    ctx->state[4]  = MBEDTLS_GET_UINT32_LE(key, 0);
+    ctx->state[5]  = MBEDTLS_GET_UINT32_LE(key, 4);
+    ctx->state[6]  = MBEDTLS_GET_UINT32_LE(key, 8);
+    ctx->state[7]  = MBEDTLS_GET_UINT32_LE(key, 12);
+    ctx->state[8]  = MBEDTLS_GET_UINT32_LE(key, 16);
+    ctx->state[9]  = MBEDTLS_GET_UINT32_LE(key, 20);
+    ctx->state[10] = MBEDTLS_GET_UINT32_LE(key, 24);
+    ctx->state[11] = MBEDTLS_GET_UINT32_LE(key, 28);
+
+    return 0;
+}
+
+int mbedtls_chacha20_starts(mbedtls_chacha20_context *ctx,
+                            const unsigned char nonce[12],
+                            uint32_t counter)
+{
+    /* Counter */
+    ctx->state[12] = counter;
+
+    /* Nonce */
+    ctx->state[13] = MBEDTLS_GET_UINT32_LE(nonce, 0);
+    ctx->state[14] = MBEDTLS_GET_UINT32_LE(nonce, 4);
+    ctx->state[15] = MBEDTLS_GET_UINT32_LE(nonce, 8);
+
+    mbedtls_platform_zeroize(ctx->keystream8, sizeof(ctx->keystream8));
+
+    /* Initially, there's no keystream bytes available */
+    ctx->keystream_bytes_used = CHACHA20_BLOCK_SIZE_BYTES;
+
+    return 0;
+}
+
+int mbedtls_chacha20_update(mbedtls_chacha20_context *ctx,
+                            size_t size,
+                            const unsigned char *input,
+                            unsigned char *output)
+{
+    size_t offset = 0U;
+
+    /* Use leftover keystream bytes, if available */
+    while (size > 0U && ctx->keystream_bytes_used < CHACHA20_BLOCK_SIZE_BYTES) {
+        output[offset] = input[offset]
+                         ^ ctx->keystream8[ctx->keystream_bytes_used];
+
+        ctx->keystream_bytes_used++;
+        offset++;
+        size--;
+    }
+
+    /* Process full blocks */
+    while (size >= CHACHA20_BLOCK_SIZE_BYTES) {
+        /* Generate new keystream block and increment counter */
+        chacha20_block(ctx->state, ctx->keystream8);
+        ctx->state[CHACHA20_CTR_INDEX]++;
+
+        mbedtls_xor(output + offset, input + offset, ctx->keystream8, 64U);
+
+        offset += CHACHA20_BLOCK_SIZE_BYTES;
+        size   -= CHACHA20_BLOCK_SIZE_BYTES;
+    }
+
+    /* Last (partial) block */
+    if (size > 0U) {
+        /* Generate new keystream block and increment counter */
+        chacha20_block(ctx->state, ctx->keystream8);
+        ctx->state[CHACHA20_CTR_INDEX]++;
+
+        mbedtls_xor(output + offset, input + offset, ctx->keystream8, size);
+
+        ctx->keystream_bytes_used = size;
+
+    }
+
+    return 0;
+}
+
+int mbedtls_chacha20_crypt(const unsigned char key[32],
+                           const unsigned char nonce[12],
+                           uint32_t counter,
+                           size_t data_len,
+                           const unsigned char *input,
+                           unsigned char *output)
+{
+    mbedtls_chacha20_context ctx;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    mbedtls_chacha20_init(&ctx);
+
+    ret = mbedtls_chacha20_setkey(&ctx, key);
+    if (ret != 0) {
+        goto cleanup;
+    }
+
+    ret = mbedtls_chacha20_starts(&ctx, nonce, counter);
+    if (ret != 0) {
+        goto cleanup;
+    }
+
+    ret = mbedtls_chacha20_update(&ctx, data_len, input, output);
+
+cleanup:
+    mbedtls_chacha20_free(&ctx);
+    return ret;
+}
+
+#endif /* !MBEDTLS_CHACHA20_ALT */
+
+#if defined(MBEDTLS_SELF_TEST)
+
+static const unsigned char test_keys[2][32] =
+{
+    {
+        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
+    },
+    {
+        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01
+    }
+};
+
+static const unsigned char test_nonces[2][12] =
+{
+    {
+        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+        0x00, 0x00, 0x00, 0x00
+    },
+    {
+        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+        0x00, 0x00, 0x00, 0x02
+    }
+};
+
+static const uint32_t test_counters[2] =
+{
+    0U,
+    1U
+};
+
+static const unsigned char test_input[2][375] =
+{
+    {
+        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
+    },
+    {
+        0x41, 0x6e, 0x79, 0x20, 0x73, 0x75, 0x62, 0x6d,
+        0x69, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x20, 0x74,
+        0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x49, 0x45,
+        0x54, 0x46, 0x20, 0x69, 0x6e, 0x74, 0x65, 0x6e,
+        0x64, 0x65, 0x64, 0x20, 0x62, 0x79, 0x20, 0x74,
+        0x68, 0x65, 0x20, 0x43, 0x6f, 0x6e, 0x74, 0x72,
+        0x69, 0x62, 0x75, 0x74, 0x6f, 0x72, 0x20, 0x66,
+        0x6f, 0x72, 0x20, 0x70, 0x75, 0x62, 0x6c, 0x69,
+        0x63, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x61,
+        0x73, 0x20, 0x61, 0x6c, 0x6c, 0x20, 0x6f, 0x72,
+        0x20, 0x70, 0x61, 0x72, 0x74, 0x20, 0x6f, 0x66,
+        0x20, 0x61, 0x6e, 0x20, 0x49, 0x45, 0x54, 0x46,
+        0x20, 0x49, 0x6e, 0x74, 0x65, 0x72, 0x6e, 0x65,
+        0x74, 0x2d, 0x44, 0x72, 0x61, 0x66, 0x74, 0x20,
+        0x6f, 0x72, 0x20, 0x52, 0x46, 0x43, 0x20, 0x61,
+        0x6e, 0x64, 0x20, 0x61, 0x6e, 0x79, 0x20, 0x73,
+        0x74, 0x61, 0x74, 0x65, 0x6d, 0x65, 0x6e, 0x74,
+        0x20, 0x6d, 0x61, 0x64, 0x65, 0x20, 0x77, 0x69,
+        0x74, 0x68, 0x69, 0x6e, 0x20, 0x74, 0x68, 0x65,
+        0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74,
+        0x20, 0x6f, 0x66, 0x20, 0x61, 0x6e, 0x20, 0x49,
+        0x45, 0x54, 0x46, 0x20, 0x61, 0x63, 0x74, 0x69,
+        0x76, 0x69, 0x74, 0x79, 0x20, 0x69, 0x73, 0x20,
+        0x63, 0x6f, 0x6e, 0x73, 0x69, 0x64, 0x65, 0x72,
+        0x65, 0x64, 0x20, 0x61, 0x6e, 0x20, 0x22, 0x49,
+        0x45, 0x54, 0x46, 0x20, 0x43, 0x6f, 0x6e, 0x74,
+        0x72, 0x69, 0x62, 0x75, 0x74, 0x69, 0x6f, 0x6e,
+        0x22, 0x2e, 0x20, 0x53, 0x75, 0x63, 0x68, 0x20,
+        0x73, 0x74, 0x61, 0x74, 0x65, 0x6d, 0x65, 0x6e,
+        0x74, 0x73, 0x20, 0x69, 0x6e, 0x63, 0x6c, 0x75,
+        0x64, 0x65, 0x20, 0x6f, 0x72, 0x61, 0x6c, 0x20,
+        0x73, 0x74, 0x61, 0x74, 0x65, 0x6d, 0x65, 0x6e,
+        0x74, 0x73, 0x20, 0x69, 0x6e, 0x20, 0x49, 0x45,
+        0x54, 0x46, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69,
+        0x6f, 0x6e, 0x73, 0x2c, 0x20, 0x61, 0x73, 0x20,
+        0x77, 0x65, 0x6c, 0x6c, 0x20, 0x61, 0x73, 0x20,
+        0x77, 0x72, 0x69, 0x74, 0x74, 0x65, 0x6e, 0x20,
+        0x61, 0x6e, 0x64, 0x20, 0x65, 0x6c, 0x65, 0x63,
+        0x74, 0x72, 0x6f, 0x6e, 0x69, 0x63, 0x20, 0x63,
+        0x6f, 0x6d, 0x6d, 0x75, 0x6e, 0x69, 0x63, 0x61,
+        0x74, 0x69, 0x6f, 0x6e, 0x73, 0x20, 0x6d, 0x61,
+        0x64, 0x65, 0x20, 0x61, 0x74, 0x20, 0x61, 0x6e,
+        0x79, 0x20, 0x74, 0x69, 0x6d, 0x65, 0x20, 0x6f,
+        0x72, 0x20, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x2c,
+        0x20, 0x77, 0x68, 0x69, 0x63, 0x68, 0x20, 0x61,
+        0x72, 0x65, 0x20, 0x61, 0x64, 0x64, 0x72, 0x65,
+        0x73, 0x73, 0x65, 0x64, 0x20, 0x74, 0x6f
+    }
+};
+
+static const unsigned char test_output[2][375] =
+{
+    {
+        0x76, 0xb8, 0xe0, 0xad, 0xa0, 0xf1, 0x3d, 0x90,
+        0x40, 0x5d, 0x6a, 0xe5, 0x53, 0x86, 0xbd, 0x28,
+        0xbd, 0xd2, 0x19, 0xb8, 0xa0, 0x8d, 0xed, 0x1a,
+        0xa8, 0x36, 0xef, 0xcc, 0x8b, 0x77, 0x0d, 0xc7,
+        0xda, 0x41, 0x59, 0x7c, 0x51, 0x57, 0x48, 0x8d,
+        0x77, 0x24, 0xe0, 0x3f, 0xb8, 0xd8, 0x4a, 0x37,
+        0x6a, 0x43, 0xb8, 0xf4, 0x15, 0x18, 0xa1, 0x1c,
+        0xc3, 0x87, 0xb6, 0x69, 0xb2, 0xee, 0x65, 0x86
+    },
+    {
+        0xa3, 0xfb, 0xf0, 0x7d, 0xf3, 0xfa, 0x2f, 0xde,
+        0x4f, 0x37, 0x6c, 0xa2, 0x3e, 0x82, 0x73, 0x70,
+        0x41, 0x60, 0x5d, 0x9f, 0x4f, 0x4f, 0x57, 0xbd,
+        0x8c, 0xff, 0x2c, 0x1d, 0x4b, 0x79, 0x55, 0xec,
+        0x2a, 0x97, 0x94, 0x8b, 0xd3, 0x72, 0x29, 0x15,
+        0xc8, 0xf3, 0xd3, 0x37, 0xf7, 0xd3, 0x70, 0x05,
+        0x0e, 0x9e, 0x96, 0xd6, 0x47, 0xb7, 0xc3, 0x9f,
+        0x56, 0xe0, 0x31, 0xca, 0x5e, 0xb6, 0x25, 0x0d,
+        0x40, 0x42, 0xe0, 0x27, 0x85, 0xec, 0xec, 0xfa,
+        0x4b, 0x4b, 0xb5, 0xe8, 0xea, 0xd0, 0x44, 0x0e,
+        0x20, 0xb6, 0xe8, 0xdb, 0x09, 0xd8, 0x81, 0xa7,
+        0xc6, 0x13, 0x2f, 0x42, 0x0e, 0x52, 0x79, 0x50,
+        0x42, 0xbd, 0xfa, 0x77, 0x73, 0xd8, 0xa9, 0x05,
+        0x14, 0x47, 0xb3, 0x29, 0x1c, 0xe1, 0x41, 0x1c,
+        0x68, 0x04, 0x65, 0x55, 0x2a, 0xa6, 0xc4, 0x05,
+        0xb7, 0x76, 0x4d, 0x5e, 0x87, 0xbe, 0xa8, 0x5a,
+        0xd0, 0x0f, 0x84, 0x49, 0xed, 0x8f, 0x72, 0xd0,
+        0xd6, 0x62, 0xab, 0x05, 0x26, 0x91, 0xca, 0x66,
+        0x42, 0x4b, 0xc8, 0x6d, 0x2d, 0xf8, 0x0e, 0xa4,
+        0x1f, 0x43, 0xab, 0xf9, 0x37, 0xd3, 0x25, 0x9d,
+        0xc4, 0xb2, 0xd0, 0xdf, 0xb4, 0x8a, 0x6c, 0x91,
+        0x39, 0xdd, 0xd7, 0xf7, 0x69, 0x66, 0xe9, 0x28,
+        0xe6, 0x35, 0x55, 0x3b, 0xa7, 0x6c, 0x5c, 0x87,
+        0x9d, 0x7b, 0x35, 0xd4, 0x9e, 0xb2, 0xe6, 0x2b,
+        0x08, 0x71, 0xcd, 0xac, 0x63, 0x89, 0x39, 0xe2,
+        0x5e, 0x8a, 0x1e, 0x0e, 0xf9, 0xd5, 0x28, 0x0f,
+        0xa8, 0xca, 0x32, 0x8b, 0x35, 0x1c, 0x3c, 0x76,
+        0x59, 0x89, 0xcb, 0xcf, 0x3d, 0xaa, 0x8b, 0x6c,
+        0xcc, 0x3a, 0xaf, 0x9f, 0x39, 0x79, 0xc9, 0x2b,
+        0x37, 0x20, 0xfc, 0x88, 0xdc, 0x95, 0xed, 0x84,
+        0xa1, 0xbe, 0x05, 0x9c, 0x64, 0x99, 0xb9, 0xfd,
+        0xa2, 0x36, 0xe7, 0xe8, 0x18, 0xb0, 0x4b, 0x0b,
+        0xc3, 0x9c, 0x1e, 0x87, 0x6b, 0x19, 0x3b, 0xfe,
+        0x55, 0x69, 0x75, 0x3f, 0x88, 0x12, 0x8c, 0xc0,
+        0x8a, 0xaa, 0x9b, 0x63, 0xd1, 0xa1, 0x6f, 0x80,
+        0xef, 0x25, 0x54, 0xd7, 0x18, 0x9c, 0x41, 0x1f,
+        0x58, 0x69, 0xca, 0x52, 0xc5, 0xb8, 0x3f, 0xa3,
+        0x6f, 0xf2, 0x16, 0xb9, 0xc1, 0xd3, 0x00, 0x62,
+        0xbe, 0xbc, 0xfd, 0x2d, 0xc5, 0xbc, 0xe0, 0x91,
+        0x19, 0x34, 0xfd, 0xa7, 0x9a, 0x86, 0xf6, 0xe6,
+        0x98, 0xce, 0xd7, 0x59, 0xc3, 0xff, 0x9b, 0x64,
+        0x77, 0x33, 0x8f, 0x3d, 0xa4, 0xf9, 0xcd, 0x85,
+        0x14, 0xea, 0x99, 0x82, 0xcc, 0xaf, 0xb3, 0x41,
+        0xb2, 0x38, 0x4d, 0xd9, 0x02, 0xf3, 0xd1, 0xab,
+        0x7a, 0xc6, 0x1d, 0xd2, 0x9c, 0x6f, 0x21, 0xba,
+        0x5b, 0x86, 0x2f, 0x37, 0x30, 0xe3, 0x7c, 0xfd,
+        0xc4, 0xfd, 0x80, 0x6c, 0x22, 0xf2, 0x21
+    }
+};
+
+static const size_t test_lengths[2] =
+{
+    64U,
+    375U
+};
+
+/* Make sure no other definition is already present. */
+#undef ASSERT
+
+#define ASSERT(cond, args)            \
+    do                                  \
+    {                                   \
+        if (!(cond))                \
+        {                               \
+            if (verbose != 0)          \
+            mbedtls_printf args;    \
+                                        \
+            return -1;               \
+        }                               \
+    }                                   \
+    while (0)
+
+int mbedtls_chacha20_self_test(int verbose)
+{
+    unsigned char output[381];
+    unsigned i;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    for (i = 0U; i < 2U; i++) {
+        if (verbose != 0) {
+            mbedtls_printf("  ChaCha20 test %u ", i);
+        }
+
+        ret = mbedtls_chacha20_crypt(test_keys[i],
+                                     test_nonces[i],
+                                     test_counters[i],
+                                     test_lengths[i],
+                                     test_input[i],
+                                     output);
+
+        ASSERT(0 == ret, ("error code: %i\n", ret));
+
+        ASSERT(0 == memcmp(output, test_output[i], test_lengths[i]),
+               ("failed (output)\n"));
+
+        if (verbose != 0) {
+            mbedtls_printf("passed\n");
+        }
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+
+    return 0;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* !MBEDTLS_CHACHA20_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/chachapoly.c b/tf-psa-crypto/drivers/builtin/src/chachapoly.c
new file mode 100644
index 0000000..a1314ea
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/chachapoly.c
@@ -0,0 +1,478 @@
+/**
+ * \file chachapoly.c
+ *
+ * \brief ChaCha20-Poly1305 AEAD construction based on RFC 7539.
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#include "common.h"
+
+#if defined(MBEDTLS_CHACHAPOLY_C)
+
+#include "mbedtls/chachapoly.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+#include "mbedtls/constant_time.h"
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_CHACHAPOLY_ALT)
+
+#define CHACHAPOLY_STATE_INIT       (0)
+#define CHACHAPOLY_STATE_AAD        (1)
+#define CHACHAPOLY_STATE_CIPHERTEXT (2)   /* Encrypting or decrypting */
+#define CHACHAPOLY_STATE_FINISHED   (3)
+
+/**
+ * \brief           Adds nul bytes to pad the AAD for Poly1305.
+ *
+ * \param ctx       The ChaCha20-Poly1305 context.
+ */
+static int chachapoly_pad_aad(mbedtls_chachapoly_context *ctx)
+{
+    uint32_t partial_block_len = (uint32_t) (ctx->aad_len % 16U);
+    unsigned char zeroes[15];
+
+    if (partial_block_len == 0U) {
+        return 0;
+    }
+
+    memset(zeroes, 0, sizeof(zeroes));
+
+    return mbedtls_poly1305_update(&ctx->poly1305_ctx,
+                                   zeroes,
+                                   16U - partial_block_len);
+}
+
+/**
+ * \brief           Adds nul bytes to pad the ciphertext for Poly1305.
+ *
+ * \param ctx       The ChaCha20-Poly1305 context.
+ */
+static int chachapoly_pad_ciphertext(mbedtls_chachapoly_context *ctx)
+{
+    uint32_t partial_block_len = (uint32_t) (ctx->ciphertext_len % 16U);
+    unsigned char zeroes[15];
+
+    if (partial_block_len == 0U) {
+        return 0;
+    }
+
+    memset(zeroes, 0, sizeof(zeroes));
+    return mbedtls_poly1305_update(&ctx->poly1305_ctx,
+                                   zeroes,
+                                   16U - partial_block_len);
+}
+
+void mbedtls_chachapoly_init(mbedtls_chachapoly_context *ctx)
+{
+    mbedtls_chacha20_init(&ctx->chacha20_ctx);
+    mbedtls_poly1305_init(&ctx->poly1305_ctx);
+    ctx->aad_len        = 0U;
+    ctx->ciphertext_len = 0U;
+    ctx->state          = CHACHAPOLY_STATE_INIT;
+    ctx->mode           = MBEDTLS_CHACHAPOLY_ENCRYPT;
+}
+
+void mbedtls_chachapoly_free(mbedtls_chachapoly_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_chacha20_free(&ctx->chacha20_ctx);
+    mbedtls_poly1305_free(&ctx->poly1305_ctx);
+    ctx->aad_len        = 0U;
+    ctx->ciphertext_len = 0U;
+    ctx->state          = CHACHAPOLY_STATE_INIT;
+    ctx->mode           = MBEDTLS_CHACHAPOLY_ENCRYPT;
+}
+
+int mbedtls_chachapoly_setkey(mbedtls_chachapoly_context *ctx,
+                              const unsigned char key[32])
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    ret = mbedtls_chacha20_setkey(&ctx->chacha20_ctx, key);
+
+    return ret;
+}
+
+int mbedtls_chachapoly_starts(mbedtls_chachapoly_context *ctx,
+                              const unsigned char nonce[12],
+                              mbedtls_chachapoly_mode_t mode)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char poly1305_key[64];
+
+    /* Set counter = 0, will be update to 1 when generating Poly1305 key */
+    ret = mbedtls_chacha20_starts(&ctx->chacha20_ctx, nonce, 0U);
+    if (ret != 0) {
+        goto cleanup;
+    }
+
+    /* Generate the Poly1305 key by getting the ChaCha20 keystream output with
+     * counter = 0.  This is the same as encrypting a buffer of zeroes.
+     * Only the first 256-bits (32 bytes) of the key is used for Poly1305.
+     * The other 256 bits are discarded.
+     */
+    memset(poly1305_key, 0, sizeof(poly1305_key));
+    ret = mbedtls_chacha20_update(&ctx->chacha20_ctx, sizeof(poly1305_key),
+                                  poly1305_key, poly1305_key);
+    if (ret != 0) {
+        goto cleanup;
+    }
+
+    ret = mbedtls_poly1305_starts(&ctx->poly1305_ctx, poly1305_key);
+
+    if (ret == 0) {
+        ctx->aad_len        = 0U;
+        ctx->ciphertext_len = 0U;
+        ctx->state          = CHACHAPOLY_STATE_AAD;
+        ctx->mode           = mode;
+    }
+
+cleanup:
+    mbedtls_platform_zeroize(poly1305_key, 64U);
+    return ret;
+}
+
+int mbedtls_chachapoly_update_aad(mbedtls_chachapoly_context *ctx,
+                                  const unsigned char *aad,
+                                  size_t aad_len)
+{
+    if (ctx->state != CHACHAPOLY_STATE_AAD) {
+        return MBEDTLS_ERR_CHACHAPOLY_BAD_STATE;
+    }
+
+    ctx->aad_len += aad_len;
+
+    return mbedtls_poly1305_update(&ctx->poly1305_ctx, aad, aad_len);
+}
+
+int mbedtls_chachapoly_update(mbedtls_chachapoly_context *ctx,
+                              size_t len,
+                              const unsigned char *input,
+                              unsigned char *output)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if ((ctx->state != CHACHAPOLY_STATE_AAD) &&
+        (ctx->state != CHACHAPOLY_STATE_CIPHERTEXT)) {
+        return MBEDTLS_ERR_CHACHAPOLY_BAD_STATE;
+    }
+
+    if (ctx->state == CHACHAPOLY_STATE_AAD) {
+        ctx->state = CHACHAPOLY_STATE_CIPHERTEXT;
+
+        ret = chachapoly_pad_aad(ctx);
+        if (ret != 0) {
+            return ret;
+        }
+    }
+
+    ctx->ciphertext_len += len;
+
+    if (ctx->mode == MBEDTLS_CHACHAPOLY_ENCRYPT) {
+        ret = mbedtls_chacha20_update(&ctx->chacha20_ctx, len, input, output);
+        if (ret != 0) {
+            return ret;
+        }
+
+        ret = mbedtls_poly1305_update(&ctx->poly1305_ctx, output, len);
+        if (ret != 0) {
+            return ret;
+        }
+    } else { /* DECRYPT */
+        ret = mbedtls_poly1305_update(&ctx->poly1305_ctx, input, len);
+        if (ret != 0) {
+            return ret;
+        }
+
+        ret = mbedtls_chacha20_update(&ctx->chacha20_ctx, len, input, output);
+        if (ret != 0) {
+            return ret;
+        }
+    }
+
+    return 0;
+}
+
+int mbedtls_chachapoly_finish(mbedtls_chachapoly_context *ctx,
+                              unsigned char mac[16])
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char len_block[16];
+
+    if (ctx->state == CHACHAPOLY_STATE_INIT) {
+        return MBEDTLS_ERR_CHACHAPOLY_BAD_STATE;
+    }
+
+    if (ctx->state == CHACHAPOLY_STATE_AAD) {
+        ret = chachapoly_pad_aad(ctx);
+        if (ret != 0) {
+            return ret;
+        }
+    } else if (ctx->state == CHACHAPOLY_STATE_CIPHERTEXT) {
+        ret = chachapoly_pad_ciphertext(ctx);
+        if (ret != 0) {
+            return ret;
+        }
+    }
+
+    ctx->state = CHACHAPOLY_STATE_FINISHED;
+
+    /* The lengths of the AAD and ciphertext are processed by
+     * Poly1305 as the final 128-bit block, encoded as little-endian integers.
+     */
+    MBEDTLS_PUT_UINT64_LE(ctx->aad_len, len_block, 0);
+    MBEDTLS_PUT_UINT64_LE(ctx->ciphertext_len, len_block, 8);
+
+    ret = mbedtls_poly1305_update(&ctx->poly1305_ctx, len_block, 16U);
+    if (ret != 0) {
+        return ret;
+    }
+
+    ret = mbedtls_poly1305_finish(&ctx->poly1305_ctx, mac);
+
+    return ret;
+}
+
+static int chachapoly_crypt_and_tag(mbedtls_chachapoly_context *ctx,
+                                    mbedtls_chachapoly_mode_t mode,
+                                    size_t length,
+                                    const unsigned char nonce[12],
+                                    const unsigned char *aad,
+                                    size_t aad_len,
+                                    const unsigned char *input,
+                                    unsigned char *output,
+                                    unsigned char tag[16])
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    ret = mbedtls_chachapoly_starts(ctx, nonce, mode);
+    if (ret != 0) {
+        goto cleanup;
+    }
+
+    ret = mbedtls_chachapoly_update_aad(ctx, aad, aad_len);
+    if (ret != 0) {
+        goto cleanup;
+    }
+
+    ret = mbedtls_chachapoly_update(ctx, length, input, output);
+    if (ret != 0) {
+        goto cleanup;
+    }
+
+    ret = mbedtls_chachapoly_finish(ctx, tag);
+
+cleanup:
+    return ret;
+}
+
+int mbedtls_chachapoly_encrypt_and_tag(mbedtls_chachapoly_context *ctx,
+                                       size_t length,
+                                       const unsigned char nonce[12],
+                                       const unsigned char *aad,
+                                       size_t aad_len,
+                                       const unsigned char *input,
+                                       unsigned char *output,
+                                       unsigned char tag[16])
+{
+    return chachapoly_crypt_and_tag(ctx, MBEDTLS_CHACHAPOLY_ENCRYPT,
+                                    length, nonce, aad, aad_len,
+                                    input, output, tag);
+}
+
+int mbedtls_chachapoly_auth_decrypt(mbedtls_chachapoly_context *ctx,
+                                    size_t length,
+                                    const unsigned char nonce[12],
+                                    const unsigned char *aad,
+                                    size_t aad_len,
+                                    const unsigned char tag[16],
+                                    const unsigned char *input,
+                                    unsigned char *output)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char check_tag[16];
+    int diff;
+
+    if ((ret = chachapoly_crypt_and_tag(ctx,
+                                        MBEDTLS_CHACHAPOLY_DECRYPT, length, nonce,
+                                        aad, aad_len, input, output, check_tag)) != 0) {
+        return ret;
+    }
+
+    /* Check tag in "constant-time" */
+    diff = mbedtls_ct_memcmp(tag, check_tag, sizeof(check_tag));
+
+    if (diff != 0) {
+        mbedtls_platform_zeroize(output, length);
+        return MBEDTLS_ERR_CHACHAPOLY_AUTH_FAILED;
+    }
+
+    return 0;
+}
+
+#endif /* MBEDTLS_CHACHAPOLY_ALT */
+
+#if defined(MBEDTLS_SELF_TEST)
+
+static const unsigned char test_key[1][32] =
+{
+    {
+        0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
+        0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
+        0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
+        0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f
+    }
+};
+
+static const unsigned char test_nonce[1][12] =
+{
+    {
+        0x07, 0x00, 0x00, 0x00,                         /* 32-bit common part */
+        0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47  /* 64-bit IV */
+    }
+};
+
+static const unsigned char test_aad[1][12] =
+{
+    {
+        0x50, 0x51, 0x52, 0x53, 0xc0, 0xc1, 0xc2, 0xc3,
+        0xc4, 0xc5, 0xc6, 0xc7
+    }
+};
+
+static const size_t test_aad_len[1] =
+{
+    12U
+};
+
+static const unsigned char test_input[1][114] =
+{
+    {
+        0x4c, 0x61, 0x64, 0x69, 0x65, 0x73, 0x20, 0x61,
+        0x6e, 0x64, 0x20, 0x47, 0x65, 0x6e, 0x74, 0x6c,
+        0x65, 0x6d, 0x65, 0x6e, 0x20, 0x6f, 0x66, 0x20,
+        0x74, 0x68, 0x65, 0x20, 0x63, 0x6c, 0x61, 0x73,
+        0x73, 0x20, 0x6f, 0x66, 0x20, 0x27, 0x39, 0x39,
+        0x3a, 0x20, 0x49, 0x66, 0x20, 0x49, 0x20, 0x63,
+        0x6f, 0x75, 0x6c, 0x64, 0x20, 0x6f, 0x66, 0x66,
+        0x65, 0x72, 0x20, 0x79, 0x6f, 0x75, 0x20, 0x6f,
+        0x6e, 0x6c, 0x79, 0x20, 0x6f, 0x6e, 0x65, 0x20,
+        0x74, 0x69, 0x70, 0x20, 0x66, 0x6f, 0x72, 0x20,
+        0x74, 0x68, 0x65, 0x20, 0x66, 0x75, 0x74, 0x75,
+        0x72, 0x65, 0x2c, 0x20, 0x73, 0x75, 0x6e, 0x73,
+        0x63, 0x72, 0x65, 0x65, 0x6e, 0x20, 0x77, 0x6f,
+        0x75, 0x6c, 0x64, 0x20, 0x62, 0x65, 0x20, 0x69,
+        0x74, 0x2e
+    }
+};
+
+static const unsigned char test_output[1][114] =
+{
+    {
+        0xd3, 0x1a, 0x8d, 0x34, 0x64, 0x8e, 0x60, 0xdb,
+        0x7b, 0x86, 0xaf, 0xbc, 0x53, 0xef, 0x7e, 0xc2,
+        0xa4, 0xad, 0xed, 0x51, 0x29, 0x6e, 0x08, 0xfe,
+        0xa9, 0xe2, 0xb5, 0xa7, 0x36, 0xee, 0x62, 0xd6,
+        0x3d, 0xbe, 0xa4, 0x5e, 0x8c, 0xa9, 0x67, 0x12,
+        0x82, 0xfa, 0xfb, 0x69, 0xda, 0x92, 0x72, 0x8b,
+        0x1a, 0x71, 0xde, 0x0a, 0x9e, 0x06, 0x0b, 0x29,
+        0x05, 0xd6, 0xa5, 0xb6, 0x7e, 0xcd, 0x3b, 0x36,
+        0x92, 0xdd, 0xbd, 0x7f, 0x2d, 0x77, 0x8b, 0x8c,
+        0x98, 0x03, 0xae, 0xe3, 0x28, 0x09, 0x1b, 0x58,
+        0xfa, 0xb3, 0x24, 0xe4, 0xfa, 0xd6, 0x75, 0x94,
+        0x55, 0x85, 0x80, 0x8b, 0x48, 0x31, 0xd7, 0xbc,
+        0x3f, 0xf4, 0xde, 0xf0, 0x8e, 0x4b, 0x7a, 0x9d,
+        0xe5, 0x76, 0xd2, 0x65, 0x86, 0xce, 0xc6, 0x4b,
+        0x61, 0x16
+    }
+};
+
+static const size_t test_input_len[1] =
+{
+    114U
+};
+
+static const unsigned char test_mac[1][16] =
+{
+    {
+        0x1a, 0xe1, 0x0b, 0x59, 0x4f, 0x09, 0xe2, 0x6a,
+        0x7e, 0x90, 0x2e, 0xcb, 0xd0, 0x60, 0x06, 0x91
+    }
+};
+
+/* Make sure no other definition is already present. */
+#undef ASSERT
+
+#define ASSERT(cond, args)            \
+    do                                  \
+    {                                   \
+        if (!(cond))                \
+        {                               \
+            if (verbose != 0)          \
+            mbedtls_printf args;    \
+                                        \
+            return -1;               \
+        }                               \
+    }                                   \
+    while (0)
+
+int mbedtls_chachapoly_self_test(int verbose)
+{
+    mbedtls_chachapoly_context ctx;
+    unsigned i;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char output[200];
+    unsigned char mac[16];
+
+    for (i = 0U; i < 1U; i++) {
+        if (verbose != 0) {
+            mbedtls_printf("  ChaCha20-Poly1305 test %u ", i);
+        }
+
+        mbedtls_chachapoly_init(&ctx);
+
+        ret = mbedtls_chachapoly_setkey(&ctx, test_key[i]);
+        ASSERT(0 == ret, ("setkey() error code: %i\n", ret));
+
+        ret = mbedtls_chachapoly_encrypt_and_tag(&ctx,
+                                                 test_input_len[i],
+                                                 test_nonce[i],
+                                                 test_aad[i],
+                                                 test_aad_len[i],
+                                                 test_input[i],
+                                                 output,
+                                                 mac);
+
+        ASSERT(0 == ret, ("crypt_and_tag() error code: %i\n", ret));
+
+        ASSERT(0 == memcmp(output, test_output[i], test_input_len[i]),
+               ("failure (wrong output)\n"));
+
+        ASSERT(0 == memcmp(mac, test_mac[i], 16U),
+               ("failure (wrong MAC)\n"));
+
+        mbedtls_chachapoly_free(&ctx);
+
+        if (verbose != 0) {
+            mbedtls_printf("passed\n");
+        }
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+
+    return 0;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_CHACHAPOLY_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/check_crypto_config.h b/tf-psa-crypto/drivers/builtin/src/check_crypto_config.h
new file mode 100644
index 0000000..6469e9f
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/check_crypto_config.h
@@ -0,0 +1,141 @@
+/**
+ * \file check_crypto_config.h
+ *
+ * \brief Consistency checks for PSA configuration options
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * It is recommended to include this file from your crypto_config.h
+ * in order to catch dependency issues early.
+ */
+
+#ifndef MBEDTLS_CHECK_CRYPTO_CONFIG_H
+#define MBEDTLS_CHECK_CRYPTO_CONFIG_H
+
+#if defined(PSA_WANT_ALG_CCM) && \
+    !(defined(PSA_WANT_KEY_TYPE_AES) || \
+    defined(PSA_WANT_KEY_TYPE_CAMELLIA))
+#error "PSA_WANT_ALG_CCM defined, but not all prerequisites"
+#endif
+
+#if defined(PSA_WANT_ALG_CMAC) && \
+    !(defined(PSA_WANT_KEY_TYPE_AES) || \
+    defined(PSA_WANT_KEY_TYPE_CAMELLIA) || \
+    defined(PSA_WANT_KEY_TYPE_DES))
+#error "PSA_WANT_ALG_CMAC defined, but not all prerequisites"
+#endif
+
+#if defined(PSA_WANT_ALG_DETERMINISTIC_ECDSA) && \
+    !(defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_BASIC) || \
+    defined(PSA_WANT_KEY_TYPE_ECC_PUBLIC_KEY))
+#error "PSA_WANT_ALG_DETERMINISTIC_ECDSA defined, but not all prerequisites"
+#endif
+
+#if defined(PSA_WANT_ALG_ECDSA) && \
+    !(defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_BASIC) || \
+    defined(PSA_WANT_KEY_TYPE_ECC_PUBLIC_KEY))
+#error "PSA_WANT_ALG_ECDSA defined, but not all prerequisites"
+#endif
+
+#if defined(PSA_WANT_ALG_GCM) && \
+    !(defined(PSA_WANT_KEY_TYPE_AES) || \
+    defined(PSA_WANT_KEY_TYPE_CAMELLIA))
+#error "PSA_WANT_ALG_GCM defined, but not all prerequisites"
+#endif
+
+#if defined(PSA_WANT_ALG_RSA_PKCS1V15_CRYPT) && \
+    !(defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC) || \
+    defined(PSA_WANT_KEY_TYPE_RSA_PUBLIC_KEY))
+#error "PSA_WANT_ALG_RSA_PKCS1V15_CRYPT defined, but not all prerequisites"
+#endif
+
+#if defined(PSA_WANT_ALG_RSA_PKCS1V15_SIGN) && \
+    !(defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC) || \
+    defined(PSA_WANT_KEY_TYPE_RSA_PUBLIC_KEY))
+#error "PSA_WANT_ALG_RSA_PKCS1V15_SIGN defined, but not all prerequisites"
+#endif
+
+#if defined(PSA_WANT_ALG_RSA_OAEP) && \
+    !(defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC) || \
+    defined(PSA_WANT_KEY_TYPE_RSA_PUBLIC_KEY))
+#error "PSA_WANT_ALG_RSA_OAEP defined, but not all prerequisites"
+#endif
+
+#if defined(PSA_WANT_ALG_RSA_PSS) && \
+    !(defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC) || \
+    defined(PSA_WANT_KEY_TYPE_RSA_PUBLIC_KEY))
+#error "PSA_WANT_ALG_RSA_PSS defined, but not all prerequisites"
+#endif
+
+#if (defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_BASIC) || \
+    defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_IMPORT) || \
+    defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_EXPORT) || \
+    defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_GENERATE) || \
+    defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_DERIVE)) && \
+    !defined(PSA_WANT_KEY_TYPE_ECC_PUBLIC_KEY)
+#error "PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_xxx defined, but not all prerequisites"
+#endif
+
+#if (defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC) || \
+    defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_IMPORT) || \
+    defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_EXPORT) || \
+    defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_GENERATE)) && \
+    !defined(PSA_WANT_KEY_TYPE_RSA_PUBLIC_KEY)
+#error "PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_xxx defined, but not all prerequisites"
+#endif
+
+#if (defined(PSA_WANT_KEY_TYPE_DH_KEY_PAIR_BASIC) || \
+    defined(PSA_WANT_KEY_TYPE_DH_KEY_PAIR_IMPORT) || \
+    defined(PSA_WANT_KEY_TYPE_DH_KEY_PAIR_EXPORT) || \
+    defined(PSA_WANT_KEY_TYPE_DH_KEY_PAIR_GENERATE)) && \
+    !defined(PSA_WANT_KEY_TYPE_DH_PUBLIC_KEY)
+#error "PSA_WANT_KEY_TYPE_DH_KEY_PAIR_xxx defined, but not all prerequisites"
+#endif
+
+#if defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR)
+#if defined(MBEDTLS_DEPRECATED_REMOVED)
+#error "PSA_WANT_KEY_TYPE_ECC_KEY_PAIR is deprecated and will be removed in a \
+    future version of Mbed TLS. Please switch to new PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_xxx \
+    symbols, where xxx can be: USE, IMPORT, EXPORT, GENERATE, DERIVE"
+#elif defined(MBEDTLS_DEPRECATED_WARNING)
+#warning "PSA_WANT_KEY_TYPE_ECC_KEY_PAIR is deprecated and will be removed in a \
+    future version of Mbed TLS. Please switch to new PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_xxx \
+    symbols, where xxx can be: USE, IMPORT, EXPORT, GENERATE, DERIVE"
+#endif /* MBEDTLS_DEPRECATED_WARNING */
+#endif /* PSA_WANT_KEY_TYPE_ECC_KEY_PAIR */
+
+#if defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR)
+#if defined(MBEDTLS_DEPRECATED_REMOVED)
+#error "PSA_WANT_KEY_TYPE_RSA_KEY_PAIR is deprecated and will be removed in a \
+    future version of Mbed TLS. Please switch to new PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_xxx \
+    symbols, where xxx can be: USE, IMPORT, EXPORT, GENERATE, DERIVE"
+#elif defined(MBEDTLS_DEPRECATED_WARNING)
+#warning "PSA_WANT_KEY_TYPE_RSA_KEY_PAIR is deprecated and will be removed in a \
+    future version of Mbed TLS. Please switch to new PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_xxx \
+    symbols, where xxx can be: USE, IMPORT, EXPORT, GENERATE, DERIVE"
+#endif /* MBEDTLS_DEPRECATED_WARNING */
+#endif /* PSA_WANT_KEY_TYPE_RSA_KEY_PAIR */
+
+#if defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_DERIVE)
+#error "PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_DERIVE defined, but feature is not supported"
+#endif
+
+#if defined(PSA_WANT_KEY_TYPE_DH_KEY_PAIR_DERIVE)
+#error "PSA_WANT_KEY_TYPE_DH_KEY_PAIR_DERIVE defined, but feature is not supported"
+#endif
+
+#if defined(MBEDTLS_SSL_PROTO_TLS1_2) && defined(MBEDTLS_USE_PSA_CRYPTO) && \
+    !(defined(PSA_WANT_ALG_SHA_1) || defined(PSA_WANT_ALG_SHA_256) || defined(PSA_WANT_ALG_SHA_512))
+#error "MBEDTLS_SSL_PROTO_TLS1_2 defined, but not all prerequisites"
+#endif
+
+#if defined(PSA_WANT_ALG_TLS12_ECJPAKE_TO_PMS) && \
+    !defined(PSA_WANT_ALG_SHA_256)
+#error "PSA_WANT_ALG_TLS12_ECJPAKE_TO_PMS defined, but not all prerequisites"
+#endif
+
+#endif /* MBEDTLS_CHECK_CRYPTO_CONFIG_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/cipher.c b/tf-psa-crypto/drivers/builtin/src/cipher.c
new file mode 100644
index 0000000..7f4c121
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/cipher.c
@@ -0,0 +1,1683 @@
+/**
+ * \file cipher.c
+ *
+ * \brief Generic cipher wrapper for Mbed TLS
+ *
+ * \author Adriaan de Jong <dejong@fox-it.com>
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_CIPHER_C)
+
+#include "mbedtls/cipher.h"
+#include "cipher_wrap.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+#include "mbedtls/constant_time.h"
+#include "constant_time_internal.h"
+
+#include <stdlib.h>
+#include <string.h>
+
+#if defined(MBEDTLS_CHACHAPOLY_C)
+#include "mbedtls/chachapoly.h"
+#endif
+
+#if defined(MBEDTLS_GCM_C)
+#include "mbedtls/gcm.h"
+#endif
+
+#if defined(MBEDTLS_CCM_C)
+#include "mbedtls/ccm.h"
+#endif
+
+#if defined(MBEDTLS_CHACHA20_C)
+#include "mbedtls/chacha20.h"
+#endif
+
+#if defined(MBEDTLS_CMAC_C)
+#include "mbedtls/cmac.h"
+#endif
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+#include "psa/crypto.h"
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+#if defined(MBEDTLS_NIST_KW_C)
+#include "mbedtls/nist_kw.h"
+#endif
+
+#include "mbedtls/platform.h"
+
+static int supported_init = 0;
+
+static inline const mbedtls_cipher_base_t *mbedtls_cipher_get_base(
+    const mbedtls_cipher_info_t *info)
+{
+    return mbedtls_cipher_base_lookup_table[info->base_idx];
+}
+
+const int *mbedtls_cipher_list(void)
+{
+    const mbedtls_cipher_definition_t *def;
+    int *type;
+
+    if (!supported_init) {
+        def = mbedtls_cipher_definitions;
+        type = mbedtls_cipher_supported;
+
+        while (def->type != 0) {
+            *type++ = (*def++).type;
+        }
+
+        *type = 0;
+
+        supported_init = 1;
+    }
+
+    return mbedtls_cipher_supported;
+}
+
+const mbedtls_cipher_info_t *mbedtls_cipher_info_from_type(
+    const mbedtls_cipher_type_t cipher_type)
+{
+    const mbedtls_cipher_definition_t *def;
+
+    for (def = mbedtls_cipher_definitions; def->info != NULL; def++) {
+        if (def->type == cipher_type) {
+            return def->info;
+        }
+    }
+
+    return NULL;
+}
+
+const mbedtls_cipher_info_t *mbedtls_cipher_info_from_string(
+    const char *cipher_name)
+{
+    const mbedtls_cipher_definition_t *def;
+
+    if (NULL == cipher_name) {
+        return NULL;
+    }
+
+    for (def = mbedtls_cipher_definitions; def->info != NULL; def++) {
+        if (!strcmp(def->info->name, cipher_name)) {
+            return def->info;
+        }
+    }
+
+    return NULL;
+}
+
+const mbedtls_cipher_info_t *mbedtls_cipher_info_from_values(
+    const mbedtls_cipher_id_t cipher_id,
+    int key_bitlen,
+    const mbedtls_cipher_mode_t mode)
+{
+    const mbedtls_cipher_definition_t *def;
+
+    for (def = mbedtls_cipher_definitions; def->info != NULL; def++) {
+        if (mbedtls_cipher_get_base(def->info)->cipher == cipher_id &&
+            mbedtls_cipher_info_get_key_bitlen(def->info) == (unsigned) key_bitlen &&
+            def->info->mode == mode) {
+            return def->info;
+        }
+    }
+
+    return NULL;
+}
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+static inline psa_key_type_t mbedtls_psa_translate_cipher_type(
+    mbedtls_cipher_type_t cipher)
+{
+    switch (cipher) {
+        case MBEDTLS_CIPHER_AES_128_CCM:
+        case MBEDTLS_CIPHER_AES_192_CCM:
+        case MBEDTLS_CIPHER_AES_256_CCM:
+        case MBEDTLS_CIPHER_AES_128_CCM_STAR_NO_TAG:
+        case MBEDTLS_CIPHER_AES_192_CCM_STAR_NO_TAG:
+        case MBEDTLS_CIPHER_AES_256_CCM_STAR_NO_TAG:
+        case MBEDTLS_CIPHER_AES_128_GCM:
+        case MBEDTLS_CIPHER_AES_192_GCM:
+        case MBEDTLS_CIPHER_AES_256_GCM:
+        case MBEDTLS_CIPHER_AES_128_CBC:
+        case MBEDTLS_CIPHER_AES_192_CBC:
+        case MBEDTLS_CIPHER_AES_256_CBC:
+        case MBEDTLS_CIPHER_AES_128_ECB:
+        case MBEDTLS_CIPHER_AES_192_ECB:
+        case MBEDTLS_CIPHER_AES_256_ECB:
+            return PSA_KEY_TYPE_AES;
+
+        /* ARIA not yet supported in PSA. */
+        /* case MBEDTLS_CIPHER_ARIA_128_CCM:
+           case MBEDTLS_CIPHER_ARIA_192_CCM:
+           case MBEDTLS_CIPHER_ARIA_256_CCM:
+           case MBEDTLS_CIPHER_ARIA_128_CCM_STAR_NO_TAG:
+           case MBEDTLS_CIPHER_ARIA_192_CCM_STAR_NO_TAG:
+           case MBEDTLS_CIPHER_ARIA_256_CCM_STAR_NO_TAG:
+           case MBEDTLS_CIPHER_ARIA_128_GCM:
+           case MBEDTLS_CIPHER_ARIA_192_GCM:
+           case MBEDTLS_CIPHER_ARIA_256_GCM:
+           case MBEDTLS_CIPHER_ARIA_128_CBC:
+           case MBEDTLS_CIPHER_ARIA_192_CBC:
+           case MBEDTLS_CIPHER_ARIA_256_CBC:
+               return( PSA_KEY_TYPE_ARIA ); */
+
+        default:
+            return 0;
+    }
+}
+
+static inline psa_algorithm_t mbedtls_psa_translate_cipher_mode(
+    mbedtls_cipher_mode_t mode, size_t taglen)
+{
+    switch (mode) {
+        case MBEDTLS_MODE_ECB:
+            return PSA_ALG_ECB_NO_PADDING;
+        case MBEDTLS_MODE_GCM:
+            return PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_GCM, taglen);
+        case MBEDTLS_MODE_CCM:
+            return PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_CCM, taglen);
+        case MBEDTLS_MODE_CCM_STAR_NO_TAG:
+            return PSA_ALG_CCM_STAR_NO_TAG;
+        case MBEDTLS_MODE_CBC:
+            if (taglen == 0) {
+                return PSA_ALG_CBC_NO_PADDING;
+            } else {
+                return 0;
+            }
+        default:
+            return 0;
+    }
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+void mbedtls_cipher_init(mbedtls_cipher_context_t *ctx)
+{
+    memset(ctx, 0, sizeof(mbedtls_cipher_context_t));
+}
+
+void mbedtls_cipher_free(mbedtls_cipher_context_t *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+    if (ctx->psa_enabled == 1) {
+        if (ctx->cipher_ctx != NULL) {
+            mbedtls_cipher_context_psa * const cipher_psa =
+                (mbedtls_cipher_context_psa *) ctx->cipher_ctx;
+
+            if (cipher_psa->slot_state == MBEDTLS_CIPHER_PSA_KEY_OWNED) {
+                /* xxx_free() doesn't allow to return failures. */
+                (void) psa_destroy_key(cipher_psa->slot);
+            }
+
+            mbedtls_zeroize_and_free(cipher_psa, sizeof(*cipher_psa));
+        }
+
+        mbedtls_platform_zeroize(ctx, sizeof(mbedtls_cipher_context_t));
+        return;
+    }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+#if defined(MBEDTLS_CMAC_C)
+    if (ctx->cmac_ctx) {
+        mbedtls_zeroize_and_free(ctx->cmac_ctx,
+                                 sizeof(mbedtls_cmac_context_t));
+    }
+#endif
+
+    if (ctx->cipher_ctx) {
+        mbedtls_cipher_get_base(ctx->cipher_info)->ctx_free_func(ctx->cipher_ctx);
+    }
+
+    mbedtls_platform_zeroize(ctx, sizeof(mbedtls_cipher_context_t));
+}
+
+int mbedtls_cipher_setup(mbedtls_cipher_context_t *ctx,
+                         const mbedtls_cipher_info_t *cipher_info)
+{
+    if (cipher_info == NULL) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    memset(ctx, 0, sizeof(mbedtls_cipher_context_t));
+
+    if (mbedtls_cipher_get_base(cipher_info)->ctx_alloc_func != NULL) {
+        ctx->cipher_ctx = mbedtls_cipher_get_base(cipher_info)->ctx_alloc_func();
+        if (ctx->cipher_ctx == NULL) {
+            return MBEDTLS_ERR_CIPHER_ALLOC_FAILED;
+        }
+    }
+
+    ctx->cipher_info = cipher_info;
+
+    return 0;
+}
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+int mbedtls_cipher_setup_psa(mbedtls_cipher_context_t *ctx,
+                             const mbedtls_cipher_info_t *cipher_info,
+                             size_t taglen)
+{
+    psa_algorithm_t alg;
+    mbedtls_cipher_context_psa *cipher_psa;
+
+    if (NULL == cipher_info || NULL == ctx) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    /* Check that the underlying cipher mode and cipher type are
+     * supported by the underlying PSA Crypto implementation. */
+    alg = mbedtls_psa_translate_cipher_mode(((mbedtls_cipher_mode_t) cipher_info->mode), taglen);
+    if (alg == 0) {
+        return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+    }
+    if (mbedtls_psa_translate_cipher_type(((mbedtls_cipher_type_t) cipher_info->type)) == 0) {
+        return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+    }
+
+    memset(ctx, 0, sizeof(mbedtls_cipher_context_t));
+
+    cipher_psa = mbedtls_calloc(1, sizeof(mbedtls_cipher_context_psa));
+    if (cipher_psa == NULL) {
+        return MBEDTLS_ERR_CIPHER_ALLOC_FAILED;
+    }
+    cipher_psa->alg  = alg;
+    ctx->cipher_ctx  = cipher_psa;
+    ctx->cipher_info = cipher_info;
+    ctx->psa_enabled = 1;
+    return 0;
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+int mbedtls_cipher_setkey(mbedtls_cipher_context_t *ctx,
+                          const unsigned char *key,
+                          int key_bitlen,
+                          const mbedtls_operation_t operation)
+{
+    if (operation != MBEDTLS_ENCRYPT && operation != MBEDTLS_DECRYPT) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+    if (ctx->cipher_info == NULL) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+#if defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+    if (MBEDTLS_MODE_ECB == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode) &&
+        MBEDTLS_DECRYPT == operation) {
+        return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+    }
+#endif
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+    if (ctx->psa_enabled == 1) {
+        mbedtls_cipher_context_psa * const cipher_psa =
+            (mbedtls_cipher_context_psa *) ctx->cipher_ctx;
+
+        size_t const key_bytelen = ((size_t) key_bitlen + 7) / 8;
+
+        psa_status_t status;
+        psa_key_type_t key_type;
+        psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+
+        /* PSA Crypto API only accepts byte-aligned keys. */
+        if (key_bitlen % 8 != 0) {
+            return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+        }
+
+        /* Don't allow keys to be set multiple times. */
+        if (cipher_psa->slot_state != MBEDTLS_CIPHER_PSA_KEY_UNSET) {
+            return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+        }
+
+        key_type = mbedtls_psa_translate_cipher_type(
+            ((mbedtls_cipher_type_t) ctx->cipher_info->type));
+        if (key_type == 0) {
+            return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+        }
+        psa_set_key_type(&attributes, key_type);
+
+        /* Mbed TLS' cipher layer doesn't enforce the mode of operation
+         * (encrypt vs. decrypt): it is possible to setup a key for encryption
+         * and use it for AEAD decryption. Until tests relying on this
+         * are changed, allow any usage in PSA. */
+        psa_set_key_usage_flags(&attributes,
+                                PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT);
+        psa_set_key_algorithm(&attributes, cipher_psa->alg);
+
+        status = psa_import_key(&attributes, key, key_bytelen,
+                                &cipher_psa->slot);
+        switch (status) {
+            case PSA_SUCCESS:
+                break;
+            case PSA_ERROR_INSUFFICIENT_MEMORY:
+                return MBEDTLS_ERR_CIPHER_ALLOC_FAILED;
+            case PSA_ERROR_NOT_SUPPORTED:
+                return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+            default:
+                return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED;
+        }
+        /* Indicate that we own the key slot and need to
+         * destroy it in mbedtls_cipher_free(). */
+        cipher_psa->slot_state = MBEDTLS_CIPHER_PSA_KEY_OWNED;
+
+        ctx->key_bitlen = key_bitlen;
+        ctx->operation = operation;
+        return 0;
+    }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+    if ((ctx->cipher_info->flags & MBEDTLS_CIPHER_VARIABLE_KEY_LEN) == 0 &&
+        (int) mbedtls_cipher_info_get_key_bitlen(ctx->cipher_info) != key_bitlen) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    ctx->key_bitlen = key_bitlen;
+    ctx->operation = operation;
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+    /*
+     * For OFB, CFB and CTR mode always use the encryption key schedule
+     */
+    if (MBEDTLS_ENCRYPT == operation ||
+        MBEDTLS_MODE_CFB == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode) ||
+        MBEDTLS_MODE_OFB == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode) ||
+        MBEDTLS_MODE_CTR == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+        return mbedtls_cipher_get_base(ctx->cipher_info)->setkey_enc_func(ctx->cipher_ctx, key,
+                                                                          ctx->key_bitlen);
+    }
+
+    if (MBEDTLS_DECRYPT == operation) {
+        return mbedtls_cipher_get_base(ctx->cipher_info)->setkey_dec_func(ctx->cipher_ctx, key,
+                                                                          ctx->key_bitlen);
+    }
+#else
+    if (operation == MBEDTLS_ENCRYPT || operation == MBEDTLS_DECRYPT) {
+        return mbedtls_cipher_get_base(ctx->cipher_info)->setkey_enc_func(ctx->cipher_ctx, key,
+                                                                          ctx->key_bitlen);
+    }
+#endif
+
+    return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+}
+
+int mbedtls_cipher_set_iv(mbedtls_cipher_context_t *ctx,
+                          const unsigned char *iv,
+                          size_t iv_len)
+{
+    size_t actual_iv_size;
+
+    if (ctx->cipher_info == NULL) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+    if (ctx->psa_enabled == 1) {
+        /* While PSA Crypto has an API for multipart
+         * operations, we currently don't make it
+         * accessible through the cipher layer. */
+        return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+    }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+    /* avoid buffer overflow in ctx->iv */
+    if (iv_len > MBEDTLS_MAX_IV_LENGTH) {
+        return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+    }
+
+    if ((ctx->cipher_info->flags & MBEDTLS_CIPHER_VARIABLE_IV_LEN) != 0) {
+        actual_iv_size = iv_len;
+    } else {
+        actual_iv_size = mbedtls_cipher_info_get_iv_size(ctx->cipher_info);
+
+        /* avoid reading past the end of input buffer */
+        if (actual_iv_size > iv_len) {
+            return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+        }
+    }
+
+#if defined(MBEDTLS_CHACHA20_C)
+    if (((mbedtls_cipher_type_t) ctx->cipher_info->type) == MBEDTLS_CIPHER_CHACHA20) {
+        /* Even though the actual_iv_size is overwritten with a correct value
+         * of 12 from the cipher info, return an error to indicate that
+         * the input iv_len is wrong. */
+        if (iv_len != 12) {
+            return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+        }
+
+        if (0 != mbedtls_chacha20_starts((mbedtls_chacha20_context *) ctx->cipher_ctx,
+                                         iv,
+                                         0U)) {   /* Initial counter value */
+            return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+        }
+    }
+#if defined(MBEDTLS_CHACHAPOLY_C)
+    if (((mbedtls_cipher_type_t) ctx->cipher_info->type) == MBEDTLS_CIPHER_CHACHA20_POLY1305 &&
+        iv_len != 12) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+#endif
+#endif
+
+#if defined(MBEDTLS_GCM_C)
+    if (MBEDTLS_MODE_GCM == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+        return mbedtls_gcm_starts((mbedtls_gcm_context *) ctx->cipher_ctx,
+                                  ctx->operation,
+                                  iv, iv_len);
+    }
+#endif
+
+#if defined(MBEDTLS_CCM_C)
+    if (MBEDTLS_MODE_CCM_STAR_NO_TAG == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+        int set_lengths_result;
+        int ccm_star_mode;
+
+        set_lengths_result = mbedtls_ccm_set_lengths(
+            (mbedtls_ccm_context *) ctx->cipher_ctx,
+            0, 0, 0);
+        if (set_lengths_result != 0) {
+            return set_lengths_result;
+        }
+
+        if (ctx->operation == MBEDTLS_DECRYPT) {
+            ccm_star_mode = MBEDTLS_CCM_STAR_DECRYPT;
+        } else if (ctx->operation == MBEDTLS_ENCRYPT) {
+            ccm_star_mode = MBEDTLS_CCM_STAR_ENCRYPT;
+        } else {
+            return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+        }
+
+        return mbedtls_ccm_starts((mbedtls_ccm_context *) ctx->cipher_ctx,
+                                  ccm_star_mode,
+                                  iv, iv_len);
+    }
+#endif
+
+    if (actual_iv_size != 0) {
+        memcpy(ctx->iv, iv, actual_iv_size);
+        ctx->iv_size = actual_iv_size;
+    }
+
+    return 0;
+}
+
+int mbedtls_cipher_reset(mbedtls_cipher_context_t *ctx)
+{
+    if (ctx->cipher_info == NULL) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+    if (ctx->psa_enabled == 1) {
+        /* We don't support resetting PSA-based
+         * cipher contexts, yet. */
+        return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+    }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+    ctx->unprocessed_len = 0;
+
+    return 0;
+}
+
+#if defined(MBEDTLS_GCM_C) || defined(MBEDTLS_CHACHAPOLY_C)
+int mbedtls_cipher_update_ad(mbedtls_cipher_context_t *ctx,
+                             const unsigned char *ad, size_t ad_len)
+{
+    if (ctx->cipher_info == NULL) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+    if (ctx->psa_enabled == 1) {
+        /* While PSA Crypto has an API for multipart
+         * operations, we currently don't make it
+         * accessible through the cipher layer. */
+        return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+    }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+#if defined(MBEDTLS_GCM_C)
+    if (MBEDTLS_MODE_GCM == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+        return mbedtls_gcm_update_ad((mbedtls_gcm_context *) ctx->cipher_ctx,
+                                     ad, ad_len);
+    }
+#endif
+
+#if defined(MBEDTLS_CHACHAPOLY_C)
+    if (MBEDTLS_CIPHER_CHACHA20_POLY1305 == ((mbedtls_cipher_type_t) ctx->cipher_info->type)) {
+        int result;
+        mbedtls_chachapoly_mode_t mode;
+
+        mode = (ctx->operation == MBEDTLS_ENCRYPT)
+                ? MBEDTLS_CHACHAPOLY_ENCRYPT
+                : MBEDTLS_CHACHAPOLY_DECRYPT;
+
+        result = mbedtls_chachapoly_starts((mbedtls_chachapoly_context *) ctx->cipher_ctx,
+                                           ctx->iv,
+                                           mode);
+        if (result != 0) {
+            return result;
+        }
+
+        return mbedtls_chachapoly_update_aad((mbedtls_chachapoly_context *) ctx->cipher_ctx,
+                                             ad, ad_len);
+    }
+#endif
+
+    return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+}
+#endif /* MBEDTLS_GCM_C || MBEDTLS_CHACHAPOLY_C */
+
+int mbedtls_cipher_update(mbedtls_cipher_context_t *ctx, const unsigned char *input,
+                          size_t ilen, unsigned char *output, size_t *olen)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t block_size;
+
+    if (ctx->cipher_info == NULL) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+    if (ctx->psa_enabled == 1) {
+        /* While PSA Crypto has an API for multipart
+         * operations, we currently don't make it
+         * accessible through the cipher layer. */
+        return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+    }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+    *olen = 0;
+    block_size = mbedtls_cipher_get_block_size(ctx);
+    if (0 == block_size) {
+        return MBEDTLS_ERR_CIPHER_INVALID_CONTEXT;
+    }
+
+    if (((mbedtls_cipher_mode_t) ctx->cipher_info->mode) == MBEDTLS_MODE_ECB) {
+        if (ilen != block_size) {
+            return MBEDTLS_ERR_CIPHER_FULL_BLOCK_EXPECTED;
+        }
+
+        *olen = ilen;
+
+        if (0 != (ret = mbedtls_cipher_get_base(ctx->cipher_info)->ecb_func(ctx->cipher_ctx,
+                                                                            ctx->operation, input,
+                                                                            output))) {
+            return ret;
+        }
+
+        return 0;
+    }
+
+#if defined(MBEDTLS_GCM_C)
+    if (((mbedtls_cipher_mode_t) ctx->cipher_info->mode) == MBEDTLS_MODE_GCM) {
+        return mbedtls_gcm_update((mbedtls_gcm_context *) ctx->cipher_ctx,
+                                  input, ilen,
+                                  output, ilen, olen);
+    }
+#endif
+
+#if defined(MBEDTLS_CCM_C)
+    if (((mbedtls_cipher_mode_t) ctx->cipher_info->mode) == MBEDTLS_MODE_CCM_STAR_NO_TAG) {
+        return mbedtls_ccm_update((mbedtls_ccm_context *) ctx->cipher_ctx,
+                                  input, ilen,
+                                  output, ilen, olen);
+    }
+#endif
+
+#if defined(MBEDTLS_CHACHAPOLY_C)
+    if (((mbedtls_cipher_type_t) ctx->cipher_info->type) == MBEDTLS_CIPHER_CHACHA20_POLY1305) {
+        *olen = ilen;
+        return mbedtls_chachapoly_update((mbedtls_chachapoly_context *) ctx->cipher_ctx,
+                                         ilen, input, output);
+    }
+#endif
+
+    if (input == output &&
+        (ctx->unprocessed_len != 0 || ilen % block_size)) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    if (((mbedtls_cipher_mode_t) ctx->cipher_info->mode) == MBEDTLS_MODE_CBC) {
+        size_t copy_len = 0;
+
+        /*
+         * If there is not enough data for a full block, cache it.
+         */
+        if ((ctx->operation == MBEDTLS_DECRYPT && NULL != ctx->add_padding &&
+             ilen <= block_size - ctx->unprocessed_len) ||
+            (ctx->operation == MBEDTLS_DECRYPT && NULL == ctx->add_padding &&
+             ilen < block_size - ctx->unprocessed_len) ||
+            (ctx->operation == MBEDTLS_ENCRYPT &&
+             ilen < block_size - ctx->unprocessed_len)) {
+            memcpy(&(ctx->unprocessed_data[ctx->unprocessed_len]), input,
+                   ilen);
+
+            ctx->unprocessed_len += ilen;
+            return 0;
+        }
+
+        /*
+         * Process cached data first
+         */
+        if (0 != ctx->unprocessed_len) {
+            copy_len = block_size - ctx->unprocessed_len;
+
+            memcpy(&(ctx->unprocessed_data[ctx->unprocessed_len]), input,
+                   copy_len);
+
+            if (0 != (ret = mbedtls_cipher_get_base(ctx->cipher_info)->cbc_func(ctx->cipher_ctx,
+                                                                                ctx->operation,
+                                                                                block_size, ctx->iv,
+                                                                                ctx->
+                                                                                unprocessed_data,
+                                                                                output))) {
+                return ret;
+            }
+
+            *olen += block_size;
+            output += block_size;
+            ctx->unprocessed_len = 0;
+
+            input += copy_len;
+            ilen -= copy_len;
+        }
+
+        /*
+         * Cache final, incomplete block
+         */
+        if (0 != ilen) {
+            /* Encryption: only cache partial blocks
+             * Decryption w/ padding: always keep at least one whole block
+             * Decryption w/o padding: only cache partial blocks
+             */
+            copy_len = ilen % block_size;
+            if (copy_len == 0 &&
+                ctx->operation == MBEDTLS_DECRYPT &&
+                NULL != ctx->add_padding) {
+                copy_len = block_size;
+            }
+
+            memcpy(ctx->unprocessed_data, &(input[ilen - copy_len]),
+                   copy_len);
+
+            ctx->unprocessed_len += copy_len;
+            ilen -= copy_len;
+        }
+
+        /*
+         * Process remaining full blocks
+         */
+        if (ilen) {
+            if (0 != (ret = mbedtls_cipher_get_base(ctx->cipher_info)->cbc_func(ctx->cipher_ctx,
+                                                                                ctx->operation,
+                                                                                ilen, ctx->iv,
+                                                                                input,
+                                                                                output))) {
+                return ret;
+            }
+
+            *olen += ilen;
+        }
+
+        return 0;
+    }
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+    if (((mbedtls_cipher_mode_t) ctx->cipher_info->mode) == MBEDTLS_MODE_CFB) {
+        if (0 != (ret = mbedtls_cipher_get_base(ctx->cipher_info)->cfb_func(ctx->cipher_ctx,
+                                                                            ctx->operation, ilen,
+                                                                            &ctx->unprocessed_len,
+                                                                            ctx->iv,
+                                                                            input, output))) {
+            return ret;
+        }
+
+        *olen = ilen;
+
+        return 0;
+    }
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+    if (((mbedtls_cipher_mode_t) ctx->cipher_info->mode) == MBEDTLS_MODE_OFB) {
+        if (0 != (ret = mbedtls_cipher_get_base(ctx->cipher_info)->ofb_func(ctx->cipher_ctx,
+                                                                            ilen,
+                                                                            &ctx->unprocessed_len,
+                                                                            ctx->iv,
+                                                                            input, output))) {
+            return ret;
+        }
+
+        *olen = ilen;
+
+        return 0;
+    }
+#endif /* MBEDTLS_CIPHER_MODE_OFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    if (((mbedtls_cipher_mode_t) ctx->cipher_info->mode) == MBEDTLS_MODE_CTR) {
+        if (0 != (ret = mbedtls_cipher_get_base(ctx->cipher_info)->ctr_func(ctx->cipher_ctx,
+                                                                            ilen,
+                                                                            &ctx->unprocessed_len,
+                                                                            ctx->iv,
+                                                                            ctx->unprocessed_data,
+                                                                            input, output))) {
+            return ret;
+        }
+
+        *olen = ilen;
+
+        return 0;
+    }
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+    if (((mbedtls_cipher_mode_t) ctx->cipher_info->mode) == MBEDTLS_MODE_XTS) {
+        if (ctx->unprocessed_len > 0) {
+            /* We can only process an entire data unit at a time. */
+            return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+        }
+
+        ret = mbedtls_cipher_get_base(ctx->cipher_info)->xts_func(ctx->cipher_ctx,
+                                                                  ctx->operation,
+                                                                  ilen,
+                                                                  ctx->iv,
+                                                                  input,
+                                                                  output);
+        if (ret != 0) {
+            return ret;
+        }
+
+        *olen = ilen;
+
+        return 0;
+    }
+#endif /* MBEDTLS_CIPHER_MODE_XTS */
+
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+    if (((mbedtls_cipher_mode_t) ctx->cipher_info->mode) == MBEDTLS_MODE_STREAM) {
+        if (0 != (ret = mbedtls_cipher_get_base(ctx->cipher_info)->stream_func(ctx->cipher_ctx,
+                                                                               ilen, input,
+                                                                               output))) {
+            return ret;
+        }
+
+        *olen = ilen;
+
+        return 0;
+    }
+#endif /* MBEDTLS_CIPHER_MODE_STREAM */
+
+    return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+}
+
+#if defined(MBEDTLS_CIPHER_MODE_WITH_PADDING)
+#if defined(MBEDTLS_CIPHER_PADDING_PKCS7)
+/*
+ * PKCS7 (and PKCS5) padding: fill with ll bytes, with ll = padding_len
+ */
+static void add_pkcs_padding(unsigned char *output, size_t output_len,
+                             size_t data_len)
+{
+    size_t padding_len = output_len - data_len;
+    unsigned char i;
+
+    for (i = 0; i < padding_len; i++) {
+        output[data_len + i] = (unsigned char) padding_len;
+    }
+}
+
+static int get_pkcs_padding(unsigned char *input, size_t input_len,
+                            size_t *data_len)
+{
+    size_t i, pad_idx;
+    unsigned char padding_len;
+
+    if (NULL == input || NULL == data_len) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    padding_len = input[input_len - 1];
+    if (padding_len == 0 || padding_len > input_len) {
+        return MBEDTLS_ERR_CIPHER_INVALID_PADDING;
+    }
+    *data_len = input_len - padding_len;
+
+    mbedtls_ct_condition_t bad = mbedtls_ct_uint_gt(padding_len, input_len);
+    bad = mbedtls_ct_bool_or(bad, mbedtls_ct_uint_eq(padding_len, 0));
+
+    /* The number of bytes checked must be independent of padding_len,
+     * so pick input_len, which is usually 8 or 16 (one block) */
+    pad_idx = input_len - padding_len;
+    for (i = 0; i < input_len; i++) {
+        mbedtls_ct_condition_t in_padding = mbedtls_ct_uint_ge(i, pad_idx);
+        mbedtls_ct_condition_t different  = mbedtls_ct_uint_ne(input[i], padding_len);
+        bad = mbedtls_ct_bool_or(bad, mbedtls_ct_bool_and(in_padding, different));
+    }
+
+    return mbedtls_ct_error_if_else_0(bad, MBEDTLS_ERR_CIPHER_INVALID_PADDING);
+}
+#endif /* MBEDTLS_CIPHER_PADDING_PKCS7 */
+
+#if defined(MBEDTLS_CIPHER_PADDING_ONE_AND_ZEROS)
+/*
+ * One and zeros padding: fill with 80 00 ... 00
+ */
+static void add_one_and_zeros_padding(unsigned char *output,
+                                      size_t output_len, size_t data_len)
+{
+    size_t padding_len = output_len - data_len;
+    unsigned char i = 0;
+
+    output[data_len] = 0x80;
+    for (i = 1; i < padding_len; i++) {
+        output[data_len + i] = 0x00;
+    }
+}
+
+static int get_one_and_zeros_padding(unsigned char *input, size_t input_len,
+                                     size_t *data_len)
+{
+    if (NULL == input || NULL == data_len) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    mbedtls_ct_condition_t in_padding = MBEDTLS_CT_TRUE;
+    mbedtls_ct_condition_t bad = MBEDTLS_CT_TRUE;
+
+    *data_len = 0;
+
+    for (ptrdiff_t i = (ptrdiff_t) (input_len) - 1; i >= 0; i--) {
+        mbedtls_ct_condition_t is_nonzero = mbedtls_ct_bool(input[i]);
+
+        mbedtls_ct_condition_t hit_first_nonzero = mbedtls_ct_bool_and(is_nonzero, in_padding);
+
+        *data_len = mbedtls_ct_size_if(hit_first_nonzero, i, *data_len);
+
+        bad = mbedtls_ct_bool_if(hit_first_nonzero, mbedtls_ct_uint_ne(input[i], 0x80), bad);
+
+        in_padding = mbedtls_ct_bool_and(in_padding, mbedtls_ct_bool_not(is_nonzero));
+    }
+
+    return mbedtls_ct_error_if_else_0(bad, MBEDTLS_ERR_CIPHER_INVALID_PADDING);
+}
+#endif /* MBEDTLS_CIPHER_PADDING_ONE_AND_ZEROS */
+
+#if defined(MBEDTLS_CIPHER_PADDING_ZEROS_AND_LEN)
+/*
+ * Zeros and len padding: fill with 00 ... 00 ll, where ll is padding length
+ */
+static void add_zeros_and_len_padding(unsigned char *output,
+                                      size_t output_len, size_t data_len)
+{
+    size_t padding_len = output_len - data_len;
+    unsigned char i = 0;
+
+    for (i = 1; i < padding_len; i++) {
+        output[data_len + i - 1] = 0x00;
+    }
+    output[output_len - 1] = (unsigned char) padding_len;
+}
+
+static int get_zeros_and_len_padding(unsigned char *input, size_t input_len,
+                                     size_t *data_len)
+{
+    size_t i, pad_idx;
+    unsigned char padding_len;
+    mbedtls_ct_condition_t bad;
+
+    if (NULL == input || NULL == data_len) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    padding_len = input[input_len - 1];
+    *data_len = input_len - padding_len;
+
+    /* Avoid logical || since it results in a branch */
+    bad = mbedtls_ct_uint_gt(padding_len, input_len);
+    bad = mbedtls_ct_bool_or(bad, mbedtls_ct_uint_eq(padding_len, 0));
+
+    /* The number of bytes checked must be independent of padding_len */
+    pad_idx = input_len - padding_len;
+    for (i = 0; i < input_len - 1; i++) {
+        mbedtls_ct_condition_t is_padding = mbedtls_ct_uint_ge(i, pad_idx);
+        mbedtls_ct_condition_t nonzero_pad_byte;
+        nonzero_pad_byte = mbedtls_ct_bool_if_else_0(is_padding, mbedtls_ct_bool(input[i]));
+        bad = mbedtls_ct_bool_or(bad, nonzero_pad_byte);
+    }
+
+    return mbedtls_ct_error_if_else_0(bad, MBEDTLS_ERR_CIPHER_INVALID_PADDING);
+}
+#endif /* MBEDTLS_CIPHER_PADDING_ZEROS_AND_LEN */
+
+#if defined(MBEDTLS_CIPHER_PADDING_ZEROS)
+/*
+ * Zero padding: fill with 00 ... 00
+ */
+static void add_zeros_padding(unsigned char *output,
+                              size_t output_len, size_t data_len)
+{
+    memset(output + data_len, 0, output_len - data_len);
+}
+
+static int get_zeros_padding(unsigned char *input, size_t input_len,
+                             size_t *data_len)
+{
+    size_t i;
+    mbedtls_ct_condition_t done = MBEDTLS_CT_FALSE, prev_done;
+
+    if (NULL == input || NULL == data_len) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    *data_len = 0;
+    for (i = input_len; i > 0; i--) {
+        prev_done = done;
+        done = mbedtls_ct_bool_or(done, mbedtls_ct_uint_ne(input[i-1], 0));
+        *data_len = mbedtls_ct_size_if(mbedtls_ct_bool_ne(done, prev_done), i, *data_len);
+    }
+
+    return 0;
+}
+#endif /* MBEDTLS_CIPHER_PADDING_ZEROS */
+
+/*
+ * No padding: don't pad :)
+ *
+ * There is no add_padding function (check for NULL in mbedtls_cipher_finish)
+ * but a trivial get_padding function
+ */
+static int get_no_padding(unsigned char *input, size_t input_len,
+                          size_t *data_len)
+{
+    if (NULL == input || NULL == data_len) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    *data_len = input_len;
+
+    return 0;
+}
+#endif /* MBEDTLS_CIPHER_MODE_WITH_PADDING */
+
+int mbedtls_cipher_finish(mbedtls_cipher_context_t *ctx,
+                          unsigned char *output, size_t *olen)
+{
+    if (ctx->cipher_info == NULL) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+    if (ctx->psa_enabled == 1) {
+        /* While PSA Crypto has an API for multipart
+         * operations, we currently don't make it
+         * accessible through the cipher layer. */
+        return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+    }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+    *olen = 0;
+
+#if defined(MBEDTLS_CIPHER_MODE_WITH_PADDING)
+    /* CBC mode requires padding so we make sure a call to
+     * mbedtls_cipher_set_padding_mode has been done successfully. */
+    if (MBEDTLS_MODE_CBC == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+        if (ctx->get_padding == NULL) {
+            return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+        }
+    }
+#endif
+
+    if (MBEDTLS_MODE_CFB == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode) ||
+        MBEDTLS_MODE_OFB == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode) ||
+        MBEDTLS_MODE_CTR == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode) ||
+        MBEDTLS_MODE_GCM == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode) ||
+        MBEDTLS_MODE_CCM_STAR_NO_TAG == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode) ||
+        MBEDTLS_MODE_XTS == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode) ||
+        MBEDTLS_MODE_STREAM == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+        return 0;
+    }
+
+    if ((MBEDTLS_CIPHER_CHACHA20          == ((mbedtls_cipher_type_t) ctx->cipher_info->type)) ||
+        (MBEDTLS_CIPHER_CHACHA20_POLY1305 == ((mbedtls_cipher_type_t) ctx->cipher_info->type))) {
+        return 0;
+    }
+
+    if (MBEDTLS_MODE_ECB == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+        if (ctx->unprocessed_len != 0) {
+            return MBEDTLS_ERR_CIPHER_FULL_BLOCK_EXPECTED;
+        }
+
+        return 0;
+    }
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    if (MBEDTLS_MODE_CBC == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+        int ret = 0;
+
+        if (MBEDTLS_ENCRYPT == ctx->operation) {
+            /* check for 'no padding' mode */
+            if (NULL == ctx->add_padding) {
+                if (0 != ctx->unprocessed_len) {
+                    return MBEDTLS_ERR_CIPHER_FULL_BLOCK_EXPECTED;
+                }
+
+                return 0;
+            }
+
+            ctx->add_padding(ctx->unprocessed_data, mbedtls_cipher_get_iv_size(ctx),
+                             ctx->unprocessed_len);
+        } else if (mbedtls_cipher_get_block_size(ctx) != ctx->unprocessed_len) {
+            /*
+             * For decrypt operations, expect a full block,
+             * or an empty block if no padding
+             */
+            if (NULL == ctx->add_padding && 0 == ctx->unprocessed_len) {
+                return 0;
+            }
+
+            return MBEDTLS_ERR_CIPHER_FULL_BLOCK_EXPECTED;
+        }
+
+        /* cipher block */
+        if (0 != (ret = mbedtls_cipher_get_base(ctx->cipher_info)->cbc_func(ctx->cipher_ctx,
+                                                                            ctx->operation,
+                                                                            mbedtls_cipher_get_block_size(
+                                                                                ctx),
+                                                                            ctx->iv,
+                                                                            ctx->unprocessed_data,
+                                                                            output))) {
+            return ret;
+        }
+
+        /* Set output size for decryption */
+        if (MBEDTLS_DECRYPT == ctx->operation) {
+            return ctx->get_padding(output, mbedtls_cipher_get_block_size(ctx),
+                                    olen);
+        }
+
+        /* Set output size for encryption */
+        *olen = mbedtls_cipher_get_block_size(ctx);
+        return 0;
+    }
+#else
+    ((void) output);
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+    return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+}
+
+#if defined(MBEDTLS_CIPHER_MODE_WITH_PADDING)
+int mbedtls_cipher_set_padding_mode(mbedtls_cipher_context_t *ctx,
+                                    mbedtls_cipher_padding_t mode)
+{
+    if (NULL == ctx->cipher_info ||
+        MBEDTLS_MODE_CBC != ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+    if (ctx->psa_enabled == 1) {
+        /* While PSA Crypto knows about CBC padding
+         * schemes, we currently don't make them
+         * accessible through the cipher layer. */
+        if (mode != MBEDTLS_PADDING_NONE) {
+            return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+        }
+
+        return 0;
+    }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+    switch (mode) {
+#if defined(MBEDTLS_CIPHER_PADDING_PKCS7)
+        case MBEDTLS_PADDING_PKCS7:
+            ctx->add_padding = add_pkcs_padding;
+            ctx->get_padding = get_pkcs_padding;
+            break;
+#endif
+#if defined(MBEDTLS_CIPHER_PADDING_ONE_AND_ZEROS)
+        case MBEDTLS_PADDING_ONE_AND_ZEROS:
+            ctx->add_padding = add_one_and_zeros_padding;
+            ctx->get_padding = get_one_and_zeros_padding;
+            break;
+#endif
+#if defined(MBEDTLS_CIPHER_PADDING_ZEROS_AND_LEN)
+        case MBEDTLS_PADDING_ZEROS_AND_LEN:
+            ctx->add_padding = add_zeros_and_len_padding;
+            ctx->get_padding = get_zeros_and_len_padding;
+            break;
+#endif
+#if defined(MBEDTLS_CIPHER_PADDING_ZEROS)
+        case MBEDTLS_PADDING_ZEROS:
+            ctx->add_padding = add_zeros_padding;
+            ctx->get_padding = get_zeros_padding;
+            break;
+#endif
+        case MBEDTLS_PADDING_NONE:
+            ctx->add_padding = NULL;
+            ctx->get_padding = get_no_padding;
+            break;
+
+        default:
+            return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+    }
+
+    return 0;
+}
+#endif /* MBEDTLS_CIPHER_MODE_WITH_PADDING */
+
+#if defined(MBEDTLS_GCM_C) || defined(MBEDTLS_CHACHAPOLY_C)
+int mbedtls_cipher_write_tag(mbedtls_cipher_context_t *ctx,
+                             unsigned char *tag, size_t tag_len)
+{
+    if (ctx->cipher_info == NULL) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    if (MBEDTLS_ENCRYPT != ctx->operation) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+    if (ctx->psa_enabled == 1) {
+        /* While PSA Crypto has an API for multipart
+         * operations, we currently don't make it
+         * accessible through the cipher layer. */
+        return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+    }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+#if defined(MBEDTLS_GCM_C)
+    if (MBEDTLS_MODE_GCM == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+        size_t output_length;
+        /* The code here doesn't yet support alternative implementations
+         * that can delay up to a block of output. */
+        return mbedtls_gcm_finish((mbedtls_gcm_context *) ctx->cipher_ctx,
+                                  NULL, 0, &output_length,
+                                  tag, tag_len);
+    }
+#endif
+
+#if defined(MBEDTLS_CHACHAPOLY_C)
+    if (MBEDTLS_CIPHER_CHACHA20_POLY1305 == ((mbedtls_cipher_type_t) ctx->cipher_info->type)) {
+        /* Don't allow truncated MAC for Poly1305 */
+        if (tag_len != 16U) {
+            return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+        }
+
+        return mbedtls_chachapoly_finish(
+            (mbedtls_chachapoly_context *) ctx->cipher_ctx, tag);
+    }
+#endif
+
+    return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+}
+
+int mbedtls_cipher_check_tag(mbedtls_cipher_context_t *ctx,
+                             const unsigned char *tag, size_t tag_len)
+{
+    unsigned char check_tag[16];
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if (ctx->cipher_info == NULL) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    if (MBEDTLS_DECRYPT != ctx->operation) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+    if (ctx->psa_enabled == 1) {
+        /* While PSA Crypto has an API for multipart
+         * operations, we currently don't make it
+         * accessible through the cipher layer. */
+        return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+    }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+    /* Status to return on a non-authenticated algorithm. */
+    ret = MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+
+#if defined(MBEDTLS_GCM_C)
+    if (MBEDTLS_MODE_GCM == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+        size_t output_length;
+        /* The code here doesn't yet support alternative implementations
+         * that can delay up to a block of output. */
+
+        if (tag_len > sizeof(check_tag)) {
+            return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+        }
+
+        if (0 != (ret = mbedtls_gcm_finish(
+                      (mbedtls_gcm_context *) ctx->cipher_ctx,
+                      NULL, 0, &output_length,
+                      check_tag, tag_len))) {
+            return ret;
+        }
+
+        /* Check the tag in "constant-time" */
+        if (mbedtls_ct_memcmp(tag, check_tag, tag_len) != 0) {
+            ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED;
+            goto exit;
+        }
+    }
+#endif /* MBEDTLS_GCM_C */
+
+#if defined(MBEDTLS_CHACHAPOLY_C)
+    if (MBEDTLS_CIPHER_CHACHA20_POLY1305 == ((mbedtls_cipher_type_t) ctx->cipher_info->type)) {
+        /* Don't allow truncated MAC for Poly1305 */
+        if (tag_len != sizeof(check_tag)) {
+            return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+        }
+
+        ret = mbedtls_chachapoly_finish(
+            (mbedtls_chachapoly_context *) ctx->cipher_ctx, check_tag);
+        if (ret != 0) {
+            return ret;
+        }
+
+        /* Check the tag in "constant-time" */
+        if (mbedtls_ct_memcmp(tag, check_tag, tag_len) != 0) {
+            ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED;
+            goto exit;
+        }
+    }
+#endif /* MBEDTLS_CHACHAPOLY_C */
+
+exit:
+    mbedtls_platform_zeroize(check_tag, tag_len);
+    return ret;
+}
+#endif /* MBEDTLS_GCM_C || MBEDTLS_CHACHAPOLY_C */
+
+/*
+ * Packet-oriented wrapper for non-AEAD modes
+ */
+int mbedtls_cipher_crypt(mbedtls_cipher_context_t *ctx,
+                         const unsigned char *iv, size_t iv_len,
+                         const unsigned char *input, size_t ilen,
+                         unsigned char *output, size_t *olen)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t finish_olen;
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+    if (ctx->psa_enabled == 1) {
+        /* As in the non-PSA case, we don't check that
+         * a key has been set. If not, the key slot will
+         * still be in its default state of 0, which is
+         * guaranteed to be invalid, hence the PSA-call
+         * below will gracefully fail. */
+        mbedtls_cipher_context_psa * const cipher_psa =
+            (mbedtls_cipher_context_psa *) ctx->cipher_ctx;
+
+        psa_status_t status;
+        psa_cipher_operation_t cipher_op = PSA_CIPHER_OPERATION_INIT;
+        size_t part_len;
+
+        if (ctx->operation == MBEDTLS_DECRYPT) {
+            status = psa_cipher_decrypt_setup(&cipher_op,
+                                              cipher_psa->slot,
+                                              cipher_psa->alg);
+        } else if (ctx->operation == MBEDTLS_ENCRYPT) {
+            status = psa_cipher_encrypt_setup(&cipher_op,
+                                              cipher_psa->slot,
+                                              cipher_psa->alg);
+        } else {
+            return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+        }
+
+        /* In the following, we can immediately return on an error,
+         * because the PSA Crypto API guarantees that cipher operations
+         * are terminated by unsuccessful calls to psa_cipher_update(),
+         * and by any call to psa_cipher_finish(). */
+        if (status != PSA_SUCCESS) {
+            return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED;
+        }
+
+        if (((mbedtls_cipher_mode_t) ctx->cipher_info->mode) != MBEDTLS_MODE_ECB) {
+            status = psa_cipher_set_iv(&cipher_op, iv, iv_len);
+            if (status != PSA_SUCCESS) {
+                return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED;
+            }
+        }
+
+        status = psa_cipher_update(&cipher_op,
+                                   input, ilen,
+                                   output, ilen, olen);
+        if (status != PSA_SUCCESS) {
+            return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED;
+        }
+
+        status = psa_cipher_finish(&cipher_op,
+                                   output + *olen, ilen - *olen,
+                                   &part_len);
+        if (status != PSA_SUCCESS) {
+            return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED;
+        }
+
+        *olen += part_len;
+        return 0;
+    }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+    if ((ret = mbedtls_cipher_set_iv(ctx, iv, iv_len)) != 0) {
+        return ret;
+    }
+
+    if ((ret = mbedtls_cipher_reset(ctx)) != 0) {
+        return ret;
+    }
+
+    if ((ret = mbedtls_cipher_update(ctx, input, ilen,
+                                     output, olen)) != 0) {
+        return ret;
+    }
+
+    if ((ret = mbedtls_cipher_finish(ctx, output + *olen,
+                                     &finish_olen)) != 0) {
+        return ret;
+    }
+
+    *olen += finish_olen;
+
+    return 0;
+}
+
+#if defined(MBEDTLS_CIPHER_MODE_AEAD)
+/*
+ * Packet-oriented encryption for AEAD modes: internal function used by
+ * mbedtls_cipher_auth_encrypt_ext().
+ */
+static int mbedtls_cipher_aead_encrypt(mbedtls_cipher_context_t *ctx,
+                                       const unsigned char *iv, size_t iv_len,
+                                       const unsigned char *ad, size_t ad_len,
+                                       const unsigned char *input, size_t ilen,
+                                       unsigned char *output, size_t *olen,
+                                       unsigned char *tag, size_t tag_len)
+{
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+    if (ctx->psa_enabled == 1) {
+        /* As in the non-PSA case, we don't check that
+         * a key has been set. If not, the key slot will
+         * still be in its default state of 0, which is
+         * guaranteed to be invalid, hence the PSA-call
+         * below will gracefully fail. */
+        mbedtls_cipher_context_psa * const cipher_psa =
+            (mbedtls_cipher_context_psa *) ctx->cipher_ctx;
+
+        psa_status_t status;
+
+        /* PSA Crypto API always writes the authentication tag
+         * at the end of the encrypted message. */
+        if (output == NULL || tag != output + ilen) {
+            return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+        }
+
+        status = psa_aead_encrypt(cipher_psa->slot,
+                                  cipher_psa->alg,
+                                  iv, iv_len,
+                                  ad, ad_len,
+                                  input, ilen,
+                                  output, ilen + tag_len, olen);
+        if (status != PSA_SUCCESS) {
+            return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED;
+        }
+
+        *olen -= tag_len;
+        return 0;
+    }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+#if defined(MBEDTLS_GCM_C)
+    if (MBEDTLS_MODE_GCM == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+        *olen = ilen;
+        return mbedtls_gcm_crypt_and_tag(ctx->cipher_ctx, MBEDTLS_GCM_ENCRYPT,
+                                         ilen, iv, iv_len, ad, ad_len,
+                                         input, output, tag_len, tag);
+    }
+#endif /* MBEDTLS_GCM_C */
+#if defined(MBEDTLS_CCM_C)
+    if (MBEDTLS_MODE_CCM == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+        *olen = ilen;
+        return mbedtls_ccm_encrypt_and_tag(ctx->cipher_ctx, ilen,
+                                           iv, iv_len, ad, ad_len, input, output,
+                                           tag, tag_len);
+    }
+#endif /* MBEDTLS_CCM_C */
+#if defined(MBEDTLS_CHACHAPOLY_C)
+    if (MBEDTLS_CIPHER_CHACHA20_POLY1305 == ((mbedtls_cipher_type_t) ctx->cipher_info->type)) {
+        /* ChachaPoly has fixed length nonce and MAC (tag) */
+        if ((iv_len != mbedtls_cipher_info_get_iv_size(ctx->cipher_info)) ||
+            (tag_len != 16U)) {
+            return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+        }
+
+        *olen = ilen;
+        return mbedtls_chachapoly_encrypt_and_tag(ctx->cipher_ctx,
+                                                  ilen, iv, ad, ad_len, input, output, tag);
+    }
+#endif /* MBEDTLS_CHACHAPOLY_C */
+
+    return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+}
+
+/*
+ * Packet-oriented encryption for AEAD modes: internal function used by
+ * mbedtls_cipher_auth_encrypt_ext().
+ */
+static int mbedtls_cipher_aead_decrypt(mbedtls_cipher_context_t *ctx,
+                                       const unsigned char *iv, size_t iv_len,
+                                       const unsigned char *ad, size_t ad_len,
+                                       const unsigned char *input, size_t ilen,
+                                       unsigned char *output, size_t *olen,
+                                       const unsigned char *tag, size_t tag_len)
+{
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+    if (ctx->psa_enabled == 1) {
+        /* As in the non-PSA case, we don't check that
+         * a key has been set. If not, the key slot will
+         * still be in its default state of 0, which is
+         * guaranteed to be invalid, hence the PSA-call
+         * below will gracefully fail. */
+        mbedtls_cipher_context_psa * const cipher_psa =
+            (mbedtls_cipher_context_psa *) ctx->cipher_ctx;
+
+        psa_status_t status;
+
+        /* PSA Crypto API always writes the authentication tag
+         * at the end of the encrypted message. */
+        if (input == NULL || tag != input + ilen) {
+            return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+        }
+
+        status = psa_aead_decrypt(cipher_psa->slot,
+                                  cipher_psa->alg,
+                                  iv, iv_len,
+                                  ad, ad_len,
+                                  input, ilen + tag_len,
+                                  output, ilen, olen);
+        if (status == PSA_ERROR_INVALID_SIGNATURE) {
+            return MBEDTLS_ERR_CIPHER_AUTH_FAILED;
+        } else if (status != PSA_SUCCESS) {
+            return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED;
+        }
+
+        return 0;
+    }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+#if defined(MBEDTLS_GCM_C)
+    if (MBEDTLS_MODE_GCM == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+        int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+        *olen = ilen;
+        ret = mbedtls_gcm_auth_decrypt(ctx->cipher_ctx, ilen,
+                                       iv, iv_len, ad, ad_len,
+                                       tag, tag_len, input, output);
+
+        if (ret == MBEDTLS_ERR_GCM_AUTH_FAILED) {
+            ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED;
+        }
+
+        return ret;
+    }
+#endif /* MBEDTLS_GCM_C */
+#if defined(MBEDTLS_CCM_C)
+    if (MBEDTLS_MODE_CCM == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+        int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+        *olen = ilen;
+        ret = mbedtls_ccm_auth_decrypt(ctx->cipher_ctx, ilen,
+                                       iv, iv_len, ad, ad_len,
+                                       input, output, tag, tag_len);
+
+        if (ret == MBEDTLS_ERR_CCM_AUTH_FAILED) {
+            ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED;
+        }
+
+        return ret;
+    }
+#endif /* MBEDTLS_CCM_C */
+#if defined(MBEDTLS_CHACHAPOLY_C)
+    if (MBEDTLS_CIPHER_CHACHA20_POLY1305 == ((mbedtls_cipher_type_t) ctx->cipher_info->type)) {
+        int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+        /* ChachaPoly has fixed length nonce and MAC (tag) */
+        if ((iv_len != mbedtls_cipher_info_get_iv_size(ctx->cipher_info)) ||
+            (tag_len != 16U)) {
+            return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+        }
+
+        *olen = ilen;
+        ret = mbedtls_chachapoly_auth_decrypt(ctx->cipher_ctx, ilen,
+                                              iv, ad, ad_len, tag, input, output);
+
+        if (ret == MBEDTLS_ERR_CHACHAPOLY_AUTH_FAILED) {
+            ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED;
+        }
+
+        return ret;
+    }
+#endif /* MBEDTLS_CHACHAPOLY_C */
+
+    return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+}
+#endif /* MBEDTLS_CIPHER_MODE_AEAD */
+
+#if defined(MBEDTLS_CIPHER_MODE_AEAD) || defined(MBEDTLS_NIST_KW_C)
+/*
+ * Packet-oriented encryption for AEAD/NIST_KW: public function.
+ */
+int mbedtls_cipher_auth_encrypt_ext(mbedtls_cipher_context_t *ctx,
+                                    const unsigned char *iv, size_t iv_len,
+                                    const unsigned char *ad, size_t ad_len,
+                                    const unsigned char *input, size_t ilen,
+                                    unsigned char *output, size_t output_len,
+                                    size_t *olen, size_t tag_len)
+{
+#if defined(MBEDTLS_NIST_KW_C)
+    if (
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+        ctx->psa_enabled == 0 &&
+#endif
+        (MBEDTLS_MODE_KW == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode) ||
+         MBEDTLS_MODE_KWP == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode))) {
+        mbedtls_nist_kw_mode_t mode =
+            (MBEDTLS_MODE_KW == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) ?
+            MBEDTLS_KW_MODE_KW : MBEDTLS_KW_MODE_KWP;
+
+        /* There is no iv, tag or ad associated with KW and KWP,
+         * so these length should be 0 as documented. */
+        if (iv_len != 0 || tag_len != 0 || ad_len != 0) {
+            return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+        }
+
+        (void) iv;
+        (void) ad;
+
+        return mbedtls_nist_kw_wrap(ctx->cipher_ctx, mode, input, ilen,
+                                    output, olen, output_len);
+    }
+#endif /* MBEDTLS_NIST_KW_C */
+
+#if defined(MBEDTLS_CIPHER_MODE_AEAD)
+    /* AEAD case: check length before passing on to shared function */
+    if (output_len < ilen + tag_len) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    int ret = mbedtls_cipher_aead_encrypt(ctx, iv, iv_len, ad, ad_len,
+                                          input, ilen, output, olen,
+                                          output + ilen, tag_len);
+    *olen += tag_len;
+    return ret;
+#else
+    return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+#endif /* MBEDTLS_CIPHER_MODE_AEAD */
+}
+
+/*
+ * Packet-oriented decryption for AEAD/NIST_KW: public function.
+ */
+int mbedtls_cipher_auth_decrypt_ext(mbedtls_cipher_context_t *ctx,
+                                    const unsigned char *iv, size_t iv_len,
+                                    const unsigned char *ad, size_t ad_len,
+                                    const unsigned char *input, size_t ilen,
+                                    unsigned char *output, size_t output_len,
+                                    size_t *olen, size_t tag_len)
+{
+#if defined(MBEDTLS_NIST_KW_C)
+    if (
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+        ctx->psa_enabled == 0 &&
+#endif
+        (MBEDTLS_MODE_KW == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode) ||
+         MBEDTLS_MODE_KWP == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode))) {
+        mbedtls_nist_kw_mode_t mode =
+            (MBEDTLS_MODE_KW == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) ?
+            MBEDTLS_KW_MODE_KW : MBEDTLS_KW_MODE_KWP;
+
+        /* There is no iv, tag or ad associated with KW and KWP,
+         * so these length should be 0 as documented. */
+        if (iv_len != 0 || tag_len != 0 || ad_len != 0) {
+            return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+        }
+
+        (void) iv;
+        (void) ad;
+
+        return mbedtls_nist_kw_unwrap(ctx->cipher_ctx, mode, input, ilen,
+                                      output, olen, output_len);
+    }
+#endif /* MBEDTLS_NIST_KW_C */
+
+#if defined(MBEDTLS_CIPHER_MODE_AEAD)
+    /* AEAD case: check length before passing on to shared function */
+    if (ilen < tag_len || output_len < ilen - tag_len) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    return mbedtls_cipher_aead_decrypt(ctx, iv, iv_len, ad, ad_len,
+                                       input, ilen - tag_len, output, olen,
+                                       input + ilen - tag_len, tag_len);
+#else
+    return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+#endif /* MBEDTLS_CIPHER_MODE_AEAD */
+}
+#endif /* MBEDTLS_CIPHER_MODE_AEAD || MBEDTLS_NIST_KW_C */
+
+#endif /* MBEDTLS_CIPHER_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/cipher_wrap.c b/tf-psa-crypto/drivers/builtin/src/cipher_wrap.c
new file mode 100644
index 0000000..d2fee22
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/cipher_wrap.c
@@ -0,0 +1,2482 @@
+/**
+ * \file cipher_wrap.c
+ *
+ * \brief Generic cipher wrapper for Mbed TLS
+ *
+ * \author Adriaan de Jong <dejong@fox-it.com>
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_CIPHER_C)
+
+#include "cipher_wrap.h"
+#include "mbedtls/error.h"
+
+#if defined(MBEDTLS_CHACHAPOLY_C)
+#include "mbedtls/chachapoly.h"
+#endif
+
+#if defined(MBEDTLS_AES_C)
+#include "mbedtls/aes.h"
+#endif
+
+#if defined(MBEDTLS_CAMELLIA_C)
+#include "mbedtls/camellia.h"
+#endif
+
+#if defined(MBEDTLS_ARIA_C)
+#include "mbedtls/aria.h"
+#endif
+
+#if defined(MBEDTLS_DES_C)
+#include "mbedtls/des.h"
+#endif
+
+#if defined(MBEDTLS_CHACHA20_C)
+#include "mbedtls/chacha20.h"
+#endif
+
+#if defined(MBEDTLS_GCM_C)
+#include "mbedtls/gcm.h"
+#endif
+
+#if defined(MBEDTLS_CCM_C)
+#include "mbedtls/ccm.h"
+#endif
+
+#if defined(MBEDTLS_NIST_KW_C)
+#include "mbedtls/nist_kw.h"
+#endif
+
+#if defined(MBEDTLS_CIPHER_NULL_CIPHER)
+#include <string.h>
+#endif
+
+#include "mbedtls/platform.h"
+
+enum mbedtls_cipher_base_index {
+#if defined(MBEDTLS_AES_C)
+    MBEDTLS_CIPHER_BASE_INDEX_AES,
+#endif
+#if defined(MBEDTLS_ARIA_C)
+    MBEDTLS_CIPHER_BASE_INDEX_ARIA,
+#endif
+#if defined(MBEDTLS_CAMELLIA_C)
+    MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA,
+#endif
+#if defined(MBEDTLS_CIPHER_HAVE_CCM_AES_VIA_LEGACY_OR_USE_PSA)
+    MBEDTLS_CIPHER_BASE_INDEX_CCM_AES,
+#endif
+#if defined(MBEDTLS_CCM_C) && defined(MBEDTLS_ARIA_C)
+    MBEDTLS_CIPHER_BASE_INDEX_CCM_ARIA,
+#endif
+#if defined(MBEDTLS_CCM_C) && defined(MBEDTLS_CAMELLIA_C)
+    MBEDTLS_CIPHER_BASE_INDEX_CCM_CAMELLIA,
+#endif
+#if defined(MBEDTLS_CHACHA20_C)
+    MBEDTLS_CIPHER_BASE_INDEX_CHACHA20_BASE,
+#endif
+#if defined(MBEDTLS_CHACHAPOLY_C)
+    MBEDTLS_CIPHER_BASE_INDEX_CHACHAPOLY_BASE,
+#endif
+#if defined(MBEDTLS_DES_C)
+    MBEDTLS_CIPHER_BASE_INDEX_DES_EDE3,
+#endif
+#if defined(MBEDTLS_DES_C)
+    MBEDTLS_CIPHER_BASE_INDEX_DES_EDE,
+#endif
+#if defined(MBEDTLS_DES_C)
+    MBEDTLS_CIPHER_BASE_INDEX_DES,
+#endif
+#if defined(MBEDTLS_CIPHER_HAVE_GCM_AES_VIA_LEGACY_OR_USE_PSA)
+    MBEDTLS_CIPHER_BASE_INDEX_GCM_AES,
+#endif
+#if defined(MBEDTLS_GCM_C) && defined(MBEDTLS_ARIA_C)
+    MBEDTLS_CIPHER_BASE_INDEX_GCM_ARIA,
+#endif
+#if defined(MBEDTLS_GCM_C) && defined(MBEDTLS_CAMELLIA_C)
+    MBEDTLS_CIPHER_BASE_INDEX_GCM_CAMELLIA,
+#endif
+#if defined(MBEDTLS_NIST_KW_C)
+    MBEDTLS_CIPHER_BASE_INDEX_KW_AES,
+#endif
+#if defined(MBEDTLS_CIPHER_NULL_CIPHER)
+    MBEDTLS_CIPHER_BASE_INDEX_NULL_BASE,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS) && defined(MBEDTLS_AES_C)
+    MBEDTLS_CIPHER_BASE_INDEX_XTS_AES,
+#endif
+    /* Prevent compile failure due to empty enum */
+    MBEDTLS_CIPHER_BASE_PREVENT_EMPTY_ENUM
+};
+
+#if defined(MBEDTLS_GCM_C) && \
+    (defined(MBEDTLS_CIPHER_HAVE_GCM_AES_VIA_LEGACY_OR_USE_PSA) || \
+    defined(MBEDTLS_ARIA_C) || defined(MBEDTLS_CAMELLIA_C))
+/* shared by all GCM ciphers */
+static void *gcm_ctx_alloc(void)
+{
+    void *ctx = mbedtls_calloc(1, sizeof(mbedtls_gcm_context));
+
+    if (ctx != NULL) {
+        mbedtls_gcm_init((mbedtls_gcm_context *) ctx);
+    }
+
+    return ctx;
+}
+
+static void gcm_ctx_free(void *ctx)
+{
+    mbedtls_gcm_free(ctx);
+    mbedtls_free(ctx);
+}
+#endif /* MBEDTLS_GCM_C */
+
+#if defined(MBEDTLS_CCM_C) && \
+    (defined(MBEDTLS_CIPHER_HAVE_CCM_AES_VIA_LEGACY_OR_USE_PSA) || \
+    defined(MBEDTLS_ARIA_C) || defined(MBEDTLS_CAMELLIA_C))
+/* shared by all CCM ciphers */
+static void *ccm_ctx_alloc(void)
+{
+    void *ctx = mbedtls_calloc(1, sizeof(mbedtls_ccm_context));
+
+    if (ctx != NULL) {
+        mbedtls_ccm_init((mbedtls_ccm_context *) ctx);
+    }
+
+    return ctx;
+}
+
+static void ccm_ctx_free(void *ctx)
+{
+    mbedtls_ccm_free(ctx);
+    mbedtls_free(ctx);
+}
+#endif /* MBEDTLS_CCM_C */
+
+#if defined(MBEDTLS_AES_C)
+
+static int aes_crypt_ecb_wrap(void *ctx, mbedtls_operation_t operation,
+                              const unsigned char *input, unsigned char *output)
+{
+    return mbedtls_aes_crypt_ecb((mbedtls_aes_context *) ctx, operation, input, output);
+}
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static int aes_crypt_cbc_wrap(void *ctx, mbedtls_operation_t operation, size_t length,
+                              unsigned char *iv, const unsigned char *input, unsigned char *output)
+{
+    return mbedtls_aes_crypt_cbc((mbedtls_aes_context *) ctx, operation, length, iv, input,
+                                 output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+static int aes_crypt_cfb128_wrap(void *ctx, mbedtls_operation_t operation,
+                                 size_t length, size_t *iv_off, unsigned char *iv,
+                                 const unsigned char *input, unsigned char *output)
+{
+    return mbedtls_aes_crypt_cfb128((mbedtls_aes_context *) ctx, operation, length, iv_off, iv,
+                                    input, output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+static int aes_crypt_ofb_wrap(void *ctx, size_t length, size_t *iv_off,
+                              unsigned char *iv, const unsigned char *input, unsigned char *output)
+{
+    return mbedtls_aes_crypt_ofb((mbedtls_aes_context *) ctx, length, iv_off,
+                                 iv, input, output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_OFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+static int aes_crypt_ctr_wrap(void *ctx, size_t length, size_t *nc_off,
+                              unsigned char *nonce_counter, unsigned char *stream_block,
+                              const unsigned char *input, unsigned char *output)
+{
+    return mbedtls_aes_crypt_ctr((mbedtls_aes_context *) ctx, length, nc_off, nonce_counter,
+                                 stream_block, input, output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+static int aes_crypt_xts_wrap(void *ctx, mbedtls_operation_t operation,
+                              size_t length,
+                              const unsigned char data_unit[16],
+                              const unsigned char *input,
+                              unsigned char *output)
+{
+    mbedtls_aes_xts_context *xts_ctx = ctx;
+    int mode;
+
+    switch (operation) {
+        case MBEDTLS_ENCRYPT:
+            mode = MBEDTLS_AES_ENCRYPT;
+            break;
+        case MBEDTLS_DECRYPT:
+            mode = MBEDTLS_AES_DECRYPT;
+            break;
+        default:
+            return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    return mbedtls_aes_crypt_xts(xts_ctx, mode, length,
+                                 data_unit, input, output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_XTS */
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+static int aes_setkey_dec_wrap(void *ctx, const unsigned char *key,
+                               unsigned int key_bitlen)
+{
+    return mbedtls_aes_setkey_dec((mbedtls_aes_context *) ctx, key, key_bitlen);
+}
+#endif
+
+static int aes_setkey_enc_wrap(void *ctx, const unsigned char *key,
+                               unsigned int key_bitlen)
+{
+    return mbedtls_aes_setkey_enc((mbedtls_aes_context *) ctx, key, key_bitlen);
+}
+
+static void *aes_ctx_alloc(void)
+{
+    mbedtls_aes_context *aes = mbedtls_calloc(1, sizeof(mbedtls_aes_context));
+
+    if (aes == NULL) {
+        return NULL;
+    }
+
+    mbedtls_aes_init(aes);
+
+    return aes;
+}
+
+static void aes_ctx_free(void *ctx)
+{
+    mbedtls_aes_free((mbedtls_aes_context *) ctx);
+    mbedtls_free(ctx);
+}
+
+static const mbedtls_cipher_base_t aes_info = {
+    MBEDTLS_CIPHER_ID_AES,
+    aes_crypt_ecb_wrap,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    aes_crypt_cbc_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+    aes_crypt_cfb128_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+    aes_crypt_ofb_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    aes_crypt_ctr_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+    NULL,
+#endif
+    aes_setkey_enc_wrap,
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+    aes_setkey_dec_wrap,
+#endif
+    aes_ctx_alloc,
+    aes_ctx_free
+};
+
+static const mbedtls_cipher_info_t aes_128_ecb_info = {
+    "AES-128-ECB",
+    16,
+    0 >> MBEDTLS_IV_SIZE_SHIFT,
+    128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_ECB,
+    MBEDTLS_CIPHER_AES_128_ECB,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const mbedtls_cipher_info_t aes_192_ecb_info = {
+    "AES-192-ECB",
+    16,
+    0 >> MBEDTLS_IV_SIZE_SHIFT,
+    192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_ECB,
+    MBEDTLS_CIPHER_AES_192_ECB,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+
+static const mbedtls_cipher_info_t aes_256_ecb_info = {
+    "AES-256-ECB",
+    16,
+    0 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_ECB,
+    MBEDTLS_CIPHER_AES_256_ECB,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+#endif
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static const mbedtls_cipher_info_t aes_128_cbc_info = {
+    "AES-128-CBC",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CBC,
+    MBEDTLS_CIPHER_AES_128_CBC,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const mbedtls_cipher_info_t aes_192_cbc_info = {
+    "AES-192-CBC",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CBC,
+    MBEDTLS_CIPHER_AES_192_CBC,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+
+static const mbedtls_cipher_info_t aes_256_cbc_info = {
+    "AES-256-CBC",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CBC,
+    MBEDTLS_CIPHER_AES_256_CBC,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+#endif
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+static const mbedtls_cipher_info_t aes_128_cfb128_info = {
+    "AES-128-CFB128",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CFB,
+    MBEDTLS_CIPHER_AES_128_CFB128,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const mbedtls_cipher_info_t aes_192_cfb128_info = {
+    "AES-192-CFB128",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CFB,
+    MBEDTLS_CIPHER_AES_192_CFB128,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+
+static const mbedtls_cipher_info_t aes_256_cfb128_info = {
+    "AES-256-CFB128",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CFB,
+    MBEDTLS_CIPHER_AES_256_CFB128,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+#endif
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+static const mbedtls_cipher_info_t aes_128_ofb_info = {
+    "AES-128-OFB",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_OFB,
+    MBEDTLS_CIPHER_AES_128_OFB,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const mbedtls_cipher_info_t aes_192_ofb_info = {
+    "AES-192-OFB",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_OFB,
+    MBEDTLS_CIPHER_AES_192_OFB,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+
+static const mbedtls_cipher_info_t aes_256_ofb_info = {
+    "AES-256-OFB",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_OFB,
+    MBEDTLS_CIPHER_AES_256_OFB,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+#endif
+#endif /* MBEDTLS_CIPHER_MODE_OFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+static const mbedtls_cipher_info_t aes_128_ctr_info = {
+    "AES-128-CTR",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CTR,
+    MBEDTLS_CIPHER_AES_128_CTR,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const mbedtls_cipher_info_t aes_192_ctr_info = {
+    "AES-192-CTR",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CTR,
+    MBEDTLS_CIPHER_AES_192_CTR,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+
+static const mbedtls_cipher_info_t aes_256_ctr_info = {
+    "AES-256-CTR",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CTR,
+    MBEDTLS_CIPHER_AES_256_CTR,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+#endif
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+static int xts_aes_setkey_enc_wrap(void *ctx, const unsigned char *key,
+                                   unsigned int key_bitlen)
+{
+    mbedtls_aes_xts_context *xts_ctx = ctx;
+    return mbedtls_aes_xts_setkey_enc(xts_ctx, key, key_bitlen);
+}
+
+static int xts_aes_setkey_dec_wrap(void *ctx, const unsigned char *key,
+                                   unsigned int key_bitlen)
+{
+    mbedtls_aes_xts_context *xts_ctx = ctx;
+    return mbedtls_aes_xts_setkey_dec(xts_ctx, key, key_bitlen);
+}
+
+static void *xts_aes_ctx_alloc(void)
+{
+    mbedtls_aes_xts_context *xts_ctx = mbedtls_calloc(1, sizeof(*xts_ctx));
+
+    if (xts_ctx != NULL) {
+        mbedtls_aes_xts_init(xts_ctx);
+    }
+
+    return xts_ctx;
+}
+
+static void xts_aes_ctx_free(void *ctx)
+{
+    mbedtls_aes_xts_context *xts_ctx = ctx;
+
+    if (xts_ctx == NULL) {
+        return;
+    }
+
+    mbedtls_aes_xts_free(xts_ctx);
+    mbedtls_free(xts_ctx);
+}
+
+static const mbedtls_cipher_base_t xts_aes_info = {
+    MBEDTLS_CIPHER_ID_AES,
+    NULL,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+    aes_crypt_xts_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+    NULL,
+#endif
+    xts_aes_setkey_enc_wrap,
+    xts_aes_setkey_dec_wrap,
+    xts_aes_ctx_alloc,
+    xts_aes_ctx_free
+};
+
+static const mbedtls_cipher_info_t aes_128_xts_info = {
+    "AES-128-XTS",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_XTS,
+    MBEDTLS_CIPHER_AES_128_XTS,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_XTS_AES
+};
+
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const mbedtls_cipher_info_t aes_256_xts_info = {
+    "AES-256-XTS",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    512 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_XTS,
+    MBEDTLS_CIPHER_AES_256_XTS,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_XTS_AES
+};
+#endif
+#endif /* MBEDTLS_CIPHER_MODE_XTS */
+#endif /* MBEDTLS_AES_C */
+
+#if defined(MBEDTLS_GCM_C) && defined(MBEDTLS_CCM_GCM_CAN_AES)
+static int gcm_aes_setkey_wrap(void *ctx, const unsigned char *key,
+                               unsigned int key_bitlen)
+{
+    return mbedtls_gcm_setkey((mbedtls_gcm_context *) ctx, MBEDTLS_CIPHER_ID_AES,
+                              key, key_bitlen);
+}
+#endif /* MBEDTLS_GCM_C && MBEDTLS_CCM_GCM_CAN_AES */
+
+#if defined(MBEDTLS_CIPHER_HAVE_GCM_AES_VIA_LEGACY_OR_USE_PSA)
+static const mbedtls_cipher_base_t gcm_aes_info = {
+    MBEDTLS_CIPHER_ID_AES,
+    NULL,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+    NULL,
+#endif
+#if defined(MBEDTLS_GCM_C)
+    gcm_aes_setkey_wrap,
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+    gcm_aes_setkey_wrap,
+#endif
+    gcm_ctx_alloc,
+    gcm_ctx_free,
+#else
+    NULL,
+    NULL,
+    NULL,
+    NULL,
+#endif /* MBEDTLS_GCM_C */
+};
+#endif /* MBEDTLS_CIPHER_HAVE_GCM_AES_VIA_LEGACY_OR_USE_PSA */
+
+#if defined(MBEDTLS_CIPHER_HAVE_GCM_AES_VIA_LEGACY_OR_USE_PSA)
+static const mbedtls_cipher_info_t aes_128_gcm_info = {
+    "AES-128-GCM",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_GCM,
+    MBEDTLS_CIPHER_AES_128_GCM,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_GCM_AES
+};
+
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const mbedtls_cipher_info_t aes_192_gcm_info = {
+    "AES-192-GCM",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_GCM,
+    MBEDTLS_CIPHER_AES_192_GCM,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_GCM_AES
+};
+
+static const mbedtls_cipher_info_t aes_256_gcm_info = {
+    "AES-256-GCM",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_GCM,
+    MBEDTLS_CIPHER_AES_256_GCM,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_GCM_AES
+};
+#endif
+#endif /* MBEDTLS_CIPHER_HAVE_GCM_AES_VIA_LEGACY_OR_USE_PSA */
+
+#if defined(MBEDTLS_CCM_C) && defined(MBEDTLS_CCM_GCM_CAN_AES)
+static int ccm_aes_setkey_wrap(void *ctx, const unsigned char *key,
+                               unsigned int key_bitlen)
+{
+    return mbedtls_ccm_setkey((mbedtls_ccm_context *) ctx, MBEDTLS_CIPHER_ID_AES,
+                              key, key_bitlen);
+}
+#endif /* MBEDTLS_CCM_C && MBEDTLS_CCM_GCM_CAN_AES */
+
+#if defined(MBEDTLS_CIPHER_HAVE_CCM_AES_VIA_LEGACY_OR_USE_PSA)
+static const mbedtls_cipher_base_t ccm_aes_info = {
+    MBEDTLS_CIPHER_ID_AES,
+    NULL,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+    NULL,
+#endif
+#if defined(MBEDTLS_CCM_C)
+    ccm_aes_setkey_wrap,
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+    ccm_aes_setkey_wrap,
+#endif
+    ccm_ctx_alloc,
+    ccm_ctx_free,
+#else
+    NULL,
+    NULL,
+    NULL,
+    NULL,
+#endif
+};
+#endif /* MBEDTLS_CIPHER_HAVE_CCM_AES_VIA_LEGACY_OR_USE_PSA */
+
+#if defined(MBEDTLS_CIPHER_HAVE_CCM_AES_VIA_LEGACY_OR_USE_PSA)
+static const mbedtls_cipher_info_t aes_128_ccm_info = {
+    "AES-128-CCM",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CCM,
+    MBEDTLS_CIPHER_AES_128_CCM,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_CCM_AES
+};
+
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const mbedtls_cipher_info_t aes_192_ccm_info = {
+    "AES-192-CCM",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CCM,
+    MBEDTLS_CIPHER_AES_192_CCM,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_CCM_AES
+};
+
+static const mbedtls_cipher_info_t aes_256_ccm_info = {
+    "AES-256-CCM",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CCM,
+    MBEDTLS_CIPHER_AES_256_CCM,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_CCM_AES
+};
+#endif
+#endif /* MBEDTLS_CIPHER_HAVE_CCM_AES_VIA_LEGACY_OR_USE_PSA */
+
+#if defined(MBEDTLS_CIPHER_HAVE_CCM_STAR_NO_TAG_AES_VIA_LEGACY_OR_USE_PSA)
+static const mbedtls_cipher_info_t aes_128_ccm_star_no_tag_info = {
+    "AES-128-CCM*-NO-TAG",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CCM_STAR_NO_TAG,
+    MBEDTLS_CIPHER_AES_128_CCM_STAR_NO_TAG,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_CCM_AES
+};
+
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const mbedtls_cipher_info_t aes_192_ccm_star_no_tag_info = {
+    "AES-192-CCM*-NO-TAG",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CCM_STAR_NO_TAG,
+    MBEDTLS_CIPHER_AES_192_CCM_STAR_NO_TAG,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_CCM_AES
+};
+
+static const mbedtls_cipher_info_t aes_256_ccm_star_no_tag_info = {
+    "AES-256-CCM*-NO-TAG",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CCM_STAR_NO_TAG,
+    MBEDTLS_CIPHER_AES_256_CCM_STAR_NO_TAG,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_CCM_AES
+};
+#endif
+#endif /* MBEDTLS_CIPHER_HAVE_CCM_STAR_NO_TAG_AES_VIA_LEGACY_OR_USE_PSA */
+
+
+#if defined(MBEDTLS_CAMELLIA_C)
+
+static int camellia_crypt_ecb_wrap(void *ctx, mbedtls_operation_t operation,
+                                   const unsigned char *input, unsigned char *output)
+{
+    return mbedtls_camellia_crypt_ecb((mbedtls_camellia_context *) ctx, operation, input,
+                                      output);
+}
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static int camellia_crypt_cbc_wrap(void *ctx, mbedtls_operation_t operation,
+                                   size_t length, unsigned char *iv,
+                                   const unsigned char *input, unsigned char *output)
+{
+    return mbedtls_camellia_crypt_cbc((mbedtls_camellia_context *) ctx, operation, length, iv,
+                                      input, output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+static int camellia_crypt_cfb128_wrap(void *ctx, mbedtls_operation_t operation,
+                                      size_t length, size_t *iv_off, unsigned char *iv,
+                                      const unsigned char *input, unsigned char *output)
+{
+    return mbedtls_camellia_crypt_cfb128((mbedtls_camellia_context *) ctx, operation, length,
+                                         iv_off, iv, input, output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+static int camellia_crypt_ctr_wrap(void *ctx, size_t length, size_t *nc_off,
+                                   unsigned char *nonce_counter, unsigned char *stream_block,
+                                   const unsigned char *input, unsigned char *output)
+{
+    return mbedtls_camellia_crypt_ctr((mbedtls_camellia_context *) ctx, length, nc_off,
+                                      nonce_counter, stream_block, input, output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+static int camellia_setkey_dec_wrap(void *ctx, const unsigned char *key,
+                                    unsigned int key_bitlen)
+{
+    return mbedtls_camellia_setkey_dec((mbedtls_camellia_context *) ctx, key, key_bitlen);
+}
+#endif
+
+static int camellia_setkey_enc_wrap(void *ctx, const unsigned char *key,
+                                    unsigned int key_bitlen)
+{
+    return mbedtls_camellia_setkey_enc((mbedtls_camellia_context *) ctx, key, key_bitlen);
+}
+
+static void *camellia_ctx_alloc(void)
+{
+    mbedtls_camellia_context *ctx;
+    ctx = mbedtls_calloc(1, sizeof(mbedtls_camellia_context));
+
+    if (ctx == NULL) {
+        return NULL;
+    }
+
+    mbedtls_camellia_init(ctx);
+
+    return ctx;
+}
+
+static void camellia_ctx_free(void *ctx)
+{
+    mbedtls_camellia_free((mbedtls_camellia_context *) ctx);
+    mbedtls_free(ctx);
+}
+
+static const mbedtls_cipher_base_t camellia_info = {
+    MBEDTLS_CIPHER_ID_CAMELLIA,
+    camellia_crypt_ecb_wrap,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    camellia_crypt_cbc_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+    camellia_crypt_cfb128_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    camellia_crypt_ctr_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+    NULL,
+#endif
+    camellia_setkey_enc_wrap,
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+    camellia_setkey_dec_wrap,
+#endif
+    camellia_ctx_alloc,
+    camellia_ctx_free
+};
+
+static const mbedtls_cipher_info_t camellia_128_ecb_info = {
+    "CAMELLIA-128-ECB",
+    16,
+    0 >> MBEDTLS_IV_SIZE_SHIFT,
+    128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_ECB,
+    MBEDTLS_CIPHER_CAMELLIA_128_ECB,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_192_ecb_info = {
+    "CAMELLIA-192-ECB",
+    16,
+    0 >> MBEDTLS_IV_SIZE_SHIFT,
+    192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_ECB,
+    MBEDTLS_CIPHER_CAMELLIA_192_ECB,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_256_ecb_info = {
+    "CAMELLIA-256-ECB",
+    16,
+    0 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_ECB,
+    MBEDTLS_CIPHER_CAMELLIA_256_ECB,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA
+};
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static const mbedtls_cipher_info_t camellia_128_cbc_info = {
+    "CAMELLIA-128-CBC",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CBC,
+    MBEDTLS_CIPHER_CAMELLIA_128_CBC,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_192_cbc_info = {
+    "CAMELLIA-192-CBC",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CBC,
+    MBEDTLS_CIPHER_CAMELLIA_192_CBC,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_256_cbc_info = {
+    "CAMELLIA-256-CBC",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CBC,
+    MBEDTLS_CIPHER_CAMELLIA_256_CBC,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA
+};
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+static const mbedtls_cipher_info_t camellia_128_cfb128_info = {
+    "CAMELLIA-128-CFB128",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CFB,
+    MBEDTLS_CIPHER_CAMELLIA_128_CFB128,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_192_cfb128_info = {
+    "CAMELLIA-192-CFB128",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CFB,
+    MBEDTLS_CIPHER_CAMELLIA_192_CFB128,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_256_cfb128_info = {
+    "CAMELLIA-256-CFB128",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CFB,
+    MBEDTLS_CIPHER_CAMELLIA_256_CFB128,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA
+};
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+static const mbedtls_cipher_info_t camellia_128_ctr_info = {
+    "CAMELLIA-128-CTR",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CTR,
+    MBEDTLS_CIPHER_CAMELLIA_128_CTR,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_192_ctr_info = {
+    "CAMELLIA-192-CTR",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CTR,
+    MBEDTLS_CIPHER_CAMELLIA_192_CTR,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_256_ctr_info = {
+    "CAMELLIA-256-CTR",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CTR,
+    MBEDTLS_CIPHER_CAMELLIA_256_CTR,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA
+};
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+#if defined(MBEDTLS_GCM_C)
+static int gcm_camellia_setkey_wrap(void *ctx, const unsigned char *key,
+                                    unsigned int key_bitlen)
+{
+    return mbedtls_gcm_setkey((mbedtls_gcm_context *) ctx, MBEDTLS_CIPHER_ID_CAMELLIA,
+                              key, key_bitlen);
+}
+
+static const mbedtls_cipher_base_t gcm_camellia_info = {
+    MBEDTLS_CIPHER_ID_CAMELLIA,
+    NULL,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+    NULL,
+#endif
+    gcm_camellia_setkey_wrap,
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+    gcm_camellia_setkey_wrap,
+#endif
+    gcm_ctx_alloc,
+    gcm_ctx_free,
+};
+
+static const mbedtls_cipher_info_t camellia_128_gcm_info = {
+    "CAMELLIA-128-GCM",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_GCM,
+    MBEDTLS_CIPHER_CAMELLIA_128_GCM,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_GCM_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_192_gcm_info = {
+    "CAMELLIA-192-GCM",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_GCM,
+    MBEDTLS_CIPHER_CAMELLIA_192_GCM,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_GCM_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_256_gcm_info = {
+    "CAMELLIA-256-GCM",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_GCM,
+    MBEDTLS_CIPHER_CAMELLIA_256_GCM,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_GCM_CAMELLIA
+};
+#endif /* MBEDTLS_GCM_C */
+
+#if defined(MBEDTLS_CCM_C)
+static int ccm_camellia_setkey_wrap(void *ctx, const unsigned char *key,
+                                    unsigned int key_bitlen)
+{
+    return mbedtls_ccm_setkey((mbedtls_ccm_context *) ctx, MBEDTLS_CIPHER_ID_CAMELLIA,
+                              key, key_bitlen);
+}
+
+static const mbedtls_cipher_base_t ccm_camellia_info = {
+    MBEDTLS_CIPHER_ID_CAMELLIA,
+    NULL,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+    NULL,
+#endif
+    ccm_camellia_setkey_wrap,
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+    ccm_camellia_setkey_wrap,
+#endif
+    ccm_ctx_alloc,
+    ccm_ctx_free,
+};
+
+static const mbedtls_cipher_info_t camellia_128_ccm_info = {
+    "CAMELLIA-128-CCM",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CCM,
+    MBEDTLS_CIPHER_CAMELLIA_128_CCM,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_CCM_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_192_ccm_info = {
+    "CAMELLIA-192-CCM",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CCM,
+    MBEDTLS_CIPHER_CAMELLIA_192_CCM,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_CCM_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_256_ccm_info = {
+    "CAMELLIA-256-CCM",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CCM,
+    MBEDTLS_CIPHER_CAMELLIA_256_CCM,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_CCM_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_128_ccm_star_no_tag_info = {
+    "CAMELLIA-128-CCM*-NO-TAG",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CCM_STAR_NO_TAG,
+    MBEDTLS_CIPHER_CAMELLIA_128_CCM_STAR_NO_TAG,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_CCM_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_192_ccm_star_no_tag_info = {
+    "CAMELLIA-192-CCM*-NO-TAG",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CCM_STAR_NO_TAG,
+    MBEDTLS_CIPHER_CAMELLIA_192_CCM_STAR_NO_TAG,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_CCM_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_256_ccm_star_no_tag_info = {
+    "CAMELLIA-256-CCM*-NO-TAG",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CCM_STAR_NO_TAG,
+    MBEDTLS_CIPHER_CAMELLIA_256_CCM_STAR_NO_TAG,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_CCM_CAMELLIA
+};
+#endif /* MBEDTLS_CCM_C */
+
+#endif /* MBEDTLS_CAMELLIA_C */
+
+#if defined(MBEDTLS_ARIA_C)
+
+static int aria_crypt_ecb_wrap(void *ctx, mbedtls_operation_t operation,
+                               const unsigned char *input, unsigned char *output)
+{
+    (void) operation;
+    return mbedtls_aria_crypt_ecb((mbedtls_aria_context *) ctx, input,
+                                  output);
+}
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static int aria_crypt_cbc_wrap(void *ctx, mbedtls_operation_t operation,
+                               size_t length, unsigned char *iv,
+                               const unsigned char *input, unsigned char *output)
+{
+    return mbedtls_aria_crypt_cbc((mbedtls_aria_context *) ctx, operation, length, iv,
+                                  input, output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+static int aria_crypt_cfb128_wrap(void *ctx, mbedtls_operation_t operation,
+                                  size_t length, size_t *iv_off, unsigned char *iv,
+                                  const unsigned char *input, unsigned char *output)
+{
+    return mbedtls_aria_crypt_cfb128((mbedtls_aria_context *) ctx, operation, length,
+                                     iv_off, iv, input, output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+static int aria_crypt_ctr_wrap(void *ctx, size_t length, size_t *nc_off,
+                               unsigned char *nonce_counter, unsigned char *stream_block,
+                               const unsigned char *input, unsigned char *output)
+{
+    return mbedtls_aria_crypt_ctr((mbedtls_aria_context *) ctx, length, nc_off,
+                                  nonce_counter, stream_block, input, output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+static int aria_setkey_dec_wrap(void *ctx, const unsigned char *key,
+                                unsigned int key_bitlen)
+{
+    return mbedtls_aria_setkey_dec((mbedtls_aria_context *) ctx, key, key_bitlen);
+}
+#endif
+
+static int aria_setkey_enc_wrap(void *ctx, const unsigned char *key,
+                                unsigned int key_bitlen)
+{
+    return mbedtls_aria_setkey_enc((mbedtls_aria_context *) ctx, key, key_bitlen);
+}
+
+static void *aria_ctx_alloc(void)
+{
+    mbedtls_aria_context *ctx;
+    ctx = mbedtls_calloc(1, sizeof(mbedtls_aria_context));
+
+    if (ctx == NULL) {
+        return NULL;
+    }
+
+    mbedtls_aria_init(ctx);
+
+    return ctx;
+}
+
+static void aria_ctx_free(void *ctx)
+{
+    mbedtls_aria_free((mbedtls_aria_context *) ctx);
+    mbedtls_free(ctx);
+}
+
+static const mbedtls_cipher_base_t aria_info = {
+    MBEDTLS_CIPHER_ID_ARIA,
+    aria_crypt_ecb_wrap,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    aria_crypt_cbc_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+    aria_crypt_cfb128_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    aria_crypt_ctr_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+    NULL,
+#endif
+    aria_setkey_enc_wrap,
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+    aria_setkey_dec_wrap,
+#endif
+    aria_ctx_alloc,
+    aria_ctx_free
+};
+
+static const mbedtls_cipher_info_t aria_128_ecb_info = {
+    "ARIA-128-ECB",
+    16,
+    0 >> MBEDTLS_IV_SIZE_SHIFT,
+    128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_ECB,
+    MBEDTLS_CIPHER_ARIA_128_ECB,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_192_ecb_info = {
+    "ARIA-192-ECB",
+    16,
+    0 >> MBEDTLS_IV_SIZE_SHIFT,
+    192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_ECB,
+    MBEDTLS_CIPHER_ARIA_192_ECB,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_256_ecb_info = {
+    "ARIA-256-ECB",
+    16,
+    0 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_ECB,
+    MBEDTLS_CIPHER_ARIA_256_ECB,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_ARIA
+};
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static const mbedtls_cipher_info_t aria_128_cbc_info = {
+    "ARIA-128-CBC",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CBC,
+    MBEDTLS_CIPHER_ARIA_128_CBC,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_192_cbc_info = {
+    "ARIA-192-CBC",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CBC,
+    MBEDTLS_CIPHER_ARIA_192_CBC,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_256_cbc_info = {
+    "ARIA-256-CBC",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CBC,
+    MBEDTLS_CIPHER_ARIA_256_CBC,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_ARIA
+};
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+static const mbedtls_cipher_info_t aria_128_cfb128_info = {
+    "ARIA-128-CFB128",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CFB,
+    MBEDTLS_CIPHER_ARIA_128_CFB128,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_192_cfb128_info = {
+    "ARIA-192-CFB128",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CFB,
+    MBEDTLS_CIPHER_ARIA_192_CFB128,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_256_cfb128_info = {
+    "ARIA-256-CFB128",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CFB,
+    MBEDTLS_CIPHER_ARIA_256_CFB128,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_ARIA
+};
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+static const mbedtls_cipher_info_t aria_128_ctr_info = {
+    "ARIA-128-CTR",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CTR,
+    MBEDTLS_CIPHER_ARIA_128_CTR,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_192_ctr_info = {
+    "ARIA-192-CTR",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CTR,
+    MBEDTLS_CIPHER_ARIA_192_CTR,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_256_ctr_info = {
+    "ARIA-256-CTR",
+    16,
+    16 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CTR,
+    MBEDTLS_CIPHER_ARIA_256_CTR,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_ARIA
+};
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+#if defined(MBEDTLS_GCM_C)
+static int gcm_aria_setkey_wrap(void *ctx, const unsigned char *key,
+                                unsigned int key_bitlen)
+{
+    return mbedtls_gcm_setkey((mbedtls_gcm_context *) ctx, MBEDTLS_CIPHER_ID_ARIA,
+                              key, key_bitlen);
+}
+
+static const mbedtls_cipher_base_t gcm_aria_info = {
+    MBEDTLS_CIPHER_ID_ARIA,
+    NULL,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+    NULL,
+#endif
+    gcm_aria_setkey_wrap,
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+    gcm_aria_setkey_wrap,
+#endif
+    gcm_ctx_alloc,
+    gcm_ctx_free,
+};
+
+static const mbedtls_cipher_info_t aria_128_gcm_info = {
+    "ARIA-128-GCM",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_GCM,
+    MBEDTLS_CIPHER_ARIA_128_GCM,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_GCM_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_192_gcm_info = {
+    "ARIA-192-GCM",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_GCM,
+    MBEDTLS_CIPHER_ARIA_192_GCM,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_GCM_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_256_gcm_info = {
+    "ARIA-256-GCM",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_GCM,
+    MBEDTLS_CIPHER_ARIA_256_GCM,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_GCM_ARIA
+};
+#endif /* MBEDTLS_GCM_C */
+
+#if defined(MBEDTLS_CCM_C)
+static int ccm_aria_setkey_wrap(void *ctx, const unsigned char *key,
+                                unsigned int key_bitlen)
+{
+    return mbedtls_ccm_setkey((mbedtls_ccm_context *) ctx, MBEDTLS_CIPHER_ID_ARIA,
+                              key, key_bitlen);
+}
+
+static const mbedtls_cipher_base_t ccm_aria_info = {
+    MBEDTLS_CIPHER_ID_ARIA,
+    NULL,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+    NULL,
+#endif
+    ccm_aria_setkey_wrap,
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+    ccm_aria_setkey_wrap,
+#endif
+    ccm_ctx_alloc,
+    ccm_ctx_free,
+};
+
+static const mbedtls_cipher_info_t aria_128_ccm_info = {
+    "ARIA-128-CCM",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CCM,
+    MBEDTLS_CIPHER_ARIA_128_CCM,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_CCM_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_192_ccm_info = {
+    "ARIA-192-CCM",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CCM,
+    MBEDTLS_CIPHER_ARIA_192_CCM,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_CCM_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_256_ccm_info = {
+    "ARIA-256-CCM",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CCM,
+    MBEDTLS_CIPHER_ARIA_256_CCM,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_CCM_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_128_ccm_star_no_tag_info = {
+    "ARIA-128-CCM*-NO-TAG",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CCM_STAR_NO_TAG,
+    MBEDTLS_CIPHER_ARIA_128_CCM_STAR_NO_TAG,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_CCM_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_192_ccm_star_no_tag_info = {
+    "ARIA-192-CCM*-NO-TAG",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CCM_STAR_NO_TAG,
+    MBEDTLS_CIPHER_ARIA_192_CCM_STAR_NO_TAG,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_CCM_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_256_ccm_star_no_tag_info = {
+    "ARIA-256-CCM*-NO-TAG",
+    16,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CCM_STAR_NO_TAG,
+    MBEDTLS_CIPHER_ARIA_256_CCM_STAR_NO_TAG,
+    MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+    MBEDTLS_CIPHER_BASE_INDEX_CCM_ARIA
+};
+#endif /* MBEDTLS_CCM_C */
+
+#endif /* MBEDTLS_ARIA_C */
+
+#if defined(MBEDTLS_DES_C)
+
+static int des_crypt_ecb_wrap(void *ctx, mbedtls_operation_t operation,
+                              const unsigned char *input, unsigned char *output)
+{
+    ((void) operation);
+    return mbedtls_des_crypt_ecb((mbedtls_des_context *) ctx, input, output);
+}
+
+static int des3_crypt_ecb_wrap(void *ctx, mbedtls_operation_t operation,
+                               const unsigned char *input, unsigned char *output)
+{
+    ((void) operation);
+    return mbedtls_des3_crypt_ecb((mbedtls_des3_context *) ctx, input, output);
+}
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static int des_crypt_cbc_wrap(void *ctx, mbedtls_operation_t operation, size_t length,
+                              unsigned char *iv, const unsigned char *input, unsigned char *output)
+{
+    return mbedtls_des_crypt_cbc((mbedtls_des_context *) ctx, operation, length, iv, input,
+                                 output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static int des3_crypt_cbc_wrap(void *ctx, mbedtls_operation_t operation, size_t length,
+                               unsigned char *iv, const unsigned char *input, unsigned char *output)
+{
+    return mbedtls_des3_crypt_cbc((mbedtls_des3_context *) ctx, operation, length, iv, input,
+                                  output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+static int des_setkey_dec_wrap(void *ctx, const unsigned char *key,
+                               unsigned int key_bitlen)
+{
+    ((void) key_bitlen);
+
+    return mbedtls_des_setkey_dec((mbedtls_des_context *) ctx, key);
+}
+
+static int des_setkey_enc_wrap(void *ctx, const unsigned char *key,
+                               unsigned int key_bitlen)
+{
+    ((void) key_bitlen);
+
+    return mbedtls_des_setkey_enc((mbedtls_des_context *) ctx, key);
+}
+
+static int des3_set2key_dec_wrap(void *ctx, const unsigned char *key,
+                                 unsigned int key_bitlen)
+{
+    ((void) key_bitlen);
+
+    return mbedtls_des3_set2key_dec((mbedtls_des3_context *) ctx, key);
+}
+
+static int des3_set2key_enc_wrap(void *ctx, const unsigned char *key,
+                                 unsigned int key_bitlen)
+{
+    ((void) key_bitlen);
+
+    return mbedtls_des3_set2key_enc((mbedtls_des3_context *) ctx, key);
+}
+
+static int des3_set3key_dec_wrap(void *ctx, const unsigned char *key,
+                                 unsigned int key_bitlen)
+{
+    ((void) key_bitlen);
+
+    return mbedtls_des3_set3key_dec((mbedtls_des3_context *) ctx, key);
+}
+
+static int des3_set3key_enc_wrap(void *ctx, const unsigned char *key,
+                                 unsigned int key_bitlen)
+{
+    ((void) key_bitlen);
+
+    return mbedtls_des3_set3key_enc((mbedtls_des3_context *) ctx, key);
+}
+
+static void *des_ctx_alloc(void)
+{
+    mbedtls_des_context *des = mbedtls_calloc(1, sizeof(mbedtls_des_context));
+
+    if (des == NULL) {
+        return NULL;
+    }
+
+    mbedtls_des_init(des);
+
+    return des;
+}
+
+static void des_ctx_free(void *ctx)
+{
+    mbedtls_des_free((mbedtls_des_context *) ctx);
+    mbedtls_free(ctx);
+}
+
+static void *des3_ctx_alloc(void)
+{
+    mbedtls_des3_context *des3;
+    des3 = mbedtls_calloc(1, sizeof(mbedtls_des3_context));
+
+    if (des3 == NULL) {
+        return NULL;
+    }
+
+    mbedtls_des3_init(des3);
+
+    return des3;
+}
+
+static void des3_ctx_free(void *ctx)
+{
+    mbedtls_des3_free((mbedtls_des3_context *) ctx);
+    mbedtls_free(ctx);
+}
+
+static const mbedtls_cipher_base_t des_info = {
+    MBEDTLS_CIPHER_ID_DES,
+    des_crypt_ecb_wrap,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    des_crypt_cbc_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+    NULL,
+#endif
+    des_setkey_enc_wrap,
+    des_setkey_dec_wrap,
+    des_ctx_alloc,
+    des_ctx_free
+};
+
+static const mbedtls_cipher_info_t des_ecb_info = {
+    "DES-ECB",
+    8,
+    0 >> MBEDTLS_IV_SIZE_SHIFT,
+    MBEDTLS_KEY_LENGTH_DES >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_ECB,
+    MBEDTLS_CIPHER_DES_ECB,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_DES
+};
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static const mbedtls_cipher_info_t des_cbc_info = {
+    "DES-CBC",
+    8,
+    8 >> MBEDTLS_IV_SIZE_SHIFT,
+    MBEDTLS_KEY_LENGTH_DES >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CBC,
+    MBEDTLS_CIPHER_DES_CBC,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_DES
+};
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+static const mbedtls_cipher_base_t des_ede_info = {
+    MBEDTLS_CIPHER_ID_DES,
+    des3_crypt_ecb_wrap,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    des3_crypt_cbc_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+    NULL,
+#endif
+    des3_set2key_enc_wrap,
+    des3_set2key_dec_wrap,
+    des3_ctx_alloc,
+    des3_ctx_free
+};
+
+static const mbedtls_cipher_info_t des_ede_ecb_info = {
+    "DES-EDE-ECB",
+    8,
+    0 >> MBEDTLS_IV_SIZE_SHIFT,
+    MBEDTLS_KEY_LENGTH_DES_EDE >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_ECB,
+    MBEDTLS_CIPHER_DES_EDE_ECB,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_DES_EDE
+};
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static const mbedtls_cipher_info_t des_ede_cbc_info = {
+    "DES-EDE-CBC",
+    8,
+    8 >> MBEDTLS_IV_SIZE_SHIFT,
+    MBEDTLS_KEY_LENGTH_DES_EDE >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CBC,
+    MBEDTLS_CIPHER_DES_EDE_CBC,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_DES_EDE
+};
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+static const mbedtls_cipher_base_t des_ede3_info = {
+    MBEDTLS_CIPHER_ID_3DES,
+    des3_crypt_ecb_wrap,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    des3_crypt_cbc_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+    NULL,
+#endif
+    des3_set3key_enc_wrap,
+    des3_set3key_dec_wrap,
+    des3_ctx_alloc,
+    des3_ctx_free
+};
+
+static const mbedtls_cipher_info_t des_ede3_ecb_info = {
+    "DES-EDE3-ECB",
+    8,
+    0 >> MBEDTLS_IV_SIZE_SHIFT,
+    MBEDTLS_KEY_LENGTH_DES_EDE3 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_ECB,
+    MBEDTLS_CIPHER_DES_EDE3_ECB,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_DES_EDE3
+};
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static const mbedtls_cipher_info_t des_ede3_cbc_info = {
+    "DES-EDE3-CBC",
+    8,
+    8 >> MBEDTLS_IV_SIZE_SHIFT,
+    MBEDTLS_KEY_LENGTH_DES_EDE3 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CBC,
+    MBEDTLS_CIPHER_DES_EDE3_CBC,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_DES_EDE3
+};
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+#endif /* MBEDTLS_DES_C */
+
+#if defined(MBEDTLS_CHACHA20_C)
+
+static int chacha20_setkey_wrap(void *ctx, const unsigned char *key,
+                                unsigned int key_bitlen)
+{
+    if (key_bitlen != 256U) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    if (0 != mbedtls_chacha20_setkey((mbedtls_chacha20_context *) ctx, key)) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    return 0;
+}
+
+static int chacha20_stream_wrap(void *ctx,  size_t length,
+                                const unsigned char *input,
+                                unsigned char *output)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    ret = mbedtls_chacha20_update(ctx, length, input, output);
+    if (ret == MBEDTLS_ERR_CHACHA20_BAD_INPUT_DATA) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    return ret;
+}
+
+static void *chacha20_ctx_alloc(void)
+{
+    mbedtls_chacha20_context *ctx;
+    ctx = mbedtls_calloc(1, sizeof(mbedtls_chacha20_context));
+
+    if (ctx == NULL) {
+        return NULL;
+    }
+
+    mbedtls_chacha20_init(ctx);
+
+    return ctx;
+}
+
+static void chacha20_ctx_free(void *ctx)
+{
+    mbedtls_chacha20_free((mbedtls_chacha20_context *) ctx);
+    mbedtls_free(ctx);
+}
+
+static const mbedtls_cipher_base_t chacha20_base_info = {
+    MBEDTLS_CIPHER_ID_CHACHA20,
+    NULL,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+    chacha20_stream_wrap,
+#endif
+    chacha20_setkey_wrap,
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+    chacha20_setkey_wrap,
+#endif
+    chacha20_ctx_alloc,
+    chacha20_ctx_free
+};
+static const mbedtls_cipher_info_t chacha20_info = {
+    "CHACHA20",
+    1,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_STREAM,
+    MBEDTLS_CIPHER_CHACHA20,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_CHACHA20_BASE
+};
+#endif /* MBEDTLS_CHACHA20_C */
+
+#if defined(MBEDTLS_CHACHAPOLY_C)
+
+static int chachapoly_setkey_wrap(void *ctx,
+                                  const unsigned char *key,
+                                  unsigned int key_bitlen)
+{
+    if (key_bitlen != 256U) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    if (0 != mbedtls_chachapoly_setkey((mbedtls_chachapoly_context *) ctx, key)) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    return 0;
+}
+
+static void *chachapoly_ctx_alloc(void)
+{
+    mbedtls_chachapoly_context *ctx;
+    ctx = mbedtls_calloc(1, sizeof(mbedtls_chachapoly_context));
+
+    if (ctx == NULL) {
+        return NULL;
+    }
+
+    mbedtls_chachapoly_init(ctx);
+
+    return ctx;
+}
+
+static void chachapoly_ctx_free(void *ctx)
+{
+    mbedtls_chachapoly_free((mbedtls_chachapoly_context *) ctx);
+    mbedtls_free(ctx);
+}
+
+static const mbedtls_cipher_base_t chachapoly_base_info = {
+    MBEDTLS_CIPHER_ID_CHACHA20,
+    NULL,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+    NULL,
+#endif
+    chachapoly_setkey_wrap,
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+    chachapoly_setkey_wrap,
+#endif
+    chachapoly_ctx_alloc,
+    chachapoly_ctx_free
+};
+static const mbedtls_cipher_info_t chachapoly_info = {
+    "CHACHA20-POLY1305",
+    1,
+    12 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_CHACHAPOLY,
+    MBEDTLS_CIPHER_CHACHA20_POLY1305,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_CHACHAPOLY_BASE
+};
+#endif /* MBEDTLS_CHACHAPOLY_C */
+
+#if defined(MBEDTLS_CIPHER_NULL_CIPHER)
+static int null_crypt_stream(void *ctx, size_t length,
+                             const unsigned char *input,
+                             unsigned char *output)
+{
+    ((void) ctx);
+    memmove(output, input, length);
+    return 0;
+}
+
+static int null_setkey(void *ctx, const unsigned char *key,
+                       unsigned int key_bitlen)
+{
+    ((void) ctx);
+    ((void) key);
+    ((void) key_bitlen);
+
+    return 0;
+}
+
+static void *null_ctx_alloc(void)
+{
+    return (void *) 1;
+}
+
+static void null_ctx_free(void *ctx)
+{
+    ((void) ctx);
+}
+
+static const mbedtls_cipher_base_t null_base_info = {
+    MBEDTLS_CIPHER_ID_NULL,
+    NULL,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+    null_crypt_stream,
+#endif
+    null_setkey,
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+    null_setkey,
+#endif
+    null_ctx_alloc,
+    null_ctx_free
+};
+
+static const mbedtls_cipher_info_t null_cipher_info = {
+    "NULL",
+    1,
+    0 >> MBEDTLS_IV_SIZE_SHIFT,
+    0 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_STREAM,
+    MBEDTLS_CIPHER_NULL,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_NULL_BASE
+};
+#endif /* defined(MBEDTLS_CIPHER_NULL_CIPHER) */
+
+#if defined(MBEDTLS_NIST_KW_C)
+static void *kw_ctx_alloc(void)
+{
+    void *ctx = mbedtls_calloc(1, sizeof(mbedtls_nist_kw_context));
+
+    if (ctx != NULL) {
+        mbedtls_nist_kw_init((mbedtls_nist_kw_context *) ctx);
+    }
+
+    return ctx;
+}
+
+static void kw_ctx_free(void *ctx)
+{
+    mbedtls_nist_kw_free(ctx);
+    mbedtls_free(ctx);
+}
+
+static int kw_aes_setkey_wrap(void *ctx, const unsigned char *key,
+                              unsigned int key_bitlen)
+{
+    return mbedtls_nist_kw_setkey((mbedtls_nist_kw_context *) ctx,
+                                  MBEDTLS_CIPHER_ID_AES, key, key_bitlen, 1);
+}
+
+static int kw_aes_setkey_unwrap(void *ctx, const unsigned char *key,
+                                unsigned int key_bitlen)
+{
+    return mbedtls_nist_kw_setkey((mbedtls_nist_kw_context *) ctx,
+                                  MBEDTLS_CIPHER_ID_AES, key, key_bitlen, 0);
+}
+
+static const mbedtls_cipher_base_t kw_aes_info = {
+    MBEDTLS_CIPHER_ID_AES,
+    NULL,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+    NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+    NULL,
+#endif
+    kw_aes_setkey_wrap,
+    kw_aes_setkey_unwrap,
+    kw_ctx_alloc,
+    kw_ctx_free,
+};
+
+static const mbedtls_cipher_info_t aes_128_nist_kw_info = {
+    "AES-128-KW",
+    16,
+    0 >> MBEDTLS_IV_SIZE_SHIFT,
+    128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_KW,
+    MBEDTLS_CIPHER_AES_128_KW,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_KW_AES
+};
+
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const mbedtls_cipher_info_t aes_192_nist_kw_info = {
+    "AES-192-KW",
+    16,
+    0 >> MBEDTLS_IV_SIZE_SHIFT,
+    192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_KW,
+    MBEDTLS_CIPHER_AES_192_KW,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_KW_AES
+};
+
+static const mbedtls_cipher_info_t aes_256_nist_kw_info = {
+    "AES-256-KW",
+    16,
+    0 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_KW,
+    MBEDTLS_CIPHER_AES_256_KW,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_KW_AES
+};
+#endif
+
+static const mbedtls_cipher_info_t aes_128_nist_kwp_info = {
+    "AES-128-KWP",
+    16,
+    0 >> MBEDTLS_IV_SIZE_SHIFT,
+    128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_KWP,
+    MBEDTLS_CIPHER_AES_128_KWP,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_KW_AES
+};
+
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const mbedtls_cipher_info_t aes_192_nist_kwp_info = {
+    "AES-192-KWP",
+    16,
+    0 >> MBEDTLS_IV_SIZE_SHIFT,
+    192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_KWP,
+    MBEDTLS_CIPHER_AES_192_KWP,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_KW_AES
+};
+
+static const mbedtls_cipher_info_t aes_256_nist_kwp_info = {
+    "AES-256-KWP",
+    16,
+    0 >> MBEDTLS_IV_SIZE_SHIFT,
+    256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+    MBEDTLS_MODE_KWP,
+    MBEDTLS_CIPHER_AES_256_KWP,
+    0,
+    MBEDTLS_CIPHER_BASE_INDEX_KW_AES
+};
+#endif
+#endif /* MBEDTLS_NIST_KW_C */
+
+const mbedtls_cipher_definition_t mbedtls_cipher_definitions[] =
+{
+#if defined(MBEDTLS_AES_C)
+    { MBEDTLS_CIPHER_AES_128_ECB,          &aes_128_ecb_info },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { MBEDTLS_CIPHER_AES_192_ECB,          &aes_192_ecb_info },
+    { MBEDTLS_CIPHER_AES_256_ECB,          &aes_256_ecb_info },
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    { MBEDTLS_CIPHER_AES_128_CBC,          &aes_128_cbc_info },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { MBEDTLS_CIPHER_AES_192_CBC,          &aes_192_cbc_info },
+    { MBEDTLS_CIPHER_AES_256_CBC,          &aes_256_cbc_info },
+#endif
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+    { MBEDTLS_CIPHER_AES_128_CFB128,       &aes_128_cfb128_info },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { MBEDTLS_CIPHER_AES_192_CFB128,       &aes_192_cfb128_info },
+    { MBEDTLS_CIPHER_AES_256_CFB128,       &aes_256_cfb128_info },
+#endif
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+    { MBEDTLS_CIPHER_AES_128_OFB,          &aes_128_ofb_info },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { MBEDTLS_CIPHER_AES_192_OFB,          &aes_192_ofb_info },
+    { MBEDTLS_CIPHER_AES_256_OFB,          &aes_256_ofb_info },
+#endif
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    { MBEDTLS_CIPHER_AES_128_CTR,          &aes_128_ctr_info },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { MBEDTLS_CIPHER_AES_192_CTR,          &aes_192_ctr_info },
+    { MBEDTLS_CIPHER_AES_256_CTR,          &aes_256_ctr_info },
+#endif
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+    { MBEDTLS_CIPHER_AES_128_XTS,          &aes_128_xts_info },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { MBEDTLS_CIPHER_AES_256_XTS,          &aes_256_xts_info },
+#endif
+#endif
+#endif /* MBEDTLS_AES_C */
+#if defined(MBEDTLS_CIPHER_HAVE_GCM_AES_VIA_LEGACY_OR_USE_PSA)
+    { MBEDTLS_CIPHER_AES_128_GCM,          &aes_128_gcm_info },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { MBEDTLS_CIPHER_AES_192_GCM,          &aes_192_gcm_info },
+    { MBEDTLS_CIPHER_AES_256_GCM,          &aes_256_gcm_info },
+#endif
+#endif
+#if defined(MBEDTLS_CIPHER_HAVE_CCM_AES_VIA_LEGACY_OR_USE_PSA)
+    { MBEDTLS_CIPHER_AES_128_CCM,          &aes_128_ccm_info },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { MBEDTLS_CIPHER_AES_192_CCM,          &aes_192_ccm_info },
+    { MBEDTLS_CIPHER_AES_256_CCM,          &aes_256_ccm_info },
+#endif
+#endif
+#if defined(MBEDTLS_CIPHER_HAVE_CCM_STAR_NO_TAG_AES_VIA_LEGACY_OR_USE_PSA)
+    { MBEDTLS_CIPHER_AES_128_CCM_STAR_NO_TAG,          &aes_128_ccm_star_no_tag_info },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { MBEDTLS_CIPHER_AES_192_CCM_STAR_NO_TAG,          &aes_192_ccm_star_no_tag_info },
+    { MBEDTLS_CIPHER_AES_256_CCM_STAR_NO_TAG,          &aes_256_ccm_star_no_tag_info },
+#endif
+#endif
+
+#if defined(MBEDTLS_CAMELLIA_C)
+    { MBEDTLS_CIPHER_CAMELLIA_128_ECB,     &camellia_128_ecb_info },
+    { MBEDTLS_CIPHER_CAMELLIA_192_ECB,     &camellia_192_ecb_info },
+    { MBEDTLS_CIPHER_CAMELLIA_256_ECB,     &camellia_256_ecb_info },
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    { MBEDTLS_CIPHER_CAMELLIA_128_CBC,     &camellia_128_cbc_info },
+    { MBEDTLS_CIPHER_CAMELLIA_192_CBC,     &camellia_192_cbc_info },
+    { MBEDTLS_CIPHER_CAMELLIA_256_CBC,     &camellia_256_cbc_info },
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+    { MBEDTLS_CIPHER_CAMELLIA_128_CFB128,  &camellia_128_cfb128_info },
+    { MBEDTLS_CIPHER_CAMELLIA_192_CFB128,  &camellia_192_cfb128_info },
+    { MBEDTLS_CIPHER_CAMELLIA_256_CFB128,  &camellia_256_cfb128_info },
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    { MBEDTLS_CIPHER_CAMELLIA_128_CTR,     &camellia_128_ctr_info },
+    { MBEDTLS_CIPHER_CAMELLIA_192_CTR,     &camellia_192_ctr_info },
+    { MBEDTLS_CIPHER_CAMELLIA_256_CTR,     &camellia_256_ctr_info },
+#endif
+#if defined(MBEDTLS_GCM_C)
+    { MBEDTLS_CIPHER_CAMELLIA_128_GCM,     &camellia_128_gcm_info },
+    { MBEDTLS_CIPHER_CAMELLIA_192_GCM,     &camellia_192_gcm_info },
+    { MBEDTLS_CIPHER_CAMELLIA_256_GCM,     &camellia_256_gcm_info },
+#endif
+#if defined(MBEDTLS_CCM_C)
+    { MBEDTLS_CIPHER_CAMELLIA_128_CCM,     &camellia_128_ccm_info },
+    { MBEDTLS_CIPHER_CAMELLIA_192_CCM,     &camellia_192_ccm_info },
+    { MBEDTLS_CIPHER_CAMELLIA_256_CCM,     &camellia_256_ccm_info },
+    { MBEDTLS_CIPHER_CAMELLIA_128_CCM_STAR_NO_TAG,     &camellia_128_ccm_star_no_tag_info },
+    { MBEDTLS_CIPHER_CAMELLIA_192_CCM_STAR_NO_TAG,     &camellia_192_ccm_star_no_tag_info },
+    { MBEDTLS_CIPHER_CAMELLIA_256_CCM_STAR_NO_TAG,     &camellia_256_ccm_star_no_tag_info },
+#endif
+#endif /* MBEDTLS_CAMELLIA_C */
+
+#if defined(MBEDTLS_ARIA_C)
+    { MBEDTLS_CIPHER_ARIA_128_ECB,     &aria_128_ecb_info },
+    { MBEDTLS_CIPHER_ARIA_192_ECB,     &aria_192_ecb_info },
+    { MBEDTLS_CIPHER_ARIA_256_ECB,     &aria_256_ecb_info },
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    { MBEDTLS_CIPHER_ARIA_128_CBC,     &aria_128_cbc_info },
+    { MBEDTLS_CIPHER_ARIA_192_CBC,     &aria_192_cbc_info },
+    { MBEDTLS_CIPHER_ARIA_256_CBC,     &aria_256_cbc_info },
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+    { MBEDTLS_CIPHER_ARIA_128_CFB128,  &aria_128_cfb128_info },
+    { MBEDTLS_CIPHER_ARIA_192_CFB128,  &aria_192_cfb128_info },
+    { MBEDTLS_CIPHER_ARIA_256_CFB128,  &aria_256_cfb128_info },
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    { MBEDTLS_CIPHER_ARIA_128_CTR,     &aria_128_ctr_info },
+    { MBEDTLS_CIPHER_ARIA_192_CTR,     &aria_192_ctr_info },
+    { MBEDTLS_CIPHER_ARIA_256_CTR,     &aria_256_ctr_info },
+#endif
+#if defined(MBEDTLS_GCM_C)
+    { MBEDTLS_CIPHER_ARIA_128_GCM,     &aria_128_gcm_info },
+    { MBEDTLS_CIPHER_ARIA_192_GCM,     &aria_192_gcm_info },
+    { MBEDTLS_CIPHER_ARIA_256_GCM,     &aria_256_gcm_info },
+#endif
+#if defined(MBEDTLS_CCM_C)
+    { MBEDTLS_CIPHER_ARIA_128_CCM,     &aria_128_ccm_info },
+    { MBEDTLS_CIPHER_ARIA_192_CCM,     &aria_192_ccm_info },
+    { MBEDTLS_CIPHER_ARIA_256_CCM,     &aria_256_ccm_info },
+    { MBEDTLS_CIPHER_ARIA_128_CCM_STAR_NO_TAG,     &aria_128_ccm_star_no_tag_info },
+    { MBEDTLS_CIPHER_ARIA_192_CCM_STAR_NO_TAG,     &aria_192_ccm_star_no_tag_info },
+    { MBEDTLS_CIPHER_ARIA_256_CCM_STAR_NO_TAG,     &aria_256_ccm_star_no_tag_info },
+#endif
+#endif /* MBEDTLS_ARIA_C */
+
+#if defined(MBEDTLS_DES_C)
+    { MBEDTLS_CIPHER_DES_ECB,              &des_ecb_info },
+    { MBEDTLS_CIPHER_DES_EDE_ECB,          &des_ede_ecb_info },
+    { MBEDTLS_CIPHER_DES_EDE3_ECB,         &des_ede3_ecb_info },
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    { MBEDTLS_CIPHER_DES_CBC,              &des_cbc_info },
+    { MBEDTLS_CIPHER_DES_EDE_CBC,          &des_ede_cbc_info },
+    { MBEDTLS_CIPHER_DES_EDE3_CBC,         &des_ede3_cbc_info },
+#endif
+#endif /* MBEDTLS_DES_C */
+
+#if defined(MBEDTLS_CHACHA20_C)
+    { MBEDTLS_CIPHER_CHACHA20,             &chacha20_info },
+#endif
+
+#if defined(MBEDTLS_CHACHAPOLY_C)
+    { MBEDTLS_CIPHER_CHACHA20_POLY1305,    &chachapoly_info },
+#endif
+
+#if defined(MBEDTLS_NIST_KW_C)
+    { MBEDTLS_CIPHER_AES_128_KW,          &aes_128_nist_kw_info },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { MBEDTLS_CIPHER_AES_192_KW,          &aes_192_nist_kw_info },
+    { MBEDTLS_CIPHER_AES_256_KW,          &aes_256_nist_kw_info },
+#endif
+    { MBEDTLS_CIPHER_AES_128_KWP,         &aes_128_nist_kwp_info },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { MBEDTLS_CIPHER_AES_192_KWP,         &aes_192_nist_kwp_info },
+    { MBEDTLS_CIPHER_AES_256_KWP,         &aes_256_nist_kwp_info },
+#endif
+#endif
+
+#if defined(MBEDTLS_CIPHER_NULL_CIPHER)
+    { MBEDTLS_CIPHER_NULL,                 &null_cipher_info },
+#endif /* MBEDTLS_CIPHER_NULL_CIPHER */
+
+    { MBEDTLS_CIPHER_NONE, NULL }
+};
+
+#define NUM_CIPHERS (sizeof(mbedtls_cipher_definitions) /      \
+                     sizeof(mbedtls_cipher_definitions[0]))
+int mbedtls_cipher_supported[NUM_CIPHERS];
+
+const mbedtls_cipher_base_t *mbedtls_cipher_base_lookup_table[] = {
+#if defined(MBEDTLS_AES_C)
+    [MBEDTLS_CIPHER_BASE_INDEX_AES] = &aes_info,
+#endif
+#if defined(MBEDTLS_ARIA_C)
+    [MBEDTLS_CIPHER_BASE_INDEX_ARIA] = &aria_info,
+#endif
+#if defined(MBEDTLS_CAMELLIA_C)
+    [MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA] = &camellia_info,
+#endif
+#if defined(MBEDTLS_CIPHER_HAVE_CCM_AES_VIA_LEGACY_OR_USE_PSA)
+    [MBEDTLS_CIPHER_BASE_INDEX_CCM_AES] = &ccm_aes_info,
+#endif
+#if defined(MBEDTLS_CCM_C) && defined(MBEDTLS_ARIA_C)
+    [MBEDTLS_CIPHER_BASE_INDEX_CCM_ARIA] = &ccm_aria_info,
+#endif
+#if defined(MBEDTLS_CCM_C) && defined(MBEDTLS_CAMELLIA_C)
+    [MBEDTLS_CIPHER_BASE_INDEX_CCM_CAMELLIA] = &ccm_camellia_info,
+#endif
+#if defined(MBEDTLS_CHACHA20_C)
+    [MBEDTLS_CIPHER_BASE_INDEX_CHACHA20_BASE] = &chacha20_base_info,
+#endif
+#if defined(MBEDTLS_CHACHAPOLY_C)
+    [MBEDTLS_CIPHER_BASE_INDEX_CHACHAPOLY_BASE] = &chachapoly_base_info,
+#endif
+#if defined(MBEDTLS_DES_C)
+    [MBEDTLS_CIPHER_BASE_INDEX_DES_EDE3] = &des_ede3_info,
+#endif
+#if defined(MBEDTLS_DES_C)
+    [MBEDTLS_CIPHER_BASE_INDEX_DES_EDE] = &des_ede_info,
+#endif
+#if defined(MBEDTLS_DES_C)
+    [MBEDTLS_CIPHER_BASE_INDEX_DES] = &des_info,
+#endif
+#if defined(MBEDTLS_CIPHER_HAVE_GCM_AES_VIA_LEGACY_OR_USE_PSA)
+    [MBEDTLS_CIPHER_BASE_INDEX_GCM_AES] = &gcm_aes_info,
+#endif
+#if defined(MBEDTLS_GCM_C) && defined(MBEDTLS_ARIA_C)
+    [MBEDTLS_CIPHER_BASE_INDEX_GCM_ARIA] = &gcm_aria_info,
+#endif
+#if defined(MBEDTLS_GCM_C) && defined(MBEDTLS_CAMELLIA_C)
+    [MBEDTLS_CIPHER_BASE_INDEX_GCM_CAMELLIA] = &gcm_camellia_info,
+#endif
+#if defined(MBEDTLS_NIST_KW_C)
+    [MBEDTLS_CIPHER_BASE_INDEX_KW_AES] = &kw_aes_info,
+#endif
+#if defined(MBEDTLS_CIPHER_NULL_CIPHER)
+    [MBEDTLS_CIPHER_BASE_INDEX_NULL_BASE] = &null_base_info,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS) && defined(MBEDTLS_AES_C)
+    [MBEDTLS_CIPHER_BASE_INDEX_XTS_AES] = &xts_aes_info
+#endif
+};
+
+#endif /* MBEDTLS_CIPHER_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/cipher_wrap.h b/tf-psa-crypto/drivers/builtin/src/cipher_wrap.h
new file mode 100644
index 0000000..f229151
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/cipher_wrap.h
@@ -0,0 +1,178 @@
+/**
+ * \file cipher_wrap.h
+ *
+ * \brief Cipher wrappers.
+ *
+ * \author Adriaan de Jong <dejong@fox-it.com>
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#ifndef MBEDTLS_CIPHER_WRAP_H
+#define MBEDTLS_CIPHER_WRAP_H
+
+#include "mbedtls/build_info.h"
+
+#include "mbedtls/cipher.h"
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+#include "psa/crypto.h"
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Support for GCM either through Mbed TLS SW implementation or PSA */
+#if defined(MBEDTLS_GCM_C) || \
+    (defined(MBEDTLS_USE_PSA_CRYPTO) && defined(PSA_WANT_ALG_GCM))
+#define MBEDTLS_CIPHER_HAVE_GCM_VIA_LEGACY_OR_USE_PSA
+#endif
+
+#if (defined(MBEDTLS_GCM_C) && defined(MBEDTLS_AES_C)) || \
+    (defined(MBEDTLS_USE_PSA_CRYPTO) && defined(PSA_WANT_ALG_GCM) && defined(PSA_WANT_KEY_TYPE_AES))
+#define MBEDTLS_CIPHER_HAVE_GCM_AES_VIA_LEGACY_OR_USE_PSA
+#endif
+
+#if defined(MBEDTLS_CCM_C) || \
+    (defined(MBEDTLS_USE_PSA_CRYPTO) && defined(PSA_WANT_ALG_CCM))
+#define MBEDTLS_CIPHER_HAVE_CCM_VIA_LEGACY_OR_USE_PSA
+#endif
+
+#if (defined(MBEDTLS_CCM_C) && defined(MBEDTLS_AES_C)) || \
+    (defined(MBEDTLS_USE_PSA_CRYPTO) && defined(PSA_WANT_ALG_CCM) && defined(PSA_WANT_KEY_TYPE_AES))
+#define MBEDTLS_CIPHER_HAVE_CCM_AES_VIA_LEGACY_OR_USE_PSA
+#endif
+
+#if defined(MBEDTLS_CCM_C) || \
+    (defined(MBEDTLS_USE_PSA_CRYPTO) && defined(PSA_WANT_ALG_CCM_STAR_NO_TAG))
+#define MBEDTLS_CIPHER_HAVE_CCM_STAR_NO_TAG_VIA_LEGACY_OR_USE_PSA
+#endif
+
+#if (defined(MBEDTLS_CCM_C) && defined(MBEDTLS_AES_C)) || \
+    (defined(MBEDTLS_USE_PSA_CRYPTO) && defined(PSA_WANT_ALG_CCM_STAR_NO_TAG) && \
+    defined(PSA_WANT_KEY_TYPE_AES))
+#define MBEDTLS_CIPHER_HAVE_CCM_STAR_NO_TAG_AES_VIA_LEGACY_OR_USE_PSA
+#endif
+
+#if defined(MBEDTLS_CHACHAPOLY_C) || \
+    (defined(MBEDTLS_USE_PSA_CRYPTO) && defined(PSA_WANT_ALG_CHACHA20_POLY1305))
+#define MBEDTLS_CIPHER_HAVE_CHACHAPOLY_VIA_LEGACY_OR_USE_PSA
+#endif
+
+#if defined(MBEDTLS_CIPHER_HAVE_GCM_VIA_LEGACY_OR_USE_PSA) || \
+    defined(MBEDTLS_CIPHER_HAVE_CCM_VIA_LEGACY_OR_USE_PSA) || \
+    defined(MBEDTLS_CIPHER_HAVE_CCM_STAR_NO_TAG_VIA_LEGACY_OR_USE_PSA) || \
+    defined(MBEDTLS_CIPHER_HAVE_CHACHAPOLY_VIA_LEGACY_OR_USE_PSA)
+#define MBEDTLS_CIPHER_HAVE_SOME_AEAD_VIA_LEGACY_OR_USE_PSA
+#endif
+
+/**
+ * Base cipher information. The non-mode specific functions and values.
+ */
+struct mbedtls_cipher_base_t {
+    /** Base Cipher type (e.g. MBEDTLS_CIPHER_ID_AES) */
+    mbedtls_cipher_id_t cipher;
+
+    /** Encrypt using ECB */
+    int (*ecb_func)(void *ctx, mbedtls_operation_t mode,
+                    const unsigned char *input, unsigned char *output);
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    /** Encrypt using CBC */
+    int (*cbc_func)(void *ctx, mbedtls_operation_t mode, size_t length,
+                    unsigned char *iv, const unsigned char *input,
+                    unsigned char *output);
+#endif
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+    /** Encrypt using CFB (Full length) */
+    int (*cfb_func)(void *ctx, mbedtls_operation_t mode, size_t length, size_t *iv_off,
+                    unsigned char *iv, const unsigned char *input,
+                    unsigned char *output);
+#endif
+
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+    /** Encrypt using OFB (Full length) */
+    int (*ofb_func)(void *ctx, size_t length, size_t *iv_off,
+                    unsigned char *iv,
+                    const unsigned char *input,
+                    unsigned char *output);
+#endif
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+    /** Encrypt using CTR */
+    int (*ctr_func)(void *ctx, size_t length, size_t *nc_off,
+                    unsigned char *nonce_counter, unsigned char *stream_block,
+                    const unsigned char *input, unsigned char *output);
+#endif
+
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+    /** Encrypt or decrypt using XTS. */
+    int (*xts_func)(void *ctx, mbedtls_operation_t mode, size_t length,
+                    const unsigned char data_unit[16],
+                    const unsigned char *input, unsigned char *output);
+#endif
+
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+    /** Encrypt using STREAM */
+    int (*stream_func)(void *ctx, size_t length,
+                       const unsigned char *input, unsigned char *output);
+#endif
+
+    /** Set key for encryption purposes */
+    int (*setkey_enc_func)(void *ctx, const unsigned char *key,
+                           unsigned int key_bitlen);
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+    /** Set key for decryption purposes */
+    int (*setkey_dec_func)(void *ctx, const unsigned char *key,
+                           unsigned int key_bitlen);
+#endif
+
+    /** Allocate a new context */
+    void * (*ctx_alloc_func)(void);
+
+    /** Free the given context */
+    void (*ctx_free_func)(void *ctx);
+
+};
+
+typedef struct {
+    mbedtls_cipher_type_t type;
+    const mbedtls_cipher_info_t *info;
+} mbedtls_cipher_definition_t;
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+typedef enum {
+    MBEDTLS_CIPHER_PSA_KEY_UNSET = 0,
+    MBEDTLS_CIPHER_PSA_KEY_OWNED, /* Used for PSA-based cipher contexts which */
+                                  /* use raw key material internally imported */
+                                  /* as a volatile key, and which hence need  */
+                                  /* to destroy that key when the context is  */
+                                  /* freed.                                   */
+    MBEDTLS_CIPHER_PSA_KEY_NOT_OWNED, /* Used for PSA-based cipher contexts   */
+                                      /* which use a key provided by the      */
+                                      /* user, and which hence will not be    */
+                                      /* destroyed when the context is freed. */
+} mbedtls_cipher_psa_key_ownership;
+
+typedef struct {
+    psa_algorithm_t alg;
+    mbedtls_svc_key_id_t slot;
+    mbedtls_cipher_psa_key_ownership slot_state;
+} mbedtls_cipher_context_psa;
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+extern const mbedtls_cipher_definition_t mbedtls_cipher_definitions[];
+
+extern int mbedtls_cipher_supported[];
+
+extern const mbedtls_cipher_base_t *mbedtls_cipher_base_lookup_table[];
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* MBEDTLS_CIPHER_WRAP_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/cmac.c b/tf-psa-crypto/drivers/builtin/src/cmac.c
new file mode 100644
index 0000000..eda10d0
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/cmac.c
@@ -0,0 +1,1067 @@
+/**
+ * \file cmac.c
+ *
+ * \brief NIST SP800-38B compliant CMAC implementation for AES and 3DES
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * References:
+ *
+ * - NIST SP 800-38B Recommendation for Block Cipher Modes of Operation: The
+ *      CMAC Mode for Authentication
+ *   http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf
+ *
+ * - RFC 4493 - The AES-CMAC Algorithm
+ *   https://tools.ietf.org/html/rfc4493
+ *
+ * - RFC 4615 - The Advanced Encryption Standard-Cipher-based Message
+ *      Authentication Code-Pseudo-Random Function-128 (AES-CMAC-PRF-128)
+ *      Algorithm for the Internet Key Exchange Protocol (IKE)
+ *   https://tools.ietf.org/html/rfc4615
+ *
+ *   Additional test vectors: ISO/IEC 9797-1
+ *
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_CMAC_C)
+
+#include "mbedtls/cmac.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+#include "mbedtls/platform.h"
+#include "constant_time_internal.h"
+
+#include <string.h>
+
+#if !defined(MBEDTLS_CMAC_ALT) || defined(MBEDTLS_SELF_TEST)
+
+/*
+ * Multiplication by u in the Galois field of GF(2^n)
+ *
+ * As explained in NIST SP 800-38B, this can be computed:
+ *
+ *   If MSB(p) = 0, then p = (p << 1)
+ *   If MSB(p) = 1, then p = (p << 1) ^ R_n
+ *   with R_64 = 0x1B and  R_128 = 0x87
+ *
+ * Input and output MUST NOT point to the same buffer
+ * Block size must be 8 bytes or 16 bytes - the block sizes for DES and AES.
+ */
+static int cmac_multiply_by_u(unsigned char *output,
+                              const unsigned char *input,
+                              size_t blocksize)
+{
+    const unsigned char R_128 = 0x87;
+    unsigned char R_n;
+    uint32_t overflow = 0x00;
+    int i;
+
+    if (blocksize == MBEDTLS_AES_BLOCK_SIZE) {
+        R_n = R_128;
+    }
+#if defined(MBEDTLS_DES_C)
+    else if (blocksize == MBEDTLS_DES3_BLOCK_SIZE) {
+        const unsigned char R_64 = 0x1B;
+        R_n = R_64;
+    }
+#endif
+    else {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    for (i = (int) blocksize - 4; i >= 0; i -= 4) {
+        uint32_t i32 = MBEDTLS_GET_UINT32_BE(&input[i], 0);
+        uint32_t new_overflow = i32 >> 31;
+        i32 = (i32 << 1) | overflow;
+        MBEDTLS_PUT_UINT32_BE(i32, &output[i], 0);
+        overflow = new_overflow;
+    }
+
+    R_n = (unsigned char) mbedtls_ct_uint_if_else_0(mbedtls_ct_bool(input[0] >> 7), R_n);
+    output[blocksize - 1] ^= R_n;
+
+    return 0;
+}
+
+/*
+ * Generate subkeys
+ *
+ * - as specified by RFC 4493, section 2.3 Subkey Generation Algorithm
+ */
+static int cmac_generate_subkeys(mbedtls_cipher_context_t *ctx,
+                                 unsigned char *K1, unsigned char *K2)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char L[MBEDTLS_CMAC_MAX_BLOCK_SIZE];
+    size_t olen, block_size;
+
+    mbedtls_platform_zeroize(L, sizeof(L));
+
+    block_size = mbedtls_cipher_info_get_block_size(ctx->cipher_info);
+
+    /* Calculate Ek(0) */
+    if ((ret = mbedtls_cipher_update(ctx, L, block_size, L, &olen)) != 0) {
+        goto exit;
+    }
+
+    /*
+     * Generate K1 and K2
+     */
+    if ((ret = cmac_multiply_by_u(K1, L, block_size)) != 0) {
+        goto exit;
+    }
+
+    if ((ret = cmac_multiply_by_u(K2, K1, block_size)) != 0) {
+        goto exit;
+    }
+
+exit:
+    mbedtls_platform_zeroize(L, sizeof(L));
+
+    return ret;
+}
+#endif /* !defined(MBEDTLS_CMAC_ALT) || defined(MBEDTLS_SELF_TEST) */
+
+#if !defined(MBEDTLS_CMAC_ALT)
+
+/*
+ * Create padded last block from (partial) last block.
+ *
+ * We can't use the padding option from the cipher layer, as it only works for
+ * CBC and we use ECB mode, and anyway we need to XOR K1 or K2 in addition.
+ */
+static void cmac_pad(unsigned char padded_block[MBEDTLS_CMAC_MAX_BLOCK_SIZE],
+                     size_t padded_block_len,
+                     const unsigned char *last_block,
+                     size_t last_block_len)
+{
+    size_t j;
+
+    for (j = 0; j < padded_block_len; j++) {
+        if (j < last_block_len) {
+            padded_block[j] = last_block[j];
+        } else if (j == last_block_len) {
+            padded_block[j] = 0x80;
+        } else {
+            padded_block[j] = 0x00;
+        }
+    }
+}
+
+int mbedtls_cipher_cmac_starts(mbedtls_cipher_context_t *ctx,
+                               const unsigned char *key, size_t keybits)
+{
+    mbedtls_cipher_type_t type;
+    mbedtls_cmac_context_t *cmac_ctx;
+    int retval;
+
+    if (ctx == NULL || ctx->cipher_info == NULL || key == NULL) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    if ((retval = mbedtls_cipher_setkey(ctx, key, (int) keybits,
+                                        MBEDTLS_ENCRYPT)) != 0) {
+        return retval;
+    }
+
+    type = mbedtls_cipher_info_get_type(ctx->cipher_info);
+
+    switch (type) {
+        case MBEDTLS_CIPHER_AES_128_ECB:
+        case MBEDTLS_CIPHER_AES_192_ECB:
+        case MBEDTLS_CIPHER_AES_256_ECB:
+        case MBEDTLS_CIPHER_DES_EDE3_ECB:
+            break;
+        default:
+            return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    /* Allocated and initialise in the cipher context memory for the CMAC
+     * context */
+    cmac_ctx = mbedtls_calloc(1, sizeof(mbedtls_cmac_context_t));
+    if (cmac_ctx == NULL) {
+        return MBEDTLS_ERR_CIPHER_ALLOC_FAILED;
+    }
+
+    ctx->cmac_ctx = cmac_ctx;
+
+    mbedtls_platform_zeroize(cmac_ctx->state, sizeof(cmac_ctx->state));
+
+    return 0;
+}
+
+int mbedtls_cipher_cmac_update(mbedtls_cipher_context_t *ctx,
+                               const unsigned char *input, size_t ilen)
+{
+    mbedtls_cmac_context_t *cmac_ctx;
+    unsigned char *state;
+    int ret = 0;
+    size_t n, j, olen, block_size;
+
+    if (ctx == NULL || ctx->cipher_info == NULL || input == NULL ||
+        ctx->cmac_ctx == NULL) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    cmac_ctx = ctx->cmac_ctx;
+    block_size = mbedtls_cipher_info_get_block_size(ctx->cipher_info);
+    state = ctx->cmac_ctx->state;
+
+    /* Without the MBEDTLS_ASSUME below, gcc -O3 will generate a warning of the form
+     * error: writing 16 bytes into a region of size 0 [-Werror=stringop-overflow=] */
+    MBEDTLS_ASSUME(block_size <= MBEDTLS_CMAC_MAX_BLOCK_SIZE);
+
+    /* Is there data still to process from the last call, that's greater in
+     * size than a block? */
+    if (cmac_ctx->unprocessed_len > 0 &&
+        ilen > block_size - cmac_ctx->unprocessed_len) {
+        memcpy(&cmac_ctx->unprocessed_block[cmac_ctx->unprocessed_len],
+               input,
+               block_size - cmac_ctx->unprocessed_len);
+
+        mbedtls_xor_no_simd(state, cmac_ctx->unprocessed_block, state, block_size);
+
+        if ((ret = mbedtls_cipher_update(ctx, state, block_size, state,
+                                         &olen)) != 0) {
+            goto exit;
+        }
+
+        input += block_size - cmac_ctx->unprocessed_len;
+        ilen -= block_size - cmac_ctx->unprocessed_len;
+        cmac_ctx->unprocessed_len = 0;
+    }
+
+    /* n is the number of blocks including any final partial block */
+    n = (ilen + block_size - 1) / block_size;
+
+    /* Iterate across the input data in block sized chunks, excluding any
+     * final partial or complete block */
+    for (j = 1; j < n; j++) {
+        mbedtls_xor_no_simd(state, input, state, block_size);
+
+        if ((ret = mbedtls_cipher_update(ctx, state, block_size, state,
+                                         &olen)) != 0) {
+            goto exit;
+        }
+
+        ilen -= block_size;
+        input += block_size;
+    }
+
+    /* If there is data left over that wasn't aligned to a block */
+    if (ilen > 0) {
+        memcpy(&cmac_ctx->unprocessed_block[cmac_ctx->unprocessed_len],
+               input,
+               ilen);
+        cmac_ctx->unprocessed_len += ilen;
+    }
+
+exit:
+    return ret;
+}
+
+int mbedtls_cipher_cmac_finish(mbedtls_cipher_context_t *ctx,
+                               unsigned char *output)
+{
+    mbedtls_cmac_context_t *cmac_ctx;
+    unsigned char *state, *last_block;
+    unsigned char K1[MBEDTLS_CMAC_MAX_BLOCK_SIZE];
+    unsigned char K2[MBEDTLS_CMAC_MAX_BLOCK_SIZE];
+    unsigned char M_last[MBEDTLS_CMAC_MAX_BLOCK_SIZE];
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t olen, block_size;
+
+    if (ctx == NULL || ctx->cipher_info == NULL || ctx->cmac_ctx == NULL ||
+        output == NULL) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    cmac_ctx = ctx->cmac_ctx;
+    block_size = mbedtls_cipher_info_get_block_size(ctx->cipher_info);
+    MBEDTLS_ASSUME(block_size <= MBEDTLS_CMAC_MAX_BLOCK_SIZE); // silence GCC warning
+    state = cmac_ctx->state;
+
+    mbedtls_platform_zeroize(K1, sizeof(K1));
+    mbedtls_platform_zeroize(K2, sizeof(K2));
+    cmac_generate_subkeys(ctx, K1, K2);
+
+    last_block = cmac_ctx->unprocessed_block;
+
+    /* Calculate last block */
+    if (cmac_ctx->unprocessed_len < block_size) {
+        cmac_pad(M_last, block_size, last_block, cmac_ctx->unprocessed_len);
+        mbedtls_xor(M_last, M_last, K2, block_size);
+    } else {
+        /* Last block is complete block */
+        mbedtls_xor(M_last, last_block, K1, block_size);
+    }
+
+
+    mbedtls_xor(state, M_last, state, block_size);
+    if ((ret = mbedtls_cipher_update(ctx, state, block_size, state,
+                                     &olen)) != 0) {
+        goto exit;
+    }
+
+    memcpy(output, state, block_size);
+
+exit:
+    /* Wipe the generated keys on the stack, and any other transients to avoid
+     * side channel leakage */
+    mbedtls_platform_zeroize(K1, sizeof(K1));
+    mbedtls_platform_zeroize(K2, sizeof(K2));
+
+    cmac_ctx->unprocessed_len = 0;
+    mbedtls_platform_zeroize(cmac_ctx->unprocessed_block,
+                             sizeof(cmac_ctx->unprocessed_block));
+
+    mbedtls_platform_zeroize(state, MBEDTLS_CMAC_MAX_BLOCK_SIZE);
+    return ret;
+}
+
+int mbedtls_cipher_cmac_reset(mbedtls_cipher_context_t *ctx)
+{
+    mbedtls_cmac_context_t *cmac_ctx;
+
+    if (ctx == NULL || ctx->cipher_info == NULL || ctx->cmac_ctx == NULL) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    cmac_ctx = ctx->cmac_ctx;
+
+    /* Reset the internal state */
+    cmac_ctx->unprocessed_len = 0;
+    mbedtls_platform_zeroize(cmac_ctx->unprocessed_block,
+                             sizeof(cmac_ctx->unprocessed_block));
+    mbedtls_platform_zeroize(cmac_ctx->state,
+                             sizeof(cmac_ctx->state));
+
+    return 0;
+}
+
+int mbedtls_cipher_cmac(const mbedtls_cipher_info_t *cipher_info,
+                        const unsigned char *key, size_t keylen,
+                        const unsigned char *input, size_t ilen,
+                        unsigned char *output)
+{
+    mbedtls_cipher_context_t ctx;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if (cipher_info == NULL || key == NULL || input == NULL || output == NULL) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    mbedtls_cipher_init(&ctx);
+
+    if ((ret = mbedtls_cipher_setup(&ctx, cipher_info)) != 0) {
+        goto exit;
+    }
+
+    ret = mbedtls_cipher_cmac_starts(&ctx, key, keylen);
+    if (ret != 0) {
+        goto exit;
+    }
+
+    ret = mbedtls_cipher_cmac_update(&ctx, input, ilen);
+    if (ret != 0) {
+        goto exit;
+    }
+
+    ret = mbedtls_cipher_cmac_finish(&ctx, output);
+
+exit:
+    mbedtls_cipher_free(&ctx);
+
+    return ret;
+}
+
+#if defined(MBEDTLS_AES_C)
+/*
+ * Implementation of AES-CMAC-PRF-128 defined in RFC 4615
+ */
+int mbedtls_aes_cmac_prf_128(const unsigned char *key, size_t key_length,
+                             const unsigned char *input, size_t in_len,
+                             unsigned char output[16])
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    const mbedtls_cipher_info_t *cipher_info;
+    unsigned char zero_key[MBEDTLS_AES_BLOCK_SIZE];
+    unsigned char int_key[MBEDTLS_AES_BLOCK_SIZE];
+
+    if (key == NULL || input == NULL || output == NULL) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    cipher_info = mbedtls_cipher_info_from_type(MBEDTLS_CIPHER_AES_128_ECB);
+    if (cipher_info == NULL) {
+        /* Failing at this point must be due to a build issue */
+        ret = MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+        goto exit;
+    }
+
+    if (key_length == MBEDTLS_AES_BLOCK_SIZE) {
+        /* Use key as is */
+        memcpy(int_key, key, MBEDTLS_AES_BLOCK_SIZE);
+    } else {
+        memset(zero_key, 0, MBEDTLS_AES_BLOCK_SIZE);
+
+        ret = mbedtls_cipher_cmac(cipher_info, zero_key, 128, key,
+                                  key_length, int_key);
+        if (ret != 0) {
+            goto exit;
+        }
+    }
+
+    ret = mbedtls_cipher_cmac(cipher_info, int_key, 128, input, in_len,
+                              output);
+
+exit:
+    mbedtls_platform_zeroize(int_key, sizeof(int_key));
+
+    return ret;
+}
+#endif /* MBEDTLS_AES_C */
+
+#endif /* !MBEDTLS_CMAC_ALT */
+
+#if defined(MBEDTLS_SELF_TEST)
+/*
+ * CMAC test data for SP800-38B
+ * http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/AES_CMAC.pdf
+ * http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/TDES_CMAC.pdf
+ *
+ * AES-CMAC-PRF-128 test data from RFC 4615
+ * https://tools.ietf.org/html/rfc4615#page-4
+ */
+
+#define NB_CMAC_TESTS_PER_KEY 4
+#define NB_PRF_TESTS 3
+
+#if defined(MBEDTLS_AES_C) || defined(MBEDTLS_DES_C)
+/* All CMAC test inputs are truncated from the same 64 byte buffer. */
+static const unsigned char test_message[] = {
+    /* PT */
+    0x6b, 0xc1, 0xbe, 0xe2,     0x2e, 0x40, 0x9f, 0x96,
+    0xe9, 0x3d, 0x7e, 0x11,     0x73, 0x93, 0x17, 0x2a,
+    0xae, 0x2d, 0x8a, 0x57,     0x1e, 0x03, 0xac, 0x9c,
+    0x9e, 0xb7, 0x6f, 0xac,     0x45, 0xaf, 0x8e, 0x51,
+    0x30, 0xc8, 0x1c, 0x46,     0xa3, 0x5c, 0xe4, 0x11,
+    0xe5, 0xfb, 0xc1, 0x19,     0x1a, 0x0a, 0x52, 0xef,
+    0xf6, 0x9f, 0x24, 0x45,     0xdf, 0x4f, 0x9b, 0x17,
+    0xad, 0x2b, 0x41, 0x7b,     0xe6, 0x6c, 0x37, 0x10
+};
+#endif /* MBEDTLS_AES_C || MBEDTLS_DES_C */
+
+#if defined(MBEDTLS_AES_C)
+/* Truncation point of message for AES CMAC tests  */
+static const  unsigned int  aes_message_lengths[NB_CMAC_TESTS_PER_KEY] = {
+    /* Mlen */
+    0,
+    16,
+    20,
+    64
+};
+
+/* CMAC-AES128 Test Data */
+static const unsigned char aes_128_key[16] = {
+    0x2b, 0x7e, 0x15, 0x16,     0x28, 0xae, 0xd2, 0xa6,
+    0xab, 0xf7, 0x15, 0x88,     0x09, 0xcf, 0x4f, 0x3c
+};
+static const unsigned char aes_128_subkeys[2][MBEDTLS_AES_BLOCK_SIZE] = {
+    {
+        /* K1 */
+        0xfb, 0xee, 0xd6, 0x18,     0x35, 0x71, 0x33, 0x66,
+        0x7c, 0x85, 0xe0, 0x8f,     0x72, 0x36, 0xa8, 0xde
+    },
+    {
+        /* K2 */
+        0xf7, 0xdd, 0xac, 0x30,     0x6a, 0xe2, 0x66, 0xcc,
+        0xf9, 0x0b, 0xc1, 0x1e,     0xe4, 0x6d, 0x51, 0x3b
+    }
+};
+static const unsigned char aes_128_expected_result[NB_CMAC_TESTS_PER_KEY][MBEDTLS_AES_BLOCK_SIZE] =
+{
+    {
+        /* Example #1 */
+        0xbb, 0x1d, 0x69, 0x29,     0xe9, 0x59, 0x37, 0x28,
+        0x7f, 0xa3, 0x7d, 0x12,     0x9b, 0x75, 0x67, 0x46
+    },
+    {
+        /* Example #2 */
+        0x07, 0x0a, 0x16, 0xb4,     0x6b, 0x4d, 0x41, 0x44,
+        0xf7, 0x9b, 0xdd, 0x9d,     0xd0, 0x4a, 0x28, 0x7c
+    },
+    {
+        /* Example #3 */
+        0x7d, 0x85, 0x44, 0x9e,     0xa6, 0xea, 0x19, 0xc8,
+        0x23, 0xa7, 0xbf, 0x78,     0x83, 0x7d, 0xfa, 0xde
+    },
+    {
+        /* Example #4 */
+        0x51, 0xf0, 0xbe, 0xbf,     0x7e, 0x3b, 0x9d, 0x92,
+        0xfc, 0x49, 0x74, 0x17,     0x79, 0x36, 0x3c, 0xfe
+    }
+};
+
+/* CMAC-AES192 Test Data */
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const unsigned char aes_192_key[24] = {
+    0x8e, 0x73, 0xb0, 0xf7,     0xda, 0x0e, 0x64, 0x52,
+    0xc8, 0x10, 0xf3, 0x2b,     0x80, 0x90, 0x79, 0xe5,
+    0x62, 0xf8, 0xea, 0xd2,     0x52, 0x2c, 0x6b, 0x7b
+};
+static const unsigned char aes_192_subkeys[2][MBEDTLS_AES_BLOCK_SIZE] = {
+    {
+        /* K1 */
+        0x44, 0x8a, 0x5b, 0x1c,     0x93, 0x51, 0x4b, 0x27,
+        0x3e, 0xe6, 0x43, 0x9d,     0xd4, 0xda, 0xa2, 0x96
+    },
+    {
+        /* K2 */
+        0x89, 0x14, 0xb6, 0x39,     0x26, 0xa2, 0x96, 0x4e,
+        0x7d, 0xcc, 0x87, 0x3b,     0xa9, 0xb5, 0x45, 0x2c
+    }
+};
+static const unsigned char aes_192_expected_result[NB_CMAC_TESTS_PER_KEY][MBEDTLS_AES_BLOCK_SIZE] =
+{
+    {
+        /* Example #1 */
+        0xd1, 0x7d, 0xdf, 0x46,     0xad, 0xaa, 0xcd, 0xe5,
+        0x31, 0xca, 0xc4, 0x83,     0xde, 0x7a, 0x93, 0x67
+    },
+    {
+        /* Example #2 */
+        0x9e, 0x99, 0xa7, 0xbf,     0x31, 0xe7, 0x10, 0x90,
+        0x06, 0x62, 0xf6, 0x5e,     0x61, 0x7c, 0x51, 0x84
+    },
+    {
+        /* Example #3 */
+        0x3d, 0x75, 0xc1, 0x94,     0xed, 0x96, 0x07, 0x04,
+        0x44, 0xa9, 0xfa, 0x7e,     0xc7, 0x40, 0xec, 0xf8
+    },
+    {
+        /* Example #4 */
+        0xa1, 0xd5, 0xdf, 0x0e,     0xed, 0x79, 0x0f, 0x79,
+        0x4d, 0x77, 0x58, 0x96,     0x59, 0xf3, 0x9a, 0x11
+    }
+};
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+
+/* CMAC-AES256 Test Data */
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const unsigned char aes_256_key[32] = {
+    0x60, 0x3d, 0xeb, 0x10,     0x15, 0xca, 0x71, 0xbe,
+    0x2b, 0x73, 0xae, 0xf0,     0x85, 0x7d, 0x77, 0x81,
+    0x1f, 0x35, 0x2c, 0x07,     0x3b, 0x61, 0x08, 0xd7,
+    0x2d, 0x98, 0x10, 0xa3,     0x09, 0x14, 0xdf, 0xf4
+};
+static const unsigned char aes_256_subkeys[2][MBEDTLS_AES_BLOCK_SIZE] = {
+    {
+        /* K1 */
+        0xca, 0xd1, 0xed, 0x03,     0x29, 0x9e, 0xed, 0xac,
+        0x2e, 0x9a, 0x99, 0x80,     0x86, 0x21, 0x50, 0x2f
+    },
+    {
+        /* K2 */
+        0x95, 0xa3, 0xda, 0x06,     0x53, 0x3d, 0xdb, 0x58,
+        0x5d, 0x35, 0x33, 0x01,     0x0c, 0x42, 0xa0, 0xd9
+    }
+};
+static const unsigned char aes_256_expected_result[NB_CMAC_TESTS_PER_KEY][MBEDTLS_AES_BLOCK_SIZE] =
+{
+    {
+        /* Example #1 */
+        0x02, 0x89, 0x62, 0xf6,     0x1b, 0x7b, 0xf8, 0x9e,
+        0xfc, 0x6b, 0x55, 0x1f,     0x46, 0x67, 0xd9, 0x83
+    },
+    {
+        /* Example #2 */
+        0x28, 0xa7, 0x02, 0x3f,     0x45, 0x2e, 0x8f, 0x82,
+        0xbd, 0x4b, 0xf2, 0x8d,     0x8c, 0x37, 0xc3, 0x5c
+    },
+    {
+        /* Example #3 */
+        0x15, 0x67, 0x27, 0xdc,     0x08, 0x78, 0x94, 0x4a,
+        0x02, 0x3c, 0x1f, 0xe0,     0x3b, 0xad, 0x6d, 0x93
+    },
+    {
+        /* Example #4 */
+        0xe1, 0x99, 0x21, 0x90,     0x54, 0x9f, 0x6e, 0xd5,
+        0x69, 0x6a, 0x2c, 0x05,     0x6c, 0x31, 0x54, 0x10
+    }
+};
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+#endif /* MBEDTLS_AES_C */
+
+#if defined(MBEDTLS_DES_C)
+/* Truncation point of message for 3DES CMAC tests  */
+static const unsigned int des3_message_lengths[NB_CMAC_TESTS_PER_KEY] = {
+    0,
+    16,
+    20,
+    32
+};
+
+/* CMAC-TDES (Generation) - 2 Key Test Data */
+static const unsigned char des3_2key_key[24] = {
+    /* Key1 */
+    0x01, 0x23, 0x45, 0x67,     0x89, 0xab, 0xcd, 0xef,
+    /* Key2 */
+    0x23, 0x45, 0x67, 0x89,     0xab, 0xcd, 0xEF, 0x01,
+    /* Key3 */
+    0x01, 0x23, 0x45, 0x67,     0x89, 0xab, 0xcd, 0xef
+};
+static const unsigned char des3_2key_subkeys[2][8] = {
+    {
+        /* K1 */
+        0x0d, 0xd2, 0xcb, 0x7a,     0x3d, 0x88, 0x88, 0xd9
+    },
+    {
+        /* K2 */
+        0x1b, 0xa5, 0x96, 0xf4,     0x7b, 0x11, 0x11, 0xb2
+    }
+};
+static const unsigned char des3_2key_expected_result[NB_CMAC_TESTS_PER_KEY][MBEDTLS_DES3_BLOCK_SIZE]
+    = {
+    {
+        /* Sample #1 */
+        0x79, 0xce, 0x52, 0xa7,     0xf7, 0x86, 0xa9, 0x60
+    },
+    {
+        /* Sample #2 */
+        0xcc, 0x18, 0xa0, 0xb7,     0x9a, 0xf2, 0x41, 0x3b
+    },
+    {
+        /* Sample #3 */
+        0xc0, 0x6d, 0x37, 0x7e,     0xcd, 0x10, 0x19, 0x69
+    },
+    {
+        /* Sample #4 */
+        0x9c, 0xd3, 0x35, 0x80,     0xf9, 0xb6, 0x4d, 0xfb
+    }
+    };
+
+/* CMAC-TDES (Generation) - 3 Key Test Data */
+static const unsigned char des3_3key_key[24] = {
+    /* Key1 */
+    0x01, 0x23, 0x45, 0x67,     0x89, 0xaa, 0xcd, 0xef,
+    /* Key2 */
+    0x23, 0x45, 0x67, 0x89,     0xab, 0xcd, 0xef, 0x01,
+    /* Key3 */
+    0x45, 0x67, 0x89, 0xab,     0xcd, 0xef, 0x01, 0x23
+};
+static const unsigned char des3_3key_subkeys[2][8] = {
+    {
+        /* K1 */
+        0x9d, 0x74, 0xe7, 0x39,     0x33, 0x17, 0x96, 0xc0
+    },
+    {
+        /* K2 */
+        0x3a, 0xe9, 0xce, 0x72,     0x66, 0x2f, 0x2d, 0x9b
+    }
+};
+static const unsigned char des3_3key_expected_result[NB_CMAC_TESTS_PER_KEY][MBEDTLS_DES3_BLOCK_SIZE]
+    = {
+    {
+        /* Sample #1 */
+        0x7d, 0xb0, 0xd3, 0x7d,     0xf9, 0x36, 0xc5, 0x50
+    },
+    {
+        /* Sample #2 */
+        0x30, 0x23, 0x9c, 0xf1,     0xf5, 0x2e, 0x66, 0x09
+    },
+    {
+        /* Sample #3 */
+        0x6c, 0x9f, 0x3e, 0xe4,     0x92, 0x3f, 0x6b, 0xe2
+    },
+    {
+        /* Sample #4 */
+        0x99, 0x42, 0x9b, 0xd0,     0xbF, 0x79, 0x04, 0xe5
+    }
+    };
+
+#endif /* MBEDTLS_DES_C */
+
+#if defined(MBEDTLS_AES_C)
+/* AES AES-CMAC-PRF-128 Test Data */
+static const unsigned char PRFK[] = {
+    /* Key */
+    0x00, 0x01, 0x02, 0x03,     0x04, 0x05, 0x06, 0x07,
+    0x08, 0x09, 0x0a, 0x0b,     0x0c, 0x0d, 0x0e, 0x0f,
+    0xed, 0xcb
+};
+
+/* Sizes in bytes */
+static const size_t PRFKlen[NB_PRF_TESTS] = {
+    18,
+    16,
+    10
+};
+
+/* Message */
+static const unsigned char PRFM[] = {
+    0x00, 0x01, 0x02, 0x03,     0x04, 0x05, 0x06, 0x07,
+    0x08, 0x09, 0x0a, 0x0b,     0x0c, 0x0d, 0x0e, 0x0f,
+    0x10, 0x11, 0x12, 0x13
+};
+
+static const unsigned char PRFT[NB_PRF_TESTS][16] = {
+    {
+        0x84, 0xa3, 0x48, 0xa4,     0xa4, 0x5d, 0x23, 0x5b,
+        0xab, 0xff, 0xfc, 0x0d,     0x2b, 0x4d, 0xa0, 0x9a
+    },
+    {
+        0x98, 0x0a, 0xe8, 0x7b,     0x5f, 0x4c, 0x9c, 0x52,
+        0x14, 0xf5, 0xb6, 0xa8,     0x45, 0x5e, 0x4c, 0x2d
+    },
+    {
+        0x29, 0x0d, 0x9e, 0x11,     0x2e, 0xdb, 0x09, 0xee,
+        0x14, 0x1f, 0xcf, 0x64,     0xc0, 0xb7, 0x2f, 0x3d
+    }
+};
+#endif /* MBEDTLS_AES_C */
+
+static int cmac_test_subkeys(int verbose,
+                             const char *testname,
+                             const unsigned char *key,
+                             int keybits,
+                             const unsigned char *subkeys,
+                             mbedtls_cipher_type_t cipher_type,
+                             int block_size,
+                             int num_tests)
+{
+    int i, ret = 0;
+    mbedtls_cipher_context_t ctx;
+    const mbedtls_cipher_info_t *cipher_info;
+    unsigned char K1[MBEDTLS_CMAC_MAX_BLOCK_SIZE];
+    unsigned char K2[MBEDTLS_CMAC_MAX_BLOCK_SIZE];
+
+    cipher_info = mbedtls_cipher_info_from_type(cipher_type);
+    if (cipher_info == NULL) {
+        /* Failing at this point must be due to a build issue */
+        return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+    }
+
+    for (i = 0; i < num_tests; i++) {
+        if (verbose != 0) {
+            mbedtls_printf("  %s CMAC subkey #%d: ", testname, i + 1);
+        }
+
+        mbedtls_cipher_init(&ctx);
+
+        if ((ret = mbedtls_cipher_setup(&ctx, cipher_info)) != 0) {
+            if (verbose != 0) {
+                mbedtls_printf("test execution failed\n");
+            }
+
+            goto cleanup;
+        }
+
+        if ((ret = mbedtls_cipher_setkey(&ctx, key, keybits,
+                                         MBEDTLS_ENCRYPT)) != 0) {
+            /* When CMAC is implemented by an alternative implementation, or
+             * the underlying primitive itself is implemented alternatively,
+             * AES-192 may be unavailable. This should not cause the selftest
+             * function to fail. */
+            if ((ret == MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED ||
+                 ret == MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE) &&
+                cipher_type == MBEDTLS_CIPHER_AES_192_ECB) {
+                if (verbose != 0) {
+                    mbedtls_printf("skipped\n");
+                }
+                goto next_test;
+            }
+
+            if (verbose != 0) {
+                mbedtls_printf("test execution failed\n");
+            }
+
+            goto cleanup;
+        }
+
+        ret = cmac_generate_subkeys(&ctx, K1, K2);
+        if (ret != 0) {
+            if (verbose != 0) {
+                mbedtls_printf("failed\n");
+            }
+
+            goto cleanup;
+        }
+
+        if ((ret = memcmp(K1, subkeys, block_size)) != 0  ||
+            (ret = memcmp(K2, &subkeys[block_size], block_size)) != 0) {
+            if (verbose != 0) {
+                mbedtls_printf("failed\n");
+            }
+
+            goto cleanup;
+        }
+
+        if (verbose != 0) {
+            mbedtls_printf("passed\n");
+        }
+
+next_test:
+        mbedtls_cipher_free(&ctx);
+    }
+
+    ret = 0;
+    goto exit;
+
+cleanup:
+    mbedtls_cipher_free(&ctx);
+
+exit:
+    return ret;
+}
+
+static int cmac_test_wth_cipher(int verbose,
+                                const char *testname,
+                                const unsigned char *key,
+                                int keybits,
+                                const unsigned char *messages,
+                                const unsigned int message_lengths[4],
+                                const unsigned char *expected_result,
+                                mbedtls_cipher_type_t cipher_type,
+                                int block_size,
+                                int num_tests)
+{
+    const mbedtls_cipher_info_t *cipher_info;
+    int i, ret = 0;
+    unsigned char output[MBEDTLS_CMAC_MAX_BLOCK_SIZE];
+
+    cipher_info = mbedtls_cipher_info_from_type(cipher_type);
+    if (cipher_info == NULL) {
+        /* Failing at this point must be due to a build issue */
+        ret = MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+        goto exit;
+    }
+
+    for (i = 0; i < num_tests; i++) {
+        if (verbose != 0) {
+            mbedtls_printf("  %s CMAC #%d: ", testname, i + 1);
+        }
+
+        if ((ret = mbedtls_cipher_cmac(cipher_info, key, keybits, messages,
+                                       message_lengths[i], output)) != 0) {
+            /* When CMAC is implemented by an alternative implementation, or
+             * the underlying primitive itself is implemented alternatively,
+             * AES-192 and/or 3DES may be unavailable. This should not cause
+             * the selftest function to fail. */
+            if ((ret == MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED ||
+                 ret == MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE) &&
+                (cipher_type == MBEDTLS_CIPHER_AES_192_ECB ||
+                 cipher_type == MBEDTLS_CIPHER_DES_EDE3_ECB)) {
+                if (verbose != 0) {
+                    mbedtls_printf("skipped\n");
+                }
+                continue;
+            }
+
+            if (verbose != 0) {
+                mbedtls_printf("failed\n");
+            }
+            goto exit;
+        }
+
+        if ((ret = memcmp(output, &expected_result[i * block_size], block_size)) != 0) {
+            if (verbose != 0) {
+                mbedtls_printf("failed\n");
+            }
+            goto exit;
+        }
+
+        if (verbose != 0) {
+            mbedtls_printf("passed\n");
+        }
+    }
+    ret = 0;
+
+exit:
+    return ret;
+}
+
+#if defined(MBEDTLS_AES_C)
+static int test_aes128_cmac_prf(int verbose)
+{
+    int i;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char output[MBEDTLS_AES_BLOCK_SIZE];
+
+    for (i = 0; i < NB_PRF_TESTS; i++) {
+        mbedtls_printf("  AES CMAC 128 PRF #%d: ", i);
+        ret = mbedtls_aes_cmac_prf_128(PRFK, PRFKlen[i], PRFM, 20, output);
+        if (ret != 0 ||
+            memcmp(output, PRFT[i], MBEDTLS_AES_BLOCK_SIZE) != 0) {
+
+            if (verbose != 0) {
+                mbedtls_printf("failed\n");
+            }
+
+            return ret;
+        } else if (verbose != 0) {
+            mbedtls_printf("passed\n");
+        }
+    }
+    return ret;
+}
+#endif /* MBEDTLS_AES_C */
+
+int mbedtls_cmac_self_test(int verbose)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+#if defined(MBEDTLS_AES_C)
+    /* AES-128 */
+    if ((ret = cmac_test_subkeys(verbose,
+                                 "AES 128",
+                                 aes_128_key,
+                                 128,
+                                 (const unsigned char *) aes_128_subkeys,
+                                 MBEDTLS_CIPHER_AES_128_ECB,
+                                 MBEDTLS_AES_BLOCK_SIZE,
+                                 NB_CMAC_TESTS_PER_KEY)) != 0) {
+        return ret;
+    }
+
+    if ((ret = cmac_test_wth_cipher(verbose,
+                                    "AES 128",
+                                    aes_128_key,
+                                    128,
+                                    test_message,
+                                    aes_message_lengths,
+                                    (const unsigned char *) aes_128_expected_result,
+                                    MBEDTLS_CIPHER_AES_128_ECB,
+                                    MBEDTLS_AES_BLOCK_SIZE,
+                                    NB_CMAC_TESTS_PER_KEY)) != 0) {
+        return ret;
+    }
+
+    /* AES-192 */
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    if ((ret = cmac_test_subkeys(verbose,
+                                 "AES 192",
+                                 aes_192_key,
+                                 192,
+                                 (const unsigned char *) aes_192_subkeys,
+                                 MBEDTLS_CIPHER_AES_192_ECB,
+                                 MBEDTLS_AES_BLOCK_SIZE,
+                                 NB_CMAC_TESTS_PER_KEY)) != 0) {
+        return ret;
+    }
+
+    if ((ret = cmac_test_wth_cipher(verbose,
+                                    "AES 192",
+                                    aes_192_key,
+                                    192,
+                                    test_message,
+                                    aes_message_lengths,
+                                    (const unsigned char *) aes_192_expected_result,
+                                    MBEDTLS_CIPHER_AES_192_ECB,
+                                    MBEDTLS_AES_BLOCK_SIZE,
+                                    NB_CMAC_TESTS_PER_KEY)) != 0) {
+        return ret;
+    }
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+
+    /* AES-256 */
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    if ((ret = cmac_test_subkeys(verbose,
+                                 "AES 256",
+                                 aes_256_key,
+                                 256,
+                                 (const unsigned char *) aes_256_subkeys,
+                                 MBEDTLS_CIPHER_AES_256_ECB,
+                                 MBEDTLS_AES_BLOCK_SIZE,
+                                 NB_CMAC_TESTS_PER_KEY)) != 0) {
+        return ret;
+    }
+
+    if ((ret = cmac_test_wth_cipher(verbose,
+                                    "AES 256",
+                                    aes_256_key,
+                                    256,
+                                    test_message,
+                                    aes_message_lengths,
+                                    (const unsigned char *) aes_256_expected_result,
+                                    MBEDTLS_CIPHER_AES_256_ECB,
+                                    MBEDTLS_AES_BLOCK_SIZE,
+                                    NB_CMAC_TESTS_PER_KEY)) != 0) {
+        return ret;
+    }
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+#endif /* MBEDTLS_AES_C */
+
+#if defined(MBEDTLS_DES_C)
+    /* 3DES 2 key */
+    if ((ret = cmac_test_subkeys(verbose,
+                                 "3DES 2 key",
+                                 des3_2key_key,
+                                 192,
+                                 (const unsigned char *) des3_2key_subkeys,
+                                 MBEDTLS_CIPHER_DES_EDE3_ECB,
+                                 MBEDTLS_DES3_BLOCK_SIZE,
+                                 NB_CMAC_TESTS_PER_KEY)) != 0) {
+        return ret;
+    }
+
+    if ((ret = cmac_test_wth_cipher(verbose,
+                                    "3DES 2 key",
+                                    des3_2key_key,
+                                    192,
+                                    test_message,
+                                    des3_message_lengths,
+                                    (const unsigned char *) des3_2key_expected_result,
+                                    MBEDTLS_CIPHER_DES_EDE3_ECB,
+                                    MBEDTLS_DES3_BLOCK_SIZE,
+                                    NB_CMAC_TESTS_PER_KEY)) != 0) {
+        return ret;
+    }
+
+    /* 3DES 3 key */
+    if ((ret = cmac_test_subkeys(verbose,
+                                 "3DES 3 key",
+                                 des3_3key_key,
+                                 192,
+                                 (const unsigned char *) des3_3key_subkeys,
+                                 MBEDTLS_CIPHER_DES_EDE3_ECB,
+                                 MBEDTLS_DES3_BLOCK_SIZE,
+                                 NB_CMAC_TESTS_PER_KEY)) != 0) {
+        return ret;
+    }
+
+    if ((ret = cmac_test_wth_cipher(verbose,
+                                    "3DES 3 key",
+                                    des3_3key_key,
+                                    192,
+                                    test_message,
+                                    des3_message_lengths,
+                                    (const unsigned char *) des3_3key_expected_result,
+                                    MBEDTLS_CIPHER_DES_EDE3_ECB,
+                                    MBEDTLS_DES3_BLOCK_SIZE,
+                                    NB_CMAC_TESTS_PER_KEY)) != 0) {
+        return ret;
+    }
+#endif /* MBEDTLS_DES_C */
+
+#if defined(MBEDTLS_AES_C)
+    if ((ret = test_aes128_cmac_prf(verbose)) != 0) {
+        return ret;
+    }
+#endif /* MBEDTLS_AES_C */
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+
+    return 0;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_CMAC_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/constant_time.c b/tf-psa-crypto/drivers/builtin/src/constant_time.c
new file mode 100644
index 0000000..95b8122
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/constant_time.c
@@ -0,0 +1,248 @@
+/**
+ *  Constant-time functions
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * The following functions are implemented without using comparison operators, as those
+ * might be translated to branches by some compilers on some platforms.
+ */
+
+#include <stdint.h>
+#include <limits.h>
+
+#include "common.h"
+#include "constant_time_internal.h"
+#include "mbedtls/constant_time.h"
+#include "mbedtls/error.h"
+#include "mbedtls/platform_util.h"
+
+#include <string.h>
+
+#if !defined(MBEDTLS_CT_ASM)
+/*
+ * Define an object with the value zero, such that the compiler cannot prove that it
+ * has the value zero (because it is volatile, it "may be modified in ways unknown to
+ * the implementation").
+ */
+volatile mbedtls_ct_uint_t mbedtls_ct_zero = 0;
+#endif
+
+/*
+ * Define MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS where assembly is present to
+ * perform fast unaligned access to volatile data.
+ *
+ * This is needed because mbedtls_get_unaligned_uintXX etc don't support volatile
+ * memory accesses.
+ *
+ * Some of these definitions could be moved into alignment.h but for now they are
+ * only used here.
+ */
+#if defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS) && \
+    ((defined(MBEDTLS_CT_ARM_ASM) && (UINTPTR_MAX == 0xfffffffful)) || \
+    defined(MBEDTLS_CT_AARCH64_ASM))
+/* We check pointer sizes to avoid issues with them not matching register size requirements */
+#define MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS
+
+static inline uint32_t mbedtls_get_unaligned_volatile_uint32(volatile const unsigned char *p)
+{
+    /* This is UB, even where it's safe:
+     *    return *((volatile uint32_t*)p);
+     * so instead the same thing is expressed in assembly below.
+     */
+    uint32_t r;
+#if defined(MBEDTLS_CT_ARM_ASM)
+    asm volatile ("ldr %0, [%1]" : "=r" (r) : "r" (p) :);
+#elif defined(MBEDTLS_CT_AARCH64_ASM)
+    asm volatile ("ldr %w0, [%1]" : "=r" (r) : MBEDTLS_ASM_AARCH64_PTR_CONSTRAINT(p) :);
+#else
+#error "No assembly defined for mbedtls_get_unaligned_volatile_uint32"
+#endif
+    return r;
+}
+#endif /* defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS) &&
+          (defined(MBEDTLS_CT_ARM_ASM) || defined(MBEDTLS_CT_AARCH64_ASM)) */
+
+int mbedtls_ct_memcmp(const void *a,
+                      const void *b,
+                      size_t n)
+{
+    size_t i = 0;
+    /*
+     * `A` and `B` are cast to volatile to ensure that the compiler
+     * generates code that always fully reads both buffers.
+     * Otherwise it could generate a test to exit early if `diff` has all
+     * bits set early in the loop.
+     */
+    volatile const unsigned char *A = (volatile const unsigned char *) a;
+    volatile const unsigned char *B = (volatile const unsigned char *) b;
+    uint32_t diff = 0;
+
+#if defined(MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS)
+    for (; (i + 4) <= n; i += 4) {
+        uint32_t x = mbedtls_get_unaligned_volatile_uint32(A + i);
+        uint32_t y = mbedtls_get_unaligned_volatile_uint32(B + i);
+        diff |= x ^ y;
+    }
+#endif
+
+    for (; i < n; i++) {
+        /* Read volatile data in order before computing diff.
+         * This avoids IAR compiler warning:
+         * 'the order of volatile accesses is undefined ..' */
+        unsigned char x = A[i], y = B[i];
+        diff |= x ^ y;
+    }
+
+
+#if (INT_MAX < INT32_MAX)
+    /* We don't support int smaller than 32-bits, but if someone tried to build
+     * with this configuration, there is a risk that, for differing data, the
+     * only bits set in diff are in the top 16-bits, and would be lost by a
+     * simple cast from uint32 to int.
+     * This would have significant security implications, so protect against it. */
+#error "mbedtls_ct_memcmp() requires minimum 32-bit ints"
+#else
+    /* The bit-twiddling ensures that when we cast uint32_t to int, we are casting
+     * a value that is in the range 0..INT_MAX - a value larger than this would
+     * result in implementation defined behaviour.
+     *
+     * This ensures that the value returned by the function is non-zero iff
+     * diff is non-zero.
+     */
+    return (int) ((diff & 0xffff) | (diff >> 16));
+#endif
+}
+
+#if defined(MBEDTLS_NIST_KW_C)
+
+int mbedtls_ct_memcmp_partial(const void *a,
+                              const void *b,
+                              size_t n,
+                              size_t skip_head,
+                              size_t skip_tail)
+{
+    unsigned int diff = 0;
+
+    volatile const unsigned char *A = (volatile const unsigned char *) a;
+    volatile const unsigned char *B = (volatile const unsigned char *) b;
+
+    size_t valid_end = n - skip_tail;
+
+    for (size_t i = 0; i < n; i++) {
+        unsigned char x = A[i], y = B[i];
+        unsigned int d = x ^ y;
+        mbedtls_ct_condition_t valid = mbedtls_ct_bool_and(mbedtls_ct_uint_ge(i, skip_head),
+                                                           mbedtls_ct_uint_lt(i, valid_end));
+        diff |= mbedtls_ct_uint_if_else_0(valid, d);
+    }
+
+    /* Since we go byte-by-byte, the only bits set will be in the bottom 8 bits, so the
+     * cast from uint to int is safe. */
+    return (int) diff;
+}
+
+#endif
+
+#if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C)
+
+void mbedtls_ct_memmove_left(void *start, size_t total, size_t offset)
+{
+    volatile unsigned char *buf = start;
+    for (size_t i = 0; i < total; i++) {
+        mbedtls_ct_condition_t no_op = mbedtls_ct_uint_gt(total - offset, i);
+        /* The first `total - offset` passes are a no-op. The last
+         * `offset` passes shift the data one byte to the left and
+         * zero out the last byte. */
+        for (size_t n = 0; n < total - 1; n++) {
+            unsigned char current = buf[n];
+            unsigned char next    = buf[n+1];
+            buf[n] = mbedtls_ct_uint_if(no_op, current, next);
+        }
+        buf[total-1] = mbedtls_ct_uint_if_else_0(no_op, buf[total-1]);
+    }
+}
+
+#endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C */
+
+void mbedtls_ct_memcpy_if(mbedtls_ct_condition_t condition,
+                          unsigned char *dest,
+                          const unsigned char *src1,
+                          const unsigned char *src2,
+                          size_t len)
+{
+#if defined(MBEDTLS_CT_SIZE_64)
+    const uint64_t mask     = (uint64_t) condition;
+    const uint64_t not_mask = (uint64_t) ~mbedtls_ct_compiler_opaque(condition);
+#else
+    const uint32_t mask     = (uint32_t) condition;
+    const uint32_t not_mask = (uint32_t) ~mbedtls_ct_compiler_opaque(condition);
+#endif
+
+    /* If src2 is NULL, setup src2 so that we read from the destination address.
+     *
+     * This means that if src2 == NULL && condition is false, the result will be a
+     * no-op because we read from dest and write the same data back into dest.
+     */
+    if (src2 == NULL) {
+        src2 = dest;
+    }
+
+    /* dest[i] = c1 == c2 ? src[i] : dest[i] */
+    size_t i = 0;
+#if defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS)
+#if defined(MBEDTLS_CT_SIZE_64)
+    for (; (i + 8) <= len; i += 8) {
+        uint64_t a = mbedtls_get_unaligned_uint64(src1 + i) & mask;
+        uint64_t b = mbedtls_get_unaligned_uint64(src2 + i) & not_mask;
+        mbedtls_put_unaligned_uint64(dest + i, a | b);
+    }
+#else
+    for (; (i + 4) <= len; i += 4) {
+        uint32_t a = mbedtls_get_unaligned_uint32(src1 + i) & mask;
+        uint32_t b = mbedtls_get_unaligned_uint32(src2 + i) & not_mask;
+        mbedtls_put_unaligned_uint32(dest + i, a | b);
+    }
+#endif /* defined(MBEDTLS_CT_SIZE_64) */
+#endif /* MBEDTLS_EFFICIENT_UNALIGNED_ACCESS */
+    for (; i < len; i++) {
+        dest[i] = (src1[i] & mask) | (src2[i] & not_mask);
+    }
+}
+
+void mbedtls_ct_memcpy_offset(unsigned char *dest,
+                              const unsigned char *src,
+                              size_t offset,
+                              size_t offset_min,
+                              size_t offset_max,
+                              size_t len)
+{
+    size_t offsetval;
+
+    for (offsetval = offset_min; offsetval <= offset_max; offsetval++) {
+        mbedtls_ct_memcpy_if(mbedtls_ct_uint_eq(offsetval, offset), dest, src + offsetval, NULL,
+                             len);
+    }
+}
+
+#if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C)
+
+void mbedtls_ct_zeroize_if(mbedtls_ct_condition_t condition, void *buf, size_t len)
+{
+    uint32_t mask = (uint32_t) ~condition;
+    uint8_t *p = (uint8_t *) buf;
+    size_t i = 0;
+#if defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS)
+    for (; (i + 4) <= len; i += 4) {
+        mbedtls_put_unaligned_uint32((void *) (p + i),
+                                     mbedtls_get_unaligned_uint32((void *) (p + i)) & mask);
+    }
+#endif
+    for (; i < len; i++) {
+        p[i] = p[i] & mask;
+    }
+}
+
+#endif /* defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) */
diff --git a/tf-psa-crypto/drivers/builtin/src/constant_time_impl.h b/tf-psa-crypto/drivers/builtin/src/constant_time_impl.h
new file mode 100644
index 0000000..2a4574b
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/constant_time_impl.h
@@ -0,0 +1,556 @@
+/**
+ *  Constant-time functions
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_CONSTANT_TIME_IMPL_H
+#define MBEDTLS_CONSTANT_TIME_IMPL_H
+
+#include <stddef.h>
+
+#include "common.h"
+
+#if defined(MBEDTLS_BIGNUM_C)
+#include "mbedtls/bignum.h"
+#endif
+
+/*
+ * To improve readability of constant_time_internal.h, the static inline
+ * definitions are here, and constant_time_internal.h has only the declarations.
+ *
+ * This results in duplicate declarations of the form:
+ *     static inline void f();         // from constant_time_internal.h
+ *     static inline void f() { ... }  // from constant_time_impl.h
+ * when constant_time_internal.h is included.
+ *
+ * This appears to behave as if the declaration-without-definition was not present
+ * (except for warnings if gcc -Wredundant-decls or similar is used).
+ *
+ * Disable -Wredundant-decls so that gcc does not warn about this. This is re-enabled
+ * at the bottom of this file.
+ */
+#if defined(MBEDTLS_COMPILER_IS_GCC) && (__GNUC__ > 4)
+    #pragma GCC diagnostic push
+    #pragma GCC diagnostic ignored "-Wredundant-decls"
+#endif
+
+/* Disable asm under Memsan because it confuses Memsan and generates false errors.
+ *
+ * We also disable under Valgrind by default, because it's more useful
+ * for Valgrind to test the plain C implementation. MBEDTLS_TEST_CONSTANT_FLOW_ASM //no-check-names
+ * may be set to permit building asm under Valgrind.
+ */
+#if defined(MBEDTLS_TEST_CONSTANT_FLOW_MEMSAN) || \
+    (defined(MBEDTLS_TEST_CONSTANT_FLOW_VALGRIND) && !defined(MBEDTLS_TEST_CONSTANT_FLOW_ASM)) //no-check-names
+#define MBEDTLS_CT_NO_ASM
+#elif defined(__has_feature)
+#if __has_feature(memory_sanitizer)
+#define MBEDTLS_CT_NO_ASM
+#endif
+#endif
+
+/* armcc5 --gnu defines __GNUC__ but doesn't support GNU's extended asm */
+#if defined(MBEDTLS_HAVE_ASM) && defined(__GNUC__) && (!defined(__ARMCC_VERSION) || \
+    __ARMCC_VERSION >= 6000000) && !defined(MBEDTLS_CT_NO_ASM)
+#define MBEDTLS_CT_ASM
+#if (defined(__arm__) || defined(__thumb__) || defined(__thumb2__))
+#define MBEDTLS_CT_ARM_ASM
+#elif defined(__aarch64__)
+#define MBEDTLS_CT_AARCH64_ASM
+#elif defined(__amd64__) || defined(__x86_64__)
+#define MBEDTLS_CT_X86_64_ASM
+#elif defined(__i386__)
+#define MBEDTLS_CT_X86_ASM
+#endif
+#endif
+
+#define MBEDTLS_CT_SIZE (sizeof(mbedtls_ct_uint_t) * 8)
+
+
+/* ============================================================================
+ * Core const-time primitives
+ */
+
+/* Ensure that the compiler cannot know the value of x (i.e., cannot optimise
+ * based on its value) after this function is called.
+ *
+ * If we are not using assembly, this will be fairly inefficient, so its use
+ * should be minimised.
+ */
+
+#if !defined(MBEDTLS_CT_ASM)
+extern volatile mbedtls_ct_uint_t mbedtls_ct_zero;
+#endif
+
+/**
+ * \brief   Ensure that a value cannot be known at compile time.
+ *
+ * \param x        The value to hide from the compiler.
+ * \return         The same value that was passed in, such that the compiler
+ *                 cannot prove its value (even for calls of the form
+ *                 x = mbedtls_ct_compiler_opaque(1), x will be unknown).
+ *
+ * \note           This is mainly used in constructing mbedtls_ct_condition_t
+ *                 values and performing operations over them, to ensure that
+ *                 there is no way for the compiler to ever know anything about
+ *                 the value of an mbedtls_ct_condition_t.
+ */
+static inline mbedtls_ct_uint_t mbedtls_ct_compiler_opaque(mbedtls_ct_uint_t x)
+{
+#if defined(MBEDTLS_CT_ASM)
+    asm volatile ("" : [x] "+r" (x) :);
+    return x;
+#else
+    return x ^ mbedtls_ct_zero;
+#endif
+}
+
+/*
+ * Selecting unified syntax is needed for gcc, and harmless on clang.
+ *
+ * This is needed because on Thumb 1, condition flags are always set, so
+ * e.g. "negs" is supported but "neg" is not (on Thumb 2, both exist).
+ *
+ * Under Thumb 1 unified syntax, only the "negs" form is accepted, and
+ * under divided syntax, only the "neg" form is accepted. clang only
+ * supports unified syntax.
+ *
+ * On Thumb 2 and Arm, both compilers are happy with the "s" suffix,
+ * although we don't actually care about setting the flags.
+ *
+ * For old versions of gcc (see #8516 for details), restore divided
+ * syntax afterwards - otherwise old versions of gcc seem to apply
+ * unified syntax globally, which breaks other asm code.
+ */
+#if defined(MBEDTLS_COMPILER_IS_GCC) && defined(__thumb__) && !defined(__thumb2__) && \
+    (__GNUC__ < 11) && !defined(__ARM_ARCH_2__)
+#define RESTORE_ASM_SYNTAX  ".syntax divided                      \n\t"
+#else
+#define RESTORE_ASM_SYNTAX
+#endif
+
+/* Convert a number into a condition in constant time. */
+static inline mbedtls_ct_condition_t mbedtls_ct_bool(mbedtls_ct_uint_t x)
+{
+    /*
+     * Define mask-generation code that, as far as possible, will not use branches or conditional instructions.
+     *
+     * For some platforms / type sizes, we define assembly to assure this.
+     *
+     * Otherwise, we define a plain C fallback which (in May 2023) does not get optimised into
+     * conditional instructions or branches by trunk clang, gcc, or MSVC v19.
+     */
+#if defined(MBEDTLS_CT_AARCH64_ASM) && (defined(MBEDTLS_CT_SIZE_32) || defined(MBEDTLS_CT_SIZE_64))
+    mbedtls_ct_uint_t s;
+    asm volatile ("neg %x[s], %x[x]                               \n\t"
+                  "orr %x[x], %x[s], %x[x]                        \n\t"
+                  "asr %x[x], %x[x], 63                           \n\t"
+                  :
+                  [s] "=&r" (s),
+                  [x] "+&r" (x)
+                  :
+                  :
+                  );
+    return (mbedtls_ct_condition_t) x;
+#elif defined(MBEDTLS_CT_ARM_ASM) && defined(MBEDTLS_CT_SIZE_32)
+    uint32_t s;
+    asm volatile (".syntax unified                                \n\t"
+                  "negs %[s], %[x]                                \n\t"
+                  "orrs %[x], %[x], %[s]                          \n\t"
+                  "asrs %[x], %[x], #31                           \n\t"
+                  RESTORE_ASM_SYNTAX
+                  :
+                  [s] "=&l" (s),
+                  [x] "+&l" (x)
+                  :
+                  :
+                  "cc" /* clobbers flag bits */
+                  );
+    return (mbedtls_ct_condition_t) x;
+#elif defined(MBEDTLS_CT_X86_64_ASM) && (defined(MBEDTLS_CT_SIZE_32) || defined(MBEDTLS_CT_SIZE_64))
+    uint64_t s;
+    asm volatile ("mov  %[x], %[s]                                \n\t"
+                  "neg  %[s]                                      \n\t"
+                  "or   %[x], %[s]                                \n\t"
+                  "sar  $63, %[s]                                 \n\t"
+                  :
+                  [s] "=&a" (s)
+                  :
+                  [x] "D" (x)
+                  :
+                  );
+    return (mbedtls_ct_condition_t) s;
+#elif defined(MBEDTLS_CT_X86_ASM) && defined(MBEDTLS_CT_SIZE_32)
+    uint32_t s;
+    asm volatile ("mov %[x], %[s]                                 \n\t"
+                  "neg %[s]                                       \n\t"
+                  "or %[s], %[x]                                  \n\t"
+                  "sar $31, %[x]                                  \n\t"
+                  :
+                  [s] "=&c" (s),
+                  [x] "+&a" (x)
+                  :
+                  :
+                  );
+    return (mbedtls_ct_condition_t) x;
+#else
+    const mbedtls_ct_uint_t xo = mbedtls_ct_compiler_opaque(x);
+#if defined(_MSC_VER)
+    /* MSVC has a warning about unary minus on unsigned, but this is
+     * well-defined and precisely what we want to do here */
+#pragma warning( push )
+#pragma warning( disable : 4146 )
+#endif
+    // y is negative (i.e., top bit set) iff x is non-zero
+    mbedtls_ct_int_t y = (-xo) | -(xo >> 1);
+
+    // extract only the sign bit of y so that y == 1 (if x is non-zero) or 0 (if x is zero)
+    y = (((mbedtls_ct_uint_t) y) >> (MBEDTLS_CT_SIZE - 1));
+
+    // -y has all bits set (if x is non-zero), or all bits clear (if x is zero)
+    return (mbedtls_ct_condition_t) (-y);
+#if defined(_MSC_VER)
+#pragma warning( pop )
+#endif
+#endif
+}
+
+static inline mbedtls_ct_uint_t mbedtls_ct_if(mbedtls_ct_condition_t condition,
+                                              mbedtls_ct_uint_t if1,
+                                              mbedtls_ct_uint_t if0)
+{
+#if defined(MBEDTLS_CT_AARCH64_ASM) && (defined(MBEDTLS_CT_SIZE_32) || defined(MBEDTLS_CT_SIZE_64))
+    asm volatile ("and %x[if1], %x[if1], %x[condition]            \n\t"
+                  "mvn %x[condition], %x[condition]               \n\t"
+                  "and %x[condition], %x[condition], %x[if0]      \n\t"
+                  "orr %x[condition], %x[if1], %x[condition]"
+                  :
+                  [condition] "+&r" (condition),
+                  [if1] "+&r" (if1)
+                  :
+                  [if0] "r" (if0)
+                  :
+                  );
+    return (mbedtls_ct_uint_t) condition;
+#elif defined(MBEDTLS_CT_ARM_ASM) && defined(MBEDTLS_CT_SIZE_32)
+    asm volatile (".syntax unified                                \n\t"
+                  "ands %[if1], %[if1], %[condition]              \n\t"
+                  "mvns %[condition], %[condition]                \n\t"
+                  "ands %[condition], %[condition], %[if0]        \n\t"
+                  "orrs %[condition], %[if1], %[condition]        \n\t"
+                  RESTORE_ASM_SYNTAX
+                  :
+                  [condition] "+&l" (condition),
+                  [if1] "+&l" (if1)
+                  :
+                  [if0] "l" (if0)
+                  :
+                  "cc"
+                  );
+    return (mbedtls_ct_uint_t) condition;
+#elif defined(MBEDTLS_CT_X86_64_ASM) && (defined(MBEDTLS_CT_SIZE_32) || defined(MBEDTLS_CT_SIZE_64))
+    asm volatile ("and  %[condition], %[if1]                      \n\t"
+                  "not  %[condition]                              \n\t"
+                  "and  %[condition], %[if0]                      \n\t"
+                  "or   %[if1], %[if0]                            \n\t"
+                  :
+                  [condition] "+&D" (condition),
+                  [if1] "+&S" (if1),
+                  [if0] "+&a" (if0)
+                  :
+                  :
+                  );
+    return if0;
+#elif defined(MBEDTLS_CT_X86_ASM) && defined(MBEDTLS_CT_SIZE_32)
+    asm volatile ("and %[condition], %[if1]                       \n\t"
+                  "not %[condition]                               \n\t"
+                  "and %[if0], %[condition]                       \n\t"
+                  "or %[condition], %[if1]                        \n\t"
+                  :
+                  [condition] "+&c" (condition),
+                  [if1] "+&a" (if1)
+                  :
+                  [if0] "b" (if0)
+                  :
+                  );
+    return if1;
+#else
+    mbedtls_ct_condition_t not_cond =
+        (mbedtls_ct_condition_t) (~mbedtls_ct_compiler_opaque(condition));
+    return (mbedtls_ct_uint_t) ((condition & if1) | (not_cond & if0));
+#endif
+}
+
+static inline mbedtls_ct_condition_t mbedtls_ct_uint_lt(mbedtls_ct_uint_t x, mbedtls_ct_uint_t y)
+{
+#if defined(MBEDTLS_CT_AARCH64_ASM) && (defined(MBEDTLS_CT_SIZE_32) || defined(MBEDTLS_CT_SIZE_64))
+    uint64_t s1;
+    asm volatile ("eor     %x[s1], %x[y], %x[x]                   \n\t"
+                  "sub     %x[x], %x[x], %x[y]                    \n\t"
+                  "bic     %x[x], %x[x], %x[s1]                   \n\t"
+                  "and     %x[s1], %x[s1], %x[y]                  \n\t"
+                  "orr     %x[s1], %x[x], %x[s1]                  \n\t"
+                  "asr     %x[x], %x[s1], 63"
+                  :
+                  [s1] "=&r" (s1),
+                  [x] "+&r" (x)
+                  :
+                  [y] "r" (y)
+                  :
+                  );
+    return (mbedtls_ct_condition_t) x;
+#elif defined(MBEDTLS_CT_ARM_ASM) && defined(MBEDTLS_CT_SIZE_32)
+    uint32_t s1;
+    asm volatile (
+        ".syntax unified                                          \n\t"
+#if defined(__thumb__) && !defined(__thumb2__)
+        "movs     %[s1], %[x]                                     \n\t"
+        "eors     %[s1], %[s1], %[y]                              \n\t"
+#else
+        "eors     %[s1], %[x], %[y]                               \n\t"
+#endif
+        "subs    %[x], %[x], %[y]                                 \n\t"
+        "bics    %[x], %[x], %[s1]                                \n\t"
+        "ands    %[y], %[s1], %[y]                                \n\t"
+        "orrs    %[x], %[x], %[y]                                 \n\t"
+        "asrs    %[x], %[x], #31                                  \n\t"
+        RESTORE_ASM_SYNTAX
+        :
+        [s1] "=&l" (s1),
+        [x] "+&l" (x),
+        [y] "+&l" (y)
+        :
+        :
+        "cc"
+        );
+    return (mbedtls_ct_condition_t) x;
+#elif defined(MBEDTLS_CT_X86_64_ASM) && (defined(MBEDTLS_CT_SIZE_32) || defined(MBEDTLS_CT_SIZE_64))
+    uint64_t s;
+    asm volatile ("mov %[x], %[s]                                 \n\t"
+                  "xor %[y], %[s]                                 \n\t"
+                  "sub %[y], %[x]                                 \n\t"
+                  "and %[s], %[y]                                 \n\t"
+                  "not %[s]                                       \n\t"
+                  "and %[s], %[x]                                 \n\t"
+                  "or %[y], %[x]                                  \n\t"
+                  "sar $63, %[x]                                  \n\t"
+                  :
+                  [s] "=&a" (s),
+                  [x] "+&D" (x),
+                  [y] "+&S" (y)
+                  :
+                  :
+                  );
+    return (mbedtls_ct_condition_t) x;
+#elif defined(MBEDTLS_CT_X86_ASM) && defined(MBEDTLS_CT_SIZE_32)
+    uint32_t s;
+    asm volatile ("mov %[x], %[s]                                 \n\t"
+                  "xor %[y], %[s]                                 \n\t"
+                  "sub %[y], %[x]                                 \n\t"
+                  "and %[s], %[y]                                 \n\t"
+                  "not %[s]                                       \n\t"
+                  "and %[s], %[x]                                 \n\t"
+                  "or  %[y], %[x]                                 \n\t"
+                  "sar $31, %[x]                                  \n\t"
+                  :
+                  [s] "=&b" (s),
+                  [x] "+&a" (x),
+                  [y] "+&c" (y)
+                  :
+                  :
+                  );
+    return (mbedtls_ct_condition_t) x;
+#else
+    /* Ensure that the compiler cannot optimise the following operations over x and y,
+     * even if it knows the value of x and y.
+     */
+    const mbedtls_ct_uint_t xo = mbedtls_ct_compiler_opaque(x);
+    const mbedtls_ct_uint_t yo = mbedtls_ct_compiler_opaque(y);
+    /*
+     * Check if the most significant bits (MSB) of the operands are different.
+     * cond is true iff the MSBs differ.
+     */
+    mbedtls_ct_condition_t cond = mbedtls_ct_bool((xo ^ yo) >> (MBEDTLS_CT_SIZE - 1));
+
+    /*
+     * If the MSB are the same then the difference x-y will be negative (and
+     * have its MSB set to 1 during conversion to unsigned) if and only if x<y.
+     *
+     * If the MSB are different, then the operand with the MSB of 1 is the
+     * bigger. (That is if y has MSB of 1, then x<y is true and it is false if
+     * the MSB of y is 0.)
+     */
+
+    // Select either y, or x - y
+    mbedtls_ct_uint_t ret = mbedtls_ct_if(cond, yo, (mbedtls_ct_uint_t) (xo - yo));
+
+    // Extract only the MSB of ret
+    ret = ret >> (MBEDTLS_CT_SIZE - 1);
+
+    // Convert to a condition (i.e., all bits set iff non-zero)
+    return mbedtls_ct_bool(ret);
+#endif
+}
+
+static inline mbedtls_ct_condition_t mbedtls_ct_uint_ne(mbedtls_ct_uint_t x, mbedtls_ct_uint_t y)
+{
+    /* diff = 0 if x == y, non-zero otherwise */
+    const mbedtls_ct_uint_t diff = mbedtls_ct_compiler_opaque(x) ^ mbedtls_ct_compiler_opaque(y);
+
+    /* all ones if x != y, 0 otherwise */
+    return mbedtls_ct_bool(diff);
+}
+
+static inline unsigned char mbedtls_ct_uchar_in_range_if(unsigned char low,
+                                                         unsigned char high,
+                                                         unsigned char c,
+                                                         unsigned char t)
+{
+    const unsigned char co = (unsigned char) mbedtls_ct_compiler_opaque(c);
+    const unsigned char to = (unsigned char) mbedtls_ct_compiler_opaque(t);
+
+    /* low_mask is: 0 if low <= c, 0x...ff if low > c */
+    unsigned low_mask = ((unsigned) co - low) >> 8;
+    /* high_mask is: 0 if c <= high, 0x...ff if c > high */
+    unsigned high_mask = ((unsigned) high - co) >> 8;
+
+    return (unsigned char) (~(low_mask | high_mask)) & to;
+}
+
+/* ============================================================================
+ * Everything below here is trivial wrapper functions
+ */
+
+static inline size_t mbedtls_ct_size_if(mbedtls_ct_condition_t condition,
+                                        size_t if1,
+                                        size_t if0)
+{
+    return (size_t) mbedtls_ct_if(condition, (mbedtls_ct_uint_t) if1, (mbedtls_ct_uint_t) if0);
+}
+
+static inline unsigned mbedtls_ct_uint_if(mbedtls_ct_condition_t condition,
+                                          unsigned if1,
+                                          unsigned if0)
+{
+    return (unsigned) mbedtls_ct_if(condition, (mbedtls_ct_uint_t) if1, (mbedtls_ct_uint_t) if0);
+}
+
+static inline mbedtls_ct_condition_t mbedtls_ct_bool_if(mbedtls_ct_condition_t condition,
+                                                        mbedtls_ct_condition_t if1,
+                                                        mbedtls_ct_condition_t if0)
+{
+    return (mbedtls_ct_condition_t) mbedtls_ct_if(condition, (mbedtls_ct_uint_t) if1,
+                                                  (mbedtls_ct_uint_t) if0);
+}
+
+#if defined(MBEDTLS_BIGNUM_C)
+
+static inline mbedtls_mpi_uint mbedtls_ct_mpi_uint_if(mbedtls_ct_condition_t condition,
+                                                      mbedtls_mpi_uint if1,
+                                                      mbedtls_mpi_uint if0)
+{
+    return (mbedtls_mpi_uint) mbedtls_ct_if(condition,
+                                            (mbedtls_ct_uint_t) if1,
+                                            (mbedtls_ct_uint_t) if0);
+}
+
+#endif
+
+static inline size_t mbedtls_ct_size_if_else_0(mbedtls_ct_condition_t condition, size_t if1)
+{
+    return (size_t) (condition & if1);
+}
+
+static inline unsigned mbedtls_ct_uint_if_else_0(mbedtls_ct_condition_t condition, unsigned if1)
+{
+    return (unsigned) (condition & if1);
+}
+
+static inline mbedtls_ct_condition_t mbedtls_ct_bool_if_else_0(mbedtls_ct_condition_t condition,
+                                                               mbedtls_ct_condition_t if1)
+{
+    return (mbedtls_ct_condition_t) (condition & if1);
+}
+
+#if defined(MBEDTLS_BIGNUM_C)
+
+static inline mbedtls_mpi_uint mbedtls_ct_mpi_uint_if_else_0(mbedtls_ct_condition_t condition,
+                                                             mbedtls_mpi_uint if1)
+{
+    return (mbedtls_mpi_uint) (condition & if1);
+}
+
+#endif /* MBEDTLS_BIGNUM_C */
+
+static inline int mbedtls_ct_error_if(mbedtls_ct_condition_t condition, int if1, int if0)
+{
+    /* Coverting int -> uint -> int here is safe, because we require if1 and if0 to be
+     * in the range -32767..0, and we require 32-bit int and uint types.
+     *
+     * This means that (0 <= -if0 < INT_MAX), so negating if0 is safe, and similarly for
+     * converting back to int.
+     */
+    return -((int) mbedtls_ct_if(condition, (mbedtls_ct_uint_t) (-if1),
+                                 (mbedtls_ct_uint_t) (-if0)));
+}
+
+static inline int mbedtls_ct_error_if_else_0(mbedtls_ct_condition_t condition, int if1)
+{
+    return -((int) (condition & (-if1)));
+}
+
+static inline mbedtls_ct_condition_t mbedtls_ct_uint_eq(mbedtls_ct_uint_t x,
+                                                        mbedtls_ct_uint_t y)
+{
+    return ~mbedtls_ct_uint_ne(x, y);
+}
+
+static inline mbedtls_ct_condition_t mbedtls_ct_uint_gt(mbedtls_ct_uint_t x,
+                                                        mbedtls_ct_uint_t y)
+{
+    return mbedtls_ct_uint_lt(y, x);
+}
+
+static inline mbedtls_ct_condition_t mbedtls_ct_uint_ge(mbedtls_ct_uint_t x,
+                                                        mbedtls_ct_uint_t y)
+{
+    return ~mbedtls_ct_uint_lt(x, y);
+}
+
+static inline mbedtls_ct_condition_t mbedtls_ct_uint_le(mbedtls_ct_uint_t x,
+                                                        mbedtls_ct_uint_t y)
+{
+    return ~mbedtls_ct_uint_gt(x, y);
+}
+
+static inline mbedtls_ct_condition_t mbedtls_ct_bool_ne(mbedtls_ct_condition_t x,
+                                                        mbedtls_ct_condition_t y)
+{
+    return (mbedtls_ct_condition_t) (x ^ y);
+}
+
+static inline mbedtls_ct_condition_t mbedtls_ct_bool_and(mbedtls_ct_condition_t x,
+                                                         mbedtls_ct_condition_t y)
+{
+    return (mbedtls_ct_condition_t) (x & y);
+}
+
+static inline mbedtls_ct_condition_t mbedtls_ct_bool_or(mbedtls_ct_condition_t x,
+                                                        mbedtls_ct_condition_t y)
+{
+    return (mbedtls_ct_condition_t) (x | y);
+}
+
+static inline mbedtls_ct_condition_t mbedtls_ct_bool_not(mbedtls_ct_condition_t x)
+{
+    return (mbedtls_ct_condition_t) (~x);
+}
+
+#if defined(MBEDTLS_COMPILER_IS_GCC) && (__GNUC__ > 4)
+/* Restore warnings for -Wredundant-decls on gcc */
+    #pragma GCC diagnostic pop
+#endif
+
+#endif /* MBEDTLS_CONSTANT_TIME_IMPL_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/constant_time_internal.h b/tf-psa-crypto/drivers/builtin/src/constant_time_internal.h
new file mode 100644
index 0000000..26f6606
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/constant_time_internal.h
@@ -0,0 +1,579 @@
+/**
+ *  Constant-time functions
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_CONSTANT_TIME_INTERNAL_H
+#define MBEDTLS_CONSTANT_TIME_INTERNAL_H
+
+#include <stdint.h>
+#include <stddef.h>
+
+#include "common.h"
+
+#if defined(MBEDTLS_BIGNUM_C)
+#include "mbedtls/bignum.h"
+#endif
+
+/* The constant-time interface provides various operations that are likely
+ * to result in constant-time code that does not branch or use conditional
+ * instructions for secret data (for secret pointers, this also applies to
+ * the data pointed to).
+ *
+ * It has three main parts:
+ *
+ * - boolean operations
+ *   These are all named mbedtls_ct_<type>_<operation>.
+ *   They operate over <type> and return mbedtls_ct_condition_t.
+ *   All arguments are considered secret.
+ *   example: bool x = y | z          =>    x = mbedtls_ct_bool_or(y, z)
+ *   example: bool x = y == z         =>    x = mbedtls_ct_uint_eq(y, z)
+ *
+ * - conditional data selection
+ *   These are all named mbedtls_ct_<type>_if and mbedtls_ct_<type>_if_else_0
+ *   All arguments are considered secret.
+ *   example: size_t a = x ? b : c    =>    a = mbedtls_ct_size_if(x, b, c)
+ *   example: unsigned a = x ? b : 0  =>    a = mbedtls_ct_uint_if_else_0(x, b)
+ *
+ * - block memory operations
+ *   Only some arguments are considered secret, as documented for each
+ *   function.
+ *   example: if (x) memcpy(...)      =>    mbedtls_ct_memcpy_if(x, ...)
+ *
+ * mbedtls_ct_condition_t must be treated as opaque and only created and
+ * manipulated via the functions in this header. The compiler should never
+ * be able to prove anything about its value at compile-time.
+ *
+ * mbedtls_ct_uint_t is an unsigned integer type over which constant time
+ * operations may be performed via the functions in this header. It is as big
+ * as the larger of size_t and mbedtls_mpi_uint, i.e. it is safe to cast
+ * to/from "unsigned int", "size_t", and "mbedtls_mpi_uint" (and any other
+ * not-larger integer types).
+ *
+ * For Arm (32-bit, 64-bit and Thumb), x86 and x86-64, assembly implementations
+ * are used to ensure that the generated code is constant time. For other
+ * architectures, it uses a plain C fallback designed to yield constant-time code
+ * (this has been observed to be constant-time on latest gcc, clang and MSVC
+ * as of May 2023).
+ *
+ * For readability, the static inline definitions are separated out into
+ * constant_time_impl.h.
+ */
+
+#if (SIZE_MAX > 0xffffffffffffffffULL)
+/* Pointer size > 64-bit */
+typedef size_t    mbedtls_ct_condition_t;
+typedef size_t    mbedtls_ct_uint_t;
+typedef ptrdiff_t mbedtls_ct_int_t;
+#define MBEDTLS_CT_TRUE  ((mbedtls_ct_condition_t) mbedtls_ct_compiler_opaque(SIZE_MAX))
+#elif (SIZE_MAX > 0xffffffff) || defined(MBEDTLS_HAVE_INT64)
+/* 32-bit < pointer size <= 64-bit, or 64-bit MPI */
+typedef uint64_t  mbedtls_ct_condition_t;
+typedef uint64_t  mbedtls_ct_uint_t;
+typedef int64_t   mbedtls_ct_int_t;
+#define MBEDTLS_CT_SIZE_64
+#define MBEDTLS_CT_TRUE  ((mbedtls_ct_condition_t) mbedtls_ct_compiler_opaque(UINT64_MAX))
+#else
+/* Pointer size <= 32-bit, and no 64-bit MPIs */
+typedef uint32_t  mbedtls_ct_condition_t;
+typedef uint32_t  mbedtls_ct_uint_t;
+typedef int32_t   mbedtls_ct_int_t;
+#define MBEDTLS_CT_SIZE_32
+#define MBEDTLS_CT_TRUE  ((mbedtls_ct_condition_t) mbedtls_ct_compiler_opaque(UINT32_MAX))
+#endif
+#define MBEDTLS_CT_FALSE ((mbedtls_ct_condition_t) mbedtls_ct_compiler_opaque(0))
+
+/* ============================================================================
+ * Boolean operations
+ */
+
+/** Convert a number into a mbedtls_ct_condition_t.
+ *
+ * \param x Number to convert.
+ *
+ * \return MBEDTLS_CT_TRUE if \p x != 0, or MBEDTLS_CT_FALSE if \p x == 0
+ *
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_bool(mbedtls_ct_uint_t x);
+
+/** Boolean "not equal" operation.
+ *
+ * Functionally equivalent to:
+ *
+ * \p x != \p y
+ *
+ * \param x     The first value to analyze.
+ * \param y     The second value to analyze.
+ *
+ * \return      MBEDTLS_CT_TRUE if \p x != \p y, otherwise MBEDTLS_CT_FALSE.
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_uint_ne(mbedtls_ct_uint_t x, mbedtls_ct_uint_t y);
+
+/** Boolean "equals" operation.
+ *
+ * Functionally equivalent to:
+ *
+ * \p x == \p y
+ *
+ * \param x     The first value to analyze.
+ * \param y     The second value to analyze.
+ *
+ * \return      MBEDTLS_CT_TRUE if \p x == \p y, otherwise MBEDTLS_CT_FALSE.
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_uint_eq(mbedtls_ct_uint_t x,
+                                                        mbedtls_ct_uint_t y);
+
+/** Boolean "less than" operation.
+ *
+ * Functionally equivalent to:
+ *
+ * \p x < \p y
+ *
+ * \param x     The first value to analyze.
+ * \param y     The second value to analyze.
+ *
+ * \return      MBEDTLS_CT_TRUE if \p x < \p y, otherwise MBEDTLS_CT_FALSE.
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_uint_lt(mbedtls_ct_uint_t x, mbedtls_ct_uint_t y);
+
+/** Boolean "greater than" operation.
+ *
+ * Functionally equivalent to:
+ *
+ * \p x > \p y
+ *
+ * \param x     The first value to analyze.
+ * \param y     The second value to analyze.
+ *
+ * \return      MBEDTLS_CT_TRUE if \p x > \p y, otherwise MBEDTLS_CT_FALSE.
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_uint_gt(mbedtls_ct_uint_t x,
+                                                        mbedtls_ct_uint_t y);
+
+/** Boolean "greater or equal" operation.
+ *
+ * Functionally equivalent to:
+ *
+ * \p x >= \p y
+ *
+ * \param x     The first value to analyze.
+ * \param y     The second value to analyze.
+ *
+ * \return      MBEDTLS_CT_TRUE if \p x >= \p y,
+ *              otherwise MBEDTLS_CT_FALSE.
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_uint_ge(mbedtls_ct_uint_t x,
+                                                        mbedtls_ct_uint_t y);
+
+/** Boolean "less than or equal" operation.
+ *
+ * Functionally equivalent to:
+ *
+ * \p x <= \p y
+ *
+ * \param x     The first value to analyze.
+ * \param y     The second value to analyze.
+ *
+ * \return      MBEDTLS_CT_TRUE if \p x <= \p y,
+ *              otherwise MBEDTLS_CT_FALSE.
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_uint_le(mbedtls_ct_uint_t x,
+                                                        mbedtls_ct_uint_t y);
+
+/** Boolean not-equals operation.
+ *
+ * Functionally equivalent to:
+ *
+ * \p x != \p y
+ *
+ * \param x     The first value to analyze.
+ * \param y     The second value to analyze.
+ *
+ * \note        This is more efficient than mbedtls_ct_uint_ne if both arguments are
+ *              mbedtls_ct_condition_t.
+ *
+ * \return      MBEDTLS_CT_TRUE if \p x != \p y,
+ *              otherwise MBEDTLS_CT_FALSE.
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_bool_ne(mbedtls_ct_condition_t x,
+                                                        mbedtls_ct_condition_t y);
+
+/** Boolean "and" operation.
+ *
+ * Functionally equivalent to:
+ *
+ * \p x && \p y
+ *
+ * \param x     The first value to analyze.
+ * \param y     The second value to analyze.
+ *
+ * \return      MBEDTLS_CT_TRUE if \p x && \p y,
+ *              otherwise MBEDTLS_CT_FALSE.
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_bool_and(mbedtls_ct_condition_t x,
+                                                         mbedtls_ct_condition_t y);
+
+/** Boolean "or" operation.
+ *
+ * Functionally equivalent to:
+ *
+ * \p x || \p y
+ *
+ * \param x     The first value to analyze.
+ * \param y     The second value to analyze.
+ *
+ * \return      MBEDTLS_CT_TRUE if \p x || \p y,
+ *              otherwise MBEDTLS_CT_FALSE.
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_bool_or(mbedtls_ct_condition_t x,
+                                                        mbedtls_ct_condition_t y);
+
+/** Boolean "not" operation.
+ *
+ * Functionally equivalent to:
+ *
+ * ! \p x
+ *
+ * \param x     The value to invert
+ *
+ * \return      MBEDTLS_CT_FALSE if \p x, otherwise MBEDTLS_CT_TRUE.
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_bool_not(mbedtls_ct_condition_t x);
+
+
+/* ============================================================================
+ * Data selection operations
+ */
+
+/** Choose between two size_t values.
+ *
+ * Functionally equivalent to:
+ *
+ * condition ? if1 : if0.
+ *
+ * \param condition     Condition to test.
+ * \param if1           Value to use if \p condition == MBEDTLS_CT_TRUE.
+ * \param if0           Value to use if \p condition == MBEDTLS_CT_FALSE.
+ *
+ * \return  \c if1 if \p condition == MBEDTLS_CT_TRUE, otherwise \c if0.
+ */
+static inline size_t mbedtls_ct_size_if(mbedtls_ct_condition_t condition,
+                                        size_t if1,
+                                        size_t if0);
+
+/** Choose between two unsigned values.
+ *
+ * Functionally equivalent to:
+ *
+ * condition ? if1 : if0.
+ *
+ * \param condition     Condition to test.
+ * \param if1           Value to use if \p condition == MBEDTLS_CT_TRUE.
+ * \param if0           Value to use if \p condition == MBEDTLS_CT_FALSE.
+ *
+ * \return  \c if1 if \p condition == MBEDTLS_CT_TRUE, otherwise \c if0.
+ */
+static inline unsigned mbedtls_ct_uint_if(mbedtls_ct_condition_t condition,
+                                          unsigned if1,
+                                          unsigned if0);
+
+/** Choose between two mbedtls_ct_condition_t values.
+ *
+ * Functionally equivalent to:
+ *
+ * condition ? if1 : if0.
+ *
+ * \param condition     Condition to test.
+ * \param if1           Value to use if \p condition == MBEDTLS_CT_TRUE.
+ * \param if0           Value to use if \p condition == MBEDTLS_CT_FALSE.
+ *
+ * \return  \c if1 if \p condition == MBEDTLS_CT_TRUE, otherwise \c if0.
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_bool_if(mbedtls_ct_condition_t condition,
+                                                        mbedtls_ct_condition_t if1,
+                                                        mbedtls_ct_condition_t if0);
+
+#if defined(MBEDTLS_BIGNUM_C)
+
+/** Choose between two mbedtls_mpi_uint values.
+ *
+ * Functionally equivalent to:
+ *
+ * condition ? if1 : if0.
+ *
+ * \param condition     Condition to test.
+ * \param if1           Value to use if \p condition == MBEDTLS_CT_TRUE.
+ * \param if0           Value to use if \p condition == MBEDTLS_CT_FALSE.
+ *
+ * \return  \c if1 if \p condition == MBEDTLS_CT_TRUE, otherwise \c if0.
+ */
+static inline mbedtls_mpi_uint mbedtls_ct_mpi_uint_if(mbedtls_ct_condition_t condition, \
+                                                      mbedtls_mpi_uint if1, \
+                                                      mbedtls_mpi_uint if0);
+
+#endif
+
+/** Choose between an unsigned value and 0.
+ *
+ * Functionally equivalent to:
+ *
+ * condition ? if1 : 0.
+ *
+ * Functionally equivalent to mbedtls_ct_uint_if(condition, if1, 0) but
+ * results in smaller code size.
+ *
+ * \param condition     Condition to test.
+ * \param if1           Value to use if \p condition == MBEDTLS_CT_TRUE.
+ *
+ * \return  \c if1 if \p condition == MBEDTLS_CT_TRUE, otherwise 0.
+ */
+static inline unsigned mbedtls_ct_uint_if_else_0(mbedtls_ct_condition_t condition, unsigned if1);
+
+/** Choose between an mbedtls_ct_condition_t and 0.
+ *
+ * Functionally equivalent to:
+ *
+ * condition ? if1 : 0.
+ *
+ * Functionally equivalent to mbedtls_ct_bool_if(condition, if1, 0) but
+ * results in smaller code size.
+ *
+ * \param condition     Condition to test.
+ * \param if1           Value to use if \p condition == MBEDTLS_CT_TRUE.
+ *
+ * \return  \c if1 if \p condition == MBEDTLS_CT_TRUE, otherwise 0.
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_bool_if_else_0(mbedtls_ct_condition_t condition,
+                                                               mbedtls_ct_condition_t if1);
+
+/** Choose between a size_t value and 0.
+ *
+ * Functionally equivalent to:
+ *
+ * condition ? if1 : 0.
+ *
+ * Functionally equivalent to mbedtls_ct_size_if(condition, if1, 0) but
+ * results in smaller code size.
+ *
+ * \param condition     Condition to test.
+ * \param if1           Value to use if \p condition == MBEDTLS_CT_TRUE.
+ *
+ * \return  \c if1 if \p condition == MBEDTLS_CT_TRUE, otherwise 0.
+ */
+static inline size_t mbedtls_ct_size_if_else_0(mbedtls_ct_condition_t condition, size_t if1);
+
+#if defined(MBEDTLS_BIGNUM_C)
+
+/** Choose between an mbedtls_mpi_uint value and 0.
+ *
+ * Functionally equivalent to:
+ *
+ * condition ? if1 : 0.
+ *
+ * Functionally equivalent to mbedtls_ct_mpi_uint_if(condition, if1, 0) but
+ * results in smaller code size.
+ *
+ * \param condition     Condition to test.
+ * \param if1           Value to use if \p condition == MBEDTLS_CT_TRUE.
+ *
+ * \return  \c if1 if \p condition == MBEDTLS_CT_TRUE, otherwise 0.
+ */
+static inline mbedtls_mpi_uint mbedtls_ct_mpi_uint_if_else_0(mbedtls_ct_condition_t condition,
+                                                             mbedtls_mpi_uint if1);
+
+#endif
+
+/** Constant-flow char selection
+ *
+ * \param low   Secret. Bottom of range
+ * \param high  Secret. Top of range
+ * \param c     Secret. Value to compare to range
+ * \param t     Secret. Value to return, if in range
+ *
+ * \return      \p t if \p low <= \p c <= \p high, 0 otherwise.
+ */
+static inline unsigned char mbedtls_ct_uchar_in_range_if(unsigned char low,
+                                                         unsigned char high,
+                                                         unsigned char c,
+                                                         unsigned char t);
+
+/** Choose between two error values. The values must be in the range [-32767..0].
+ *
+ * Functionally equivalent to:
+ *
+ * condition ? if1 : if0.
+ *
+ * \param condition     Condition to test.
+ * \param if1           Value to use if \p condition == MBEDTLS_CT_TRUE.
+ * \param if0           Value to use if \p condition == MBEDTLS_CT_FALSE.
+ *
+ * \return  \c if1 if \p condition == MBEDTLS_CT_TRUE, otherwise \c if0.
+ */
+static inline int mbedtls_ct_error_if(mbedtls_ct_condition_t condition, int if1, int if0);
+
+/** Choose between an error value and 0. The error value must be in the range [-32767..0].
+ *
+ * Functionally equivalent to:
+ *
+ * condition ? if1 : 0.
+ *
+ * Functionally equivalent to mbedtls_ct_error_if(condition, if1, 0) but
+ * results in smaller code size.
+ *
+ * \param condition     Condition to test.
+ * \param if1           Value to use if \p condition == MBEDTLS_CT_TRUE.
+ *
+ * \return  \c if1 if \p condition == MBEDTLS_CT_TRUE, otherwise 0.
+ */
+static inline int mbedtls_ct_error_if_else_0(mbedtls_ct_condition_t condition, int if1);
+
+/* ============================================================================
+ * Block memory operations
+ */
+
+#if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C)
+
+/** Conditionally set a block of memory to zero.
+ *
+ * Regardless of the condition, every byte will be read once and written to
+ * once.
+ *
+ * \param condition     Secret. Condition to test.
+ * \param buf           Secret. Pointer to the start of the buffer.
+ * \param len           Number of bytes to set to zero.
+ *
+ * \warning Unlike mbedtls_platform_zeroize, this does not have the same guarantees
+ * about not being optimised away if the memory is never read again.
+ */
+void mbedtls_ct_zeroize_if(mbedtls_ct_condition_t condition, void *buf, size_t len);
+
+/** Shift some data towards the left inside a buffer.
+ *
+ * Functionally equivalent to:
+ *
+ * memmove(start, start + offset, total - offset);
+ * memset(start + (total - offset), 0, offset);
+ *
+ * Timing independence comes at the expense of performance.
+ *
+ * \param start     Secret. Pointer to the start of the buffer.
+ * \param total     Total size of the buffer.
+ * \param offset    Secret. Offset from which to copy \p total - \p offset bytes.
+ */
+void mbedtls_ct_memmove_left(void *start,
+                             size_t total,
+                             size_t offset);
+
+#endif /* defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) */
+
+/** Conditional memcpy.
+ *
+ * Functionally equivalent to:
+ *
+ * if (condition) {
+ *      memcpy(dest, src1, len);
+ * } else {
+ *      if (src2 != NULL)
+ *          memcpy(dest, src2, len);
+ * }
+ *
+ * It will always read len bytes from src1.
+ * If src2 != NULL, it will always read len bytes from src2.
+ * If src2 == NULL, it will instead read len bytes from dest (as if src2 == dest).
+ *
+ * \param condition The condition
+ * \param dest      Secret. Destination pointer.
+ * \param src1      Secret. Pointer to copy from (if \p condition == MBEDTLS_CT_TRUE).
+ *                  This may be equal to \p dest, but may not overlap in other ways.
+ * \param src2      Secret (contents only - may branch to determine if this parameter is NULL).
+ *                  Pointer to copy from (if \p condition == MBEDTLS_CT_FALSE and \p src2 is not NULL). May be NULL.
+ *                  This may be equal to \p dest, but may not overlap it in other ways. It may overlap with \p src1.
+ * \param len       Number of bytes to copy.
+ */
+void mbedtls_ct_memcpy_if(mbedtls_ct_condition_t condition,
+                          unsigned char *dest,
+                          const unsigned char *src1,
+                          const unsigned char *src2,
+                          size_t len
+                          );
+
+/** Copy data from a secret position.
+ *
+ * Functionally equivalent to:
+ *
+ * memcpy(dst, src + offset, len)
+ *
+ * This function copies \p len bytes from \p src + \p offset to
+ * \p dst, with a code flow and memory access pattern that does not depend on
+ * \p offset, but only on \p offset_min, \p offset_max and \p len.
+ *
+ * \note                This function reads from \p dest, but the value that
+ *                      is read does not influence the result and this
+ *                      function's behavior is well-defined regardless of the
+ *                      contents of the buffers. This may result in false
+ *                      positives from static or dynamic analyzers, especially
+ *                      if \p dest is not initialized.
+ *
+ * \param dest          Secret. The destination buffer. This must point to a writable
+ *                      buffer of at least \p len bytes.
+ * \param src           Secret. The base of the source buffer. This must point to a
+ *                      readable buffer of at least \p offset_max + \p len
+ *                      bytes. Shouldn't overlap with \p dest
+ * \param offset        Secret. The offset in the source buffer from which to copy.
+ *                      This must be no less than \p offset_min and no greater
+ *                      than \p offset_max.
+ * \param offset_min    The minimal value of \p offset.
+ * \param offset_max    The maximal value of \p offset.
+ * \param len           The number of bytes to copy.
+ */
+void mbedtls_ct_memcpy_offset(unsigned char *dest,
+                              const unsigned char *src,
+                              size_t offset,
+                              size_t offset_min,
+                              size_t offset_max,
+                              size_t len);
+
+/* Documented in include/mbedtls/constant_time.h. a and b are secret.
+
+   int mbedtls_ct_memcmp(const void *a,
+                         const void *b,
+                         size_t n);
+ */
+
+#if defined(MBEDTLS_NIST_KW_C)
+
+/** Constant-time buffer comparison without branches.
+ *
+ * Similar to mbedtls_ct_memcmp, except that the result only depends on part of
+ * the input data - differences in the head or tail are ignored. Functionally equivalent to:
+ *
+ * memcmp(a + skip_head, b + skip_head, size - skip_head - skip_tail)
+ *
+ * Time taken depends on \p n, but not on \p skip_head or \p skip_tail .
+ *
+ * Behaviour is undefined if ( \p skip_head + \p skip_tail) > \p n.
+ *
+ * \param a         Secret. Pointer to the first buffer, containing at least \p n bytes. May not be NULL.
+ * \param b         Secret. Pointer to the second buffer, containing at least \p n bytes. May not be NULL.
+ * \param n         The number of bytes to examine (total size of the buffers).
+ * \param skip_head Secret. The number of bytes to treat as non-significant at the start of the buffer.
+ *                  These bytes will still be read.
+ * \param skip_tail Secret. The number of bytes to treat as non-significant at the end of the buffer.
+ *                  These bytes will still be read.
+ *
+ * \return          Zero if the contents of the two buffers are the same, otherwise non-zero.
+ */
+int mbedtls_ct_memcmp_partial(const void *a,
+                              const void *b,
+                              size_t n,
+                              size_t skip_head,
+                              size_t skip_tail);
+
+#endif
+
+/* Include the implementation of static inline functions above. */
+#include "constant_time_impl.h"
+
+#endif /* MBEDTLS_CONSTANT_TIME_INTERNAL_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/ctr.h b/tf-psa-crypto/drivers/builtin/src/ctr.h
new file mode 100644
index 0000000..aa48fb9
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/ctr.h
@@ -0,0 +1,35 @@
+/**
+ * \file ctr.h
+ *
+ * \brief    This file contains common functionality for counter algorithms.
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_CTR_H
+#define MBEDTLS_CTR_H
+
+#include "common.h"
+
+/**
+ * \brief               Increment a big-endian 16-byte value.
+ *                      This is quite performance-sensitive for AES-CTR and CTR-DRBG.
+ *
+ * \param n             A 16-byte value to be incremented.
+ */
+static inline void mbedtls_ctr_increment_counter(uint8_t n[16])
+{
+    // The 32-bit version seems to perform about the same as a 64-bit version
+    // on 64-bit architectures, so no need to define a 64-bit version.
+    for (int i = 3;; i--) {
+        uint32_t x = MBEDTLS_GET_UINT32_BE(n, i << 2);
+        x += 1;
+        MBEDTLS_PUT_UINT32_BE(x, n, i << 2);
+        if (x != 0 || i == 0) {
+            break;
+        }
+    }
+}
+
+#endif /* MBEDTLS_CTR_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/ctr_drbg.c b/tf-psa-crypto/drivers/builtin/src/ctr_drbg.c
new file mode 100644
index 0000000..66d9d28
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/ctr_drbg.c
@@ -0,0 +1,1016 @@
+/*
+ *  CTR_DRBG implementation based on AES-256 (NIST SP 800-90)
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ *  The NIST SP 800-90 DRBGs are described in the following publication.
+ *
+ *  https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-90r.pdf
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_CTR_DRBG_C)
+
+#include "ctr.h"
+#include "mbedtls/ctr_drbg.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_FS_IO)
+#include <stdio.h>
+#endif
+
+/* Using error translation functions from PSA to MbedTLS */
+#if !defined(MBEDTLS_AES_C)
+#include "psa_util_internal.h"
+#endif
+
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_AES_C)
+static psa_status_t ctr_drbg_setup_psa_context(mbedtls_ctr_drbg_psa_context *psa_ctx,
+                                               unsigned char *key, size_t key_len)
+{
+    psa_key_attributes_t key_attr = PSA_KEY_ATTRIBUTES_INIT;
+    psa_status_t status;
+
+    psa_set_key_usage_flags(&key_attr, PSA_KEY_USAGE_ENCRYPT);
+    psa_set_key_algorithm(&key_attr, PSA_ALG_ECB_NO_PADDING);
+    psa_set_key_type(&key_attr, PSA_KEY_TYPE_AES);
+    status = psa_import_key(&key_attr, key, key_len, &psa_ctx->key_id);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_cipher_encrypt_setup(&psa_ctx->operation, psa_ctx->key_id, PSA_ALG_ECB_NO_PADDING);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+exit:
+    psa_reset_key_attributes(&key_attr);
+    return status;
+}
+
+static void ctr_drbg_destroy_psa_contex(mbedtls_ctr_drbg_psa_context *psa_ctx)
+{
+    psa_cipher_abort(&psa_ctx->operation);
+    psa_destroy_key(psa_ctx->key_id);
+
+    psa_ctx->operation = psa_cipher_operation_init();
+    psa_ctx->key_id = MBEDTLS_SVC_KEY_ID_INIT;
+}
+#endif
+
+/*
+ * CTR_DRBG context initialization
+ */
+void mbedtls_ctr_drbg_init(mbedtls_ctr_drbg_context *ctx)
+{
+    memset(ctx, 0, sizeof(mbedtls_ctr_drbg_context));
+#if defined(MBEDTLS_AES_C)
+    mbedtls_aes_init(&ctx->aes_ctx);
+#else
+    ctx->psa_ctx.key_id = MBEDTLS_SVC_KEY_ID_INIT;
+    ctx->psa_ctx.operation = psa_cipher_operation_init();
+#endif
+    /* Indicate that the entropy nonce length is not set explicitly.
+     * See mbedtls_ctr_drbg_set_nonce_len(). */
+    ctx->reseed_counter = -1;
+
+    ctx->reseed_interval = MBEDTLS_CTR_DRBG_RESEED_INTERVAL;
+}
+
+/*
+ *  This function resets CTR_DRBG context to the state immediately
+ *  after initial call of mbedtls_ctr_drbg_init().
+ */
+void mbedtls_ctr_drbg_free(mbedtls_ctr_drbg_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+#if defined(MBEDTLS_THREADING_C)
+    /* The mutex is initialized iff f_entropy is set. */
+    if (ctx->f_entropy != NULL) {
+        mbedtls_mutex_free(&ctx->mutex);
+    }
+#endif
+#if defined(MBEDTLS_AES_C)
+    mbedtls_aes_free(&ctx->aes_ctx);
+#else
+    ctr_drbg_destroy_psa_contex(&ctx->psa_ctx);
+#endif
+    mbedtls_platform_zeroize(ctx, sizeof(mbedtls_ctr_drbg_context));
+    ctx->reseed_interval = MBEDTLS_CTR_DRBG_RESEED_INTERVAL;
+    ctx->reseed_counter = -1;
+}
+
+void mbedtls_ctr_drbg_set_prediction_resistance(mbedtls_ctr_drbg_context *ctx,
+                                                int resistance)
+{
+    ctx->prediction_resistance = resistance;
+}
+
+void mbedtls_ctr_drbg_set_entropy_len(mbedtls_ctr_drbg_context *ctx,
+                                      size_t len)
+{
+    ctx->entropy_len = len;
+}
+
+int mbedtls_ctr_drbg_set_nonce_len(mbedtls_ctr_drbg_context *ctx,
+                                   size_t len)
+{
+    /* If mbedtls_ctr_drbg_seed() has already been called, it's
+     * too late. Return the error code that's closest to making sense. */
+    if (ctx->f_entropy != NULL) {
+        return MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED;
+    }
+
+    if (len > MBEDTLS_CTR_DRBG_MAX_SEED_INPUT) {
+        return MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG;
+    }
+
+    /* This shouldn't be an issue because
+     * MBEDTLS_CTR_DRBG_MAX_SEED_INPUT < INT_MAX in any sensible
+     * configuration, but make sure anyway. */
+    if (len > INT_MAX) {
+        return MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG;
+    }
+
+    /* For backward compatibility with Mbed TLS <= 2.19, store the
+     * entropy nonce length in a field that already exists, but isn't
+     * used until after the initial seeding. */
+    /* Due to the capping of len above, the value fits in an int. */
+    ctx->reseed_counter = (int) len;
+    return 0;
+}
+
+void mbedtls_ctr_drbg_set_reseed_interval(mbedtls_ctr_drbg_context *ctx,
+                                          int interval)
+{
+    ctx->reseed_interval = interval;
+}
+
+static int block_cipher_df(unsigned char *output,
+                           const unsigned char *data, size_t data_len)
+{
+    unsigned char buf[MBEDTLS_CTR_DRBG_MAX_SEED_INPUT +
+                      MBEDTLS_CTR_DRBG_BLOCKSIZE + 16];
+    unsigned char tmp[MBEDTLS_CTR_DRBG_SEEDLEN];
+    unsigned char key[MBEDTLS_CTR_DRBG_KEYSIZE];
+    unsigned char chain[MBEDTLS_CTR_DRBG_BLOCKSIZE];
+    unsigned char *p, *iv;
+    int ret = 0;
+#if defined(MBEDTLS_AES_C)
+    mbedtls_aes_context aes_ctx;
+#else
+    psa_status_t status;
+    size_t tmp_len;
+    mbedtls_ctr_drbg_psa_context psa_ctx;
+
+    psa_ctx.key_id = MBEDTLS_SVC_KEY_ID_INIT;
+    psa_ctx.operation = psa_cipher_operation_init();
+#endif
+
+    int i, j;
+    size_t buf_len, use_len;
+
+    if (data_len > MBEDTLS_CTR_DRBG_MAX_SEED_INPUT) {
+        return MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG;
+    }
+
+    memset(buf, 0, MBEDTLS_CTR_DRBG_MAX_SEED_INPUT +
+           MBEDTLS_CTR_DRBG_BLOCKSIZE + 16);
+
+    /*
+     * Construct IV (16 bytes) and S in buffer
+     * IV = Counter (in 32-bits) padded to 16 with zeroes
+     * S = Length input string (in 32-bits) || Length of output (in 32-bits) ||
+     *     data || 0x80
+     *     (Total is padded to a multiple of 16-bytes with zeroes)
+     */
+    p = buf + MBEDTLS_CTR_DRBG_BLOCKSIZE;
+    MBEDTLS_PUT_UINT32_BE(data_len, p, 0);
+    p += 4 + 3;
+    *p++ = MBEDTLS_CTR_DRBG_SEEDLEN;
+    memcpy(p, data, data_len);
+    p[data_len] = 0x80;
+
+    buf_len = MBEDTLS_CTR_DRBG_BLOCKSIZE + 8 + data_len + 1;
+
+    for (i = 0; i < MBEDTLS_CTR_DRBG_KEYSIZE; i++) {
+        key[i] = i;
+    }
+
+#if defined(MBEDTLS_AES_C)
+    mbedtls_aes_init(&aes_ctx);
+
+    if ((ret = mbedtls_aes_setkey_enc(&aes_ctx, key,
+                                      MBEDTLS_CTR_DRBG_KEYBITS)) != 0) {
+        goto exit;
+    }
+#else
+    status = ctr_drbg_setup_psa_context(&psa_ctx, key, sizeof(key));
+    if (status != PSA_SUCCESS) {
+        ret = psa_generic_status_to_mbedtls(status);
+        goto exit;
+    }
+#endif
+
+    /*
+     * Reduce data to MBEDTLS_CTR_DRBG_SEEDLEN bytes of data
+     */
+    for (j = 0; j < MBEDTLS_CTR_DRBG_SEEDLEN; j += MBEDTLS_CTR_DRBG_BLOCKSIZE) {
+        p = buf;
+        memset(chain, 0, MBEDTLS_CTR_DRBG_BLOCKSIZE);
+        use_len = buf_len;
+
+        while (use_len > 0) {
+            mbedtls_xor(chain, chain, p, MBEDTLS_CTR_DRBG_BLOCKSIZE);
+            p += MBEDTLS_CTR_DRBG_BLOCKSIZE;
+            use_len -= (use_len >= MBEDTLS_CTR_DRBG_BLOCKSIZE) ?
+                       MBEDTLS_CTR_DRBG_BLOCKSIZE : use_len;
+
+#if defined(MBEDTLS_AES_C)
+            if ((ret = mbedtls_aes_crypt_ecb(&aes_ctx, MBEDTLS_AES_ENCRYPT,
+                                             chain, chain)) != 0) {
+                goto exit;
+            }
+#else
+            status = psa_cipher_update(&psa_ctx.operation, chain, MBEDTLS_CTR_DRBG_BLOCKSIZE,
+                                       chain, MBEDTLS_CTR_DRBG_BLOCKSIZE, &tmp_len);
+            if (status != PSA_SUCCESS) {
+                ret = psa_generic_status_to_mbedtls(status);
+                goto exit;
+            }
+#endif
+        }
+
+        memcpy(tmp + j, chain, MBEDTLS_CTR_DRBG_BLOCKSIZE);
+
+        /*
+         * Update IV
+         */
+        buf[3]++;
+    }
+
+    /*
+     * Do final encryption with reduced data
+     */
+#if defined(MBEDTLS_AES_C)
+    if ((ret = mbedtls_aes_setkey_enc(&aes_ctx, tmp,
+                                      MBEDTLS_CTR_DRBG_KEYBITS)) != 0) {
+        goto exit;
+    }
+#else
+    ctr_drbg_destroy_psa_contex(&psa_ctx);
+
+    status = ctr_drbg_setup_psa_context(&psa_ctx, tmp, MBEDTLS_CTR_DRBG_KEYSIZE);
+    if (status != PSA_SUCCESS) {
+        ret = psa_generic_status_to_mbedtls(status);
+        goto exit;
+    }
+#endif
+    iv = tmp + MBEDTLS_CTR_DRBG_KEYSIZE;
+    p = output;
+
+    for (j = 0; j < MBEDTLS_CTR_DRBG_SEEDLEN; j += MBEDTLS_CTR_DRBG_BLOCKSIZE) {
+#if defined(MBEDTLS_AES_C)
+        if ((ret = mbedtls_aes_crypt_ecb(&aes_ctx, MBEDTLS_AES_ENCRYPT,
+                                         iv, iv)) != 0) {
+            goto exit;
+        }
+#else
+        status = psa_cipher_update(&psa_ctx.operation, iv, MBEDTLS_CTR_DRBG_BLOCKSIZE,
+                                   iv, MBEDTLS_CTR_DRBG_BLOCKSIZE, &tmp_len);
+        if (status != PSA_SUCCESS) {
+            ret = psa_generic_status_to_mbedtls(status);
+            goto exit;
+        }
+#endif
+        memcpy(p, iv, MBEDTLS_CTR_DRBG_BLOCKSIZE);
+        p += MBEDTLS_CTR_DRBG_BLOCKSIZE;
+    }
+exit:
+#if defined(MBEDTLS_AES_C)
+    mbedtls_aes_free(&aes_ctx);
+#else
+    ctr_drbg_destroy_psa_contex(&psa_ctx);
+#endif
+    /*
+     * tidy up the stack
+     */
+    mbedtls_platform_zeroize(buf, sizeof(buf));
+    mbedtls_platform_zeroize(tmp, sizeof(tmp));
+    mbedtls_platform_zeroize(key, sizeof(key));
+    mbedtls_platform_zeroize(chain, sizeof(chain));
+    if (0 != ret) {
+        /*
+         * wipe partial seed from memory
+         */
+        mbedtls_platform_zeroize(output, MBEDTLS_CTR_DRBG_SEEDLEN);
+    }
+
+    return ret;
+}
+
+/* CTR_DRBG_Update (SP 800-90A &sect;10.2.1.2)
+ * ctr_drbg_update_internal(ctx, provided_data)
+ * implements
+ * CTR_DRBG_Update(provided_data, Key, V)
+ * with inputs and outputs
+ *   ctx->aes_ctx = Key
+ *   ctx->counter = V
+ */
+static int ctr_drbg_update_internal(mbedtls_ctr_drbg_context *ctx,
+                                    const unsigned char data[MBEDTLS_CTR_DRBG_SEEDLEN])
+{
+    unsigned char tmp[MBEDTLS_CTR_DRBG_SEEDLEN];
+    unsigned char *p = tmp;
+    int j;
+    int ret = 0;
+#if !defined(MBEDTLS_AES_C)
+    psa_status_t status;
+    size_t tmp_len;
+#endif
+
+    memset(tmp, 0, MBEDTLS_CTR_DRBG_SEEDLEN);
+
+    for (j = 0; j < MBEDTLS_CTR_DRBG_SEEDLEN; j += MBEDTLS_CTR_DRBG_BLOCKSIZE) {
+        /*
+         * Increase counter
+         */
+        mbedtls_ctr_increment_counter(ctx->counter);
+
+        /*
+         * Crypt counter block
+         */
+#if defined(MBEDTLS_AES_C)
+        if ((ret = mbedtls_aes_crypt_ecb(&ctx->aes_ctx, MBEDTLS_AES_ENCRYPT,
+                                         ctx->counter, p)) != 0) {
+            goto exit;
+        }
+#else
+        status = psa_cipher_update(&ctx->psa_ctx.operation, ctx->counter, sizeof(ctx->counter),
+                                   p, MBEDTLS_CTR_DRBG_BLOCKSIZE, &tmp_len);
+        if (status != PSA_SUCCESS) {
+            ret = psa_generic_status_to_mbedtls(status);
+            goto exit;
+        }
+#endif
+
+        p += MBEDTLS_CTR_DRBG_BLOCKSIZE;
+    }
+
+    mbedtls_xor(tmp, tmp, data, MBEDTLS_CTR_DRBG_SEEDLEN);
+
+    /*
+     * Update key and counter
+     */
+#if defined(MBEDTLS_AES_C)
+    if ((ret = mbedtls_aes_setkey_enc(&ctx->aes_ctx, tmp,
+                                      MBEDTLS_CTR_DRBG_KEYBITS)) != 0) {
+        goto exit;
+    }
+#else
+    ctr_drbg_destroy_psa_contex(&ctx->psa_ctx);
+
+    status = ctr_drbg_setup_psa_context(&ctx->psa_ctx, tmp, MBEDTLS_CTR_DRBG_KEYSIZE);
+    if (status != PSA_SUCCESS) {
+        ret = psa_generic_status_to_mbedtls(status);
+        goto exit;
+    }
+#endif
+    memcpy(ctx->counter, tmp + MBEDTLS_CTR_DRBG_KEYSIZE,
+           MBEDTLS_CTR_DRBG_BLOCKSIZE);
+
+exit:
+    mbedtls_platform_zeroize(tmp, sizeof(tmp));
+    return ret;
+}
+
+/* CTR_DRBG_Instantiate with derivation function (SP 800-90A &sect;10.2.1.3.2)
+ * mbedtls_ctr_drbg_update(ctx, additional, add_len)
+ * implements
+ * CTR_DRBG_Instantiate(entropy_input, nonce, personalization_string,
+ *                      security_strength) -> initial_working_state
+ * with inputs
+ *   ctx->counter = all-bits-0
+ *   ctx->aes_ctx = context from all-bits-0 key
+ *   additional[:add_len] = entropy_input || nonce || personalization_string
+ * and with outputs
+ *   ctx = initial_working_state
+ */
+int mbedtls_ctr_drbg_update(mbedtls_ctr_drbg_context *ctx,
+                            const unsigned char *additional,
+                            size_t add_len)
+{
+    unsigned char add_input[MBEDTLS_CTR_DRBG_SEEDLEN];
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if (add_len == 0) {
+        return 0;
+    }
+
+    if ((ret = block_cipher_df(add_input, additional, add_len)) != 0) {
+        goto exit;
+    }
+    if ((ret = ctr_drbg_update_internal(ctx, add_input)) != 0) {
+        goto exit;
+    }
+
+exit:
+    mbedtls_platform_zeroize(add_input, sizeof(add_input));
+    return ret;
+}
+
+/* CTR_DRBG_Reseed with derivation function (SP 800-90A &sect;10.2.1.4.2)
+ * mbedtls_ctr_drbg_reseed(ctx, additional, len, nonce_len)
+ * implements
+ * CTR_DRBG_Reseed(working_state, entropy_input, additional_input)
+ *                -> new_working_state
+ * with inputs
+ *   ctx contains working_state
+ *   additional[:len] = additional_input
+ * and entropy_input comes from calling ctx->f_entropy
+ *                              for (ctx->entropy_len + nonce_len) bytes
+ * and with output
+ *   ctx contains new_working_state
+ */
+static int mbedtls_ctr_drbg_reseed_internal(mbedtls_ctr_drbg_context *ctx,
+                                            const unsigned char *additional,
+                                            size_t len,
+                                            size_t nonce_len)
+{
+    unsigned char seed[MBEDTLS_CTR_DRBG_MAX_SEED_INPUT];
+    size_t seedlen = 0;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if (ctx->entropy_len > MBEDTLS_CTR_DRBG_MAX_SEED_INPUT) {
+        return MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG;
+    }
+    if (nonce_len > MBEDTLS_CTR_DRBG_MAX_SEED_INPUT - ctx->entropy_len) {
+        return MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG;
+    }
+    if (len > MBEDTLS_CTR_DRBG_MAX_SEED_INPUT - ctx->entropy_len - nonce_len) {
+        return MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG;
+    }
+
+    memset(seed, 0, MBEDTLS_CTR_DRBG_MAX_SEED_INPUT);
+
+    /* Gather entropy_len bytes of entropy to seed state. */
+    if (0 != ctx->f_entropy(ctx->p_entropy, seed, ctx->entropy_len)) {
+        return MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED;
+    }
+    seedlen += ctx->entropy_len;
+
+    /* Gather entropy for a nonce if requested. */
+    if (nonce_len != 0) {
+        if (0 != ctx->f_entropy(ctx->p_entropy, seed + seedlen, nonce_len)) {
+            return MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED;
+        }
+        seedlen += nonce_len;
+    }
+
+    /* Add additional data if provided. */
+    if (additional != NULL && len != 0) {
+        memcpy(seed + seedlen, additional, len);
+        seedlen += len;
+    }
+
+    /* Reduce to 384 bits. */
+    if ((ret = block_cipher_df(seed, seed, seedlen)) != 0) {
+        goto exit;
+    }
+
+    /* Update state. */
+    if ((ret = ctr_drbg_update_internal(ctx, seed)) != 0) {
+        goto exit;
+    }
+    ctx->reseed_counter = 1;
+
+exit:
+    mbedtls_platform_zeroize(seed, sizeof(seed));
+    return ret;
+}
+
+int mbedtls_ctr_drbg_reseed(mbedtls_ctr_drbg_context *ctx,
+                            const unsigned char *additional, size_t len)
+{
+    return mbedtls_ctr_drbg_reseed_internal(ctx, additional, len, 0);
+}
+
+/* Return a "good" nonce length for CTR_DRBG. The chosen nonce length
+ * is sufficient to achieve the maximum security strength given the key
+ * size and entropy length. If there is enough entropy in the initial
+ * call to the entropy function to serve as both the entropy input and
+ * the nonce, don't make a second call to get a nonce. */
+static size_t good_nonce_len(size_t entropy_len)
+{
+    if (entropy_len >= MBEDTLS_CTR_DRBG_KEYSIZE * 3 / 2) {
+        return 0;
+    } else {
+        return (entropy_len + 1) / 2;
+    }
+}
+
+/* CTR_DRBG_Instantiate with derivation function (SP 800-90A &sect;10.2.1.3.2)
+ * mbedtls_ctr_drbg_seed(ctx, f_entropy, p_entropy, custom, len)
+ * implements
+ * CTR_DRBG_Instantiate(entropy_input, nonce, personalization_string,
+ *                      security_strength) -> initial_working_state
+ * with inputs
+ *   custom[:len] = nonce || personalization_string
+ * where entropy_input comes from f_entropy for ctx->entropy_len bytes
+ * and with outputs
+ *   ctx = initial_working_state
+ */
+int mbedtls_ctr_drbg_seed(mbedtls_ctr_drbg_context *ctx,
+                          int (*f_entropy)(void *, unsigned char *, size_t),
+                          void *p_entropy,
+                          const unsigned char *custom,
+                          size_t len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char key[MBEDTLS_CTR_DRBG_KEYSIZE];
+    size_t nonce_len;
+
+    memset(key, 0, MBEDTLS_CTR_DRBG_KEYSIZE);
+
+    /* The mutex is initialized iff f_entropy is set. */
+#if defined(MBEDTLS_THREADING_C)
+    mbedtls_mutex_init(&ctx->mutex);
+#endif
+
+    ctx->f_entropy = f_entropy;
+    ctx->p_entropy = p_entropy;
+
+    if (ctx->entropy_len == 0) {
+        ctx->entropy_len = MBEDTLS_CTR_DRBG_ENTROPY_LEN;
+    }
+    /* ctx->reseed_counter contains the desired amount of entropy to
+     * grab for a nonce (see mbedtls_ctr_drbg_set_nonce_len()).
+     * If it's -1, indicating that the entropy nonce length was not set
+     * explicitly, use a sufficiently large nonce for security. */
+    nonce_len = (ctx->reseed_counter >= 0 ?
+                 (size_t) ctx->reseed_counter :
+                 good_nonce_len(ctx->entropy_len));
+
+    /* Initialize with an empty key. */
+#if defined(MBEDTLS_AES_C)
+    if ((ret = mbedtls_aes_setkey_enc(&ctx->aes_ctx, key,
+                                      MBEDTLS_CTR_DRBG_KEYBITS)) != 0) {
+        return ret;
+    }
+#else
+    psa_status_t status;
+
+    status = ctr_drbg_setup_psa_context(&ctx->psa_ctx, key, MBEDTLS_CTR_DRBG_KEYSIZE);
+    if (status != PSA_SUCCESS) {
+        ret = psa_generic_status_to_mbedtls(status);
+        return status;
+    }
+#endif
+
+    /* Do the initial seeding. */
+    if ((ret = mbedtls_ctr_drbg_reseed_internal(ctx, custom, len,
+                                                nonce_len)) != 0) {
+        return ret;
+    }
+    return 0;
+}
+
+/* CTR_DRBG_Generate with derivation function (SP 800-90A &sect;10.2.1.5.2)
+ * mbedtls_ctr_drbg_random_with_add(ctx, output, output_len, additional, add_len)
+ * implements
+ * CTR_DRBG_Reseed(working_state, entropy_input, additional[:add_len])
+ *                -> working_state_after_reseed
+ *                if required, then
+ * CTR_DRBG_Generate(working_state_after_reseed,
+ *                   requested_number_of_bits, additional_input)
+ *                -> status, returned_bits, new_working_state
+ * with inputs
+ *   ctx contains working_state
+ *   requested_number_of_bits = 8 * output_len
+ *   additional[:add_len] = additional_input
+ * and entropy_input comes from calling ctx->f_entropy
+ * and with outputs
+ *   status = SUCCESS (this function does the reseed internally)
+ *   returned_bits = output[:output_len]
+ *   ctx contains new_working_state
+ */
+int mbedtls_ctr_drbg_random_with_add(void *p_rng,
+                                     unsigned char *output, size_t output_len,
+                                     const unsigned char *additional, size_t add_len)
+{
+    int ret = 0;
+    mbedtls_ctr_drbg_context *ctx = (mbedtls_ctr_drbg_context *) p_rng;
+    unsigned char *p = output;
+    struct {
+        unsigned char add_input[MBEDTLS_CTR_DRBG_SEEDLEN];
+        unsigned char tmp[MBEDTLS_CTR_DRBG_BLOCKSIZE];
+    } locals;
+    size_t use_len;
+
+    if (output_len > MBEDTLS_CTR_DRBG_MAX_REQUEST) {
+        return MBEDTLS_ERR_CTR_DRBG_REQUEST_TOO_BIG;
+    }
+
+    if (add_len > MBEDTLS_CTR_DRBG_MAX_INPUT) {
+        return MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG;
+    }
+
+    memset(locals.add_input, 0, MBEDTLS_CTR_DRBG_SEEDLEN);
+
+    if (ctx->reseed_counter > ctx->reseed_interval ||
+        ctx->prediction_resistance) {
+        if ((ret = mbedtls_ctr_drbg_reseed(ctx, additional, add_len)) != 0) {
+            return ret;
+        }
+        add_len = 0;
+    }
+
+    if (add_len > 0) {
+        if ((ret = block_cipher_df(locals.add_input, additional, add_len)) != 0) {
+            goto exit;
+        }
+        if ((ret = ctr_drbg_update_internal(ctx, locals.add_input)) != 0) {
+            goto exit;
+        }
+    }
+
+    while (output_len > 0) {
+        /*
+         * Increase counter (treat it as a 128-bit big-endian integer).
+         */
+        mbedtls_ctr_increment_counter(ctx->counter);
+
+        /*
+         * Crypt counter block
+         */
+#if defined(MBEDTLS_AES_C)
+        if ((ret = mbedtls_aes_crypt_ecb(&ctx->aes_ctx, MBEDTLS_AES_ENCRYPT,
+                                         ctx->counter, locals.tmp)) != 0) {
+            goto exit;
+        }
+#else
+        psa_status_t status;
+        size_t tmp_len;
+
+        status = psa_cipher_update(&ctx->psa_ctx.operation, ctx->counter, sizeof(ctx->counter),
+                                   locals.tmp, MBEDTLS_CTR_DRBG_BLOCKSIZE, &tmp_len);
+        if (status != PSA_SUCCESS) {
+            ret = psa_generic_status_to_mbedtls(status);
+            goto exit;
+        }
+#endif
+
+        use_len = (output_len > MBEDTLS_CTR_DRBG_BLOCKSIZE)
+            ? MBEDTLS_CTR_DRBG_BLOCKSIZE : output_len;
+        /*
+         * Copy random block to destination
+         */
+        memcpy(p, locals.tmp, use_len);
+        p += use_len;
+        output_len -= use_len;
+    }
+
+    if ((ret = ctr_drbg_update_internal(ctx, locals.add_input)) != 0) {
+        goto exit;
+    }
+
+    ctx->reseed_counter++;
+
+exit:
+    mbedtls_platform_zeroize(&locals, sizeof(locals));
+    return ret;
+}
+
+int mbedtls_ctr_drbg_random(void *p_rng, unsigned char *output,
+                            size_t output_len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_ctr_drbg_context *ctx = (mbedtls_ctr_drbg_context *) p_rng;
+
+#if defined(MBEDTLS_THREADING_C)
+    if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) {
+        return ret;
+    }
+#endif
+
+    ret = mbedtls_ctr_drbg_random_with_add(ctx, output, output_len, NULL, 0);
+
+#if defined(MBEDTLS_THREADING_C)
+    if (mbedtls_mutex_unlock(&ctx->mutex) != 0) {
+        return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
+    }
+#endif
+
+    return ret;
+}
+
+#if defined(MBEDTLS_FS_IO)
+int mbedtls_ctr_drbg_write_seed_file(mbedtls_ctr_drbg_context *ctx,
+                                     const char *path)
+{
+    int ret = MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR;
+    FILE *f;
+    unsigned char buf[MBEDTLS_CTR_DRBG_MAX_INPUT];
+
+    if ((f = fopen(path, "wb")) == NULL) {
+        return MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR;
+    }
+
+    /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */
+    mbedtls_setbuf(f, NULL);
+
+    if ((ret = mbedtls_ctr_drbg_random(ctx, buf,
+                                       MBEDTLS_CTR_DRBG_MAX_INPUT)) != 0) {
+        goto exit;
+    }
+
+    if (fwrite(buf, 1, MBEDTLS_CTR_DRBG_MAX_INPUT, f) !=
+        MBEDTLS_CTR_DRBG_MAX_INPUT) {
+        ret = MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR;
+    } else {
+        ret = 0;
+    }
+
+exit:
+    mbedtls_platform_zeroize(buf, sizeof(buf));
+
+    fclose(f);
+    return ret;
+}
+
+int mbedtls_ctr_drbg_update_seed_file(mbedtls_ctr_drbg_context *ctx,
+                                      const char *path)
+{
+    int ret = 0;
+    FILE *f = NULL;
+    size_t n;
+    unsigned char buf[MBEDTLS_CTR_DRBG_MAX_INPUT];
+    unsigned char c;
+
+    if ((f = fopen(path, "rb")) == NULL) {
+        return MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR;
+    }
+
+    /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */
+    mbedtls_setbuf(f, NULL);
+
+    n = fread(buf, 1, sizeof(buf), f);
+    if (fread(&c, 1, 1, f) != 0) {
+        ret = MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG;
+        goto exit;
+    }
+    if (n == 0 || ferror(f)) {
+        ret = MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR;
+        goto exit;
+    }
+    fclose(f);
+    f = NULL;
+
+    ret = mbedtls_ctr_drbg_update(ctx, buf, n);
+
+exit:
+    mbedtls_platform_zeroize(buf, sizeof(buf));
+    if (f != NULL) {
+        fclose(f);
+    }
+    if (ret != 0) {
+        return ret;
+    }
+    return mbedtls_ctr_drbg_write_seed_file(ctx, path);
+}
+#endif /* MBEDTLS_FS_IO */
+
+#if defined(MBEDTLS_SELF_TEST)
+
+/* The CTR_DRBG NIST test vectors used here are available at
+ * https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/drbg/drbgtestvectors.zip
+ *
+ * The parameters used to derive the test data are:
+ *
+ * [AES-128 use df]
+ * [PredictionResistance = True/False]
+ * [EntropyInputLen = 128]
+ * [NonceLen = 64]
+ * [PersonalizationStringLen = 128]
+ * [AdditionalInputLen = 0]
+ * [ReturnedBitsLen = 512]
+ *
+ * [AES-256 use df]
+ * [PredictionResistance = True/False]
+ * [EntropyInputLen = 256]
+ * [NonceLen = 128]
+ * [PersonalizationStringLen = 256]
+ * [AdditionalInputLen = 0]
+ * [ReturnedBitsLen = 512]
+ *
+ */
+
+#if defined(MBEDTLS_CTR_DRBG_USE_128_BIT_KEY)
+static const unsigned char entropy_source_pr[] =
+{ 0x04, 0xd9, 0x49, 0xa6, 0xdc, 0xe8, 0x6e, 0xbb,
+  0xf1, 0x08, 0x77, 0x2b, 0x9e, 0x08, 0xca, 0x92,
+  0x65, 0x16, 0xda, 0x99, 0xa2, 0x59, 0xf3, 0xe8,
+  0x38, 0x7e, 0x3f, 0x6b, 0x51, 0x70, 0x7b, 0x20,
+  0xec, 0x53, 0xd0, 0x66, 0xc3, 0x0f, 0xe3, 0xb0,
+  0xe0, 0x86, 0xa6, 0xaa, 0x5f, 0x72, 0x2f, 0xad,
+  0xf7, 0xef, 0x06, 0xb8, 0xd6, 0x9c, 0x9d, 0xe8 };
+
+static const unsigned char entropy_source_nopr[] =
+{ 0x07, 0x0d, 0x59, 0x63, 0x98, 0x73, 0xa5, 0x45,
+  0x27, 0x38, 0x22, 0x7b, 0x76, 0x85, 0xd1, 0xa9,
+  0x74, 0x18, 0x1f, 0x3c, 0x22, 0xf6, 0x49, 0x20,
+  0x4a, 0x47, 0xc2, 0xf3, 0x85, 0x16, 0xb4, 0x6f,
+  0x00, 0x2e, 0x71, 0xda, 0xed, 0x16, 0x9b, 0x5c };
+
+static const unsigned char pers_pr[] =
+{ 0xbf, 0xa4, 0x9a, 0x8f, 0x7b, 0xd8, 0xb1, 0x7a,
+  0x9d, 0xfa, 0x45, 0xed, 0x21, 0x52, 0xb3, 0xad };
+
+static const unsigned char pers_nopr[] =
+{ 0x4e, 0x61, 0x79, 0xd4, 0xc2, 0x72, 0xa1, 0x4c,
+  0xf1, 0x3d, 0xf6, 0x5e, 0xa3, 0xa6, 0xe5, 0x0f };
+
+static const unsigned char result_pr[] =
+{ 0xc9, 0x0a, 0xaf, 0x85, 0x89, 0x71, 0x44, 0x66,
+  0x4f, 0x25, 0x0b, 0x2b, 0xde, 0xd8, 0xfa, 0xff,
+  0x52, 0x5a, 0x1b, 0x32, 0x5e, 0x41, 0x7a, 0x10,
+  0x1f, 0xef, 0x1e, 0x62, 0x23, 0xe9, 0x20, 0x30,
+  0xc9, 0x0d, 0xad, 0x69, 0xb4, 0x9c, 0x5b, 0xf4,
+  0x87, 0x42, 0xd5, 0xae, 0x5e, 0x5e, 0x43, 0xcc,
+  0xd9, 0xfd, 0x0b, 0x93, 0x4a, 0xe3, 0xd4, 0x06,
+  0x37, 0x36, 0x0f, 0x3f, 0x72, 0x82, 0x0c, 0xcf };
+
+static const unsigned char result_nopr[] =
+{ 0x31, 0xc9, 0x91, 0x09, 0xf8, 0xc5, 0x10, 0x13,
+  0x3c, 0xd3, 0x96, 0xf9, 0xbc, 0x2c, 0x12, 0xc0,
+  0x7c, 0xc1, 0x61, 0x5f, 0xa3, 0x09, 0x99, 0xaf,
+  0xd7, 0xf2, 0x36, 0xfd, 0x40, 0x1a, 0x8b, 0xf2,
+  0x33, 0x38, 0xee, 0x1d, 0x03, 0x5f, 0x83, 0xb7,
+  0xa2, 0x53, 0xdc, 0xee, 0x18, 0xfc, 0xa7, 0xf2,
+  0xee, 0x96, 0xc6, 0xc2, 0xcd, 0x0c, 0xff, 0x02,
+  0x76, 0x70, 0x69, 0xaa, 0x69, 0xd1, 0x3b, 0xe8 };
+#else /* MBEDTLS_CTR_DRBG_USE_128_BIT_KEY */
+
+static const unsigned char entropy_source_pr[] =
+{ 0xca, 0x58, 0xfd, 0xf2, 0xb9, 0x77, 0xcb, 0x49,
+  0xd4, 0xe0, 0x5b, 0xe2, 0x39, 0x50, 0xd9, 0x8a,
+  0x6a, 0xb3, 0xc5, 0x2f, 0xdf, 0x74, 0xd5, 0x85,
+  0x8f, 0xd1, 0xba, 0x64, 0x54, 0x7b, 0xdb, 0x1e,
+  0xc5, 0xea, 0x24, 0xc0, 0xfa, 0x0c, 0x90, 0x15,
+  0x09, 0x20, 0x92, 0x42, 0x32, 0x36, 0x45, 0x45,
+  0x7d, 0x20, 0x76, 0x6b, 0xcf, 0xa2, 0x15, 0xc8,
+  0x2f, 0x9f, 0xbc, 0x88, 0x3f, 0x80, 0xd1, 0x2c,
+  0xb7, 0x16, 0xd1, 0x80, 0x9e, 0xe1, 0xc9, 0xb3,
+  0x88, 0x1b, 0x21, 0x45, 0xef, 0xa1, 0x7f, 0xce,
+  0xc8, 0x92, 0x35, 0x55, 0x2a, 0xd9, 0x1d, 0x8e,
+  0x12, 0x38, 0xac, 0x01, 0x4e, 0x38, 0x18, 0x76,
+  0x9c, 0xf2, 0xb6, 0xd4, 0x13, 0xb6, 0x2c, 0x77,
+  0xc0, 0xe7, 0xe6, 0x0c, 0x47, 0x44, 0x95, 0xbe };
+
+static const unsigned char entropy_source_nopr[] =
+{ 0x4c, 0xfb, 0x21, 0x86, 0x73, 0x34, 0x6d, 0x9d,
+  0x50, 0xc9, 0x22, 0xe4, 0x9b, 0x0d, 0xfc, 0xd0,
+  0x90, 0xad, 0xf0, 0x4f, 0x5c, 0x3b, 0xa4, 0x73,
+  0x27, 0xdf, 0xcd, 0x6f, 0xa6, 0x3a, 0x78, 0x5c,
+  0x01, 0x69, 0x62, 0xa7, 0xfd, 0x27, 0x87, 0xa2,
+  0x4b, 0xf6, 0xbe, 0x47, 0xef, 0x37, 0x83, 0xf1,
+  0xb7, 0xec, 0x46, 0x07, 0x23, 0x63, 0x83, 0x4a,
+  0x1b, 0x01, 0x33, 0xf2, 0xc2, 0x38, 0x91, 0xdb,
+  0x4f, 0x11, 0xa6, 0x86, 0x51, 0xf2, 0x3e, 0x3a,
+  0x8b, 0x1f, 0xdc, 0x03, 0xb1, 0x92, 0xc7, 0xe7 };
+
+static const unsigned char pers_pr[] =
+{ 0x5a, 0x70, 0x95, 0xe9, 0x81, 0x40, 0x52, 0x33,
+  0x91, 0x53, 0x7e, 0x75, 0xd6, 0x19, 0x9d, 0x1e,
+  0xad, 0x0d, 0xc6, 0xa7, 0xde, 0x6c, 0x1f, 0xe0,
+  0xea, 0x18, 0x33, 0xa8, 0x7e, 0x06, 0x20, 0xe9 };
+
+static const unsigned char pers_nopr[] =
+{ 0x88, 0xee, 0xb8, 0xe0, 0xe8, 0x3b, 0xf3, 0x29,
+  0x4b, 0xda, 0xcd, 0x60, 0x99, 0xeb, 0xe4, 0xbf,
+  0x55, 0xec, 0xd9, 0x11, 0x3f, 0x71, 0xe5, 0xeb,
+  0xcb, 0x45, 0x75, 0xf3, 0xd6, 0xa6, 0x8a, 0x6b };
+
+static const unsigned char result_pr[] =
+{ 0xce, 0x2f, 0xdb, 0xb6, 0xd9, 0xb7, 0x39, 0x85,
+  0x04, 0xc5, 0xc0, 0x42, 0xc2, 0x31, 0xc6, 0x1d,
+  0x9b, 0x5a, 0x59, 0xf8, 0x7e, 0x0d, 0xcc, 0x62,
+  0x7b, 0x65, 0x11, 0x55, 0x10, 0xeb, 0x9e, 0x3d,
+  0xa4, 0xfb, 0x1c, 0x6a, 0x18, 0xc0, 0x74, 0xdb,
+  0xdd, 0xe7, 0x02, 0x23, 0x63, 0x21, 0xd0, 0x39,
+  0xf9, 0xa7, 0xc4, 0x52, 0x84, 0x3b, 0x49, 0x40,
+  0x72, 0x2b, 0xb0, 0x6c, 0x9c, 0xdb, 0xc3, 0x43 };
+
+static const unsigned char result_nopr[] =
+{ 0xa5, 0x51, 0x80, 0xa1, 0x90, 0xbe, 0xf3, 0xad,
+  0xaf, 0x28, 0xf6, 0xb7, 0x95, 0xe9, 0xf1, 0xf3,
+  0xd6, 0xdf, 0xa1, 0xb2, 0x7d, 0xd0, 0x46, 0x7b,
+  0x0c, 0x75, 0xf5, 0xfa, 0x93, 0x1e, 0x97, 0x14,
+  0x75, 0xb2, 0x7c, 0xae, 0x03, 0xa2, 0x96, 0x54,
+  0xe2, 0xf4, 0x09, 0x66, 0xea, 0x33, 0x64, 0x30,
+  0x40, 0xd1, 0x40, 0x0f, 0xe6, 0x77, 0x87, 0x3a,
+  0xf8, 0x09, 0x7c, 0x1f, 0xe9, 0xf0, 0x02, 0x98 };
+#endif /* MBEDTLS_CTR_DRBG_USE_128_BIT_KEY */
+
+static size_t test_offset;
+static int ctr_drbg_self_test_entropy(void *data, unsigned char *buf,
+                                      size_t len)
+{
+    const unsigned char *p = data;
+    memcpy(buf, p + test_offset, len);
+    test_offset += len;
+    return 0;
+}
+
+#define CHK(c)    if ((c) != 0)                          \
+    {                                       \
+        if (verbose != 0)                  \
+        mbedtls_printf("failed\n");  \
+        return 1;                        \
+    }
+
+#define SELF_TEST_OUTPUT_DISCARD_LENGTH 64
+
+/*
+ * Checkup routine
+ */
+int mbedtls_ctr_drbg_self_test(int verbose)
+{
+    mbedtls_ctr_drbg_context ctx;
+    unsigned char buf[sizeof(result_pr)];
+
+    mbedtls_ctr_drbg_init(&ctx);
+
+    /*
+     * Based on a NIST CTR_DRBG test vector (PR = True)
+     */
+    if (verbose != 0) {
+        mbedtls_printf("  CTR_DRBG (PR = TRUE) : ");
+    }
+
+    test_offset = 0;
+    mbedtls_ctr_drbg_set_entropy_len(&ctx, MBEDTLS_CTR_DRBG_KEYSIZE);
+    mbedtls_ctr_drbg_set_nonce_len(&ctx, MBEDTLS_CTR_DRBG_KEYSIZE / 2);
+    CHK(mbedtls_ctr_drbg_seed(&ctx,
+                              ctr_drbg_self_test_entropy,
+                              (void *) entropy_source_pr,
+                              pers_pr, MBEDTLS_CTR_DRBG_KEYSIZE));
+    mbedtls_ctr_drbg_set_prediction_resistance(&ctx, MBEDTLS_CTR_DRBG_PR_ON);
+    CHK(mbedtls_ctr_drbg_random(&ctx, buf, SELF_TEST_OUTPUT_DISCARD_LENGTH));
+    CHK(mbedtls_ctr_drbg_random(&ctx, buf, sizeof(result_pr)));
+    CHK(memcmp(buf, result_pr, sizeof(result_pr)));
+
+    mbedtls_ctr_drbg_free(&ctx);
+
+    if (verbose != 0) {
+        mbedtls_printf("passed\n");
+    }
+
+    /*
+     * Based on a NIST CTR_DRBG test vector (PR = FALSE)
+     */
+    if (verbose != 0) {
+        mbedtls_printf("  CTR_DRBG (PR = FALSE): ");
+    }
+
+    mbedtls_ctr_drbg_init(&ctx);
+
+    test_offset = 0;
+    mbedtls_ctr_drbg_set_entropy_len(&ctx, MBEDTLS_CTR_DRBG_KEYSIZE);
+    mbedtls_ctr_drbg_set_nonce_len(&ctx, MBEDTLS_CTR_DRBG_KEYSIZE / 2);
+    CHK(mbedtls_ctr_drbg_seed(&ctx,
+                              ctr_drbg_self_test_entropy,
+                              (void *) entropy_source_nopr,
+                              pers_nopr, MBEDTLS_CTR_DRBG_KEYSIZE));
+    CHK(mbedtls_ctr_drbg_reseed(&ctx, NULL, 0));
+    CHK(mbedtls_ctr_drbg_random(&ctx, buf, SELF_TEST_OUTPUT_DISCARD_LENGTH));
+    CHK(mbedtls_ctr_drbg_random(&ctx, buf, sizeof(result_nopr)));
+    CHK(memcmp(buf, result_nopr, sizeof(result_nopr)));
+
+    mbedtls_ctr_drbg_free(&ctx);
+
+    if (verbose != 0) {
+        mbedtls_printf("passed\n");
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+
+    return 0;
+}
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_CTR_DRBG_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/des.c b/tf-psa-crypto/drivers/builtin/src/des.c
new file mode 100644
index 0000000..f0032b3
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/des.c
@@ -0,0 +1,1042 @@
+/*
+ *  FIPS-46-3 compliant Triple-DES implementation
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ *  DES, on which TDES is based, was originally designed by Horst Feistel
+ *  at IBM in 1974, and was adopted as a standard by NIST (formerly NBS).
+ *
+ *  http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_DES_C)
+
+#include "mbedtls/des.h"
+#include "mbedtls/error.h"
+#include "mbedtls/platform_util.h"
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_DES_ALT)
+
+/*
+ * Expanded DES S-boxes
+ */
+static const uint32_t SB1[64] =
+{
+    0x01010400, 0x00000000, 0x00010000, 0x01010404,
+    0x01010004, 0x00010404, 0x00000004, 0x00010000,
+    0x00000400, 0x01010400, 0x01010404, 0x00000400,
+    0x01000404, 0x01010004, 0x01000000, 0x00000004,
+    0x00000404, 0x01000400, 0x01000400, 0x00010400,
+    0x00010400, 0x01010000, 0x01010000, 0x01000404,
+    0x00010004, 0x01000004, 0x01000004, 0x00010004,
+    0x00000000, 0x00000404, 0x00010404, 0x01000000,
+    0x00010000, 0x01010404, 0x00000004, 0x01010000,
+    0x01010400, 0x01000000, 0x01000000, 0x00000400,
+    0x01010004, 0x00010000, 0x00010400, 0x01000004,
+    0x00000400, 0x00000004, 0x01000404, 0x00010404,
+    0x01010404, 0x00010004, 0x01010000, 0x01000404,
+    0x01000004, 0x00000404, 0x00010404, 0x01010400,
+    0x00000404, 0x01000400, 0x01000400, 0x00000000,
+    0x00010004, 0x00010400, 0x00000000, 0x01010004
+};
+
+static const uint32_t SB2[64] =
+{
+    0x80108020, 0x80008000, 0x00008000, 0x00108020,
+    0x00100000, 0x00000020, 0x80100020, 0x80008020,
+    0x80000020, 0x80108020, 0x80108000, 0x80000000,
+    0x80008000, 0x00100000, 0x00000020, 0x80100020,
+    0x00108000, 0x00100020, 0x80008020, 0x00000000,
+    0x80000000, 0x00008000, 0x00108020, 0x80100000,
+    0x00100020, 0x80000020, 0x00000000, 0x00108000,
+    0x00008020, 0x80108000, 0x80100000, 0x00008020,
+    0x00000000, 0x00108020, 0x80100020, 0x00100000,
+    0x80008020, 0x80100000, 0x80108000, 0x00008000,
+    0x80100000, 0x80008000, 0x00000020, 0x80108020,
+    0x00108020, 0x00000020, 0x00008000, 0x80000000,
+    0x00008020, 0x80108000, 0x00100000, 0x80000020,
+    0x00100020, 0x80008020, 0x80000020, 0x00100020,
+    0x00108000, 0x00000000, 0x80008000, 0x00008020,
+    0x80000000, 0x80100020, 0x80108020, 0x00108000
+};
+
+static const uint32_t SB3[64] =
+{
+    0x00000208, 0x08020200, 0x00000000, 0x08020008,
+    0x08000200, 0x00000000, 0x00020208, 0x08000200,
+    0x00020008, 0x08000008, 0x08000008, 0x00020000,
+    0x08020208, 0x00020008, 0x08020000, 0x00000208,
+    0x08000000, 0x00000008, 0x08020200, 0x00000200,
+    0x00020200, 0x08020000, 0x08020008, 0x00020208,
+    0x08000208, 0x00020200, 0x00020000, 0x08000208,
+    0x00000008, 0x08020208, 0x00000200, 0x08000000,
+    0x08020200, 0x08000000, 0x00020008, 0x00000208,
+    0x00020000, 0x08020200, 0x08000200, 0x00000000,
+    0x00000200, 0x00020008, 0x08020208, 0x08000200,
+    0x08000008, 0x00000200, 0x00000000, 0x08020008,
+    0x08000208, 0x00020000, 0x08000000, 0x08020208,
+    0x00000008, 0x00020208, 0x00020200, 0x08000008,
+    0x08020000, 0x08000208, 0x00000208, 0x08020000,
+    0x00020208, 0x00000008, 0x08020008, 0x00020200
+};
+
+static const uint32_t SB4[64] =
+{
+    0x00802001, 0x00002081, 0x00002081, 0x00000080,
+    0x00802080, 0x00800081, 0x00800001, 0x00002001,
+    0x00000000, 0x00802000, 0x00802000, 0x00802081,
+    0x00000081, 0x00000000, 0x00800080, 0x00800001,
+    0x00000001, 0x00002000, 0x00800000, 0x00802001,
+    0x00000080, 0x00800000, 0x00002001, 0x00002080,
+    0x00800081, 0x00000001, 0x00002080, 0x00800080,
+    0x00002000, 0x00802080, 0x00802081, 0x00000081,
+    0x00800080, 0x00800001, 0x00802000, 0x00802081,
+    0x00000081, 0x00000000, 0x00000000, 0x00802000,
+    0x00002080, 0x00800080, 0x00800081, 0x00000001,
+    0x00802001, 0x00002081, 0x00002081, 0x00000080,
+    0x00802081, 0x00000081, 0x00000001, 0x00002000,
+    0x00800001, 0x00002001, 0x00802080, 0x00800081,
+    0x00002001, 0x00002080, 0x00800000, 0x00802001,
+    0x00000080, 0x00800000, 0x00002000, 0x00802080
+};
+
+static const uint32_t SB5[64] =
+{
+    0x00000100, 0x02080100, 0x02080000, 0x42000100,
+    0x00080000, 0x00000100, 0x40000000, 0x02080000,
+    0x40080100, 0x00080000, 0x02000100, 0x40080100,
+    0x42000100, 0x42080000, 0x00080100, 0x40000000,
+    0x02000000, 0x40080000, 0x40080000, 0x00000000,
+    0x40000100, 0x42080100, 0x42080100, 0x02000100,
+    0x42080000, 0x40000100, 0x00000000, 0x42000000,
+    0x02080100, 0x02000000, 0x42000000, 0x00080100,
+    0x00080000, 0x42000100, 0x00000100, 0x02000000,
+    0x40000000, 0x02080000, 0x42000100, 0x40080100,
+    0x02000100, 0x40000000, 0x42080000, 0x02080100,
+    0x40080100, 0x00000100, 0x02000000, 0x42080000,
+    0x42080100, 0x00080100, 0x42000000, 0x42080100,
+    0x02080000, 0x00000000, 0x40080000, 0x42000000,
+    0x00080100, 0x02000100, 0x40000100, 0x00080000,
+    0x00000000, 0x40080000, 0x02080100, 0x40000100
+};
+
+static const uint32_t SB6[64] =
+{
+    0x20000010, 0x20400000, 0x00004000, 0x20404010,
+    0x20400000, 0x00000010, 0x20404010, 0x00400000,
+    0x20004000, 0x00404010, 0x00400000, 0x20000010,
+    0x00400010, 0x20004000, 0x20000000, 0x00004010,
+    0x00000000, 0x00400010, 0x20004010, 0x00004000,
+    0x00404000, 0x20004010, 0x00000010, 0x20400010,
+    0x20400010, 0x00000000, 0x00404010, 0x20404000,
+    0x00004010, 0x00404000, 0x20404000, 0x20000000,
+    0x20004000, 0x00000010, 0x20400010, 0x00404000,
+    0x20404010, 0x00400000, 0x00004010, 0x20000010,
+    0x00400000, 0x20004000, 0x20000000, 0x00004010,
+    0x20000010, 0x20404010, 0x00404000, 0x20400000,
+    0x00404010, 0x20404000, 0x00000000, 0x20400010,
+    0x00000010, 0x00004000, 0x20400000, 0x00404010,
+    0x00004000, 0x00400010, 0x20004010, 0x00000000,
+    0x20404000, 0x20000000, 0x00400010, 0x20004010
+};
+
+static const uint32_t SB7[64] =
+{
+    0x00200000, 0x04200002, 0x04000802, 0x00000000,
+    0x00000800, 0x04000802, 0x00200802, 0x04200800,
+    0x04200802, 0x00200000, 0x00000000, 0x04000002,
+    0x00000002, 0x04000000, 0x04200002, 0x00000802,
+    0x04000800, 0x00200802, 0x00200002, 0x04000800,
+    0x04000002, 0x04200000, 0x04200800, 0x00200002,
+    0x04200000, 0x00000800, 0x00000802, 0x04200802,
+    0x00200800, 0x00000002, 0x04000000, 0x00200800,
+    0x04000000, 0x00200800, 0x00200000, 0x04000802,
+    0x04000802, 0x04200002, 0x04200002, 0x00000002,
+    0x00200002, 0x04000000, 0x04000800, 0x00200000,
+    0x04200800, 0x00000802, 0x00200802, 0x04200800,
+    0x00000802, 0x04000002, 0x04200802, 0x04200000,
+    0x00200800, 0x00000000, 0x00000002, 0x04200802,
+    0x00000000, 0x00200802, 0x04200000, 0x00000800,
+    0x04000002, 0x04000800, 0x00000800, 0x00200002
+};
+
+static const uint32_t SB8[64] =
+{
+    0x10001040, 0x00001000, 0x00040000, 0x10041040,
+    0x10000000, 0x10001040, 0x00000040, 0x10000000,
+    0x00040040, 0x10040000, 0x10041040, 0x00041000,
+    0x10041000, 0x00041040, 0x00001000, 0x00000040,
+    0x10040000, 0x10000040, 0x10001000, 0x00001040,
+    0x00041000, 0x00040040, 0x10040040, 0x10041000,
+    0x00001040, 0x00000000, 0x00000000, 0x10040040,
+    0x10000040, 0x10001000, 0x00041040, 0x00040000,
+    0x00041040, 0x00040000, 0x10041000, 0x00001000,
+    0x00000040, 0x10040040, 0x00001000, 0x00041040,
+    0x10001000, 0x00000040, 0x10000040, 0x10040000,
+    0x10040040, 0x10000000, 0x00040000, 0x10001040,
+    0x00000000, 0x10041040, 0x00040040, 0x10000040,
+    0x10040000, 0x10001000, 0x10001040, 0x00000000,
+    0x10041040, 0x00041000, 0x00041000, 0x00001040,
+    0x00001040, 0x00040040, 0x10000000, 0x10041000
+};
+
+/*
+ * PC1: left and right halves bit-swap
+ */
+static const uint32_t LHs[16] =
+{
+    0x00000000, 0x00000001, 0x00000100, 0x00000101,
+    0x00010000, 0x00010001, 0x00010100, 0x00010101,
+    0x01000000, 0x01000001, 0x01000100, 0x01000101,
+    0x01010000, 0x01010001, 0x01010100, 0x01010101
+};
+
+static const uint32_t RHs[16] =
+{
+    0x00000000, 0x01000000, 0x00010000, 0x01010000,
+    0x00000100, 0x01000100, 0x00010100, 0x01010100,
+    0x00000001, 0x01000001, 0x00010001, 0x01010001,
+    0x00000101, 0x01000101, 0x00010101, 0x01010101,
+};
+
+/*
+ * Initial Permutation macro
+ */
+#define DES_IP(X, Y)                                                       \
+    do                                                                    \
+    {                                                                     \
+        T = (((X) >>  4) ^ (Y)) & 0x0F0F0F0F; (Y) ^= T; (X) ^= (T <<  4); \
+        T = (((X) >> 16) ^ (Y)) & 0x0000FFFF; (Y) ^= T; (X) ^= (T << 16); \
+        T = (((Y) >>  2) ^ (X)) & 0x33333333; (X) ^= T; (Y) ^= (T <<  2); \
+        T = (((Y) >>  8) ^ (X)) & 0x00FF00FF; (X) ^= T; (Y) ^= (T <<  8); \
+        (Y) = (((Y) << 1) | ((Y) >> 31)) & 0xFFFFFFFF;                    \
+        T = ((X) ^ (Y)) & 0xAAAAAAAA; (Y) ^= T; (X) ^= T;                 \
+        (X) = (((X) << 1) | ((X) >> 31)) & 0xFFFFFFFF;                    \
+    } while (0)
+
+/*
+ * Final Permutation macro
+ */
+#define DES_FP(X, Y)                                                       \
+    do                                                                    \
+    {                                                                     \
+        (X) = (((X) << 31) | ((X) >> 1)) & 0xFFFFFFFF;                    \
+        T = ((X) ^ (Y)) & 0xAAAAAAAA; (X) ^= T; (Y) ^= T;                 \
+        (Y) = (((Y) << 31) | ((Y) >> 1)) & 0xFFFFFFFF;                    \
+        T = (((Y) >>  8) ^ (X)) & 0x00FF00FF; (X) ^= T; (Y) ^= (T <<  8); \
+        T = (((Y) >>  2) ^ (X)) & 0x33333333; (X) ^= T; (Y) ^= (T <<  2); \
+        T = (((X) >> 16) ^ (Y)) & 0x0000FFFF; (Y) ^= T; (X) ^= (T << 16); \
+        T = (((X) >>  4) ^ (Y)) & 0x0F0F0F0F; (Y) ^= T; (X) ^= (T <<  4); \
+    } while (0)
+
+/*
+ * DES round macro
+ */
+#define DES_ROUND(X, Y)                              \
+    do                                              \
+    {                                               \
+        T = *SK++ ^ (X);                            \
+        (Y) ^= SB8[(T) & 0x3F] ^            \
+               SB6[(T >>  8) & 0x3F] ^            \
+               SB4[(T >> 16) & 0x3F] ^            \
+               SB2[(T >> 24) & 0x3F];             \
+                                                    \
+        T = *SK++ ^ (((X) << 28) | ((X) >> 4));     \
+        (Y) ^= SB7[(T) & 0x3F] ^            \
+               SB5[(T >>  8) & 0x3F] ^            \
+               SB3[(T >> 16) & 0x3F] ^            \
+               SB1[(T >> 24) & 0x3F];             \
+    } while (0)
+
+#define SWAP(a, b)                                       \
+    do                                                  \
+    {                                                   \
+        uint32_t t = (a); (a) = (b); (b) = t; t = 0;    \
+    } while (0)
+
+void mbedtls_des_init(mbedtls_des_context *ctx)
+{
+    memset(ctx, 0, sizeof(mbedtls_des_context));
+}
+
+void mbedtls_des_free(mbedtls_des_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_platform_zeroize(ctx, sizeof(mbedtls_des_context));
+}
+
+void mbedtls_des3_init(mbedtls_des3_context *ctx)
+{
+    memset(ctx, 0, sizeof(mbedtls_des3_context));
+}
+
+void mbedtls_des3_free(mbedtls_des3_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_platform_zeroize(ctx, sizeof(mbedtls_des3_context));
+}
+
+static const unsigned char odd_parity_table[128] = { 1,  2,  4,  7,  8,
+                                                     11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31, 32,
+                                                     35, 37, 38, 41, 42, 44,
+                                                     47, 49, 50, 52, 55, 56, 59, 61, 62, 64, 67, 69,
+                                                     70, 73, 74, 76, 79, 81,
+                                                     82, 84, 87, 88, 91, 93, 94, 97, 98, 100, 103,
+                                                     104, 107, 109, 110, 112,
+                                                     115, 117, 118, 121, 122, 124, 127, 128, 131,
+                                                     133, 134, 137, 138, 140,
+                                                     143, 145, 146, 148, 151, 152, 155, 157, 158,
+                                                     161, 162, 164, 167, 168,
+                                                     171, 173, 174, 176, 179, 181, 182, 185, 186,
+                                                     188, 191, 193, 194, 196,
+                                                     199, 200, 203, 205, 206, 208, 211, 213, 214,
+                                                     217, 218, 220, 223, 224,
+                                                     227, 229, 230, 233, 234, 236, 239, 241, 242,
+                                                     244, 247, 248, 251, 253,
+                                                     254 };
+
+void mbedtls_des_key_set_parity(unsigned char key[MBEDTLS_DES_KEY_SIZE])
+{
+    int i;
+
+    for (i = 0; i < MBEDTLS_DES_KEY_SIZE; i++) {
+        key[i] = odd_parity_table[key[i] / 2];
+    }
+}
+
+/*
+ * Check the given key's parity, returns 1 on failure, 0 on SUCCESS
+ */
+int mbedtls_des_key_check_key_parity(const unsigned char key[MBEDTLS_DES_KEY_SIZE])
+{
+    int i;
+
+    for (i = 0; i < MBEDTLS_DES_KEY_SIZE; i++) {
+        if (key[i] != odd_parity_table[key[i] / 2]) {
+            return 1;
+        }
+    }
+
+    return 0;
+}
+
+/*
+ * Table of weak and semi-weak keys
+ *
+ * Source: http://en.wikipedia.org/wiki/Weak_key
+ *
+ * Weak:
+ * Alternating ones + zeros (0x0101010101010101)
+ * Alternating 'F' + 'E' (0xFEFEFEFEFEFEFEFE)
+ * '0xE0E0E0E0F1F1F1F1'
+ * '0x1F1F1F1F0E0E0E0E'
+ *
+ * Semi-weak:
+ * 0x011F011F010E010E and 0x1F011F010E010E01
+ * 0x01E001E001F101F1 and 0xE001E001F101F101
+ * 0x01FE01FE01FE01FE and 0xFE01FE01FE01FE01
+ * 0x1FE01FE00EF10EF1 and 0xE01FE01FF10EF10E
+ * 0x1FFE1FFE0EFE0EFE and 0xFE1FFE1FFE0EFE0E
+ * 0xE0FEE0FEF1FEF1FE and 0xFEE0FEE0FEF1FEF1
+ *
+ */
+
+#define WEAK_KEY_COUNT 16
+
+static const unsigned char weak_key_table[WEAK_KEY_COUNT][MBEDTLS_DES_KEY_SIZE] =
+{
+    { 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01 },
+    { 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE },
+    { 0x1F, 0x1F, 0x1F, 0x1F, 0x0E, 0x0E, 0x0E, 0x0E },
+    { 0xE0, 0xE0, 0xE0, 0xE0, 0xF1, 0xF1, 0xF1, 0xF1 },
+
+    { 0x01, 0x1F, 0x01, 0x1F, 0x01, 0x0E, 0x01, 0x0E },
+    { 0x1F, 0x01, 0x1F, 0x01, 0x0E, 0x01, 0x0E, 0x01 },
+    { 0x01, 0xE0, 0x01, 0xE0, 0x01, 0xF1, 0x01, 0xF1 },
+    { 0xE0, 0x01, 0xE0, 0x01, 0xF1, 0x01, 0xF1, 0x01 },
+    { 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE },
+    { 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01 },
+    { 0x1F, 0xE0, 0x1F, 0xE0, 0x0E, 0xF1, 0x0E, 0xF1 },
+    { 0xE0, 0x1F, 0xE0, 0x1F, 0xF1, 0x0E, 0xF1, 0x0E },
+    { 0x1F, 0xFE, 0x1F, 0xFE, 0x0E, 0xFE, 0x0E, 0xFE },
+    { 0xFE, 0x1F, 0xFE, 0x1F, 0xFE, 0x0E, 0xFE, 0x0E },
+    { 0xE0, 0xFE, 0xE0, 0xFE, 0xF1, 0xFE, 0xF1, 0xFE },
+    { 0xFE, 0xE0, 0xFE, 0xE0, 0xFE, 0xF1, 0xFE, 0xF1 }
+};
+
+int mbedtls_des_key_check_weak(const unsigned char key[MBEDTLS_DES_KEY_SIZE])
+{
+    int i;
+
+    for (i = 0; i < WEAK_KEY_COUNT; i++) {
+        if (memcmp(weak_key_table[i], key, MBEDTLS_DES_KEY_SIZE) == 0) {
+            return 1;
+        }
+    }
+
+    return 0;
+}
+
+#if !defined(MBEDTLS_DES_SETKEY_ALT)
+void mbedtls_des_setkey(uint32_t SK[32], const unsigned char key[MBEDTLS_DES_KEY_SIZE])
+{
+    int i;
+    uint32_t X, Y, T;
+
+    X = MBEDTLS_GET_UINT32_BE(key, 0);
+    Y = MBEDTLS_GET_UINT32_BE(key, 4);
+
+    /*
+     * Permuted Choice 1
+     */
+    T =  ((Y >>  4) ^ X) & 0x0F0F0F0F;  X ^= T; Y ^= (T <<  4);
+    T =  ((Y) ^ X) & 0x10101010;  X ^= T; Y ^= (T);
+
+    X =   (LHs[(X) & 0xF] << 3) | (LHs[(X >>  8) & 0xF] << 2)
+        | (LHs[(X >> 16) & 0xF] << 1) | (LHs[(X >> 24) & 0xF])
+        | (LHs[(X >>  5) & 0xF] << 7) | (LHs[(X >> 13) & 0xF] << 6)
+        | (LHs[(X >> 21) & 0xF] << 5) | (LHs[(X >> 29) & 0xF] << 4);
+
+    Y =   (RHs[(Y >>  1) & 0xF] << 3) | (RHs[(Y >>  9) & 0xF] << 2)
+        | (RHs[(Y >> 17) & 0xF] << 1) | (RHs[(Y >> 25) & 0xF])
+        | (RHs[(Y >>  4) & 0xF] << 7) | (RHs[(Y >> 12) & 0xF] << 6)
+        | (RHs[(Y >> 20) & 0xF] << 5) | (RHs[(Y >> 28) & 0xF] << 4);
+
+    X &= 0x0FFFFFFF;
+    Y &= 0x0FFFFFFF;
+
+    /*
+     * calculate subkeys
+     */
+    for (i = 0; i < 16; i++) {
+        if (i < 2 || i == 8 || i == 15) {
+            X = ((X <<  1) | (X >> 27)) & 0x0FFFFFFF;
+            Y = ((Y <<  1) | (Y >> 27)) & 0x0FFFFFFF;
+        } else {
+            X = ((X <<  2) | (X >> 26)) & 0x0FFFFFFF;
+            Y = ((Y <<  2) | (Y >> 26)) & 0x0FFFFFFF;
+        }
+
+        *SK++ =   ((X <<  4) & 0x24000000) | ((X << 28) & 0x10000000)
+                | ((X << 14) & 0x08000000) | ((X << 18) & 0x02080000)
+                | ((X <<  6) & 0x01000000) | ((X <<  9) & 0x00200000)
+                | ((X >>  1) & 0x00100000) | ((X << 10) & 0x00040000)
+                | ((X <<  2) & 0x00020000) | ((X >> 10) & 0x00010000)
+                | ((Y >> 13) & 0x00002000) | ((Y >>  4) & 0x00001000)
+                | ((Y <<  6) & 0x00000800) | ((Y >>  1) & 0x00000400)
+                | ((Y >> 14) & 0x00000200) | ((Y) & 0x00000100)
+                | ((Y >>  5) & 0x00000020) | ((Y >> 10) & 0x00000010)
+                | ((Y >>  3) & 0x00000008) | ((Y >> 18) & 0x00000004)
+                | ((Y >> 26) & 0x00000002) | ((Y >> 24) & 0x00000001);
+
+        *SK++ =   ((X << 15) & 0x20000000) | ((X << 17) & 0x10000000)
+                | ((X << 10) & 0x08000000) | ((X << 22) & 0x04000000)
+                | ((X >>  2) & 0x02000000) | ((X <<  1) & 0x01000000)
+                | ((X << 16) & 0x00200000) | ((X << 11) & 0x00100000)
+                | ((X <<  3) & 0x00080000) | ((X >>  6) & 0x00040000)
+                | ((X << 15) & 0x00020000) | ((X >>  4) & 0x00010000)
+                | ((Y >>  2) & 0x00002000) | ((Y <<  8) & 0x00001000)
+                | ((Y >> 14) & 0x00000808) | ((Y >>  9) & 0x00000400)
+                | ((Y) & 0x00000200) | ((Y <<  7) & 0x00000100)
+                | ((Y >>  7) & 0x00000020) | ((Y >>  3) & 0x00000011)
+                | ((Y <<  2) & 0x00000004) | ((Y >> 21) & 0x00000002);
+    }
+}
+#endif /* !MBEDTLS_DES_SETKEY_ALT */
+
+/*
+ * DES key schedule (56-bit, encryption)
+ */
+int mbedtls_des_setkey_enc(mbedtls_des_context *ctx, const unsigned char key[MBEDTLS_DES_KEY_SIZE])
+{
+    mbedtls_des_setkey(ctx->sk, key);
+
+    return 0;
+}
+
+/*
+ * DES key schedule (56-bit, decryption)
+ */
+int mbedtls_des_setkey_dec(mbedtls_des_context *ctx, const unsigned char key[MBEDTLS_DES_KEY_SIZE])
+{
+    int i;
+
+    mbedtls_des_setkey(ctx->sk, key);
+
+    for (i = 0; i < 16; i += 2) {
+        SWAP(ctx->sk[i], ctx->sk[30 - i]);
+        SWAP(ctx->sk[i + 1], ctx->sk[31 - i]);
+    }
+
+    return 0;
+}
+
+static void des3_set2key(uint32_t esk[96],
+                         uint32_t dsk[96],
+                         const unsigned char key[MBEDTLS_DES_KEY_SIZE*2])
+{
+    int i;
+
+    mbedtls_des_setkey(esk, key);
+    mbedtls_des_setkey(dsk + 32, key + 8);
+
+    for (i = 0; i < 32; i += 2) {
+        dsk[i] = esk[30 - i];
+        dsk[i +  1] = esk[31 - i];
+
+        esk[i + 32] = dsk[62 - i];
+        esk[i + 33] = dsk[63 - i];
+
+        esk[i + 64] = esk[i];
+        esk[i + 65] = esk[i + 1];
+
+        dsk[i + 64] = dsk[i];
+        dsk[i + 65] = dsk[i + 1];
+    }
+}
+
+/*
+ * Triple-DES key schedule (112-bit, encryption)
+ */
+int mbedtls_des3_set2key_enc(mbedtls_des3_context *ctx,
+                             const unsigned char key[MBEDTLS_DES_KEY_SIZE * 2])
+{
+    uint32_t sk[96];
+
+    des3_set2key(ctx->sk, sk, key);
+    mbedtls_platform_zeroize(sk,  sizeof(sk));
+
+    return 0;
+}
+
+/*
+ * Triple-DES key schedule (112-bit, decryption)
+ */
+int mbedtls_des3_set2key_dec(mbedtls_des3_context *ctx,
+                             const unsigned char key[MBEDTLS_DES_KEY_SIZE * 2])
+{
+    uint32_t sk[96];
+
+    des3_set2key(sk, ctx->sk, key);
+    mbedtls_platform_zeroize(sk,  sizeof(sk));
+
+    return 0;
+}
+
+static void des3_set3key(uint32_t esk[96],
+                         uint32_t dsk[96],
+                         const unsigned char key[24])
+{
+    int i;
+
+    mbedtls_des_setkey(esk, key);
+    mbedtls_des_setkey(dsk + 32, key +  8);
+    mbedtls_des_setkey(esk + 64, key + 16);
+
+    for (i = 0; i < 32; i += 2) {
+        dsk[i] = esk[94 - i];
+        dsk[i +  1] = esk[95 - i];
+
+        esk[i + 32] = dsk[62 - i];
+        esk[i + 33] = dsk[63 - i];
+
+        dsk[i + 64] = esk[30 - i];
+        dsk[i + 65] = esk[31 - i];
+    }
+}
+
+/*
+ * Triple-DES key schedule (168-bit, encryption)
+ */
+int mbedtls_des3_set3key_enc(mbedtls_des3_context *ctx,
+                             const unsigned char key[MBEDTLS_DES_KEY_SIZE * 3])
+{
+    uint32_t sk[96];
+
+    des3_set3key(ctx->sk, sk, key);
+    mbedtls_platform_zeroize(sk,  sizeof(sk));
+
+    return 0;
+}
+
+/*
+ * Triple-DES key schedule (168-bit, decryption)
+ */
+int mbedtls_des3_set3key_dec(mbedtls_des3_context *ctx,
+                             const unsigned char key[MBEDTLS_DES_KEY_SIZE * 3])
+{
+    uint32_t sk[96];
+
+    des3_set3key(sk, ctx->sk, key);
+    mbedtls_platform_zeroize(sk,  sizeof(sk));
+
+    return 0;
+}
+
+/*
+ * DES-ECB block encryption/decryption
+ */
+#if !defined(MBEDTLS_DES_CRYPT_ECB_ALT)
+int mbedtls_des_crypt_ecb(mbedtls_des_context *ctx,
+                          const unsigned char input[8],
+                          unsigned char output[8])
+{
+    int i;
+    uint32_t X, Y, T, *SK;
+
+    SK = ctx->sk;
+
+    X = MBEDTLS_GET_UINT32_BE(input, 0);
+    Y = MBEDTLS_GET_UINT32_BE(input, 4);
+
+    DES_IP(X, Y);
+
+    for (i = 0; i < 8; i++) {
+        DES_ROUND(Y, X);
+        DES_ROUND(X, Y);
+    }
+
+    DES_FP(Y, X);
+
+    MBEDTLS_PUT_UINT32_BE(Y, output, 0);
+    MBEDTLS_PUT_UINT32_BE(X, output, 4);
+
+    return 0;
+}
+#endif /* !MBEDTLS_DES_CRYPT_ECB_ALT */
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+/*
+ * DES-CBC buffer encryption/decryption
+ */
+int mbedtls_des_crypt_cbc(mbedtls_des_context *ctx,
+                          int mode,
+                          size_t length,
+                          unsigned char iv[8],
+                          const unsigned char *input,
+                          unsigned char *output)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char temp[8];
+
+    if (length % 8) {
+        return MBEDTLS_ERR_DES_INVALID_INPUT_LENGTH;
+    }
+
+    if (mode == MBEDTLS_DES_ENCRYPT) {
+        while (length > 0) {
+            mbedtls_xor(output, input, iv, 8);
+
+            ret = mbedtls_des_crypt_ecb(ctx, output, output);
+            if (ret != 0) {
+                goto exit;
+            }
+            memcpy(iv, output, 8);
+
+            input  += 8;
+            output += 8;
+            length -= 8;
+        }
+    } else { /* MBEDTLS_DES_DECRYPT */
+        while (length > 0) {
+            memcpy(temp, input, 8);
+            ret = mbedtls_des_crypt_ecb(ctx, input, output);
+            if (ret != 0) {
+                goto exit;
+            }
+
+            mbedtls_xor(output, output, iv, 8);
+
+            memcpy(iv, temp, 8);
+
+            input  += 8;
+            output += 8;
+            length -= 8;
+        }
+    }
+    ret = 0;
+
+exit:
+    return ret;
+}
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+/*
+ * 3DES-ECB block encryption/decryption
+ */
+#if !defined(MBEDTLS_DES3_CRYPT_ECB_ALT)
+int mbedtls_des3_crypt_ecb(mbedtls_des3_context *ctx,
+                           const unsigned char input[8],
+                           unsigned char output[8])
+{
+    int i;
+    uint32_t X, Y, T, *SK;
+
+    SK = ctx->sk;
+
+    X = MBEDTLS_GET_UINT32_BE(input, 0);
+    Y = MBEDTLS_GET_UINT32_BE(input, 4);
+
+    DES_IP(X, Y);
+
+    for (i = 0; i < 8; i++) {
+        DES_ROUND(Y, X);
+        DES_ROUND(X, Y);
+    }
+
+    for (i = 0; i < 8; i++) {
+        DES_ROUND(X, Y);
+        DES_ROUND(Y, X);
+    }
+
+    for (i = 0; i < 8; i++) {
+        DES_ROUND(Y, X);
+        DES_ROUND(X, Y);
+    }
+
+    DES_FP(Y, X);
+
+    MBEDTLS_PUT_UINT32_BE(Y, output, 0);
+    MBEDTLS_PUT_UINT32_BE(X, output, 4);
+
+    return 0;
+}
+#endif /* !MBEDTLS_DES3_CRYPT_ECB_ALT */
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+/*
+ * 3DES-CBC buffer encryption/decryption
+ */
+int mbedtls_des3_crypt_cbc(mbedtls_des3_context *ctx,
+                           int mode,
+                           size_t length,
+                           unsigned char iv[8],
+                           const unsigned char *input,
+                           unsigned char *output)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char temp[8];
+
+    if (length % 8) {
+        return MBEDTLS_ERR_DES_INVALID_INPUT_LENGTH;
+    }
+
+    if (mode == MBEDTLS_DES_ENCRYPT) {
+        while (length > 0) {
+            mbedtls_xor(output, input, iv, 8);
+
+            ret = mbedtls_des3_crypt_ecb(ctx, output, output);
+            if (ret != 0) {
+                goto exit;
+            }
+            memcpy(iv, output, 8);
+
+            input  += 8;
+            output += 8;
+            length -= 8;
+        }
+    } else { /* MBEDTLS_DES_DECRYPT */
+        while (length > 0) {
+            memcpy(temp, input, 8);
+            ret = mbedtls_des3_crypt_ecb(ctx, input, output);
+            if (ret != 0) {
+                goto exit;
+            }
+
+            mbedtls_xor(output, output, iv, 8);
+
+            memcpy(iv, temp, 8);
+
+            input  += 8;
+            output += 8;
+            length -= 8;
+        }
+    }
+    ret = 0;
+
+exit:
+    return ret;
+}
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#endif /* !MBEDTLS_DES_ALT */
+
+#if defined(MBEDTLS_SELF_TEST)
+/*
+ * DES and 3DES test vectors from:
+ *
+ * http://csrc.nist.gov/groups/STM/cavp/documents/des/tripledes-vectors.zip
+ */
+static const unsigned char des3_test_keys[24] =
+{
+    0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF,
+    0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF, 0x01,
+    0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF, 0x01, 0x23
+};
+
+static const unsigned char des3_test_buf[8] =
+{
+    0x4E, 0x6F, 0x77, 0x20, 0x69, 0x73, 0x20, 0x74
+};
+
+static const unsigned char des3_test_ecb_dec[3][8] =
+{
+    { 0x37, 0x2B, 0x98, 0xBF, 0x52, 0x65, 0xB0, 0x59 },
+    { 0xC2, 0x10, 0x19, 0x9C, 0x38, 0x5A, 0x65, 0xA1 },
+    { 0xA2, 0x70, 0x56, 0x68, 0x69, 0xE5, 0x15, 0x1D }
+};
+
+static const unsigned char des3_test_ecb_enc[3][8] =
+{
+    { 0x1C, 0xD5, 0x97, 0xEA, 0x84, 0x26, 0x73, 0xFB },
+    { 0xB3, 0x92, 0x4D, 0xF3, 0xC5, 0xB5, 0x42, 0x93 },
+    { 0xDA, 0x37, 0x64, 0x41, 0xBA, 0x6F, 0x62, 0x6F }
+};
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static const unsigned char des3_test_iv[8] =
+{
+    0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF,
+};
+
+static const unsigned char des3_test_cbc_dec[3][8] =
+{
+    { 0x58, 0xD9, 0x48, 0xEF, 0x85, 0x14, 0x65, 0x9A },
+    { 0x5F, 0xC8, 0x78, 0xD4, 0xD7, 0x92, 0xD9, 0x54 },
+    { 0x25, 0xF9, 0x75, 0x85, 0xA8, 0x1E, 0x48, 0xBF }
+};
+
+static const unsigned char des3_test_cbc_enc[3][8] =
+{
+    { 0x91, 0x1C, 0x6D, 0xCF, 0x48, 0xA7, 0xC3, 0x4D },
+    { 0x60, 0x1A, 0x76, 0x8F, 0xA1, 0xF9, 0x66, 0xF1 },
+    { 0xA1, 0x50, 0x0F, 0x99, 0xB2, 0xCD, 0x64, 0x76 }
+};
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+/*
+ * Checkup routine
+ */
+int mbedtls_des_self_test(int verbose)
+{
+    int i, j, u, v, ret = 0;
+    mbedtls_des_context ctx;
+    mbedtls_des3_context ctx3;
+    unsigned char buf[8];
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    unsigned char prv[8];
+    unsigned char iv[8];
+#endif
+
+    mbedtls_des_init(&ctx);
+    mbedtls_des3_init(&ctx3);
+    /*
+     * ECB mode
+     */
+    for (i = 0; i < 6; i++) {
+        u = i >> 1;
+        v = i  & 1;
+
+        if (verbose != 0) {
+            mbedtls_printf("  DES%c-ECB-%3d (%s): ",
+                           (u == 0) ? ' ' : '3', 56 + u * 56,
+                           (v == MBEDTLS_DES_DECRYPT) ? "dec" : "enc");
+        }
+
+        memcpy(buf, des3_test_buf, 8);
+
+        switch (i) {
+            case 0:
+                ret = mbedtls_des_setkey_dec(&ctx, des3_test_keys);
+                break;
+
+            case 1:
+                ret = mbedtls_des_setkey_enc(&ctx, des3_test_keys);
+                break;
+
+            case 2:
+                ret = mbedtls_des3_set2key_dec(&ctx3, des3_test_keys);
+                break;
+
+            case 3:
+                ret = mbedtls_des3_set2key_enc(&ctx3, des3_test_keys);
+                break;
+
+            case 4:
+                ret = mbedtls_des3_set3key_dec(&ctx3, des3_test_keys);
+                break;
+
+            case 5:
+                ret = mbedtls_des3_set3key_enc(&ctx3, des3_test_keys);
+                break;
+
+            default:
+                return 1;
+        }
+        if (ret != 0) {
+            goto exit;
+        }
+
+        for (j = 0; j < 100; j++) {
+            if (u == 0) {
+                ret = mbedtls_des_crypt_ecb(&ctx, buf, buf);
+            } else {
+                ret = mbedtls_des3_crypt_ecb(&ctx3, buf, buf);
+            }
+            if (ret != 0) {
+                goto exit;
+            }
+        }
+
+        if ((v == MBEDTLS_DES_DECRYPT &&
+             memcmp(buf, des3_test_ecb_dec[u], 8) != 0) ||
+            (v != MBEDTLS_DES_DECRYPT &&
+             memcmp(buf, des3_test_ecb_enc[u], 8) != 0)) {
+            if (verbose != 0) {
+                mbedtls_printf("failed\n");
+            }
+
+            ret = 1;
+            goto exit;
+        }
+
+        if (verbose != 0) {
+            mbedtls_printf("passed\n");
+        }
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+    /*
+     * CBC mode
+     */
+    for (i = 0; i < 6; i++) {
+        u = i >> 1;
+        v = i  & 1;
+
+        if (verbose != 0) {
+            mbedtls_printf("  DES%c-CBC-%3d (%s): ",
+                           (u == 0) ? ' ' : '3', 56 + u * 56,
+                           (v == MBEDTLS_DES_DECRYPT) ? "dec" : "enc");
+        }
+
+        memcpy(iv,  des3_test_iv,  8);
+        memcpy(prv, des3_test_iv,  8);
+        memcpy(buf, des3_test_buf, 8);
+
+        switch (i) {
+            case 0:
+                ret = mbedtls_des_setkey_dec(&ctx, des3_test_keys);
+                break;
+
+            case 1:
+                ret = mbedtls_des_setkey_enc(&ctx, des3_test_keys);
+                break;
+
+            case 2:
+                ret = mbedtls_des3_set2key_dec(&ctx3, des3_test_keys);
+                break;
+
+            case 3:
+                ret = mbedtls_des3_set2key_enc(&ctx3, des3_test_keys);
+                break;
+
+            case 4:
+                ret = mbedtls_des3_set3key_dec(&ctx3, des3_test_keys);
+                break;
+
+            case 5:
+                ret = mbedtls_des3_set3key_enc(&ctx3, des3_test_keys);
+                break;
+
+            default:
+                return 1;
+        }
+        if (ret != 0) {
+            goto exit;
+        }
+
+        if (v == MBEDTLS_DES_DECRYPT) {
+            for (j = 0; j < 100; j++) {
+                if (u == 0) {
+                    ret = mbedtls_des_crypt_cbc(&ctx, v, 8, iv, buf, buf);
+                } else {
+                    ret = mbedtls_des3_crypt_cbc(&ctx3, v, 8, iv, buf, buf);
+                }
+                if (ret != 0) {
+                    goto exit;
+                }
+            }
+        } else {
+            for (j = 0; j < 100; j++) {
+                unsigned char tmp[8];
+
+                if (u == 0) {
+                    ret = mbedtls_des_crypt_cbc(&ctx, v, 8, iv, buf, buf);
+                } else {
+                    ret = mbedtls_des3_crypt_cbc(&ctx3, v, 8, iv, buf, buf);
+                }
+                if (ret != 0) {
+                    goto exit;
+                }
+
+                memcpy(tmp, prv, 8);
+                memcpy(prv, buf, 8);
+                memcpy(buf, tmp, 8);
+            }
+
+            memcpy(buf, prv, 8);
+        }
+
+        if ((v == MBEDTLS_DES_DECRYPT &&
+             memcmp(buf, des3_test_cbc_dec[u], 8) != 0) ||
+            (v != MBEDTLS_DES_DECRYPT &&
+             memcmp(buf, des3_test_cbc_enc[u], 8) != 0)) {
+            if (verbose != 0) {
+                mbedtls_printf("failed\n");
+            }
+
+            ret = 1;
+            goto exit;
+        }
+
+        if (verbose != 0) {
+            mbedtls_printf("passed\n");
+        }
+    }
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+
+exit:
+    mbedtls_des_free(&ctx);
+    mbedtls_des3_free(&ctx3);
+
+    if (ret != 0) {
+        ret = 1;
+    }
+    return ret;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_DES_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/dhm.c b/tf-psa-crypto/drivers/builtin/src/dhm.c
new file mode 100644
index 0000000..75af8b7
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/dhm.c
@@ -0,0 +1,709 @@
+/*
+ *  Diffie-Hellman-Merkle key exchange
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ *  The following sources were referenced in the design of this implementation
+ *  of the Diffie-Hellman-Merkle algorithm:
+ *
+ *  [1] Handbook of Applied Cryptography - 1997, Chapter 12
+ *      Menezes, van Oorschot and Vanstone
+ *
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_DHM_C)
+
+#include "mbedtls/dhm.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_PEM_PARSE_C)
+#include "mbedtls/pem.h"
+#endif
+
+#if defined(MBEDTLS_ASN1_PARSE_C)
+#include "mbedtls/asn1.h"
+#endif
+
+#include "mbedtls/platform.h"
+
+/*
+ * helper to validate the mbedtls_mpi size and import it
+ */
+static int dhm_read_bignum(mbedtls_mpi *X,
+                           unsigned char **p,
+                           const unsigned char *end)
+{
+    int ret, n;
+
+    if (end - *p < 2) {
+        return MBEDTLS_ERR_DHM_BAD_INPUT_DATA;
+    }
+
+    n = MBEDTLS_GET_UINT16_BE(*p, 0);
+    (*p) += 2;
+
+    if ((size_t) (end - *p) < (size_t) n) {
+        return MBEDTLS_ERR_DHM_BAD_INPUT_DATA;
+    }
+
+    if ((ret = mbedtls_mpi_read_binary(X, *p, n)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_DHM_READ_PARAMS_FAILED, ret);
+    }
+
+    (*p) += n;
+
+    return 0;
+}
+
+/*
+ * Verify sanity of parameter with regards to P
+ *
+ * Parameter should be: 2 <= public_param <= P - 2
+ *
+ * This means that we need to return an error if
+ *              public_param < 2 or public_param > P-2
+ *
+ * For more information on the attack, see:
+ *  http://www.cl.cam.ac.uk/~rja14/Papers/psandqs.pdf
+ *  http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2005-2643
+ */
+static int dhm_check_range(const mbedtls_mpi *param, const mbedtls_mpi *P)
+{
+    mbedtls_mpi U;
+    int ret = 0;
+
+    mbedtls_mpi_init(&U);
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&U, P, 2));
+
+    if (mbedtls_mpi_cmp_int(param, 2) < 0 ||
+        mbedtls_mpi_cmp_mpi(param, &U) > 0) {
+        ret = MBEDTLS_ERR_DHM_BAD_INPUT_DATA;
+    }
+
+cleanup:
+    mbedtls_mpi_free(&U);
+    return ret;
+}
+
+void mbedtls_dhm_init(mbedtls_dhm_context *ctx)
+{
+    memset(ctx, 0, sizeof(mbedtls_dhm_context));
+}
+
+size_t mbedtls_dhm_get_bitlen(const mbedtls_dhm_context *ctx)
+{
+    return mbedtls_mpi_bitlen(&ctx->P);
+}
+
+size_t mbedtls_dhm_get_len(const mbedtls_dhm_context *ctx)
+{
+    return mbedtls_mpi_size(&ctx->P);
+}
+
+int mbedtls_dhm_get_value(const mbedtls_dhm_context *ctx,
+                          mbedtls_dhm_parameter param,
+                          mbedtls_mpi *dest)
+{
+    const mbedtls_mpi *src = NULL;
+    switch (param) {
+        case MBEDTLS_DHM_PARAM_P:
+            src = &ctx->P;
+            break;
+        case MBEDTLS_DHM_PARAM_G:
+            src = &ctx->G;
+            break;
+        case MBEDTLS_DHM_PARAM_X:
+            src = &ctx->X;
+            break;
+        case MBEDTLS_DHM_PARAM_GX:
+            src = &ctx->GX;
+            break;
+        case MBEDTLS_DHM_PARAM_GY:
+            src = &ctx->GY;
+            break;
+        case MBEDTLS_DHM_PARAM_K:
+            src = &ctx->K;
+            break;
+        default:
+            return MBEDTLS_ERR_DHM_BAD_INPUT_DATA;
+    }
+    return mbedtls_mpi_copy(dest, src);
+}
+
+/*
+ * Parse the ServerKeyExchange parameters
+ */
+int mbedtls_dhm_read_params(mbedtls_dhm_context *ctx,
+                            unsigned char **p,
+                            const unsigned char *end)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if ((ret = dhm_read_bignum(&ctx->P,  p, end)) != 0 ||
+        (ret = dhm_read_bignum(&ctx->G,  p, end)) != 0 ||
+        (ret = dhm_read_bignum(&ctx->GY, p, end)) != 0) {
+        return ret;
+    }
+
+    if ((ret = dhm_check_range(&ctx->GY, &ctx->P)) != 0) {
+        return ret;
+    }
+
+    return 0;
+}
+
+/*
+ * Pick a random R in the range [2, M-2] for blinding or key generation.
+ */
+static int dhm_random_below(mbedtls_mpi *R, const mbedtls_mpi *M,
+                            int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    int ret;
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_random(R, 3, M, f_rng, p_rng));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(R, R, 1));
+
+cleanup:
+    return ret;
+}
+
+static int dhm_make_common(mbedtls_dhm_context *ctx, int x_size,
+                           int (*f_rng)(void *, unsigned char *, size_t),
+                           void *p_rng)
+{
+    int ret = 0;
+
+    if (mbedtls_mpi_cmp_int(&ctx->P, 0) == 0) {
+        return MBEDTLS_ERR_DHM_BAD_INPUT_DATA;
+    }
+    if (x_size < 0) {
+        return MBEDTLS_ERR_DHM_BAD_INPUT_DATA;
+    }
+
+    if ((unsigned) x_size < mbedtls_mpi_size(&ctx->P)) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&ctx->X, x_size, f_rng, p_rng));
+    } else {
+        /* Generate X as large as possible ( <= P - 2 ) */
+        ret = dhm_random_below(&ctx->X, &ctx->P, f_rng, p_rng);
+        if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
+            return MBEDTLS_ERR_DHM_MAKE_PARAMS_FAILED;
+        }
+        if (ret != 0) {
+            return ret;
+        }
+    }
+
+    /*
+     * Calculate GX = G^X mod P
+     */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&ctx->GX, &ctx->G, &ctx->X,
+                                        &ctx->P, &ctx->RP));
+
+    if ((ret = dhm_check_range(&ctx->GX, &ctx->P)) != 0) {
+        return ret;
+    }
+
+cleanup:
+    return ret;
+}
+
+/*
+ * Setup and write the ServerKeyExchange parameters
+ */
+int mbedtls_dhm_make_params(mbedtls_dhm_context *ctx, int x_size,
+                            unsigned char *output, size_t *olen,
+                            int (*f_rng)(void *, unsigned char *, size_t),
+                            void *p_rng)
+{
+    int ret;
+    size_t n1, n2, n3;
+    unsigned char *p;
+
+    ret = dhm_make_common(ctx, x_size, f_rng, p_rng);
+    if (ret != 0) {
+        goto cleanup;
+    }
+
+    /*
+     * Export P, G, GX. RFC 5246 §4.4 states that "leading zero octets are
+     * not required". We omit leading zeros for compactness.
+     */
+#define DHM_MPI_EXPORT(X, n)                                          \
+    do {                                                                \
+        MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary((X),               \
+                                                 p + 2,               \
+                                                 (n)));           \
+        *p++ = MBEDTLS_BYTE_1(n);                                     \
+        *p++ = MBEDTLS_BYTE_0(n);                                     \
+        p += (n);                                                     \
+    } while (0)
+
+    n1 = mbedtls_mpi_size(&ctx->P);
+    n2 = mbedtls_mpi_size(&ctx->G);
+    n3 = mbedtls_mpi_size(&ctx->GX);
+
+    p = output;
+    DHM_MPI_EXPORT(&ctx->P, n1);
+    DHM_MPI_EXPORT(&ctx->G, n2);
+    DHM_MPI_EXPORT(&ctx->GX, n3);
+
+    *olen = (size_t) (p - output);
+
+cleanup:
+    if (ret != 0 && ret > -128) {
+        ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_DHM_MAKE_PARAMS_FAILED, ret);
+    }
+    return ret;
+}
+
+/*
+ * Set prime modulus and generator
+ */
+int mbedtls_dhm_set_group(mbedtls_dhm_context *ctx,
+                          const mbedtls_mpi *P,
+                          const mbedtls_mpi *G)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if ((ret = mbedtls_mpi_copy(&ctx->P, P)) != 0 ||
+        (ret = mbedtls_mpi_copy(&ctx->G, G)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_DHM_SET_GROUP_FAILED, ret);
+    }
+
+    return 0;
+}
+
+/*
+ * Import the peer's public value G^Y
+ */
+int mbedtls_dhm_read_public(mbedtls_dhm_context *ctx,
+                            const unsigned char *input, size_t ilen)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if (ilen < 1 || ilen > mbedtls_dhm_get_len(ctx)) {
+        return MBEDTLS_ERR_DHM_BAD_INPUT_DATA;
+    }
+
+    if ((ret = mbedtls_mpi_read_binary(&ctx->GY, input, ilen)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_DHM_READ_PUBLIC_FAILED, ret);
+    }
+
+    return 0;
+}
+
+/*
+ * Create own private value X and export G^X
+ */
+int mbedtls_dhm_make_public(mbedtls_dhm_context *ctx, int x_size,
+                            unsigned char *output, size_t olen,
+                            int (*f_rng)(void *, unsigned char *, size_t),
+                            void *p_rng)
+{
+    int ret;
+
+    if (olen < 1 || olen > mbedtls_dhm_get_len(ctx)) {
+        return MBEDTLS_ERR_DHM_BAD_INPUT_DATA;
+    }
+
+    ret = dhm_make_common(ctx, x_size, f_rng, p_rng);
+    if (ret == MBEDTLS_ERR_DHM_MAKE_PARAMS_FAILED) {
+        return MBEDTLS_ERR_DHM_MAKE_PUBLIC_FAILED;
+    }
+    if (ret != 0) {
+        goto cleanup;
+    }
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->GX, output, olen));
+
+cleanup:
+    if (ret != 0 && ret > -128) {
+        ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_DHM_MAKE_PUBLIC_FAILED, ret);
+    }
+    return ret;
+}
+
+
+/*
+ * Use the blinding method and optimisation suggested in section 10 of:
+ *  KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA,
+ *  DSS, and other systems. In : Advances in Cryptology-CRYPTO'96. Springer
+ *  Berlin Heidelberg, 1996. p. 104-113.
+ */
+static int dhm_update_blinding(mbedtls_dhm_context *ctx,
+                               int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    int ret;
+    mbedtls_mpi R;
+
+    mbedtls_mpi_init(&R);
+
+    /*
+     * Don't use any blinding the first time a particular X is used,
+     * but remember it to use blinding next time.
+     */
+    if (mbedtls_mpi_cmp_mpi(&ctx->X, &ctx->pX) != 0) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&ctx->pX, &ctx->X));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&ctx->Vi, 1));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&ctx->Vf, 1));
+
+        return 0;
+    }
+
+    /*
+     * Ok, we need blinding. Can we re-use existing values?
+     * If yes, just update them by squaring them.
+     */
+    if (mbedtls_mpi_cmp_int(&ctx->Vi, 1) != 0) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vi, &ctx->Vi));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->P));
+
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vf, &ctx->Vf, &ctx->Vf));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vf, &ctx->Vf, &ctx->P));
+
+        return 0;
+    }
+
+    /*
+     * We need to generate blinding values from scratch
+     */
+
+    /* Vi = random( 2, P-2 ) */
+    MBEDTLS_MPI_CHK(dhm_random_below(&ctx->Vi, &ctx->P, f_rng, p_rng));
+
+    /* Vf = Vi^-X mod P
+     * First compute Vi^-1 = R * (R Vi)^-1, (avoiding leaks from inv_mod),
+     * then elevate to the Xth power. */
+    MBEDTLS_MPI_CHK(dhm_random_below(&R, &ctx->P, f_rng, p_rng));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vf, &ctx->Vi, &R));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vf, &ctx->Vf, &ctx->P));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&ctx->Vf, &ctx->Vf, &ctx->P));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vf, &ctx->Vf, &R));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vf, &ctx->Vf, &ctx->P));
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&ctx->Vf, &ctx->Vf, &ctx->X, &ctx->P, &ctx->RP));
+
+cleanup:
+    mbedtls_mpi_free(&R);
+
+    return ret;
+}
+
+/*
+ * Derive and export the shared secret (G^Y)^X mod P
+ */
+int mbedtls_dhm_calc_secret(mbedtls_dhm_context *ctx,
+                            unsigned char *output, size_t output_size, size_t *olen,
+                            int (*f_rng)(void *, unsigned char *, size_t),
+                            void *p_rng)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_mpi GYb;
+
+    if (f_rng == NULL) {
+        return MBEDTLS_ERR_DHM_BAD_INPUT_DATA;
+    }
+
+    if (output_size < mbedtls_dhm_get_len(ctx)) {
+        return MBEDTLS_ERR_DHM_BAD_INPUT_DATA;
+    }
+
+    if ((ret = dhm_check_range(&ctx->GY, &ctx->P)) != 0) {
+        return ret;
+    }
+
+    mbedtls_mpi_init(&GYb);
+
+    /* Blind peer's value */
+    MBEDTLS_MPI_CHK(dhm_update_blinding(ctx, f_rng, p_rng));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&GYb, &ctx->GY, &ctx->Vi));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&GYb, &GYb, &ctx->P));
+
+    /* Do modular exponentiation */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&ctx->K, &GYb, &ctx->X,
+                                        &ctx->P, &ctx->RP));
+
+    /* Unblind secret value */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->K, &ctx->K, &ctx->Vf));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->K, &ctx->K, &ctx->P));
+
+    /* Output the secret without any leading zero byte. This is mandatory
+     * for TLS per RFC 5246 §8.1.2. */
+    *olen = mbedtls_mpi_size(&ctx->K);
+    MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->K, output, *olen));
+
+cleanup:
+    mbedtls_mpi_free(&GYb);
+
+    if (ret != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_DHM_CALC_SECRET_FAILED, ret);
+    }
+
+    return 0;
+}
+
+/*
+ * Free the components of a DHM key
+ */
+void mbedtls_dhm_free(mbedtls_dhm_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_mpi_free(&ctx->pX);
+    mbedtls_mpi_free(&ctx->Vf);
+    mbedtls_mpi_free(&ctx->Vi);
+    mbedtls_mpi_free(&ctx->RP);
+    mbedtls_mpi_free(&ctx->K);
+    mbedtls_mpi_free(&ctx->GY);
+    mbedtls_mpi_free(&ctx->GX);
+    mbedtls_mpi_free(&ctx->X);
+    mbedtls_mpi_free(&ctx->G);
+    mbedtls_mpi_free(&ctx->P);
+
+    mbedtls_platform_zeroize(ctx, sizeof(mbedtls_dhm_context));
+}
+
+#if defined(MBEDTLS_ASN1_PARSE_C)
+/*
+ * Parse DHM parameters
+ */
+int mbedtls_dhm_parse_dhm(mbedtls_dhm_context *dhm, const unsigned char *dhmin,
+                          size_t dhminlen)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t len;
+    unsigned char *p, *end;
+#if defined(MBEDTLS_PEM_PARSE_C)
+    mbedtls_pem_context pem;
+#endif /* MBEDTLS_PEM_PARSE_C */
+
+#if defined(MBEDTLS_PEM_PARSE_C)
+    mbedtls_pem_init(&pem);
+
+    /* Avoid calling mbedtls_pem_read_buffer() on non-null-terminated string */
+    if (dhminlen == 0 || dhmin[dhminlen - 1] != '\0') {
+        ret = MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT;
+    } else {
+        ret = mbedtls_pem_read_buffer(&pem,
+                                      "-----BEGIN DH PARAMETERS-----",
+                                      "-----END DH PARAMETERS-----",
+                                      dhmin, NULL, 0, &dhminlen);
+    }
+
+    if (ret == 0) {
+        /*
+         * Was PEM encoded
+         */
+        dhminlen = pem.buflen;
+    } else if (ret != MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT) {
+        goto exit;
+    }
+
+    p = (ret == 0) ? pem.buf : (unsigned char *) dhmin;
+#else
+    p = (unsigned char *) dhmin;
+#endif /* MBEDTLS_PEM_PARSE_C */
+    end = p + dhminlen;
+
+    /*
+     *  DHParams ::= SEQUENCE {
+     *      prime              INTEGER,  -- P
+     *      generator          INTEGER,  -- g
+     *      privateValueLength INTEGER OPTIONAL
+     *  }
+     */
+    if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
+                                    MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
+        ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_DHM_INVALID_FORMAT, ret);
+        goto exit;
+    }
+
+    end = p + len;
+
+    if ((ret = mbedtls_asn1_get_mpi(&p, end, &dhm->P)) != 0 ||
+        (ret = mbedtls_asn1_get_mpi(&p, end, &dhm->G)) != 0) {
+        ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_DHM_INVALID_FORMAT, ret);
+        goto exit;
+    }
+
+    if (p != end) {
+        /* This might be the optional privateValueLength.
+         * If so, we can cleanly discard it */
+        mbedtls_mpi rec;
+        mbedtls_mpi_init(&rec);
+        ret = mbedtls_asn1_get_mpi(&p, end, &rec);
+        mbedtls_mpi_free(&rec);
+        if (ret != 0) {
+            ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_DHM_INVALID_FORMAT, ret);
+            goto exit;
+        }
+        if (p != end) {
+            ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_DHM_INVALID_FORMAT,
+                                    MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);
+            goto exit;
+        }
+    }
+
+    ret = 0;
+
+exit:
+#if defined(MBEDTLS_PEM_PARSE_C)
+    mbedtls_pem_free(&pem);
+#endif
+    if (ret != 0) {
+        mbedtls_dhm_free(dhm);
+    }
+
+    return ret;
+}
+
+#if defined(MBEDTLS_FS_IO)
+/*
+ * Load all data from a file into a given buffer.
+ *
+ * The file is expected to contain either PEM or DER encoded data.
+ * A terminating null byte is always appended. It is included in the announced
+ * length only if the data looks like it is PEM encoded.
+ */
+static int load_file(const char *path, unsigned char **buf, size_t *n)
+{
+    FILE *f;
+    long size;
+
+    if ((f = fopen(path, "rb")) == NULL) {
+        return MBEDTLS_ERR_DHM_FILE_IO_ERROR;
+    }
+    /* The data loaded here is public, so don't bother disabling buffering. */
+
+    fseek(f, 0, SEEK_END);
+    if ((size = ftell(f)) == -1) {
+        fclose(f);
+        return MBEDTLS_ERR_DHM_FILE_IO_ERROR;
+    }
+    fseek(f, 0, SEEK_SET);
+
+    *n = (size_t) size;
+
+    if (*n + 1 == 0 ||
+        (*buf = mbedtls_calloc(1, *n + 1)) == NULL) {
+        fclose(f);
+        return MBEDTLS_ERR_DHM_ALLOC_FAILED;
+    }
+
+    if (fread(*buf, 1, *n, f) != *n) {
+        fclose(f);
+
+        mbedtls_zeroize_and_free(*buf, *n + 1);
+
+        return MBEDTLS_ERR_DHM_FILE_IO_ERROR;
+    }
+
+    fclose(f);
+
+    (*buf)[*n] = '\0';
+
+    if (strstr((const char *) *buf, "-----BEGIN ") != NULL) {
+        ++*n;
+    }
+
+    return 0;
+}
+
+/*
+ * Load and parse DHM parameters
+ */
+int mbedtls_dhm_parse_dhmfile(mbedtls_dhm_context *dhm, const char *path)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t n;
+    unsigned char *buf;
+
+    if ((ret = load_file(path, &buf, &n)) != 0) {
+        return ret;
+    }
+
+    ret = mbedtls_dhm_parse_dhm(dhm, buf, n);
+
+    mbedtls_zeroize_and_free(buf, n);
+
+    return ret;
+}
+#endif /* MBEDTLS_FS_IO */
+#endif /* MBEDTLS_ASN1_PARSE_C */
+
+#if defined(MBEDTLS_SELF_TEST)
+
+#if defined(MBEDTLS_PEM_PARSE_C)
+static const char mbedtls_test_dhm_params[] =
+    "-----BEGIN DH PARAMETERS-----\r\n"
+    "MIGHAoGBAJ419DBEOgmQTzo5qXl5fQcN9TN455wkOL7052HzxxRVMyhYmwQcgJvh\r\n"
+    "1sa18fyfR9OiVEMYglOpkqVoGLN7qd5aQNNi5W7/C+VBdHTBJcGZJyyP5B3qcz32\r\n"
+    "9mLJKudlVudV0Qxk5qUJaPZ/xupz0NyoVpviuiBOI1gNi8ovSXWzAgEC\r\n"
+    "-----END DH PARAMETERS-----\r\n";
+#else /* MBEDTLS_PEM_PARSE_C */
+static const char mbedtls_test_dhm_params[] = {
+    0x30, 0x81, 0x87, 0x02, 0x81, 0x81, 0x00, 0x9e, 0x35, 0xf4, 0x30, 0x44,
+    0x3a, 0x09, 0x90, 0x4f, 0x3a, 0x39, 0xa9, 0x79, 0x79, 0x7d, 0x07, 0x0d,
+    0xf5, 0x33, 0x78, 0xe7, 0x9c, 0x24, 0x38, 0xbe, 0xf4, 0xe7, 0x61, 0xf3,
+    0xc7, 0x14, 0x55, 0x33, 0x28, 0x58, 0x9b, 0x04, 0x1c, 0x80, 0x9b, 0xe1,
+    0xd6, 0xc6, 0xb5, 0xf1, 0xfc, 0x9f, 0x47, 0xd3, 0xa2, 0x54, 0x43, 0x18,
+    0x82, 0x53, 0xa9, 0x92, 0xa5, 0x68, 0x18, 0xb3, 0x7b, 0xa9, 0xde, 0x5a,
+    0x40, 0xd3, 0x62, 0xe5, 0x6e, 0xff, 0x0b, 0xe5, 0x41, 0x74, 0x74, 0xc1,
+    0x25, 0xc1, 0x99, 0x27, 0x2c, 0x8f, 0xe4, 0x1d, 0xea, 0x73, 0x3d, 0xf6,
+    0xf6, 0x62, 0xc9, 0x2a, 0xe7, 0x65, 0x56, 0xe7, 0x55, 0xd1, 0x0c, 0x64,
+    0xe6, 0xa5, 0x09, 0x68, 0xf6, 0x7f, 0xc6, 0xea, 0x73, 0xd0, 0xdc, 0xa8,
+    0x56, 0x9b, 0xe2, 0xba, 0x20, 0x4e, 0x23, 0x58, 0x0d, 0x8b, 0xca, 0x2f,
+    0x49, 0x75, 0xb3, 0x02, 0x01, 0x02
+};
+#endif /* MBEDTLS_PEM_PARSE_C */
+
+static const size_t mbedtls_test_dhm_params_len = sizeof(mbedtls_test_dhm_params);
+
+/*
+ * Checkup routine
+ */
+int mbedtls_dhm_self_test(int verbose)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_dhm_context dhm;
+
+    mbedtls_dhm_init(&dhm);
+
+    if (verbose != 0) {
+        mbedtls_printf("  DHM parameter load: ");
+    }
+
+    if ((ret = mbedtls_dhm_parse_dhm(&dhm,
+                                     (const unsigned char *) mbedtls_test_dhm_params,
+                                     mbedtls_test_dhm_params_len)) != 0) {
+        if (verbose != 0) {
+            mbedtls_printf("failed\n");
+        }
+
+        ret = 1;
+        goto exit;
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("passed\n\n");
+    }
+
+exit:
+    mbedtls_dhm_free(&dhm);
+
+    return ret;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_DHM_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/ecdh.c b/tf-psa-crypto/drivers/builtin/src/ecdh.c
new file mode 100644
index 0000000..b276c6a
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/ecdh.c
@@ -0,0 +1,694 @@
+/*
+ *  Elliptic curve Diffie-Hellman
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * References:
+ *
+ * SEC1 https://www.secg.org/sec1-v2.pdf
+ * RFC 4492
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_ECDH_C)
+
+#include "mbedtls/ecdh.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_ECDH_LEGACY_CONTEXT)
+typedef mbedtls_ecdh_context mbedtls_ecdh_context_mbed;
+#endif
+
+static mbedtls_ecp_group_id mbedtls_ecdh_grp_id(
+    const mbedtls_ecdh_context *ctx)
+{
+#if defined(MBEDTLS_ECDH_LEGACY_CONTEXT)
+    return ctx->grp.id;
+#else
+    return ctx->grp_id;
+#endif
+}
+
+int mbedtls_ecdh_can_do(mbedtls_ecp_group_id gid)
+{
+    /* At this time, all groups support ECDH. */
+    (void) gid;
+    return 1;
+}
+
+#if !defined(MBEDTLS_ECDH_GEN_PUBLIC_ALT)
+/*
+ * Generate public key (restartable version)
+ *
+ * Note: this internal function relies on its caller preserving the value of
+ * the output parameter 'd' across continuation calls. This would not be
+ * acceptable for a public function but is OK here as we control call sites.
+ */
+static int ecdh_gen_public_restartable(mbedtls_ecp_group *grp,
+                                       mbedtls_mpi *d, mbedtls_ecp_point *Q,
+                                       int (*f_rng)(void *, unsigned char *, size_t),
+                                       void *p_rng,
+                                       mbedtls_ecp_restart_ctx *rs_ctx)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    int restarting = 0;
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    restarting = (rs_ctx != NULL && rs_ctx->rsm != NULL);
+#endif
+    /* If multiplication is in progress, we already generated a privkey */
+    if (!restarting) {
+        MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, d, f_rng, p_rng));
+    }
+
+    MBEDTLS_MPI_CHK(mbedtls_ecp_mul_restartable(grp, Q, d, &grp->G,
+                                                f_rng, p_rng, rs_ctx));
+
+cleanup:
+    return ret;
+}
+
+/*
+ * Generate public key
+ */
+int mbedtls_ecdh_gen_public(mbedtls_ecp_group *grp, mbedtls_mpi *d, mbedtls_ecp_point *Q,
+                            int (*f_rng)(void *, unsigned char *, size_t),
+                            void *p_rng)
+{
+    return ecdh_gen_public_restartable(grp, d, Q, f_rng, p_rng, NULL);
+}
+#endif /* !MBEDTLS_ECDH_GEN_PUBLIC_ALT */
+
+#if !defined(MBEDTLS_ECDH_COMPUTE_SHARED_ALT)
+/*
+ * Compute shared secret (SEC1 3.3.1)
+ */
+static int ecdh_compute_shared_restartable(mbedtls_ecp_group *grp,
+                                           mbedtls_mpi *z,
+                                           const mbedtls_ecp_point *Q, const mbedtls_mpi *d,
+                                           int (*f_rng)(void *, unsigned char *, size_t),
+                                           void *p_rng,
+                                           mbedtls_ecp_restart_ctx *rs_ctx)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_ecp_point P;
+
+    mbedtls_ecp_point_init(&P);
+
+    MBEDTLS_MPI_CHK(mbedtls_ecp_mul_restartable(grp, &P, d, Q,
+                                                f_rng, p_rng, rs_ctx));
+
+    if (mbedtls_ecp_is_zero(&P)) {
+        ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+        goto cleanup;
+    }
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(z, &P.X));
+
+cleanup:
+    mbedtls_ecp_point_free(&P);
+
+    return ret;
+}
+
+/*
+ * Compute shared secret (SEC1 3.3.1)
+ */
+int mbedtls_ecdh_compute_shared(mbedtls_ecp_group *grp, mbedtls_mpi *z,
+                                const mbedtls_ecp_point *Q, const mbedtls_mpi *d,
+                                int (*f_rng)(void *, unsigned char *, size_t),
+                                void *p_rng)
+{
+    return ecdh_compute_shared_restartable(grp, z, Q, d,
+                                           f_rng, p_rng, NULL);
+}
+#endif /* !MBEDTLS_ECDH_COMPUTE_SHARED_ALT */
+
+static void ecdh_init_internal(mbedtls_ecdh_context_mbed *ctx)
+{
+    mbedtls_ecp_group_init(&ctx->grp);
+    mbedtls_mpi_init(&ctx->d);
+    mbedtls_ecp_point_init(&ctx->Q);
+    mbedtls_ecp_point_init(&ctx->Qp);
+    mbedtls_mpi_init(&ctx->z);
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    mbedtls_ecp_restart_init(&ctx->rs);
+#endif
+}
+
+mbedtls_ecp_group_id mbedtls_ecdh_get_grp_id(mbedtls_ecdh_context *ctx)
+{
+#if defined(MBEDTLS_ECDH_LEGACY_CONTEXT)
+    return ctx->MBEDTLS_PRIVATE(grp).id;
+#else
+    return ctx->MBEDTLS_PRIVATE(grp_id);
+#endif
+}
+
+/*
+ * Initialize context
+ */
+void mbedtls_ecdh_init(mbedtls_ecdh_context *ctx)
+{
+#if defined(MBEDTLS_ECDH_LEGACY_CONTEXT)
+    ecdh_init_internal(ctx);
+    mbedtls_ecp_point_init(&ctx->Vi);
+    mbedtls_ecp_point_init(&ctx->Vf);
+    mbedtls_mpi_init(&ctx->_d);
+#else
+    memset(ctx, 0, sizeof(mbedtls_ecdh_context));
+
+    ctx->var = MBEDTLS_ECDH_VARIANT_NONE;
+#endif
+    ctx->point_format = MBEDTLS_ECP_PF_UNCOMPRESSED;
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    ctx->restart_enabled = 0;
+#endif
+}
+
+static int ecdh_setup_internal(mbedtls_ecdh_context_mbed *ctx,
+                               mbedtls_ecp_group_id grp_id)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    ret = mbedtls_ecp_group_load(&ctx->grp, grp_id);
+    if (ret != 0) {
+        return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+    }
+
+    return 0;
+}
+
+/*
+ * Setup context
+ */
+int mbedtls_ecdh_setup(mbedtls_ecdh_context *ctx, mbedtls_ecp_group_id grp_id)
+{
+#if defined(MBEDTLS_ECDH_LEGACY_CONTEXT)
+    return ecdh_setup_internal(ctx, grp_id);
+#else
+    switch (grp_id) {
+#if defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED)
+        case MBEDTLS_ECP_DP_CURVE25519:
+            ctx->point_format = MBEDTLS_ECP_PF_COMPRESSED;
+            ctx->var = MBEDTLS_ECDH_VARIANT_EVEREST;
+            ctx->grp_id = grp_id;
+            return mbedtls_everest_setup(&ctx->ctx.everest_ecdh, grp_id);
+#endif
+        default:
+            ctx->point_format = MBEDTLS_ECP_PF_UNCOMPRESSED;
+            ctx->var = MBEDTLS_ECDH_VARIANT_MBEDTLS_2_0;
+            ctx->grp_id = grp_id;
+            ecdh_init_internal(&ctx->ctx.mbed_ecdh);
+            return ecdh_setup_internal(&ctx->ctx.mbed_ecdh, grp_id);
+    }
+#endif
+}
+
+static void ecdh_free_internal(mbedtls_ecdh_context_mbed *ctx)
+{
+    mbedtls_ecp_group_free(&ctx->grp);
+    mbedtls_mpi_free(&ctx->d);
+    mbedtls_ecp_point_free(&ctx->Q);
+    mbedtls_ecp_point_free(&ctx->Qp);
+    mbedtls_mpi_free(&ctx->z);
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    mbedtls_ecp_restart_free(&ctx->rs);
+#endif
+}
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+/*
+ * Enable restartable operations for context
+ */
+void mbedtls_ecdh_enable_restart(mbedtls_ecdh_context *ctx)
+{
+    ctx->restart_enabled = 1;
+}
+#endif
+
+/*
+ * Free context
+ */
+void mbedtls_ecdh_free(mbedtls_ecdh_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+#if defined(MBEDTLS_ECDH_LEGACY_CONTEXT)
+    mbedtls_ecp_point_free(&ctx->Vi);
+    mbedtls_ecp_point_free(&ctx->Vf);
+    mbedtls_mpi_free(&ctx->_d);
+    ecdh_free_internal(ctx);
+#else
+    switch (ctx->var) {
+#if defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED)
+        case MBEDTLS_ECDH_VARIANT_EVEREST:
+            mbedtls_everest_free(&ctx->ctx.everest_ecdh);
+            break;
+#endif
+        case MBEDTLS_ECDH_VARIANT_MBEDTLS_2_0:
+            ecdh_free_internal(&ctx->ctx.mbed_ecdh);
+            break;
+        default:
+            break;
+    }
+
+    ctx->point_format = MBEDTLS_ECP_PF_UNCOMPRESSED;
+    ctx->var = MBEDTLS_ECDH_VARIANT_NONE;
+    ctx->grp_id = MBEDTLS_ECP_DP_NONE;
+#endif
+}
+
+static int ecdh_make_params_internal(mbedtls_ecdh_context_mbed *ctx,
+                                     size_t *olen, int point_format,
+                                     unsigned char *buf, size_t blen,
+                                     int (*f_rng)(void *,
+                                                  unsigned char *,
+                                                  size_t),
+                                     void *p_rng,
+                                     int restart_enabled)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t grp_len, pt_len;
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    mbedtls_ecp_restart_ctx *rs_ctx = NULL;
+#endif
+
+    if (ctx->grp.pbits == 0) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (restart_enabled) {
+        rs_ctx = &ctx->rs;
+    }
+#else
+    (void) restart_enabled;
+#endif
+
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if ((ret = ecdh_gen_public_restartable(&ctx->grp, &ctx->d, &ctx->Q,
+                                           f_rng, p_rng, rs_ctx)) != 0) {
+        return ret;
+    }
+#else
+    if ((ret = mbedtls_ecdh_gen_public(&ctx->grp, &ctx->d, &ctx->Q,
+                                       f_rng, p_rng)) != 0) {
+        return ret;
+    }
+#endif /* MBEDTLS_ECP_RESTARTABLE */
+
+    if ((ret = mbedtls_ecp_tls_write_group(&ctx->grp, &grp_len, buf,
+                                           blen)) != 0) {
+        return ret;
+    }
+
+    buf += grp_len;
+    blen -= grp_len;
+
+    if ((ret = mbedtls_ecp_tls_write_point(&ctx->grp, &ctx->Q, point_format,
+                                           &pt_len, buf, blen)) != 0) {
+        return ret;
+    }
+
+    *olen = grp_len + pt_len;
+    return 0;
+}
+
+/*
+ * Setup and write the ServerKeyExchange parameters (RFC 4492)
+ *      struct {
+ *          ECParameters    curve_params;
+ *          ECPoint         public;
+ *      } ServerECDHParams;
+ */
+int mbedtls_ecdh_make_params(mbedtls_ecdh_context *ctx, size_t *olen,
+                             unsigned char *buf, size_t blen,
+                             int (*f_rng)(void *, unsigned char *, size_t),
+                             void *p_rng)
+{
+    int restart_enabled = 0;
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    restart_enabled = ctx->restart_enabled;
+#else
+    (void) restart_enabled;
+#endif
+
+#if defined(MBEDTLS_ECDH_LEGACY_CONTEXT)
+    return ecdh_make_params_internal(ctx, olen, ctx->point_format, buf, blen,
+                                     f_rng, p_rng, restart_enabled);
+#else
+    switch (ctx->var) {
+#if defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED)
+        case MBEDTLS_ECDH_VARIANT_EVEREST:
+            return mbedtls_everest_make_params(&ctx->ctx.everest_ecdh, olen,
+                                               buf, blen, f_rng, p_rng);
+#endif
+        case MBEDTLS_ECDH_VARIANT_MBEDTLS_2_0:
+            return ecdh_make_params_internal(&ctx->ctx.mbed_ecdh, olen,
+                                             ctx->point_format, buf, blen,
+                                             f_rng, p_rng,
+                                             restart_enabled);
+        default:
+            return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+#endif
+}
+
+static int ecdh_read_params_internal(mbedtls_ecdh_context_mbed *ctx,
+                                     const unsigned char **buf,
+                                     const unsigned char *end)
+{
+    return mbedtls_ecp_tls_read_point(&ctx->grp, &ctx->Qp, buf,
+                                      (size_t) (end - *buf));
+}
+
+/*
+ * Read the ServerKeyExchange parameters (RFC 4492)
+ *      struct {
+ *          ECParameters    curve_params;
+ *          ECPoint         public;
+ *      } ServerECDHParams;
+ */
+int mbedtls_ecdh_read_params(mbedtls_ecdh_context *ctx,
+                             const unsigned char **buf,
+                             const unsigned char *end)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_ecp_group_id grp_id;
+    if ((ret = mbedtls_ecp_tls_read_group_id(&grp_id, buf, (size_t) (end - *buf)))
+        != 0) {
+        return ret;
+    }
+
+    if ((ret = mbedtls_ecdh_setup(ctx, grp_id)) != 0) {
+        return ret;
+    }
+
+#if defined(MBEDTLS_ECDH_LEGACY_CONTEXT)
+    return ecdh_read_params_internal(ctx, buf, end);
+#else
+    switch (ctx->var) {
+#if defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED)
+        case MBEDTLS_ECDH_VARIANT_EVEREST:
+            return mbedtls_everest_read_params(&ctx->ctx.everest_ecdh,
+                                               buf, end);
+#endif
+        case MBEDTLS_ECDH_VARIANT_MBEDTLS_2_0:
+            return ecdh_read_params_internal(&ctx->ctx.mbed_ecdh,
+                                             buf, end);
+        default:
+            return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+#endif
+}
+
+static int ecdh_get_params_internal(mbedtls_ecdh_context_mbed *ctx,
+                                    const mbedtls_ecp_keypair *key,
+                                    mbedtls_ecdh_side side)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    /* If it's not our key, just import the public part as Qp */
+    if (side == MBEDTLS_ECDH_THEIRS) {
+        return mbedtls_ecp_copy(&ctx->Qp, &key->Q);
+    }
+
+    /* Our key: import public (as Q) and private parts */
+    if (side != MBEDTLS_ECDH_OURS) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    if ((ret = mbedtls_ecp_copy(&ctx->Q, &key->Q)) != 0 ||
+        (ret = mbedtls_mpi_copy(&ctx->d, &key->d)) != 0) {
+        return ret;
+    }
+
+    return 0;
+}
+
+/*
+ * Get parameters from a keypair
+ */
+int mbedtls_ecdh_get_params(mbedtls_ecdh_context *ctx,
+                            const mbedtls_ecp_keypair *key,
+                            mbedtls_ecdh_side side)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    if (side != MBEDTLS_ECDH_OURS && side != MBEDTLS_ECDH_THEIRS) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    if (mbedtls_ecdh_grp_id(ctx) == MBEDTLS_ECP_DP_NONE) {
+        /* This is the first call to get_params(). Set up the context
+         * for use with the group. */
+        if ((ret = mbedtls_ecdh_setup(ctx, key->grp.id)) != 0) {
+            return ret;
+        }
+    } else {
+        /* This is not the first call to get_params(). Check that the
+         * current key's group is the same as the context's, which was set
+         * from the first key's group. */
+        if (mbedtls_ecdh_grp_id(ctx) != key->grp.id) {
+            return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+        }
+    }
+
+#if defined(MBEDTLS_ECDH_LEGACY_CONTEXT)
+    return ecdh_get_params_internal(ctx, key, side);
+#else
+    switch (ctx->var) {
+#if defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED)
+        case MBEDTLS_ECDH_VARIANT_EVEREST:
+        {
+            mbedtls_everest_ecdh_side s = side == MBEDTLS_ECDH_OURS ?
+                                          MBEDTLS_EVEREST_ECDH_OURS :
+                                          MBEDTLS_EVEREST_ECDH_THEIRS;
+            return mbedtls_everest_get_params(&ctx->ctx.everest_ecdh,
+                                              key, s);
+        }
+#endif
+        case MBEDTLS_ECDH_VARIANT_MBEDTLS_2_0:
+            return ecdh_get_params_internal(&ctx->ctx.mbed_ecdh,
+                                            key, side);
+        default:
+            return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+#endif
+}
+
+static int ecdh_make_public_internal(mbedtls_ecdh_context_mbed *ctx,
+                                     size_t *olen, int point_format,
+                                     unsigned char *buf, size_t blen,
+                                     int (*f_rng)(void *,
+                                                  unsigned char *,
+                                                  size_t),
+                                     void *p_rng,
+                                     int restart_enabled)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    mbedtls_ecp_restart_ctx *rs_ctx = NULL;
+#endif
+
+    if (ctx->grp.pbits == 0) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (restart_enabled) {
+        rs_ctx = &ctx->rs;
+    }
+#else
+    (void) restart_enabled;
+#endif
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if ((ret = ecdh_gen_public_restartable(&ctx->grp, &ctx->d, &ctx->Q,
+                                           f_rng, p_rng, rs_ctx)) != 0) {
+        return ret;
+    }
+#else
+    if ((ret = mbedtls_ecdh_gen_public(&ctx->grp, &ctx->d, &ctx->Q,
+                                       f_rng, p_rng)) != 0) {
+        return ret;
+    }
+#endif /* MBEDTLS_ECP_RESTARTABLE */
+
+    return mbedtls_ecp_tls_write_point(&ctx->grp, &ctx->Q, point_format, olen,
+                                       buf, blen);
+}
+
+/*
+ * Setup and export the client public value
+ */
+int mbedtls_ecdh_make_public(mbedtls_ecdh_context *ctx, size_t *olen,
+                             unsigned char *buf, size_t blen,
+                             int (*f_rng)(void *, unsigned char *, size_t),
+                             void *p_rng)
+{
+    int restart_enabled = 0;
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    restart_enabled = ctx->restart_enabled;
+#endif
+
+#if defined(MBEDTLS_ECDH_LEGACY_CONTEXT)
+    return ecdh_make_public_internal(ctx, olen, ctx->point_format, buf, blen,
+                                     f_rng, p_rng, restart_enabled);
+#else
+    switch (ctx->var) {
+#if defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED)
+        case MBEDTLS_ECDH_VARIANT_EVEREST:
+            return mbedtls_everest_make_public(&ctx->ctx.everest_ecdh, olen,
+                                               buf, blen, f_rng, p_rng);
+#endif
+        case MBEDTLS_ECDH_VARIANT_MBEDTLS_2_0:
+            return ecdh_make_public_internal(&ctx->ctx.mbed_ecdh, olen,
+                                             ctx->point_format, buf, blen,
+                                             f_rng, p_rng,
+                                             restart_enabled);
+        default:
+            return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+#endif
+}
+
+static int ecdh_read_public_internal(mbedtls_ecdh_context_mbed *ctx,
+                                     const unsigned char *buf, size_t blen)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    const unsigned char *p = buf;
+
+    if ((ret = mbedtls_ecp_tls_read_point(&ctx->grp, &ctx->Qp, &p,
+                                          blen)) != 0) {
+        return ret;
+    }
+
+    if ((size_t) (p - buf) != blen) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    return 0;
+}
+
+/*
+ * Parse and import the client's public value
+ */
+int mbedtls_ecdh_read_public(mbedtls_ecdh_context *ctx,
+                             const unsigned char *buf, size_t blen)
+{
+#if defined(MBEDTLS_ECDH_LEGACY_CONTEXT)
+    return ecdh_read_public_internal(ctx, buf, blen);
+#else
+    switch (ctx->var) {
+#if defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED)
+        case MBEDTLS_ECDH_VARIANT_EVEREST:
+            return mbedtls_everest_read_public(&ctx->ctx.everest_ecdh,
+                                               buf, blen);
+#endif
+        case MBEDTLS_ECDH_VARIANT_MBEDTLS_2_0:
+            return ecdh_read_public_internal(&ctx->ctx.mbed_ecdh,
+                                             buf, blen);
+        default:
+            return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+#endif
+}
+
+static int ecdh_calc_secret_internal(mbedtls_ecdh_context_mbed *ctx,
+                                     size_t *olen, unsigned char *buf,
+                                     size_t blen,
+                                     int (*f_rng)(void *,
+                                                  unsigned char *,
+                                                  size_t),
+                                     void *p_rng,
+                                     int restart_enabled)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    mbedtls_ecp_restart_ctx *rs_ctx = NULL;
+#endif
+
+    if (ctx == NULL || ctx->grp.pbits == 0) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (restart_enabled) {
+        rs_ctx = &ctx->rs;
+    }
+#else
+    (void) restart_enabled;
+#endif
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if ((ret = ecdh_compute_shared_restartable(&ctx->grp, &ctx->z, &ctx->Qp,
+                                               &ctx->d, f_rng, p_rng,
+                                               rs_ctx)) != 0) {
+        return ret;
+    }
+#else
+    if ((ret = mbedtls_ecdh_compute_shared(&ctx->grp, &ctx->z, &ctx->Qp,
+                                           &ctx->d, f_rng, p_rng)) != 0) {
+        return ret;
+    }
+#endif /* MBEDTLS_ECP_RESTARTABLE */
+
+    if (mbedtls_mpi_size(&ctx->z) > blen) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    *olen = ctx->grp.pbits / 8 + ((ctx->grp.pbits % 8) != 0);
+
+    if (mbedtls_ecp_get_type(&ctx->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+        return mbedtls_mpi_write_binary_le(&ctx->z, buf, *olen);
+    }
+
+    return mbedtls_mpi_write_binary(&ctx->z, buf, *olen);
+}
+
+/*
+ * Derive and export the shared secret
+ */
+int mbedtls_ecdh_calc_secret(mbedtls_ecdh_context *ctx, size_t *olen,
+                             unsigned char *buf, size_t blen,
+                             int (*f_rng)(void *, unsigned char *, size_t),
+                             void *p_rng)
+{
+    int restart_enabled = 0;
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    restart_enabled = ctx->restart_enabled;
+#endif
+
+#if defined(MBEDTLS_ECDH_LEGACY_CONTEXT)
+    return ecdh_calc_secret_internal(ctx, olen, buf, blen, f_rng, p_rng,
+                                     restart_enabled);
+#else
+    switch (ctx->var) {
+#if defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED)
+        case MBEDTLS_ECDH_VARIANT_EVEREST:
+            return mbedtls_everest_calc_secret(&ctx->ctx.everest_ecdh, olen,
+                                               buf, blen, f_rng, p_rng);
+#endif
+        case MBEDTLS_ECDH_VARIANT_MBEDTLS_2_0:
+            return ecdh_calc_secret_internal(&ctx->ctx.mbed_ecdh, olen, buf,
+                                             blen, f_rng, p_rng,
+                                             restart_enabled);
+        default:
+            return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+#endif
+}
+#endif /* MBEDTLS_ECDH_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/ecdsa.c b/tf-psa-crypto/drivers/builtin/src/ecdsa.c
new file mode 100644
index 0000000..2f7a996
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/ecdsa.c
@@ -0,0 +1,867 @@
+/*
+ *  Elliptic curve DSA
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * References:
+ *
+ * SEC1 https://www.secg.org/sec1-v2.pdf
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_ECDSA_C)
+
+#include "mbedtls/ecdsa.h"
+#include "mbedtls/asn1write.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
+#include "mbedtls/hmac_drbg.h"
+#endif
+
+#include "mbedtls/platform.h"
+
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+
+/*
+ * Sub-context for ecdsa_verify()
+ */
+struct mbedtls_ecdsa_restart_ver {
+    mbedtls_mpi u1, u2;     /* intermediate values  */
+    enum {                  /* what to do next?     */
+        ecdsa_ver_init = 0, /* getting started      */
+        ecdsa_ver_muladd,   /* muladd step          */
+    } state;
+};
+
+/*
+ * Init verify restart sub-context
+ */
+static void ecdsa_restart_ver_init(mbedtls_ecdsa_restart_ver_ctx *ctx)
+{
+    mbedtls_mpi_init(&ctx->u1);
+    mbedtls_mpi_init(&ctx->u2);
+    ctx->state = ecdsa_ver_init;
+}
+
+/*
+ * Free the components of a verify restart sub-context
+ */
+static void ecdsa_restart_ver_free(mbedtls_ecdsa_restart_ver_ctx *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_mpi_free(&ctx->u1);
+    mbedtls_mpi_free(&ctx->u2);
+
+    ecdsa_restart_ver_init(ctx);
+}
+
+/*
+ * Sub-context for ecdsa_sign()
+ */
+struct mbedtls_ecdsa_restart_sig {
+    int sign_tries;
+    int key_tries;
+    mbedtls_mpi k;          /* per-signature random */
+    mbedtls_mpi r;          /* r value              */
+    enum {                  /* what to do next?     */
+        ecdsa_sig_init = 0, /* getting started      */
+        ecdsa_sig_mul,      /* doing ecp_mul()      */
+        ecdsa_sig_modn,     /* mod N computations   */
+    } state;
+};
+
+/*
+ * Init verify sign sub-context
+ */
+static void ecdsa_restart_sig_init(mbedtls_ecdsa_restart_sig_ctx *ctx)
+{
+    ctx->sign_tries = 0;
+    ctx->key_tries = 0;
+    mbedtls_mpi_init(&ctx->k);
+    mbedtls_mpi_init(&ctx->r);
+    ctx->state = ecdsa_sig_init;
+}
+
+/*
+ * Free the components of a sign restart sub-context
+ */
+static void ecdsa_restart_sig_free(mbedtls_ecdsa_restart_sig_ctx *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_mpi_free(&ctx->k);
+    mbedtls_mpi_free(&ctx->r);
+}
+
+#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
+/*
+ * Sub-context for ecdsa_sign_det()
+ */
+struct mbedtls_ecdsa_restart_det {
+    mbedtls_hmac_drbg_context rng_ctx;  /* DRBG state   */
+    enum {                      /* what to do next?     */
+        ecdsa_det_init = 0,     /* getting started      */
+        ecdsa_det_sign,         /* make signature       */
+    } state;
+};
+
+/*
+ * Init verify sign_det sub-context
+ */
+static void ecdsa_restart_det_init(mbedtls_ecdsa_restart_det_ctx *ctx)
+{
+    mbedtls_hmac_drbg_init(&ctx->rng_ctx);
+    ctx->state = ecdsa_det_init;
+}
+
+/*
+ * Free the components of a sign_det restart sub-context
+ */
+static void ecdsa_restart_det_free(mbedtls_ecdsa_restart_det_ctx *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_hmac_drbg_free(&ctx->rng_ctx);
+
+    ecdsa_restart_det_init(ctx);
+}
+#endif /* MBEDTLS_ECDSA_DETERMINISTIC */
+
+#define ECDSA_RS_ECP    (rs_ctx == NULL ? NULL : &rs_ctx->ecp)
+
+/* Utility macro for checking and updating ops budget */
+#define ECDSA_BUDGET(ops)   \
+    MBEDTLS_MPI_CHK(mbedtls_ecp_check_budget(grp, ECDSA_RS_ECP, ops));
+
+/* Call this when entering a function that needs its own sub-context */
+#define ECDSA_RS_ENTER(SUB)   do {                                 \
+        /* reset ops count for this call if top-level */                 \
+        if (rs_ctx != NULL && rs_ctx->ecp.depth++ == 0)                 \
+        rs_ctx->ecp.ops_done = 0;                                    \
+                                                                     \
+        /* set up our own sub-context if needed */                       \
+        if (mbedtls_ecp_restart_is_enabled() &&                          \
+            rs_ctx != NULL && rs_ctx->SUB == NULL)                      \
+        {                                                                \
+            rs_ctx->SUB = mbedtls_calloc(1, sizeof(*rs_ctx->SUB));   \
+            if (rs_ctx->SUB == NULL)                                    \
+            return MBEDTLS_ERR_ECP_ALLOC_FAILED;                  \
+                                                                   \
+            ecdsa_restart_## SUB ##_init(rs_ctx->SUB);                 \
+        }                                                                \
+} while (0)
+
+/* Call this when leaving a function that needs its own sub-context */
+#define ECDSA_RS_LEAVE(SUB)   do {                                 \
+        /* clear our sub-context when not in progress (done or error) */ \
+        if (rs_ctx != NULL && rs_ctx->SUB != NULL &&                     \
+            ret != MBEDTLS_ERR_ECP_IN_PROGRESS)                         \
+        {                                                                \
+            ecdsa_restart_## SUB ##_free(rs_ctx->SUB);                 \
+            mbedtls_free(rs_ctx->SUB);                                 \
+            rs_ctx->SUB = NULL;                                          \
+        }                                                                \
+                                                                     \
+        if (rs_ctx != NULL)                                             \
+        rs_ctx->ecp.depth--;                                         \
+} while (0)
+
+#else /* MBEDTLS_ECP_RESTARTABLE */
+
+#define ECDSA_RS_ECP    NULL
+
+#define ECDSA_BUDGET(ops)     /* no-op; for compatibility */
+
+#define ECDSA_RS_ENTER(SUB)   (void) rs_ctx
+#define ECDSA_RS_LEAVE(SUB)   (void) rs_ctx
+
+#endif /* MBEDTLS_ECP_RESTARTABLE */
+
+#if defined(MBEDTLS_ECDSA_DETERMINISTIC) || \
+    !defined(MBEDTLS_ECDSA_SIGN_ALT)     || \
+    !defined(MBEDTLS_ECDSA_VERIFY_ALT)
+/*
+ * Derive a suitable integer for group grp from a buffer of length len
+ * SEC1 4.1.3 step 5 aka SEC1 4.1.4 step 3
+ */
+static int derive_mpi(const mbedtls_ecp_group *grp, mbedtls_mpi *x,
+                      const unsigned char *buf, size_t blen)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t n_size = (grp->nbits + 7) / 8;
+    size_t use_size = blen > n_size ? n_size : blen;
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(x, buf, use_size));
+    if (use_size * 8 > grp->nbits) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(x, use_size * 8 - grp->nbits));
+    }
+
+    /* While at it, reduce modulo N */
+    if (mbedtls_mpi_cmp_mpi(x, &grp->N) >= 0) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(x, x, &grp->N));
+    }
+
+cleanup:
+    return ret;
+}
+#endif /* ECDSA_DETERMINISTIC || !ECDSA_SIGN_ALT || !ECDSA_VERIFY_ALT */
+
+int mbedtls_ecdsa_can_do(mbedtls_ecp_group_id gid)
+{
+    switch (gid) {
+#ifdef MBEDTLS_ECP_DP_CURVE25519_ENABLED
+        case MBEDTLS_ECP_DP_CURVE25519: return 0;
+#endif
+#ifdef MBEDTLS_ECP_DP_CURVE448_ENABLED
+        case MBEDTLS_ECP_DP_CURVE448: return 0;
+#endif
+        default: return 1;
+    }
+}
+
+#if !defined(MBEDTLS_ECDSA_SIGN_ALT)
+/*
+ * Compute ECDSA signature of a hashed message (SEC1 4.1.3)
+ * Obviously, compared to SEC1 4.1.3, we skip step 4 (hash message)
+ */
+int mbedtls_ecdsa_sign_restartable(mbedtls_ecp_group *grp,
+                                   mbedtls_mpi *r, mbedtls_mpi *s,
+                                   const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
+                                   int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
+                                   int (*f_rng_blind)(void *, unsigned char *, size_t),
+                                   void *p_rng_blind,
+                                   mbedtls_ecdsa_restart_ctx *rs_ctx)
+{
+    int ret, key_tries, sign_tries;
+    int *p_sign_tries = &sign_tries, *p_key_tries = &key_tries;
+    mbedtls_ecp_point R;
+    mbedtls_mpi k, e, t;
+    mbedtls_mpi *pk = &k, *pr = r;
+
+    /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */
+    if (!mbedtls_ecdsa_can_do(grp->id) || grp->N.p == NULL) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    /* Make sure d is in range 1..n-1 */
+    if (mbedtls_mpi_cmp_int(d, 1) < 0 || mbedtls_mpi_cmp_mpi(d, &grp->N) >= 0) {
+        return MBEDTLS_ERR_ECP_INVALID_KEY;
+    }
+
+    mbedtls_ecp_point_init(&R);
+    mbedtls_mpi_init(&k); mbedtls_mpi_init(&e); mbedtls_mpi_init(&t);
+
+    ECDSA_RS_ENTER(sig);
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (rs_ctx != NULL && rs_ctx->sig != NULL) {
+        /* redirect to our context */
+        p_sign_tries = &rs_ctx->sig->sign_tries;
+        p_key_tries = &rs_ctx->sig->key_tries;
+        pk = &rs_ctx->sig->k;
+        pr = &rs_ctx->sig->r;
+
+        /* jump to current step */
+        if (rs_ctx->sig->state == ecdsa_sig_mul) {
+            goto mul;
+        }
+        if (rs_ctx->sig->state == ecdsa_sig_modn) {
+            goto modn;
+        }
+    }
+#endif /* MBEDTLS_ECP_RESTARTABLE */
+
+    *p_sign_tries = 0;
+    do {
+        if ((*p_sign_tries)++ > 10) {
+            ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
+            goto cleanup;
+        }
+
+        /*
+         * Steps 1-3: generate a suitable ephemeral keypair
+         * and set r = xR mod n
+         */
+        *p_key_tries = 0;
+        do {
+            if ((*p_key_tries)++ > 10) {
+                ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
+                goto cleanup;
+            }
+
+            MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, pk, f_rng, p_rng));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+            if (rs_ctx != NULL && rs_ctx->sig != NULL) {
+                rs_ctx->sig->state = ecdsa_sig_mul;
+            }
+
+mul:
+#endif
+            MBEDTLS_MPI_CHK(mbedtls_ecp_mul_restartable(grp, &R, pk, &grp->G,
+                                                        f_rng_blind,
+                                                        p_rng_blind,
+                                                        ECDSA_RS_ECP));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(pr, &R.X, &grp->N));
+        } while (mbedtls_mpi_cmp_int(pr, 0) == 0);
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+        if (rs_ctx != NULL && rs_ctx->sig != NULL) {
+            rs_ctx->sig->state = ecdsa_sig_modn;
+        }
+
+modn:
+#endif
+        /*
+         * Accounting for everything up to the end of the loop
+         * (step 6, but checking now avoids saving e and t)
+         */
+        ECDSA_BUDGET(MBEDTLS_ECP_OPS_INV + 4);
+
+        /*
+         * Step 5: derive MPI from hashed message
+         */
+        MBEDTLS_MPI_CHK(derive_mpi(grp, &e, buf, blen));
+
+        /*
+         * Generate a random value to blind inv_mod in next step,
+         * avoiding a potential timing leak.
+         */
+        MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, &t, f_rng_blind,
+                                                p_rng_blind));
+
+        /*
+         * Step 6: compute s = (e + r * d) / k = t (e + rd) / (kt) mod n
+         */
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(s, pr, d));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&e, &e, s));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&e, &e, &t));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(pk, pk, &t));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(pk, pk, &grp->N));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(s, pk, &grp->N));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(s, s, &e));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(s, s, &grp->N));
+    } while (mbedtls_mpi_cmp_int(s, 0) == 0);
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (rs_ctx != NULL && rs_ctx->sig != NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(r, pr));
+    }
+#endif
+
+cleanup:
+    mbedtls_ecp_point_free(&R);
+    mbedtls_mpi_free(&k); mbedtls_mpi_free(&e); mbedtls_mpi_free(&t);
+
+    ECDSA_RS_LEAVE(sig);
+
+    return ret;
+}
+
+/*
+ * Compute ECDSA signature of a hashed message
+ */
+int mbedtls_ecdsa_sign(mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s,
+                       const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
+                       int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    /* Use the same RNG for both blinding and ephemeral key generation */
+    return mbedtls_ecdsa_sign_restartable(grp, r, s, d, buf, blen,
+                                          f_rng, p_rng, f_rng, p_rng, NULL);
+}
+#endif /* !MBEDTLS_ECDSA_SIGN_ALT */
+
+#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
+/*
+ * Deterministic signature wrapper
+ *
+ * note:    The f_rng_blind parameter must not be NULL.
+ *
+ */
+int mbedtls_ecdsa_sign_det_restartable(mbedtls_ecp_group *grp,
+                                       mbedtls_mpi *r, mbedtls_mpi *s,
+                                       const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
+                                       mbedtls_md_type_t md_alg,
+                                       int (*f_rng_blind)(void *, unsigned char *, size_t),
+                                       void *p_rng_blind,
+                                       mbedtls_ecdsa_restart_ctx *rs_ctx)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_hmac_drbg_context rng_ctx;
+    mbedtls_hmac_drbg_context *p_rng = &rng_ctx;
+    unsigned char data[2 * MBEDTLS_ECP_MAX_BYTES];
+    size_t grp_len = (grp->nbits + 7) / 8;
+    const mbedtls_md_info_t *md_info;
+    mbedtls_mpi h;
+
+    if ((md_info = mbedtls_md_info_from_type(md_alg)) == NULL) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    mbedtls_mpi_init(&h);
+    mbedtls_hmac_drbg_init(&rng_ctx);
+
+    ECDSA_RS_ENTER(det);
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (rs_ctx != NULL && rs_ctx->det != NULL) {
+        /* redirect to our context */
+        p_rng = &rs_ctx->det->rng_ctx;
+
+        /* jump to current step */
+        if (rs_ctx->det->state == ecdsa_det_sign) {
+            goto sign;
+        }
+    }
+#endif /* MBEDTLS_ECP_RESTARTABLE */
+
+    /* Use private key and message hash (reduced) to initialize HMAC_DRBG */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(d, data, grp_len));
+    MBEDTLS_MPI_CHK(derive_mpi(grp, &h, buf, blen));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&h, data + grp_len, grp_len));
+    MBEDTLS_MPI_CHK(mbedtls_hmac_drbg_seed_buf(p_rng, md_info, data, 2 * grp_len));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (rs_ctx != NULL && rs_ctx->det != NULL) {
+        rs_ctx->det->state = ecdsa_det_sign;
+    }
+
+sign:
+#endif
+#if defined(MBEDTLS_ECDSA_SIGN_ALT)
+    (void) f_rng_blind;
+    (void) p_rng_blind;
+    ret = mbedtls_ecdsa_sign(grp, r, s, d, buf, blen,
+                             mbedtls_hmac_drbg_random, p_rng);
+#else
+    ret = mbedtls_ecdsa_sign_restartable(grp, r, s, d, buf, blen,
+                                         mbedtls_hmac_drbg_random, p_rng,
+                                         f_rng_blind, p_rng_blind, rs_ctx);
+#endif /* MBEDTLS_ECDSA_SIGN_ALT */
+
+cleanup:
+    mbedtls_hmac_drbg_free(&rng_ctx);
+    mbedtls_mpi_free(&h);
+
+    ECDSA_RS_LEAVE(det);
+
+    return ret;
+}
+
+/*
+ * Deterministic signature wrapper
+ */
+int mbedtls_ecdsa_sign_det_ext(mbedtls_ecp_group *grp, mbedtls_mpi *r,
+                               mbedtls_mpi *s, const mbedtls_mpi *d,
+                               const unsigned char *buf, size_t blen,
+                               mbedtls_md_type_t md_alg,
+                               int (*f_rng_blind)(void *, unsigned char *,
+                                                  size_t),
+                               void *p_rng_blind)
+{
+    return mbedtls_ecdsa_sign_det_restartable(grp, r, s, d, buf, blen, md_alg,
+                                              f_rng_blind, p_rng_blind, NULL);
+}
+#endif /* MBEDTLS_ECDSA_DETERMINISTIC */
+
+#if !defined(MBEDTLS_ECDSA_VERIFY_ALT)
+/*
+ * Verify ECDSA signature of hashed message (SEC1 4.1.4)
+ * Obviously, compared to SEC1 4.1.3, we skip step 2 (hash message)
+ */
+int mbedtls_ecdsa_verify_restartable(mbedtls_ecp_group *grp,
+                                     const unsigned char *buf, size_t blen,
+                                     const mbedtls_ecp_point *Q,
+                                     const mbedtls_mpi *r,
+                                     const mbedtls_mpi *s,
+                                     mbedtls_ecdsa_restart_ctx *rs_ctx)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_mpi e, s_inv, u1, u2;
+    mbedtls_ecp_point R;
+    mbedtls_mpi *pu1 = &u1, *pu2 = &u2;
+
+    mbedtls_ecp_point_init(&R);
+    mbedtls_mpi_init(&e); mbedtls_mpi_init(&s_inv);
+    mbedtls_mpi_init(&u1); mbedtls_mpi_init(&u2);
+
+    /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */
+    if (!mbedtls_ecdsa_can_do(grp->id) || grp->N.p == NULL) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    ECDSA_RS_ENTER(ver);
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (rs_ctx != NULL && rs_ctx->ver != NULL) {
+        /* redirect to our context */
+        pu1 = &rs_ctx->ver->u1;
+        pu2 = &rs_ctx->ver->u2;
+
+        /* jump to current step */
+        if (rs_ctx->ver->state == ecdsa_ver_muladd) {
+            goto muladd;
+        }
+    }
+#endif /* MBEDTLS_ECP_RESTARTABLE */
+
+    /*
+     * Step 1: make sure r and s are in range 1..n-1
+     */
+    if (mbedtls_mpi_cmp_int(r, 1) < 0 || mbedtls_mpi_cmp_mpi(r, &grp->N) >= 0 ||
+        mbedtls_mpi_cmp_int(s, 1) < 0 || mbedtls_mpi_cmp_mpi(s, &grp->N) >= 0) {
+        ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
+        goto cleanup;
+    }
+
+    /*
+     * Step 3: derive MPI from hashed message
+     */
+    MBEDTLS_MPI_CHK(derive_mpi(grp, &e, buf, blen));
+
+    /*
+     * Step 4: u1 = e / s mod n, u2 = r / s mod n
+     */
+    ECDSA_BUDGET(MBEDTLS_ECP_OPS_CHK + MBEDTLS_ECP_OPS_INV + 2);
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&s_inv, s, &grp->N));
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(pu1, &e, &s_inv));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(pu1, pu1, &grp->N));
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(pu2, r, &s_inv));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(pu2, pu2, &grp->N));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (rs_ctx != NULL && rs_ctx->ver != NULL) {
+        rs_ctx->ver->state = ecdsa_ver_muladd;
+    }
+
+muladd:
+#endif
+    /*
+     * Step 5: R = u1 G + u2 Q
+     */
+    MBEDTLS_MPI_CHK(mbedtls_ecp_muladd_restartable(grp,
+                                                   &R, pu1, &grp->G, pu2, Q, ECDSA_RS_ECP));
+
+    if (mbedtls_ecp_is_zero(&R)) {
+        ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
+        goto cleanup;
+    }
+
+    /*
+     * Step 6: convert xR to an integer (no-op)
+     * Step 7: reduce xR mod n (gives v)
+     */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&R.X, &R.X, &grp->N));
+
+    /*
+     * Step 8: check if v (that is, R.X) is equal to r
+     */
+    if (mbedtls_mpi_cmp_mpi(&R.X, r) != 0) {
+        ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
+        goto cleanup;
+    }
+
+cleanup:
+    mbedtls_ecp_point_free(&R);
+    mbedtls_mpi_free(&e); mbedtls_mpi_free(&s_inv);
+    mbedtls_mpi_free(&u1); mbedtls_mpi_free(&u2);
+
+    ECDSA_RS_LEAVE(ver);
+
+    return ret;
+}
+
+/*
+ * Verify ECDSA signature of hashed message
+ */
+int mbedtls_ecdsa_verify(mbedtls_ecp_group *grp,
+                         const unsigned char *buf, size_t blen,
+                         const mbedtls_ecp_point *Q,
+                         const mbedtls_mpi *r,
+                         const mbedtls_mpi *s)
+{
+    return mbedtls_ecdsa_verify_restartable(grp, buf, blen, Q, r, s, NULL);
+}
+#endif /* !MBEDTLS_ECDSA_VERIFY_ALT */
+
+/*
+ * Convert a signature (given by context) to ASN.1
+ */
+static int ecdsa_signature_to_asn1(const mbedtls_mpi *r, const mbedtls_mpi *s,
+                                   unsigned char *sig, size_t sig_size,
+                                   size_t *slen)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char buf[MBEDTLS_ECDSA_MAX_LEN] = { 0 };
+    unsigned char *p = buf + sizeof(buf);
+    size_t len = 0;
+
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_mpi(&p, buf, s));
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_mpi(&p, buf, r));
+
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(&p, buf, len));
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(&p, buf,
+                                                     MBEDTLS_ASN1_CONSTRUCTED |
+                                                     MBEDTLS_ASN1_SEQUENCE));
+
+    if (len > sig_size) {
+        return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+    }
+
+    memcpy(sig, p, len);
+    *slen = len;
+
+    return 0;
+}
+
+/*
+ * Compute and write signature
+ */
+int mbedtls_ecdsa_write_signature_restartable(mbedtls_ecdsa_context *ctx,
+                                              mbedtls_md_type_t md_alg,
+                                              const unsigned char *hash, size_t hlen,
+                                              unsigned char *sig, size_t sig_size, size_t *slen,
+                                              int (*f_rng)(void *, unsigned char *, size_t),
+                                              void *p_rng,
+                                              mbedtls_ecdsa_restart_ctx *rs_ctx)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_mpi r, s;
+    if (f_rng == NULL) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    mbedtls_mpi_init(&r);
+    mbedtls_mpi_init(&s);
+
+#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
+    MBEDTLS_MPI_CHK(mbedtls_ecdsa_sign_det_restartable(&ctx->grp, &r, &s, &ctx->d,
+                                                       hash, hlen, md_alg, f_rng,
+                                                       p_rng, rs_ctx));
+#else
+    (void) md_alg;
+
+#if defined(MBEDTLS_ECDSA_SIGN_ALT)
+    (void) rs_ctx;
+
+    MBEDTLS_MPI_CHK(mbedtls_ecdsa_sign(&ctx->grp, &r, &s, &ctx->d,
+                                       hash, hlen, f_rng, p_rng));
+#else
+    /* Use the same RNG for both blinding and ephemeral key generation */
+    MBEDTLS_MPI_CHK(mbedtls_ecdsa_sign_restartable(&ctx->grp, &r, &s, &ctx->d,
+                                                   hash, hlen, f_rng, p_rng, f_rng,
+                                                   p_rng, rs_ctx));
+#endif /* MBEDTLS_ECDSA_SIGN_ALT */
+#endif /* MBEDTLS_ECDSA_DETERMINISTIC */
+
+    MBEDTLS_MPI_CHK(ecdsa_signature_to_asn1(&r, &s, sig, sig_size, slen));
+
+cleanup:
+    mbedtls_mpi_free(&r);
+    mbedtls_mpi_free(&s);
+
+    return ret;
+}
+
+/*
+ * Compute and write signature
+ */
+int mbedtls_ecdsa_write_signature(mbedtls_ecdsa_context *ctx,
+                                  mbedtls_md_type_t md_alg,
+                                  const unsigned char *hash, size_t hlen,
+                                  unsigned char *sig, size_t sig_size, size_t *slen,
+                                  int (*f_rng)(void *, unsigned char *, size_t),
+                                  void *p_rng)
+{
+    return mbedtls_ecdsa_write_signature_restartable(
+        ctx, md_alg, hash, hlen, sig, sig_size, slen,
+        f_rng, p_rng, NULL);
+}
+
+/*
+ * Read and check signature
+ */
+int mbedtls_ecdsa_read_signature(mbedtls_ecdsa_context *ctx,
+                                 const unsigned char *hash, size_t hlen,
+                                 const unsigned char *sig, size_t slen)
+{
+    return mbedtls_ecdsa_read_signature_restartable(
+        ctx, hash, hlen, sig, slen, NULL);
+}
+
+/*
+ * Restartable read and check signature
+ */
+int mbedtls_ecdsa_read_signature_restartable(mbedtls_ecdsa_context *ctx,
+                                             const unsigned char *hash, size_t hlen,
+                                             const unsigned char *sig, size_t slen,
+                                             mbedtls_ecdsa_restart_ctx *rs_ctx)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char *p = (unsigned char *) sig;
+    const unsigned char *end = sig + slen;
+    size_t len;
+    mbedtls_mpi r, s;
+    mbedtls_mpi_init(&r);
+    mbedtls_mpi_init(&s);
+
+    if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
+                                    MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
+        ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+        goto cleanup;
+    }
+
+    if (p + len != end) {
+        ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_ECP_BAD_INPUT_DATA,
+                                MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);
+        goto cleanup;
+    }
+
+    if ((ret = mbedtls_asn1_get_mpi(&p, end, &r)) != 0 ||
+        (ret = mbedtls_asn1_get_mpi(&p, end, &s)) != 0) {
+        ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+        goto cleanup;
+    }
+#if defined(MBEDTLS_ECDSA_VERIFY_ALT)
+    (void) rs_ctx;
+
+    if ((ret = mbedtls_ecdsa_verify(&ctx->grp, hash, hlen,
+                                    &ctx->Q, &r, &s)) != 0) {
+        goto cleanup;
+    }
+#else
+    if ((ret = mbedtls_ecdsa_verify_restartable(&ctx->grp, hash, hlen,
+                                                &ctx->Q, &r, &s, rs_ctx)) != 0) {
+        goto cleanup;
+    }
+#endif /* MBEDTLS_ECDSA_VERIFY_ALT */
+
+    /* At this point we know that the buffer starts with a valid signature.
+     * Return 0 if the buffer just contains the signature, and a specific
+     * error code if the valid signature is followed by more data. */
+    if (p != end) {
+        ret = MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH;
+    }
+
+cleanup:
+    mbedtls_mpi_free(&r);
+    mbedtls_mpi_free(&s);
+
+    return ret;
+}
+
+#if !defined(MBEDTLS_ECDSA_GENKEY_ALT)
+/*
+ * Generate key pair
+ */
+int mbedtls_ecdsa_genkey(mbedtls_ecdsa_context *ctx, mbedtls_ecp_group_id gid,
+                         int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    int ret = 0;
+    ret = mbedtls_ecp_group_load(&ctx->grp, gid);
+    if (ret != 0) {
+        return ret;
+    }
+
+    return mbedtls_ecp_gen_keypair(&ctx->grp, &ctx->d,
+                                   &ctx->Q, f_rng, p_rng);
+}
+#endif /* !MBEDTLS_ECDSA_GENKEY_ALT */
+
+/*
+ * Set context from an mbedtls_ecp_keypair
+ */
+int mbedtls_ecdsa_from_keypair(mbedtls_ecdsa_context *ctx, const mbedtls_ecp_keypair *key)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    if ((ret = mbedtls_ecp_group_copy(&ctx->grp, &key->grp)) != 0 ||
+        (ret = mbedtls_mpi_copy(&ctx->d, &key->d)) != 0 ||
+        (ret = mbedtls_ecp_copy(&ctx->Q, &key->Q)) != 0) {
+        mbedtls_ecdsa_free(ctx);
+    }
+
+    return ret;
+}
+
+/*
+ * Initialize context
+ */
+void mbedtls_ecdsa_init(mbedtls_ecdsa_context *ctx)
+{
+    mbedtls_ecp_keypair_init(ctx);
+}
+
+/*
+ * Free context
+ */
+void mbedtls_ecdsa_free(mbedtls_ecdsa_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_ecp_keypair_free(ctx);
+}
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+/*
+ * Initialize a restart context
+ */
+void mbedtls_ecdsa_restart_init(mbedtls_ecdsa_restart_ctx *ctx)
+{
+    mbedtls_ecp_restart_init(&ctx->ecp);
+
+    ctx->ver = NULL;
+    ctx->sig = NULL;
+#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
+    ctx->det = NULL;
+#endif
+}
+
+/*
+ * Free the components of a restart context
+ */
+void mbedtls_ecdsa_restart_free(mbedtls_ecdsa_restart_ctx *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_ecp_restart_free(&ctx->ecp);
+
+    ecdsa_restart_ver_free(ctx->ver);
+    mbedtls_free(ctx->ver);
+    ctx->ver = NULL;
+
+    ecdsa_restart_sig_free(ctx->sig);
+    mbedtls_free(ctx->sig);
+    ctx->sig = NULL;
+
+#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
+    ecdsa_restart_det_free(ctx->det);
+    mbedtls_free(ctx->det);
+    ctx->det = NULL;
+#endif
+}
+#endif /* MBEDTLS_ECP_RESTARTABLE */
+
+#endif /* MBEDTLS_ECDSA_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/ecjpake.c b/tf-psa-crypto/drivers/builtin/src/ecjpake.c
new file mode 100644
index 0000000..628fb65
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/ecjpake.c
@@ -0,0 +1,1206 @@
+/*
+ *  Elliptic curve J-PAKE
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * References in the code are to the Thread v1.0 Specification,
+ * available to members of the Thread Group http://threadgroup.org/
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_ECJPAKE_C)
+
+#include "mbedtls/ecjpake.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+/*
+ * Convert a mbedtls_ecjpake_role to identifier string
+ */
+static const char * const ecjpake_id[] = {
+    "client",
+    "server"
+};
+
+#define ID_MINE     (ecjpake_id[ctx->role])
+#define ID_PEER     (ecjpake_id[1 - ctx->role])
+
+/**
+ * Helper to Compute a hash from md_type
+ */
+static int mbedtls_ecjpake_compute_hash(mbedtls_md_type_t md_type,
+                                        const unsigned char *input, size_t ilen,
+                                        unsigned char *output)
+{
+    return mbedtls_md(mbedtls_md_info_from_type(md_type),
+                      input, ilen, output);
+}
+
+/*
+ * Initialize context
+ */
+void mbedtls_ecjpake_init(mbedtls_ecjpake_context *ctx)
+{
+    ctx->md_type = MBEDTLS_MD_NONE;
+    mbedtls_ecp_group_init(&ctx->grp);
+    ctx->point_format = MBEDTLS_ECP_PF_UNCOMPRESSED;
+
+    mbedtls_ecp_point_init(&ctx->Xm1);
+    mbedtls_ecp_point_init(&ctx->Xm2);
+    mbedtls_ecp_point_init(&ctx->Xp1);
+    mbedtls_ecp_point_init(&ctx->Xp2);
+    mbedtls_ecp_point_init(&ctx->Xp);
+
+    mbedtls_mpi_init(&ctx->xm1);
+    mbedtls_mpi_init(&ctx->xm2);
+    mbedtls_mpi_init(&ctx->s);
+}
+
+/*
+ * Free context
+ */
+void mbedtls_ecjpake_free(mbedtls_ecjpake_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    ctx->md_type = MBEDTLS_MD_NONE;
+    mbedtls_ecp_group_free(&ctx->grp);
+
+    mbedtls_ecp_point_free(&ctx->Xm1);
+    mbedtls_ecp_point_free(&ctx->Xm2);
+    mbedtls_ecp_point_free(&ctx->Xp1);
+    mbedtls_ecp_point_free(&ctx->Xp2);
+    mbedtls_ecp_point_free(&ctx->Xp);
+
+    mbedtls_mpi_free(&ctx->xm1);
+    mbedtls_mpi_free(&ctx->xm2);
+    mbedtls_mpi_free(&ctx->s);
+}
+
+/*
+ * Setup context
+ */
+int mbedtls_ecjpake_setup(mbedtls_ecjpake_context *ctx,
+                          mbedtls_ecjpake_role role,
+                          mbedtls_md_type_t hash,
+                          mbedtls_ecp_group_id curve,
+                          const unsigned char *secret,
+                          size_t len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if (role != MBEDTLS_ECJPAKE_CLIENT && role != MBEDTLS_ECJPAKE_SERVER) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    ctx->role = role;
+
+    if ((mbedtls_md_info_from_type(hash)) == NULL) {
+        return MBEDTLS_ERR_MD_FEATURE_UNAVAILABLE;
+    }
+
+    ctx->md_type = hash;
+
+    MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&ctx->grp, curve));
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->s, secret, len));
+
+cleanup:
+    if (ret != 0) {
+        mbedtls_ecjpake_free(ctx);
+    }
+
+    return ret;
+}
+
+int mbedtls_ecjpake_set_point_format(mbedtls_ecjpake_context *ctx,
+                                     int point_format)
+{
+    switch (point_format) {
+        case MBEDTLS_ECP_PF_UNCOMPRESSED:
+        case MBEDTLS_ECP_PF_COMPRESSED:
+            ctx->point_format = point_format;
+            return 0;
+        default:
+            return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+}
+
+/*
+ * Check if context is ready for use
+ */
+int mbedtls_ecjpake_check(const mbedtls_ecjpake_context *ctx)
+{
+    if (ctx->md_type == MBEDTLS_MD_NONE ||
+        ctx->grp.id == MBEDTLS_ECP_DP_NONE ||
+        ctx->s.p == NULL) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    return 0;
+}
+
+/*
+ * Write a point plus its length to a buffer
+ */
+static int ecjpake_write_len_point(unsigned char **p,
+                                   const unsigned char *end,
+                                   const mbedtls_ecp_group *grp,
+                                   const int pf,
+                                   const mbedtls_ecp_point *P)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t len;
+
+    /* Need at least 4 for length plus 1 for point */
+    if (end < *p || end - *p < 5) {
+        return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+    }
+
+    ret = mbedtls_ecp_point_write_binary(grp, P, pf,
+                                         &len, *p + 4, (size_t) (end - (*p + 4)));
+    if (ret != 0) {
+        return ret;
+    }
+
+    MBEDTLS_PUT_UINT32_BE(len, *p, 0);
+
+    *p += 4 + len;
+
+    return 0;
+}
+
+/*
+ * Size of the temporary buffer for ecjpake_hash:
+ * 3 EC points plus their length, plus ID and its length (4 + 6 bytes)
+ */
+#define ECJPAKE_HASH_BUF_LEN    (3 * (4 + MBEDTLS_ECP_MAX_PT_LEN) + 4 + 6)
+
+/*
+ * Compute hash for ZKP (7.4.2.2.2.1)
+ */
+static int ecjpake_hash(const mbedtls_md_type_t md_type,
+                        const mbedtls_ecp_group *grp,
+                        const int pf,
+                        const mbedtls_ecp_point *G,
+                        const mbedtls_ecp_point *V,
+                        const mbedtls_ecp_point *X,
+                        const char *id,
+                        mbedtls_mpi *h)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char buf[ECJPAKE_HASH_BUF_LEN];
+    unsigned char *p = buf;
+    const unsigned char *end = buf + sizeof(buf);
+    const size_t id_len = strlen(id);
+    unsigned char hash[MBEDTLS_MD_MAX_SIZE];
+
+    /* Write things to temporary buffer */
+    MBEDTLS_MPI_CHK(ecjpake_write_len_point(&p, end, grp, pf, G));
+    MBEDTLS_MPI_CHK(ecjpake_write_len_point(&p, end, grp, pf, V));
+    MBEDTLS_MPI_CHK(ecjpake_write_len_point(&p, end, grp, pf, X));
+
+    if (end - p < 4) {
+        return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+    }
+
+    MBEDTLS_PUT_UINT32_BE(id_len, p, 0);
+    p += 4;
+
+    if (end < p || (size_t) (end - p) < id_len) {
+        return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+    }
+
+    memcpy(p, id, id_len);
+    p += id_len;
+
+    /* Compute hash */
+    MBEDTLS_MPI_CHK(mbedtls_ecjpake_compute_hash(md_type,
+                                                 buf, (size_t) (p - buf), hash));
+
+    /* Turn it into an integer mod n */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(h, hash,
+                                            mbedtls_md_get_size_from_type(md_type)));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(h, h, &grp->N));
+
+cleanup:
+    return ret;
+}
+
+/*
+ * Parse a ECShnorrZKP (7.4.2.2.2) and verify it (7.4.2.3.3)
+ */
+static int ecjpake_zkp_read(const mbedtls_md_type_t md_type,
+                            const mbedtls_ecp_group *grp,
+                            const int pf,
+                            const mbedtls_ecp_point *G,
+                            const mbedtls_ecp_point *X,
+                            const char *id,
+                            const unsigned char **p,
+                            const unsigned char *end)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_ecp_point V, VV;
+    mbedtls_mpi r, h;
+    size_t r_len;
+
+    mbedtls_ecp_point_init(&V);
+    mbedtls_ecp_point_init(&VV);
+    mbedtls_mpi_init(&r);
+    mbedtls_mpi_init(&h);
+
+    /*
+     * struct {
+     *     ECPoint V;
+     *     opaque r<1..2^8-1>;
+     * } ECSchnorrZKP;
+     */
+    if (end < *p) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    MBEDTLS_MPI_CHK(mbedtls_ecp_tls_read_point(grp, &V, p, (size_t) (end - *p)));
+
+    if (end < *p || (size_t) (end - *p) < 1) {
+        ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+        goto cleanup;
+    }
+
+    r_len = *(*p)++;
+
+    if (end < *p || (size_t) (end - *p) < r_len || r_len == 0) {
+        ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+        goto cleanup;
+    }
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&r, *p, r_len));
+    *p += r_len;
+
+    /*
+     * Verification
+     */
+    MBEDTLS_MPI_CHK(ecjpake_hash(md_type, grp, pf, G, &V, X, id, &h));
+    MBEDTLS_MPI_CHK(mbedtls_ecp_muladd((mbedtls_ecp_group *) grp,
+                                       &VV, &h, X, &r, G));
+
+    if (mbedtls_ecp_point_cmp(&VV, &V) != 0) {
+        ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
+        goto cleanup;
+    }
+
+cleanup:
+    mbedtls_ecp_point_free(&V);
+    mbedtls_ecp_point_free(&VV);
+    mbedtls_mpi_free(&r);
+    mbedtls_mpi_free(&h);
+
+    return ret;
+}
+
+/*
+ * Generate ZKP (7.4.2.3.2) and write it as ECSchnorrZKP (7.4.2.2.2)
+ */
+static int ecjpake_zkp_write(const mbedtls_md_type_t md_type,
+                             const mbedtls_ecp_group *grp,
+                             const int pf,
+                             const mbedtls_ecp_point *G,
+                             const mbedtls_mpi *x,
+                             const mbedtls_ecp_point *X,
+                             const char *id,
+                             unsigned char **p,
+                             const unsigned char *end,
+                             int (*f_rng)(void *, unsigned char *, size_t),
+                             void *p_rng)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_ecp_point V;
+    mbedtls_mpi v;
+    mbedtls_mpi h; /* later recycled to hold r */
+    size_t len;
+
+    if (end < *p) {
+        return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+    }
+
+    mbedtls_ecp_point_init(&V);
+    mbedtls_mpi_init(&v);
+    mbedtls_mpi_init(&h);
+
+    /* Compute signature */
+    MBEDTLS_MPI_CHK(mbedtls_ecp_gen_keypair_base((mbedtls_ecp_group *) grp,
+                                                 G, &v, &V, f_rng, p_rng));
+    MBEDTLS_MPI_CHK(ecjpake_hash(md_type, grp, pf, G, &V, X, id, &h));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&h, &h, x));     /* x*h */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&h, &v, &h));     /* v - x*h */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&h, &h, &grp->N));     /* r */
+
+    /* Write it out */
+    MBEDTLS_MPI_CHK(mbedtls_ecp_tls_write_point(grp, &V,
+                                                pf, &len, *p, (size_t) (end - *p)));
+    *p += len;
+
+    len = mbedtls_mpi_size(&h);   /* actually r */
+    if (end < *p || (size_t) (end - *p) < 1 + len || len > 255) {
+        ret = MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+        goto cleanup;
+    }
+
+    *(*p)++ = MBEDTLS_BYTE_0(len);
+    MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&h, *p, len));     /* r */
+    *p += len;
+
+cleanup:
+    mbedtls_ecp_point_free(&V);
+    mbedtls_mpi_free(&v);
+    mbedtls_mpi_free(&h);
+
+    return ret;
+}
+
+/*
+ * Parse a ECJPAKEKeyKP (7.4.2.2.1) and check proof
+ * Output: verified public key X
+ */
+static int ecjpake_kkp_read(const mbedtls_md_type_t md_type,
+                            const mbedtls_ecp_group *grp,
+                            const int pf,
+                            const mbedtls_ecp_point *G,
+                            mbedtls_ecp_point *X,
+                            const char *id,
+                            const unsigned char **p,
+                            const unsigned char *end)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if (end < *p) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    /*
+     * struct {
+     *     ECPoint X;
+     *     ECSchnorrZKP zkp;
+     * } ECJPAKEKeyKP;
+     */
+    MBEDTLS_MPI_CHK(mbedtls_ecp_tls_read_point(grp, X, p, (size_t) (end - *p)));
+    if (mbedtls_ecp_is_zero(X)) {
+        ret = MBEDTLS_ERR_ECP_INVALID_KEY;
+        goto cleanup;
+    }
+
+    MBEDTLS_MPI_CHK(ecjpake_zkp_read(md_type, grp, pf, G, X, id, p, end));
+
+cleanup:
+    return ret;
+}
+
+/*
+ * Generate an ECJPAKEKeyKP
+ * Output: the serialized structure, plus private/public key pair
+ */
+static int ecjpake_kkp_write(const mbedtls_md_type_t md_type,
+                             const mbedtls_ecp_group *grp,
+                             const int pf,
+                             const mbedtls_ecp_point *G,
+                             mbedtls_mpi *x,
+                             mbedtls_ecp_point *X,
+                             const char *id,
+                             unsigned char **p,
+                             const unsigned char *end,
+                             int (*f_rng)(void *, unsigned char *, size_t),
+                             void *p_rng)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t len;
+
+    if (end < *p) {
+        return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+    }
+
+    /* Generate key (7.4.2.3.1) and write it out */
+    MBEDTLS_MPI_CHK(mbedtls_ecp_gen_keypair_base((mbedtls_ecp_group *) grp, G, x, X,
+                                                 f_rng, p_rng));
+    MBEDTLS_MPI_CHK(mbedtls_ecp_tls_write_point(grp, X,
+                                                pf, &len, *p, (size_t) (end - *p)));
+    *p += len;
+
+    /* Generate and write proof */
+    MBEDTLS_MPI_CHK(ecjpake_zkp_write(md_type, grp, pf, G, x, X, id,
+                                      p, end, f_rng, p_rng));
+
+cleanup:
+    return ret;
+}
+
+/*
+ * Read a ECJPAKEKeyKPPairList (7.4.2.3) and check proofs
+ * Outputs: verified peer public keys Xa, Xb
+ */
+static int ecjpake_kkpp_read(const mbedtls_md_type_t md_type,
+                             const mbedtls_ecp_group *grp,
+                             const int pf,
+                             const mbedtls_ecp_point *G,
+                             mbedtls_ecp_point *Xa,
+                             mbedtls_ecp_point *Xb,
+                             const char *id,
+                             const unsigned char *buf,
+                             size_t len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    const unsigned char *p = buf;
+    const unsigned char *end = buf + len;
+
+    /*
+     * struct {
+     *     ECJPAKEKeyKP ecjpake_key_kp_pair_list[2];
+     * } ECJPAKEKeyKPPairList;
+     */
+    MBEDTLS_MPI_CHK(ecjpake_kkp_read(md_type, grp, pf, G, Xa, id, &p, end));
+    MBEDTLS_MPI_CHK(ecjpake_kkp_read(md_type, grp, pf, G, Xb, id, &p, end));
+
+    if (p != end) {
+        ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+cleanup:
+    return ret;
+}
+
+/*
+ * Generate a ECJPAKEKeyKPPairList
+ * Outputs: the serialized structure, plus two private/public key pairs
+ */
+static int ecjpake_kkpp_write(const mbedtls_md_type_t md_type,
+                              const mbedtls_ecp_group *grp,
+                              const int pf,
+                              const mbedtls_ecp_point *G,
+                              mbedtls_mpi *xm1,
+                              mbedtls_ecp_point *Xa,
+                              mbedtls_mpi *xm2,
+                              mbedtls_ecp_point *Xb,
+                              const char *id,
+                              unsigned char *buf,
+                              size_t len,
+                              size_t *olen,
+                              int (*f_rng)(void *, unsigned char *, size_t),
+                              void *p_rng)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char *p = buf;
+    const unsigned char *end = buf + len;
+
+    MBEDTLS_MPI_CHK(ecjpake_kkp_write(md_type, grp, pf, G, xm1, Xa, id,
+                                      &p, end, f_rng, p_rng));
+    MBEDTLS_MPI_CHK(ecjpake_kkp_write(md_type, grp, pf, G, xm2, Xb, id,
+                                      &p, end, f_rng, p_rng));
+
+    *olen = (size_t) (p - buf);
+
+cleanup:
+    return ret;
+}
+
+/*
+ * Read and process the first round message
+ */
+int mbedtls_ecjpake_read_round_one(mbedtls_ecjpake_context *ctx,
+                                   const unsigned char *buf,
+                                   size_t len)
+{
+    return ecjpake_kkpp_read(ctx->md_type, &ctx->grp, ctx->point_format,
+                             &ctx->grp.G,
+                             &ctx->Xp1, &ctx->Xp2, ID_PEER,
+                             buf, len);
+}
+
+/*
+ * Generate and write the first round message
+ */
+int mbedtls_ecjpake_write_round_one(mbedtls_ecjpake_context *ctx,
+                                    unsigned char *buf, size_t len, size_t *olen,
+                                    int (*f_rng)(void *, unsigned char *, size_t),
+                                    void *p_rng)
+{
+    return ecjpake_kkpp_write(ctx->md_type, &ctx->grp, ctx->point_format,
+                              &ctx->grp.G,
+                              &ctx->xm1, &ctx->Xm1, &ctx->xm2, &ctx->Xm2,
+                              ID_MINE, buf, len, olen, f_rng, p_rng);
+}
+
+/*
+ * Compute the sum of three points R = A + B + C
+ */
+static int ecjpake_ecp_add3(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+                            const mbedtls_ecp_point *A,
+                            const mbedtls_ecp_point *B,
+                            const mbedtls_ecp_point *C)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_mpi one;
+
+    mbedtls_mpi_init(&one);
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&one, 1));
+    MBEDTLS_MPI_CHK(mbedtls_ecp_muladd(grp, R, &one, A, &one, B));
+    MBEDTLS_MPI_CHK(mbedtls_ecp_muladd(grp, R, &one, R, &one, C));
+
+cleanup:
+    mbedtls_mpi_free(&one);
+
+    return ret;
+}
+
+/*
+ * Read and process second round message (C: 7.4.2.5, S: 7.4.2.6)
+ */
+int mbedtls_ecjpake_read_round_two(mbedtls_ecjpake_context *ctx,
+                                   const unsigned char *buf,
+                                   size_t len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    const unsigned char *p = buf;
+    const unsigned char *end = buf + len;
+    mbedtls_ecp_group grp;
+    mbedtls_ecp_point G;    /* C: GB, S: GA */
+
+    mbedtls_ecp_group_init(&grp);
+    mbedtls_ecp_point_init(&G);
+
+    /*
+     * Server: GA = X3  + X4  + X1      (7.4.2.6.1)
+     * Client: GB = X1  + X2  + X3      (7.4.2.5.1)
+     * Unified: G = Xm1 + Xm2 + Xp1
+     * We need that before parsing in order to check Xp as we read it
+     */
+    MBEDTLS_MPI_CHK(ecjpake_ecp_add3(&ctx->grp, &G,
+                                     &ctx->Xm1, &ctx->Xm2, &ctx->Xp1));
+
+    /*
+     * struct {
+     *     ECParameters curve_params;   // only client reading server msg
+     *     ECJPAKEKeyKP ecjpake_key_kp;
+     * } Client/ServerECJPAKEParams;
+     */
+    if (ctx->role == MBEDTLS_ECJPAKE_CLIENT) {
+        MBEDTLS_MPI_CHK(mbedtls_ecp_tls_read_group(&grp, &p, len));
+        if (grp.id != ctx->grp.id) {
+            ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+            goto cleanup;
+        }
+    }
+
+    MBEDTLS_MPI_CHK(ecjpake_kkp_read(ctx->md_type, &ctx->grp,
+                                     ctx->point_format,
+                                     &G, &ctx->Xp, ID_PEER, &p, end));
+
+    if (p != end) {
+        ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+        goto cleanup;
+    }
+
+cleanup:
+    mbedtls_ecp_group_free(&grp);
+    mbedtls_ecp_point_free(&G);
+
+    return ret;
+}
+
+/*
+ * Compute R = +/- X * S mod N, taking care not to leak S
+ */
+static int ecjpake_mul_secret(mbedtls_mpi *R, int sign,
+                              const mbedtls_mpi *X,
+                              const mbedtls_mpi *S,
+                              const mbedtls_mpi *N,
+                              int (*f_rng)(void *, unsigned char *, size_t),
+                              void *p_rng)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_mpi b; /* Blinding value, then s + N * blinding */
+
+    mbedtls_mpi_init(&b);
+
+    /* b = s + rnd-128-bit * N */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&b, 16, f_rng, p_rng));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&b, &b, N));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&b, &b, S));
+
+    /* R = sign * X * b mod N */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(R, X, &b));
+    R->s *= sign;
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(R, R, N));
+
+cleanup:
+    mbedtls_mpi_free(&b);
+
+    return ret;
+}
+
+/*
+ * Generate and write the second round message (S: 7.4.2.5, C: 7.4.2.6)
+ */
+int mbedtls_ecjpake_write_round_two(mbedtls_ecjpake_context *ctx,
+                                    unsigned char *buf, size_t len, size_t *olen,
+                                    int (*f_rng)(void *, unsigned char *, size_t),
+                                    void *p_rng)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_ecp_point G;    /* C: GA, S: GB */
+    mbedtls_ecp_point Xm;   /* C: Xc, S: Xs */
+    mbedtls_mpi xm;         /* C: xc, S: xs */
+    unsigned char *p = buf;
+    const unsigned char *end = buf + len;
+    size_t ec_len;
+
+    mbedtls_ecp_point_init(&G);
+    mbedtls_ecp_point_init(&Xm);
+    mbedtls_mpi_init(&xm);
+
+    /*
+     * First generate private/public key pair (S: 7.4.2.5.1, C: 7.4.2.6.1)
+     *
+     * Client:  GA = X1  + X3  + X4  | xs = x2  * s | Xc = xc * GA
+     * Server:  GB = X3  + X1  + X2  | xs = x4  * s | Xs = xs * GB
+     * Unified: G  = Xm1 + Xp1 + Xp2 | xm = xm2 * s | Xm = xm * G
+     */
+    MBEDTLS_MPI_CHK(ecjpake_ecp_add3(&ctx->grp, &G,
+                                     &ctx->Xp1, &ctx->Xp2, &ctx->Xm1));
+    MBEDTLS_MPI_CHK(ecjpake_mul_secret(&xm, 1, &ctx->xm2, &ctx->s,
+                                       &ctx->grp.N, f_rng, p_rng));
+    MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&ctx->grp, &Xm, &xm, &G, f_rng, p_rng));
+
+    /*
+     * Now write things out
+     *
+     * struct {
+     *     ECParameters curve_params;   // only server writing its message
+     *     ECJPAKEKeyKP ecjpake_key_kp;
+     * } Client/ServerECJPAKEParams;
+     */
+    if (ctx->role == MBEDTLS_ECJPAKE_SERVER) {
+        if (end < p) {
+            ret = MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+            goto cleanup;
+        }
+        MBEDTLS_MPI_CHK(mbedtls_ecp_tls_write_group(&ctx->grp, &ec_len,
+                                                    p, (size_t) (end - p)));
+        p += ec_len;
+    }
+
+    if (end < p) {
+        ret = MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+        goto cleanup;
+    }
+    MBEDTLS_MPI_CHK(mbedtls_ecp_tls_write_point(&ctx->grp, &Xm,
+                                                ctx->point_format, &ec_len, p, (size_t) (end - p)));
+    p += ec_len;
+
+    MBEDTLS_MPI_CHK(ecjpake_zkp_write(ctx->md_type, &ctx->grp,
+                                      ctx->point_format,
+                                      &G, &xm, &Xm, ID_MINE,
+                                      &p, end, f_rng, p_rng));
+
+    *olen = (size_t) (p - buf);
+
+cleanup:
+    mbedtls_ecp_point_free(&G);
+    mbedtls_ecp_point_free(&Xm);
+    mbedtls_mpi_free(&xm);
+
+    return ret;
+}
+
+/*
+ * Derive PMS (7.4.2.7 / 7.4.2.8)
+ */
+static int mbedtls_ecjpake_derive_k(mbedtls_ecjpake_context *ctx,
+                                    mbedtls_ecp_point *K,
+                                    int (*f_rng)(void *, unsigned char *, size_t),
+                                    void *p_rng)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_mpi m_xm2_s, one;
+
+    mbedtls_mpi_init(&m_xm2_s);
+    mbedtls_mpi_init(&one);
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&one, 1));
+
+    /*
+     * Client:  K = ( Xs - X4  * x2  * s ) * x2
+     * Server:  K = ( Xc - X2  * x4  * s ) * x4
+     * Unified: K = ( Xp - Xp2 * xm2 * s ) * xm2
+     */
+    MBEDTLS_MPI_CHK(ecjpake_mul_secret(&m_xm2_s, -1, &ctx->xm2, &ctx->s,
+                                       &ctx->grp.N, f_rng, p_rng));
+    MBEDTLS_MPI_CHK(mbedtls_ecp_muladd(&ctx->grp, K,
+                                       &one, &ctx->Xp,
+                                       &m_xm2_s, &ctx->Xp2));
+    MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&ctx->grp, K, &ctx->xm2, K,
+                                    f_rng, p_rng));
+
+cleanup:
+    mbedtls_mpi_free(&m_xm2_s);
+    mbedtls_mpi_free(&one);
+
+    return ret;
+}
+
+int mbedtls_ecjpake_derive_secret(mbedtls_ecjpake_context *ctx,
+                                  unsigned char *buf, size_t len, size_t *olen,
+                                  int (*f_rng)(void *, unsigned char *, size_t),
+                                  void *p_rng)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_ecp_point K;
+    unsigned char kx[MBEDTLS_ECP_MAX_BYTES];
+    size_t x_bytes;
+
+    *olen = mbedtls_md_get_size_from_type(ctx->md_type);
+    if (len < *olen) {
+        return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+    }
+
+    mbedtls_ecp_point_init(&K);
+
+    ret = mbedtls_ecjpake_derive_k(ctx, &K, f_rng, p_rng);
+    if (ret) {
+        goto cleanup;
+    }
+
+    /* PMS = SHA-256( K.X ) */
+    x_bytes = (ctx->grp.pbits + 7) / 8;
+    MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&K.X, kx, x_bytes));
+    MBEDTLS_MPI_CHK(mbedtls_ecjpake_compute_hash(ctx->md_type,
+                                                 kx, x_bytes, buf));
+
+cleanup:
+    mbedtls_ecp_point_free(&K);
+
+    return ret;
+}
+
+int mbedtls_ecjpake_write_shared_key(mbedtls_ecjpake_context *ctx,
+                                     unsigned char *buf, size_t len, size_t *olen,
+                                     int (*f_rng)(void *, unsigned char *, size_t),
+                                     void *p_rng)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_ecp_point K;
+
+    mbedtls_ecp_point_init(&K);
+
+    ret = mbedtls_ecjpake_derive_k(ctx, &K, f_rng, p_rng);
+    if (ret) {
+        goto cleanup;
+    }
+
+    ret = mbedtls_ecp_point_write_binary(&ctx->grp, &K, ctx->point_format,
+                                         olen, buf, len);
+    if (ret != 0) {
+        goto cleanup;
+    }
+
+cleanup:
+    mbedtls_ecp_point_free(&K);
+
+    return ret;
+}
+
+#undef ID_MINE
+#undef ID_PEER
+
+#if defined(MBEDTLS_SELF_TEST)
+
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \
+    !defined(MBEDTLS_MD_CAN_SHA256)
+int mbedtls_ecjpake_self_test(int verbose)
+{
+    (void) verbose;
+    return 0;
+}
+#else
+
+static const unsigned char ecjpake_test_password[] = {
+    0x74, 0x68, 0x72, 0x65, 0x61, 0x64, 0x6a, 0x70, 0x61, 0x6b, 0x65, 0x74,
+    0x65, 0x73, 0x74
+};
+
+static const unsigned char ecjpake_test_x1[] = {
+    0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,
+    0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18,
+    0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x21
+};
+
+static const unsigned char ecjpake_test_x2[] = {
+    0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c,
+    0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
+    0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x81
+};
+
+static const unsigned char ecjpake_test_x3[] = {
+    0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c,
+    0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
+    0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x81
+};
+
+static const unsigned char ecjpake_test_x4[] = {
+    0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc,
+    0xcd, 0xce, 0xcf, 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8,
+    0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf, 0xe1
+};
+
+static const unsigned char ecjpake_test_cli_one[] = {
+    0x41, 0x04, 0xac, 0xcf, 0x01, 0x06, 0xef, 0x85, 0x8f, 0xa2, 0xd9, 0x19,
+    0x33, 0x13, 0x46, 0x80, 0x5a, 0x78, 0xb5, 0x8b, 0xba, 0xd0, 0xb8, 0x44,
+    0xe5, 0xc7, 0x89, 0x28, 0x79, 0x14, 0x61, 0x87, 0xdd, 0x26, 0x66, 0xad,
+    0xa7, 0x81, 0xbb, 0x7f, 0x11, 0x13, 0x72, 0x25, 0x1a, 0x89, 0x10, 0x62,
+    0x1f, 0x63, 0x4d, 0xf1, 0x28, 0xac, 0x48, 0xe3, 0x81, 0xfd, 0x6e, 0xf9,
+    0x06, 0x07, 0x31, 0xf6, 0x94, 0xa4, 0x41, 0x04, 0x1d, 0xd0, 0xbd, 0x5d,
+    0x45, 0x66, 0xc9, 0xbe, 0xd9, 0xce, 0x7d, 0xe7, 0x01, 0xb5, 0xe8, 0x2e,
+    0x08, 0xe8, 0x4b, 0x73, 0x04, 0x66, 0x01, 0x8a, 0xb9, 0x03, 0xc7, 0x9e,
+    0xb9, 0x82, 0x17, 0x22, 0x36, 0xc0, 0xc1, 0x72, 0x8a, 0xe4, 0xbf, 0x73,
+    0x61, 0x0d, 0x34, 0xde, 0x44, 0x24, 0x6e, 0xf3, 0xd9, 0xc0, 0x5a, 0x22,
+    0x36, 0xfb, 0x66, 0xa6, 0x58, 0x3d, 0x74, 0x49, 0x30, 0x8b, 0xab, 0xce,
+    0x20, 0x72, 0xfe, 0x16, 0x66, 0x29, 0x92, 0xe9, 0x23, 0x5c, 0x25, 0x00,
+    0x2f, 0x11, 0xb1, 0x50, 0x87, 0xb8, 0x27, 0x38, 0xe0, 0x3c, 0x94, 0x5b,
+    0xf7, 0xa2, 0x99, 0x5d, 0xda, 0x1e, 0x98, 0x34, 0x58, 0x41, 0x04, 0x7e,
+    0xa6, 0xe3, 0xa4, 0x48, 0x70, 0x37, 0xa9, 0xe0, 0xdb, 0xd7, 0x92, 0x62,
+    0xb2, 0xcc, 0x27, 0x3e, 0x77, 0x99, 0x30, 0xfc, 0x18, 0x40, 0x9a, 0xc5,
+    0x36, 0x1c, 0x5f, 0xe6, 0x69, 0xd7, 0x02, 0xe1, 0x47, 0x79, 0x0a, 0xeb,
+    0x4c, 0xe7, 0xfd, 0x65, 0x75, 0xab, 0x0f, 0x6c, 0x7f, 0xd1, 0xc3, 0x35,
+    0x93, 0x9a, 0xa8, 0x63, 0xba, 0x37, 0xec, 0x91, 0xb7, 0xe3, 0x2b, 0xb0,
+    0x13, 0xbb, 0x2b, 0x41, 0x04, 0xa4, 0x95, 0x58, 0xd3, 0x2e, 0xd1, 0xeb,
+    0xfc, 0x18, 0x16, 0xaf, 0x4f, 0xf0, 0x9b, 0x55, 0xfc, 0xb4, 0xca, 0x47,
+    0xb2, 0xa0, 0x2d, 0x1e, 0x7c, 0xaf, 0x11, 0x79, 0xea, 0x3f, 0xe1, 0x39,
+    0x5b, 0x22, 0xb8, 0x61, 0x96, 0x40, 0x16, 0xfa, 0xba, 0xf7, 0x2c, 0x97,
+    0x56, 0x95, 0xd9, 0x3d, 0x4d, 0xf0, 0xe5, 0x19, 0x7f, 0xe9, 0xf0, 0x40,
+    0x63, 0x4e, 0xd5, 0x97, 0x64, 0x93, 0x77, 0x87, 0xbe, 0x20, 0xbc, 0x4d,
+    0xee, 0xbb, 0xf9, 0xb8, 0xd6, 0x0a, 0x33, 0x5f, 0x04, 0x6c, 0xa3, 0xaa,
+    0x94, 0x1e, 0x45, 0x86, 0x4c, 0x7c, 0xad, 0xef, 0x9c, 0xf7, 0x5b, 0x3d,
+    0x8b, 0x01, 0x0e, 0x44, 0x3e, 0xf0
+};
+
+static const unsigned char ecjpake_test_srv_one[] = {
+    0x41, 0x04, 0x7e, 0xa6, 0xe3, 0xa4, 0x48, 0x70, 0x37, 0xa9, 0xe0, 0xdb,
+    0xd7, 0x92, 0x62, 0xb2, 0xcc, 0x27, 0x3e, 0x77, 0x99, 0x30, 0xfc, 0x18,
+    0x40, 0x9a, 0xc5, 0x36, 0x1c, 0x5f, 0xe6, 0x69, 0xd7, 0x02, 0xe1, 0x47,
+    0x79, 0x0a, 0xeb, 0x4c, 0xe7, 0xfd, 0x65, 0x75, 0xab, 0x0f, 0x6c, 0x7f,
+    0xd1, 0xc3, 0x35, 0x93, 0x9a, 0xa8, 0x63, 0xba, 0x37, 0xec, 0x91, 0xb7,
+    0xe3, 0x2b, 0xb0, 0x13, 0xbb, 0x2b, 0x41, 0x04, 0x09, 0xf8, 0x5b, 0x3d,
+    0x20, 0xeb, 0xd7, 0x88, 0x5c, 0xe4, 0x64, 0xc0, 0x8d, 0x05, 0x6d, 0x64,
+    0x28, 0xfe, 0x4d, 0xd9, 0x28, 0x7a, 0xa3, 0x65, 0xf1, 0x31, 0xf4, 0x36,
+    0x0f, 0xf3, 0x86, 0xd8, 0x46, 0x89, 0x8b, 0xc4, 0xb4, 0x15, 0x83, 0xc2,
+    0xa5, 0x19, 0x7f, 0x65, 0xd7, 0x87, 0x42, 0x74, 0x6c, 0x12, 0xa5, 0xec,
+    0x0a, 0x4f, 0xfe, 0x2f, 0x27, 0x0a, 0x75, 0x0a, 0x1d, 0x8f, 0xb5, 0x16,
+    0x20, 0x93, 0x4d, 0x74, 0xeb, 0x43, 0xe5, 0x4d, 0xf4, 0x24, 0xfd, 0x96,
+    0x30, 0x6c, 0x01, 0x17, 0xbf, 0x13, 0x1a, 0xfa, 0xbf, 0x90, 0xa9, 0xd3,
+    0x3d, 0x11, 0x98, 0xd9, 0x05, 0x19, 0x37, 0x35, 0x14, 0x41, 0x04, 0x19,
+    0x0a, 0x07, 0x70, 0x0f, 0xfa, 0x4b, 0xe6, 0xae, 0x1d, 0x79, 0xee, 0x0f,
+    0x06, 0xae, 0xb5, 0x44, 0xcd, 0x5a, 0xdd, 0xaa, 0xbe, 0xdf, 0x70, 0xf8,
+    0x62, 0x33, 0x21, 0x33, 0x2c, 0x54, 0xf3, 0x55, 0xf0, 0xfb, 0xfe, 0xc7,
+    0x83, 0xed, 0x35, 0x9e, 0x5d, 0x0b, 0xf7, 0x37, 0x7a, 0x0f, 0xc4, 0xea,
+    0x7a, 0xce, 0x47, 0x3c, 0x9c, 0x11, 0x2b, 0x41, 0xcc, 0xd4, 0x1a, 0xc5,
+    0x6a, 0x56, 0x12, 0x41, 0x04, 0x36, 0x0a, 0x1c, 0xea, 0x33, 0xfc, 0xe6,
+    0x41, 0x15, 0x64, 0x58, 0xe0, 0xa4, 0xea, 0xc2, 0x19, 0xe9, 0x68, 0x31,
+    0xe6, 0xae, 0xbc, 0x88, 0xb3, 0xf3, 0x75, 0x2f, 0x93, 0xa0, 0x28, 0x1d,
+    0x1b, 0xf1, 0xfb, 0x10, 0x60, 0x51, 0xdb, 0x96, 0x94, 0xa8, 0xd6, 0xe8,
+    0x62, 0xa5, 0xef, 0x13, 0x24, 0xa3, 0xd9, 0xe2, 0x78, 0x94, 0xf1, 0xee,
+    0x4f, 0x7c, 0x59, 0x19, 0x99, 0x65, 0xa8, 0xdd, 0x4a, 0x20, 0x91, 0x84,
+    0x7d, 0x2d, 0x22, 0xdf, 0x3e, 0xe5, 0x5f, 0xaa, 0x2a, 0x3f, 0xb3, 0x3f,
+    0xd2, 0xd1, 0xe0, 0x55, 0xa0, 0x7a, 0x7c, 0x61, 0xec, 0xfb, 0x8d, 0x80,
+    0xec, 0x00, 0xc2, 0xc9, 0xeb, 0x12
+};
+
+static const unsigned char ecjpake_test_srv_two[] = {
+    0x03, 0x00, 0x17, 0x41, 0x04, 0x0f, 0xb2, 0x2b, 0x1d, 0x5d, 0x11, 0x23,
+    0xe0, 0xef, 0x9f, 0xeb, 0x9d, 0x8a, 0x2e, 0x59, 0x0a, 0x1f, 0x4d, 0x7c,
+    0xed, 0x2c, 0x2b, 0x06, 0x58, 0x6e, 0x8f, 0x2a, 0x16, 0xd4, 0xeb, 0x2f,
+    0xda, 0x43, 0x28, 0xa2, 0x0b, 0x07, 0xd8, 0xfd, 0x66, 0x76, 0x54, 0xca,
+    0x18, 0xc5, 0x4e, 0x32, 0xa3, 0x33, 0xa0, 0x84, 0x54, 0x51, 0xe9, 0x26,
+    0xee, 0x88, 0x04, 0xfd, 0x7a, 0xf0, 0xaa, 0xa7, 0xa6, 0x41, 0x04, 0x55,
+    0x16, 0xea, 0x3e, 0x54, 0xa0, 0xd5, 0xd8, 0xb2, 0xce, 0x78, 0x6b, 0x38,
+    0xd3, 0x83, 0x37, 0x00, 0x29, 0xa5, 0xdb, 0xe4, 0x45, 0x9c, 0x9d, 0xd6,
+    0x01, 0xb4, 0x08, 0xa2, 0x4a, 0xe6, 0x46, 0x5c, 0x8a, 0xc9, 0x05, 0xb9,
+    0xeb, 0x03, 0xb5, 0xd3, 0x69, 0x1c, 0x13, 0x9e, 0xf8, 0x3f, 0x1c, 0xd4,
+    0x20, 0x0f, 0x6c, 0x9c, 0xd4, 0xec, 0x39, 0x22, 0x18, 0xa5, 0x9e, 0xd2,
+    0x43, 0xd3, 0xc8, 0x20, 0xff, 0x72, 0x4a, 0x9a, 0x70, 0xb8, 0x8c, 0xb8,
+    0x6f, 0x20, 0xb4, 0x34, 0xc6, 0x86, 0x5a, 0xa1, 0xcd, 0x79, 0x06, 0xdd,
+    0x7c, 0x9b, 0xce, 0x35, 0x25, 0xf5, 0x08, 0x27, 0x6f, 0x26, 0x83, 0x6c
+};
+
+static const unsigned char ecjpake_test_cli_two[] = {
+    0x41, 0x04, 0x69, 0xd5, 0x4e, 0xe8, 0x5e, 0x90, 0xce, 0x3f, 0x12, 0x46,
+    0x74, 0x2d, 0xe5, 0x07, 0xe9, 0x39, 0xe8, 0x1d, 0x1d, 0xc1, 0xc5, 0xcb,
+    0x98, 0x8b, 0x58, 0xc3, 0x10, 0xc9, 0xfd, 0xd9, 0x52, 0x4d, 0x93, 0x72,
+    0x0b, 0x45, 0x54, 0x1c, 0x83, 0xee, 0x88, 0x41, 0x19, 0x1d, 0xa7, 0xce,
+    0xd8, 0x6e, 0x33, 0x12, 0xd4, 0x36, 0x23, 0xc1, 0xd6, 0x3e, 0x74, 0x98,
+    0x9a, 0xba, 0x4a, 0xff, 0xd1, 0xee, 0x41, 0x04, 0x07, 0x7e, 0x8c, 0x31,
+    0xe2, 0x0e, 0x6b, 0xed, 0xb7, 0x60, 0xc1, 0x35, 0x93, 0xe6, 0x9f, 0x15,
+    0xbe, 0x85, 0xc2, 0x7d, 0x68, 0xcd, 0x09, 0xcc, 0xb8, 0xc4, 0x18, 0x36,
+    0x08, 0x91, 0x7c, 0x5c, 0x3d, 0x40, 0x9f, 0xac, 0x39, 0xfe, 0xfe, 0xe8,
+    0x2f, 0x72, 0x92, 0xd3, 0x6f, 0x0d, 0x23, 0xe0, 0x55, 0x91, 0x3f, 0x45,
+    0xa5, 0x2b, 0x85, 0xdd, 0x8a, 0x20, 0x52, 0xe9, 0xe1, 0x29, 0xbb, 0x4d,
+    0x20, 0x0f, 0x01, 0x1f, 0x19, 0x48, 0x35, 0x35, 0xa6, 0xe8, 0x9a, 0x58,
+    0x0c, 0x9b, 0x00, 0x03, 0xba, 0xf2, 0x14, 0x62, 0xec, 0xe9, 0x1a, 0x82,
+    0xcc, 0x38, 0xdb, 0xdc, 0xae, 0x60, 0xd9, 0xc5, 0x4c
+};
+
+static const unsigned char ecjpake_test_shared_key[] = {
+    0x04, 0x01, 0xab, 0xe9, 0xf2, 0xc7, 0x3a, 0x99, 0x14, 0xcb, 0x1f, 0x80,
+    0xfb, 0x9d, 0xdb, 0x7e, 0x00, 0x12, 0xa8, 0x9c, 0x2f, 0x39, 0x27, 0x79,
+    0xf9, 0x64, 0x40, 0x14, 0x75, 0xea, 0xc1, 0x31, 0x28, 0x43, 0x8f, 0xe1,
+    0x12, 0x41, 0xd6, 0xc1, 0xe5, 0x5f, 0x7b, 0x80, 0x88, 0x94, 0xc9, 0xc0,
+    0x27, 0xa3, 0x34, 0x41, 0xf5, 0xcb, 0xa1, 0xfe, 0x6c, 0xc7, 0xe6, 0x12,
+    0x17, 0xc3, 0xde, 0x27, 0xb4,
+};
+
+static const unsigned char ecjpake_test_pms[] = {
+    0xf3, 0xd4, 0x7f, 0x59, 0x98, 0x44, 0xdb, 0x92, 0xa5, 0x69, 0xbb, 0xe7,
+    0x98, 0x1e, 0x39, 0xd9, 0x31, 0xfd, 0x74, 0x3b, 0xf2, 0x2e, 0x98, 0xf9,
+    0xb4, 0x38, 0xf7, 0x19, 0xd3, 0xc4, 0xf3, 0x51
+};
+
+/*
+ * PRNG for test - !!!INSECURE NEVER USE IN PRODUCTION!!!
+ *
+ * This is the linear congruential generator from numerical recipes,
+ * except we only use the low byte as the output. See
+ * https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
+ */
+static int self_test_rng(void *ctx, unsigned char *out, size_t len)
+{
+    static uint32_t state = 42;
+
+    (void) ctx;
+
+    for (size_t i = 0; i < len; i++) {
+        state = state * 1664525u + 1013904223u;
+        out[i] = (unsigned char) state;
+    }
+
+    return 0;
+}
+
+/* Load my private keys and generate the corresponding public keys */
+static int ecjpake_test_load(mbedtls_ecjpake_context *ctx,
+                             const unsigned char *xm1, size_t len1,
+                             const unsigned char *xm2, size_t len2)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->xm1, xm1, len1));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->xm2, xm2, len2));
+    MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&ctx->grp, &ctx->Xm1, &ctx->xm1,
+                                    &ctx->grp.G, self_test_rng, NULL));
+    MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&ctx->grp, &ctx->Xm2, &ctx->xm2,
+                                    &ctx->grp.G, self_test_rng, NULL));
+
+cleanup:
+    return ret;
+}
+
+/* For tests we don't need a secure RNG;
+ * use the LGC from Numerical Recipes for simplicity */
+static int ecjpake_lgc(void *p, unsigned char *out, size_t len)
+{
+    static uint32_t x = 42;
+    (void) p;
+
+    while (len > 0) {
+        size_t use_len = len > 4 ? 4 : len;
+        x = 1664525 * x + 1013904223;
+        memcpy(out, &x, use_len);
+        out += use_len;
+        len -= use_len;
+    }
+
+    return 0;
+}
+
+#define TEST_ASSERT(x)    \
+    do {                    \
+        if (x)             \
+        ret = 0;        \
+        else                \
+        {                   \
+            ret = 1;        \
+            goto cleanup;   \
+        }                   \
+    } while (0)
+
+/*
+ * Checkup routine
+ */
+int mbedtls_ecjpake_self_test(int verbose)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_ecjpake_context cli;
+    mbedtls_ecjpake_context srv;
+    unsigned char buf[512], pms[32];
+    size_t len, pmslen;
+
+    mbedtls_ecjpake_init(&cli);
+    mbedtls_ecjpake_init(&srv);
+
+    if (verbose != 0) {
+        mbedtls_printf("  ECJPAKE test #0 (setup): ");
+    }
+
+    TEST_ASSERT(mbedtls_ecjpake_setup(&cli, MBEDTLS_ECJPAKE_CLIENT,
+                                      MBEDTLS_MD_SHA256, MBEDTLS_ECP_DP_SECP256R1,
+                                      ecjpake_test_password,
+                                      sizeof(ecjpake_test_password)) == 0);
+
+    TEST_ASSERT(mbedtls_ecjpake_setup(&srv, MBEDTLS_ECJPAKE_SERVER,
+                                      MBEDTLS_MD_SHA256, MBEDTLS_ECP_DP_SECP256R1,
+                                      ecjpake_test_password,
+                                      sizeof(ecjpake_test_password)) == 0);
+
+    if (verbose != 0) {
+        mbedtls_printf("passed\n");
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("  ECJPAKE test #1 (random handshake): ");
+    }
+
+    TEST_ASSERT(mbedtls_ecjpake_write_round_one(&cli,
+                                                buf, sizeof(buf), &len, ecjpake_lgc, NULL) == 0);
+
+    TEST_ASSERT(mbedtls_ecjpake_read_round_one(&srv, buf, len) == 0);
+
+    TEST_ASSERT(mbedtls_ecjpake_write_round_one(&srv,
+                                                buf, sizeof(buf), &len, ecjpake_lgc, NULL) == 0);
+
+    TEST_ASSERT(mbedtls_ecjpake_read_round_one(&cli, buf, len) == 0);
+
+    TEST_ASSERT(mbedtls_ecjpake_write_round_two(&srv,
+                                                buf, sizeof(buf), &len, ecjpake_lgc, NULL) == 0);
+
+    TEST_ASSERT(mbedtls_ecjpake_read_round_two(&cli, buf, len) == 0);
+
+    TEST_ASSERT(mbedtls_ecjpake_derive_secret(&cli,
+                                              pms, sizeof(pms), &pmslen, ecjpake_lgc, NULL) == 0);
+
+    TEST_ASSERT(mbedtls_ecjpake_write_round_two(&cli,
+                                                buf, sizeof(buf), &len, ecjpake_lgc, NULL) == 0);
+
+    TEST_ASSERT(mbedtls_ecjpake_read_round_two(&srv, buf, len) == 0);
+
+    TEST_ASSERT(mbedtls_ecjpake_derive_secret(&srv,
+                                              buf, sizeof(buf), &len, ecjpake_lgc, NULL) == 0);
+
+    TEST_ASSERT(len == pmslen);
+    TEST_ASSERT(memcmp(buf, pms, len) == 0);
+
+    if (verbose != 0) {
+        mbedtls_printf("passed\n");
+    }
+
+    /* 'reference handshake' tests can only be run against implementations
+     * for which we have 100% control over how the random ephemeral keys
+     * are generated. This is only the case for the internal Mbed TLS
+     * implementation, so these tests are skipped in case the internal
+     * implementation is swapped out for an alternative one. */
+    if (verbose != 0) {
+        mbedtls_printf("  ECJPAKE test #2 (reference handshake): ");
+    }
+
+    /* Simulate generation of round one */
+    MBEDTLS_MPI_CHK(ecjpake_test_load(&cli,
+                                      ecjpake_test_x1, sizeof(ecjpake_test_x1),
+                                      ecjpake_test_x2, sizeof(ecjpake_test_x2)));
+
+    MBEDTLS_MPI_CHK(ecjpake_test_load(&srv,
+                                      ecjpake_test_x3, sizeof(ecjpake_test_x3),
+                                      ecjpake_test_x4, sizeof(ecjpake_test_x4)));
+
+    /* Read round one */
+    TEST_ASSERT(mbedtls_ecjpake_read_round_one(&srv,
+                                               ecjpake_test_cli_one,
+                                               sizeof(ecjpake_test_cli_one)) == 0);
+
+    TEST_ASSERT(mbedtls_ecjpake_read_round_one(&cli,
+                                               ecjpake_test_srv_one,
+                                               sizeof(ecjpake_test_srv_one)) == 0);
+
+    /* Skip generation of round two, read round two */
+    TEST_ASSERT(mbedtls_ecjpake_read_round_two(&cli,
+                                               ecjpake_test_srv_two,
+                                               sizeof(ecjpake_test_srv_two)) == 0);
+
+    TEST_ASSERT(mbedtls_ecjpake_read_round_two(&srv,
+                                               ecjpake_test_cli_two,
+                                               sizeof(ecjpake_test_cli_two)) == 0);
+
+    /* Server derives PMS */
+    TEST_ASSERT(mbedtls_ecjpake_derive_secret(&srv,
+                                              buf, sizeof(buf), &len, ecjpake_lgc, NULL) == 0);
+
+    TEST_ASSERT(len == sizeof(ecjpake_test_pms));
+    TEST_ASSERT(memcmp(buf, ecjpake_test_pms, len) == 0);
+
+    /* Server derives K as unsigned binary data */
+    TEST_ASSERT(mbedtls_ecjpake_write_shared_key(&srv,
+                                                 buf, sizeof(buf), &len, ecjpake_lgc, NULL) == 0);
+
+    TEST_ASSERT(len == sizeof(ecjpake_test_shared_key));
+    TEST_ASSERT(memcmp(buf, ecjpake_test_shared_key, len) == 0);
+
+    memset(buf, 0, len);   /* Avoid interferences with next step */
+
+    /* Client derives PMS */
+    TEST_ASSERT(mbedtls_ecjpake_derive_secret(&cli,
+                                              buf, sizeof(buf), &len, ecjpake_lgc, NULL) == 0);
+
+    TEST_ASSERT(len == sizeof(ecjpake_test_pms));
+    TEST_ASSERT(memcmp(buf, ecjpake_test_pms, len) == 0);
+
+    /* Client derives K as unsigned binary data */
+    TEST_ASSERT(mbedtls_ecjpake_write_shared_key(&cli,
+                                                 buf, sizeof(buf), &len, ecjpake_lgc, NULL) == 0);
+
+    TEST_ASSERT(len == sizeof(ecjpake_test_shared_key));
+    TEST_ASSERT(memcmp(buf, ecjpake_test_shared_key, len) == 0);
+
+    if (verbose != 0) {
+        mbedtls_printf("passed\n");
+    }
+
+cleanup:
+    mbedtls_ecjpake_free(&cli);
+    mbedtls_ecjpake_free(&srv);
+
+    if (ret != 0) {
+        if (verbose != 0) {
+            mbedtls_printf("failed\n");
+        }
+
+        ret = 1;
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+
+    return ret;
+}
+
+#undef TEST_ASSERT
+
+#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED && MBEDTLS_MD_CAN_SHA256 */
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_ECJPAKE_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/ecp.c b/tf-psa-crypto/drivers/builtin/src/ecp.c
new file mode 100644
index 0000000..1e6b69b
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/ecp.c
@@ -0,0 +1,3558 @@
+/*
+ *  Elliptic curves over GF(p): generic functions
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * References:
+ *
+ * SEC1 https://www.secg.org/sec1-v2.pdf
+ * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
+ * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
+ * RFC 4492 for the related TLS structures and constants
+ * - https://www.rfc-editor.org/rfc/rfc4492
+ * RFC 7748 for the Curve448 and Curve25519 curve definitions
+ * - https://www.rfc-editor.org/rfc/rfc7748
+ *
+ * [Curve25519] https://cr.yp.to/ecdh/curve25519-20060209.pdf
+ *
+ * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
+ *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
+ *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
+ *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
+ *
+ * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
+ *     render ECC resistant against Side Channel Attacks. IACR Cryptology
+ *     ePrint Archive, 2004, vol. 2004, p. 342.
+ *     <http://eprint.iacr.org/2004/342.pdf>
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_ECP_LIGHT)
+
+#include "mbedtls/ecp.h"
+#include "mbedtls/threading.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include "bn_mul.h"
+#include "ecp_invasive.h"
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if defined(MBEDTLS_SELF_TEST)
+/*
+ * Counts of point addition and doubling, and field multiplications.
+ * Used to test resistance of point multiplication to simple timing attacks.
+ */
+#if defined(MBEDTLS_ECP_C)
+static unsigned long add_count, dbl_count;
+#endif /* MBEDTLS_ECP_C */
+static unsigned long mul_count;
+#endif
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+/*
+ * Maximum number of "basic operations" to be done in a row.
+ *
+ * Default value 0 means that ECC operations will not yield.
+ * Note that regardless of the value of ecp_max_ops, always at
+ * least one step is performed before yielding.
+ *
+ * Setting ecp_max_ops=1 can be suitable for testing purposes
+ * as it will interrupt computation at all possible points.
+ */
+static unsigned ecp_max_ops = 0;
+
+/*
+ * Set ecp_max_ops
+ */
+void mbedtls_ecp_set_max_ops(unsigned max_ops)
+{
+    ecp_max_ops = max_ops;
+}
+
+/*
+ * Check if restart is enabled
+ */
+int mbedtls_ecp_restart_is_enabled(void)
+{
+    return ecp_max_ops != 0;
+}
+
+/*
+ * Restart sub-context for ecp_mul_comb()
+ */
+struct mbedtls_ecp_restart_mul {
+    mbedtls_ecp_point R;    /* current intermediate result                  */
+    size_t i;               /* current index in various loops, 0 outside    */
+    mbedtls_ecp_point *T;   /* table for precomputed points                 */
+    unsigned char T_size;   /* number of points in table T                  */
+    enum {                  /* what were we doing last time we returned?    */
+        ecp_rsm_init = 0,       /* nothing so far, dummy initial state      */
+        ecp_rsm_pre_dbl,        /* precompute 2^n multiples                 */
+        ecp_rsm_pre_norm_dbl,   /* normalize precomputed 2^n multiples      */
+        ecp_rsm_pre_add,        /* precompute remaining points by adding    */
+        ecp_rsm_pre_norm_add,   /* normalize all precomputed points         */
+        ecp_rsm_comb_core,      /* ecp_mul_comb_core()                      */
+        ecp_rsm_final_norm,     /* do the final normalization               */
+    } state;
+};
+
+/*
+ * Init restart_mul sub-context
+ */
+static void ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx *ctx)
+{
+    mbedtls_ecp_point_init(&ctx->R);
+    ctx->i = 0;
+    ctx->T = NULL;
+    ctx->T_size = 0;
+    ctx->state = ecp_rsm_init;
+}
+
+/*
+ * Free the components of a restart_mul sub-context
+ */
+static void ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx *ctx)
+{
+    unsigned char i;
+
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_ecp_point_free(&ctx->R);
+
+    if (ctx->T != NULL) {
+        for (i = 0; i < ctx->T_size; i++) {
+            mbedtls_ecp_point_free(ctx->T + i);
+        }
+        mbedtls_free(ctx->T);
+    }
+
+    ecp_restart_rsm_init(ctx);
+}
+
+/*
+ * Restart context for ecp_muladd()
+ */
+struct mbedtls_ecp_restart_muladd {
+    mbedtls_ecp_point mP;       /* mP value                             */
+    mbedtls_ecp_point R;        /* R intermediate result                */
+    enum {                      /* what should we do next?              */
+        ecp_rsma_mul1 = 0,      /* first multiplication                 */
+        ecp_rsma_mul2,          /* second multiplication                */
+        ecp_rsma_add,           /* addition                             */
+        ecp_rsma_norm,          /* normalization                        */
+    } state;
+};
+
+/*
+ * Init restart_muladd sub-context
+ */
+static void ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx *ctx)
+{
+    mbedtls_ecp_point_init(&ctx->mP);
+    mbedtls_ecp_point_init(&ctx->R);
+    ctx->state = ecp_rsma_mul1;
+}
+
+/*
+ * Free the components of a restart_muladd sub-context
+ */
+static void ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_ecp_point_free(&ctx->mP);
+    mbedtls_ecp_point_free(&ctx->R);
+
+    ecp_restart_ma_init(ctx);
+}
+
+/*
+ * Initialize a restart context
+ */
+void mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx *ctx)
+{
+    ctx->ops_done = 0;
+    ctx->depth = 0;
+    ctx->rsm = NULL;
+    ctx->ma = NULL;
+}
+
+/*
+ * Free the components of a restart context
+ */
+void mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    ecp_restart_rsm_free(ctx->rsm);
+    mbedtls_free(ctx->rsm);
+
+    ecp_restart_ma_free(ctx->ma);
+    mbedtls_free(ctx->ma);
+
+    mbedtls_ecp_restart_init(ctx);
+}
+
+/*
+ * Check if we can do the next step
+ */
+int mbedtls_ecp_check_budget(const mbedtls_ecp_group *grp,
+                             mbedtls_ecp_restart_ctx *rs_ctx,
+                             unsigned ops)
+{
+    if (rs_ctx != NULL && ecp_max_ops != 0) {
+        /* scale depending on curve size: the chosen reference is 256-bit,
+         * and multiplication is quadratic. Round to the closest integer. */
+        if (grp->pbits >= 512) {
+            ops *= 4;
+        } else if (grp->pbits >= 384) {
+            ops *= 2;
+        }
+
+        /* Avoid infinite loops: always allow first step.
+         * Because of that, however, it's not generally true
+         * that ops_done <= ecp_max_ops, so the check
+         * ops_done > ecp_max_ops below is mandatory. */
+        if ((rs_ctx->ops_done != 0) &&
+            (rs_ctx->ops_done > ecp_max_ops ||
+             ops > ecp_max_ops - rs_ctx->ops_done)) {
+            return MBEDTLS_ERR_ECP_IN_PROGRESS;
+        }
+
+        /* update running count */
+        rs_ctx->ops_done += ops;
+    }
+
+    return 0;
+}
+
+/* Call this when entering a function that needs its own sub-context */
+#define ECP_RS_ENTER(SUB)   do {                                      \
+        /* reset ops count for this call if top-level */                    \
+        if (rs_ctx != NULL && rs_ctx->depth++ == 0)                        \
+        rs_ctx->ops_done = 0;                                           \
+                                                                        \
+        /* set up our own sub-context if needed */                          \
+        if (mbedtls_ecp_restart_is_enabled() &&                             \
+            rs_ctx != NULL && rs_ctx->SUB == NULL)                         \
+        {                                                                   \
+            rs_ctx->SUB = mbedtls_calloc(1, sizeof(*rs_ctx->SUB));      \
+            if (rs_ctx->SUB == NULL)                                       \
+            return MBEDTLS_ERR_ECP_ALLOC_FAILED;                     \
+                                                                      \
+            ecp_restart_## SUB ##_init(rs_ctx->SUB);                      \
+        }                                                                   \
+} while (0)
+
+/* Call this when leaving a function that needs its own sub-context */
+#define ECP_RS_LEAVE(SUB)   do {                                      \
+        /* clear our sub-context when not in progress (done or error) */    \
+        if (rs_ctx != NULL && rs_ctx->SUB != NULL &&                        \
+            ret != MBEDTLS_ERR_ECP_IN_PROGRESS)                            \
+        {                                                                   \
+            ecp_restart_## SUB ##_free(rs_ctx->SUB);                      \
+            mbedtls_free(rs_ctx->SUB);                                    \
+            rs_ctx->SUB = NULL;                                             \
+        }                                                                   \
+                                                                        \
+        if (rs_ctx != NULL)                                                \
+        rs_ctx->depth--;                                                \
+} while (0)
+
+#else /* MBEDTLS_ECP_RESTARTABLE */
+
+#define ECP_RS_ENTER(sub)     (void) rs_ctx;
+#define ECP_RS_LEAVE(sub)     (void) rs_ctx;
+
+#endif /* MBEDTLS_ECP_RESTARTABLE */
+
+#if defined(MBEDTLS_ECP_C)
+static void mpi_init_many(mbedtls_mpi *arr, size_t size)
+{
+    while (size--) {
+        mbedtls_mpi_init(arr++);
+    }
+}
+
+static void mpi_free_many(mbedtls_mpi *arr, size_t size)
+{
+    while (size--) {
+        mbedtls_mpi_free(arr++);
+    }
+}
+#endif /* MBEDTLS_ECP_C */
+
+/*
+ * List of supported curves:
+ *  - internal ID
+ *  - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7)
+ *  - size in bits
+ *  - readable name
+ *
+ * Curves are listed in order: largest curves first, and for a given size,
+ * fastest curves first.
+ *
+ * Reminder: update profiles in x509_crt.c and ssl_tls.c when adding a new curve!
+ */
+static const mbedtls_ecp_curve_info ecp_supported_curves[] =
+{
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+    { MBEDTLS_ECP_DP_SECP521R1,    25,     521,    "secp521r1"         },
+#endif
+#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
+    { MBEDTLS_ECP_DP_BP512R1,      28,     512,    "brainpoolP512r1"   },
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+    { MBEDTLS_ECP_DP_SECP384R1,    24,     384,    "secp384r1"         },
+#endif
+#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
+    { MBEDTLS_ECP_DP_BP384R1,      27,     384,    "brainpoolP384r1"   },
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+    { MBEDTLS_ECP_DP_SECP256R1,    23,     256,    "secp256r1"         },
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+    { MBEDTLS_ECP_DP_SECP256K1,    22,     256,    "secp256k1"         },
+#endif
+#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
+    { MBEDTLS_ECP_DP_BP256R1,      26,     256,    "brainpoolP256r1"   },
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+    { MBEDTLS_ECP_DP_SECP224R1,    21,     224,    "secp224r1"         },
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+    { MBEDTLS_ECP_DP_SECP224K1,    20,     224,    "secp224k1"         },
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+    { MBEDTLS_ECP_DP_SECP192R1,    19,     192,    "secp192r1"         },
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+    { MBEDTLS_ECP_DP_SECP192K1,    18,     192,    "secp192k1"         },
+#endif
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+    { MBEDTLS_ECP_DP_CURVE25519,   29,     256,    "x25519"            },
+#endif
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+    { MBEDTLS_ECP_DP_CURVE448,     30,     448,    "x448"              },
+#endif
+    { MBEDTLS_ECP_DP_NONE,          0,     0,      NULL                },
+};
+
+#define ECP_NB_CURVES   sizeof(ecp_supported_curves) /    \
+    sizeof(ecp_supported_curves[0])
+
+static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
+
+/*
+ * List of supported curves and associated info
+ */
+const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list(void)
+{
+    return ecp_supported_curves;
+}
+
+/*
+ * List of supported curves, group ID only
+ */
+const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list(void)
+{
+    static int init_done = 0;
+
+    if (!init_done) {
+        size_t i = 0;
+        const mbedtls_ecp_curve_info *curve_info;
+
+        for (curve_info = mbedtls_ecp_curve_list();
+             curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
+             curve_info++) {
+            ecp_supported_grp_id[i++] = curve_info->grp_id;
+        }
+        ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
+
+        init_done = 1;
+    }
+
+    return ecp_supported_grp_id;
+}
+
+/*
+ * Get the curve info for the internal identifier
+ */
+const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)
+{
+    const mbedtls_ecp_curve_info *curve_info;
+
+    for (curve_info = mbedtls_ecp_curve_list();
+         curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
+         curve_info++) {
+        if (curve_info->grp_id == grp_id) {
+            return curve_info;
+        }
+    }
+
+    return NULL;
+}
+
+/*
+ * Get the curve info from the TLS identifier
+ */
+const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)
+{
+    const mbedtls_ecp_curve_info *curve_info;
+
+    for (curve_info = mbedtls_ecp_curve_list();
+         curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
+         curve_info++) {
+        if (curve_info->tls_id == tls_id) {
+            return curve_info;
+        }
+    }
+
+    return NULL;
+}
+
+/*
+ * Get the curve info from the name
+ */
+const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name(const char *name)
+{
+    const mbedtls_ecp_curve_info *curve_info;
+
+    if (name == NULL) {
+        return NULL;
+    }
+
+    for (curve_info = mbedtls_ecp_curve_list();
+         curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
+         curve_info++) {
+        if (strcmp(curve_info->name, name) == 0) {
+            return curve_info;
+        }
+    }
+
+    return NULL;
+}
+
+/*
+ * Get the type of a curve
+ */
+mbedtls_ecp_curve_type mbedtls_ecp_get_type(const mbedtls_ecp_group *grp)
+{
+    if (grp->G.X.p == NULL) {
+        return MBEDTLS_ECP_TYPE_NONE;
+    }
+
+    if (grp->G.Y.p == NULL) {
+        return MBEDTLS_ECP_TYPE_MONTGOMERY;
+    } else {
+        return MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS;
+    }
+}
+
+/*
+ * Initialize (the components of) a point
+ */
+void mbedtls_ecp_point_init(mbedtls_ecp_point *pt)
+{
+    mbedtls_mpi_init(&pt->X);
+    mbedtls_mpi_init(&pt->Y);
+    mbedtls_mpi_init(&pt->Z);
+}
+
+/*
+ * Initialize (the components of) a group
+ */
+void mbedtls_ecp_group_init(mbedtls_ecp_group *grp)
+{
+    grp->id = MBEDTLS_ECP_DP_NONE;
+    mbedtls_mpi_init(&grp->P);
+    mbedtls_mpi_init(&grp->A);
+    mbedtls_mpi_init(&grp->B);
+    mbedtls_ecp_point_init(&grp->G);
+    mbedtls_mpi_init(&grp->N);
+    grp->pbits = 0;
+    grp->nbits = 0;
+    grp->h = 0;
+    grp->modp = NULL;
+    grp->t_pre = NULL;
+    grp->t_post = NULL;
+    grp->t_data = NULL;
+    grp->T = NULL;
+    grp->T_size = 0;
+}
+
+/*
+ * Initialize (the components of) a key pair
+ */
+void mbedtls_ecp_keypair_init(mbedtls_ecp_keypair *key)
+{
+    mbedtls_ecp_group_init(&key->grp);
+    mbedtls_mpi_init(&key->d);
+    mbedtls_ecp_point_init(&key->Q);
+}
+
+/*
+ * Unallocate (the components of) a point
+ */
+void mbedtls_ecp_point_free(mbedtls_ecp_point *pt)
+{
+    if (pt == NULL) {
+        return;
+    }
+
+    mbedtls_mpi_free(&(pt->X));
+    mbedtls_mpi_free(&(pt->Y));
+    mbedtls_mpi_free(&(pt->Z));
+}
+
+/*
+ * Check that the comb table (grp->T) is static initialized.
+ */
+static int ecp_group_is_static_comb_table(const mbedtls_ecp_group *grp)
+{
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+    return grp->T != NULL && grp->T_size == 0;
+#else
+    (void) grp;
+    return 0;
+#endif
+}
+
+/*
+ * Unallocate (the components of) a group
+ */
+void mbedtls_ecp_group_free(mbedtls_ecp_group *grp)
+{
+    size_t i;
+
+    if (grp == NULL) {
+        return;
+    }
+
+    if (grp->h != 1) {
+        mbedtls_mpi_free(&grp->A);
+        mbedtls_mpi_free(&grp->B);
+        mbedtls_ecp_point_free(&grp->G);
+
+#if !defined(MBEDTLS_ECP_WITH_MPI_UINT)
+        mbedtls_mpi_free(&grp->N);
+        mbedtls_mpi_free(&grp->P);
+#endif
+    }
+
+    if (!ecp_group_is_static_comb_table(grp) && grp->T != NULL) {
+        for (i = 0; i < grp->T_size; i++) {
+            mbedtls_ecp_point_free(&grp->T[i]);
+        }
+        mbedtls_free(grp->T);
+    }
+
+    mbedtls_platform_zeroize(grp, sizeof(mbedtls_ecp_group));
+}
+
+/*
+ * Unallocate (the components of) a key pair
+ */
+void mbedtls_ecp_keypair_free(mbedtls_ecp_keypair *key)
+{
+    if (key == NULL) {
+        return;
+    }
+
+    mbedtls_ecp_group_free(&key->grp);
+    mbedtls_mpi_free(&key->d);
+    mbedtls_ecp_point_free(&key->Q);
+}
+
+/*
+ * Copy the contents of a point
+ */
+int mbedtls_ecp_copy(mbedtls_ecp_point *P, const mbedtls_ecp_point *Q)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->X, &Q->X));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Y, &Q->Y));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Z, &Q->Z));
+
+cleanup:
+    return ret;
+}
+
+/*
+ * Copy the contents of a group object
+ */
+int mbedtls_ecp_group_copy(mbedtls_ecp_group *dst, const mbedtls_ecp_group *src)
+{
+    return mbedtls_ecp_group_load(dst, src->id);
+}
+
+/*
+ * Set point to zero
+ */
+int mbedtls_ecp_set_zero(mbedtls_ecp_point *pt)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->X, 1));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Y, 1));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 0));
+
+cleanup:
+    return ret;
+}
+
+/*
+ * Tell if a point is zero
+ */
+int mbedtls_ecp_is_zero(mbedtls_ecp_point *pt)
+{
+    return mbedtls_mpi_cmp_int(&pt->Z, 0) == 0;
+}
+
+/*
+ * Compare two points lazily
+ */
+int mbedtls_ecp_point_cmp(const mbedtls_ecp_point *P,
+                          const mbedtls_ecp_point *Q)
+{
+    if (mbedtls_mpi_cmp_mpi(&P->X, &Q->X) == 0 &&
+        mbedtls_mpi_cmp_mpi(&P->Y, &Q->Y) == 0 &&
+        mbedtls_mpi_cmp_mpi(&P->Z, &Q->Z) == 0) {
+        return 0;
+    }
+
+    return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+}
+
+/*
+ * Import a non-zero point from ASCII strings
+ */
+int mbedtls_ecp_point_read_string(mbedtls_ecp_point *P, int radix,
+                                  const char *x, const char *y)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->X, radix, x));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->Y, radix, y));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&P->Z, 1));
+
+cleanup:
+    return ret;
+}
+
+/*
+ * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748)
+ */
+int mbedtls_ecp_point_write_binary(const mbedtls_ecp_group *grp,
+                                   const mbedtls_ecp_point *P,
+                                   int format, size_t *olen,
+                                   unsigned char *buf, size_t buflen)
+{
+    int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+    size_t plen;
+    if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
+        format != MBEDTLS_ECP_PF_COMPRESSED) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    plen = mbedtls_mpi_size(&grp->P);
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+    (void) format; /* Montgomery curves always use the same point format */
+    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+        *olen = plen;
+        if (buflen < *olen) {
+            return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+        }
+
+        MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&P->X, buf, plen));
+    }
+#endif
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+        /*
+         * Common case: P == 0
+         */
+        if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) {
+            if (buflen < 1) {
+                return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+            }
+
+            buf[0] = 0x00;
+            *olen = 1;
+
+            return 0;
+        }
+
+        if (format == MBEDTLS_ECP_PF_UNCOMPRESSED) {
+            *olen = 2 * plen + 1;
+
+            if (buflen < *olen) {
+                return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+            }
+
+            buf[0] = 0x04;
+            MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->Y, buf + 1 + plen, plen));
+        } else if (format == MBEDTLS_ECP_PF_COMPRESSED) {
+            *olen = plen + 1;
+
+            if (buflen < *olen) {
+                return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+            }
+
+            buf[0] = 0x02 + mbedtls_mpi_get_bit(&P->Y, 0);
+            MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
+        }
+    }
+#endif
+
+cleanup:
+    return ret;
+}
+
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
+                                   const mbedtls_mpi *X,
+                                   mbedtls_mpi *Y,
+                                   int parity_bit);
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+
+/*
+ * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748)
+ */
+int mbedtls_ecp_point_read_binary(const mbedtls_ecp_group *grp,
+                                  mbedtls_ecp_point *pt,
+                                  const unsigned char *buf, size_t ilen)
+{
+    int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+    size_t plen;
+    if (ilen < 1) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    plen = mbedtls_mpi_size(&grp->P);
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+        if (plen != ilen) {
+            return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+        }
+
+        MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&pt->X, buf, plen));
+        mbedtls_mpi_free(&pt->Y);
+
+        if (grp->id == MBEDTLS_ECP_DP_CURVE25519) {
+            /* Set most significant bit to 0 as prescribed in RFC7748 §5 */
+            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&pt->X, plen * 8 - 1, 0));
+        }
+
+        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
+    }
+#endif
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+        if (buf[0] == 0x00) {
+            if (ilen == 1) {
+                return mbedtls_ecp_set_zero(pt);
+            } else {
+                return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+            }
+        }
+
+        if (ilen < 1 + plen) {
+            return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+        }
+
+        MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&pt->X, buf + 1, plen));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
+
+        if (buf[0] == 0x04) {
+            /* format == MBEDTLS_ECP_PF_UNCOMPRESSED */
+            if (ilen != 1 + plen * 2) {
+                return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+            }
+            return mbedtls_mpi_read_binary(&pt->Y, buf + 1 + plen, plen);
+        } else if (buf[0] == 0x02 || buf[0] == 0x03) {
+            /* format == MBEDTLS_ECP_PF_COMPRESSED */
+            if (ilen != 1 + plen) {
+                return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+            }
+            return mbedtls_ecp_sw_derive_y(grp, &pt->X, &pt->Y,
+                                           (buf[0] & 1));
+        } else {
+            return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+        }
+    }
+#endif
+
+cleanup:
+    return ret;
+}
+
+/*
+ * Import a point from a TLS ECPoint record (RFC 4492)
+ *      struct {
+ *          opaque point <1..2^8-1>;
+ *      } ECPoint;
+ */
+int mbedtls_ecp_tls_read_point(const mbedtls_ecp_group *grp,
+                               mbedtls_ecp_point *pt,
+                               const unsigned char **buf, size_t buf_len)
+{
+    unsigned char data_len;
+    const unsigned char *buf_start;
+    /*
+     * We must have at least two bytes (1 for length, at least one for data)
+     */
+    if (buf_len < 2) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    data_len = *(*buf)++;
+    if (data_len < 1 || data_len > buf_len - 1) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    /*
+     * Save buffer start for read_binary and update buf
+     */
+    buf_start = *buf;
+    *buf += data_len;
+
+    return mbedtls_ecp_point_read_binary(grp, pt, buf_start, data_len);
+}
+
+/*
+ * Export a point as a TLS ECPoint record (RFC 4492)
+ *      struct {
+ *          opaque point <1..2^8-1>;
+ *      } ECPoint;
+ */
+int mbedtls_ecp_tls_write_point(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
+                                int format, size_t *olen,
+                                unsigned char *buf, size_t blen)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
+        format != MBEDTLS_ECP_PF_COMPRESSED) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    /*
+     * buffer length must be at least one, for our length byte
+     */
+    if (blen < 1) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    if ((ret = mbedtls_ecp_point_write_binary(grp, pt, format,
+                                              olen, buf + 1, blen - 1)) != 0) {
+        return ret;
+    }
+
+    /*
+     * write length to the first byte and update total length
+     */
+    buf[0] = (unsigned char) *olen;
+    ++*olen;
+
+    return 0;
+}
+
+/*
+ * Set a group from an ECParameters record (RFC 4492)
+ */
+int mbedtls_ecp_tls_read_group(mbedtls_ecp_group *grp,
+                               const unsigned char **buf, size_t len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_ecp_group_id grp_id;
+    if ((ret = mbedtls_ecp_tls_read_group_id(&grp_id, buf, len)) != 0) {
+        return ret;
+    }
+
+    return mbedtls_ecp_group_load(grp, grp_id);
+}
+
+/*
+ * Read a group id from an ECParameters record (RFC 4492) and convert it to
+ * mbedtls_ecp_group_id.
+ */
+int mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id *grp,
+                                  const unsigned char **buf, size_t len)
+{
+    uint16_t tls_id;
+    const mbedtls_ecp_curve_info *curve_info;
+    /*
+     * We expect at least three bytes (see below)
+     */
+    if (len < 3) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    /*
+     * First byte is curve_type; only named_curve is handled
+     */
+    if (*(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    /*
+     * Next two bytes are the namedcurve value
+     */
+    tls_id = MBEDTLS_GET_UINT16_BE(*buf, 0);
+    *buf += 2;
+
+    if ((curve_info = mbedtls_ecp_curve_info_from_tls_id(tls_id)) == NULL) {
+        return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+    }
+
+    *grp = curve_info->grp_id;
+
+    return 0;
+}
+
+/*
+ * Write the ECParameters record corresponding to a group (RFC 4492)
+ */
+int mbedtls_ecp_tls_write_group(const mbedtls_ecp_group *grp, size_t *olen,
+                                unsigned char *buf, size_t blen)
+{
+    const mbedtls_ecp_curve_info *curve_info;
+    if ((curve_info = mbedtls_ecp_curve_info_from_grp_id(grp->id)) == NULL) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    /*
+     * We are going to write 3 bytes (see below)
+     */
+    *olen = 3;
+    if (blen < *olen) {
+        return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+    }
+
+    /*
+     * First byte is curve_type, always named_curve
+     */
+    *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
+
+    /*
+     * Next two bytes are the namedcurve value
+     */
+    MBEDTLS_PUT_UINT16_BE(curve_info->tls_id, buf, 0);
+
+    return 0;
+}
+
+/*
+ * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
+ * See the documentation of struct mbedtls_ecp_group.
+ *
+ * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
+ */
+static int ecp_modp(mbedtls_mpi *N, const mbedtls_ecp_group *grp)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if (grp->modp == NULL) {
+        return mbedtls_mpi_mod_mpi(N, N, &grp->P);
+    }
+
+    /* N->s < 0 is a much faster test, which fails only if N is 0 */
+    if ((N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) ||
+        mbedtls_mpi_bitlen(N) > 2 * grp->pbits) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    MBEDTLS_MPI_CHK(grp->modp(N));
+
+    /* N->s < 0 is a much faster test, which fails only if N is 0 */
+    while (N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &grp->P));
+    }
+
+    while (mbedtls_mpi_cmp_mpi(N, &grp->P) >= 0) {
+        /* we known P, N and the result are positive */
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(N, N, &grp->P));
+    }
+
+cleanup:
+    return ret;
+}
+
+/*
+ * Fast mod-p functions expect their argument to be in the 0..p^2 range.
+ *
+ * In order to guarantee that, we need to ensure that operands of
+ * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
+ * bring the result back to this range.
+ *
+ * The following macros are shortcuts for doing that.
+ */
+
+/*
+ * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
+ */
+#if defined(MBEDTLS_SELF_TEST)
+#define INC_MUL_COUNT   mul_count++;
+#else
+#define INC_MUL_COUNT
+#endif
+
+#define MOD_MUL(N)                                                    \
+    do                                                                  \
+    {                                                                   \
+        MBEDTLS_MPI_CHK(ecp_modp(&(N), grp));                       \
+        INC_MUL_COUNT                                                   \
+    } while (0)
+
+static inline int mbedtls_mpi_mul_mod(const mbedtls_ecp_group *grp,
+                                      mbedtls_mpi *X,
+                                      const mbedtls_mpi *A,
+                                      const mbedtls_mpi *B)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(X, A, B));
+    MOD_MUL(*X);
+cleanup:
+    return ret;
+}
+
+/*
+ * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
+ * N->s < 0 is a very fast test, which fails only if N is 0
+ */
+#define MOD_SUB(N)                                                          \
+    do {                                                                      \
+        while ((N)->s < 0 && mbedtls_mpi_cmp_int((N), 0) != 0)             \
+        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi((N), (N), &grp->P));      \
+    } while (0)
+
+MBEDTLS_MAYBE_UNUSED
+static inline int mbedtls_mpi_sub_mod(const mbedtls_ecp_group *grp,
+                                      mbedtls_mpi *X,
+                                      const mbedtls_mpi *A,
+                                      const mbedtls_mpi *B)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(X, A, B));
+    MOD_SUB(X);
+cleanup:
+    return ret;
+}
+
+/*
+ * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
+ * We known P, N and the result are positive, so sub_abs is correct, and
+ * a bit faster.
+ */
+#define MOD_ADD(N)                                                   \
+    while (mbedtls_mpi_cmp_mpi((N), &grp->P) >= 0)                  \
+    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs((N), (N), &grp->P))
+
+static inline int mbedtls_mpi_add_mod(const mbedtls_ecp_group *grp,
+                                      mbedtls_mpi *X,
+                                      const mbedtls_mpi *A,
+                                      const mbedtls_mpi *B)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, A, B));
+    MOD_ADD(X);
+cleanup:
+    return ret;
+}
+
+MBEDTLS_MAYBE_UNUSED
+static inline int mbedtls_mpi_mul_int_mod(const mbedtls_ecp_group *grp,
+                                          mbedtls_mpi *X,
+                                          const mbedtls_mpi *A,
+                                          mbedtls_mpi_uint c)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(X, A, c));
+    MOD_ADD(X);
+cleanup:
+    return ret;
+}
+
+MBEDTLS_MAYBE_UNUSED
+static inline int mbedtls_mpi_sub_int_mod(const mbedtls_ecp_group *grp,
+                                          mbedtls_mpi *X,
+                                          const mbedtls_mpi *A,
+                                          mbedtls_mpi_uint c)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(X, A, c));
+    MOD_SUB(X);
+cleanup:
+    return ret;
+}
+
+#define MPI_ECP_SUB_INT(X, A, c)             \
+    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int_mod(grp, X, A, c))
+
+MBEDTLS_MAYBE_UNUSED
+static inline int mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group *grp,
+                                          mbedtls_mpi *X,
+                                          size_t count)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, count));
+    MOD_ADD(X);
+cleanup:
+    return ret;
+}
+
+/*
+ * Macro wrappers around ECP modular arithmetic
+ *
+ * Currently, these wrappers are defined via the bignum module.
+ */
+
+#define MPI_ECP_ADD(X, A, B)                                                  \
+    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, X, A, B))
+
+#define MPI_ECP_SUB(X, A, B)                                                  \
+    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, X, A, B))
+
+#define MPI_ECP_MUL(X, A, B)                                                  \
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, B))
+
+#define MPI_ECP_SQR(X, A)                                                     \
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, A))
+
+#define MPI_ECP_MUL_INT(X, A, c)                                              \
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int_mod(grp, X, A, c))
+
+#define MPI_ECP_INV(dst, src)                                                 \
+    MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod((dst), (src), &grp->P))
+
+#define MPI_ECP_MOV(X, A)                                                     \
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A))
+
+#define MPI_ECP_SHIFT_L(X, count)                                             \
+    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, X, count))
+
+#define MPI_ECP_LSET(X, c)                                                    \
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, c))
+
+#define MPI_ECP_CMP_INT(X, c)                                                 \
+    mbedtls_mpi_cmp_int(X, c)
+
+#define MPI_ECP_CMP(X, Y)                                                     \
+    mbedtls_mpi_cmp_mpi(X, Y)
+
+/* Needs f_rng, p_rng to be defined. */
+#define MPI_ECP_RAND(X)                                                       \
+    MBEDTLS_MPI_CHK(mbedtls_mpi_random((X), 2, &grp->P, f_rng, p_rng))
+
+/* Conditional negation
+ * Needs grp and a temporary MPI tmp to be defined. */
+#define MPI_ECP_COND_NEG(X, cond)                                        \
+    do                                                                     \
+    {                                                                      \
+        unsigned char nonzero = mbedtls_mpi_cmp_int((X), 0) != 0;        \
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&tmp, &grp->P, (X)));      \
+        MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), &tmp,          \
+                                                     nonzero & cond)); \
+    } while (0)
+
+#define MPI_ECP_NEG(X) MPI_ECP_COND_NEG((X), 1)
+
+#define MPI_ECP_VALID(X)                      \
+    ((X)->p != NULL)
+
+#define MPI_ECP_COND_ASSIGN(X, Y, cond)       \
+    MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), (Y), (cond)))
+
+#define MPI_ECP_COND_SWAP(X, Y, cond)       \
+    MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap((X), (Y), (cond)))
+
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+
+/*
+ * Computes the right-hand side of the Short Weierstrass equation
+ * RHS = X^3 + A X + B
+ */
+static int ecp_sw_rhs(const mbedtls_ecp_group *grp,
+                      mbedtls_mpi *rhs,
+                      const mbedtls_mpi *X)
+{
+    int ret;
+
+    /* Compute X^3 + A X + B as X (X^2 + A) + B */
+    MPI_ECP_SQR(rhs, X);
+
+    /* Special case for A = -3 */
+    if (mbedtls_ecp_group_a_is_minus_3(grp)) {
+        MPI_ECP_SUB_INT(rhs, rhs, 3);
+    } else {
+        MPI_ECP_ADD(rhs, rhs, &grp->A);
+    }
+
+    MPI_ECP_MUL(rhs, rhs, X);
+    MPI_ECP_ADD(rhs, rhs, &grp->B);
+
+cleanup:
+    return ret;
+}
+
+/*
+ * Derive Y from X and a parity bit
+ */
+static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
+                                   const mbedtls_mpi *X,
+                                   mbedtls_mpi *Y,
+                                   int parity_bit)
+{
+    /* w = y^2 = x^3 + ax + b
+     * y = sqrt(w) = w^((p+1)/4) mod p   (for prime p where p = 3 mod 4)
+     *
+     * Note: this method for extracting square root does not validate that w
+     * was indeed a square so this function will return garbage in Y if X
+     * does not correspond to a point on the curve.
+     */
+
+    /* Check prerequisite p = 3 mod 4 */
+    if (mbedtls_mpi_get_bit(&grp->P, 0) != 1 ||
+        mbedtls_mpi_get_bit(&grp->P, 1) != 1) {
+        return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+    }
+
+    int ret;
+    mbedtls_mpi exp;
+    mbedtls_mpi_init(&exp);
+
+    /* use Y to store intermediate result, actually w above */
+    MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, Y, X));
+
+    /* w = y^2 */ /* Y contains y^2 intermediate result */
+    /* exp = ((p+1)/4) */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&exp, &grp->P, 1));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&exp, 2));
+    /* sqrt(w) = w^((p+1)/4) mod p   (for prime p where p = 3 mod 4) */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(Y, Y /*y^2*/, &exp, &grp->P, NULL));
+
+    /* check parity bit match or else invert Y */
+    /* This quick inversion implementation is valid because Y != 0 for all
+     * Short Weierstrass curves supported by mbedtls, as each supported curve
+     * has an order that is a large prime, so each supported curve does not
+     * have any point of order 2, and a point with Y == 0 would be of order 2 */
+    if (mbedtls_mpi_get_bit(Y, 0) != parity_bit) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Y, &grp->P, Y));
+    }
+
+cleanup:
+
+    mbedtls_mpi_free(&exp);
+    return ret;
+}
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+
+#if defined(MBEDTLS_ECP_C)
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+/*
+ * For curves in short Weierstrass form, we do all the internal operations in
+ * Jacobian coordinates.
+ *
+ * For multiplication, we'll use a comb method with countermeasures against
+ * SPA, hence timing attacks.
+ */
+
+/*
+ * Normalize jacobian coordinates so that Z == 0 || Z == 1  (GECC 3.2.1)
+ * Cost: 1N := 1I + 3M + 1S
+ */
+static int ecp_normalize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt)
+{
+    if (MPI_ECP_CMP_INT(&pt->Z, 0) == 0) {
+        return 0;
+    }
+
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_mpi T;
+    mbedtls_mpi_init(&T);
+
+    MPI_ECP_INV(&T,       &pt->Z);            /* T   <-          1 / Z   */
+    MPI_ECP_MUL(&pt->Y,   &pt->Y,     &T);    /* Y'  <- Y*T    = Y / Z   */
+    MPI_ECP_SQR(&T,       &T);                /* T   <- T^2    = 1 / Z^2 */
+    MPI_ECP_MUL(&pt->X,   &pt->X,     &T);    /* X   <- X  * T = X / Z^2 */
+    MPI_ECP_MUL(&pt->Y,   &pt->Y,     &T);    /* Y'' <- Y' * T = Y / Z^3 */
+
+    MPI_ECP_LSET(&pt->Z, 1);
+
+cleanup:
+
+    mbedtls_mpi_free(&T);
+
+    return ret;
+}
+
+/*
+ * Normalize jacobian coordinates of an array of (pointers to) points,
+ * using Montgomery's trick to perform only one inversion mod P.
+ * (See for example Cohen's "A Course in Computational Algebraic Number
+ * Theory", Algorithm 10.3.4.)
+ *
+ * Warning: fails (returning an error) if one of the points is zero!
+ * This should never happen, see choice of w in ecp_mul_comb().
+ *
+ * Cost: 1N(t) := 1I + (6t - 3)M + 1S
+ */
+static int ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
+                                  mbedtls_ecp_point *T[], size_t T_size)
+{
+    if (T_size < 2) {
+        return ecp_normalize_jac(grp, *T);
+    }
+
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t i;
+    mbedtls_mpi *c, t;
+
+    if ((c = mbedtls_calloc(T_size, sizeof(mbedtls_mpi))) == NULL) {
+        return MBEDTLS_ERR_ECP_ALLOC_FAILED;
+    }
+
+    mbedtls_mpi_init(&t);
+
+    mpi_init_many(c, T_size);
+    /*
+     * c[i] = Z_0 * ... * Z_i,   i = 0,..,n := T_size-1
+     */
+    MPI_ECP_MOV(&c[0], &T[0]->Z);
+    for (i = 1; i < T_size; i++) {
+        MPI_ECP_MUL(&c[i], &c[i-1], &T[i]->Z);
+    }
+
+    /*
+     * c[n] = 1 / (Z_0 * ... * Z_n) mod P
+     */
+    MPI_ECP_INV(&c[T_size-1], &c[T_size-1]);
+
+    for (i = T_size - 1;; i--) {
+        /* At the start of iteration i (note that i decrements), we have
+         * - c[j] = Z_0 * .... * Z_j        for j  < i,
+         * - c[j] = 1 / (Z_0 * .... * Z_j)  for j == i,
+         *
+         * This is maintained via
+         * - c[i-1] <- c[i] * Z_i
+         *
+         * We also derive 1/Z_i = c[i] * c[i-1] for i>0 and use that
+         * to do the actual normalization. For i==0, we already have
+         * c[0] = 1 / Z_0.
+         */
+
+        if (i > 0) {
+            /* Compute 1/Z_i and establish invariant for the next iteration. */
+            MPI_ECP_MUL(&t,      &c[i], &c[i-1]);
+            MPI_ECP_MUL(&c[i-1], &c[i], &T[i]->Z);
+        } else {
+            MPI_ECP_MOV(&t, &c[0]);
+        }
+
+        /* Now t holds 1 / Z_i; normalize as in ecp_normalize_jac() */
+        MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
+        MPI_ECP_SQR(&t,       &t);
+        MPI_ECP_MUL(&T[i]->X, &T[i]->X, &t);
+        MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
+
+        /*
+         * Post-precessing: reclaim some memory by shrinking coordinates
+         * - not storing Z (always 1)
+         * - shrinking other coordinates, but still keeping the same number of
+         *   limbs as P, as otherwise it will too likely be regrown too fast.
+         */
+        MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->X, grp->P.n));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->Y, grp->P.n));
+
+        MPI_ECP_LSET(&T[i]->Z, 1);
+
+        if (i == 0) {
+            break;
+        }
+    }
+
+cleanup:
+
+    mbedtls_mpi_free(&t);
+    mpi_free_many(c, T_size);
+    mbedtls_free(c);
+
+    return ret;
+}
+
+/*
+ * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
+ * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
+ */
+static int ecp_safe_invert_jac(const mbedtls_ecp_group *grp,
+                               mbedtls_ecp_point *Q,
+                               unsigned char inv)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_mpi tmp;
+    mbedtls_mpi_init(&tmp);
+
+    MPI_ECP_COND_NEG(&Q->Y, inv);
+
+cleanup:
+    mbedtls_mpi_free(&tmp);
+    return ret;
+}
+
+/*
+ * Point doubling R = 2 P, Jacobian coordinates
+ *
+ * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
+ *
+ * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
+ * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
+ *
+ * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
+ *
+ * Cost: 1D := 3M + 4S          (A ==  0)
+ *             4M + 4S          (A == -3)
+ *             3M + 6S + 1a     otherwise
+ */
+static int ecp_double_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+                          const mbedtls_ecp_point *P,
+                          mbedtls_mpi tmp[4])
+{
+#if defined(MBEDTLS_SELF_TEST)
+    dbl_count++;
+#endif
+
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    /* Special case for A = -3 */
+    if (mbedtls_ecp_group_a_is_minus_3(grp)) {
+        /* tmp[0] <- M = 3(X + Z^2)(X - Z^2) */
+        MPI_ECP_SQR(&tmp[1],  &P->Z);
+        MPI_ECP_ADD(&tmp[2],  &P->X,  &tmp[1]);
+        MPI_ECP_SUB(&tmp[3],  &P->X,  &tmp[1]);
+        MPI_ECP_MUL(&tmp[1],  &tmp[2],     &tmp[3]);
+        MPI_ECP_MUL_INT(&tmp[0],  &tmp[1],     3);
+    } else {
+        /* tmp[0] <- M = 3.X^2 + A.Z^4 */
+        MPI_ECP_SQR(&tmp[1],  &P->X);
+        MPI_ECP_MUL_INT(&tmp[0],  &tmp[1],  3);
+
+        /* Optimize away for "koblitz" curves with A = 0 */
+        if (MPI_ECP_CMP_INT(&grp->A, 0) != 0) {
+            /* M += A.Z^4 */
+            MPI_ECP_SQR(&tmp[1],  &P->Z);
+            MPI_ECP_SQR(&tmp[2],  &tmp[1]);
+            MPI_ECP_MUL(&tmp[1],  &tmp[2],     &grp->A);
+            MPI_ECP_ADD(&tmp[0],  &tmp[0],     &tmp[1]);
+        }
+    }
+
+    /* tmp[1] <- S = 4.X.Y^2 */
+    MPI_ECP_SQR(&tmp[2],  &P->Y);
+    MPI_ECP_SHIFT_L(&tmp[2],  1);
+    MPI_ECP_MUL(&tmp[1],  &P->X, &tmp[2]);
+    MPI_ECP_SHIFT_L(&tmp[1],  1);
+
+    /* tmp[3] <- U = 8.Y^4 */
+    MPI_ECP_SQR(&tmp[3],  &tmp[2]);
+    MPI_ECP_SHIFT_L(&tmp[3],  1);
+
+    /* tmp[2] <- T = M^2 - 2.S */
+    MPI_ECP_SQR(&tmp[2],  &tmp[0]);
+    MPI_ECP_SUB(&tmp[2],  &tmp[2], &tmp[1]);
+    MPI_ECP_SUB(&tmp[2],  &tmp[2], &tmp[1]);
+
+    /* tmp[1] <- S = M(S - T) - U */
+    MPI_ECP_SUB(&tmp[1],  &tmp[1],     &tmp[2]);
+    MPI_ECP_MUL(&tmp[1],  &tmp[1],     &tmp[0]);
+    MPI_ECP_SUB(&tmp[1],  &tmp[1],     &tmp[3]);
+
+    /* tmp[3] <- U = 2.Y.Z */
+    MPI_ECP_MUL(&tmp[3],  &P->Y,  &P->Z);
+    MPI_ECP_SHIFT_L(&tmp[3],  1);
+
+    /* Store results */
+    MPI_ECP_MOV(&R->X, &tmp[2]);
+    MPI_ECP_MOV(&R->Y, &tmp[1]);
+    MPI_ECP_MOV(&R->Z, &tmp[3]);
+
+cleanup:
+
+    return ret;
+}
+
+/*
+ * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
+ *
+ * The coordinates of Q must be normalized (= affine),
+ * but those of P don't need to. R is not normalized.
+ *
+ * P,Q,R may alias, but only at the level of EC points: they must be either
+ * equal as pointers, or disjoint (including the coordinate data buffers).
+ * Fine-grained aliasing at the level of coordinates is not supported.
+ *
+ * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
+ * None of these cases can happen as intermediate step in ecp_mul_comb():
+ * - at each step, P, Q and R are multiples of the base point, the factor
+ *   being less than its order, so none of them is zero;
+ * - Q is an odd multiple of the base point, P an even multiple,
+ *   due to the choice of precomputed points in the modified comb method.
+ * So branches for these cases do not leak secret information.
+ *
+ * Cost: 1A := 8M + 3S
+ */
+static int ecp_add_mixed(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+                         const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
+                         mbedtls_mpi tmp[4])
+{
+#if defined(MBEDTLS_SELF_TEST)
+    add_count++;
+#endif
+
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    /* NOTE: Aliasing between input and output is allowed, so one has to make
+     *       sure that at the point X,Y,Z are written, {P,Q}->{X,Y,Z} are no
+     *       longer read from. */
+    mbedtls_mpi * const X = &R->X;
+    mbedtls_mpi * const Y = &R->Y;
+    mbedtls_mpi * const Z = &R->Z;
+
+    if (!MPI_ECP_VALID(&Q->Z)) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    /*
+     * Trivial cases: P == 0 or Q == 0 (case 1)
+     */
+    if (MPI_ECP_CMP_INT(&P->Z, 0) == 0) {
+        return mbedtls_ecp_copy(R, Q);
+    }
+
+    if (MPI_ECP_CMP_INT(&Q->Z, 0) == 0) {
+        return mbedtls_ecp_copy(R, P);
+    }
+
+    /*
+     * Make sure Q coordinates are normalized
+     */
+    if (MPI_ECP_CMP_INT(&Q->Z, 1) != 0) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    MPI_ECP_SQR(&tmp[0], &P->Z);
+    MPI_ECP_MUL(&tmp[1], &tmp[0], &P->Z);
+    MPI_ECP_MUL(&tmp[0], &tmp[0], &Q->X);
+    MPI_ECP_MUL(&tmp[1], &tmp[1], &Q->Y);
+    MPI_ECP_SUB(&tmp[0], &tmp[0], &P->X);
+    MPI_ECP_SUB(&tmp[1], &tmp[1], &P->Y);
+
+    /* Special cases (2) and (3) */
+    if (MPI_ECP_CMP_INT(&tmp[0], 0) == 0) {
+        if (MPI_ECP_CMP_INT(&tmp[1], 0) == 0) {
+            ret = ecp_double_jac(grp, R, P, tmp);
+            goto cleanup;
+        } else {
+            ret = mbedtls_ecp_set_zero(R);
+            goto cleanup;
+        }
+    }
+
+    /* {P,Q}->Z no longer used, so OK to write to Z even if there's aliasing. */
+    MPI_ECP_MUL(Z,        &P->Z,    &tmp[0]);
+    MPI_ECP_SQR(&tmp[2],  &tmp[0]);
+    MPI_ECP_MUL(&tmp[3],  &tmp[2],  &tmp[0]);
+    MPI_ECP_MUL(&tmp[2],  &tmp[2],  &P->X);
+
+    MPI_ECP_MOV(&tmp[0], &tmp[2]);
+    MPI_ECP_SHIFT_L(&tmp[0], 1);
+
+    /* {P,Q}->X no longer used, so OK to write to X even if there's aliasing. */
+    MPI_ECP_SQR(X,        &tmp[1]);
+    MPI_ECP_SUB(X,        X,        &tmp[0]);
+    MPI_ECP_SUB(X,        X,        &tmp[3]);
+    MPI_ECP_SUB(&tmp[2],  &tmp[2],  X);
+    MPI_ECP_MUL(&tmp[2],  &tmp[2],  &tmp[1]);
+    MPI_ECP_MUL(&tmp[3],  &tmp[3],  &P->Y);
+    /* {P,Q}->Y no longer used, so OK to write to Y even if there's aliasing. */
+    MPI_ECP_SUB(Y,     &tmp[2],     &tmp[3]);
+
+cleanup:
+
+    return ret;
+}
+
+/*
+ * Randomize jacobian coordinates:
+ * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
+ * This is sort of the reverse operation of ecp_normalize_jac().
+ *
+ * This countermeasure was first suggested in [2].
+ */
+static int ecp_randomize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
+                             int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_mpi l;
+
+    mbedtls_mpi_init(&l);
+
+    /* Generate l such that 1 < l < p */
+    MPI_ECP_RAND(&l);
+
+    /* Z' = l * Z */
+    MPI_ECP_MUL(&pt->Z,   &pt->Z,     &l);
+
+    /* Y' = l * Y */
+    MPI_ECP_MUL(&pt->Y,   &pt->Y,     &l);
+
+    /* X' = l^2 * X */
+    MPI_ECP_SQR(&l,       &l);
+    MPI_ECP_MUL(&pt->X,   &pt->X,     &l);
+
+    /* Y'' = l^2 * Y' = l^3 * Y */
+    MPI_ECP_MUL(&pt->Y,   &pt->Y,     &l);
+
+cleanup:
+    mbedtls_mpi_free(&l);
+
+    if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
+        ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
+    }
+    return ret;
+}
+
+/*
+ * Check and define parameters used by the comb method (see below for details)
+ */
+#if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
+#error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
+#endif
+
+/* d = ceil( n / w ) */
+#define COMB_MAX_D      (MBEDTLS_ECP_MAX_BITS + 1) / 2
+
+/* number of precomputed points */
+#define COMB_MAX_PRE    (1 << (MBEDTLS_ECP_WINDOW_SIZE - 1))
+
+/*
+ * Compute the representation of m that will be used with our comb method.
+ *
+ * The basic comb method is described in GECC 3.44 for example. We use a
+ * modified version that provides resistance to SPA by avoiding zero
+ * digits in the representation as in [3]. We modify the method further by
+ * requiring that all K_i be odd, which has the small cost that our
+ * representation uses one more K_i, due to carries, but saves on the size of
+ * the precomputed table.
+ *
+ * Summary of the comb method and its modifications:
+ *
+ * - The goal is to compute m*P for some w*d-bit integer m.
+ *
+ * - The basic comb method splits m into the w-bit integers
+ *   x[0] .. x[d-1] where x[i] consists of the bits in m whose
+ *   index has residue i modulo d, and computes m * P as
+ *   S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
+ *   S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
+ *
+ * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
+ *    .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
+ *   thereby successively converting it into a form where all summands
+ *   are nonzero, at the cost of negative summands. This is the basic idea of [3].
+ *
+ * - More generally, even if x[i+1] != 0, we can first transform the sum as
+ *   .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
+ *   and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
+ *   Performing and iterating this procedure for those x[i] that are even
+ *   (keeping track of carry), we can transform the original sum into one of the form
+ *   S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
+ *   with all x'[i] odd. It is therefore only necessary to know S at odd indices,
+ *   which is why we are only computing half of it in the first place in
+ *   ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
+ *
+ * - For the sake of compactness, only the seven low-order bits of x[i]
+ *   are used to represent its absolute value (K_i in the paper), and the msb
+ *   of x[i] encodes the sign (s_i in the paper): it is set if and only if
+ *   if s_i == -1;
+ *
+ * Calling conventions:
+ * - x is an array of size d + 1
+ * - w is the size, ie number of teeth, of the comb, and must be between
+ *   2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
+ * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
+ *   (the result will be incorrect if these assumptions are not satisfied)
+ */
+static void ecp_comb_recode_core(unsigned char x[], size_t d,
+                                 unsigned char w, const mbedtls_mpi *m)
+{
+    size_t i, j;
+    unsigned char c, cc, adjust;
+
+    memset(x, 0, d+1);
+
+    /* First get the classical comb values (except for x_d = 0) */
+    for (i = 0; i < d; i++) {
+        for (j = 0; j < w; j++) {
+            x[i] |= mbedtls_mpi_get_bit(m, i + d * j) << j;
+        }
+    }
+
+    /* Now make sure x_1 .. x_d are odd */
+    c = 0;
+    for (i = 1; i <= d; i++) {
+        /* Add carry and update it */
+        cc   = x[i] & c;
+        x[i] = x[i] ^ c;
+        c = cc;
+
+        /* Adjust if needed, avoiding branches */
+        adjust = 1 - (x[i] & 0x01);
+        c   |= x[i] & (x[i-1] * adjust);
+        x[i] = x[i] ^ (x[i-1] * adjust);
+        x[i-1] |= adjust << 7;
+    }
+}
+
+/*
+ * Precompute points for the adapted comb method
+ *
+ * Assumption: T must be able to hold 2^{w - 1} elements.
+ *
+ * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
+ *            sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
+ *
+ * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
+ *
+ * Note: Even comb values (those where P would be omitted from the
+ *       sum defining T[i] above) are not needed in our adaption
+ *       the comb method. See ecp_comb_recode_core().
+ *
+ * This function currently works in four steps:
+ * (1) [dbl]      Computation of intermediate T[i] for 2-power values of i
+ * (2) [norm_dbl] Normalization of coordinates of these T[i]
+ * (3) [add]      Computation of all T[i]
+ * (4) [norm_add] Normalization of all T[i]
+ *
+ * Step 1 can be interrupted but not the others; together with the final
+ * coordinate normalization they are the largest steps done at once, depending
+ * on the window size. Here are operation counts for P-256:
+ *
+ * step     (2)     (3)     (4)
+ * w = 5    142     165     208
+ * w = 4    136      77     160
+ * w = 3    130      33     136
+ * w = 2    124      11     124
+ *
+ * So if ECC operations are blocking for too long even with a low max_ops
+ * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
+ * to minimize maximum blocking time.
+ */
+static int ecp_precompute_comb(const mbedtls_ecp_group *grp,
+                               mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
+                               unsigned char w, size_t d,
+                               mbedtls_ecp_restart_ctx *rs_ctx)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char i;
+    size_t j = 0;
+    const unsigned char T_size = 1U << (w - 1);
+    mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1] = { NULL };
+
+    mbedtls_mpi tmp[4];
+
+    mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
+        if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
+            goto dbl;
+        }
+        if (rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl) {
+            goto norm_dbl;
+        }
+        if (rs_ctx->rsm->state == ecp_rsm_pre_add) {
+            goto add;
+        }
+        if (rs_ctx->rsm->state == ecp_rsm_pre_norm_add) {
+            goto norm_add;
+        }
+    }
+#else
+    (void) rs_ctx;
+#endif
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
+        rs_ctx->rsm->state = ecp_rsm_pre_dbl;
+
+        /* initial state for the loop */
+        rs_ctx->rsm->i = 0;
+    }
+
+dbl:
+#endif
+    /*
+     * Set T[0] = P and
+     * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
+     */
+    MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&T[0], P));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
+        j = rs_ctx->rsm->i;
+    } else
+#endif
+    j = 0;
+
+    for (; j < d * (w - 1); j++) {
+        MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL);
+
+        i = 1U << (j / d);
+        cur = T + i;
+
+        if (j % d == 0) {
+            MBEDTLS_MPI_CHK(mbedtls_ecp_copy(cur, T + (i >> 1)));
+        }
+
+        MBEDTLS_MPI_CHK(ecp_double_jac(grp, cur, cur, tmp));
+    }
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
+        rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
+    }
+
+norm_dbl:
+#endif
+    /*
+     * Normalize current elements in T to allow them to be used in
+     * ecp_add_mixed() below, which requires one normalized input.
+     *
+     * As T has holes, use an auxiliary array of pointers to elements in T.
+     *
+     */
+    j = 0;
+    for (i = 1; i < T_size; i <<= 1) {
+        TT[j++] = T + i;
+    }
+
+    MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
+
+    MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
+        rs_ctx->rsm->state = ecp_rsm_pre_add;
+    }
+
+add:
+#endif
+    /*
+     * Compute the remaining ones using the minimal number of additions
+     * Be careful to update T[2^l] only after using it!
+     */
+    MBEDTLS_ECP_BUDGET((T_size - 1) * MBEDTLS_ECP_OPS_ADD);
+
+    for (i = 1; i < T_size; i <<= 1) {
+        j = i;
+        while (j--) {
+            MBEDTLS_MPI_CHK(ecp_add_mixed(grp, &T[i + j], &T[j], &T[i], tmp));
+        }
+    }
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
+        rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
+    }
+
+norm_add:
+#endif
+    /*
+     * Normalize final elements in T. Even though there are no holes now, we
+     * still need the auxiliary array for homogeneity with the previous
+     * call. Also, skip T[0] which is already normalised, being a copy of P.
+     */
+    for (j = 0; j + 1 < T_size; j++) {
+        TT[j] = T + j + 1;
+    }
+
+    MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
+
+    MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
+
+    /* Free Z coordinate (=1 after normalization) to save RAM.
+     * This makes T[i] invalid as mbedtls_ecp_points, but this is OK
+     * since from this point onwards, they are only accessed indirectly
+     * via the getter function ecp_select_comb() which does set the
+     * target's Z coordinate to 1. */
+    for (i = 0; i < T_size; i++) {
+        mbedtls_mpi_free(&T[i].Z);
+    }
+
+cleanup:
+
+    mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
+        ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
+        if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
+            rs_ctx->rsm->i = j;
+        }
+    }
+#endif
+
+    return ret;
+}
+
+/*
+ * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
+ *
+ * See ecp_comb_recode_core() for background
+ */
+static int ecp_select_comb(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+                           const mbedtls_ecp_point T[], unsigned char T_size,
+                           unsigned char i)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char ii, j;
+
+    /* Ignore the "sign" bit and scale down */
+    ii =  (i & 0x7Fu) >> 1;
+
+    /* Read the whole table to thwart cache-based timing attacks */
+    for (j = 0; j < T_size; j++) {
+        MPI_ECP_COND_ASSIGN(&R->X, &T[j].X, j == ii);
+        MPI_ECP_COND_ASSIGN(&R->Y, &T[j].Y, j == ii);
+    }
+
+    /* Safely invert result if i is "negative" */
+    MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, R, i >> 7));
+
+    MPI_ECP_LSET(&R->Z, 1);
+
+cleanup:
+    return ret;
+}
+
+/*
+ * Core multiplication algorithm for the (modified) comb method.
+ * This part is actually common with the basic comb method (GECC 3.44)
+ *
+ * Cost: d A + d D + 1 R
+ */
+static int ecp_mul_comb_core(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+                             const mbedtls_ecp_point T[], unsigned char T_size,
+                             const unsigned char x[], size_t d,
+                             int (*f_rng)(void *, unsigned char *, size_t),
+                             void *p_rng,
+                             mbedtls_ecp_restart_ctx *rs_ctx)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_ecp_point Txi;
+    mbedtls_mpi tmp[4];
+    size_t i;
+
+    mbedtls_ecp_point_init(&Txi);
+    mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
+
+#if !defined(MBEDTLS_ECP_RESTARTABLE)
+    (void) rs_ctx;
+#endif
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
+        rs_ctx->rsm->state != ecp_rsm_comb_core) {
+        rs_ctx->rsm->i = 0;
+        rs_ctx->rsm->state = ecp_rsm_comb_core;
+    }
+
+    /* new 'if' instead of nested for the sake of the 'else' branch */
+    if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
+        /* restore current index (R already pointing to rs_ctx->rsm->R) */
+        i = rs_ctx->rsm->i;
+    } else
+#endif
+    {
+        /* Start with a non-zero point and randomize its coordinates */
+        i = d;
+        MBEDTLS_MPI_CHK(ecp_select_comb(grp, R, T, T_size, x[i]));
+        if (f_rng != 0) {
+            MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, R, f_rng, p_rng));
+        }
+    }
+
+    while (i != 0) {
+        MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD);
+        --i;
+
+        MBEDTLS_MPI_CHK(ecp_double_jac(grp, R, R, tmp));
+        MBEDTLS_MPI_CHK(ecp_select_comb(grp, &Txi, T, T_size, x[i]));
+        MBEDTLS_MPI_CHK(ecp_add_mixed(grp, R, R, &Txi, tmp));
+    }
+
+cleanup:
+
+    mbedtls_ecp_point_free(&Txi);
+    mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
+        ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
+        rs_ctx->rsm->i = i;
+        /* no need to save R, already pointing to rs_ctx->rsm->R */
+    }
+#endif
+
+    return ret;
+}
+
+/*
+ * Recode the scalar to get constant-time comb multiplication
+ *
+ * As the actual scalar recoding needs an odd scalar as a starting point,
+ * this wrapper ensures that by replacing m by N - m if necessary, and
+ * informs the caller that the result of multiplication will be negated.
+ *
+ * This works because we only support large prime order for Short Weierstrass
+ * curves, so N is always odd hence either m or N - m is.
+ *
+ * See ecp_comb_recode_core() for background.
+ */
+static int ecp_comb_recode_scalar(const mbedtls_ecp_group *grp,
+                                  const mbedtls_mpi *m,
+                                  unsigned char k[COMB_MAX_D + 1],
+                                  size_t d,
+                                  unsigned char w,
+                                  unsigned char *parity_trick)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_mpi M, mm;
+
+    mbedtls_mpi_init(&M);
+    mbedtls_mpi_init(&mm);
+
+    /* N is always odd (see above), just make extra sure */
+    if (mbedtls_mpi_get_bit(&grp->N, 0) != 1) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    /* do we need the parity trick? */
+    *parity_trick = (mbedtls_mpi_get_bit(m, 0) == 0);
+
+    /* execute parity fix in constant time */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&M, m));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&mm, &grp->N, m));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&M, &mm, *parity_trick));
+
+    /* actual scalar recoding */
+    ecp_comb_recode_core(k, d, w, &M);
+
+cleanup:
+    mbedtls_mpi_free(&mm);
+    mbedtls_mpi_free(&M);
+
+    return ret;
+}
+
+/*
+ * Perform comb multiplication (for short Weierstrass curves)
+ * once the auxiliary table has been pre-computed.
+ *
+ * Scalar recoding may use a parity trick that makes us compute -m * P,
+ * if that is the case we'll need to recover m * P at the end.
+ */
+static int ecp_mul_comb_after_precomp(const mbedtls_ecp_group *grp,
+                                      mbedtls_ecp_point *R,
+                                      const mbedtls_mpi *m,
+                                      const mbedtls_ecp_point *T,
+                                      unsigned char T_size,
+                                      unsigned char w,
+                                      size_t d,
+                                      int (*f_rng)(void *, unsigned char *, size_t),
+                                      void *p_rng,
+                                      mbedtls_ecp_restart_ctx *rs_ctx)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char parity_trick;
+    unsigned char k[COMB_MAX_D + 1];
+    mbedtls_ecp_point *RR = R;
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
+        RR = &rs_ctx->rsm->R;
+
+        if (rs_ctx->rsm->state == ecp_rsm_final_norm) {
+            goto final_norm;
+        }
+    }
+#endif
+
+    MBEDTLS_MPI_CHK(ecp_comb_recode_scalar(grp, m, k, d, w,
+                                           &parity_trick));
+    MBEDTLS_MPI_CHK(ecp_mul_comb_core(grp, RR, T, T_size, k, d,
+                                      f_rng, p_rng, rs_ctx));
+    MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, RR, parity_trick));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
+        rs_ctx->rsm->state = ecp_rsm_final_norm;
+    }
+
+final_norm:
+    MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
+#endif
+    /*
+     * Knowledge of the jacobian coordinates may leak the last few bits of the
+     * scalar [1], and since our MPI implementation isn't constant-flow,
+     * inversion (used for coordinate normalization) may leak the full value
+     * of its input via side-channels [2].
+     *
+     * [1] https://eprint.iacr.org/2003/191
+     * [2] https://eprint.iacr.org/2020/055
+     *
+     * Avoid the leak by randomizing coordinates before we normalize them.
+     */
+    if (f_rng != 0) {
+        MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, RR, f_rng, p_rng));
+    }
+
+    MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, RR));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, RR));
+    }
+#endif
+
+cleanup:
+    return ret;
+}
+
+/*
+ * Pick window size based on curve size and whether we optimize for base point
+ */
+static unsigned char ecp_pick_window_size(const mbedtls_ecp_group *grp,
+                                          unsigned char p_eq_g)
+{
+    unsigned char w;
+
+    /*
+     * Minimize the number of multiplications, that is minimize
+     * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
+     * (see costs of the various parts, with 1S = 1M)
+     */
+    w = grp->nbits >= 384 ? 5 : 4;
+
+    /*
+     * If P == G, pre-compute a bit more, since this may be re-used later.
+     * Just adding one avoids upping the cost of the first mul too much,
+     * and the memory cost too.
+     */
+    if (p_eq_g) {
+        w++;
+    }
+
+    /*
+     * If static comb table may not be used (!p_eq_g) or static comb table does
+     * not exists, make sure w is within bounds.
+     * (The last test is useful only for very small curves in the test suite.)
+     *
+     * The user reduces MBEDTLS_ECP_WINDOW_SIZE does not changes the size of
+     * static comb table, because the size of static comb table is fixed when
+     * it is generated.
+     */
+#if (MBEDTLS_ECP_WINDOW_SIZE < 6)
+    if ((!p_eq_g || !ecp_group_is_static_comb_table(grp)) && w > MBEDTLS_ECP_WINDOW_SIZE) {
+        w = MBEDTLS_ECP_WINDOW_SIZE;
+    }
+#endif
+    if (w >= grp->nbits) {
+        w = 2;
+    }
+
+    return w;
+}
+
+/*
+ * Multiplication using the comb method - for curves in short Weierstrass form
+ *
+ * This function is mainly responsible for administrative work:
+ * - managing the restart context if enabled
+ * - managing the table of precomputed points (passed between the below two
+ *   functions): allocation, computation, ownership transfer, freeing.
+ *
+ * It delegates the actual arithmetic work to:
+ *      ecp_precompute_comb() and ecp_mul_comb_with_precomp()
+ *
+ * See comments on ecp_comb_recode_core() regarding the computation strategy.
+ */
+static int ecp_mul_comb(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+                        const mbedtls_mpi *m, const mbedtls_ecp_point *P,
+                        int (*f_rng)(void *, unsigned char *, size_t),
+                        void *p_rng,
+                        mbedtls_ecp_restart_ctx *rs_ctx)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char w, p_eq_g, i;
+    size_t d;
+    unsigned char T_size = 0, T_ok = 0;
+    mbedtls_ecp_point *T = NULL;
+
+    ECP_RS_ENTER(rsm);
+
+    /* Is P the base point ? */
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+    p_eq_g = (MPI_ECP_CMP(&P->Y, &grp->G.Y) == 0 &&
+              MPI_ECP_CMP(&P->X, &grp->G.X) == 0);
+#else
+    p_eq_g = 0;
+#endif
+
+    /* Pick window size and deduce related sizes */
+    w = ecp_pick_window_size(grp, p_eq_g);
+    T_size = 1U << (w - 1);
+    d = (grp->nbits + w - 1) / w;
+
+    /* Pre-computed table: do we have it already for the base point? */
+    if (p_eq_g && grp->T != NULL) {
+        /* second pointer to the same table, will be deleted on exit */
+        T = grp->T;
+        T_ok = 1;
+    } else
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    /* Pre-computed table: do we have one in progress? complete? */
+    if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL) {
+        /* transfer ownership of T from rsm to local function */
+        T = rs_ctx->rsm->T;
+        rs_ctx->rsm->T = NULL;
+        rs_ctx->rsm->T_size = 0;
+
+        /* This effectively jumps to the call to mul_comb_after_precomp() */
+        T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
+    } else
+#endif
+    /* Allocate table if we didn't have any */
+    {
+        T = mbedtls_calloc(T_size, sizeof(mbedtls_ecp_point));
+        if (T == NULL) {
+            ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
+            goto cleanup;
+        }
+
+        for (i = 0; i < T_size; i++) {
+            mbedtls_ecp_point_init(&T[i]);
+        }
+
+        T_ok = 0;
+    }
+
+    /* Compute table (or finish computing it) if not done already */
+    if (!T_ok) {
+        MBEDTLS_MPI_CHK(ecp_precompute_comb(grp, T, P, w, d, rs_ctx));
+
+        if (p_eq_g) {
+            /* almost transfer ownership of T to the group, but keep a copy of
+             * the pointer to use for calling the next function more easily */
+            grp->T = T;
+            grp->T_size = T_size;
+        }
+    }
+
+    /* Actual comb multiplication using precomputed points */
+    MBEDTLS_MPI_CHK(ecp_mul_comb_after_precomp(grp, R, m,
+                                               T, T_size, w, d,
+                                               f_rng, p_rng, rs_ctx));
+
+cleanup:
+
+    /* does T belong to the group? */
+    if (T == grp->T) {
+        T = NULL;
+    }
+
+    /* does T belong to the restart context? */
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL) {
+        /* transfer ownership of T from local function to rsm */
+        rs_ctx->rsm->T_size = T_size;
+        rs_ctx->rsm->T = T;
+        T = NULL;
+    }
+#endif
+
+    /* did T belong to us? then let's destroy it! */
+    if (T != NULL) {
+        for (i = 0; i < T_size; i++) {
+            mbedtls_ecp_point_free(&T[i]);
+        }
+        mbedtls_free(T);
+    }
+
+    /* prevent caller from using invalid value */
+    int should_free_R = (ret != 0);
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    /* don't free R while in progress in case R == P */
+    if (ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
+        should_free_R = 0;
+    }
+#endif
+    if (should_free_R) {
+        mbedtls_ecp_point_free(R);
+    }
+
+    ECP_RS_LEAVE(rsm);
+
+    return ret;
+}
+
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+/*
+ * For Montgomery curves, we do all the internal arithmetic in projective
+ * coordinates. Import/export of points uses only the x coordinates, which is
+ * internally represented as X / Z.
+ *
+ * For scalar multiplication, we'll use a Montgomery ladder.
+ */
+
+/*
+ * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
+ * Cost: 1M + 1I
+ */
+static int ecp_normalize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    MPI_ECP_INV(&P->Z, &P->Z);
+    MPI_ECP_MUL(&P->X, &P->X, &P->Z);
+    MPI_ECP_LSET(&P->Z, 1);
+
+cleanup:
+    return ret;
+}
+
+/*
+ * Randomize projective x/z coordinates:
+ * (X, Z) -> (l X, l Z) for random l
+ * This is sort of the reverse operation of ecp_normalize_mxz().
+ *
+ * This countermeasure was first suggested in [2].
+ * Cost: 2M
+ */
+static int ecp_randomize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
+                             int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_mpi l;
+    mbedtls_mpi_init(&l);
+
+    /* Generate l such that 1 < l < p */
+    MPI_ECP_RAND(&l);
+
+    MPI_ECP_MUL(&P->X, &P->X, &l);
+    MPI_ECP_MUL(&P->Z, &P->Z, &l);
+
+cleanup:
+    mbedtls_mpi_free(&l);
+
+    if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
+        ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
+    }
+    return ret;
+}
+
+/*
+ * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
+ * for Montgomery curves in x/z coordinates.
+ *
+ * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
+ * with
+ * d =  X1
+ * P = (X2, Z2)
+ * Q = (X3, Z3)
+ * R = (X4, Z4)
+ * S = (X5, Z5)
+ * and eliminating temporary variables tO, ..., t4.
+ *
+ * Cost: 5M + 4S
+ */
+static int ecp_double_add_mxz(const mbedtls_ecp_group *grp,
+                              mbedtls_ecp_point *R, mbedtls_ecp_point *S,
+                              const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
+                              const mbedtls_mpi *d,
+                              mbedtls_mpi T[4])
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    MPI_ECP_ADD(&T[0], &P->X,   &P->Z);   /* Pp := PX + PZ                    */
+    MPI_ECP_SUB(&T[1], &P->X,   &P->Z);   /* Pm := PX - PZ                    */
+    MPI_ECP_ADD(&T[2], &Q->X,   &Q->Z);   /* Qp := QX + XZ                    */
+    MPI_ECP_SUB(&T[3], &Q->X,   &Q->Z);   /* Qm := QX - QZ                    */
+    MPI_ECP_MUL(&T[3], &T[3],   &T[0]);   /* Qm * Pp                          */
+    MPI_ECP_MUL(&T[2], &T[2],   &T[1]);   /* Qp * Pm                          */
+    MPI_ECP_SQR(&T[0], &T[0]);            /* Pp^2                             */
+    MPI_ECP_SQR(&T[1], &T[1]);            /* Pm^2                             */
+    MPI_ECP_MUL(&R->X, &T[0],   &T[1]);   /* Pp^2 * Pm^2                      */
+    MPI_ECP_SUB(&T[0], &T[0],   &T[1]);   /* Pp^2 - Pm^2                      */
+    MPI_ECP_MUL(&R->Z, &grp->A, &T[0]);   /* A * (Pp^2 - Pm^2)                */
+    MPI_ECP_ADD(&R->Z, &T[1],   &R->Z);   /* [ A * (Pp^2-Pm^2) ] + Pm^2       */
+    MPI_ECP_ADD(&S->X, &T[3],   &T[2]);   /* Qm*Pp + Qp*Pm                    */
+    MPI_ECP_SQR(&S->X, &S->X);            /* (Qm*Pp + Qp*Pm)^2                */
+    MPI_ECP_SUB(&S->Z, &T[3],   &T[2]);   /* Qm*Pp - Qp*Pm                    */
+    MPI_ECP_SQR(&S->Z, &S->Z);            /* (Qm*Pp - Qp*Pm)^2                */
+    MPI_ECP_MUL(&S->Z, d,       &S->Z);   /* d * ( Qm*Pp - Qp*Pm )^2          */
+    MPI_ECP_MUL(&R->Z, &T[0],   &R->Z);   /* [A*(Pp^2-Pm^2)+Pm^2]*(Pp^2-Pm^2) */
+
+cleanup:
+
+    return ret;
+}
+
+/*
+ * Multiplication with Montgomery ladder in x/z coordinates,
+ * for curves in Montgomery form
+ */
+static int ecp_mul_mxz(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+                       const mbedtls_mpi *m, const mbedtls_ecp_point *P,
+                       int (*f_rng)(void *, unsigned char *, size_t),
+                       void *p_rng)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t i;
+    unsigned char b;
+    mbedtls_ecp_point RP;
+    mbedtls_mpi PX;
+    mbedtls_mpi tmp[4];
+    mbedtls_ecp_point_init(&RP); mbedtls_mpi_init(&PX);
+
+    mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
+
+    if (f_rng == NULL) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    /* Save PX and read from P before writing to R, in case P == R */
+    MPI_ECP_MOV(&PX, &P->X);
+    MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&RP, P));
+
+    /* Set R to zero in modified x/z coordinates */
+    MPI_ECP_LSET(&R->X, 1);
+    MPI_ECP_LSET(&R->Z, 0);
+    mbedtls_mpi_free(&R->Y);
+
+    /* RP.X might be slightly larger than P, so reduce it */
+    MOD_ADD(&RP.X);
+
+    /* Randomize coordinates of the starting point */
+    MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, &RP, f_rng, p_rng));
+
+    /* Loop invariant: R = result so far, RP = R + P */
+    i = grp->nbits + 1; /* one past the (zero-based) required msb for private keys */
+    while (i-- > 0) {
+        b = mbedtls_mpi_get_bit(m, i);
+        /*
+         *  if (b) R = 2R + P else R = 2R,
+         * which is:
+         *  if (b) double_add( RP, R, RP, R )
+         *  else   double_add( R, RP, R, RP )
+         * but using safe conditional swaps to avoid leaks
+         */
+        MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
+        MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
+        MBEDTLS_MPI_CHK(ecp_double_add_mxz(grp, R, &RP, R, &RP, &PX, tmp));
+        MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
+        MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
+    }
+
+    /*
+     * Knowledge of the projective coordinates may leak the last few bits of the
+     * scalar [1], and since our MPI implementation isn't constant-flow,
+     * inversion (used for coordinate normalization) may leak the full value
+     * of its input via side-channels [2].
+     *
+     * [1] https://eprint.iacr.org/2003/191
+     * [2] https://eprint.iacr.org/2020/055
+     *
+     * Avoid the leak by randomizing coordinates before we normalize them.
+     */
+    MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, R, f_rng, p_rng));
+    MBEDTLS_MPI_CHK(ecp_normalize_mxz(grp, R));
+
+cleanup:
+    mbedtls_ecp_point_free(&RP); mbedtls_mpi_free(&PX);
+
+    mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
+    return ret;
+}
+
+#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
+
+/*
+ * Restartable multiplication R = m * P
+ *
+ * This internal function can be called without an RNG in case where we know
+ * the inputs are not sensitive.
+ */
+static int ecp_mul_restartable_internal(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+                                        const mbedtls_mpi *m, const mbedtls_ecp_point *P,
+                                        int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
+                                        mbedtls_ecp_restart_ctx *rs_ctx)
+{
+    int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    /* reset ops count for this call if top-level */
+    if (rs_ctx != NULL && rs_ctx->depth++ == 0) {
+        rs_ctx->ops_done = 0;
+    }
+#else
+    (void) rs_ctx;
+#endif
+
+    int restarting = 0;
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    restarting = (rs_ctx != NULL && rs_ctx->rsm != NULL);
+#endif
+    /* skip argument check when restarting */
+    if (!restarting) {
+        /* check_privkey is free */
+        MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_CHK);
+
+        /* Common sanity checks */
+        MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(grp, m));
+        MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
+    }
+
+    ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+        MBEDTLS_MPI_CHK(ecp_mul_mxz(grp, R, m, P, f_rng, p_rng));
+    }
+#endif
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+        MBEDTLS_MPI_CHK(ecp_mul_comb(grp, R, m, P, f_rng, p_rng, rs_ctx));
+    }
+#endif
+
+cleanup:
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (rs_ctx != NULL) {
+        rs_ctx->depth--;
+    }
+#endif
+
+    return ret;
+}
+
+/*
+ * Restartable multiplication R = m * P
+ */
+int mbedtls_ecp_mul_restartable(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+                                const mbedtls_mpi *m, const mbedtls_ecp_point *P,
+                                int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
+                                mbedtls_ecp_restart_ctx *rs_ctx)
+{
+    if (f_rng == NULL) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    return ecp_mul_restartable_internal(grp, R, m, P, f_rng, p_rng, rs_ctx);
+}
+
+/*
+ * Multiplication R = m * P
+ */
+int mbedtls_ecp_mul(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+                    const mbedtls_mpi *m, const mbedtls_ecp_point *P,
+                    int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    return mbedtls_ecp_mul_restartable(grp, R, m, P, f_rng, p_rng, NULL);
+}
+#endif /* MBEDTLS_ECP_C */
+
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+/*
+ * Check that an affine point is valid as a public key,
+ * short weierstrass curves (SEC1 3.2.3.1)
+ */
+static int ecp_check_pubkey_sw(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_mpi YY, RHS;
+
+    /* pt coordinates must be normalized for our checks */
+    if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0 ||
+        mbedtls_mpi_cmp_int(&pt->Y, 0) < 0 ||
+        mbedtls_mpi_cmp_mpi(&pt->X, &grp->P) >= 0 ||
+        mbedtls_mpi_cmp_mpi(&pt->Y, &grp->P) >= 0) {
+        return MBEDTLS_ERR_ECP_INVALID_KEY;
+    }
+
+    mbedtls_mpi_init(&YY); mbedtls_mpi_init(&RHS);
+
+    /*
+     * YY = Y^2
+     * RHS = X^3 + A X + B
+     */
+    MPI_ECP_SQR(&YY,  &pt->Y);
+    MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, &RHS, &pt->X));
+
+    if (MPI_ECP_CMP(&YY, &RHS) != 0) {
+        ret = MBEDTLS_ERR_ECP_INVALID_KEY;
+    }
+
+cleanup:
+
+    mbedtls_mpi_free(&YY); mbedtls_mpi_free(&RHS);
+
+    return ret;
+}
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+
+#if defined(MBEDTLS_ECP_C)
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+/*
+ * R = m * P with shortcuts for m == 0, m == 1 and m == -1
+ * NOT constant-time - ONLY for short Weierstrass!
+ */
+static int mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group *grp,
+                                     mbedtls_ecp_point *R,
+                                     const mbedtls_mpi *m,
+                                     const mbedtls_ecp_point *P,
+                                     mbedtls_ecp_restart_ctx *rs_ctx)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_mpi tmp;
+    mbedtls_mpi_init(&tmp);
+
+    if (mbedtls_mpi_cmp_int(m, 0) == 0) {
+        MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
+        MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R));
+    } else if (mbedtls_mpi_cmp_int(m, 1) == 0) {
+        MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
+        MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
+    } else if (mbedtls_mpi_cmp_int(m, -1) == 0) {
+        MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
+        MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
+        MPI_ECP_NEG(&R->Y);
+    } else {
+        MBEDTLS_MPI_CHK(ecp_mul_restartable_internal(grp, R, m, P,
+                                                     NULL, NULL, rs_ctx));
+    }
+
+cleanup:
+    mbedtls_mpi_free(&tmp);
+
+    return ret;
+}
+
+/*
+ * Restartable linear combination
+ * NOT constant-time
+ */
+int mbedtls_ecp_muladd_restartable(
+    mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+    const mbedtls_mpi *m, const mbedtls_ecp_point *P,
+    const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
+    mbedtls_ecp_restart_ctx *rs_ctx)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_ecp_point mP;
+    mbedtls_ecp_point *pmP = &mP;
+    mbedtls_ecp_point *pR = R;
+    mbedtls_mpi tmp[4];
+    if (mbedtls_ecp_get_type(grp) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+        return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+    }
+
+    mbedtls_ecp_point_init(&mP);
+    mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
+
+    ECP_RS_ENTER(ma);
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (rs_ctx != NULL && rs_ctx->ma != NULL) {
+        /* redirect intermediate results to restart context */
+        pmP = &rs_ctx->ma->mP;
+        pR  = &rs_ctx->ma->R;
+
+        /* jump to next operation */
+        if (rs_ctx->ma->state == ecp_rsma_mul2) {
+            goto mul2;
+        }
+        if (rs_ctx->ma->state == ecp_rsma_add) {
+            goto add;
+        }
+        if (rs_ctx->ma->state == ecp_rsma_norm) {
+            goto norm;
+        }
+    }
+#endif /* MBEDTLS_ECP_RESTARTABLE */
+
+    MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pmP, m, P, rs_ctx));
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (rs_ctx != NULL && rs_ctx->ma != NULL) {
+        rs_ctx->ma->state = ecp_rsma_mul2;
+    }
+
+mul2:
+#endif
+    MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pR,  n, Q, rs_ctx));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (rs_ctx != NULL && rs_ctx->ma != NULL) {
+        rs_ctx->ma->state = ecp_rsma_add;
+    }
+
+add:
+#endif
+    MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_ADD);
+    MBEDTLS_MPI_CHK(ecp_add_mixed(grp, pR, pmP, pR, tmp));
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (rs_ctx != NULL && rs_ctx->ma != NULL) {
+        rs_ctx->ma->state = ecp_rsma_norm;
+    }
+
+norm:
+#endif
+    MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
+    MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, pR));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+    if (rs_ctx != NULL && rs_ctx->ma != NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, pR));
+    }
+#endif
+
+cleanup:
+
+    mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
+
+    mbedtls_ecp_point_free(&mP);
+
+    ECP_RS_LEAVE(ma);
+
+    return ret;
+}
+
+/*
+ * Linear combination
+ * NOT constant-time
+ */
+int mbedtls_ecp_muladd(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+                       const mbedtls_mpi *m, const mbedtls_ecp_point *P,
+                       const mbedtls_mpi *n, const mbedtls_ecp_point *Q)
+{
+    return mbedtls_ecp_muladd_restartable(grp, R, m, P, n, Q, NULL);
+}
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+#endif /* MBEDTLS_ECP_C */
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+#define ECP_MPI_INIT(_p, _n) { .p = (mbedtls_mpi_uint *) (_p), .s = 1, .n = (_n) }
+#define ECP_MPI_INIT_ARRAY(x)   \
+    ECP_MPI_INIT(x, sizeof(x) / sizeof(mbedtls_mpi_uint))
+/*
+ * Constants for the two points other than 0, 1, -1 (mod p) in
+ * https://cr.yp.to/ecdh.html#validate
+ * See ecp_check_pubkey_x25519().
+ */
+static const mbedtls_mpi_uint x25519_bad_point_1[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00),
+};
+static const mbedtls_mpi_uint x25519_bad_point_2[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57),
+};
+static const mbedtls_mpi ecp_x25519_bad_point_1 = ECP_MPI_INIT_ARRAY(
+    x25519_bad_point_1);
+static const mbedtls_mpi ecp_x25519_bad_point_2 = ECP_MPI_INIT_ARRAY(
+    x25519_bad_point_2);
+#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
+
+/*
+ * Check that the input point is not one of the low-order points.
+ * This is recommended by the "May the Fourth" paper:
+ * https://eprint.iacr.org/2017/806.pdf
+ * Those points are never sent by an honest peer.
+ */
+static int ecp_check_bad_points_mx(const mbedtls_mpi *X, const mbedtls_mpi *P,
+                                   const mbedtls_ecp_group_id grp_id)
+{
+    int ret;
+    mbedtls_mpi XmP;
+
+    mbedtls_mpi_init(&XmP);
+
+    /* Reduce X mod P so that we only need to check values less than P.
+     * We know X < 2^256 so we can proceed by subtraction. */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&XmP, X));
+    while (mbedtls_mpi_cmp_mpi(&XmP, P) >= 0) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&XmP, &XmP, P));
+    }
+
+    /* Check against the known bad values that are less than P. For Curve448
+     * these are 0, 1 and -1. For Curve25519 we check the values less than P
+     * from the following list: https://cr.yp.to/ecdh.html#validate */
+    if (mbedtls_mpi_cmp_int(&XmP, 1) <= 0) {  /* takes care of 0 and 1 */
+        ret = MBEDTLS_ERR_ECP_INVALID_KEY;
+        goto cleanup;
+    }
+
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+    if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
+        if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_1) == 0) {
+            ret = MBEDTLS_ERR_ECP_INVALID_KEY;
+            goto cleanup;
+        }
+
+        if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_2) == 0) {
+            ret = MBEDTLS_ERR_ECP_INVALID_KEY;
+            goto cleanup;
+        }
+    }
+#else
+    (void) grp_id;
+#endif
+
+    /* Final check: check if XmP + 1 is P (final because it changes XmP!) */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&XmP, &XmP, 1));
+    if (mbedtls_mpi_cmp_mpi(&XmP, P) == 0) {
+        ret = MBEDTLS_ERR_ECP_INVALID_KEY;
+        goto cleanup;
+    }
+
+    ret = 0;
+
+cleanup:
+    mbedtls_mpi_free(&XmP);
+
+    return ret;
+}
+
+/*
+ * Check validity of a public key for Montgomery curves with x-only schemes
+ */
+static int ecp_check_pubkey_mx(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
+{
+    /* [Curve25519 p. 5] Just check X is the correct number of bytes */
+    /* Allow any public value, if it's too big then we'll just reduce it mod p
+     * (RFC 7748 sec. 5 para. 3). */
+    if (mbedtls_mpi_size(&pt->X) > (grp->nbits + 7) / 8) {
+        return MBEDTLS_ERR_ECP_INVALID_KEY;
+    }
+
+    /* Implicit in all standards (as they don't consider negative numbers):
+     * X must be non-negative. This is normally ensured by the way it's
+     * encoded for transmission, but let's be extra sure. */
+    if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0) {
+        return MBEDTLS_ERR_ECP_INVALID_KEY;
+    }
+
+    return ecp_check_bad_points_mx(&pt->X, &grp->P, grp->id);
+}
+#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
+
+/*
+ * Check that a point is valid as a public key
+ */
+int mbedtls_ecp_check_pubkey(const mbedtls_ecp_group *grp,
+                             const mbedtls_ecp_point *pt)
+{
+    /* Must use affine coordinates */
+    if (mbedtls_mpi_cmp_int(&pt->Z, 1) != 0) {
+        return MBEDTLS_ERR_ECP_INVALID_KEY;
+    }
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+        return ecp_check_pubkey_mx(grp, pt);
+    }
+#endif
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+        return ecp_check_pubkey_sw(grp, pt);
+    }
+#endif
+    return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+}
+
+/*
+ * Check that an mbedtls_mpi is valid as a private key
+ */
+int mbedtls_ecp_check_privkey(const mbedtls_ecp_group *grp,
+                              const mbedtls_mpi *d)
+{
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+        /* see RFC 7748 sec. 5 para. 5 */
+        if (mbedtls_mpi_get_bit(d, 0) != 0 ||
+            mbedtls_mpi_get_bit(d, 1) != 0 ||
+            mbedtls_mpi_bitlen(d) - 1 != grp->nbits) {  /* mbedtls_mpi_bitlen is one-based! */
+            return MBEDTLS_ERR_ECP_INVALID_KEY;
+        }
+
+        /* see [Curve25519] page 5 */
+        if (grp->nbits == 254 && mbedtls_mpi_get_bit(d, 2) != 0) {
+            return MBEDTLS_ERR_ECP_INVALID_KEY;
+        }
+
+        return 0;
+    }
+#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+        /* see SEC1 3.2 */
+        if (mbedtls_mpi_cmp_int(d, 1) < 0 ||
+            mbedtls_mpi_cmp_mpi(d, &grp->N) >= 0) {
+            return MBEDTLS_ERR_ECP_INVALID_KEY;
+        } else {
+            return 0;
+        }
+    }
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+
+    return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+}
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_gen_privkey_mx(size_t high_bit,
+                               mbedtls_mpi *d,
+                               int (*f_rng)(void *, unsigned char *, size_t),
+                               void *p_rng)
+{
+    int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    size_t n_random_bytes = high_bit / 8 + 1;
+
+    /* [Curve25519] page 5 */
+    /* Generate a (high_bit+1)-bit random number by generating just enough
+     * random bytes, then shifting out extra bits from the top (necessary
+     * when (high_bit+1) is not a multiple of 8). */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(d, n_random_bytes,
+                                            f_rng, p_rng));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(d, 8 * n_random_bytes - high_bit - 1));
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, high_bit, 1));
+
+    /* Make sure the last two bits are unset for Curve448, three bits for
+       Curve25519 */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 0, 0));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 1, 0));
+    if (high_bit == 254) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 2, 0));
+    }
+
+cleanup:
+    return ret;
+}
+#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
+
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+static int mbedtls_ecp_gen_privkey_sw(
+    const mbedtls_mpi *N, mbedtls_mpi *d,
+    int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    int ret = mbedtls_mpi_random(d, 1, N, f_rng, p_rng);
+    switch (ret) {
+        case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
+            return MBEDTLS_ERR_ECP_RANDOM_FAILED;
+        default:
+            return ret;
+    }
+}
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+
+/*
+ * Generate a private key
+ */
+int mbedtls_ecp_gen_privkey(const mbedtls_ecp_group *grp,
+                            mbedtls_mpi *d,
+                            int (*f_rng)(void *, unsigned char *, size_t),
+                            void *p_rng)
+{
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+        return mbedtls_ecp_gen_privkey_mx(grp->nbits, d, f_rng, p_rng);
+    }
+#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
+
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+        return mbedtls_ecp_gen_privkey_sw(&grp->N, d, f_rng, p_rng);
+    }
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+
+    return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+}
+
+#if defined(MBEDTLS_ECP_C)
+/*
+ * Generate a keypair with configurable base point
+ */
+int mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group *grp,
+                                 const mbedtls_ecp_point *G,
+                                 mbedtls_mpi *d, mbedtls_ecp_point *Q,
+                                 int (*f_rng)(void *, unsigned char *, size_t),
+                                 void *p_rng)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, d, f_rng, p_rng));
+    MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, Q, d, G, f_rng, p_rng));
+
+cleanup:
+    return ret;
+}
+
+/*
+ * Generate key pair, wrapper for conventional base point
+ */
+int mbedtls_ecp_gen_keypair(mbedtls_ecp_group *grp,
+                            mbedtls_mpi *d, mbedtls_ecp_point *Q,
+                            int (*f_rng)(void *, unsigned char *, size_t),
+                            void *p_rng)
+{
+    return mbedtls_ecp_gen_keypair_base(grp, &grp->G, d, Q, f_rng, p_rng);
+}
+
+/*
+ * Generate a keypair, prettier wrapper
+ */
+int mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
+                        int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
+        return ret;
+    }
+
+    return mbedtls_ecp_gen_keypair(&key->grp, &key->d, &key->Q, f_rng, p_rng);
+}
+#endif /* MBEDTLS_ECP_C */
+
+int mbedtls_ecp_set_public_key(mbedtls_ecp_group_id grp_id,
+                               mbedtls_ecp_keypair *key,
+                               const mbedtls_ecp_point *Q)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if (key->grp.id == MBEDTLS_ECP_DP_NONE) {
+        /* Group not set yet */
+        if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
+            return ret;
+        }
+    } else if (key->grp.id != grp_id) {
+        /* Group mismatch */
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+    return mbedtls_ecp_copy(&key->Q, Q);
+}
+
+
+#define ECP_CURVE25519_KEY_SIZE 32
+#define ECP_CURVE448_KEY_SIZE   56
+/*
+ * Read a private key.
+ */
+int mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
+                         const unsigned char *buf, size_t buflen)
+{
+    int ret = 0;
+
+    if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
+        return ret;
+    }
+
+    ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+        /*
+         * Mask the key as mandated by RFC7748 for Curve25519 and Curve448.
+         */
+        if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
+            if (buflen != ECP_CURVE25519_KEY_SIZE) {
+                return MBEDTLS_ERR_ECP_INVALID_KEY;
+            }
+
+            MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
+
+            /* Set the three least significant bits to 0 */
+            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 2, 0));
+
+            /* Set the most significant bit to 0 */
+            MBEDTLS_MPI_CHK(
+                mbedtls_mpi_set_bit(&key->d,
+                                    ECP_CURVE25519_KEY_SIZE * 8 - 1, 0)
+                );
+
+            /* Set the second most significant bit to 1 */
+            MBEDTLS_MPI_CHK(
+                mbedtls_mpi_set_bit(&key->d,
+                                    ECP_CURVE25519_KEY_SIZE * 8 - 2, 1)
+                );
+        } else if (grp_id == MBEDTLS_ECP_DP_CURVE448) {
+            if (buflen != ECP_CURVE448_KEY_SIZE) {
+                return MBEDTLS_ERR_ECP_INVALID_KEY;
+            }
+
+            MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
+
+            /* Set the two least significant bits to 0 */
+            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
+
+            /* Set the most significant bit to 1 */
+            MBEDTLS_MPI_CHK(
+                mbedtls_mpi_set_bit(&key->d,
+                                    ECP_CURVE448_KEY_SIZE * 8 - 1, 1)
+                );
+        }
+    }
+#endif
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&key->d, buf, buflen));
+    }
+#endif
+
+    if (ret == 0) {
+        MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(&key->grp, &key->d));
+    }
+
+cleanup:
+
+    if (ret != 0) {
+        mbedtls_mpi_free(&key->d);
+    }
+
+    return ret;
+}
+
+/*
+ * Write a private key.
+ */
+#if !defined MBEDTLS_DEPRECATED_REMOVED
+int mbedtls_ecp_write_key(mbedtls_ecp_keypair *key,
+                          unsigned char *buf, size_t buflen)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+        if (key->grp.id == MBEDTLS_ECP_DP_CURVE25519) {
+            if (buflen < ECP_CURVE25519_KEY_SIZE) {
+                return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+            }
+
+        } else if (key->grp.id == MBEDTLS_ECP_DP_CURVE448) {
+            if (buflen < ECP_CURVE448_KEY_SIZE) {
+                return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+            }
+        }
+        MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&key->d, buf, buflen));
+    }
+#endif
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&key->d, buf, buflen));
+    }
+
+#endif
+cleanup:
+
+    return ret;
+}
+#endif /* MBEDTLS_DEPRECATED_REMOVED */
+
+int mbedtls_ecp_write_key_ext(const mbedtls_ecp_keypair *key,
+                              size_t *olen, unsigned char *buf, size_t buflen)
+{
+    size_t len = (key->grp.nbits + 7) / 8;
+    if (len > buflen) {
+        /* For robustness, ensure *olen <= buflen even on error. */
+        *olen = 0;
+        return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+    }
+    *olen = len;
+
+    /* Private key not set */
+    if (key->d.n == 0) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+        return mbedtls_mpi_write_binary_le(&key->d, buf, len);
+    }
+#endif
+
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+        return mbedtls_mpi_write_binary(&key->d, buf, len);
+    }
+#endif
+
+    /* Private key set but no recognized curve type? This shouldn't happen. */
+    return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+}
+
+/*
+ * Write a public key.
+ */
+int mbedtls_ecp_write_public_key(const mbedtls_ecp_keypair *key,
+                                 int format, size_t *olen,
+                                 unsigned char *buf, size_t buflen)
+{
+    return mbedtls_ecp_point_write_binary(&key->grp, &key->Q,
+                                          format, olen, buf, buflen);
+}
+
+
+#if defined(MBEDTLS_ECP_C)
+/*
+ * Check a public-private key pair
+ */
+int mbedtls_ecp_check_pub_priv(
+    const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv,
+    int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_ecp_point Q;
+    mbedtls_ecp_group grp;
+    if (pub->grp.id == MBEDTLS_ECP_DP_NONE ||
+        pub->grp.id != prv->grp.id ||
+        mbedtls_mpi_cmp_mpi(&pub->Q.X, &prv->Q.X) ||
+        mbedtls_mpi_cmp_mpi(&pub->Q.Y, &prv->Q.Y) ||
+        mbedtls_mpi_cmp_mpi(&pub->Q.Z, &prv->Q.Z)) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    mbedtls_ecp_point_init(&Q);
+    mbedtls_ecp_group_init(&grp);
+
+    /* mbedtls_ecp_mul() needs a non-const group... */
+    mbedtls_ecp_group_copy(&grp, &prv->grp);
+
+    /* Also checks d is valid */
+    MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &Q, &prv->d, &prv->grp.G, f_rng, p_rng));
+
+    if (mbedtls_mpi_cmp_mpi(&Q.X, &prv->Q.X) ||
+        mbedtls_mpi_cmp_mpi(&Q.Y, &prv->Q.Y) ||
+        mbedtls_mpi_cmp_mpi(&Q.Z, &prv->Q.Z)) {
+        ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+        goto cleanup;
+    }
+
+cleanup:
+    mbedtls_ecp_point_free(&Q);
+    mbedtls_ecp_group_free(&grp);
+
+    return ret;
+}
+
+int mbedtls_ecp_keypair_calc_public(mbedtls_ecp_keypair *key,
+                                    int (*f_rng)(void *, unsigned char *, size_t),
+                                    void *p_rng)
+{
+    return mbedtls_ecp_mul(&key->grp, &key->Q, &key->d, &key->grp.G,
+                           f_rng, p_rng);
+}
+#endif /* MBEDTLS_ECP_C */
+
+mbedtls_ecp_group_id mbedtls_ecp_keypair_get_group_id(
+    const mbedtls_ecp_keypair *key)
+{
+    return key->grp.id;
+}
+
+/*
+ * Export generic key-pair parameters.
+ */
+int mbedtls_ecp_export(const mbedtls_ecp_keypair *key, mbedtls_ecp_group *grp,
+                       mbedtls_mpi *d, mbedtls_ecp_point *Q)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if (grp != NULL && (ret = mbedtls_ecp_group_copy(grp, &key->grp)) != 0) {
+        return ret;
+    }
+
+    if (d != NULL && (ret = mbedtls_mpi_copy(d, &key->d)) != 0) {
+        return ret;
+    }
+
+    if (Q != NULL && (ret = mbedtls_ecp_copy(Q, &key->Q)) != 0) {
+        return ret;
+    }
+
+    return 0;
+}
+
+#if defined(MBEDTLS_SELF_TEST)
+
+#if defined(MBEDTLS_ECP_C)
+/*
+ * PRNG for test - !!!INSECURE NEVER USE IN PRODUCTION!!!
+ *
+ * This is the linear congruential generator from numerical recipes,
+ * except we only use the low byte as the output. See
+ * https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
+ */
+static int self_test_rng(void *ctx, unsigned char *out, size_t len)
+{
+    static uint32_t state = 42;
+
+    (void) ctx;
+
+    for (size_t i = 0; i < len; i++) {
+        state = state * 1664525u + 1013904223u;
+        out[i] = (unsigned char) state;
+    }
+
+    return 0;
+}
+
+/* Adjust the exponent to be a valid private point for the specified curve.
+ * This is sometimes necessary because we use a single set of exponents
+ * for all curves but the validity of values depends on the curve. */
+static int self_test_adjust_exponent(const mbedtls_ecp_group *grp,
+                                     mbedtls_mpi *m)
+{
+    int ret = 0;
+    switch (grp->id) {
+    /* If Curve25519 is available, then that's what we use for the
+     * Montgomery test, so we don't need the adjustment code. */
+#if !defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+        case MBEDTLS_ECP_DP_CURVE448:
+            /* Move highest bit from 254 to N-1. Setting bit N-1 is
+             * necessary to enforce the highest-bit-set constraint. */
+            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, 254, 0));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, grp->nbits, 1));
+            /* Copy second-highest bit from 253 to N-2. This is not
+             * necessary but improves the test variety a bit. */
+            MBEDTLS_MPI_CHK(
+                mbedtls_mpi_set_bit(m, grp->nbits - 1,
+                                    mbedtls_mpi_get_bit(m, 253)));
+            break;
+#endif
+#endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */
+        default:
+            /* Non-Montgomery curves and Curve25519 need no adjustment. */
+            (void) grp;
+            (void) m;
+            goto cleanup;
+    }
+cleanup:
+    return ret;
+}
+
+/* Calculate R = m.P for each m in exponents. Check that the number of
+ * basic operations doesn't depend on the value of m. */
+static int self_test_point(int verbose,
+                           mbedtls_ecp_group *grp,
+                           mbedtls_ecp_point *R,
+                           mbedtls_mpi *m,
+                           const mbedtls_ecp_point *P,
+                           const char *const *exponents,
+                           size_t n_exponents)
+{
+    int ret = 0;
+    size_t i = 0;
+    unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
+    add_count = 0;
+    dbl_count = 0;
+    mul_count = 0;
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[0]));
+    MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
+    MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
+
+    for (i = 1; i < n_exponents; i++) {
+        add_c_prev = add_count;
+        dbl_c_prev = dbl_count;
+        mul_c_prev = mul_count;
+        add_count = 0;
+        dbl_count = 0;
+        mul_count = 0;
+
+        MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[i]));
+        MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
+        MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
+
+        if (add_count != add_c_prev ||
+            dbl_count != dbl_c_prev ||
+            mul_count != mul_c_prev) {
+            ret = 1;
+            break;
+        }
+    }
+
+cleanup:
+    if (verbose != 0) {
+        if (ret != 0) {
+            mbedtls_printf("failed (%u)\n", (unsigned int) i);
+        } else {
+            mbedtls_printf("passed\n");
+        }
+    }
+    return ret;
+}
+#endif /* MBEDTLS_ECP_C */
+
+/*
+ * Checkup routine
+ */
+int mbedtls_ecp_self_test(int verbose)
+{
+#if defined(MBEDTLS_ECP_C)
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_ecp_group grp;
+    mbedtls_ecp_point R, P;
+    mbedtls_mpi m;
+
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+    /* Exponents especially adapted for secp192k1, which has the lowest
+     * order n of all supported curves (secp192r1 is in a slightly larger
+     * field but the order of its base point is slightly smaller). */
+    const char *sw_exponents[] =
+    {
+        "000000000000000000000000000000000000000000000001", /* one */
+        "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */
+        "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
+        "400000000000000000000000000000000000000000000000", /* one and zeros */
+        "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
+        "555555555555555555555555555555555555555555555555", /* 101010... */
+    };
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+    const char *m_exponents[] =
+    {
+        /* Valid private values for Curve25519. In a build with Curve448
+         * but not Curve25519, they will be adjusted in
+         * self_test_adjust_exponent(). */
+        "4000000000000000000000000000000000000000000000000000000000000000",
+        "5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30",
+        "5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8",
+        "41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460",
+        "5555555555555555555555555555555555555555555555555555555555555550",
+        "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8",
+    };
+#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
+
+    mbedtls_ecp_group_init(&grp);
+    mbedtls_ecp_point_init(&R);
+    mbedtls_ecp_point_init(&P);
+    mbedtls_mpi_init(&m);
+
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+    /* Use secp192r1 if available, or any available curve */
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+    MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP192R1));
+#else
+    MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, mbedtls_ecp_curve_list()->grp_id));
+#endif
+
+    if (verbose != 0) {
+        mbedtls_printf("  ECP SW test #1 (constant op_count, base point G): ");
+    }
+    /* Do a dummy multiplication first to trigger precomputation */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&m, 2));
+    MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &P, &m, &grp.G, self_test_rng, NULL));
+    ret = self_test_point(verbose,
+                          &grp, &R, &m, &grp.G,
+                          sw_exponents,
+                          sizeof(sw_exponents) / sizeof(sw_exponents[0]));
+    if (ret != 0) {
+        goto cleanup;
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("  ECP SW test #2 (constant op_count, other point): ");
+    }
+    /* We computed P = 2G last time, use it */
+    ret = self_test_point(verbose,
+                          &grp, &R, &m, &P,
+                          sw_exponents,
+                          sizeof(sw_exponents) / sizeof(sw_exponents[0]));
+    if (ret != 0) {
+        goto cleanup;
+    }
+
+    mbedtls_ecp_group_free(&grp);
+    mbedtls_ecp_point_free(&R);
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+    if (verbose != 0) {
+        mbedtls_printf("  ECP Montgomery test (constant op_count): ");
+    }
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+    MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE25519));
+#elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+    MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE448));
+#else
+#error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test"
+#endif
+    ret = self_test_point(verbose,
+                          &grp, &R, &m, &grp.G,
+                          m_exponents,
+                          sizeof(m_exponents) / sizeof(m_exponents[0]));
+    if (ret != 0) {
+        goto cleanup;
+    }
+#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
+
+cleanup:
+
+    if (ret < 0 && verbose != 0) {
+        mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
+    }
+
+    mbedtls_ecp_group_free(&grp);
+    mbedtls_ecp_point_free(&R);
+    mbedtls_ecp_point_free(&P);
+    mbedtls_mpi_free(&m);
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+
+    return ret;
+#else /* MBEDTLS_ECP_C */
+    (void) verbose;
+    return 0;
+#endif /* MBEDTLS_ECP_C */
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_ECP_LIGHT */
diff --git a/tf-psa-crypto/drivers/builtin/src/ecp_curves.c b/tf-psa-crypto/drivers/builtin/src/ecp_curves.c
new file mode 100644
index 0000000..97636a7
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/ecp_curves.c
@@ -0,0 +1,5456 @@
+/*
+ *  Elliptic curves over GF(p): curve-specific data and functions
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if !defined(MBEDTLS_ECP_WITH_MPI_UINT)
+
+#if defined(MBEDTLS_ECP_LIGHT)
+
+#include "mbedtls/ecp.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include "bn_mul.h"
+#include "bignum_core.h"
+#include "ecp_invasive.h"
+
+#include <string.h>
+
+#define ECP_MPI_INIT(_p, _n) { .p = (mbedtls_mpi_uint *) (_p), .s = 1, .n = (_n) }
+
+#define ECP_MPI_INIT_ARRAY(x)   \
+    ECP_MPI_INIT(x, sizeof(x) / sizeof(mbedtls_mpi_uint))
+
+#define ECP_POINT_INIT_XY_Z0(x, y) { \
+        ECP_MPI_INIT_ARRAY(x), ECP_MPI_INIT_ARRAY(y), ECP_MPI_INIT(NULL, 0) }
+#define ECP_POINT_INIT_XY_Z1(x, y) { \
+        ECP_MPI_INIT_ARRAY(x), ECP_MPI_INIT_ARRAY(y), ECP_MPI_INIT(mpi_one, 1) }
+
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)   ||   \
+    defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)   ||   \
+    defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)   ||   \
+    defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+/* For these curves, we build the group parameters dynamically. */
+#define ECP_LOAD_GROUP
+static const mbedtls_mpi_uint mpi_one[] = { 1 };
+#endif
+
+/*
+ * Note: the constants are in little-endian order
+ * to be directly usable in MPIs
+ */
+
+/*
+ * Domain parameters for secp192r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+static const mbedtls_mpi_uint secp192r1_p[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+static const mbedtls_mpi_uint secp192r1_b[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64),
+};
+static const mbedtls_mpi_uint secp192r1_gx[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18),
+};
+static const mbedtls_mpi_uint secp192r1_gy[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07),
+};
+static const mbedtls_mpi_uint secp192r1_n[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp192r1_T_0_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18),
+};
+static const mbedtls_mpi_uint secp192r1_T_0_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07),
+};
+static const mbedtls_mpi_uint secp192r1_T_1_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x9E, 0xE3, 0x60, 0x59, 0xD1, 0xC4, 0xC2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0xBD, 0x22, 0xD7, 0x2D, 0x07, 0xBD, 0xB6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x2A, 0xCF, 0x33, 0xF0, 0xBE, 0xD1, 0xED),
+};
+static const mbedtls_mpi_uint secp192r1_T_1_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x71, 0x4B, 0xA8, 0xED, 0x7E, 0xC9, 0x1A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x2A, 0xF6, 0xDF, 0x0E, 0xE8, 0x4C, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x35, 0xF7, 0x8A, 0xC3, 0xEC, 0xDE, 0x1E),
+};
+static const mbedtls_mpi_uint secp192r1_T_2_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x67, 0xC2, 0x1D, 0x32, 0x8F, 0x10, 0xFB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x2D, 0x17, 0xF3, 0xE4, 0xFE, 0xD8, 0x13),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x45, 0x10, 0x70, 0x2C, 0x3E, 0x52, 0x3E),
+};
+static const mbedtls_mpi_uint secp192r1_T_2_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0xF1, 0x04, 0x5D, 0xEE, 0xD4, 0x56, 0xE6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0xB7, 0x38, 0x27, 0x61, 0xAA, 0x81, 0x87),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x37, 0xD7, 0x0E, 0x29, 0x0E, 0x11, 0x14),
+};
+static const mbedtls_mpi_uint secp192r1_T_3_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x35, 0x52, 0xC6, 0x31, 0xB7, 0x27, 0xF5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xD4, 0x15, 0x98, 0x0F, 0xE7, 0xF3, 0x6A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x31, 0x70, 0x35, 0x09, 0xA0, 0x2B, 0xC2),
+};
+static const mbedtls_mpi_uint secp192r1_T_3_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x75, 0xA7, 0x4C, 0x88, 0xCF, 0x5B, 0xE4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x17, 0x48, 0x8D, 0xF2, 0xF0, 0x86, 0xED),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0xCF, 0xFE, 0x6B, 0xB0, 0xA5, 0x06, 0xAB),
+};
+static const mbedtls_mpi_uint secp192r1_T_4_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0x6A, 0xDC, 0x9A, 0x6D, 0x7B, 0x47, 0x2E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0xFC, 0x51, 0x12, 0x62, 0x66, 0x0B, 0x59),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x40, 0x93, 0xA0, 0xB5, 0x5A, 0x58, 0xD7),
+};
+static const mbedtls_mpi_uint secp192r1_T_4_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0xCB, 0xAF, 0xDC, 0x0B, 0xA1, 0x26, 0xFB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x36, 0x9D, 0xA3, 0xD7, 0x3B, 0xAD, 0x39),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x3B, 0x05, 0x9A, 0xA8, 0xAA, 0x69, 0xB2),
+};
+static const mbedtls_mpi_uint secp192r1_T_5_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xD9, 0xD1, 0x4D, 0x4A, 0x6E, 0x96, 0x1E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x66, 0x32, 0x39, 0xC6, 0x57, 0x7D, 0xE6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0xA0, 0x36, 0xC2, 0x45, 0xF9, 0x00, 0x62),
+};
+static const mbedtls_mpi_uint secp192r1_T_5_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xEF, 0x59, 0x46, 0xDC, 0x60, 0xD9, 0x8F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0xB0, 0xE9, 0x41, 0xA4, 0x87, 0x76, 0x89),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0xD4, 0x0E, 0xB2, 0xFA, 0x16, 0x56, 0xDC),
+};
+static const mbedtls_mpi_uint secp192r1_T_6_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0x62, 0xD2, 0xB1, 0x34, 0xB2, 0xF1, 0x06),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0xED, 0x55, 0xC5, 0x47, 0xB5, 0x07, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xF6, 0x2F, 0x94, 0xC3, 0xDD, 0x54, 0x2F),
+};
+static const mbedtls_mpi_uint secp192r1_T_6_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xA6, 0xD4, 0x8C, 0xA9, 0xCE, 0x4D, 0x2E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x4B, 0x46, 0xCC, 0xB2, 0x55, 0xC8, 0xB2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0xAE, 0x31, 0xED, 0x89, 0x65, 0x59, 0x55),
+};
+static const mbedtls_mpi_uint secp192r1_T_7_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x0A, 0xD1, 0x1A, 0xC5, 0xF6, 0xEA, 0x43),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0xFC, 0x0C, 0x1A, 0xFB, 0xA0, 0xC8, 0x70),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xFD, 0x53, 0x6F, 0x6D, 0xBF, 0xBA, 0xAF),
+};
+static const mbedtls_mpi_uint secp192r1_T_7_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0xB0, 0x7D, 0x83, 0x96, 0xE3, 0xCB, 0x9D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x6E, 0x55, 0x2C, 0x20, 0x53, 0x2F, 0x46),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0x66, 0x00, 0x17, 0x08, 0xFE, 0xAC, 0x31),
+};
+static const mbedtls_mpi_uint secp192r1_T_8_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x12, 0x97, 0x3A, 0xC7, 0x57, 0x45, 0xCD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x25, 0x99, 0x00, 0xF6, 0x97, 0xB4, 0x64),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x74, 0xE6, 0xE6, 0xA3, 0xDF, 0x9C, 0xCC),
+};
+static const mbedtls_mpi_uint secp192r1_T_8_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0xF4, 0x76, 0xD5, 0x5F, 0x2A, 0xFD, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x80, 0x7E, 0x3E, 0xE5, 0xE8, 0xD6, 0x63),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0xAD, 0x1E, 0x70, 0x79, 0x3E, 0x3D, 0x83),
+};
+static const mbedtls_mpi_uint secp192r1_T_9_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x15, 0xBB, 0xB3, 0x42, 0x6A, 0xA1, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x58, 0xCB, 0x43, 0x25, 0x00, 0x14, 0x68),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x4E, 0x93, 0x11, 0xE0, 0x32, 0x54, 0x98),
+};
+static const mbedtls_mpi_uint secp192r1_T_9_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x52, 0xA2, 0xB4, 0x57, 0x32, 0xB9, 0x11),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x43, 0xA1, 0xB1, 0xFB, 0x01, 0xE1, 0xE7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0xFB, 0x5A, 0x11, 0xB8, 0xC2, 0x03, 0xE5),
+};
+static const mbedtls_mpi_uint secp192r1_T_10_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x2B, 0x71, 0x26, 0x4E, 0x7C, 0xC5, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0xF5, 0xD3, 0xA8, 0xE4, 0x95, 0x48, 0x65),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0xAE, 0xD9, 0x5D, 0x9F, 0x6A, 0x22, 0xAD),
+};
+static const mbedtls_mpi_uint secp192r1_T_10_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0xCC, 0xA3, 0x4D, 0xA0, 0x1C, 0x34, 0xEF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0x3C, 0x62, 0xF8, 0x5E, 0xA6, 0x58, 0x7D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x6E, 0x66, 0x8A, 0x3D, 0x17, 0xFF, 0x0F),
+};
+static const mbedtls_mpi_uint secp192r1_T_11_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0xCD, 0xA8, 0xDD, 0xD1, 0x20, 0x5C, 0xEA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0xFE, 0x17, 0xE2, 0xCF, 0xEA, 0x63, 0xDE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x51, 0xC9, 0x16, 0xDE, 0xB4, 0xB2, 0xDD),
+};
+static const mbedtls_mpi_uint secp192r1_T_11_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xBE, 0x12, 0xD7, 0xA3, 0x0A, 0x50, 0x33),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0x87, 0xC5, 0x8A, 0x76, 0x57, 0x07, 0x60),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0x1F, 0xC6, 0x1B, 0x66, 0xC4, 0x3D, 0x8A),
+};
+static const mbedtls_mpi_uint secp192r1_T_12_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0xA4, 0x85, 0x13, 0x8F, 0xA7, 0x35, 0x19),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x0D, 0xFD, 0xFF, 0x1B, 0xD1, 0xD6, 0xEF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x7A, 0xD0, 0xC3, 0xB4, 0xEF, 0x39, 0x66),
+};
+static const mbedtls_mpi_uint secp192r1_T_12_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0xFE, 0xA5, 0x9C, 0x34, 0x30, 0x49, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0xC5, 0x39, 0x26, 0x06, 0xE3, 0x01, 0x17),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0x2B, 0x66, 0xFC, 0x95, 0x5F, 0x35, 0xF7),
+};
+static const mbedtls_mpi_uint secp192r1_T_13_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0xCF, 0x54, 0x63, 0x99, 0x57, 0x05, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x6F, 0x00, 0x5F, 0x65, 0x08, 0x47, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x2A, 0x90, 0x6D, 0x67, 0xC6, 0xBC, 0x45),
+};
+static const mbedtls_mpi_uint secp192r1_T_13_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x4D, 0x88, 0x0A, 0x35, 0x9E, 0x33, 0x9C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x17, 0x0C, 0xF8, 0xE1, 0x7A, 0x49, 0x02),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x44, 0x06, 0x8F, 0x0B, 0x70, 0x2F, 0x71),
+};
+static const mbedtls_mpi_uint secp192r1_T_14_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0x4B, 0xCB, 0xF9, 0x8E, 0x6A, 0xDA, 0x1B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x43, 0xA1, 0x3F, 0xCE, 0x17, 0xD2, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x0D, 0xD2, 0x6C, 0x82, 0x37, 0xE5, 0xFC),
+};
+static const mbedtls_mpi_uint secp192r1_T_14_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x3C, 0xF4, 0x92, 0xB4, 0x8A, 0x95, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0x96, 0xF1, 0x0A, 0x34, 0x2F, 0x74, 0x7E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0xA1, 0xAA, 0xBA, 0x86, 0x77, 0x4F, 0xA2),
+};
+static const mbedtls_mpi_uint secp192r1_T_15_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0x7F, 0xEF, 0x60, 0x50, 0x80, 0xD7, 0xD4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0xAC, 0xC9, 0xFE, 0xEC, 0x0A, 0x1A, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x2F, 0xBE, 0x91, 0xD7, 0xB7, 0x38, 0x48),
+};
+static const mbedtls_mpi_uint secp192r1_T_15_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0xAE, 0x85, 0x98, 0xFE, 0x05, 0x7F, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0xBE, 0xFD, 0x11, 0x31, 0x3D, 0x14, 0x13),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x75, 0xE8, 0x30, 0x01, 0xCB, 0x9B, 0x1C),
+};
+static const mbedtls_ecp_point secp192r1_T[16] = {
+    ECP_POINT_INIT_XY_Z1(secp192r1_T_0_X, secp192r1_T_0_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_1_X, secp192r1_T_1_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_2_X, secp192r1_T_2_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_3_X, secp192r1_T_3_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_4_X, secp192r1_T_4_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_5_X, secp192r1_T_5_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_6_X, secp192r1_T_6_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_7_X, secp192r1_T_7_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_8_X, secp192r1_T_8_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_9_X, secp192r1_T_9_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_10_X, secp192r1_T_10_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_11_X, secp192r1_T_11_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_12_X, secp192r1_T_12_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_13_X, secp192r1_T_13_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_14_X, secp192r1_T_14_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_15_X, secp192r1_T_15_Y),
+};
+#else
+#define secp192r1_T NULL
+#endif
+#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
+
+/*
+ * Domain parameters for secp224r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+static const mbedtls_mpi_uint secp224r1_p[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_b[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C),
+    MBEDTLS_BYTES_TO_T_UINT_4(0x85, 0x0A, 0x05, 0xB4),
+};
+static const mbedtls_mpi_uint secp224r1_gx[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B),
+    MBEDTLS_BYTES_TO_T_UINT_4(0xBD, 0x0C, 0x0E, 0xB7),
+};
+static const mbedtls_mpi_uint secp224r1_gy[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5),
+    MBEDTLS_BYTES_TO_T_UINT_4(0x88, 0x63, 0x37, 0xBD),
+};
+static const mbedtls_mpi_uint secp224r1_n[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_4(0xFF, 0xFF, 0xFF, 0xFF),
+};
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp224r1_T_0_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0x0C, 0x0E, 0xB7, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_0_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x63, 0x37, 0xBD, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_1_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0xF9, 0xB8, 0xD0, 0x3D, 0xD2, 0xD3, 0xFA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xFD, 0x99, 0x26, 0x19, 0xFE, 0x13, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x0E, 0x4C, 0x48, 0x7C, 0xA2, 0x17, 0x01),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xA3, 0x13, 0x57, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_1_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0x16, 0x5C, 0x8F, 0xAA, 0xED, 0x0F, 0x58),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0xC5, 0x43, 0x34, 0x93, 0x05, 0x2A, 0x4C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0xE3, 0x6C, 0xCA, 0xC6, 0x14, 0xC2, 0x25),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x43, 0x6C, 0xD7, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_2_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0x5A, 0x98, 0x1E, 0xC8, 0xA5, 0x42, 0xA3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x49, 0x56, 0x78, 0xF8, 0xEF, 0xED, 0x65),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0xBB, 0x64, 0xB6, 0x4C, 0x54, 0x5F, 0xD1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0x0C, 0x33, 0xCC, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_2_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x79, 0xCB, 0x2E, 0x08, 0xFF, 0xD8, 0xE6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2E, 0x1F, 0xD4, 0xD7, 0x57, 0xE9, 0x39, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xD6, 0x3B, 0x0A, 0x1C, 0x87, 0xB7, 0x6A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x30, 0xD8, 0x05, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_3_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x79, 0x74, 0x9A, 0xE6, 0xBB, 0xC2, 0xC2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x5B, 0xA6, 0x67, 0xC1, 0x91, 0xE7, 0x64),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0xDF, 0x38, 0x82, 0x19, 0x2C, 0x4C, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0x2E, 0x39, 0xC5, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_3_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x36, 0x78, 0x4E, 0xAE, 0x5B, 0x02, 0x76),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0xF6, 0x8B, 0xF8, 0xF4, 0x92, 0x6B, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x4D, 0x71, 0x35, 0xE7, 0x0C, 0x2C, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0xA5, 0x1F, 0xAE, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_4_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0x1C, 0x4B, 0xDF, 0x5B, 0xF2, 0x51, 0xB7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x74, 0xB1, 0x5A, 0xC6, 0x0F, 0x0E, 0x61),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x24, 0x09, 0x62, 0xAF, 0xFC, 0xDB, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0xE1, 0x80, 0x55, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_4_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0x82, 0xFE, 0xAD, 0xC3, 0xE5, 0xCF, 0xD8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0xA2, 0x62, 0x17, 0x76, 0xF0, 0x5A, 0xFA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0xB8, 0xE5, 0xAC, 0xB7, 0x66, 0x38, 0xAA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0xFD, 0x86, 0x05, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_5_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xD3, 0x0C, 0x3C, 0xD1, 0x66, 0xB0, 0xF1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x59, 0xB4, 0x8D, 0x90, 0x10, 0xB7, 0xA2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x47, 0x9B, 0xE6, 0x55, 0x8A, 0xE4, 0xEE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0x49, 0xDB, 0x78, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_5_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x97, 0xED, 0xDE, 0xFF, 0xB3, 0xDF, 0x48),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xB9, 0x83, 0xB7, 0xEB, 0xBE, 0x40, 0x8D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xD3, 0xD3, 0xCD, 0x0E, 0x82, 0x79, 0x3D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x83, 0x1B, 0xF0, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_6_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x22, 0xBB, 0x54, 0xD3, 0x31, 0x56, 0xFC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x36, 0xE5, 0xE0, 0x89, 0x96, 0x8E, 0x71),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0xEF, 0x0A, 0xED, 0xD0, 0x11, 0x4A, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x00, 0x57, 0x27, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_6_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0xCA, 0x3D, 0xF7, 0x64, 0x9B, 0x6E, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0xE3, 0x70, 0x6B, 0x41, 0xD7, 0xED, 0x8F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x44, 0x44, 0x80, 0xCE, 0x13, 0x37, 0x92),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x73, 0x80, 0x79, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_7_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x4D, 0x70, 0x7D, 0x31, 0x0F, 0x1C, 0x58),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x35, 0x88, 0x47, 0xC4, 0x24, 0x78, 0x3F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0xF0, 0xCD, 0x91, 0x81, 0xB3, 0xDE, 0xB6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0xCE, 0xC6, 0xF7, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_7_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0x9C, 0x2D, 0xE8, 0xD2, 0x00, 0x8F, 0x10),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x5E, 0x7C, 0x0E, 0x0C, 0x6E, 0x58, 0x02),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x81, 0x21, 0xCE, 0x43, 0xF4, 0x24, 0x3D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0xBC, 0xF0, 0xF4, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_8_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x10, 0xC2, 0x74, 0x4A, 0x8F, 0x8A, 0xCF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0x67, 0xF4, 0x2B, 0x38, 0x2B, 0x35, 0x17),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xE7, 0x0C, 0xA9, 0xFA, 0x77, 0x5C, 0xBD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x33, 0x19, 0x2B, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_8_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x3E, 0x96, 0x22, 0x53, 0xE1, 0xE9, 0xBE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x13, 0xBC, 0xA1, 0x16, 0xEC, 0x01, 0x1A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x00, 0xC9, 0x7A, 0xC3, 0x73, 0xA5, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0xF4, 0x5E, 0xC1, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_9_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x95, 0xD6, 0xD9, 0x32, 0x30, 0x2B, 0xD0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x42, 0x09, 0x05, 0x61, 0x2A, 0x7E, 0x82),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x84, 0xA2, 0x05, 0x88, 0x64, 0x65, 0xF9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0x2D, 0x90, 0xB3, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_9_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0xE7, 0x2E, 0x85, 0x55, 0x80, 0x7C, 0x79),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xC1, 0xAC, 0x78, 0xB4, 0xAF, 0xFB, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0xC3, 0x28, 0x8E, 0x79, 0x18, 0x1F, 0x58),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x46, 0xCF, 0x49, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_10_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x5F, 0xA8, 0x6C, 0x46, 0x83, 0x43, 0xFA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xA9, 0x93, 0x11, 0xB6, 0x07, 0x57, 0x74),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x2A, 0x9D, 0x03, 0x89, 0x7E, 0xD7, 0x3C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x8C, 0x62, 0xCF, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_10_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0x2C, 0x13, 0x59, 0xCC, 0xFA, 0x84, 0x9E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xB9, 0x48, 0xBC, 0x57, 0xC7, 0xB3, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x0A, 0x38, 0x24, 0x2E, 0x3A, 0x28, 0x25),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x0A, 0x43, 0xB8, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_11_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x25, 0xAB, 0xC1, 0xEE, 0x70, 0x3C, 0xE1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0xDB, 0x45, 0x1D, 0x4A, 0x80, 0x75, 0x35),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x1F, 0x4D, 0x2D, 0x9A, 0x05, 0xF4, 0xCB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x10, 0xF0, 0x5A, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_11_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0x95, 0xE1, 0xDC, 0x15, 0x86, 0xC3, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0xDC, 0x27, 0xD1, 0x56, 0xA1, 0x14, 0x0D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x0B, 0xD6, 0x77, 0x4E, 0x44, 0xA2, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x42, 0x71, 0x1F, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_12_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x86, 0xB2, 0xB0, 0xC8, 0x2F, 0x7B, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xEF, 0xCB, 0xDB, 0xBC, 0x9E, 0x3B, 0xC5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x03, 0x86, 0xDD, 0x5B, 0xF5, 0x8D, 0x46),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x95, 0x79, 0xD6, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_12_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x32, 0x14, 0xDA, 0x9B, 0x4F, 0x07, 0x39),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x3E, 0xFB, 0x06, 0xEE, 0xA7, 0x40, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0x1F, 0xDF, 0x71, 0x61, 0xFD, 0x8B, 0xBE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x8B, 0xAB, 0x8B, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_13_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x34, 0xB3, 0xB4, 0xBC, 0x9F, 0xB0, 0x5E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x58, 0x48, 0xA8, 0x77, 0xBB, 0x13, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0xC6, 0xF7, 0x34, 0xCC, 0x89, 0x21, 0x0A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x33, 0xDD, 0x1F, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_13_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x81, 0xEF, 0xA4, 0xF2, 0x10, 0x0B, 0xCD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0xF7, 0x6E, 0x72, 0x4A, 0xDF, 0xDD, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0x23, 0x0A, 0x53, 0x03, 0x16, 0x62, 0xD2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x76, 0xFD, 0x3C, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_14_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x14, 0xA1, 0xFA, 0xA0, 0x18, 0xBE, 0x07),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0x2A, 0xE1, 0xD7, 0xB0, 0x6C, 0xA0, 0xDE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0xC0, 0xB0, 0xC6, 0x63, 0x24, 0xCD, 0x4E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0x38, 0x2C, 0xB1, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_14_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0xCD, 0x7D, 0x20, 0x0C, 0xFE, 0xAC, 0xC3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x97, 0x9F, 0xA2, 0xB6, 0x45, 0xF7, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x99, 0xF3, 0xD2, 0x20, 0x02, 0xEB, 0x04),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x18, 0x5B, 0x7B, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_15_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0xDD, 0x77, 0x91, 0x60, 0xEA, 0xFD, 0xD3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0xD3, 0xB5, 0xD6, 0x90, 0x17, 0x0E, 0x1A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0xF4, 0x28, 0xC1, 0xF2, 0x53, 0xF6, 0x63),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0x58, 0xDC, 0x61, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_15_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x20, 0x01, 0xFB, 0xF1, 0xBD, 0x5F, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x7F, 0x06, 0xDA, 0x11, 0xCB, 0xBA, 0xA6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x41, 0x00, 0xA4, 0x1B, 0x30, 0x33, 0x79),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0xFF, 0x27, 0xCA, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_ecp_point secp224r1_T[16] = {
+    ECP_POINT_INIT_XY_Z1(secp224r1_T_0_X, secp224r1_T_0_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_1_X, secp224r1_T_1_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_2_X, secp224r1_T_2_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_3_X, secp224r1_T_3_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_4_X, secp224r1_T_4_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_5_X, secp224r1_T_5_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_6_X, secp224r1_T_6_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_7_X, secp224r1_T_7_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_8_X, secp224r1_T_8_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_9_X, secp224r1_T_9_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_10_X, secp224r1_T_10_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_11_X, secp224r1_T_11_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_12_X, secp224r1_T_12_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_13_X, secp224r1_T_13_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_14_X, secp224r1_T_14_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_15_X, secp224r1_T_15_Y),
+};
+#else
+#define secp224r1_T NULL
+#endif
+#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
+
+/*
+ * Domain parameters for secp256r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+static const mbedtls_mpi_uint secp256r1_p[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+static const mbedtls_mpi_uint secp256r1_b[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A),
+};
+static const mbedtls_mpi_uint secp256r1_gx[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B),
+};
+static const mbedtls_mpi_uint secp256r1_gy[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F),
+};
+static const mbedtls_mpi_uint secp256r1_n[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp256r1_T_0_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B),
+};
+static const mbedtls_mpi_uint secp256r1_T_0_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F),
+};
+static const mbedtls_mpi_uint secp256r1_T_1_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0xC8, 0xBA, 0x04, 0xB7, 0x4B, 0xD2, 0xF7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0xC6, 0x23, 0x3A, 0xA0, 0x09, 0x3A, 0x59),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x9D, 0x4C, 0xF9, 0x58, 0x23, 0xCC, 0xDF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0xED, 0x7B, 0x29, 0x87, 0x0F, 0xFA, 0x3C),
+};
+static const mbedtls_mpi_uint secp256r1_T_1_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x69, 0xF2, 0x40, 0x0B, 0xA3, 0x98, 0xCE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xA8, 0x48, 0x02, 0x0D, 0x1C, 0x12, 0x62),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0xAF, 0x09, 0x83, 0x80, 0xAA, 0x58, 0xA7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x12, 0xBE, 0x70, 0x94, 0x76, 0xE3, 0xE4),
+};
+static const mbedtls_mpi_uint secp256r1_T_2_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x7D, 0xEF, 0x86, 0xFF, 0xE3, 0x37, 0xDD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x86, 0x8B, 0x08, 0x27, 0x7C, 0xD7, 0xF6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x54, 0x4C, 0x25, 0x4F, 0x9A, 0xFE, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0xFD, 0xF0, 0x6D, 0x37, 0x03, 0x69, 0xD6),
+};
+static const mbedtls_mpi_uint secp256r1_T_2_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xD5, 0xDA, 0xAD, 0x92, 0x49, 0xF0, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x73, 0x43, 0x9E, 0xAF, 0xA7, 0xD1, 0xF3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0x41, 0x07, 0xDF, 0x78, 0x95, 0x3E, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0x3D, 0xD1, 0xE6, 0x3C, 0xA5, 0xE2, 0x20),
+};
+static const mbedtls_mpi_uint secp256r1_T_3_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x6A, 0x5D, 0x52, 0x35, 0xD7, 0xBF, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0xA2, 0xBE, 0x96, 0xF4, 0xF8, 0x02, 0xC3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x20, 0x49, 0x54, 0xEA, 0xB3, 0x82, 0xDB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2E, 0xDB, 0xEA, 0x02, 0xD1, 0x75, 0x1C, 0x62),
+};
+static const mbedtls_mpi_uint secp256r1_T_3_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x85, 0xF4, 0x9E, 0x4C, 0xDC, 0x39, 0x89),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x6D, 0xC4, 0x57, 0xD8, 0x03, 0x5D, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x7F, 0x2D, 0x52, 0x6F, 0xC9, 0xDA, 0x4F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x64, 0xFA, 0xB4, 0xFE, 0xA4, 0xC4, 0xD7),
+};
+static const mbedtls_mpi_uint secp256r1_T_4_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x37, 0xB9, 0xC0, 0xAA, 0x59, 0xC6, 0x8B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x58, 0xD9, 0xED, 0x58, 0x99, 0x65, 0xF7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x7D, 0x26, 0x8C, 0x4A, 0xF9, 0x05, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x73, 0x9A, 0xC9, 0xE7, 0x46, 0xDC, 0x00),
+};
+static const mbedtls_mpi_uint secp256r1_T_4_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0xD0, 0x55, 0xDF, 0x00, 0x0A, 0xF5, 0x4A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0xBF, 0x56, 0x81, 0x2D, 0x20, 0xEB, 0xB5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xC1, 0x28, 0x52, 0xAB, 0xE3, 0xD1, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x34, 0x79, 0x45, 0x57, 0xA5, 0x12, 0x03),
+};
+static const mbedtls_mpi_uint secp256r1_T_5_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0xCF, 0xB8, 0x7E, 0xF7, 0x92, 0x96, 0x8D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0x01, 0x8C, 0x0D, 0x23, 0xF2, 0xE3, 0x05),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x2E, 0xE3, 0x84, 0x52, 0x7A, 0x34, 0x76),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0xA1, 0xB0, 0x15, 0x90, 0xE2, 0x53, 0x3C),
+};
+static const mbedtls_mpi_uint secp256r1_T_5_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x98, 0xE7, 0xFA, 0xA5, 0x7D, 0x8B, 0x53),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x35, 0xD2, 0x00, 0xD1, 0x1B, 0x9F, 0x1B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x69, 0x08, 0x9A, 0x72, 0xF0, 0xA9, 0x11),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0xFE, 0x0E, 0x14, 0xDA, 0x7C, 0x0E, 0xD3),
+};
+static const mbedtls_mpi_uint secp256r1_T_6_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0xF6, 0xE8, 0xF8, 0x87, 0xF7, 0xFC, 0x6D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0xBE, 0x7F, 0x3F, 0x7A, 0x2B, 0xD7, 0x13),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0x32, 0xF2, 0x2D, 0x94, 0x6D, 0x42, 0xFD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x9A, 0xE3, 0x5F, 0x42, 0xBB, 0x84, 0xED),
+};
+static const mbedtls_mpi_uint secp256r1_T_6_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x95, 0x29, 0x73, 0xA1, 0x67, 0x3E, 0x02),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x30, 0x54, 0x35, 0x8E, 0x0A, 0xDD, 0x67),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0xD7, 0xA1, 0x97, 0x61, 0x3B, 0xF8, 0x0C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x33, 0x3C, 0x58, 0x55, 0x34, 0x23, 0xA3),
+};
+static const mbedtls_mpi_uint secp256r1_T_7_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x5D, 0x16, 0x5F, 0x7B, 0xBC, 0xBB, 0xCE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0xEE, 0x4E, 0x8A, 0xC1, 0x51, 0xCC, 0x50),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x0D, 0x4D, 0x1B, 0x53, 0x23, 0x1D, 0xB3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x2A, 0x38, 0x66, 0x52, 0x84, 0xE1, 0x95),
+};
+static const mbedtls_mpi_uint secp256r1_T_7_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x9B, 0x83, 0x0A, 0x81, 0x4F, 0xAD, 0xAC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xFF, 0x42, 0x41, 0x6E, 0xA9, 0xA2, 0xA0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xA1, 0x4F, 0x1F, 0x89, 0x82, 0xAA, 0x3E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0xB8, 0x0F, 0x6B, 0x8F, 0x8C, 0xD6, 0x68),
+};
+static const mbedtls_mpi_uint secp256r1_T_8_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0xB3, 0xBB, 0x51, 0x69, 0xA2, 0x11, 0x93),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x4F, 0x0F, 0x8D, 0xBD, 0x26, 0x0F, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xCB, 0xEC, 0x6B, 0x34, 0xC3, 0x3D, 0x9D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x5D, 0x1E, 0x10, 0xD5, 0x44, 0xE2, 0x54),
+};
+static const mbedtls_mpi_uint secp256r1_T_8_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x9E, 0xB1, 0xF1, 0x6E, 0x4C, 0xAD, 0xB3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xE3, 0xC2, 0x58, 0xC0, 0xFB, 0x34, 0x43),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0x9C, 0xDF, 0x35, 0x07, 0x41, 0xBD, 0x19),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x6E, 0x10, 0xEC, 0x0E, 0xEC, 0xBB, 0xD6),
+};
+static const mbedtls_mpi_uint secp256r1_T_9_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0xCF, 0xEF, 0x3F, 0x83, 0x1A, 0x88, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x29, 0xB5, 0xB9, 0xE0, 0xC9, 0xA3, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x46, 0x1E, 0x77, 0xCD, 0x7E, 0xB3, 0x10),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x21, 0xD0, 0xD4, 0xA3, 0x16, 0x08, 0xEE),
+};
+static const mbedtls_mpi_uint secp256r1_T_9_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0xCA, 0xA8, 0xB3, 0xBF, 0x29, 0x99, 0x8E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0xF2, 0x05, 0xC1, 0xCF, 0x5D, 0x91, 0x48),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0x01, 0x49, 0xDB, 0x82, 0xDF, 0x5F, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x06, 0x90, 0xAD, 0xE3, 0x38, 0xA4, 0xC4),
+};
+static const mbedtls_mpi_uint secp256r1_T_10_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xD2, 0x3A, 0xE8, 0x03, 0xC5, 0x6D, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x35, 0xD0, 0xAE, 0x1D, 0x7A, 0x9F, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0x1E, 0xD2, 0xCB, 0xAC, 0x88, 0x27, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0xB9, 0x9C, 0xE0, 0x31, 0xDD, 0x99, 0x86),
+};
+static const mbedtls_mpi_uint secp256r1_T_10_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0xF9, 0x9B, 0x32, 0x96, 0x41, 0x58, 0x38),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x5A, 0x2A, 0xB8, 0x96, 0x0E, 0xB2, 0x4C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x78, 0x2C, 0xC7, 0x08, 0x99, 0x19, 0x24),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x59, 0x28, 0xE9, 0x84, 0x54, 0xE6, 0x16),
+};
+static const mbedtls_mpi_uint secp256r1_T_11_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x38, 0x30, 0xDB, 0x70, 0x2C, 0x0A, 0xA2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x5C, 0x9D, 0xE9, 0xD5, 0x46, 0x0B, 0x5F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x0B, 0x60, 0x4B, 0x37, 0x7D, 0xB9, 0xC9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x24, 0xF3, 0x3D, 0x79, 0x7F, 0x6C, 0x18),
+};
+static const mbedtls_mpi_uint secp256r1_T_11_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7F, 0xE5, 0x1C, 0x4F, 0x60, 0x24, 0xF7, 0x2A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0xD8, 0xE2, 0x91, 0x7F, 0x89, 0x49, 0x92),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0xA7, 0x2E, 0x8D, 0x6A, 0xB3, 0x39, 0x81),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x89, 0xB5, 0x9A, 0xB8, 0x8D, 0x42, 0x9C),
+};
+static const mbedtls_mpi_uint secp256r1_T_12_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0x45, 0xE6, 0x4B, 0x3F, 0x4F, 0x1E, 0x1F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x65, 0x5E, 0x59, 0x22, 0xCC, 0x72, 0x5F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x93, 0x1A, 0x27, 0x1E, 0x34, 0xC5, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0xF2, 0xA5, 0x58, 0x5C, 0x15, 0x2E, 0xC6),
+};
+static const mbedtls_mpi_uint secp256r1_T_12_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0x7F, 0xBA, 0x58, 0x5A, 0x84, 0x6F, 0x5F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0xA6, 0x36, 0x7E, 0xDC, 0xF7, 0xE1, 0x67),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x4D, 0xAA, 0xEE, 0x57, 0x76, 0x3A, 0xD3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x7E, 0x26, 0x18, 0x22, 0x23, 0x9F, 0xFF),
+};
+static const mbedtls_mpi_uint secp256r1_T_13_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x4C, 0x64, 0xC7, 0x55, 0x02, 0x3F, 0xE3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0x02, 0x90, 0xBB, 0xC3, 0xEC, 0x30, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0x6F, 0x64, 0xF4, 0x16, 0x69, 0x48, 0xA4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x44, 0x9C, 0x95, 0x0C, 0x7D, 0x67, 0x5E),
+};
+static const mbedtls_mpi_uint secp256r1_T_13_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0x91, 0x8B, 0xD8, 0xD0, 0xD7, 0xE7, 0xE2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0xF9, 0x48, 0x62, 0x6F, 0xA8, 0x93, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0x3A, 0x99, 0x02, 0xD5, 0x0B, 0x3D, 0xE3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xD3, 0x00, 0x31, 0xE6, 0x0C, 0x9F, 0x44),
+};
+static const mbedtls_mpi_uint secp256r1_T_14_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0xB2, 0xAA, 0xFD, 0x88, 0x15, 0xDF, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4C, 0x35, 0x27, 0x31, 0x44, 0xCD, 0xC0, 0x68),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0xF8, 0x91, 0xA5, 0x71, 0x94, 0x84, 0x2A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0xCB, 0xD0, 0x93, 0xE9, 0x88, 0xDA, 0xE4),
+};
+static const mbedtls_mpi_uint secp256r1_T_14_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0xC6, 0x39, 0x16, 0x5D, 0xA3, 0x1E, 0x6D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x07, 0x37, 0x26, 0x36, 0x2A, 0xFE, 0x60),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xBC, 0xF3, 0xD0, 0xDE, 0x50, 0xFC, 0x97),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x2E, 0x06, 0x10, 0x15, 0x4D, 0xFA, 0xF7),
+};
+static const mbedtls_mpi_uint secp256r1_T_15_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x65, 0x69, 0x5B, 0x66, 0xA2, 0x75, 0x2E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0x16, 0x00, 0x5A, 0xB0, 0x30, 0x25, 0x1A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0xFB, 0x86, 0x42, 0x80, 0xC1, 0xC4, 0x76),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x1D, 0x83, 0x8E, 0x94, 0x01, 0x5F, 0x82),
+};
+static const mbedtls_mpi_uint secp256r1_T_15_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0x37, 0x70, 0xEF, 0x1F, 0xA1, 0xF0, 0xDB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x10, 0x5B, 0xCE, 0xC4, 0x9B, 0x6F, 0x10),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x11, 0x11, 0x24, 0x4F, 0x4C, 0x79, 0x61),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x3A, 0x72, 0xBC, 0xFE, 0x72, 0x58, 0x43),
+};
+static const mbedtls_ecp_point secp256r1_T[16] = {
+    ECP_POINT_INIT_XY_Z1(secp256r1_T_0_X, secp256r1_T_0_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_1_X, secp256r1_T_1_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_2_X, secp256r1_T_2_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_3_X, secp256r1_T_3_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_4_X, secp256r1_T_4_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_5_X, secp256r1_T_5_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_6_X, secp256r1_T_6_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_7_X, secp256r1_T_7_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_8_X, secp256r1_T_8_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_9_X, secp256r1_T_9_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_10_X, secp256r1_T_10_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_11_X, secp256r1_T_11_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_12_X, secp256r1_T_12_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_13_X, secp256r1_T_13_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_14_X, secp256r1_T_14_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_15_X, secp256r1_T_15_Y),
+};
+#else
+#define secp256r1_T NULL
+#endif
+
+#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
+
+/*
+ * Domain parameters for secp384r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+static const mbedtls_mpi_uint secp384r1_p[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+static const mbedtls_mpi_uint secp384r1_b[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3),
+};
+static const mbedtls_mpi_uint secp384r1_gx[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA),
+};
+static const mbedtls_mpi_uint secp384r1_gy[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36),
+};
+static const mbedtls_mpi_uint secp384r1_n[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp384r1_T_0_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA),
+};
+static const mbedtls_mpi_uint secp384r1_T_0_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36),
+};
+static const mbedtls_mpi_uint secp384r1_T_1_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x92, 0x00, 0x2C, 0x78, 0xDB, 0x1F, 0x37),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xF3, 0xEB, 0xB7, 0x06, 0xF7, 0xB6, 0xBC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xBC, 0x2C, 0xCF, 0xD8, 0xED, 0x53, 0xE7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0x75, 0x7B, 0xA3, 0xAB, 0xC3, 0x2C, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0x9D, 0x78, 0x41, 0xF6, 0x76, 0x84, 0xAC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x56, 0xE8, 0x52, 0xB3, 0xCB, 0xA8, 0xBD),
+};
+static const mbedtls_mpi_uint secp384r1_T_1_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xF2, 0xAE, 0xA4, 0xB6, 0x89, 0x1B, 0xDA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x0F, 0xCE, 0x1C, 0x7C, 0xF6, 0x50, 0x4C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4C, 0xEB, 0x90, 0xE6, 0x4D, 0xC7, 0xD4, 0x7A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0x49, 0x2D, 0x8A, 0x01, 0x99, 0x60, 0x94),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x80, 0x9B, 0x9B, 0x6A, 0xB0, 0x07, 0xD9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0xA2, 0xEE, 0x59, 0xBE, 0x95, 0xBC, 0x23),
+};
+static const mbedtls_mpi_uint secp384r1_T_2_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x9D, 0x56, 0xAE, 0x59, 0xFB, 0x1F, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0xAC, 0x91, 0x80, 0x87, 0xA8, 0x6E, 0x58),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x08, 0xA7, 0x08, 0x94, 0x32, 0xFC, 0x67),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0x29, 0x9E, 0x84, 0xF4, 0xE5, 0x6E, 0x7E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x21, 0xB9, 0x50, 0x24, 0xF8, 0x9C, 0xC7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x04, 0x01, 0xC2, 0xFB, 0x77, 0x3E, 0xDE),
+};
+static const mbedtls_mpi_uint secp384r1_T_2_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x38, 0xEE, 0xE3, 0xC7, 0x9D, 0xEC, 0xA6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x88, 0xCF, 0x43, 0xFA, 0x92, 0x5E, 0x8E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0xCA, 0x43, 0xF8, 0x3B, 0x49, 0x7E, 0x75),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0xE7, 0xEB, 0x17, 0x45, 0x86, 0xC2, 0xE1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x69, 0x57, 0x32, 0xE0, 0x9C, 0xD1, 0x00),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x10, 0xB8, 0x4D, 0xB8, 0xF4, 0x0D, 0xE3),
+};
+static const mbedtls_mpi_uint secp384r1_T_3_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x60, 0xDC, 0x9A, 0xB2, 0x79, 0x39, 0x27, 0x16),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x71, 0xE4, 0x3B, 0x4D, 0x60, 0x0C, 0xA3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0xBD, 0x19, 0x40, 0xFA, 0x19, 0x2A, 0x5A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0xF8, 0x1E, 0x43, 0xA1, 0x50, 0x8D, 0xEF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0x18, 0x7C, 0x41, 0xFA, 0x7C, 0x1B, 0x58),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x59, 0x24, 0xC4, 0xE9, 0xB7, 0xD3, 0xAD),
+};
+static const mbedtls_mpi_uint secp384r1_T_3_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x01, 0x3D, 0x63, 0x54, 0x45, 0x6F, 0xB7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0xB2, 0x19, 0xA3, 0x86, 0x1D, 0x42, 0x34),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x02, 0x87, 0x18, 0x92, 0x52, 0x1A, 0x71),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x18, 0xB1, 0x5D, 0x18, 0x1B, 0x37, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0x74, 0x61, 0xBA, 0x18, 0xAF, 0x40, 0x30),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x7D, 0x3C, 0x52, 0x0F, 0x07, 0xB0, 0x6F),
+};
+static const mbedtls_mpi_uint secp384r1_T_4_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x39, 0x13, 0xAA, 0x60, 0x15, 0x99, 0x30),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x00, 0xCB, 0xC6, 0xB1, 0xDB, 0x97, 0x90),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xFA, 0x60, 0xB8, 0x24, 0xE4, 0x7D, 0xD3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x75, 0xB3, 0x70, 0xB2, 0x83, 0xB1, 0x9B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0xE3, 0x6C, 0xCD, 0x33, 0x62, 0x7A, 0x56),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x30, 0xDC, 0x0F, 0x9F, 0xBB, 0xB8, 0xAA),
+};
+static const mbedtls_mpi_uint secp384r1_T_4_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0xD5, 0x0A, 0x60, 0x81, 0xB9, 0xC5, 0x16),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0xAA, 0x2F, 0xD6, 0xF2, 0x73, 0xDF, 0xEB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x7B, 0x74, 0xC9, 0xB3, 0x5B, 0x95, 0x6D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x04, 0xEB, 0x15, 0xC8, 0x5F, 0x00, 0xF6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x50, 0x20, 0x28, 0xD1, 0x01, 0xAF, 0xF0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x6D, 0x4F, 0x31, 0x81, 0x2F, 0x94, 0x48),
+};
+static const mbedtls_mpi_uint secp384r1_T_5_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x2F, 0xD8, 0xB6, 0x63, 0x7C, 0xE9, 0x50),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x8C, 0xB9, 0x14, 0xD9, 0x37, 0x63, 0xDE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x02, 0xB8, 0x46, 0xAD, 0xCE, 0x7B, 0x38),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x47, 0x2D, 0x66, 0xA7, 0xE9, 0x33, 0x23),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0xF9, 0x93, 0x94, 0xA8, 0x48, 0xB3, 0x4F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0x4A, 0xAC, 0x51, 0x08, 0x72, 0x2F, 0x1A),
+};
+static const mbedtls_mpi_uint secp384r1_T_5_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0xAD, 0xA0, 0xF9, 0x81, 0xE1, 0x78, 0x97),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x9A, 0x63, 0xD8, 0xBA, 0x79, 0x1A, 0x17),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x31, 0x7B, 0x7A, 0x5A, 0x5D, 0x7D, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x96, 0x12, 0x4B, 0x19, 0x09, 0xE0, 0xB7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x8A, 0x57, 0xEE, 0x4E, 0x6E, 0x7E, 0xEC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x9D, 0x69, 0xDC, 0xB3, 0xDA, 0xD8, 0x08),
+};
+static const mbedtls_mpi_uint secp384r1_T_6_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x49, 0x03, 0x03, 0x33, 0x6F, 0x28, 0x4A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xDB, 0xA7, 0x05, 0x8C, 0xF3, 0x4D, 0xFB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x92, 0xB1, 0xA8, 0xEC, 0x0D, 0x64, 0x3B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0xFC, 0xFD, 0xD0, 0x4B, 0x88, 0x1B, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x9C, 0x51, 0x69, 0xCE, 0x71, 0x73, 0xF5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x5A, 0x14, 0x23, 0x1A, 0x46, 0x63, 0x5F),
+};
+static const mbedtls_mpi_uint secp384r1_T_6_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x4C, 0x70, 0x44, 0x18, 0xCD, 0xEF, 0xED),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x49, 0xDD, 0x64, 0x7E, 0x7E, 0x4D, 0x92),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA2, 0x32, 0x7C, 0x09, 0xD0, 0x3F, 0xD6, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xE0, 0x4F, 0x65, 0x0C, 0x7A, 0x54, 0x3E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0xFA, 0xFB, 0x4A, 0xB4, 0x79, 0x5A, 0x8C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x5D, 0x1B, 0x2B, 0xDA, 0xBC, 0x9A, 0x74),
+};
+static const mbedtls_mpi_uint secp384r1_T_7_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xAC, 0x56, 0xF7, 0x5F, 0x51, 0x68, 0x0B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0xE0, 0x1D, 0xBC, 0x13, 0x4E, 0xAC, 0x03),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xF5, 0xC5, 0xE6, 0xD2, 0x88, 0xBA, 0xCB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x0E, 0x28, 0x23, 0x58, 0x67, 0xFA, 0xEE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0x80, 0x4B, 0xD8, 0xC4, 0xDF, 0x15, 0xE4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x0E, 0x58, 0xE6, 0x2C, 0x59, 0xC2, 0x03),
+};
+static const mbedtls_mpi_uint secp384r1_T_7_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x26, 0x27, 0x99, 0x16, 0x2B, 0x22, 0x0B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0xF3, 0x8F, 0xC3, 0x2A, 0x9B, 0xFC, 0x38),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x2E, 0x83, 0x3D, 0xFE, 0x9E, 0x3C, 0x1B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x57, 0xCD, 0x2D, 0xC1, 0x49, 0x38, 0xB5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0x42, 0x8B, 0x33, 0x89, 0x1F, 0xEA, 0x01),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x1D, 0x13, 0xD7, 0x50, 0xBB, 0x3E, 0xEB),
+};
+static const mbedtls_mpi_uint secp384r1_T_8_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD2, 0x9A, 0x52, 0xD2, 0x54, 0x7C, 0x97, 0xF2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x33, 0x6E, 0xED, 0xD9, 0x87, 0x50, 0xC5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x35, 0x7E, 0x16, 0x40, 0x15, 0x83, 0xB8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0x2B, 0xA4, 0xAB, 0x03, 0x91, 0xEA, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x47, 0x39, 0xEF, 0x05, 0x59, 0xD0, 0x90),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x24, 0x0D, 0x76, 0x11, 0x53, 0x08, 0xAF),
+};
+static const mbedtls_mpi_uint secp384r1_T_8_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x2F, 0xDD, 0xBD, 0x50, 0x48, 0xB1, 0xE5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x1C, 0x84, 0x55, 0x78, 0x14, 0xEB, 0xF6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x5E, 0x3E, 0xA6, 0xAF, 0xF6, 0xC7, 0x04),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x11, 0xE2, 0x65, 0xCA, 0x41, 0x95, 0x3B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x83, 0xD8, 0xE6, 0x4D, 0x22, 0x06, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x7F, 0x25, 0x2A, 0xAA, 0x28, 0x46, 0x97),
+};
+static const mbedtls_mpi_uint secp384r1_T_9_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0xDB, 0x15, 0x56, 0x84, 0xCB, 0xC0, 0x56),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0xDB, 0x0E, 0x08, 0xC9, 0xF5, 0xD4, 0x9E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x62, 0xD0, 0x1A, 0x7C, 0x13, 0xD5, 0x07),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0xAD, 0x53, 0xE0, 0x32, 0x21, 0xA0, 0xC0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x38, 0x81, 0x21, 0x23, 0x0E, 0xD2, 0xBB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x51, 0x05, 0xD0, 0x1E, 0x82, 0xA9, 0x71),
+};
+static const mbedtls_mpi_uint secp384r1_T_9_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0xC3, 0x27, 0xBF, 0xC6, 0xAA, 0xB7, 0xB9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x65, 0x45, 0xDF, 0xB9, 0x46, 0x17, 0x46),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x38, 0x3F, 0xB2, 0xB1, 0x5D, 0xCA, 0x1C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x29, 0x6C, 0x63, 0xE9, 0xD7, 0x48, 0xB8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xF1, 0xD7, 0x99, 0x8C, 0xC2, 0x05, 0x99),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xE6, 0x5E, 0x82, 0x6D, 0xE5, 0x7E, 0xD5),
+};
+static const mbedtls_mpi_uint secp384r1_T_10_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x61, 0xFA, 0x7D, 0x01, 0xDB, 0xB6, 0x63),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xC6, 0x58, 0x39, 0xF4, 0xC6, 0x82, 0x23),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x5A, 0x7A, 0x80, 0x08, 0xCD, 0xAA, 0xD8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x8C, 0xC6, 0x3F, 0x3C, 0xA5, 0x68, 0xF4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0xF5, 0xD5, 0x17, 0xAE, 0x36, 0xD8, 0x8A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0xAD, 0x92, 0xC5, 0x57, 0x6C, 0xDA, 0x91),
+};
+static const mbedtls_mpi_uint secp384r1_T_10_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x67, 0x17, 0xC0, 0x40, 0x78, 0x8C, 0x84),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x9F, 0xF4, 0xAA, 0xDA, 0x5C, 0x7E, 0xB2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xDB, 0x42, 0x3E, 0x72, 0x64, 0xA0, 0x67),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0xF9, 0x41, 0x17, 0x43, 0xE3, 0xE8, 0xA8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xDD, 0xCC, 0x43, 0x7E, 0x16, 0x05, 0x03),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0x4B, 0xCF, 0x48, 0x8F, 0x41, 0x90, 0xE5),
+};
+static const mbedtls_mpi_uint secp384r1_T_11_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x0C, 0x6B, 0x9D, 0x22, 0x04, 0xBC, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x63, 0x79, 0x2F, 0x6A, 0x0E, 0x8A, 0xDE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x67, 0x3F, 0x02, 0xB8, 0x91, 0x7F, 0x74),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x14, 0x64, 0xA0, 0x33, 0xF4, 0x6B, 0x50),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x44, 0x71, 0x87, 0xB8, 0x88, 0x3F, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x2B, 0x85, 0x05, 0xC5, 0x44, 0x53, 0x15),
+};
+static const mbedtls_mpi_uint secp384r1_T_11_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x2B, 0xFE, 0xD1, 0x1C, 0x73, 0xE3, 0x2E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0x33, 0xA1, 0xD3, 0x69, 0x1C, 0x9D, 0xD2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x5A, 0xBA, 0xB6, 0xAE, 0x1B, 0x94, 0x04),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0x74, 0x90, 0x5C, 0x57, 0xB0, 0x3A, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x2F, 0x93, 0x20, 0x24, 0x54, 0x1D, 0x8D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x78, 0x9D, 0x71, 0x67, 0x5D, 0x49, 0x98),
+};
+static const mbedtls_mpi_uint secp384r1_T_12_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0xC8, 0x0E, 0x11, 0x8D, 0xE0, 0x8F, 0x69),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x7F, 0x79, 0x6C, 0x5F, 0xB7, 0xBC, 0xB1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0xE1, 0x83, 0x3C, 0x12, 0xBB, 0xEE, 0x96),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xC2, 0xC4, 0x1B, 0x41, 0x71, 0xB9, 0x17),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0xEE, 0xBB, 0x1D, 0x89, 0x50, 0x88, 0xF2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x1C, 0x55, 0x74, 0xEB, 0xDE, 0x92, 0x3F),
+};
+static const mbedtls_mpi_uint secp384r1_T_12_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0x38, 0x92, 0x06, 0x19, 0xD0, 0xB3, 0xB2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x99, 0x26, 0xA3, 0x5F, 0xE2, 0xC1, 0x81),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0xFC, 0xFD, 0xC3, 0xB6, 0x26, 0x24, 0x8F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xAD, 0xE7, 0x49, 0xB7, 0x64, 0x4B, 0x96),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x4E, 0x95, 0xAD, 0x07, 0xFE, 0xB6, 0x30),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x15, 0xE7, 0x2D, 0x19, 0xA9, 0x08, 0x10),
+};
+static const mbedtls_mpi_uint secp384r1_T_13_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0xBD, 0xAC, 0x0A, 0x3F, 0x6B, 0xFF, 0xFA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0xE4, 0x74, 0x14, 0xD9, 0x70, 0x1D, 0x71),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0xB0, 0x71, 0xBB, 0xD8, 0x18, 0x96, 0x2B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0xB8, 0x19, 0x90, 0x80, 0xB5, 0xEE, 0x01),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x21, 0x20, 0xA6, 0x17, 0x48, 0x03, 0x6F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x1D, 0xBB, 0x6D, 0x94, 0x20, 0x34, 0xF1),
+};
+static const mbedtls_mpi_uint secp384r1_T_13_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x82, 0x67, 0x4B, 0x8E, 0x4E, 0xBE, 0xE2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0xDA, 0x77, 0xF8, 0x23, 0x55, 0x2B, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0x02, 0xDE, 0x25, 0x35, 0x2D, 0x74, 0x51),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x0C, 0xB8, 0x0B, 0x39, 0xBA, 0xAD, 0x04),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0x0E, 0x28, 0x4D, 0xE1, 0x3D, 0xE4, 0x1B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xEC, 0x0A, 0xD4, 0xB8, 0xC4, 0x8D, 0xB0),
+};
+static const mbedtls_mpi_uint secp384r1_T_14_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x68, 0xCE, 0xC2, 0x55, 0x4D, 0x0C, 0x6D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x20, 0x93, 0x32, 0x90, 0xD6, 0xAE, 0x47),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x78, 0xAB, 0x43, 0x9E, 0xEB, 0x73, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0x97, 0xC3, 0x83, 0xA6, 0x3C, 0xF1, 0xBF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0x25, 0x25, 0x66, 0x08, 0x26, 0xFA, 0x4B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0xFB, 0x44, 0x5D, 0x82, 0xEC, 0x3B, 0xAC),
+};
+static const mbedtls_mpi_uint secp384r1_T_14_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x90, 0xEA, 0xB5, 0x04, 0x99, 0xD0, 0x69),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0xF2, 0x22, 0xA0, 0xEB, 0xFD, 0x45, 0x87),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xA4, 0x81, 0x32, 0xFC, 0xFA, 0xEE, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0xBB, 0xA4, 0x6A, 0x77, 0x41, 0x5C, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x1E, 0xAA, 0x4F, 0xF0, 0x10, 0xB3, 0x50),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x74, 0x13, 0x14, 0x9E, 0x90, 0xD7, 0xE6),
+};
+static const mbedtls_mpi_uint secp384r1_T_15_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0xBD, 0x70, 0x4F, 0xA8, 0xD1, 0x06, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x4E, 0x2E, 0x68, 0xFC, 0x35, 0xFA, 0x50),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x60, 0x53, 0x75, 0xED, 0xF2, 0x5F, 0xC2, 0xEB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0x87, 0x6B, 0x9F, 0x05, 0xE2, 0x22, 0x93),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x1A, 0xA8, 0xB7, 0x03, 0x9E, 0x6D, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0xD0, 0x69, 0x88, 0xA8, 0x39, 0x9E, 0x3A),
+};
+static const mbedtls_mpi_uint secp384r1_T_15_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0xEF, 0x68, 0xFE, 0xEC, 0x24, 0x08, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x06, 0x4B, 0x92, 0x0D, 0xB7, 0x34, 0x74),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0xF4, 0xDD, 0x1A, 0xA0, 0x4A, 0xE4, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0x63, 0x4F, 0x4F, 0xCE, 0xBB, 0xD6, 0xD3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xEE, 0x8D, 0xDF, 0x3F, 0x73, 0xB7, 0xAC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x06, 0xB6, 0x80, 0x4D, 0x81, 0xD9, 0x53),
+};
+static const mbedtls_mpi_uint secp384r1_T_16_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0xF5, 0x13, 0xDF, 0x13, 0x19, 0x97, 0x94),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0xF9, 0xB3, 0x33, 0x66, 0x82, 0x21, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xFC, 0x39, 0x16, 0x23, 0x43, 0x76, 0x0E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x48, 0x25, 0xA1, 0x64, 0x95, 0x1C, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0xAC, 0x15, 0x57, 0xD9, 0xDE, 0xA0, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x5F, 0xB8, 0x3D, 0x48, 0x91, 0x24, 0xCC),
+};
+static const mbedtls_mpi_uint secp384r1_T_16_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0xF2, 0xC8, 0x54, 0xD1, 0x32, 0xBD, 0xC4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x3B, 0xF0, 0xAA, 0x9D, 0xD8, 0xF4, 0x20),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0xC3, 0xBB, 0x6C, 0x66, 0xAC, 0x25, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x25, 0x10, 0xB2, 0xE1, 0x41, 0xDE, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0xE8, 0x30, 0xB8, 0x37, 0xBC, 0x2A, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x57, 0x01, 0x4A, 0x1E, 0x78, 0x9F, 0x85),
+};
+static const mbedtls_mpi_uint secp384r1_T_17_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0x19, 0xCD, 0x12, 0x0B, 0x51, 0x4F, 0x56),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x4B, 0x3D, 0x24, 0xA4, 0x16, 0x59, 0x05),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xEB, 0xD3, 0x59, 0x2E, 0x75, 0x7C, 0x01),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0xB9, 0xB4, 0xA5, 0xD9, 0x2E, 0x29, 0x4C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x16, 0x05, 0x75, 0x02, 0xB3, 0x06, 0xEE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x7C, 0x9F, 0x79, 0x91, 0xF1, 0x4F, 0x23),
+};
+static const mbedtls_mpi_uint secp384r1_T_17_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x98, 0x7C, 0x84, 0xE1, 0xFF, 0x30, 0x77),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0xE2, 0xC2, 0x5F, 0x55, 0x40, 0xBD, 0xCD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0x65, 0x87, 0x3F, 0xC4, 0xC2, 0x24, 0x57),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0x30, 0x0A, 0x60, 0x15, 0xD1, 0x24, 0x48),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x99, 0xD9, 0xB6, 0xAE, 0xB1, 0xAF, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x80, 0xEE, 0xA2, 0x0F, 0x74, 0xB9, 0xF3),
+};
+static const mbedtls_mpi_uint secp384r1_T_18_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0xE6, 0x0F, 0x37, 0xC1, 0x10, 0x99, 0x1E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0xAD, 0x9D, 0x5D, 0x80, 0x01, 0xA6, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x0F, 0x10, 0x2A, 0x9D, 0x20, 0x38, 0xEB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x60, 0xCB, 0xCE, 0x5A, 0xA0, 0xA7, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0xCF, 0x14, 0xDF, 0xBF, 0xE5, 0x74, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x12, 0x1A, 0xDD, 0x59, 0x02, 0x5D, 0xC6),
+};
+static const mbedtls_mpi_uint secp384r1_T_18_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0xC9, 0xF8, 0xF5, 0xB6, 0x13, 0x4D, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0x45, 0xB1, 0x93, 0xB3, 0xA2, 0x79, 0xDC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xF6, 0xCF, 0xF7, 0xE6, 0x29, 0x9C, 0xCC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x50, 0x65, 0x80, 0xBC, 0x59, 0x0A, 0x59),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xF0, 0x24, 0x35, 0xA2, 0x46, 0xF0, 0x0C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0x26, 0xC0, 0x9D, 0x61, 0x56, 0x62, 0x67),
+};
+static const mbedtls_mpi_uint secp384r1_T_19_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xBB, 0xC2, 0x24, 0x43, 0x2E, 0x37, 0x54),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0xF7, 0xCE, 0x35, 0xFC, 0x77, 0xF3, 0x3F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0x34, 0x96, 0xD5, 0x4A, 0x76, 0x9D, 0x6B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x3B, 0x0F, 0xEA, 0xA8, 0x12, 0x0B, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0x3F, 0x5D, 0x2D, 0x1C, 0xD4, 0x9E, 0xFB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x2E, 0xDD, 0xC7, 0x6E, 0xAB, 0xAF, 0xDC),
+};
+static const mbedtls_mpi_uint secp384r1_T_19_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0xB2, 0x7B, 0x0C, 0x9A, 0x83, 0x8E, 0x59),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x51, 0x90, 0x92, 0x79, 0x32, 0x19, 0xC3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0x89, 0xF9, 0xD0, 0xCF, 0x2C, 0xA5, 0x8F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x50, 0x21, 0xDE, 0x50, 0x41, 0x9D, 0x81),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x7D, 0x2B, 0x9E, 0x9D, 0x95, 0xA8, 0xE3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xA5, 0x20, 0x87, 0x88, 0x97, 0x5F, 0xAA),
+};
+static const mbedtls_mpi_uint secp384r1_T_20_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x59, 0xB4, 0x66, 0x7E, 0xE8, 0x5A, 0x60),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x5C, 0x7E, 0xB2, 0xAD, 0xD9, 0xC9, 0xDA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x97, 0x49, 0xA3, 0x13, 0x83, 0x07, 0x2E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x26, 0xC7, 0x13, 0x35, 0x0D, 0xB0, 0x6B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x60, 0xAB, 0xFA, 0x4B, 0x93, 0x18, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x2D, 0x1C, 0x31, 0x4C, 0xE4, 0x61, 0xAE),
+};
+static const mbedtls_mpi_uint secp384r1_T_20_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0x4D, 0x1E, 0x51, 0x59, 0x6E, 0x91, 0xC5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x54, 0x4D, 0x51, 0xED, 0x36, 0xCC, 0x60),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0xA8, 0x56, 0xC7, 0x78, 0x27, 0x33, 0xC5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0xB7, 0x95, 0xC9, 0x8B, 0xC8, 0x6A, 0xBC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0xE9, 0x13, 0x96, 0xB3, 0xE1, 0xF9, 0xEE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x46, 0xB0, 0x5E, 0xC3, 0x94, 0x03, 0x05),
+};
+static const mbedtls_mpi_uint secp384r1_T_21_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x5B, 0x29, 0x30, 0x41, 0x1A, 0x9E, 0xB6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0xCA, 0x83, 0x31, 0x5B, 0xA7, 0xCB, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x41, 0x50, 0x44, 0x4D, 0x64, 0x31, 0x89),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0x84, 0xC2, 0x5D, 0x97, 0xA5, 0x3C, 0x18),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x0F, 0xA5, 0xFD, 0x8E, 0x5A, 0x47, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x58, 0x02, 0x2D, 0x40, 0xB1, 0x0B, 0xBA),
+};
+static const mbedtls_mpi_uint secp384r1_T_21_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x33, 0x8C, 0x67, 0xCE, 0x23, 0x43, 0x99),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x53, 0x47, 0x72, 0x44, 0x1F, 0x5B, 0x2A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0xC1, 0xD9, 0xA4, 0x50, 0x88, 0x63, 0x18),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0xF2, 0x75, 0x69, 0x73, 0x00, 0xC4, 0x31),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0x90, 0x1D, 0xDF, 0x1A, 0x00, 0xD8, 0x69),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0xB1, 0x89, 0x48, 0xA8, 0x70, 0x62, 0xEF),
+};
+static const mbedtls_mpi_uint secp384r1_T_22_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x8A, 0x55, 0x50, 0x7B, 0xEF, 0x8A, 0x3C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0x1B, 0x23, 0x48, 0x23, 0x63, 0x91, 0xB6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0x04, 0x54, 0x3C, 0x24, 0x9B, 0xC7, 0x9A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0x38, 0xC3, 0x84, 0xFB, 0xFF, 0x9F, 0x49),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0x2A, 0xE0, 0x6D, 0x68, 0x8A, 0x5C, 0xCB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0x93, 0x53, 0x85, 0xA1, 0x0D, 0xAF, 0x63),
+};
+static const mbedtls_mpi_uint secp384r1_T_22_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x88, 0x95, 0x4C, 0x0B, 0xD0, 0x06, 0x51),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0xAF, 0x8D, 0x49, 0xA2, 0xC8, 0xB4, 0xE0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0x76, 0x53, 0x09, 0x88, 0x43, 0x87, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0xA4, 0x77, 0x3F, 0x5E, 0x21, 0xB4, 0x0A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0x9E, 0x86, 0x64, 0xCC, 0x91, 0xC1, 0x77),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x17, 0x56, 0xCB, 0xC3, 0x7D, 0x5B, 0xB1),
+};
+static const mbedtls_mpi_uint secp384r1_T_23_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x74, 0x9F, 0xB5, 0x91, 0x21, 0xB1, 0x1C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xED, 0xE1, 0x11, 0xEF, 0x45, 0xAF, 0xC1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x31, 0xBE, 0xB2, 0xBC, 0x72, 0x65, 0x1F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0x4B, 0x8C, 0x77, 0xCE, 0x1E, 0x42, 0xB5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xC9, 0xAA, 0xB9, 0xD9, 0x86, 0x99, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x23, 0x80, 0xC6, 0x4E, 0x35, 0x0B, 0x6D),
+};
+static const mbedtls_mpi_uint secp384r1_T_23_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0xD8, 0xA2, 0x0A, 0x39, 0x32, 0x1D, 0x23),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0xC8, 0x86, 0xF1, 0x12, 0x9A, 0x4A, 0x05),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xF1, 0x7C, 0xAA, 0x70, 0x8E, 0xBC, 0x01),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x01, 0x47, 0x8F, 0xDD, 0x8B, 0xA5, 0xC8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x08, 0x21, 0xF4, 0xAB, 0xC7, 0xF5, 0x96),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0x76, 0xA5, 0x95, 0xC4, 0x0F, 0x88, 0x1D),
+};
+static const mbedtls_mpi_uint secp384r1_T_24_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x42, 0x2A, 0x52, 0xCD, 0x75, 0x51, 0x49),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0x36, 0xE5, 0x04, 0x2B, 0x44, 0xC6, 0xEF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xEE, 0x16, 0x13, 0x07, 0x83, 0xB5, 0x30),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0x59, 0xC6, 0xA2, 0x19, 0x05, 0xD3, 0xC6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x8B, 0xA8, 0x16, 0x09, 0xB7, 0xEA, 0xD6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0xEE, 0x14, 0xAF, 0xB5, 0xFD, 0xD0, 0xEF),
+};
+static const mbedtls_mpi_uint secp384r1_T_24_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0x7C, 0xCA, 0x71, 0x3E, 0x6E, 0x66, 0x75),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x31, 0x0E, 0x3F, 0xE5, 0x91, 0xC4, 0x7F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x3D, 0xC2, 0x3E, 0x95, 0x37, 0x58, 0x2B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x1F, 0x02, 0x03, 0xF3, 0xEF, 0xEE, 0x66),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x5B, 0x1A, 0xFC, 0x38, 0xCD, 0xE8, 0x24),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x57, 0x42, 0x85, 0xC6, 0x21, 0x68, 0x71),
+};
+static const mbedtls_mpi_uint secp384r1_T_25_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xA2, 0x4A, 0x66, 0xB1, 0x0A, 0xE6, 0xC0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x0C, 0x94, 0x9D, 0x5E, 0x99, 0xB2, 0xCE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x03, 0x40, 0xCA, 0xB2, 0xB3, 0x30, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x78, 0x48, 0x27, 0x34, 0x1E, 0xE2, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x72, 0x5B, 0xAC, 0xC1, 0x6D, 0xE3, 0x82),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0xAB, 0x46, 0xCB, 0xEA, 0x5E, 0x4B, 0x0B),
+};
+static const mbedtls_mpi_uint secp384r1_T_25_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x08, 0xAD, 0x4E, 0x51, 0x9F, 0x2A, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x5C, 0x7D, 0x4C, 0xD6, 0xCF, 0xDD, 0x02),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0x76, 0x26, 0xE0, 0x8B, 0x10, 0xD9, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0xA7, 0x23, 0x4E, 0x5F, 0xD2, 0x42, 0x17),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0xE5, 0xA4, 0xEC, 0x77, 0x21, 0x34, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0x14, 0x65, 0xEA, 0x4A, 0x85, 0xC3, 0x2F),
+};
+static const mbedtls_mpi_uint secp384r1_T_26_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0xD8, 0x40, 0x27, 0x73, 0x15, 0x7E, 0x65),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xBB, 0x53, 0x7E, 0x0F, 0x40, 0xC8, 0xD4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0x37, 0x19, 0x73, 0xEF, 0x5A, 0x5E, 0x04),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0x73, 0x2B, 0x49, 0x7E, 0xAC, 0x97, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0xB2, 0xC3, 0x1E, 0x0E, 0xE7, 0xD2, 0x21),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x08, 0xD6, 0xDD, 0xAC, 0x21, 0xD6, 0x3E),
+};
+static const mbedtls_mpi_uint secp384r1_T_26_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0x26, 0xBE, 0x6D, 0x6D, 0xF2, 0x38, 0x3F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x6C, 0x31, 0xA7, 0x49, 0x50, 0x3A, 0x89),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0x99, 0xC6, 0xF5, 0xD2, 0xC2, 0x30, 0x5A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xE4, 0xF6, 0x8B, 0x8B, 0x97, 0xE9, 0xB2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x21, 0xB7, 0x0D, 0xFC, 0x15, 0x54, 0x0B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x83, 0x1C, 0xA4, 0xCD, 0x6B, 0x9D, 0xF2),
+};
+static const mbedtls_mpi_uint secp384r1_T_27_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xE8, 0x4C, 0x48, 0xE4, 0xAA, 0x69, 0x93),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x7A, 0x27, 0xFC, 0x37, 0x96, 0x1A, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0xE7, 0x30, 0xA5, 0xCF, 0x13, 0x46, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0xD8, 0xAF, 0x74, 0x23, 0x4D, 0x56, 0x84),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x3D, 0x44, 0x14, 0x1B, 0x97, 0x83, 0xF0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x47, 0xD7, 0x5F, 0xFD, 0x98, 0x38, 0xF7),
+};
+static const mbedtls_mpi_uint secp384r1_T_27_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0x73, 0x64, 0x36, 0xFD, 0x7B, 0xC1, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0x5D, 0x32, 0xD2, 0x47, 0x94, 0x89, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xE9, 0x30, 0xAC, 0x06, 0xC8, 0x65, 0x04),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x6C, 0xB9, 0x1B, 0xF7, 0x61, 0x49, 0x53),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0xFF, 0x32, 0x43, 0x80, 0xDA, 0xA6, 0xB1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xF8, 0x04, 0x01, 0x95, 0x35, 0xCE, 0x21),
+};
+static const mbedtls_mpi_uint secp384r1_T_28_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x06, 0x46, 0x0D, 0x51, 0xE2, 0xD8, 0xAC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0x57, 0x1D, 0x6F, 0x79, 0xA0, 0xCD, 0xA6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0xFB, 0x36, 0xCA, 0xAD, 0xF5, 0x9E, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x7A, 0x1D, 0x9E, 0x1D, 0x95, 0x48, 0xDC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x26, 0xA5, 0xB7, 0x15, 0x2C, 0xC2, 0xC6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x42, 0x72, 0xAA, 0x11, 0xDC, 0xC9, 0xB6),
+};
+static const mbedtls_mpi_uint secp384r1_T_28_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x6C, 0x64, 0xA7, 0x62, 0x3C, 0xAB, 0xD4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x48, 0x6A, 0x44, 0xD8, 0x60, 0xC0, 0xA8, 0x80),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x76, 0x58, 0x12, 0x57, 0x3C, 0x89, 0x46),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x4F, 0x83, 0xCE, 0xCB, 0xB8, 0xD0, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x84, 0x04, 0xB0, 0xAD, 0xEB, 0xFA, 0xDF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xA4, 0xC3, 0x41, 0x44, 0x4E, 0x65, 0x3E),
+};
+static const mbedtls_mpi_uint secp384r1_T_29_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x16, 0xA9, 0x1C, 0xE7, 0x65, 0x20, 0xC1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x53, 0x32, 0xF8, 0xC0, 0xA6, 0xBD, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xF0, 0xE6, 0x57, 0x31, 0xCC, 0x26, 0x6F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0xE3, 0x54, 0x1C, 0x34, 0xD3, 0x17, 0xBC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xAE, 0xED, 0xFB, 0xCD, 0xE7, 0x1E, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x16, 0x1C, 0x34, 0x40, 0x00, 0x1F, 0xB6),
+};
+static const mbedtls_mpi_uint secp384r1_T_29_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x32, 0x00, 0xC2, 0xD4, 0x3B, 0x1A, 0x09),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xE0, 0x99, 0x8F, 0x0C, 0x4A, 0x16, 0x44),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x73, 0x18, 0x1B, 0xD4, 0x94, 0x29, 0x62),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0xA4, 0x2D, 0xB1, 0x9D, 0x74, 0x32, 0x67),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0xF4, 0xB1, 0x0C, 0x37, 0x62, 0x8B, 0x66),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xFF, 0xDA, 0xE2, 0x35, 0xA3, 0xB6, 0x42),
+};
+static const mbedtls_mpi_uint secp384r1_T_30_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x49, 0x99, 0x65, 0xC5, 0xED, 0x16, 0xEF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0x42, 0x9A, 0xF3, 0xA7, 0x4E, 0x6F, 0x2B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x0A, 0x7E, 0xC0, 0xD7, 0x4E, 0x07, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x7A, 0x31, 0x69, 0xA6, 0xB9, 0x15, 0x34),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0xE0, 0x72, 0xA4, 0x3F, 0xB9, 0xF8, 0x0C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0x75, 0x32, 0x85, 0xA2, 0xDE, 0x37, 0x12),
+};
+static const mbedtls_mpi_uint secp384r1_T_30_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xC0, 0x0D, 0xCF, 0x25, 0x41, 0xA4, 0xF4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0xFC, 0xB2, 0x48, 0xC3, 0x85, 0x83, 0x4B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0xBE, 0x0B, 0x58, 0x2D, 0x7A, 0x9A, 0x62),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0xF3, 0x81, 0x18, 0x1B, 0x74, 0x4F, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0x43, 0xA3, 0x0A, 0x16, 0x8B, 0xA3, 0x1E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x18, 0x81, 0x7B, 0x8D, 0xA2, 0x35, 0x77),
+};
+static const mbedtls_mpi_uint secp384r1_T_31_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0xC4, 0x3F, 0x2C, 0xE7, 0x5F, 0x99, 0x03),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x2B, 0xB7, 0xB6, 0xAD, 0x5A, 0x56, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x00, 0xA4, 0x48, 0xC8, 0xE8, 0xBA, 0xBF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0xA1, 0xB5, 0x13, 0x5A, 0xCD, 0x99, 0x9C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x95, 0xAD, 0xFC, 0xE2, 0x7E, 0xE7, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x6B, 0xD1, 0x34, 0x99, 0x53, 0x63, 0x0B),
+};
+static const mbedtls_mpi_uint secp384r1_T_31_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x8A, 0x77, 0x5D, 0x2B, 0xAB, 0x01, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x85, 0xD0, 0xD5, 0x49, 0x83, 0x4D, 0x60),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0xC6, 0x91, 0x30, 0x3B, 0x00, 0xAF, 0x7A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0xAE, 0x61, 0x07, 0xE1, 0xB6, 0xE2, 0xC9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0x43, 0x41, 0xFE, 0x9B, 0xB6, 0xF0, 0xA5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x97, 0xAE, 0xAD, 0x89, 0x88, 0x9E, 0x41),
+};
+static const mbedtls_ecp_point secp384r1_T[32] = {
+    ECP_POINT_INIT_XY_Z1(secp384r1_T_0_X, secp384r1_T_0_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_1_X, secp384r1_T_1_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_2_X, secp384r1_T_2_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_3_X, secp384r1_T_3_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_4_X, secp384r1_T_4_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_5_X, secp384r1_T_5_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_6_X, secp384r1_T_6_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_7_X, secp384r1_T_7_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_8_X, secp384r1_T_8_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_9_X, secp384r1_T_9_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_10_X, secp384r1_T_10_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_11_X, secp384r1_T_11_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_12_X, secp384r1_T_12_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_13_X, secp384r1_T_13_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_14_X, secp384r1_T_14_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_15_X, secp384r1_T_15_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_16_X, secp384r1_T_16_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_17_X, secp384r1_T_17_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_18_X, secp384r1_T_18_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_19_X, secp384r1_T_19_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_20_X, secp384r1_T_20_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_21_X, secp384r1_T_21_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_22_X, secp384r1_T_22_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_23_X, secp384r1_T_23_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_24_X, secp384r1_T_24_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_25_X, secp384r1_T_25_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_26_X, secp384r1_T_26_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_27_X, secp384r1_T_27_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_28_X, secp384r1_T_28_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_29_X, secp384r1_T_29_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_30_X, secp384r1_T_30_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_31_X, secp384r1_T_31_Y),
+};
+#else
+#define secp384r1_T NULL
+#endif
+
+#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
+
+/*
+ * Domain parameters for secp521r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+static const mbedtls_mpi_uint secp521r1_p[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_2(0xFF, 0x01),
+};
+static const mbedtls_mpi_uint secp521r1_b[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95),
+    MBEDTLS_BYTES_TO_T_UINT_2(0x51, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_gx[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_2(0xC6, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_gy[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39),
+    MBEDTLS_BYTES_TO_T_UINT_2(0x18, 0x01),
+};
+static const mbedtls_mpi_uint secp521r1_n[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_2(0xFF, 0x01),
+};
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp521r1_T_0_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_0_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_1_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xB1, 0x2D, 0xEB, 0x27, 0x2F, 0xE8, 0xDA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x4B, 0x44, 0x25, 0xDB, 0x5C, 0x5F, 0x67),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x85, 0x28, 0x78, 0x2E, 0x75, 0x34, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0x57, 0x0F, 0x73, 0x78, 0x7A, 0xE3, 0x53),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xD8, 0xEC, 0xDC, 0xDA, 0x04, 0xAD, 0xAB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x8A, 0x09, 0xF3, 0x58, 0x79, 0xD8, 0x29),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x03, 0xCB, 0x50, 0x1A, 0x7F, 0x56, 0x00),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xA6, 0x78, 0x38, 0x85, 0x67, 0x0B, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_1_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0xD5, 0xD2, 0x22, 0xC4, 0x00, 0x3B, 0xBA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x93, 0x0E, 0x7B, 0x85, 0x51, 0xC3, 0x06),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xA6, 0x5F, 0x54, 0x49, 0x02, 0x81, 0x78),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0xE9, 0x6B, 0x3A, 0x92, 0xE7, 0x72, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x5F, 0x28, 0x9E, 0x91, 0x27, 0x88, 0xE3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x28, 0x31, 0xB3, 0x84, 0xCA, 0x12, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xF9, 0xAC, 0x22, 0x10, 0x0A, 0x64, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0xC6, 0x33, 0x1F, 0x69, 0x19, 0x18, 0xBF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_2_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x48, 0xB8, 0xC7, 0x37, 0x5A, 0x00, 0x36),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xCC, 0x32, 0xE0, 0xEE, 0x03, 0xC2, 0xBA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0x29, 0xC2, 0xE4, 0x6E, 0x24, 0x20, 0x8D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x6B, 0x7F, 0x7B, 0xF9, 0xB0, 0xB8, 0x13),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x7B, 0x3C, 0xE1, 0x19, 0xA1, 0x23, 0x02),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xE3, 0xC2, 0x53, 0xC0, 0x07, 0x13, 0xA9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xFE, 0x36, 0x35, 0x9F, 0x5E, 0x59, 0xCE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x55, 0x89, 0x84, 0xBC, 0xEF, 0xA2, 0xC2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_2_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0x1A, 0x08, 0x67, 0xB4, 0xE7, 0x22, 0xED),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0x26, 0xDF, 0x81, 0x3C, 0x5F, 0x1C, 0xDA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x4D, 0xD0, 0x0A, 0x48, 0x06, 0xF4, 0x48),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x18, 0x39, 0xF7, 0xD1, 0x20, 0x77, 0x8D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0x8F, 0x44, 0x13, 0xCB, 0x78, 0x11, 0x11),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0xE2, 0x49, 0xEA, 0x43, 0x79, 0x08, 0x39),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0xD1, 0xD8, 0x73, 0x2C, 0x71, 0x2F, 0x69),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xE5, 0xE7, 0xF4, 0x46, 0xAB, 0x20, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_3_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0x0B, 0xB9, 0x71, 0x1A, 0x27, 0xB7, 0xA7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xA2, 0x2C, 0xD1, 0xDA, 0xBC, 0xC1, 0xBD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xA3, 0x10, 0x1F, 0x90, 0xF2, 0xA5, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0xFB, 0x20, 0xF4, 0xC0, 0x70, 0xC0, 0xF5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8F, 0xA7, 0x99, 0xF0, 0xA5, 0xD3, 0x09, 0xDD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0xE8, 0x14, 0x39, 0xBE, 0xCB, 0x60, 0xAF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0xD6, 0x14, 0xA9, 0xC9, 0x20, 0xC3, 0xEA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xA8, 0x5B, 0xFD, 0x2D, 0x96, 0xBC, 0x78),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_3_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x04, 0x45, 0xBE, 0xCE, 0x75, 0x95, 0xF6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0xDA, 0x58, 0x49, 0x35, 0x09, 0x8D, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0xF0, 0xC0, 0x36, 0xF2, 0xA6, 0x2D, 0x14),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0xFC, 0x3D, 0xA8, 0xFB, 0x3C, 0xD2, 0x51),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x4D, 0x71, 0x09, 0x18, 0x42, 0xF0, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xC1, 0xCE, 0x9E, 0x6A, 0x49, 0x60, 0x12),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0xB1, 0x00, 0xF7, 0xA1, 0x7A, 0x31, 0xB4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0xC3, 0x86, 0xCD, 0x20, 0x4A, 0x17, 0x86),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_4_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0xAB, 0x8B, 0x47, 0x8D, 0xAA, 0xA6, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0x97, 0xF0, 0xBC, 0x2D, 0xDC, 0x9D, 0x84),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x86, 0xB0, 0x74, 0xB2, 0xF4, 0xF6, 0x67),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xBD, 0xAC, 0xE3, 0x8F, 0x43, 0x5C, 0xB1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0xC3, 0xE2, 0x6E, 0x25, 0x49, 0xCD, 0x0B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x5E, 0x08, 0xB3, 0xB9, 0xAC, 0x5F, 0xD1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0xB7, 0xD1, 0xF4, 0xDC, 0x19, 0xE9, 0xC8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0xE4, 0xFA, 0xE1, 0x36, 0x3E, 0xED, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_4_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x67, 0x92, 0x84, 0x6E, 0x48, 0x03, 0x51),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0x95, 0xEF, 0x8F, 0xB2, 0x82, 0x6B, 0x1C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xFA, 0xB9, 0x55, 0x23, 0xFE, 0x09, 0xB3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x79, 0x85, 0x4B, 0x0E, 0xD4, 0x35, 0xDB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x27, 0x45, 0x81, 0xE0, 0x88, 0x52, 0xAD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x63, 0xA2, 0x4B, 0xBC, 0x5D, 0xB1, 0x92),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x8C, 0x83, 0xD9, 0x3E, 0xD3, 0x42, 0xDA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x03, 0x3A, 0x31, 0xBA, 0xE9, 0x3A, 0xD1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_5_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0x10, 0xCD, 0x2D, 0x00, 0xFE, 0x32, 0xA7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x6E, 0x1F, 0xDA, 0xF8, 0x6F, 0x4D, 0x03),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x79, 0x7D, 0x09, 0xE5, 0xD3, 0x03, 0x21),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0xC3, 0xBE, 0xDF, 0x07, 0x65, 0x49, 0xCC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x57, 0x33, 0xEF, 0xAE, 0x4F, 0x04, 0x27),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0xE9, 0x9B, 0xFE, 0xBF, 0xE6, 0x85, 0xF6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0xBA, 0xAA, 0x06, 0xC4, 0xC6, 0xB8, 0x57),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0x83, 0x01, 0xA9, 0xF6, 0x51, 0xE7, 0xB8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_5_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xA6, 0x15, 0x8E, 0xAB, 0x1F, 0x10, 0x87),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x08, 0x27, 0x1A, 0xA1, 0x21, 0xAD, 0xF5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x09, 0x90, 0x6E, 0x50, 0x90, 0x9A, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x9A, 0xFE, 0xD7, 0xA1, 0xF5, 0xA2, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x7D, 0xE3, 0xDC, 0x21, 0xFB, 0xA4, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xBF, 0x07, 0xFF, 0x45, 0xDF, 0x51, 0x77),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x5C, 0x34, 0x02, 0x62, 0x9B, 0x08, 0x12),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0xCE, 0x9A, 0x6A, 0xEC, 0x75, 0xF6, 0x46),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_6_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x59, 0xF4, 0x78, 0x3C, 0x60, 0xB1, 0x4A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x37, 0x84, 0x6A, 0xDC, 0xF2, 0x9A, 0x7D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x9A, 0x9A, 0x15, 0x36, 0xE0, 0x2B, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x38, 0x9C, 0x50, 0x3D, 0x1E, 0x37, 0x82),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x79, 0xF0, 0x92, 0xF2, 0x8B, 0x18, 0x82),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xE0, 0x82, 0x1E, 0x80, 0x82, 0x4B, 0xD7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xBB, 0x59, 0x6B, 0x8A, 0x77, 0x41, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0xF9, 0xD4, 0xB8, 0x4A, 0x82, 0xCF, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_6_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x8C, 0xC8, 0x9B, 0x72, 0x9E, 0xF7, 0xF9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0xCE, 0xE9, 0x77, 0x0A, 0x19, 0x59, 0x84),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0xA1, 0x41, 0x6A, 0x72, 0x4B, 0xB4, 0xDC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x35, 0x43, 0xE2, 0x8C, 0xBE, 0x0D, 0xE3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0xEB, 0xAD, 0xF3, 0xA9, 0xA6, 0x68, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x2F, 0xE2, 0x48, 0x0C, 0xDB, 0x1F, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0x1E, 0x60, 0x9B, 0x2A, 0xD2, 0xC1, 0x3C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0x64, 0xB5, 0xD2, 0xF6, 0xF6, 0x6E, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_7_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x3D, 0x30, 0x78, 0x10, 0x18, 0x41, 0x51),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x1D, 0x1C, 0xE0, 0x6D, 0x83, 0xD1, 0x93),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x03, 0x0B, 0xF5, 0x2F, 0x6C, 0x04, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x3E, 0xD5, 0xFC, 0x31, 0x5B, 0x3A, 0xEB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x82, 0x2F, 0xFB, 0xFE, 0xF8, 0x76, 0x39),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0x26, 0xDA, 0x9C, 0x36, 0xF5, 0x93, 0xD1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4C, 0xE7, 0x6E, 0xD2, 0x7D, 0x81, 0x09, 0xC6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x03, 0xF9, 0x58, 0x48, 0x24, 0xA2, 0xEE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_7_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x79, 0x0C, 0x8E, 0x6B, 0x95, 0xF3, 0xC4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0x10, 0x5C, 0x87, 0x03, 0x39, 0xCF, 0x68),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0xF0, 0xF7, 0xC1, 0x07, 0xA4, 0xF4, 0x3F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0xE8, 0x02, 0x89, 0x65, 0xC4, 0x72, 0x36),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x88, 0xEA, 0x96, 0x67, 0x0B, 0x5D, 0xDF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x75, 0x60, 0xA8, 0xBD, 0x74, 0xDF, 0x68),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6E, 0xE5, 0x71, 0x50, 0x67, 0xD0, 0xD2, 0xE6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0xFC, 0xE5, 0xC7, 0x77, 0xB0, 0x7F, 0x8C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_8_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x86, 0x69, 0xCD, 0x0D, 0x9A, 0xBD, 0x66),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x17, 0xBC, 0xBB, 0x59, 0x85, 0x7D, 0x0E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xA8, 0x76, 0xAC, 0x80, 0xA9, 0x72, 0xE0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x78, 0xC1, 0xE2, 0x4D, 0xAF, 0xF9, 0x3C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x97, 0x8E, 0x74, 0xC4, 0x4B, 0xB2, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xD8, 0xF6, 0xF3, 0xAF, 0x2F, 0x52, 0xE5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0x57, 0xF4, 0xCE, 0xEE, 0x43, 0xED, 0x60),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x46, 0x38, 0xDE, 0x20, 0xFD, 0x59, 0x18),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_8_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x18, 0xE8, 0x58, 0xB9, 0x76, 0x2C, 0xE6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0x54, 0xE4, 0xFE, 0xC7, 0xBC, 0x31, 0x37),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xF8, 0x89, 0xEE, 0x70, 0xB5, 0xB0, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x22, 0x26, 0x9A, 0x53, 0xB9, 0x38, 0x0A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xA7, 0x19, 0x8C, 0x74, 0x7E, 0x88, 0x46),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xDA, 0x0A, 0xE8, 0xDA, 0xA5, 0xBE, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0x5C, 0xF7, 0xB1, 0x0C, 0x72, 0xFB, 0x09),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0xE2, 0x23, 0xE7, 0x46, 0xB7, 0xE0, 0x91),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_9_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x36, 0xBC, 0xBD, 0x48, 0x11, 0x8E, 0x72),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0xBB, 0xA1, 0xF7, 0x0B, 0x9E, 0xBF, 0xDF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x28, 0xE1, 0xA2, 0x8F, 0xFC, 0xFC, 0xD6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0xFE, 0x19, 0x0A, 0xE5, 0xE7, 0x69, 0x39),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0xCD, 0x12, 0xF5, 0xBE, 0xD3, 0x04, 0xF1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xA8, 0x0D, 0x81, 0x59, 0xC4, 0x79, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0xF3, 0x4B, 0x92, 0x65, 0xC3, 0x31, 0xAD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0xB5, 0x4F, 0x4D, 0x91, 0xD4, 0xE2, 0xB2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_9_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x09, 0x41, 0x79, 0x1D, 0x4D, 0x0D, 0x33),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x31, 0x18, 0xBA, 0xA0, 0xF2, 0x6E, 0x7E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x5B, 0x4D, 0x4F, 0xAF, 0xC9, 0x8C, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x48, 0x99, 0x9C, 0x06, 0x68, 0xDE, 0xD8, 0x29),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x04, 0xE1, 0xB5, 0x9D, 0x00, 0xBC, 0xB8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x95, 0x92, 0x8D, 0x72, 0xD3, 0x37, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x4B, 0x27, 0xA2, 0xE8, 0xA4, 0x26, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x45, 0x9C, 0xA9, 0xCB, 0x9F, 0xBA, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_10_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x7E, 0x1B, 0x64, 0xF4, 0xE8, 0xA5, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0x20, 0xA9, 0xCA, 0xF3, 0x89, 0xE5, 0xE1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0xED, 0xFC, 0xAB, 0xD9, 0x0A, 0xB9, 0x07),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x6F, 0x46, 0x7C, 0xCD, 0x78, 0xFF, 0x05),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0xAB, 0x71, 0x5A, 0x94, 0xAB, 0x20, 0x20),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x2E, 0xEE, 0x87, 0x57, 0x1F, 0xAD, 0xD3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x4C, 0x3D, 0xFB, 0x7E, 0xA1, 0x8B, 0x07),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0xCF, 0x07, 0x86, 0xBA, 0x53, 0x37, 0xCF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_10_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x26, 0xB2, 0xB9, 0xE2, 0x91, 0xE3, 0xB5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0xC9, 0x54, 0x84, 0x08, 0x3D, 0x0B, 0xD2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xA8, 0x77, 0x2F, 0x64, 0x45, 0x99, 0x4C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x96, 0x16, 0x1F, 0xDB, 0x96, 0x28, 0x97),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x2B, 0x8D, 0xFF, 0xA2, 0x4F, 0x55, 0xD3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0xE6, 0x48, 0xBD, 0x99, 0x3D, 0x12, 0x57),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x84, 0x59, 0xDA, 0xB9, 0xB6, 0x66, 0x12),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x78, 0x41, 0x92, 0xDF, 0xF4, 0x3F, 0x63),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_11_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x86, 0x6F, 0x4F, 0xBF, 0x67, 0xDF, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x2B, 0x1E, 0x5F, 0x00, 0xEA, 0xF6, 0x56),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0xB9, 0x6A, 0x89, 0xD8, 0xC0, 0xD7, 0xA7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x9A, 0x32, 0x23, 0xA0, 0x02, 0x91, 0x58),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x7F, 0x6A, 0x15, 0x64, 0x6A, 0x8B, 0xBB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x57, 0x82, 0x58, 0xA9, 0x56, 0xB5, 0xFB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x50, 0x92, 0x60, 0xCC, 0x81, 0x24, 0xA8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0x3D, 0xAD, 0xDA, 0xD9, 0x51, 0x3E, 0x57),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_11_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0xFE, 0x8F, 0xB0, 0x0B, 0xDE, 0x2E, 0x7E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0xD2, 0xBE, 0xEF, 0xAC, 0x76, 0x71, 0xA3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0xE8, 0x72, 0x0B, 0xAC, 0xFE, 0xCA, 0x5A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x5B, 0xC7, 0xFC, 0xE3, 0x3C, 0x7C, 0x4C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x04, 0xA7, 0xB9, 0x9B, 0x93, 0xC0, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x48, 0x4B, 0x8E, 0x32, 0xC5, 0xF0, 0x6B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x42, 0x07, 0xC1, 0xF2, 0xF1, 0x72, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x37, 0x54, 0x9C, 0x88, 0xD2, 0x62, 0xAA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_12_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x19, 0x8A, 0x89, 0x58, 0xA2, 0x0F, 0xDB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0xCC, 0x4C, 0x97, 0x30, 0x66, 0x34, 0x26),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x6A, 0x1E, 0x1F, 0xDB, 0xC9, 0x5E, 0x13),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x4D, 0x49, 0xFF, 0x9B, 0x9C, 0xAC, 0x9B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0xE4, 0x4B, 0xF2, 0xD4, 0x1A, 0xD2, 0x78),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xDA, 0xE8, 0x61, 0x9F, 0xC8, 0x49, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xCB, 0xF2, 0x2D, 0x85, 0xF6, 0x8D, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xC5, 0xCD, 0x2C, 0x79, 0xC6, 0x0E, 0x4F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_12_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x1D, 0x55, 0x0F, 0xF8, 0x22, 0x9F, 0x78),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0x56, 0xBA, 0xE7, 0x57, 0x32, 0xEC, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x9A, 0xC6, 0x4C, 0x09, 0xC4, 0x52, 0x3F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x1E, 0x6F, 0xF4, 0x7D, 0x27, 0xDD, 0xAF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x11, 0x16, 0xEC, 0x79, 0x83, 0xAD, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x4E, 0x92, 0x1F, 0x19, 0x7D, 0x65, 0xDC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0xFF, 0x78, 0x15, 0x45, 0x63, 0x32, 0xE4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x91, 0xD0, 0x78, 0x58, 0xDA, 0x50, 0x47),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_13_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0xDE, 0x40, 0xF6, 0x41, 0xB4, 0x3B, 0x95),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x8D, 0xE0, 0xE1, 0xA9, 0xF0, 0x35, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xD4, 0xBA, 0x7B, 0xCC, 0x1B, 0x3A, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x5A, 0x2E, 0x74, 0x47, 0x14, 0xC3, 0x4D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0xF0, 0x8B, 0x06, 0x15, 0x8E, 0x0E, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0xD2, 0xEB, 0x97, 0x50, 0x7D, 0x31, 0xFC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x93, 0x4C, 0xDB, 0x97, 0x79, 0x44, 0xF5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0xA2, 0xA0, 0x0B, 0xC8, 0x3A, 0x8A, 0xF9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_13_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0x50, 0x92, 0x9E, 0x24, 0x1F, 0xCB, 0x4C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x16, 0xC9, 0xC5, 0x3D, 0x5A, 0xAF, 0x97),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0xE3, 0x97, 0xE4, 0xA8, 0x50, 0xF6, 0x7E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x57, 0x97, 0x42, 0x78, 0x92, 0x49, 0x0D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0xEB, 0x62, 0x24, 0xFB, 0x8F, 0x32, 0xCF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x0C, 0x36, 0x6E, 0x8F, 0xE8, 0xE8, 0x8E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0xD3, 0x7C, 0xC7, 0x8D, 0x3F, 0x5C, 0xE1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x64, 0x6A, 0x73, 0x10, 0x79, 0xB8, 0x5A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_14_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xF9, 0xEF, 0xA5, 0x20, 0x4A, 0x5C, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xF3, 0xF4, 0x49, 0x5B, 0x73, 0xAA, 0x1B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0xF2, 0xEA, 0x0F, 0x00, 0xAD, 0x53, 0xAB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0xB8, 0x66, 0xED, 0xC4, 0x2B, 0x4C, 0x35),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x2F, 0xC1, 0x9A, 0x37, 0xD2, 0x7F, 0x58),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0xA7, 0x81, 0x38, 0x64, 0xC9, 0x37, 0x38),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x3B, 0x6C, 0x9F, 0x5B, 0xD9, 0x8B, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x14, 0xD9, 0x08, 0xD8, 0xD2, 0x7E, 0x23),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_14_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x71, 0xE6, 0x3D, 0xD1, 0xB0, 0xE7, 0xCD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x81, 0x23, 0xEC, 0x2D, 0x42, 0x45, 0xE6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0x5B, 0x44, 0x6B, 0x89, 0x03, 0x67, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x27, 0xAE, 0x80, 0x5A, 0x33, 0xBE, 0x11),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0xB6, 0x64, 0x1A, 0xDF, 0xD3, 0x85, 0x91),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0x8C, 0x22, 0xBA, 0xD0, 0xBD, 0xCC, 0xA0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0x3C, 0x01, 0x3A, 0xFF, 0x9D, 0xC7, 0x6B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0xC7, 0x64, 0xB4, 0x59, 0x4E, 0x9F, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_15_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x34, 0x0A, 0x41, 0x94, 0xA8, 0xF2, 0xB7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xD4, 0xE4, 0xF0, 0x97, 0x45, 0x6D, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8F, 0x1F, 0x4D, 0x6D, 0xFE, 0xA0, 0xC4, 0x84),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x28, 0x5C, 0x40, 0xBB, 0x65, 0xD4, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0xA8, 0x87, 0x35, 0x20, 0x3A, 0x89, 0x44),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xFD, 0x4F, 0xAB, 0x2D, 0xD1, 0xD0, 0xC0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0xE8, 0x00, 0xFC, 0x69, 0x52, 0xF8, 0xD5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x9A, 0x99, 0xE1, 0xDC, 0x9C, 0x3F, 0xD9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_15_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x08, 0x98, 0xD9, 0xCA, 0x73, 0xD5, 0xA9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x2C, 0xE0, 0xA7, 0x3E, 0x91, 0xD7, 0x87),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x04, 0xB0, 0x54, 0x09, 0xF4, 0x72, 0xB7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0xEE, 0x28, 0xCC, 0xE8, 0x50, 0x78, 0x20),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0x91, 0x03, 0x76, 0xDB, 0x68, 0x24, 0x77),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0xE0, 0x56, 0xB2, 0x5D, 0x12, 0xD3, 0xB5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0x42, 0x59, 0x8B, 0xDF, 0x67, 0xB5, 0xBE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0xCC, 0xE5, 0x31, 0x53, 0x7A, 0x46, 0xB3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_16_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x8D, 0x59, 0xB5, 0x1B, 0x0F, 0xF4, 0xAF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x2F, 0xD1, 0x2C, 0xE0, 0xD8, 0x04, 0xEF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xF4, 0xD7, 0xBA, 0xB0, 0xA3, 0x7E, 0xC9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x08, 0x51, 0x56, 0xA6, 0x76, 0x67, 0x33),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0x17, 0x63, 0xFE, 0x56, 0xD0, 0xD9, 0x71),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0xF6, 0xC3, 0x14, 0x47, 0xC5, 0xA7, 0x31),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x4C, 0x80, 0xF6, 0xA2, 0x57, 0xA7, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xB3, 0x7B, 0xF8, 0x2F, 0xE1, 0x3E, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_16_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0xF4, 0xF9, 0x6B, 0x7B, 0x90, 0xDF, 0x30),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x82, 0xEF, 0x62, 0xA1, 0x4C, 0x53, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x99, 0x76, 0x01, 0xBA, 0x8D, 0x0F, 0x54),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xF4, 0x58, 0x73, 0x56, 0xFE, 0xDD, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xCE, 0xF9, 0xE8, 0xA1, 0x34, 0xC3, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x5F, 0xDC, 0x6A, 0x3D, 0xD8, 0x7F, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0xF4, 0x51, 0xB8, 0xB8, 0xC1, 0xD7, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x7D, 0x58, 0xD1, 0xD4, 0x1B, 0x4D, 0x23),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_17_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x95, 0xDF, 0x00, 0xD8, 0x21, 0xDE, 0x94),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0x47, 0x3C, 0xC3, 0xB2, 0x01, 0x53, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x17, 0x43, 0x23, 0xBD, 0xCA, 0x71, 0xF2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0xBA, 0x0F, 0x4F, 0xDC, 0x41, 0x54, 0xBE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x39, 0x26, 0x70, 0x53, 0x32, 0x18, 0x11),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x46, 0x07, 0x97, 0x3A, 0x57, 0xE0, 0x01),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x92, 0x4F, 0xCE, 0xDF, 0x25, 0x80, 0x26),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x6F, 0x9A, 0x03, 0x05, 0x4B, 0xD1, 0x47),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_17_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0x01, 0x72, 0x30, 0x90, 0x17, 0x51, 0x20),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xFB, 0x41, 0x65, 0x5C, 0xB4, 0x2D, 0xEE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xCD, 0xCD, 0xAA, 0x41, 0xCC, 0xBB, 0x07),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0xCE, 0x08, 0x0A, 0x63, 0xE9, 0xA2, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xA8, 0x21, 0x7F, 0x7A, 0x5B, 0x9B, 0x81),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x6B, 0x89, 0x44, 0x0A, 0x7F, 0x85, 0x5F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0xDE, 0x7C, 0x19, 0x5C, 0x65, 0x26, 0x61),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0xAC, 0x62, 0x29, 0x4A, 0xF1, 0xD0, 0x81),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_18_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x00, 0x40, 0x87, 0xEB, 0xA9, 0x58, 0x56),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0x51, 0x0B, 0xFF, 0x56, 0x35, 0x51, 0xB3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0xAC, 0x08, 0x94, 0x71, 0xDA, 0xEC, 0x99),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x4D, 0xC5, 0x7B, 0x31, 0x8B, 0x8D, 0x5E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x05, 0xF1, 0x3E, 0x9E, 0x8F, 0x17, 0x8F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x9C, 0x4B, 0x62, 0x94, 0xAD, 0x49, 0xFC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xC9, 0xC6, 0x8F, 0xFD, 0x33, 0x44, 0x34),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x96, 0x17, 0x7F, 0x42, 0xBE, 0xF7, 0x0D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_18_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0x29, 0x39, 0x13, 0x08, 0x8D, 0x91, 0x47),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0x79, 0xF9, 0x2F, 0xA9, 0x0A, 0xCF, 0xD6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x87, 0x7A, 0xA3, 0x19, 0xAB, 0x55, 0xAD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x0B, 0x01, 0xC5, 0x56, 0x19, 0x9D, 0x9E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0xDE, 0x82, 0x3B, 0xEA, 0xD3, 0x0B, 0x8C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x6B, 0xC7, 0xF3, 0x0F, 0x82, 0x87, 0x6C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0x2E, 0x23, 0xF2, 0x39, 0x9D, 0x49, 0x70),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0xDE, 0xAF, 0x7A, 0xEE, 0xB0, 0xDA, 0x70),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_19_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0x4E, 0x2A, 0x50, 0xFD, 0x8E, 0xC0, 0xEB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0x0F, 0x7C, 0x76, 0x63, 0xD8, 0x89, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x2D, 0xB9, 0x4E, 0xF4, 0xEE, 0x85, 0xCF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x95, 0x5C, 0x96, 0x5D, 0xAA, 0x59, 0x0B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0xDB, 0xD2, 0x68, 0x8E, 0x5A, 0x94, 0x60),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x02, 0xBF, 0x77, 0x9F, 0xB9, 0x4C, 0xC9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0xDC, 0xC0, 0xCF, 0x81, 0x1E, 0xC4, 0x6C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0xCC, 0x37, 0x86, 0xDC, 0xE2, 0x64, 0x72),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_19_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x30, 0xB1, 0x59, 0x20, 0x9D, 0x98, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x0C, 0x9D, 0xF8, 0x20, 0xDC, 0x90, 0xBA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0xA0, 0xF4, 0xE7, 0x3E, 0x9C, 0x9E, 0xA2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x25, 0xA2, 0xB0, 0x54, 0xCD, 0x2E, 0x33),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xD9, 0x42, 0xB0, 0x80, 0xB0, 0xA3, 0x38),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0xFE, 0x9D, 0x8D, 0x40, 0xFF, 0x27, 0x6D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x9D, 0xA6, 0x88, 0x3A, 0x8B, 0x6F, 0x14),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x39, 0xEE, 0x1F, 0x3F, 0xB1, 0x4F, 0x63),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_20_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xD7, 0x9E, 0xFF, 0xD2, 0x35, 0x67, 0x03),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x4F, 0x15, 0x5D, 0xE3, 0xE8, 0x53, 0x86),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0xF7, 0x24, 0x98, 0xA2, 0xCB, 0x11, 0x68),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x2E, 0x25, 0xE1, 0x94, 0xC5, 0xA3, 0x96),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x82, 0x6E, 0xBA, 0xE7, 0x43, 0x25, 0xB0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0x65, 0xB4, 0x49, 0x73, 0x18, 0x35, 0x54),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x5B, 0xBC, 0x62, 0x86, 0x4C, 0xC1, 0xB7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0xF2, 0x95, 0xA2, 0xBB, 0xA2, 0x35, 0x65),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_20_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x59, 0x62, 0xB0, 0x4B, 0x1E, 0xB4, 0xD8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0x55, 0xCE, 0xB0, 0x69, 0xBA, 0x63, 0x10),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6E, 0x69, 0x86, 0xDB, 0x34, 0x7D, 0x68, 0x64),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x06, 0xCA, 0x55, 0x44, 0x36, 0x2B, 0xBA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0xD4, 0xC4, 0x3D, 0xCD, 0x9E, 0x69, 0xA4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x44, 0xE4, 0xBF, 0x31, 0xE6, 0x40, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x4F, 0xFA, 0x75, 0xE3, 0xFB, 0x97, 0x0E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0xC0, 0xBD, 0x1C, 0x48, 0xB0, 0x26, 0xD0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD2, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_21_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x7B, 0x32, 0xFA, 0xF2, 0x6D, 0x84, 0x8E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x21, 0x03, 0x1D, 0x0D, 0x22, 0x55, 0x67),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0xF9, 0x42, 0x03, 0x9C, 0xC2, 0xCB, 0xBA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0xA1, 0x96, 0xD9, 0x9D, 0x11, 0x6F, 0xBE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x40, 0x57, 0xEB, 0x40, 0x2D, 0xC0, 0x11),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0x96, 0xBB, 0x4F, 0x2F, 0x23, 0xA8, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x29, 0x85, 0x21, 0xA5, 0x50, 0x62, 0x06),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x7D, 0x92, 0xCF, 0x87, 0x0C, 0x22, 0xF9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_21_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x0E, 0xA5, 0x32, 0x5B, 0xDF, 0x9C, 0xD5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x96, 0x37, 0x2C, 0x88, 0x35, 0x30, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0xB4, 0x69, 0xFF, 0xEB, 0xC6, 0x94, 0x08),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x55, 0x60, 0xAD, 0xAA, 0x58, 0x14, 0x88),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0xFF, 0xF2, 0xB2, 0xD5, 0xA7, 0xD9, 0x27),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0xAE, 0x54, 0xD2, 0x60, 0x31, 0xF3, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x92, 0x83, 0xE3, 0xF1, 0x42, 0x83, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0xD2, 0xC8, 0xB7, 0x76, 0x45, 0x7F, 0x7D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_22_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x11, 0xA4, 0xFB, 0x7A, 0x01, 0xBC, 0xC8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x27, 0x73, 0x8D, 0x02, 0x91, 0x27, 0x8E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x62, 0xF6, 0xDD, 0x6B, 0xFA, 0x5B, 0xB9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0xCA, 0xA2, 0x44, 0x2C, 0xF0, 0x28, 0xD8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0xF1, 0x7A, 0xA2, 0x42, 0x4C, 0x50, 0xC6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0x83, 0x3E, 0x50, 0xAB, 0x9C, 0xF7, 0x67),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0xED, 0x78, 0xCB, 0x76, 0x69, 0xDA, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x01, 0x1E, 0x43, 0x27, 0x47, 0x6E, 0xDA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_22_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x4F, 0x54, 0xB9, 0x3E, 0xBD, 0xD5, 0x44),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x35, 0x40, 0x69, 0x7F, 0x74, 0x9D, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x06, 0x6F, 0x67, 0x68, 0x2B, 0x4D, 0x10),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x65, 0x41, 0xFC, 0x7C, 0x1E, 0xE8, 0xC8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x79, 0x37, 0xAF, 0xFD, 0xD2, 0xDA, 0x4C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0xA8, 0x69, 0x56, 0x62, 0xA4, 0xE4, 0xA3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x71, 0x73, 0x21, 0x8A, 0x17, 0x81, 0xA2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0x55, 0x8F, 0x7B, 0xB8, 0xAF, 0xF7, 0x86),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_23_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0xD1, 0xBD, 0xBE, 0x8C, 0xBC, 0x60, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0xA6, 0x57, 0x8C, 0xAE, 0x5C, 0x19, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0x43, 0xE4, 0xD9, 0xD8, 0x7B, 0xE7, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0xB9, 0xE4, 0x85, 0x7C, 0x2E, 0xFC, 0x20),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x2E, 0x01, 0x2A, 0x6D, 0x56, 0xBE, 0x97),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x0C, 0x25, 0x9B, 0xAE, 0x86, 0x37, 0x43),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x22, 0xB3, 0xCB, 0x99, 0x66, 0xB7, 0x9E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0xF7, 0x90, 0xF0, 0x1B, 0x09, 0x27, 0xF7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_23_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x16, 0x08, 0xEF, 0x39, 0x64, 0x49, 0x31),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0xA0, 0xE3, 0x97, 0xA9, 0x07, 0x54, 0x26),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xFF, 0xE2, 0x00, 0x07, 0x21, 0x88, 0x20),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0xFD, 0x59, 0x53, 0x05, 0x6C, 0x42, 0x27),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8F, 0xF7, 0x39, 0x5C, 0x82, 0x36, 0xE8, 0x03),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2E, 0x83, 0xA8, 0xE2, 0xA8, 0x43, 0x07, 0x38),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xAF, 0x2B, 0x79, 0xED, 0xD8, 0x39, 0x87),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x20, 0x91, 0x7A, 0xC4, 0x07, 0xEF, 0x6C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_24_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x10, 0x2F, 0xAA, 0x0C, 0x94, 0x0E, 0x5A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x81, 0x87, 0x41, 0x23, 0xEB, 0x55, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x53, 0xCC, 0x79, 0xB6, 0xEB, 0x6C, 0xCC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0x77, 0x73, 0x9D, 0xFC, 0x64, 0x6F, 0x7F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0x40, 0xE3, 0x6D, 0x1C, 0x16, 0x71, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0xF4, 0x1B, 0xFF, 0x1C, 0x2F, 0xA5, 0xD7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x0E, 0x0B, 0x11, 0xF4, 0x8D, 0x93, 0xAF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0xC5, 0x64, 0x6F, 0x24, 0x19, 0xF2, 0x9B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_24_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0xB3, 0xAF, 0xA5, 0x0E, 0x4F, 0x5E, 0xE1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0x77, 0xCA, 0xF2, 0x6D, 0xC5, 0xF6, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0x18, 0x8E, 0x33, 0x68, 0x6C, 0xE8, 0xE0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x8B, 0x80, 0x90, 0x19, 0x7F, 0x90, 0x96),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x80, 0x6B, 0x68, 0xE2, 0x7D, 0xD4, 0xD0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xC1, 0x67, 0xB3, 0x72, 0xCB, 0xBF, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0xD5, 0xD3, 0x1D, 0x14, 0x58, 0x0A, 0x80),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0x7A, 0x65, 0x98, 0xB3, 0x07, 0x4B, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_25_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x87, 0x0F, 0x5F, 0xCF, 0xA2, 0x01, 0x08),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0xC9, 0xC8, 0x6E, 0x35, 0x87, 0xA5, 0x67),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x3E, 0x91, 0xA0, 0xAB, 0x24, 0x1E, 0xF2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xBC, 0x02, 0x35, 0x70, 0xC1, 0x5F, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x59, 0xA0, 0x50, 0x04, 0x80, 0x52, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x56, 0x6E, 0x42, 0x8F, 0x8C, 0x91, 0x65),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xA2, 0xCB, 0xA5, 0xDE, 0x14, 0x24, 0x38),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0xCB, 0x74, 0x28, 0xE6, 0xA7, 0xE7, 0xC3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_25_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0x73, 0xA8, 0x8F, 0x9E, 0x0E, 0x63, 0x96),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x1B, 0x77, 0xC7, 0xC1, 0x38, 0xF9, 0xDC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0x3C, 0xCF, 0xA8, 0x7A, 0xD7, 0xF3, 0xC4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x5F, 0x9A, 0xC9, 0xAD, 0xE9, 0x1A, 0x93),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0xCF, 0x2B, 0x5E, 0xD5, 0x81, 0x95, 0xA8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x88, 0x75, 0x29, 0x1F, 0xC7, 0xC7, 0xD0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xA9, 0x5A, 0x4D, 0x63, 0x95, 0xF9, 0x4E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0xCD, 0x04, 0x8F, 0xCD, 0x91, 0xDE, 0xC6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_26_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0xD4, 0xFD, 0x25, 0x11, 0x99, 0x6E, 0xEA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x83, 0x01, 0x3D, 0xFB, 0x56, 0xA5, 0x4E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x3A, 0xDC, 0x74, 0xC2, 0xD7, 0xCF, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8F, 0xBD, 0xF1, 0xDD, 0xA3, 0x07, 0x03, 0xE2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0xBE, 0xE9, 0x2E, 0x58, 0x84, 0x66, 0xFC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x20, 0x78, 0x37, 0x79, 0x0B, 0xA6, 0x64),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0xF2, 0xAC, 0x65, 0xC8, 0xC9, 0x2F, 0x61),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x93, 0xE5, 0x0D, 0x0C, 0xC6, 0xB8, 0xCB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_26_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0xAD, 0x5C, 0x19, 0x12, 0x61, 0x0E, 0x25),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0x4F, 0x0B, 0x1F, 0x49, 0x7E, 0xCD, 0x81),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x2E, 0x30, 0x61, 0xDB, 0x08, 0x68, 0x9B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x78, 0xAF, 0xB3, 0x08, 0xC1, 0x69, 0xE5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0x5F, 0x5D, 0xC1, 0x57, 0x6F, 0xD8, 0x34),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0xD3, 0x6A, 0xF7, 0xFD, 0x86, 0xE5, 0xB3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x63, 0xBD, 0x70, 0x7B, 0x47, 0xE8, 0x6D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0x62, 0xC8, 0x7E, 0x9D, 0x11, 0x2B, 0xA5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_27_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0x84, 0xFD, 0xD5, 0x9A, 0x56, 0x7F, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0xBB, 0xA4, 0x6F, 0x12, 0x6E, 0x4D, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x08, 0xA1, 0x82, 0x9C, 0x62, 0x74, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0x58, 0x22, 0x05, 0x1D, 0x15, 0x35, 0x79),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x88, 0xCF, 0x5C, 0x05, 0x78, 0xFB, 0x94),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x6B, 0x2F, 0x79, 0x09, 0x73, 0x67, 0xEC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xA0, 0x80, 0xD8, 0xE8, 0xEC, 0xFB, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xE7, 0x0B, 0xB7, 0x81, 0x48, 0x7B, 0xD9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_27_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x53, 0xA9, 0xED, 0x61, 0x92, 0xD7, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x49, 0xD9, 0x5D, 0x9B, 0x4E, 0x89, 0x35),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x12, 0xEB, 0x9A, 0xC9, 0xCB, 0xC1, 0x95),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0xDC, 0x95, 0x16, 0xFE, 0x29, 0x70, 0x01),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x33, 0xB1, 0xD6, 0x78, 0xB9, 0xE2, 0x36),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xCE, 0x88, 0xC3, 0xFD, 0x7A, 0x6B, 0xB8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x1E, 0x50, 0x1E, 0xAF, 0xB1, 0x25, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0xE7, 0xD7, 0xD5, 0xBD, 0x7A, 0x12, 0xF9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_28_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0xAA, 0xA2, 0x80, 0x5D, 0x8F, 0xCD, 0xC8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x48, 0x39, 0x79, 0x64, 0xA1, 0x67, 0x3C, 0xB7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xC7, 0x49, 0xFF, 0x7F, 0xAC, 0xAB, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x54, 0x3E, 0x83, 0xF0, 0x3D, 0xBC, 0xB5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x92, 0x4A, 0x38, 0x42, 0x8A, 0xAB, 0xF6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x0B, 0x4F, 0xEE, 0x9E, 0x92, 0xA5, 0xBE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0xDD, 0x19, 0x96, 0xF2, 0xF0, 0x6B, 0x2E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0xFC, 0xDD, 0xB2, 0x8A, 0xE5, 0x4C, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_28_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x06, 0x49, 0xAC, 0x99, 0x7E, 0xF8, 0x12),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0xC8, 0x01, 0x51, 0xEA, 0xF6, 0x52, 0xE7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x89, 0x66, 0x2B, 0x1F, 0x9B, 0x2A, 0xA3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x0F, 0x95, 0x07, 0x2B, 0x6C, 0x6E, 0x9E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0xC3, 0xB4, 0xBB, 0x91, 0x1F, 0xA3, 0x72),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x6E, 0x54, 0x28, 0x7B, 0x9C, 0x79, 0x2E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0x45, 0xFF, 0xA6, 0xDA, 0xA2, 0x83, 0x71),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0xDE, 0x8F, 0x17, 0x37, 0x82, 0xCB, 0xE2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_29_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0x94, 0x3F, 0x26, 0xC9, 0x1D, 0xD9, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x97, 0x28, 0x20, 0xCD, 0xC1, 0xF3, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0xC9, 0xB5, 0x60, 0x9B, 0x1E, 0xDC, 0x74),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0xB9, 0x5B, 0x7D, 0xA0, 0xB2, 0x8C, 0xF0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0xD1, 0x42, 0xE6, 0x39, 0x33, 0x6D, 0xBB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xC0, 0xFC, 0xD2, 0x14, 0x5D, 0x3E, 0x3C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0x4A, 0x3E, 0x40, 0x16, 0x93, 0x15, 0xCF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x24, 0xC1, 0x27, 0x27, 0xE5, 0x4B, 0xD8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_29_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x50, 0xD8, 0xBC, 0xC1, 0x46, 0x22, 0xBB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x0E, 0x60, 0xA1, 0xB3, 0x50, 0xD4, 0x86),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0xB1, 0x26, 0xB6, 0x6D, 0x47, 0x5A, 0x6F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0xAC, 0x11, 0x35, 0x3E, 0xB9, 0xF4, 0x01),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x97, 0xFA, 0xBB, 0x6B, 0x39, 0x13, 0xD8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x7B, 0x34, 0x12, 0x75, 0x8E, 0x9B, 0xC6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x9E, 0xCD, 0x29, 0xB6, 0xEF, 0x8D, 0x10),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0xAC, 0xE9, 0x25, 0x27, 0xBB, 0x78, 0x47),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_30_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x7A, 0xA8, 0xD3, 0xE3, 0x66, 0xE5, 0x66),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0x4C, 0xC4, 0x2C, 0x76, 0x81, 0x50, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0x71, 0x08, 0xB8, 0x52, 0x7C, 0xAF, 0xDC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x59, 0x24, 0xDD, 0xFB, 0x2F, 0xD0, 0xDA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xCD, 0x56, 0xE9, 0xAC, 0x91, 0xE6, 0xB9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0x64, 0x20, 0xC6, 0x9F, 0xE4, 0xEF, 0xDF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x2C, 0x8F, 0x8C, 0x97, 0xF6, 0x22, 0xC3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xF4, 0x88, 0xAA, 0xA8, 0xD7, 0xA5, 0x68),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_30_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x6C, 0xAE, 0x83, 0xB1, 0x55, 0x55, 0xEE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x67, 0x84, 0x47, 0x7C, 0x83, 0x5C, 0x89),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x10, 0x4D, 0xDD, 0x30, 0x60, 0xB0, 0xE6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xA7, 0x36, 0x76, 0x24, 0x32, 0x9F, 0x9D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x42, 0x81, 0xFB, 0xA4, 0x2E, 0x13, 0x68),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x94, 0x91, 0xFF, 0x99, 0xA0, 0x09, 0x61),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x83, 0xA1, 0x76, 0xAF, 0x37, 0x5C, 0x77),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xA8, 0x04, 0x86, 0xC4, 0xA9, 0x79, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_31_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x8C, 0xC2, 0x34, 0xFB, 0x83, 0x28, 0x27),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x03, 0x7D, 0x5E, 0x9E, 0x0E, 0xB0, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA2, 0x02, 0x46, 0x7F, 0xB9, 0xAC, 0xBB, 0x23),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0xED, 0x48, 0xC2, 0x96, 0x4D, 0x56, 0x27),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0xB5, 0xC5, 0xD1, 0xE6, 0x1C, 0x7E, 0x9B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x2E, 0x18, 0x71, 0x2D, 0x7B, 0xD7, 0xB3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x46, 0x9D, 0xDE, 0xAA, 0x78, 0x8E, 0xB1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0xD7, 0x69, 0x2E, 0xE1, 0xD9, 0x48, 0xDE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_31_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xFF, 0x9E, 0x09, 0x22, 0x22, 0xE6, 0x8D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x14, 0x28, 0x13, 0x1B, 0x62, 0x12, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x7F, 0x67, 0x03, 0xB0, 0xC0, 0xF3, 0x05),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0xC3, 0x0F, 0xFB, 0x25, 0x48, 0x3E, 0xF4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x6E, 0x53, 0x98, 0x36, 0xB3, 0xD3, 0x94),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x81, 0x54, 0x22, 0xA4, 0xCC, 0xC1, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xBA, 0xFC, 0xA9, 0xDF, 0x68, 0x86, 0x2B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x92, 0x0E, 0xC3, 0xF2, 0x58, 0xE8, 0x51),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_ecp_point secp521r1_T[32] = {
+    ECP_POINT_INIT_XY_Z1(secp521r1_T_0_X, secp521r1_T_0_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_1_X, secp521r1_T_1_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_2_X, secp521r1_T_2_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_3_X, secp521r1_T_3_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_4_X, secp521r1_T_4_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_5_X, secp521r1_T_5_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_6_X, secp521r1_T_6_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_7_X, secp521r1_T_7_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_8_X, secp521r1_T_8_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_9_X, secp521r1_T_9_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_10_X, secp521r1_T_10_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_11_X, secp521r1_T_11_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_12_X, secp521r1_T_12_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_13_X, secp521r1_T_13_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_14_X, secp521r1_T_14_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_15_X, secp521r1_T_15_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_16_X, secp521r1_T_16_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_17_X, secp521r1_T_17_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_18_X, secp521r1_T_18_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_19_X, secp521r1_T_19_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_20_X, secp521r1_T_20_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_21_X, secp521r1_T_21_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_22_X, secp521r1_T_22_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_23_X, secp521r1_T_23_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_24_X, secp521r1_T_24_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_25_X, secp521r1_T_25_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_26_X, secp521r1_T_26_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_27_X, secp521r1_T_27_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_28_X, secp521r1_T_28_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_29_X, secp521r1_T_29_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_30_X, secp521r1_T_30_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_31_X, secp521r1_T_31_Y),
+};
+#else
+#define secp521r1_T NULL
+#endif
+#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+static const mbedtls_mpi_uint secp192k1_p[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+static const mbedtls_mpi_uint secp192k1_a[] = {
+    MBEDTLS_BYTES_TO_T_UINT_2(0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp192k1_b[] = {
+    MBEDTLS_BYTES_TO_T_UINT_2(0x03, 0x00),
+};
+static const mbedtls_mpi_uint secp192k1_gx[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB),
+};
+static const mbedtls_mpi_uint secp192k1_gy[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B),
+};
+static const mbedtls_mpi_uint secp192k1_n[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp192k1_T_0_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB),
+};
+static const mbedtls_mpi_uint secp192k1_T_0_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B),
+};
+static const mbedtls_mpi_uint secp192k1_T_1_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x77, 0x3D, 0x0D, 0x85, 0x48, 0xA8, 0xA9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x07, 0xDF, 0x1D, 0xB3, 0xB3, 0x01, 0x54),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x86, 0xF6, 0xAF, 0x19, 0x2A, 0x88, 0x2E),
+};
+static const mbedtls_mpi_uint secp192k1_T_1_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0x90, 0xB6, 0x2F, 0x48, 0x36, 0x4C, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x11, 0x14, 0xA6, 0xCB, 0xBA, 0x15, 0xD9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0xB0, 0xF2, 0xD4, 0xC9, 0xDA, 0xBA, 0xD7),
+};
+static const mbedtls_mpi_uint secp192k1_T_2_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0xC1, 0x9C, 0xE6, 0xBB, 0xFB, 0xCF, 0x23),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x19, 0xAC, 0x5A, 0xC9, 0x8A, 0x1C, 0x75),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0xF6, 0x76, 0x86, 0x89, 0x27, 0x8D, 0x28),
+};
+static const mbedtls_mpi_uint secp192k1_T_2_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0xE0, 0x6F, 0x34, 0xBA, 0x5E, 0xD3, 0x96),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0xDC, 0xA6, 0x87, 0xC9, 0x9D, 0xC0, 0x82),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x11, 0x7E, 0xD6, 0xF7, 0x33, 0xFC, 0xE4),
+};
+static const mbedtls_mpi_uint secp192k1_T_3_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x37, 0x3E, 0xC0, 0x7F, 0x62, 0xE7, 0x54),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x3B, 0x69, 0x9D, 0x44, 0xBC, 0x82, 0x99),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x84, 0xB3, 0x5F, 0x2B, 0xA5, 0x9E, 0x2C),
+};
+static const mbedtls_mpi_uint secp192k1_T_3_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x95, 0xEB, 0x4C, 0x04, 0xB4, 0xF4, 0x75),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0xAD, 0x4B, 0xD5, 0x9A, 0xEB, 0xC4, 0x4E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xB1, 0xC5, 0x59, 0xE3, 0xD5, 0x16, 0x2A),
+};
+static const mbedtls_mpi_uint secp192k1_T_4_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x48, 0x2A, 0xCC, 0xAC, 0xD0, 0xEE, 0x50, 0xEC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x83, 0xE0, 0x5B, 0x14, 0x44, 0x52, 0x20),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x15, 0x2D, 0x78, 0xF6, 0x51, 0x32, 0xCF),
+};
+static const mbedtls_mpi_uint secp192k1_T_4_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x36, 0x9B, 0xDD, 0xF8, 0xDD, 0xEF, 0xB2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0xB1, 0x6A, 0x2B, 0xAF, 0xEB, 0x2B, 0xB1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x87, 0x7A, 0x66, 0x5D, 0x5B, 0xDF, 0x8F),
+};
+static const mbedtls_mpi_uint secp192k1_T_5_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x45, 0xE5, 0x81, 0x9B, 0xEB, 0x37, 0x23),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x29, 0xE2, 0x20, 0x64, 0x23, 0x6B, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0x1D, 0x41, 0xE1, 0x9B, 0x61, 0x7B, 0xD9),
+};
+static const mbedtls_mpi_uint secp192k1_T_5_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0x57, 0xA3, 0x0A, 0x13, 0xE4, 0x59, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0x6E, 0x4A, 0x48, 0x84, 0x90, 0xAC, 0xC7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0xB8, 0xF5, 0xF3, 0xDE, 0xA0, 0xA1, 0x1D),
+};
+static const mbedtls_mpi_uint secp192k1_T_6_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0x32, 0x81, 0xA9, 0x91, 0x5A, 0x4E, 0x33),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0xA8, 0x90, 0xBE, 0x0F, 0xEC, 0xC0, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x30, 0xD7, 0x08, 0xAE, 0xC4, 0x3A, 0xA5),
+};
+static const mbedtls_mpi_uint secp192k1_T_6_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x55, 0xE3, 0x76, 0xB3, 0x64, 0x74, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x75, 0xD4, 0xDB, 0x98, 0xD7, 0x39, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0xEB, 0x8A, 0xAB, 0x16, 0xD9, 0xD4, 0x0B),
+};
+static const mbedtls_mpi_uint secp192k1_T_7_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0xBE, 0xF9, 0xC7, 0xC7, 0xBA, 0xF3, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x85, 0x59, 0xF3, 0x60, 0x41, 0x02, 0xD2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x1C, 0x4A, 0xA4, 0xC7, 0xED, 0x66, 0xBC),
+};
+static const mbedtls_mpi_uint secp192k1_T_7_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0x9C, 0x2E, 0x46, 0x52, 0x18, 0x87, 0x14),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x35, 0x5A, 0x75, 0xAC, 0x4D, 0x75, 0x91),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0x2F, 0xAC, 0xFC, 0xBC, 0xE6, 0x93, 0x5E),
+};
+static const mbedtls_mpi_uint secp192k1_T_8_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x4D, 0xC9, 0x18, 0xE9, 0x00, 0xEB, 0x33),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x69, 0x72, 0x07, 0x5A, 0x59, 0xA8, 0x26),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x65, 0x83, 0x20, 0x10, 0xF9, 0x69, 0x82),
+};
+static const mbedtls_mpi_uint secp192k1_T_8_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0x56, 0x7F, 0x9F, 0xBF, 0x46, 0x0C, 0x7E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0xCF, 0xF0, 0xDC, 0xDF, 0x2D, 0xE6, 0xE5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0xF0, 0x72, 0x3A, 0x7A, 0x03, 0xE5, 0x22),
+};
+static const mbedtls_mpi_uint secp192k1_T_9_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0xAA, 0x57, 0x13, 0x37, 0xA7, 0x2C, 0xD4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0xAC, 0xA2, 0x23, 0xF9, 0x84, 0x60, 0xD3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0xEB, 0x51, 0x70, 0x64, 0x78, 0xCA, 0x05),
+};
+static const mbedtls_mpi_uint secp192k1_T_9_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0xCC, 0x30, 0x62, 0x93, 0x46, 0x13, 0xE9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x26, 0xCC, 0x6C, 0x3D, 0x5C, 0xDA, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0xAA, 0xB8, 0x03, 0xA4, 0x1A, 0x00, 0x96),
+};
+static const mbedtls_mpi_uint secp192k1_T_10_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x9D, 0xE6, 0xCC, 0x4E, 0x2E, 0xC2, 0xD5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xC3, 0x8A, 0xAE, 0x6F, 0x40, 0x05, 0xEB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x8F, 0x4A, 0x4D, 0x35, 0xD3, 0x50, 0x9D),
+};
+static const mbedtls_mpi_uint secp192k1_T_10_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0xFD, 0x98, 0xAB, 0xC7, 0x03, 0xB4, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x40, 0xD2, 0x9F, 0xCA, 0xD0, 0x53, 0x00),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x84, 0x00, 0x6F, 0xC8, 0xAD, 0xED, 0x8D),
+};
+static const mbedtls_mpi_uint secp192k1_T_11_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xD3, 0x57, 0xD7, 0xC3, 0x07, 0xBD, 0xD7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0xBA, 0x47, 0x1D, 0x3D, 0xEF, 0x98, 0x6C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xC0, 0x6C, 0x7F, 0x12, 0xEE, 0x9F, 0x67),
+};
+static const mbedtls_mpi_uint secp192k1_T_11_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x02, 0xDA, 0x79, 0xAA, 0xC9, 0x27, 0xC4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x79, 0xC7, 0x71, 0x84, 0xCB, 0xE5, 0x5A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x37, 0x06, 0xBA, 0xB5, 0xD5, 0x18, 0x4C),
+};
+static const mbedtls_mpi_uint secp192k1_T_12_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x65, 0x72, 0x6C, 0xF2, 0x63, 0x27, 0x6A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0xBC, 0x71, 0xDF, 0x75, 0xF8, 0x98, 0x4D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x70, 0x9B, 0xDC, 0xE7, 0x18, 0x71, 0xFF),
+};
+static const mbedtls_mpi_uint secp192k1_T_12_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x5B, 0x9F, 0x00, 0x5A, 0xB6, 0x80, 0x7A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xE0, 0xBB, 0xFC, 0x5E, 0x78, 0x9C, 0x89),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x60, 0x03, 0x68, 0x83, 0x3D, 0x2E, 0x4C, 0xDD),
+};
+static const mbedtls_mpi_uint secp192k1_T_13_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0x49, 0x23, 0xA8, 0xCB, 0x3B, 0x1A, 0xF6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0x3D, 0xA7, 0x46, 0xCF, 0x75, 0xB6, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0xFD, 0x30, 0x01, 0xB6, 0xEF, 0xF9, 0xE8),
+};
+static const mbedtls_mpi_uint secp192k1_T_13_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDC, 0xFA, 0xDA, 0xB8, 0x29, 0x42, 0xC9, 0xC7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0xD7, 0xA0, 0xE6, 0x6B, 0x86, 0x61, 0x39),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0xE9, 0xD3, 0x37, 0xD8, 0xE7, 0x35, 0xA9),
+};
+static const mbedtls_mpi_uint secp192k1_T_14_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xC8, 0x8E, 0xB1, 0xCB, 0xB1, 0xB5, 0x4D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0xD7, 0x46, 0x7D, 0xAF, 0xE2, 0xDC, 0xBB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x46, 0xE7, 0xD8, 0x76, 0x31, 0x90, 0x76),
+};
+static const mbedtls_mpi_uint secp192k1_T_14_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0xD3, 0xF4, 0x74, 0xE1, 0x67, 0xD8, 0x66),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x70, 0x3C, 0xC8, 0xAF, 0x5F, 0xF4, 0x58),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x4E, 0xED, 0x5C, 0x43, 0xB3, 0x16, 0x35),
+};
+static const mbedtls_mpi_uint secp192k1_T_15_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0xAE, 0xD1, 0xDD, 0x31, 0x14, 0xD3, 0xF0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x14, 0x06, 0x13, 0x12, 0x1C, 0x81, 0xF5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0xF9, 0x0C, 0x91, 0xF7, 0x67, 0x59, 0x63),
+};
+static const mbedtls_mpi_uint secp192k1_T_15_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x91, 0xE2, 0xF4, 0x9D, 0xEB, 0x88, 0x87),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x82, 0x30, 0x9C, 0xAE, 0x18, 0x4D, 0xB7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0x79, 0xCF, 0x17, 0xA5, 0x1E, 0xE8, 0xC8),
+};
+static const mbedtls_ecp_point secp192k1_T[16] = {
+    ECP_POINT_INIT_XY_Z1(secp192k1_T_0_X, secp192k1_T_0_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_1_X, secp192k1_T_1_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_2_X, secp192k1_T_2_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_3_X, secp192k1_T_3_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_4_X, secp192k1_T_4_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_5_X, secp192k1_T_5_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_6_X, secp192k1_T_6_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_7_X, secp192k1_T_7_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_8_X, secp192k1_T_8_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_9_X, secp192k1_T_9_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_10_X, secp192k1_T_10_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_11_X, secp192k1_T_11_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_12_X, secp192k1_T_12_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_13_X, secp192k1_T_13_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_14_X, secp192k1_T_14_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_15_X, secp192k1_T_15_Y),
+};
+#else
+#define secp192k1_T NULL
+#endif
+
+#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+static const mbedtls_mpi_uint secp224k1_p[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_4(0xFF, 0xFF, 0xFF, 0xFF),
+};
+static const mbedtls_mpi_uint secp224k1_a[] = {
+    MBEDTLS_BYTES_TO_T_UINT_2(0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_b[] = {
+    MBEDTLS_BYTES_TO_T_UINT_2(0x05, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_gx[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D),
+    MBEDTLS_BYTES_TO_T_UINT_4(0x33, 0x5B, 0x45, 0xA1),
+};
+static const mbedtls_mpi_uint secp224k1_gy[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F),
+    MBEDTLS_BYTES_TO_T_UINT_4(0xED, 0x9F, 0x08, 0x7E),
+};
+static const mbedtls_mpi_uint secp224k1_n[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00),
+};
+
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp224k1_T_0_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0x5B, 0x45, 0xA1, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_0_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0x9F, 0x08, 0x7E, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_1_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x6C, 0x22, 0x22, 0x40, 0x89, 0xAE, 0x7A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0x92, 0xE1, 0x87, 0x56, 0x35, 0xAF, 0x9B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0xAF, 0x08, 0x35, 0x27, 0xEA, 0x04, 0xED),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x53, 0xFD, 0xCF, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_1_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0xD0, 0x9F, 0x8D, 0xF3, 0x63, 0x54, 0x30),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0xDB, 0x0F, 0x61, 0x54, 0x26, 0xD1, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x21, 0xF7, 0x1B, 0xB5, 0x1D, 0xF6, 0x7E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x05, 0xDA, 0x8F, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_2_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x26, 0x73, 0xBC, 0xE4, 0x29, 0x62, 0x56),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x95, 0x17, 0x8B, 0xC3, 0x9B, 0xAC, 0xCC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0xDB, 0x77, 0xDF, 0xDD, 0x13, 0x04, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0xFC, 0x22, 0x93, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_2_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x65, 0xF1, 0x5A, 0x37, 0xEF, 0x79, 0xAD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x01, 0x37, 0xAC, 0x9A, 0x5B, 0x51, 0x65),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x75, 0x13, 0xA9, 0x4A, 0xAD, 0xFE, 0x9B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x82, 0x6F, 0x66, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_3_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0x5E, 0xF0, 0x40, 0xC3, 0xA6, 0xE2, 0x1E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x9A, 0x6F, 0xCF, 0x11, 0x26, 0x66, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0x73, 0xA8, 0xCF, 0x2B, 0x12, 0x36, 0x37),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xB3, 0x0A, 0x58, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_3_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x79, 0x00, 0x55, 0x04, 0x34, 0x90, 0x1A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0x54, 0x1C, 0xC2, 0x45, 0x0C, 0x1B, 0x23),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x19, 0xAB, 0xA8, 0xFC, 0x73, 0xDC, 0xEE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0xFB, 0x93, 0xCE, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_4_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x75, 0xD0, 0x66, 0x95, 0x86, 0xCA, 0x66),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xEA, 0x29, 0x16, 0x6A, 0x38, 0xDF, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xA2, 0x36, 0x2F, 0xDC, 0xBB, 0x5E, 0xF7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x89, 0x59, 0x49, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_4_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0xA3, 0x99, 0x9D, 0xB8, 0x77, 0x9D, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0x93, 0x43, 0x47, 0xC6, 0x5C, 0xF9, 0xFD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x00, 0x79, 0x42, 0x64, 0xB8, 0x25, 0x3E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x54, 0xB4, 0x33, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_5_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x0C, 0x42, 0x90, 0x83, 0x0B, 0x31, 0x5F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x2E, 0xAE, 0xC8, 0xC7, 0x5F, 0xD2, 0x70),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0xBC, 0xAD, 0x41, 0xE7, 0x32, 0x3A, 0x81),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x97, 0x52, 0x83, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_5_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x13, 0x7A, 0xBD, 0xAE, 0x94, 0x60, 0xFD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x9B, 0x95, 0xB4, 0x6E, 0x68, 0xB2, 0x1F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x49, 0xBE, 0x51, 0xFE, 0x66, 0x15, 0x74),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x37, 0xE4, 0xFE, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_6_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0x9B, 0xEE, 0x64, 0xC9, 0x1B, 0xBD, 0x77),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x5F, 0x34, 0xA9, 0x0B, 0xB7, 0x25, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0x13, 0xB1, 0x38, 0xFB, 0x9D, 0x78, 0xED),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0xE7, 0x1B, 0xFA, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_6_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0xB3, 0xB7, 0x44, 0x92, 0x6B, 0x00, 0x82),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x82, 0x44, 0x3E, 0x18, 0x1A, 0x58, 0x6A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0xF8, 0xC0, 0xE4, 0xEE, 0xC1, 0xBF, 0x44),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x32, 0x27, 0xB2, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_7_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0x9A, 0x42, 0x62, 0x8B, 0x26, 0x54, 0x21),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x85, 0x74, 0xA0, 0x79, 0xA8, 0xEE, 0xBE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x36, 0x60, 0xB3, 0x28, 0x4D, 0x55, 0xBE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x27, 0x82, 0x29, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_7_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0xFC, 0x73, 0x77, 0xAF, 0x5C, 0xAC, 0x78),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0xED, 0xE5, 0xF6, 0x1D, 0xA8, 0x67, 0x43),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0xDE, 0x33, 0x1C, 0xF1, 0x80, 0x73, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xE2, 0xDE, 0x3C, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_8_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x3E, 0x6B, 0xFE, 0xF0, 0x04, 0x28, 0x01),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0xB2, 0x14, 0x9D, 0x18, 0x11, 0x7D, 0x9D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xC4, 0xD6, 0x2E, 0x6E, 0x57, 0x4D, 0xE1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0x55, 0x1B, 0xDE, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_8_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xF7, 0x17, 0xBC, 0x45, 0xAB, 0x16, 0xAB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xB0, 0xEF, 0x61, 0xE3, 0x20, 0x7C, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x85, 0x41, 0x4D, 0xF1, 0x7E, 0x4D, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xC2, 0x9B, 0x5E, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_9_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x2E, 0x49, 0x3D, 0x3E, 0x4B, 0xD3, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x2B, 0x9D, 0xD5, 0x27, 0xFA, 0xCA, 0xE0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0xB3, 0x6A, 0xE0, 0x79, 0x14, 0x28, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x1E, 0xDC, 0xF5, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_9_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x44, 0x56, 0xCD, 0xFC, 0x9F, 0x09, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0x8C, 0x59, 0xA4, 0x64, 0x2A, 0x3A, 0xED),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0xA0, 0xB5, 0x86, 0x4E, 0x69, 0xDA, 0x06),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x8B, 0x11, 0x38, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_10_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x17, 0x16, 0x12, 0x17, 0xDC, 0x00, 0x7E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x76, 0x24, 0x6C, 0x97, 0x2C, 0xB5, 0xF9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x71, 0xE3, 0xB0, 0xBB, 0x4E, 0x50, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6E, 0x48, 0x26, 0xD5, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_10_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x5F, 0x28, 0xF6, 0x01, 0x5A, 0x60, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x95, 0xFE, 0xD0, 0xAD, 0x15, 0xD4, 0xD9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x5B, 0x7A, 0xFD, 0x80, 0xF7, 0x9F, 0x64),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0xBC, 0x1B, 0xDF, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_11_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0xE6, 0xDF, 0x14, 0x29, 0xF4, 0xD4, 0x14),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0x12, 0xDD, 0xEC, 0x5B, 0x8A, 0x59, 0xE5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x92, 0x3E, 0x35, 0x08, 0xE9, 0xCF, 0x0E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x35, 0x29, 0x97, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_11_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xDB, 0xD6, 0x6A, 0xC5, 0x43, 0xA4, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x33, 0x50, 0x61, 0x70, 0xA1, 0xE9, 0xCE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x15, 0x6E, 0x5F, 0x01, 0x0C, 0x8C, 0xFA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0xA1, 0x9A, 0x9D, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_12_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6E, 0xC6, 0xF7, 0xE2, 0x4A, 0xCD, 0x9B, 0x61),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x4D, 0x5A, 0xB8, 0xE2, 0x6D, 0xA6, 0x50),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x3F, 0xB6, 0x17, 0xE3, 0x2C, 0x6F, 0x65),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xA4, 0x59, 0x51, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_12_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x4F, 0x7C, 0x49, 0xCD, 0x6E, 0xEB, 0x3C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0xC9, 0x1F, 0xB7, 0x4D, 0x98, 0xC7, 0x67),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4C, 0xFD, 0x98, 0x20, 0x95, 0xBB, 0x20, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0xF2, 0x73, 0x92, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_13_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0xEF, 0xFB, 0x30, 0xFA, 0x12, 0x1A, 0xB0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0x4C, 0x24, 0xB4, 0x5B, 0xC9, 0x4C, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0xDD, 0x5E, 0x84, 0x95, 0x4D, 0x26, 0xED),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0xFA, 0xF9, 0x3A, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_13_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0xA3, 0x2E, 0x7A, 0xDC, 0xA7, 0x53, 0xA9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x9F, 0x81, 0x84, 0xB2, 0x0D, 0xFE, 0x31),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x89, 0x1B, 0x77, 0x0C, 0x89, 0x71, 0xEC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xFF, 0x7F, 0xB2, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_14_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0xE9, 0x2C, 0x79, 0xA6, 0x3C, 0xAD, 0x93),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xE0, 0x23, 0x02, 0x86, 0x0F, 0x77, 0x2A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x93, 0x6D, 0xE9, 0xF9, 0x3C, 0xBE, 0xB9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0xE7, 0x24, 0x92, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_14_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x3C, 0x5B, 0x4B, 0x1B, 0x25, 0x37, 0xD6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xE8, 0x38, 0x1B, 0xA1, 0x5A, 0x2E, 0x68),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0x19, 0xFD, 0xF4, 0x78, 0x01, 0x6B, 0x44),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0x69, 0x37, 0x4F, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_15_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0xE2, 0xBF, 0xD3, 0xEC, 0x95, 0x9C, 0x03),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x7B, 0xFC, 0xD5, 0xD3, 0x25, 0x5E, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0x55, 0x09, 0xA2, 0x58, 0x6A, 0xC9, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0xCC, 0x3B, 0xD9, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_15_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8F, 0x08, 0x65, 0x5E, 0xCB, 0xAB, 0x48, 0xC8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0x79, 0x8B, 0xC0, 0x11, 0xC0, 0x69, 0x38),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xE8, 0x8C, 0x4C, 0xC5, 0x28, 0xE4, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x1F, 0x34, 0x5C, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_ecp_point secp224k1_T[16] = {
+    ECP_POINT_INIT_XY_Z1(secp224k1_T_0_X, secp224k1_T_0_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_1_X, secp224k1_T_1_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_2_X, secp224k1_T_2_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_3_X, secp224k1_T_3_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_4_X, secp224k1_T_4_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_5_X, secp224k1_T_5_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_6_X, secp224k1_T_6_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_7_X, secp224k1_T_7_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_8_X, secp224k1_T_8_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_9_X, secp224k1_T_9_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_10_X, secp224k1_T_10_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_11_X, secp224k1_T_11_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_12_X, secp224k1_T_12_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_13_X, secp224k1_T_13_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_14_X, secp224k1_T_14_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_15_X, secp224k1_T_15_Y),
+};
+#else
+#define secp224k1_T NULL
+#endif
+#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+static const mbedtls_mpi_uint secp256k1_p[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+static const mbedtls_mpi_uint secp256k1_a[] = {
+    MBEDTLS_BYTES_TO_T_UINT_2(0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp256k1_b[] = {
+    MBEDTLS_BYTES_TO_T_UINT_2(0x07, 0x00),
+};
+static const mbedtls_mpi_uint secp256k1_gx[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79),
+};
+static const mbedtls_mpi_uint secp256k1_gy[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48),
+};
+static const mbedtls_mpi_uint secp256k1_n[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp256k1_T_0_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79),
+};
+static const mbedtls_mpi_uint secp256k1_T_0_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48),
+};
+static const mbedtls_mpi_uint secp256k1_T_1_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0xEE, 0xD7, 0x1E, 0x67, 0x86, 0x32, 0x74),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0x73, 0xB1, 0xA9, 0xD5, 0xCC, 0x27, 0x78),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x0E, 0x11, 0x01, 0x71, 0xFE, 0x92, 0x73),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x28, 0x63, 0x6D, 0x72, 0x09, 0xA6, 0xC0),
+};
+static const mbedtls_mpi_uint secp256k1_T_1_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xE1, 0x69, 0xDC, 0x3E, 0x2C, 0x75, 0xC3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0xB7, 0x3F, 0x30, 0x26, 0x3C, 0xDF, 0x8E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xBE, 0xB9, 0x5D, 0x0E, 0xE8, 0x5E, 0x14),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0xC3, 0x05, 0xD6, 0xB7, 0xD5, 0x24, 0xFC),
+};
+static const mbedtls_mpi_uint secp256k1_T_2_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0xCF, 0x7B, 0xDC, 0xCD, 0xC3, 0x39, 0x9D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0xDA, 0xB9, 0xE5, 0x64, 0xA7, 0x47, 0x91),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0x46, 0xA8, 0x61, 0xF6, 0x23, 0xEB, 0x58),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xC1, 0xFF, 0xE4, 0x55, 0xD5, 0xC2, 0xBF),
+};
+static const mbedtls_mpi_uint secp256k1_T_2_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xBE, 0xB9, 0x59, 0x24, 0x13, 0x4A, 0x2A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x45, 0x12, 0xDE, 0xBA, 0x4F, 0xEF, 0x56),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x08, 0xBF, 0xC1, 0x66, 0xAA, 0x0A, 0xBC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0xFE, 0x30, 0x55, 0x31, 0x86, 0xA7, 0xB4),
+};
+static const mbedtls_mpi_uint secp256k1_T_3_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0xBF, 0x18, 0x81, 0x67, 0x27, 0x42, 0xBD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x05, 0x83, 0xA4, 0xDD, 0x57, 0xD3, 0x50),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x20, 0x63, 0xAB, 0xE4, 0x90, 0x70, 0xD0, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x5D, 0xFD, 0xA0, 0xEF, 0xCF, 0x1C, 0x54),
+};
+static const mbedtls_mpi_uint secp256k1_T_3_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x80, 0xE4, 0xF6, 0x09, 0xBC, 0x57, 0x90),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x9F, 0x6E, 0x88, 0x54, 0x6E, 0x51, 0xF2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x5F, 0x85, 0xFB, 0x84, 0x3E, 0x4A, 0xAA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x19, 0xF5, 0x55, 0xC9, 0x07, 0xD8, 0xCE),
+};
+static const mbedtls_mpi_uint secp256k1_T_4_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0xB4, 0xC3, 0xD9, 0x5C, 0xA0, 0xD4, 0x90),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0x30, 0xAF, 0x59, 0x9B, 0xF8, 0x04, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0xA6, 0xFD, 0x66, 0x7B, 0xC3, 0x39, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0xBF, 0xF0, 0xC2, 0xE9, 0x71, 0xA4, 0x9E),
+};
+static const mbedtls_mpi_uint secp256k1_T_4_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0x2D, 0xB9, 0x88, 0x28, 0xF1, 0xBE, 0x78),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0xF3, 0x1A, 0x0E, 0xB9, 0x01, 0x66, 0x34),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0xA7, 0xA4, 0xF4, 0x05, 0xD0, 0xAA, 0x53),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x39, 0x1E, 0x47, 0xE5, 0x68, 0xC8, 0xC0),
+};
+static const mbedtls_mpi_uint secp256k1_T_5_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0xB9, 0xFC, 0xE0, 0x33, 0x8A, 0x7D, 0x96),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x93, 0xA5, 0x53, 0x55, 0x16, 0xB4, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0x5F, 0xEA, 0x9B, 0x29, 0x52, 0x71, 0xDA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0xF0, 0x24, 0xB8, 0x7D, 0xB7, 0xA0, 0x9B),
+};
+static const mbedtls_mpi_uint secp256k1_T_5_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x00, 0x27, 0xB2, 0xDF, 0x73, 0xA2, 0xE0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x2E, 0x4D, 0x7C, 0xDE, 0x7A, 0x23, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x65, 0x60, 0xC7, 0x97, 0x1E, 0xA4, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x13, 0x5B, 0x77, 0x59, 0xCB, 0x36, 0xE1),
+};
+static const mbedtls_mpi_uint secp256k1_T_6_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xBC, 0x9F, 0x9E, 0x2D, 0x53, 0x2A, 0xA8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x5F, 0x64, 0x9F, 0x1A, 0x19, 0xE6, 0x77),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0x7B, 0x39, 0xD2, 0xDB, 0x85, 0x84, 0xD5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0xC7, 0x0D, 0x58, 0x6E, 0x3F, 0x52, 0x15),
+};
+static const mbedtls_mpi_uint secp256k1_T_6_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x68, 0x19, 0x0B, 0x68, 0xC9, 0x1E, 0xFB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD2, 0x4E, 0x21, 0x49, 0x3D, 0x55, 0xCC, 0x25),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xF9, 0x25, 0x45, 0x54, 0x45, 0xB1, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0xB3, 0xF7, 0xCD, 0x80, 0xA4, 0x04, 0x05),
+};
+static const mbedtls_mpi_uint secp256k1_T_7_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x1E, 0x88, 0xC4, 0xAA, 0x18, 0x7E, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0xAC, 0xD9, 0xB2, 0xA1, 0xC0, 0x71, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0xA2, 0xF1, 0x15, 0xA6, 0x5F, 0x6C, 0x86),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x5B, 0x05, 0xBC, 0xB7, 0xC6, 0x4E, 0x72),
+};
+static const mbedtls_mpi_uint secp256k1_T_7_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x80, 0xF8, 0x5C, 0x20, 0x2A, 0xE1, 0xE2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x48, 0x2E, 0x68, 0x82, 0x7F, 0xEB, 0x5F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA2, 0x3B, 0x25, 0xDB, 0x32, 0x4D, 0x88, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0x6E, 0xA6, 0xB6, 0x6D, 0x62, 0x78, 0x22),
+};
+static const mbedtls_mpi_uint secp256k1_T_8_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x4D, 0x3E, 0x86, 0x58, 0xC3, 0xEB, 0xBA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x89, 0x33, 0x18, 0x21, 0x1D, 0x9B, 0xE7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x9D, 0xFF, 0xC3, 0x79, 0xC1, 0x88, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0xD4, 0x48, 0x53, 0xE8, 0xAD, 0x21, 0x16),
+};
+static const mbedtls_mpi_uint secp256k1_T_8_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x7B, 0xDE, 0xCB, 0xD8, 0x39, 0x17, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0xF3, 0x03, 0xF2, 0x5C, 0xBC, 0xC8, 0x8A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0xAE, 0x4C, 0xB0, 0x16, 0xA4, 0x93, 0x86),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x8B, 0x6B, 0xDC, 0xD7, 0x9A, 0x3E, 0x7E),
+};
+static const mbedtls_mpi_uint secp256k1_T_9_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x2D, 0x7A, 0xD2, 0x59, 0x05, 0xA2, 0x82),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x56, 0x09, 0x32, 0xF1, 0xE8, 0xE3, 0x72),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0xCA, 0xE5, 0x2E, 0xF0, 0xFB, 0x18, 0x19),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x85, 0xA9, 0x23, 0x15, 0x31, 0x1F, 0x0E),
+};
+static const mbedtls_mpi_uint secp256k1_T_9_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0xE5, 0xB1, 0x86, 0xB9, 0x6E, 0x8D, 0xD3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x77, 0xFC, 0xC9, 0xA3, 0x3F, 0x89, 0xD2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x6A, 0xDC, 0x25, 0xB0, 0xC7, 0x41, 0x54),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x11, 0x6B, 0xA6, 0x11, 0x62, 0xD4, 0x2D),
+};
+static const mbedtls_mpi_uint secp256k1_T_10_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x7D, 0x34, 0xB3, 0x20, 0x7F, 0x37, 0xAA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0xD4, 0x45, 0xE8, 0xC2, 0xE9, 0xC5, 0xEA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x32, 0x3B, 0x25, 0x7E, 0x79, 0xAF, 0xE7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0xE4, 0x54, 0x71, 0xBE, 0x35, 0x4E, 0xD0),
+};
+static const mbedtls_mpi_uint secp256k1_T_10_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x94, 0xDD, 0x8F, 0xB5, 0xC2, 0xDD, 0x75),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x49, 0xE9, 0x1C, 0x2F, 0x08, 0x49, 0xC6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0xB6, 0x03, 0x88, 0x6F, 0xB8, 0x15, 0x67),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0xD3, 0x1C, 0xF3, 0xA5, 0xEB, 0x79, 0x01),
+};
+static const mbedtls_mpi_uint secp256k1_T_11_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0xF9, 0x43, 0x88, 0x89, 0x0D, 0x06, 0xEA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x2D, 0xF5, 0x98, 0x32, 0xF6, 0xB1, 0x05),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0x73, 0x8F, 0x2B, 0x50, 0x27, 0x0A, 0xE7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0xE3, 0xBD, 0x16, 0x05, 0xC8, 0x93, 0x12),
+};
+static const mbedtls_mpi_uint secp256k1_T_11_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0x6A, 0xF7, 0xE3, 0x3D, 0xDE, 0x5F, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0xA3, 0x9C, 0x22, 0x3C, 0x33, 0x36, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x20, 0x24, 0x4C, 0x69, 0x45, 0x78, 0x14, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xF8, 0xD4, 0xBF, 0xB8, 0xC0, 0xA1, 0x25),
+};
+static const mbedtls_mpi_uint secp256k1_T_12_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x88, 0xE1, 0x91, 0x03, 0xEB, 0xB3, 0x2B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0x11, 0xA1, 0xEF, 0x14, 0x0D, 0xC4, 0x7D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xD4, 0x0D, 0x1D, 0x96, 0x33, 0x5C, 0x19),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x45, 0x2A, 0x1A, 0xE6, 0x57, 0x04, 0x9B),
+};
+static const mbedtls_mpi_uint secp256k1_T_12_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0xB5, 0xA7, 0x80, 0xE9, 0x93, 0x97, 0x8D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xB9, 0x7C, 0xA0, 0xC9, 0x57, 0x26, 0x43),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0xEF, 0x56, 0xDA, 0x66, 0xF6, 0x1B, 0x9A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x89, 0x6B, 0x91, 0xE0, 0xA9, 0x65, 0x2B),
+};
+static const mbedtls_mpi_uint secp256k1_T_13_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x98, 0x96, 0x9B, 0x06, 0x7D, 0x5E, 0x5A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0xFA, 0xC1, 0x5F, 0x19, 0x37, 0x94, 0x9D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0xBE, 0x6B, 0x1A, 0x05, 0xE4, 0xBF, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0xCD, 0x5D, 0x35, 0xB4, 0x51, 0xF7, 0x64),
+};
+static const mbedtls_mpi_uint secp256k1_T_13_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0xEF, 0x96, 0xDB, 0xF2, 0x61, 0x63, 0x59),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x04, 0x88, 0xC9, 0x9F, 0x1B, 0x94, 0xB9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x30, 0x79, 0x7E, 0x24, 0xE7, 0x5F, 0xB8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0xB8, 0x90, 0xB7, 0x94, 0x25, 0xBB, 0x0F),
+};
+static const mbedtls_mpi_uint secp256k1_T_14_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x79, 0xEA, 0xAD, 0xC0, 0x6D, 0x18, 0x57),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0xA4, 0x58, 0x2A, 0x8D, 0x95, 0xB3, 0xE6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0xC4, 0xC2, 0x12, 0x0D, 0x79, 0xE2, 0x2B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x6F, 0xBE, 0x97, 0x4D, 0xA4, 0x20, 0x07),
+};
+static const mbedtls_mpi_uint secp256k1_T_14_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x31, 0x71, 0xC6, 0xA6, 0x91, 0xEB, 0x1F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x9B, 0xA8, 0x4A, 0xE7, 0x77, 0xE1, 0xAA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0x06, 0xD3, 0x3D, 0x94, 0x30, 0xEF, 0x8C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0xDF, 0xCA, 0xFA, 0xF5, 0x28, 0xF8, 0xC9),
+};
+static const mbedtls_mpi_uint secp256k1_T_15_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0xE1, 0x32, 0xFD, 0x3E, 0x81, 0xF8, 0x11),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xF2, 0x4B, 0x1D, 0x19, 0xC9, 0x0F, 0xCC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xB1, 0x8A, 0x22, 0x8B, 0x05, 0x6B, 0x56),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0x21, 0xEF, 0x30, 0xEC, 0x09, 0x2A, 0x89),
+};
+static const mbedtls_mpi_uint secp256k1_T_15_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x84, 0x4A, 0x46, 0x07, 0x6C, 0x3C, 0x4C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x18, 0x3A, 0xF4, 0xCC, 0xF5, 0xB2, 0xF2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x8F, 0xCD, 0x0A, 0x9C, 0xF4, 0xBD, 0x95),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x89, 0x7F, 0x8A, 0xB1, 0x52, 0x3A, 0xAB),
+};
+static const mbedtls_ecp_point secp256k1_T[16] = {
+    ECP_POINT_INIT_XY_Z1(secp256k1_T_0_X, secp256k1_T_0_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_1_X, secp256k1_T_1_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_2_X, secp256k1_T_2_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_3_X, secp256k1_T_3_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_4_X, secp256k1_T_4_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_5_X, secp256k1_T_5_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_6_X, secp256k1_T_6_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_7_X, secp256k1_T_7_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_8_X, secp256k1_T_8_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_9_X, secp256k1_T_9_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_10_X, secp256k1_T_10_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_11_X, secp256k1_T_11_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_12_X, secp256k1_T_12_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_13_X, secp256k1_T_13_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_14_X, secp256k1_T_14_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_15_X, secp256k1_T_15_Y),
+};
+#else
+#define secp256k1_T NULL
+#endif
+#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
+
+/*
+ * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
+ */
+#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
+static const mbedtls_mpi_uint brainpoolP256r1_p[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_a[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_b[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_gx[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_gy[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_n[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9),
+};
+
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint brainpoolP256r1_T_0_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_0_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_1_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0xA2, 0xED, 0x52, 0xC9, 0x8C, 0xE3, 0xA5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0xC9, 0xC4, 0x87, 0x3F, 0x93, 0x7A, 0xD1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x12, 0x53, 0x61, 0x3E, 0x76, 0x08, 0xCB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x8C, 0x74, 0xF4, 0x08, 0xC3, 0x76, 0x80),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_1_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0xDD, 0x09, 0xA6, 0xED, 0xEE, 0xC4, 0x38),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xD9, 0xBE, 0x4B, 0xA5, 0xB7, 0x2B, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x20, 0x12, 0xCA, 0x0A, 0x38, 0x24, 0xAB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x72, 0x71, 0x90, 0x7A, 0x2E, 0xB7, 0x23),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_2_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x66, 0xA1, 0x93, 0x10, 0x2A, 0x51, 0x17),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x10, 0x11, 0x12, 0xBC, 0xB0, 0xB6, 0x93),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0x58, 0xD7, 0x0A, 0x84, 0x05, 0xA3, 0x9C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0x8E, 0x95, 0x61, 0xD3, 0x0B, 0xDF, 0x36),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_2_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x92, 0x12, 0x0F, 0x5E, 0x87, 0x70, 0x1B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0xE9, 0x9B, 0xEB, 0x3A, 0xFB, 0xCF, 0xC4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDC, 0x92, 0xB9, 0xF7, 0x45, 0xD3, 0x06, 0xB6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x28, 0x65, 0xE1, 0xC5, 0x6C, 0x57, 0x18),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_3_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x0E, 0x77, 0x01, 0x81, 0x9E, 0x38, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0xF0, 0xD5, 0xA5, 0x91, 0x2B, 0xDF, 0xC0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xEE, 0xB6, 0x25, 0xD6, 0x98, 0xDE, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0xA1, 0x55, 0x63, 0x39, 0xEB, 0xB5, 0x47),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_3_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0xD6, 0xB8, 0xE3, 0x13, 0xED, 0x7F, 0xA3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0xE8, 0xAE, 0x36, 0xB8, 0xCD, 0x19, 0x02),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x82, 0x83, 0x7A, 0x7B, 0x46, 0x56, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x60, 0x46, 0x15, 0x5A, 0xAC, 0x99, 0x30),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_4_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x61, 0x50, 0xC6, 0xFF, 0x10, 0x7D, 0x04),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x51, 0xDF, 0xA9, 0x7D, 0x78, 0x26, 0x74),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0x15, 0x9A, 0xF7, 0x01, 0xC1, 0xBB, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x0F, 0xE6, 0x2A, 0xBD, 0x4A, 0x9E, 0x87),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_4_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0xF8, 0xD1, 0x77, 0xD2, 0x49, 0xB3, 0xDD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0x86, 0xFB, 0x9E, 0x1F, 0x5A, 0x60, 0x47),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0xC4, 0x8D, 0xCD, 0x86, 0x61, 0x2F, 0xF9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0xF6, 0xB9, 0xAC, 0x37, 0x9D, 0xE9, 0x28),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_5_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x77, 0xAA, 0x97, 0x9C, 0x0B, 0x04, 0x20),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0xA6, 0x60, 0x81, 0xCE, 0x25, 0x13, 0x3E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x00, 0xF3, 0xBB, 0x82, 0x99, 0x95, 0xB7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x5A, 0xCE, 0x90, 0x71, 0x38, 0x2F, 0x10),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_5_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x1A, 0xC0, 0x84, 0x27, 0xD6, 0x9D, 0xB7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x37, 0x52, 0x16, 0x13, 0x0E, 0xCE, 0x92),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xBF, 0x5A, 0xDB, 0xDB, 0x6E, 0x1E, 0x69),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0xB7, 0x5E, 0xF9, 0x86, 0xDD, 0x8A, 0x5C),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_6_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xAB, 0x5C, 0x8D, 0x1D, 0xF2, 0x2D, 0x1E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0xC5, 0xF8, 0xF7, 0x1D, 0x96, 0x0B, 0x4D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x4C, 0xA7, 0x45, 0x20, 0x6A, 0x1E, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x5D, 0xEF, 0xDE, 0xEE, 0x39, 0x44, 0x19),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_6_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0x2F, 0x6D, 0x52, 0xC9, 0x58, 0x60, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0xC9, 0x62, 0xCB, 0x38, 0x3C, 0x55, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xA5, 0x09, 0x10, 0x88, 0xDB, 0xE3, 0xBD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0xE0, 0x3C, 0xCE, 0x06, 0x0B, 0x4B, 0x5D),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_7_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0x1D, 0xB4, 0x10, 0x76, 0x8F, 0xBA, 0x09),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x70, 0x5A, 0x07, 0xF5, 0x1A, 0x74, 0xC7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0xE9, 0x94, 0xA8, 0xC0, 0xD5, 0x4A, 0x4A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x6D, 0xD4, 0xE8, 0x9B, 0xE9, 0x6D, 0x0E),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_7_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x00, 0x32, 0x41, 0x57, 0x84, 0x89, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0xC7, 0x14, 0xEC, 0xE9, 0x27, 0xFF, 0xF3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x67, 0x9E, 0xFB, 0xB6, 0xB8, 0x96, 0xF3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0x4A, 0xE3, 0x97, 0x4B, 0x58, 0xDE, 0x30),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_8_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0x1E, 0x5C, 0xF5, 0x7F, 0xD5, 0xD4, 0xAA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x08, 0x7A, 0xF1, 0xBD, 0x89, 0xC7, 0x1E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0xF9, 0x11, 0x1B, 0xF5, 0x3C, 0x6D, 0x8C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x50, 0xE5, 0x69, 0x1D, 0x59, 0xFC, 0x0C),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_8_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x2F, 0xF8, 0x3F, 0xEC, 0x55, 0x99, 0x57),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0xA7, 0x29, 0x90, 0x43, 0x81, 0x31, 0x4C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0x18, 0x44, 0x50, 0x5D, 0x76, 0xCB, 0xDD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0xC5, 0x5B, 0x9A, 0x03, 0xE6, 0x17, 0x39),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_9_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x89, 0xFC, 0x55, 0x94, 0x91, 0x6A, 0xA2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x46, 0x35, 0xF2, 0x3A, 0x42, 0x08, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0xD2, 0x76, 0x49, 0x42, 0x87, 0xD3, 0x7F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0xEA, 0xA0, 0x52, 0xF1, 0x6A, 0x30, 0x57),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_9_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0xB2, 0x57, 0xA3, 0x8A, 0x4D, 0x1B, 0x3C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0xA3, 0x99, 0x94, 0xB5, 0x3D, 0x64, 0x09),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0xC3, 0xD7, 0x53, 0xF6, 0x49, 0x1C, 0x60),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x23, 0x41, 0x4D, 0xFB, 0x7A, 0x5C, 0x53),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_10_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0xB8, 0x15, 0x65, 0x5C, 0x85, 0x94, 0xD7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x37, 0xC7, 0xF8, 0x7E, 0xAE, 0x6C, 0x10),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0xD8, 0x11, 0x54, 0x98, 0x44, 0xE3, 0xF1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x4D, 0xA6, 0x4B, 0x28, 0xF2, 0x57, 0x9E),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_10_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xD0, 0xEB, 0x1E, 0xAA, 0x30, 0xD3, 0x6A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x9B, 0x4D, 0xA7, 0x73, 0x6E, 0xB6, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x47, 0xF6, 0xED, 0x37, 0xEF, 0x71, 0x4D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0xB5, 0x49, 0x61, 0x5E, 0x45, 0xF6, 0x4A),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_11_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x0E, 0xB3, 0x84, 0x3A, 0x63, 0x72, 0x84),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x53, 0x5C, 0xA7, 0xC6, 0x2E, 0xAB, 0x9E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x0F, 0x8F, 0x87, 0x50, 0x28, 0xB4, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0x98, 0x4A, 0x98, 0x31, 0x86, 0xCA, 0x51),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_11_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0xC9, 0xE2, 0xFD, 0x5D, 0x1F, 0xE8, 0xC2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x90, 0x91, 0xC4, 0x84, 0xF0, 0xBA, 0xC5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x5A, 0xB3, 0x4E, 0xFB, 0xE0, 0x57, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x0B, 0x90, 0xA6, 0xFD, 0x9D, 0x8E, 0x02),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_12_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x41, 0x8F, 0x31, 0xFA, 0x5A, 0xF6, 0x33),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xE9, 0xE3, 0xF6, 0xE0, 0x4A, 0xE7, 0xD2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x4E, 0xCD, 0xA2, 0x22, 0x14, 0xD4, 0x12),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0xED, 0x21, 0xB7, 0x0F, 0x53, 0x10, 0x17),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_12_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x06, 0x24, 0x2C, 0x4E, 0xD1, 0x1E, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0x3F, 0xC1, 0x9F, 0xAB, 0xF0, 0x37, 0x95),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0x5E, 0x12, 0xCE, 0x83, 0x1B, 0x2A, 0x18),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x65, 0xCF, 0xE8, 0x5C, 0xA5, 0xA2, 0x70),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_13_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x86, 0x76, 0x3A, 0x94, 0xF6, 0x1D, 0xC1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0xDA, 0xC9, 0xA6, 0x29, 0x93, 0x15, 0x10),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x61, 0x6A, 0x7D, 0xC7, 0xA9, 0xF3, 0x76),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x03, 0x71, 0xA2, 0x15, 0xCE, 0x50, 0x72),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_13_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0xD0, 0xA8, 0x1E, 0x91, 0xC4, 0x4F, 0x24),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0x4B, 0x7E, 0xD7, 0x71, 0x58, 0x7E, 0x1E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x45, 0xAF, 0x2A, 0x18, 0x93, 0x95, 0x3B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x8F, 0xC7, 0xFA, 0x4C, 0x7A, 0x86, 0x54),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_14_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0xAF, 0x68, 0x3A, 0x23, 0xC1, 0x2E, 0xBF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0x50, 0x11, 0x67, 0x39, 0xB9, 0xAF, 0x48),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x86, 0xAA, 0x1E, 0x88, 0x21, 0x29, 0x8B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x28, 0xA4, 0x9D, 0x89, 0xA9, 0x9A, 0x10),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_14_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0xBA, 0x04, 0x67, 0xB7, 0x01, 0x40, 0x38),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0xE9, 0x09, 0xA3, 0xCA, 0xA6, 0x37, 0xF6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x97, 0xA8, 0xB6, 0x3C, 0xEE, 0x90, 0x3D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDC, 0xED, 0xC4, 0xF7, 0xC3, 0x95, 0xEC, 0x85),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_15_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x84, 0xBD, 0xEB, 0xD5, 0x64, 0xBB, 0x9D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x9B, 0xE2, 0x28, 0x50, 0xC2, 0x72, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0xF2, 0x74, 0xD1, 0x26, 0xBF, 0x32, 0x68),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0xCB, 0xAF, 0x72, 0xDB, 0x6D, 0x30, 0x98),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_15_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x50, 0x85, 0xF4, 0x2B, 0x48, 0xC1, 0xAD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0x28, 0xBB, 0x11, 0xBA, 0x5B, 0x22, 0x6C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0xA1, 0xE5, 0x5C, 0xC9, 0x1D, 0x44, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0xE8, 0xE6, 0x6F, 0xBB, 0xC1, 0x81, 0x7F),
+};
+static const mbedtls_ecp_point brainpoolP256r1_T[16] = {
+    ECP_POINT_INIT_XY_Z1(brainpoolP256r1_T_0_X, brainpoolP256r1_T_0_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_1_X, brainpoolP256r1_T_1_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_2_X, brainpoolP256r1_T_2_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_3_X, brainpoolP256r1_T_3_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_4_X, brainpoolP256r1_T_4_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_5_X, brainpoolP256r1_T_5_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_6_X, brainpoolP256r1_T_6_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_7_X, brainpoolP256r1_T_7_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_8_X, brainpoolP256r1_T_8_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_9_X, brainpoolP256r1_T_9_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_10_X, brainpoolP256r1_T_10_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_11_X, brainpoolP256r1_T_11_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_12_X, brainpoolP256r1_T_12_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_13_X, brainpoolP256r1_T_13_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_14_X, brainpoolP256r1_T_14_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_15_X, brainpoolP256r1_T_15_Y),
+};
+#else
+#define brainpoolP256r1_T NULL
+#endif
+
+#endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
+
+/*
+ * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
+ */
+#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
+static const mbedtls_mpi_uint brainpoolP384r1_p[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_a[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_b[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_gx[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_gy[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_n[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C),
+};
+
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint brainpoolP384r1_T_0_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_0_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_1_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0xD8, 0x8A, 0x54, 0x41, 0xD6, 0x6B, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0x3B, 0xF1, 0x22, 0xFD, 0x2D, 0x4B, 0x03),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x55, 0xE3, 0x33, 0xF0, 0x73, 0x52, 0x5A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x3F, 0x30, 0x26, 0xCA, 0x7F, 0x52, 0xA3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x6E, 0x17, 0x9B, 0xD5, 0x2A, 0x4A, 0x31),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0xDA, 0x6B, 0xE5, 0x03, 0x07, 0x1D, 0x2E),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_1_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0x7A, 0xAF, 0x98, 0xE3, 0xA4, 0xF6, 0x19),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x7D, 0xFE, 0x51, 0x40, 0x3B, 0x47, 0xD2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x88, 0xEC, 0xC4, 0xE2, 0x8F, 0xCB, 0xA4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0xE2, 0x88, 0x2D, 0x4E, 0x50, 0xEB, 0x9A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x54, 0x94, 0x5E, 0xF4, 0x7F, 0x3A, 0x04),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x07, 0x1C, 0xE1, 0xBD, 0x0F, 0xF8, 0x63),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_2_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x92, 0x28, 0x2E, 0x32, 0x04, 0xB1, 0x4D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0x82, 0x44, 0x43, 0x76, 0x0D, 0x55, 0xBF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0xE3, 0xFF, 0x89, 0x46, 0xDE, 0x4E, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x22, 0xBB, 0x67, 0x1A, 0x81, 0xEE, 0x27),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x54, 0xE2, 0x7A, 0xAE, 0xDA, 0x2C, 0xD0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x9A, 0x90, 0xAA, 0x6E, 0x8B, 0xCC, 0x5F),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_2_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x40, 0xAC, 0xED, 0x7D, 0x37, 0x87, 0xAC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0xF8, 0xB1, 0x80, 0x4C, 0x8C, 0x04, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x98, 0x2C, 0xAD, 0x30, 0x69, 0x35, 0xC0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x2E, 0x00, 0x2F, 0x44, 0x8C, 0xF0, 0xC0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x58, 0x07, 0xD7, 0xCD, 0x60, 0xA1, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xFB, 0x7B, 0x03, 0x05, 0x5E, 0x79, 0x73),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_3_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x17, 0xCE, 0x38, 0x4B, 0x5E, 0x5B, 0xC8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x60, 0x0E, 0x0A, 0x61, 0x9D, 0x7C, 0x62, 0x08),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0xF0, 0x98, 0x71, 0x7F, 0x17, 0x26, 0xD7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0xD3, 0xFA, 0x3C, 0xF0, 0x70, 0x07, 0x82),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x47, 0x5C, 0x09, 0x43, 0xB7, 0x65, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xA9, 0xA7, 0x3E, 0xFA, 0xF3, 0xEC, 0x22),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_3_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x78, 0x22, 0x2B, 0x58, 0x71, 0xFA, 0xAA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x30, 0xCE, 0x6A, 0xB3, 0xB0, 0x4F, 0x83),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0x95, 0x20, 0xA9, 0x23, 0xC2, 0x65, 0xE7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0xCF, 0x03, 0x5B, 0x8A, 0x80, 0x44, 0xBB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xF8, 0x91, 0xF7, 0xD5, 0xED, 0xEA, 0x81),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x5B, 0x16, 0x10, 0x25, 0xAC, 0x2A, 0x17),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_4_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0xEC, 0xDC, 0xC4, 0x7B, 0x8C, 0x6B, 0xE9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0xBB, 0x1C, 0xD3, 0x5A, 0xEE, 0xD9, 0x97),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x5D, 0x30, 0x5E, 0xF7, 0xB2, 0x41, 0x9D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0xCE, 0x0F, 0x1A, 0xC6, 0x41, 0x64, 0x62),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x18, 0xE1, 0xE3, 0x82, 0x15, 0x66, 0x4B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0xE2, 0x24, 0x04, 0x72, 0x39, 0xA0, 0x7C),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_4_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0x51, 0xA2, 0x58, 0x88, 0x62, 0xE1, 0x02),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0xD2, 0x65, 0x14, 0xE9, 0x4C, 0x82, 0x30),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDC, 0xE1, 0xAC, 0x87, 0xAE, 0x31, 0x1A, 0x7A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0x4F, 0x96, 0x1E, 0x85, 0x7A, 0xC3, 0x2B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x86, 0xBB, 0xF0, 0xC0, 0x9D, 0x08, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0x53, 0x03, 0x09, 0x80, 0x91, 0xEF, 0x68),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_5_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0xD7, 0xAF, 0x6F, 0x69, 0x7B, 0x88, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0x13, 0xE4, 0x30, 0xA2, 0x47, 0xB5, 0xC1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xD2, 0xC0, 0xDD, 0x8A, 0x1C, 0x3C, 0xF2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x8C, 0xB3, 0x4C, 0xBA, 0x8B, 0x6D, 0xCF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0xC7, 0xA1, 0xA8, 0x6E, 0x3C, 0x4F, 0xF1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x4A, 0x97, 0xC8, 0x03, 0x6F, 0x01, 0x82),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_5_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x18, 0x12, 0xA9, 0x39, 0xD5, 0x22, 0x26),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0xA7, 0xC0, 0xBD, 0x9D, 0x8D, 0x78, 0x38),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0xB3, 0xD0, 0x7F, 0xDF, 0xD0, 0x30, 0xDE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x25, 0x73, 0x96, 0xEC, 0xA8, 0x1D, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0xD1, 0x65, 0x66, 0xDC, 0xD9, 0xCF, 0xDF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0xED, 0x7B, 0x37, 0xAD, 0xE2, 0xBE, 0x2D),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_6_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x79, 0x42, 0x6A, 0x07, 0x66, 0xB1, 0xBD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x53, 0x62, 0x65, 0x92, 0x09, 0x4C, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0xAF, 0xC3, 0x03, 0xF6, 0xF4, 0x2D, 0x9B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0xCA, 0x41, 0xD9, 0xA2, 0x69, 0x9B, 0xC9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0xB2, 0xA6, 0x8D, 0xE1, 0xAA, 0x61, 0x76),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xBA, 0x4D, 0x12, 0xB6, 0xBE, 0xF3, 0x7E),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_6_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0xD9, 0x92, 0x22, 0x07, 0xCE, 0xC9, 0x26),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0xA1, 0x7C, 0x91, 0xDB, 0x32, 0xF7, 0xE5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x49, 0x4B, 0x6D, 0xFB, 0xD9, 0x70, 0x3B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0xFB, 0x4E, 0x4C, 0x5E, 0x66, 0x81, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0xB3, 0xE1, 0x00, 0xB7, 0xD9, 0xCC, 0x58),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x36, 0x8B, 0xC4, 0x39, 0x20, 0xFD, 0x30),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_7_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x1F, 0x60, 0x03, 0xBB, 0xD7, 0x60, 0x57),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x3C, 0x62, 0xDD, 0x71, 0x95, 0xE9, 0x61),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x5B, 0x7A, 0x5F, 0x68, 0x81, 0xC5, 0x90),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xAF, 0xB5, 0xB9, 0x98, 0x42, 0x28, 0xA5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0x29, 0x8E, 0x11, 0x49, 0xB4, 0xD7, 0x20),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x3E, 0xD2, 0x30, 0xA1, 0xBA, 0xCA, 0x03),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_7_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x37, 0x64, 0x44, 0x2F, 0x03, 0xE5, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x42, 0xBC, 0xFF, 0xA2, 0x1A, 0x5F, 0x06),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x04, 0xAB, 0x04, 0xE0, 0x24, 0xAD, 0x2A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0x45, 0x17, 0x67, 0x1F, 0x3E, 0x53, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0x0F, 0xB3, 0x1B, 0x57, 0x54, 0xC2, 0x03),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xD3, 0xF8, 0xC4, 0x1B, 0x9B, 0xFA, 0x30),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_8_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x90, 0xFD, 0xFB, 0xCA, 0x49, 0x38, 0x4E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0xCF, 0xC6, 0xDD, 0xF0, 0xFF, 0x8C, 0x11),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0x69, 0x9D, 0xBD, 0x5F, 0x33, 0xE9, 0xB4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x19, 0x82, 0x3D, 0xAC, 0x1C, 0x40, 0x23),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0xC7, 0x02, 0x46, 0x14, 0x77, 0x00, 0xBE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x05, 0xF2, 0x77, 0x3A, 0x66, 0x5C, 0x39),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_8_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xE6, 0x17, 0xDE, 0xB2, 0xA1, 0xE5, 0xB8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0x71, 0xEC, 0x9D, 0xD8, 0xF5, 0xD4, 0x66),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0xC6, 0x42, 0x5E, 0xE7, 0x18, 0xBA, 0xD0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x21, 0x68, 0x5A, 0x26, 0xFB, 0xD7, 0x17),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x00, 0x5C, 0xBA, 0x8A, 0x34, 0xEC, 0x75),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0x9C, 0x3C, 0xAF, 0x53, 0xE8, 0x65, 0x35),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_9_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0xEF, 0x28, 0xDC, 0x67, 0x05, 0xC8, 0xDF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x78, 0xC3, 0x85, 0x49, 0xA0, 0xBC, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x3E, 0x2D, 0xA0, 0xCF, 0xD4, 0x7A, 0xF5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0x93, 0xFE, 0x60, 0xB3, 0x6E, 0x99, 0xE2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0xAD, 0x04, 0xE7, 0x49, 0xAF, 0x5E, 0xE3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x7A, 0xED, 0xA6, 0x9E, 0x18, 0x09, 0x31),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_9_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x05, 0x94, 0x44, 0xDC, 0xB8, 0x85, 0x94),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0xB7, 0x37, 0xC2, 0x50, 0x75, 0x15, 0xDA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xC6, 0x0F, 0xB2, 0xA9, 0x91, 0x3E, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x81, 0xAD, 0x25, 0xA1, 0x26, 0x73, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xF1, 0xD1, 0x61, 0x7C, 0x76, 0x8F, 0x13),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0xDB, 0x4A, 0xFF, 0x14, 0xA7, 0x48, 0x0B),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_10_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x73, 0xC6, 0xC2, 0xCC, 0xF1, 0x57, 0x04),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0xED, 0x73, 0x27, 0x70, 0x82, 0xB6, 0x5E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0xBA, 0xAC, 0x3A, 0xCF, 0xF4, 0xEA, 0xA6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xD6, 0xB1, 0x8F, 0x0E, 0x08, 0x2C, 0x5E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xE3, 0x8F, 0x2F, 0x0E, 0xA1, 0xF3, 0x07),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0xF5, 0x7C, 0x9B, 0x29, 0x0A, 0xF6, 0x28),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_10_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0xEE, 0x17, 0x47, 0x34, 0x15, 0xA3, 0xAF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0xBE, 0x88, 0x48, 0xE7, 0xA2, 0xBB, 0xDE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0xAD, 0xDC, 0x65, 0x61, 0x37, 0x0F, 0xC1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x67, 0xAD, 0xA2, 0x3A, 0x1C, 0x91, 0x78),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x07, 0x0C, 0x3A, 0x41, 0x6E, 0x13, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0xBD, 0x7E, 0xED, 0xAA, 0x14, 0xDD, 0x61),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_11_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0xDC, 0x20, 0x01, 0x72, 0x11, 0x48, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xC4, 0x7B, 0xF8, 0x62, 0x3D, 0xF0, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0xC2, 0x3D, 0x2E, 0x52, 0xA3, 0x4A, 0x89),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xE2, 0x53, 0x46, 0x5E, 0x21, 0xF8, 0xCE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0xC7, 0x8F, 0xA9, 0x26, 0x42, 0x32, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0xA6, 0xA0, 0x8D, 0x4B, 0x9A, 0x19, 0x03),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_11_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xAB, 0x6D, 0x1E, 0xFB, 0xEE, 0x60, 0x0C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x56, 0x3C, 0xC5, 0x5D, 0x10, 0x79, 0x1C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0xBC, 0x41, 0x9F, 0x71, 0xEF, 0x02, 0xF9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA2, 0x36, 0xC4, 0xD0, 0x88, 0x9B, 0x32, 0xFC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0xD4, 0x5D, 0x17, 0x39, 0xE6, 0x22, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x26, 0x01, 0xCE, 0xBE, 0x4A, 0x9C, 0x27),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_12_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x6D, 0x11, 0xCA, 0x6C, 0x5A, 0x93, 0x0C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x96, 0x26, 0xAF, 0x2F, 0xE4, 0x30, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0xC1, 0x4C, 0xC6, 0x30, 0x1F, 0x5C, 0x04),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xB3, 0xE8, 0xFC, 0x35, 0xEB, 0x63, 0x6C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0x1D, 0xCA, 0xFC, 0x50, 0x36, 0x4B, 0x96),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x0E, 0x23, 0x5B, 0xAF, 0xEB, 0x2D, 0x31),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_12_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x88, 0xB6, 0xD7, 0x74, 0x4A, 0x23, 0xB6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x66, 0xE2, 0xBB, 0x29, 0xA6, 0x4F, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0x6F, 0x7E, 0x68, 0x6E, 0xA0, 0x14, 0x94),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0x73, 0xD4, 0xE8, 0xAB, 0x5B, 0xF6, 0x0D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0xE0, 0x3C, 0x24, 0x00, 0x95, 0xE9, 0xAD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x0D, 0x4F, 0x81, 0xD0, 0xF2, 0x3F, 0x00),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_13_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x1D, 0xCD, 0x78, 0x39, 0xC4, 0x6B, 0xD9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x45, 0xC7, 0xB8, 0x2F, 0xAA, 0x5D, 0xE3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0x8C, 0x6E, 0xA3, 0x24, 0xB2, 0xDB, 0x4B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0x2D, 0xD9, 0xF1, 0xC7, 0x9B, 0x8A, 0xAF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0xE1, 0x2C, 0xB9, 0x40, 0x37, 0x91, 0x75),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x2C, 0xB5, 0x23, 0x03, 0x2B, 0xAF, 0x2F),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_13_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0x9D, 0x5A, 0x20, 0x10, 0xA9, 0x84, 0xDA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x30, 0x89, 0x20, 0x13, 0xE9, 0xB2, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x6E, 0x52, 0xEB, 0x03, 0x18, 0x1F, 0xA6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x9E, 0x1C, 0x35, 0x87, 0x92, 0x69, 0xC7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0xC9, 0x88, 0xAF, 0xC6, 0x6C, 0x83, 0x72),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0xD5, 0x7A, 0x54, 0x34, 0x99, 0xB6, 0x6F),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_14_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0xAD, 0x45, 0x9B, 0x4B, 0x41, 0x4D, 0x50),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x5D, 0xAB, 0x7F, 0x35, 0x34, 0xE9, 0x29),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0xBE, 0x78, 0x34, 0x44, 0xF3, 0x4A, 0x87),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0xDE, 0xE3, 0xC4, 0xEE, 0x0B, 0xF9, 0xEB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x86, 0x16, 0x48, 0x32, 0xB8, 0x74, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0xEE, 0x7C, 0xBA, 0xBD, 0x81, 0xE3, 0x55),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_14_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x6A, 0xFA, 0x84, 0xDA, 0xB8, 0xD5, 0x14),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0x9F, 0x8A, 0xD5, 0x1B, 0x2E, 0x1A, 0x0B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x0C, 0x61, 0xE2, 0xFF, 0x5B, 0xE6, 0xD5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0x62, 0xC1, 0x87, 0x53, 0x1B, 0x92, 0xA3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x90, 0x00, 0xD1, 0x6A, 0x0C, 0x0E, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0x2E, 0xB5, 0x3B, 0x44, 0xB5, 0xA0, 0x78),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_15_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x5D, 0x02, 0x58, 0xB5, 0xBE, 0x45, 0x14),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0xEF, 0x8E, 0x90, 0x4D, 0x2A, 0x32, 0xAC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x48, 0x99, 0x75, 0x5C, 0x0A, 0x33, 0x8F, 0x36),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x6C, 0x95, 0xD4, 0x1F, 0xF3, 0xEB, 0xDA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0xE4, 0x4C, 0x91, 0x20, 0xF3, 0x25, 0xEB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x95, 0xEB, 0x29, 0x6F, 0x20, 0x34, 0x81),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_15_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0x15, 0xE5, 0x13, 0x7E, 0x64, 0x8B, 0xAD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0xBC, 0x0D, 0x18, 0x7E, 0x37, 0x9E, 0xFA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x82, 0x20, 0xF7, 0x2D, 0x7A, 0x77, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x29, 0xA2, 0xDB, 0x7A, 0xE6, 0x6F, 0xA5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0xC6, 0x50, 0x5C, 0xBC, 0xE6, 0x4F, 0xBD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x9F, 0xD5, 0xE8, 0xC5, 0x3D, 0xB7, 0x30),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_16_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x03, 0x55, 0x10, 0xDB, 0xA6, 0x8B, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x17, 0xAE, 0x78, 0xC9, 0x1D, 0x43, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x35, 0x49, 0xD4, 0x47, 0x84, 0x8D, 0x20),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x95, 0x2F, 0xEA, 0xBC, 0xB4, 0x18, 0xB3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x48, 0xAE, 0x89, 0xF5, 0x65, 0x3D, 0x89),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0xF2, 0x2B, 0x20, 0xD1, 0x75, 0x50, 0x63),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_16_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0xE6, 0x5C, 0x2C, 0xE0, 0x7D, 0xDF, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x07, 0x3E, 0xCE, 0x9F, 0x18, 0xB6, 0x05),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0xF8, 0xF0, 0xD5, 0xFA, 0x42, 0x1D, 0x6D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x6C, 0x1D, 0x03, 0xC9, 0x0E, 0x2B, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x18, 0x52, 0xA5, 0xB4, 0x63, 0xE1, 0x06),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x0A, 0xD9, 0xC4, 0xFD, 0x16, 0x60, 0x54),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_17_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x7D, 0xDE, 0xDF, 0x4B, 0x4A, 0xB0, 0xCB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x4E, 0x8C, 0x94, 0xC1, 0xE2, 0x85, 0xDF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0xF0, 0xEA, 0xB5, 0x9B, 0x70, 0xEF, 0x10),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0xC2, 0x39, 0x5D, 0xF3, 0x2C, 0xD9, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0x1C, 0x2E, 0xCC, 0x2F, 0x54, 0x87, 0x80),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x72, 0xC7, 0xB5, 0x50, 0xA3, 0x84, 0x77),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_17_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xD1, 0xAF, 0xA9, 0xB4, 0x8B, 0x5D, 0xFA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0xF6, 0x52, 0x8A, 0xC3, 0x56, 0xA5, 0x5E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0x52, 0xFF, 0xEA, 0x05, 0x42, 0x77, 0x83),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x08, 0x90, 0x72, 0x86, 0xC4, 0xC3, 0xB8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0x15, 0xF8, 0xF1, 0x16, 0x67, 0xC6, 0xD5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0x87, 0xAC, 0x8F, 0x71, 0xEC, 0x83, 0x81),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_18_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0xE1, 0xE6, 0x2D, 0x0E, 0x11, 0xA1, 0x62),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xE2, 0xA8, 0x32, 0xE6, 0xE3, 0x83, 0xD1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x56, 0xE5, 0xCD, 0xB7, 0x2B, 0x67, 0x6F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0xED, 0xC9, 0x65, 0x6D, 0x87, 0xE1, 0x8E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x8E, 0xFD, 0x9A, 0x53, 0x0E, 0xFA, 0xA3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0x4C, 0x4A, 0xE2, 0x23, 0x84, 0xFA, 0x01),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_18_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xFE, 0x49, 0x81, 0xD1, 0x3E, 0xF4, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x72, 0xE0, 0xEF, 0x0D, 0xB8, 0x3E, 0x6F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0x00, 0x0F, 0x5F, 0xCE, 0x60, 0x72, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xCC, 0xD8, 0x03, 0x07, 0x6E, 0x5A, 0xCD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x3A, 0x35, 0x50, 0x4E, 0x1F, 0xCA, 0x5F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0xEA, 0x88, 0x55, 0xBD, 0x6E, 0x05, 0x7F),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_19_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0x6D, 0xF1, 0x97, 0xA6, 0x69, 0x39, 0x24),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x41, 0x99, 0xFF, 0x3B, 0xA1, 0x26, 0xEC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0x2F, 0x95, 0x80, 0x12, 0x4A, 0x1B, 0xCB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xBF, 0x51, 0xAA, 0xAE, 0x2D, 0xDA, 0xCF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0x1C, 0xB3, 0x52, 0x36, 0x49, 0xD4, 0x86),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xC1, 0x1F, 0x3A, 0xD3, 0x3E, 0x5C, 0x1A),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_19_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x51, 0xF7, 0x2B, 0xC8, 0xA9, 0xA7, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x4E, 0x7F, 0x98, 0x41, 0x66, 0xB0, 0x03),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x1D, 0xC0, 0x42, 0xCD, 0xF8, 0xC3, 0x2B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x41, 0x91, 0x7D, 0xCC, 0x8B, 0xCC, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xAE, 0x76, 0xED, 0x56, 0x18, 0xC5, 0xAB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x6A, 0x06, 0xA3, 0x7F, 0x65, 0x10, 0x1F),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_20_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0xEC, 0x3C, 0x05, 0x05, 0xCA, 0xF6, 0xED),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x48, 0xCD, 0x02, 0x51, 0x12, 0x16, 0x3C, 0x63),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0xEB, 0xB3, 0x43, 0x7B, 0xDD, 0xB2, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x59, 0x90, 0x41, 0xDB, 0xE4, 0xF5, 0x91),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x0E, 0x18, 0x2A, 0x5A, 0x83, 0x7C, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x37, 0xA1, 0x0D, 0xF1, 0x2F, 0x63, 0x79),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_20_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xC0, 0xFA, 0x6F, 0x1F, 0x67, 0xCF, 0xEC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x34, 0x45, 0xBB, 0xF4, 0xF9, 0x9B, 0x89),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x69, 0xFE, 0x67, 0x1D, 0x64, 0x8F, 0xB9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x39, 0xBF, 0xD8, 0xB3, 0xC7, 0xAD, 0x8A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0x93, 0xFF, 0xF3, 0x28, 0xFA, 0x39, 0xF6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xF9, 0xC3, 0x85, 0x26, 0x7A, 0x88, 0x89),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_21_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0xD5, 0x79, 0xD8, 0x11, 0xDE, 0xEB, 0x4E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x46, 0xA4, 0x6A, 0xDA, 0x74, 0x34, 0xA8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xBD, 0xD3, 0xF5, 0x14, 0xEE, 0xFE, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x4C, 0xA3, 0x71, 0x43, 0x65, 0xF8, 0x94),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x6C, 0x35, 0xFA, 0x90, 0x25, 0xD8, 0xE2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x34, 0x84, 0x96, 0xA1, 0x43, 0x03, 0x4D),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_21_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x3B, 0x3B, 0x2F, 0xCA, 0x59, 0xF2, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x48, 0x24, 0x74, 0xD8, 0x72, 0x90, 0xA3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x42, 0x74, 0x8C, 0x6F, 0x52, 0x19, 0x3D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x9E, 0x41, 0x63, 0x68, 0x78, 0x4C, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0x94, 0xB6, 0x6B, 0x38, 0x52, 0xA8, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x30, 0x25, 0x93, 0xA1, 0x6F, 0x6E, 0x68),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_22_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x2F, 0x4B, 0x64, 0x79, 0x50, 0xFF, 0x01),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x36, 0xED, 0x57, 0x39, 0x3B, 0xE7, 0xF3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x85, 0xEA, 0x35, 0xD6, 0xC0, 0xA0, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x89, 0x3A, 0xCC, 0x22, 0x1C, 0x46, 0x02),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x7A, 0xB0, 0xA1, 0x1B, 0x69, 0x62, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0xB8, 0x8A, 0x6C, 0x18, 0x85, 0x0D, 0x88),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_22_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xB6, 0x50, 0xE9, 0x4E, 0x7F, 0xE8, 0x07),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x5B, 0x5C, 0xD1, 0x4B, 0x11, 0x9A, 0xD8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x25, 0x56, 0x74, 0x51, 0x9C, 0xEC, 0x9C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x7F, 0xB6, 0x8A, 0xCB, 0x3A, 0x10, 0x6A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x60, 0x33, 0x07, 0x01, 0xE9, 0x49, 0x59, 0xE6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0xA5, 0x2E, 0xF2, 0xBA, 0x32, 0x63, 0x44),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_23_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x06, 0x0B, 0xA5, 0x44, 0x27, 0x7F, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x74, 0xAC, 0x0F, 0xCC, 0x4F, 0x13, 0x61),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xB1, 0xBF, 0x97, 0x49, 0xA5, 0x1C, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x64, 0x68, 0x7B, 0x0F, 0xCC, 0x77, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x39, 0xF9, 0x4E, 0x84, 0x9C, 0xF6, 0x96),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xCF, 0x6D, 0xE2, 0xA1, 0x2D, 0xF9, 0x2B),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_23_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0xC4, 0x90, 0x57, 0x31, 0x01, 0x05, 0x5E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x1E, 0xBB, 0xBF, 0x98, 0xA4, 0x7C, 0xE3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0xE3, 0xA0, 0xB2, 0xCD, 0x39, 0x9A, 0x3F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x34, 0x60, 0x7A, 0x89, 0x98, 0xB5, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0x20, 0x3D, 0x3A, 0x04, 0x8F, 0x5A, 0xAC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0x26, 0xB6, 0x49, 0x09, 0x9C, 0x0F, 0x59),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_24_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x66, 0xD2, 0x38, 0x2A, 0x62, 0x81, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0xC8, 0x20, 0x5E, 0x28, 0xA3, 0x81, 0xA7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x20, 0x31, 0xA4, 0xF1, 0xEA, 0x7D, 0x87, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8F, 0x2C, 0x99, 0x09, 0x6F, 0x63, 0xEB, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x76, 0xDA, 0x1A, 0x06, 0xBE, 0xDE, 0xA2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x09, 0x2E, 0x75, 0x39, 0x30, 0x2D, 0x42),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_24_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x9B, 0xC1, 0x5A, 0x17, 0xC3, 0x8C, 0x31),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x8D, 0x94, 0x4D, 0x3D, 0xAB, 0x60, 0xD4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFD, 0x1E, 0x0F, 0x43, 0xAE, 0x9D, 0x62),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0xF2, 0xF3, 0x20, 0x1B, 0xAA, 0xB7, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x5B, 0xA4, 0xF4, 0x90, 0x3B, 0xE3, 0x71),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0x78, 0x72, 0xBD, 0x65, 0x09, 0x0B, 0x01),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_25_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x37, 0x2A, 0x6C, 0x16, 0x4F, 0x64, 0x59),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0xCE, 0xA3, 0x90, 0xB4, 0x9A, 0xBC, 0xF7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x38, 0x55, 0x63, 0x1D, 0x3A, 0x6E, 0x18),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0xB4, 0xAA, 0x99, 0x22, 0x45, 0x89, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x7C, 0x8C, 0xA6, 0x3D, 0xA7, 0x3E, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x06, 0x42, 0xDC, 0xA6, 0xE3, 0xC6, 0x12),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_25_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x8C, 0x3D, 0x5D, 0x47, 0x31, 0x7C, 0xEB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x85, 0xEE, 0x46, 0x7E, 0x13, 0x04, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0x3C, 0x8B, 0x43, 0x2E, 0x74, 0xF5, 0xF6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x88, 0x8E, 0x07, 0x29, 0x08, 0x03, 0x26),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0x9B, 0x89, 0xEB, 0x08, 0xE8, 0x43, 0xB5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x07, 0x67, 0xFD, 0xD9, 0x73, 0x6F, 0x18),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_26_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0xEB, 0x21, 0x8D, 0x98, 0x43, 0x74, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0xCC, 0x14, 0xD8, 0x08, 0xBB, 0xA6, 0xE3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0x98, 0xF2, 0x6A, 0x18, 0xC3, 0xDD, 0x9E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0x38, 0x91, 0xA0, 0x03, 0xF2, 0x04, 0x62),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0xAF, 0xE8, 0xFD, 0xFB, 0x13, 0x70, 0x74),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x93, 0x87, 0x98, 0x4A, 0xE0, 0x00, 0x12),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_26_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x2E, 0x69, 0x9C, 0xA2, 0x2D, 0x03, 0x3F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0xFE, 0xF3, 0xB9, 0xC1, 0x85, 0x2A, 0xEE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xFD, 0x86, 0xB1, 0xCD, 0xBF, 0x41, 0xB7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0xD8, 0x9A, 0x21, 0xF3, 0xFE, 0xCB, 0xF1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0x78, 0x04, 0x60, 0xB7, 0xA9, 0xA2, 0x84),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x1E, 0x66, 0x2A, 0x54, 0x51, 0xBD, 0x8B),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_27_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x16, 0x36, 0xEF, 0x61, 0x2D, 0xEE, 0x3B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x5F, 0x88, 0xA0, 0x13, 0x12, 0xF7, 0x23),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0xC6, 0xAD, 0x4A, 0x4A, 0x07, 0x01, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x74, 0xB1, 0x4F, 0xEB, 0xBD, 0xD5, 0x6B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0xF9, 0x71, 0xA2, 0x06, 0x4F, 0xD7, 0xBC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x8B, 0x4D, 0x48, 0xE0, 0x98, 0xFB, 0x6A),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_27_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0xBA, 0x10, 0xA3, 0x0D, 0x52, 0xAC, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xD0, 0xE0, 0x36, 0xE6, 0x07, 0x3A, 0x30),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x80, 0xF0, 0xAA, 0x49, 0x22, 0x4B, 0xDD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xC7, 0xAB, 0x1C, 0x89, 0xCD, 0x24, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x2A, 0xFC, 0xB3, 0x6D, 0x45, 0x96, 0x49),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0xE4, 0xDB, 0x52, 0x3F, 0xC4, 0xB4, 0x19),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_28_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0xCC, 0xC8, 0x7F, 0xBB, 0x6B, 0x87, 0x47),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0x21, 0x3C, 0x69, 0x7D, 0x38, 0x57, 0x50),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0x4C, 0x18, 0x3C, 0x53, 0xA5, 0x48, 0x6D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xC3, 0x64, 0x45, 0xDB, 0xC4, 0x6D, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0xCC, 0xD1, 0xBB, 0x17, 0xB8, 0x34, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x69, 0x71, 0xFA, 0xA0, 0x28, 0x4A, 0x3D),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_28_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0xE8, 0x9E, 0x39, 0xEA, 0x8D, 0x38, 0xDB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x9C, 0xBB, 0xCD, 0x80, 0x1A, 0xEE, 0xB7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xA0, 0x45, 0xBF, 0xD9, 0x22, 0x11, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x7C, 0x5C, 0xD9, 0xC0, 0x9F, 0x69, 0xF5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x8A, 0xA6, 0x79, 0x4E, 0x35, 0xB9, 0xD5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x8B, 0x9A, 0x3E, 0xA1, 0xB8, 0x28, 0x10),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_29_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x2F, 0xEF, 0xBB, 0xA9, 0x72, 0x7F, 0xEA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x34, 0xB7, 0x12, 0xB9, 0xE7, 0xC3, 0x2A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x1D, 0xD9, 0x42, 0x77, 0x0C, 0x71, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x01, 0x59, 0xA7, 0x56, 0x03, 0x91, 0x8D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x91, 0x99, 0x33, 0x30, 0x3E, 0xEF, 0x13),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0xC9, 0x5A, 0x9A, 0x54, 0x66, 0xF1, 0x70),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_29_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x2C, 0xB7, 0x6E, 0x71, 0x7D, 0x35, 0x30),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x0D, 0xEF, 0xD1, 0x2D, 0x99, 0x63, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x31, 0xAF, 0x2D, 0xC9, 0xC6, 0xC2, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0xC0, 0xDF, 0x80, 0x54, 0xC4, 0xAC, 0xF3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x6B, 0xA0, 0x84, 0x96, 0xF7, 0x31, 0xC8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0xE2, 0x7C, 0x7A, 0x41, 0x45, 0x75, 0x6A),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_30_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0xEE, 0x58, 0x31, 0xE8, 0x68, 0xD6, 0x76),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD2, 0x2E, 0x48, 0xB7, 0x09, 0x9F, 0xD4, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xA9, 0x5C, 0xE7, 0x64, 0x43, 0x5D, 0xC9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0x58, 0x9F, 0x50, 0xAB, 0x68, 0xFF, 0x6D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x88, 0x2D, 0xBA, 0x12, 0xBF, 0x8D, 0x7D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0xDF, 0x6F, 0xB3, 0x75, 0xA4, 0x55, 0x73),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_30_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x17, 0x92, 0x39, 0xB7, 0x13, 0x37, 0x6F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x43, 0x71, 0xA7, 0xCA, 0x17, 0x1B, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0xB9, 0xB0, 0x78, 0xEF, 0xA0, 0xDA, 0x83),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x84, 0xF2, 0x0F, 0x85, 0xA2, 0xB6, 0x1F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x65, 0x2E, 0x6E, 0x45, 0xB9, 0x4C, 0x3C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0x6A, 0x8C, 0x2B, 0x77, 0x96, 0x36, 0x22),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_31_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x7A, 0x13, 0x4A, 0x97, 0x63, 0x02, 0x10),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x1E, 0x06, 0x03, 0x8F, 0xB9, 0xEE, 0x64),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0xEE, 0x8B, 0x89, 0xA9, 0x70, 0xDB, 0xCE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x7B, 0x81, 0xC9, 0x70, 0x8D, 0x62, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0xDA, 0x46, 0xF8, 0xF9, 0x3A, 0xBE, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0x9C, 0x7A, 0x97, 0x62, 0xEB, 0xFA, 0x0F),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_31_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0x03, 0x3D, 0x3C, 0x46, 0x27, 0x9E, 0x65),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x08, 0x1C, 0xD5, 0x25, 0xAF, 0xE9, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0x69, 0xDC, 0x59, 0xF4, 0x8A, 0x7C, 0x1F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x9A, 0x7A, 0x99, 0x21, 0x0C, 0x4E, 0xE3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xCE, 0x85, 0x5F, 0xAC, 0xAA, 0x82, 0x10),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x57, 0x69, 0x90, 0x76, 0xF3, 0x53, 0x3F),
+};
+static const mbedtls_ecp_point brainpoolP384r1_T[32] = {
+    ECP_POINT_INIT_XY_Z1(brainpoolP384r1_T_0_X, brainpoolP384r1_T_0_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_1_X, brainpoolP384r1_T_1_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_2_X, brainpoolP384r1_T_2_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_3_X, brainpoolP384r1_T_3_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_4_X, brainpoolP384r1_T_4_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_5_X, brainpoolP384r1_T_5_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_6_X, brainpoolP384r1_T_6_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_7_X, brainpoolP384r1_T_7_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_8_X, brainpoolP384r1_T_8_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_9_X, brainpoolP384r1_T_9_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_10_X, brainpoolP384r1_T_10_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_11_X, brainpoolP384r1_T_11_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_12_X, brainpoolP384r1_T_12_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_13_X, brainpoolP384r1_T_13_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_14_X, brainpoolP384r1_T_14_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_15_X, brainpoolP384r1_T_15_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_16_X, brainpoolP384r1_T_16_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_17_X, brainpoolP384r1_T_17_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_18_X, brainpoolP384r1_T_18_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_19_X, brainpoolP384r1_T_19_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_20_X, brainpoolP384r1_T_20_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_21_X, brainpoolP384r1_T_21_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_22_X, brainpoolP384r1_T_22_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_23_X, brainpoolP384r1_T_23_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_24_X, brainpoolP384r1_T_24_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_25_X, brainpoolP384r1_T_25_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_26_X, brainpoolP384r1_T_26_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_27_X, brainpoolP384r1_T_27_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_28_X, brainpoolP384r1_T_28_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_29_X, brainpoolP384r1_T_29_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_30_X, brainpoolP384r1_T_30_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_31_X, brainpoolP384r1_T_31_Y),
+};
+#else
+#define brainpoolP384r1_T NULL
+#endif
+
+#endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
+
+/*
+ * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
+ */
+#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
+static const mbedtls_mpi_uint brainpoolP512r1_p[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_a[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_b[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_gx[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_gy[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_n[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA),
+};
+
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint brainpoolP512r1_T_0_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_0_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_1_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xE9, 0x6B, 0x8C, 0x6F, 0x9D, 0x88, 0x43),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x4F, 0x86, 0x96, 0xA7, 0x56, 0xD1, 0x37),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0xAB, 0xFA, 0xEE, 0xA7, 0xF5, 0x0E, 0xA6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x40, 0xEF, 0x9E, 0x6D, 0xD6, 0x32, 0x33),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0xED, 0x56, 0x14, 0x57, 0x1A, 0x8D, 0x69),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0xED, 0x4D, 0x3A, 0xFA, 0x71, 0x75, 0x6B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xC5, 0x76, 0x1C, 0x14, 0xBE, 0xB5, 0xCD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x5A, 0xCB, 0xE7, 0x36, 0x1D, 0x52, 0x1C),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_1_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x8D, 0x7A, 0xEB, 0xA3, 0x8B, 0xD5, 0xB0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0xA3, 0x41, 0xF8, 0xAC, 0x9E, 0xAB, 0x74),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0xE3, 0x65, 0x0D, 0x1C, 0xFE, 0x09, 0x2B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0xCA, 0x13, 0x3F, 0xC5, 0xF9, 0x7E, 0xEC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x5D, 0x63, 0x28, 0xA6, 0x89, 0xD3, 0x91),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x95, 0x3F, 0x7A, 0x82, 0xD4, 0x77, 0xE3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xBB, 0x92, 0x32, 0x00, 0xF4, 0x66, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x58, 0x31, 0xD1, 0x17, 0x9F, 0x2A, 0x22),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_2_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0x36, 0xA9, 0xCD, 0x80, 0xA5, 0x2D, 0x78),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x44, 0xAB, 0xCE, 0x71, 0xFF, 0x0C, 0x9B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0x24, 0x58, 0x35, 0x5A, 0x21, 0x32, 0x93),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0xA6, 0x28, 0xF8, 0x7A, 0x97, 0xAE, 0x8B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0xE7, 0x08, 0xFA, 0x47, 0xC9, 0x55, 0x09),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xAC, 0x2E, 0x84, 0xA4, 0xF5, 0x52, 0xC4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x58, 0x05, 0x9D, 0xA7, 0xC8, 0x71, 0xBF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x92, 0xB4, 0x92, 0xC1, 0x92, 0xEC, 0x6B),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_2_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x48, 0x2D, 0x79, 0x5E, 0x58, 0xE5, 0x69),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x85, 0x26, 0xEC, 0xE9, 0x6E, 0xD4, 0x06),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x68, 0x26, 0x87, 0x38, 0xA2, 0xD2, 0x0B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0x17, 0x60, 0xCE, 0x75, 0xF8, 0xA5, 0x6F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x20, 0x51, 0xDB, 0xA9, 0xAE, 0x87, 0xF1, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x49, 0x92, 0x3B, 0x19, 0x96, 0xF5, 0xB0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0xD5, 0x52, 0x52, 0x8C, 0xCE, 0xFD, 0xFA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x18, 0x0A, 0xE6, 0xF6, 0xAE, 0x08, 0x41),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_3_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x2B, 0xD8, 0x54, 0xCE, 0xB0, 0x57, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0xB0, 0xF8, 0x9E, 0x03, 0x03, 0x3C, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x0E, 0x29, 0x29, 0x00, 0xF3, 0x70, 0xBF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x33, 0x99, 0x0E, 0x00, 0x5D, 0xFE, 0x4B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x2D, 0xF2, 0x59, 0x32, 0xCF, 0x03, 0xF4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0xC9, 0x72, 0xAE, 0x0C, 0xEF, 0xD1, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x5A, 0x27, 0xBF, 0x2F, 0x45, 0xF9, 0x51),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0xBE, 0xE5, 0x2C, 0xFF, 0x5B, 0x1E, 0x88),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_3_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0xAC, 0xBB, 0xD8, 0x83, 0xC2, 0x46, 0xF6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0xDC, 0xCE, 0x15, 0xB4, 0xEF, 0xCF, 0x46),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0xDB, 0x5E, 0x94, 0x31, 0x0B, 0xB2, 0x7A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0xB9, 0xE3, 0xE3, 0x11, 0x71, 0x41, 0x1E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0xE3, 0x01, 0xB7, 0x7D, 0xBC, 0x65, 0xBE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x07, 0x65, 0x87, 0xA7, 0xE8, 0x48, 0xE3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0x48, 0x8F, 0xD4, 0x30, 0x8E, 0xB4, 0x6C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0xE0, 0x73, 0xBE, 0x1E, 0xBF, 0x56, 0x36),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_4_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0x0E, 0x5E, 0x87, 0xC5, 0xAB, 0x0E, 0x3C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xF9, 0x5F, 0x80, 0x24, 0x4C, 0x2A, 0xF1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0x15, 0x21, 0x54, 0x92, 0x84, 0x8D, 0x6A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x8A, 0x47, 0x74, 0xDC, 0x42, 0xB1, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0xF7, 0x30, 0xFD, 0xC1, 0x9B, 0x0C, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x6C, 0xCC, 0xDF, 0xC5, 0xE3, 0xA9, 0xD5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x67, 0x59, 0x10, 0x5C, 0x51, 0x54, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x37, 0xFB, 0x6E, 0xB0, 0x78, 0x63, 0x8E),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_4_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0xEF, 0xC4, 0x39, 0x20, 0xF1, 0x46, 0x66),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0x62, 0xAE, 0xFF, 0x10, 0xE4, 0xE2, 0xE9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x5C, 0xF5, 0x2E, 0x22, 0x89, 0xE5, 0x82),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0x0C, 0x29, 0xA8, 0x62, 0xAE, 0xDB, 0x65),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0x9E, 0x0F, 0xCA, 0x87, 0x2A, 0x6F, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xDC, 0x9B, 0x9F, 0x65, 0xD4, 0xAD, 0x27),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0xC3, 0x08, 0x0F, 0xCF, 0x67, 0xE9, 0xF4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x5C, 0xD7, 0xFF, 0x41, 0x9C, 0xCB, 0x26),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_5_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x25, 0x05, 0x12, 0xAD, 0x73, 0x63, 0x90),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0x99, 0x07, 0x86, 0x57, 0xE7, 0x94, 0xB1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x4B, 0xA5, 0xBF, 0x18, 0xA9, 0xEF, 0x6A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x4C, 0xC4, 0x09, 0xF2, 0x2F, 0x0C, 0xAA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0x3A, 0x04, 0xEA, 0x89, 0x6C, 0x91, 0xB9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x6C, 0x3A, 0xE7, 0xA3, 0xEC, 0x24, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0xA1, 0x26, 0x21, 0x04, 0xE3, 0xB9, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0x71, 0x4B, 0x7B, 0xC2, 0x89, 0xCD, 0xA2),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_5_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xB9, 0xA8, 0x9D, 0xFD, 0x00, 0x3A, 0x1F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x41, 0x6C, 0xBB, 0x5A, 0xCA, 0x1F, 0x74),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xD7, 0xE2, 0x6C, 0x6B, 0xA7, 0x48, 0xC9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x19, 0xAD, 0xA7, 0xC1, 0x7E, 0x4F, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0xF7, 0x19, 0x3C, 0x06, 0x74, 0x2C, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x23, 0x4F, 0x0C, 0x09, 0xB0, 0x80, 0x4A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x74, 0x34, 0x08, 0x44, 0x7E, 0xA3, 0xDD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0xCC, 0x8D, 0x12, 0x6E, 0xE1, 0x3D, 0x0B),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_6_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x18, 0xB1, 0x71, 0x02, 0x93, 0xC2, 0xA4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x89, 0x40, 0xE2, 0x1F, 0xE7, 0x5E, 0x68),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x8E, 0xAE, 0x89, 0x01, 0xD4, 0x0C, 0xEB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0xDA, 0x58, 0x70, 0x24, 0xF2, 0xE4, 0x5F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0xC7, 0x1D, 0xD6, 0x4A, 0x6F, 0x66, 0x4F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x1D, 0x7E, 0x4A, 0x2C, 0xCA, 0xEC, 0x3B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x06, 0x7F, 0xA8, 0x99, 0xE4, 0xD3, 0x4E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x1D, 0x5A, 0xDF, 0x5E, 0x58, 0x36, 0x49),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_6_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0xB9, 0x32, 0x69, 0x1F, 0x72, 0x2A, 0xB3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x73, 0xE2, 0x03, 0x39, 0x35, 0xAA, 0xA8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x5E, 0x5D, 0x48, 0xEF, 0xAE, 0x30, 0xF5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x7F, 0x60, 0x19, 0xAF, 0xEC, 0x9D, 0xFC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0xD9, 0x19, 0xE4, 0x1B, 0x56, 0x15, 0x5F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xD7, 0x33, 0x59, 0x1F, 0x43, 0x59, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0xCE, 0xEE, 0xCA, 0xA4, 0x7F, 0x63, 0xD4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0x40, 0xC0, 0xF6, 0x19, 0x89, 0x43, 0x20),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_7_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x92, 0xEA, 0x07, 0x65, 0x79, 0x86, 0xD3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xB7, 0x13, 0x75, 0xD3, 0xC5, 0x0A, 0xC9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x9E, 0xFA, 0xE1, 0x1F, 0x0C, 0xF9, 0x74),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x8C, 0xED, 0x5C, 0x21, 0xE9, 0x09, 0xDD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0x4D, 0xD8, 0x18, 0xC4, 0xF6, 0x36, 0x39),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0xC9, 0xAC, 0x5C, 0xFA, 0x69, 0xA4, 0xA0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x8C, 0x94, 0x1C, 0x7B, 0x71, 0x36, 0x58),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0xBD, 0x46, 0xCE, 0xB7, 0x1D, 0x9C, 0x5E),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_7_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xD6, 0x96, 0x4B, 0xA6, 0x47, 0xEB, 0xE5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0xF1, 0x5F, 0x15, 0xDE, 0x99, 0x6F, 0x66),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xBD, 0xE5, 0x04, 0xB8, 0xE6, 0xC0, 0x0B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0xD3, 0xF0, 0x04, 0x00, 0xE4, 0x05, 0xDB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xF3, 0x06, 0xA3, 0x1A, 0xFF, 0xEA, 0x73),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x32, 0xAA, 0x99, 0x33, 0x09, 0xB6, 0x34),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6E, 0xEF, 0xFC, 0x61, 0x10, 0x42, 0x31, 0x94),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xF1, 0xF4, 0x33, 0xCF, 0x28, 0x90, 0x9C),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_8_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xDE, 0xF9, 0x88, 0x87, 0x7B, 0xEB, 0xC9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xB8, 0xDA, 0xFA, 0xDA, 0x3D, 0xA6, 0x17),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0xF0, 0x62, 0x82, 0x53, 0x32, 0x55, 0x03),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xA5, 0x32, 0x4A, 0x19, 0x11, 0x9C, 0x10),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0xB3, 0x27, 0xE9, 0x75, 0x90, 0x05, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x1C, 0x90, 0x48, 0x77, 0x01, 0x85, 0x1B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0xD6, 0x9B, 0x84, 0xA8, 0xD7, 0xC5, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x7A, 0xCB, 0xB3, 0x11, 0x46, 0xD7, 0x99),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_8_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0x23, 0xBF, 0x75, 0x75, 0xA1, 0x95, 0x90),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0x66, 0x5D, 0x34, 0x13, 0xA9, 0x03, 0xBE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x80, 0x9D, 0x5F, 0xD2, 0x44, 0xE1, 0x62),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x5D, 0xBD, 0xA8, 0xBF, 0xB4, 0x25, 0x1F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x99, 0x1F, 0x53, 0xF1, 0x57, 0xDB, 0xE7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x7C, 0xE5, 0xC5, 0x51, 0x0B, 0x4C, 0x9B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0xB0, 0x1A, 0x9C, 0x16, 0xB0, 0x32, 0x1F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0xE3, 0xCF, 0xDD, 0x48, 0xB4, 0x7B, 0x33),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_9_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0xDD, 0x9E, 0x3C, 0x98, 0x0E, 0x77, 0x65),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0xAB, 0x01, 0xD3, 0x87, 0x74, 0x25, 0x4A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0xA3, 0xE3, 0x76, 0x43, 0x87, 0x12, 0xBD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0xB1, 0x3B, 0x60, 0x66, 0xEB, 0x98, 0x54),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD2, 0x78, 0xC8, 0xD7, 0x4E, 0x75, 0xCA, 0x69),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xDF, 0x71, 0x19, 0xE7, 0x07, 0x36, 0xB5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xC9, 0xA8, 0x5F, 0x91, 0xBF, 0x47, 0xB2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x96, 0x58, 0x96, 0x18, 0xB6, 0xFA, 0x01),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_9_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x2D, 0xA9, 0x9B, 0x86, 0xDB, 0x0C, 0x4C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x0B, 0x2D, 0x56, 0x4A, 0xD3, 0x93, 0x8A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x15, 0xE2, 0x65, 0x12, 0x86, 0x0E, 0xB2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x41, 0x4D, 0xC1, 0xCB, 0xE4, 0xC3, 0xD7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x53, 0x10, 0xCA, 0xA3, 0xAC, 0x83, 0x26),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x01, 0x22, 0x96, 0x10, 0xAD, 0x69, 0xDB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x46, 0x4E, 0xD8, 0xEA, 0xD6, 0x9D, 0xF3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x2F, 0x7F, 0x62, 0x62, 0x80, 0xD0, 0x14),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_10_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0xDA, 0x00, 0x63, 0x09, 0xBD, 0x6A, 0x83),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xD4, 0x6E, 0x48, 0x05, 0xB7, 0xF7, 0x17),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0x4D, 0xD7, 0x00, 0x4A, 0x15, 0x27, 0x7A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x15, 0xAA, 0x37, 0x27, 0x34, 0x18, 0x24),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x20, 0x2C, 0x84, 0x1B, 0x88, 0xBA, 0x05),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x09, 0xD6, 0x04, 0xA2, 0x60, 0x84, 0x72),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x04, 0x94, 0x08, 0xD4, 0xED, 0x47, 0xDB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xF3, 0xE4, 0x3E, 0xB9, 0x5B, 0x35, 0x42),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_10_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0xD8, 0xB6, 0x80, 0xD6, 0xF1, 0x30, 0xDD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x14, 0xA6, 0x85, 0xEE, 0xA7, 0xD8, 0x61),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x49, 0x2A, 0x1E, 0x7C, 0xE9, 0x2D, 0xEC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x87, 0x56, 0x91, 0x03, 0x77, 0x4D, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0x52, 0xD4, 0xAA, 0xF7, 0xFA, 0xB0, 0xC5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x5D, 0x11, 0x39, 0xB1, 0xE7, 0x76, 0xAD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x13, 0xBC, 0x37, 0x5D, 0x74, 0xCD, 0xC2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x48, 0x14, 0x23, 0x30, 0xF8, 0x46, 0x37),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_11_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x27, 0xB0, 0xD9, 0xB2, 0x74, 0xB4, 0xC0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xA6, 0xB9, 0x6F, 0x9F, 0x64, 0x36, 0x92),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2E, 0x2B, 0x78, 0x40, 0x05, 0x2B, 0x7B, 0xA9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x68, 0x3A, 0xB6, 0x4A, 0xE2, 0xDB, 0xB8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x33, 0xD7, 0x34, 0x8B, 0x25, 0x45, 0xEF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0xCE, 0xA8, 0xC9, 0x01, 0xFB, 0x0E, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0xF9, 0x51, 0x4C, 0x12, 0x9F, 0x60, 0xE4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0x85, 0xBD, 0x30, 0x37, 0x84, 0x39, 0x44),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_11_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x33, 0xAF, 0x2E, 0xB8, 0x2E, 0xCC, 0x3C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0xB1, 0x73, 0x59, 0x4E, 0x0C, 0x09, 0x4A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x24, 0x89, 0x81, 0x12, 0xFF, 0xBB, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x37, 0x1A, 0x66, 0xEE, 0xED, 0xB6, 0x9B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0xBD, 0x04, 0x20, 0x5D, 0xFB, 0xBF, 0x95),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0xF8, 0x34, 0xA3, 0xFF, 0x45, 0xDE, 0x92),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x18, 0x73, 0xF1, 0x32, 0x25, 0x58, 0xEB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0xC1, 0x14, 0xE3, 0x9E, 0x40, 0x0F, 0x12),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_12_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x07, 0x9D, 0x9C, 0x00, 0xF7, 0x56, 0x19),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0xBA, 0x87, 0xF9, 0x15, 0x0C, 0x66, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x1F, 0xC1, 0x28, 0xB0, 0x47, 0x0D, 0xF5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xCA, 0x27, 0xEE, 0x4B, 0x23, 0x2B, 0x89),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0xB5, 0x68, 0xC8, 0x17, 0x5D, 0xC3, 0xAA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x02, 0x08, 0xEE, 0x20, 0x9D, 0xEA, 0x64),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x14, 0x50, 0xD4, 0x7D, 0x5F, 0xCF, 0xA0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0xFA, 0xF8, 0xA7, 0xC6, 0xDC, 0x14, 0x8C),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_12_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0xBD, 0x0A, 0x1A, 0x18, 0x98, 0xDC, 0xB0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x63, 0x02, 0xB7, 0xD5, 0x5B, 0x5A, 0xC6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xB1, 0xD7, 0x4B, 0x15, 0x39, 0x61, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0x32, 0xE1, 0x9E, 0x70, 0x1B, 0xCE, 0x51),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0xD8, 0x18, 0x83, 0x52, 0x9B, 0x6D, 0xA2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x55, 0x56, 0x19, 0x34, 0xA4, 0xEA, 0xFC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0xA9, 0x55, 0x80, 0xE3, 0x15, 0x36, 0x8B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x06, 0xC8, 0x1D, 0x17, 0x0D, 0xAD, 0x16),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_13_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x20, 0xD6, 0xF0, 0xCC, 0xF3, 0x63, 0x53, 0xD2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x5A, 0xDC, 0x46, 0xBD, 0x0D, 0xAD, 0x96),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x2F, 0x11, 0x60, 0x15, 0x51, 0x4A, 0xEA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0xE3, 0x93, 0x38, 0xD5, 0x83, 0xAA, 0x0D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0xA6, 0xCC, 0xB1, 0xFD, 0xBB, 0x1A, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0x54, 0xC8, 0x54, 0x6F, 0x79, 0x1A, 0x59),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x4A, 0xDA, 0x28, 0x92, 0x97, 0x9D, 0x7F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x4B, 0xDB, 0xC7, 0x52, 0xC5, 0x66, 0x34),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_13_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x7E, 0x92, 0x53, 0x30, 0x93, 0xFD, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x16, 0x6A, 0xB1, 0x91, 0x0A, 0xB4, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x9D, 0x40, 0x3F, 0xE3, 0xF1, 0x01, 0x46),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x0E, 0xD8, 0xED, 0x11, 0x8E, 0x4C, 0xED),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x4A, 0x1B, 0x88, 0xDF, 0x8D, 0x29, 0xE7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x23, 0x21, 0x11, 0xAB, 0x77, 0x81, 0x62),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0xAF, 0x11, 0xFA, 0xBA, 0x40, 0x63, 0xE7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0x6F, 0x8D, 0x80, 0xDF, 0x67, 0xF5, 0x44),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_14_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0x8B, 0xB7, 0x08, 0xF4, 0xD7, 0x2D, 0xA8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0x2B, 0x30, 0x02, 0x45, 0x71, 0x08, 0x49),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x3A, 0xCA, 0x50, 0xF6, 0xC2, 0x19, 0x8C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xB9, 0x9B, 0x3E, 0x73, 0x95, 0x1D, 0x49),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x60, 0x59, 0x48, 0xCB, 0xD8, 0xD6, 0xAA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0xB9, 0x6C, 0x89, 0xAB, 0x99, 0xA8, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0xA1, 0x8B, 0x4E, 0x06, 0x19, 0xEC, 0x99),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x95, 0x04, 0xCF, 0xD5, 0x94, 0xB3, 0x02),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_14_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x35, 0x93, 0x7C, 0xB3, 0xB8, 0x9E, 0x1B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0x45, 0x5C, 0x7E, 0xBF, 0x75, 0x81, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDC, 0xE8, 0x24, 0xDF, 0xEC, 0x2F, 0x7D, 0xB9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x8B, 0xD5, 0x6A, 0x9B, 0xA0, 0xE0, 0x4F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0xE3, 0x27, 0x82, 0xDE, 0xDD, 0xCA, 0x4B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x57, 0x56, 0x46, 0x05, 0x06, 0x01, 0x2E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x35, 0xA7, 0x47, 0xE2, 0x6B, 0x2C, 0x4F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x9D, 0x4C, 0xEC, 0x1F, 0x11, 0x75, 0x2B),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_15_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xAA, 0x41, 0xC1, 0xE9, 0x0E, 0xE9, 0xAA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0xCF, 0x9C, 0x4B, 0xE8, 0xED, 0x0A, 0x49),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0x73, 0xCA, 0x0C, 0x46, 0x0A, 0x9C, 0xE4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xE1, 0x9E, 0xBC, 0xFE, 0x44, 0x63, 0x6D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0x43, 0x71, 0xEE, 0xF8, 0xC1, 0x8C, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x4B, 0xF0, 0x69, 0x25, 0xBD, 0x71, 0x1A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0x9A, 0xFE, 0x82, 0xE7, 0xC1, 0xC1, 0xEE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x5A, 0x6E, 0x5E, 0x97, 0x6A, 0x35, 0x8D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_15_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA2, 0x18, 0x6C, 0x7E, 0xB8, 0x9E, 0x57, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0xB9, 0xC1, 0xD0, 0xFE, 0x78, 0xFB, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x08, 0xAE, 0x46, 0x34, 0xEA, 0x7A, 0x7F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x1C, 0x56, 0xA9, 0x18, 0x37, 0xD4, 0x9E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x63, 0xE9, 0x0A, 0xB6, 0x38, 0x3C, 0xC1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x4F, 0xA4, 0x6E, 0x85, 0x31, 0x23, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0xAD, 0xC4, 0xC3, 0xB1, 0x4B, 0x1C, 0x82),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x56, 0x4A, 0x38, 0xB3, 0x6B, 0x6F, 0x2C),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_16_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0xC7, 0x19, 0xDE, 0x21, 0xED, 0x89, 0xD0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xBE, 0xA6, 0xAE, 0xEB, 0x9D, 0xA7, 0x2A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x0E, 0x13, 0x1E, 0x86, 0x57, 0xC3, 0x3B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x4B, 0x30, 0x46, 0x52, 0xC1, 0xEC, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6E, 0xD5, 0x44, 0x31, 0x96, 0x3B, 0x26, 0x27),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x68, 0xA8, 0x67, 0x78, 0x39, 0xE8, 0x68),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x78, 0xB7, 0xDD, 0xF2, 0x58, 0xB6, 0x3D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x3C, 0xB3, 0x26, 0xC4, 0x2C, 0x8C, 0xA5),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_16_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x24, 0xE5, 0x73, 0xEE, 0x9A, 0x02, 0xA9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x6A, 0x65, 0x60, 0xF3, 0x62, 0xE3, 0xE9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0x07, 0x84, 0xE6, 0x3B, 0x46, 0x65, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x8F, 0x0C, 0xB0, 0xE1, 0x04, 0x82, 0x9D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x13, 0xBF, 0x3D, 0xA0, 0x48, 0xA2, 0x74),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x26, 0x76, 0x74, 0xAB, 0x0B, 0x29, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x6E, 0x5F, 0x03, 0x34, 0x7C, 0x38, 0xCE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0x72, 0xF9, 0x3B, 0x3C, 0xA4, 0xBC, 0x7C),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_17_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xCE, 0x18, 0x80, 0xB8, 0x24, 0x45, 0x81),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x09, 0x03, 0xB8, 0x06, 0x64, 0xF7, 0xEC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x26, 0xB1, 0x10, 0x6D, 0x71, 0x12, 0x2E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x12, 0xC6, 0x6E, 0x1E, 0x6A, 0xC3, 0x80),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0xD3, 0x0A, 0xDE, 0xD8, 0x6B, 0x04, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x87, 0x5B, 0xAE, 0xDB, 0x3C, 0xC0, 0xC5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0xF5, 0xF9, 0xC1, 0x9A, 0x89, 0xBB, 0x7E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0x69, 0x72, 0x8B, 0xAE, 0x32, 0x13, 0x11),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_17_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x16, 0x07, 0x50, 0xFA, 0x4C, 0xCF, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x50, 0x21, 0xE9, 0xDE, 0xEC, 0x7E, 0xDF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x2F, 0xE8, 0x83, 0x30, 0x0B, 0x65, 0x0E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x0B, 0x99, 0xAC, 0xC9, 0xBA, 0x6C, 0x2A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x59, 0x5A, 0x0D, 0x7B, 0x9E, 0x08, 0xAD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x91, 0xB2, 0xDC, 0x90, 0xCE, 0x67, 0xED),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x93, 0x60, 0x0C, 0xD7, 0x1F, 0x2F, 0x17),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x7F, 0x9D, 0x40, 0xF8, 0x78, 0x7A, 0x54),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_18_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x22, 0x95, 0xE8, 0xEF, 0x31, 0x57, 0x35),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0x88, 0x53, 0xFE, 0xAF, 0x7C, 0x47, 0x14),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xCE, 0xCC, 0x79, 0xE8, 0x9F, 0x8C, 0xC4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x16, 0xDD, 0x77, 0x6E, 0x8A, 0x73, 0x97),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0x07, 0x97, 0x21, 0x3B, 0xF8, 0x5F, 0xA8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0xB5, 0xD2, 0x81, 0x84, 0xF0, 0xE7, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x8F, 0x75, 0x09, 0x6A, 0x0E, 0x53, 0xAD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x4F, 0x70, 0x97, 0xC7, 0xAC, 0x7D, 0x3F),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_18_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x3C, 0x6A, 0xB4, 0x10, 0xA9, 0xC8, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0xC5, 0xD6, 0x69, 0x16, 0xB8, 0xAC, 0x25),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x44, 0xDC, 0xEB, 0x48, 0x54, 0x5D, 0x5F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x48, 0x9B, 0xD7, 0x72, 0x69, 0xA4, 0x8A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x0D, 0x36, 0x9A, 0x66, 0x0B, 0xEC, 0x24),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0xC6, 0xD4, 0xB6, 0x60, 0xE5, 0xC3, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x29, 0x42, 0xE0, 0x9D, 0xFD, 0x7C, 0x3E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x10, 0xBA, 0x55, 0xBC, 0x3B, 0x38, 0x5D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_19_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0x66, 0xFA, 0x05, 0x73, 0x03, 0x1B, 0x69),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xA4, 0x66, 0x12, 0x96, 0x7B, 0x02, 0x4C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0xB5, 0xDE, 0x6D, 0x98, 0xD1, 0xD5, 0xA8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0xF5, 0x44, 0xB8, 0x8E, 0xF6, 0x8C, 0x05),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x15, 0x2B, 0x72, 0xBC, 0x49, 0xE5, 0xDF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x44, 0xD7, 0xDF, 0x8F, 0xEB, 0x8D, 0x80),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x64, 0x88, 0xAA, 0xB7, 0xE4, 0x70, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0x14, 0xBB, 0xE9, 0x9B, 0xB9, 0x65, 0x5D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_19_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0x8E, 0x88, 0xF5, 0xF1, 0xC1, 0x89, 0xA2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x30, 0x53, 0xE6, 0xFB, 0x2D, 0x82, 0xB4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0xE4, 0xFF, 0xBA, 0x31, 0x79, 0xAB, 0xC2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x09, 0xF7, 0xB7, 0x09, 0x78, 0x4C, 0x90),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xAE, 0xC2, 0x44, 0xDC, 0x17, 0x78, 0x47),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0xD4, 0x17, 0x43, 0x19, 0x74, 0x9E, 0x23),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x64, 0x3B, 0x73, 0xA2, 0x99, 0x27, 0x76),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x74, 0x36, 0x5F, 0xD3, 0x14, 0xB1, 0x31),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_20_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x07, 0xAB, 0xFD, 0x9B, 0x03, 0xC5, 0xD5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0xBE, 0xB0, 0x1D, 0xF2, 0x0C, 0x73, 0x73),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xE7, 0x7B, 0x87, 0xD3, 0x34, 0xFD, 0xE2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x25, 0x3D, 0xC7, 0x36, 0x83, 0x53, 0xDC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0x7C, 0xCF, 0x63, 0x55, 0x12, 0x11, 0xB0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0x34, 0x4D, 0x27, 0x92, 0xAC, 0x18, 0x16),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x42, 0x61, 0x9D, 0x2E, 0xFF, 0x13, 0x16),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0xDE, 0x92, 0x65, 0x57, 0x0D, 0xBC, 0x0A),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_20_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x7B, 0x6E, 0xC6, 0x2A, 0x21, 0x74, 0x0A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0xA7, 0x53, 0x4D, 0x29, 0x36, 0xEF, 0xE5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0xD6, 0x41, 0xC7, 0x99, 0xAD, 0x50, 0x53),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xAC, 0x41, 0x9F, 0xFB, 0x4C, 0x86, 0xF1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xBB, 0xE6, 0x25, 0x28, 0xAA, 0xEB, 0x1E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x04, 0xA2, 0xC3, 0xAA, 0x08, 0x8A, 0xCC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x2B, 0x5B, 0xE2, 0x8D, 0x76, 0xEA, 0x34),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x33, 0xD2, 0x21, 0x4D, 0x62, 0xE3, 0x8E),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_21_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0x06, 0x8B, 0x2B, 0xC2, 0xC4, 0xB1, 0xD2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xF5, 0xA1, 0xC0, 0x03, 0x6A, 0x29, 0x12),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xA9, 0xEF, 0x55, 0xB6, 0x1A, 0x9F, 0x6B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x54, 0x32, 0xBE, 0x06, 0x43, 0xB5, 0xFD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0xD6, 0xD9, 0x20, 0x89, 0xBE, 0xD4, 0x1B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x26, 0x95, 0x10, 0xCE, 0xB4, 0x88, 0x79),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xA6, 0x27, 0xAC, 0x32, 0xBA, 0xBD, 0xC7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0xA6, 0xAE, 0x9C, 0x7B, 0xBE, 0xA1, 0x63),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_21_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xCD, 0x4D, 0x3D, 0xDF, 0x96, 0xBB, 0x7D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0xA7, 0x11, 0x06, 0xCC, 0x0E, 0x31, 0x81),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x20, 0xE4, 0xF4, 0xAD, 0x7B, 0x5F, 0xF1, 0xEF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x54, 0xBE, 0xF4, 0x8A, 0x03, 0x47, 0xDF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x53, 0x00, 0x7F, 0xB0, 0x8A, 0x68, 0xA6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x16, 0xB1, 0x73, 0x6F, 0x5B, 0x0E, 0xC3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x32, 0xE3, 0x43, 0x64, 0x75, 0xFB, 0xFB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x18, 0x55, 0x8A, 0x4E, 0x6E, 0x35, 0x54),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_22_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x97, 0x15, 0x1E, 0xCB, 0xF2, 0x9C, 0xA5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0xD1, 0xBB, 0xF3, 0x70, 0xAD, 0x13, 0xAD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0x96, 0xA4, 0xC5, 0x5E, 0xDA, 0xD5, 0x57),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x81, 0xE9, 0x65, 0x66, 0x76, 0x47, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x35, 0x87, 0x06, 0x73, 0xCF, 0x34, 0xD2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x81, 0x15, 0x42, 0xA2, 0x79, 0x5B, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0xA2, 0x7D, 0x09, 0x14, 0x64, 0xC6, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x6D, 0xC4, 0xED, 0xF1, 0xD6, 0xE9, 0x24),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_22_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xD5, 0xBB, 0x25, 0xA3, 0xDD, 0xA3, 0x88),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0xF2, 0x68, 0x67, 0x39, 0x8F, 0x73, 0x93),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x76, 0x28, 0x89, 0xAD, 0x32, 0xE0, 0xDF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x90, 0xCC, 0x57, 0x58, 0xAA, 0xC9, 0x75),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0xD7, 0x43, 0xD2, 0xCE, 0x5E, 0xA0, 0x08),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0xB0, 0xB8, 0xA4, 0x9E, 0x96, 0x26, 0x86),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x61, 0x1D, 0xF3, 0x65, 0x5E, 0x60, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0x1E, 0x65, 0xED, 0xCF, 0x07, 0x60, 0x20),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_23_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x30, 0x17, 0x8A, 0x91, 0x88, 0x0A, 0xA4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x7D, 0x18, 0xA4, 0xAC, 0x59, 0xFC, 0x5F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x31, 0x8B, 0x25, 0x65, 0x39, 0x9A, 0xDC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x16, 0x4B, 0x68, 0xBA, 0x59, 0x13, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xFD, 0xD3, 0xC5, 0x56, 0xC9, 0x8C, 0x5E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xC6, 0x9F, 0xF4, 0xE6, 0xF7, 0xB4, 0x01),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0x7C, 0x03, 0x00, 0x26, 0x9F, 0xD8, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x1D, 0x6E, 0x00, 0xB9, 0x00, 0x6E, 0x93),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_23_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0x63, 0xDA, 0x03, 0x2B, 0xD5, 0x0B, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0xFC, 0xE2, 0xC8, 0x47, 0xF0, 0xAE, 0xF2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0x4C, 0xF7, 0x50, 0x0C, 0x48, 0x06, 0x2A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x2B, 0x32, 0x98, 0x0E, 0x7E, 0x61, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x02, 0x27, 0xFE, 0x75, 0x86, 0xDF, 0x24),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0x30, 0xB1, 0x22, 0x32, 0x1B, 0xFE, 0x24),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x27, 0xF7, 0x78, 0x6F, 0xD7, 0xFD, 0xE4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x78, 0xCC, 0xEA, 0xC0, 0x50, 0x24, 0x44),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_24_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x2B, 0x4F, 0x7F, 0x58, 0xE6, 0xC2, 0x70),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x43, 0xD5, 0xA7, 0x35, 0x3C, 0x80, 0xB8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x6D, 0x4B, 0x12, 0x00, 0x7B, 0xE6, 0xA6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x15, 0xBD, 0xD0, 0x9B, 0xCA, 0xAA, 0x81),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0xCE, 0x9C, 0xE3, 0x8B, 0x60, 0x7A, 0x53),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0xDA, 0x4B, 0x03, 0xA7, 0x8D, 0x43, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0xAF, 0x00, 0x2B, 0x32, 0xF0, 0x22, 0x68),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDC, 0xD9, 0x99, 0x99, 0xBE, 0x43, 0x99, 0x3E),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_24_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x71, 0x41, 0xF4, 0xB5, 0xFD, 0xDD, 0x36),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0xE2, 0x20, 0x4C, 0xD1, 0x2E, 0x1F, 0x06),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x43, 0x48, 0x76, 0x8A, 0x49, 0xAC, 0x87),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0x1A, 0x55, 0xA8, 0xA3, 0xD4, 0x57, 0x75),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0xA6, 0x84, 0x39, 0xC9, 0x13, 0xBB, 0x60),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0xFA, 0xA9, 0x70, 0xDE, 0x83, 0xDD, 0xC9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0xC9, 0xD9, 0x3E, 0x44, 0x91, 0x68, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x9F, 0x85, 0x6D, 0xF7, 0x54, 0x36, 0x82),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_25_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x6B, 0xA6, 0xA3, 0xE5, 0xD4, 0x46, 0xDB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0x3E, 0xDC, 0x84, 0x7C, 0x7B, 0x24, 0x34),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0xED, 0x7F, 0x86, 0x07, 0x6C, 0x57, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0x06, 0xFE, 0x52, 0x12, 0x79, 0x69, 0x56),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0xD1, 0x44, 0x5F, 0x21, 0x3A, 0xC3, 0x84),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0xD9, 0x4A, 0xC0, 0x75, 0xAB, 0x17, 0xAC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x81, 0x94, 0xB6, 0x80, 0x6B, 0x6F, 0xC3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xBE, 0x8E, 0xA5, 0xAA, 0xBC, 0x1E, 0x3E),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_25_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0xC7, 0x85, 0xA6, 0x59, 0x9B, 0xB1, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0xCE, 0x40, 0xD1, 0xFB, 0xDF, 0x94, 0xF7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0xB8, 0x5E, 0xBF, 0x45, 0xA8, 0x2D, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x9C, 0x06, 0x1B, 0xA9, 0x57, 0xB9, 0x79),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0xE9, 0xCE, 0xA2, 0xD3, 0x74, 0xA1, 0x3C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x5F, 0x34, 0x78, 0xDB, 0xAE, 0x3A, 0x14),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x32, 0x84, 0x3E, 0x68, 0x6A, 0x43, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0xBC, 0x39, 0x36, 0xA4, 0xC5, 0xBB, 0x11),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_26_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0x07, 0xA2, 0xB5, 0xC9, 0x0F, 0x4D, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x1D, 0x67, 0xE6, 0xF1, 0x46, 0xEB, 0x71),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0x41, 0x23, 0x95, 0xE7, 0xE0, 0x10, 0xDD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x69, 0xFE, 0x68, 0x8C, 0xC6, 0x5F, 0xB6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0xB9, 0x2B, 0x3D, 0xD2, 0x4F, 0xD8, 0x1A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0x09, 0xF5, 0x5F, 0xCF, 0xF6, 0x91, 0x57),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x15, 0x42, 0x6B, 0x6D, 0xB5, 0xF3, 0xB6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x56, 0x9D, 0xC5, 0xFF, 0xCA, 0x13, 0x9B),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_26_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0x38, 0xE6, 0x23, 0x63, 0x48, 0x3C, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD2, 0x68, 0x3C, 0xD1, 0x3B, 0xE9, 0x3B, 0x82),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x08, 0x54, 0x49, 0xD1, 0x46, 0x45, 0x13),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x70, 0x52, 0x6E, 0x79, 0xC4, 0x5E, 0x95),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0xDF, 0xE8, 0x5A, 0x32, 0x81, 0xDA, 0xD3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0x2D, 0x94, 0x5B, 0xB5, 0x35, 0x9F, 0x0A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x12, 0x8D, 0xC3, 0x36, 0x36, 0xB2, 0x2A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0x2F, 0x22, 0x38, 0x5B, 0x18, 0x4C, 0x35),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_27_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xC1, 0x22, 0x0E, 0xF0, 0x73, 0x11, 0x05),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0xAE, 0xA4, 0x56, 0x18, 0x61, 0x66, 0x12),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0xFB, 0x72, 0x08, 0x84, 0x38, 0x51, 0xB0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x86, 0xA8, 0xB9, 0x31, 0x99, 0x29, 0xC3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0xFB, 0xC3, 0x42, 0xB3, 0xC7, 0x6F, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xF8, 0xE1, 0x09, 0xBE, 0x75, 0xB0, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x7D, 0xFF, 0xF4, 0x99, 0xFC, 0x13, 0xAB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x1B, 0x84, 0x81, 0x42, 0x22, 0xC6, 0x3D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_27_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xE0, 0x37, 0xA4, 0xA0, 0x2F, 0x38, 0x7F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x3D, 0xB7, 0x40, 0x2F, 0x39, 0x3C, 0x7A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0x3B, 0x8A, 0x51, 0xAE, 0x40, 0x49, 0x7A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0x20, 0x9F, 0xDD, 0xA9, 0xD0, 0x77, 0xC7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0x1D, 0x64, 0xDA, 0xA0, 0x53, 0xC7, 0x7D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x7B, 0x66, 0x55, 0x94, 0xD1, 0x51, 0x44),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xA9, 0xB5, 0x5B, 0x38, 0x35, 0x40, 0xC0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0xC9, 0x0F, 0xF0, 0x73, 0x79, 0x43, 0x61),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_28_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x47, 0x45, 0x69, 0x80, 0x72, 0x72, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x11, 0x99, 0x59, 0xDB, 0x48, 0x80, 0x39),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0x6E, 0x3D, 0xFC, 0x37, 0x15, 0xF4, 0xBF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xBB, 0x5B, 0xA6, 0x35, 0x8D, 0x28, 0x20),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x1A, 0x3B, 0x2C, 0x8F, 0xD3, 0xAA, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x1C, 0x1A, 0xF8, 0x02, 0xD9, 0x7B, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0x69, 0xAC, 0xF8, 0x54, 0x31, 0x14, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x8A, 0xE6, 0xDE, 0x58, 0xB9, 0xC4, 0x7A),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_28_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x83, 0x52, 0xFE, 0xF9, 0x7B, 0xE9, 0x1F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xA2, 0x55, 0x46, 0x15, 0x49, 0xC1, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0xBC, 0x5C, 0x91, 0xBD, 0xB9, 0x9C, 0xF4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0xFD, 0xB1, 0x4E, 0x5F, 0x74, 0xEE, 0x53),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0x8B, 0xD8, 0x8B, 0x17, 0x73, 0x1B, 0x96),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0x92, 0xD7, 0x67, 0x06, 0xAD, 0x25, 0xCD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x0F, 0x80, 0x24, 0xE2, 0x27, 0x5F, 0x8B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x1C, 0xCE, 0xD0, 0x67, 0xCA, 0xD4, 0x0B),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_29_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0xF1, 0xDD, 0x33, 0x66, 0xF9, 0x05, 0xD6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0xE5, 0x6B, 0x79, 0xBD, 0x48, 0x42, 0xAA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0x14, 0x52, 0xE3, 0x53, 0xB4, 0x50, 0xD4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x84, 0x6C, 0xCF, 0xDA, 0xB2, 0x20, 0x0A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0xD6, 0x1A, 0xE5, 0xE2, 0x29, 0x70, 0xCE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x61, 0xFE, 0xBB, 0x21, 0x82, 0xD1, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0xF0, 0x9C, 0x8B, 0x1A, 0x42, 0x30, 0x06),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0xD6, 0x49, 0x81, 0x92, 0xF1, 0xD0, 0x90),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_29_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x91, 0x93, 0x6A, 0xA6, 0x22, 0xE9, 0xD6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0xDC, 0xC3, 0x69, 0x11, 0x95, 0x7D, 0xEC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0xA3, 0x9D, 0x87, 0x5E, 0x64, 0x41, 0xA2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x87, 0x5A, 0x15, 0xBD, 0x6E, 0x3C, 0x8D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x8D, 0x50, 0xCC, 0xCF, 0xB7, 0x8F, 0x0B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x65, 0xCD, 0x31, 0x30, 0xF1, 0x68, 0x13),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x5C, 0x66, 0x67, 0x92, 0x30, 0x57, 0x95),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0x9B, 0x01, 0x3D, 0x20, 0x8B, 0xD1, 0x0D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_30_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0xC0, 0xE6, 0x4F, 0xDE, 0x62, 0xAB, 0xB3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x48, 0xB3, 0x1C, 0x0F, 0x16, 0x93, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x63, 0xBD, 0x1F, 0x16, 0x50, 0x56, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x06, 0xBC, 0xE9, 0x27, 0x1C, 0x9A, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0xFE, 0x21, 0xC5, 0x39, 0x55, 0xE1, 0xFD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xA8, 0xD0, 0x96, 0x0E, 0xB5, 0xB2, 0x84),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xE7, 0x4B, 0xF3, 0x11, 0x0C, 0xC9, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x3A, 0xC4, 0x87, 0x71, 0xEE, 0xFA, 0x18),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_30_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x77, 0xEE, 0x81, 0x5E, 0x96, 0xEA, 0x4B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0xDF, 0xA9, 0xF4, 0x4F, 0x7C, 0xB2, 0x43),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0xD4, 0xDF, 0x35, 0x63, 0x47, 0x25, 0x8A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x3D, 0xFF, 0xA4, 0x02, 0xC3, 0x95, 0x11),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x10, 0x78, 0xD1, 0x2B, 0xB7, 0xBE, 0x0E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0xE9, 0x57, 0xF9, 0xE0, 0xD8, 0xFC, 0xBC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0xC4, 0x01, 0xD6, 0xB4, 0xE7, 0x78, 0xE2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x6C, 0xB9, 0x13, 0xA4, 0xE8, 0x6D, 0x6F),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_31_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0xB0, 0xC9, 0xCD, 0xBF, 0xA2, 0x1E, 0x63),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x4F, 0x86, 0x22, 0x9B, 0xEA, 0xE8, 0xBB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x46, 0xDF, 0x43, 0xB9, 0x82, 0x2D, 0x0A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x32, 0xF1, 0x4E, 0x95, 0x41, 0xAE, 0x8E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0x93, 0x26, 0xFC, 0xD3, 0x90, 0xDC, 0xEB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x05, 0x45, 0xCA, 0xF9, 0x5A, 0x89, 0x93),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x82, 0x63, 0x4E, 0x55, 0x1D, 0x3A, 0x08),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x69, 0x52, 0x49, 0xE9, 0xED, 0x57, 0x34),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_31_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x64, 0xE9, 0xAC, 0x4C, 0x4A, 0xEA, 0x25),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0xE9, 0x0B, 0x99, 0xE7, 0xF9, 0xA9, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x0C, 0xC1, 0xF4, 0x8D, 0x07, 0xB6, 0xB1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x68, 0xFA, 0x35, 0xE4, 0x9E, 0xAE, 0xD9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x2D, 0x1A, 0x13, 0x8E, 0x02, 0xE2, 0x63),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x38, 0x28, 0x86, 0x46, 0x7B, 0x3A, 0xE1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x4C, 0x64, 0x59, 0x0A, 0xF9, 0x02, 0xC4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x4F, 0x23, 0xA2, 0xC3, 0xD5, 0xEF, 0x42),
+};
+static const mbedtls_ecp_point brainpoolP512r1_T[32] = {
+    ECP_POINT_INIT_XY_Z1(brainpoolP512r1_T_0_X, brainpoolP512r1_T_0_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_1_X, brainpoolP512r1_T_1_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_2_X, brainpoolP512r1_T_2_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_3_X, brainpoolP512r1_T_3_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_4_X, brainpoolP512r1_T_4_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_5_X, brainpoolP512r1_T_5_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_6_X, brainpoolP512r1_T_6_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_7_X, brainpoolP512r1_T_7_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_8_X, brainpoolP512r1_T_8_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_9_X, brainpoolP512r1_T_9_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_10_X, brainpoolP512r1_T_10_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_11_X, brainpoolP512r1_T_11_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_12_X, brainpoolP512r1_T_12_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_13_X, brainpoolP512r1_T_13_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_14_X, brainpoolP512r1_T_14_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_15_X, brainpoolP512r1_T_15_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_16_X, brainpoolP512r1_T_16_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_17_X, brainpoolP512r1_T_17_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_18_X, brainpoolP512r1_T_18_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_19_X, brainpoolP512r1_T_19_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_20_X, brainpoolP512r1_T_20_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_21_X, brainpoolP512r1_T_21_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_22_X, brainpoolP512r1_T_22_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_23_X, brainpoolP512r1_T_23_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_24_X, brainpoolP512r1_T_24_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_25_X, brainpoolP512r1_T_25_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_26_X, brainpoolP512r1_T_26_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_27_X, brainpoolP512r1_T_27_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_28_X, brainpoolP512r1_T_28_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_29_X, brainpoolP512r1_T_29_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_30_X, brainpoolP512r1_T_30_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_31_X, brainpoolP512r1_T_31_Y),
+};
+#else
+#define brainpoolP512r1_T NULL
+#endif
+#endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
+
+#if defined(ECP_LOAD_GROUP)
+/*
+ * Create an MPI from embedded constants
+ * (assumes len is an exact multiple of sizeof(mbedtls_mpi_uint))
+ */
+static inline void ecp_mpi_load(mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len)
+{
+    X->s = 1;
+    X->n = (unsigned short) (len / sizeof(mbedtls_mpi_uint));
+    X->p = (mbedtls_mpi_uint *) p;
+}
+
+/*
+ * Set an MPI to static value 1
+ */
+static inline void ecp_mpi_set1(mbedtls_mpi *X)
+{
+    X->s = 1;
+    X->n = 1;
+    X->p = (mbedtls_mpi_uint *) mpi_one; /* X->p will not be modified so the cast is safe */
+}
+
+/*
+ * Make group available from embedded constants
+ */
+static int ecp_group_load(mbedtls_ecp_group *grp,
+                          const mbedtls_mpi_uint *p,  size_t plen,
+                          const mbedtls_mpi_uint *a,  size_t alen,
+                          const mbedtls_mpi_uint *b,  size_t blen,
+                          const mbedtls_mpi_uint *gx, size_t gxlen,
+                          const mbedtls_mpi_uint *gy, size_t gylen,
+                          const mbedtls_mpi_uint *n,  size_t nlen,
+                          const mbedtls_ecp_point *T)
+{
+    ecp_mpi_load(&grp->P, p, plen);
+    if (a != NULL) {
+        ecp_mpi_load(&grp->A, a, alen);
+    }
+    ecp_mpi_load(&grp->B, b, blen);
+    ecp_mpi_load(&grp->N, n, nlen);
+
+    ecp_mpi_load(&grp->G.X, gx, gxlen);
+    ecp_mpi_load(&grp->G.Y, gy, gylen);
+    ecp_mpi_set1(&grp->G.Z);
+
+    grp->pbits = mbedtls_mpi_bitlen(&grp->P);
+    grp->nbits = mbedtls_mpi_bitlen(&grp->N);
+
+    grp->h = 1;
+
+    grp->T = (mbedtls_ecp_point *) T;
+    /*
+     * Set T_size to 0 to prevent T free by mbedtls_ecp_group_free.
+     */
+    grp->T_size = 0;
+
+    return 0;
+}
+#endif /* ECP_LOAD_GROUP */
+
+#if defined(MBEDTLS_ECP_NIST_OPTIM)
+/* Forward declarations */
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+static int ecp_mod_p192(mbedtls_mpi *);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+static int ecp_mod_p224(mbedtls_mpi *);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+static int ecp_mod_p256(mbedtls_mpi *);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+static int ecp_mod_p384(mbedtls_mpi *);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+static int ecp_mod_p521(mbedtls_mpi *);
+#endif
+
+#define NIST_MODP(P)      grp->modp = ecp_mod_ ## P;
+#else
+#define NIST_MODP(P)
+#endif /* MBEDTLS_ECP_NIST_OPTIM */
+
+/* Additional forward declarations */
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+static int ecp_mod_p255(mbedtls_mpi *);
+#endif
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+static int ecp_mod_p448(mbedtls_mpi *);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+static int ecp_mod_p192k1(mbedtls_mpi *);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+static int ecp_mod_p224k1(mbedtls_mpi *);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+static int ecp_mod_p256k1(mbedtls_mpi *);
+#endif
+
+#if defined(ECP_LOAD_GROUP)
+#define LOAD_GROUP_A(G)   ecp_group_load(grp,            \
+                                         G ## _p,  sizeof(G ## _p),   \
+                                         G ## _a,  sizeof(G ## _a),   \
+                                         G ## _b,  sizeof(G ## _b),   \
+                                         G ## _gx, sizeof(G ## _gx),   \
+                                         G ## _gy, sizeof(G ## _gy),   \
+                                         G ## _n,  sizeof(G ## _n),   \
+                                         G ## _T                         \
+                                         )
+
+#define LOAD_GROUP(G)     ecp_group_load(grp,            \
+                                         G ## _p,  sizeof(G ## _p),   \
+                                         NULL,     0,                    \
+                                         G ## _b,  sizeof(G ## _b),   \
+                                         G ## _gx, sizeof(G ## _gx),   \
+                                         G ## _gy, sizeof(G ## _gy),   \
+                                         G ## _n,  sizeof(G ## _n),   \
+                                         G ## _T                         \
+                                         )
+#endif /* ECP_LOAD_GROUP */
+
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+/* Constants used by ecp_use_curve25519() */
+static const mbedtls_mpi_sint curve25519_a24 = 0x01DB42;
+static const unsigned char curve25519_part_of_n[] = {
+    0x14, 0xDE, 0xF9, 0xDE, 0xA2, 0xF7, 0x9C, 0xD6,
+    0x58, 0x12, 0x63, 0x1A, 0x5C, 0xF5, 0xD3, 0xED,
+};
+
+/*
+ * Specialized function for creating the Curve25519 group
+ */
+static int ecp_use_curve25519(mbedtls_ecp_group *grp)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    /* Actually ( A + 2 ) / 4 */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->A, curve25519_a24));
+
+    /* P = 2^255 - 19 */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->P, 1));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&grp->P, 255));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&grp->P, &grp->P, 19));
+    grp->pbits = mbedtls_mpi_bitlen(&grp->P);
+
+    /* N = 2^252 + 27742317777372353535851937790883648493 */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&grp->N,
+                                            curve25519_part_of_n, sizeof(curve25519_part_of_n)));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&grp->N, 252, 1));
+
+    /* Y intentionally not set, since we use x/z coordinates.
+     * This is used as a marker to identify Montgomery curves! */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.X, 9));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.Z, 1));
+    mbedtls_mpi_free(&grp->G.Y);
+
+    /* Actually, the required msb for private keys */
+    grp->nbits = 254;
+
+cleanup:
+    if (ret != 0) {
+        mbedtls_ecp_group_free(grp);
+    }
+
+    return ret;
+}
+#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+/* Constants used by ecp_use_curve448() */
+static const mbedtls_mpi_sint curve448_a24 = 0x98AA;
+static const unsigned char curve448_part_of_n[] = {
+    0x83, 0x35, 0xDC, 0x16, 0x3B, 0xB1, 0x24,
+    0xB6, 0x51, 0x29, 0xC9, 0x6F, 0xDE, 0x93,
+    0x3D, 0x8D, 0x72, 0x3A, 0x70, 0xAA, 0xDC,
+    0x87, 0x3D, 0x6D, 0x54, 0xA7, 0xBB, 0x0D,
+};
+
+/*
+ * Specialized function for creating the Curve448 group
+ */
+static int ecp_use_curve448(mbedtls_ecp_group *grp)
+{
+    mbedtls_mpi Ns;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    mbedtls_mpi_init(&Ns);
+
+    /* Actually ( A + 2 ) / 4 */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->A, curve448_a24));
+
+    /* P = 2^448 - 2^224 - 1 */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->P, 1));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&grp->P, 224));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&grp->P, &grp->P, 1));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&grp->P, 224));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&grp->P, &grp->P, 1));
+    grp->pbits = mbedtls_mpi_bitlen(&grp->P);
+
+    /* Y intentionally not set, since we use x/z coordinates.
+     * This is used as a marker to identify Montgomery curves! */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.X, 5));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.Z, 1));
+    mbedtls_mpi_free(&grp->G.Y);
+
+    /* N = 2^446 - 13818066809895115352007386748515426880336692474882178609894547503885 */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&grp->N, 446, 1));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&Ns,
+                                            curve448_part_of_n, sizeof(curve448_part_of_n)));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&grp->N, &grp->N, &Ns));
+
+    /* Actually, the required msb for private keys */
+    grp->nbits = 447;
+
+cleanup:
+    mbedtls_mpi_free(&Ns);
+    if (ret != 0) {
+        mbedtls_ecp_group_free(grp);
+    }
+
+    return ret;
+}
+#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
+
+/*
+ * Set a group using well-known domain parameters
+ */
+int mbedtls_ecp_group_load(mbedtls_ecp_group *grp, mbedtls_ecp_group_id id)
+{
+    mbedtls_ecp_group_free(grp);
+
+    mbedtls_ecp_group_init(grp);
+
+    grp->id = id;
+
+    switch (id) {
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP192R1:
+            NIST_MODP(p192);
+            return LOAD_GROUP(secp192r1);
+#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP224R1:
+            NIST_MODP(p224);
+            return LOAD_GROUP(secp224r1);
+#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP256R1:
+            NIST_MODP(p256);
+            return LOAD_GROUP(secp256r1);
+#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP384R1:
+            NIST_MODP(p384);
+            return LOAD_GROUP(secp384r1);
+#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP521R1:
+            NIST_MODP(p521);
+            return LOAD_GROUP(secp521r1);
+#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP192K1:
+            grp->modp = ecp_mod_p192k1;
+            return LOAD_GROUP_A(secp192k1);
+#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP224K1:
+            grp->modp = ecp_mod_p224k1;
+            return LOAD_GROUP_A(secp224k1);
+#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP256K1:
+            grp->modp = ecp_mod_p256k1;
+            return LOAD_GROUP_A(secp256k1);
+#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
+        case MBEDTLS_ECP_DP_BP256R1:
+            return LOAD_GROUP_A(brainpoolP256r1);
+#endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
+        case MBEDTLS_ECP_DP_BP384R1:
+            return LOAD_GROUP_A(brainpoolP384r1);
+#endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
+        case MBEDTLS_ECP_DP_BP512R1:
+            return LOAD_GROUP_A(brainpoolP512r1);
+#endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+        case MBEDTLS_ECP_DP_CURVE25519:
+            grp->modp = ecp_mod_p255;
+            return ecp_use_curve25519(grp);
+#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+        case MBEDTLS_ECP_DP_CURVE448:
+            grp->modp = ecp_mod_p448;
+            return ecp_use_curve448(grp);
+#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
+
+        default:
+            grp->id = MBEDTLS_ECP_DP_NONE;
+            return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+    }
+}
+
+#if defined(MBEDTLS_ECP_NIST_OPTIM)
+/*
+ * Fast reduction modulo the primes used by the NIST curves.
+ *
+ * These functions are critical for speed, but not needed for correct
+ * operations. So, we make the choice to heavily rely on the internals of our
+ * bignum library, which creates a tight coupling between these functions and
+ * our MPI implementation.  However, the coupling between the ECP module and
+ * MPI remains loose, since these functions can be deactivated at will.
+ */
+
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+/*
+ * Compared to the way things are presented in FIPS 186-3 D.2,
+ * we proceed in columns, from right (least significant chunk) to left,
+ * adding chunks to N in place, and keeping a carry for the next chunk.
+ * This avoids moving things around in memory, and uselessly adding zeros,
+ * compared to the more straightforward, line-oriented approach.
+ *
+ * For this prime we need to handle data in chunks of 64 bits.
+ * Since this is always a multiple of our basic mbedtls_mpi_uint, we can
+ * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it.
+ */
+
+/* Add 64-bit chunks (dst += src) and update carry */
+static inline void add64(mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry)
+{
+    unsigned char i;
+    mbedtls_mpi_uint c = 0;
+    for (i = 0; i < 8 / sizeof(mbedtls_mpi_uint); i++, dst++, src++) {
+        *dst += c;      c  = (*dst < c);
+        *dst += *src;   c += (*dst < *src);
+    }
+    *carry += c;
+}
+
+/* Add carry to a 64-bit chunk and update carry */
+static inline void carry64(mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry)
+{
+    unsigned char i;
+    for (i = 0; i < 8 / sizeof(mbedtls_mpi_uint); i++, dst++) {
+        *dst += *carry;
+        *carry  = (*dst < *carry);
+    }
+}
+
+#define WIDTH       8 / sizeof(mbedtls_mpi_uint)
+#define A(i)      N->p + (i) * WIDTH
+#define ADD(i)    add64(p, A(i), &c)
+#define NEXT        p += WIDTH; carry64(p, &c)
+#define LAST        p += WIDTH; *p = c; while (++p < end) *p = 0
+
+/*
+ * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
+ */
+static int ecp_mod_p192(mbedtls_mpi *N)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_mpi_uint c = 0;
+    mbedtls_mpi_uint *p, *end;
+
+    /* Make sure we have enough blocks so that A(5) is legal */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, 6 * WIDTH));
+
+    p = N->p;
+    end = p + N->n;
+
+    ADD(3); ADD(5);             NEXT;     // A0 += A3 + A5
+    ADD(3); ADD(4); ADD(5);   NEXT;       // A1 += A3 + A4 + A5
+    ADD(4); ADD(5);             LAST;     // A2 += A4 + A5
+
+cleanup:
+    return ret;
+}
+
+#undef WIDTH
+#undef A
+#undef ADD
+#undef NEXT
+#undef LAST
+#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+/*
+ * The reader is advised to first understand ecp_mod_p192() since the same
+ * general structure is used here, but with additional complications:
+ * (1) chunks of 32 bits, and (2) subtractions.
+ */
+
+/*
+ * For these primes, we need to handle data in chunks of 32 bits.
+ * This makes it more complicated if we use 64 bits limbs in MPI,
+ * which prevents us from using a uniform access method as for p192.
+ *
+ * So, we define a mini abstraction layer to access 32 bit chunks,
+ * load them in 'cur' for work, and store them back from 'cur' when done.
+ *
+ * While at it, also define the size of N in terms of 32-bit chunks.
+ */
+#define LOAD32      cur = A(i);
+
+#if defined(MBEDTLS_HAVE_INT32)  /* 32 bit */
+
+#define MAX32       N->n
+#define A(j)      N->p[j]
+#define STORE32     N->p[i] = cur;
+
+#else                               /* 64-bit */
+
+#define MAX32       N->n * 2
+#define A(j) (j) % 2 ? (uint32_t) (N->p[(j)/2] >> 32) : \
+    (uint32_t) (N->p[(j)/2])
+#define STORE32                                   \
+    if (i % 2) {                                 \
+        N->p[i/2] &= 0x00000000FFFFFFFF;          \
+        N->p[i/2] |= ((mbedtls_mpi_uint) cur) << 32;        \
+    } else {                                      \
+        N->p[i/2] &= 0xFFFFFFFF00000000;          \
+        N->p[i/2] |= (mbedtls_mpi_uint) cur;                \
+    }
+
+#endif /* sizeof( mbedtls_mpi_uint ) */
+
+/*
+ * Helpers for addition and subtraction of chunks, with signed carry.
+ */
+static inline void add32(uint32_t *dst, uint32_t src, signed char *carry)
+{
+    *dst += src;
+    *carry += (*dst < src);
+}
+
+static inline void sub32(uint32_t *dst, uint32_t src, signed char *carry)
+{
+    *carry -= (*dst < src);
+    *dst -= src;
+}
+
+#define ADD(j)    add32(&cur, A(j), &c);
+#define SUB(j)    sub32(&cur, A(j), &c);
+
+/*
+ * Helpers for the main 'loop'
+ */
+#define INIT(b)                                                       \
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;                    \
+    signed char c = 0, cc;                                              \
+    uint32_t cur;                                                       \
+    size_t i = 0, bits = (b);                                           \
+    /* N is the size of the product of two b-bit numbers, plus one */   \
+    /* limb for fix_negative */                                         \
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, (b) * 2 / biL + 1));      \
+    LOAD32;
+
+#define NEXT                    \
+    STORE32; i++; LOAD32;       \
+    cc = c; c = 0;              \
+    if (cc < 0)                \
+    sub32(&cur, -cc, &c); \
+    else                        \
+    add32(&cur, cc, &c);  \
+
+#define LAST                                    \
+    STORE32; i++;                               \
+    cur = c > 0 ? c : 0; STORE32;               \
+    cur = 0; while (++i < MAX32) { STORE32; }  \
+    if (c < 0) mbedtls_ecp_fix_negative(N, c, bits);
+
+/*
+ * If the result is negative, we get it in the form
+ * c * 2^bits + N, with c negative and N positive shorter than 'bits'
+ */
+static void mbedtls_ecp_fix_negative(mbedtls_mpi *N, signed char c, size_t bits)
+{
+    size_t i;
+
+    /* Set N := 2^bits - 1 - N. We know that 0 <= N < 2^bits, so
+     * set the absolute value to 0xfff...fff - N. There is no carry
+     * since we're subtracting from all-bits-one.  */
+    for (i = 0; i <= bits / 8 / sizeof(mbedtls_mpi_uint); i++) {
+        N->p[i] = ~(mbedtls_mpi_uint) 0 - N->p[i];
+    }
+    /* Add 1, taking care of the carry. */
+    i = 0;
+    do {
+        ++N->p[i];
+    } while (N->p[i++] == 0 && i <= bits / 8 / sizeof(mbedtls_mpi_uint));
+    /* Invert the sign.
+     * Now N = N0 - 2^bits where N0 is the initial value of N. */
+    N->s = -1;
+
+    /* Add |c| * 2^bits to the absolute value. Since c and N are
+     * negative, this adds c * 2^bits. */
+    mbedtls_mpi_uint msw = (mbedtls_mpi_uint) -c;
+#if defined(MBEDTLS_HAVE_INT64)
+    if (bits == 224) {
+        msw <<= 32;
+    }
+#endif
+    N->p[bits / 8 / sizeof(mbedtls_mpi_uint)] += msw;
+}
+
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+/*
+ * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
+ */
+static int ecp_mod_p224(mbedtls_mpi *N)
+{
+    INIT(224);
+
+    SUB(7); SUB(11);               NEXT;      // A0 += -A7 - A11
+    SUB(8); SUB(12);               NEXT;      // A1 += -A8 - A12
+    SUB(9); SUB(13);               NEXT;      // A2 += -A9 - A13
+    SUB(10); ADD(7); ADD(11);    NEXT;        // A3 += -A10 + A7 + A11
+    SUB(11); ADD(8); ADD(12);    NEXT;        // A4 += -A11 + A8 + A12
+    SUB(12); ADD(9); ADD(13);    NEXT;        // A5 += -A12 + A9 + A13
+    SUB(13); ADD(10);               LAST;     // A6 += -A13 + A10
+
+cleanup:
+    return ret;
+}
+#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+/*
+ * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
+ */
+static int ecp_mod_p256(mbedtls_mpi *N)
+{
+    INIT(256);
+
+    ADD(8); ADD(9);
+    SUB(11); SUB(12); SUB(13); SUB(14);             NEXT;         // A0
+
+    ADD(9); ADD(10);
+    SUB(12); SUB(13); SUB(14); SUB(15);             NEXT;         // A1
+
+    ADD(10); ADD(11);
+    SUB(13); SUB(14); SUB(15);                        NEXT;       // A2
+
+    ADD(11); ADD(11); ADD(12); ADD(12); ADD(13);
+    SUB(15); SUB(8); SUB(9);                        NEXT;         // A3
+
+    ADD(12); ADD(12); ADD(13); ADD(13); ADD(14);
+    SUB(9); SUB(10);                                   NEXT;      // A4
+
+    ADD(13); ADD(13); ADD(14); ADD(14); ADD(15);
+    SUB(10); SUB(11);                                   NEXT;     // A5
+
+    ADD(14); ADD(14); ADD(15); ADD(15); ADD(14); ADD(13);
+    SUB(8); SUB(9);                                   NEXT;       // A6
+
+    ADD(15); ADD(15); ADD(15); ADD(8);
+    SUB(10); SUB(11); SUB(12); SUB(13);             LAST;         // A7
+
+cleanup:
+    return ret;
+}
+#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+/*
+ * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
+ */
+static int ecp_mod_p384(mbedtls_mpi *N)
+{
+    INIT(384);
+
+    ADD(12); ADD(21); ADD(20);
+    SUB(23);                                              NEXT;   // A0
+
+    ADD(13); ADD(22); ADD(23);
+    SUB(12); SUB(20);                                   NEXT;     // A2
+
+    ADD(14); ADD(23);
+    SUB(13); SUB(21);                                   NEXT;     // A2
+
+    ADD(15); ADD(12); ADD(20); ADD(21);
+    SUB(14); SUB(22); SUB(23);                        NEXT;       // A3
+
+    ADD(21); ADD(21); ADD(16); ADD(13); ADD(12); ADD(20); ADD(22);
+    SUB(15); SUB(23); SUB(23);                        NEXT;       // A4
+
+    ADD(22); ADD(22); ADD(17); ADD(14); ADD(13); ADD(21); ADD(23);
+    SUB(16);                                              NEXT;   // A5
+
+    ADD(23); ADD(23); ADD(18); ADD(15); ADD(14); ADD(22);
+    SUB(17);                                              NEXT;   // A6
+
+    ADD(19); ADD(16); ADD(15); ADD(23);
+    SUB(18);                                              NEXT;   // A7
+
+    ADD(20); ADD(17); ADD(16);
+    SUB(19);                                              NEXT;   // A8
+
+    ADD(21); ADD(18); ADD(17);
+    SUB(20);                                              NEXT;   // A9
+
+    ADD(22); ADD(19); ADD(18);
+    SUB(21);                                              NEXT;   // A10
+
+    ADD(23); ADD(20); ADD(19);
+    SUB(22);                                              LAST;   // A11
+
+cleanup:
+    return ret;
+}
+#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
+
+#undef A
+#undef LOAD32
+#undef STORE32
+#undef MAX32
+#undef INIT
+#undef NEXT
+#undef LAST
+
+#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED ||
+          MBEDTLS_ECP_DP_SECP256R1_ENABLED ||
+          MBEDTLS_ECP_DP_SECP384R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+/*
+ * Here we have an actual Mersenne prime, so things are more straightforward.
+ * However, chunks are aligned on a 'weird' boundary (521 bits).
+ */
+
+/* Size of p521 in terms of mbedtls_mpi_uint */
+#define P521_WIDTH      (521 / 8 / sizeof(mbedtls_mpi_uint) + 1)
+
+/* Bits to keep in the most significant mbedtls_mpi_uint */
+#define P521_MASK       0x01FF
+
+/*
+ * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
+ * Write N as A1 + 2^521 A0, return A0 + A1
+ */
+static int ecp_mod_p521(mbedtls_mpi *N)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t i;
+    mbedtls_mpi M;
+    mbedtls_mpi_uint Mp[P521_WIDTH + 1];
+    /* Worst case for the size of M is when mbedtls_mpi_uint is 16 bits:
+     * we need to hold bits 513 to 1056, which is 34 limbs, that is
+     * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
+
+    if (N->n < P521_WIDTH) {
+        return 0;
+    }
+
+    /* M = A1 */
+    M.s = 1;
+    M.n = N->n - (P521_WIDTH - 1);
+    if (M.n > P521_WIDTH + 1) {
+        M.n = P521_WIDTH + 1;
+    }
+    M.p = Mp;
+    memcpy(Mp, N->p + P521_WIDTH - 1, M.n * sizeof(mbedtls_mpi_uint));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&M, 521 % (8 * sizeof(mbedtls_mpi_uint))));
+
+    /* N = A0 */
+    N->p[P521_WIDTH - 1] &= P521_MASK;
+    for (i = P521_WIDTH; i < N->n; i++) {
+        N->p[i] = 0;
+    }
+
+    /* N = A0 + A1 */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(N, N, &M));
+
+cleanup:
+    return ret;
+}
+
+#undef P521_WIDTH
+#undef P521_MASK
+#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
+
+#endif /* MBEDTLS_ECP_NIST_OPTIM */
+
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+
+/* Size of p255 in terms of mbedtls_mpi_uint */
+#define P255_WIDTH      (255 / 8 / sizeof(mbedtls_mpi_uint) + 1)
+
+/*
+ * Fast quasi-reduction modulo p255 = 2^255 - 19
+ * Write N as A0 + 2^256 A1, return A0 + 38 * A1
+ */
+static int ecp_mod_p255(mbedtls_mpi *N)
+{
+    mbedtls_mpi_uint Mp[P255_WIDTH];
+
+    /* Helper references for top part of N */
+    mbedtls_mpi_uint * const NT_p = N->p + P255_WIDTH;
+    const size_t NT_n = N->n - P255_WIDTH;
+    if (N->n <= P255_WIDTH) {
+        return 0;
+    }
+    if (NT_n > P255_WIDTH) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    /* Split N as N + 2^256 M */
+    memcpy(Mp,   NT_p, sizeof(mbedtls_mpi_uint) * NT_n);
+    memset(NT_p, 0,    sizeof(mbedtls_mpi_uint) * NT_n);
+
+    /* N = A0 + 38 * A1 */
+    mbedtls_mpi_core_mla(N->p, P255_WIDTH + 1,
+                         Mp, NT_n,
+                         38);
+
+    return 0;
+}
+#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+
+/* Size of p448 in terms of mbedtls_mpi_uint */
+#define P448_WIDTH      (448 / 8 / sizeof(mbedtls_mpi_uint))
+
+/* Number of limbs fully occupied by 2^224 (max), and limbs used by it (min) */
+#define DIV_ROUND_UP(X, Y) (((X) + (Y) -1) / (Y))
+#define P224_SIZE        (224 / 8)
+#define P224_WIDTH_MIN   (P224_SIZE / sizeof(mbedtls_mpi_uint))
+#define P224_WIDTH_MAX   DIV_ROUND_UP(P224_SIZE, sizeof(mbedtls_mpi_uint))
+#define P224_UNUSED_BITS ((P224_WIDTH_MAX * sizeof(mbedtls_mpi_uint) * 8) - 224)
+
+/*
+ * Fast quasi-reduction modulo p448 = 2^448 - 2^224 - 1
+ * Write N as A0 + 2^448 A1 and A1 as B0 + 2^224 B1, and return
+ * A0 + A1 + B1 + (B0 + B1) * 2^224.  This is different to the reference
+ * implementation of Curve448, which uses its own special 56-bit limbs rather
+ * than a generic bignum library.  We could squeeze some extra speed out on
+ * 32-bit machines by splitting N up into 32-bit limbs and doing the
+ * arithmetic using the limbs directly as we do for the NIST primes above,
+ * but for 64-bit targets it should use half the number of operations if we do
+ * the reduction with 224-bit limbs, since mpi_add_mpi will then use 64-bit adds.
+ */
+static int ecp_mod_p448(mbedtls_mpi *N)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t i;
+    mbedtls_mpi M, Q;
+    mbedtls_mpi_uint Mp[P448_WIDTH + 1], Qp[P448_WIDTH];
+
+    if (N->n <= P448_WIDTH) {
+        return 0;
+    }
+
+    /* M = A1 */
+    M.s = 1;
+    M.n = N->n - (P448_WIDTH);
+    if (M.n > P448_WIDTH) {
+        /* Shouldn't be called with N larger than 2^896! */
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+    M.p = Mp;
+    memset(Mp, 0, sizeof(Mp));
+    memcpy(Mp, N->p + P448_WIDTH, M.n * sizeof(mbedtls_mpi_uint));
+
+    /* N = A0 */
+    for (i = P448_WIDTH; i < N->n; i++) {
+        N->p[i] = 0;
+    }
+
+    /* N += A1 */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &M));
+
+    /* Q = B1, N += B1 */
+    Q = M;
+    Q.p = Qp;
+    memcpy(Qp, Mp, sizeof(Qp));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Q, 224));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &Q));
+
+    /* M = (B0 + B1) * 2^224, N += M */
+    if (sizeof(mbedtls_mpi_uint) > 4) {
+        Mp[P224_WIDTH_MIN] &= ((mbedtls_mpi_uint)-1) >> (P224_UNUSED_BITS);
+    }
+    for (i = P224_WIDTH_MAX; i < M.n; ++i) {
+        Mp[i] = 0;
+    }
+    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&M, &M, &Q));
+    M.n = P448_WIDTH + 1; /* Make room for shifted carry bit from the addition */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&M, 224));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &M));
+
+cleanup:
+    return ret;
+}
+#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+/*
+ * Fast quasi-reduction modulo P = 2^s - R,
+ * with R about 33 bits, used by the Koblitz curves.
+ *
+ * Write N as A0 + 2^224 A1, return A0 + R * A1.
+ * Actually do two passes, since R is big.
+ */
+#define P_KOBLITZ_MAX   (256 / 8 / sizeof(mbedtls_mpi_uint))      // Max limbs in P
+#define P_KOBLITZ_R     (8 / sizeof(mbedtls_mpi_uint))            // Limbs in R
+static inline int ecp_mod_koblitz(mbedtls_mpi *N, const mbedtls_mpi_uint *Rp, size_t p_limbs,
+                                  size_t adjust, size_t shift, mbedtls_mpi_uint mask)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t i;
+    mbedtls_mpi M, R;
+    mbedtls_mpi_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R + 1];
+
+    if (N->n < p_limbs) {
+        return 0;
+    }
+
+    /* Init R */
+    R.s = 1;
+    R.p = (mbedtls_mpi_uint *) Rp; /* R.p will not be modified so the cast is safe */
+    R.n = P_KOBLITZ_R;
+
+    /* Common setup for M */
+    M.s = 1;
+    M.p = Mp;
+
+    /* M = A1 */
+    M.n = (unsigned short) (N->n - (p_limbs - adjust));
+    if (M.n > p_limbs + adjust) {
+        M.n = (unsigned short) (p_limbs + adjust);
+    }
+    memset(Mp, 0, sizeof(Mp));
+    memcpy(Mp, N->p + p_limbs - adjust, M.n * sizeof(mbedtls_mpi_uint));
+    if (shift != 0) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&M, shift));
+    }
+    M.n += R.n; /* Make room for multiplication by R */
+
+    /* N = A0 */
+    if (mask != 0) {
+        N->p[p_limbs - 1] &= mask;
+    }
+    for (i = p_limbs; i < N->n; i++) {
+        N->p[i] = 0;
+    }
+
+    /* N = A0 + R * A1 */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&M, &M, &R));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(N, N, &M));
+
+    /* Second pass */
+
+    /* M = A1 */
+    M.n = (unsigned short) (N->n - (p_limbs - adjust));
+    if (M.n > p_limbs + adjust) {
+        M.n = (unsigned short) (p_limbs + adjust);
+    }
+    memset(Mp, 0, sizeof(Mp));
+    memcpy(Mp, N->p + p_limbs - adjust, M.n * sizeof(mbedtls_mpi_uint));
+    if (shift != 0) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&M, shift));
+    }
+    M.n += R.n; /* Make room for multiplication by R */
+
+    /* N = A0 */
+    if (mask != 0) {
+        N->p[p_limbs - 1] &= mask;
+    }
+    for (i = p_limbs; i < N->n; i++) {
+        N->p[i] = 0;
+    }
+
+    /* N = A0 + R * A1 */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&M, &M, &R));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(N, N, &M));
+
+cleanup:
+    return ret;
+}
+#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||
+          MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||
+          MBEDTLS_ECP_DP_SECP256K1_ENABLED) */
+
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+/*
+ * Fast quasi-reduction modulo p192k1 = 2^192 - R,
+ * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x01000011C9
+ */
+static int ecp_mod_p192k1(mbedtls_mpi *N)
+{
+    static const mbedtls_mpi_uint Rp[] = {
+        MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00,
+                                  0x00)
+    };
+
+    return ecp_mod_koblitz(N, Rp, 192 / 8 / sizeof(mbedtls_mpi_uint), 0, 0,
+                           0);
+}
+#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+/*
+ * Fast quasi-reduction modulo p224k1 = 2^224 - R,
+ * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
+ */
+static int ecp_mod_p224k1(mbedtls_mpi *N)
+{
+    static const mbedtls_mpi_uint Rp[] = {
+        MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00,
+                                  0x00)
+    };
+
+#if defined(MBEDTLS_HAVE_INT64)
+    return ecp_mod_koblitz(N, Rp, 4, 1, 32, 0xFFFFFFFF);
+#else
+    return ecp_mod_koblitz(N, Rp, 224 / 8 / sizeof(mbedtls_mpi_uint), 0, 0,
+                           0);
+#endif
+}
+
+#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+/*
+ * Fast quasi-reduction modulo p256k1 = 2^256 - R,
+ * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
+ */
+static int ecp_mod_p256k1(mbedtls_mpi *N)
+{
+    static const mbedtls_mpi_uint Rp[] = {
+        MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00,
+                                  0x00)
+    };
+    return ecp_mod_koblitz(N, Rp, 256 / 8 / sizeof(mbedtls_mpi_uint), 0, 0,
+                           0);
+}
+#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
+
+#if defined(MBEDTLS_TEST_HOOKS)
+
+MBEDTLS_STATIC_TESTABLE
+mbedtls_ecp_variant mbedtls_ecp_get_variant(void)
+{
+    return MBEDTLS_ECP_VARIANT_WITH_MPI_STRUCT;
+}
+
+#endif /* MBEDTLS_TEST_HOOKS */
+
+#endif /* MBEDTLS_ECP_LIGHT */
+#endif /* MBEDTLS_ECP_WITH_MPI_UINT */
diff --git a/tf-psa-crypto/drivers/builtin/src/ecp_curves_new.c b/tf-psa-crypto/drivers/builtin/src/ecp_curves_new.c
new file mode 100644
index 0000000..169247f
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/ecp_curves_new.c
@@ -0,0 +1,6033 @@
+/*
+ *  Elliptic curves over GF(p): curve-specific data and functions
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_ECP_WITH_MPI_UINT)
+
+#if defined(MBEDTLS_ECP_LIGHT)
+
+#include "mbedtls/ecp.h"
+#include "mbedtls/platform.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include "mbedtls/platform.h"
+
+#include "constant_time_internal.h"
+
+#include "bn_mul.h"
+#include "bignum_core.h"
+#include "ecp_invasive.h"
+
+#include <string.h>
+
+#define ECP_MPI_INIT(_p, _n) { .p = (mbedtls_mpi_uint *) (_p), .s = 1, .n = (_n) }
+
+#define ECP_MPI_INIT_ARRAY(x)   \
+    ECP_MPI_INIT(x, sizeof(x) / sizeof(mbedtls_mpi_uint))
+
+#define ECP_POINT_INIT_XY_Z0(x, y) { \
+        ECP_MPI_INIT_ARRAY(x), ECP_MPI_INIT_ARRAY(y), ECP_MPI_INIT(NULL, 0) }
+#define ECP_POINT_INIT_XY_Z1(x, y) { \
+        ECP_MPI_INIT_ARRAY(x), ECP_MPI_INIT_ARRAY(y), ECP_MPI_INIT(mpi_one, 1) }
+
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)   ||   \
+    defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)   ||   \
+    defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)   ||   \
+    defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+/* For these curves, we build the group parameters dynamically. */
+#define ECP_LOAD_GROUP
+static mbedtls_mpi_uint mpi_one[] = { 1 };
+#endif
+
+/*
+ * Note: the constants are in little-endian order
+ * to be directly usable in MPIs
+ */
+
+/*
+ * Domain parameters for secp192r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+static const mbedtls_mpi_uint secp192r1_p[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+static const mbedtls_mpi_uint secp192r1_b[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64),
+};
+static const mbedtls_mpi_uint secp192r1_gx[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18),
+};
+static const mbedtls_mpi_uint secp192r1_gy[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07),
+};
+static const mbedtls_mpi_uint secp192r1_n[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp192r1_T_0_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18),
+};
+static const mbedtls_mpi_uint secp192r1_T_0_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07),
+};
+static const mbedtls_mpi_uint secp192r1_T_1_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x9E, 0xE3, 0x60, 0x59, 0xD1, 0xC4, 0xC2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0xBD, 0x22, 0xD7, 0x2D, 0x07, 0xBD, 0xB6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x2A, 0xCF, 0x33, 0xF0, 0xBE, 0xD1, 0xED),
+};
+static const mbedtls_mpi_uint secp192r1_T_1_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x71, 0x4B, 0xA8, 0xED, 0x7E, 0xC9, 0x1A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x2A, 0xF6, 0xDF, 0x0E, 0xE8, 0x4C, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x35, 0xF7, 0x8A, 0xC3, 0xEC, 0xDE, 0x1E),
+};
+static const mbedtls_mpi_uint secp192r1_T_2_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x67, 0xC2, 0x1D, 0x32, 0x8F, 0x10, 0xFB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x2D, 0x17, 0xF3, 0xE4, 0xFE, 0xD8, 0x13),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x45, 0x10, 0x70, 0x2C, 0x3E, 0x52, 0x3E),
+};
+static const mbedtls_mpi_uint secp192r1_T_2_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0xF1, 0x04, 0x5D, 0xEE, 0xD4, 0x56, 0xE6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0xB7, 0x38, 0x27, 0x61, 0xAA, 0x81, 0x87),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x37, 0xD7, 0x0E, 0x29, 0x0E, 0x11, 0x14),
+};
+static const mbedtls_mpi_uint secp192r1_T_3_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x35, 0x52, 0xC6, 0x31, 0xB7, 0x27, 0xF5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xD4, 0x15, 0x98, 0x0F, 0xE7, 0xF3, 0x6A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x31, 0x70, 0x35, 0x09, 0xA0, 0x2B, 0xC2),
+};
+static const mbedtls_mpi_uint secp192r1_T_3_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x75, 0xA7, 0x4C, 0x88, 0xCF, 0x5B, 0xE4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x17, 0x48, 0x8D, 0xF2, 0xF0, 0x86, 0xED),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0xCF, 0xFE, 0x6B, 0xB0, 0xA5, 0x06, 0xAB),
+};
+static const mbedtls_mpi_uint secp192r1_T_4_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0x6A, 0xDC, 0x9A, 0x6D, 0x7B, 0x47, 0x2E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0xFC, 0x51, 0x12, 0x62, 0x66, 0x0B, 0x59),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x40, 0x93, 0xA0, 0xB5, 0x5A, 0x58, 0xD7),
+};
+static const mbedtls_mpi_uint secp192r1_T_4_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0xCB, 0xAF, 0xDC, 0x0B, 0xA1, 0x26, 0xFB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x36, 0x9D, 0xA3, 0xD7, 0x3B, 0xAD, 0x39),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x3B, 0x05, 0x9A, 0xA8, 0xAA, 0x69, 0xB2),
+};
+static const mbedtls_mpi_uint secp192r1_T_5_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xD9, 0xD1, 0x4D, 0x4A, 0x6E, 0x96, 0x1E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x66, 0x32, 0x39, 0xC6, 0x57, 0x7D, 0xE6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0xA0, 0x36, 0xC2, 0x45, 0xF9, 0x00, 0x62),
+};
+static const mbedtls_mpi_uint secp192r1_T_5_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xEF, 0x59, 0x46, 0xDC, 0x60, 0xD9, 0x8F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0xB0, 0xE9, 0x41, 0xA4, 0x87, 0x76, 0x89),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0xD4, 0x0E, 0xB2, 0xFA, 0x16, 0x56, 0xDC),
+};
+static const mbedtls_mpi_uint secp192r1_T_6_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0x62, 0xD2, 0xB1, 0x34, 0xB2, 0xF1, 0x06),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0xED, 0x55, 0xC5, 0x47, 0xB5, 0x07, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xF6, 0x2F, 0x94, 0xC3, 0xDD, 0x54, 0x2F),
+};
+static const mbedtls_mpi_uint secp192r1_T_6_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xA6, 0xD4, 0x8C, 0xA9, 0xCE, 0x4D, 0x2E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x4B, 0x46, 0xCC, 0xB2, 0x55, 0xC8, 0xB2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0xAE, 0x31, 0xED, 0x89, 0x65, 0x59, 0x55),
+};
+static const mbedtls_mpi_uint secp192r1_T_7_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x0A, 0xD1, 0x1A, 0xC5, 0xF6, 0xEA, 0x43),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0xFC, 0x0C, 0x1A, 0xFB, 0xA0, 0xC8, 0x70),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xFD, 0x53, 0x6F, 0x6D, 0xBF, 0xBA, 0xAF),
+};
+static const mbedtls_mpi_uint secp192r1_T_7_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0xB0, 0x7D, 0x83, 0x96, 0xE3, 0xCB, 0x9D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x6E, 0x55, 0x2C, 0x20, 0x53, 0x2F, 0x46),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0x66, 0x00, 0x17, 0x08, 0xFE, 0xAC, 0x31),
+};
+static const mbedtls_mpi_uint secp192r1_T_8_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x12, 0x97, 0x3A, 0xC7, 0x57, 0x45, 0xCD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x25, 0x99, 0x00, 0xF6, 0x97, 0xB4, 0x64),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x74, 0xE6, 0xE6, 0xA3, 0xDF, 0x9C, 0xCC),
+};
+static const mbedtls_mpi_uint secp192r1_T_8_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0xF4, 0x76, 0xD5, 0x5F, 0x2A, 0xFD, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x80, 0x7E, 0x3E, 0xE5, 0xE8, 0xD6, 0x63),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0xAD, 0x1E, 0x70, 0x79, 0x3E, 0x3D, 0x83),
+};
+static const mbedtls_mpi_uint secp192r1_T_9_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x15, 0xBB, 0xB3, 0x42, 0x6A, 0xA1, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x58, 0xCB, 0x43, 0x25, 0x00, 0x14, 0x68),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x4E, 0x93, 0x11, 0xE0, 0x32, 0x54, 0x98),
+};
+static const mbedtls_mpi_uint secp192r1_T_9_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x52, 0xA2, 0xB4, 0x57, 0x32, 0xB9, 0x11),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x43, 0xA1, 0xB1, 0xFB, 0x01, 0xE1, 0xE7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0xFB, 0x5A, 0x11, 0xB8, 0xC2, 0x03, 0xE5),
+};
+static const mbedtls_mpi_uint secp192r1_T_10_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x2B, 0x71, 0x26, 0x4E, 0x7C, 0xC5, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0xF5, 0xD3, 0xA8, 0xE4, 0x95, 0x48, 0x65),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0xAE, 0xD9, 0x5D, 0x9F, 0x6A, 0x22, 0xAD),
+};
+static const mbedtls_mpi_uint secp192r1_T_10_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0xCC, 0xA3, 0x4D, 0xA0, 0x1C, 0x34, 0xEF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0x3C, 0x62, 0xF8, 0x5E, 0xA6, 0x58, 0x7D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x6E, 0x66, 0x8A, 0x3D, 0x17, 0xFF, 0x0F),
+};
+static const mbedtls_mpi_uint secp192r1_T_11_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0xCD, 0xA8, 0xDD, 0xD1, 0x20, 0x5C, 0xEA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0xFE, 0x17, 0xE2, 0xCF, 0xEA, 0x63, 0xDE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x51, 0xC9, 0x16, 0xDE, 0xB4, 0xB2, 0xDD),
+};
+static const mbedtls_mpi_uint secp192r1_T_11_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xBE, 0x12, 0xD7, 0xA3, 0x0A, 0x50, 0x33),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0x87, 0xC5, 0x8A, 0x76, 0x57, 0x07, 0x60),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0x1F, 0xC6, 0x1B, 0x66, 0xC4, 0x3D, 0x8A),
+};
+static const mbedtls_mpi_uint secp192r1_T_12_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0xA4, 0x85, 0x13, 0x8F, 0xA7, 0x35, 0x19),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x0D, 0xFD, 0xFF, 0x1B, 0xD1, 0xD6, 0xEF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x7A, 0xD0, 0xC3, 0xB4, 0xEF, 0x39, 0x66),
+};
+static const mbedtls_mpi_uint secp192r1_T_12_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0xFE, 0xA5, 0x9C, 0x34, 0x30, 0x49, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0xC5, 0x39, 0x26, 0x06, 0xE3, 0x01, 0x17),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0x2B, 0x66, 0xFC, 0x95, 0x5F, 0x35, 0xF7),
+};
+static const mbedtls_mpi_uint secp192r1_T_13_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0xCF, 0x54, 0x63, 0x99, 0x57, 0x05, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x6F, 0x00, 0x5F, 0x65, 0x08, 0x47, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x2A, 0x90, 0x6D, 0x67, 0xC6, 0xBC, 0x45),
+};
+static const mbedtls_mpi_uint secp192r1_T_13_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x4D, 0x88, 0x0A, 0x35, 0x9E, 0x33, 0x9C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x17, 0x0C, 0xF8, 0xE1, 0x7A, 0x49, 0x02),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x44, 0x06, 0x8F, 0x0B, 0x70, 0x2F, 0x71),
+};
+static const mbedtls_mpi_uint secp192r1_T_14_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0x4B, 0xCB, 0xF9, 0x8E, 0x6A, 0xDA, 0x1B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x43, 0xA1, 0x3F, 0xCE, 0x17, 0xD2, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x0D, 0xD2, 0x6C, 0x82, 0x37, 0xE5, 0xFC),
+};
+static const mbedtls_mpi_uint secp192r1_T_14_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x3C, 0xF4, 0x92, 0xB4, 0x8A, 0x95, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0x96, 0xF1, 0x0A, 0x34, 0x2F, 0x74, 0x7E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0xA1, 0xAA, 0xBA, 0x86, 0x77, 0x4F, 0xA2),
+};
+static const mbedtls_mpi_uint secp192r1_T_15_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0x7F, 0xEF, 0x60, 0x50, 0x80, 0xD7, 0xD4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0xAC, 0xC9, 0xFE, 0xEC, 0x0A, 0x1A, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x2F, 0xBE, 0x91, 0xD7, 0xB7, 0x38, 0x48),
+};
+static const mbedtls_mpi_uint secp192r1_T_15_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0xAE, 0x85, 0x98, 0xFE, 0x05, 0x7F, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0xBE, 0xFD, 0x11, 0x31, 0x3D, 0x14, 0x13),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x75, 0xE8, 0x30, 0x01, 0xCB, 0x9B, 0x1C),
+};
+static const mbedtls_ecp_point secp192r1_T[16] = {
+    ECP_POINT_INIT_XY_Z1(secp192r1_T_0_X, secp192r1_T_0_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_1_X, secp192r1_T_1_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_2_X, secp192r1_T_2_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_3_X, secp192r1_T_3_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_4_X, secp192r1_T_4_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_5_X, secp192r1_T_5_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_6_X, secp192r1_T_6_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_7_X, secp192r1_T_7_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_8_X, secp192r1_T_8_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_9_X, secp192r1_T_9_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_10_X, secp192r1_T_10_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_11_X, secp192r1_T_11_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_12_X, secp192r1_T_12_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_13_X, secp192r1_T_13_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_14_X, secp192r1_T_14_Y),
+    ECP_POINT_INIT_XY_Z0(secp192r1_T_15_X, secp192r1_T_15_Y),
+};
+#else
+#define secp192r1_T NULL
+#endif
+#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
+
+/*
+ * Domain parameters for secp224r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+static const mbedtls_mpi_uint secp224r1_p[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_b[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C),
+    MBEDTLS_BYTES_TO_T_UINT_4(0x85, 0x0A, 0x05, 0xB4),
+};
+static const mbedtls_mpi_uint secp224r1_gx[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B),
+    MBEDTLS_BYTES_TO_T_UINT_4(0xBD, 0x0C, 0x0E, 0xB7),
+};
+static const mbedtls_mpi_uint secp224r1_gy[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5),
+    MBEDTLS_BYTES_TO_T_UINT_4(0x88, 0x63, 0x37, 0xBD),
+};
+static const mbedtls_mpi_uint secp224r1_n[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_4(0xFF, 0xFF, 0xFF, 0xFF),
+};
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp224r1_T_0_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0x0C, 0x0E, 0xB7, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_0_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x63, 0x37, 0xBD, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_1_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0xF9, 0xB8, 0xD0, 0x3D, 0xD2, 0xD3, 0xFA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xFD, 0x99, 0x26, 0x19, 0xFE, 0x13, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x0E, 0x4C, 0x48, 0x7C, 0xA2, 0x17, 0x01),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xA3, 0x13, 0x57, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_1_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0x16, 0x5C, 0x8F, 0xAA, 0xED, 0x0F, 0x58),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0xC5, 0x43, 0x34, 0x93, 0x05, 0x2A, 0x4C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0xE3, 0x6C, 0xCA, 0xC6, 0x14, 0xC2, 0x25),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x43, 0x6C, 0xD7, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_2_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0x5A, 0x98, 0x1E, 0xC8, 0xA5, 0x42, 0xA3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x49, 0x56, 0x78, 0xF8, 0xEF, 0xED, 0x65),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0xBB, 0x64, 0xB6, 0x4C, 0x54, 0x5F, 0xD1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0x0C, 0x33, 0xCC, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_2_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x79, 0xCB, 0x2E, 0x08, 0xFF, 0xD8, 0xE6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2E, 0x1F, 0xD4, 0xD7, 0x57, 0xE9, 0x39, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xD6, 0x3B, 0x0A, 0x1C, 0x87, 0xB7, 0x6A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x30, 0xD8, 0x05, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_3_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x79, 0x74, 0x9A, 0xE6, 0xBB, 0xC2, 0xC2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x5B, 0xA6, 0x67, 0xC1, 0x91, 0xE7, 0x64),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0xDF, 0x38, 0x82, 0x19, 0x2C, 0x4C, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0x2E, 0x39, 0xC5, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_3_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x36, 0x78, 0x4E, 0xAE, 0x5B, 0x02, 0x76),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0xF6, 0x8B, 0xF8, 0xF4, 0x92, 0x6B, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x4D, 0x71, 0x35, 0xE7, 0x0C, 0x2C, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0xA5, 0x1F, 0xAE, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_4_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0x1C, 0x4B, 0xDF, 0x5B, 0xF2, 0x51, 0xB7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x74, 0xB1, 0x5A, 0xC6, 0x0F, 0x0E, 0x61),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x24, 0x09, 0x62, 0xAF, 0xFC, 0xDB, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0xE1, 0x80, 0x55, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_4_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0x82, 0xFE, 0xAD, 0xC3, 0xE5, 0xCF, 0xD8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0xA2, 0x62, 0x17, 0x76, 0xF0, 0x5A, 0xFA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0xB8, 0xE5, 0xAC, 0xB7, 0x66, 0x38, 0xAA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0xFD, 0x86, 0x05, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_5_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xD3, 0x0C, 0x3C, 0xD1, 0x66, 0xB0, 0xF1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x59, 0xB4, 0x8D, 0x90, 0x10, 0xB7, 0xA2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x47, 0x9B, 0xE6, 0x55, 0x8A, 0xE4, 0xEE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0x49, 0xDB, 0x78, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_5_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x97, 0xED, 0xDE, 0xFF, 0xB3, 0xDF, 0x48),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xB9, 0x83, 0xB7, 0xEB, 0xBE, 0x40, 0x8D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xD3, 0xD3, 0xCD, 0x0E, 0x82, 0x79, 0x3D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x83, 0x1B, 0xF0, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_6_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x22, 0xBB, 0x54, 0xD3, 0x31, 0x56, 0xFC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x36, 0xE5, 0xE0, 0x89, 0x96, 0x8E, 0x71),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0xEF, 0x0A, 0xED, 0xD0, 0x11, 0x4A, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x00, 0x57, 0x27, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_6_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0xCA, 0x3D, 0xF7, 0x64, 0x9B, 0x6E, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0xE3, 0x70, 0x6B, 0x41, 0xD7, 0xED, 0x8F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x44, 0x44, 0x80, 0xCE, 0x13, 0x37, 0x92),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x73, 0x80, 0x79, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_7_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x4D, 0x70, 0x7D, 0x31, 0x0F, 0x1C, 0x58),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x35, 0x88, 0x47, 0xC4, 0x24, 0x78, 0x3F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0xF0, 0xCD, 0x91, 0x81, 0xB3, 0xDE, 0xB6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0xCE, 0xC6, 0xF7, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_7_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0x9C, 0x2D, 0xE8, 0xD2, 0x00, 0x8F, 0x10),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x5E, 0x7C, 0x0E, 0x0C, 0x6E, 0x58, 0x02),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x81, 0x21, 0xCE, 0x43, 0xF4, 0x24, 0x3D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0xBC, 0xF0, 0xF4, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_8_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x10, 0xC2, 0x74, 0x4A, 0x8F, 0x8A, 0xCF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0x67, 0xF4, 0x2B, 0x38, 0x2B, 0x35, 0x17),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xE7, 0x0C, 0xA9, 0xFA, 0x77, 0x5C, 0xBD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x33, 0x19, 0x2B, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_8_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x3E, 0x96, 0x22, 0x53, 0xE1, 0xE9, 0xBE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x13, 0xBC, 0xA1, 0x16, 0xEC, 0x01, 0x1A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x00, 0xC9, 0x7A, 0xC3, 0x73, 0xA5, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0xF4, 0x5E, 0xC1, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_9_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x95, 0xD6, 0xD9, 0x32, 0x30, 0x2B, 0xD0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x42, 0x09, 0x05, 0x61, 0x2A, 0x7E, 0x82),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x84, 0xA2, 0x05, 0x88, 0x64, 0x65, 0xF9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0x2D, 0x90, 0xB3, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_9_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0xE7, 0x2E, 0x85, 0x55, 0x80, 0x7C, 0x79),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xC1, 0xAC, 0x78, 0xB4, 0xAF, 0xFB, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0xC3, 0x28, 0x8E, 0x79, 0x18, 0x1F, 0x58),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x46, 0xCF, 0x49, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_10_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x5F, 0xA8, 0x6C, 0x46, 0x83, 0x43, 0xFA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xA9, 0x93, 0x11, 0xB6, 0x07, 0x57, 0x74),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x2A, 0x9D, 0x03, 0x89, 0x7E, 0xD7, 0x3C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x8C, 0x62, 0xCF, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_10_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0x2C, 0x13, 0x59, 0xCC, 0xFA, 0x84, 0x9E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xB9, 0x48, 0xBC, 0x57, 0xC7, 0xB3, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x0A, 0x38, 0x24, 0x2E, 0x3A, 0x28, 0x25),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x0A, 0x43, 0xB8, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_11_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x25, 0xAB, 0xC1, 0xEE, 0x70, 0x3C, 0xE1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0xDB, 0x45, 0x1D, 0x4A, 0x80, 0x75, 0x35),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x1F, 0x4D, 0x2D, 0x9A, 0x05, 0xF4, 0xCB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x10, 0xF0, 0x5A, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_11_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0x95, 0xE1, 0xDC, 0x15, 0x86, 0xC3, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0xDC, 0x27, 0xD1, 0x56, 0xA1, 0x14, 0x0D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x0B, 0xD6, 0x77, 0x4E, 0x44, 0xA2, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x42, 0x71, 0x1F, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_12_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x86, 0xB2, 0xB0, 0xC8, 0x2F, 0x7B, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xEF, 0xCB, 0xDB, 0xBC, 0x9E, 0x3B, 0xC5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x03, 0x86, 0xDD, 0x5B, 0xF5, 0x8D, 0x46),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x95, 0x79, 0xD6, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_12_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x32, 0x14, 0xDA, 0x9B, 0x4F, 0x07, 0x39),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x3E, 0xFB, 0x06, 0xEE, 0xA7, 0x40, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0x1F, 0xDF, 0x71, 0x61, 0xFD, 0x8B, 0xBE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x8B, 0xAB, 0x8B, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_13_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x34, 0xB3, 0xB4, 0xBC, 0x9F, 0xB0, 0x5E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x58, 0x48, 0xA8, 0x77, 0xBB, 0x13, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0xC6, 0xF7, 0x34, 0xCC, 0x89, 0x21, 0x0A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x33, 0xDD, 0x1F, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_13_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x81, 0xEF, 0xA4, 0xF2, 0x10, 0x0B, 0xCD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0xF7, 0x6E, 0x72, 0x4A, 0xDF, 0xDD, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0x23, 0x0A, 0x53, 0x03, 0x16, 0x62, 0xD2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x76, 0xFD, 0x3C, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_14_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x14, 0xA1, 0xFA, 0xA0, 0x18, 0xBE, 0x07),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0x2A, 0xE1, 0xD7, 0xB0, 0x6C, 0xA0, 0xDE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0xC0, 0xB0, 0xC6, 0x63, 0x24, 0xCD, 0x4E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0x38, 0x2C, 0xB1, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_14_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0xCD, 0x7D, 0x20, 0x0C, 0xFE, 0xAC, 0xC3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x97, 0x9F, 0xA2, 0xB6, 0x45, 0xF7, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x99, 0xF3, 0xD2, 0x20, 0x02, 0xEB, 0x04),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x18, 0x5B, 0x7B, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_15_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0xDD, 0x77, 0x91, 0x60, 0xEA, 0xFD, 0xD3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0xD3, 0xB5, 0xD6, 0x90, 0x17, 0x0E, 0x1A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0xF4, 0x28, 0xC1, 0xF2, 0x53, 0xF6, 0x63),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0x58, 0xDC, 0x61, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_15_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x20, 0x01, 0xFB, 0xF1, 0xBD, 0x5F, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x7F, 0x06, 0xDA, 0x11, 0xCB, 0xBA, 0xA6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x41, 0x00, 0xA4, 0x1B, 0x30, 0x33, 0x79),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0xFF, 0x27, 0xCA, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_ecp_point secp224r1_T[16] = {
+    ECP_POINT_INIT_XY_Z1(secp224r1_T_0_X, secp224r1_T_0_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_1_X, secp224r1_T_1_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_2_X, secp224r1_T_2_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_3_X, secp224r1_T_3_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_4_X, secp224r1_T_4_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_5_X, secp224r1_T_5_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_6_X, secp224r1_T_6_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_7_X, secp224r1_T_7_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_8_X, secp224r1_T_8_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_9_X, secp224r1_T_9_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_10_X, secp224r1_T_10_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_11_X, secp224r1_T_11_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_12_X, secp224r1_T_12_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_13_X, secp224r1_T_13_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_14_X, secp224r1_T_14_Y),
+    ECP_POINT_INIT_XY_Z0(secp224r1_T_15_X, secp224r1_T_15_Y),
+};
+#else
+#define secp224r1_T NULL
+#endif
+#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
+
+/*
+ * Domain parameters for secp256r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+static const mbedtls_mpi_uint secp256r1_p[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+static const mbedtls_mpi_uint secp256r1_b[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A),
+};
+static const mbedtls_mpi_uint secp256r1_gx[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B),
+};
+static const mbedtls_mpi_uint secp256r1_gy[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F),
+};
+static const mbedtls_mpi_uint secp256r1_n[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp256r1_T_0_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B),
+};
+static const mbedtls_mpi_uint secp256r1_T_0_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F),
+};
+static const mbedtls_mpi_uint secp256r1_T_1_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0xC8, 0xBA, 0x04, 0xB7, 0x4B, 0xD2, 0xF7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0xC6, 0x23, 0x3A, 0xA0, 0x09, 0x3A, 0x59),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x9D, 0x4C, 0xF9, 0x58, 0x23, 0xCC, 0xDF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0xED, 0x7B, 0x29, 0x87, 0x0F, 0xFA, 0x3C),
+};
+static const mbedtls_mpi_uint secp256r1_T_1_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x69, 0xF2, 0x40, 0x0B, 0xA3, 0x98, 0xCE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xA8, 0x48, 0x02, 0x0D, 0x1C, 0x12, 0x62),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0xAF, 0x09, 0x83, 0x80, 0xAA, 0x58, 0xA7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x12, 0xBE, 0x70, 0x94, 0x76, 0xE3, 0xE4),
+};
+static const mbedtls_mpi_uint secp256r1_T_2_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x7D, 0xEF, 0x86, 0xFF, 0xE3, 0x37, 0xDD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x86, 0x8B, 0x08, 0x27, 0x7C, 0xD7, 0xF6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x54, 0x4C, 0x25, 0x4F, 0x9A, 0xFE, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0xFD, 0xF0, 0x6D, 0x37, 0x03, 0x69, 0xD6),
+};
+static const mbedtls_mpi_uint secp256r1_T_2_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xD5, 0xDA, 0xAD, 0x92, 0x49, 0xF0, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x73, 0x43, 0x9E, 0xAF, 0xA7, 0xD1, 0xF3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0x41, 0x07, 0xDF, 0x78, 0x95, 0x3E, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0x3D, 0xD1, 0xE6, 0x3C, 0xA5, 0xE2, 0x20),
+};
+static const mbedtls_mpi_uint secp256r1_T_3_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x6A, 0x5D, 0x52, 0x35, 0xD7, 0xBF, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0xA2, 0xBE, 0x96, 0xF4, 0xF8, 0x02, 0xC3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x20, 0x49, 0x54, 0xEA, 0xB3, 0x82, 0xDB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2E, 0xDB, 0xEA, 0x02, 0xD1, 0x75, 0x1C, 0x62),
+};
+static const mbedtls_mpi_uint secp256r1_T_3_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x85, 0xF4, 0x9E, 0x4C, 0xDC, 0x39, 0x89),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x6D, 0xC4, 0x57, 0xD8, 0x03, 0x5D, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x7F, 0x2D, 0x52, 0x6F, 0xC9, 0xDA, 0x4F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x64, 0xFA, 0xB4, 0xFE, 0xA4, 0xC4, 0xD7),
+};
+static const mbedtls_mpi_uint secp256r1_T_4_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x37, 0xB9, 0xC0, 0xAA, 0x59, 0xC6, 0x8B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x58, 0xD9, 0xED, 0x58, 0x99, 0x65, 0xF7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x7D, 0x26, 0x8C, 0x4A, 0xF9, 0x05, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x73, 0x9A, 0xC9, 0xE7, 0x46, 0xDC, 0x00),
+};
+static const mbedtls_mpi_uint secp256r1_T_4_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0xD0, 0x55, 0xDF, 0x00, 0x0A, 0xF5, 0x4A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0xBF, 0x56, 0x81, 0x2D, 0x20, 0xEB, 0xB5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xC1, 0x28, 0x52, 0xAB, 0xE3, 0xD1, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x34, 0x79, 0x45, 0x57, 0xA5, 0x12, 0x03),
+};
+static const mbedtls_mpi_uint secp256r1_T_5_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0xCF, 0xB8, 0x7E, 0xF7, 0x92, 0x96, 0x8D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0x01, 0x8C, 0x0D, 0x23, 0xF2, 0xE3, 0x05),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x2E, 0xE3, 0x84, 0x52, 0x7A, 0x34, 0x76),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0xA1, 0xB0, 0x15, 0x90, 0xE2, 0x53, 0x3C),
+};
+static const mbedtls_mpi_uint secp256r1_T_5_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x98, 0xE7, 0xFA, 0xA5, 0x7D, 0x8B, 0x53),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x35, 0xD2, 0x00, 0xD1, 0x1B, 0x9F, 0x1B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x69, 0x08, 0x9A, 0x72, 0xF0, 0xA9, 0x11),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0xFE, 0x0E, 0x14, 0xDA, 0x7C, 0x0E, 0xD3),
+};
+static const mbedtls_mpi_uint secp256r1_T_6_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0xF6, 0xE8, 0xF8, 0x87, 0xF7, 0xFC, 0x6D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0xBE, 0x7F, 0x3F, 0x7A, 0x2B, 0xD7, 0x13),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0x32, 0xF2, 0x2D, 0x94, 0x6D, 0x42, 0xFD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x9A, 0xE3, 0x5F, 0x42, 0xBB, 0x84, 0xED),
+};
+static const mbedtls_mpi_uint secp256r1_T_6_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x95, 0x29, 0x73, 0xA1, 0x67, 0x3E, 0x02),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x30, 0x54, 0x35, 0x8E, 0x0A, 0xDD, 0x67),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0xD7, 0xA1, 0x97, 0x61, 0x3B, 0xF8, 0x0C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x33, 0x3C, 0x58, 0x55, 0x34, 0x23, 0xA3),
+};
+static const mbedtls_mpi_uint secp256r1_T_7_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x5D, 0x16, 0x5F, 0x7B, 0xBC, 0xBB, 0xCE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0xEE, 0x4E, 0x8A, 0xC1, 0x51, 0xCC, 0x50),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x0D, 0x4D, 0x1B, 0x53, 0x23, 0x1D, 0xB3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x2A, 0x38, 0x66, 0x52, 0x84, 0xE1, 0x95),
+};
+static const mbedtls_mpi_uint secp256r1_T_7_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x9B, 0x83, 0x0A, 0x81, 0x4F, 0xAD, 0xAC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xFF, 0x42, 0x41, 0x6E, 0xA9, 0xA2, 0xA0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xA1, 0x4F, 0x1F, 0x89, 0x82, 0xAA, 0x3E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0xB8, 0x0F, 0x6B, 0x8F, 0x8C, 0xD6, 0x68),
+};
+static const mbedtls_mpi_uint secp256r1_T_8_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0xB3, 0xBB, 0x51, 0x69, 0xA2, 0x11, 0x93),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x4F, 0x0F, 0x8D, 0xBD, 0x26, 0x0F, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xCB, 0xEC, 0x6B, 0x34, 0xC3, 0x3D, 0x9D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x5D, 0x1E, 0x10, 0xD5, 0x44, 0xE2, 0x54),
+};
+static const mbedtls_mpi_uint secp256r1_T_8_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x9E, 0xB1, 0xF1, 0x6E, 0x4C, 0xAD, 0xB3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xE3, 0xC2, 0x58, 0xC0, 0xFB, 0x34, 0x43),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0x9C, 0xDF, 0x35, 0x07, 0x41, 0xBD, 0x19),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x6E, 0x10, 0xEC, 0x0E, 0xEC, 0xBB, 0xD6),
+};
+static const mbedtls_mpi_uint secp256r1_T_9_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0xCF, 0xEF, 0x3F, 0x83, 0x1A, 0x88, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x29, 0xB5, 0xB9, 0xE0, 0xC9, 0xA3, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x46, 0x1E, 0x77, 0xCD, 0x7E, 0xB3, 0x10),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x21, 0xD0, 0xD4, 0xA3, 0x16, 0x08, 0xEE),
+};
+static const mbedtls_mpi_uint secp256r1_T_9_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0xCA, 0xA8, 0xB3, 0xBF, 0x29, 0x99, 0x8E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0xF2, 0x05, 0xC1, 0xCF, 0x5D, 0x91, 0x48),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0x01, 0x49, 0xDB, 0x82, 0xDF, 0x5F, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x06, 0x90, 0xAD, 0xE3, 0x38, 0xA4, 0xC4),
+};
+static const mbedtls_mpi_uint secp256r1_T_10_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xD2, 0x3A, 0xE8, 0x03, 0xC5, 0x6D, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x35, 0xD0, 0xAE, 0x1D, 0x7A, 0x9F, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0x1E, 0xD2, 0xCB, 0xAC, 0x88, 0x27, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0xB9, 0x9C, 0xE0, 0x31, 0xDD, 0x99, 0x86),
+};
+static const mbedtls_mpi_uint secp256r1_T_10_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0xF9, 0x9B, 0x32, 0x96, 0x41, 0x58, 0x38),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x5A, 0x2A, 0xB8, 0x96, 0x0E, 0xB2, 0x4C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x78, 0x2C, 0xC7, 0x08, 0x99, 0x19, 0x24),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x59, 0x28, 0xE9, 0x84, 0x54, 0xE6, 0x16),
+};
+static const mbedtls_mpi_uint secp256r1_T_11_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x38, 0x30, 0xDB, 0x70, 0x2C, 0x0A, 0xA2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x5C, 0x9D, 0xE9, 0xD5, 0x46, 0x0B, 0x5F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x0B, 0x60, 0x4B, 0x37, 0x7D, 0xB9, 0xC9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x24, 0xF3, 0x3D, 0x79, 0x7F, 0x6C, 0x18),
+};
+static const mbedtls_mpi_uint secp256r1_T_11_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7F, 0xE5, 0x1C, 0x4F, 0x60, 0x24, 0xF7, 0x2A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0xD8, 0xE2, 0x91, 0x7F, 0x89, 0x49, 0x92),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0xA7, 0x2E, 0x8D, 0x6A, 0xB3, 0x39, 0x81),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x89, 0xB5, 0x9A, 0xB8, 0x8D, 0x42, 0x9C),
+};
+static const mbedtls_mpi_uint secp256r1_T_12_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0x45, 0xE6, 0x4B, 0x3F, 0x4F, 0x1E, 0x1F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x65, 0x5E, 0x59, 0x22, 0xCC, 0x72, 0x5F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x93, 0x1A, 0x27, 0x1E, 0x34, 0xC5, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0xF2, 0xA5, 0x58, 0x5C, 0x15, 0x2E, 0xC6),
+};
+static const mbedtls_mpi_uint secp256r1_T_12_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0x7F, 0xBA, 0x58, 0x5A, 0x84, 0x6F, 0x5F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0xA6, 0x36, 0x7E, 0xDC, 0xF7, 0xE1, 0x67),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x4D, 0xAA, 0xEE, 0x57, 0x76, 0x3A, 0xD3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x7E, 0x26, 0x18, 0x22, 0x23, 0x9F, 0xFF),
+};
+static const mbedtls_mpi_uint secp256r1_T_13_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x4C, 0x64, 0xC7, 0x55, 0x02, 0x3F, 0xE3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0x02, 0x90, 0xBB, 0xC3, 0xEC, 0x30, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0x6F, 0x64, 0xF4, 0x16, 0x69, 0x48, 0xA4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x44, 0x9C, 0x95, 0x0C, 0x7D, 0x67, 0x5E),
+};
+static const mbedtls_mpi_uint secp256r1_T_13_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0x91, 0x8B, 0xD8, 0xD0, 0xD7, 0xE7, 0xE2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0xF9, 0x48, 0x62, 0x6F, 0xA8, 0x93, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0x3A, 0x99, 0x02, 0xD5, 0x0B, 0x3D, 0xE3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xD3, 0x00, 0x31, 0xE6, 0x0C, 0x9F, 0x44),
+};
+static const mbedtls_mpi_uint secp256r1_T_14_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0xB2, 0xAA, 0xFD, 0x88, 0x15, 0xDF, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4C, 0x35, 0x27, 0x31, 0x44, 0xCD, 0xC0, 0x68),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0xF8, 0x91, 0xA5, 0x71, 0x94, 0x84, 0x2A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0xCB, 0xD0, 0x93, 0xE9, 0x88, 0xDA, 0xE4),
+};
+static const mbedtls_mpi_uint secp256r1_T_14_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0xC6, 0x39, 0x16, 0x5D, 0xA3, 0x1E, 0x6D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x07, 0x37, 0x26, 0x36, 0x2A, 0xFE, 0x60),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xBC, 0xF3, 0xD0, 0xDE, 0x50, 0xFC, 0x97),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x2E, 0x06, 0x10, 0x15, 0x4D, 0xFA, 0xF7),
+};
+static const mbedtls_mpi_uint secp256r1_T_15_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x65, 0x69, 0x5B, 0x66, 0xA2, 0x75, 0x2E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0x16, 0x00, 0x5A, 0xB0, 0x30, 0x25, 0x1A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0xFB, 0x86, 0x42, 0x80, 0xC1, 0xC4, 0x76),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x1D, 0x83, 0x8E, 0x94, 0x01, 0x5F, 0x82),
+};
+static const mbedtls_mpi_uint secp256r1_T_15_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0x37, 0x70, 0xEF, 0x1F, 0xA1, 0xF0, 0xDB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x10, 0x5B, 0xCE, 0xC4, 0x9B, 0x6F, 0x10),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x11, 0x11, 0x24, 0x4F, 0x4C, 0x79, 0x61),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x3A, 0x72, 0xBC, 0xFE, 0x72, 0x58, 0x43),
+};
+static const mbedtls_ecp_point secp256r1_T[16] = {
+    ECP_POINT_INIT_XY_Z1(secp256r1_T_0_X, secp256r1_T_0_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_1_X, secp256r1_T_1_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_2_X, secp256r1_T_2_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_3_X, secp256r1_T_3_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_4_X, secp256r1_T_4_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_5_X, secp256r1_T_5_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_6_X, secp256r1_T_6_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_7_X, secp256r1_T_7_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_8_X, secp256r1_T_8_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_9_X, secp256r1_T_9_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_10_X, secp256r1_T_10_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_11_X, secp256r1_T_11_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_12_X, secp256r1_T_12_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_13_X, secp256r1_T_13_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_14_X, secp256r1_T_14_Y),
+    ECP_POINT_INIT_XY_Z0(secp256r1_T_15_X, secp256r1_T_15_Y),
+};
+#else
+#define secp256r1_T NULL
+#endif
+
+#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
+
+/*
+ * Domain parameters for secp384r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+static const mbedtls_mpi_uint secp384r1_p[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+static const mbedtls_mpi_uint secp384r1_b[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3),
+};
+static const mbedtls_mpi_uint secp384r1_gx[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA),
+};
+static const mbedtls_mpi_uint secp384r1_gy[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36),
+};
+static const mbedtls_mpi_uint secp384r1_n[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp384r1_T_0_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA),
+};
+static const mbedtls_mpi_uint secp384r1_T_0_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36),
+};
+static const mbedtls_mpi_uint secp384r1_T_1_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x92, 0x00, 0x2C, 0x78, 0xDB, 0x1F, 0x37),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xF3, 0xEB, 0xB7, 0x06, 0xF7, 0xB6, 0xBC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xBC, 0x2C, 0xCF, 0xD8, 0xED, 0x53, 0xE7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0x75, 0x7B, 0xA3, 0xAB, 0xC3, 0x2C, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0x9D, 0x78, 0x41, 0xF6, 0x76, 0x84, 0xAC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x56, 0xE8, 0x52, 0xB3, 0xCB, 0xA8, 0xBD),
+};
+static const mbedtls_mpi_uint secp384r1_T_1_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xF2, 0xAE, 0xA4, 0xB6, 0x89, 0x1B, 0xDA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x0F, 0xCE, 0x1C, 0x7C, 0xF6, 0x50, 0x4C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4C, 0xEB, 0x90, 0xE6, 0x4D, 0xC7, 0xD4, 0x7A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0x49, 0x2D, 0x8A, 0x01, 0x99, 0x60, 0x94),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x80, 0x9B, 0x9B, 0x6A, 0xB0, 0x07, 0xD9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0xA2, 0xEE, 0x59, 0xBE, 0x95, 0xBC, 0x23),
+};
+static const mbedtls_mpi_uint secp384r1_T_2_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x9D, 0x56, 0xAE, 0x59, 0xFB, 0x1F, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0xAC, 0x91, 0x80, 0x87, 0xA8, 0x6E, 0x58),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x08, 0xA7, 0x08, 0x94, 0x32, 0xFC, 0x67),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0x29, 0x9E, 0x84, 0xF4, 0xE5, 0x6E, 0x7E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x21, 0xB9, 0x50, 0x24, 0xF8, 0x9C, 0xC7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x04, 0x01, 0xC2, 0xFB, 0x77, 0x3E, 0xDE),
+};
+static const mbedtls_mpi_uint secp384r1_T_2_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x38, 0xEE, 0xE3, 0xC7, 0x9D, 0xEC, 0xA6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x88, 0xCF, 0x43, 0xFA, 0x92, 0x5E, 0x8E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0xCA, 0x43, 0xF8, 0x3B, 0x49, 0x7E, 0x75),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0xE7, 0xEB, 0x17, 0x45, 0x86, 0xC2, 0xE1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x69, 0x57, 0x32, 0xE0, 0x9C, 0xD1, 0x00),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x10, 0xB8, 0x4D, 0xB8, 0xF4, 0x0D, 0xE3),
+};
+static const mbedtls_mpi_uint secp384r1_T_3_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x60, 0xDC, 0x9A, 0xB2, 0x79, 0x39, 0x27, 0x16),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x71, 0xE4, 0x3B, 0x4D, 0x60, 0x0C, 0xA3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0xBD, 0x19, 0x40, 0xFA, 0x19, 0x2A, 0x5A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0xF8, 0x1E, 0x43, 0xA1, 0x50, 0x8D, 0xEF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0x18, 0x7C, 0x41, 0xFA, 0x7C, 0x1B, 0x58),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x59, 0x24, 0xC4, 0xE9, 0xB7, 0xD3, 0xAD),
+};
+static const mbedtls_mpi_uint secp384r1_T_3_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x01, 0x3D, 0x63, 0x54, 0x45, 0x6F, 0xB7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0xB2, 0x19, 0xA3, 0x86, 0x1D, 0x42, 0x34),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x02, 0x87, 0x18, 0x92, 0x52, 0x1A, 0x71),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x18, 0xB1, 0x5D, 0x18, 0x1B, 0x37, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0x74, 0x61, 0xBA, 0x18, 0xAF, 0x40, 0x30),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x7D, 0x3C, 0x52, 0x0F, 0x07, 0xB0, 0x6F),
+};
+static const mbedtls_mpi_uint secp384r1_T_4_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x39, 0x13, 0xAA, 0x60, 0x15, 0x99, 0x30),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x00, 0xCB, 0xC6, 0xB1, 0xDB, 0x97, 0x90),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xFA, 0x60, 0xB8, 0x24, 0xE4, 0x7D, 0xD3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x75, 0xB3, 0x70, 0xB2, 0x83, 0xB1, 0x9B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0xE3, 0x6C, 0xCD, 0x33, 0x62, 0x7A, 0x56),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x30, 0xDC, 0x0F, 0x9F, 0xBB, 0xB8, 0xAA),
+};
+static const mbedtls_mpi_uint secp384r1_T_4_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0xD5, 0x0A, 0x60, 0x81, 0xB9, 0xC5, 0x16),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0xAA, 0x2F, 0xD6, 0xF2, 0x73, 0xDF, 0xEB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x7B, 0x74, 0xC9, 0xB3, 0x5B, 0x95, 0x6D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x04, 0xEB, 0x15, 0xC8, 0x5F, 0x00, 0xF6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x50, 0x20, 0x28, 0xD1, 0x01, 0xAF, 0xF0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x6D, 0x4F, 0x31, 0x81, 0x2F, 0x94, 0x48),
+};
+static const mbedtls_mpi_uint secp384r1_T_5_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x2F, 0xD8, 0xB6, 0x63, 0x7C, 0xE9, 0x50),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x8C, 0xB9, 0x14, 0xD9, 0x37, 0x63, 0xDE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x02, 0xB8, 0x46, 0xAD, 0xCE, 0x7B, 0x38),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x47, 0x2D, 0x66, 0xA7, 0xE9, 0x33, 0x23),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0xF9, 0x93, 0x94, 0xA8, 0x48, 0xB3, 0x4F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0x4A, 0xAC, 0x51, 0x08, 0x72, 0x2F, 0x1A),
+};
+static const mbedtls_mpi_uint secp384r1_T_5_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0xAD, 0xA0, 0xF9, 0x81, 0xE1, 0x78, 0x97),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x9A, 0x63, 0xD8, 0xBA, 0x79, 0x1A, 0x17),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x31, 0x7B, 0x7A, 0x5A, 0x5D, 0x7D, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x96, 0x12, 0x4B, 0x19, 0x09, 0xE0, 0xB7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x8A, 0x57, 0xEE, 0x4E, 0x6E, 0x7E, 0xEC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x9D, 0x69, 0xDC, 0xB3, 0xDA, 0xD8, 0x08),
+};
+static const mbedtls_mpi_uint secp384r1_T_6_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x49, 0x03, 0x03, 0x33, 0x6F, 0x28, 0x4A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xDB, 0xA7, 0x05, 0x8C, 0xF3, 0x4D, 0xFB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x92, 0xB1, 0xA8, 0xEC, 0x0D, 0x64, 0x3B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0xFC, 0xFD, 0xD0, 0x4B, 0x88, 0x1B, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x9C, 0x51, 0x69, 0xCE, 0x71, 0x73, 0xF5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x5A, 0x14, 0x23, 0x1A, 0x46, 0x63, 0x5F),
+};
+static const mbedtls_mpi_uint secp384r1_T_6_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x4C, 0x70, 0x44, 0x18, 0xCD, 0xEF, 0xED),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x49, 0xDD, 0x64, 0x7E, 0x7E, 0x4D, 0x92),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA2, 0x32, 0x7C, 0x09, 0xD0, 0x3F, 0xD6, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xE0, 0x4F, 0x65, 0x0C, 0x7A, 0x54, 0x3E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0xFA, 0xFB, 0x4A, 0xB4, 0x79, 0x5A, 0x8C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x5D, 0x1B, 0x2B, 0xDA, 0xBC, 0x9A, 0x74),
+};
+static const mbedtls_mpi_uint secp384r1_T_7_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xAC, 0x56, 0xF7, 0x5F, 0x51, 0x68, 0x0B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0xE0, 0x1D, 0xBC, 0x13, 0x4E, 0xAC, 0x03),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xF5, 0xC5, 0xE6, 0xD2, 0x88, 0xBA, 0xCB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x0E, 0x28, 0x23, 0x58, 0x67, 0xFA, 0xEE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0x80, 0x4B, 0xD8, 0xC4, 0xDF, 0x15, 0xE4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x0E, 0x58, 0xE6, 0x2C, 0x59, 0xC2, 0x03),
+};
+static const mbedtls_mpi_uint secp384r1_T_7_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x26, 0x27, 0x99, 0x16, 0x2B, 0x22, 0x0B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0xF3, 0x8F, 0xC3, 0x2A, 0x9B, 0xFC, 0x38),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x2E, 0x83, 0x3D, 0xFE, 0x9E, 0x3C, 0x1B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x57, 0xCD, 0x2D, 0xC1, 0x49, 0x38, 0xB5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0x42, 0x8B, 0x33, 0x89, 0x1F, 0xEA, 0x01),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x1D, 0x13, 0xD7, 0x50, 0xBB, 0x3E, 0xEB),
+};
+static const mbedtls_mpi_uint secp384r1_T_8_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD2, 0x9A, 0x52, 0xD2, 0x54, 0x7C, 0x97, 0xF2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x33, 0x6E, 0xED, 0xD9, 0x87, 0x50, 0xC5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x35, 0x7E, 0x16, 0x40, 0x15, 0x83, 0xB8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0x2B, 0xA4, 0xAB, 0x03, 0x91, 0xEA, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x47, 0x39, 0xEF, 0x05, 0x59, 0xD0, 0x90),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x24, 0x0D, 0x76, 0x11, 0x53, 0x08, 0xAF),
+};
+static const mbedtls_mpi_uint secp384r1_T_8_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x2F, 0xDD, 0xBD, 0x50, 0x48, 0xB1, 0xE5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x1C, 0x84, 0x55, 0x78, 0x14, 0xEB, 0xF6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x5E, 0x3E, 0xA6, 0xAF, 0xF6, 0xC7, 0x04),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x11, 0xE2, 0x65, 0xCA, 0x41, 0x95, 0x3B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x83, 0xD8, 0xE6, 0x4D, 0x22, 0x06, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x7F, 0x25, 0x2A, 0xAA, 0x28, 0x46, 0x97),
+};
+static const mbedtls_mpi_uint secp384r1_T_9_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0xDB, 0x15, 0x56, 0x84, 0xCB, 0xC0, 0x56),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0xDB, 0x0E, 0x08, 0xC9, 0xF5, 0xD4, 0x9E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x62, 0xD0, 0x1A, 0x7C, 0x13, 0xD5, 0x07),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0xAD, 0x53, 0xE0, 0x32, 0x21, 0xA0, 0xC0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x38, 0x81, 0x21, 0x23, 0x0E, 0xD2, 0xBB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x51, 0x05, 0xD0, 0x1E, 0x82, 0xA9, 0x71),
+};
+static const mbedtls_mpi_uint secp384r1_T_9_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0xC3, 0x27, 0xBF, 0xC6, 0xAA, 0xB7, 0xB9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x65, 0x45, 0xDF, 0xB9, 0x46, 0x17, 0x46),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x38, 0x3F, 0xB2, 0xB1, 0x5D, 0xCA, 0x1C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x29, 0x6C, 0x63, 0xE9, 0xD7, 0x48, 0xB8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xF1, 0xD7, 0x99, 0x8C, 0xC2, 0x05, 0x99),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xE6, 0x5E, 0x82, 0x6D, 0xE5, 0x7E, 0xD5),
+};
+static const mbedtls_mpi_uint secp384r1_T_10_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x61, 0xFA, 0x7D, 0x01, 0xDB, 0xB6, 0x63),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xC6, 0x58, 0x39, 0xF4, 0xC6, 0x82, 0x23),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x5A, 0x7A, 0x80, 0x08, 0xCD, 0xAA, 0xD8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x8C, 0xC6, 0x3F, 0x3C, 0xA5, 0x68, 0xF4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0xF5, 0xD5, 0x17, 0xAE, 0x36, 0xD8, 0x8A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0xAD, 0x92, 0xC5, 0x57, 0x6C, 0xDA, 0x91),
+};
+static const mbedtls_mpi_uint secp384r1_T_10_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x67, 0x17, 0xC0, 0x40, 0x78, 0x8C, 0x84),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x9F, 0xF4, 0xAA, 0xDA, 0x5C, 0x7E, 0xB2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xDB, 0x42, 0x3E, 0x72, 0x64, 0xA0, 0x67),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0xF9, 0x41, 0x17, 0x43, 0xE3, 0xE8, 0xA8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xDD, 0xCC, 0x43, 0x7E, 0x16, 0x05, 0x03),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0x4B, 0xCF, 0x48, 0x8F, 0x41, 0x90, 0xE5),
+};
+static const mbedtls_mpi_uint secp384r1_T_11_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x0C, 0x6B, 0x9D, 0x22, 0x04, 0xBC, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x63, 0x79, 0x2F, 0x6A, 0x0E, 0x8A, 0xDE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x67, 0x3F, 0x02, 0xB8, 0x91, 0x7F, 0x74),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x14, 0x64, 0xA0, 0x33, 0xF4, 0x6B, 0x50),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x44, 0x71, 0x87, 0xB8, 0x88, 0x3F, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x2B, 0x85, 0x05, 0xC5, 0x44, 0x53, 0x15),
+};
+static const mbedtls_mpi_uint secp384r1_T_11_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x2B, 0xFE, 0xD1, 0x1C, 0x73, 0xE3, 0x2E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0x33, 0xA1, 0xD3, 0x69, 0x1C, 0x9D, 0xD2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x5A, 0xBA, 0xB6, 0xAE, 0x1B, 0x94, 0x04),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0x74, 0x90, 0x5C, 0x57, 0xB0, 0x3A, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x2F, 0x93, 0x20, 0x24, 0x54, 0x1D, 0x8D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x78, 0x9D, 0x71, 0x67, 0x5D, 0x49, 0x98),
+};
+static const mbedtls_mpi_uint secp384r1_T_12_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0xC8, 0x0E, 0x11, 0x8D, 0xE0, 0x8F, 0x69),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x7F, 0x79, 0x6C, 0x5F, 0xB7, 0xBC, 0xB1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0xE1, 0x83, 0x3C, 0x12, 0xBB, 0xEE, 0x96),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xC2, 0xC4, 0x1B, 0x41, 0x71, 0xB9, 0x17),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0xEE, 0xBB, 0x1D, 0x89, 0x50, 0x88, 0xF2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x1C, 0x55, 0x74, 0xEB, 0xDE, 0x92, 0x3F),
+};
+static const mbedtls_mpi_uint secp384r1_T_12_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0x38, 0x92, 0x06, 0x19, 0xD0, 0xB3, 0xB2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x99, 0x26, 0xA3, 0x5F, 0xE2, 0xC1, 0x81),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0xFC, 0xFD, 0xC3, 0xB6, 0x26, 0x24, 0x8F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xAD, 0xE7, 0x49, 0xB7, 0x64, 0x4B, 0x96),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x4E, 0x95, 0xAD, 0x07, 0xFE, 0xB6, 0x30),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x15, 0xE7, 0x2D, 0x19, 0xA9, 0x08, 0x10),
+};
+static const mbedtls_mpi_uint secp384r1_T_13_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0xBD, 0xAC, 0x0A, 0x3F, 0x6B, 0xFF, 0xFA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0xE4, 0x74, 0x14, 0xD9, 0x70, 0x1D, 0x71),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0xB0, 0x71, 0xBB, 0xD8, 0x18, 0x96, 0x2B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0xB8, 0x19, 0x90, 0x80, 0xB5, 0xEE, 0x01),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x21, 0x20, 0xA6, 0x17, 0x48, 0x03, 0x6F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x1D, 0xBB, 0x6D, 0x94, 0x20, 0x34, 0xF1),
+};
+static const mbedtls_mpi_uint secp384r1_T_13_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x82, 0x67, 0x4B, 0x8E, 0x4E, 0xBE, 0xE2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0xDA, 0x77, 0xF8, 0x23, 0x55, 0x2B, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0x02, 0xDE, 0x25, 0x35, 0x2D, 0x74, 0x51),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x0C, 0xB8, 0x0B, 0x39, 0xBA, 0xAD, 0x04),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0x0E, 0x28, 0x4D, 0xE1, 0x3D, 0xE4, 0x1B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xEC, 0x0A, 0xD4, 0xB8, 0xC4, 0x8D, 0xB0),
+};
+static const mbedtls_mpi_uint secp384r1_T_14_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x68, 0xCE, 0xC2, 0x55, 0x4D, 0x0C, 0x6D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x20, 0x93, 0x32, 0x90, 0xD6, 0xAE, 0x47),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x78, 0xAB, 0x43, 0x9E, 0xEB, 0x73, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0x97, 0xC3, 0x83, 0xA6, 0x3C, 0xF1, 0xBF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0x25, 0x25, 0x66, 0x08, 0x26, 0xFA, 0x4B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0xFB, 0x44, 0x5D, 0x82, 0xEC, 0x3B, 0xAC),
+};
+static const mbedtls_mpi_uint secp384r1_T_14_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x90, 0xEA, 0xB5, 0x04, 0x99, 0xD0, 0x69),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0xF2, 0x22, 0xA0, 0xEB, 0xFD, 0x45, 0x87),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xA4, 0x81, 0x32, 0xFC, 0xFA, 0xEE, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0xBB, 0xA4, 0x6A, 0x77, 0x41, 0x5C, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x1E, 0xAA, 0x4F, 0xF0, 0x10, 0xB3, 0x50),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x74, 0x13, 0x14, 0x9E, 0x90, 0xD7, 0xE6),
+};
+static const mbedtls_mpi_uint secp384r1_T_15_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0xBD, 0x70, 0x4F, 0xA8, 0xD1, 0x06, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x4E, 0x2E, 0x68, 0xFC, 0x35, 0xFA, 0x50),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x60, 0x53, 0x75, 0xED, 0xF2, 0x5F, 0xC2, 0xEB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0x87, 0x6B, 0x9F, 0x05, 0xE2, 0x22, 0x93),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x1A, 0xA8, 0xB7, 0x03, 0x9E, 0x6D, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0xD0, 0x69, 0x88, 0xA8, 0x39, 0x9E, 0x3A),
+};
+static const mbedtls_mpi_uint secp384r1_T_15_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0xEF, 0x68, 0xFE, 0xEC, 0x24, 0x08, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x06, 0x4B, 0x92, 0x0D, 0xB7, 0x34, 0x74),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0xF4, 0xDD, 0x1A, 0xA0, 0x4A, 0xE4, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0x63, 0x4F, 0x4F, 0xCE, 0xBB, 0xD6, 0xD3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xEE, 0x8D, 0xDF, 0x3F, 0x73, 0xB7, 0xAC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x06, 0xB6, 0x80, 0x4D, 0x81, 0xD9, 0x53),
+};
+static const mbedtls_mpi_uint secp384r1_T_16_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0xF5, 0x13, 0xDF, 0x13, 0x19, 0x97, 0x94),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0xF9, 0xB3, 0x33, 0x66, 0x82, 0x21, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xFC, 0x39, 0x16, 0x23, 0x43, 0x76, 0x0E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x48, 0x25, 0xA1, 0x64, 0x95, 0x1C, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0xAC, 0x15, 0x57, 0xD9, 0xDE, 0xA0, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x5F, 0xB8, 0x3D, 0x48, 0x91, 0x24, 0xCC),
+};
+static const mbedtls_mpi_uint secp384r1_T_16_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0xF2, 0xC8, 0x54, 0xD1, 0x32, 0xBD, 0xC4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x3B, 0xF0, 0xAA, 0x9D, 0xD8, 0xF4, 0x20),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0xC3, 0xBB, 0x6C, 0x66, 0xAC, 0x25, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x25, 0x10, 0xB2, 0xE1, 0x41, 0xDE, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0xE8, 0x30, 0xB8, 0x37, 0xBC, 0x2A, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x57, 0x01, 0x4A, 0x1E, 0x78, 0x9F, 0x85),
+};
+static const mbedtls_mpi_uint secp384r1_T_17_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0x19, 0xCD, 0x12, 0x0B, 0x51, 0x4F, 0x56),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x4B, 0x3D, 0x24, 0xA4, 0x16, 0x59, 0x05),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xEB, 0xD3, 0x59, 0x2E, 0x75, 0x7C, 0x01),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0xB9, 0xB4, 0xA5, 0xD9, 0x2E, 0x29, 0x4C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x16, 0x05, 0x75, 0x02, 0xB3, 0x06, 0xEE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x7C, 0x9F, 0x79, 0x91, 0xF1, 0x4F, 0x23),
+};
+static const mbedtls_mpi_uint secp384r1_T_17_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x98, 0x7C, 0x84, 0xE1, 0xFF, 0x30, 0x77),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0xE2, 0xC2, 0x5F, 0x55, 0x40, 0xBD, 0xCD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0x65, 0x87, 0x3F, 0xC4, 0xC2, 0x24, 0x57),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0x30, 0x0A, 0x60, 0x15, 0xD1, 0x24, 0x48),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x99, 0xD9, 0xB6, 0xAE, 0xB1, 0xAF, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x80, 0xEE, 0xA2, 0x0F, 0x74, 0xB9, 0xF3),
+};
+static const mbedtls_mpi_uint secp384r1_T_18_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0xE6, 0x0F, 0x37, 0xC1, 0x10, 0x99, 0x1E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0xAD, 0x9D, 0x5D, 0x80, 0x01, 0xA6, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x0F, 0x10, 0x2A, 0x9D, 0x20, 0x38, 0xEB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x60, 0xCB, 0xCE, 0x5A, 0xA0, 0xA7, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0xCF, 0x14, 0xDF, 0xBF, 0xE5, 0x74, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x12, 0x1A, 0xDD, 0x59, 0x02, 0x5D, 0xC6),
+};
+static const mbedtls_mpi_uint secp384r1_T_18_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0xC9, 0xF8, 0xF5, 0xB6, 0x13, 0x4D, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0x45, 0xB1, 0x93, 0xB3, 0xA2, 0x79, 0xDC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xF6, 0xCF, 0xF7, 0xE6, 0x29, 0x9C, 0xCC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x50, 0x65, 0x80, 0xBC, 0x59, 0x0A, 0x59),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xF0, 0x24, 0x35, 0xA2, 0x46, 0xF0, 0x0C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0x26, 0xC0, 0x9D, 0x61, 0x56, 0x62, 0x67),
+};
+static const mbedtls_mpi_uint secp384r1_T_19_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xBB, 0xC2, 0x24, 0x43, 0x2E, 0x37, 0x54),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0xF7, 0xCE, 0x35, 0xFC, 0x77, 0xF3, 0x3F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0x34, 0x96, 0xD5, 0x4A, 0x76, 0x9D, 0x6B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x3B, 0x0F, 0xEA, 0xA8, 0x12, 0x0B, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0x3F, 0x5D, 0x2D, 0x1C, 0xD4, 0x9E, 0xFB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x2E, 0xDD, 0xC7, 0x6E, 0xAB, 0xAF, 0xDC),
+};
+static const mbedtls_mpi_uint secp384r1_T_19_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0xB2, 0x7B, 0x0C, 0x9A, 0x83, 0x8E, 0x59),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x51, 0x90, 0x92, 0x79, 0x32, 0x19, 0xC3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0x89, 0xF9, 0xD0, 0xCF, 0x2C, 0xA5, 0x8F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x50, 0x21, 0xDE, 0x50, 0x41, 0x9D, 0x81),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x7D, 0x2B, 0x9E, 0x9D, 0x95, 0xA8, 0xE3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xA5, 0x20, 0x87, 0x88, 0x97, 0x5F, 0xAA),
+};
+static const mbedtls_mpi_uint secp384r1_T_20_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x59, 0xB4, 0x66, 0x7E, 0xE8, 0x5A, 0x60),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x5C, 0x7E, 0xB2, 0xAD, 0xD9, 0xC9, 0xDA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x97, 0x49, 0xA3, 0x13, 0x83, 0x07, 0x2E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x26, 0xC7, 0x13, 0x35, 0x0D, 0xB0, 0x6B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x60, 0xAB, 0xFA, 0x4B, 0x93, 0x18, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x2D, 0x1C, 0x31, 0x4C, 0xE4, 0x61, 0xAE),
+};
+static const mbedtls_mpi_uint secp384r1_T_20_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0x4D, 0x1E, 0x51, 0x59, 0x6E, 0x91, 0xC5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x54, 0x4D, 0x51, 0xED, 0x36, 0xCC, 0x60),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0xA8, 0x56, 0xC7, 0x78, 0x27, 0x33, 0xC5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0xB7, 0x95, 0xC9, 0x8B, 0xC8, 0x6A, 0xBC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0xE9, 0x13, 0x96, 0xB3, 0xE1, 0xF9, 0xEE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x46, 0xB0, 0x5E, 0xC3, 0x94, 0x03, 0x05),
+};
+static const mbedtls_mpi_uint secp384r1_T_21_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x5B, 0x29, 0x30, 0x41, 0x1A, 0x9E, 0xB6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0xCA, 0x83, 0x31, 0x5B, 0xA7, 0xCB, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x41, 0x50, 0x44, 0x4D, 0x64, 0x31, 0x89),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0x84, 0xC2, 0x5D, 0x97, 0xA5, 0x3C, 0x18),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x0F, 0xA5, 0xFD, 0x8E, 0x5A, 0x47, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x58, 0x02, 0x2D, 0x40, 0xB1, 0x0B, 0xBA),
+};
+static const mbedtls_mpi_uint secp384r1_T_21_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x33, 0x8C, 0x67, 0xCE, 0x23, 0x43, 0x99),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x53, 0x47, 0x72, 0x44, 0x1F, 0x5B, 0x2A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0xC1, 0xD9, 0xA4, 0x50, 0x88, 0x63, 0x18),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0xF2, 0x75, 0x69, 0x73, 0x00, 0xC4, 0x31),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0x90, 0x1D, 0xDF, 0x1A, 0x00, 0xD8, 0x69),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0xB1, 0x89, 0x48, 0xA8, 0x70, 0x62, 0xEF),
+};
+static const mbedtls_mpi_uint secp384r1_T_22_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x8A, 0x55, 0x50, 0x7B, 0xEF, 0x8A, 0x3C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0x1B, 0x23, 0x48, 0x23, 0x63, 0x91, 0xB6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0x04, 0x54, 0x3C, 0x24, 0x9B, 0xC7, 0x9A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0x38, 0xC3, 0x84, 0xFB, 0xFF, 0x9F, 0x49),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0x2A, 0xE0, 0x6D, 0x68, 0x8A, 0x5C, 0xCB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0x93, 0x53, 0x85, 0xA1, 0x0D, 0xAF, 0x63),
+};
+static const mbedtls_mpi_uint secp384r1_T_22_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x88, 0x95, 0x4C, 0x0B, 0xD0, 0x06, 0x51),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0xAF, 0x8D, 0x49, 0xA2, 0xC8, 0xB4, 0xE0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0x76, 0x53, 0x09, 0x88, 0x43, 0x87, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0xA4, 0x77, 0x3F, 0x5E, 0x21, 0xB4, 0x0A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0x9E, 0x86, 0x64, 0xCC, 0x91, 0xC1, 0x77),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x17, 0x56, 0xCB, 0xC3, 0x7D, 0x5B, 0xB1),
+};
+static const mbedtls_mpi_uint secp384r1_T_23_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x74, 0x9F, 0xB5, 0x91, 0x21, 0xB1, 0x1C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xED, 0xE1, 0x11, 0xEF, 0x45, 0xAF, 0xC1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x31, 0xBE, 0xB2, 0xBC, 0x72, 0x65, 0x1F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0x4B, 0x8C, 0x77, 0xCE, 0x1E, 0x42, 0xB5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xC9, 0xAA, 0xB9, 0xD9, 0x86, 0x99, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x23, 0x80, 0xC6, 0x4E, 0x35, 0x0B, 0x6D),
+};
+static const mbedtls_mpi_uint secp384r1_T_23_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0xD8, 0xA2, 0x0A, 0x39, 0x32, 0x1D, 0x23),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0xC8, 0x86, 0xF1, 0x12, 0x9A, 0x4A, 0x05),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xF1, 0x7C, 0xAA, 0x70, 0x8E, 0xBC, 0x01),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x01, 0x47, 0x8F, 0xDD, 0x8B, 0xA5, 0xC8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x08, 0x21, 0xF4, 0xAB, 0xC7, 0xF5, 0x96),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0x76, 0xA5, 0x95, 0xC4, 0x0F, 0x88, 0x1D),
+};
+static const mbedtls_mpi_uint secp384r1_T_24_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x42, 0x2A, 0x52, 0xCD, 0x75, 0x51, 0x49),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0x36, 0xE5, 0x04, 0x2B, 0x44, 0xC6, 0xEF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xEE, 0x16, 0x13, 0x07, 0x83, 0xB5, 0x30),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0x59, 0xC6, 0xA2, 0x19, 0x05, 0xD3, 0xC6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x8B, 0xA8, 0x16, 0x09, 0xB7, 0xEA, 0xD6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0xEE, 0x14, 0xAF, 0xB5, 0xFD, 0xD0, 0xEF),
+};
+static const mbedtls_mpi_uint secp384r1_T_24_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0x7C, 0xCA, 0x71, 0x3E, 0x6E, 0x66, 0x75),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x31, 0x0E, 0x3F, 0xE5, 0x91, 0xC4, 0x7F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x3D, 0xC2, 0x3E, 0x95, 0x37, 0x58, 0x2B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x1F, 0x02, 0x03, 0xF3, 0xEF, 0xEE, 0x66),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x5B, 0x1A, 0xFC, 0x38, 0xCD, 0xE8, 0x24),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x57, 0x42, 0x85, 0xC6, 0x21, 0x68, 0x71),
+};
+static const mbedtls_mpi_uint secp384r1_T_25_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xA2, 0x4A, 0x66, 0xB1, 0x0A, 0xE6, 0xC0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x0C, 0x94, 0x9D, 0x5E, 0x99, 0xB2, 0xCE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x03, 0x40, 0xCA, 0xB2, 0xB3, 0x30, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x78, 0x48, 0x27, 0x34, 0x1E, 0xE2, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x72, 0x5B, 0xAC, 0xC1, 0x6D, 0xE3, 0x82),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0xAB, 0x46, 0xCB, 0xEA, 0x5E, 0x4B, 0x0B),
+};
+static const mbedtls_mpi_uint secp384r1_T_25_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x08, 0xAD, 0x4E, 0x51, 0x9F, 0x2A, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x5C, 0x7D, 0x4C, 0xD6, 0xCF, 0xDD, 0x02),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0x76, 0x26, 0xE0, 0x8B, 0x10, 0xD9, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0xA7, 0x23, 0x4E, 0x5F, 0xD2, 0x42, 0x17),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0xE5, 0xA4, 0xEC, 0x77, 0x21, 0x34, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0x14, 0x65, 0xEA, 0x4A, 0x85, 0xC3, 0x2F),
+};
+static const mbedtls_mpi_uint secp384r1_T_26_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0xD8, 0x40, 0x27, 0x73, 0x15, 0x7E, 0x65),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xBB, 0x53, 0x7E, 0x0F, 0x40, 0xC8, 0xD4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0x37, 0x19, 0x73, 0xEF, 0x5A, 0x5E, 0x04),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0x73, 0x2B, 0x49, 0x7E, 0xAC, 0x97, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0xB2, 0xC3, 0x1E, 0x0E, 0xE7, 0xD2, 0x21),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x08, 0xD6, 0xDD, 0xAC, 0x21, 0xD6, 0x3E),
+};
+static const mbedtls_mpi_uint secp384r1_T_26_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0x26, 0xBE, 0x6D, 0x6D, 0xF2, 0x38, 0x3F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x6C, 0x31, 0xA7, 0x49, 0x50, 0x3A, 0x89),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0x99, 0xC6, 0xF5, 0xD2, 0xC2, 0x30, 0x5A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xE4, 0xF6, 0x8B, 0x8B, 0x97, 0xE9, 0xB2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x21, 0xB7, 0x0D, 0xFC, 0x15, 0x54, 0x0B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x83, 0x1C, 0xA4, 0xCD, 0x6B, 0x9D, 0xF2),
+};
+static const mbedtls_mpi_uint secp384r1_T_27_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xE8, 0x4C, 0x48, 0xE4, 0xAA, 0x69, 0x93),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x7A, 0x27, 0xFC, 0x37, 0x96, 0x1A, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0xE7, 0x30, 0xA5, 0xCF, 0x13, 0x46, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0xD8, 0xAF, 0x74, 0x23, 0x4D, 0x56, 0x84),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x3D, 0x44, 0x14, 0x1B, 0x97, 0x83, 0xF0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x47, 0xD7, 0x5F, 0xFD, 0x98, 0x38, 0xF7),
+};
+static const mbedtls_mpi_uint secp384r1_T_27_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0x73, 0x64, 0x36, 0xFD, 0x7B, 0xC1, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0x5D, 0x32, 0xD2, 0x47, 0x94, 0x89, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xE9, 0x30, 0xAC, 0x06, 0xC8, 0x65, 0x04),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x6C, 0xB9, 0x1B, 0xF7, 0x61, 0x49, 0x53),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0xFF, 0x32, 0x43, 0x80, 0xDA, 0xA6, 0xB1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xF8, 0x04, 0x01, 0x95, 0x35, 0xCE, 0x21),
+};
+static const mbedtls_mpi_uint secp384r1_T_28_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x06, 0x46, 0x0D, 0x51, 0xE2, 0xD8, 0xAC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0x57, 0x1D, 0x6F, 0x79, 0xA0, 0xCD, 0xA6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0xFB, 0x36, 0xCA, 0xAD, 0xF5, 0x9E, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x7A, 0x1D, 0x9E, 0x1D, 0x95, 0x48, 0xDC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x26, 0xA5, 0xB7, 0x15, 0x2C, 0xC2, 0xC6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x42, 0x72, 0xAA, 0x11, 0xDC, 0xC9, 0xB6),
+};
+static const mbedtls_mpi_uint secp384r1_T_28_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x6C, 0x64, 0xA7, 0x62, 0x3C, 0xAB, 0xD4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x48, 0x6A, 0x44, 0xD8, 0x60, 0xC0, 0xA8, 0x80),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x76, 0x58, 0x12, 0x57, 0x3C, 0x89, 0x46),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x4F, 0x83, 0xCE, 0xCB, 0xB8, 0xD0, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x84, 0x04, 0xB0, 0xAD, 0xEB, 0xFA, 0xDF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xA4, 0xC3, 0x41, 0x44, 0x4E, 0x65, 0x3E),
+};
+static const mbedtls_mpi_uint secp384r1_T_29_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x16, 0xA9, 0x1C, 0xE7, 0x65, 0x20, 0xC1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x53, 0x32, 0xF8, 0xC0, 0xA6, 0xBD, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xF0, 0xE6, 0x57, 0x31, 0xCC, 0x26, 0x6F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0xE3, 0x54, 0x1C, 0x34, 0xD3, 0x17, 0xBC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xAE, 0xED, 0xFB, 0xCD, 0xE7, 0x1E, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x16, 0x1C, 0x34, 0x40, 0x00, 0x1F, 0xB6),
+};
+static const mbedtls_mpi_uint secp384r1_T_29_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x32, 0x00, 0xC2, 0xD4, 0x3B, 0x1A, 0x09),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xE0, 0x99, 0x8F, 0x0C, 0x4A, 0x16, 0x44),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x73, 0x18, 0x1B, 0xD4, 0x94, 0x29, 0x62),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0xA4, 0x2D, 0xB1, 0x9D, 0x74, 0x32, 0x67),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0xF4, 0xB1, 0x0C, 0x37, 0x62, 0x8B, 0x66),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xFF, 0xDA, 0xE2, 0x35, 0xA3, 0xB6, 0x42),
+};
+static const mbedtls_mpi_uint secp384r1_T_30_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x49, 0x99, 0x65, 0xC5, 0xED, 0x16, 0xEF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0x42, 0x9A, 0xF3, 0xA7, 0x4E, 0x6F, 0x2B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x0A, 0x7E, 0xC0, 0xD7, 0x4E, 0x07, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x7A, 0x31, 0x69, 0xA6, 0xB9, 0x15, 0x34),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0xE0, 0x72, 0xA4, 0x3F, 0xB9, 0xF8, 0x0C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0x75, 0x32, 0x85, 0xA2, 0xDE, 0x37, 0x12),
+};
+static const mbedtls_mpi_uint secp384r1_T_30_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xC0, 0x0D, 0xCF, 0x25, 0x41, 0xA4, 0xF4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0xFC, 0xB2, 0x48, 0xC3, 0x85, 0x83, 0x4B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0xBE, 0x0B, 0x58, 0x2D, 0x7A, 0x9A, 0x62),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0xF3, 0x81, 0x18, 0x1B, 0x74, 0x4F, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0x43, 0xA3, 0x0A, 0x16, 0x8B, 0xA3, 0x1E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x18, 0x81, 0x7B, 0x8D, 0xA2, 0x35, 0x77),
+};
+static const mbedtls_mpi_uint secp384r1_T_31_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0xC4, 0x3F, 0x2C, 0xE7, 0x5F, 0x99, 0x03),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x2B, 0xB7, 0xB6, 0xAD, 0x5A, 0x56, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x00, 0xA4, 0x48, 0xC8, 0xE8, 0xBA, 0xBF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0xA1, 0xB5, 0x13, 0x5A, 0xCD, 0x99, 0x9C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x95, 0xAD, 0xFC, 0xE2, 0x7E, 0xE7, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x6B, 0xD1, 0x34, 0x99, 0x53, 0x63, 0x0B),
+};
+static const mbedtls_mpi_uint secp384r1_T_31_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x8A, 0x77, 0x5D, 0x2B, 0xAB, 0x01, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x85, 0xD0, 0xD5, 0x49, 0x83, 0x4D, 0x60),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0xC6, 0x91, 0x30, 0x3B, 0x00, 0xAF, 0x7A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0xAE, 0x61, 0x07, 0xE1, 0xB6, 0xE2, 0xC9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0x43, 0x41, 0xFE, 0x9B, 0xB6, 0xF0, 0xA5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x97, 0xAE, 0xAD, 0x89, 0x88, 0x9E, 0x41),
+};
+static const mbedtls_ecp_point secp384r1_T[32] = {
+    ECP_POINT_INIT_XY_Z1(secp384r1_T_0_X, secp384r1_T_0_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_1_X, secp384r1_T_1_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_2_X, secp384r1_T_2_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_3_X, secp384r1_T_3_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_4_X, secp384r1_T_4_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_5_X, secp384r1_T_5_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_6_X, secp384r1_T_6_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_7_X, secp384r1_T_7_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_8_X, secp384r1_T_8_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_9_X, secp384r1_T_9_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_10_X, secp384r1_T_10_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_11_X, secp384r1_T_11_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_12_X, secp384r1_T_12_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_13_X, secp384r1_T_13_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_14_X, secp384r1_T_14_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_15_X, secp384r1_T_15_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_16_X, secp384r1_T_16_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_17_X, secp384r1_T_17_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_18_X, secp384r1_T_18_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_19_X, secp384r1_T_19_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_20_X, secp384r1_T_20_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_21_X, secp384r1_T_21_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_22_X, secp384r1_T_22_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_23_X, secp384r1_T_23_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_24_X, secp384r1_T_24_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_25_X, secp384r1_T_25_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_26_X, secp384r1_T_26_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_27_X, secp384r1_T_27_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_28_X, secp384r1_T_28_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_29_X, secp384r1_T_29_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_30_X, secp384r1_T_30_Y),
+    ECP_POINT_INIT_XY_Z0(secp384r1_T_31_X, secp384r1_T_31_Y),
+};
+#else
+#define secp384r1_T NULL
+#endif
+
+#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
+
+/*
+ * Domain parameters for secp521r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+static const mbedtls_mpi_uint secp521r1_p[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_2(0xFF, 0x01),
+};
+static const mbedtls_mpi_uint secp521r1_b[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95),
+    MBEDTLS_BYTES_TO_T_UINT_2(0x51, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_gx[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_2(0xC6, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_gy[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39),
+    MBEDTLS_BYTES_TO_T_UINT_2(0x18, 0x01),
+};
+static const mbedtls_mpi_uint secp521r1_n[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_2(0xFF, 0x01),
+};
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp521r1_T_0_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_0_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_1_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xB1, 0x2D, 0xEB, 0x27, 0x2F, 0xE8, 0xDA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x4B, 0x44, 0x25, 0xDB, 0x5C, 0x5F, 0x67),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x85, 0x28, 0x78, 0x2E, 0x75, 0x34, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0x57, 0x0F, 0x73, 0x78, 0x7A, 0xE3, 0x53),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xD8, 0xEC, 0xDC, 0xDA, 0x04, 0xAD, 0xAB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x8A, 0x09, 0xF3, 0x58, 0x79, 0xD8, 0x29),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x03, 0xCB, 0x50, 0x1A, 0x7F, 0x56, 0x00),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xA6, 0x78, 0x38, 0x85, 0x67, 0x0B, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_1_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0xD5, 0xD2, 0x22, 0xC4, 0x00, 0x3B, 0xBA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x93, 0x0E, 0x7B, 0x85, 0x51, 0xC3, 0x06),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xA6, 0x5F, 0x54, 0x49, 0x02, 0x81, 0x78),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0xE9, 0x6B, 0x3A, 0x92, 0xE7, 0x72, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x5F, 0x28, 0x9E, 0x91, 0x27, 0x88, 0xE3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x28, 0x31, 0xB3, 0x84, 0xCA, 0x12, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xF9, 0xAC, 0x22, 0x10, 0x0A, 0x64, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0xC6, 0x33, 0x1F, 0x69, 0x19, 0x18, 0xBF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_2_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x48, 0xB8, 0xC7, 0x37, 0x5A, 0x00, 0x36),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xCC, 0x32, 0xE0, 0xEE, 0x03, 0xC2, 0xBA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0x29, 0xC2, 0xE4, 0x6E, 0x24, 0x20, 0x8D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x6B, 0x7F, 0x7B, 0xF9, 0xB0, 0xB8, 0x13),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x7B, 0x3C, 0xE1, 0x19, 0xA1, 0x23, 0x02),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xE3, 0xC2, 0x53, 0xC0, 0x07, 0x13, 0xA9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xFE, 0x36, 0x35, 0x9F, 0x5E, 0x59, 0xCE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x55, 0x89, 0x84, 0xBC, 0xEF, 0xA2, 0xC2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_2_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0x1A, 0x08, 0x67, 0xB4, 0xE7, 0x22, 0xED),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0x26, 0xDF, 0x81, 0x3C, 0x5F, 0x1C, 0xDA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x4D, 0xD0, 0x0A, 0x48, 0x06, 0xF4, 0x48),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x18, 0x39, 0xF7, 0xD1, 0x20, 0x77, 0x8D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0x8F, 0x44, 0x13, 0xCB, 0x78, 0x11, 0x11),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0xE2, 0x49, 0xEA, 0x43, 0x79, 0x08, 0x39),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0xD1, 0xD8, 0x73, 0x2C, 0x71, 0x2F, 0x69),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xE5, 0xE7, 0xF4, 0x46, 0xAB, 0x20, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_3_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0x0B, 0xB9, 0x71, 0x1A, 0x27, 0xB7, 0xA7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xA2, 0x2C, 0xD1, 0xDA, 0xBC, 0xC1, 0xBD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xA3, 0x10, 0x1F, 0x90, 0xF2, 0xA5, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0xFB, 0x20, 0xF4, 0xC0, 0x70, 0xC0, 0xF5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8F, 0xA7, 0x99, 0xF0, 0xA5, 0xD3, 0x09, 0xDD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0xE8, 0x14, 0x39, 0xBE, 0xCB, 0x60, 0xAF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0xD6, 0x14, 0xA9, 0xC9, 0x20, 0xC3, 0xEA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xA8, 0x5B, 0xFD, 0x2D, 0x96, 0xBC, 0x78),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_3_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x04, 0x45, 0xBE, 0xCE, 0x75, 0x95, 0xF6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0xDA, 0x58, 0x49, 0x35, 0x09, 0x8D, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0xF0, 0xC0, 0x36, 0xF2, 0xA6, 0x2D, 0x14),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0xFC, 0x3D, 0xA8, 0xFB, 0x3C, 0xD2, 0x51),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x4D, 0x71, 0x09, 0x18, 0x42, 0xF0, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xC1, 0xCE, 0x9E, 0x6A, 0x49, 0x60, 0x12),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0xB1, 0x00, 0xF7, 0xA1, 0x7A, 0x31, 0xB4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0xC3, 0x86, 0xCD, 0x20, 0x4A, 0x17, 0x86),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_4_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0xAB, 0x8B, 0x47, 0x8D, 0xAA, 0xA6, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0x97, 0xF0, 0xBC, 0x2D, 0xDC, 0x9D, 0x84),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x86, 0xB0, 0x74, 0xB2, 0xF4, 0xF6, 0x67),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xBD, 0xAC, 0xE3, 0x8F, 0x43, 0x5C, 0xB1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0xC3, 0xE2, 0x6E, 0x25, 0x49, 0xCD, 0x0B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x5E, 0x08, 0xB3, 0xB9, 0xAC, 0x5F, 0xD1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0xB7, 0xD1, 0xF4, 0xDC, 0x19, 0xE9, 0xC8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0xE4, 0xFA, 0xE1, 0x36, 0x3E, 0xED, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_4_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x67, 0x92, 0x84, 0x6E, 0x48, 0x03, 0x51),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0x95, 0xEF, 0x8F, 0xB2, 0x82, 0x6B, 0x1C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xFA, 0xB9, 0x55, 0x23, 0xFE, 0x09, 0xB3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x79, 0x85, 0x4B, 0x0E, 0xD4, 0x35, 0xDB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x27, 0x45, 0x81, 0xE0, 0x88, 0x52, 0xAD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x63, 0xA2, 0x4B, 0xBC, 0x5D, 0xB1, 0x92),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x8C, 0x83, 0xD9, 0x3E, 0xD3, 0x42, 0xDA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x03, 0x3A, 0x31, 0xBA, 0xE9, 0x3A, 0xD1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_5_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0x10, 0xCD, 0x2D, 0x00, 0xFE, 0x32, 0xA7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x6E, 0x1F, 0xDA, 0xF8, 0x6F, 0x4D, 0x03),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x79, 0x7D, 0x09, 0xE5, 0xD3, 0x03, 0x21),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0xC3, 0xBE, 0xDF, 0x07, 0x65, 0x49, 0xCC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x57, 0x33, 0xEF, 0xAE, 0x4F, 0x04, 0x27),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0xE9, 0x9B, 0xFE, 0xBF, 0xE6, 0x85, 0xF6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0xBA, 0xAA, 0x06, 0xC4, 0xC6, 0xB8, 0x57),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0x83, 0x01, 0xA9, 0xF6, 0x51, 0xE7, 0xB8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_5_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xA6, 0x15, 0x8E, 0xAB, 0x1F, 0x10, 0x87),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x08, 0x27, 0x1A, 0xA1, 0x21, 0xAD, 0xF5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x09, 0x90, 0x6E, 0x50, 0x90, 0x9A, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x9A, 0xFE, 0xD7, 0xA1, 0xF5, 0xA2, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x7D, 0xE3, 0xDC, 0x21, 0xFB, 0xA4, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xBF, 0x07, 0xFF, 0x45, 0xDF, 0x51, 0x77),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x5C, 0x34, 0x02, 0x62, 0x9B, 0x08, 0x12),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0xCE, 0x9A, 0x6A, 0xEC, 0x75, 0xF6, 0x46),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_6_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x59, 0xF4, 0x78, 0x3C, 0x60, 0xB1, 0x4A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x37, 0x84, 0x6A, 0xDC, 0xF2, 0x9A, 0x7D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x9A, 0x9A, 0x15, 0x36, 0xE0, 0x2B, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x38, 0x9C, 0x50, 0x3D, 0x1E, 0x37, 0x82),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x79, 0xF0, 0x92, 0xF2, 0x8B, 0x18, 0x82),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xE0, 0x82, 0x1E, 0x80, 0x82, 0x4B, 0xD7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xBB, 0x59, 0x6B, 0x8A, 0x77, 0x41, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0xF9, 0xD4, 0xB8, 0x4A, 0x82, 0xCF, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_6_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x8C, 0xC8, 0x9B, 0x72, 0x9E, 0xF7, 0xF9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0xCE, 0xE9, 0x77, 0x0A, 0x19, 0x59, 0x84),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0xA1, 0x41, 0x6A, 0x72, 0x4B, 0xB4, 0xDC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x35, 0x43, 0xE2, 0x8C, 0xBE, 0x0D, 0xE3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0xEB, 0xAD, 0xF3, 0xA9, 0xA6, 0x68, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x2F, 0xE2, 0x48, 0x0C, 0xDB, 0x1F, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0x1E, 0x60, 0x9B, 0x2A, 0xD2, 0xC1, 0x3C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0x64, 0xB5, 0xD2, 0xF6, 0xF6, 0x6E, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_7_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x3D, 0x30, 0x78, 0x10, 0x18, 0x41, 0x51),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x1D, 0x1C, 0xE0, 0x6D, 0x83, 0xD1, 0x93),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x03, 0x0B, 0xF5, 0x2F, 0x6C, 0x04, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x3E, 0xD5, 0xFC, 0x31, 0x5B, 0x3A, 0xEB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x82, 0x2F, 0xFB, 0xFE, 0xF8, 0x76, 0x39),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0x26, 0xDA, 0x9C, 0x36, 0xF5, 0x93, 0xD1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4C, 0xE7, 0x6E, 0xD2, 0x7D, 0x81, 0x09, 0xC6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x03, 0xF9, 0x58, 0x48, 0x24, 0xA2, 0xEE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_7_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x79, 0x0C, 0x8E, 0x6B, 0x95, 0xF3, 0xC4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0x10, 0x5C, 0x87, 0x03, 0x39, 0xCF, 0x68),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0xF0, 0xF7, 0xC1, 0x07, 0xA4, 0xF4, 0x3F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0xE8, 0x02, 0x89, 0x65, 0xC4, 0x72, 0x36),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x88, 0xEA, 0x96, 0x67, 0x0B, 0x5D, 0xDF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x75, 0x60, 0xA8, 0xBD, 0x74, 0xDF, 0x68),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6E, 0xE5, 0x71, 0x50, 0x67, 0xD0, 0xD2, 0xE6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0xFC, 0xE5, 0xC7, 0x77, 0xB0, 0x7F, 0x8C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_8_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x86, 0x69, 0xCD, 0x0D, 0x9A, 0xBD, 0x66),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x17, 0xBC, 0xBB, 0x59, 0x85, 0x7D, 0x0E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xA8, 0x76, 0xAC, 0x80, 0xA9, 0x72, 0xE0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x78, 0xC1, 0xE2, 0x4D, 0xAF, 0xF9, 0x3C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x97, 0x8E, 0x74, 0xC4, 0x4B, 0xB2, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xD8, 0xF6, 0xF3, 0xAF, 0x2F, 0x52, 0xE5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0x57, 0xF4, 0xCE, 0xEE, 0x43, 0xED, 0x60),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x46, 0x38, 0xDE, 0x20, 0xFD, 0x59, 0x18),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_8_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x18, 0xE8, 0x58, 0xB9, 0x76, 0x2C, 0xE6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0x54, 0xE4, 0xFE, 0xC7, 0xBC, 0x31, 0x37),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xF8, 0x89, 0xEE, 0x70, 0xB5, 0xB0, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x22, 0x26, 0x9A, 0x53, 0xB9, 0x38, 0x0A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xA7, 0x19, 0x8C, 0x74, 0x7E, 0x88, 0x46),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xDA, 0x0A, 0xE8, 0xDA, 0xA5, 0xBE, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0x5C, 0xF7, 0xB1, 0x0C, 0x72, 0xFB, 0x09),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0xE2, 0x23, 0xE7, 0x46, 0xB7, 0xE0, 0x91),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_9_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x36, 0xBC, 0xBD, 0x48, 0x11, 0x8E, 0x72),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0xBB, 0xA1, 0xF7, 0x0B, 0x9E, 0xBF, 0xDF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x28, 0xE1, 0xA2, 0x8F, 0xFC, 0xFC, 0xD6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0xFE, 0x19, 0x0A, 0xE5, 0xE7, 0x69, 0x39),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0xCD, 0x12, 0xF5, 0xBE, 0xD3, 0x04, 0xF1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xA8, 0x0D, 0x81, 0x59, 0xC4, 0x79, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0xF3, 0x4B, 0x92, 0x65, 0xC3, 0x31, 0xAD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0xB5, 0x4F, 0x4D, 0x91, 0xD4, 0xE2, 0xB2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_9_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x09, 0x41, 0x79, 0x1D, 0x4D, 0x0D, 0x33),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x31, 0x18, 0xBA, 0xA0, 0xF2, 0x6E, 0x7E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x5B, 0x4D, 0x4F, 0xAF, 0xC9, 0x8C, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x48, 0x99, 0x9C, 0x06, 0x68, 0xDE, 0xD8, 0x29),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x04, 0xE1, 0xB5, 0x9D, 0x00, 0xBC, 0xB8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x95, 0x92, 0x8D, 0x72, 0xD3, 0x37, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x4B, 0x27, 0xA2, 0xE8, 0xA4, 0x26, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x45, 0x9C, 0xA9, 0xCB, 0x9F, 0xBA, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_10_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x7E, 0x1B, 0x64, 0xF4, 0xE8, 0xA5, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0x20, 0xA9, 0xCA, 0xF3, 0x89, 0xE5, 0xE1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0xED, 0xFC, 0xAB, 0xD9, 0x0A, 0xB9, 0x07),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x6F, 0x46, 0x7C, 0xCD, 0x78, 0xFF, 0x05),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0xAB, 0x71, 0x5A, 0x94, 0xAB, 0x20, 0x20),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x2E, 0xEE, 0x87, 0x57, 0x1F, 0xAD, 0xD3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x4C, 0x3D, 0xFB, 0x7E, 0xA1, 0x8B, 0x07),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0xCF, 0x07, 0x86, 0xBA, 0x53, 0x37, 0xCF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_10_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x26, 0xB2, 0xB9, 0xE2, 0x91, 0xE3, 0xB5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0xC9, 0x54, 0x84, 0x08, 0x3D, 0x0B, 0xD2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xA8, 0x77, 0x2F, 0x64, 0x45, 0x99, 0x4C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x96, 0x16, 0x1F, 0xDB, 0x96, 0x28, 0x97),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x2B, 0x8D, 0xFF, 0xA2, 0x4F, 0x55, 0xD3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0xE6, 0x48, 0xBD, 0x99, 0x3D, 0x12, 0x57),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x84, 0x59, 0xDA, 0xB9, 0xB6, 0x66, 0x12),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x78, 0x41, 0x92, 0xDF, 0xF4, 0x3F, 0x63),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_11_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x86, 0x6F, 0x4F, 0xBF, 0x67, 0xDF, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x2B, 0x1E, 0x5F, 0x00, 0xEA, 0xF6, 0x56),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0xB9, 0x6A, 0x89, 0xD8, 0xC0, 0xD7, 0xA7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x9A, 0x32, 0x23, 0xA0, 0x02, 0x91, 0x58),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x7F, 0x6A, 0x15, 0x64, 0x6A, 0x8B, 0xBB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x57, 0x82, 0x58, 0xA9, 0x56, 0xB5, 0xFB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x50, 0x92, 0x60, 0xCC, 0x81, 0x24, 0xA8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0x3D, 0xAD, 0xDA, 0xD9, 0x51, 0x3E, 0x57),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_11_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0xFE, 0x8F, 0xB0, 0x0B, 0xDE, 0x2E, 0x7E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0xD2, 0xBE, 0xEF, 0xAC, 0x76, 0x71, 0xA3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0xE8, 0x72, 0x0B, 0xAC, 0xFE, 0xCA, 0x5A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x5B, 0xC7, 0xFC, 0xE3, 0x3C, 0x7C, 0x4C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x04, 0xA7, 0xB9, 0x9B, 0x93, 0xC0, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x48, 0x4B, 0x8E, 0x32, 0xC5, 0xF0, 0x6B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x42, 0x07, 0xC1, 0xF2, 0xF1, 0x72, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x37, 0x54, 0x9C, 0x88, 0xD2, 0x62, 0xAA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_12_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x19, 0x8A, 0x89, 0x58, 0xA2, 0x0F, 0xDB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0xCC, 0x4C, 0x97, 0x30, 0x66, 0x34, 0x26),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x6A, 0x1E, 0x1F, 0xDB, 0xC9, 0x5E, 0x13),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x4D, 0x49, 0xFF, 0x9B, 0x9C, 0xAC, 0x9B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0xE4, 0x4B, 0xF2, 0xD4, 0x1A, 0xD2, 0x78),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xDA, 0xE8, 0x61, 0x9F, 0xC8, 0x49, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xCB, 0xF2, 0x2D, 0x85, 0xF6, 0x8D, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xC5, 0xCD, 0x2C, 0x79, 0xC6, 0x0E, 0x4F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_12_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x1D, 0x55, 0x0F, 0xF8, 0x22, 0x9F, 0x78),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0x56, 0xBA, 0xE7, 0x57, 0x32, 0xEC, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x9A, 0xC6, 0x4C, 0x09, 0xC4, 0x52, 0x3F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x1E, 0x6F, 0xF4, 0x7D, 0x27, 0xDD, 0xAF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x11, 0x16, 0xEC, 0x79, 0x83, 0xAD, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x4E, 0x92, 0x1F, 0x19, 0x7D, 0x65, 0xDC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0xFF, 0x78, 0x15, 0x45, 0x63, 0x32, 0xE4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x91, 0xD0, 0x78, 0x58, 0xDA, 0x50, 0x47),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_13_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0xDE, 0x40, 0xF6, 0x41, 0xB4, 0x3B, 0x95),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x8D, 0xE0, 0xE1, 0xA9, 0xF0, 0x35, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xD4, 0xBA, 0x7B, 0xCC, 0x1B, 0x3A, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x5A, 0x2E, 0x74, 0x47, 0x14, 0xC3, 0x4D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0xF0, 0x8B, 0x06, 0x15, 0x8E, 0x0E, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0xD2, 0xEB, 0x97, 0x50, 0x7D, 0x31, 0xFC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x93, 0x4C, 0xDB, 0x97, 0x79, 0x44, 0xF5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0xA2, 0xA0, 0x0B, 0xC8, 0x3A, 0x8A, 0xF9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_13_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0x50, 0x92, 0x9E, 0x24, 0x1F, 0xCB, 0x4C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x16, 0xC9, 0xC5, 0x3D, 0x5A, 0xAF, 0x97),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0xE3, 0x97, 0xE4, 0xA8, 0x50, 0xF6, 0x7E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x57, 0x97, 0x42, 0x78, 0x92, 0x49, 0x0D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0xEB, 0x62, 0x24, 0xFB, 0x8F, 0x32, 0xCF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x0C, 0x36, 0x6E, 0x8F, 0xE8, 0xE8, 0x8E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0xD3, 0x7C, 0xC7, 0x8D, 0x3F, 0x5C, 0xE1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x64, 0x6A, 0x73, 0x10, 0x79, 0xB8, 0x5A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_14_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xF9, 0xEF, 0xA5, 0x20, 0x4A, 0x5C, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xF3, 0xF4, 0x49, 0x5B, 0x73, 0xAA, 0x1B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0xF2, 0xEA, 0x0F, 0x00, 0xAD, 0x53, 0xAB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0xB8, 0x66, 0xED, 0xC4, 0x2B, 0x4C, 0x35),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x2F, 0xC1, 0x9A, 0x37, 0xD2, 0x7F, 0x58),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0xA7, 0x81, 0x38, 0x64, 0xC9, 0x37, 0x38),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x3B, 0x6C, 0x9F, 0x5B, 0xD9, 0x8B, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x14, 0xD9, 0x08, 0xD8, 0xD2, 0x7E, 0x23),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_14_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x71, 0xE6, 0x3D, 0xD1, 0xB0, 0xE7, 0xCD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x81, 0x23, 0xEC, 0x2D, 0x42, 0x45, 0xE6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0x5B, 0x44, 0x6B, 0x89, 0x03, 0x67, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x27, 0xAE, 0x80, 0x5A, 0x33, 0xBE, 0x11),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0xB6, 0x64, 0x1A, 0xDF, 0xD3, 0x85, 0x91),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0x8C, 0x22, 0xBA, 0xD0, 0xBD, 0xCC, 0xA0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0x3C, 0x01, 0x3A, 0xFF, 0x9D, 0xC7, 0x6B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0xC7, 0x64, 0xB4, 0x59, 0x4E, 0x9F, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_15_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x34, 0x0A, 0x41, 0x94, 0xA8, 0xF2, 0xB7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xD4, 0xE4, 0xF0, 0x97, 0x45, 0x6D, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8F, 0x1F, 0x4D, 0x6D, 0xFE, 0xA0, 0xC4, 0x84),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x28, 0x5C, 0x40, 0xBB, 0x65, 0xD4, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0xA8, 0x87, 0x35, 0x20, 0x3A, 0x89, 0x44),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xFD, 0x4F, 0xAB, 0x2D, 0xD1, 0xD0, 0xC0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0xE8, 0x00, 0xFC, 0x69, 0x52, 0xF8, 0xD5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x9A, 0x99, 0xE1, 0xDC, 0x9C, 0x3F, 0xD9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_15_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x08, 0x98, 0xD9, 0xCA, 0x73, 0xD5, 0xA9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x2C, 0xE0, 0xA7, 0x3E, 0x91, 0xD7, 0x87),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x04, 0xB0, 0x54, 0x09, 0xF4, 0x72, 0xB7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0xEE, 0x28, 0xCC, 0xE8, 0x50, 0x78, 0x20),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0x91, 0x03, 0x76, 0xDB, 0x68, 0x24, 0x77),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0xE0, 0x56, 0xB2, 0x5D, 0x12, 0xD3, 0xB5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0x42, 0x59, 0x8B, 0xDF, 0x67, 0xB5, 0xBE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0xCC, 0xE5, 0x31, 0x53, 0x7A, 0x46, 0xB3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_16_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x8D, 0x59, 0xB5, 0x1B, 0x0F, 0xF4, 0xAF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x2F, 0xD1, 0x2C, 0xE0, 0xD8, 0x04, 0xEF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xF4, 0xD7, 0xBA, 0xB0, 0xA3, 0x7E, 0xC9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x08, 0x51, 0x56, 0xA6, 0x76, 0x67, 0x33),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0x17, 0x63, 0xFE, 0x56, 0xD0, 0xD9, 0x71),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0xF6, 0xC3, 0x14, 0x47, 0xC5, 0xA7, 0x31),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x4C, 0x80, 0xF6, 0xA2, 0x57, 0xA7, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xB3, 0x7B, 0xF8, 0x2F, 0xE1, 0x3E, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_16_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0xF4, 0xF9, 0x6B, 0x7B, 0x90, 0xDF, 0x30),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x82, 0xEF, 0x62, 0xA1, 0x4C, 0x53, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x99, 0x76, 0x01, 0xBA, 0x8D, 0x0F, 0x54),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xF4, 0x58, 0x73, 0x56, 0xFE, 0xDD, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xCE, 0xF9, 0xE8, 0xA1, 0x34, 0xC3, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x5F, 0xDC, 0x6A, 0x3D, 0xD8, 0x7F, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0xF4, 0x51, 0xB8, 0xB8, 0xC1, 0xD7, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x7D, 0x58, 0xD1, 0xD4, 0x1B, 0x4D, 0x23),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_17_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x95, 0xDF, 0x00, 0xD8, 0x21, 0xDE, 0x94),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0x47, 0x3C, 0xC3, 0xB2, 0x01, 0x53, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x17, 0x43, 0x23, 0xBD, 0xCA, 0x71, 0xF2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0xBA, 0x0F, 0x4F, 0xDC, 0x41, 0x54, 0xBE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x39, 0x26, 0x70, 0x53, 0x32, 0x18, 0x11),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x46, 0x07, 0x97, 0x3A, 0x57, 0xE0, 0x01),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x92, 0x4F, 0xCE, 0xDF, 0x25, 0x80, 0x26),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x6F, 0x9A, 0x03, 0x05, 0x4B, 0xD1, 0x47),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_17_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0x01, 0x72, 0x30, 0x90, 0x17, 0x51, 0x20),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xFB, 0x41, 0x65, 0x5C, 0xB4, 0x2D, 0xEE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xCD, 0xCD, 0xAA, 0x41, 0xCC, 0xBB, 0x07),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0xCE, 0x08, 0x0A, 0x63, 0xE9, 0xA2, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xA8, 0x21, 0x7F, 0x7A, 0x5B, 0x9B, 0x81),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x6B, 0x89, 0x44, 0x0A, 0x7F, 0x85, 0x5F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0xDE, 0x7C, 0x19, 0x5C, 0x65, 0x26, 0x61),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0xAC, 0x62, 0x29, 0x4A, 0xF1, 0xD0, 0x81),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_18_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x00, 0x40, 0x87, 0xEB, 0xA9, 0x58, 0x56),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0x51, 0x0B, 0xFF, 0x56, 0x35, 0x51, 0xB3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0xAC, 0x08, 0x94, 0x71, 0xDA, 0xEC, 0x99),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x4D, 0xC5, 0x7B, 0x31, 0x8B, 0x8D, 0x5E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x05, 0xF1, 0x3E, 0x9E, 0x8F, 0x17, 0x8F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x9C, 0x4B, 0x62, 0x94, 0xAD, 0x49, 0xFC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xC9, 0xC6, 0x8F, 0xFD, 0x33, 0x44, 0x34),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x96, 0x17, 0x7F, 0x42, 0xBE, 0xF7, 0x0D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_18_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0x29, 0x39, 0x13, 0x08, 0x8D, 0x91, 0x47),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0x79, 0xF9, 0x2F, 0xA9, 0x0A, 0xCF, 0xD6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x87, 0x7A, 0xA3, 0x19, 0xAB, 0x55, 0xAD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x0B, 0x01, 0xC5, 0x56, 0x19, 0x9D, 0x9E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0xDE, 0x82, 0x3B, 0xEA, 0xD3, 0x0B, 0x8C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x6B, 0xC7, 0xF3, 0x0F, 0x82, 0x87, 0x6C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0x2E, 0x23, 0xF2, 0x39, 0x9D, 0x49, 0x70),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0xDE, 0xAF, 0x7A, 0xEE, 0xB0, 0xDA, 0x70),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_19_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0x4E, 0x2A, 0x50, 0xFD, 0x8E, 0xC0, 0xEB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0x0F, 0x7C, 0x76, 0x63, 0xD8, 0x89, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x2D, 0xB9, 0x4E, 0xF4, 0xEE, 0x85, 0xCF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x95, 0x5C, 0x96, 0x5D, 0xAA, 0x59, 0x0B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0xDB, 0xD2, 0x68, 0x8E, 0x5A, 0x94, 0x60),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x02, 0xBF, 0x77, 0x9F, 0xB9, 0x4C, 0xC9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0xDC, 0xC0, 0xCF, 0x81, 0x1E, 0xC4, 0x6C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0xCC, 0x37, 0x86, 0xDC, 0xE2, 0x64, 0x72),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_19_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x30, 0xB1, 0x59, 0x20, 0x9D, 0x98, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x0C, 0x9D, 0xF8, 0x20, 0xDC, 0x90, 0xBA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0xA0, 0xF4, 0xE7, 0x3E, 0x9C, 0x9E, 0xA2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x25, 0xA2, 0xB0, 0x54, 0xCD, 0x2E, 0x33),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xD9, 0x42, 0xB0, 0x80, 0xB0, 0xA3, 0x38),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0xFE, 0x9D, 0x8D, 0x40, 0xFF, 0x27, 0x6D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x9D, 0xA6, 0x88, 0x3A, 0x8B, 0x6F, 0x14),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x39, 0xEE, 0x1F, 0x3F, 0xB1, 0x4F, 0x63),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_20_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xD7, 0x9E, 0xFF, 0xD2, 0x35, 0x67, 0x03),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x4F, 0x15, 0x5D, 0xE3, 0xE8, 0x53, 0x86),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0xF7, 0x24, 0x98, 0xA2, 0xCB, 0x11, 0x68),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x2E, 0x25, 0xE1, 0x94, 0xC5, 0xA3, 0x96),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x82, 0x6E, 0xBA, 0xE7, 0x43, 0x25, 0xB0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0x65, 0xB4, 0x49, 0x73, 0x18, 0x35, 0x54),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x5B, 0xBC, 0x62, 0x86, 0x4C, 0xC1, 0xB7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0xF2, 0x95, 0xA2, 0xBB, 0xA2, 0x35, 0x65),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_20_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x59, 0x62, 0xB0, 0x4B, 0x1E, 0xB4, 0xD8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0x55, 0xCE, 0xB0, 0x69, 0xBA, 0x63, 0x10),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6E, 0x69, 0x86, 0xDB, 0x34, 0x7D, 0x68, 0x64),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x06, 0xCA, 0x55, 0x44, 0x36, 0x2B, 0xBA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0xD4, 0xC4, 0x3D, 0xCD, 0x9E, 0x69, 0xA4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x44, 0xE4, 0xBF, 0x31, 0xE6, 0x40, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x4F, 0xFA, 0x75, 0xE3, 0xFB, 0x97, 0x0E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0xC0, 0xBD, 0x1C, 0x48, 0xB0, 0x26, 0xD0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD2, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_21_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x7B, 0x32, 0xFA, 0xF2, 0x6D, 0x84, 0x8E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x21, 0x03, 0x1D, 0x0D, 0x22, 0x55, 0x67),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0xF9, 0x42, 0x03, 0x9C, 0xC2, 0xCB, 0xBA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0xA1, 0x96, 0xD9, 0x9D, 0x11, 0x6F, 0xBE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x40, 0x57, 0xEB, 0x40, 0x2D, 0xC0, 0x11),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0x96, 0xBB, 0x4F, 0x2F, 0x23, 0xA8, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x29, 0x85, 0x21, 0xA5, 0x50, 0x62, 0x06),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x7D, 0x92, 0xCF, 0x87, 0x0C, 0x22, 0xF9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_21_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x0E, 0xA5, 0x32, 0x5B, 0xDF, 0x9C, 0xD5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x96, 0x37, 0x2C, 0x88, 0x35, 0x30, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0xB4, 0x69, 0xFF, 0xEB, 0xC6, 0x94, 0x08),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x55, 0x60, 0xAD, 0xAA, 0x58, 0x14, 0x88),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0xFF, 0xF2, 0xB2, 0xD5, 0xA7, 0xD9, 0x27),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0xAE, 0x54, 0xD2, 0x60, 0x31, 0xF3, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x92, 0x83, 0xE3, 0xF1, 0x42, 0x83, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0xD2, 0xC8, 0xB7, 0x76, 0x45, 0x7F, 0x7D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_22_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x11, 0xA4, 0xFB, 0x7A, 0x01, 0xBC, 0xC8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x27, 0x73, 0x8D, 0x02, 0x91, 0x27, 0x8E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x62, 0xF6, 0xDD, 0x6B, 0xFA, 0x5B, 0xB9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0xCA, 0xA2, 0x44, 0x2C, 0xF0, 0x28, 0xD8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0xF1, 0x7A, 0xA2, 0x42, 0x4C, 0x50, 0xC6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0x83, 0x3E, 0x50, 0xAB, 0x9C, 0xF7, 0x67),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0xED, 0x78, 0xCB, 0x76, 0x69, 0xDA, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x01, 0x1E, 0x43, 0x27, 0x47, 0x6E, 0xDA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_22_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x4F, 0x54, 0xB9, 0x3E, 0xBD, 0xD5, 0x44),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x35, 0x40, 0x69, 0x7F, 0x74, 0x9D, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x06, 0x6F, 0x67, 0x68, 0x2B, 0x4D, 0x10),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x65, 0x41, 0xFC, 0x7C, 0x1E, 0xE8, 0xC8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x79, 0x37, 0xAF, 0xFD, 0xD2, 0xDA, 0x4C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0xA8, 0x69, 0x56, 0x62, 0xA4, 0xE4, 0xA3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x71, 0x73, 0x21, 0x8A, 0x17, 0x81, 0xA2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0x55, 0x8F, 0x7B, 0xB8, 0xAF, 0xF7, 0x86),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_23_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0xD1, 0xBD, 0xBE, 0x8C, 0xBC, 0x60, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0xA6, 0x57, 0x8C, 0xAE, 0x5C, 0x19, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0x43, 0xE4, 0xD9, 0xD8, 0x7B, 0xE7, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0xB9, 0xE4, 0x85, 0x7C, 0x2E, 0xFC, 0x20),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x2E, 0x01, 0x2A, 0x6D, 0x56, 0xBE, 0x97),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x0C, 0x25, 0x9B, 0xAE, 0x86, 0x37, 0x43),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x22, 0xB3, 0xCB, 0x99, 0x66, 0xB7, 0x9E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0xF7, 0x90, 0xF0, 0x1B, 0x09, 0x27, 0xF7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_23_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x16, 0x08, 0xEF, 0x39, 0x64, 0x49, 0x31),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0xA0, 0xE3, 0x97, 0xA9, 0x07, 0x54, 0x26),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xFF, 0xE2, 0x00, 0x07, 0x21, 0x88, 0x20),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0xFD, 0x59, 0x53, 0x05, 0x6C, 0x42, 0x27),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8F, 0xF7, 0x39, 0x5C, 0x82, 0x36, 0xE8, 0x03),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2E, 0x83, 0xA8, 0xE2, 0xA8, 0x43, 0x07, 0x38),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xAF, 0x2B, 0x79, 0xED, 0xD8, 0x39, 0x87),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x20, 0x91, 0x7A, 0xC4, 0x07, 0xEF, 0x6C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_24_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x10, 0x2F, 0xAA, 0x0C, 0x94, 0x0E, 0x5A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x81, 0x87, 0x41, 0x23, 0xEB, 0x55, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x53, 0xCC, 0x79, 0xB6, 0xEB, 0x6C, 0xCC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0x77, 0x73, 0x9D, 0xFC, 0x64, 0x6F, 0x7F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0x40, 0xE3, 0x6D, 0x1C, 0x16, 0x71, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0xF4, 0x1B, 0xFF, 0x1C, 0x2F, 0xA5, 0xD7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x0E, 0x0B, 0x11, 0xF4, 0x8D, 0x93, 0xAF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0xC5, 0x64, 0x6F, 0x24, 0x19, 0xF2, 0x9B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_24_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0xB3, 0xAF, 0xA5, 0x0E, 0x4F, 0x5E, 0xE1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0x77, 0xCA, 0xF2, 0x6D, 0xC5, 0xF6, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0x18, 0x8E, 0x33, 0x68, 0x6C, 0xE8, 0xE0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x8B, 0x80, 0x90, 0x19, 0x7F, 0x90, 0x96),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x80, 0x6B, 0x68, 0xE2, 0x7D, 0xD4, 0xD0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xC1, 0x67, 0xB3, 0x72, 0xCB, 0xBF, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0xD5, 0xD3, 0x1D, 0x14, 0x58, 0x0A, 0x80),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0x7A, 0x65, 0x98, 0xB3, 0x07, 0x4B, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_25_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x87, 0x0F, 0x5F, 0xCF, 0xA2, 0x01, 0x08),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0xC9, 0xC8, 0x6E, 0x35, 0x87, 0xA5, 0x67),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x3E, 0x91, 0xA0, 0xAB, 0x24, 0x1E, 0xF2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xBC, 0x02, 0x35, 0x70, 0xC1, 0x5F, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x59, 0xA0, 0x50, 0x04, 0x80, 0x52, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x56, 0x6E, 0x42, 0x8F, 0x8C, 0x91, 0x65),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xA2, 0xCB, 0xA5, 0xDE, 0x14, 0x24, 0x38),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0xCB, 0x74, 0x28, 0xE6, 0xA7, 0xE7, 0xC3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_25_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0x73, 0xA8, 0x8F, 0x9E, 0x0E, 0x63, 0x96),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x1B, 0x77, 0xC7, 0xC1, 0x38, 0xF9, 0xDC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0x3C, 0xCF, 0xA8, 0x7A, 0xD7, 0xF3, 0xC4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x5F, 0x9A, 0xC9, 0xAD, 0xE9, 0x1A, 0x93),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0xCF, 0x2B, 0x5E, 0xD5, 0x81, 0x95, 0xA8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x88, 0x75, 0x29, 0x1F, 0xC7, 0xC7, 0xD0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xA9, 0x5A, 0x4D, 0x63, 0x95, 0xF9, 0x4E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0xCD, 0x04, 0x8F, 0xCD, 0x91, 0xDE, 0xC6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_26_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0xD4, 0xFD, 0x25, 0x11, 0x99, 0x6E, 0xEA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x83, 0x01, 0x3D, 0xFB, 0x56, 0xA5, 0x4E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x3A, 0xDC, 0x74, 0xC2, 0xD7, 0xCF, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8F, 0xBD, 0xF1, 0xDD, 0xA3, 0x07, 0x03, 0xE2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0xBE, 0xE9, 0x2E, 0x58, 0x84, 0x66, 0xFC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x20, 0x78, 0x37, 0x79, 0x0B, 0xA6, 0x64),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0xF2, 0xAC, 0x65, 0xC8, 0xC9, 0x2F, 0x61),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x93, 0xE5, 0x0D, 0x0C, 0xC6, 0xB8, 0xCB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_26_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0xAD, 0x5C, 0x19, 0x12, 0x61, 0x0E, 0x25),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0x4F, 0x0B, 0x1F, 0x49, 0x7E, 0xCD, 0x81),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x2E, 0x30, 0x61, 0xDB, 0x08, 0x68, 0x9B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x78, 0xAF, 0xB3, 0x08, 0xC1, 0x69, 0xE5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0x5F, 0x5D, 0xC1, 0x57, 0x6F, 0xD8, 0x34),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0xD3, 0x6A, 0xF7, 0xFD, 0x86, 0xE5, 0xB3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x63, 0xBD, 0x70, 0x7B, 0x47, 0xE8, 0x6D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0x62, 0xC8, 0x7E, 0x9D, 0x11, 0x2B, 0xA5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_27_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0x84, 0xFD, 0xD5, 0x9A, 0x56, 0x7F, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0xBB, 0xA4, 0x6F, 0x12, 0x6E, 0x4D, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x08, 0xA1, 0x82, 0x9C, 0x62, 0x74, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0x58, 0x22, 0x05, 0x1D, 0x15, 0x35, 0x79),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x88, 0xCF, 0x5C, 0x05, 0x78, 0xFB, 0x94),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x6B, 0x2F, 0x79, 0x09, 0x73, 0x67, 0xEC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xA0, 0x80, 0xD8, 0xE8, 0xEC, 0xFB, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xE7, 0x0B, 0xB7, 0x81, 0x48, 0x7B, 0xD9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_27_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x53, 0xA9, 0xED, 0x61, 0x92, 0xD7, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x49, 0xD9, 0x5D, 0x9B, 0x4E, 0x89, 0x35),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x12, 0xEB, 0x9A, 0xC9, 0xCB, 0xC1, 0x95),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0xDC, 0x95, 0x16, 0xFE, 0x29, 0x70, 0x01),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x33, 0xB1, 0xD6, 0x78, 0xB9, 0xE2, 0x36),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xCE, 0x88, 0xC3, 0xFD, 0x7A, 0x6B, 0xB8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x1E, 0x50, 0x1E, 0xAF, 0xB1, 0x25, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0xE7, 0xD7, 0xD5, 0xBD, 0x7A, 0x12, 0xF9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_28_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0xAA, 0xA2, 0x80, 0x5D, 0x8F, 0xCD, 0xC8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x48, 0x39, 0x79, 0x64, 0xA1, 0x67, 0x3C, 0xB7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xC7, 0x49, 0xFF, 0x7F, 0xAC, 0xAB, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x54, 0x3E, 0x83, 0xF0, 0x3D, 0xBC, 0xB5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x92, 0x4A, 0x38, 0x42, 0x8A, 0xAB, 0xF6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x0B, 0x4F, 0xEE, 0x9E, 0x92, 0xA5, 0xBE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0xDD, 0x19, 0x96, 0xF2, 0xF0, 0x6B, 0x2E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0xFC, 0xDD, 0xB2, 0x8A, 0xE5, 0x4C, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_28_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x06, 0x49, 0xAC, 0x99, 0x7E, 0xF8, 0x12),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0xC8, 0x01, 0x51, 0xEA, 0xF6, 0x52, 0xE7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x89, 0x66, 0x2B, 0x1F, 0x9B, 0x2A, 0xA3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x0F, 0x95, 0x07, 0x2B, 0x6C, 0x6E, 0x9E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0xC3, 0xB4, 0xBB, 0x91, 0x1F, 0xA3, 0x72),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x6E, 0x54, 0x28, 0x7B, 0x9C, 0x79, 0x2E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0x45, 0xFF, 0xA6, 0xDA, 0xA2, 0x83, 0x71),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0xDE, 0x8F, 0x17, 0x37, 0x82, 0xCB, 0xE2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_29_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0x94, 0x3F, 0x26, 0xC9, 0x1D, 0xD9, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x97, 0x28, 0x20, 0xCD, 0xC1, 0xF3, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0xC9, 0xB5, 0x60, 0x9B, 0x1E, 0xDC, 0x74),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0xB9, 0x5B, 0x7D, 0xA0, 0xB2, 0x8C, 0xF0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0xD1, 0x42, 0xE6, 0x39, 0x33, 0x6D, 0xBB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xC0, 0xFC, 0xD2, 0x14, 0x5D, 0x3E, 0x3C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0x4A, 0x3E, 0x40, 0x16, 0x93, 0x15, 0xCF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x24, 0xC1, 0x27, 0x27, 0xE5, 0x4B, 0xD8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_29_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x50, 0xD8, 0xBC, 0xC1, 0x46, 0x22, 0xBB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x0E, 0x60, 0xA1, 0xB3, 0x50, 0xD4, 0x86),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0xB1, 0x26, 0xB6, 0x6D, 0x47, 0x5A, 0x6F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0xAC, 0x11, 0x35, 0x3E, 0xB9, 0xF4, 0x01),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x97, 0xFA, 0xBB, 0x6B, 0x39, 0x13, 0xD8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x7B, 0x34, 0x12, 0x75, 0x8E, 0x9B, 0xC6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x9E, 0xCD, 0x29, 0xB6, 0xEF, 0x8D, 0x10),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0xAC, 0xE9, 0x25, 0x27, 0xBB, 0x78, 0x47),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_30_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x7A, 0xA8, 0xD3, 0xE3, 0x66, 0xE5, 0x66),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0x4C, 0xC4, 0x2C, 0x76, 0x81, 0x50, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0x71, 0x08, 0xB8, 0x52, 0x7C, 0xAF, 0xDC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x59, 0x24, 0xDD, 0xFB, 0x2F, 0xD0, 0xDA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xCD, 0x56, 0xE9, 0xAC, 0x91, 0xE6, 0xB9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0x64, 0x20, 0xC6, 0x9F, 0xE4, 0xEF, 0xDF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x2C, 0x8F, 0x8C, 0x97, 0xF6, 0x22, 0xC3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xF4, 0x88, 0xAA, 0xA8, 0xD7, 0xA5, 0x68),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_30_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x6C, 0xAE, 0x83, 0xB1, 0x55, 0x55, 0xEE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x67, 0x84, 0x47, 0x7C, 0x83, 0x5C, 0x89),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x10, 0x4D, 0xDD, 0x30, 0x60, 0xB0, 0xE6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xA7, 0x36, 0x76, 0x24, 0x32, 0x9F, 0x9D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x42, 0x81, 0xFB, 0xA4, 0x2E, 0x13, 0x68),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x94, 0x91, 0xFF, 0x99, 0xA0, 0x09, 0x61),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x83, 0xA1, 0x76, 0xAF, 0x37, 0x5C, 0x77),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xA8, 0x04, 0x86, 0xC4, 0xA9, 0x79, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_31_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x8C, 0xC2, 0x34, 0xFB, 0x83, 0x28, 0x27),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x03, 0x7D, 0x5E, 0x9E, 0x0E, 0xB0, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA2, 0x02, 0x46, 0x7F, 0xB9, 0xAC, 0xBB, 0x23),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0xED, 0x48, 0xC2, 0x96, 0x4D, 0x56, 0x27),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0xB5, 0xC5, 0xD1, 0xE6, 0x1C, 0x7E, 0x9B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x2E, 0x18, 0x71, 0x2D, 0x7B, 0xD7, 0xB3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x46, 0x9D, 0xDE, 0xAA, 0x78, 0x8E, 0xB1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0xD7, 0x69, 0x2E, 0xE1, 0xD9, 0x48, 0xDE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_31_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xFF, 0x9E, 0x09, 0x22, 0x22, 0xE6, 0x8D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x14, 0x28, 0x13, 0x1B, 0x62, 0x12, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x7F, 0x67, 0x03, 0xB0, 0xC0, 0xF3, 0x05),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0xC3, 0x0F, 0xFB, 0x25, 0x48, 0x3E, 0xF4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x6E, 0x53, 0x98, 0x36, 0xB3, 0xD3, 0x94),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x81, 0x54, 0x22, 0xA4, 0xCC, 0xC1, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xBA, 0xFC, 0xA9, 0xDF, 0x68, 0x86, 0x2B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x92, 0x0E, 0xC3, 0xF2, 0x58, 0xE8, 0x51),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_ecp_point secp521r1_T[32] = {
+    ECP_POINT_INIT_XY_Z1(secp521r1_T_0_X, secp521r1_T_0_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_1_X, secp521r1_T_1_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_2_X, secp521r1_T_2_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_3_X, secp521r1_T_3_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_4_X, secp521r1_T_4_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_5_X, secp521r1_T_5_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_6_X, secp521r1_T_6_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_7_X, secp521r1_T_7_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_8_X, secp521r1_T_8_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_9_X, secp521r1_T_9_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_10_X, secp521r1_T_10_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_11_X, secp521r1_T_11_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_12_X, secp521r1_T_12_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_13_X, secp521r1_T_13_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_14_X, secp521r1_T_14_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_15_X, secp521r1_T_15_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_16_X, secp521r1_T_16_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_17_X, secp521r1_T_17_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_18_X, secp521r1_T_18_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_19_X, secp521r1_T_19_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_20_X, secp521r1_T_20_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_21_X, secp521r1_T_21_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_22_X, secp521r1_T_22_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_23_X, secp521r1_T_23_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_24_X, secp521r1_T_24_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_25_X, secp521r1_T_25_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_26_X, secp521r1_T_26_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_27_X, secp521r1_T_27_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_28_X, secp521r1_T_28_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_29_X, secp521r1_T_29_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_30_X, secp521r1_T_30_Y),
+    ECP_POINT_INIT_XY_Z0(secp521r1_T_31_X, secp521r1_T_31_Y),
+};
+#else
+#define secp521r1_T NULL
+#endif
+#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+static const mbedtls_mpi_uint secp192k1_p[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+static const mbedtls_mpi_uint secp192k1_a[] = {
+    MBEDTLS_BYTES_TO_T_UINT_2(0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp192k1_b[] = {
+    MBEDTLS_BYTES_TO_T_UINT_2(0x03, 0x00),
+};
+static const mbedtls_mpi_uint secp192k1_gx[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB),
+};
+static const mbedtls_mpi_uint secp192k1_gy[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B),
+};
+static const mbedtls_mpi_uint secp192k1_n[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp192k1_T_0_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB),
+};
+static const mbedtls_mpi_uint secp192k1_T_0_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B),
+};
+static const mbedtls_mpi_uint secp192k1_T_1_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x77, 0x3D, 0x0D, 0x85, 0x48, 0xA8, 0xA9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x07, 0xDF, 0x1D, 0xB3, 0xB3, 0x01, 0x54),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x86, 0xF6, 0xAF, 0x19, 0x2A, 0x88, 0x2E),
+};
+static const mbedtls_mpi_uint secp192k1_T_1_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0x90, 0xB6, 0x2F, 0x48, 0x36, 0x4C, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x11, 0x14, 0xA6, 0xCB, 0xBA, 0x15, 0xD9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0xB0, 0xF2, 0xD4, 0xC9, 0xDA, 0xBA, 0xD7),
+};
+static const mbedtls_mpi_uint secp192k1_T_2_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0xC1, 0x9C, 0xE6, 0xBB, 0xFB, 0xCF, 0x23),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x19, 0xAC, 0x5A, 0xC9, 0x8A, 0x1C, 0x75),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0xF6, 0x76, 0x86, 0x89, 0x27, 0x8D, 0x28),
+};
+static const mbedtls_mpi_uint secp192k1_T_2_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0xE0, 0x6F, 0x34, 0xBA, 0x5E, 0xD3, 0x96),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0xDC, 0xA6, 0x87, 0xC9, 0x9D, 0xC0, 0x82),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x11, 0x7E, 0xD6, 0xF7, 0x33, 0xFC, 0xE4),
+};
+static const mbedtls_mpi_uint secp192k1_T_3_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x37, 0x3E, 0xC0, 0x7F, 0x62, 0xE7, 0x54),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x3B, 0x69, 0x9D, 0x44, 0xBC, 0x82, 0x99),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x84, 0xB3, 0x5F, 0x2B, 0xA5, 0x9E, 0x2C),
+};
+static const mbedtls_mpi_uint secp192k1_T_3_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x95, 0xEB, 0x4C, 0x04, 0xB4, 0xF4, 0x75),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0xAD, 0x4B, 0xD5, 0x9A, 0xEB, 0xC4, 0x4E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xB1, 0xC5, 0x59, 0xE3, 0xD5, 0x16, 0x2A),
+};
+static const mbedtls_mpi_uint secp192k1_T_4_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x48, 0x2A, 0xCC, 0xAC, 0xD0, 0xEE, 0x50, 0xEC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x83, 0xE0, 0x5B, 0x14, 0x44, 0x52, 0x20),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x15, 0x2D, 0x78, 0xF6, 0x51, 0x32, 0xCF),
+};
+static const mbedtls_mpi_uint secp192k1_T_4_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x36, 0x9B, 0xDD, 0xF8, 0xDD, 0xEF, 0xB2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0xB1, 0x6A, 0x2B, 0xAF, 0xEB, 0x2B, 0xB1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x87, 0x7A, 0x66, 0x5D, 0x5B, 0xDF, 0x8F),
+};
+static const mbedtls_mpi_uint secp192k1_T_5_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x45, 0xE5, 0x81, 0x9B, 0xEB, 0x37, 0x23),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x29, 0xE2, 0x20, 0x64, 0x23, 0x6B, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0x1D, 0x41, 0xE1, 0x9B, 0x61, 0x7B, 0xD9),
+};
+static const mbedtls_mpi_uint secp192k1_T_5_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0x57, 0xA3, 0x0A, 0x13, 0xE4, 0x59, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0x6E, 0x4A, 0x48, 0x84, 0x90, 0xAC, 0xC7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0xB8, 0xF5, 0xF3, 0xDE, 0xA0, 0xA1, 0x1D),
+};
+static const mbedtls_mpi_uint secp192k1_T_6_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0x32, 0x81, 0xA9, 0x91, 0x5A, 0x4E, 0x33),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0xA8, 0x90, 0xBE, 0x0F, 0xEC, 0xC0, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x30, 0xD7, 0x08, 0xAE, 0xC4, 0x3A, 0xA5),
+};
+static const mbedtls_mpi_uint secp192k1_T_6_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x55, 0xE3, 0x76, 0xB3, 0x64, 0x74, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x75, 0xD4, 0xDB, 0x98, 0xD7, 0x39, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0xEB, 0x8A, 0xAB, 0x16, 0xD9, 0xD4, 0x0B),
+};
+static const mbedtls_mpi_uint secp192k1_T_7_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0xBE, 0xF9, 0xC7, 0xC7, 0xBA, 0xF3, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x85, 0x59, 0xF3, 0x60, 0x41, 0x02, 0xD2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x1C, 0x4A, 0xA4, 0xC7, 0xED, 0x66, 0xBC),
+};
+static const mbedtls_mpi_uint secp192k1_T_7_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0x9C, 0x2E, 0x46, 0x52, 0x18, 0x87, 0x14),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x35, 0x5A, 0x75, 0xAC, 0x4D, 0x75, 0x91),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0x2F, 0xAC, 0xFC, 0xBC, 0xE6, 0x93, 0x5E),
+};
+static const mbedtls_mpi_uint secp192k1_T_8_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x4D, 0xC9, 0x18, 0xE9, 0x00, 0xEB, 0x33),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x69, 0x72, 0x07, 0x5A, 0x59, 0xA8, 0x26),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x65, 0x83, 0x20, 0x10, 0xF9, 0x69, 0x82),
+};
+static const mbedtls_mpi_uint secp192k1_T_8_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0x56, 0x7F, 0x9F, 0xBF, 0x46, 0x0C, 0x7E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0xCF, 0xF0, 0xDC, 0xDF, 0x2D, 0xE6, 0xE5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0xF0, 0x72, 0x3A, 0x7A, 0x03, 0xE5, 0x22),
+};
+static const mbedtls_mpi_uint secp192k1_T_9_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0xAA, 0x57, 0x13, 0x37, 0xA7, 0x2C, 0xD4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0xAC, 0xA2, 0x23, 0xF9, 0x84, 0x60, 0xD3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0xEB, 0x51, 0x70, 0x64, 0x78, 0xCA, 0x05),
+};
+static const mbedtls_mpi_uint secp192k1_T_9_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0xCC, 0x30, 0x62, 0x93, 0x46, 0x13, 0xE9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x26, 0xCC, 0x6C, 0x3D, 0x5C, 0xDA, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0xAA, 0xB8, 0x03, 0xA4, 0x1A, 0x00, 0x96),
+};
+static const mbedtls_mpi_uint secp192k1_T_10_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x9D, 0xE6, 0xCC, 0x4E, 0x2E, 0xC2, 0xD5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xC3, 0x8A, 0xAE, 0x6F, 0x40, 0x05, 0xEB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x8F, 0x4A, 0x4D, 0x35, 0xD3, 0x50, 0x9D),
+};
+static const mbedtls_mpi_uint secp192k1_T_10_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0xFD, 0x98, 0xAB, 0xC7, 0x03, 0xB4, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x40, 0xD2, 0x9F, 0xCA, 0xD0, 0x53, 0x00),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x84, 0x00, 0x6F, 0xC8, 0xAD, 0xED, 0x8D),
+};
+static const mbedtls_mpi_uint secp192k1_T_11_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xD3, 0x57, 0xD7, 0xC3, 0x07, 0xBD, 0xD7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0xBA, 0x47, 0x1D, 0x3D, 0xEF, 0x98, 0x6C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xC0, 0x6C, 0x7F, 0x12, 0xEE, 0x9F, 0x67),
+};
+static const mbedtls_mpi_uint secp192k1_T_11_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x02, 0xDA, 0x79, 0xAA, 0xC9, 0x27, 0xC4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x79, 0xC7, 0x71, 0x84, 0xCB, 0xE5, 0x5A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x37, 0x06, 0xBA, 0xB5, 0xD5, 0x18, 0x4C),
+};
+static const mbedtls_mpi_uint secp192k1_T_12_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x65, 0x72, 0x6C, 0xF2, 0x63, 0x27, 0x6A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0xBC, 0x71, 0xDF, 0x75, 0xF8, 0x98, 0x4D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x70, 0x9B, 0xDC, 0xE7, 0x18, 0x71, 0xFF),
+};
+static const mbedtls_mpi_uint secp192k1_T_12_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x5B, 0x9F, 0x00, 0x5A, 0xB6, 0x80, 0x7A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xE0, 0xBB, 0xFC, 0x5E, 0x78, 0x9C, 0x89),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x60, 0x03, 0x68, 0x83, 0x3D, 0x2E, 0x4C, 0xDD),
+};
+static const mbedtls_mpi_uint secp192k1_T_13_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0x49, 0x23, 0xA8, 0xCB, 0x3B, 0x1A, 0xF6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0x3D, 0xA7, 0x46, 0xCF, 0x75, 0xB6, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0xFD, 0x30, 0x01, 0xB6, 0xEF, 0xF9, 0xE8),
+};
+static const mbedtls_mpi_uint secp192k1_T_13_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDC, 0xFA, 0xDA, 0xB8, 0x29, 0x42, 0xC9, 0xC7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0xD7, 0xA0, 0xE6, 0x6B, 0x86, 0x61, 0x39),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0xE9, 0xD3, 0x37, 0xD8, 0xE7, 0x35, 0xA9),
+};
+static const mbedtls_mpi_uint secp192k1_T_14_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xC8, 0x8E, 0xB1, 0xCB, 0xB1, 0xB5, 0x4D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0xD7, 0x46, 0x7D, 0xAF, 0xE2, 0xDC, 0xBB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x46, 0xE7, 0xD8, 0x76, 0x31, 0x90, 0x76),
+};
+static const mbedtls_mpi_uint secp192k1_T_14_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0xD3, 0xF4, 0x74, 0xE1, 0x67, 0xD8, 0x66),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x70, 0x3C, 0xC8, 0xAF, 0x5F, 0xF4, 0x58),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x4E, 0xED, 0x5C, 0x43, 0xB3, 0x16, 0x35),
+};
+static const mbedtls_mpi_uint secp192k1_T_15_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0xAE, 0xD1, 0xDD, 0x31, 0x14, 0xD3, 0xF0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x14, 0x06, 0x13, 0x12, 0x1C, 0x81, 0xF5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0xF9, 0x0C, 0x91, 0xF7, 0x67, 0x59, 0x63),
+};
+static const mbedtls_mpi_uint secp192k1_T_15_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x91, 0xE2, 0xF4, 0x9D, 0xEB, 0x88, 0x87),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x82, 0x30, 0x9C, 0xAE, 0x18, 0x4D, 0xB7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0x79, 0xCF, 0x17, 0xA5, 0x1E, 0xE8, 0xC8),
+};
+static const mbedtls_ecp_point secp192k1_T[16] = {
+    ECP_POINT_INIT_XY_Z1(secp192k1_T_0_X, secp192k1_T_0_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_1_X, secp192k1_T_1_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_2_X, secp192k1_T_2_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_3_X, secp192k1_T_3_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_4_X, secp192k1_T_4_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_5_X, secp192k1_T_5_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_6_X, secp192k1_T_6_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_7_X, secp192k1_T_7_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_8_X, secp192k1_T_8_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_9_X, secp192k1_T_9_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_10_X, secp192k1_T_10_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_11_X, secp192k1_T_11_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_12_X, secp192k1_T_12_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_13_X, secp192k1_T_13_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_14_X, secp192k1_T_14_Y),
+    ECP_POINT_INIT_XY_Z0(secp192k1_T_15_X, secp192k1_T_15_Y),
+};
+#else
+#define secp192k1_T NULL
+#endif
+
+#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+static const mbedtls_mpi_uint secp224k1_p[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_4(0xFF, 0xFF, 0xFF, 0xFF),
+};
+static const mbedtls_mpi_uint secp224k1_a[] = {
+    MBEDTLS_BYTES_TO_T_UINT_2(0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_b[] = {
+    MBEDTLS_BYTES_TO_T_UINT_2(0x05, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_gx[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D),
+    MBEDTLS_BYTES_TO_T_UINT_4(0x33, 0x5B, 0x45, 0xA1),
+};
+static const mbedtls_mpi_uint secp224k1_gy[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F),
+    MBEDTLS_BYTES_TO_T_UINT_4(0xED, 0x9F, 0x08, 0x7E),
+};
+static const mbedtls_mpi_uint secp224k1_n[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00),
+};
+
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp224k1_T_0_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0x5B, 0x45, 0xA1, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_0_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0x9F, 0x08, 0x7E, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_1_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x6C, 0x22, 0x22, 0x40, 0x89, 0xAE, 0x7A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0x92, 0xE1, 0x87, 0x56, 0x35, 0xAF, 0x9B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0xAF, 0x08, 0x35, 0x27, 0xEA, 0x04, 0xED),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x53, 0xFD, 0xCF, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_1_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0xD0, 0x9F, 0x8D, 0xF3, 0x63, 0x54, 0x30),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0xDB, 0x0F, 0x61, 0x54, 0x26, 0xD1, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x21, 0xF7, 0x1B, 0xB5, 0x1D, 0xF6, 0x7E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x05, 0xDA, 0x8F, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_2_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x26, 0x73, 0xBC, 0xE4, 0x29, 0x62, 0x56),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x95, 0x17, 0x8B, 0xC3, 0x9B, 0xAC, 0xCC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0xDB, 0x77, 0xDF, 0xDD, 0x13, 0x04, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0xFC, 0x22, 0x93, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_2_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x65, 0xF1, 0x5A, 0x37, 0xEF, 0x79, 0xAD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x01, 0x37, 0xAC, 0x9A, 0x5B, 0x51, 0x65),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x75, 0x13, 0xA9, 0x4A, 0xAD, 0xFE, 0x9B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x82, 0x6F, 0x66, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_3_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0x5E, 0xF0, 0x40, 0xC3, 0xA6, 0xE2, 0x1E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x9A, 0x6F, 0xCF, 0x11, 0x26, 0x66, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0x73, 0xA8, 0xCF, 0x2B, 0x12, 0x36, 0x37),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xB3, 0x0A, 0x58, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_3_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x79, 0x00, 0x55, 0x04, 0x34, 0x90, 0x1A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0x54, 0x1C, 0xC2, 0x45, 0x0C, 0x1B, 0x23),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x19, 0xAB, 0xA8, 0xFC, 0x73, 0xDC, 0xEE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0xFB, 0x93, 0xCE, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_4_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x75, 0xD0, 0x66, 0x95, 0x86, 0xCA, 0x66),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xEA, 0x29, 0x16, 0x6A, 0x38, 0xDF, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xA2, 0x36, 0x2F, 0xDC, 0xBB, 0x5E, 0xF7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x89, 0x59, 0x49, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_4_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0xA3, 0x99, 0x9D, 0xB8, 0x77, 0x9D, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0x93, 0x43, 0x47, 0xC6, 0x5C, 0xF9, 0xFD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x00, 0x79, 0x42, 0x64, 0xB8, 0x25, 0x3E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x54, 0xB4, 0x33, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_5_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x0C, 0x42, 0x90, 0x83, 0x0B, 0x31, 0x5F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x2E, 0xAE, 0xC8, 0xC7, 0x5F, 0xD2, 0x70),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0xBC, 0xAD, 0x41, 0xE7, 0x32, 0x3A, 0x81),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x97, 0x52, 0x83, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_5_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x13, 0x7A, 0xBD, 0xAE, 0x94, 0x60, 0xFD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x9B, 0x95, 0xB4, 0x6E, 0x68, 0xB2, 0x1F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x49, 0xBE, 0x51, 0xFE, 0x66, 0x15, 0x74),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x37, 0xE4, 0xFE, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_6_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0x9B, 0xEE, 0x64, 0xC9, 0x1B, 0xBD, 0x77),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x5F, 0x34, 0xA9, 0x0B, 0xB7, 0x25, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0x13, 0xB1, 0x38, 0xFB, 0x9D, 0x78, 0xED),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0xE7, 0x1B, 0xFA, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_6_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0xB3, 0xB7, 0x44, 0x92, 0x6B, 0x00, 0x82),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x82, 0x44, 0x3E, 0x18, 0x1A, 0x58, 0x6A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0xF8, 0xC0, 0xE4, 0xEE, 0xC1, 0xBF, 0x44),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x32, 0x27, 0xB2, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_7_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0x9A, 0x42, 0x62, 0x8B, 0x26, 0x54, 0x21),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x85, 0x74, 0xA0, 0x79, 0xA8, 0xEE, 0xBE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x36, 0x60, 0xB3, 0x28, 0x4D, 0x55, 0xBE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x27, 0x82, 0x29, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_7_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0xFC, 0x73, 0x77, 0xAF, 0x5C, 0xAC, 0x78),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0xED, 0xE5, 0xF6, 0x1D, 0xA8, 0x67, 0x43),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0xDE, 0x33, 0x1C, 0xF1, 0x80, 0x73, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xE2, 0xDE, 0x3C, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_8_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x3E, 0x6B, 0xFE, 0xF0, 0x04, 0x28, 0x01),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0xB2, 0x14, 0x9D, 0x18, 0x11, 0x7D, 0x9D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xC4, 0xD6, 0x2E, 0x6E, 0x57, 0x4D, 0xE1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0x55, 0x1B, 0xDE, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_8_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xF7, 0x17, 0xBC, 0x45, 0xAB, 0x16, 0xAB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xB0, 0xEF, 0x61, 0xE3, 0x20, 0x7C, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x85, 0x41, 0x4D, 0xF1, 0x7E, 0x4D, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xC2, 0x9B, 0x5E, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_9_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x2E, 0x49, 0x3D, 0x3E, 0x4B, 0xD3, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x2B, 0x9D, 0xD5, 0x27, 0xFA, 0xCA, 0xE0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0xB3, 0x6A, 0xE0, 0x79, 0x14, 0x28, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x1E, 0xDC, 0xF5, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_9_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x44, 0x56, 0xCD, 0xFC, 0x9F, 0x09, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0x8C, 0x59, 0xA4, 0x64, 0x2A, 0x3A, 0xED),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0xA0, 0xB5, 0x86, 0x4E, 0x69, 0xDA, 0x06),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x8B, 0x11, 0x38, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_10_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x17, 0x16, 0x12, 0x17, 0xDC, 0x00, 0x7E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x76, 0x24, 0x6C, 0x97, 0x2C, 0xB5, 0xF9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x71, 0xE3, 0xB0, 0xBB, 0x4E, 0x50, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6E, 0x48, 0x26, 0xD5, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_10_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x5F, 0x28, 0xF6, 0x01, 0x5A, 0x60, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x95, 0xFE, 0xD0, 0xAD, 0x15, 0xD4, 0xD9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x5B, 0x7A, 0xFD, 0x80, 0xF7, 0x9F, 0x64),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0xBC, 0x1B, 0xDF, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_11_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0xE6, 0xDF, 0x14, 0x29, 0xF4, 0xD4, 0x14),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0x12, 0xDD, 0xEC, 0x5B, 0x8A, 0x59, 0xE5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x92, 0x3E, 0x35, 0x08, 0xE9, 0xCF, 0x0E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x35, 0x29, 0x97, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_11_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xDB, 0xD6, 0x6A, 0xC5, 0x43, 0xA4, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x33, 0x50, 0x61, 0x70, 0xA1, 0xE9, 0xCE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x15, 0x6E, 0x5F, 0x01, 0x0C, 0x8C, 0xFA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0xA1, 0x9A, 0x9D, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_12_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6E, 0xC6, 0xF7, 0xE2, 0x4A, 0xCD, 0x9B, 0x61),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x4D, 0x5A, 0xB8, 0xE2, 0x6D, 0xA6, 0x50),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x3F, 0xB6, 0x17, 0xE3, 0x2C, 0x6F, 0x65),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xA4, 0x59, 0x51, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_12_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x4F, 0x7C, 0x49, 0xCD, 0x6E, 0xEB, 0x3C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0xC9, 0x1F, 0xB7, 0x4D, 0x98, 0xC7, 0x67),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4C, 0xFD, 0x98, 0x20, 0x95, 0xBB, 0x20, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0xF2, 0x73, 0x92, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_13_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0xEF, 0xFB, 0x30, 0xFA, 0x12, 0x1A, 0xB0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0x4C, 0x24, 0xB4, 0x5B, 0xC9, 0x4C, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0xDD, 0x5E, 0x84, 0x95, 0x4D, 0x26, 0xED),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0xFA, 0xF9, 0x3A, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_13_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0xA3, 0x2E, 0x7A, 0xDC, 0xA7, 0x53, 0xA9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x9F, 0x81, 0x84, 0xB2, 0x0D, 0xFE, 0x31),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x89, 0x1B, 0x77, 0x0C, 0x89, 0x71, 0xEC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xFF, 0x7F, 0xB2, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_14_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0xE9, 0x2C, 0x79, 0xA6, 0x3C, 0xAD, 0x93),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xE0, 0x23, 0x02, 0x86, 0x0F, 0x77, 0x2A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x93, 0x6D, 0xE9, 0xF9, 0x3C, 0xBE, 0xB9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0xE7, 0x24, 0x92, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_14_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x3C, 0x5B, 0x4B, 0x1B, 0x25, 0x37, 0xD6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xE8, 0x38, 0x1B, 0xA1, 0x5A, 0x2E, 0x68),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0x19, 0xFD, 0xF4, 0x78, 0x01, 0x6B, 0x44),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0x69, 0x37, 0x4F, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_15_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0xE2, 0xBF, 0xD3, 0xEC, 0x95, 0x9C, 0x03),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x7B, 0xFC, 0xD5, 0xD3, 0x25, 0x5E, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0x55, 0x09, 0xA2, 0x58, 0x6A, 0xC9, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0xCC, 0x3B, 0xD9, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_15_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8F, 0x08, 0x65, 0x5E, 0xCB, 0xAB, 0x48, 0xC8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0x79, 0x8B, 0xC0, 0x11, 0xC0, 0x69, 0x38),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xE8, 0x8C, 0x4C, 0xC5, 0x28, 0xE4, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x1F, 0x34, 0x5C, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_ecp_point secp224k1_T[16] = {
+    ECP_POINT_INIT_XY_Z1(secp224k1_T_0_X, secp224k1_T_0_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_1_X, secp224k1_T_1_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_2_X, secp224k1_T_2_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_3_X, secp224k1_T_3_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_4_X, secp224k1_T_4_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_5_X, secp224k1_T_5_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_6_X, secp224k1_T_6_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_7_X, secp224k1_T_7_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_8_X, secp224k1_T_8_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_9_X, secp224k1_T_9_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_10_X, secp224k1_T_10_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_11_X, secp224k1_T_11_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_12_X, secp224k1_T_12_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_13_X, secp224k1_T_13_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_14_X, secp224k1_T_14_Y),
+    ECP_POINT_INIT_XY_Z0(secp224k1_T_15_X, secp224k1_T_15_Y),
+};
+#else
+#define secp224k1_T NULL
+#endif
+#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+static const mbedtls_mpi_uint secp256k1_p[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+static const mbedtls_mpi_uint secp256k1_a[] = {
+    MBEDTLS_BYTES_TO_T_UINT_2(0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp256k1_b[] = {
+    MBEDTLS_BYTES_TO_T_UINT_2(0x07, 0x00),
+};
+static const mbedtls_mpi_uint secp256k1_gx[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79),
+};
+static const mbedtls_mpi_uint secp256k1_gy[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48),
+};
+static const mbedtls_mpi_uint secp256k1_n[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp256k1_T_0_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79),
+};
+static const mbedtls_mpi_uint secp256k1_T_0_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48),
+};
+static const mbedtls_mpi_uint secp256k1_T_1_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0xEE, 0xD7, 0x1E, 0x67, 0x86, 0x32, 0x74),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0x73, 0xB1, 0xA9, 0xD5, 0xCC, 0x27, 0x78),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x0E, 0x11, 0x01, 0x71, 0xFE, 0x92, 0x73),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x28, 0x63, 0x6D, 0x72, 0x09, 0xA6, 0xC0),
+};
+static const mbedtls_mpi_uint secp256k1_T_1_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xE1, 0x69, 0xDC, 0x3E, 0x2C, 0x75, 0xC3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0xB7, 0x3F, 0x30, 0x26, 0x3C, 0xDF, 0x8E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xBE, 0xB9, 0x5D, 0x0E, 0xE8, 0x5E, 0x14),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0xC3, 0x05, 0xD6, 0xB7, 0xD5, 0x24, 0xFC),
+};
+static const mbedtls_mpi_uint secp256k1_T_2_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0xCF, 0x7B, 0xDC, 0xCD, 0xC3, 0x39, 0x9D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0xDA, 0xB9, 0xE5, 0x64, 0xA7, 0x47, 0x91),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0x46, 0xA8, 0x61, 0xF6, 0x23, 0xEB, 0x58),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xC1, 0xFF, 0xE4, 0x55, 0xD5, 0xC2, 0xBF),
+};
+static const mbedtls_mpi_uint secp256k1_T_2_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xBE, 0xB9, 0x59, 0x24, 0x13, 0x4A, 0x2A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x45, 0x12, 0xDE, 0xBA, 0x4F, 0xEF, 0x56),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x08, 0xBF, 0xC1, 0x66, 0xAA, 0x0A, 0xBC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0xFE, 0x30, 0x55, 0x31, 0x86, 0xA7, 0xB4),
+};
+static const mbedtls_mpi_uint secp256k1_T_3_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0xBF, 0x18, 0x81, 0x67, 0x27, 0x42, 0xBD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x05, 0x83, 0xA4, 0xDD, 0x57, 0xD3, 0x50),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x20, 0x63, 0xAB, 0xE4, 0x90, 0x70, 0xD0, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x5D, 0xFD, 0xA0, 0xEF, 0xCF, 0x1C, 0x54),
+};
+static const mbedtls_mpi_uint secp256k1_T_3_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x80, 0xE4, 0xF6, 0x09, 0xBC, 0x57, 0x90),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x9F, 0x6E, 0x88, 0x54, 0x6E, 0x51, 0xF2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x5F, 0x85, 0xFB, 0x84, 0x3E, 0x4A, 0xAA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x19, 0xF5, 0x55, 0xC9, 0x07, 0xD8, 0xCE),
+};
+static const mbedtls_mpi_uint secp256k1_T_4_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0xB4, 0xC3, 0xD9, 0x5C, 0xA0, 0xD4, 0x90),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0x30, 0xAF, 0x59, 0x9B, 0xF8, 0x04, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0xA6, 0xFD, 0x66, 0x7B, 0xC3, 0x39, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0xBF, 0xF0, 0xC2, 0xE9, 0x71, 0xA4, 0x9E),
+};
+static const mbedtls_mpi_uint secp256k1_T_4_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0x2D, 0xB9, 0x88, 0x28, 0xF1, 0xBE, 0x78),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0xF3, 0x1A, 0x0E, 0xB9, 0x01, 0x66, 0x34),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0xA7, 0xA4, 0xF4, 0x05, 0xD0, 0xAA, 0x53),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x39, 0x1E, 0x47, 0xE5, 0x68, 0xC8, 0xC0),
+};
+static const mbedtls_mpi_uint secp256k1_T_5_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0xB9, 0xFC, 0xE0, 0x33, 0x8A, 0x7D, 0x96),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x93, 0xA5, 0x53, 0x55, 0x16, 0xB4, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0x5F, 0xEA, 0x9B, 0x29, 0x52, 0x71, 0xDA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0xF0, 0x24, 0xB8, 0x7D, 0xB7, 0xA0, 0x9B),
+};
+static const mbedtls_mpi_uint secp256k1_T_5_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x00, 0x27, 0xB2, 0xDF, 0x73, 0xA2, 0xE0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x2E, 0x4D, 0x7C, 0xDE, 0x7A, 0x23, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x65, 0x60, 0xC7, 0x97, 0x1E, 0xA4, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x13, 0x5B, 0x77, 0x59, 0xCB, 0x36, 0xE1),
+};
+static const mbedtls_mpi_uint secp256k1_T_6_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xBC, 0x9F, 0x9E, 0x2D, 0x53, 0x2A, 0xA8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x5F, 0x64, 0x9F, 0x1A, 0x19, 0xE6, 0x77),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0x7B, 0x39, 0xD2, 0xDB, 0x85, 0x84, 0xD5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0xC7, 0x0D, 0x58, 0x6E, 0x3F, 0x52, 0x15),
+};
+static const mbedtls_mpi_uint secp256k1_T_6_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x68, 0x19, 0x0B, 0x68, 0xC9, 0x1E, 0xFB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD2, 0x4E, 0x21, 0x49, 0x3D, 0x55, 0xCC, 0x25),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xF9, 0x25, 0x45, 0x54, 0x45, 0xB1, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0xB3, 0xF7, 0xCD, 0x80, 0xA4, 0x04, 0x05),
+};
+static const mbedtls_mpi_uint secp256k1_T_7_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x1E, 0x88, 0xC4, 0xAA, 0x18, 0x7E, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0xAC, 0xD9, 0xB2, 0xA1, 0xC0, 0x71, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0xA2, 0xF1, 0x15, 0xA6, 0x5F, 0x6C, 0x86),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x5B, 0x05, 0xBC, 0xB7, 0xC6, 0x4E, 0x72),
+};
+static const mbedtls_mpi_uint secp256k1_T_7_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x80, 0xF8, 0x5C, 0x20, 0x2A, 0xE1, 0xE2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x48, 0x2E, 0x68, 0x82, 0x7F, 0xEB, 0x5F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA2, 0x3B, 0x25, 0xDB, 0x32, 0x4D, 0x88, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0x6E, 0xA6, 0xB6, 0x6D, 0x62, 0x78, 0x22),
+};
+static const mbedtls_mpi_uint secp256k1_T_8_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x4D, 0x3E, 0x86, 0x58, 0xC3, 0xEB, 0xBA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x89, 0x33, 0x18, 0x21, 0x1D, 0x9B, 0xE7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x9D, 0xFF, 0xC3, 0x79, 0xC1, 0x88, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0xD4, 0x48, 0x53, 0xE8, 0xAD, 0x21, 0x16),
+};
+static const mbedtls_mpi_uint secp256k1_T_8_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x7B, 0xDE, 0xCB, 0xD8, 0x39, 0x17, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0xF3, 0x03, 0xF2, 0x5C, 0xBC, 0xC8, 0x8A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0xAE, 0x4C, 0xB0, 0x16, 0xA4, 0x93, 0x86),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x8B, 0x6B, 0xDC, 0xD7, 0x9A, 0x3E, 0x7E),
+};
+static const mbedtls_mpi_uint secp256k1_T_9_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x2D, 0x7A, 0xD2, 0x59, 0x05, 0xA2, 0x82),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x56, 0x09, 0x32, 0xF1, 0xE8, 0xE3, 0x72),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0xCA, 0xE5, 0x2E, 0xF0, 0xFB, 0x18, 0x19),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x85, 0xA9, 0x23, 0x15, 0x31, 0x1F, 0x0E),
+};
+static const mbedtls_mpi_uint secp256k1_T_9_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0xE5, 0xB1, 0x86, 0xB9, 0x6E, 0x8D, 0xD3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x77, 0xFC, 0xC9, 0xA3, 0x3F, 0x89, 0xD2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x6A, 0xDC, 0x25, 0xB0, 0xC7, 0x41, 0x54),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x11, 0x6B, 0xA6, 0x11, 0x62, 0xD4, 0x2D),
+};
+static const mbedtls_mpi_uint secp256k1_T_10_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x7D, 0x34, 0xB3, 0x20, 0x7F, 0x37, 0xAA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0xD4, 0x45, 0xE8, 0xC2, 0xE9, 0xC5, 0xEA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x32, 0x3B, 0x25, 0x7E, 0x79, 0xAF, 0xE7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0xE4, 0x54, 0x71, 0xBE, 0x35, 0x4E, 0xD0),
+};
+static const mbedtls_mpi_uint secp256k1_T_10_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x94, 0xDD, 0x8F, 0xB5, 0xC2, 0xDD, 0x75),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x49, 0xE9, 0x1C, 0x2F, 0x08, 0x49, 0xC6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0xB6, 0x03, 0x88, 0x6F, 0xB8, 0x15, 0x67),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0xD3, 0x1C, 0xF3, 0xA5, 0xEB, 0x79, 0x01),
+};
+static const mbedtls_mpi_uint secp256k1_T_11_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0xF9, 0x43, 0x88, 0x89, 0x0D, 0x06, 0xEA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x2D, 0xF5, 0x98, 0x32, 0xF6, 0xB1, 0x05),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0x73, 0x8F, 0x2B, 0x50, 0x27, 0x0A, 0xE7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0xE3, 0xBD, 0x16, 0x05, 0xC8, 0x93, 0x12),
+};
+static const mbedtls_mpi_uint secp256k1_T_11_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0x6A, 0xF7, 0xE3, 0x3D, 0xDE, 0x5F, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0xA3, 0x9C, 0x22, 0x3C, 0x33, 0x36, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x20, 0x24, 0x4C, 0x69, 0x45, 0x78, 0x14, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xF8, 0xD4, 0xBF, 0xB8, 0xC0, 0xA1, 0x25),
+};
+static const mbedtls_mpi_uint secp256k1_T_12_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x88, 0xE1, 0x91, 0x03, 0xEB, 0xB3, 0x2B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0x11, 0xA1, 0xEF, 0x14, 0x0D, 0xC4, 0x7D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xD4, 0x0D, 0x1D, 0x96, 0x33, 0x5C, 0x19),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x45, 0x2A, 0x1A, 0xE6, 0x57, 0x04, 0x9B),
+};
+static const mbedtls_mpi_uint secp256k1_T_12_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0xB5, 0xA7, 0x80, 0xE9, 0x93, 0x97, 0x8D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xB9, 0x7C, 0xA0, 0xC9, 0x57, 0x26, 0x43),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0xEF, 0x56, 0xDA, 0x66, 0xF6, 0x1B, 0x9A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x89, 0x6B, 0x91, 0xE0, 0xA9, 0x65, 0x2B),
+};
+static const mbedtls_mpi_uint secp256k1_T_13_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x98, 0x96, 0x9B, 0x06, 0x7D, 0x5E, 0x5A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0xFA, 0xC1, 0x5F, 0x19, 0x37, 0x94, 0x9D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0xBE, 0x6B, 0x1A, 0x05, 0xE4, 0xBF, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0xCD, 0x5D, 0x35, 0xB4, 0x51, 0xF7, 0x64),
+};
+static const mbedtls_mpi_uint secp256k1_T_13_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0xEF, 0x96, 0xDB, 0xF2, 0x61, 0x63, 0x59),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x04, 0x88, 0xC9, 0x9F, 0x1B, 0x94, 0xB9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x30, 0x79, 0x7E, 0x24, 0xE7, 0x5F, 0xB8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0xB8, 0x90, 0xB7, 0x94, 0x25, 0xBB, 0x0F),
+};
+static const mbedtls_mpi_uint secp256k1_T_14_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x79, 0xEA, 0xAD, 0xC0, 0x6D, 0x18, 0x57),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0xA4, 0x58, 0x2A, 0x8D, 0x95, 0xB3, 0xE6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0xC4, 0xC2, 0x12, 0x0D, 0x79, 0xE2, 0x2B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x6F, 0xBE, 0x97, 0x4D, 0xA4, 0x20, 0x07),
+};
+static const mbedtls_mpi_uint secp256k1_T_14_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x31, 0x71, 0xC6, 0xA6, 0x91, 0xEB, 0x1F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x9B, 0xA8, 0x4A, 0xE7, 0x77, 0xE1, 0xAA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0x06, 0xD3, 0x3D, 0x94, 0x30, 0xEF, 0x8C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0xDF, 0xCA, 0xFA, 0xF5, 0x28, 0xF8, 0xC9),
+};
+static const mbedtls_mpi_uint secp256k1_T_15_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0xE1, 0x32, 0xFD, 0x3E, 0x81, 0xF8, 0x11),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xF2, 0x4B, 0x1D, 0x19, 0xC9, 0x0F, 0xCC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xB1, 0x8A, 0x22, 0x8B, 0x05, 0x6B, 0x56),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0x21, 0xEF, 0x30, 0xEC, 0x09, 0x2A, 0x89),
+};
+static const mbedtls_mpi_uint secp256k1_T_15_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x84, 0x4A, 0x46, 0x07, 0x6C, 0x3C, 0x4C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x18, 0x3A, 0xF4, 0xCC, 0xF5, 0xB2, 0xF2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x8F, 0xCD, 0x0A, 0x9C, 0xF4, 0xBD, 0x95),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x89, 0x7F, 0x8A, 0xB1, 0x52, 0x3A, 0xAB),
+};
+static const mbedtls_ecp_point secp256k1_T[16] = {
+    ECP_POINT_INIT_XY_Z1(secp256k1_T_0_X, secp256k1_T_0_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_1_X, secp256k1_T_1_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_2_X, secp256k1_T_2_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_3_X, secp256k1_T_3_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_4_X, secp256k1_T_4_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_5_X, secp256k1_T_5_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_6_X, secp256k1_T_6_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_7_X, secp256k1_T_7_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_8_X, secp256k1_T_8_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_9_X, secp256k1_T_9_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_10_X, secp256k1_T_10_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_11_X, secp256k1_T_11_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_12_X, secp256k1_T_12_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_13_X, secp256k1_T_13_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_14_X, secp256k1_T_14_Y),
+    ECP_POINT_INIT_XY_Z0(secp256k1_T_15_X, secp256k1_T_15_Y),
+};
+#else
+#define secp256k1_T NULL
+#endif
+#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
+
+/*
+ * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
+ */
+#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
+static const mbedtls_mpi_uint brainpoolP256r1_p[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_a[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_b[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_gx[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_gy[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_n[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9),
+};
+
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint brainpoolP256r1_T_0_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_0_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_1_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0xA2, 0xED, 0x52, 0xC9, 0x8C, 0xE3, 0xA5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0xC9, 0xC4, 0x87, 0x3F, 0x93, 0x7A, 0xD1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x12, 0x53, 0x61, 0x3E, 0x76, 0x08, 0xCB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x8C, 0x74, 0xF4, 0x08, 0xC3, 0x76, 0x80),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_1_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0xDD, 0x09, 0xA6, 0xED, 0xEE, 0xC4, 0x38),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xD9, 0xBE, 0x4B, 0xA5, 0xB7, 0x2B, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x20, 0x12, 0xCA, 0x0A, 0x38, 0x24, 0xAB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x72, 0x71, 0x90, 0x7A, 0x2E, 0xB7, 0x23),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_2_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x66, 0xA1, 0x93, 0x10, 0x2A, 0x51, 0x17),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x10, 0x11, 0x12, 0xBC, 0xB0, 0xB6, 0x93),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0x58, 0xD7, 0x0A, 0x84, 0x05, 0xA3, 0x9C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0x8E, 0x95, 0x61, 0xD3, 0x0B, 0xDF, 0x36),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_2_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x92, 0x12, 0x0F, 0x5E, 0x87, 0x70, 0x1B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0xE9, 0x9B, 0xEB, 0x3A, 0xFB, 0xCF, 0xC4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDC, 0x92, 0xB9, 0xF7, 0x45, 0xD3, 0x06, 0xB6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x28, 0x65, 0xE1, 0xC5, 0x6C, 0x57, 0x18),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_3_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x0E, 0x77, 0x01, 0x81, 0x9E, 0x38, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0xF0, 0xD5, 0xA5, 0x91, 0x2B, 0xDF, 0xC0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xEE, 0xB6, 0x25, 0xD6, 0x98, 0xDE, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0xA1, 0x55, 0x63, 0x39, 0xEB, 0xB5, 0x47),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_3_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0xD6, 0xB8, 0xE3, 0x13, 0xED, 0x7F, 0xA3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0xE8, 0xAE, 0x36, 0xB8, 0xCD, 0x19, 0x02),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x82, 0x83, 0x7A, 0x7B, 0x46, 0x56, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x60, 0x46, 0x15, 0x5A, 0xAC, 0x99, 0x30),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_4_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x61, 0x50, 0xC6, 0xFF, 0x10, 0x7D, 0x04),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x51, 0xDF, 0xA9, 0x7D, 0x78, 0x26, 0x74),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0x15, 0x9A, 0xF7, 0x01, 0xC1, 0xBB, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x0F, 0xE6, 0x2A, 0xBD, 0x4A, 0x9E, 0x87),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_4_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0xF8, 0xD1, 0x77, 0xD2, 0x49, 0xB3, 0xDD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0x86, 0xFB, 0x9E, 0x1F, 0x5A, 0x60, 0x47),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0xC4, 0x8D, 0xCD, 0x86, 0x61, 0x2F, 0xF9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0xF6, 0xB9, 0xAC, 0x37, 0x9D, 0xE9, 0x28),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_5_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x77, 0xAA, 0x97, 0x9C, 0x0B, 0x04, 0x20),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0xA6, 0x60, 0x81, 0xCE, 0x25, 0x13, 0x3E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x00, 0xF3, 0xBB, 0x82, 0x99, 0x95, 0xB7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x5A, 0xCE, 0x90, 0x71, 0x38, 0x2F, 0x10),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_5_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x1A, 0xC0, 0x84, 0x27, 0xD6, 0x9D, 0xB7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x37, 0x52, 0x16, 0x13, 0x0E, 0xCE, 0x92),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xBF, 0x5A, 0xDB, 0xDB, 0x6E, 0x1E, 0x69),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0xB7, 0x5E, 0xF9, 0x86, 0xDD, 0x8A, 0x5C),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_6_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xAB, 0x5C, 0x8D, 0x1D, 0xF2, 0x2D, 0x1E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0xC5, 0xF8, 0xF7, 0x1D, 0x96, 0x0B, 0x4D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x4C, 0xA7, 0x45, 0x20, 0x6A, 0x1E, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x5D, 0xEF, 0xDE, 0xEE, 0x39, 0x44, 0x19),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_6_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0x2F, 0x6D, 0x52, 0xC9, 0x58, 0x60, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0xC9, 0x62, 0xCB, 0x38, 0x3C, 0x55, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xA5, 0x09, 0x10, 0x88, 0xDB, 0xE3, 0xBD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0xE0, 0x3C, 0xCE, 0x06, 0x0B, 0x4B, 0x5D),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_7_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0x1D, 0xB4, 0x10, 0x76, 0x8F, 0xBA, 0x09),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x70, 0x5A, 0x07, 0xF5, 0x1A, 0x74, 0xC7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0xE9, 0x94, 0xA8, 0xC0, 0xD5, 0x4A, 0x4A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x6D, 0xD4, 0xE8, 0x9B, 0xE9, 0x6D, 0x0E),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_7_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x00, 0x32, 0x41, 0x57, 0x84, 0x89, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0xC7, 0x14, 0xEC, 0xE9, 0x27, 0xFF, 0xF3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x67, 0x9E, 0xFB, 0xB6, 0xB8, 0x96, 0xF3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0x4A, 0xE3, 0x97, 0x4B, 0x58, 0xDE, 0x30),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_8_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0x1E, 0x5C, 0xF5, 0x7F, 0xD5, 0xD4, 0xAA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x08, 0x7A, 0xF1, 0xBD, 0x89, 0xC7, 0x1E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0xF9, 0x11, 0x1B, 0xF5, 0x3C, 0x6D, 0x8C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x50, 0xE5, 0x69, 0x1D, 0x59, 0xFC, 0x0C),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_8_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x2F, 0xF8, 0x3F, 0xEC, 0x55, 0x99, 0x57),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0xA7, 0x29, 0x90, 0x43, 0x81, 0x31, 0x4C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0x18, 0x44, 0x50, 0x5D, 0x76, 0xCB, 0xDD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0xC5, 0x5B, 0x9A, 0x03, 0xE6, 0x17, 0x39),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_9_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x89, 0xFC, 0x55, 0x94, 0x91, 0x6A, 0xA2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x46, 0x35, 0xF2, 0x3A, 0x42, 0x08, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0xD2, 0x76, 0x49, 0x42, 0x87, 0xD3, 0x7F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0xEA, 0xA0, 0x52, 0xF1, 0x6A, 0x30, 0x57),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_9_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0xB2, 0x57, 0xA3, 0x8A, 0x4D, 0x1B, 0x3C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0xA3, 0x99, 0x94, 0xB5, 0x3D, 0x64, 0x09),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0xC3, 0xD7, 0x53, 0xF6, 0x49, 0x1C, 0x60),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x23, 0x41, 0x4D, 0xFB, 0x7A, 0x5C, 0x53),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_10_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0xB8, 0x15, 0x65, 0x5C, 0x85, 0x94, 0xD7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x37, 0xC7, 0xF8, 0x7E, 0xAE, 0x6C, 0x10),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0xD8, 0x11, 0x54, 0x98, 0x44, 0xE3, 0xF1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x4D, 0xA6, 0x4B, 0x28, 0xF2, 0x57, 0x9E),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_10_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xD0, 0xEB, 0x1E, 0xAA, 0x30, 0xD3, 0x6A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x9B, 0x4D, 0xA7, 0x73, 0x6E, 0xB6, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x47, 0xF6, 0xED, 0x37, 0xEF, 0x71, 0x4D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0xB5, 0x49, 0x61, 0x5E, 0x45, 0xF6, 0x4A),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_11_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x0E, 0xB3, 0x84, 0x3A, 0x63, 0x72, 0x84),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x53, 0x5C, 0xA7, 0xC6, 0x2E, 0xAB, 0x9E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x0F, 0x8F, 0x87, 0x50, 0x28, 0xB4, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0x98, 0x4A, 0x98, 0x31, 0x86, 0xCA, 0x51),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_11_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0xC9, 0xE2, 0xFD, 0x5D, 0x1F, 0xE8, 0xC2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x90, 0x91, 0xC4, 0x84, 0xF0, 0xBA, 0xC5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x5A, 0xB3, 0x4E, 0xFB, 0xE0, 0x57, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x0B, 0x90, 0xA6, 0xFD, 0x9D, 0x8E, 0x02),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_12_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x41, 0x8F, 0x31, 0xFA, 0x5A, 0xF6, 0x33),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xE9, 0xE3, 0xF6, 0xE0, 0x4A, 0xE7, 0xD2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x4E, 0xCD, 0xA2, 0x22, 0x14, 0xD4, 0x12),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0xED, 0x21, 0xB7, 0x0F, 0x53, 0x10, 0x17),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_12_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x06, 0x24, 0x2C, 0x4E, 0xD1, 0x1E, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0x3F, 0xC1, 0x9F, 0xAB, 0xF0, 0x37, 0x95),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0x5E, 0x12, 0xCE, 0x83, 0x1B, 0x2A, 0x18),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x65, 0xCF, 0xE8, 0x5C, 0xA5, 0xA2, 0x70),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_13_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x86, 0x76, 0x3A, 0x94, 0xF6, 0x1D, 0xC1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0xDA, 0xC9, 0xA6, 0x29, 0x93, 0x15, 0x10),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x61, 0x6A, 0x7D, 0xC7, 0xA9, 0xF3, 0x76),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x03, 0x71, 0xA2, 0x15, 0xCE, 0x50, 0x72),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_13_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0xD0, 0xA8, 0x1E, 0x91, 0xC4, 0x4F, 0x24),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0x4B, 0x7E, 0xD7, 0x71, 0x58, 0x7E, 0x1E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x45, 0xAF, 0x2A, 0x18, 0x93, 0x95, 0x3B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x8F, 0xC7, 0xFA, 0x4C, 0x7A, 0x86, 0x54),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_14_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0xAF, 0x68, 0x3A, 0x23, 0xC1, 0x2E, 0xBF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0x50, 0x11, 0x67, 0x39, 0xB9, 0xAF, 0x48),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x86, 0xAA, 0x1E, 0x88, 0x21, 0x29, 0x8B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x28, 0xA4, 0x9D, 0x89, 0xA9, 0x9A, 0x10),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_14_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0xBA, 0x04, 0x67, 0xB7, 0x01, 0x40, 0x38),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0xE9, 0x09, 0xA3, 0xCA, 0xA6, 0x37, 0xF6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x97, 0xA8, 0xB6, 0x3C, 0xEE, 0x90, 0x3D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDC, 0xED, 0xC4, 0xF7, 0xC3, 0x95, 0xEC, 0x85),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_15_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x84, 0xBD, 0xEB, 0xD5, 0x64, 0xBB, 0x9D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x9B, 0xE2, 0x28, 0x50, 0xC2, 0x72, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0xF2, 0x74, 0xD1, 0x26, 0xBF, 0x32, 0x68),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0xCB, 0xAF, 0x72, 0xDB, 0x6D, 0x30, 0x98),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_15_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x50, 0x85, 0xF4, 0x2B, 0x48, 0xC1, 0xAD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0x28, 0xBB, 0x11, 0xBA, 0x5B, 0x22, 0x6C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0xA1, 0xE5, 0x5C, 0xC9, 0x1D, 0x44, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0xE8, 0xE6, 0x6F, 0xBB, 0xC1, 0x81, 0x7F),
+};
+static const mbedtls_ecp_point brainpoolP256r1_T[16] = {
+    ECP_POINT_INIT_XY_Z1(brainpoolP256r1_T_0_X, brainpoolP256r1_T_0_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_1_X, brainpoolP256r1_T_1_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_2_X, brainpoolP256r1_T_2_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_3_X, brainpoolP256r1_T_3_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_4_X, brainpoolP256r1_T_4_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_5_X, brainpoolP256r1_T_5_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_6_X, brainpoolP256r1_T_6_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_7_X, brainpoolP256r1_T_7_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_8_X, brainpoolP256r1_T_8_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_9_X, brainpoolP256r1_T_9_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_10_X, brainpoolP256r1_T_10_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_11_X, brainpoolP256r1_T_11_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_12_X, brainpoolP256r1_T_12_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_13_X, brainpoolP256r1_T_13_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_14_X, brainpoolP256r1_T_14_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_15_X, brainpoolP256r1_T_15_Y),
+};
+#else
+#define brainpoolP256r1_T NULL
+#endif
+
+#endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
+
+/*
+ * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
+ */
+#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
+static const mbedtls_mpi_uint brainpoolP384r1_p[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_a[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_b[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_gx[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_gy[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_n[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C),
+};
+
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint brainpoolP384r1_T_0_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_0_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_1_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0xD8, 0x8A, 0x54, 0x41, 0xD6, 0x6B, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0x3B, 0xF1, 0x22, 0xFD, 0x2D, 0x4B, 0x03),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x55, 0xE3, 0x33, 0xF0, 0x73, 0x52, 0x5A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x3F, 0x30, 0x26, 0xCA, 0x7F, 0x52, 0xA3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x6E, 0x17, 0x9B, 0xD5, 0x2A, 0x4A, 0x31),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0xDA, 0x6B, 0xE5, 0x03, 0x07, 0x1D, 0x2E),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_1_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0x7A, 0xAF, 0x98, 0xE3, 0xA4, 0xF6, 0x19),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x7D, 0xFE, 0x51, 0x40, 0x3B, 0x47, 0xD2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x88, 0xEC, 0xC4, 0xE2, 0x8F, 0xCB, 0xA4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0xE2, 0x88, 0x2D, 0x4E, 0x50, 0xEB, 0x9A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x54, 0x94, 0x5E, 0xF4, 0x7F, 0x3A, 0x04),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x07, 0x1C, 0xE1, 0xBD, 0x0F, 0xF8, 0x63),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_2_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x92, 0x28, 0x2E, 0x32, 0x04, 0xB1, 0x4D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0x82, 0x44, 0x43, 0x76, 0x0D, 0x55, 0xBF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0xE3, 0xFF, 0x89, 0x46, 0xDE, 0x4E, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x22, 0xBB, 0x67, 0x1A, 0x81, 0xEE, 0x27),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x54, 0xE2, 0x7A, 0xAE, 0xDA, 0x2C, 0xD0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x9A, 0x90, 0xAA, 0x6E, 0x8B, 0xCC, 0x5F),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_2_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x40, 0xAC, 0xED, 0x7D, 0x37, 0x87, 0xAC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0xF8, 0xB1, 0x80, 0x4C, 0x8C, 0x04, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x98, 0x2C, 0xAD, 0x30, 0x69, 0x35, 0xC0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x2E, 0x00, 0x2F, 0x44, 0x8C, 0xF0, 0xC0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x58, 0x07, 0xD7, 0xCD, 0x60, 0xA1, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xFB, 0x7B, 0x03, 0x05, 0x5E, 0x79, 0x73),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_3_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x17, 0xCE, 0x38, 0x4B, 0x5E, 0x5B, 0xC8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x60, 0x0E, 0x0A, 0x61, 0x9D, 0x7C, 0x62, 0x08),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0xF0, 0x98, 0x71, 0x7F, 0x17, 0x26, 0xD7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0xD3, 0xFA, 0x3C, 0xF0, 0x70, 0x07, 0x82),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x47, 0x5C, 0x09, 0x43, 0xB7, 0x65, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xA9, 0xA7, 0x3E, 0xFA, 0xF3, 0xEC, 0x22),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_3_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x78, 0x22, 0x2B, 0x58, 0x71, 0xFA, 0xAA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x30, 0xCE, 0x6A, 0xB3, 0xB0, 0x4F, 0x83),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0x95, 0x20, 0xA9, 0x23, 0xC2, 0x65, 0xE7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0xCF, 0x03, 0x5B, 0x8A, 0x80, 0x44, 0xBB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xF8, 0x91, 0xF7, 0xD5, 0xED, 0xEA, 0x81),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x5B, 0x16, 0x10, 0x25, 0xAC, 0x2A, 0x17),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_4_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0xEC, 0xDC, 0xC4, 0x7B, 0x8C, 0x6B, 0xE9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0xBB, 0x1C, 0xD3, 0x5A, 0xEE, 0xD9, 0x97),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x5D, 0x30, 0x5E, 0xF7, 0xB2, 0x41, 0x9D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0xCE, 0x0F, 0x1A, 0xC6, 0x41, 0x64, 0x62),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x18, 0xE1, 0xE3, 0x82, 0x15, 0x66, 0x4B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0xE2, 0x24, 0x04, 0x72, 0x39, 0xA0, 0x7C),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_4_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0x51, 0xA2, 0x58, 0x88, 0x62, 0xE1, 0x02),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0xD2, 0x65, 0x14, 0xE9, 0x4C, 0x82, 0x30),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDC, 0xE1, 0xAC, 0x87, 0xAE, 0x31, 0x1A, 0x7A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0x4F, 0x96, 0x1E, 0x85, 0x7A, 0xC3, 0x2B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x86, 0xBB, 0xF0, 0xC0, 0x9D, 0x08, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0x53, 0x03, 0x09, 0x80, 0x91, 0xEF, 0x68),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_5_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0xD7, 0xAF, 0x6F, 0x69, 0x7B, 0x88, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0x13, 0xE4, 0x30, 0xA2, 0x47, 0xB5, 0xC1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xD2, 0xC0, 0xDD, 0x8A, 0x1C, 0x3C, 0xF2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x8C, 0xB3, 0x4C, 0xBA, 0x8B, 0x6D, 0xCF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0xC7, 0xA1, 0xA8, 0x6E, 0x3C, 0x4F, 0xF1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x4A, 0x97, 0xC8, 0x03, 0x6F, 0x01, 0x82),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_5_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x18, 0x12, 0xA9, 0x39, 0xD5, 0x22, 0x26),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0xA7, 0xC0, 0xBD, 0x9D, 0x8D, 0x78, 0x38),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0xB3, 0xD0, 0x7F, 0xDF, 0xD0, 0x30, 0xDE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x25, 0x73, 0x96, 0xEC, 0xA8, 0x1D, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0xD1, 0x65, 0x66, 0xDC, 0xD9, 0xCF, 0xDF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0xED, 0x7B, 0x37, 0xAD, 0xE2, 0xBE, 0x2D),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_6_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x79, 0x42, 0x6A, 0x07, 0x66, 0xB1, 0xBD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x53, 0x62, 0x65, 0x92, 0x09, 0x4C, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0xAF, 0xC3, 0x03, 0xF6, 0xF4, 0x2D, 0x9B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0xCA, 0x41, 0xD9, 0xA2, 0x69, 0x9B, 0xC9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0xB2, 0xA6, 0x8D, 0xE1, 0xAA, 0x61, 0x76),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xBA, 0x4D, 0x12, 0xB6, 0xBE, 0xF3, 0x7E),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_6_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0xD9, 0x92, 0x22, 0x07, 0xCE, 0xC9, 0x26),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0xA1, 0x7C, 0x91, 0xDB, 0x32, 0xF7, 0xE5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x49, 0x4B, 0x6D, 0xFB, 0xD9, 0x70, 0x3B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0xFB, 0x4E, 0x4C, 0x5E, 0x66, 0x81, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0xB3, 0xE1, 0x00, 0xB7, 0xD9, 0xCC, 0x58),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x36, 0x8B, 0xC4, 0x39, 0x20, 0xFD, 0x30),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_7_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x1F, 0x60, 0x03, 0xBB, 0xD7, 0x60, 0x57),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x3C, 0x62, 0xDD, 0x71, 0x95, 0xE9, 0x61),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x5B, 0x7A, 0x5F, 0x68, 0x81, 0xC5, 0x90),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xAF, 0xB5, 0xB9, 0x98, 0x42, 0x28, 0xA5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0x29, 0x8E, 0x11, 0x49, 0xB4, 0xD7, 0x20),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x3E, 0xD2, 0x30, 0xA1, 0xBA, 0xCA, 0x03),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_7_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x37, 0x64, 0x44, 0x2F, 0x03, 0xE5, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x42, 0xBC, 0xFF, 0xA2, 0x1A, 0x5F, 0x06),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x04, 0xAB, 0x04, 0xE0, 0x24, 0xAD, 0x2A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0x45, 0x17, 0x67, 0x1F, 0x3E, 0x53, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0x0F, 0xB3, 0x1B, 0x57, 0x54, 0xC2, 0x03),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xD3, 0xF8, 0xC4, 0x1B, 0x9B, 0xFA, 0x30),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_8_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x90, 0xFD, 0xFB, 0xCA, 0x49, 0x38, 0x4E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0xCF, 0xC6, 0xDD, 0xF0, 0xFF, 0x8C, 0x11),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0x69, 0x9D, 0xBD, 0x5F, 0x33, 0xE9, 0xB4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x19, 0x82, 0x3D, 0xAC, 0x1C, 0x40, 0x23),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0xC7, 0x02, 0x46, 0x14, 0x77, 0x00, 0xBE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x05, 0xF2, 0x77, 0x3A, 0x66, 0x5C, 0x39),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_8_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xE6, 0x17, 0xDE, 0xB2, 0xA1, 0xE5, 0xB8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0x71, 0xEC, 0x9D, 0xD8, 0xF5, 0xD4, 0x66),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0xC6, 0x42, 0x5E, 0xE7, 0x18, 0xBA, 0xD0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x21, 0x68, 0x5A, 0x26, 0xFB, 0xD7, 0x17),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x00, 0x5C, 0xBA, 0x8A, 0x34, 0xEC, 0x75),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0x9C, 0x3C, 0xAF, 0x53, 0xE8, 0x65, 0x35),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_9_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0xEF, 0x28, 0xDC, 0x67, 0x05, 0xC8, 0xDF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x78, 0xC3, 0x85, 0x49, 0xA0, 0xBC, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x3E, 0x2D, 0xA0, 0xCF, 0xD4, 0x7A, 0xF5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0x93, 0xFE, 0x60, 0xB3, 0x6E, 0x99, 0xE2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0xAD, 0x04, 0xE7, 0x49, 0xAF, 0x5E, 0xE3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x7A, 0xED, 0xA6, 0x9E, 0x18, 0x09, 0x31),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_9_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x05, 0x94, 0x44, 0xDC, 0xB8, 0x85, 0x94),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0xB7, 0x37, 0xC2, 0x50, 0x75, 0x15, 0xDA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xC6, 0x0F, 0xB2, 0xA9, 0x91, 0x3E, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x81, 0xAD, 0x25, 0xA1, 0x26, 0x73, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xF1, 0xD1, 0x61, 0x7C, 0x76, 0x8F, 0x13),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0xDB, 0x4A, 0xFF, 0x14, 0xA7, 0x48, 0x0B),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_10_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x73, 0xC6, 0xC2, 0xCC, 0xF1, 0x57, 0x04),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0xED, 0x73, 0x27, 0x70, 0x82, 0xB6, 0x5E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0xBA, 0xAC, 0x3A, 0xCF, 0xF4, 0xEA, 0xA6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xD6, 0xB1, 0x8F, 0x0E, 0x08, 0x2C, 0x5E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xE3, 0x8F, 0x2F, 0x0E, 0xA1, 0xF3, 0x07),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0xF5, 0x7C, 0x9B, 0x29, 0x0A, 0xF6, 0x28),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_10_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0xEE, 0x17, 0x47, 0x34, 0x15, 0xA3, 0xAF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0xBE, 0x88, 0x48, 0xE7, 0xA2, 0xBB, 0xDE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0xAD, 0xDC, 0x65, 0x61, 0x37, 0x0F, 0xC1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x67, 0xAD, 0xA2, 0x3A, 0x1C, 0x91, 0x78),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x07, 0x0C, 0x3A, 0x41, 0x6E, 0x13, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0xBD, 0x7E, 0xED, 0xAA, 0x14, 0xDD, 0x61),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_11_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0xDC, 0x20, 0x01, 0x72, 0x11, 0x48, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xC4, 0x7B, 0xF8, 0x62, 0x3D, 0xF0, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0xC2, 0x3D, 0x2E, 0x52, 0xA3, 0x4A, 0x89),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xE2, 0x53, 0x46, 0x5E, 0x21, 0xF8, 0xCE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0xC7, 0x8F, 0xA9, 0x26, 0x42, 0x32, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0xA6, 0xA0, 0x8D, 0x4B, 0x9A, 0x19, 0x03),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_11_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xAB, 0x6D, 0x1E, 0xFB, 0xEE, 0x60, 0x0C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x56, 0x3C, 0xC5, 0x5D, 0x10, 0x79, 0x1C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0xBC, 0x41, 0x9F, 0x71, 0xEF, 0x02, 0xF9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA2, 0x36, 0xC4, 0xD0, 0x88, 0x9B, 0x32, 0xFC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0xD4, 0x5D, 0x17, 0x39, 0xE6, 0x22, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x26, 0x01, 0xCE, 0xBE, 0x4A, 0x9C, 0x27),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_12_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x6D, 0x11, 0xCA, 0x6C, 0x5A, 0x93, 0x0C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x96, 0x26, 0xAF, 0x2F, 0xE4, 0x30, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0xC1, 0x4C, 0xC6, 0x30, 0x1F, 0x5C, 0x04),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xB3, 0xE8, 0xFC, 0x35, 0xEB, 0x63, 0x6C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0x1D, 0xCA, 0xFC, 0x50, 0x36, 0x4B, 0x96),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x0E, 0x23, 0x5B, 0xAF, 0xEB, 0x2D, 0x31),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_12_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x88, 0xB6, 0xD7, 0x74, 0x4A, 0x23, 0xB6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x66, 0xE2, 0xBB, 0x29, 0xA6, 0x4F, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0x6F, 0x7E, 0x68, 0x6E, 0xA0, 0x14, 0x94),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0x73, 0xD4, 0xE8, 0xAB, 0x5B, 0xF6, 0x0D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0xE0, 0x3C, 0x24, 0x00, 0x95, 0xE9, 0xAD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x0D, 0x4F, 0x81, 0xD0, 0xF2, 0x3F, 0x00),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_13_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x1D, 0xCD, 0x78, 0x39, 0xC4, 0x6B, 0xD9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x45, 0xC7, 0xB8, 0x2F, 0xAA, 0x5D, 0xE3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0x8C, 0x6E, 0xA3, 0x24, 0xB2, 0xDB, 0x4B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0x2D, 0xD9, 0xF1, 0xC7, 0x9B, 0x8A, 0xAF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0xE1, 0x2C, 0xB9, 0x40, 0x37, 0x91, 0x75),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x2C, 0xB5, 0x23, 0x03, 0x2B, 0xAF, 0x2F),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_13_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0x9D, 0x5A, 0x20, 0x10, 0xA9, 0x84, 0xDA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x30, 0x89, 0x20, 0x13, 0xE9, 0xB2, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x6E, 0x52, 0xEB, 0x03, 0x18, 0x1F, 0xA6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x9E, 0x1C, 0x35, 0x87, 0x92, 0x69, 0xC7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0xC9, 0x88, 0xAF, 0xC6, 0x6C, 0x83, 0x72),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0xD5, 0x7A, 0x54, 0x34, 0x99, 0xB6, 0x6F),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_14_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0xAD, 0x45, 0x9B, 0x4B, 0x41, 0x4D, 0x50),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x5D, 0xAB, 0x7F, 0x35, 0x34, 0xE9, 0x29),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0xBE, 0x78, 0x34, 0x44, 0xF3, 0x4A, 0x87),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0xDE, 0xE3, 0xC4, 0xEE, 0x0B, 0xF9, 0xEB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x86, 0x16, 0x48, 0x32, 0xB8, 0x74, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0xEE, 0x7C, 0xBA, 0xBD, 0x81, 0xE3, 0x55),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_14_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x6A, 0xFA, 0x84, 0xDA, 0xB8, 0xD5, 0x14),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0x9F, 0x8A, 0xD5, 0x1B, 0x2E, 0x1A, 0x0B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x0C, 0x61, 0xE2, 0xFF, 0x5B, 0xE6, 0xD5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0x62, 0xC1, 0x87, 0x53, 0x1B, 0x92, 0xA3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x90, 0x00, 0xD1, 0x6A, 0x0C, 0x0E, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0x2E, 0xB5, 0x3B, 0x44, 0xB5, 0xA0, 0x78),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_15_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x5D, 0x02, 0x58, 0xB5, 0xBE, 0x45, 0x14),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0xEF, 0x8E, 0x90, 0x4D, 0x2A, 0x32, 0xAC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x48, 0x99, 0x75, 0x5C, 0x0A, 0x33, 0x8F, 0x36),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x6C, 0x95, 0xD4, 0x1F, 0xF3, 0xEB, 0xDA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0xE4, 0x4C, 0x91, 0x20, 0xF3, 0x25, 0xEB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x95, 0xEB, 0x29, 0x6F, 0x20, 0x34, 0x81),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_15_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0x15, 0xE5, 0x13, 0x7E, 0x64, 0x8B, 0xAD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0xBC, 0x0D, 0x18, 0x7E, 0x37, 0x9E, 0xFA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x82, 0x20, 0xF7, 0x2D, 0x7A, 0x77, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x29, 0xA2, 0xDB, 0x7A, 0xE6, 0x6F, 0xA5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0xC6, 0x50, 0x5C, 0xBC, 0xE6, 0x4F, 0xBD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x9F, 0xD5, 0xE8, 0xC5, 0x3D, 0xB7, 0x30),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_16_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x03, 0x55, 0x10, 0xDB, 0xA6, 0x8B, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x17, 0xAE, 0x78, 0xC9, 0x1D, 0x43, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x35, 0x49, 0xD4, 0x47, 0x84, 0x8D, 0x20),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x95, 0x2F, 0xEA, 0xBC, 0xB4, 0x18, 0xB3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x48, 0xAE, 0x89, 0xF5, 0x65, 0x3D, 0x89),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0xF2, 0x2B, 0x20, 0xD1, 0x75, 0x50, 0x63),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_16_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0xE6, 0x5C, 0x2C, 0xE0, 0x7D, 0xDF, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x07, 0x3E, 0xCE, 0x9F, 0x18, 0xB6, 0x05),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0xF8, 0xF0, 0xD5, 0xFA, 0x42, 0x1D, 0x6D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x6C, 0x1D, 0x03, 0xC9, 0x0E, 0x2B, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x18, 0x52, 0xA5, 0xB4, 0x63, 0xE1, 0x06),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x0A, 0xD9, 0xC4, 0xFD, 0x16, 0x60, 0x54),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_17_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x7D, 0xDE, 0xDF, 0x4B, 0x4A, 0xB0, 0xCB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x4E, 0x8C, 0x94, 0xC1, 0xE2, 0x85, 0xDF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0xF0, 0xEA, 0xB5, 0x9B, 0x70, 0xEF, 0x10),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0xC2, 0x39, 0x5D, 0xF3, 0x2C, 0xD9, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0x1C, 0x2E, 0xCC, 0x2F, 0x54, 0x87, 0x80),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x72, 0xC7, 0xB5, 0x50, 0xA3, 0x84, 0x77),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_17_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xD1, 0xAF, 0xA9, 0xB4, 0x8B, 0x5D, 0xFA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0xF6, 0x52, 0x8A, 0xC3, 0x56, 0xA5, 0x5E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0x52, 0xFF, 0xEA, 0x05, 0x42, 0x77, 0x83),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x08, 0x90, 0x72, 0x86, 0xC4, 0xC3, 0xB8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0x15, 0xF8, 0xF1, 0x16, 0x67, 0xC6, 0xD5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0x87, 0xAC, 0x8F, 0x71, 0xEC, 0x83, 0x81),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_18_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0xE1, 0xE6, 0x2D, 0x0E, 0x11, 0xA1, 0x62),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xE2, 0xA8, 0x32, 0xE6, 0xE3, 0x83, 0xD1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x56, 0xE5, 0xCD, 0xB7, 0x2B, 0x67, 0x6F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0xED, 0xC9, 0x65, 0x6D, 0x87, 0xE1, 0x8E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x8E, 0xFD, 0x9A, 0x53, 0x0E, 0xFA, 0xA3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0x4C, 0x4A, 0xE2, 0x23, 0x84, 0xFA, 0x01),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_18_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xFE, 0x49, 0x81, 0xD1, 0x3E, 0xF4, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x72, 0xE0, 0xEF, 0x0D, 0xB8, 0x3E, 0x6F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0x00, 0x0F, 0x5F, 0xCE, 0x60, 0x72, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xCC, 0xD8, 0x03, 0x07, 0x6E, 0x5A, 0xCD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x3A, 0x35, 0x50, 0x4E, 0x1F, 0xCA, 0x5F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0xEA, 0x88, 0x55, 0xBD, 0x6E, 0x05, 0x7F),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_19_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0x6D, 0xF1, 0x97, 0xA6, 0x69, 0x39, 0x24),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x41, 0x99, 0xFF, 0x3B, 0xA1, 0x26, 0xEC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0x2F, 0x95, 0x80, 0x12, 0x4A, 0x1B, 0xCB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xBF, 0x51, 0xAA, 0xAE, 0x2D, 0xDA, 0xCF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0x1C, 0xB3, 0x52, 0x36, 0x49, 0xD4, 0x86),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xC1, 0x1F, 0x3A, 0xD3, 0x3E, 0x5C, 0x1A),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_19_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x51, 0xF7, 0x2B, 0xC8, 0xA9, 0xA7, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x4E, 0x7F, 0x98, 0x41, 0x66, 0xB0, 0x03),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x1D, 0xC0, 0x42, 0xCD, 0xF8, 0xC3, 0x2B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x41, 0x91, 0x7D, 0xCC, 0x8B, 0xCC, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xAE, 0x76, 0xED, 0x56, 0x18, 0xC5, 0xAB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x6A, 0x06, 0xA3, 0x7F, 0x65, 0x10, 0x1F),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_20_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0xEC, 0x3C, 0x05, 0x05, 0xCA, 0xF6, 0xED),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x48, 0xCD, 0x02, 0x51, 0x12, 0x16, 0x3C, 0x63),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0xEB, 0xB3, 0x43, 0x7B, 0xDD, 0xB2, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x59, 0x90, 0x41, 0xDB, 0xE4, 0xF5, 0x91),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x0E, 0x18, 0x2A, 0x5A, 0x83, 0x7C, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x37, 0xA1, 0x0D, 0xF1, 0x2F, 0x63, 0x79),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_20_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xC0, 0xFA, 0x6F, 0x1F, 0x67, 0xCF, 0xEC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x34, 0x45, 0xBB, 0xF4, 0xF9, 0x9B, 0x89),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x69, 0xFE, 0x67, 0x1D, 0x64, 0x8F, 0xB9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x39, 0xBF, 0xD8, 0xB3, 0xC7, 0xAD, 0x8A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0x93, 0xFF, 0xF3, 0x28, 0xFA, 0x39, 0xF6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xF9, 0xC3, 0x85, 0x26, 0x7A, 0x88, 0x89),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_21_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0xD5, 0x79, 0xD8, 0x11, 0xDE, 0xEB, 0x4E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x46, 0xA4, 0x6A, 0xDA, 0x74, 0x34, 0xA8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xBD, 0xD3, 0xF5, 0x14, 0xEE, 0xFE, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x4C, 0xA3, 0x71, 0x43, 0x65, 0xF8, 0x94),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x6C, 0x35, 0xFA, 0x90, 0x25, 0xD8, 0xE2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x34, 0x84, 0x96, 0xA1, 0x43, 0x03, 0x4D),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_21_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x3B, 0x3B, 0x2F, 0xCA, 0x59, 0xF2, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x48, 0x24, 0x74, 0xD8, 0x72, 0x90, 0xA3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x42, 0x74, 0x8C, 0x6F, 0x52, 0x19, 0x3D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x9E, 0x41, 0x63, 0x68, 0x78, 0x4C, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0x94, 0xB6, 0x6B, 0x38, 0x52, 0xA8, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x30, 0x25, 0x93, 0xA1, 0x6F, 0x6E, 0x68),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_22_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x2F, 0x4B, 0x64, 0x79, 0x50, 0xFF, 0x01),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x36, 0xED, 0x57, 0x39, 0x3B, 0xE7, 0xF3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x85, 0xEA, 0x35, 0xD6, 0xC0, 0xA0, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x89, 0x3A, 0xCC, 0x22, 0x1C, 0x46, 0x02),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x7A, 0xB0, 0xA1, 0x1B, 0x69, 0x62, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0xB8, 0x8A, 0x6C, 0x18, 0x85, 0x0D, 0x88),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_22_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xB6, 0x50, 0xE9, 0x4E, 0x7F, 0xE8, 0x07),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x5B, 0x5C, 0xD1, 0x4B, 0x11, 0x9A, 0xD8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x25, 0x56, 0x74, 0x51, 0x9C, 0xEC, 0x9C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x7F, 0xB6, 0x8A, 0xCB, 0x3A, 0x10, 0x6A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x60, 0x33, 0x07, 0x01, 0xE9, 0x49, 0x59, 0xE6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0xA5, 0x2E, 0xF2, 0xBA, 0x32, 0x63, 0x44),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_23_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x06, 0x0B, 0xA5, 0x44, 0x27, 0x7F, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x74, 0xAC, 0x0F, 0xCC, 0x4F, 0x13, 0x61),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xB1, 0xBF, 0x97, 0x49, 0xA5, 0x1C, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x64, 0x68, 0x7B, 0x0F, 0xCC, 0x77, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x39, 0xF9, 0x4E, 0x84, 0x9C, 0xF6, 0x96),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xCF, 0x6D, 0xE2, 0xA1, 0x2D, 0xF9, 0x2B),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_23_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0xC4, 0x90, 0x57, 0x31, 0x01, 0x05, 0x5E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x1E, 0xBB, 0xBF, 0x98, 0xA4, 0x7C, 0xE3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0xE3, 0xA0, 0xB2, 0xCD, 0x39, 0x9A, 0x3F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x34, 0x60, 0x7A, 0x89, 0x98, 0xB5, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0x20, 0x3D, 0x3A, 0x04, 0x8F, 0x5A, 0xAC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0x26, 0xB6, 0x49, 0x09, 0x9C, 0x0F, 0x59),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_24_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x66, 0xD2, 0x38, 0x2A, 0x62, 0x81, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0xC8, 0x20, 0x5E, 0x28, 0xA3, 0x81, 0xA7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x20, 0x31, 0xA4, 0xF1, 0xEA, 0x7D, 0x87, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8F, 0x2C, 0x99, 0x09, 0x6F, 0x63, 0xEB, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x76, 0xDA, 0x1A, 0x06, 0xBE, 0xDE, 0xA2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x09, 0x2E, 0x75, 0x39, 0x30, 0x2D, 0x42),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_24_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x9B, 0xC1, 0x5A, 0x17, 0xC3, 0x8C, 0x31),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x8D, 0x94, 0x4D, 0x3D, 0xAB, 0x60, 0xD4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFD, 0x1E, 0x0F, 0x43, 0xAE, 0x9D, 0x62),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0xF2, 0xF3, 0x20, 0x1B, 0xAA, 0xB7, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x5B, 0xA4, 0xF4, 0x90, 0x3B, 0xE3, 0x71),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0x78, 0x72, 0xBD, 0x65, 0x09, 0x0B, 0x01),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_25_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x37, 0x2A, 0x6C, 0x16, 0x4F, 0x64, 0x59),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0xCE, 0xA3, 0x90, 0xB4, 0x9A, 0xBC, 0xF7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x38, 0x55, 0x63, 0x1D, 0x3A, 0x6E, 0x18),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0xB4, 0xAA, 0x99, 0x22, 0x45, 0x89, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x7C, 0x8C, 0xA6, 0x3D, 0xA7, 0x3E, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x06, 0x42, 0xDC, 0xA6, 0xE3, 0xC6, 0x12),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_25_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x8C, 0x3D, 0x5D, 0x47, 0x31, 0x7C, 0xEB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x85, 0xEE, 0x46, 0x7E, 0x13, 0x04, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0x3C, 0x8B, 0x43, 0x2E, 0x74, 0xF5, 0xF6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x88, 0x8E, 0x07, 0x29, 0x08, 0x03, 0x26),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0x9B, 0x89, 0xEB, 0x08, 0xE8, 0x43, 0xB5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x07, 0x67, 0xFD, 0xD9, 0x73, 0x6F, 0x18),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_26_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0xEB, 0x21, 0x8D, 0x98, 0x43, 0x74, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0xCC, 0x14, 0xD8, 0x08, 0xBB, 0xA6, 0xE3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0x98, 0xF2, 0x6A, 0x18, 0xC3, 0xDD, 0x9E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0x38, 0x91, 0xA0, 0x03, 0xF2, 0x04, 0x62),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0xAF, 0xE8, 0xFD, 0xFB, 0x13, 0x70, 0x74),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x93, 0x87, 0x98, 0x4A, 0xE0, 0x00, 0x12),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_26_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x2E, 0x69, 0x9C, 0xA2, 0x2D, 0x03, 0x3F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0xFE, 0xF3, 0xB9, 0xC1, 0x85, 0x2A, 0xEE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xFD, 0x86, 0xB1, 0xCD, 0xBF, 0x41, 0xB7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0xD8, 0x9A, 0x21, 0xF3, 0xFE, 0xCB, 0xF1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0x78, 0x04, 0x60, 0xB7, 0xA9, 0xA2, 0x84),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x1E, 0x66, 0x2A, 0x54, 0x51, 0xBD, 0x8B),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_27_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x16, 0x36, 0xEF, 0x61, 0x2D, 0xEE, 0x3B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x5F, 0x88, 0xA0, 0x13, 0x12, 0xF7, 0x23),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0xC6, 0xAD, 0x4A, 0x4A, 0x07, 0x01, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x74, 0xB1, 0x4F, 0xEB, 0xBD, 0xD5, 0x6B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0xF9, 0x71, 0xA2, 0x06, 0x4F, 0xD7, 0xBC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x8B, 0x4D, 0x48, 0xE0, 0x98, 0xFB, 0x6A),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_27_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0xBA, 0x10, 0xA3, 0x0D, 0x52, 0xAC, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xD0, 0xE0, 0x36, 0xE6, 0x07, 0x3A, 0x30),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x80, 0xF0, 0xAA, 0x49, 0x22, 0x4B, 0xDD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xC7, 0xAB, 0x1C, 0x89, 0xCD, 0x24, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x2A, 0xFC, 0xB3, 0x6D, 0x45, 0x96, 0x49),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0xE4, 0xDB, 0x52, 0x3F, 0xC4, 0xB4, 0x19),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_28_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0xCC, 0xC8, 0x7F, 0xBB, 0x6B, 0x87, 0x47),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0x21, 0x3C, 0x69, 0x7D, 0x38, 0x57, 0x50),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0x4C, 0x18, 0x3C, 0x53, 0xA5, 0x48, 0x6D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xC3, 0x64, 0x45, 0xDB, 0xC4, 0x6D, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0xCC, 0xD1, 0xBB, 0x17, 0xB8, 0x34, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x69, 0x71, 0xFA, 0xA0, 0x28, 0x4A, 0x3D),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_28_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0xE8, 0x9E, 0x39, 0xEA, 0x8D, 0x38, 0xDB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x9C, 0xBB, 0xCD, 0x80, 0x1A, 0xEE, 0xB7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xA0, 0x45, 0xBF, 0xD9, 0x22, 0x11, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x7C, 0x5C, 0xD9, 0xC0, 0x9F, 0x69, 0xF5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x8A, 0xA6, 0x79, 0x4E, 0x35, 0xB9, 0xD5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x8B, 0x9A, 0x3E, 0xA1, 0xB8, 0x28, 0x10),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_29_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x2F, 0xEF, 0xBB, 0xA9, 0x72, 0x7F, 0xEA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x34, 0xB7, 0x12, 0xB9, 0xE7, 0xC3, 0x2A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x1D, 0xD9, 0x42, 0x77, 0x0C, 0x71, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x01, 0x59, 0xA7, 0x56, 0x03, 0x91, 0x8D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x91, 0x99, 0x33, 0x30, 0x3E, 0xEF, 0x13),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0xC9, 0x5A, 0x9A, 0x54, 0x66, 0xF1, 0x70),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_29_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x2C, 0xB7, 0x6E, 0x71, 0x7D, 0x35, 0x30),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x0D, 0xEF, 0xD1, 0x2D, 0x99, 0x63, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x31, 0xAF, 0x2D, 0xC9, 0xC6, 0xC2, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0xC0, 0xDF, 0x80, 0x54, 0xC4, 0xAC, 0xF3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x6B, 0xA0, 0x84, 0x96, 0xF7, 0x31, 0xC8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0xE2, 0x7C, 0x7A, 0x41, 0x45, 0x75, 0x6A),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_30_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0xEE, 0x58, 0x31, 0xE8, 0x68, 0xD6, 0x76),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD2, 0x2E, 0x48, 0xB7, 0x09, 0x9F, 0xD4, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xA9, 0x5C, 0xE7, 0x64, 0x43, 0x5D, 0xC9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0x58, 0x9F, 0x50, 0xAB, 0x68, 0xFF, 0x6D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x88, 0x2D, 0xBA, 0x12, 0xBF, 0x8D, 0x7D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0xDF, 0x6F, 0xB3, 0x75, 0xA4, 0x55, 0x73),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_30_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x17, 0x92, 0x39, 0xB7, 0x13, 0x37, 0x6F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x43, 0x71, 0xA7, 0xCA, 0x17, 0x1B, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0xB9, 0xB0, 0x78, 0xEF, 0xA0, 0xDA, 0x83),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x84, 0xF2, 0x0F, 0x85, 0xA2, 0xB6, 0x1F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x65, 0x2E, 0x6E, 0x45, 0xB9, 0x4C, 0x3C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0x6A, 0x8C, 0x2B, 0x77, 0x96, 0x36, 0x22),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_31_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x7A, 0x13, 0x4A, 0x97, 0x63, 0x02, 0x10),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x1E, 0x06, 0x03, 0x8F, 0xB9, 0xEE, 0x64),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0xEE, 0x8B, 0x89, 0xA9, 0x70, 0xDB, 0xCE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x7B, 0x81, 0xC9, 0x70, 0x8D, 0x62, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0xDA, 0x46, 0xF8, 0xF9, 0x3A, 0xBE, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0x9C, 0x7A, 0x97, 0x62, 0xEB, 0xFA, 0x0F),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_31_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0x03, 0x3D, 0x3C, 0x46, 0x27, 0x9E, 0x65),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x08, 0x1C, 0xD5, 0x25, 0xAF, 0xE9, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0x69, 0xDC, 0x59, 0xF4, 0x8A, 0x7C, 0x1F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x9A, 0x7A, 0x99, 0x21, 0x0C, 0x4E, 0xE3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xCE, 0x85, 0x5F, 0xAC, 0xAA, 0x82, 0x10),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x57, 0x69, 0x90, 0x76, 0xF3, 0x53, 0x3F),
+};
+static const mbedtls_ecp_point brainpoolP384r1_T[32] = {
+    ECP_POINT_INIT_XY_Z1(brainpoolP384r1_T_0_X, brainpoolP384r1_T_0_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_1_X, brainpoolP384r1_T_1_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_2_X, brainpoolP384r1_T_2_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_3_X, brainpoolP384r1_T_3_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_4_X, brainpoolP384r1_T_4_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_5_X, brainpoolP384r1_T_5_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_6_X, brainpoolP384r1_T_6_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_7_X, brainpoolP384r1_T_7_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_8_X, brainpoolP384r1_T_8_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_9_X, brainpoolP384r1_T_9_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_10_X, brainpoolP384r1_T_10_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_11_X, brainpoolP384r1_T_11_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_12_X, brainpoolP384r1_T_12_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_13_X, brainpoolP384r1_T_13_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_14_X, brainpoolP384r1_T_14_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_15_X, brainpoolP384r1_T_15_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_16_X, brainpoolP384r1_T_16_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_17_X, brainpoolP384r1_T_17_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_18_X, brainpoolP384r1_T_18_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_19_X, brainpoolP384r1_T_19_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_20_X, brainpoolP384r1_T_20_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_21_X, brainpoolP384r1_T_21_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_22_X, brainpoolP384r1_T_22_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_23_X, brainpoolP384r1_T_23_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_24_X, brainpoolP384r1_T_24_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_25_X, brainpoolP384r1_T_25_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_26_X, brainpoolP384r1_T_26_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_27_X, brainpoolP384r1_T_27_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_28_X, brainpoolP384r1_T_28_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_29_X, brainpoolP384r1_T_29_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_30_X, brainpoolP384r1_T_30_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_31_X, brainpoolP384r1_T_31_Y),
+};
+#else
+#define brainpoolP384r1_T NULL
+#endif
+
+#endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
+
+/*
+ * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
+ */
+#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
+static const mbedtls_mpi_uint brainpoolP512r1_p[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_a[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_b[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_gx[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_gy[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_n[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA),
+};
+
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint brainpoolP512r1_T_0_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_0_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_1_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xE9, 0x6B, 0x8C, 0x6F, 0x9D, 0x88, 0x43),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x4F, 0x86, 0x96, 0xA7, 0x56, 0xD1, 0x37),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0xAB, 0xFA, 0xEE, 0xA7, 0xF5, 0x0E, 0xA6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x40, 0xEF, 0x9E, 0x6D, 0xD6, 0x32, 0x33),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0xED, 0x56, 0x14, 0x57, 0x1A, 0x8D, 0x69),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0xED, 0x4D, 0x3A, 0xFA, 0x71, 0x75, 0x6B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xC5, 0x76, 0x1C, 0x14, 0xBE, 0xB5, 0xCD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x5A, 0xCB, 0xE7, 0x36, 0x1D, 0x52, 0x1C),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_1_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x8D, 0x7A, 0xEB, 0xA3, 0x8B, 0xD5, 0xB0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0xA3, 0x41, 0xF8, 0xAC, 0x9E, 0xAB, 0x74),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0xE3, 0x65, 0x0D, 0x1C, 0xFE, 0x09, 0x2B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0xCA, 0x13, 0x3F, 0xC5, 0xF9, 0x7E, 0xEC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x5D, 0x63, 0x28, 0xA6, 0x89, 0xD3, 0x91),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x95, 0x3F, 0x7A, 0x82, 0xD4, 0x77, 0xE3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xBB, 0x92, 0x32, 0x00, 0xF4, 0x66, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x58, 0x31, 0xD1, 0x17, 0x9F, 0x2A, 0x22),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_2_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0x36, 0xA9, 0xCD, 0x80, 0xA5, 0x2D, 0x78),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x44, 0xAB, 0xCE, 0x71, 0xFF, 0x0C, 0x9B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0x24, 0x58, 0x35, 0x5A, 0x21, 0x32, 0x93),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0xA6, 0x28, 0xF8, 0x7A, 0x97, 0xAE, 0x8B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0xE7, 0x08, 0xFA, 0x47, 0xC9, 0x55, 0x09),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xAC, 0x2E, 0x84, 0xA4, 0xF5, 0x52, 0xC4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x58, 0x05, 0x9D, 0xA7, 0xC8, 0x71, 0xBF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x92, 0xB4, 0x92, 0xC1, 0x92, 0xEC, 0x6B),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_2_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x48, 0x2D, 0x79, 0x5E, 0x58, 0xE5, 0x69),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x85, 0x26, 0xEC, 0xE9, 0x6E, 0xD4, 0x06),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x68, 0x26, 0x87, 0x38, 0xA2, 0xD2, 0x0B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0x17, 0x60, 0xCE, 0x75, 0xF8, 0xA5, 0x6F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x20, 0x51, 0xDB, 0xA9, 0xAE, 0x87, 0xF1, 0x15),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x49, 0x92, 0x3B, 0x19, 0x96, 0xF5, 0xB0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0xD5, 0x52, 0x52, 0x8C, 0xCE, 0xFD, 0xFA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x18, 0x0A, 0xE6, 0xF6, 0xAE, 0x08, 0x41),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_3_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x2B, 0xD8, 0x54, 0xCE, 0xB0, 0x57, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0xB0, 0xF8, 0x9E, 0x03, 0x03, 0x3C, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x0E, 0x29, 0x29, 0x00, 0xF3, 0x70, 0xBF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x33, 0x99, 0x0E, 0x00, 0x5D, 0xFE, 0x4B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x2D, 0xF2, 0x59, 0x32, 0xCF, 0x03, 0xF4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0xC9, 0x72, 0xAE, 0x0C, 0xEF, 0xD1, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x5A, 0x27, 0xBF, 0x2F, 0x45, 0xF9, 0x51),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0xBE, 0xE5, 0x2C, 0xFF, 0x5B, 0x1E, 0x88),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_3_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0xAC, 0xBB, 0xD8, 0x83, 0xC2, 0x46, 0xF6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0xDC, 0xCE, 0x15, 0xB4, 0xEF, 0xCF, 0x46),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0xDB, 0x5E, 0x94, 0x31, 0x0B, 0xB2, 0x7A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0xB9, 0xE3, 0xE3, 0x11, 0x71, 0x41, 0x1E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0xE3, 0x01, 0xB7, 0x7D, 0xBC, 0x65, 0xBE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x07, 0x65, 0x87, 0xA7, 0xE8, 0x48, 0xE3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0x48, 0x8F, 0xD4, 0x30, 0x8E, 0xB4, 0x6C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0xE0, 0x73, 0xBE, 0x1E, 0xBF, 0x56, 0x36),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_4_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0x0E, 0x5E, 0x87, 0xC5, 0xAB, 0x0E, 0x3C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xF9, 0x5F, 0x80, 0x24, 0x4C, 0x2A, 0xF1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0x15, 0x21, 0x54, 0x92, 0x84, 0x8D, 0x6A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x8A, 0x47, 0x74, 0xDC, 0x42, 0xB1, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0xF7, 0x30, 0xFD, 0xC1, 0x9B, 0x0C, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x6C, 0xCC, 0xDF, 0xC5, 0xE3, 0xA9, 0xD5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x67, 0x59, 0x10, 0x5C, 0x51, 0x54, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x37, 0xFB, 0x6E, 0xB0, 0x78, 0x63, 0x8E),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_4_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0xEF, 0xC4, 0x39, 0x20, 0xF1, 0x46, 0x66),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0x62, 0xAE, 0xFF, 0x10, 0xE4, 0xE2, 0xE9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x5C, 0xF5, 0x2E, 0x22, 0x89, 0xE5, 0x82),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0x0C, 0x29, 0xA8, 0x62, 0xAE, 0xDB, 0x65),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0x9E, 0x0F, 0xCA, 0x87, 0x2A, 0x6F, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xDC, 0x9B, 0x9F, 0x65, 0xD4, 0xAD, 0x27),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0xC3, 0x08, 0x0F, 0xCF, 0x67, 0xE9, 0xF4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x5C, 0xD7, 0xFF, 0x41, 0x9C, 0xCB, 0x26),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_5_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x25, 0x05, 0x12, 0xAD, 0x73, 0x63, 0x90),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0x99, 0x07, 0x86, 0x57, 0xE7, 0x94, 0xB1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x4B, 0xA5, 0xBF, 0x18, 0xA9, 0xEF, 0x6A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x4C, 0xC4, 0x09, 0xF2, 0x2F, 0x0C, 0xAA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0x3A, 0x04, 0xEA, 0x89, 0x6C, 0x91, 0xB9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x6C, 0x3A, 0xE7, 0xA3, 0xEC, 0x24, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0xA1, 0x26, 0x21, 0x04, 0xE3, 0xB9, 0x40),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0x71, 0x4B, 0x7B, 0xC2, 0x89, 0xCD, 0xA2),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_5_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xB9, 0xA8, 0x9D, 0xFD, 0x00, 0x3A, 0x1F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x41, 0x6C, 0xBB, 0x5A, 0xCA, 0x1F, 0x74),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xD7, 0xE2, 0x6C, 0x6B, 0xA7, 0x48, 0xC9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x19, 0xAD, 0xA7, 0xC1, 0x7E, 0x4F, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0xF7, 0x19, 0x3C, 0x06, 0x74, 0x2C, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x23, 0x4F, 0x0C, 0x09, 0xB0, 0x80, 0x4A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x74, 0x34, 0x08, 0x44, 0x7E, 0xA3, 0xDD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0xCC, 0x8D, 0x12, 0x6E, 0xE1, 0x3D, 0x0B),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_6_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x18, 0xB1, 0x71, 0x02, 0x93, 0xC2, 0xA4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x89, 0x40, 0xE2, 0x1F, 0xE7, 0x5E, 0x68),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x8E, 0xAE, 0x89, 0x01, 0xD4, 0x0C, 0xEB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0xDA, 0x58, 0x70, 0x24, 0xF2, 0xE4, 0x5F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0xC7, 0x1D, 0xD6, 0x4A, 0x6F, 0x66, 0x4F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x1D, 0x7E, 0x4A, 0x2C, 0xCA, 0xEC, 0x3B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x06, 0x7F, 0xA8, 0x99, 0xE4, 0xD3, 0x4E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x1D, 0x5A, 0xDF, 0x5E, 0x58, 0x36, 0x49),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_6_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0xB9, 0x32, 0x69, 0x1F, 0x72, 0x2A, 0xB3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x73, 0xE2, 0x03, 0x39, 0x35, 0xAA, 0xA8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x5E, 0x5D, 0x48, 0xEF, 0xAE, 0x30, 0xF5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x7F, 0x60, 0x19, 0xAF, 0xEC, 0x9D, 0xFC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0xD9, 0x19, 0xE4, 0x1B, 0x56, 0x15, 0x5F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xD7, 0x33, 0x59, 0x1F, 0x43, 0x59, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0xCE, 0xEE, 0xCA, 0xA4, 0x7F, 0x63, 0xD4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0x40, 0xC0, 0xF6, 0x19, 0x89, 0x43, 0x20),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_7_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x92, 0xEA, 0x07, 0x65, 0x79, 0x86, 0xD3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xB7, 0x13, 0x75, 0xD3, 0xC5, 0x0A, 0xC9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x9E, 0xFA, 0xE1, 0x1F, 0x0C, 0xF9, 0x74),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x8C, 0xED, 0x5C, 0x21, 0xE9, 0x09, 0xDD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0x4D, 0xD8, 0x18, 0xC4, 0xF6, 0x36, 0x39),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0xC9, 0xAC, 0x5C, 0xFA, 0x69, 0xA4, 0xA0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x8C, 0x94, 0x1C, 0x7B, 0x71, 0x36, 0x58),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0xBD, 0x46, 0xCE, 0xB7, 0x1D, 0x9C, 0x5E),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_7_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xD6, 0x96, 0x4B, 0xA6, 0x47, 0xEB, 0xE5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0xF1, 0x5F, 0x15, 0xDE, 0x99, 0x6F, 0x66),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xBD, 0xE5, 0x04, 0xB8, 0xE6, 0xC0, 0x0B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0xD3, 0xF0, 0x04, 0x00, 0xE4, 0x05, 0xDB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xF3, 0x06, 0xA3, 0x1A, 0xFF, 0xEA, 0x73),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x32, 0xAA, 0x99, 0x33, 0x09, 0xB6, 0x34),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6E, 0xEF, 0xFC, 0x61, 0x10, 0x42, 0x31, 0x94),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xF1, 0xF4, 0x33, 0xCF, 0x28, 0x90, 0x9C),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_8_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xDE, 0xF9, 0x88, 0x87, 0x7B, 0xEB, 0xC9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xB8, 0xDA, 0xFA, 0xDA, 0x3D, 0xA6, 0x17),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0xF0, 0x62, 0x82, 0x53, 0x32, 0x55, 0x03),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xA5, 0x32, 0x4A, 0x19, 0x11, 0x9C, 0x10),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0xB3, 0x27, 0xE9, 0x75, 0x90, 0x05, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x1C, 0x90, 0x48, 0x77, 0x01, 0x85, 0x1B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0xD6, 0x9B, 0x84, 0xA8, 0xD7, 0xC5, 0x28),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x7A, 0xCB, 0xB3, 0x11, 0x46, 0xD7, 0x99),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_8_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0x23, 0xBF, 0x75, 0x75, 0xA1, 0x95, 0x90),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0x66, 0x5D, 0x34, 0x13, 0xA9, 0x03, 0xBE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x80, 0x9D, 0x5F, 0xD2, 0x44, 0xE1, 0x62),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x5D, 0xBD, 0xA8, 0xBF, 0xB4, 0x25, 0x1F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x99, 0x1F, 0x53, 0xF1, 0x57, 0xDB, 0xE7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x7C, 0xE5, 0xC5, 0x51, 0x0B, 0x4C, 0x9B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0xB0, 0x1A, 0x9C, 0x16, 0xB0, 0x32, 0x1F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0xE3, 0xCF, 0xDD, 0x48, 0xB4, 0x7B, 0x33),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_9_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0xDD, 0x9E, 0x3C, 0x98, 0x0E, 0x77, 0x65),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0xAB, 0x01, 0xD3, 0x87, 0x74, 0x25, 0x4A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0xA3, 0xE3, 0x76, 0x43, 0x87, 0x12, 0xBD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0xB1, 0x3B, 0x60, 0x66, 0xEB, 0x98, 0x54),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD2, 0x78, 0xC8, 0xD7, 0x4E, 0x75, 0xCA, 0x69),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xDF, 0x71, 0x19, 0xE7, 0x07, 0x36, 0xB5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xC9, 0xA8, 0x5F, 0x91, 0xBF, 0x47, 0xB2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x96, 0x58, 0x96, 0x18, 0xB6, 0xFA, 0x01),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_9_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x2D, 0xA9, 0x9B, 0x86, 0xDB, 0x0C, 0x4C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x0B, 0x2D, 0x56, 0x4A, 0xD3, 0x93, 0x8A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x15, 0xE2, 0x65, 0x12, 0x86, 0x0E, 0xB2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x41, 0x4D, 0xC1, 0xCB, 0xE4, 0xC3, 0xD7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x53, 0x10, 0xCA, 0xA3, 0xAC, 0x83, 0x26),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x01, 0x22, 0x96, 0x10, 0xAD, 0x69, 0xDB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x46, 0x4E, 0xD8, 0xEA, 0xD6, 0x9D, 0xF3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x2F, 0x7F, 0x62, 0x62, 0x80, 0xD0, 0x14),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_10_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0xDA, 0x00, 0x63, 0x09, 0xBD, 0x6A, 0x83),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xD4, 0x6E, 0x48, 0x05, 0xB7, 0xF7, 0x17),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0x4D, 0xD7, 0x00, 0x4A, 0x15, 0x27, 0x7A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x15, 0xAA, 0x37, 0x27, 0x34, 0x18, 0x24),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x20, 0x2C, 0x84, 0x1B, 0x88, 0xBA, 0x05),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x09, 0xD6, 0x04, 0xA2, 0x60, 0x84, 0x72),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x04, 0x94, 0x08, 0xD4, 0xED, 0x47, 0xDB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xF3, 0xE4, 0x3E, 0xB9, 0x5B, 0x35, 0x42),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_10_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0xD8, 0xB6, 0x80, 0xD6, 0xF1, 0x30, 0xDD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x14, 0xA6, 0x85, 0xEE, 0xA7, 0xD8, 0x61),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x49, 0x2A, 0x1E, 0x7C, 0xE9, 0x2D, 0xEC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x87, 0x56, 0x91, 0x03, 0x77, 0x4D, 0x55),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0x52, 0xD4, 0xAA, 0xF7, 0xFA, 0xB0, 0xC5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x5D, 0x11, 0x39, 0xB1, 0xE7, 0x76, 0xAD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x13, 0xBC, 0x37, 0x5D, 0x74, 0xCD, 0xC2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x48, 0x14, 0x23, 0x30, 0xF8, 0x46, 0x37),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_11_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x27, 0xB0, 0xD9, 0xB2, 0x74, 0xB4, 0xC0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xA6, 0xB9, 0x6F, 0x9F, 0x64, 0x36, 0x92),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2E, 0x2B, 0x78, 0x40, 0x05, 0x2B, 0x7B, 0xA9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x68, 0x3A, 0xB6, 0x4A, 0xE2, 0xDB, 0xB8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x33, 0xD7, 0x34, 0x8B, 0x25, 0x45, 0xEF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0xCE, 0xA8, 0xC9, 0x01, 0xFB, 0x0E, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0xF9, 0x51, 0x4C, 0x12, 0x9F, 0x60, 0xE4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0x85, 0xBD, 0x30, 0x37, 0x84, 0x39, 0x44),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_11_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x33, 0xAF, 0x2E, 0xB8, 0x2E, 0xCC, 0x3C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0xB1, 0x73, 0x59, 0x4E, 0x0C, 0x09, 0x4A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x24, 0x89, 0x81, 0x12, 0xFF, 0xBB, 0x6E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x37, 0x1A, 0x66, 0xEE, 0xED, 0xB6, 0x9B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0xBD, 0x04, 0x20, 0x5D, 0xFB, 0xBF, 0x95),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0xF8, 0x34, 0xA3, 0xFF, 0x45, 0xDE, 0x92),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x18, 0x73, 0xF1, 0x32, 0x25, 0x58, 0xEB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0xC1, 0x14, 0xE3, 0x9E, 0x40, 0x0F, 0x12),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_12_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x07, 0x9D, 0x9C, 0x00, 0xF7, 0x56, 0x19),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0xBA, 0x87, 0xF9, 0x15, 0x0C, 0x66, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x1F, 0xC1, 0x28, 0xB0, 0x47, 0x0D, 0xF5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xCA, 0x27, 0xEE, 0x4B, 0x23, 0x2B, 0x89),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0xB5, 0x68, 0xC8, 0x17, 0x5D, 0xC3, 0xAA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x02, 0x08, 0xEE, 0x20, 0x9D, 0xEA, 0x64),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x14, 0x50, 0xD4, 0x7D, 0x5F, 0xCF, 0xA0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0xFA, 0xF8, 0xA7, 0xC6, 0xDC, 0x14, 0x8C),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_12_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0xBD, 0x0A, 0x1A, 0x18, 0x98, 0xDC, 0xB0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x63, 0x02, 0xB7, 0xD5, 0x5B, 0x5A, 0xC6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xB1, 0xD7, 0x4B, 0x15, 0x39, 0x61, 0x5D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0x32, 0xE1, 0x9E, 0x70, 0x1B, 0xCE, 0x51),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0xD8, 0x18, 0x83, 0x52, 0x9B, 0x6D, 0xA2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x55, 0x56, 0x19, 0x34, 0xA4, 0xEA, 0xFC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0xA9, 0x55, 0x80, 0xE3, 0x15, 0x36, 0x8B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x06, 0xC8, 0x1D, 0x17, 0x0D, 0xAD, 0x16),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_13_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x20, 0xD6, 0xF0, 0xCC, 0xF3, 0x63, 0x53, 0xD2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x5A, 0xDC, 0x46, 0xBD, 0x0D, 0xAD, 0x96),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x2F, 0x11, 0x60, 0x15, 0x51, 0x4A, 0xEA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0xE3, 0x93, 0x38, 0xD5, 0x83, 0xAA, 0x0D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0xA6, 0xCC, 0xB1, 0xFD, 0xBB, 0x1A, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0x54, 0xC8, 0x54, 0x6F, 0x79, 0x1A, 0x59),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x4A, 0xDA, 0x28, 0x92, 0x97, 0x9D, 0x7F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x4B, 0xDB, 0xC7, 0x52, 0xC5, 0x66, 0x34),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_13_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x7E, 0x92, 0x53, 0x30, 0x93, 0xFD, 0xFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x16, 0x6A, 0xB1, 0x91, 0x0A, 0xB4, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x9D, 0x40, 0x3F, 0xE3, 0xF1, 0x01, 0x46),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x0E, 0xD8, 0xED, 0x11, 0x8E, 0x4C, 0xED),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x4A, 0x1B, 0x88, 0xDF, 0x8D, 0x29, 0xE7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x23, 0x21, 0x11, 0xAB, 0x77, 0x81, 0x62),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0xAF, 0x11, 0xFA, 0xBA, 0x40, 0x63, 0xE7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0x6F, 0x8D, 0x80, 0xDF, 0x67, 0xF5, 0x44),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_14_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0x8B, 0xB7, 0x08, 0xF4, 0xD7, 0x2D, 0xA8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0x2B, 0x30, 0x02, 0x45, 0x71, 0x08, 0x49),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x3A, 0xCA, 0x50, 0xF6, 0xC2, 0x19, 0x8C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xB9, 0x9B, 0x3E, 0x73, 0x95, 0x1D, 0x49),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x60, 0x59, 0x48, 0xCB, 0xD8, 0xD6, 0xAA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0xB9, 0x6C, 0x89, 0xAB, 0x99, 0xA8, 0xF8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0xA1, 0x8B, 0x4E, 0x06, 0x19, 0xEC, 0x99),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x95, 0x04, 0xCF, 0xD5, 0x94, 0xB3, 0x02),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_14_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x35, 0x93, 0x7C, 0xB3, 0xB8, 0x9E, 0x1B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0x45, 0x5C, 0x7E, 0xBF, 0x75, 0x81, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDC, 0xE8, 0x24, 0xDF, 0xEC, 0x2F, 0x7D, 0xB9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x8B, 0xD5, 0x6A, 0x9B, 0xA0, 0xE0, 0x4F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0xE3, 0x27, 0x82, 0xDE, 0xDD, 0xCA, 0x4B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x57, 0x56, 0x46, 0x05, 0x06, 0x01, 0x2E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x35, 0xA7, 0x47, 0xE2, 0x6B, 0x2C, 0x4F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x9D, 0x4C, 0xEC, 0x1F, 0x11, 0x75, 0x2B),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_15_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xAA, 0x41, 0xC1, 0xE9, 0x0E, 0xE9, 0xAA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0xCF, 0x9C, 0x4B, 0xE8, 0xED, 0x0A, 0x49),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0x73, 0xCA, 0x0C, 0x46, 0x0A, 0x9C, 0xE4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xE1, 0x9E, 0xBC, 0xFE, 0x44, 0x63, 0x6D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0x43, 0x71, 0xEE, 0xF8, 0xC1, 0x8C, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x4B, 0xF0, 0x69, 0x25, 0xBD, 0x71, 0x1A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0x9A, 0xFE, 0x82, 0xE7, 0xC1, 0xC1, 0xEE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x5A, 0x6E, 0x5E, 0x97, 0x6A, 0x35, 0x8D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_15_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA2, 0x18, 0x6C, 0x7E, 0xB8, 0x9E, 0x57, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0xB9, 0xC1, 0xD0, 0xFE, 0x78, 0xFB, 0x32),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x08, 0xAE, 0x46, 0x34, 0xEA, 0x7A, 0x7F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x1C, 0x56, 0xA9, 0x18, 0x37, 0xD4, 0x9E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x63, 0xE9, 0x0A, 0xB6, 0x38, 0x3C, 0xC1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x4F, 0xA4, 0x6E, 0x85, 0x31, 0x23, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0xAD, 0xC4, 0xC3, 0xB1, 0x4B, 0x1C, 0x82),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x56, 0x4A, 0x38, 0xB3, 0x6B, 0x6F, 0x2C),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_16_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0xC7, 0x19, 0xDE, 0x21, 0xED, 0x89, 0xD0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xBE, 0xA6, 0xAE, 0xEB, 0x9D, 0xA7, 0x2A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x0E, 0x13, 0x1E, 0x86, 0x57, 0xC3, 0x3B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x4B, 0x30, 0x46, 0x52, 0xC1, 0xEC, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6E, 0xD5, 0x44, 0x31, 0x96, 0x3B, 0x26, 0x27),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x68, 0xA8, 0x67, 0x78, 0x39, 0xE8, 0x68),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x78, 0xB7, 0xDD, 0xF2, 0x58, 0xB6, 0x3D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x3C, 0xB3, 0x26, 0xC4, 0x2C, 0x8C, 0xA5),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_16_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x24, 0xE5, 0x73, 0xEE, 0x9A, 0x02, 0xA9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x6A, 0x65, 0x60, 0xF3, 0x62, 0xE3, 0xE9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0x07, 0x84, 0xE6, 0x3B, 0x46, 0x65, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x8F, 0x0C, 0xB0, 0xE1, 0x04, 0x82, 0x9D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x13, 0xBF, 0x3D, 0xA0, 0x48, 0xA2, 0x74),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x26, 0x76, 0x74, 0xAB, 0x0B, 0x29, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x6E, 0x5F, 0x03, 0x34, 0x7C, 0x38, 0xCE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0x72, 0xF9, 0x3B, 0x3C, 0xA4, 0xBC, 0x7C),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_17_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xCE, 0x18, 0x80, 0xB8, 0x24, 0x45, 0x81),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x09, 0x03, 0xB8, 0x06, 0x64, 0xF7, 0xEC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x26, 0xB1, 0x10, 0x6D, 0x71, 0x12, 0x2E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x12, 0xC6, 0x6E, 0x1E, 0x6A, 0xC3, 0x80),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0xD3, 0x0A, 0xDE, 0xD8, 0x6B, 0x04, 0x5C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x87, 0x5B, 0xAE, 0xDB, 0x3C, 0xC0, 0xC5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0xF5, 0xF9, 0xC1, 0x9A, 0x89, 0xBB, 0x7E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0x69, 0x72, 0x8B, 0xAE, 0x32, 0x13, 0x11),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_17_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x16, 0x07, 0x50, 0xFA, 0x4C, 0xCF, 0xE8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x50, 0x21, 0xE9, 0xDE, 0xEC, 0x7E, 0xDF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x2F, 0xE8, 0x83, 0x30, 0x0B, 0x65, 0x0E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x0B, 0x99, 0xAC, 0xC9, 0xBA, 0x6C, 0x2A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x59, 0x5A, 0x0D, 0x7B, 0x9E, 0x08, 0xAD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x91, 0xB2, 0xDC, 0x90, 0xCE, 0x67, 0xED),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x93, 0x60, 0x0C, 0xD7, 0x1F, 0x2F, 0x17),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x7F, 0x9D, 0x40, 0xF8, 0x78, 0x7A, 0x54),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_18_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x22, 0x95, 0xE8, 0xEF, 0x31, 0x57, 0x35),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0x88, 0x53, 0xFE, 0xAF, 0x7C, 0x47, 0x14),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xCE, 0xCC, 0x79, 0xE8, 0x9F, 0x8C, 0xC4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x16, 0xDD, 0x77, 0x6E, 0x8A, 0x73, 0x97),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0x07, 0x97, 0x21, 0x3B, 0xF8, 0x5F, 0xA8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0xB5, 0xD2, 0x81, 0x84, 0xF0, 0xE7, 0x9F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x8F, 0x75, 0x09, 0x6A, 0x0E, 0x53, 0xAD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x4F, 0x70, 0x97, 0xC7, 0xAC, 0x7D, 0x3F),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_18_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x3C, 0x6A, 0xB4, 0x10, 0xA9, 0xC8, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0xC5, 0xD6, 0x69, 0x16, 0xB8, 0xAC, 0x25),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x44, 0xDC, 0xEB, 0x48, 0x54, 0x5D, 0x5F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x48, 0x9B, 0xD7, 0x72, 0x69, 0xA4, 0x8A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x0D, 0x36, 0x9A, 0x66, 0x0B, 0xEC, 0x24),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0xC6, 0xD4, 0xB6, 0x60, 0xE5, 0xC3, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x29, 0x42, 0xE0, 0x9D, 0xFD, 0x7C, 0x3E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x10, 0xBA, 0x55, 0xBC, 0x3B, 0x38, 0x5D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_19_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0x66, 0xFA, 0x05, 0x73, 0x03, 0x1B, 0x69),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xA4, 0x66, 0x12, 0x96, 0x7B, 0x02, 0x4C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0xB5, 0xDE, 0x6D, 0x98, 0xD1, 0xD5, 0xA8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0xF5, 0x44, 0xB8, 0x8E, 0xF6, 0x8C, 0x05),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x15, 0x2B, 0x72, 0xBC, 0x49, 0xE5, 0xDF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x44, 0xD7, 0xDF, 0x8F, 0xEB, 0x8D, 0x80),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x64, 0x88, 0xAA, 0xB7, 0xE4, 0x70, 0x1D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0x14, 0xBB, 0xE9, 0x9B, 0xB9, 0x65, 0x5D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_19_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0x8E, 0x88, 0xF5, 0xF1, 0xC1, 0x89, 0xA2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x30, 0x53, 0xE6, 0xFB, 0x2D, 0x82, 0xB4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0xE4, 0xFF, 0xBA, 0x31, 0x79, 0xAB, 0xC2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x09, 0xF7, 0xB7, 0x09, 0x78, 0x4C, 0x90),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xAE, 0xC2, 0x44, 0xDC, 0x17, 0x78, 0x47),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0xD4, 0x17, 0x43, 0x19, 0x74, 0x9E, 0x23),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x64, 0x3B, 0x73, 0xA2, 0x99, 0x27, 0x76),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x74, 0x36, 0x5F, 0xD3, 0x14, 0xB1, 0x31),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_20_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x07, 0xAB, 0xFD, 0x9B, 0x03, 0xC5, 0xD5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0xBE, 0xB0, 0x1D, 0xF2, 0x0C, 0x73, 0x73),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xE7, 0x7B, 0x87, 0xD3, 0x34, 0xFD, 0xE2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x25, 0x3D, 0xC7, 0x36, 0x83, 0x53, 0xDC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0x7C, 0xCF, 0x63, 0x55, 0x12, 0x11, 0xB0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0x34, 0x4D, 0x27, 0x92, 0xAC, 0x18, 0x16),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x42, 0x61, 0x9D, 0x2E, 0xFF, 0x13, 0x16),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0xDE, 0x92, 0x65, 0x57, 0x0D, 0xBC, 0x0A),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_20_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x7B, 0x6E, 0xC6, 0x2A, 0x21, 0x74, 0x0A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0xA7, 0x53, 0x4D, 0x29, 0x36, 0xEF, 0xE5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0xD6, 0x41, 0xC7, 0x99, 0xAD, 0x50, 0x53),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xAC, 0x41, 0x9F, 0xFB, 0x4C, 0x86, 0xF1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xBB, 0xE6, 0x25, 0x28, 0xAA, 0xEB, 0x1E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x04, 0xA2, 0xC3, 0xAA, 0x08, 0x8A, 0xCC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x2B, 0x5B, 0xE2, 0x8D, 0x76, 0xEA, 0x34),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x33, 0xD2, 0x21, 0x4D, 0x62, 0xE3, 0x8E),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_21_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0x06, 0x8B, 0x2B, 0xC2, 0xC4, 0xB1, 0xD2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xF5, 0xA1, 0xC0, 0x03, 0x6A, 0x29, 0x12),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xA9, 0xEF, 0x55, 0xB6, 0x1A, 0x9F, 0x6B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x54, 0x32, 0xBE, 0x06, 0x43, 0xB5, 0xFD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0xD6, 0xD9, 0x20, 0x89, 0xBE, 0xD4, 0x1B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x26, 0x95, 0x10, 0xCE, 0xB4, 0x88, 0x79),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xA6, 0x27, 0xAC, 0x32, 0xBA, 0xBD, 0xC7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0xA6, 0xAE, 0x9C, 0x7B, 0xBE, 0xA1, 0x63),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_21_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xCD, 0x4D, 0x3D, 0xDF, 0x96, 0xBB, 0x7D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0xA7, 0x11, 0x06, 0xCC, 0x0E, 0x31, 0x81),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x20, 0xE4, 0xF4, 0xAD, 0x7B, 0x5F, 0xF1, 0xEF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x54, 0xBE, 0xF4, 0x8A, 0x03, 0x47, 0xDF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x53, 0x00, 0x7F, 0xB0, 0x8A, 0x68, 0xA6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x16, 0xB1, 0x73, 0x6F, 0x5B, 0x0E, 0xC3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x32, 0xE3, 0x43, 0x64, 0x75, 0xFB, 0xFB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x18, 0x55, 0x8A, 0x4E, 0x6E, 0x35, 0x54),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_22_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x97, 0x15, 0x1E, 0xCB, 0xF2, 0x9C, 0xA5),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0xD1, 0xBB, 0xF3, 0x70, 0xAD, 0x13, 0xAD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0x96, 0xA4, 0xC5, 0x5E, 0xDA, 0xD5, 0x57),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x81, 0xE9, 0x65, 0x66, 0x76, 0x47, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x35, 0x87, 0x06, 0x73, 0xCF, 0x34, 0xD2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x81, 0x15, 0x42, 0xA2, 0x79, 0x5B, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0xA2, 0x7D, 0x09, 0x14, 0x64, 0xC6, 0xAE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x6D, 0xC4, 0xED, 0xF1, 0xD6, 0xE9, 0x24),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_22_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xD5, 0xBB, 0x25, 0xA3, 0xDD, 0xA3, 0x88),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0xF2, 0x68, 0x67, 0x39, 0x8F, 0x73, 0x93),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x76, 0x28, 0x89, 0xAD, 0x32, 0xE0, 0xDF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x90, 0xCC, 0x57, 0x58, 0xAA, 0xC9, 0x75),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0xD7, 0x43, 0xD2, 0xCE, 0x5E, 0xA0, 0x08),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0xB0, 0xB8, 0xA4, 0x9E, 0x96, 0x26, 0x86),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x61, 0x1D, 0xF3, 0x65, 0x5E, 0x60, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0x1E, 0x65, 0xED, 0xCF, 0x07, 0x60, 0x20),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_23_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x30, 0x17, 0x8A, 0x91, 0x88, 0x0A, 0xA4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x7D, 0x18, 0xA4, 0xAC, 0x59, 0xFC, 0x5F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x31, 0x8B, 0x25, 0x65, 0x39, 0x9A, 0xDC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x16, 0x4B, 0x68, 0xBA, 0x59, 0x13, 0x2F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xFD, 0xD3, 0xC5, 0x56, 0xC9, 0x8C, 0x5E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xC6, 0x9F, 0xF4, 0xE6, 0xF7, 0xB4, 0x01),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0x7C, 0x03, 0x00, 0x26, 0x9F, 0xD8, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x1D, 0x6E, 0x00, 0xB9, 0x00, 0x6E, 0x93),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_23_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0x63, 0xDA, 0x03, 0x2B, 0xD5, 0x0B, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0xFC, 0xE2, 0xC8, 0x47, 0xF0, 0xAE, 0xF2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0x4C, 0xF7, 0x50, 0x0C, 0x48, 0x06, 0x2A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x2B, 0x32, 0x98, 0x0E, 0x7E, 0x61, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x02, 0x27, 0xFE, 0x75, 0x86, 0xDF, 0x24),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0x30, 0xB1, 0x22, 0x32, 0x1B, 0xFE, 0x24),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x27, 0xF7, 0x78, 0x6F, 0xD7, 0xFD, 0xE4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x78, 0xCC, 0xEA, 0xC0, 0x50, 0x24, 0x44),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_24_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x2B, 0x4F, 0x7F, 0x58, 0xE6, 0xC2, 0x70),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x43, 0xD5, 0xA7, 0x35, 0x3C, 0x80, 0xB8),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x6D, 0x4B, 0x12, 0x00, 0x7B, 0xE6, 0xA6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x15, 0xBD, 0xD0, 0x9B, 0xCA, 0xAA, 0x81),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0xCE, 0x9C, 0xE3, 0x8B, 0x60, 0x7A, 0x53),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0xDA, 0x4B, 0x03, 0xA7, 0x8D, 0x43, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0xAF, 0x00, 0x2B, 0x32, 0xF0, 0x22, 0x68),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDC, 0xD9, 0x99, 0x99, 0xBE, 0x43, 0x99, 0x3E),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_24_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x71, 0x41, 0xF4, 0xB5, 0xFD, 0xDD, 0x36),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0xE2, 0x20, 0x4C, 0xD1, 0x2E, 0x1F, 0x06),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x43, 0x48, 0x76, 0x8A, 0x49, 0xAC, 0x87),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0x1A, 0x55, 0xA8, 0xA3, 0xD4, 0x57, 0x75),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0xA6, 0x84, 0x39, 0xC9, 0x13, 0xBB, 0x60),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0xFA, 0xA9, 0x70, 0xDE, 0x83, 0xDD, 0xC9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0xC9, 0xD9, 0x3E, 0x44, 0x91, 0x68, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x9F, 0x85, 0x6D, 0xF7, 0x54, 0x36, 0x82),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_25_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x6B, 0xA6, 0xA3, 0xE5, 0xD4, 0x46, 0xDB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0x3E, 0xDC, 0x84, 0x7C, 0x7B, 0x24, 0x34),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0xED, 0x7F, 0x86, 0x07, 0x6C, 0x57, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0x06, 0xFE, 0x52, 0x12, 0x79, 0x69, 0x56),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0xD1, 0x44, 0x5F, 0x21, 0x3A, 0xC3, 0x84),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0xD9, 0x4A, 0xC0, 0x75, 0xAB, 0x17, 0xAC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x81, 0x94, 0xB6, 0x80, 0x6B, 0x6F, 0xC3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xBE, 0x8E, 0xA5, 0xAA, 0xBC, 0x1E, 0x3E),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_25_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0xC7, 0x85, 0xA6, 0x59, 0x9B, 0xB1, 0x52),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0xCE, 0x40, 0xD1, 0xFB, 0xDF, 0x94, 0xF7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0xB8, 0x5E, 0xBF, 0x45, 0xA8, 0x2D, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x9C, 0x06, 0x1B, 0xA9, 0x57, 0xB9, 0x79),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0xE9, 0xCE, 0xA2, 0xD3, 0x74, 0xA1, 0x3C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x5F, 0x34, 0x78, 0xDB, 0xAE, 0x3A, 0x14),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x32, 0x84, 0x3E, 0x68, 0x6A, 0x43, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0xBC, 0x39, 0x36, 0xA4, 0xC5, 0xBB, 0x11),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_26_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0x07, 0xA2, 0xB5, 0xC9, 0x0F, 0x4D, 0x0F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x1D, 0x67, 0xE6, 0xF1, 0x46, 0xEB, 0x71),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0x41, 0x23, 0x95, 0xE7, 0xE0, 0x10, 0xDD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x69, 0xFE, 0x68, 0x8C, 0xC6, 0x5F, 0xB6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0xB9, 0x2B, 0x3D, 0xD2, 0x4F, 0xD8, 0x1A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0x09, 0xF5, 0x5F, 0xCF, 0xF6, 0x91, 0x57),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x15, 0x42, 0x6B, 0x6D, 0xB5, 0xF3, 0xB6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x56, 0x9D, 0xC5, 0xFF, 0xCA, 0x13, 0x9B),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_26_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0x38, 0xE6, 0x23, 0x63, 0x48, 0x3C, 0xCA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD2, 0x68, 0x3C, 0xD1, 0x3B, 0xE9, 0x3B, 0x82),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x08, 0x54, 0x49, 0xD1, 0x46, 0x45, 0x13),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x70, 0x52, 0x6E, 0x79, 0xC4, 0x5E, 0x95),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0xDF, 0xE8, 0x5A, 0x32, 0x81, 0xDA, 0xD3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0x2D, 0x94, 0x5B, 0xB5, 0x35, 0x9F, 0x0A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x12, 0x8D, 0xC3, 0x36, 0x36, 0xB2, 0x2A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0x2F, 0x22, 0x38, 0x5B, 0x18, 0x4C, 0x35),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_27_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xC1, 0x22, 0x0E, 0xF0, 0x73, 0x11, 0x05),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0xAE, 0xA4, 0x56, 0x18, 0x61, 0x66, 0x12),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0xFB, 0x72, 0x08, 0x84, 0x38, 0x51, 0xB0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x86, 0xA8, 0xB9, 0x31, 0x99, 0x29, 0xC3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0xFB, 0xC3, 0x42, 0xB3, 0xC7, 0x6F, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xF8, 0xE1, 0x09, 0xBE, 0x75, 0xB0, 0x22),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x7D, 0xFF, 0xF4, 0x99, 0xFC, 0x13, 0xAB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x1B, 0x84, 0x81, 0x42, 0x22, 0xC6, 0x3D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_27_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xE0, 0x37, 0xA4, 0xA0, 0x2F, 0x38, 0x7F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x3D, 0xB7, 0x40, 0x2F, 0x39, 0x3C, 0x7A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0x3B, 0x8A, 0x51, 0xAE, 0x40, 0x49, 0x7A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0x20, 0x9F, 0xDD, 0xA9, 0xD0, 0x77, 0xC7),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0x1D, 0x64, 0xDA, 0xA0, 0x53, 0xC7, 0x7D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x7B, 0x66, 0x55, 0x94, 0xD1, 0x51, 0x44),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xA9, 0xB5, 0x5B, 0x38, 0x35, 0x40, 0xC0),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0xC9, 0x0F, 0xF0, 0x73, 0x79, 0x43, 0x61),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_28_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x47, 0x45, 0x69, 0x80, 0x72, 0x72, 0x42),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x11, 0x99, 0x59, 0xDB, 0x48, 0x80, 0x39),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0x6E, 0x3D, 0xFC, 0x37, 0x15, 0xF4, 0xBF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xBB, 0x5B, 0xA6, 0x35, 0x8D, 0x28, 0x20),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x1A, 0x3B, 0x2C, 0x8F, 0xD3, 0xAA, 0x2D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x1C, 0x1A, 0xF8, 0x02, 0xD9, 0x7B, 0x41),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0x69, 0xAC, 0xF8, 0x54, 0x31, 0x14, 0xA1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x8A, 0xE6, 0xDE, 0x58, 0xB9, 0xC4, 0x7A),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_28_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x83, 0x52, 0xFE, 0xF9, 0x7B, 0xE9, 0x1F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xA2, 0x55, 0x46, 0x15, 0x49, 0xC1, 0x3A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0xBC, 0x5C, 0x91, 0xBD, 0xB9, 0x9C, 0xF4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0xFD, 0xB1, 0x4E, 0x5F, 0x74, 0xEE, 0x53),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0x8B, 0xD8, 0x8B, 0x17, 0x73, 0x1B, 0x96),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0x92, 0xD7, 0x67, 0x06, 0xAD, 0x25, 0xCD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x0F, 0x80, 0x24, 0xE2, 0x27, 0x5F, 0x8B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x1C, 0xCE, 0xD0, 0x67, 0xCA, 0xD4, 0x0B),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_29_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0xF1, 0xDD, 0x33, 0x66, 0xF9, 0x05, 0xD6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0xE5, 0x6B, 0x79, 0xBD, 0x48, 0x42, 0xAA),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0x14, 0x52, 0xE3, 0x53, 0xB4, 0x50, 0xD4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x84, 0x6C, 0xCF, 0xDA, 0xB2, 0x20, 0x0A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0xD6, 0x1A, 0xE5, 0xE2, 0x29, 0x70, 0xCE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x61, 0xFE, 0xBB, 0x21, 0x82, 0xD1, 0xFE),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0xF0, 0x9C, 0x8B, 0x1A, 0x42, 0x30, 0x06),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0xD6, 0x49, 0x81, 0x92, 0xF1, 0xD0, 0x90),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_29_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x91, 0x93, 0x6A, 0xA6, 0x22, 0xE9, 0xD6),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0xDC, 0xC3, 0x69, 0x11, 0x95, 0x7D, 0xEC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0xA3, 0x9D, 0x87, 0x5E, 0x64, 0x41, 0xA2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x87, 0x5A, 0x15, 0xBD, 0x6E, 0x3C, 0x8D),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x8D, 0x50, 0xCC, 0xCF, 0xB7, 0x8F, 0x0B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x65, 0xCD, 0x31, 0x30, 0xF1, 0x68, 0x13),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x5C, 0x66, 0x67, 0x92, 0x30, 0x57, 0x95),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0x9B, 0x01, 0x3D, 0x20, 0x8B, 0xD1, 0x0D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_30_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0xC0, 0xE6, 0x4F, 0xDE, 0x62, 0xAB, 0xB3),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x48, 0xB3, 0x1C, 0x0F, 0x16, 0x93, 0x45),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x63, 0xBD, 0x1F, 0x16, 0x50, 0x56, 0x98),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x06, 0xBC, 0xE9, 0x27, 0x1C, 0x9A, 0x7B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0xFE, 0x21, 0xC5, 0x39, 0x55, 0xE1, 0xFD),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xA8, 0xD0, 0x96, 0x0E, 0xB5, 0xB2, 0x84),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xE7, 0x4B, 0xF3, 0x11, 0x0C, 0xC9, 0x5B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x3A, 0xC4, 0x87, 0x71, 0xEE, 0xFA, 0x18),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_30_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x77, 0xEE, 0x81, 0x5E, 0x96, 0xEA, 0x4B),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0xDF, 0xA9, 0xF4, 0x4F, 0x7C, 0xB2, 0x43),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0xD4, 0xDF, 0x35, 0x63, 0x47, 0x25, 0x8A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x3D, 0xFF, 0xA4, 0x02, 0xC3, 0x95, 0x11),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x10, 0x78, 0xD1, 0x2B, 0xB7, 0xBE, 0x0E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0xE9, 0x57, 0xF9, 0xE0, 0xD8, 0xFC, 0xBC),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0xC4, 0x01, 0xD6, 0xB4, 0xE7, 0x78, 0xE2),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x6C, 0xB9, 0x13, 0xA4, 0xE8, 0x6D, 0x6F),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_31_X[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0xB0, 0xC9, 0xCD, 0xBF, 0xA2, 0x1E, 0x63),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x4F, 0x86, 0x22, 0x9B, 0xEA, 0xE8, 0xBB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x46, 0xDF, 0x43, 0xB9, 0x82, 0x2D, 0x0A),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x32, 0xF1, 0x4E, 0x95, 0x41, 0xAE, 0x8E),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0x93, 0x26, 0xFC, 0xD3, 0x90, 0xDC, 0xEB),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x05, 0x45, 0xCA, 0xF9, 0x5A, 0x89, 0x93),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x82, 0x63, 0x4E, 0x55, 0x1D, 0x3A, 0x08),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x69, 0x52, 0x49, 0xE9, 0xED, 0x57, 0x34),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_31_Y[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x64, 0xE9, 0xAC, 0x4C, 0x4A, 0xEA, 0x25),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0xE9, 0x0B, 0x99, 0xE7, 0xF9, 0xA9, 0x2C),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x0C, 0xC1, 0xF4, 0x8D, 0x07, 0xB6, 0xB1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x68, 0xFA, 0x35, 0xE4, 0x9E, 0xAE, 0xD9),
+    MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x2D, 0x1A, 0x13, 0x8E, 0x02, 0xE2, 0x63),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x38, 0x28, 0x86, 0x46, 0x7B, 0x3A, 0xE1),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x4C, 0x64, 0x59, 0x0A, 0xF9, 0x02, 0xC4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x4F, 0x23, 0xA2, 0xC3, 0xD5, 0xEF, 0x42),
+};
+static const mbedtls_ecp_point brainpoolP512r1_T[32] = {
+    ECP_POINT_INIT_XY_Z1(brainpoolP512r1_T_0_X, brainpoolP512r1_T_0_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_1_X, brainpoolP512r1_T_1_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_2_X, brainpoolP512r1_T_2_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_3_X, brainpoolP512r1_T_3_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_4_X, brainpoolP512r1_T_4_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_5_X, brainpoolP512r1_T_5_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_6_X, brainpoolP512r1_T_6_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_7_X, brainpoolP512r1_T_7_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_8_X, brainpoolP512r1_T_8_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_9_X, brainpoolP512r1_T_9_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_10_X, brainpoolP512r1_T_10_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_11_X, brainpoolP512r1_T_11_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_12_X, brainpoolP512r1_T_12_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_13_X, brainpoolP512r1_T_13_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_14_X, brainpoolP512r1_T_14_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_15_X, brainpoolP512r1_T_15_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_16_X, brainpoolP512r1_T_16_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_17_X, brainpoolP512r1_T_17_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_18_X, brainpoolP512r1_T_18_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_19_X, brainpoolP512r1_T_19_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_20_X, brainpoolP512r1_T_20_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_21_X, brainpoolP512r1_T_21_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_22_X, brainpoolP512r1_T_22_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_23_X, brainpoolP512r1_T_23_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_24_X, brainpoolP512r1_T_24_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_25_X, brainpoolP512r1_T_25_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_26_X, brainpoolP512r1_T_26_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_27_X, brainpoolP512r1_T_27_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_28_X, brainpoolP512r1_T_28_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_29_X, brainpoolP512r1_T_29_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_30_X, brainpoolP512r1_T_30_Y),
+    ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_31_X, brainpoolP512r1_T_31_Y),
+};
+#else
+#define brainpoolP512r1_T NULL
+#endif
+#endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
+
+
+#if defined(ECP_LOAD_GROUP) || defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) || \
+    defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+/*
+ * Create an MPI from embedded constants
+ * (assumes len is an exact multiple of sizeof(mbedtls_mpi_uint) and
+ * len < 1048576)
+ */
+static inline void ecp_mpi_load(mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len)
+{
+    X->s = 1;
+    X->n = (unsigned short) (len / sizeof(mbedtls_mpi_uint));
+    X->p = (mbedtls_mpi_uint *) p;
+}
+#endif
+
+#if defined(ECP_LOAD_GROUP)
+/*
+ * Set an MPI to static value 1
+ */
+static inline void ecp_mpi_set1(mbedtls_mpi *X)
+{
+    X->s = 1;
+    X->n = 1;
+    X->p = mpi_one;
+}
+
+/*
+ * Make group available from embedded constants
+ */
+static int ecp_group_load(mbedtls_ecp_group *grp,
+                          const mbedtls_mpi_uint *p,  size_t plen,
+                          const mbedtls_mpi_uint *a,  size_t alen,
+                          const mbedtls_mpi_uint *b,  size_t blen,
+                          const mbedtls_mpi_uint *gx, size_t gxlen,
+                          const mbedtls_mpi_uint *gy, size_t gylen,
+                          const mbedtls_mpi_uint *n,  size_t nlen,
+                          const mbedtls_ecp_point *T)
+{
+    ecp_mpi_load(&grp->P, p, plen);
+    if (a != NULL) {
+        ecp_mpi_load(&grp->A, a, alen);
+    }
+    ecp_mpi_load(&grp->B, b, blen);
+    ecp_mpi_load(&grp->N, n, nlen);
+
+    ecp_mpi_load(&grp->G.X, gx, gxlen);
+    ecp_mpi_load(&grp->G.Y, gy, gylen);
+    ecp_mpi_set1(&grp->G.Z);
+
+    grp->pbits = mbedtls_mpi_bitlen(&grp->P);
+    grp->nbits = mbedtls_mpi_bitlen(&grp->N);
+
+    grp->h = 1;
+
+    grp->T = (mbedtls_ecp_point *) T;
+    /*
+     * Set T_size to 0 to prevent T free by mbedtls_ecp_group_free.
+     */
+    grp->T_size = 0;
+
+    return 0;
+}
+#endif /* ECP_LOAD_GROUP */
+
+#if defined(MBEDTLS_ECP_NIST_OPTIM)
+/* Forward declarations */
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+static int ecp_mod_p192(mbedtls_mpi *);
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p192_raw(mbedtls_mpi_uint *Np, size_t Nn);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+static int ecp_mod_p224(mbedtls_mpi *);
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p224_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+static int ecp_mod_p256(mbedtls_mpi *);
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p256_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+static int ecp_mod_p384(mbedtls_mpi *);
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p384_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+static int ecp_mod_p521(mbedtls_mpi *);
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p521_raw(mbedtls_mpi_uint *N_p, size_t N_n);
+#endif
+
+#define NIST_MODP(P)      grp->modp = ecp_mod_ ## P;
+#else
+#define NIST_MODP(P)
+#endif /* MBEDTLS_ECP_NIST_OPTIM */
+
+/* Additional forward declarations */
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+static int ecp_mod_p255(mbedtls_mpi *);
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p255_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+#endif
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+static int ecp_mod_p448(mbedtls_mpi *);
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p448_raw(mbedtls_mpi_uint *, size_t);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+static int ecp_mod_p192k1(mbedtls_mpi *);
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p192k1_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+static int ecp_mod_p224k1(mbedtls_mpi *);
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p224k1_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+static int ecp_mod_p256k1(mbedtls_mpi *);
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p256k1_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+#endif
+
+#if defined(ECP_LOAD_GROUP)
+#define LOAD_GROUP_A(G)   ecp_group_load(grp,            \
+                                         G ## _p,  sizeof(G ## _p),   \
+                                         G ## _a,  sizeof(G ## _a),   \
+                                         G ## _b,  sizeof(G ## _b),   \
+                                         G ## _gx, sizeof(G ## _gx),   \
+                                         G ## _gy, sizeof(G ## _gy),   \
+                                         G ## _n,  sizeof(G ## _n),   \
+                                         G ## _T                         \
+                                         )
+
+#define LOAD_GROUP(G)     ecp_group_load(grp,            \
+                                         G ## _p,  sizeof(G ## _p),   \
+                                         NULL,     0,                    \
+                                         G ## _b,  sizeof(G ## _b),   \
+                                         G ## _gx, sizeof(G ## _gx),   \
+                                         G ## _gy, sizeof(G ## _gy),   \
+                                         G ## _n,  sizeof(G ## _n),   \
+                                         G ## _T                         \
+                                         )
+#endif /* ECP_LOAD_GROUP */
+
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+/* Constants used by ecp_use_curve25519() */
+static const mbedtls_mpi_sint curve25519_a24 = 0x01DB42;
+
+/* P = 2^255 - 19 */
+static const mbedtls_mpi_uint curve25519_p[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0X7F)
+};
+
+/* N = 2^252 + 27742317777372353535851937790883648493 */
+static const mbedtls_mpi_uint curve25519_n[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0XED, 0XD3, 0XF5, 0X5C, 0X1A, 0X63, 0X12, 0X58),
+    MBEDTLS_BYTES_TO_T_UINT_8(0XD6, 0X9C, 0XF7, 0XA2, 0XDE, 0XF9, 0XDE, 0X14),
+    MBEDTLS_BYTES_TO_T_UINT_8(0X00, 0X00, 0X00, 0X00, 0x00, 0x00, 0x00, 0x00),
+    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10)
+};
+
+/*
+ * Specialized function for creating the Curve25519 group
+ */
+static int ecp_use_curve25519(mbedtls_ecp_group *grp)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    /* Actually ( A + 2 ) / 4 */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->A, curve25519_a24));
+
+    ecp_mpi_load(&grp->P, curve25519_p, sizeof(curve25519_p));
+
+    grp->pbits = mbedtls_mpi_bitlen(&grp->P);
+
+    ecp_mpi_load(&grp->N, curve25519_n, sizeof(curve25519_n));
+
+    /* Y intentionally not set, since we use x/z coordinates.
+     * This is used as a marker to identify Montgomery curves! */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.X, 9));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.Z, 1));
+    mbedtls_mpi_free(&grp->G.Y);
+
+    /* Actually, the required msb for private keys */
+    grp->nbits = 254;
+
+cleanup:
+    if (ret != 0) {
+        mbedtls_ecp_group_free(grp);
+    }
+
+    return ret;
+}
+#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+/* Constants used by ecp_use_curve448() */
+static const mbedtls_mpi_sint curve448_a24 = 0x98AA;
+
+/* P = 2^448 - 2^224 - 1 */
+static const mbedtls_mpi_uint curve448_p[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFE, 0XFF, 0XFF, 0XFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0X00, 0X00, 0X00, 0X00, 0X00, 0X00, 0X00, 0X00)
+};
+
+/* N = 2^446 - 13818066809895115352007386748515426880336692474882178609894547503885 */
+static const mbedtls_mpi_uint curve448_n[] = {
+    MBEDTLS_BYTES_TO_T_UINT_8(0XF3, 0X44, 0X58, 0XAB, 0X92, 0XC2, 0X78, 0X23),
+    MBEDTLS_BYTES_TO_T_UINT_8(0X55, 0X8F, 0XC5, 0X8D, 0X72, 0XC2, 0X6C, 0X21),
+    MBEDTLS_BYTES_TO_T_UINT_8(0X90, 0X36, 0XD6, 0XAE, 0X49, 0XDB, 0X4E, 0XC4),
+    MBEDTLS_BYTES_TO_T_UINT_8(0XE9, 0X23, 0XCA, 0X7C, 0XFF, 0XFF, 0XFF, 0XFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF),
+    MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0X3F),
+    MBEDTLS_BYTES_TO_T_UINT_8(0X00, 0X00, 0X00, 0X00, 0X00, 0X00, 0X00, 0X00)
+};
+
+/*
+ * Specialized function for creating the Curve448 group
+ */
+static int ecp_use_curve448(mbedtls_ecp_group *grp)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    /* Actually ( A + 2 ) / 4 */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->A, curve448_a24));
+
+    ecp_mpi_load(&grp->P, curve448_p, sizeof(curve448_p));
+    grp->pbits = mbedtls_mpi_bitlen(&grp->P);
+
+    /* Y intentionally not set, since we use x/z coordinates.
+     * This is used as a marker to identify Montgomery curves! */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.X, 5));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.Z, 1));
+    mbedtls_mpi_free(&grp->G.Y);
+
+    ecp_mpi_load(&grp->N, curve448_n, sizeof(curve448_n));
+
+    /* Actually, the required msb for private keys */
+    grp->nbits = 447;
+
+cleanup:
+    if (ret != 0) {
+        mbedtls_ecp_group_free(grp);
+    }
+
+    return ret;
+}
+#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
+
+/*
+ * Set a group using well-known domain parameters
+ */
+int mbedtls_ecp_group_load(mbedtls_ecp_group *grp, mbedtls_ecp_group_id id)
+{
+    mbedtls_ecp_group_free(grp);
+
+    mbedtls_ecp_group_init(grp);
+
+    grp->id = id;
+
+    switch (id) {
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP192R1:
+            NIST_MODP(p192);
+            return LOAD_GROUP(secp192r1);
+#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP224R1:
+            NIST_MODP(p224);
+            return LOAD_GROUP(secp224r1);
+#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP256R1:
+            NIST_MODP(p256);
+            return LOAD_GROUP(secp256r1);
+#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP384R1:
+            NIST_MODP(p384);
+            return LOAD_GROUP(secp384r1);
+#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP521R1:
+            NIST_MODP(p521);
+            return LOAD_GROUP(secp521r1);
+#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP192K1:
+            grp->modp = ecp_mod_p192k1;
+            return LOAD_GROUP_A(secp192k1);
+#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP224K1:
+            grp->modp = ecp_mod_p224k1;
+            return LOAD_GROUP_A(secp224k1);
+#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP256K1:
+            grp->modp = ecp_mod_p256k1;
+            return LOAD_GROUP_A(secp256k1);
+#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
+        case MBEDTLS_ECP_DP_BP256R1:
+            return LOAD_GROUP_A(brainpoolP256r1);
+#endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
+        case MBEDTLS_ECP_DP_BP384R1:
+            return LOAD_GROUP_A(brainpoolP384r1);
+#endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
+        case MBEDTLS_ECP_DP_BP512R1:
+            return LOAD_GROUP_A(brainpoolP512r1);
+#endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+        case MBEDTLS_ECP_DP_CURVE25519:
+            grp->modp = ecp_mod_p255;
+            return ecp_use_curve25519(grp);
+#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+        case MBEDTLS_ECP_DP_CURVE448:
+            grp->modp = ecp_mod_p448;
+            return ecp_use_curve448(grp);
+#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
+
+        default:
+            grp->id = MBEDTLS_ECP_DP_NONE;
+            return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+    }
+}
+
+#if defined(MBEDTLS_ECP_NIST_OPTIM)
+/*
+ * Fast reduction modulo the primes used by the NIST curves.
+ *
+ * These functions are critical for speed, but not needed for correct
+ * operations. So, we make the choice to heavily rely on the internals of our
+ * bignum library, which creates a tight coupling between these functions and
+ * our MPI implementation.  However, the coupling between the ECP module and
+ * MPI remains loose, since these functions can be deactivated at will.
+ */
+
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+/*
+ * Compared to the way things are presented in FIPS 186-3 D.2,
+ * we proceed in columns, from right (least significant chunk) to left,
+ * adding chunks to N in place, and keeping a carry for the next chunk.
+ * This avoids moving things around in memory, and uselessly adding zeros,
+ * compared to the more straightforward, line-oriented approach.
+ *
+ * For this prime we need to handle data in chunks of 64 bits.
+ * Since this is always a multiple of our basic mbedtls_mpi_uint, we can
+ * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it.
+ */
+
+/* Add 64-bit chunks (dst += src) and update carry */
+static inline void add64(mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry)
+{
+    unsigned char i;
+    mbedtls_mpi_uint c = 0;
+    for (i = 0; i < 8 / sizeof(mbedtls_mpi_uint); i++, dst++, src++) {
+        *dst += c;      c  = (*dst < c);
+        *dst += *src;   c += (*dst < *src);
+    }
+    *carry += c;
+}
+
+/* Add carry to a 64-bit chunk and update carry */
+static inline void carry64(mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry)
+{
+    unsigned char i;
+    for (i = 0; i < 8 / sizeof(mbedtls_mpi_uint); i++, dst++) {
+        *dst += *carry;
+        *carry  = (*dst < *carry);
+    }
+}
+
+#define WIDTH       8 / sizeof(mbedtls_mpi_uint)
+#define A(i)        Np + (i) * WIDTH
+#define ADD(i)      add64(p, A(i), &c)
+#define NEXT        p += WIDTH; carry64(p, &c)
+#define LAST        p += WIDTH; do *p = 0; while (++p < end)
+#define RESET       last_carry[0] = c; c = 0; p = Np
+#define ADD_LAST    add64(p, last_carry, &c)
+
+/*
+ * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
+ */
+static int ecp_mod_p192(mbedtls_mpi *N)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t expected_width = BITS_TO_LIMBS(192) * 2;
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, expected_width));
+    ret = mbedtls_ecp_mod_p192_raw(N->p, expected_width);
+
+cleanup:
+    return ret;
+}
+
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p192_raw(mbedtls_mpi_uint *Np, size_t Nn)
+{
+    mbedtls_mpi_uint c = 0, last_carry[WIDTH] = { 0 };
+    mbedtls_mpi_uint *p, *end;
+
+    if (Nn != BITS_TO_LIMBS(192) * 2) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    p = Np;
+    end = p + Nn;
+
+    ADD(3); ADD(5);         NEXT;   // A0 += A3 + A5
+    ADD(3); ADD(4); ADD(5); NEXT;   // A1 += A3 + A4 + A5
+    ADD(4); ADD(5);                 // A2 += A4 + A5
+
+    RESET;
+
+    /* Use the reduction for the carry as well:
+     * 2^192 * last_carry = 2^64 * last_carry + last_carry mod P192
+     * It can generate a carry. */
+    ADD_LAST; NEXT;                 // A0 += last_carry
+    ADD_LAST; NEXT;                 // A1 += last_carry
+                                    // A2 += carry
+
+    RESET;
+
+    /* Use the reduction for the carry as well:
+     * 2^192 * last_carry = 2^64 * last_carry + last_carry mod P192
+     */
+    ADD_LAST; NEXT;                 // A0 += last_carry
+    ADD_LAST; NEXT;                 // A1 += last_carry
+                                    // A2 += carry
+
+    LAST;
+
+    return 0;
+}
+
+#undef WIDTH
+#undef A
+#undef ADD
+#undef NEXT
+#undef LAST
+#undef RESET
+#undef ADD_LAST
+#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+
+/*
+ * The reader is advised to first understand ecp_mod_p192() since the same
+ * general structure is used here, but with additional complications:
+ * (1) chunks of 32 bits, and (2) subtractions.
+ */
+
+/*
+ * For these primes, we need to handle data in chunks of 32 bits.
+ * This makes it more complicated if we use 64 bits limbs in MPI,
+ * which prevents us from using a uniform access method as for p192.
+ *
+ * So, we define a mini abstraction layer to access 32 bit chunks,
+ * load them in 'cur' for work, and store them back from 'cur' when done.
+ *
+ * While at it, also define the size of N in terms of 32-bit chunks.
+ */
+#define LOAD32      cur = A(i);
+
+#if defined(MBEDTLS_HAVE_INT32)  /* 32 bit */
+
+#define MAX32       X_limbs
+#define A(j)        X[j]
+#define STORE32     X[i] = (mbedtls_mpi_uint) cur;
+#define STORE0      X[i] = 0;
+
+#else /* 64 bit */
+
+#define MAX32   X_limbs * 2
+#define A(j)                                                \
+    (j) % 2 ?                                               \
+    (uint32_t) (X[(j) / 2] >> 32) :                         \
+    (uint32_t) (X[(j) / 2])
+#define STORE32                                             \
+    if (i % 2) {                                            \
+        X[i/2] &= 0x00000000FFFFFFFF;                       \
+        X[i/2] |= (uint64_t) (cur) << 32;                   \
+    } else {                                                \
+        X[i/2] &= 0xFFFFFFFF00000000;                       \
+        X[i/2] |= (uint32_t) cur;                           \
+    }
+
+#define STORE0                                              \
+    if (i % 2) {                                            \
+        X[i/2] &= 0x00000000FFFFFFFF;                       \
+    } else {                                                \
+        X[i/2] &= 0xFFFFFFFF00000000;                       \
+    }
+
+#endif
+
+static inline int8_t extract_carry(int64_t cur)
+{
+    return (int8_t) (cur >> 32);
+}
+
+#define ADD(j)    cur += A(j)
+#define SUB(j)    cur -= A(j)
+
+#define ADD_CARRY(cc) cur += (cc)
+#define SUB_CARRY(cc) cur -= (cc)
+
+#define ADD_LAST ADD_CARRY(last_c)
+#define SUB_LAST SUB_CARRY(last_c)
+
+/*
+ * Helpers for the main 'loop'
+ */
+#define INIT(b)                                         \
+    int8_t c = 0, last_c;                               \
+    int64_t cur;                                        \
+    size_t i = 0;                                       \
+    LOAD32;
+
+#define NEXT                                            \
+    c = extract_carry(cur);                             \
+    STORE32; i++; LOAD32;                               \
+    ADD_CARRY(c);
+
+#define RESET                                           \
+    c = extract_carry(cur);                             \
+    last_c = c;                                         \
+    STORE32; i = 0; LOAD32;                             \
+    c = 0;                                              \
+
+#define LAST                                            \
+    c = extract_carry(cur);                             \
+    STORE32; i++;                                       \
+    if (c != 0)                                         \
+    return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;              \
+    while (i < MAX32) { STORE0; i++; }
+
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+
+/*
+ * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
+ */
+static int ecp_mod_p224(mbedtls_mpi *N)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t expected_width = BITS_TO_LIMBS(224) * 2;
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, expected_width));
+    ret = mbedtls_ecp_mod_p224_raw(N->p, expected_width);
+cleanup:
+    return ret;
+}
+
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p224_raw(mbedtls_mpi_uint *X, size_t X_limbs)
+{
+    if (X_limbs != BITS_TO_LIMBS(224) * 2) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    INIT(224);
+
+    SUB(7);  SUB(11);           NEXT;   // A0 += -A7  - A11
+    SUB(8);  SUB(12);           NEXT;   // A1 += -A8  - A12
+    SUB(9);  SUB(13);           NEXT;   // A2 += -A9  - A13
+    SUB(10); ADD(7);  ADD(11);  NEXT;   // A3 += -A10 + A7 + A11
+    SUB(11); ADD(8);  ADD(12);  NEXT;   // A4 += -A11 + A8 + A12
+    SUB(12); ADD(9);  ADD(13);  NEXT;   // A5 += -A12 + A9 + A13
+    SUB(13); ADD(10);                   // A6 += -A13 + A10
+
+    RESET;
+
+    /* Use 2^224 = P + 2^96 - 1 to modulo reduce the final carry */
+    SUB_LAST; NEXT;                     // A0 -= last_c
+    ;         NEXT;                     // A1
+    ;         NEXT;                     // A2
+    ADD_LAST; NEXT;                     // A3 += last_c
+    ;         NEXT;                     // A4
+    ;         NEXT;                     // A5
+                                        // A6
+
+    /* The carry reduction cannot generate a carry
+     * (see commit 73e8553 for details)*/
+
+    LAST;
+
+    return 0;
+}
+
+#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+
+/*
+ * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
+ */
+static int ecp_mod_p256(mbedtls_mpi *N)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t expected_width = BITS_TO_LIMBS(256) * 2;
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, expected_width));
+    ret = mbedtls_ecp_mod_p256_raw(N->p, expected_width);
+cleanup:
+    return ret;
+}
+
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p256_raw(mbedtls_mpi_uint *X, size_t X_limbs)
+{
+    if (X_limbs != BITS_TO_LIMBS(256) * 2) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    INIT(256);
+
+    ADD(8);  ADD(9);
+    SUB(11); SUB(12); SUB(13); SUB(14);                   NEXT; // A0
+
+    ADD(9);  ADD(10);
+    SUB(12); SUB(13); SUB(14); SUB(15);                   NEXT; // A1
+
+    ADD(10); ADD(11);
+    SUB(13); SUB(14); SUB(15);                            NEXT; // A2
+
+    ADD(11); ADD(11); ADD(12); ADD(12); ADD(13);
+    SUB(15); SUB(8);  SUB(9);                             NEXT; // A3
+
+    ADD(12); ADD(12); ADD(13); ADD(13); ADD(14);
+    SUB(9);  SUB(10);                                     NEXT; // A4
+
+    ADD(13); ADD(13); ADD(14); ADD(14); ADD(15);
+    SUB(10); SUB(11);                                     NEXT; // A5
+
+    ADD(14); ADD(14); ADD(15); ADD(15); ADD(14); ADD(13);
+    SUB(8);  SUB(9);                                      NEXT; // A6
+
+    ADD(15); ADD(15); ADD(15); ADD(8);
+    SUB(10); SUB(11); SUB(12); SUB(13);                         // A7
+
+    RESET;
+
+    /* Use 2^224 * (2^32 - 1) + 2^192 + 2^96 - 1
+     * to modulo reduce the final carry. */
+    ADD_LAST; NEXT;                                             // A0
+    ;         NEXT;                                             // A1
+    ;         NEXT;                                             // A2
+    SUB_LAST; NEXT;                                             // A3
+    ;         NEXT;                                             // A4
+    ;         NEXT;                                             // A5
+    SUB_LAST; NEXT;                                             // A6
+    ADD_LAST;                                                   // A7
+
+    RESET;
+
+    /* Use 2^224 * (2^32 - 1) + 2^192 + 2^96 - 1
+     * to modulo reduce the carry generated by the previous reduction. */
+    ADD_LAST; NEXT;                                             // A0
+    ;         NEXT;                                             // A1
+    ;         NEXT;                                             // A2
+    SUB_LAST; NEXT;                                             // A3
+    ;         NEXT;                                             // A4
+    ;         NEXT;                                             // A5
+    SUB_LAST; NEXT;                                             // A6
+    ADD_LAST;                                                   // A7
+
+    LAST;
+
+    return 0;
+}
+
+#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+/*
+ * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
+ */
+static int ecp_mod_p384(mbedtls_mpi *N)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t expected_width = BITS_TO_LIMBS(384) * 2;
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, expected_width));
+    ret = mbedtls_ecp_mod_p384_raw(N->p, expected_width);
+cleanup:
+    return ret;
+}
+
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p384_raw(mbedtls_mpi_uint *X, size_t X_limbs)
+{
+    if (X_limbs != BITS_TO_LIMBS(384) * 2) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    INIT(384);
+
+    ADD(12); ADD(21); ADD(20);
+    SUB(23);                                                NEXT; // A0
+
+    ADD(13); ADD(22); ADD(23);
+    SUB(12); SUB(20);                                       NEXT; // A1
+
+    ADD(14); ADD(23);
+    SUB(13); SUB(21);                                       NEXT; // A2
+
+    ADD(15); ADD(12); ADD(20); ADD(21);
+    SUB(14); SUB(22); SUB(23);                              NEXT; // A3
+
+    ADD(21); ADD(21); ADD(16); ADD(13); ADD(12); ADD(20); ADD(22);
+    SUB(15); SUB(23); SUB(23);                              NEXT; // A4
+
+    ADD(22); ADD(22); ADD(17); ADD(14); ADD(13); ADD(21); ADD(23);
+    SUB(16);                                                NEXT; // A5
+
+    ADD(23); ADD(23); ADD(18); ADD(15); ADD(14); ADD(22);
+    SUB(17);                                                NEXT; // A6
+
+    ADD(19); ADD(16); ADD(15); ADD(23);
+    SUB(18);                                                NEXT; // A7
+
+    ADD(20); ADD(17); ADD(16);
+    SUB(19);                                                NEXT; // A8
+
+    ADD(21); ADD(18); ADD(17);
+    SUB(20);                                                NEXT; // A9
+
+    ADD(22); ADD(19); ADD(18);
+    SUB(21);                                                NEXT; // A10
+
+    ADD(23); ADD(20); ADD(19);
+    SUB(22);                                                      // A11
+
+    RESET;
+
+    /* Use 2^384 = P + 2^128 + 2^96 - 2^32 + 1 to modulo reduce the final carry */
+    ADD_LAST; NEXT;                                               // A0
+    SUB_LAST; NEXT;                                               // A1
+    ;         NEXT;                                               // A2
+    ADD_LAST; NEXT;                                               // A3
+    ADD_LAST; NEXT;                                               // A4
+    ;         NEXT;                                               // A5
+    ;         NEXT;                                               // A6
+    ;         NEXT;                                               // A7
+    ;         NEXT;                                               // A8
+    ;         NEXT;                                               // A9
+    ;         NEXT;                                               // A10
+                                                                  // A11
+
+    RESET;
+
+    ADD_LAST; NEXT;                                               // A0
+    SUB_LAST; NEXT;                                               // A1
+    ;         NEXT;                                               // A2
+    ADD_LAST; NEXT;                                               // A3
+    ADD_LAST; NEXT;                                               // A4
+    ;         NEXT;                                               // A5
+    ;         NEXT;                                               // A6
+    ;         NEXT;                                               // A7
+    ;         NEXT;                                               // A8
+    ;         NEXT;                                               // A9
+    ;         NEXT;                                               // A10
+                                                                  // A11
+
+    LAST;
+
+    return 0;
+}
+#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
+
+#undef LOAD32
+#undef MAX32
+#undef A
+#undef STORE32
+#undef STORE0
+#undef ADD
+#undef SUB
+#undef ADD_CARRY
+#undef SUB_CARRY
+#undef ADD_LAST
+#undef SUB_LAST
+#undef INIT
+#undef NEXT
+#undef RESET
+#undef LAST
+
+#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED ||
+          MBEDTLS_ECP_DP_SECP256R1_ENABLED ||
+          MBEDTLS_ECP_DP_SECP384R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+/* Size of p521 in terms of mbedtls_mpi_uint */
+#define P521_WIDTH      (521 / 8 / sizeof(mbedtls_mpi_uint) + 1)
+
+/* Bits to keep in the most significant mbedtls_mpi_uint */
+#define P521_MASK       0x01FF
+
+/*
+ * Fast quasi-reduction modulo p521 = 2^521 - 1 (FIPS 186-3 D.2.5)
+ */
+static int ecp_mod_p521(mbedtls_mpi *N)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t expected_width = BITS_TO_LIMBS(521) * 2;
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, expected_width));
+    ret = mbedtls_ecp_mod_p521_raw(N->p, expected_width);
+cleanup:
+    return ret;
+}
+
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p521_raw(mbedtls_mpi_uint *X, size_t X_limbs)
+{
+    mbedtls_mpi_uint carry = 0;
+
+    if (X_limbs != BITS_TO_LIMBS(521) * 2) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    /* Step 1: Reduction to P521_WIDTH limbs */
+    /* Helper references for bottom part of X */
+    mbedtls_mpi_uint *X0 = X;
+    size_t X0_limbs = P521_WIDTH;
+    /* Helper references for top part of X */
+    mbedtls_mpi_uint *X1 = X + X0_limbs;
+    size_t X1_limbs = X_limbs - X0_limbs;
+    /* Split X as X0 + 2^P521_WIDTH X1 and compute X0 + 2^(biL - 9) X1.
+     * (We are using that 2^P521_WIDTH = 2^(512 + biL) and that
+     * 2^(512 + biL) X1 = 2^(biL - 9) X1 mod P521.)
+     * The high order limb of the result will be held in carry and the rest
+     * in X0 (that is the result will be represented as
+     * 2^P521_WIDTH carry + X0).
+     *
+     * Also, note that the resulting carry is either 0 or 1:
+     * X0 < 2^P521_WIDTH = 2^(512 + biL) and X1 < 2^(P521_WIDTH-biL) = 2^512
+     * therefore
+     * X0 + 2^(biL - 9) X1 < 2^(512 + biL) + 2^(512 + biL - 9)
+     * which in turn is less than 2 * 2^(512 + biL).
+     */
+    mbedtls_mpi_uint shift = ((mbedtls_mpi_uint) 1u) << (biL - 9);
+    carry = mbedtls_mpi_core_mla(X0, X0_limbs, X1, X1_limbs, shift);
+    /* Set X to X0 (by clearing the top part). */
+    memset(X1, 0, X1_limbs * sizeof(mbedtls_mpi_uint));
+
+    /* Step 2: Reduction modulo P521
+     *
+     * At this point X is reduced to P521_WIDTH limbs. What remains is to add
+     * the carry (that is 2^P521_WIDTH carry) and to reduce mod P521. */
+
+    /* 2^P521_WIDTH carry = 2^(512 + biL) carry = 2^(biL - 9) carry mod P521.
+     * Also, recall that carry is either 0 or 1. */
+    mbedtls_mpi_uint addend = carry << (biL - 9);
+    /* Keep the top 9 bits and reduce the rest, using 2^521 = 1 mod P521. */
+    addend += (X[P521_WIDTH - 1] >> 9);
+    X[P521_WIDTH - 1] &= P521_MASK;
+
+    /* Reuse the top part of X (already zeroed) as a helper array for
+     * carrying out the addition. */
+    mbedtls_mpi_uint *addend_arr = X + P521_WIDTH;
+    addend_arr[0] = addend;
+    (void) mbedtls_mpi_core_add(X, X, addend_arr, P521_WIDTH);
+    /* Both addends were less than P521 therefore X < 2 * P521. (This also means
+     * that the result fit in P521_WIDTH limbs and there won't be any carry.) */
+
+    /* Clear the reused part of X. */
+    addend_arr[0] = 0;
+
+    return 0;
+}
+
+#undef P521_WIDTH
+#undef P521_MASK
+
+#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
+
+#endif /* MBEDTLS_ECP_NIST_OPTIM */
+
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+
+/* Size of p255 in terms of mbedtls_mpi_uint */
+#define P255_WIDTH      (255 / 8 / sizeof(mbedtls_mpi_uint) + 1)
+
+/*
+ * Fast quasi-reduction modulo p255 = 2^255 - 19
+ * Write N as A0 + 2^256 A1, return A0 + 38 * A1
+ */
+static int ecp_mod_p255(mbedtls_mpi *N)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t expected_width = BITS_TO_LIMBS(255) * 2;
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, expected_width));
+    ret = mbedtls_ecp_mod_p255_raw(N->p, expected_width);
+cleanup:
+    return ret;
+}
+
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p255_raw(mbedtls_mpi_uint *X, size_t X_Limbs)
+{
+
+    if (X_Limbs != BITS_TO_LIMBS(255) * 2) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    mbedtls_mpi_uint *carry = mbedtls_calloc(P255_WIDTH, ciL);
+    if (carry == NULL) {
+        return MBEDTLS_ERR_ECP_ALLOC_FAILED;
+    }
+
+    /* Step 1: Reduction to P255_WIDTH limbs */
+    if (X_Limbs > P255_WIDTH) {
+        /* Helper references for top part of X */
+        mbedtls_mpi_uint * const A1 = X + P255_WIDTH;
+        const size_t A1_limbs = X_Limbs - P255_WIDTH;
+
+        /* X = A0 + 38 * A1, capture carry out */
+        *carry = mbedtls_mpi_core_mla(X, P255_WIDTH, A1, A1_limbs, 38);
+        /* Clear top part */
+        memset(A1, 0, sizeof(mbedtls_mpi_uint) * A1_limbs);
+    }
+
+    /* Step 2: Reduce to <2p
+     * Split as A0 + 2^255*c, with c a scalar, and compute A0 + 19*c */
+    *carry <<= 1;
+    *carry += (X[P255_WIDTH - 1] >> (biL - 1));
+    *carry *= 19;
+
+    /* Clear top bit */
+    X[P255_WIDTH - 1] <<= 1; X[P255_WIDTH - 1] >>= 1;
+    /* Since the top bit for X has been cleared 0 + 0 + Carry
+     * will not overflow.
+     *
+     * Furthermore for 2p = 2^256-38. When a carry propagation on the highest
+     * limb occurs, X > 2^255 and all the remaining bits on the limb are zero.
+     *   - If X < 2^255 ==> X < 2p
+     *   - If X > 2^255 ==> X < 2^256 - 2^255 < 2p  */
+    (void) mbedtls_mpi_core_add(X, X, carry, P255_WIDTH);
+
+    mbedtls_free(carry);
+    return 0;
+}
+#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+
+/* Size of p448 in terms of mbedtls_mpi_uint */
+#define P448_WIDTH      (448 / 8 / sizeof(mbedtls_mpi_uint))
+
+/* Number of limbs fully occupied by 2^224 (max), and limbs used by it (min) */
+#define DIV_ROUND_UP(X, Y) (((X) + (Y) -1) / (Y))
+#define P224_SIZE        (224 / 8)
+#define P224_WIDTH_MIN   (P224_SIZE / sizeof(mbedtls_mpi_uint))
+#define P224_WIDTH_MAX   DIV_ROUND_UP(P224_SIZE, sizeof(mbedtls_mpi_uint))
+#define P224_UNUSED_BITS ((P224_WIDTH_MAX * sizeof(mbedtls_mpi_uint) * 8) - 224)
+
+static int ecp_mod_p448(mbedtls_mpi *N)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t expected_width = BITS_TO_LIMBS(448) * 2;
+
+    /* This is required as some tests and use cases do not pass in a Bignum of
+     * the correct size, and expect the growth to be done automatically, which
+     * will no longer happen. */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, expected_width));
+
+    ret = mbedtls_ecp_mod_p448_raw(N->p, N->n);
+
+cleanup:
+    return ret;
+}
+
+/*
+ * Fast quasi-reduction modulo p448 = 2^448 - 2^224 - 1
+ * Write X as A0 + 2^448 A1 and A1 as B0 + 2^224 B1, and return A0 + A1 + B1 +
+ * (B0 + B1) * 2^224.  This is different to the reference implementation of
+ * Curve448, which uses its own special 56-bit limbs rather than a generic
+ * bignum library.  We could squeeze some extra speed out on 32-bit machines by
+ * splitting N up into 32-bit limbs and doing the arithmetic using the limbs
+ * directly as we do for the NIST primes above, but for 64-bit targets it should
+ * use half the number of operations if we do the reduction with 224-bit limbs,
+ * since mpi_core_add will then use 64-bit adds.
+ */
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p448_raw(mbedtls_mpi_uint *X, size_t X_limbs)
+{
+    size_t round;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if (X_limbs != BITS_TO_LIMBS(448) * 2) {
+        return 0;
+    }
+
+    size_t M_limbs = X_limbs - (P448_WIDTH);
+
+    if (M_limbs > P448_WIDTH) {
+        /* Shouldn't be called with X larger than 2^896! */
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    /* Both M and Q require an extra limb to catch carries. */
+    M_limbs++;
+
+    const size_t Q_limbs = M_limbs;
+    mbedtls_mpi_uint *M = NULL;
+    mbedtls_mpi_uint *Q = NULL;
+
+    M = mbedtls_calloc(M_limbs, ciL);
+
+    if (M == NULL) {
+        return MBEDTLS_ERR_ECP_ALLOC_FAILED;
+    }
+
+    Q = mbedtls_calloc(Q_limbs, ciL);
+
+    if (Q == NULL) {
+        ret =  MBEDTLS_ERR_ECP_ALLOC_FAILED;
+        goto cleanup;
+    }
+
+    /* M = A1 */
+    memset(M, 0, (M_limbs * ciL));
+    /* Do not copy into the overflow limb, as this would read past the end of
+     * X. */
+    memcpy(M, X + P448_WIDTH, ((M_limbs - 1) * ciL));
+
+    /* X = A0 */
+    memset(X + P448_WIDTH, 0, ((M_limbs - 1) * ciL));
+
+    /* X = X + M = A0 + A1 */
+    /* Carry here fits in oversize X. Oversize M means it will get
+     * added in, not returned as carry. */
+    (void) mbedtls_mpi_core_add(X, X, M, M_limbs);
+
+    /* Q = B1 = M >> 224 */
+    memcpy(Q, (char *) M + P224_SIZE, P224_SIZE);
+    memset((char *) Q + P224_SIZE, 0, P224_SIZE);
+
+    /* X = X + Q = (A0 + A1) + B1
+     * Oversize Q catches potential carry here when X is already max 448 bits.
+     */
+    (void) mbedtls_mpi_core_add(X, X, Q, Q_limbs);
+
+    /* M = B0 */
+#ifdef MBEDTLS_HAVE_INT64
+    M[P224_WIDTH_MIN] &= ((mbedtls_mpi_uint)-1) >> (P224_UNUSED_BITS);
+ #endif
+    memset(M + P224_WIDTH_MAX, 0, ((M_limbs - P224_WIDTH_MAX) * ciL));
+
+    /* M = M + Q = B0 + B1 */
+    (void) mbedtls_mpi_core_add(M, M, Q, Q_limbs);
+
+    /* M = (B0 + B1) * 2^224 */
+    /* Shifted carry bit from the addition fits in oversize M. */
+    memmove((char *) M + P224_SIZE, M, P224_SIZE + ciL);
+    memset(M, 0, P224_SIZE);
+
+    /* X = X + M = (A0 + A1 + B1) + (B0 + B1) * 2^224 */
+    (void) mbedtls_mpi_core_add(X, X, M, M_limbs);
+
+    /* In the second and third rounds A1 and B0 have at most 1 non-zero limb and
+     * B1=0.
+     * Using this we need to calculate:
+     * A0 + A1 + B1 + (B0 + B1) * 2^224 = A0 + A1 + B0 * 2^224. */
+    for (round = 0; round < 2; ++round) {
+
+        /* M = A1 */
+        memset(M, 0, (M_limbs * ciL));
+        memcpy(M, X + P448_WIDTH, ((M_limbs - 1) * ciL));
+
+        /* X = A0 */
+        memset(X + P448_WIDTH, 0, ((M_limbs - 1) * ciL));
+
+        /* M = A1 + B0 * 2^224
+         * We know that only one limb of A1 will be non-zero and that it will be
+         * limb 0. We also know that B0 is the bottom 224 bits of A1 (which is
+         * then shifted up 224 bits), so, given M is currently A1 this turns
+         * into:
+         * M = M + (M << 224)
+         * As the single non-zero limb in B0 will be A1 limb 0 shifted up by 224
+         * bits, we can just move that into the right place, shifted up
+         * accordingly.*/
+        M[P224_WIDTH_MIN] = M[0] << (224 & (biL - 1));
+
+        /* X = A0 + (A1 + B0 * 2^224) */
+        (void) mbedtls_mpi_core_add(X, X, M, M_limbs);
+    }
+
+    ret = 0;
+
+cleanup:
+    mbedtls_free(M);
+    mbedtls_free(Q);
+
+    return ret;
+}
+#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||   \
+    defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+
+/*
+ * Fast quasi-reduction modulo P = 2^s - R,
+ * with R about 33 bits, used by the Koblitz curves.
+ *
+ * Write X as A0 + 2^224 A1, return A0 + R * A1.
+ */
+#define P_KOBLITZ_R     (8 / sizeof(mbedtls_mpi_uint))            // Limbs in R
+
+static inline int ecp_mod_koblitz(mbedtls_mpi_uint *X,
+                                  size_t X_limbs,
+                                  mbedtls_mpi_uint *R,
+                                  size_t bits)
+{
+    int ret = 0;
+
+    /* Determine if A1 is aligned to limb bitsize. If not then the used limbs
+     * of P, A0 and A1 must be set accordingly and there is a middle limb
+     * which is shared by A0 and A1 and need to handle accordingly.
+     */
+    size_t shift   = bits % biL;
+    size_t adjust  = (shift + biL - 1) / biL;
+    size_t P_limbs = bits / biL + adjust;
+
+    mbedtls_mpi_uint *A1 = mbedtls_calloc(P_limbs, ciL);
+    if (A1 == NULL) {
+        return MBEDTLS_ERR_ECP_ALLOC_FAILED;
+    }
+
+    /* Create a buffer to store the value of `R * A1` */
+    size_t R_limbs = P_KOBLITZ_R;
+    size_t M_limbs = P_limbs + R_limbs;
+    mbedtls_mpi_uint *M = mbedtls_calloc(M_limbs, ciL);
+    if (M == NULL) {
+        ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
+        goto cleanup;
+    }
+
+    mbedtls_mpi_uint mask = 0;
+    if (adjust != 0) {
+        mask  = ((mbedtls_mpi_uint) 1 << shift) - 1;
+    }
+
+    /* Two passes are needed to reduce the value of `A0 + R * A1` and then
+     * we need an additional one to reduce the possible overflow during
+     * the addition.
+     */
+    for (size_t pass = 0; pass < 3; pass++) {
+        /* Copy A1 */
+        memcpy(A1, X + P_limbs - adjust, P_limbs * ciL);
+
+        /* Shift A1 to be aligned */
+        if (shift != 0) {
+            mbedtls_mpi_core_shift_r(A1, P_limbs, shift);
+        }
+
+        /* Zeroize the A1 part of the shared limb */
+        if (mask != 0) {
+            X[P_limbs - 1] &= mask;
+        }
+
+        /* X = A0
+         * Zeroize the A1 part of X to keep only the A0 part.
+         */
+        for (size_t i = P_limbs; i < X_limbs; i++) {
+            X[i] = 0;
+        }
+
+        /* X = A0 + R * A1 */
+        mbedtls_mpi_core_mul(M, A1, P_limbs, R, R_limbs);
+        (void) mbedtls_mpi_core_add(X, X, M, P_limbs + R_limbs);
+
+        /* Carry can not be generated since R is a 33-bit value and stored in
+         * 64 bits. The result value of the multiplication is at most
+         * P length + 33 bits in length and the result value of the addition
+         * is at most P length + 34 bits in length. So the result of the
+         * addition always fits in P length + 64 bits.
+         */
+    }
+
+cleanup:
+    mbedtls_free(M);
+    mbedtls_free(A1);
+
+    return ret;
+}
+
+#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||
+          MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||
+          MBEDTLS_ECP_DP_SECP256K1_ENABLED) */
+
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+
+/*
+ * Fast quasi-reduction modulo p192k1 = 2^192 - R,
+ * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x01000011C9
+ */
+static int ecp_mod_p192k1(mbedtls_mpi *N)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t expected_width = BITS_TO_LIMBS(192) * 2;
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, expected_width));
+    ret = mbedtls_ecp_mod_p192k1_raw(N->p, expected_width);
+
+cleanup:
+    return ret;
+}
+
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p192k1_raw(mbedtls_mpi_uint *X, size_t X_limbs)
+{
+    static mbedtls_mpi_uint Rp[] = {
+        MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x11, 0x00, 0x00,
+                                  0x01, 0x00, 0x00, 0x00)
+    };
+
+    if (X_limbs != BITS_TO_LIMBS(192) * 2) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    return ecp_mod_koblitz(X, X_limbs, Rp, 192);
+}
+
+#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+
+/*
+ * Fast quasi-reduction modulo p224k1 = 2^224 - R,
+ * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
+ */
+static int ecp_mod_p224k1(mbedtls_mpi *N)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t expected_width = BITS_TO_LIMBS(224) * 2;
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, expected_width));
+    ret = mbedtls_ecp_mod_p224k1_raw(N->p, expected_width);
+
+cleanup:
+    return ret;
+}
+
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p224k1_raw(mbedtls_mpi_uint *X, size_t X_limbs)
+{
+    static mbedtls_mpi_uint Rp[] = {
+        MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x1A, 0x00, 0x00,
+                                  0x01, 0x00, 0x00, 0x00)
+    };
+
+    if (X_limbs !=  BITS_TO_LIMBS(224) * 2) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    return ecp_mod_koblitz(X, X_limbs, Rp, 224);
+}
+
+#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+
+/*
+ * Fast quasi-reduction modulo p256k1 = 2^256 - R,
+ * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
+ */
+static int ecp_mod_p256k1(mbedtls_mpi *N)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t expected_width = BITS_TO_LIMBS(256) * 2;
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, expected_width));
+    ret = mbedtls_ecp_mod_p256k1_raw(N->p, expected_width);
+
+cleanup:
+    return ret;
+}
+
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p256k1_raw(mbedtls_mpi_uint *X, size_t X_limbs)
+{
+    static mbedtls_mpi_uint Rp[] = {
+        MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0x03, 0x00, 0x00,
+                                  0x01, 0x00, 0x00, 0x00)
+    };
+
+    if (X_limbs != BITS_TO_LIMBS(256) * 2) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    return ecp_mod_koblitz(X, X_limbs, Rp, 256);
+}
+
+#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
+
+#if defined(MBEDTLS_TEST_HOOKS)
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_modulus_setup(mbedtls_mpi_mod_modulus *N,
+                              const mbedtls_ecp_group_id id,
+                              const mbedtls_ecp_modulus_type ctype)
+{
+    mbedtls_mpi_modp_fn modp = NULL;
+    mbedtls_mpi_uint *p = NULL;
+    size_t p_limbs;
+
+    if (!(ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE || \
+          ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_SCALAR)) {
+        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    switch (id) {
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP192R1:
+            if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+#if defined(MBEDTLS_ECP_NIST_OPTIM)
+                modp = &mbedtls_ecp_mod_p192_raw;
+#endif
+                p = (mbedtls_mpi_uint *) secp192r1_p;
+                p_limbs = CHARS_TO_LIMBS(sizeof(secp192r1_p));
+            } else {
+                p = (mbedtls_mpi_uint *) secp192r1_n;
+                p_limbs = CHARS_TO_LIMBS(sizeof(secp192r1_n));
+            }
+            break;
+#endif
+
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP224R1:
+            if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+#if defined(MBEDTLS_ECP_NIST_OPTIM)
+                modp = &mbedtls_ecp_mod_p224_raw;
+#endif
+                p = (mbedtls_mpi_uint *) secp224r1_p;
+                p_limbs = CHARS_TO_LIMBS(sizeof(secp224r1_p));
+            } else {
+                p = (mbedtls_mpi_uint *) secp224r1_n;
+                p_limbs = CHARS_TO_LIMBS(sizeof(secp224r1_n));
+            }
+            break;
+#endif
+
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP256R1:
+            if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+#if defined(MBEDTLS_ECP_NIST_OPTIM)
+                modp = &mbedtls_ecp_mod_p256_raw;
+#endif
+                p = (mbedtls_mpi_uint *) secp256r1_p;
+                p_limbs = CHARS_TO_LIMBS(sizeof(secp256r1_p));
+            } else {
+                p = (mbedtls_mpi_uint *) secp256r1_n;
+                p_limbs = CHARS_TO_LIMBS(sizeof(secp256r1_n));
+            }
+            break;
+#endif
+
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP384R1:
+            if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+#if defined(MBEDTLS_ECP_NIST_OPTIM)
+                modp = &mbedtls_ecp_mod_p384_raw;
+#endif
+                p = (mbedtls_mpi_uint *) secp384r1_p;
+                p_limbs = CHARS_TO_LIMBS(sizeof(secp384r1_p));
+            } else {
+                p = (mbedtls_mpi_uint *) secp384r1_n;
+                p_limbs = CHARS_TO_LIMBS(sizeof(secp384r1_n));
+            }
+            break;
+#endif
+
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP521R1:
+            if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+#if defined(MBEDTLS_ECP_NIST_OPTIM)
+                modp = &mbedtls_ecp_mod_p521_raw;
+#endif
+                p = (mbedtls_mpi_uint *) secp521r1_p;
+                p_limbs = CHARS_TO_LIMBS(sizeof(secp521r1_p));
+            } else {
+                p = (mbedtls_mpi_uint *) secp521r1_n;
+                p_limbs = CHARS_TO_LIMBS(sizeof(secp521r1_n));
+            }
+            break;
+#endif
+
+#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
+        case MBEDTLS_ECP_DP_BP256R1:
+            if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+                p = (mbedtls_mpi_uint *) brainpoolP256r1_p;
+                p_limbs = CHARS_TO_LIMBS(sizeof(brainpoolP256r1_p));
+            } else {
+                p = (mbedtls_mpi_uint *) brainpoolP256r1_n;
+                p_limbs = CHARS_TO_LIMBS(sizeof(brainpoolP256r1_n));
+            }
+            break;
+#endif
+
+#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
+        case MBEDTLS_ECP_DP_BP384R1:
+            if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+                p = (mbedtls_mpi_uint *) brainpoolP384r1_p;
+                p_limbs = CHARS_TO_LIMBS(sizeof(brainpoolP384r1_p));
+            } else {
+                p = (mbedtls_mpi_uint *) brainpoolP384r1_n;
+                p_limbs = CHARS_TO_LIMBS(sizeof(brainpoolP384r1_n));
+            }
+            break;
+#endif
+
+#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
+        case MBEDTLS_ECP_DP_BP512R1:
+            if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+                p = (mbedtls_mpi_uint *) brainpoolP512r1_p;
+                p_limbs = CHARS_TO_LIMBS(sizeof(brainpoolP512r1_p));
+            } else {
+                p = (mbedtls_mpi_uint *) brainpoolP512r1_n;
+                p_limbs = CHARS_TO_LIMBS(sizeof(brainpoolP512r1_n));
+            }
+            break;
+#endif
+
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+        case MBEDTLS_ECP_DP_CURVE25519:
+            if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+                modp = &mbedtls_ecp_mod_p255_raw;
+                p = (mbedtls_mpi_uint *) curve25519_p;
+                p_limbs = CHARS_TO_LIMBS(sizeof(curve25519_p));
+            } else {
+                p = (mbedtls_mpi_uint *) curve25519_n;
+                p_limbs = CHARS_TO_LIMBS(sizeof(curve25519_n));
+            }
+            break;
+#endif
+
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP192K1:
+            if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+                modp = &mbedtls_ecp_mod_p192k1_raw;
+                p = (mbedtls_mpi_uint *) secp192k1_p;
+                p_limbs = CHARS_TO_LIMBS(sizeof(secp192k1_p));
+            } else {
+                p = (mbedtls_mpi_uint *) secp192k1_n;
+                p_limbs = CHARS_TO_LIMBS(sizeof(secp192k1_n));
+            }
+            break;
+#endif
+
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP224K1:
+            if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+                modp = &mbedtls_ecp_mod_p224k1_raw;
+                p = (mbedtls_mpi_uint *) secp224k1_p;
+                p_limbs = CHARS_TO_LIMBS(sizeof(secp224k1_p));
+            } else {
+                p = (mbedtls_mpi_uint *) secp224k1_n;
+                p_limbs = CHARS_TO_LIMBS(sizeof(secp224k1_n));
+            }
+            break;
+#endif
+
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+        case MBEDTLS_ECP_DP_SECP256K1:
+            if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+                modp = &mbedtls_ecp_mod_p256k1_raw;
+                p = (mbedtls_mpi_uint *) secp256k1_p;
+                p_limbs = CHARS_TO_LIMBS(sizeof(secp256k1_p));
+            } else {
+                p = (mbedtls_mpi_uint *) secp256k1_n;
+                p_limbs = CHARS_TO_LIMBS(sizeof(secp256k1_n));
+            }
+            break;
+#endif
+
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+        case MBEDTLS_ECP_DP_CURVE448:
+            if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+                modp = &mbedtls_ecp_mod_p448_raw;
+                p = (mbedtls_mpi_uint *) curve448_p;
+                p_limbs = CHARS_TO_LIMBS(sizeof(curve448_p));
+            } else {
+                p = (mbedtls_mpi_uint *) curve448_n;
+                p_limbs = CHARS_TO_LIMBS(sizeof(curve448_n));
+            }
+            break;
+#endif
+
+        default:
+        case MBEDTLS_ECP_DP_NONE:
+            return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+    }
+
+    if (modp != NULL) {
+        if (mbedtls_mpi_mod_optred_modulus_setup(N, p, p_limbs, modp)) {
+            return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+        }
+    } else {
+        if (mbedtls_mpi_mod_modulus_setup(N, p, p_limbs)) {
+            return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+        }
+    }
+    return 0;
+}
+#endif /* MBEDTLS_TEST_HOOKS */
+
+#if defined(MBEDTLS_TEST_HOOKS)
+
+MBEDTLS_STATIC_TESTABLE
+mbedtls_ecp_variant mbedtls_ecp_get_variant(void)
+{
+    return MBEDTLS_ECP_VARIANT_WITH_MPI_UINT;
+}
+
+#endif /* MBEDTLS_TEST_HOOKS */
+
+#endif /* MBEDTLS_ECP_LIGHT */
+#endif /* MBEDTLS_ECP_WITH_MPI_UINT */
diff --git a/tf-psa-crypto/drivers/builtin/src/ecp_invasive.h b/tf-psa-crypto/drivers/builtin/src/ecp_invasive.h
new file mode 100644
index 0000000..ff9f9ec
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/ecp_invasive.h
@@ -0,0 +1,325 @@
+/**
+ * \file ecp_invasive.h
+ *
+ * \brief ECP module: interfaces for invasive testing only.
+ *
+ * The interfaces in this file are intended for testing purposes only.
+ * They SHOULD NOT be made available in library integrations except when
+ * building the library for testing.
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#ifndef MBEDTLS_ECP_INVASIVE_H
+#define MBEDTLS_ECP_INVASIVE_H
+
+#include "common.h"
+#include "mbedtls/bignum.h"
+#include "bignum_mod.h"
+#include "mbedtls/ecp.h"
+
+/*
+ * Curve modulus types
+ */
+typedef enum {
+    MBEDTLS_ECP_MOD_NONE = 0,
+    MBEDTLS_ECP_MOD_COORDINATE,
+    MBEDTLS_ECP_MOD_SCALAR
+} mbedtls_ecp_modulus_type;
+
+typedef enum {
+    MBEDTLS_ECP_VARIANT_NONE = 0,
+    MBEDTLS_ECP_VARIANT_WITH_MPI_STRUCT,
+    MBEDTLS_ECP_VARIANT_WITH_MPI_UINT
+} mbedtls_ecp_variant;
+
+#if defined(MBEDTLS_TEST_HOOKS) && defined(MBEDTLS_ECP_LIGHT)
+
+/** Queries the ecp variant.
+ *
+ * \return  The id of the ecp variant.
+ */
+MBEDTLS_STATIC_TESTABLE
+mbedtls_ecp_variant mbedtls_ecp_get_variant(void);
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+/** Generate a private key on a Montgomery curve (Curve25519 or Curve448).
+ *
+ * This function implements key generation for the set of secret keys
+ * specified in [Curve25519] p. 5 and in [Curve448]. The resulting value
+ * has the lower bits masked but is not necessarily canonical.
+ *
+ * \note            - [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf
+ *                  - [RFC7748] https://tools.ietf.org/html/rfc7748
+ *
+ * \p high_bit      The position of the high-order bit of the key to generate.
+ *                  This is the bit-size of the key minus 1:
+ *                  254 for Curve25519 or 447 for Curve448.
+ * \param d         The randomly generated key. This is a number of size
+ *                  exactly \p high_bit + 1 bits, with the least significant bits
+ *                  masked as specified in [Curve25519] and in [RFC7748] §5.
+ * \param f_rng     The RNG function.
+ * \param p_rng     The RNG context to be passed to \p f_rng.
+ *
+ * \return          \c 0 on success.
+ * \return          \c MBEDTLS_ERR_ECP_xxx or MBEDTLS_ERR_MPI_xxx on failure.
+ */
+int mbedtls_ecp_gen_privkey_mx(size_t high_bit,
+                               mbedtls_mpi *d,
+                               int (*f_rng)(void *, unsigned char *, size_t),
+                               void *p_rng);
+
+#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+
+/** Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
+ *
+ * This operation expects a 384 bit MPI and the result of the reduction
+ * is a 192 bit MPI.
+ *
+ * \param[in,out]   Np  The address of the MPI to be converted.
+ *                      Must have twice as many limbs as the modulus.
+ *                      Upon return this holds the reduced value. The bitlength
+ *                      of the reduced value is the same as that of the modulus
+ *                      (192 bits).
+ * \param[in]       Nn  The length of \p Np in limbs.
+ */
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p192_raw(mbedtls_mpi_uint *Np, size_t Nn);
+
+#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+
+/** Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
+ *
+ * \param[in,out]   X       The address of the MPI to be converted.
+ *                          Must have exact limb size that stores a 448-bit MPI
+ *                          (double the bitlength of the modulus).
+ *                          Upon return holds the reduced value which is
+ *                          in range `0 <= X < 2 * N` (where N is the modulus).
+ *                          The bitlength of the reduced value is the same as
+ *                          that of the modulus (224 bits).
+ * \param[in]       X_limbs The length of \p X in limbs.
+ *
+ * \return          \c 0 on success.
+ * \return          #MBEDTLS_ERR_ECP_BAD_INPUT_DATA if \p X_limbs is not the
+ *                  limb size that sores a 448-bit MPI.
+ */
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p224_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+
+#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+
+/** Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
+ *
+ * \param[in,out]   X       The address of the MPI to be converted.
+ *                          Must have exact limb size that stores a 512-bit MPI
+ *                          (double the bitlength of the modulus).
+ *                          Upon return holds the reduced value which is
+ *                          in range `0 <= X < 2 * N` (where N is the modulus).
+ *                          The bitlength of the reduced value is the same as
+ *                          that of the modulus (256 bits).
+ * \param[in]       X_limbs The length of \p X in limbs.
+ *
+ * \return          \c 0 on success.
+ * \return          #MBEDTLS_ERR_ECP_BAD_INPUT_DATA if \p X_limbs is not the
+ *                  limb size that sores a 512-bit MPI.
+ */
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p256_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+
+#endif
+
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+
+/** Fast quasi-reduction modulo p521 = 2^521 - 1 (FIPS 186-3 D.2.5)
+ *
+ * \param[in,out]   X       The address of the MPI to be converted.
+ *                          Must have twice as many limbs as the modulus
+ *                          (the modulus is 521 bits long). Upon return this
+ *                          holds the reduced value. The reduced value is
+ *                          in range `0 <= X < 2 * N` (where N is the modulus).
+ *                          and its the bitlength is one plus the bitlength
+ *                          of the modulus.
+ * \param[in]       X_limbs The length of \p X in limbs.
+ *
+ * \return          \c 0 on success.
+ * \return          #MBEDTLS_ERR_ECP_BAD_INPUT_DATA if \p X_limbs does not have
+ *                  twice as many limbs as the modulus.
+ */
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p521_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+
+#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+
+/** Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
+ *
+ * \param[in,out]   X       The address of the MPI to be converted.
+ *                          Must have exact limb size that stores a 768-bit MPI
+ *                          (double the bitlength of the modulus).
+ *                          Upon return holds the reduced value which is
+ *                          in range `0 <= X < 2 * N` (where N is the modulus).
+ *                          The bitlength of the reduced value is the same as
+ *                          that of the modulus (384 bits).
+ * \param[in]       X_limbs The length of \p N in limbs.
+ *
+ * \return          \c 0 on success.
+ * \return          #MBEDTLS_ERR_ECP_BAD_INPUT_DATA if \p N_n does not have
+ *                  twice as many limbs as the modulus.
+ */
+MBEDTLS_STATIC_TESTABLE
+int  mbedtls_ecp_mod_p384_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+
+#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+
+/** Fast quasi-reduction modulo p192k1 = 2^192 - R,
+ * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x01000011C9
+ *
+ * \param[in,out]   X       The address of the MPI to be converted.
+ *                          Must have exact limb size that stores a 384-bit MPI
+ *                          (double the bitlength of the modulus).
+ *                          Upon return holds the reduced value which is
+ *                          in range `0 <= X < 2 * N` (where N is the modulus).
+ *                          The bitlength of the reduced value is the same as
+ *                          that of the modulus (192 bits).
+ * \param[in]       X_limbs The length of \p X in limbs.
+ *
+ * \return          \c 0 on success.
+ * \return          #MBEDTLS_ERR_ECP_BAD_INPUT_DATA if \p X does not have
+ *                  twice as many limbs as the modulus.
+ * \return          #MBEDTLS_ERR_ECP_ALLOC_FAILED if memory allocation failed.
+ */
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p192k1_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+
+#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+
+/** Fast quasi-reduction modulo p224k1 = 2^224 - R,
+ * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
+ *
+ * \param[in,out]   X       The address of the MPI to be converted.
+ *                          Must have exact limb size that stores a 448-bit MPI
+ *                          (double the bitlength of the modulus).
+ *                          Upon return holds the reduced value which is
+ *                          in range `0 <= X < 2 * N` (where N is the modulus).
+ *                          The bitlength of the reduced value is the same as
+ *                          that of the modulus (224 bits).
+ * \param[in]       X_limbs The length of \p X in limbs.
+ *
+ * \return          \c 0 on success.
+ * \return          #MBEDTLS_ERR_ECP_BAD_INPUT_DATA if \p X does not have
+ *                  twice as many limbs as the modulus.
+ * \return          #MBEDTLS_ERR_ECP_ALLOC_FAILED if memory allocation failed.
+ */
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p224k1_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+
+#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+
+/** Fast quasi-reduction modulo p256k1 = 2^256 - R,
+ * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
+ *
+ * \param[in,out]   X       The address of the MPI to be converted.
+ *                          Must have exact limb size that stores a 512-bit MPI
+ *                          (double the bitlength of the modulus).
+ *                          Upon return holds the reduced value which is
+ *                          in range `0 <= X < 2 * N` (where N is the modulus).
+ *                          The bitlength of the reduced value is the same as
+ *                          that of the modulus (256 bits).
+ * \param[in]       X_limbs The length of \p X in limbs.
+ *
+ * \return          \c 0 on success.
+ * \return          #MBEDTLS_ERR_ECP_BAD_INPUT_DATA if \p X does not have
+ *                  twice as many limbs as the modulus.
+ * \return          #MBEDTLS_ERR_ECP_ALLOC_FAILED if memory allocation failed.
+ */
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p256k1_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+
+#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+
+/** Fast quasi-reduction modulo p255 = 2^255 - 19
+ *
+ * \param[in,out]   X       The address of the MPI to be converted.
+ *                          Must have exact limb size that stores a 510-bit MPI
+ *                          (double the bitlength of the modulus).
+ *                          Upon return holds the reduced value which is
+ *                          in range `0 <= X < 2 * N` (where N is the modulus).
+ * \param[in]       X_limbs The length of \p X in limbs.
+ *
+ * \return          \c 0 on success.
+ * \return          #MBEDTLS_ERR_ECP_BAD_INPUT_DATA if \p X does not have
+ *                  twice as many limbs as the modulus.
+ * \return          #MBEDTLS_ERR_ECP_ALLOC_FAILED if memory allocation failed.
+ */
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p255_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+
+#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+
+/** Fast quasi-reduction modulo p448 = 2^448 - 2^224 - 1
+ * Write X as A0 + 2^448 A1 and A1 as B0 + 2^224 B1, and return A0 + A1 + B1 +
+ * (B0 + B1) * 2^224.
+ *
+ * \param[in,out]   X       The address of the MPI to be converted.
+ *                          Must have exact limb size that stores a 896-bit MPI
+ *                          (double the bitlength of the modulus). Upon return
+ *                          holds the reduced value which is in range `0 <= X <
+ *                          N` (where N is the modulus). The bitlength of the
+ *                          reduced value is the same as that of the modulus
+ *                          (448 bits).
+ * \param[in]       X_limbs The length of \p X in limbs.
+ *
+ * \return          \c 0 on Success.
+ * \return          #MBEDTLS_ERR_ECP_BAD_INPUT_DATA if \p X does not have
+ *                  twice as many limbs as the modulus.
+ * \return          #MBEDTLS_ERR_ECP_ALLOC_FAILED if memory allocation
+ *                  failed.
+ */
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p448_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+
+#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
+
+/** Initialise a modulus with hard-coded const curve data.
+ *
+ * \note            The caller is responsible for the \p N modulus' memory.
+ *                  mbedtls_mpi_mod_modulus_free(&N) should be invoked at the
+ *                  end of its lifecycle.
+ *
+ * \param[in,out] N The address of the modulus structure to populate.
+ *                  Must be initialized.
+ * \param[in] id    The mbedtls_ecp_group_id for which to initialise the modulus.
+ * \param[in] ctype The mbedtls_ecp_modulus_type identifier for a coordinate modulus (P)
+ *                  or a scalar modulus (N).
+ *
+ * \return          \c 0 if successful.
+ * \return          #MBEDTLS_ERR_ECP_BAD_INPUT_DATA if the given MPIs do not
+ *                  have the correct number of limbs.
+ *
+ */
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_modulus_setup(mbedtls_mpi_mod_modulus *N,
+                              const mbedtls_ecp_group_id id,
+                              const mbedtls_ecp_modulus_type ctype);
+
+#endif /* MBEDTLS_TEST_HOOKS && MBEDTLS_ECP_C */
+
+#endif /* MBEDTLS_ECP_INVASIVE_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/entropy.c b/tf-psa-crypto/drivers/builtin/src/entropy.c
new file mode 100644
index 0000000..7dcf067
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/entropy.c
@@ -0,0 +1,680 @@
+/*
+ *  Entropy accumulator implementation
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_ENTROPY_C)
+
+#include "mbedtls/entropy.h"
+#include "entropy_poll.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_FS_IO)
+#include <stdio.h>
+#endif
+
+#include "mbedtls/platform.h"
+
+#define ENTROPY_MAX_LOOP    256     /**< Maximum amount to loop before error */
+
+void mbedtls_entropy_init(mbedtls_entropy_context *ctx)
+{
+    ctx->source_count = 0;
+    memset(ctx->source, 0, sizeof(ctx->source));
+
+#if defined(MBEDTLS_THREADING_C)
+    mbedtls_mutex_init(&ctx->mutex);
+#endif
+
+    ctx->accumulator_started = 0;
+    mbedtls_md_init(&ctx->accumulator);
+
+    /* Reminder: Update ENTROPY_HAVE_STRONG in the test files
+     *           when adding more strong entropy sources here. */
+
+#if !defined(MBEDTLS_NO_DEFAULT_ENTROPY_SOURCES)
+#if !defined(MBEDTLS_NO_PLATFORM_ENTROPY)
+    mbedtls_entropy_add_source(ctx, mbedtls_platform_entropy_poll, NULL,
+                               MBEDTLS_ENTROPY_MIN_PLATFORM,
+                               MBEDTLS_ENTROPY_SOURCE_STRONG);
+#endif
+#if defined(MBEDTLS_ENTROPY_HARDWARE_ALT)
+    mbedtls_entropy_add_source(ctx, mbedtls_hardware_poll, NULL,
+                               MBEDTLS_ENTROPY_MIN_HARDWARE,
+                               MBEDTLS_ENTROPY_SOURCE_STRONG);
+#endif
+#if defined(MBEDTLS_ENTROPY_NV_SEED)
+    mbedtls_entropy_add_source(ctx, mbedtls_nv_seed_poll, NULL,
+                               MBEDTLS_ENTROPY_BLOCK_SIZE,
+                               MBEDTLS_ENTROPY_SOURCE_STRONG);
+    ctx->initial_entropy_run = 0;
+#endif
+#endif /* MBEDTLS_NO_DEFAULT_ENTROPY_SOURCES */
+}
+
+void mbedtls_entropy_free(mbedtls_entropy_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    /* If the context was already free, don't call free() again.
+     * This is important for mutexes which don't allow double-free. */
+    if (ctx->accumulator_started == -1) {
+        return;
+    }
+
+#if defined(MBEDTLS_THREADING_C)
+    mbedtls_mutex_free(&ctx->mutex);
+#endif
+    mbedtls_md_free(&ctx->accumulator);
+#if defined(MBEDTLS_ENTROPY_NV_SEED)
+    ctx->initial_entropy_run = 0;
+#endif
+    ctx->source_count = 0;
+    mbedtls_platform_zeroize(ctx->source, sizeof(ctx->source));
+    ctx->accumulator_started = -1;
+}
+
+int mbedtls_entropy_add_source(mbedtls_entropy_context *ctx,
+                               mbedtls_entropy_f_source_ptr f_source, void *p_source,
+                               size_t threshold, int strong)
+{
+    int idx, ret = 0;
+
+#if defined(MBEDTLS_THREADING_C)
+    if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) {
+        return ret;
+    }
+#endif
+
+    idx = ctx->source_count;
+    if (idx >= MBEDTLS_ENTROPY_MAX_SOURCES) {
+        ret = MBEDTLS_ERR_ENTROPY_MAX_SOURCES;
+        goto exit;
+    }
+
+    ctx->source[idx].f_source  = f_source;
+    ctx->source[idx].p_source  = p_source;
+    ctx->source[idx].threshold = threshold;
+    ctx->source[idx].strong    = strong;
+
+    ctx->source_count++;
+
+exit:
+#if defined(MBEDTLS_THREADING_C)
+    if (mbedtls_mutex_unlock(&ctx->mutex) != 0) {
+        return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
+    }
+#endif
+
+    return ret;
+}
+
+/*
+ * Entropy accumulator update
+ */
+static int entropy_update(mbedtls_entropy_context *ctx, unsigned char source_id,
+                          const unsigned char *data, size_t len)
+{
+    unsigned char header[2];
+    unsigned char tmp[MBEDTLS_ENTROPY_BLOCK_SIZE];
+    size_t use_len = len;
+    const unsigned char *p = data;
+    int ret = 0;
+
+    if (use_len > MBEDTLS_ENTROPY_BLOCK_SIZE) {
+        if ((ret = mbedtls_md(mbedtls_md_info_from_type(MBEDTLS_ENTROPY_MD),
+                              data, len, tmp)) != 0) {
+            goto cleanup;
+        }
+        p = tmp;
+        use_len = MBEDTLS_ENTROPY_BLOCK_SIZE;
+    }
+
+    header[0] = source_id;
+    header[1] = use_len & 0xFF;
+
+    /*
+     * Start the accumulator if this has not already happened. Note that
+     * it is sufficient to start the accumulator here only because all calls to
+     * gather entropy eventually execute this code.
+     */
+    if (ctx->accumulator_started == 0) {
+        ret = mbedtls_md_setup(&ctx->accumulator,
+                               mbedtls_md_info_from_type(MBEDTLS_ENTROPY_MD), 0);
+        if (ret != 0) {
+            goto cleanup;
+        }
+        ret = mbedtls_md_starts(&ctx->accumulator);
+        if (ret != 0) {
+            goto cleanup;
+        }
+        ctx->accumulator_started = 1;
+    }
+    if ((ret = mbedtls_md_update(&ctx->accumulator, header, 2)) != 0) {
+        goto cleanup;
+    }
+    ret = mbedtls_md_update(&ctx->accumulator, p, use_len);
+
+cleanup:
+    mbedtls_platform_zeroize(tmp, sizeof(tmp));
+
+    return ret;
+}
+
+int mbedtls_entropy_update_manual(mbedtls_entropy_context *ctx,
+                                  const unsigned char *data, size_t len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+#if defined(MBEDTLS_THREADING_C)
+    if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) {
+        return ret;
+    }
+#endif
+
+    ret = entropy_update(ctx, MBEDTLS_ENTROPY_SOURCE_MANUAL, data, len);
+
+#if defined(MBEDTLS_THREADING_C)
+    if (mbedtls_mutex_unlock(&ctx->mutex) != 0) {
+        return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
+    }
+#endif
+
+    return ret;
+}
+
+/*
+ * Run through the different sources to add entropy to our accumulator
+ */
+static int entropy_gather_internal(mbedtls_entropy_context *ctx)
+{
+    int ret = MBEDTLS_ERR_ENTROPY_SOURCE_FAILED;
+    int i;
+    int have_one_strong = 0;
+    unsigned char buf[MBEDTLS_ENTROPY_MAX_GATHER];
+    size_t olen;
+
+    if (ctx->source_count == 0) {
+        return MBEDTLS_ERR_ENTROPY_NO_SOURCES_DEFINED;
+    }
+
+    /*
+     * Run through our entropy sources
+     */
+    for (i = 0; i < ctx->source_count; i++) {
+        if (ctx->source[i].strong == MBEDTLS_ENTROPY_SOURCE_STRONG) {
+            have_one_strong = 1;
+        }
+
+        olen = 0;
+        if ((ret = ctx->source[i].f_source(ctx->source[i].p_source,
+                                           buf, MBEDTLS_ENTROPY_MAX_GATHER, &olen)) != 0) {
+            goto cleanup;
+        }
+
+        /*
+         * Add if we actually gathered something
+         */
+        if (olen > 0) {
+            if ((ret = entropy_update(ctx, (unsigned char) i,
+                                      buf, olen)) != 0) {
+                return ret;
+            }
+            ctx->source[i].size += olen;
+        }
+    }
+
+    if (have_one_strong == 0) {
+        ret = MBEDTLS_ERR_ENTROPY_NO_STRONG_SOURCE;
+    }
+
+cleanup:
+    mbedtls_platform_zeroize(buf, sizeof(buf));
+
+    return ret;
+}
+
+/*
+ * Thread-safe wrapper for entropy_gather_internal()
+ */
+int mbedtls_entropy_gather(mbedtls_entropy_context *ctx)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+#if defined(MBEDTLS_THREADING_C)
+    if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) {
+        return ret;
+    }
+#endif
+
+    ret = entropy_gather_internal(ctx);
+
+#if defined(MBEDTLS_THREADING_C)
+    if (mbedtls_mutex_unlock(&ctx->mutex) != 0) {
+        return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
+    }
+#endif
+
+    return ret;
+}
+
+int mbedtls_entropy_func(void *data, unsigned char *output, size_t len)
+{
+    int ret, count = 0, i, thresholds_reached;
+    size_t strong_size;
+    mbedtls_entropy_context *ctx = (mbedtls_entropy_context *) data;
+    unsigned char buf[MBEDTLS_ENTROPY_BLOCK_SIZE];
+
+    if (len > MBEDTLS_ENTROPY_BLOCK_SIZE) {
+        return MBEDTLS_ERR_ENTROPY_SOURCE_FAILED;
+    }
+
+#if defined(MBEDTLS_ENTROPY_NV_SEED)
+    /* Update the NV entropy seed before generating any entropy for outside
+     * use.
+     */
+    if (ctx->initial_entropy_run == 0) {
+        ctx->initial_entropy_run = 1;
+        if ((ret = mbedtls_entropy_update_nv_seed(ctx)) != 0) {
+            return ret;
+        }
+    }
+#endif
+
+#if defined(MBEDTLS_THREADING_C)
+    if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) {
+        return ret;
+    }
+#endif
+
+    /*
+     * Always gather extra entropy before a call
+     */
+    do {
+        if (count++ > ENTROPY_MAX_LOOP) {
+            ret = MBEDTLS_ERR_ENTROPY_SOURCE_FAILED;
+            goto exit;
+        }
+
+        if ((ret = entropy_gather_internal(ctx)) != 0) {
+            goto exit;
+        }
+
+        thresholds_reached = 1;
+        strong_size = 0;
+        for (i = 0; i < ctx->source_count; i++) {
+            if (ctx->source[i].size < ctx->source[i].threshold) {
+                thresholds_reached = 0;
+            }
+            if (ctx->source[i].strong == MBEDTLS_ENTROPY_SOURCE_STRONG) {
+                strong_size += ctx->source[i].size;
+            }
+        }
+    } while (!thresholds_reached || strong_size < MBEDTLS_ENTROPY_BLOCK_SIZE);
+
+    memset(buf, 0, MBEDTLS_ENTROPY_BLOCK_SIZE);
+
+    /*
+     * Note that at this stage it is assumed that the accumulator was started
+     * in a previous call to entropy_update(). If this is not guaranteed, the
+     * code below will fail.
+     */
+    if ((ret = mbedtls_md_finish(&ctx->accumulator, buf)) != 0) {
+        goto exit;
+    }
+
+    /*
+     * Reset accumulator and counters and recycle existing entropy
+     */
+    mbedtls_md_free(&ctx->accumulator);
+    mbedtls_md_init(&ctx->accumulator);
+    ret = mbedtls_md_setup(&ctx->accumulator,
+                           mbedtls_md_info_from_type(MBEDTLS_ENTROPY_MD), 0);
+    if (ret != 0) {
+        goto exit;
+    }
+    ret = mbedtls_md_starts(&ctx->accumulator);
+    if (ret != 0) {
+        goto exit;
+    }
+    if ((ret = mbedtls_md_update(&ctx->accumulator, buf,
+                                 MBEDTLS_ENTROPY_BLOCK_SIZE)) != 0) {
+        goto exit;
+    }
+
+    /*
+     * Perform second hashing on entropy
+     */
+    if ((ret = mbedtls_md(mbedtls_md_info_from_type(MBEDTLS_ENTROPY_MD),
+                          buf, MBEDTLS_ENTROPY_BLOCK_SIZE, buf)) != 0) {
+        goto exit;
+    }
+
+    for (i = 0; i < ctx->source_count; i++) {
+        ctx->source[i].size = 0;
+    }
+
+    memcpy(output, buf, len);
+
+    ret = 0;
+
+exit:
+    mbedtls_platform_zeroize(buf, sizeof(buf));
+
+#if defined(MBEDTLS_THREADING_C)
+    if (mbedtls_mutex_unlock(&ctx->mutex) != 0) {
+        return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
+    }
+#endif
+
+    return ret;
+}
+
+#if defined(MBEDTLS_ENTROPY_NV_SEED)
+int mbedtls_entropy_update_nv_seed(mbedtls_entropy_context *ctx)
+{
+    int ret = MBEDTLS_ERR_ENTROPY_FILE_IO_ERROR;
+    unsigned char buf[MBEDTLS_ENTROPY_BLOCK_SIZE];
+
+    /* Read new seed  and write it to NV */
+    if ((ret = mbedtls_entropy_func(ctx, buf, MBEDTLS_ENTROPY_BLOCK_SIZE)) != 0) {
+        return ret;
+    }
+
+    if (mbedtls_nv_seed_write(buf, MBEDTLS_ENTROPY_BLOCK_SIZE) < 0) {
+        return MBEDTLS_ERR_ENTROPY_FILE_IO_ERROR;
+    }
+
+    /* Manually update the remaining stream with a separator value to diverge */
+    memset(buf, 0, MBEDTLS_ENTROPY_BLOCK_SIZE);
+    ret = mbedtls_entropy_update_manual(ctx, buf, MBEDTLS_ENTROPY_BLOCK_SIZE);
+
+    return ret;
+}
+#endif /* MBEDTLS_ENTROPY_NV_SEED */
+
+#if defined(MBEDTLS_FS_IO)
+int mbedtls_entropy_write_seed_file(mbedtls_entropy_context *ctx, const char *path)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    FILE *f = NULL;
+    unsigned char buf[MBEDTLS_ENTROPY_BLOCK_SIZE];
+
+    if ((ret = mbedtls_entropy_func(ctx, buf, MBEDTLS_ENTROPY_BLOCK_SIZE)) != 0) {
+        ret = MBEDTLS_ERR_ENTROPY_SOURCE_FAILED;
+        goto exit;
+    }
+
+    if ((f = fopen(path, "wb")) == NULL) {
+        ret = MBEDTLS_ERR_ENTROPY_FILE_IO_ERROR;
+        goto exit;
+    }
+
+    /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */
+    mbedtls_setbuf(f, NULL);
+
+    if (fwrite(buf, 1, MBEDTLS_ENTROPY_BLOCK_SIZE, f) != MBEDTLS_ENTROPY_BLOCK_SIZE) {
+        ret = MBEDTLS_ERR_ENTROPY_FILE_IO_ERROR;
+        goto exit;
+    }
+
+    ret = 0;
+
+exit:
+    mbedtls_platform_zeroize(buf, sizeof(buf));
+
+    if (f != NULL) {
+        fclose(f);
+    }
+
+    return ret;
+}
+
+int mbedtls_entropy_update_seed_file(mbedtls_entropy_context *ctx, const char *path)
+{
+    int ret = 0;
+    FILE *f;
+    size_t n;
+    unsigned char buf[MBEDTLS_ENTROPY_MAX_SEED_SIZE];
+
+    if ((f = fopen(path, "rb")) == NULL) {
+        return MBEDTLS_ERR_ENTROPY_FILE_IO_ERROR;
+    }
+
+    /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */
+    mbedtls_setbuf(f, NULL);
+
+    fseek(f, 0, SEEK_END);
+    n = (size_t) ftell(f);
+    fseek(f, 0, SEEK_SET);
+
+    if (n > MBEDTLS_ENTROPY_MAX_SEED_SIZE) {
+        n = MBEDTLS_ENTROPY_MAX_SEED_SIZE;
+    }
+
+    if (fread(buf, 1, n, f) != n) {
+        ret = MBEDTLS_ERR_ENTROPY_FILE_IO_ERROR;
+    } else {
+        ret = mbedtls_entropy_update_manual(ctx, buf, n);
+    }
+
+    fclose(f);
+
+    mbedtls_platform_zeroize(buf, sizeof(buf));
+
+    if (ret != 0) {
+        return ret;
+    }
+
+    return mbedtls_entropy_write_seed_file(ctx, path);
+}
+#endif /* MBEDTLS_FS_IO */
+
+#if defined(MBEDTLS_SELF_TEST)
+/*
+ * Dummy source function
+ */
+static int entropy_dummy_source(void *data, unsigned char *output,
+                                size_t len, size_t *olen)
+{
+    ((void) data);
+
+    memset(output, 0x2a, len);
+    *olen = len;
+
+    return 0;
+}
+
+#if defined(MBEDTLS_ENTROPY_HARDWARE_ALT)
+
+static int mbedtls_entropy_source_self_test_gather(unsigned char *buf, size_t buf_len)
+{
+    int ret = 0;
+    size_t entropy_len = 0;
+    size_t olen = 0;
+    size_t attempts = buf_len;
+
+    while (attempts > 0 && entropy_len < buf_len) {
+        if ((ret = mbedtls_hardware_poll(NULL, buf + entropy_len,
+                                         buf_len - entropy_len, &olen)) != 0) {
+            return ret;
+        }
+
+        entropy_len += olen;
+        attempts--;
+    }
+
+    if (entropy_len < buf_len) {
+        ret = 1;
+    }
+
+    return ret;
+}
+
+
+static int mbedtls_entropy_source_self_test_check_bits(const unsigned char *buf,
+                                                       size_t buf_len)
+{
+    unsigned char set = 0xFF;
+    unsigned char unset = 0x00;
+    size_t i;
+
+    for (i = 0; i < buf_len; i++) {
+        set &= buf[i];
+        unset |= buf[i];
+    }
+
+    return set == 0xFF || unset == 0x00;
+}
+
+/*
+ * A test to ensure that the entropy sources are functioning correctly
+ * and there is no obvious failure. The test performs the following checks:
+ *  - The entropy source is not providing only 0s (all bits unset) or 1s (all
+ *    bits set).
+ *  - The entropy source is not providing values in a pattern. Because the
+ *    hardware could be providing data in an arbitrary length, this check polls
+ *    the hardware entropy source twice and compares the result to ensure they
+ *    are not equal.
+ *  - The error code returned by the entropy source is not an error.
+ */
+int mbedtls_entropy_source_self_test(int verbose)
+{
+    int ret = 0;
+    unsigned char buf0[2 * sizeof(unsigned long long int)];
+    unsigned char buf1[2 * sizeof(unsigned long long int)];
+
+    if (verbose != 0) {
+        mbedtls_printf("  ENTROPY_BIAS test: ");
+    }
+
+    memset(buf0, 0x00, sizeof(buf0));
+    memset(buf1, 0x00, sizeof(buf1));
+
+    if ((ret = mbedtls_entropy_source_self_test_gather(buf0, sizeof(buf0))) != 0) {
+        goto cleanup;
+    }
+    if ((ret = mbedtls_entropy_source_self_test_gather(buf1, sizeof(buf1))) != 0) {
+        goto cleanup;
+    }
+
+    /* Make sure that the returned values are not all 0 or 1 */
+    if ((ret = mbedtls_entropy_source_self_test_check_bits(buf0, sizeof(buf0))) != 0) {
+        goto cleanup;
+    }
+    if ((ret = mbedtls_entropy_source_self_test_check_bits(buf1, sizeof(buf1))) != 0) {
+        goto cleanup;
+    }
+
+    /* Make sure that the entropy source is not returning values in a
+     * pattern */
+    ret = memcmp(buf0, buf1, sizeof(buf0)) == 0;
+
+cleanup:
+    if (verbose != 0) {
+        if (ret != 0) {
+            mbedtls_printf("failed\n");
+        } else {
+            mbedtls_printf("passed\n");
+        }
+
+        mbedtls_printf("\n");
+    }
+
+    return ret != 0;
+}
+
+#endif /* MBEDTLS_ENTROPY_HARDWARE_ALT */
+
+/*
+ * The actual entropy quality is hard to test, but we can at least
+ * test that the functions don't cause errors and write the correct
+ * amount of data to buffers.
+ */
+int mbedtls_entropy_self_test(int verbose)
+{
+    int ret = 1;
+    mbedtls_entropy_context ctx;
+    unsigned char buf[MBEDTLS_ENTROPY_BLOCK_SIZE] = { 0 };
+    unsigned char acc[MBEDTLS_ENTROPY_BLOCK_SIZE] = { 0 };
+    size_t i, j;
+
+    if (verbose != 0) {
+        mbedtls_printf("  ENTROPY test: ");
+    }
+
+    mbedtls_entropy_init(&ctx);
+
+    /* First do a gather to make sure we have default sources */
+    if ((ret = mbedtls_entropy_gather(&ctx)) != 0) {
+        goto cleanup;
+    }
+
+    ret = mbedtls_entropy_add_source(&ctx, entropy_dummy_source, NULL, 16,
+                                     MBEDTLS_ENTROPY_SOURCE_WEAK);
+    if (ret != 0) {
+        goto cleanup;
+    }
+
+    if ((ret = mbedtls_entropy_update_manual(&ctx, buf, sizeof(buf))) != 0) {
+        goto cleanup;
+    }
+
+    /*
+     * To test that mbedtls_entropy_func writes correct number of bytes:
+     * - use the whole buffer and rely on ASan to detect overruns
+     * - collect entropy 8 times and OR the result in an accumulator:
+     *   any byte should then be 0 with probably 2^(-64), so requiring
+     *   each of the 32 or 64 bytes to be non-zero has a false failure rate
+     *   of at most 2^(-58) which is acceptable.
+     */
+    for (i = 0; i < 8; i++) {
+        if ((ret = mbedtls_entropy_func(&ctx, buf, sizeof(buf))) != 0) {
+            goto cleanup;
+        }
+
+        for (j = 0; j < sizeof(buf); j++) {
+            acc[j] |= buf[j];
+        }
+    }
+
+    for (j = 0; j < sizeof(buf); j++) {
+        if (acc[j] == 0) {
+            ret = 1;
+            goto cleanup;
+        }
+    }
+
+#if defined(MBEDTLS_ENTROPY_HARDWARE_ALT)
+    if ((ret = mbedtls_entropy_source_self_test(0)) != 0) {
+        goto cleanup;
+    }
+#endif
+
+cleanup:
+    mbedtls_entropy_free(&ctx);
+
+    if (verbose != 0) {
+        if (ret != 0) {
+            mbedtls_printf("failed\n");
+        } else {
+            mbedtls_printf("passed\n");
+        }
+
+        mbedtls_printf("\n");
+    }
+
+    return ret != 0;
+}
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_ENTROPY_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/entropy_poll.c b/tf-psa-crypto/drivers/builtin/src/entropy_poll.c
new file mode 100644
index 0000000..611768c
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/entropy_poll.c
@@ -0,0 +1,231 @@
+/*
+ *  Platform-specific and custom entropy polling functions
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#if defined(__linux__) || defined(__midipix__)
+/* Ensure that syscall() is available even when compiling with -std=c99 */
+#if !defined(_GNU_SOURCE)
+#define _GNU_SOURCE
+#endif
+#endif
+
+#include "common.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_ENTROPY_C)
+
+#include "mbedtls/entropy.h"
+#include "entropy_poll.h"
+#include "mbedtls/error.h"
+
+#if defined(MBEDTLS_TIMING_C)
+#include "mbedtls/timing.h"
+#endif
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_NO_PLATFORM_ENTROPY)
+
+#if !defined(unix) && !defined(__unix__) && !defined(__unix) && \
+    !defined(__APPLE__) && !defined(_WIN32) && !defined(__QNXNTO__) && \
+    !defined(__HAIKU__) && !defined(__midipix__) && !defined(__MVS__)
+#error \
+    "Platform entropy sources only work on Unix and Windows, see MBEDTLS_NO_PLATFORM_ENTROPY in mbedtls_config.h"
+#endif
+
+#if defined(_WIN32) && !defined(EFIX64) && !defined(EFI32)
+
+#include <windows.h>
+#include <bcrypt.h>
+#include <intsafe.h>
+
+int mbedtls_platform_entropy_poll(void *data, unsigned char *output, size_t len,
+                                  size_t *olen)
+{
+    ((void) data);
+    *olen = 0;
+
+    /*
+     * BCryptGenRandom takes ULONG for size, which is smaller than size_t on
+     * 64-bit Windows platforms. Extract entropy in chunks of len (dependent
+     * on ULONG_MAX) size.
+     */
+    while (len != 0) {
+        unsigned long ulong_bytes =
+            (len > ULONG_MAX) ? ULONG_MAX : (unsigned long) len;
+
+        if (!BCRYPT_SUCCESS(BCryptGenRandom(NULL, output, ulong_bytes,
+                                            BCRYPT_USE_SYSTEM_PREFERRED_RNG))) {
+            return MBEDTLS_ERR_ENTROPY_SOURCE_FAILED;
+        }
+
+        *olen += ulong_bytes;
+        len -= ulong_bytes;
+    }
+
+    return 0;
+}
+#else /* _WIN32 && !EFIX64 && !EFI32 */
+
+/*
+ * Test for Linux getrandom() support.
+ * Since there is no wrapper in the libc yet, use the generic syscall wrapper
+ * available in GNU libc and compatible libc's (eg uClibc).
+ */
+#if ((defined(__linux__) && defined(__GLIBC__)) || defined(__midipix__))
+#include <unistd.h>
+#include <sys/syscall.h>
+#if defined(SYS_getrandom)
+#define HAVE_GETRANDOM
+#include <errno.h>
+
+static int getrandom_wrapper(void *buf, size_t buflen, unsigned int flags)
+{
+    /* MemSan cannot understand that the syscall writes to the buffer */
+#if defined(__has_feature)
+#if __has_feature(memory_sanitizer)
+    memset(buf, 0, buflen);
+#endif
+#endif
+    return (int) syscall(SYS_getrandom, buf, buflen, flags);
+}
+#endif /* SYS_getrandom */
+#endif /* __linux__ || __midipix__ */
+
+#if defined(__FreeBSD__) || defined(__DragonFly__)
+#include <sys/param.h>
+#if (defined(__FreeBSD__) && __FreeBSD_version >= 1200000) || \
+    (defined(__DragonFly__) && __DragonFly_version >= 500700)
+#include <errno.h>
+#include <sys/random.h>
+#define HAVE_GETRANDOM
+static int getrandom_wrapper(void *buf, size_t buflen, unsigned int flags)
+{
+    return (int) getrandom(buf, buflen, flags);
+}
+#endif /* (__FreeBSD__ && __FreeBSD_version >= 1200000) ||
+          (__DragonFly__ && __DragonFly_version >= 500700) */
+#endif /* __FreeBSD__ || __DragonFly__ */
+
+/*
+ * Some BSD systems provide KERN_ARND.
+ * This is equivalent to reading from /dev/urandom, only it doesn't require an
+ * open file descriptor, and provides up to 256 bytes per call (basically the
+ * same as getentropy(), but with a longer history).
+ *
+ * Documentation: https://netbsd.gw.com/cgi-bin/man-cgi?sysctl+7
+ */
+#if (defined(__FreeBSD__) || defined(__NetBSD__)) && !defined(HAVE_GETRANDOM)
+#include <sys/param.h>
+#include <sys/sysctl.h>
+#if defined(KERN_ARND)
+#define HAVE_SYSCTL_ARND
+
+static int sysctl_arnd_wrapper(unsigned char *buf, size_t buflen)
+{
+    int name[2];
+    size_t len;
+
+    name[0] = CTL_KERN;
+    name[1] = KERN_ARND;
+
+    while (buflen > 0) {
+        len = buflen > 256 ? 256 : buflen;
+        if (sysctl(name, 2, buf, &len, NULL, 0) == -1) {
+            return -1;
+        }
+        buflen -= len;
+        buf += len;
+    }
+    return 0;
+}
+#endif /* KERN_ARND */
+#endif /* __FreeBSD__ || __NetBSD__ */
+
+#include <stdio.h>
+
+int mbedtls_platform_entropy_poll(void *data,
+                                  unsigned char *output, size_t len, size_t *olen)
+{
+    FILE *file;
+    size_t read_len;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    ((void) data);
+
+#if defined(HAVE_GETRANDOM)
+    ret = getrandom_wrapper(output, len, 0);
+    if (ret >= 0) {
+        *olen = (size_t) ret;
+        return 0;
+    } else if (errno != ENOSYS) {
+        return MBEDTLS_ERR_ENTROPY_SOURCE_FAILED;
+    }
+    /* Fall through if the system call isn't known. */
+#else
+    ((void) ret);
+#endif /* HAVE_GETRANDOM */
+
+#if defined(HAVE_SYSCTL_ARND)
+    ((void) file);
+    ((void) read_len);
+    if (sysctl_arnd_wrapper(output, len) == -1) {
+        return MBEDTLS_ERR_ENTROPY_SOURCE_FAILED;
+    }
+    *olen = len;
+    return 0;
+#else
+
+    *olen = 0;
+
+    file = fopen("/dev/urandom", "rb");
+    if (file == NULL) {
+        return MBEDTLS_ERR_ENTROPY_SOURCE_FAILED;
+    }
+
+    /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */
+    mbedtls_setbuf(file, NULL);
+
+    read_len = fread(output, 1, len, file);
+    if (read_len != len) {
+        fclose(file);
+        return MBEDTLS_ERR_ENTROPY_SOURCE_FAILED;
+    }
+
+    fclose(file);
+    *olen = len;
+
+    return 0;
+#endif /* HAVE_SYSCTL_ARND */
+}
+#endif /* _WIN32 && !EFIX64 && !EFI32 */
+#endif /* !MBEDTLS_NO_PLATFORM_ENTROPY */
+
+#if defined(MBEDTLS_ENTROPY_NV_SEED)
+int mbedtls_nv_seed_poll(void *data,
+                         unsigned char *output, size_t len, size_t *olen)
+{
+    unsigned char buf[MBEDTLS_ENTROPY_BLOCK_SIZE];
+    size_t use_len = MBEDTLS_ENTROPY_BLOCK_SIZE;
+    ((void) data);
+
+    memset(buf, 0, MBEDTLS_ENTROPY_BLOCK_SIZE);
+
+    if (mbedtls_nv_seed_read(buf, MBEDTLS_ENTROPY_BLOCK_SIZE) < 0) {
+        return MBEDTLS_ERR_ENTROPY_SOURCE_FAILED;
+    }
+
+    if (len < use_len) {
+        use_len = len;
+    }
+
+    memcpy(output, buf, use_len);
+    *olen = use_len;
+
+    return 0;
+}
+#endif /* MBEDTLS_ENTROPY_NV_SEED */
+
+#endif /* MBEDTLS_ENTROPY_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/entropy_poll.h b/tf-psa-crypto/drivers/builtin/src/entropy_poll.h
new file mode 100644
index 0000000..6b4aec0
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/entropy_poll.h
@@ -0,0 +1,64 @@
+/**
+ * \file entropy_poll.h
+ *
+ * \brief Platform-specific and custom entropy polling functions
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#ifndef MBEDTLS_ENTROPY_POLL_H
+#define MBEDTLS_ENTROPY_POLL_H
+
+#include "mbedtls/build_info.h"
+
+#include <stddef.h>
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*
+ * Default thresholds for built-in sources, in bytes
+ */
+#define MBEDTLS_ENTROPY_MIN_PLATFORM     32     /**< Minimum for platform source    */
+#if !defined(MBEDTLS_ENTROPY_MIN_HARDWARE)
+#define MBEDTLS_ENTROPY_MIN_HARDWARE     32     /**< Minimum for the hardware source */
+#endif
+
+#if !defined(MBEDTLS_NO_PLATFORM_ENTROPY)
+/**
+ * \brief           Platform-specific entropy poll callback
+ */
+int mbedtls_platform_entropy_poll(void *data,
+                                  unsigned char *output, size_t len, size_t *olen);
+#endif
+
+#if defined(MBEDTLS_ENTROPY_HARDWARE_ALT)
+/**
+ * \brief           Entropy poll callback for a hardware source
+ *
+ * \warning         This is not provided by Mbed TLS!
+ *                  See \c MBEDTLS_ENTROPY_HARDWARE_ALT in mbedtls_config.h.
+ *
+ * \note            This must accept NULL as its first argument.
+ */
+int mbedtls_hardware_poll(void *data,
+                          unsigned char *output, size_t len, size_t *olen);
+#endif
+
+#if defined(MBEDTLS_ENTROPY_NV_SEED)
+/**
+ * \brief           Entropy poll callback for a non-volatile seed file
+ *
+ * \note            This must accept NULL as its first argument.
+ */
+int mbedtls_nv_seed_poll(void *data,
+                         unsigned char *output, size_t len, size_t *olen);
+#endif
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* entropy_poll.h */
diff --git a/tf-psa-crypto/drivers/builtin/src/gcm.c b/tf-psa-crypto/drivers/builtin/src/gcm.c
new file mode 100644
index 0000000..5dfac23
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/gcm.c
@@ -0,0 +1,1330 @@
+/*
+ *  NIST SP800-38D compliant GCM implementation
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
+ *
+ * See also:
+ * [MGV] http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
+ *
+ * We use the algorithm described as Shoup's method with 4-bit tables in
+ * [MGV] 4.1, pp. 12-13, to enhance speed without using too much memory.
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_GCM_C)
+
+#include "mbedtls/gcm.h"
+#include "mbedtls/platform.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+#include "mbedtls/constant_time.h"
+
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+#include "block_cipher_internal.h"
+#endif
+
+#include <string.h>
+
+#if defined(MBEDTLS_AESNI_C)
+#include "aesni.h"
+#endif
+
+#if defined(MBEDTLS_AESCE_C)
+#include "aesce.h"
+#endif
+
+#if !defined(MBEDTLS_GCM_ALT)
+
+/* Used to select the acceleration mechanism */
+#define MBEDTLS_GCM_ACC_SMALLTABLE  0
+#define MBEDTLS_GCM_ACC_LARGETABLE  1
+#define MBEDTLS_GCM_ACC_AESNI       2
+#define MBEDTLS_GCM_ACC_AESCE       3
+
+/*
+ * Initialize a context
+ */
+void mbedtls_gcm_init(mbedtls_gcm_context *ctx)
+{
+    memset(ctx, 0, sizeof(mbedtls_gcm_context));
+}
+
+static inline void gcm_set_acceleration(mbedtls_gcm_context *ctx)
+{
+#if defined(MBEDTLS_GCM_LARGE_TABLE)
+    ctx->acceleration = MBEDTLS_GCM_ACC_LARGETABLE;
+#else
+    ctx->acceleration = MBEDTLS_GCM_ACC_SMALLTABLE;
+#endif
+
+#if defined(MBEDTLS_AESNI_HAVE_CODE)
+    /* With CLMUL support, we need only h, not the rest of the table */
+    if (mbedtls_aesni_has_support(MBEDTLS_AESNI_CLMUL)) {
+        ctx->acceleration = MBEDTLS_GCM_ACC_AESNI;
+    }
+#endif
+
+#if defined(MBEDTLS_AESCE_HAVE_CODE)
+    if (MBEDTLS_AESCE_HAS_SUPPORT()) {
+        ctx->acceleration = MBEDTLS_GCM_ACC_AESCE;
+    }
+#endif
+}
+
+static inline void gcm_gen_table_rightshift(uint64_t dst[2], const uint64_t src[2])
+{
+    uint8_t *u8Dst = (uint8_t *) dst;
+    uint8_t *u8Src = (uint8_t *) src;
+
+    MBEDTLS_PUT_UINT64_BE(MBEDTLS_GET_UINT64_BE(&src[1], 0) >> 1, &dst[1], 0);
+    u8Dst[8] |= (u8Src[7] & 0x01) << 7;
+    MBEDTLS_PUT_UINT64_BE(MBEDTLS_GET_UINT64_BE(&src[0], 0) >> 1, &dst[0], 0);
+    u8Dst[0] ^= (u8Src[15] & 0x01) ? 0xE1 : 0;
+}
+
+/*
+ * Precompute small multiples of H, that is set
+ *      HH[i] || HL[i] = H times i,
+ * where i is seen as a field element as in [MGV], ie high-order bits
+ * correspond to low powers of P. The result is stored in the same way, that
+ * is the high-order bit of HH corresponds to P^0 and the low-order bit of HL
+ * corresponds to P^127.
+ */
+static int gcm_gen_table(mbedtls_gcm_context *ctx)
+{
+    int ret, i, j;
+    uint64_t u64h[2] = { 0 };
+    uint8_t *h = (uint8_t *) u64h;
+
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+    ret = mbedtls_block_cipher_encrypt(&ctx->block_cipher_ctx, h, h);
+#else
+    size_t olen = 0;
+    ret = mbedtls_cipher_update(&ctx->cipher_ctx, h, 16, h, &olen);
+#endif
+    if (ret != 0) {
+        return ret;
+    }
+
+    gcm_set_acceleration(ctx);
+
+    /* MBEDTLS_GCM_HTABLE_SIZE/2 = 1000 corresponds to 1 in GF(2^128) */
+    ctx->H[MBEDTLS_GCM_HTABLE_SIZE/2][0] = u64h[0];
+    ctx->H[MBEDTLS_GCM_HTABLE_SIZE/2][1] = u64h[1];
+
+    switch (ctx->acceleration) {
+#if defined(MBEDTLS_AESNI_HAVE_CODE)
+        case MBEDTLS_GCM_ACC_AESNI:
+            return 0;
+#endif
+
+#if defined(MBEDTLS_AESCE_HAVE_CODE)
+        case MBEDTLS_GCM_ACC_AESCE:
+            return 0;
+#endif
+
+        default:
+            /* 0 corresponds to 0 in GF(2^128) */
+            ctx->H[0][0] = 0;
+            ctx->H[0][1] = 0;
+
+            for (i = MBEDTLS_GCM_HTABLE_SIZE/4; i > 0; i >>= 1) {
+                gcm_gen_table_rightshift(ctx->H[i], ctx->H[i*2]);
+            }
+
+#if !defined(MBEDTLS_GCM_LARGE_TABLE)
+            /* pack elements of H as 64-bits ints, big-endian */
+            for (i = MBEDTLS_GCM_HTABLE_SIZE/2; i > 0; i >>= 1) {
+                MBEDTLS_PUT_UINT64_BE(ctx->H[i][0], &ctx->H[i][0], 0);
+                MBEDTLS_PUT_UINT64_BE(ctx->H[i][1], &ctx->H[i][1], 0);
+            }
+#endif
+
+            for (i = 2; i < MBEDTLS_GCM_HTABLE_SIZE; i <<= 1) {
+                for (j = 1; j < i; j++) {
+                    mbedtls_xor_no_simd((unsigned char *) ctx->H[i+j],
+                                        (unsigned char *) ctx->H[i],
+                                        (unsigned char *) ctx->H[j],
+                                        16);
+                }
+            }
+    }
+
+    return 0;
+}
+
+int mbedtls_gcm_setkey(mbedtls_gcm_context *ctx,
+                       mbedtls_cipher_id_t cipher,
+                       const unsigned char *key,
+                       unsigned int keybits)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if (keybits != 128 && keybits != 192 && keybits != 256) {
+        return MBEDTLS_ERR_GCM_BAD_INPUT;
+    }
+
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+    mbedtls_block_cipher_free(&ctx->block_cipher_ctx);
+
+    if ((ret = mbedtls_block_cipher_setup(&ctx->block_cipher_ctx, cipher)) != 0) {
+        return ret;
+    }
+
+    if ((ret = mbedtls_block_cipher_setkey(&ctx->block_cipher_ctx, key, keybits)) != 0) {
+        return ret;
+    }
+#else
+    const mbedtls_cipher_info_t *cipher_info;
+
+    cipher_info = mbedtls_cipher_info_from_values(cipher, keybits,
+                                                  MBEDTLS_MODE_ECB);
+    if (cipher_info == NULL) {
+        return MBEDTLS_ERR_GCM_BAD_INPUT;
+    }
+
+    if (mbedtls_cipher_info_get_block_size(cipher_info) != 16) {
+        return MBEDTLS_ERR_GCM_BAD_INPUT;
+    }
+
+    mbedtls_cipher_free(&ctx->cipher_ctx);
+
+    if ((ret = mbedtls_cipher_setup(&ctx->cipher_ctx, cipher_info)) != 0) {
+        return ret;
+    }
+
+    if ((ret = mbedtls_cipher_setkey(&ctx->cipher_ctx, key, keybits,
+                                     MBEDTLS_ENCRYPT)) != 0) {
+        return ret;
+    }
+#endif
+
+    if ((ret = gcm_gen_table(ctx)) != 0) {
+        return ret;
+    }
+
+    return 0;
+}
+
+#if defined(MBEDTLS_GCM_LARGE_TABLE)
+static const uint16_t last8[256] = {
+    0x0000, 0xc201, 0x8403, 0x4602, 0x0807, 0xca06, 0x8c04, 0x4e05,
+    0x100e, 0xd20f, 0x940d, 0x560c, 0x1809, 0xda08, 0x9c0a, 0x5e0b,
+    0x201c, 0xe21d, 0xa41f, 0x661e, 0x281b, 0xea1a, 0xac18, 0x6e19,
+    0x3012, 0xf213, 0xb411, 0x7610, 0x3815, 0xfa14, 0xbc16, 0x7e17,
+    0x4038, 0x8239, 0xc43b, 0x063a, 0x483f, 0x8a3e, 0xcc3c, 0x0e3d,
+    0x5036, 0x9237, 0xd435, 0x1634, 0x5831, 0x9a30, 0xdc32, 0x1e33,
+    0x6024, 0xa225, 0xe427, 0x2626, 0x6823, 0xaa22, 0xec20, 0x2e21,
+    0x702a, 0xb22b, 0xf429, 0x3628, 0x782d, 0xba2c, 0xfc2e, 0x3e2f,
+    0x8070, 0x4271, 0x0473, 0xc672, 0x8877, 0x4a76, 0x0c74, 0xce75,
+    0x907e, 0x527f, 0x147d, 0xd67c, 0x9879, 0x5a78, 0x1c7a, 0xde7b,
+    0xa06c, 0x626d, 0x246f, 0xe66e, 0xa86b, 0x6a6a, 0x2c68, 0xee69,
+    0xb062, 0x7263, 0x3461, 0xf660, 0xb865, 0x7a64, 0x3c66, 0xfe67,
+    0xc048, 0x0249, 0x444b, 0x864a, 0xc84f, 0x0a4e, 0x4c4c, 0x8e4d,
+    0xd046, 0x1247, 0x5445, 0x9644, 0xd841, 0x1a40, 0x5c42, 0x9e43,
+    0xe054, 0x2255, 0x6457, 0xa656, 0xe853, 0x2a52, 0x6c50, 0xae51,
+    0xf05a, 0x325b, 0x7459, 0xb658, 0xf85d, 0x3a5c, 0x7c5e, 0xbe5f,
+    0x00e1, 0xc2e0, 0x84e2, 0x46e3, 0x08e6, 0xcae7, 0x8ce5, 0x4ee4,
+    0x10ef, 0xd2ee, 0x94ec, 0x56ed, 0x18e8, 0xdae9, 0x9ceb, 0x5eea,
+    0x20fd, 0xe2fc, 0xa4fe, 0x66ff, 0x28fa, 0xeafb, 0xacf9, 0x6ef8,
+    0x30f3, 0xf2f2, 0xb4f0, 0x76f1, 0x38f4, 0xfaf5, 0xbcf7, 0x7ef6,
+    0x40d9, 0x82d8, 0xc4da, 0x06db, 0x48de, 0x8adf, 0xccdd, 0x0edc,
+    0x50d7, 0x92d6, 0xd4d4, 0x16d5, 0x58d0, 0x9ad1, 0xdcd3, 0x1ed2,
+    0x60c5, 0xa2c4, 0xe4c6, 0x26c7, 0x68c2, 0xaac3, 0xecc1, 0x2ec0,
+    0x70cb, 0xb2ca, 0xf4c8, 0x36c9, 0x78cc, 0xbacd, 0xfccf, 0x3ece,
+    0x8091, 0x4290, 0x0492, 0xc693, 0x8896, 0x4a97, 0x0c95, 0xce94,
+    0x909f, 0x529e, 0x149c, 0xd69d, 0x9898, 0x5a99, 0x1c9b, 0xde9a,
+    0xa08d, 0x628c, 0x248e, 0xe68f, 0xa88a, 0x6a8b, 0x2c89, 0xee88,
+    0xb083, 0x7282, 0x3480, 0xf681, 0xb884, 0x7a85, 0x3c87, 0xfe86,
+    0xc0a9, 0x02a8, 0x44aa, 0x86ab, 0xc8ae, 0x0aaf, 0x4cad, 0x8eac,
+    0xd0a7, 0x12a6, 0x54a4, 0x96a5, 0xd8a0, 0x1aa1, 0x5ca3, 0x9ea2,
+    0xe0b5, 0x22b4, 0x64b6, 0xa6b7, 0xe8b2, 0x2ab3, 0x6cb1, 0xaeb0,
+    0xf0bb, 0x32ba, 0x74b8, 0xb6b9, 0xf8bc, 0x3abd, 0x7cbf, 0xbebe
+};
+
+static void gcm_mult_largetable(uint8_t *output, const uint8_t *x, uint64_t H[256][2])
+{
+    int i;
+    uint64_t u64z[2];
+    uint16_t *u16z = (uint16_t *) u64z;
+    uint8_t *u8z = (uint8_t *) u64z;
+    uint8_t rem;
+
+    u64z[0] = 0;
+    u64z[1] = 0;
+
+    if (MBEDTLS_IS_BIG_ENDIAN) {
+        for (i = 15; i > 0; i--) {
+            mbedtls_xor_no_simd(u8z, u8z, (uint8_t *) H[x[i]], 16);
+            rem = u8z[15];
+
+            u64z[1] >>= 8;
+            u8z[8] = u8z[7];
+            u64z[0] >>= 8;
+
+            u16z[0] ^= MBEDTLS_GET_UINT16_LE(&last8[rem], 0);
+        }
+    } else {
+        for (i = 15; i > 0; i--) {
+            mbedtls_xor_no_simd(u8z, u8z, (uint8_t *) H[x[i]], 16);
+            rem = u8z[15];
+
+            u64z[1] <<= 8;
+            u8z[8] = u8z[7];
+            u64z[0] <<= 8;
+
+            u16z[0] ^= last8[rem];
+        }
+    }
+
+    mbedtls_xor_no_simd(output, u8z, (uint8_t *) H[x[0]], 16);
+}
+#else
+/*
+ * Shoup's method for multiplication use this table with
+ *      last4[x] = x times P^128
+ * where x and last4[x] are seen as elements of GF(2^128) as in [MGV]
+ */
+static const uint16_t last4[16] =
+{
+    0x0000, 0x1c20, 0x3840, 0x2460,
+    0x7080, 0x6ca0, 0x48c0, 0x54e0,
+    0xe100, 0xfd20, 0xd940, 0xc560,
+    0x9180, 0x8da0, 0xa9c0, 0xb5e0
+};
+
+static void gcm_mult_smalltable(uint8_t *output, const uint8_t *x, uint64_t H[16][2])
+{
+    int i = 0;
+    unsigned char lo, hi, rem;
+    uint64_t u64z[2];
+    const uint64_t *pu64z = NULL;
+    uint8_t *u8z = (uint8_t *) u64z;
+
+    lo = x[15] & 0xf;
+    hi = (x[15] >> 4) & 0xf;
+
+    pu64z = H[lo];
+
+    rem = (unsigned char) pu64z[1] & 0xf;
+    u64z[1] = (pu64z[0] << 60) | (pu64z[1] >> 4);
+    u64z[0] = (pu64z[0] >> 4);
+    u64z[0] ^= (uint64_t) last4[rem] << 48;
+    mbedtls_xor_no_simd(u8z, u8z, (uint8_t *) H[hi], 16);
+
+    for (i = 14; i >= 0; i--) {
+        lo = x[i] & 0xf;
+        hi = (x[i] >> 4) & 0xf;
+
+        rem = (unsigned char) u64z[1] & 0xf;
+        u64z[1] = (u64z[0] << 60) | (u64z[1] >> 4);
+        u64z[0] = (u64z[0] >> 4);
+        u64z[0] ^= (uint64_t) last4[rem] << 48;
+        mbedtls_xor_no_simd(u8z, u8z, (uint8_t *) H[lo], 16);
+
+        rem = (unsigned char) u64z[1] & 0xf;
+        u64z[1] = (u64z[0] << 60) | (u64z[1] >> 4);
+        u64z[0] = (u64z[0] >> 4);
+        u64z[0] ^= (uint64_t) last4[rem] << 48;
+        mbedtls_xor_no_simd(u8z, u8z, (uint8_t *) H[hi], 16);
+    }
+
+    MBEDTLS_PUT_UINT64_BE(u64z[0], output, 0);
+    MBEDTLS_PUT_UINT64_BE(u64z[1], output, 8);
+}
+#endif
+
+/*
+ * Sets output to x times H using the precomputed tables.
+ * x and output are seen as elements of GF(2^128) as in [MGV].
+ */
+static void gcm_mult(mbedtls_gcm_context *ctx, const unsigned char x[16],
+                     unsigned char output[16])
+{
+    switch (ctx->acceleration) {
+#if defined(MBEDTLS_AESNI_HAVE_CODE)
+        case MBEDTLS_GCM_ACC_AESNI:
+            mbedtls_aesni_gcm_mult(output, x, (uint8_t *) ctx->H[MBEDTLS_GCM_HTABLE_SIZE/2]);
+            break;
+#endif
+
+#if defined(MBEDTLS_AESCE_HAVE_CODE)
+        case MBEDTLS_GCM_ACC_AESCE:
+            mbedtls_aesce_gcm_mult(output, x, (uint8_t *) ctx->H[MBEDTLS_GCM_HTABLE_SIZE/2]);
+            break;
+#endif
+
+#if defined(MBEDTLS_GCM_LARGE_TABLE)
+        case MBEDTLS_GCM_ACC_LARGETABLE:
+            gcm_mult_largetable(output, x, ctx->H);
+            break;
+#else
+        case MBEDTLS_GCM_ACC_SMALLTABLE:
+            gcm_mult_smalltable(output, x, ctx->H);
+            break;
+#endif
+    }
+
+    return;
+}
+
+int mbedtls_gcm_starts(mbedtls_gcm_context *ctx,
+                       int mode,
+                       const unsigned char *iv, size_t iv_len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char work_buf[16];
+    const unsigned char *p;
+    size_t use_len;
+    uint64_t iv_bits;
+#if !defined(MBEDTLS_BLOCK_CIPHER_C)
+    size_t olen = 0;
+#endif
+
+    /* IV is limited to 2^64 bits, so 2^61 bytes */
+    /* IV is not allowed to be zero length */
+    if (iv_len == 0 || (uint64_t) iv_len >> 61 != 0) {
+        return MBEDTLS_ERR_GCM_BAD_INPUT;
+    }
+
+    memset(ctx->y, 0x00, sizeof(ctx->y));
+    memset(ctx->buf, 0x00, sizeof(ctx->buf));
+
+    ctx->mode = mode;
+    ctx->len = 0;
+    ctx->add_len = 0;
+
+    if (iv_len == 12) {
+        memcpy(ctx->y, iv, iv_len);
+        ctx->y[15] = 1;
+    } else {
+        memset(work_buf, 0x00, 16);
+        iv_bits = (uint64_t) iv_len * 8;
+        MBEDTLS_PUT_UINT64_BE(iv_bits, work_buf, 8);
+
+        p = iv;
+        while (iv_len > 0) {
+            use_len = (iv_len < 16) ? iv_len : 16;
+
+#if defined(MBEDTLS_COMPILER_IS_GCC) && (MBEDTLS_GCC_VERSION >= 70110)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic warning "-Wstringop-overflow=0"
+#endif
+
+            mbedtls_xor(ctx->y, ctx->y, p, use_len);
+
+#if defined(MBEDTLS_COMPILER_IS_GCC) && (MBEDTLS_GCC_VERSION >= 70110)
+#pragma GCC diagnostic pop
+#endif
+
+            gcm_mult(ctx, ctx->y, ctx->y);
+
+            iv_len -= use_len;
+            p += use_len;
+        }
+
+        mbedtls_xor(ctx->y, ctx->y, work_buf, 16);
+
+        gcm_mult(ctx, ctx->y, ctx->y);
+    }
+
+
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+    ret = mbedtls_block_cipher_encrypt(&ctx->block_cipher_ctx, ctx->y, ctx->base_ectr);
+#else
+    ret = mbedtls_cipher_update(&ctx->cipher_ctx, ctx->y, 16, ctx->base_ectr, &olen);
+#endif
+    if (ret != 0) {
+        return ret;
+    }
+
+    return 0;
+}
+
+/**
+ * mbedtls_gcm_context::buf contains the partial state of the computation of
+ * the authentication tag.
+ * mbedtls_gcm_context::add_len and mbedtls_gcm_context::len indicate
+ * different stages of the computation:
+ *     * len == 0 && add_len == 0:      initial state
+ *     * len == 0 && add_len % 16 != 0: the first `add_len % 16` bytes have
+ *                                      a partial block of AD that has been
+ *                                      xored in but not yet multiplied in.
+ *     * len == 0 && add_len % 16 == 0: the authentication tag is correct if
+ *                                      the data ends now.
+ *     * len % 16 != 0:                 the first `len % 16` bytes have
+ *                                      a partial block of ciphertext that has
+ *                                      been xored in but not yet multiplied in.
+ *     * len > 0 && len % 16 == 0:      the authentication tag is correct if
+ *                                      the data ends now.
+ */
+int mbedtls_gcm_update_ad(mbedtls_gcm_context *ctx,
+                          const unsigned char *add, size_t add_len)
+{
+    const unsigned char *p;
+    size_t use_len, offset;
+    uint64_t new_add_len;
+
+    /* AD is limited to 2^64 bits, ie 2^61 bytes
+     * Also check for possible overflow */
+#if SIZE_MAX > 0xFFFFFFFFFFFFFFFFULL
+    if (add_len > 0xFFFFFFFFFFFFFFFFULL) {
+        return MBEDTLS_ERR_GCM_BAD_INPUT;
+    }
+#endif
+    new_add_len = ctx->add_len + (uint64_t) add_len;
+    if (new_add_len < ctx->add_len || new_add_len >> 61 != 0) {
+        return MBEDTLS_ERR_GCM_BAD_INPUT;
+    }
+
+    offset = ctx->add_len % 16;
+    p = add;
+
+    if (offset != 0) {
+        use_len = 16 - offset;
+        if (use_len > add_len) {
+            use_len = add_len;
+        }
+
+        mbedtls_xor(ctx->buf + offset, ctx->buf + offset, p, use_len);
+
+        if (offset + use_len == 16) {
+            gcm_mult(ctx, ctx->buf, ctx->buf);
+        }
+
+        ctx->add_len += use_len;
+        add_len -= use_len;
+        p += use_len;
+    }
+
+    ctx->add_len += add_len;
+
+    while (add_len >= 16) {
+        mbedtls_xor(ctx->buf, ctx->buf, p, 16);
+
+        gcm_mult(ctx, ctx->buf, ctx->buf);
+
+        add_len -= 16;
+        p += 16;
+    }
+
+    if (add_len > 0) {
+        mbedtls_xor(ctx->buf, ctx->buf, p, add_len);
+    }
+
+    return 0;
+}
+
+/* Increment the counter. */
+static void gcm_incr(unsigned char y[16])
+{
+    uint32_t x = MBEDTLS_GET_UINT32_BE(y, 12);
+    x++;
+    MBEDTLS_PUT_UINT32_BE(x, y, 12);
+}
+
+/* Calculate and apply the encryption mask. Process use_len bytes of data,
+ * starting at position offset in the mask block. */
+static int gcm_mask(mbedtls_gcm_context *ctx,
+                    unsigned char ectr[16],
+                    size_t offset, size_t use_len,
+                    const unsigned char *input,
+                    unsigned char *output)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+    ret = mbedtls_block_cipher_encrypt(&ctx->block_cipher_ctx, ctx->y, ectr);
+#else
+    size_t olen = 0;
+    ret = mbedtls_cipher_update(&ctx->cipher_ctx, ctx->y, 16, ectr, &olen);
+#endif
+    if (ret != 0) {
+        mbedtls_platform_zeroize(ectr, 16);
+        return ret;
+    }
+
+    if (ctx->mode == MBEDTLS_GCM_DECRYPT) {
+        mbedtls_xor(ctx->buf + offset, ctx->buf + offset, input, use_len);
+    }
+    mbedtls_xor(output, ectr + offset, input, use_len);
+    if (ctx->mode == MBEDTLS_GCM_ENCRYPT) {
+        mbedtls_xor(ctx->buf + offset, ctx->buf + offset, output, use_len);
+    }
+
+    return 0;
+}
+
+int mbedtls_gcm_update(mbedtls_gcm_context *ctx,
+                       const unsigned char *input, size_t input_length,
+                       unsigned char *output, size_t output_size,
+                       size_t *output_length)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    const unsigned char *p = input;
+    unsigned char *out_p = output;
+    size_t offset;
+    unsigned char ectr[16] = { 0 };
+
+    if (output_size < input_length) {
+        return MBEDTLS_ERR_GCM_BUFFER_TOO_SMALL;
+    }
+    *output_length = input_length;
+
+    /* Exit early if input_length==0 so that we don't do any pointer arithmetic
+     * on a potentially null pointer.
+     * Returning early also means that the last partial block of AD remains
+     * untouched for mbedtls_gcm_finish */
+    if (input_length == 0) {
+        return 0;
+    }
+
+    if (output > input && (size_t) (output - input) < input_length) {
+        return MBEDTLS_ERR_GCM_BAD_INPUT;
+    }
+
+    /* Total length is restricted to 2^39 - 256 bits, ie 2^36 - 2^5 bytes
+     * Also check for possible overflow */
+    if (ctx->len + input_length < ctx->len ||
+        (uint64_t) ctx->len + input_length > 0xFFFFFFFE0ull) {
+        return MBEDTLS_ERR_GCM_BAD_INPUT;
+    }
+
+    if (ctx->len == 0 && ctx->add_len % 16 != 0) {
+        gcm_mult(ctx, ctx->buf, ctx->buf);
+    }
+
+    offset = ctx->len % 16;
+    if (offset != 0) {
+        size_t use_len = 16 - offset;
+        if (use_len > input_length) {
+            use_len = input_length;
+        }
+
+        if ((ret = gcm_mask(ctx, ectr, offset, use_len, p, out_p)) != 0) {
+            return ret;
+        }
+
+        if (offset + use_len == 16) {
+            gcm_mult(ctx, ctx->buf, ctx->buf);
+        }
+
+        ctx->len += use_len;
+        input_length -= use_len;
+        p += use_len;
+        out_p += use_len;
+    }
+
+    ctx->len += input_length;
+
+    while (input_length >= 16) {
+        gcm_incr(ctx->y);
+        if ((ret = gcm_mask(ctx, ectr, 0, 16, p, out_p)) != 0) {
+            return ret;
+        }
+
+        gcm_mult(ctx, ctx->buf, ctx->buf);
+
+        input_length -= 16;
+        p += 16;
+        out_p += 16;
+    }
+
+    if (input_length > 0) {
+        gcm_incr(ctx->y);
+        if ((ret = gcm_mask(ctx, ectr, 0, input_length, p, out_p)) != 0) {
+            return ret;
+        }
+    }
+
+    mbedtls_platform_zeroize(ectr, sizeof(ectr));
+    return 0;
+}
+
+int mbedtls_gcm_finish(mbedtls_gcm_context *ctx,
+                       unsigned char *output, size_t output_size,
+                       size_t *output_length,
+                       unsigned char *tag, size_t tag_len)
+{
+    unsigned char work_buf[16];
+    uint64_t orig_len;
+    uint64_t orig_add_len;
+
+    /* We never pass any output in finish(). The output parameter exists only
+     * for the sake of alternative implementations. */
+    (void) output;
+    (void) output_size;
+    *output_length = 0;
+
+    /* Total length is restricted to 2^39 - 256 bits, ie 2^36 - 2^5 bytes
+     * and AD length is restricted to 2^64 bits, ie 2^61 bytes so neither of
+     * the two multiplications would overflow. */
+    orig_len = ctx->len * 8;
+    orig_add_len = ctx->add_len * 8;
+
+    if (ctx->len == 0 && ctx->add_len % 16 != 0) {
+        gcm_mult(ctx, ctx->buf, ctx->buf);
+    }
+
+    if (tag_len > 16 || tag_len < 4) {
+        return MBEDTLS_ERR_GCM_BAD_INPUT;
+    }
+
+    if (ctx->len % 16 != 0) {
+        gcm_mult(ctx, ctx->buf, ctx->buf);
+    }
+
+    memcpy(tag, ctx->base_ectr, tag_len);
+
+    if (orig_len || orig_add_len) {
+        memset(work_buf, 0x00, 16);
+
+        MBEDTLS_PUT_UINT32_BE((orig_add_len >> 32), work_buf, 0);
+        MBEDTLS_PUT_UINT32_BE((orig_add_len), work_buf, 4);
+        MBEDTLS_PUT_UINT32_BE((orig_len     >> 32), work_buf, 8);
+        MBEDTLS_PUT_UINT32_BE((orig_len), work_buf, 12);
+
+        mbedtls_xor(ctx->buf, ctx->buf, work_buf, 16);
+
+        gcm_mult(ctx, ctx->buf, ctx->buf);
+
+        mbedtls_xor(tag, tag, ctx->buf, tag_len);
+    }
+
+    return 0;
+}
+
+int mbedtls_gcm_crypt_and_tag(mbedtls_gcm_context *ctx,
+                              int mode,
+                              size_t length,
+                              const unsigned char *iv,
+                              size_t iv_len,
+                              const unsigned char *add,
+                              size_t add_len,
+                              const unsigned char *input,
+                              unsigned char *output,
+                              size_t tag_len,
+                              unsigned char *tag)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t olen;
+
+    if ((ret = mbedtls_gcm_starts(ctx, mode, iv, iv_len)) != 0) {
+        return ret;
+    }
+
+    if ((ret = mbedtls_gcm_update_ad(ctx, add, add_len)) != 0) {
+        return ret;
+    }
+
+    if ((ret = mbedtls_gcm_update(ctx, input, length,
+                                  output, length, &olen)) != 0) {
+        return ret;
+    }
+
+    if ((ret = mbedtls_gcm_finish(ctx, NULL, 0, &olen, tag, tag_len)) != 0) {
+        return ret;
+    }
+
+    return 0;
+}
+
+int mbedtls_gcm_auth_decrypt(mbedtls_gcm_context *ctx,
+                             size_t length,
+                             const unsigned char *iv,
+                             size_t iv_len,
+                             const unsigned char *add,
+                             size_t add_len,
+                             const unsigned char *tag,
+                             size_t tag_len,
+                             const unsigned char *input,
+                             unsigned char *output)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char check_tag[16];
+    int diff;
+
+    if ((ret = mbedtls_gcm_crypt_and_tag(ctx, MBEDTLS_GCM_DECRYPT, length,
+                                         iv, iv_len, add, add_len,
+                                         input, output, tag_len, check_tag)) != 0) {
+        return ret;
+    }
+
+    /* Check tag in "constant-time" */
+    diff = mbedtls_ct_memcmp(tag, check_tag, tag_len);
+
+    if (diff != 0) {
+        mbedtls_platform_zeroize(output, length);
+        return MBEDTLS_ERR_GCM_AUTH_FAILED;
+    }
+
+    return 0;
+}
+
+void mbedtls_gcm_free(mbedtls_gcm_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+    mbedtls_block_cipher_free(&ctx->block_cipher_ctx);
+#else
+    mbedtls_cipher_free(&ctx->cipher_ctx);
+#endif
+    mbedtls_platform_zeroize(ctx, sizeof(mbedtls_gcm_context));
+}
+
+#endif /* !MBEDTLS_GCM_ALT */
+
+#if defined(MBEDTLS_SELF_TEST) && defined(MBEDTLS_CCM_GCM_CAN_AES)
+/*
+ * AES-GCM test vectors from:
+ *
+ * http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmtestvectors.zip
+ */
+#define MAX_TESTS   6
+
+static const int key_index_test_data[MAX_TESTS] =
+{ 0, 0, 1, 1, 1, 1 };
+
+static const unsigned char key_test_data[][32] =
+{
+    { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+    { 0xfe, 0xff, 0xe9, 0x92, 0x86, 0x65, 0x73, 0x1c,
+      0x6d, 0x6a, 0x8f, 0x94, 0x67, 0x30, 0x83, 0x08,
+      0xfe, 0xff, 0xe9, 0x92, 0x86, 0x65, 0x73, 0x1c,
+      0x6d, 0x6a, 0x8f, 0x94, 0x67, 0x30, 0x83, 0x08 },
+};
+
+static const size_t iv_len_test_data[MAX_TESTS] =
+{ 12, 12, 12, 12, 8, 60 };
+
+static const int iv_index_test_data[MAX_TESTS] =
+{ 0, 0, 1, 1, 1, 2 };
+
+static const unsigned char iv_test_data[][64] =
+{
+    { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+      0x00, 0x00, 0x00, 0x00 },
+    { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad,
+      0xde, 0xca, 0xf8, 0x88 },
+    { 0x93, 0x13, 0x22, 0x5d, 0xf8, 0x84, 0x06, 0xe5,
+      0x55, 0x90, 0x9c, 0x5a, 0xff, 0x52, 0x69, 0xaa,
+      0x6a, 0x7a, 0x95, 0x38, 0x53, 0x4f, 0x7d, 0xa1,
+      0xe4, 0xc3, 0x03, 0xd2, 0xa3, 0x18, 0xa7, 0x28,
+      0xc3, 0xc0, 0xc9, 0x51, 0x56, 0x80, 0x95, 0x39,
+      0xfc, 0xf0, 0xe2, 0x42, 0x9a, 0x6b, 0x52, 0x54,
+      0x16, 0xae, 0xdb, 0xf5, 0xa0, 0xde, 0x6a, 0x57,
+      0xa6, 0x37, 0xb3, 0x9b },
+};
+
+static const size_t add_len_test_data[MAX_TESTS] =
+{ 0, 0, 0, 20, 20, 20 };
+
+static const int add_index_test_data[MAX_TESTS] =
+{ 0, 0, 0, 1, 1, 1 };
+
+static const unsigned char additional_test_data[][64] =
+{
+    { 0x00 },
+    { 0xfe, 0xed, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef,
+      0xfe, 0xed, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef,
+      0xab, 0xad, 0xda, 0xd2 },
+};
+
+static const size_t pt_len_test_data[MAX_TESTS] =
+{ 0, 16, 64, 60, 60, 60 };
+
+static const int pt_index_test_data[MAX_TESTS] =
+{ 0, 0, 1, 1, 1, 1 };
+
+static const unsigned char pt_test_data[][64] =
+{
+    { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+    { 0xd9, 0x31, 0x32, 0x25, 0xf8, 0x84, 0x06, 0xe5,
+      0xa5, 0x59, 0x09, 0xc5, 0xaf, 0xf5, 0x26, 0x9a,
+      0x86, 0xa7, 0xa9, 0x53, 0x15, 0x34, 0xf7, 0xda,
+      0x2e, 0x4c, 0x30, 0x3d, 0x8a, 0x31, 0x8a, 0x72,
+      0x1c, 0x3c, 0x0c, 0x95, 0x95, 0x68, 0x09, 0x53,
+      0x2f, 0xcf, 0x0e, 0x24, 0x49, 0xa6, 0xb5, 0x25,
+      0xb1, 0x6a, 0xed, 0xf5, 0xaa, 0x0d, 0xe6, 0x57,
+      0xba, 0x63, 0x7b, 0x39, 0x1a, 0xaf, 0xd2, 0x55 },
+};
+
+static const unsigned char ct_test_data[][64] =
+{
+    { 0x00 },
+    { 0x03, 0x88, 0xda, 0xce, 0x60, 0xb6, 0xa3, 0x92,
+      0xf3, 0x28, 0xc2, 0xb9, 0x71, 0xb2, 0xfe, 0x78 },
+    { 0x42, 0x83, 0x1e, 0xc2, 0x21, 0x77, 0x74, 0x24,
+      0x4b, 0x72, 0x21, 0xb7, 0x84, 0xd0, 0xd4, 0x9c,
+      0xe3, 0xaa, 0x21, 0x2f, 0x2c, 0x02, 0xa4, 0xe0,
+      0x35, 0xc1, 0x7e, 0x23, 0x29, 0xac, 0xa1, 0x2e,
+      0x21, 0xd5, 0x14, 0xb2, 0x54, 0x66, 0x93, 0x1c,
+      0x7d, 0x8f, 0x6a, 0x5a, 0xac, 0x84, 0xaa, 0x05,
+      0x1b, 0xa3, 0x0b, 0x39, 0x6a, 0x0a, 0xac, 0x97,
+      0x3d, 0x58, 0xe0, 0x91, 0x47, 0x3f, 0x59, 0x85 },
+    { 0x42, 0x83, 0x1e, 0xc2, 0x21, 0x77, 0x74, 0x24,
+      0x4b, 0x72, 0x21, 0xb7, 0x84, 0xd0, 0xd4, 0x9c,
+      0xe3, 0xaa, 0x21, 0x2f, 0x2c, 0x02, 0xa4, 0xe0,
+      0x35, 0xc1, 0x7e, 0x23, 0x29, 0xac, 0xa1, 0x2e,
+      0x21, 0xd5, 0x14, 0xb2, 0x54, 0x66, 0x93, 0x1c,
+      0x7d, 0x8f, 0x6a, 0x5a, 0xac, 0x84, 0xaa, 0x05,
+      0x1b, 0xa3, 0x0b, 0x39, 0x6a, 0x0a, 0xac, 0x97,
+      0x3d, 0x58, 0xe0, 0x91 },
+    { 0x61, 0x35, 0x3b, 0x4c, 0x28, 0x06, 0x93, 0x4a,
+      0x77, 0x7f, 0xf5, 0x1f, 0xa2, 0x2a, 0x47, 0x55,
+      0x69, 0x9b, 0x2a, 0x71, 0x4f, 0xcd, 0xc6, 0xf8,
+      0x37, 0x66, 0xe5, 0xf9, 0x7b, 0x6c, 0x74, 0x23,
+      0x73, 0x80, 0x69, 0x00, 0xe4, 0x9f, 0x24, 0xb2,
+      0x2b, 0x09, 0x75, 0x44, 0xd4, 0x89, 0x6b, 0x42,
+      0x49, 0x89, 0xb5, 0xe1, 0xeb, 0xac, 0x0f, 0x07,
+      0xc2, 0x3f, 0x45, 0x98 },
+    { 0x8c, 0xe2, 0x49, 0x98, 0x62, 0x56, 0x15, 0xb6,
+      0x03, 0xa0, 0x33, 0xac, 0xa1, 0x3f, 0xb8, 0x94,
+      0xbe, 0x91, 0x12, 0xa5, 0xc3, 0xa2, 0x11, 0xa8,
+      0xba, 0x26, 0x2a, 0x3c, 0xca, 0x7e, 0x2c, 0xa7,
+      0x01, 0xe4, 0xa9, 0xa4, 0xfb, 0xa4, 0x3c, 0x90,
+      0xcc, 0xdc, 0xb2, 0x81, 0xd4, 0x8c, 0x7c, 0x6f,
+      0xd6, 0x28, 0x75, 0xd2, 0xac, 0xa4, 0x17, 0x03,
+      0x4c, 0x34, 0xae, 0xe5 },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { 0x00 },
+    { 0x98, 0xe7, 0x24, 0x7c, 0x07, 0xf0, 0xfe, 0x41,
+      0x1c, 0x26, 0x7e, 0x43, 0x84, 0xb0, 0xf6, 0x00 },
+    { 0x39, 0x80, 0xca, 0x0b, 0x3c, 0x00, 0xe8, 0x41,
+      0xeb, 0x06, 0xfa, 0xc4, 0x87, 0x2a, 0x27, 0x57,
+      0x85, 0x9e, 0x1c, 0xea, 0xa6, 0xef, 0xd9, 0x84,
+      0x62, 0x85, 0x93, 0xb4, 0x0c, 0xa1, 0xe1, 0x9c,
+      0x7d, 0x77, 0x3d, 0x00, 0xc1, 0x44, 0xc5, 0x25,
+      0xac, 0x61, 0x9d, 0x18, 0xc8, 0x4a, 0x3f, 0x47,
+      0x18, 0xe2, 0x44, 0x8b, 0x2f, 0xe3, 0x24, 0xd9,
+      0xcc, 0xda, 0x27, 0x10, 0xac, 0xad, 0xe2, 0x56 },
+    { 0x39, 0x80, 0xca, 0x0b, 0x3c, 0x00, 0xe8, 0x41,
+      0xeb, 0x06, 0xfa, 0xc4, 0x87, 0x2a, 0x27, 0x57,
+      0x85, 0x9e, 0x1c, 0xea, 0xa6, 0xef, 0xd9, 0x84,
+      0x62, 0x85, 0x93, 0xb4, 0x0c, 0xa1, 0xe1, 0x9c,
+      0x7d, 0x77, 0x3d, 0x00, 0xc1, 0x44, 0xc5, 0x25,
+      0xac, 0x61, 0x9d, 0x18, 0xc8, 0x4a, 0x3f, 0x47,
+      0x18, 0xe2, 0x44, 0x8b, 0x2f, 0xe3, 0x24, 0xd9,
+      0xcc, 0xda, 0x27, 0x10 },
+    { 0x0f, 0x10, 0xf5, 0x99, 0xae, 0x14, 0xa1, 0x54,
+      0xed, 0x24, 0xb3, 0x6e, 0x25, 0x32, 0x4d, 0xb8,
+      0xc5, 0x66, 0x63, 0x2e, 0xf2, 0xbb, 0xb3, 0x4f,
+      0x83, 0x47, 0x28, 0x0f, 0xc4, 0x50, 0x70, 0x57,
+      0xfd, 0xdc, 0x29, 0xdf, 0x9a, 0x47, 0x1f, 0x75,
+      0xc6, 0x65, 0x41, 0xd4, 0xd4, 0xda, 0xd1, 0xc9,
+      0xe9, 0x3a, 0x19, 0xa5, 0x8e, 0x8b, 0x47, 0x3f,
+      0xa0, 0xf0, 0x62, 0xf7 },
+    { 0xd2, 0x7e, 0x88, 0x68, 0x1c, 0xe3, 0x24, 0x3c,
+      0x48, 0x30, 0x16, 0x5a, 0x8f, 0xdc, 0xf9, 0xff,
+      0x1d, 0xe9, 0xa1, 0xd8, 0xe6, 0xb4, 0x47, 0xef,
+      0x6e, 0xf7, 0xb7, 0x98, 0x28, 0x66, 0x6e, 0x45,
+      0x81, 0xe7, 0x90, 0x12, 0xaf, 0x34, 0xdd, 0xd9,
+      0xe2, 0xf0, 0x37, 0x58, 0x9b, 0x29, 0x2d, 0xb3,
+      0xe6, 0x7c, 0x03, 0x67, 0x45, 0xfa, 0x22, 0xe7,
+      0xe9, 0xb7, 0x37, 0x3b },
+    { 0x00 },
+    { 0xce, 0xa7, 0x40, 0x3d, 0x4d, 0x60, 0x6b, 0x6e,
+      0x07, 0x4e, 0xc5, 0xd3, 0xba, 0xf3, 0x9d, 0x18 },
+    { 0x52, 0x2d, 0xc1, 0xf0, 0x99, 0x56, 0x7d, 0x07,
+      0xf4, 0x7f, 0x37, 0xa3, 0x2a, 0x84, 0x42, 0x7d,
+      0x64, 0x3a, 0x8c, 0xdc, 0xbf, 0xe5, 0xc0, 0xc9,
+      0x75, 0x98, 0xa2, 0xbd, 0x25, 0x55, 0xd1, 0xaa,
+      0x8c, 0xb0, 0x8e, 0x48, 0x59, 0x0d, 0xbb, 0x3d,
+      0xa7, 0xb0, 0x8b, 0x10, 0x56, 0x82, 0x88, 0x38,
+      0xc5, 0xf6, 0x1e, 0x63, 0x93, 0xba, 0x7a, 0x0a,
+      0xbc, 0xc9, 0xf6, 0x62, 0x89, 0x80, 0x15, 0xad },
+    { 0x52, 0x2d, 0xc1, 0xf0, 0x99, 0x56, 0x7d, 0x07,
+      0xf4, 0x7f, 0x37, 0xa3, 0x2a, 0x84, 0x42, 0x7d,
+      0x64, 0x3a, 0x8c, 0xdc, 0xbf, 0xe5, 0xc0, 0xc9,
+      0x75, 0x98, 0xa2, 0xbd, 0x25, 0x55, 0xd1, 0xaa,
+      0x8c, 0xb0, 0x8e, 0x48, 0x59, 0x0d, 0xbb, 0x3d,
+      0xa7, 0xb0, 0x8b, 0x10, 0x56, 0x82, 0x88, 0x38,
+      0xc5, 0xf6, 0x1e, 0x63, 0x93, 0xba, 0x7a, 0x0a,
+      0xbc, 0xc9, 0xf6, 0x62 },
+    { 0xc3, 0x76, 0x2d, 0xf1, 0xca, 0x78, 0x7d, 0x32,
+      0xae, 0x47, 0xc1, 0x3b, 0xf1, 0x98, 0x44, 0xcb,
+      0xaf, 0x1a, 0xe1, 0x4d, 0x0b, 0x97, 0x6a, 0xfa,
+      0xc5, 0x2f, 0xf7, 0xd7, 0x9b, 0xba, 0x9d, 0xe0,
+      0xfe, 0xb5, 0x82, 0xd3, 0x39, 0x34, 0xa4, 0xf0,
+      0x95, 0x4c, 0xc2, 0x36, 0x3b, 0xc7, 0x3f, 0x78,
+      0x62, 0xac, 0x43, 0x0e, 0x64, 0xab, 0xe4, 0x99,
+      0xf4, 0x7c, 0x9b, 0x1f },
+    { 0x5a, 0x8d, 0xef, 0x2f, 0x0c, 0x9e, 0x53, 0xf1,
+      0xf7, 0x5d, 0x78, 0x53, 0x65, 0x9e, 0x2a, 0x20,
+      0xee, 0xb2, 0xb2, 0x2a, 0xaf, 0xde, 0x64, 0x19,
+      0xa0, 0x58, 0xab, 0x4f, 0x6f, 0x74, 0x6b, 0xf4,
+      0x0f, 0xc0, 0xc3, 0xb7, 0x80, 0xf2, 0x44, 0x45,
+      0x2d, 0xa3, 0xeb, 0xf1, 0xc5, 0xd8, 0x2c, 0xde,
+      0xa2, 0x41, 0x89, 0x97, 0x20, 0x0e, 0xf8, 0x2e,
+      0x44, 0xae, 0x7e, 0x3f },
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+};
+
+static const unsigned char tag_test_data[][16] =
+{
+    { 0x58, 0xe2, 0xfc, 0xce, 0xfa, 0x7e, 0x30, 0x61,
+      0x36, 0x7f, 0x1d, 0x57, 0xa4, 0xe7, 0x45, 0x5a },
+    { 0xab, 0x6e, 0x47, 0xd4, 0x2c, 0xec, 0x13, 0xbd,
+      0xf5, 0x3a, 0x67, 0xb2, 0x12, 0x57, 0xbd, 0xdf },
+    { 0x4d, 0x5c, 0x2a, 0xf3, 0x27, 0xcd, 0x64, 0xa6,
+      0x2c, 0xf3, 0x5a, 0xbd, 0x2b, 0xa6, 0xfa, 0xb4 },
+    { 0x5b, 0xc9, 0x4f, 0xbc, 0x32, 0x21, 0xa5, 0xdb,
+      0x94, 0xfa, 0xe9, 0x5a, 0xe7, 0x12, 0x1a, 0x47 },
+    { 0x36, 0x12, 0xd2, 0xe7, 0x9e, 0x3b, 0x07, 0x85,
+      0x56, 0x1b, 0xe1, 0x4a, 0xac, 0xa2, 0xfc, 0xcb },
+    { 0x61, 0x9c, 0xc5, 0xae, 0xff, 0xfe, 0x0b, 0xfa,
+      0x46, 0x2a, 0xf4, 0x3c, 0x16, 0x99, 0xd0, 0x50 },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { 0xcd, 0x33, 0xb2, 0x8a, 0xc7, 0x73, 0xf7, 0x4b,
+      0xa0, 0x0e, 0xd1, 0xf3, 0x12, 0x57, 0x24, 0x35 },
+    { 0x2f, 0xf5, 0x8d, 0x80, 0x03, 0x39, 0x27, 0xab,
+      0x8e, 0xf4, 0xd4, 0x58, 0x75, 0x14, 0xf0, 0xfb },
+    { 0x99, 0x24, 0xa7, 0xc8, 0x58, 0x73, 0x36, 0xbf,
+      0xb1, 0x18, 0x02, 0x4d, 0xb8, 0x67, 0x4a, 0x14 },
+    { 0x25, 0x19, 0x49, 0x8e, 0x80, 0xf1, 0x47, 0x8f,
+      0x37, 0xba, 0x55, 0xbd, 0x6d, 0x27, 0x61, 0x8c },
+    { 0x65, 0xdc, 0xc5, 0x7f, 0xcf, 0x62, 0x3a, 0x24,
+      0x09, 0x4f, 0xcc, 0xa4, 0x0d, 0x35, 0x33, 0xf8 },
+    { 0xdc, 0xf5, 0x66, 0xff, 0x29, 0x1c, 0x25, 0xbb,
+      0xb8, 0x56, 0x8f, 0xc3, 0xd3, 0x76, 0xa6, 0xd9 },
+    { 0x53, 0x0f, 0x8a, 0xfb, 0xc7, 0x45, 0x36, 0xb9,
+      0xa9, 0x63, 0xb4, 0xf1, 0xc4, 0xcb, 0x73, 0x8b },
+    { 0xd0, 0xd1, 0xc8, 0xa7, 0x99, 0x99, 0x6b, 0xf0,
+      0x26, 0x5b, 0x98, 0xb5, 0xd4, 0x8a, 0xb9, 0x19 },
+    { 0xb0, 0x94, 0xda, 0xc5, 0xd9, 0x34, 0x71, 0xbd,
+      0xec, 0x1a, 0x50, 0x22, 0x70, 0xe3, 0xcc, 0x6c },
+    { 0x76, 0xfc, 0x6e, 0xce, 0x0f, 0x4e, 0x17, 0x68,
+      0xcd, 0xdf, 0x88, 0x53, 0xbb, 0x2d, 0x55, 0x1b },
+    { 0x3a, 0x33, 0x7d, 0xbf, 0x46, 0xa7, 0x92, 0xc4,
+      0x5e, 0x45, 0x49, 0x13, 0xfe, 0x2e, 0xa8, 0xf2 },
+    { 0xa4, 0x4a, 0x82, 0x66, 0xee, 0x1c, 0x8e, 0xb0,
+      0xc8, 0xb5, 0xd4, 0xcf, 0x5a, 0xe9, 0xf1, 0x9a },
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+};
+
+int mbedtls_gcm_self_test(int verbose)
+{
+    mbedtls_gcm_context ctx;
+    unsigned char buf[64];
+    unsigned char tag_buf[16];
+    int i, j, ret;
+    mbedtls_cipher_id_t cipher = MBEDTLS_CIPHER_ID_AES;
+    size_t olen;
+
+    if (verbose != 0) {
+#if defined(MBEDTLS_GCM_ALT)
+        mbedtls_printf("  GCM note: alternative implementation.\n");
+#else /* MBEDTLS_GCM_ALT */
+#if defined(MBEDTLS_AESNI_HAVE_CODE)
+        if (mbedtls_aesni_has_support(MBEDTLS_AESNI_CLMUL)) {
+            mbedtls_printf("  GCM note: using AESNI.\n");
+        } else
+#endif
+
+#if defined(MBEDTLS_AESCE_HAVE_CODE)
+        if (MBEDTLS_AESCE_HAS_SUPPORT()) {
+            mbedtls_printf("  GCM note: using AESCE.\n");
+        } else
+#endif
+
+        mbedtls_printf("  GCM note: built-in implementation.\n");
+#endif /* MBEDTLS_GCM_ALT */
+    }
+
+    static const int loop_limit =
+        (sizeof(ct_test_data) / sizeof(*ct_test_data)) / MAX_TESTS;
+
+    for (j = 0; j < loop_limit; j++) {
+        int key_len = 128 + 64 * j;
+
+        for (i = 0; i < MAX_TESTS; i++) {
+            if (verbose != 0) {
+                mbedtls_printf("  AES-GCM-%3d #%d (%s): ",
+                               key_len, i, "enc");
+            }
+
+            mbedtls_gcm_init(&ctx);
+
+            ret = mbedtls_gcm_setkey(&ctx, cipher,
+                                     key_test_data[key_index_test_data[i]],
+                                     key_len);
+            /*
+             * AES-192 is an optional feature that may be unavailable when
+             * there is an alternative underlying implementation i.e. when
+             * MBEDTLS_AES_ALT is defined.
+             */
+            if (ret == MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED && key_len == 192) {
+                mbedtls_printf("skipped\n");
+                break;
+            } else if (ret != 0) {
+                goto exit;
+            }
+
+            ret = mbedtls_gcm_crypt_and_tag(&ctx, MBEDTLS_GCM_ENCRYPT,
+                                            pt_len_test_data[i],
+                                            iv_test_data[iv_index_test_data[i]],
+                                            iv_len_test_data[i],
+                                            additional_test_data[add_index_test_data[i]],
+                                            add_len_test_data[i],
+                                            pt_test_data[pt_index_test_data[i]],
+                                            buf, 16, tag_buf);
+#if defined(MBEDTLS_GCM_ALT)
+            /* Allow alternative implementations to only support 12-byte nonces. */
+            if (ret == MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED &&
+                iv_len_test_data[i] != 12) {
+                mbedtls_printf("skipped\n");
+                break;
+            }
+#endif /* defined(MBEDTLS_GCM_ALT) */
+            if (ret != 0) {
+                goto exit;
+            }
+
+            if (memcmp(buf, ct_test_data[j * 6 + i],
+                       pt_len_test_data[i]) != 0 ||
+                memcmp(tag_buf, tag_test_data[j * 6 + i], 16) != 0) {
+                ret = 1;
+                goto exit;
+            }
+
+            mbedtls_gcm_free(&ctx);
+
+            if (verbose != 0) {
+                mbedtls_printf("passed\n");
+            }
+
+            mbedtls_gcm_init(&ctx);
+
+            if (verbose != 0) {
+                mbedtls_printf("  AES-GCM-%3d #%d (%s): ",
+                               key_len, i, "dec");
+            }
+
+            ret = mbedtls_gcm_setkey(&ctx, cipher,
+                                     key_test_data[key_index_test_data[i]],
+                                     key_len);
+            if (ret != 0) {
+                goto exit;
+            }
+
+            ret = mbedtls_gcm_crypt_and_tag(&ctx, MBEDTLS_GCM_DECRYPT,
+                                            pt_len_test_data[i],
+                                            iv_test_data[iv_index_test_data[i]],
+                                            iv_len_test_data[i],
+                                            additional_test_data[add_index_test_data[i]],
+                                            add_len_test_data[i],
+                                            ct_test_data[j * 6 + i], buf, 16, tag_buf);
+
+            if (ret != 0) {
+                goto exit;
+            }
+
+            if (memcmp(buf, pt_test_data[pt_index_test_data[i]],
+                       pt_len_test_data[i]) != 0 ||
+                memcmp(tag_buf, tag_test_data[j * 6 + i], 16) != 0) {
+                ret = 1;
+                goto exit;
+            }
+
+            mbedtls_gcm_free(&ctx);
+
+            if (verbose != 0) {
+                mbedtls_printf("passed\n");
+            }
+
+            mbedtls_gcm_init(&ctx);
+
+            if (verbose != 0) {
+                mbedtls_printf("  AES-GCM-%3d #%d split (%s): ",
+                               key_len, i, "enc");
+            }
+
+            ret = mbedtls_gcm_setkey(&ctx, cipher,
+                                     key_test_data[key_index_test_data[i]],
+                                     key_len);
+            if (ret != 0) {
+                goto exit;
+            }
+
+            ret = mbedtls_gcm_starts(&ctx, MBEDTLS_GCM_ENCRYPT,
+                                     iv_test_data[iv_index_test_data[i]],
+                                     iv_len_test_data[i]);
+            if (ret != 0) {
+                goto exit;
+            }
+
+            ret = mbedtls_gcm_update_ad(&ctx,
+                                        additional_test_data[add_index_test_data[i]],
+                                        add_len_test_data[i]);
+            if (ret != 0) {
+                goto exit;
+            }
+
+            if (pt_len_test_data[i] > 32) {
+                size_t rest_len = pt_len_test_data[i] - 32;
+                ret = mbedtls_gcm_update(&ctx,
+                                         pt_test_data[pt_index_test_data[i]],
+                                         32,
+                                         buf, sizeof(buf), &olen);
+                if (ret != 0) {
+                    goto exit;
+                }
+                if (olen != 32) {
+                    goto exit;
+                }
+
+                ret = mbedtls_gcm_update(&ctx,
+                                         pt_test_data[pt_index_test_data[i]] + 32,
+                                         rest_len,
+                                         buf + 32, sizeof(buf) - 32, &olen);
+                if (ret != 0) {
+                    goto exit;
+                }
+                if (olen != rest_len) {
+                    goto exit;
+                }
+            } else {
+                ret = mbedtls_gcm_update(&ctx,
+                                         pt_test_data[pt_index_test_data[i]],
+                                         pt_len_test_data[i],
+                                         buf, sizeof(buf), &olen);
+                if (ret != 0) {
+                    goto exit;
+                }
+                if (olen != pt_len_test_data[i]) {
+                    goto exit;
+                }
+            }
+
+            ret = mbedtls_gcm_finish(&ctx, NULL, 0, &olen, tag_buf, 16);
+            if (ret != 0) {
+                goto exit;
+            }
+
+            if (memcmp(buf, ct_test_data[j * 6 + i],
+                       pt_len_test_data[i]) != 0 ||
+                memcmp(tag_buf, tag_test_data[j * 6 + i], 16) != 0) {
+                ret = 1;
+                goto exit;
+            }
+
+            mbedtls_gcm_free(&ctx);
+
+            if (verbose != 0) {
+                mbedtls_printf("passed\n");
+            }
+
+            mbedtls_gcm_init(&ctx);
+
+            if (verbose != 0) {
+                mbedtls_printf("  AES-GCM-%3d #%d split (%s): ",
+                               key_len, i, "dec");
+            }
+
+            ret = mbedtls_gcm_setkey(&ctx, cipher,
+                                     key_test_data[key_index_test_data[i]],
+                                     key_len);
+            if (ret != 0) {
+                goto exit;
+            }
+
+            ret = mbedtls_gcm_starts(&ctx, MBEDTLS_GCM_DECRYPT,
+                                     iv_test_data[iv_index_test_data[i]],
+                                     iv_len_test_data[i]);
+            if (ret != 0) {
+                goto exit;
+            }
+            ret = mbedtls_gcm_update_ad(&ctx,
+                                        additional_test_data[add_index_test_data[i]],
+                                        add_len_test_data[i]);
+            if (ret != 0) {
+                goto exit;
+            }
+
+            if (pt_len_test_data[i] > 32) {
+                size_t rest_len = pt_len_test_data[i] - 32;
+                ret = mbedtls_gcm_update(&ctx,
+                                         ct_test_data[j * 6 + i], 32,
+                                         buf, sizeof(buf), &olen);
+                if (ret != 0) {
+                    goto exit;
+                }
+                if (olen != 32) {
+                    goto exit;
+                }
+
+                ret = mbedtls_gcm_update(&ctx,
+                                         ct_test_data[j * 6 + i] + 32,
+                                         rest_len,
+                                         buf + 32, sizeof(buf) - 32, &olen);
+                if (ret != 0) {
+                    goto exit;
+                }
+                if (olen != rest_len) {
+                    goto exit;
+                }
+            } else {
+                ret = mbedtls_gcm_update(&ctx,
+                                         ct_test_data[j * 6 + i],
+                                         pt_len_test_data[i],
+                                         buf, sizeof(buf), &olen);
+                if (ret != 0) {
+                    goto exit;
+                }
+                if (olen != pt_len_test_data[i]) {
+                    goto exit;
+                }
+            }
+
+            ret = mbedtls_gcm_finish(&ctx, NULL, 0, &olen, tag_buf, 16);
+            if (ret != 0) {
+                goto exit;
+            }
+
+            if (memcmp(buf, pt_test_data[pt_index_test_data[i]],
+                       pt_len_test_data[i]) != 0 ||
+                memcmp(tag_buf, tag_test_data[j * 6 + i], 16) != 0) {
+                ret = 1;
+                goto exit;
+            }
+
+            mbedtls_gcm_free(&ctx);
+
+            if (verbose != 0) {
+                mbedtls_printf("passed\n");
+            }
+        }
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+
+    ret = 0;
+
+exit:
+    if (ret != 0) {
+        if (verbose != 0) {
+            mbedtls_printf("failed\n");
+        }
+        mbedtls_gcm_free(&ctx);
+    }
+
+    return ret;
+}
+
+#endif /* MBEDTLS_SELF_TEST && MBEDTLS_AES_C */
+
+#endif /* MBEDTLS_GCM_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/hkdf.c b/tf-psa-crypto/drivers/builtin/src/hkdf.c
new file mode 100644
index 0000000..631ac24
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/hkdf.c
@@ -0,0 +1,161 @@
+/*
+ *  HKDF implementation -- RFC 5869
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#include "common.h"
+
+#if defined(MBEDTLS_HKDF_C)
+
+#include <string.h>
+#include "mbedtls/hkdf.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+int mbedtls_hkdf(const mbedtls_md_info_t *md, const unsigned char *salt,
+                 size_t salt_len, const unsigned char *ikm, size_t ikm_len,
+                 const unsigned char *info, size_t info_len,
+                 unsigned char *okm, size_t okm_len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char prk[MBEDTLS_MD_MAX_SIZE];
+
+    ret = mbedtls_hkdf_extract(md, salt, salt_len, ikm, ikm_len, prk);
+
+    if (ret == 0) {
+        ret = mbedtls_hkdf_expand(md, prk, mbedtls_md_get_size(md),
+                                  info, info_len, okm, okm_len);
+    }
+
+    mbedtls_platform_zeroize(prk, sizeof(prk));
+
+    return ret;
+}
+
+int mbedtls_hkdf_extract(const mbedtls_md_info_t *md,
+                         const unsigned char *salt, size_t salt_len,
+                         const unsigned char *ikm, size_t ikm_len,
+                         unsigned char *prk)
+{
+    unsigned char null_salt[MBEDTLS_MD_MAX_SIZE] = { '\0' };
+
+    if (salt == NULL) {
+        size_t hash_len;
+
+        if (salt_len != 0) {
+            return MBEDTLS_ERR_HKDF_BAD_INPUT_DATA;
+        }
+
+        hash_len = mbedtls_md_get_size(md);
+
+        if (hash_len == 0) {
+            return MBEDTLS_ERR_HKDF_BAD_INPUT_DATA;
+        }
+
+        salt = null_salt;
+        salt_len = hash_len;
+    }
+
+    return mbedtls_md_hmac(md, salt, salt_len, ikm, ikm_len, prk);
+}
+
+int mbedtls_hkdf_expand(const mbedtls_md_info_t *md, const unsigned char *prk,
+                        size_t prk_len, const unsigned char *info,
+                        size_t info_len, unsigned char *okm, size_t okm_len)
+{
+    size_t hash_len;
+    size_t where = 0;
+    size_t n;
+    size_t t_len = 0;
+    size_t i;
+    int ret = 0;
+    mbedtls_md_context_t ctx;
+    unsigned char t[MBEDTLS_MD_MAX_SIZE];
+
+    if (okm == NULL) {
+        return MBEDTLS_ERR_HKDF_BAD_INPUT_DATA;
+    }
+
+    hash_len = mbedtls_md_get_size(md);
+
+    if (prk_len < hash_len || hash_len == 0) {
+        return MBEDTLS_ERR_HKDF_BAD_INPUT_DATA;
+    }
+
+    if (info == NULL) {
+        info = (const unsigned char *) "";
+        info_len = 0;
+    }
+
+    n = okm_len / hash_len;
+
+    if (okm_len % hash_len != 0) {
+        n++;
+    }
+
+    /*
+     * Per RFC 5869 Section 2.3, okm_len must not exceed
+     * 255 times the hash length
+     */
+    if (n > 255) {
+        return MBEDTLS_ERR_HKDF_BAD_INPUT_DATA;
+    }
+
+    mbedtls_md_init(&ctx);
+
+    if ((ret = mbedtls_md_setup(&ctx, md, 1)) != 0) {
+        goto exit;
+    }
+
+    memset(t, 0, hash_len);
+
+    /*
+     * Compute T = T(1) | T(2) | T(3) | ... | T(N)
+     * Where T(N) is defined in RFC 5869 Section 2.3
+     */
+    for (i = 1; i <= n; i++) {
+        size_t num_to_copy;
+        unsigned char c = i & 0xff;
+
+        ret = mbedtls_md_hmac_starts(&ctx, prk, prk_len);
+        if (ret != 0) {
+            goto exit;
+        }
+
+        ret = mbedtls_md_hmac_update(&ctx, t, t_len);
+        if (ret != 0) {
+            goto exit;
+        }
+
+        ret = mbedtls_md_hmac_update(&ctx, info, info_len);
+        if (ret != 0) {
+            goto exit;
+        }
+
+        /* The constant concatenated to the end of each T(n) is a single octet.
+         * */
+        ret = mbedtls_md_hmac_update(&ctx, &c, 1);
+        if (ret != 0) {
+            goto exit;
+        }
+
+        ret = mbedtls_md_hmac_finish(&ctx, t);
+        if (ret != 0) {
+            goto exit;
+        }
+
+        num_to_copy = i != n ? hash_len : okm_len - where;
+        memcpy(okm + where, t, num_to_copy);
+        where += hash_len;
+        t_len = hash_len;
+    }
+
+exit:
+    mbedtls_md_free(&ctx);
+    mbedtls_platform_zeroize(t, sizeof(t));
+
+    return ret;
+}
+
+#endif /* MBEDTLS_HKDF_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/hmac_drbg.c b/tf-psa-crypto/drivers/builtin/src/hmac_drbg.c
new file mode 100644
index 0000000..90174d5
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/hmac_drbg.c
@@ -0,0 +1,633 @@
+/*
+ *  HMAC_DRBG implementation (NIST SP 800-90)
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ *  The NIST SP 800-90A DRBGs are described in the following publication.
+ *  http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
+ *  References below are based on rev. 1 (January 2012).
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_HMAC_DRBG_C)
+
+#include "mbedtls/hmac_drbg.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_FS_IO)
+#include <stdio.h>
+#endif
+
+#include "mbedtls/platform.h"
+
+/*
+ * HMAC_DRBG context initialization
+ */
+void mbedtls_hmac_drbg_init(mbedtls_hmac_drbg_context *ctx)
+{
+    memset(ctx, 0, sizeof(mbedtls_hmac_drbg_context));
+
+    ctx->reseed_interval = MBEDTLS_HMAC_DRBG_RESEED_INTERVAL;
+}
+
+/*
+ * HMAC_DRBG update, using optional additional data (10.1.2.2)
+ */
+int mbedtls_hmac_drbg_update(mbedtls_hmac_drbg_context *ctx,
+                             const unsigned char *additional,
+                             size_t add_len)
+{
+    size_t md_len = mbedtls_md_get_size(ctx->md_ctx.md_info);
+    unsigned char rounds = (additional != NULL && add_len != 0) ? 2 : 1;
+    unsigned char sep[1];
+    unsigned char K[MBEDTLS_MD_MAX_SIZE];
+    int ret = MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+
+    for (sep[0] = 0; sep[0] < rounds; sep[0]++) {
+        /* Step 1 or 4 */
+        if ((ret = mbedtls_md_hmac_reset(&ctx->md_ctx)) != 0) {
+            goto exit;
+        }
+        if ((ret = mbedtls_md_hmac_update(&ctx->md_ctx,
+                                          ctx->V, md_len)) != 0) {
+            goto exit;
+        }
+        if ((ret = mbedtls_md_hmac_update(&ctx->md_ctx,
+                                          sep, 1)) != 0) {
+            goto exit;
+        }
+        if (rounds == 2) {
+            if ((ret = mbedtls_md_hmac_update(&ctx->md_ctx,
+                                              additional, add_len)) != 0) {
+                goto exit;
+            }
+        }
+        if ((ret = mbedtls_md_hmac_finish(&ctx->md_ctx, K)) != 0) {
+            goto exit;
+        }
+
+        /* Step 2 or 5 */
+        if ((ret = mbedtls_md_hmac_starts(&ctx->md_ctx, K, md_len)) != 0) {
+            goto exit;
+        }
+        if ((ret = mbedtls_md_hmac_update(&ctx->md_ctx,
+                                          ctx->V, md_len)) != 0) {
+            goto exit;
+        }
+        if ((ret = mbedtls_md_hmac_finish(&ctx->md_ctx, ctx->V)) != 0) {
+            goto exit;
+        }
+    }
+
+exit:
+    mbedtls_platform_zeroize(K, sizeof(K));
+    return ret;
+}
+
+/*
+ * Simplified HMAC_DRBG initialisation (for use with deterministic ECDSA)
+ */
+int mbedtls_hmac_drbg_seed_buf(mbedtls_hmac_drbg_context *ctx,
+                               const mbedtls_md_info_t *md_info,
+                               const unsigned char *data, size_t data_len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if ((ret = mbedtls_md_setup(&ctx->md_ctx, md_info, 1)) != 0) {
+        return ret;
+    }
+
+#if defined(MBEDTLS_THREADING_C)
+    mbedtls_mutex_init(&ctx->mutex);
+#endif
+
+    /*
+     * Set initial working state.
+     * Use the V memory location, which is currently all 0, to initialize the
+     * MD context with an all-zero key. Then set V to its initial value.
+     */
+    if ((ret = mbedtls_md_hmac_starts(&ctx->md_ctx, ctx->V,
+                                      mbedtls_md_get_size(md_info))) != 0) {
+        return ret;
+    }
+    memset(ctx->V, 0x01, mbedtls_md_get_size(md_info));
+
+    if ((ret = mbedtls_hmac_drbg_update(ctx, data, data_len)) != 0) {
+        return ret;
+    }
+
+    return 0;
+}
+
+/*
+ * Internal function used both for seeding and reseeding the DRBG.
+ * Comments starting with arabic numbers refer to section 10.1.2.4
+ * of SP800-90A, while roman numbers refer to section 9.2.
+ */
+static int hmac_drbg_reseed_core(mbedtls_hmac_drbg_context *ctx,
+                                 const unsigned char *additional, size_t len,
+                                 int use_nonce)
+{
+    unsigned char seed[MBEDTLS_HMAC_DRBG_MAX_SEED_INPUT];
+    size_t seedlen = 0;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    {
+        size_t total_entropy_len;
+
+        if (use_nonce == 0) {
+            total_entropy_len = ctx->entropy_len;
+        } else {
+            total_entropy_len = ctx->entropy_len * 3 / 2;
+        }
+
+        /* III. Check input length */
+        if (len > MBEDTLS_HMAC_DRBG_MAX_INPUT ||
+            total_entropy_len + len > MBEDTLS_HMAC_DRBG_MAX_SEED_INPUT) {
+            return MBEDTLS_ERR_HMAC_DRBG_INPUT_TOO_BIG;
+        }
+    }
+
+    memset(seed, 0, MBEDTLS_HMAC_DRBG_MAX_SEED_INPUT);
+
+    /* IV. Gather entropy_len bytes of entropy for the seed */
+    if ((ret = ctx->f_entropy(ctx->p_entropy,
+                              seed, ctx->entropy_len)) != 0) {
+        return MBEDTLS_ERR_HMAC_DRBG_ENTROPY_SOURCE_FAILED;
+    }
+    seedlen += ctx->entropy_len;
+
+    /* For initial seeding, allow adding of nonce generated
+     * from the entropy source. See Sect 8.6.7 in SP800-90A. */
+    if (use_nonce) {
+        /* Note: We don't merge the two calls to f_entropy() in order
+         *       to avoid requesting too much entropy from f_entropy()
+         *       at once. Specifically, if the underlying digest is not
+         *       SHA-1, 3 / 2 * entropy_len is at least 36 Bytes, which
+         *       is larger than the maximum of 32 Bytes that our own
+         *       entropy source implementation can emit in a single
+         *       call in configurations disabling SHA-512. */
+        if ((ret = ctx->f_entropy(ctx->p_entropy,
+                                  seed + seedlen,
+                                  ctx->entropy_len / 2)) != 0) {
+            return MBEDTLS_ERR_HMAC_DRBG_ENTROPY_SOURCE_FAILED;
+        }
+
+        seedlen += ctx->entropy_len / 2;
+    }
+
+
+    /* 1. Concatenate entropy and additional data if any */
+    if (additional != NULL && len != 0) {
+        memcpy(seed + seedlen, additional, len);
+        seedlen += len;
+    }
+
+    /* 2. Update state */
+    if ((ret = mbedtls_hmac_drbg_update(ctx, seed, seedlen)) != 0) {
+        goto exit;
+    }
+
+    /* 3. Reset reseed_counter */
+    ctx->reseed_counter = 1;
+
+exit:
+    /* 4. Done */
+    mbedtls_platform_zeroize(seed, seedlen);
+    return ret;
+}
+
+/*
+ * HMAC_DRBG reseeding: 10.1.2.4 + 9.2
+ */
+int mbedtls_hmac_drbg_reseed(mbedtls_hmac_drbg_context *ctx,
+                             const unsigned char *additional, size_t len)
+{
+    return hmac_drbg_reseed_core(ctx, additional, len, 0);
+}
+
+/*
+ * HMAC_DRBG initialisation (10.1.2.3 + 9.1)
+ *
+ * The nonce is not passed as a separate parameter but extracted
+ * from the entropy source as suggested in 8.6.7.
+ */
+int mbedtls_hmac_drbg_seed(mbedtls_hmac_drbg_context *ctx,
+                           const mbedtls_md_info_t *md_info,
+                           int (*f_entropy)(void *, unsigned char *, size_t),
+                           void *p_entropy,
+                           const unsigned char *custom,
+                           size_t len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t md_size;
+
+    if ((ret = mbedtls_md_setup(&ctx->md_ctx, md_info, 1)) != 0) {
+        return ret;
+    }
+
+    /* The mutex is initialized iff the md context is set up. */
+#if defined(MBEDTLS_THREADING_C)
+    mbedtls_mutex_init(&ctx->mutex);
+#endif
+
+    md_size = mbedtls_md_get_size(md_info);
+
+    /*
+     * Set initial working state.
+     * Use the V memory location, which is currently all 0, to initialize the
+     * MD context with an all-zero key. Then set V to its initial value.
+     */
+    if ((ret = mbedtls_md_hmac_starts(&ctx->md_ctx, ctx->V, md_size)) != 0) {
+        return ret;
+    }
+    memset(ctx->V, 0x01, md_size);
+
+    ctx->f_entropy = f_entropy;
+    ctx->p_entropy = p_entropy;
+
+    if (ctx->entropy_len == 0) {
+        /*
+         * See SP800-57 5.6.1 (p. 65-66) for the security strength provided by
+         * each hash function, then according to SP800-90A rev1 10.1 table 2,
+         * min_entropy_len (in bits) is security_strength.
+         *
+         * (This also matches the sizes used in the NIST test vectors.)
+         */
+        ctx->entropy_len = md_size <= 20 ? 16 : /* 160-bits hash -> 128 bits */
+                           md_size <= 28 ? 24 : /* 224-bits hash -> 192 bits */
+                           32;  /* better (256+) -> 256 bits */
+    }
+
+    if ((ret = hmac_drbg_reseed_core(ctx, custom, len,
+                                     1 /* add nonce */)) != 0) {
+        return ret;
+    }
+
+    return 0;
+}
+
+/*
+ * Set prediction resistance
+ */
+void mbedtls_hmac_drbg_set_prediction_resistance(mbedtls_hmac_drbg_context *ctx,
+                                                 int resistance)
+{
+    ctx->prediction_resistance = resistance;
+}
+
+/*
+ * Set entropy length grabbed for seeding
+ */
+void mbedtls_hmac_drbg_set_entropy_len(mbedtls_hmac_drbg_context *ctx, size_t len)
+{
+    ctx->entropy_len = len;
+}
+
+/*
+ * Set reseed interval
+ */
+void mbedtls_hmac_drbg_set_reseed_interval(mbedtls_hmac_drbg_context *ctx, int interval)
+{
+    ctx->reseed_interval = interval;
+}
+
+/*
+ * HMAC_DRBG random function with optional additional data:
+ * 10.1.2.5 (arabic) + 9.3 (Roman)
+ */
+int mbedtls_hmac_drbg_random_with_add(void *p_rng,
+                                      unsigned char *output, size_t out_len,
+                                      const unsigned char *additional, size_t add_len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_hmac_drbg_context *ctx = (mbedtls_hmac_drbg_context *) p_rng;
+    size_t md_len = mbedtls_md_get_size(ctx->md_ctx.md_info);
+    size_t left = out_len;
+    unsigned char *out = output;
+
+    /* II. Check request length */
+    if (out_len > MBEDTLS_HMAC_DRBG_MAX_REQUEST) {
+        return MBEDTLS_ERR_HMAC_DRBG_REQUEST_TOO_BIG;
+    }
+
+    /* III. Check input length */
+    if (add_len > MBEDTLS_HMAC_DRBG_MAX_INPUT) {
+        return MBEDTLS_ERR_HMAC_DRBG_INPUT_TOO_BIG;
+    }
+
+    /* 1. (aka VII and IX) Check reseed counter and PR */
+    if (ctx->f_entropy != NULL && /* For no-reseeding instances */
+        (ctx->prediction_resistance == MBEDTLS_HMAC_DRBG_PR_ON ||
+         ctx->reseed_counter > ctx->reseed_interval)) {
+        if ((ret = mbedtls_hmac_drbg_reseed(ctx, additional, add_len)) != 0) {
+            return ret;
+        }
+
+        add_len = 0; /* VII.4 */
+    }
+
+    /* 2. Use additional data if any */
+    if (additional != NULL && add_len != 0) {
+        if ((ret = mbedtls_hmac_drbg_update(ctx,
+                                            additional, add_len)) != 0) {
+            goto exit;
+        }
+    }
+
+    /* 3, 4, 5. Generate bytes */
+    while (left != 0) {
+        size_t use_len = left > md_len ? md_len : left;
+
+        if ((ret = mbedtls_md_hmac_reset(&ctx->md_ctx)) != 0) {
+            goto exit;
+        }
+        if ((ret = mbedtls_md_hmac_update(&ctx->md_ctx,
+                                          ctx->V, md_len)) != 0) {
+            goto exit;
+        }
+        if ((ret = mbedtls_md_hmac_finish(&ctx->md_ctx, ctx->V)) != 0) {
+            goto exit;
+        }
+
+        memcpy(out, ctx->V, use_len);
+        out += use_len;
+        left -= use_len;
+    }
+
+    /* 6. Update */
+    if ((ret = mbedtls_hmac_drbg_update(ctx,
+                                        additional, add_len)) != 0) {
+        goto exit;
+    }
+
+    /* 7. Update reseed counter */
+    ctx->reseed_counter++;
+
+exit:
+    /* 8. Done */
+    return ret;
+}
+
+/*
+ * HMAC_DRBG random function
+ */
+int mbedtls_hmac_drbg_random(void *p_rng, unsigned char *output, size_t out_len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_hmac_drbg_context *ctx = (mbedtls_hmac_drbg_context *) p_rng;
+
+#if defined(MBEDTLS_THREADING_C)
+    if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) {
+        return ret;
+    }
+#endif
+
+    ret = mbedtls_hmac_drbg_random_with_add(ctx, output, out_len, NULL, 0);
+
+#if defined(MBEDTLS_THREADING_C)
+    if (mbedtls_mutex_unlock(&ctx->mutex) != 0) {
+        return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
+    }
+#endif
+
+    return ret;
+}
+
+/*
+ *  This function resets HMAC_DRBG context to the state immediately
+ *  after initial call of mbedtls_hmac_drbg_init().
+ */
+void mbedtls_hmac_drbg_free(mbedtls_hmac_drbg_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+#if defined(MBEDTLS_THREADING_C)
+    /* The mutex is initialized iff the md context is set up. */
+    if (ctx->md_ctx.md_info != NULL) {
+        mbedtls_mutex_free(&ctx->mutex);
+    }
+#endif
+    mbedtls_md_free(&ctx->md_ctx);
+    mbedtls_platform_zeroize(ctx, sizeof(mbedtls_hmac_drbg_context));
+    ctx->reseed_interval = MBEDTLS_HMAC_DRBG_RESEED_INTERVAL;
+}
+
+#if defined(MBEDTLS_FS_IO)
+int mbedtls_hmac_drbg_write_seed_file(mbedtls_hmac_drbg_context *ctx, const char *path)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    FILE *f;
+    unsigned char buf[MBEDTLS_HMAC_DRBG_MAX_INPUT];
+
+    if ((f = fopen(path, "wb")) == NULL) {
+        return MBEDTLS_ERR_HMAC_DRBG_FILE_IO_ERROR;
+    }
+
+    /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */
+    mbedtls_setbuf(f, NULL);
+
+    if ((ret = mbedtls_hmac_drbg_random(ctx, buf, sizeof(buf))) != 0) {
+        goto exit;
+    }
+
+    if (fwrite(buf, 1, sizeof(buf), f) != sizeof(buf)) {
+        ret = MBEDTLS_ERR_HMAC_DRBG_FILE_IO_ERROR;
+        goto exit;
+    }
+
+    ret = 0;
+
+exit:
+    fclose(f);
+    mbedtls_platform_zeroize(buf, sizeof(buf));
+
+    return ret;
+}
+
+int mbedtls_hmac_drbg_update_seed_file(mbedtls_hmac_drbg_context *ctx, const char *path)
+{
+    int ret = 0;
+    FILE *f = NULL;
+    size_t n;
+    unsigned char buf[MBEDTLS_HMAC_DRBG_MAX_INPUT];
+    unsigned char c;
+
+    if ((f = fopen(path, "rb")) == NULL) {
+        return MBEDTLS_ERR_HMAC_DRBG_FILE_IO_ERROR;
+    }
+
+    /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */
+    mbedtls_setbuf(f, NULL);
+
+    n = fread(buf, 1, sizeof(buf), f);
+    if (fread(&c, 1, 1, f) != 0) {
+        ret = MBEDTLS_ERR_HMAC_DRBG_INPUT_TOO_BIG;
+        goto exit;
+    }
+    if (n == 0 || ferror(f)) {
+        ret = MBEDTLS_ERR_HMAC_DRBG_FILE_IO_ERROR;
+        goto exit;
+    }
+    fclose(f);
+    f = NULL;
+
+    ret = mbedtls_hmac_drbg_update(ctx, buf, n);
+
+exit:
+    mbedtls_platform_zeroize(buf, sizeof(buf));
+    if (f != NULL) {
+        fclose(f);
+    }
+    if (ret != 0) {
+        return ret;
+    }
+    return mbedtls_hmac_drbg_write_seed_file(ctx, path);
+}
+#endif /* MBEDTLS_FS_IO */
+
+
+#if defined(MBEDTLS_SELF_TEST)
+
+#if !defined(MBEDTLS_MD_CAN_SHA1)
+/* Dummy checkup routine */
+int mbedtls_hmac_drbg_self_test(int verbose)
+{
+    (void) verbose;
+    return 0;
+}
+#else
+
+#define OUTPUT_LEN  80
+
+/* From a NIST PR=true test vector */
+static const unsigned char entropy_pr[] = {
+    0xa0, 0xc9, 0xab, 0x58, 0xf1, 0xe2, 0xe5, 0xa4, 0xde, 0x3e, 0xbd, 0x4f,
+    0xf7, 0x3e, 0x9c, 0x5b, 0x64, 0xef, 0xd8, 0xca, 0x02, 0x8c, 0xf8, 0x11,
+    0x48, 0xa5, 0x84, 0xfe, 0x69, 0xab, 0x5a, 0xee, 0x42, 0xaa, 0x4d, 0x42,
+    0x17, 0x60, 0x99, 0xd4, 0x5e, 0x13, 0x97, 0xdc, 0x40, 0x4d, 0x86, 0xa3,
+    0x7b, 0xf5, 0x59, 0x54, 0x75, 0x69, 0x51, 0xe4
+};
+static const unsigned char result_pr[OUTPUT_LEN] = {
+    0x9a, 0x00, 0xa2, 0xd0, 0x0e, 0xd5, 0x9b, 0xfe, 0x31, 0xec, 0xb1, 0x39,
+    0x9b, 0x60, 0x81, 0x48, 0xd1, 0x96, 0x9d, 0x25, 0x0d, 0x3c, 0x1e, 0x94,
+    0x10, 0x10, 0x98, 0x12, 0x93, 0x25, 0xca, 0xb8, 0xfc, 0xcc, 0x2d, 0x54,
+    0x73, 0x19, 0x70, 0xc0, 0x10, 0x7a, 0xa4, 0x89, 0x25, 0x19, 0x95, 0x5e,
+    0x4b, 0xc6, 0x00, 0x1d, 0x7f, 0x4e, 0x6a, 0x2b, 0xf8, 0xa3, 0x01, 0xab,
+    0x46, 0x05, 0x5c, 0x09, 0xa6, 0x71, 0x88, 0xf1, 0xa7, 0x40, 0xee, 0xf3,
+    0xe1, 0x5c, 0x02, 0x9b, 0x44, 0xaf, 0x03, 0x44
+};
+
+/* From a NIST PR=false test vector */
+static const unsigned char entropy_nopr[] = {
+    0x79, 0x34, 0x9b, 0xbf, 0x7c, 0xdd, 0xa5, 0x79, 0x95, 0x57, 0x86, 0x66,
+    0x21, 0xc9, 0x13, 0x83, 0x11, 0x46, 0x73, 0x3a, 0xbf, 0x8c, 0x35, 0xc8,
+    0xc7, 0x21, 0x5b, 0x5b, 0x96, 0xc4, 0x8e, 0x9b, 0x33, 0x8c, 0x74, 0xe3,
+    0xe9, 0x9d, 0xfe, 0xdf
+};
+static const unsigned char result_nopr[OUTPUT_LEN] = {
+    0xc6, 0xa1, 0x6a, 0xb8, 0xd4, 0x20, 0x70, 0x6f, 0x0f, 0x34, 0xab, 0x7f,
+    0xec, 0x5a, 0xdc, 0xa9, 0xd8, 0xca, 0x3a, 0x13, 0x3e, 0x15, 0x9c, 0xa6,
+    0xac, 0x43, 0xc6, 0xf8, 0xa2, 0xbe, 0x22, 0x83, 0x4a, 0x4c, 0x0a, 0x0a,
+    0xff, 0xb1, 0x0d, 0x71, 0x94, 0xf1, 0xc1, 0xa5, 0xcf, 0x73, 0x22, 0xec,
+    0x1a, 0xe0, 0x96, 0x4e, 0xd4, 0xbf, 0x12, 0x27, 0x46, 0xe0, 0x87, 0xfd,
+    0xb5, 0xb3, 0xe9, 0x1b, 0x34, 0x93, 0xd5, 0xbb, 0x98, 0xfa, 0xed, 0x49,
+    0xe8, 0x5f, 0x13, 0x0f, 0xc8, 0xa4, 0x59, 0xb7
+};
+
+/* "Entropy" from buffer */
+static size_t test_offset;
+static int hmac_drbg_self_test_entropy(void *data,
+                                       unsigned char *buf, size_t len)
+{
+    const unsigned char *p = data;
+    memcpy(buf, p + test_offset, len);
+    test_offset += len;
+    return 0;
+}
+
+#define CHK(c)    if ((c) != 0)                          \
+    {                                       \
+        if (verbose != 0)                  \
+        mbedtls_printf("failed\n");  \
+        return 1;                        \
+    }
+
+/*
+ * Checkup routine for HMAC_DRBG with SHA-1
+ */
+int mbedtls_hmac_drbg_self_test(int verbose)
+{
+    mbedtls_hmac_drbg_context ctx;
+    unsigned char buf[OUTPUT_LEN];
+    const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type(MBEDTLS_MD_SHA1);
+
+    mbedtls_hmac_drbg_init(&ctx);
+
+    /*
+     * PR = True
+     */
+    if (verbose != 0) {
+        mbedtls_printf("  HMAC_DRBG (PR = True) : ");
+    }
+
+    test_offset = 0;
+    CHK(mbedtls_hmac_drbg_seed(&ctx, md_info,
+                               hmac_drbg_self_test_entropy, (void *) entropy_pr,
+                               NULL, 0));
+    mbedtls_hmac_drbg_set_prediction_resistance(&ctx, MBEDTLS_HMAC_DRBG_PR_ON);
+    CHK(mbedtls_hmac_drbg_random(&ctx, buf, OUTPUT_LEN));
+    CHK(mbedtls_hmac_drbg_random(&ctx, buf, OUTPUT_LEN));
+    CHK(memcmp(buf, result_pr, OUTPUT_LEN));
+    mbedtls_hmac_drbg_free(&ctx);
+
+    mbedtls_hmac_drbg_free(&ctx);
+
+    if (verbose != 0) {
+        mbedtls_printf("passed\n");
+    }
+
+    /*
+     * PR = False
+     */
+    if (verbose != 0) {
+        mbedtls_printf("  HMAC_DRBG (PR = False) : ");
+    }
+
+    mbedtls_hmac_drbg_init(&ctx);
+
+    test_offset = 0;
+    CHK(mbedtls_hmac_drbg_seed(&ctx, md_info,
+                               hmac_drbg_self_test_entropy, (void *) entropy_nopr,
+                               NULL, 0));
+    CHK(mbedtls_hmac_drbg_reseed(&ctx, NULL, 0));
+    CHK(mbedtls_hmac_drbg_random(&ctx, buf, OUTPUT_LEN));
+    CHK(mbedtls_hmac_drbg_random(&ctx, buf, OUTPUT_LEN));
+    CHK(memcmp(buf, result_nopr, OUTPUT_LEN));
+    mbedtls_hmac_drbg_free(&ctx);
+
+    mbedtls_hmac_drbg_free(&ctx);
+
+    if (verbose != 0) {
+        mbedtls_printf("passed\n");
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+
+    return 0;
+}
+#endif /* MBEDTLS_MD_CAN_SHA1 */
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_HMAC_DRBG_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/lmots.c b/tf-psa-crypto/drivers/builtin/src/lmots.c
new file mode 100644
index 0000000..c51cb41
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/lmots.c
@@ -0,0 +1,786 @@
+/*
+ * The LM-OTS one-time public-key signature scheme
+ *
+ * Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ *  The following sources were referenced in the design of this implementation
+ *  of the LM-OTS algorithm:
+ *
+ *  [1] IETF RFC8554
+ *      D. McGrew, M. Curcio, S.Fluhrer
+ *      https://datatracker.ietf.org/doc/html/rfc8554
+ *
+ *  [2] NIST Special Publication 800-208
+ *      David A. Cooper et. al.
+ *      https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_LMS_C)
+
+#include <string.h>
+
+#include "lmots.h"
+
+#include "mbedtls/lms.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+#include "psa_util_internal.h"
+
+#include "psa/crypto.h"
+
+/* Define a local translating function to save code size by not using too many
+ * arguments in each translating place. */
+static int local_err_translation(psa_status_t status)
+{
+    return psa_status_to_mbedtls(status, psa_to_lms_errors,
+                                 ARRAY_LENGTH(psa_to_lms_errors),
+                                 psa_generic_status_to_mbedtls);
+}
+#define PSA_TO_MBEDTLS_ERR(status) local_err_translation(status)
+
+#define PUBLIC_KEY_TYPE_OFFSET     (0)
+#define PUBLIC_KEY_I_KEY_ID_OFFSET (PUBLIC_KEY_TYPE_OFFSET + \
+                                    MBEDTLS_LMOTS_TYPE_LEN)
+#define PUBLIC_KEY_Q_LEAF_ID_OFFSET (PUBLIC_KEY_I_KEY_ID_OFFSET + \
+                                     MBEDTLS_LMOTS_I_KEY_ID_LEN)
+#define PUBLIC_KEY_KEY_HASH_OFFSET (PUBLIC_KEY_Q_LEAF_ID_OFFSET + \
+                                    MBEDTLS_LMOTS_Q_LEAF_ID_LEN)
+
+/* We only support parameter sets that use 8-bit digits, as it does not require
+ * translation logic between digits and bytes */
+#define W_WINTERNITZ_PARAMETER (8u)
+#define CHECKSUM_LEN           (2)
+#define I_DIGIT_IDX_LEN        (2)
+#define J_HASH_IDX_LEN         (1)
+#define D_CONST_LEN            (2)
+
+#define DIGIT_MAX_VALUE        ((1u << W_WINTERNITZ_PARAMETER) - 1u)
+
+#define D_CONST_LEN            (2)
+static const unsigned char D_PUBLIC_CONSTANT_BYTES[D_CONST_LEN] = { 0x80, 0x80 };
+static const unsigned char D_MESSAGE_CONSTANT_BYTES[D_CONST_LEN] = { 0x81, 0x81 };
+
+#if defined(MBEDTLS_TEST_HOOKS)
+int (*mbedtls_lmots_sign_private_key_invalidated_hook)(unsigned char *) = NULL;
+#endif /* defined(MBEDTLS_TEST_HOOKS) */
+
+/* Calculate the checksum digits that are appended to the end of the LMOTS digit
+ * string. See NIST SP800-208 section 3.1 or RFC8554 Algorithm 2 for details of
+ * the checksum algorithm.
+ *
+ *  params              The LMOTS parameter set, I and q values which
+ *                      describe the key being used.
+ *
+ *  digest              The digit string to create the digest from. As
+ *                      this does not contain a checksum, it is the same
+ *                      size as a hash output.
+ */
+static unsigned short lmots_checksum_calculate(const mbedtls_lmots_parameters_t *params,
+                                               const unsigned char *digest)
+{
+    size_t idx;
+    unsigned sum = 0;
+
+    for (idx = 0; idx < MBEDTLS_LMOTS_N_HASH_LEN(params->type); idx++) {
+        sum += DIGIT_MAX_VALUE - digest[idx];
+    }
+
+    return sum;
+}
+
+/* Create the string of digest digits (in the base determined by the Winternitz
+ * parameter with the checksum appended to the end (Q || cksm(Q)). See NIST
+ * SP800-208 section 3.1 or RFC8554 Algorithm 3 step 5 (also used in Algorithm
+ * 4b step 3) for details.
+ *
+ *  params              The LMOTS parameter set, I and q values which
+ *                      describe the key being used.
+ *
+ *  msg                 The message that will be hashed to create the
+ *                      digest.
+ *
+ *  msg_size            The size of the message.
+ *
+ *  C_random_value      The random value that will be combined with the
+ *                      message digest. This is always the same size as a
+ *                      hash output for whichever hash algorithm is
+ *                      determined by the parameter set.
+ *
+ *  output              An output containing the digit string (+
+ *                      checksum) of length P digits (in the case of
+ *                      MBEDTLS_LMOTS_SHA256_N32_W8, this means it is of
+ *                      size P bytes).
+ */
+static int create_digit_array_with_checksum(const mbedtls_lmots_parameters_t *params,
+                                            const unsigned char *msg,
+                                            size_t msg_len,
+                                            const unsigned char *C_random_value,
+                                            unsigned char *out)
+{
+    psa_hash_operation_t op = PSA_HASH_OPERATION_INIT;
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    size_t output_hash_len;
+    unsigned short checksum;
+
+    status = psa_hash_setup(&op, PSA_ALG_SHA_256);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_hash_update(&op, params->I_key_identifier,
+                             MBEDTLS_LMOTS_I_KEY_ID_LEN);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_hash_update(&op, params->q_leaf_identifier,
+                             MBEDTLS_LMOTS_Q_LEAF_ID_LEN);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_hash_update(&op, D_MESSAGE_CONSTANT_BYTES, D_CONST_LEN);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_hash_update(&op, C_random_value,
+                             MBEDTLS_LMOTS_C_RANDOM_VALUE_LEN(params->type));
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_hash_update(&op, msg, msg_len);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_hash_finish(&op, out,
+                             MBEDTLS_LMOTS_N_HASH_LEN(params->type),
+                             &output_hash_len);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    checksum = lmots_checksum_calculate(params, out);
+    MBEDTLS_PUT_UINT16_BE(checksum, out, MBEDTLS_LMOTS_N_HASH_LEN(params->type));
+
+exit:
+    psa_hash_abort(&op);
+
+    return PSA_TO_MBEDTLS_ERR(status);
+}
+
+/* Hash each element of the string of digits (+ checksum), producing a hash
+ * output for each element. This is used in several places (by varying the
+ * hash_idx_min/max_values) in order to calculate a public key from a private
+ * key (RFC8554 Algorithm 1 step 4), in order to sign a message (RFC8554
+ * Algorithm 3 step 5), and to calculate a public key candidate from a
+ * signature and message (RFC8554 Algorithm 4b step 3).
+ *
+ *  params              The LMOTS parameter set, I and q values which
+ *                      describe the key being used.
+ *
+ *  x_digit_array       The array of digits (of size P, 34 in the case of
+ *                      MBEDTLS_LMOTS_SHA256_N32_W8).
+ *
+ *  hash_idx_min_values An array of the starting values of the j iterator
+ *                      for each of the members of the digit array. If
+ *                      this value in NULL, then all iterators will start
+ *                      at 0.
+ *
+ *  hash_idx_max_values An array of the upper bound values of the j
+ *                      iterator for each of the members of the digit
+ *                      array. If this value in NULL, then iterator is
+ *                      bounded to be less than 2^w - 1 (255 in the case
+ *                      of MBEDTLS_LMOTS_SHA256_N32_W8)
+ *
+ *  output              An array containing a hash output for each member
+ *                      of the digit string P. In the case of
+ *                      MBEDTLS_LMOTS_SHA256_N32_W8, this is of size 32 *
+ *                      34.
+ */
+static int hash_digit_array(const mbedtls_lmots_parameters_t *params,
+                            const unsigned char *x_digit_array,
+                            const unsigned char *hash_idx_min_values,
+                            const unsigned char *hash_idx_max_values,
+                            unsigned char *output)
+{
+    unsigned int i_digit_idx;
+    unsigned char i_digit_idx_bytes[I_DIGIT_IDX_LEN];
+    unsigned int j_hash_idx;
+    unsigned char j_hash_idx_bytes[J_HASH_IDX_LEN];
+    unsigned int j_hash_idx_min;
+    unsigned int j_hash_idx_max;
+    psa_hash_operation_t op = PSA_HASH_OPERATION_INIT;
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    size_t output_hash_len;
+    unsigned char tmp_hash[MBEDTLS_LMOTS_N_HASH_LEN_MAX];
+
+    for (i_digit_idx = 0;
+         i_digit_idx < MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT(params->type);
+         i_digit_idx++) {
+
+        memcpy(tmp_hash,
+               &x_digit_array[i_digit_idx * MBEDTLS_LMOTS_N_HASH_LEN(params->type)],
+               MBEDTLS_LMOTS_N_HASH_LEN(params->type));
+
+        j_hash_idx_min = hash_idx_min_values != NULL ?
+                         hash_idx_min_values[i_digit_idx] : 0;
+        j_hash_idx_max = hash_idx_max_values != NULL ?
+                         hash_idx_max_values[i_digit_idx] : DIGIT_MAX_VALUE;
+
+        for (j_hash_idx = j_hash_idx_min;
+             j_hash_idx < j_hash_idx_max;
+             j_hash_idx++) {
+            status = psa_hash_setup(&op, PSA_ALG_SHA_256);
+            if (status != PSA_SUCCESS) {
+                goto exit;
+            }
+
+            status = psa_hash_update(&op,
+                                     params->I_key_identifier,
+                                     MBEDTLS_LMOTS_I_KEY_ID_LEN);
+            if (status != PSA_SUCCESS) {
+                goto exit;
+            }
+
+            status = psa_hash_update(&op,
+                                     params->q_leaf_identifier,
+                                     MBEDTLS_LMOTS_Q_LEAF_ID_LEN);
+            if (status != PSA_SUCCESS) {
+                goto exit;
+            }
+
+            MBEDTLS_PUT_UINT16_BE(i_digit_idx, i_digit_idx_bytes, 0);
+            status = psa_hash_update(&op, i_digit_idx_bytes, I_DIGIT_IDX_LEN);
+            if (status != PSA_SUCCESS) {
+                goto exit;
+            }
+
+            j_hash_idx_bytes[0] = (uint8_t) j_hash_idx;
+            status = psa_hash_update(&op, j_hash_idx_bytes, J_HASH_IDX_LEN);
+            if (status != PSA_SUCCESS) {
+                goto exit;
+            }
+
+            status = psa_hash_update(&op, tmp_hash,
+                                     MBEDTLS_LMOTS_N_HASH_LEN(params->type));
+            if (status != PSA_SUCCESS) {
+                goto exit;
+            }
+
+            status = psa_hash_finish(&op, tmp_hash, sizeof(tmp_hash),
+                                     &output_hash_len);
+            if (status != PSA_SUCCESS) {
+                goto exit;
+            }
+
+            psa_hash_abort(&op);
+        }
+
+        memcpy(&output[i_digit_idx * MBEDTLS_LMOTS_N_HASH_LEN(params->type)],
+               tmp_hash, MBEDTLS_LMOTS_N_HASH_LEN(params->type));
+    }
+
+exit:
+    psa_hash_abort(&op);
+    mbedtls_platform_zeroize(tmp_hash, sizeof(tmp_hash));
+
+    return PSA_TO_MBEDTLS_ERR(status);
+}
+
+/* Combine the hashes of the digit array into a public key. This is used in
+ * in order to calculate a public key from a private key (RFC8554 Algorithm 1
+ * step 4), and to calculate a public key candidate from a signature and message
+ * (RFC8554 Algorithm 4b step 3).
+ *
+ *  params           The LMOTS parameter set, I and q values which describe
+ *                   the key being used.
+ *  y_hashed_digits  The array of hashes, one hash for each digit of the
+ *                   symbol array (which is of size P, 34 in the case of
+ *                   MBEDTLS_LMOTS_SHA256_N32_W8)
+ *
+ *  pub_key          The output public key (or candidate public key in
+ *                   case this is being run as part of signature
+ *                   verification), in the form of a hash output.
+ */
+static int public_key_from_hashed_digit_array(const mbedtls_lmots_parameters_t *params,
+                                              const unsigned char *y_hashed_digits,
+                                              unsigned char *pub_key)
+{
+    psa_hash_operation_t op = PSA_HASH_OPERATION_INIT;
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    size_t output_hash_len;
+
+    status = psa_hash_setup(&op, PSA_ALG_SHA_256);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_hash_update(&op,
+                             params->I_key_identifier,
+                             MBEDTLS_LMOTS_I_KEY_ID_LEN);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_hash_update(&op, params->q_leaf_identifier,
+                             MBEDTLS_LMOTS_Q_LEAF_ID_LEN);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_hash_update(&op, D_PUBLIC_CONSTANT_BYTES, D_CONST_LEN);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_hash_update(&op, y_hashed_digits,
+                             MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT(params->type) *
+                             MBEDTLS_LMOTS_N_HASH_LEN(params->type));
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_hash_finish(&op, pub_key,
+                             MBEDTLS_LMOTS_N_HASH_LEN(params->type),
+                             &output_hash_len);
+    if (status != PSA_SUCCESS) {
+
+exit:
+        psa_hash_abort(&op);
+    }
+
+    return PSA_TO_MBEDTLS_ERR(status);
+}
+
+#if !defined(MBEDTLS_DEPRECATED_REMOVED)
+int mbedtls_lms_error_from_psa(psa_status_t status)
+{
+    switch (status) {
+        case PSA_SUCCESS:
+            return 0;
+        case PSA_ERROR_HARDWARE_FAILURE:
+            return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED;
+        case PSA_ERROR_NOT_SUPPORTED:
+            return MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED;
+        case PSA_ERROR_BUFFER_TOO_SMALL:
+            return MBEDTLS_ERR_LMS_BUFFER_TOO_SMALL;
+        case PSA_ERROR_INVALID_ARGUMENT:
+            return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+        default:
+            return MBEDTLS_ERR_ERROR_GENERIC_ERROR;
+    }
+}
+#endif /* !MBEDTLS_DEPRECATED_REMOVED */
+
+void mbedtls_lmots_public_init(mbedtls_lmots_public_t *ctx)
+{
+    memset(ctx, 0, sizeof(*ctx));
+}
+
+void mbedtls_lmots_public_free(mbedtls_lmots_public_t *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_platform_zeroize(ctx, sizeof(*ctx));
+}
+
+int mbedtls_lmots_import_public_key(mbedtls_lmots_public_t *ctx,
+                                    const unsigned char *key, size_t key_len)
+{
+    if (key_len < MBEDTLS_LMOTS_SIG_TYPE_OFFSET + MBEDTLS_LMOTS_TYPE_LEN) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    ctx->params.type = (mbedtls_lmots_algorithm_type_t)
+                       MBEDTLS_GET_UINT32_BE(key, MBEDTLS_LMOTS_SIG_TYPE_OFFSET);
+
+    if (key_len != MBEDTLS_LMOTS_PUBLIC_KEY_LEN(ctx->params.type)) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    memcpy(ctx->params.I_key_identifier,
+           key + PUBLIC_KEY_I_KEY_ID_OFFSET,
+           MBEDTLS_LMOTS_I_KEY_ID_LEN);
+
+    memcpy(ctx->params.q_leaf_identifier,
+           key + PUBLIC_KEY_Q_LEAF_ID_OFFSET,
+           MBEDTLS_LMOTS_Q_LEAF_ID_LEN);
+
+    memcpy(ctx->public_key,
+           key + PUBLIC_KEY_KEY_HASH_OFFSET,
+           MBEDTLS_LMOTS_N_HASH_LEN(ctx->params.type));
+
+    ctx->have_public_key = 1;
+
+    return 0;
+}
+
+int mbedtls_lmots_export_public_key(const mbedtls_lmots_public_t *ctx,
+                                    unsigned char *key, size_t key_size,
+                                    size_t *key_len)
+{
+    if (key_size < MBEDTLS_LMOTS_PUBLIC_KEY_LEN(ctx->params.type)) {
+        return MBEDTLS_ERR_LMS_BUFFER_TOO_SMALL;
+    }
+
+    if (!ctx->have_public_key) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    MBEDTLS_PUT_UINT32_BE(ctx->params.type, key, MBEDTLS_LMOTS_SIG_TYPE_OFFSET);
+
+    memcpy(key + PUBLIC_KEY_I_KEY_ID_OFFSET,
+           ctx->params.I_key_identifier,
+           MBEDTLS_LMOTS_I_KEY_ID_LEN);
+
+    memcpy(key + PUBLIC_KEY_Q_LEAF_ID_OFFSET,
+           ctx->params.q_leaf_identifier,
+           MBEDTLS_LMOTS_Q_LEAF_ID_LEN);
+
+    memcpy(key + PUBLIC_KEY_KEY_HASH_OFFSET, ctx->public_key,
+           MBEDTLS_LMOTS_N_HASH_LEN(ctx->params.type));
+
+    if (key_len != NULL) {
+        *key_len = MBEDTLS_LMOTS_PUBLIC_KEY_LEN(ctx->params.type);
+    }
+
+    return 0;
+}
+
+int mbedtls_lmots_calculate_public_key_candidate(const mbedtls_lmots_parameters_t *params,
+                                                 const unsigned char  *msg,
+                                                 size_t msg_size,
+                                                 const unsigned char *sig,
+                                                 size_t sig_size,
+                                                 unsigned char *out,
+                                                 size_t out_size,
+                                                 size_t *out_len)
+{
+    unsigned char tmp_digit_array[MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT_MAX];
+    unsigned char y_hashed_digits[MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT_MAX][MBEDTLS_LMOTS_N_HASH_LEN_MAX];
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if (msg == NULL && msg_size != 0) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    if (sig_size != MBEDTLS_LMOTS_SIG_LEN(params->type) ||
+        out_size < MBEDTLS_LMOTS_N_HASH_LEN(params->type)) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    ret = create_digit_array_with_checksum(params, msg, msg_size,
+                                           sig + MBEDTLS_LMOTS_SIG_C_RANDOM_OFFSET,
+                                           tmp_digit_array);
+    if (ret) {
+        return ret;
+    }
+
+    ret = hash_digit_array(params,
+                           sig + MBEDTLS_LMOTS_SIG_SIGNATURE_OFFSET(params->type),
+                           tmp_digit_array, NULL, (unsigned char *) y_hashed_digits);
+    if (ret) {
+        return ret;
+    }
+
+    ret = public_key_from_hashed_digit_array(params,
+                                             (unsigned char *) y_hashed_digits,
+                                             out);
+    if (ret) {
+        return ret;
+    }
+
+    if (out_len != NULL) {
+        *out_len = MBEDTLS_LMOTS_N_HASH_LEN(params->type);
+    }
+
+    return 0;
+}
+
+int mbedtls_lmots_verify(const mbedtls_lmots_public_t *ctx,
+                         const unsigned char *msg, size_t msg_size,
+                         const unsigned char *sig, size_t sig_size)
+{
+    unsigned char Kc_public_key_candidate[MBEDTLS_LMOTS_N_HASH_LEN_MAX];
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if (msg == NULL && msg_size != 0) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    if (!ctx->have_public_key) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    if (ctx->params.type != MBEDTLS_LMOTS_SHA256_N32_W8) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    if (sig_size < MBEDTLS_LMOTS_SIG_TYPE_OFFSET + MBEDTLS_LMOTS_TYPE_LEN) {
+        return MBEDTLS_ERR_LMS_VERIFY_FAILED;
+    }
+
+    if (MBEDTLS_GET_UINT32_BE(sig, MBEDTLS_LMOTS_SIG_TYPE_OFFSET) != MBEDTLS_LMOTS_SHA256_N32_W8) {
+        return MBEDTLS_ERR_LMS_VERIFY_FAILED;
+    }
+
+    ret = mbedtls_lmots_calculate_public_key_candidate(&ctx->params,
+                                                       msg, msg_size, sig, sig_size,
+                                                       Kc_public_key_candidate,
+                                                       MBEDTLS_LMOTS_N_HASH_LEN(ctx->params.type),
+                                                       NULL);
+    if (ret) {
+        return MBEDTLS_ERR_LMS_VERIFY_FAILED;
+    }
+
+    if (memcmp(&Kc_public_key_candidate, ctx->public_key,
+               sizeof(ctx->public_key))) {
+        return MBEDTLS_ERR_LMS_VERIFY_FAILED;
+    }
+
+    return 0;
+}
+
+#if defined(MBEDTLS_LMS_PRIVATE)
+
+void mbedtls_lmots_private_init(mbedtls_lmots_private_t *ctx)
+{
+    memset(ctx, 0, sizeof(*ctx));
+}
+
+void mbedtls_lmots_private_free(mbedtls_lmots_private_t *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_platform_zeroize(ctx,
+                             sizeof(*ctx));
+}
+
+int mbedtls_lmots_generate_private_key(mbedtls_lmots_private_t *ctx,
+                                       mbedtls_lmots_algorithm_type_t type,
+                                       const unsigned char I_key_identifier[MBEDTLS_LMOTS_I_KEY_ID_LEN],
+                                       uint32_t q_leaf_identifier,
+                                       const unsigned char *seed,
+                                       size_t seed_size)
+{
+    psa_hash_operation_t op = PSA_HASH_OPERATION_INIT;
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    size_t output_hash_len;
+    unsigned int i_digit_idx;
+    unsigned char i_digit_idx_bytes[2];
+    unsigned char const_bytes[1] = { 0xFF };
+
+    if (ctx->have_private_key) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    if (type != MBEDTLS_LMOTS_SHA256_N32_W8) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    ctx->params.type = type;
+
+    memcpy(ctx->params.I_key_identifier,
+           I_key_identifier,
+           sizeof(ctx->params.I_key_identifier));
+
+    MBEDTLS_PUT_UINT32_BE(q_leaf_identifier, ctx->params.q_leaf_identifier, 0);
+
+    for (i_digit_idx = 0;
+         i_digit_idx < MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT(ctx->params.type);
+         i_digit_idx++) {
+        status = psa_hash_setup(&op, PSA_ALG_SHA_256);
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+
+        status = psa_hash_update(&op,
+                                 ctx->params.I_key_identifier,
+                                 sizeof(ctx->params.I_key_identifier));
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+
+        status = psa_hash_update(&op,
+                                 ctx->params.q_leaf_identifier,
+                                 MBEDTLS_LMOTS_Q_LEAF_ID_LEN);
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+
+        MBEDTLS_PUT_UINT16_BE(i_digit_idx, i_digit_idx_bytes, 0);
+        status = psa_hash_update(&op, i_digit_idx_bytes, I_DIGIT_IDX_LEN);
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+
+        status = psa_hash_update(&op, const_bytes, sizeof(const_bytes));
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+
+        status = psa_hash_update(&op, seed, seed_size);
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+
+        status = psa_hash_finish(&op,
+                                 ctx->private_key[i_digit_idx],
+                                 MBEDTLS_LMOTS_N_HASH_LEN(ctx->params.type),
+                                 &output_hash_len);
+        if (status != PSA_SUCCESS) {
+            goto exit;
+        }
+
+        psa_hash_abort(&op);
+    }
+
+    ctx->have_private_key = 1;
+
+exit:
+    psa_hash_abort(&op);
+
+    return PSA_TO_MBEDTLS_ERR(status);
+}
+
+int mbedtls_lmots_calculate_public_key(mbedtls_lmots_public_t *ctx,
+                                       const mbedtls_lmots_private_t *priv_ctx)
+{
+    unsigned char y_hashed_digits[MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT_MAX][MBEDTLS_LMOTS_N_HASH_LEN_MAX];
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    /* Check that a private key is loaded */
+    if (!priv_ctx->have_private_key) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    ret = hash_digit_array(&priv_ctx->params,
+                           (unsigned char *) priv_ctx->private_key, NULL,
+                           NULL, (unsigned char *) y_hashed_digits);
+    if (ret) {
+        goto exit;
+    }
+
+    ret = public_key_from_hashed_digit_array(&priv_ctx->params,
+                                             (unsigned char *) y_hashed_digits,
+                                             ctx->public_key);
+    if (ret) {
+        goto exit;
+    }
+
+    memcpy(&ctx->params, &priv_ctx->params,
+           sizeof(ctx->params));
+
+    ctx->have_public_key = 1;
+
+exit:
+    mbedtls_platform_zeroize(y_hashed_digits, sizeof(y_hashed_digits));
+
+    return ret;
+}
+
+int mbedtls_lmots_sign(mbedtls_lmots_private_t *ctx,
+                       int (*f_rng)(void *, unsigned char *, size_t),
+                       void *p_rng, const unsigned char *msg, size_t msg_size,
+                       unsigned char *sig, size_t sig_size, size_t *sig_len)
+{
+    unsigned char tmp_digit_array[MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT_MAX];
+    /* Create a temporary buffer to prepare the signature in. This allows us to
+     * finish creating a signature (ensuring the process doesn't fail), and then
+     * erase the private key **before** writing any data into the sig parameter
+     * buffer. If data were directly written into the sig buffer, it might leak
+     * a partial signature on failure, which effectively compromises the private
+     * key.
+     */
+    unsigned char tmp_sig[MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT_MAX][MBEDTLS_LMOTS_N_HASH_LEN_MAX];
+    unsigned char tmp_c_random[MBEDTLS_LMOTS_N_HASH_LEN_MAX];
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if (msg == NULL && msg_size != 0) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    if (sig_size < MBEDTLS_LMOTS_SIG_LEN(ctx->params.type)) {
+        return MBEDTLS_ERR_LMS_BUFFER_TOO_SMALL;
+    }
+
+    /* Check that a private key is loaded */
+    if (!ctx->have_private_key) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    ret = f_rng(p_rng, tmp_c_random,
+                MBEDTLS_LMOTS_N_HASH_LEN(ctx->params.type));
+    if (ret) {
+        return ret;
+    }
+
+    ret = create_digit_array_with_checksum(&ctx->params,
+                                           msg, msg_size,
+                                           tmp_c_random,
+                                           tmp_digit_array);
+    if (ret) {
+        goto exit;
+    }
+
+    ret = hash_digit_array(&ctx->params, (unsigned char *) ctx->private_key,
+                           NULL, tmp_digit_array, (unsigned char *) tmp_sig);
+    if (ret) {
+        goto exit;
+    }
+
+    MBEDTLS_PUT_UINT32_BE(ctx->params.type, sig, MBEDTLS_LMOTS_SIG_TYPE_OFFSET);
+
+    /* Test hook to check if sig is being written to before we invalidate the
+     * private key.
+     */
+#if defined(MBEDTLS_TEST_HOOKS)
+    if (mbedtls_lmots_sign_private_key_invalidated_hook != NULL) {
+        ret = (*mbedtls_lmots_sign_private_key_invalidated_hook)(sig);
+        if (ret != 0) {
+            return ret;
+        }
+    }
+#endif /* defined(MBEDTLS_TEST_HOOKS) */
+
+    /* We've got a valid signature now, so it's time to make sure the private
+     * key can't be reused.
+     */
+    ctx->have_private_key = 0;
+    mbedtls_platform_zeroize(ctx->private_key,
+                             sizeof(ctx->private_key));
+
+    memcpy(sig + MBEDTLS_LMOTS_SIG_C_RANDOM_OFFSET, tmp_c_random,
+           MBEDTLS_LMOTS_C_RANDOM_VALUE_LEN(ctx->params.type));
+
+    memcpy(sig + MBEDTLS_LMOTS_SIG_SIGNATURE_OFFSET(ctx->params.type), tmp_sig,
+           MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT(ctx->params.type)
+           * MBEDTLS_LMOTS_N_HASH_LEN(ctx->params.type));
+
+    if (sig_len != NULL) {
+        *sig_len = MBEDTLS_LMOTS_SIG_LEN(ctx->params.type);
+    }
+
+    ret = 0;
+
+exit:
+    mbedtls_platform_zeroize(tmp_digit_array, sizeof(tmp_digit_array));
+    mbedtls_platform_zeroize(tmp_sig, sizeof(tmp_sig));
+
+    return ret;
+}
+
+#endif /* defined(MBEDTLS_LMS_PRIVATE) */
+#endif /* defined(MBEDTLS_LMS_C) */
diff --git a/tf-psa-crypto/drivers/builtin/src/lmots.h b/tf-psa-crypto/drivers/builtin/src/lmots.h
new file mode 100644
index 0000000..cf92d32
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/lmots.h
@@ -0,0 +1,288 @@
+/**
+ * \file lmots.h
+ *
+ * \brief This file provides an API for the LM-OTS post-quantum-safe one-time
+ *        public-key signature scheme as defined in RFC8554 and NIST.SP.200-208.
+ *        This implementation currently only supports a single parameter set
+ *        MBEDTLS_LMOTS_SHA256_N32_W8 in order to reduce complexity.
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_LMOTS_H
+#define MBEDTLS_LMOTS_H
+
+#include "mbedtls/build_info.h"
+
+#include "psa/crypto.h"
+
+#include "mbedtls/lms.h"
+
+#include <stdint.h>
+#include <stddef.h>
+
+
+#define MBEDTLS_LMOTS_PUBLIC_KEY_LEN(type) (MBEDTLS_LMOTS_TYPE_LEN + \
+                                            MBEDTLS_LMOTS_I_KEY_ID_LEN + \
+                                            MBEDTLS_LMOTS_Q_LEAF_ID_LEN + \
+                                            MBEDTLS_LMOTS_N_HASH_LEN(type))
+
+#define MBEDTLS_LMOTS_SIG_TYPE_OFFSET       (0)
+#define MBEDTLS_LMOTS_SIG_C_RANDOM_OFFSET (MBEDTLS_LMOTS_SIG_TYPE_OFFSET + \
+                                           MBEDTLS_LMOTS_TYPE_LEN)
+#define MBEDTLS_LMOTS_SIG_SIGNATURE_OFFSET(type) (MBEDTLS_LMOTS_SIG_C_RANDOM_OFFSET + \
+                                                  MBEDTLS_LMOTS_C_RANDOM_VALUE_LEN(type))
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+
+#if defined(MBEDTLS_TEST_HOOKS)
+extern int (*mbedtls_lmots_sign_private_key_invalidated_hook)(unsigned char *);
+#endif /* defined(MBEDTLS_TEST_HOOKS) */
+
+#if !defined(MBEDTLS_DEPRECATED_REMOVED)
+/**
+ * \brief                    This function converts a \ref psa_status_t to a
+ *                           low-level LMS error code.
+ *
+ * \param status             The psa_status_t to convert
+ *
+ * \return                   The corresponding LMS error code.
+ */
+int MBEDTLS_DEPRECATED mbedtls_lms_error_from_psa(psa_status_t status);
+#endif
+
+/**
+ * \brief                    This function initializes a public LMOTS context
+ *
+ * \param ctx                The uninitialized LMOTS context that will then be
+ *                           initialized.
+ */
+void mbedtls_lmots_public_init(mbedtls_lmots_public_t *ctx);
+
+/**
+ * \brief                    This function uninitializes a public LMOTS context
+ *
+ * \param ctx                The initialized LMOTS context that will then be
+ *                           uninitialized.
+ */
+void mbedtls_lmots_public_free(mbedtls_lmots_public_t *ctx);
+
+/**
+ * \brief                    This function imports an LMOTS public key into a
+ *                           LMOTS context.
+ *
+ * \note                     Before this function is called, the context must
+ *                           have been initialized.
+ *
+ * \note                     See IETF RFC8554 for details of the encoding of
+ *                           this public key.
+ *
+ * \param ctx                The initialized LMOTS context store the key in.
+ * \param key                The buffer from which the key will be read.
+ *                           #MBEDTLS_LMOTS_PUBLIC_KEY_LEN bytes will be read
+ *                           from this.
+ *
+ * \return         \c 0 on success.
+ * \return         A non-zero error code on failure.
+ */
+int mbedtls_lmots_import_public_key(mbedtls_lmots_public_t *ctx,
+                                    const unsigned char *key, size_t key_size);
+
+/**
+ * \brief                    This function exports an LMOTS public key from a
+ *                           LMOTS context that already contains a public key.
+ *
+ * \note                     Before this function is called, the context must
+ *                           have been initialized and the context must contain
+ *                           a public key.
+ *
+ * \note                     See IETF RFC8554 for details of the encoding of
+ *                           this public key.
+ *
+ * \param ctx                The initialized LMOTS context that contains the
+ *                           public key.
+ * \param key                The buffer into which the key will be output. Must
+ *                           be at least #MBEDTLS_LMOTS_PUBLIC_KEY_LEN in size.
+ *
+ * \return         \c 0 on success.
+ * \return         A non-zero error code on failure.
+ */
+int mbedtls_lmots_export_public_key(const mbedtls_lmots_public_t *ctx,
+                                    unsigned char *key, size_t key_size,
+                                    size_t *key_len);
+
+/**
+ * \brief                    This function creates a candidate public key from
+ *                           an LMOTS signature. This can then be compared to
+ *                           the real public key to determine the validity of
+ *                           the signature.
+ *
+ * \note                     This function is exposed publicly to be used in LMS
+ *                           signature verification, it is expected that
+ *                           mbedtls_lmots_verify will be used for LMOTS
+ *                           signature verification.
+ *
+ * \param params             The LMOTS parameter set, q and I values as an
+ *                           mbedtls_lmots_parameters_t struct.
+ * \param msg                The buffer from which the message will be read.
+ * \param msg_size           The size of the message that will be read.
+ * \param sig                The buffer from which the signature will be read.
+ *                           #MBEDTLS_LMOTS_SIG_LEN bytes will be read from
+ *                           this.
+ * \param out                The buffer where the candidate public key will be
+ *                           stored. Must be at least #MBEDTLS_LMOTS_N_HASH_LEN
+ *                           bytes in size.
+ *
+ * \return         \c 0 on success.
+ * \return         A non-zero error code on failure.
+ */
+int mbedtls_lmots_calculate_public_key_candidate(const mbedtls_lmots_parameters_t *params,
+                                                 const unsigned char *msg,
+                                                 size_t msg_size,
+                                                 const unsigned char *sig,
+                                                 size_t sig_size,
+                                                 unsigned char *out,
+                                                 size_t out_size,
+                                                 size_t *out_len);
+
+/**
+ * \brief                    This function verifies a LMOTS signature, using a
+ *                           LMOTS context that contains a public key.
+ *
+ * \warning                  This function is **not intended for use in
+ *                           production**, due to as-yet unsolved problems with
+ *                           handling stateful keys. The API for this function
+ *                           may change considerably in future versions.
+ *
+ * \note                     Before this function is called, the context must
+ *                           have been initialized and must contain a public key
+ *                           (either by import or calculation from a private
+ *                           key).
+ *
+ * \param ctx                The initialized LMOTS context from which the public
+ *                           key will be read.
+ * \param msg                The buffer from which the message will be read.
+ * \param msg_size           The size of the message that will be read.
+ * \param sig                The buf from which the signature will be read.
+ *                           #MBEDTLS_LMOTS_SIG_LEN bytes will be read from
+ *                           this.
+ *
+ * \return         \c 0 on successful verification.
+ * \return         A non-zero error code on failure.
+ */
+int mbedtls_lmots_verify(const mbedtls_lmots_public_t *ctx,
+                         const unsigned char *msg,
+                         size_t msg_size, const unsigned char *sig,
+                         size_t sig_size);
+
+#if defined(MBEDTLS_LMS_PRIVATE)
+
+/**
+ * \brief                    This function initializes a private LMOTS context
+ *
+ * \param ctx                The uninitialized LMOTS context that will then be
+ *                           initialized.
+ */
+void mbedtls_lmots_private_init(mbedtls_lmots_private_t *ctx);
+
+/**
+ * \brief                    This function uninitializes a private LMOTS context
+ *
+ * \param ctx                The initialized LMOTS context that will then be
+ *                           uninitialized.
+ */
+void mbedtls_lmots_private_free(mbedtls_lmots_private_t *ctx);
+
+/**
+ * \brief                    This function calculates an LMOTS private key, and
+ *                           stores in into an LMOTS context.
+ *
+ * \warning                  This function is **not intended for use in
+ *                           production**, due to as-yet unsolved problems with
+ *                           handling stateful keys. The API for this function
+ *                           may change considerably in future versions.
+ *
+ * \note                     The seed must have at least 256 bits of entropy.
+ *
+ * \param ctx                The initialized LMOTS context to generate the key
+ *                           into.
+ * \param I_key_identifier   The key identifier of the key, as a 16-byte string.
+ * \param q_leaf_identifier  The leaf identifier of key. If this LMOTS key is
+ *                           not being used as part of an LMS key, this should
+ *                           be set to 0.
+ * \param seed               The seed used to deterministically generate the
+ *                           key.
+ * \param seed_size          The length of the seed.
+ *
+ * \return         \c 0 on success.
+ * \return         A non-zero error code on failure.
+ */
+int mbedtls_lmots_generate_private_key(mbedtls_lmots_private_t *ctx,
+                                       mbedtls_lmots_algorithm_type_t type,
+                                       const unsigned char I_key_identifier[MBEDTLS_LMOTS_I_KEY_ID_LEN],
+                                       uint32_t q_leaf_identifier,
+                                       const unsigned char *seed,
+                                       size_t seed_size);
+
+/**
+ * \brief                    This function generates an LMOTS public key from a
+ *                           LMOTS context that already contains a private key.
+ *
+ * \note                     Before this function is called, the context must
+ *                           have been initialized and the context must contain
+ *                           a private key.
+ *
+ * \param ctx                The initialized LMOTS context to generate the key
+ *                           from and store it into.
+ *
+ * \return         \c 0 on success.
+ * \return         A non-zero error code on failure.
+ */
+int mbedtls_lmots_calculate_public_key(mbedtls_lmots_public_t *ctx,
+                                       const mbedtls_lmots_private_t *priv_ctx);
+
+/**
+ * \brief                    This function creates a LMOTS signature, using a
+ *                           LMOTS context that contains a private key.
+ *
+ * \note                     Before this function is called, the context must
+ *                           have been initialized and must contain a private
+ *                           key.
+ *
+ * \note                     LMOTS private keys can only be used once, otherwise
+ *                           attackers may be able to create forged signatures.
+ *                           If the signing operation is successful, the private
+ *                           key in the context will be erased, and no further
+ *                           signing will be possible until another private key
+ *                           is loaded
+ *
+ * \param ctx                The initialized LMOTS context from which the
+ *                           private key will be read.
+ * \param f_rng              The RNG function to be used for signature
+ *                           generation.
+ * \param p_rng              The RNG context to be passed to f_rng
+ * \param msg                The buffer from which the message will be read.
+ * \param msg_size           The size of the message that will be read.
+ * \param sig                The buf into which the signature will be stored.
+ *                           Must be at least #MBEDTLS_LMOTS_SIG_LEN in size.
+ *
+ * \return         \c 0 on success.
+ * \return         A non-zero error code on failure.
+ */
+int mbedtls_lmots_sign(mbedtls_lmots_private_t *ctx,
+                       int (*f_rng)(void *, unsigned char *, size_t),
+                       void *p_rng, const unsigned char *msg, size_t msg_size,
+                       unsigned char *sig, size_t sig_size, size_t *sig_len);
+
+#endif /* defined(MBEDTLS_LMS_PRIVATE) */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* MBEDTLS_LMOTS_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/lms.c b/tf-psa-crypto/drivers/builtin/src/lms.c
new file mode 100644
index 0000000..7f7bec0
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/lms.c
@@ -0,0 +1,769 @@
+/*
+ *  The LMS stateful-hash public-key signature scheme
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ *  The following sources were referenced in the design of this implementation
+ *  of the LMS algorithm:
+ *
+ *  [1] IETF RFC8554
+ *      D. McGrew, M. Curcio, S.Fluhrer
+ *      https://datatracker.ietf.org/doc/html/rfc8554
+ *
+ *  [2] NIST Special Publication 800-208
+ *      David A. Cooper et. al.
+ *      https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_LMS_C)
+
+#include <string.h>
+
+#include "lmots.h"
+
+#include "psa/crypto.h"
+#include "psa_util_internal.h"
+#include "mbedtls/lms.h"
+#include "mbedtls/error.h"
+#include "mbedtls/platform_util.h"
+
+#include "mbedtls/platform.h"
+
+/* Define a local translating function to save code size by not using too many
+ * arguments in each translating place. */
+static int local_err_translation(psa_status_t status)
+{
+    return psa_status_to_mbedtls(status, psa_to_lms_errors,
+                                 ARRAY_LENGTH(psa_to_lms_errors),
+                                 psa_generic_status_to_mbedtls);
+}
+#define PSA_TO_MBEDTLS_ERR(status) local_err_translation(status)
+
+#define SIG_Q_LEAF_ID_OFFSET     (0)
+#define SIG_OTS_SIG_OFFSET       (SIG_Q_LEAF_ID_OFFSET + \
+                                  MBEDTLS_LMOTS_Q_LEAF_ID_LEN)
+#define SIG_TYPE_OFFSET(otstype) (SIG_OTS_SIG_OFFSET   + \
+                                  MBEDTLS_LMOTS_SIG_LEN(otstype))
+#define SIG_PATH_OFFSET(otstype) (SIG_TYPE_OFFSET(otstype) + \
+                                  MBEDTLS_LMS_TYPE_LEN)
+
+#define PUBLIC_KEY_TYPE_OFFSET      (0)
+#define PUBLIC_KEY_OTSTYPE_OFFSET   (PUBLIC_KEY_TYPE_OFFSET + \
+                                     MBEDTLS_LMS_TYPE_LEN)
+#define PUBLIC_KEY_I_KEY_ID_OFFSET  (PUBLIC_KEY_OTSTYPE_OFFSET  + \
+                                     MBEDTLS_LMOTS_TYPE_LEN)
+#define PUBLIC_KEY_ROOT_NODE_OFFSET (PUBLIC_KEY_I_KEY_ID_OFFSET + \
+                                     MBEDTLS_LMOTS_I_KEY_ID_LEN)
+
+
+/* Currently only support H=10 */
+#define H_TREE_HEIGHT_MAX                  10
+#define MERKLE_TREE_NODE_AM(type)          ((size_t) 1 << (MBEDTLS_LMS_H_TREE_HEIGHT(type) + 1u))
+#define MERKLE_TREE_LEAF_NODE_AM(type)     ((size_t) 1 << MBEDTLS_LMS_H_TREE_HEIGHT(type))
+#define MERKLE_TREE_INTERNAL_NODE_AM(type) ((unsigned int) \
+                                            (1u << MBEDTLS_LMS_H_TREE_HEIGHT(type)))
+
+#define D_CONST_LEN           (2)
+static const unsigned char D_LEAF_CONSTANT_BYTES[D_CONST_LEN] = { 0x82, 0x82 };
+static const unsigned char D_INTR_CONSTANT_BYTES[D_CONST_LEN] = { 0x83, 0x83 };
+
+
+/* Calculate the value of a leaf node of the Merkle tree (which is a hash of a
+ * public key and some other parameters like the leaf index). This function
+ * implements RFC8554 section 5.3, in the case where r >= 2^h.
+ *
+ *  params              The LMS parameter set, the underlying LMOTS
+ *                      parameter set, and I value which describe the key
+ *                      being used.
+ *
+ *  pub_key             The public key of the private whose index
+ *                      corresponds to the index of this leaf node. This
+ *                      is a hash output.
+ *
+ *  r_node_idx          The index of this node in the Merkle tree. Note
+ *                      that the root node of the Merkle tree is
+ *                      1-indexed.
+ *
+ *  out                 The output node value, which is a hash output.
+ */
+static int create_merkle_leaf_value(const mbedtls_lms_parameters_t *params,
+                                    unsigned char *pub_key,
+                                    unsigned int r_node_idx,
+                                    unsigned char *out)
+{
+    psa_hash_operation_t op;
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    size_t output_hash_len;
+    unsigned char r_node_idx_bytes[4];
+
+    op = psa_hash_operation_init();
+    status = psa_hash_setup(&op, PSA_ALG_SHA_256);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_hash_update(&op, params->I_key_identifier,
+                             MBEDTLS_LMOTS_I_KEY_ID_LEN);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    MBEDTLS_PUT_UINT32_BE(r_node_idx, r_node_idx_bytes, 0);
+    status = psa_hash_update(&op, r_node_idx_bytes, 4);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_hash_update(&op, D_LEAF_CONSTANT_BYTES, D_CONST_LEN);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_hash_update(&op, pub_key,
+                             MBEDTLS_LMOTS_N_HASH_LEN(params->otstype));
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_hash_finish(&op, out, MBEDTLS_LMS_M_NODE_BYTES(params->type),
+                             &output_hash_len);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+exit:
+    psa_hash_abort(&op);
+
+    return PSA_TO_MBEDTLS_ERR(status);
+}
+
+/* Calculate the value of an internal node of the Merkle tree (which is a hash
+ * of a public key and some other parameters like the node index). This function
+ * implements RFC8554 section 5.3, in the case where r < 2^h.
+ *
+ *  params              The LMS parameter set, the underlying LMOTS
+ *                      parameter set, and I value which describe the key
+ *                      being used.
+ *
+ *  left_node           The value of the child of this node which is on
+ *                      the left-hand side. As with all nodes on the
+ *                      Merkle tree, this is a hash output.
+ *
+ *  right_node          The value of the child of this node which is on
+ *                      the right-hand side. As with all nodes on the
+ *                      Merkle tree, this is a hash output.
+ *
+ *  r_node_idx          The index of this node in the Merkle tree. Note
+ *                      that the root node of the Merkle tree is
+ *                      1-indexed.
+ *
+ *  out                 The output node value, which is a hash output.
+ */
+static int create_merkle_internal_value(const mbedtls_lms_parameters_t *params,
+                                        const unsigned char *left_node,
+                                        const unsigned char *right_node,
+                                        unsigned int r_node_idx,
+                                        unsigned char *out)
+{
+    psa_hash_operation_t op;
+    psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+    size_t output_hash_len;
+    unsigned char r_node_idx_bytes[4];
+
+    op = psa_hash_operation_init();
+    status = psa_hash_setup(&op, PSA_ALG_SHA_256);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_hash_update(&op, params->I_key_identifier,
+                             MBEDTLS_LMOTS_I_KEY_ID_LEN);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    MBEDTLS_PUT_UINT32_BE(r_node_idx, r_node_idx_bytes, 0);
+    status = psa_hash_update(&op, r_node_idx_bytes, 4);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_hash_update(&op, D_INTR_CONSTANT_BYTES, D_CONST_LEN);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_hash_update(&op, left_node,
+                             MBEDTLS_LMS_M_NODE_BYTES(params->type));
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_hash_update(&op, right_node,
+                             MBEDTLS_LMS_M_NODE_BYTES(params->type));
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+    status = psa_hash_finish(&op, out, MBEDTLS_LMS_M_NODE_BYTES(params->type),
+                             &output_hash_len);
+    if (status != PSA_SUCCESS) {
+        goto exit;
+    }
+
+exit:
+    psa_hash_abort(&op);
+
+    return PSA_TO_MBEDTLS_ERR(status);
+}
+
+void mbedtls_lms_public_init(mbedtls_lms_public_t *ctx)
+{
+    memset(ctx, 0, sizeof(*ctx));
+}
+
+void mbedtls_lms_public_free(mbedtls_lms_public_t *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_platform_zeroize(ctx, sizeof(*ctx));
+}
+
+int mbedtls_lms_import_public_key(mbedtls_lms_public_t *ctx,
+                                  const unsigned char *key, size_t key_size)
+{
+    mbedtls_lms_algorithm_type_t type;
+    mbedtls_lmots_algorithm_type_t otstype;
+
+    type = (mbedtls_lms_algorithm_type_t) MBEDTLS_GET_UINT32_BE(key, PUBLIC_KEY_TYPE_OFFSET);
+    if (type != MBEDTLS_LMS_SHA256_M32_H10) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+    ctx->params.type = type;
+
+    if (key_size != MBEDTLS_LMS_PUBLIC_KEY_LEN(ctx->params.type)) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    otstype = (mbedtls_lmots_algorithm_type_t)
+              MBEDTLS_GET_UINT32_BE(key, PUBLIC_KEY_OTSTYPE_OFFSET);
+    if (otstype != MBEDTLS_LMOTS_SHA256_N32_W8) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+    ctx->params.otstype = otstype;
+
+    memcpy(ctx->params.I_key_identifier,
+           key + PUBLIC_KEY_I_KEY_ID_OFFSET,
+           MBEDTLS_LMOTS_I_KEY_ID_LEN);
+    memcpy(ctx->T_1_pub_key, key + PUBLIC_KEY_ROOT_NODE_OFFSET,
+           MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type));
+
+    ctx->have_public_key = 1;
+
+    return 0;
+}
+
+int mbedtls_lms_export_public_key(const mbedtls_lms_public_t *ctx,
+                                  unsigned char *key,
+                                  size_t key_size, size_t *key_len)
+{
+    if (key_size < MBEDTLS_LMS_PUBLIC_KEY_LEN(ctx->params.type)) {
+        return MBEDTLS_ERR_LMS_BUFFER_TOO_SMALL;
+    }
+
+    if (!ctx->have_public_key) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    MBEDTLS_PUT_UINT32_BE(ctx->params.type, key, PUBLIC_KEY_TYPE_OFFSET);
+    MBEDTLS_PUT_UINT32_BE(ctx->params.otstype, key, PUBLIC_KEY_OTSTYPE_OFFSET);
+    memcpy(key + PUBLIC_KEY_I_KEY_ID_OFFSET,
+           ctx->params.I_key_identifier,
+           MBEDTLS_LMOTS_I_KEY_ID_LEN);
+    memcpy(key +PUBLIC_KEY_ROOT_NODE_OFFSET,
+           ctx->T_1_pub_key,
+           MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type));
+
+    if (key_len != NULL) {
+        *key_len = MBEDTLS_LMS_PUBLIC_KEY_LEN(ctx->params.type);
+    }
+
+    return 0;
+}
+
+int mbedtls_lms_verify(const mbedtls_lms_public_t *ctx,
+                       const unsigned char *msg, size_t msg_size,
+                       const unsigned char *sig, size_t sig_size)
+{
+    unsigned int q_leaf_identifier;
+    unsigned char Kc_candidate_ots_pub_key[MBEDTLS_LMOTS_N_HASH_LEN_MAX];
+    unsigned char Tc_candidate_root_node[MBEDTLS_LMS_M_NODE_BYTES_MAX];
+    unsigned int height;
+    unsigned int curr_node_id;
+    unsigned int parent_node_id;
+    const unsigned char *left_node;
+    const unsigned char *right_node;
+    mbedtls_lmots_parameters_t ots_params;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if (!ctx->have_public_key) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    if (ctx->params.type
+        != MBEDTLS_LMS_SHA256_M32_H10) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    if (ctx->params.otstype
+        != MBEDTLS_LMOTS_SHA256_N32_W8) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    if (sig_size != MBEDTLS_LMS_SIG_LEN(ctx->params.type, ctx->params.otstype)) {
+        return MBEDTLS_ERR_LMS_VERIFY_FAILED;
+    }
+
+    if (sig_size < SIG_OTS_SIG_OFFSET + MBEDTLS_LMOTS_TYPE_LEN) {
+        return MBEDTLS_ERR_LMS_VERIFY_FAILED;
+    }
+
+    if (MBEDTLS_GET_UINT32_BE(sig, SIG_OTS_SIG_OFFSET + MBEDTLS_LMOTS_SIG_TYPE_OFFSET)
+        != MBEDTLS_LMOTS_SHA256_N32_W8) {
+        return MBEDTLS_ERR_LMS_VERIFY_FAILED;
+    }
+
+    if (sig_size < SIG_TYPE_OFFSET(ctx->params.otstype) + MBEDTLS_LMS_TYPE_LEN) {
+        return MBEDTLS_ERR_LMS_VERIFY_FAILED;
+    }
+
+    if (MBEDTLS_GET_UINT32_BE(sig, SIG_TYPE_OFFSET(ctx->params.otstype))
+        != MBEDTLS_LMS_SHA256_M32_H10) {
+        return MBEDTLS_ERR_LMS_VERIFY_FAILED;
+    }
+
+
+    q_leaf_identifier = MBEDTLS_GET_UINT32_BE(sig, SIG_Q_LEAF_ID_OFFSET);
+
+    if (q_leaf_identifier >= MERKLE_TREE_LEAF_NODE_AM(ctx->params.type)) {
+        return MBEDTLS_ERR_LMS_VERIFY_FAILED;
+    }
+
+    memcpy(ots_params.I_key_identifier,
+           ctx->params.I_key_identifier,
+           MBEDTLS_LMOTS_I_KEY_ID_LEN);
+    MBEDTLS_PUT_UINT32_BE(q_leaf_identifier, ots_params.q_leaf_identifier, 0);
+    ots_params.type = ctx->params.otstype;
+
+    ret = mbedtls_lmots_calculate_public_key_candidate(&ots_params,
+                                                       msg,
+                                                       msg_size,
+                                                       sig + SIG_OTS_SIG_OFFSET,
+                                                       MBEDTLS_LMOTS_SIG_LEN(ctx->params.otstype),
+                                                       Kc_candidate_ots_pub_key,
+                                                       sizeof(Kc_candidate_ots_pub_key),
+                                                       NULL);
+    if (ret != 0) {
+        return MBEDTLS_ERR_LMS_VERIFY_FAILED;
+    }
+
+    create_merkle_leaf_value(
+        &ctx->params,
+        Kc_candidate_ots_pub_key,
+        MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type) + q_leaf_identifier,
+        Tc_candidate_root_node);
+
+    curr_node_id = MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type) +
+                   q_leaf_identifier;
+
+    for (height = 0; height < MBEDTLS_LMS_H_TREE_HEIGHT(ctx->params.type);
+         height++) {
+        parent_node_id = curr_node_id / 2;
+
+        /* Left/right node ordering matters for the hash */
+        if (curr_node_id & 1) {
+            left_node = sig + SIG_PATH_OFFSET(ctx->params.otstype) +
+                        height * MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type);
+            right_node = Tc_candidate_root_node;
+        } else {
+            left_node = Tc_candidate_root_node;
+            right_node = sig + SIG_PATH_OFFSET(ctx->params.otstype) +
+                         height * MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type);
+        }
+
+        create_merkle_internal_value(&ctx->params, left_node, right_node,
+                                     parent_node_id, Tc_candidate_root_node);
+
+        curr_node_id /= 2;
+    }
+
+    if (memcmp(Tc_candidate_root_node, ctx->T_1_pub_key,
+               MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type))) {
+        return MBEDTLS_ERR_LMS_VERIFY_FAILED;
+    }
+
+    return 0;
+}
+
+#if defined(MBEDTLS_LMS_PRIVATE)
+
+/* Calculate a full Merkle tree based on a private key. This function
+ * implements RFC8554 section 5.3, and is used to generate a public key (as the
+ * public key is the root node of the Merkle tree).
+ *
+ *  ctx                 The LMS private context, containing a parameter
+ *                      set and private key material consisting of both
+ *                      public and private OTS.
+ *
+ *  tree                The output tree, which is 2^(H + 1) hash outputs.
+ *                      In the case of H=10 we have 2048 tree nodes (of
+ *                      which 1024 of them are leaf nodes). Note that
+ *                      because the Merkle tree root is 1-indexed, the 0
+ *                      index tree node is never used.
+ */
+static int calculate_merkle_tree(const mbedtls_lms_private_t *ctx,
+                                 unsigned char *tree)
+{
+    unsigned int priv_key_idx;
+    unsigned int r_node_idx;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    /* First create the leaf nodes, in ascending order */
+    for (priv_key_idx = 0;
+         priv_key_idx < MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type);
+         priv_key_idx++) {
+        r_node_idx = MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type) + priv_key_idx;
+
+        ret = create_merkle_leaf_value(&ctx->params,
+                                       ctx->ots_public_keys[priv_key_idx].public_key,
+                                       r_node_idx,
+                                       &tree[r_node_idx * MBEDTLS_LMS_M_NODE_BYTES(
+                                                 ctx->params.type)]);
+        if (ret != 0) {
+            return ret;
+        }
+    }
+
+    /* Then the internal nodes, in reverse order so that we can guarantee the
+     * parent has been created */
+    for (r_node_idx = MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type) - 1;
+         r_node_idx > 0;
+         r_node_idx--) {
+        ret = create_merkle_internal_value(&ctx->params,
+                                           &tree[(r_node_idx * 2) *
+                                                 MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type)],
+                                           &tree[(r_node_idx * 2 + 1) *
+                                                 MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type)],
+                                           r_node_idx,
+                                           &tree[r_node_idx *
+                                                 MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type)]);
+        if (ret != 0) {
+            return ret;
+        }
+    }
+
+    return 0;
+}
+
+/* Calculate a path from a leaf node of the Merkle tree to the root of the tree,
+ * and return the full path. This function implements RFC8554 section 5.4.1, as
+ * the Merkle path is the main component of an LMS signature.
+ *
+ *  ctx                 The LMS private context, containing a parameter
+ *                      set and private key material consisting of both
+ *                      public and private OTS.
+ *
+ *  leaf_node_id        Which leaf node to calculate the path from.
+ *
+ *  path                The output path, which is H hash outputs.
+ */
+static int get_merkle_path(mbedtls_lms_private_t *ctx,
+                           unsigned int leaf_node_id,
+                           unsigned char *path)
+{
+    const size_t node_bytes = MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type);
+    unsigned int curr_node_id = leaf_node_id;
+    unsigned int adjacent_node_id;
+    unsigned char *tree = NULL;
+    unsigned int height;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    tree = mbedtls_calloc((size_t) MERKLE_TREE_NODE_AM(ctx->params.type),
+                          node_bytes);
+    if (tree == NULL) {
+        return MBEDTLS_ERR_LMS_ALLOC_FAILED;
+    }
+
+    ret = calculate_merkle_tree(ctx, tree);
+    if (ret != 0) {
+        goto exit;
+    }
+
+    for (height = 0; height < MBEDTLS_LMS_H_TREE_HEIGHT(ctx->params.type);
+         height++) {
+        adjacent_node_id = curr_node_id ^ 1;
+
+        memcpy(&path[height * node_bytes],
+               &tree[adjacent_node_id * node_bytes], node_bytes);
+
+        curr_node_id >>= 1;
+    }
+
+    ret = 0;
+
+exit:
+    mbedtls_zeroize_and_free(tree, node_bytes *
+                             (size_t) MERKLE_TREE_NODE_AM(ctx->params.type));
+
+    return ret;
+}
+
+void mbedtls_lms_private_init(mbedtls_lms_private_t *ctx)
+{
+    memset(ctx, 0, sizeof(*ctx));
+}
+
+void mbedtls_lms_private_free(mbedtls_lms_private_t *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    unsigned int idx;
+
+    if (ctx->have_private_key) {
+        if (ctx->ots_private_keys != NULL) {
+            for (idx = 0; idx < MERKLE_TREE_LEAF_NODE_AM(ctx->params.type); idx++) {
+                mbedtls_lmots_private_free(&ctx->ots_private_keys[idx]);
+            }
+        }
+
+        if (ctx->ots_public_keys != NULL) {
+            for (idx = 0; idx < MERKLE_TREE_LEAF_NODE_AM(ctx->params.type); idx++) {
+                mbedtls_lmots_public_free(&ctx->ots_public_keys[idx]);
+            }
+        }
+
+        mbedtls_free(ctx->ots_private_keys);
+        mbedtls_free(ctx->ots_public_keys);
+    }
+
+    mbedtls_platform_zeroize(ctx, sizeof(*ctx));
+}
+
+
+int mbedtls_lms_generate_private_key(mbedtls_lms_private_t *ctx,
+                                     mbedtls_lms_algorithm_type_t type,
+                                     mbedtls_lmots_algorithm_type_t otstype,
+                                     int (*f_rng)(void *, unsigned char *, size_t),
+                                     void *p_rng, const unsigned char *seed,
+                                     size_t seed_size)
+{
+    unsigned int idx = 0;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if (type != MBEDTLS_LMS_SHA256_M32_H10) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    if (otstype != MBEDTLS_LMOTS_SHA256_N32_W8) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    if (ctx->have_private_key) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    ctx->params.type = type;
+    ctx->params.otstype = otstype;
+    ctx->have_private_key = 1;
+
+    ret = f_rng(p_rng,
+                ctx->params.I_key_identifier,
+                MBEDTLS_LMOTS_I_KEY_ID_LEN);
+    if (ret != 0) {
+        goto exit;
+    }
+
+    /* Requires a cast to size_t to avoid an implicit cast warning on certain
+     * platforms (particularly Windows) */
+    ctx->ots_private_keys = mbedtls_calloc((size_t) MERKLE_TREE_LEAF_NODE_AM(ctx->params.type),
+                                           sizeof(*ctx->ots_private_keys));
+    if (ctx->ots_private_keys == NULL) {
+        ret = MBEDTLS_ERR_LMS_ALLOC_FAILED;
+        goto exit;
+    }
+
+    /* Requires a cast to size_t to avoid an implicit cast warning on certain
+     * platforms (particularly Windows) */
+    ctx->ots_public_keys = mbedtls_calloc((size_t) MERKLE_TREE_LEAF_NODE_AM(ctx->params.type),
+                                          sizeof(*ctx->ots_public_keys));
+    if (ctx->ots_public_keys == NULL) {
+        ret = MBEDTLS_ERR_LMS_ALLOC_FAILED;
+        goto exit;
+    }
+
+    for (idx = 0; idx < MERKLE_TREE_LEAF_NODE_AM(ctx->params.type); idx++) {
+        mbedtls_lmots_private_init(&ctx->ots_private_keys[idx]);
+        mbedtls_lmots_public_init(&ctx->ots_public_keys[idx]);
+    }
+
+
+    for (idx = 0; idx < MERKLE_TREE_LEAF_NODE_AM(ctx->params.type); idx++) {
+        ret = mbedtls_lmots_generate_private_key(&ctx->ots_private_keys[idx],
+                                                 otstype,
+                                                 ctx->params.I_key_identifier,
+                                                 idx, seed, seed_size);
+        if (ret != 0) {
+            goto exit;
+        }
+
+        ret = mbedtls_lmots_calculate_public_key(&ctx->ots_public_keys[idx],
+                                                 &ctx->ots_private_keys[idx]);
+        if (ret != 0) {
+            goto exit;
+        }
+    }
+
+    ctx->q_next_usable_key = 0;
+
+exit:
+    if (ret != 0) {
+        mbedtls_lms_private_free(ctx);
+    }
+
+    return ret;
+}
+
+int mbedtls_lms_calculate_public_key(mbedtls_lms_public_t *ctx,
+                                     const mbedtls_lms_private_t *priv_ctx)
+{
+    const size_t node_bytes = MBEDTLS_LMS_M_NODE_BYTES(priv_ctx->params.type);
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char *tree = NULL;
+
+    if (!priv_ctx->have_private_key) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    if (priv_ctx->params.type
+        != MBEDTLS_LMS_SHA256_M32_H10) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    if (priv_ctx->params.otstype
+        != MBEDTLS_LMOTS_SHA256_N32_W8) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    tree = mbedtls_calloc((size_t) MERKLE_TREE_NODE_AM(priv_ctx->params.type),
+                          node_bytes);
+    if (tree == NULL) {
+        return MBEDTLS_ERR_LMS_ALLOC_FAILED;
+    }
+
+    memcpy(&ctx->params, &priv_ctx->params,
+           sizeof(mbedtls_lmots_parameters_t));
+
+    ret = calculate_merkle_tree(priv_ctx, tree);
+    if (ret != 0) {
+        goto exit;
+    }
+
+    /* Root node is always at position 1, due to 1-based indexing */
+    memcpy(ctx->T_1_pub_key, &tree[node_bytes], node_bytes);
+
+    ctx->have_public_key = 1;
+
+    ret = 0;
+
+exit:
+    mbedtls_zeroize_and_free(tree, node_bytes *
+                             (size_t) MERKLE_TREE_NODE_AM(priv_ctx->params.type));
+
+    return ret;
+}
+
+
+int mbedtls_lms_sign(mbedtls_lms_private_t *ctx,
+                     int (*f_rng)(void *, unsigned char *, size_t),
+                     void *p_rng, const unsigned char *msg,
+                     unsigned int msg_size, unsigned char *sig, size_t sig_size,
+                     size_t *sig_len)
+{
+    uint32_t q_leaf_identifier;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if (!ctx->have_private_key) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    if (sig_size < MBEDTLS_LMS_SIG_LEN(ctx->params.type, ctx->params.otstype)) {
+        return MBEDTLS_ERR_LMS_BUFFER_TOO_SMALL;
+    }
+
+    if (ctx->params.type != MBEDTLS_LMS_SHA256_M32_H10) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    if (ctx->params.otstype
+        != MBEDTLS_LMOTS_SHA256_N32_W8) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    if (ctx->q_next_usable_key >= MERKLE_TREE_LEAF_NODE_AM(ctx->params.type)) {
+        return MBEDTLS_ERR_LMS_OUT_OF_PRIVATE_KEYS;
+    }
+
+
+    q_leaf_identifier = ctx->q_next_usable_key;
+    /* This new value must _always_ be written back to the disk before the
+     * signature is returned.
+     */
+    ctx->q_next_usable_key += 1;
+
+    if (MBEDTLS_LMS_SIG_LEN(ctx->params.type, ctx->params.otstype)
+        < SIG_OTS_SIG_OFFSET) {
+        return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+    }
+
+    ret = mbedtls_lmots_sign(&ctx->ots_private_keys[q_leaf_identifier],
+                             f_rng,
+                             p_rng,
+                             msg,
+                             msg_size,
+                             sig + SIG_OTS_SIG_OFFSET,
+                             MBEDTLS_LMS_SIG_LEN(ctx->params.type,
+                                                 ctx->params.otstype) - SIG_OTS_SIG_OFFSET,
+                             NULL);
+    if (ret != 0) {
+        return ret;
+    }
+
+    MBEDTLS_PUT_UINT32_BE(ctx->params.type, sig, SIG_TYPE_OFFSET(ctx->params.otstype));
+    MBEDTLS_PUT_UINT32_BE(q_leaf_identifier, sig, SIG_Q_LEAF_ID_OFFSET);
+
+    ret = get_merkle_path(ctx,
+                          MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type) + q_leaf_identifier,
+                          sig + SIG_PATH_OFFSET(ctx->params.otstype));
+    if (ret != 0) {
+        return ret;
+    }
+
+    if (sig_len != NULL) {
+        *sig_len = MBEDTLS_LMS_SIG_LEN(ctx->params.type, ctx->params.otstype);
+    }
+
+
+    return 0;
+}
+
+#endif /* defined(MBEDTLS_LMS_PRIVATE) */
+#endif /* defined(MBEDTLS_LMS_C) */
diff --git a/tf-psa-crypto/drivers/builtin/src/md.c b/tf-psa-crypto/drivers/builtin/src/md.c
new file mode 100644
index 0000000..7e0465d
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/md.c
@@ -0,0 +1,1108 @@
+/**
+ * \file md.c
+ *
+ * \brief Generic message digest wrapper for Mbed TLS
+ *
+ * \author Adriaan de Jong <dejong@fox-it.com>
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+/*
+ * Availability of functions in this module is controlled by two
+ * feature macros:
+ * - MBEDTLS_MD_C enables the whole module;
+ * - MBEDTLS_MD_LIGHT enables only functions for hashing and accessing
+ * most hash metadata (everything except string names); is it
+ * automatically set whenever MBEDTLS_MD_C is defined.
+ *
+ * In this file, functions from MD_LIGHT are at the top, MD_C at the end.
+ *
+ * In the future we may want to change the contract of some functions
+ * (behaviour with NULL arguments) depending on whether MD_C is defined or
+ * only MD_LIGHT. Also, the exact scope of MD_LIGHT might vary.
+ *
+ * For these reasons, we're keeping MD_LIGHT internal for now.
+ */
+#if defined(MBEDTLS_MD_LIGHT)
+
+#include "mbedtls/md.h"
+#include "md_wrap.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include "mbedtls/md5.h"
+#include "mbedtls/ripemd160.h"
+#include "mbedtls/sha1.h"
+#include "mbedtls/sha256.h"
+#include "mbedtls/sha512.h"
+#include "mbedtls/sha3.h"
+
+#if defined(MBEDTLS_PSA_CRYPTO_CLIENT)
+#include <psa/crypto.h>
+#include "md_psa.h"
+#include "psa_util_internal.h"
+#endif
+
+#if defined(MBEDTLS_MD_SOME_PSA)
+#include "psa_crypto_core.h"
+#endif
+
+#include "mbedtls/platform.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_FS_IO)
+#include <stdio.h>
+#endif
+
+/* See comment above MBEDTLS_MD_MAX_SIZE in md.h */
+#if defined(MBEDTLS_PSA_CRYPTO_C) && MBEDTLS_MD_MAX_SIZE < PSA_HASH_MAX_SIZE
+#error "Internal error: MBEDTLS_MD_MAX_SIZE < PSA_HASH_MAX_SIZE"
+#endif
+
+#if defined(MBEDTLS_MD_C)
+#define MD_INFO(type, out_size, block_size) type, out_size, block_size,
+#else
+#define MD_INFO(type, out_size, block_size) type, out_size,
+#endif
+
+#if defined(MBEDTLS_MD_CAN_MD5)
+static const mbedtls_md_info_t mbedtls_md5_info = {
+    MD_INFO(MBEDTLS_MD_MD5, 16, 64)
+};
+#endif
+
+#if defined(PSA_WANT_ALG_RIPEMD160)
+static const mbedtls_md_info_t mbedtls_ripemd160_info = {
+    MD_INFO(MBEDTLS_MD_RIPEMD160, 20, 64)
+};
+#endif
+
+#if defined(MBEDTLS_MD_CAN_SHA1)
+static const mbedtls_md_info_t mbedtls_sha1_info = {
+    MD_INFO(MBEDTLS_MD_SHA1, 20, 64)
+};
+#endif
+
+#if defined(PSA_WANT_ALG_SHA_224)
+static const mbedtls_md_info_t mbedtls_sha224_info = {
+    MD_INFO(MBEDTLS_MD_SHA224, 28, 64)
+};
+#endif
+
+#if defined(MBEDTLS_MD_CAN_SHA256)
+static const mbedtls_md_info_t mbedtls_sha256_info = {
+    MD_INFO(MBEDTLS_MD_SHA256, 32, 64)
+};
+#endif
+
+#if defined(PSA_WANT_ALG_SHA_384)
+static const mbedtls_md_info_t mbedtls_sha384_info = {
+    MD_INFO(MBEDTLS_MD_SHA384, 48, 128)
+};
+#endif
+
+#if defined(MBEDTLS_MD_CAN_SHA512)
+static const mbedtls_md_info_t mbedtls_sha512_info = {
+    MD_INFO(MBEDTLS_MD_SHA512, 64, 128)
+};
+#endif
+
+#if defined(MBEDTLS_MD_CAN_SHA3_224)
+static const mbedtls_md_info_t mbedtls_sha3_224_info = {
+    MD_INFO(MBEDTLS_MD_SHA3_224, 28, 144)
+};
+#endif
+
+#if defined(PSA_WANT_ALG_SHA3_256)
+static const mbedtls_md_info_t mbedtls_sha3_256_info = {
+    MD_INFO(MBEDTLS_MD_SHA3_256, 32, 136)
+};
+#endif
+
+#if defined(MBEDTLS_MD_CAN_SHA3_384)
+static const mbedtls_md_info_t mbedtls_sha3_384_info = {
+    MD_INFO(MBEDTLS_MD_SHA3_384, 48, 104)
+};
+#endif
+
+#if defined(PSA_WANT_ALG_SHA3_512)
+static const mbedtls_md_info_t mbedtls_sha3_512_info = {
+    MD_INFO(MBEDTLS_MD_SHA3_512, 64, 72)
+};
+#endif
+
+const mbedtls_md_info_t *mbedtls_md_info_from_type(mbedtls_md_type_t md_type)
+{
+    switch (md_type) {
+#if defined(MBEDTLS_MD_CAN_MD5)
+        case MBEDTLS_MD_MD5:
+            return &mbedtls_md5_info;
+#endif
+#if defined(PSA_WANT_ALG_RIPEMD160)
+        case MBEDTLS_MD_RIPEMD160:
+            return &mbedtls_ripemd160_info;
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA1)
+        case MBEDTLS_MD_SHA1:
+            return &mbedtls_sha1_info;
+#endif
+#if defined(PSA_WANT_ALG_SHA_224)
+        case MBEDTLS_MD_SHA224:
+            return &mbedtls_sha224_info;
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA256)
+        case MBEDTLS_MD_SHA256:
+            return &mbedtls_sha256_info;
+#endif
+#if defined(PSA_WANT_ALG_SHA_384)
+        case MBEDTLS_MD_SHA384:
+            return &mbedtls_sha384_info;
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA512)
+        case MBEDTLS_MD_SHA512:
+            return &mbedtls_sha512_info;
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA3_224)
+        case MBEDTLS_MD_SHA3_224:
+            return &mbedtls_sha3_224_info;
+#endif
+#if defined(PSA_WANT_ALG_SHA3_256)
+        case MBEDTLS_MD_SHA3_256:
+            return &mbedtls_sha3_256_info;
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA3_384)
+        case MBEDTLS_MD_SHA3_384:
+            return &mbedtls_sha3_384_info;
+#endif
+#if defined(PSA_WANT_ALG_SHA3_512)
+        case MBEDTLS_MD_SHA3_512:
+            return &mbedtls_sha3_512_info;
+#endif
+        default:
+            return NULL;
+    }
+}
+
+#if defined(MBEDTLS_MD_SOME_PSA)
+static psa_algorithm_t psa_alg_of_md(const mbedtls_md_info_t *info)
+{
+    switch (info->type) {
+#if defined(MBEDTLS_MD_MD5_VIA_PSA)
+        case MBEDTLS_MD_MD5:
+            return PSA_ALG_MD5;
+#endif
+#if defined(MBEDTLS_MD_RIPEMD160_VIA_PSA)
+        case MBEDTLS_MD_RIPEMD160:
+            return PSA_ALG_RIPEMD160;
+#endif
+#if defined(MBEDTLS_MD_SHA1_VIA_PSA)
+        case MBEDTLS_MD_SHA1:
+            return PSA_ALG_SHA_1;
+#endif
+#if defined(MBEDTLS_MD_SHA224_VIA_PSA)
+        case MBEDTLS_MD_SHA224:
+            return PSA_ALG_SHA_224;
+#endif
+#if defined(MBEDTLS_MD_SHA256_VIA_PSA)
+        case MBEDTLS_MD_SHA256:
+            return PSA_ALG_SHA_256;
+#endif
+#if defined(MBEDTLS_MD_SHA384_VIA_PSA)
+        case MBEDTLS_MD_SHA384:
+            return PSA_ALG_SHA_384;
+#endif
+#if defined(MBEDTLS_MD_SHA512_VIA_PSA)
+        case MBEDTLS_MD_SHA512:
+            return PSA_ALG_SHA_512;
+#endif
+#if defined(MBEDTLS_MD_SHA3_224_VIA_PSA)
+        case MBEDTLS_MD_SHA3_224:
+            return PSA_ALG_SHA3_224;
+#endif
+#if defined(MBEDTLS_MD_SHA3_256_VIA_PSA)
+        case MBEDTLS_MD_SHA3_256:
+            return PSA_ALG_SHA3_256;
+#endif
+#if defined(MBEDTLS_MD_SHA3_384_VIA_PSA)
+        case MBEDTLS_MD_SHA3_384:
+            return PSA_ALG_SHA3_384;
+#endif
+#if defined(MBEDTLS_MD_SHA3_512_VIA_PSA)
+        case MBEDTLS_MD_SHA3_512:
+            return PSA_ALG_SHA3_512;
+#endif
+        default:
+            return PSA_ALG_NONE;
+    }
+}
+
+static int md_can_use_psa(const mbedtls_md_info_t *info)
+{
+    psa_algorithm_t alg = psa_alg_of_md(info);
+    if (alg == PSA_ALG_NONE) {
+        return 0;
+    }
+
+    return psa_can_do_hash(alg);
+}
+#endif /* MBEDTLS_MD_SOME_PSA */
+
+void mbedtls_md_init(mbedtls_md_context_t *ctx)
+{
+    /* Note: this sets engine (if present) to MBEDTLS_MD_ENGINE_LEGACY */
+    memset(ctx, 0, sizeof(mbedtls_md_context_t));
+}
+
+void mbedtls_md_free(mbedtls_md_context_t *ctx)
+{
+    if (ctx == NULL || ctx->md_info == NULL) {
+        return;
+    }
+
+    if (ctx->md_ctx != NULL) {
+#if defined(MBEDTLS_MD_SOME_PSA)
+        if (ctx->engine == MBEDTLS_MD_ENGINE_PSA) {
+            psa_hash_abort(ctx->md_ctx);
+        } else
+#endif
+        switch (ctx->md_info->type) {
+#if defined(MBEDTLS_MD5_C)
+            case MBEDTLS_MD_MD5:
+                mbedtls_md5_free(ctx->md_ctx);
+                break;
+#endif
+#if defined(MBEDTLS_RIPEMD160_C)
+            case MBEDTLS_MD_RIPEMD160:
+                mbedtls_ripemd160_free(ctx->md_ctx);
+                break;
+#endif
+#if defined(MBEDTLS_SHA1_C)
+            case MBEDTLS_MD_SHA1:
+                mbedtls_sha1_free(ctx->md_ctx);
+                break;
+#endif
+#if defined(MBEDTLS_SHA224_C)
+            case MBEDTLS_MD_SHA224:
+                mbedtls_sha256_free(ctx->md_ctx);
+                break;
+#endif
+#if defined(MBEDTLS_SHA256_C)
+            case MBEDTLS_MD_SHA256:
+                mbedtls_sha256_free(ctx->md_ctx);
+                break;
+#endif
+#if defined(MBEDTLS_SHA384_C)
+            case MBEDTLS_MD_SHA384:
+                mbedtls_sha512_free(ctx->md_ctx);
+                break;
+#endif
+#if defined(MBEDTLS_SHA512_C)
+            case MBEDTLS_MD_SHA512:
+                mbedtls_sha512_free(ctx->md_ctx);
+                break;
+#endif
+#if defined(MBEDTLS_SHA3_C)
+            case MBEDTLS_MD_SHA3_224:
+            case MBEDTLS_MD_SHA3_256:
+            case MBEDTLS_MD_SHA3_384:
+            case MBEDTLS_MD_SHA3_512:
+                mbedtls_sha3_free(ctx->md_ctx);
+                break;
+#endif
+            default:
+                /* Shouldn't happen */
+                break;
+        }
+        mbedtls_free(ctx->md_ctx);
+    }
+
+#if defined(MBEDTLS_MD_C)
+    if (ctx->hmac_ctx != NULL) {
+        mbedtls_zeroize_and_free(ctx->hmac_ctx,
+                                 2 * ctx->md_info->block_size);
+    }
+#endif
+
+    mbedtls_platform_zeroize(ctx, sizeof(mbedtls_md_context_t));
+}
+
+int mbedtls_md_clone(mbedtls_md_context_t *dst,
+                     const mbedtls_md_context_t *src)
+{
+    if (dst == NULL || dst->md_info == NULL ||
+        src == NULL || src->md_info == NULL ||
+        dst->md_info != src->md_info) {
+        return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+    }
+
+#if defined(MBEDTLS_MD_SOME_PSA)
+    if (src->engine != dst->engine) {
+        /* This can happen with src set to legacy because PSA wasn't ready
+         * yet, and dst to PSA because it became ready in the meantime.
+         * We currently don't support that case (we'd need to re-allocate
+         * md_ctx to the size of the appropriate MD context). */
+        return MBEDTLS_ERR_MD_FEATURE_UNAVAILABLE;
+    }
+
+    if (src->engine == MBEDTLS_MD_ENGINE_PSA) {
+        psa_status_t status = psa_hash_clone(src->md_ctx, dst->md_ctx);
+        return mbedtls_md_error_from_psa(status);
+    }
+#endif
+
+    switch (src->md_info->type) {
+#if defined(MBEDTLS_MD5_C)
+        case MBEDTLS_MD_MD5:
+            mbedtls_md5_clone(dst->md_ctx, src->md_ctx);
+            break;
+#endif
+#if defined(MBEDTLS_RIPEMD160_C)
+        case MBEDTLS_MD_RIPEMD160:
+            mbedtls_ripemd160_clone(dst->md_ctx, src->md_ctx);
+            break;
+#endif
+#if defined(MBEDTLS_SHA1_C)
+        case MBEDTLS_MD_SHA1:
+            mbedtls_sha1_clone(dst->md_ctx, src->md_ctx);
+            break;
+#endif
+#if defined(MBEDTLS_SHA224_C)
+        case MBEDTLS_MD_SHA224:
+            mbedtls_sha256_clone(dst->md_ctx, src->md_ctx);
+            break;
+#endif
+#if defined(MBEDTLS_SHA256_C)
+        case MBEDTLS_MD_SHA256:
+            mbedtls_sha256_clone(dst->md_ctx, src->md_ctx);
+            break;
+#endif
+#if defined(MBEDTLS_SHA384_C)
+        case MBEDTLS_MD_SHA384:
+            mbedtls_sha512_clone(dst->md_ctx, src->md_ctx);
+            break;
+#endif
+#if defined(MBEDTLS_SHA512_C)
+        case MBEDTLS_MD_SHA512:
+            mbedtls_sha512_clone(dst->md_ctx, src->md_ctx);
+            break;
+#endif
+#if defined(MBEDTLS_SHA3_C)
+        case MBEDTLS_MD_SHA3_224:
+        case MBEDTLS_MD_SHA3_256:
+        case MBEDTLS_MD_SHA3_384:
+        case MBEDTLS_MD_SHA3_512:
+            mbedtls_sha3_clone(dst->md_ctx, src->md_ctx);
+            break;
+#endif
+        default:
+            return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+    }
+
+    return 0;
+}
+
+#define ALLOC(type)                                                   \
+    do {                                                                \
+        ctx->md_ctx = mbedtls_calloc(1, sizeof(mbedtls_##type##_context)); \
+        if (ctx->md_ctx == NULL)                                       \
+        return MBEDTLS_ERR_MD_ALLOC_FAILED;                      \
+        mbedtls_##type##_init(ctx->md_ctx);                           \
+    }                                                                   \
+    while (0)
+
+int mbedtls_md_setup(mbedtls_md_context_t *ctx, const mbedtls_md_info_t *md_info, int hmac)
+{
+#if defined(MBEDTLS_MD_C)
+    if (ctx == NULL) {
+        return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+    }
+#endif
+    if (md_info == NULL) {
+        return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+    }
+
+    ctx->md_info = md_info;
+    ctx->md_ctx = NULL;
+#if defined(MBEDTLS_MD_C)
+    ctx->hmac_ctx = NULL;
+#else
+    if (hmac != 0) {
+        return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+    }
+#endif
+
+#if defined(MBEDTLS_MD_SOME_PSA)
+    if (md_can_use_psa(ctx->md_info)) {
+        ctx->md_ctx = mbedtls_calloc(1, sizeof(psa_hash_operation_t));
+        if (ctx->md_ctx == NULL) {
+            return MBEDTLS_ERR_MD_ALLOC_FAILED;
+        }
+        ctx->engine = MBEDTLS_MD_ENGINE_PSA;
+    } else
+#endif
+    switch (md_info->type) {
+#if defined(MBEDTLS_MD5_C)
+        case MBEDTLS_MD_MD5:
+            ALLOC(md5);
+            break;
+#endif
+#if defined(MBEDTLS_RIPEMD160_C)
+        case MBEDTLS_MD_RIPEMD160:
+            ALLOC(ripemd160);
+            break;
+#endif
+#if defined(MBEDTLS_SHA1_C)
+        case MBEDTLS_MD_SHA1:
+            ALLOC(sha1);
+            break;
+#endif
+#if defined(MBEDTLS_SHA224_C)
+        case MBEDTLS_MD_SHA224:
+            ALLOC(sha256);
+            break;
+#endif
+#if defined(MBEDTLS_SHA256_C)
+        case MBEDTLS_MD_SHA256:
+            ALLOC(sha256);
+            break;
+#endif
+#if defined(MBEDTLS_SHA384_C)
+        case MBEDTLS_MD_SHA384:
+            ALLOC(sha512);
+            break;
+#endif
+#if defined(MBEDTLS_SHA512_C)
+        case MBEDTLS_MD_SHA512:
+            ALLOC(sha512);
+            break;
+#endif
+#if defined(MBEDTLS_SHA3_C)
+        case MBEDTLS_MD_SHA3_224:
+        case MBEDTLS_MD_SHA3_256:
+        case MBEDTLS_MD_SHA3_384:
+        case MBEDTLS_MD_SHA3_512:
+            ALLOC(sha3);
+            break;
+#endif
+        default:
+            return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+    }
+
+#if defined(MBEDTLS_MD_C)
+    if (hmac != 0) {
+        ctx->hmac_ctx = mbedtls_calloc(2, md_info->block_size);
+        if (ctx->hmac_ctx == NULL) {
+            mbedtls_md_free(ctx);
+            return MBEDTLS_ERR_MD_ALLOC_FAILED;
+        }
+    }
+#endif
+
+    return 0;
+}
+#undef ALLOC
+
+int mbedtls_md_starts(mbedtls_md_context_t *ctx)
+{
+#if defined(MBEDTLS_MD_C)
+    if (ctx == NULL || ctx->md_info == NULL) {
+        return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+    }
+#endif
+
+#if defined(MBEDTLS_MD_SOME_PSA)
+    if (ctx->engine == MBEDTLS_MD_ENGINE_PSA) {
+        psa_algorithm_t alg = psa_alg_of_md(ctx->md_info);
+        psa_hash_abort(ctx->md_ctx);
+        psa_status_t status = psa_hash_setup(ctx->md_ctx, alg);
+        return mbedtls_md_error_from_psa(status);
+    }
+#endif
+
+    switch (ctx->md_info->type) {
+#if defined(MBEDTLS_MD5_C)
+        case MBEDTLS_MD_MD5:
+            return mbedtls_md5_starts(ctx->md_ctx);
+#endif
+#if defined(MBEDTLS_RIPEMD160_C)
+        case MBEDTLS_MD_RIPEMD160:
+            return mbedtls_ripemd160_starts(ctx->md_ctx);
+#endif
+#if defined(MBEDTLS_SHA1_C)
+        case MBEDTLS_MD_SHA1:
+            return mbedtls_sha1_starts(ctx->md_ctx);
+#endif
+#if defined(MBEDTLS_SHA224_C)
+        case MBEDTLS_MD_SHA224:
+            return mbedtls_sha256_starts(ctx->md_ctx, 1);
+#endif
+#if defined(MBEDTLS_SHA256_C)
+        case MBEDTLS_MD_SHA256:
+            return mbedtls_sha256_starts(ctx->md_ctx, 0);
+#endif
+#if defined(MBEDTLS_SHA384_C)
+        case MBEDTLS_MD_SHA384:
+            return mbedtls_sha512_starts(ctx->md_ctx, 1);
+#endif
+#if defined(MBEDTLS_SHA512_C)
+        case MBEDTLS_MD_SHA512:
+            return mbedtls_sha512_starts(ctx->md_ctx, 0);
+#endif
+#if defined(MBEDTLS_SHA3_C)
+        case MBEDTLS_MD_SHA3_224:
+            return mbedtls_sha3_starts(ctx->md_ctx, MBEDTLS_SHA3_224);
+        case MBEDTLS_MD_SHA3_256:
+            return mbedtls_sha3_starts(ctx->md_ctx, MBEDTLS_SHA3_256);
+        case MBEDTLS_MD_SHA3_384:
+            return mbedtls_sha3_starts(ctx->md_ctx, MBEDTLS_SHA3_384);
+        case MBEDTLS_MD_SHA3_512:
+            return mbedtls_sha3_starts(ctx->md_ctx, MBEDTLS_SHA3_512);
+#endif
+        default:
+            return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+    }
+}
+
+int mbedtls_md_update(mbedtls_md_context_t *ctx, const unsigned char *input, size_t ilen)
+{
+#if defined(MBEDTLS_MD_C)
+    if (ctx == NULL || ctx->md_info == NULL) {
+        return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+    }
+#endif
+
+#if defined(MBEDTLS_MD_SOME_PSA)
+    if (ctx->engine == MBEDTLS_MD_ENGINE_PSA) {
+        psa_status_t status = psa_hash_update(ctx->md_ctx, input, ilen);
+        return mbedtls_md_error_from_psa(status);
+    }
+#endif
+
+    switch (ctx->md_info->type) {
+#if defined(MBEDTLS_MD5_C)
+        case MBEDTLS_MD_MD5:
+            return mbedtls_md5_update(ctx->md_ctx, input, ilen);
+#endif
+#if defined(MBEDTLS_RIPEMD160_C)
+        case MBEDTLS_MD_RIPEMD160:
+            return mbedtls_ripemd160_update(ctx->md_ctx, input, ilen);
+#endif
+#if defined(MBEDTLS_SHA1_C)
+        case MBEDTLS_MD_SHA1:
+            return mbedtls_sha1_update(ctx->md_ctx, input, ilen);
+#endif
+#if defined(MBEDTLS_SHA224_C)
+        case MBEDTLS_MD_SHA224:
+            return mbedtls_sha256_update(ctx->md_ctx, input, ilen);
+#endif
+#if defined(MBEDTLS_SHA256_C)
+        case MBEDTLS_MD_SHA256:
+            return mbedtls_sha256_update(ctx->md_ctx, input, ilen);
+#endif
+#if defined(MBEDTLS_SHA384_C)
+        case MBEDTLS_MD_SHA384:
+            return mbedtls_sha512_update(ctx->md_ctx, input, ilen);
+#endif
+#if defined(MBEDTLS_SHA512_C)
+        case MBEDTLS_MD_SHA512:
+            return mbedtls_sha512_update(ctx->md_ctx, input, ilen);
+#endif
+#if defined(MBEDTLS_SHA3_C)
+        case MBEDTLS_MD_SHA3_224:
+        case MBEDTLS_MD_SHA3_256:
+        case MBEDTLS_MD_SHA3_384:
+        case MBEDTLS_MD_SHA3_512:
+            return mbedtls_sha3_update(ctx->md_ctx, input, ilen);
+#endif
+        default:
+            return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+    }
+}
+
+int mbedtls_md_finish(mbedtls_md_context_t *ctx, unsigned char *output)
+{
+#if defined(MBEDTLS_MD_C)
+    if (ctx == NULL || ctx->md_info == NULL) {
+        return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+    }
+#endif
+
+#if defined(MBEDTLS_MD_SOME_PSA)
+    if (ctx->engine == MBEDTLS_MD_ENGINE_PSA) {
+        size_t size = ctx->md_info->size;
+        psa_status_t status = psa_hash_finish(ctx->md_ctx,
+                                              output, size, &size);
+        return mbedtls_md_error_from_psa(status);
+    }
+#endif
+
+    switch (ctx->md_info->type) {
+#if defined(MBEDTLS_MD5_C)
+        case MBEDTLS_MD_MD5:
+            return mbedtls_md5_finish(ctx->md_ctx, output);
+#endif
+#if defined(MBEDTLS_RIPEMD160_C)
+        case MBEDTLS_MD_RIPEMD160:
+            return mbedtls_ripemd160_finish(ctx->md_ctx, output);
+#endif
+#if defined(MBEDTLS_SHA1_C)
+        case MBEDTLS_MD_SHA1:
+            return mbedtls_sha1_finish(ctx->md_ctx, output);
+#endif
+#if defined(MBEDTLS_SHA224_C)
+        case MBEDTLS_MD_SHA224:
+            return mbedtls_sha256_finish(ctx->md_ctx, output);
+#endif
+#if defined(MBEDTLS_SHA256_C)
+        case MBEDTLS_MD_SHA256:
+            return mbedtls_sha256_finish(ctx->md_ctx, output);
+#endif
+#if defined(MBEDTLS_SHA384_C)
+        case MBEDTLS_MD_SHA384:
+            return mbedtls_sha512_finish(ctx->md_ctx, output);
+#endif
+#if defined(MBEDTLS_SHA512_C)
+        case MBEDTLS_MD_SHA512:
+            return mbedtls_sha512_finish(ctx->md_ctx, output);
+#endif
+#if defined(MBEDTLS_SHA3_C)
+        case MBEDTLS_MD_SHA3_224:
+        case MBEDTLS_MD_SHA3_256:
+        case MBEDTLS_MD_SHA3_384:
+        case MBEDTLS_MD_SHA3_512:
+            return mbedtls_sha3_finish(ctx->md_ctx, output, ctx->md_info->size);
+#endif
+        default:
+            return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+    }
+}
+
+int mbedtls_md(const mbedtls_md_info_t *md_info, const unsigned char *input, size_t ilen,
+               unsigned char *output)
+{
+    if (md_info == NULL) {
+        return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+    }
+
+#if defined(MBEDTLS_MD_SOME_PSA)
+    if (md_can_use_psa(md_info)) {
+        size_t size = md_info->size;
+        psa_status_t status = psa_hash_compute(psa_alg_of_md(md_info),
+                                               input, ilen,
+                                               output, size, &size);
+        return mbedtls_md_error_from_psa(status);
+    }
+#endif
+
+    switch (md_info->type) {
+#if defined(MBEDTLS_MD5_C)
+        case MBEDTLS_MD_MD5:
+            return mbedtls_md5(input, ilen, output);
+#endif
+#if defined(MBEDTLS_RIPEMD160_C)
+        case MBEDTLS_MD_RIPEMD160:
+            return mbedtls_ripemd160(input, ilen, output);
+#endif
+#if defined(MBEDTLS_SHA1_C)
+        case MBEDTLS_MD_SHA1:
+            return mbedtls_sha1(input, ilen, output);
+#endif
+#if defined(MBEDTLS_SHA224_C)
+        case MBEDTLS_MD_SHA224:
+            return mbedtls_sha256(input, ilen, output, 1);
+#endif
+#if defined(MBEDTLS_SHA256_C)
+        case MBEDTLS_MD_SHA256:
+            return mbedtls_sha256(input, ilen, output, 0);
+#endif
+#if defined(MBEDTLS_SHA384_C)
+        case MBEDTLS_MD_SHA384:
+            return mbedtls_sha512(input, ilen, output, 1);
+#endif
+#if defined(MBEDTLS_SHA512_C)
+        case MBEDTLS_MD_SHA512:
+            return mbedtls_sha512(input, ilen, output, 0);
+#endif
+#if defined(MBEDTLS_SHA3_C)
+        case MBEDTLS_MD_SHA3_224:
+            return mbedtls_sha3(MBEDTLS_SHA3_224, input, ilen, output, md_info->size);
+        case MBEDTLS_MD_SHA3_256:
+            return mbedtls_sha3(MBEDTLS_SHA3_256, input, ilen, output, md_info->size);
+        case MBEDTLS_MD_SHA3_384:
+            return mbedtls_sha3(MBEDTLS_SHA3_384, input, ilen, output, md_info->size);
+        case MBEDTLS_MD_SHA3_512:
+            return mbedtls_sha3(MBEDTLS_SHA3_512, input, ilen, output, md_info->size);
+#endif
+        default:
+            return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+    }
+}
+
+unsigned char mbedtls_md_get_size(const mbedtls_md_info_t *md_info)
+{
+    if (md_info == NULL) {
+        return 0;
+    }
+
+    return md_info->size;
+}
+
+mbedtls_md_type_t mbedtls_md_get_type(const mbedtls_md_info_t *md_info)
+{
+    if (md_info == NULL) {
+        return MBEDTLS_MD_NONE;
+    }
+
+    return md_info->type;
+}
+
+#if defined(MBEDTLS_PSA_CRYPTO_CLIENT)
+int mbedtls_md_error_from_psa(psa_status_t status)
+{
+    return PSA_TO_MBEDTLS_ERR_LIST(status, psa_to_md_errors,
+                                   psa_generic_status_to_mbedtls);
+}
+#endif /* MBEDTLS_PSA_CRYPTO_CLIENT */
+
+
+/************************************************************************
+ * Functions above this separator are part of MBEDTLS_MD_LIGHT,         *
+ * functions below are only available when MBEDTLS_MD_C is set.         *
+ ************************************************************************/
+#if defined(MBEDTLS_MD_C)
+
+/*
+ * Reminder: update profiles in x509_crt.c when adding a new hash!
+ */
+static const int supported_digests[] = {
+
+#if defined(MBEDTLS_MD_CAN_SHA512)
+    MBEDTLS_MD_SHA512,
+#endif
+
+#if defined(PSA_WANT_ALG_SHA_384)
+    MBEDTLS_MD_SHA384,
+#endif
+
+#if defined(MBEDTLS_MD_CAN_SHA256)
+    MBEDTLS_MD_SHA256,
+#endif
+#if defined(PSA_WANT_ALG_SHA_224)
+    MBEDTLS_MD_SHA224,
+#endif
+
+#if defined(MBEDTLS_MD_CAN_SHA1)
+    MBEDTLS_MD_SHA1,
+#endif
+
+#if defined(PSA_WANT_ALG_RIPEMD160)
+    MBEDTLS_MD_RIPEMD160,
+#endif
+
+#if defined(MBEDTLS_MD_CAN_MD5)
+    MBEDTLS_MD_MD5,
+#endif
+
+#if defined(MBEDTLS_MD_CAN_SHA3_224)
+    MBEDTLS_MD_SHA3_224,
+#endif
+
+#if defined(PSA_WANT_ALG_SHA3_256)
+    MBEDTLS_MD_SHA3_256,
+#endif
+
+#if defined(MBEDTLS_MD_CAN_SHA3_384)
+    MBEDTLS_MD_SHA3_384,
+#endif
+
+#if defined(PSA_WANT_ALG_SHA3_512)
+    MBEDTLS_MD_SHA3_512,
+#endif
+
+    MBEDTLS_MD_NONE
+};
+
+const int *mbedtls_md_list(void)
+{
+    return supported_digests;
+}
+
+typedef struct {
+    const char *md_name;
+    mbedtls_md_type_t md_type;
+} md_name_entry;
+
+static const md_name_entry md_names[] = {
+#if defined(MBEDTLS_MD_CAN_MD5)
+    { "MD5", MBEDTLS_MD_MD5 },
+#endif
+#if defined(PSA_WANT_ALG_RIPEMD160)
+    { "RIPEMD160", MBEDTLS_MD_RIPEMD160 },
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA1)
+    { "SHA1", MBEDTLS_MD_SHA1 },
+    { "SHA", MBEDTLS_MD_SHA1 }, // compatibility fallback
+#endif
+#if defined(PSA_WANT_ALG_SHA_224)
+    { "SHA224", MBEDTLS_MD_SHA224 },
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA256)
+    { "SHA256", MBEDTLS_MD_SHA256 },
+#endif
+#if defined(PSA_WANT_ALG_SHA_384)
+    { "SHA384", MBEDTLS_MD_SHA384 },
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA512)
+    { "SHA512", MBEDTLS_MD_SHA512 },
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA3_224)
+    { "SHA3-224", MBEDTLS_MD_SHA3_224 },
+#endif
+#if defined(PSA_WANT_ALG_SHA3_256)
+    { "SHA3-256", MBEDTLS_MD_SHA3_256 },
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA3_384)
+    { "SHA3-384", MBEDTLS_MD_SHA3_384 },
+#endif
+#if defined(PSA_WANT_ALG_SHA3_512)
+    { "SHA3-512", MBEDTLS_MD_SHA3_512 },
+#endif
+    { NULL, MBEDTLS_MD_NONE },
+};
+
+const mbedtls_md_info_t *mbedtls_md_info_from_string(const char *md_name)
+{
+    if (NULL == md_name) {
+        return NULL;
+    }
+
+    const md_name_entry *entry = md_names;
+    while (entry->md_name != NULL &&
+           strcmp(entry->md_name, md_name) != 0) {
+        ++entry;
+    }
+
+    return mbedtls_md_info_from_type(entry->md_type);
+}
+
+const char *mbedtls_md_get_name(const mbedtls_md_info_t *md_info)
+{
+    if (md_info == NULL) {
+        return NULL;
+    }
+
+    const md_name_entry *entry = md_names;
+    while (entry->md_type != MBEDTLS_MD_NONE &&
+           entry->md_type != md_info->type) {
+        ++entry;
+    }
+
+    return entry->md_name;
+}
+
+const mbedtls_md_info_t *mbedtls_md_info_from_ctx(
+    const mbedtls_md_context_t *ctx)
+{
+    if (ctx == NULL) {
+        return NULL;
+    }
+
+    return ctx->MBEDTLS_PRIVATE(md_info);
+}
+
+#if defined(MBEDTLS_FS_IO)
+int mbedtls_md_file(const mbedtls_md_info_t *md_info, const char *path, unsigned char *output)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    FILE *f;
+    size_t n;
+    mbedtls_md_context_t ctx;
+    unsigned char buf[1024];
+
+    if (md_info == NULL) {
+        return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+    }
+
+    if ((f = fopen(path, "rb")) == NULL) {
+        return MBEDTLS_ERR_MD_FILE_IO_ERROR;
+    }
+
+    /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */
+    mbedtls_setbuf(f, NULL);
+
+    mbedtls_md_init(&ctx);
+
+    if ((ret = mbedtls_md_setup(&ctx, md_info, 0)) != 0) {
+        goto cleanup;
+    }
+
+    if ((ret = mbedtls_md_starts(&ctx)) != 0) {
+        goto cleanup;
+    }
+
+    while ((n = fread(buf, 1, sizeof(buf), f)) > 0) {
+        if ((ret = mbedtls_md_update(&ctx, buf, n)) != 0) {
+            goto cleanup;
+        }
+    }
+
+    if (ferror(f) != 0) {
+        ret = MBEDTLS_ERR_MD_FILE_IO_ERROR;
+    } else {
+        ret = mbedtls_md_finish(&ctx, output);
+    }
+
+cleanup:
+    mbedtls_platform_zeroize(buf, sizeof(buf));
+    fclose(f);
+    mbedtls_md_free(&ctx);
+
+    return ret;
+}
+#endif /* MBEDTLS_FS_IO */
+
+int mbedtls_md_hmac_starts(mbedtls_md_context_t *ctx, const unsigned char *key, size_t keylen)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char sum[MBEDTLS_MD_MAX_SIZE];
+    unsigned char *ipad, *opad;
+
+    if (ctx == NULL || ctx->md_info == NULL || ctx->hmac_ctx == NULL) {
+        return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+    }
+
+    if (keylen > (size_t) ctx->md_info->block_size) {
+        if ((ret = mbedtls_md_starts(ctx)) != 0) {
+            goto cleanup;
+        }
+        if ((ret = mbedtls_md_update(ctx, key, keylen)) != 0) {
+            goto cleanup;
+        }
+        if ((ret = mbedtls_md_finish(ctx, sum)) != 0) {
+            goto cleanup;
+        }
+
+        keylen = ctx->md_info->size;
+        key = sum;
+    }
+
+    ipad = (unsigned char *) ctx->hmac_ctx;
+    opad = (unsigned char *) ctx->hmac_ctx + ctx->md_info->block_size;
+
+    memset(ipad, 0x36, ctx->md_info->block_size);
+    memset(opad, 0x5C, ctx->md_info->block_size);
+
+    mbedtls_xor(ipad, ipad, key, keylen);
+    mbedtls_xor(opad, opad, key, keylen);
+
+    if ((ret = mbedtls_md_starts(ctx)) != 0) {
+        goto cleanup;
+    }
+    if ((ret = mbedtls_md_update(ctx, ipad,
+                                 ctx->md_info->block_size)) != 0) {
+        goto cleanup;
+    }
+
+cleanup:
+    mbedtls_platform_zeroize(sum, sizeof(sum));
+
+    return ret;
+}
+
+int mbedtls_md_hmac_update(mbedtls_md_context_t *ctx, const unsigned char *input, size_t ilen)
+{
+    if (ctx == NULL || ctx->md_info == NULL || ctx->hmac_ctx == NULL) {
+        return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+    }
+
+    return mbedtls_md_update(ctx, input, ilen);
+}
+
+int mbedtls_md_hmac_finish(mbedtls_md_context_t *ctx, unsigned char *output)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char tmp[MBEDTLS_MD_MAX_SIZE];
+    unsigned char *opad;
+
+    if (ctx == NULL || ctx->md_info == NULL || ctx->hmac_ctx == NULL) {
+        return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+    }
+
+    opad = (unsigned char *) ctx->hmac_ctx + ctx->md_info->block_size;
+
+    if ((ret = mbedtls_md_finish(ctx, tmp)) != 0) {
+        return ret;
+    }
+    if ((ret = mbedtls_md_starts(ctx)) != 0) {
+        return ret;
+    }
+    if ((ret = mbedtls_md_update(ctx, opad,
+                                 ctx->md_info->block_size)) != 0) {
+        return ret;
+    }
+    if ((ret = mbedtls_md_update(ctx, tmp,
+                                 ctx->md_info->size)) != 0) {
+        return ret;
+    }
+    return mbedtls_md_finish(ctx, output);
+}
+
+int mbedtls_md_hmac_reset(mbedtls_md_context_t *ctx)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char *ipad;
+
+    if (ctx == NULL || ctx->md_info == NULL || ctx->hmac_ctx == NULL) {
+        return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+    }
+
+    ipad = (unsigned char *) ctx->hmac_ctx;
+
+    if ((ret = mbedtls_md_starts(ctx)) != 0) {
+        return ret;
+    }
+    return mbedtls_md_update(ctx, ipad, ctx->md_info->block_size);
+}
+
+int mbedtls_md_hmac(const mbedtls_md_info_t *md_info,
+                    const unsigned char *key, size_t keylen,
+                    const unsigned char *input, size_t ilen,
+                    unsigned char *output)
+{
+    mbedtls_md_context_t ctx;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if (md_info == NULL) {
+        return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+    }
+
+    mbedtls_md_init(&ctx);
+
+    if ((ret = mbedtls_md_setup(&ctx, md_info, 1)) != 0) {
+        goto cleanup;
+    }
+
+    if ((ret = mbedtls_md_hmac_starts(&ctx, key, keylen)) != 0) {
+        goto cleanup;
+    }
+    if ((ret = mbedtls_md_hmac_update(&ctx, input, ilen)) != 0) {
+        goto cleanup;
+    }
+    if ((ret = mbedtls_md_hmac_finish(&ctx, output)) != 0) {
+        goto cleanup;
+    }
+
+cleanup:
+    mbedtls_md_free(&ctx);
+
+    return ret;
+}
+
+#endif /* MBEDTLS_MD_C */
+
+#endif /* MBEDTLS_MD_LIGHT */
diff --git a/tf-psa-crypto/drivers/builtin/src/md5.c b/tf-psa-crypto/drivers/builtin/src/md5.c
new file mode 100644
index 0000000..e4a87a2
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/md5.c
@@ -0,0 +1,426 @@
+/*
+ *  RFC 1321 compliant MD5 implementation
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ *  The MD5 algorithm was designed by Ron Rivest in 1991.
+ *
+ *  http://www.ietf.org/rfc/rfc1321.txt
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_MD5_C)
+
+#include "mbedtls/md5.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_MD5_ALT)
+
+void mbedtls_md5_init(mbedtls_md5_context *ctx)
+{
+    memset(ctx, 0, sizeof(mbedtls_md5_context));
+}
+
+void mbedtls_md5_free(mbedtls_md5_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_platform_zeroize(ctx, sizeof(mbedtls_md5_context));
+}
+
+void mbedtls_md5_clone(mbedtls_md5_context *dst,
+                       const mbedtls_md5_context *src)
+{
+    *dst = *src;
+}
+
+/*
+ * MD5 context setup
+ */
+int mbedtls_md5_starts(mbedtls_md5_context *ctx)
+{
+    ctx->total[0] = 0;
+    ctx->total[1] = 0;
+
+    ctx->state[0] = 0x67452301;
+    ctx->state[1] = 0xEFCDAB89;
+    ctx->state[2] = 0x98BADCFE;
+    ctx->state[3] = 0x10325476;
+
+    return 0;
+}
+
+#if !defined(MBEDTLS_MD5_PROCESS_ALT)
+int mbedtls_internal_md5_process(mbedtls_md5_context *ctx,
+                                 const unsigned char data[64])
+{
+    struct {
+        uint32_t X[16], A, B, C, D;
+    } local;
+
+    local.X[0] = MBEDTLS_GET_UINT32_LE(data,  0);
+    local.X[1] = MBEDTLS_GET_UINT32_LE(data,  4);
+    local.X[2] = MBEDTLS_GET_UINT32_LE(data,  8);
+    local.X[3] = MBEDTLS_GET_UINT32_LE(data, 12);
+    local.X[4] = MBEDTLS_GET_UINT32_LE(data, 16);
+    local.X[5] = MBEDTLS_GET_UINT32_LE(data, 20);
+    local.X[6] = MBEDTLS_GET_UINT32_LE(data, 24);
+    local.X[7] = MBEDTLS_GET_UINT32_LE(data, 28);
+    local.X[8] = MBEDTLS_GET_UINT32_LE(data, 32);
+    local.X[9] = MBEDTLS_GET_UINT32_LE(data, 36);
+    local.X[10] = MBEDTLS_GET_UINT32_LE(data, 40);
+    local.X[11] = MBEDTLS_GET_UINT32_LE(data, 44);
+    local.X[12] = MBEDTLS_GET_UINT32_LE(data, 48);
+    local.X[13] = MBEDTLS_GET_UINT32_LE(data, 52);
+    local.X[14] = MBEDTLS_GET_UINT32_LE(data, 56);
+    local.X[15] = MBEDTLS_GET_UINT32_LE(data, 60);
+
+#define S(x, n)                                                          \
+    (((x) << (n)) | (((x) & 0xFFFFFFFF) >> (32 - (n))))
+
+#define P(a, b, c, d, k, s, t)                                                \
+    do                                                                  \
+    {                                                                   \
+        (a) += F((b), (c), (d)) + local.X[(k)] + (t);                     \
+        (a) = S((a), (s)) + (b);                                         \
+    } while (0)
+
+    local.A = ctx->state[0];
+    local.B = ctx->state[1];
+    local.C = ctx->state[2];
+    local.D = ctx->state[3];
+
+#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
+
+    P(local.A, local.B, local.C, local.D,  0,  7, 0xD76AA478);
+    P(local.D, local.A, local.B, local.C,  1, 12, 0xE8C7B756);
+    P(local.C, local.D, local.A, local.B,  2, 17, 0x242070DB);
+    P(local.B, local.C, local.D, local.A,  3, 22, 0xC1BDCEEE);
+    P(local.A, local.B, local.C, local.D,  4,  7, 0xF57C0FAF);
+    P(local.D, local.A, local.B, local.C,  5, 12, 0x4787C62A);
+    P(local.C, local.D, local.A, local.B,  6, 17, 0xA8304613);
+    P(local.B, local.C, local.D, local.A,  7, 22, 0xFD469501);
+    P(local.A, local.B, local.C, local.D,  8,  7, 0x698098D8);
+    P(local.D, local.A, local.B, local.C,  9, 12, 0x8B44F7AF);
+    P(local.C, local.D, local.A, local.B, 10, 17, 0xFFFF5BB1);
+    P(local.B, local.C, local.D, local.A, 11, 22, 0x895CD7BE);
+    P(local.A, local.B, local.C, local.D, 12,  7, 0x6B901122);
+    P(local.D, local.A, local.B, local.C, 13, 12, 0xFD987193);
+    P(local.C, local.D, local.A, local.B, 14, 17, 0xA679438E);
+    P(local.B, local.C, local.D, local.A, 15, 22, 0x49B40821);
+
+#undef F
+
+#define F(x, y, z) ((y) ^ ((z) & ((x) ^ (y))))
+
+    P(local.A, local.B, local.C, local.D,  1,  5, 0xF61E2562);
+    P(local.D, local.A, local.B, local.C,  6,  9, 0xC040B340);
+    P(local.C, local.D, local.A, local.B, 11, 14, 0x265E5A51);
+    P(local.B, local.C, local.D, local.A,  0, 20, 0xE9B6C7AA);
+    P(local.A, local.B, local.C, local.D,  5,  5, 0xD62F105D);
+    P(local.D, local.A, local.B, local.C, 10,  9, 0x02441453);
+    P(local.C, local.D, local.A, local.B, 15, 14, 0xD8A1E681);
+    P(local.B, local.C, local.D, local.A,  4, 20, 0xE7D3FBC8);
+    P(local.A, local.B, local.C, local.D,  9,  5, 0x21E1CDE6);
+    P(local.D, local.A, local.B, local.C, 14,  9, 0xC33707D6);
+    P(local.C, local.D, local.A, local.B,  3, 14, 0xF4D50D87);
+    P(local.B, local.C, local.D, local.A,  8, 20, 0x455A14ED);
+    P(local.A, local.B, local.C, local.D, 13,  5, 0xA9E3E905);
+    P(local.D, local.A, local.B, local.C,  2,  9, 0xFCEFA3F8);
+    P(local.C, local.D, local.A, local.B,  7, 14, 0x676F02D9);
+    P(local.B, local.C, local.D, local.A, 12, 20, 0x8D2A4C8A);
+
+#undef F
+
+#define F(x, y, z) ((x) ^ (y) ^ (z))
+
+    P(local.A, local.B, local.C, local.D,  5,  4, 0xFFFA3942);
+    P(local.D, local.A, local.B, local.C,  8, 11, 0x8771F681);
+    P(local.C, local.D, local.A, local.B, 11, 16, 0x6D9D6122);
+    P(local.B, local.C, local.D, local.A, 14, 23, 0xFDE5380C);
+    P(local.A, local.B, local.C, local.D,  1,  4, 0xA4BEEA44);
+    P(local.D, local.A, local.B, local.C,  4, 11, 0x4BDECFA9);
+    P(local.C, local.D, local.A, local.B,  7, 16, 0xF6BB4B60);
+    P(local.B, local.C, local.D, local.A, 10, 23, 0xBEBFBC70);
+    P(local.A, local.B, local.C, local.D, 13,  4, 0x289B7EC6);
+    P(local.D, local.A, local.B, local.C,  0, 11, 0xEAA127FA);
+    P(local.C, local.D, local.A, local.B,  3, 16, 0xD4EF3085);
+    P(local.B, local.C, local.D, local.A,  6, 23, 0x04881D05);
+    P(local.A, local.B, local.C, local.D,  9,  4, 0xD9D4D039);
+    P(local.D, local.A, local.B, local.C, 12, 11, 0xE6DB99E5);
+    P(local.C, local.D, local.A, local.B, 15, 16, 0x1FA27CF8);
+    P(local.B, local.C, local.D, local.A,  2, 23, 0xC4AC5665);
+
+#undef F
+
+#define F(x, y, z) ((y) ^ ((x) | ~(z)))
+
+    P(local.A, local.B, local.C, local.D,  0,  6, 0xF4292244);
+    P(local.D, local.A, local.B, local.C,  7, 10, 0x432AFF97);
+    P(local.C, local.D, local.A, local.B, 14, 15, 0xAB9423A7);
+    P(local.B, local.C, local.D, local.A,  5, 21, 0xFC93A039);
+    P(local.A, local.B, local.C, local.D, 12,  6, 0x655B59C3);
+    P(local.D, local.A, local.B, local.C,  3, 10, 0x8F0CCC92);
+    P(local.C, local.D, local.A, local.B, 10, 15, 0xFFEFF47D);
+    P(local.B, local.C, local.D, local.A,  1, 21, 0x85845DD1);
+    P(local.A, local.B, local.C, local.D,  8,  6, 0x6FA87E4F);
+    P(local.D, local.A, local.B, local.C, 15, 10, 0xFE2CE6E0);
+    P(local.C, local.D, local.A, local.B,  6, 15, 0xA3014314);
+    P(local.B, local.C, local.D, local.A, 13, 21, 0x4E0811A1);
+    P(local.A, local.B, local.C, local.D,  4,  6, 0xF7537E82);
+    P(local.D, local.A, local.B, local.C, 11, 10, 0xBD3AF235);
+    P(local.C, local.D, local.A, local.B,  2, 15, 0x2AD7D2BB);
+    P(local.B, local.C, local.D, local.A,  9, 21, 0xEB86D391);
+
+#undef F
+
+    ctx->state[0] += local.A;
+    ctx->state[1] += local.B;
+    ctx->state[2] += local.C;
+    ctx->state[3] += local.D;
+
+    /* Zeroise variables to clear sensitive data from memory. */
+    mbedtls_platform_zeroize(&local, sizeof(local));
+
+    return 0;
+}
+
+#endif /* !MBEDTLS_MD5_PROCESS_ALT */
+
+/*
+ * MD5 process buffer
+ */
+int mbedtls_md5_update(mbedtls_md5_context *ctx,
+                       const unsigned char *input,
+                       size_t ilen)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t fill;
+    uint32_t left;
+
+    if (ilen == 0) {
+        return 0;
+    }
+
+    left = ctx->total[0] & 0x3F;
+    fill = 64 - left;
+
+    ctx->total[0] += (uint32_t) ilen;
+    ctx->total[0] &= 0xFFFFFFFF;
+
+    if (ctx->total[0] < (uint32_t) ilen) {
+        ctx->total[1]++;
+    }
+
+    if (left && ilen >= fill) {
+        memcpy((void *) (ctx->buffer + left), input, fill);
+        if ((ret = mbedtls_internal_md5_process(ctx, ctx->buffer)) != 0) {
+            return ret;
+        }
+
+        input += fill;
+        ilen  -= fill;
+        left = 0;
+    }
+
+    while (ilen >= 64) {
+        if ((ret = mbedtls_internal_md5_process(ctx, input)) != 0) {
+            return ret;
+        }
+
+        input += 64;
+        ilen  -= 64;
+    }
+
+    if (ilen > 0) {
+        memcpy((void *) (ctx->buffer + left), input, ilen);
+    }
+
+    return 0;
+}
+
+/*
+ * MD5 final digest
+ */
+int mbedtls_md5_finish(mbedtls_md5_context *ctx,
+                       unsigned char output[16])
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    uint32_t used;
+    uint32_t high, low;
+
+    /*
+     * Add padding: 0x80 then 0x00 until 8 bytes remain for the length
+     */
+    used = ctx->total[0] & 0x3F;
+
+    ctx->buffer[used++] = 0x80;
+
+    if (used <= 56) {
+        /* Enough room for padding + length in current block */
+        memset(ctx->buffer + used, 0, 56 - used);
+    } else {
+        /* We'll need an extra block */
+        memset(ctx->buffer + used, 0, 64 - used);
+
+        if ((ret = mbedtls_internal_md5_process(ctx, ctx->buffer)) != 0) {
+            goto exit;
+        }
+
+        memset(ctx->buffer, 0, 56);
+    }
+
+    /*
+     * Add message length
+     */
+    high = (ctx->total[0] >> 29)
+           | (ctx->total[1] <<  3);
+    low  = (ctx->total[0] <<  3);
+
+    MBEDTLS_PUT_UINT32_LE(low,  ctx->buffer, 56);
+    MBEDTLS_PUT_UINT32_LE(high, ctx->buffer, 60);
+
+    if ((ret = mbedtls_internal_md5_process(ctx, ctx->buffer)) != 0) {
+        goto exit;
+    }
+
+    /*
+     * Output final state
+     */
+    MBEDTLS_PUT_UINT32_LE(ctx->state[0], output,  0);
+    MBEDTLS_PUT_UINT32_LE(ctx->state[1], output,  4);
+    MBEDTLS_PUT_UINT32_LE(ctx->state[2], output,  8);
+    MBEDTLS_PUT_UINT32_LE(ctx->state[3], output, 12);
+
+    ret = 0;
+
+exit:
+    mbedtls_md5_free(ctx);
+    return ret;
+}
+
+#endif /* !MBEDTLS_MD5_ALT */
+
+/*
+ * output = MD5( input buffer )
+ */
+int mbedtls_md5(const unsigned char *input,
+                size_t ilen,
+                unsigned char output[16])
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_md5_context ctx;
+
+    mbedtls_md5_init(&ctx);
+
+    if ((ret = mbedtls_md5_starts(&ctx)) != 0) {
+        goto exit;
+    }
+
+    if ((ret = mbedtls_md5_update(&ctx, input, ilen)) != 0) {
+        goto exit;
+    }
+
+    if ((ret = mbedtls_md5_finish(&ctx, output)) != 0) {
+        goto exit;
+    }
+
+exit:
+    mbedtls_md5_free(&ctx);
+
+    return ret;
+}
+
+#if defined(MBEDTLS_SELF_TEST)
+/*
+ * RFC 1321 test vectors
+ */
+static const unsigned char md5_test_buf[7][81] =
+{
+    { "" },
+    { "a" },
+    { "abc" },
+    { "message digest" },
+    { "abcdefghijklmnopqrstuvwxyz" },
+    { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789" },
+    { "12345678901234567890123456789012345678901234567890123456789012345678901234567890" }
+};
+
+static const size_t md5_test_buflen[7] =
+{
+    0, 1, 3, 14, 26, 62, 80
+};
+
+static const unsigned char md5_test_sum[7][16] =
+{
+    { 0xD4, 0x1D, 0x8C, 0xD9, 0x8F, 0x00, 0xB2, 0x04,
+      0xE9, 0x80, 0x09, 0x98, 0xEC, 0xF8, 0x42, 0x7E },
+    { 0x0C, 0xC1, 0x75, 0xB9, 0xC0, 0xF1, 0xB6, 0xA8,
+      0x31, 0xC3, 0x99, 0xE2, 0x69, 0x77, 0x26, 0x61 },
+    { 0x90, 0x01, 0x50, 0x98, 0x3C, 0xD2, 0x4F, 0xB0,
+      0xD6, 0x96, 0x3F, 0x7D, 0x28, 0xE1, 0x7F, 0x72 },
+    { 0xF9, 0x6B, 0x69, 0x7D, 0x7C, 0xB7, 0x93, 0x8D,
+      0x52, 0x5A, 0x2F, 0x31, 0xAA, 0xF1, 0x61, 0xD0 },
+    { 0xC3, 0xFC, 0xD3, 0xD7, 0x61, 0x92, 0xE4, 0x00,
+      0x7D, 0xFB, 0x49, 0x6C, 0xCA, 0x67, 0xE1, 0x3B },
+    { 0xD1, 0x74, 0xAB, 0x98, 0xD2, 0x77, 0xD9, 0xF5,
+      0xA5, 0x61, 0x1C, 0x2C, 0x9F, 0x41, 0x9D, 0x9F },
+    { 0x57, 0xED, 0xF4, 0xA2, 0x2B, 0xE3, 0xC9, 0x55,
+      0xAC, 0x49, 0xDA, 0x2E, 0x21, 0x07, 0xB6, 0x7A }
+};
+
+/*
+ * Checkup routine
+ */
+int mbedtls_md5_self_test(int verbose)
+{
+    int i, ret = 0;
+    unsigned char md5sum[16];
+
+    for (i = 0; i < 7; i++) {
+        if (verbose != 0) {
+            mbedtls_printf("  MD5 test #%d: ", i + 1);
+        }
+
+        ret = mbedtls_md5(md5_test_buf[i], md5_test_buflen[i], md5sum);
+        if (ret != 0) {
+            goto fail;
+        }
+
+        if (memcmp(md5sum, md5_test_sum[i], 16) != 0) {
+            ret = 1;
+            goto fail;
+        }
+
+        if (verbose != 0) {
+            mbedtls_printf("passed\n");
+        }
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+
+    return 0;
+
+fail:
+    if (verbose != 0) {
+        mbedtls_printf("failed\n");
+    }
+
+    return ret;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_MD5_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/md_psa.h b/tf-psa-crypto/drivers/builtin/src/md_psa.h
new file mode 100644
index 0000000..028ba24
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/md_psa.h
@@ -0,0 +1,26 @@
+/**
+ * Translation between MD and PSA identifiers (algorithms, errors).
+ *
+ *  Note: this internal module will go away when everything becomes based on
+ *  PSA Crypto; it is a helper for the transition period.
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#ifndef MBEDTLS_MD_PSA_H
+#define MBEDTLS_MD_PSA_H
+
+#include "common.h"
+
+#include "mbedtls/md.h"
+#include "psa/crypto.h"
+
+/** Convert PSA status to MD error code.
+ *
+ * \param status    PSA status.
+ *
+ * \return          The corresponding MD error code,
+ */
+int mbedtls_md_error_from_psa(psa_status_t status);
+
+#endif /* MBEDTLS_MD_PSA_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/md_wrap.h b/tf-psa-crypto/drivers/builtin/src/md_wrap.h
new file mode 100644
index 0000000..dad1235
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/md_wrap.h
@@ -0,0 +1,46 @@
+/**
+ * \file md_wrap.h
+ *
+ * \brief Message digest wrappers.
+ *
+ * \warning This in an internal header. Do not include directly.
+ *
+ * \author Adriaan de Jong <dejong@fox-it.com>
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#ifndef MBEDTLS_MD_WRAP_H
+#define MBEDTLS_MD_WRAP_H
+
+#include "mbedtls/build_info.h"
+
+#include "mbedtls/md.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/**
+ * Message digest information.
+ * Allows message digest functions to be called in a generic way.
+ */
+struct mbedtls_md_info_t {
+    /** Digest identifier */
+    mbedtls_md_type_t type;
+
+    /** Output length of the digest function in bytes */
+    unsigned char size;
+
+#if defined(MBEDTLS_MD_C)
+    /** Block length of the digest function in bytes */
+    unsigned char block_size;
+#endif
+};
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* MBEDTLS_MD_WRAP_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/memory_buffer_alloc.c b/tf-psa-crypto/drivers/builtin/src/memory_buffer_alloc.c
new file mode 100644
index 0000000..79b0a8b
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/memory_buffer_alloc.c
@@ -0,0 +1,745 @@
+/*
+ *  Buffer-based memory allocator
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_MEMORY_BUFFER_ALLOC_C)
+#include "mbedtls/memory_buffer_alloc.h"
+
+/* No need for the header guard as MBEDTLS_MEMORY_BUFFER_ALLOC_C
+   is dependent upon MBEDTLS_PLATFORM_C */
+#include "mbedtls/platform.h"
+#include "mbedtls/platform_util.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_MEMORY_BACKTRACE)
+#include <execinfo.h>
+#endif
+
+#if defined(MBEDTLS_THREADING_C)
+#include "mbedtls/threading.h"
+#endif
+
+#define MAGIC1       0xFF00AA55
+#define MAGIC2       0xEE119966
+#define MAX_BT 20
+
+typedef struct _memory_header memory_header;
+struct _memory_header {
+    size_t          magic1;
+    size_t          size;
+    size_t          alloc;
+    memory_header   *prev;
+    memory_header   *next;
+    memory_header   *prev_free;
+    memory_header   *next_free;
+#if defined(MBEDTLS_MEMORY_BACKTRACE)
+    char            **trace;
+    size_t          trace_count;
+#endif
+    size_t          magic2;
+};
+
+typedef struct {
+    unsigned char   *buf;
+    size_t          len;
+    memory_header   *first;
+    memory_header   *first_free;
+    int             verify;
+#if defined(MBEDTLS_MEMORY_DEBUG)
+    size_t          alloc_count;
+    size_t          free_count;
+    size_t          total_used;
+    size_t          maximum_used;
+    size_t          header_count;
+    size_t          maximum_header_count;
+#endif
+#if defined(MBEDTLS_THREADING_C)
+    mbedtls_threading_mutex_t   mutex;
+#endif
+}
+buffer_alloc_ctx;
+
+static buffer_alloc_ctx heap;
+
+#if defined(MBEDTLS_MEMORY_DEBUG)
+static void debug_header(memory_header *hdr)
+{
+#if defined(MBEDTLS_MEMORY_BACKTRACE)
+    size_t i;
+#endif
+
+    mbedtls_fprintf(stderr, "HDR:  PTR(%10zu), PREV(%10zu), NEXT(%10zu), "
+                            "ALLOC(%zu), SIZE(%10zu)\n",
+                    (size_t) hdr, (size_t) hdr->prev, (size_t) hdr->next,
+                    hdr->alloc, hdr->size);
+    mbedtls_fprintf(stderr, "      FPREV(%10zu), FNEXT(%10zu)\n",
+                    (size_t) hdr->prev_free, (size_t) hdr->next_free);
+
+#if defined(MBEDTLS_MEMORY_BACKTRACE)
+    mbedtls_fprintf(stderr, "TRACE: \n");
+    for (i = 0; i < hdr->trace_count; i++) {
+        mbedtls_fprintf(stderr, "%s\n", hdr->trace[i]);
+    }
+    mbedtls_fprintf(stderr, "\n");
+#endif
+}
+
+static void debug_chain(void)
+{
+    memory_header *cur = heap.first;
+
+    mbedtls_fprintf(stderr, "\nBlock list\n");
+    while (cur != NULL) {
+        debug_header(cur);
+        cur = cur->next;
+    }
+
+    mbedtls_fprintf(stderr, "Free list\n");
+    cur = heap.first_free;
+
+    while (cur != NULL) {
+        debug_header(cur);
+        cur = cur->next_free;
+    }
+}
+#endif /* MBEDTLS_MEMORY_DEBUG */
+
+static int verify_header(memory_header *hdr)
+{
+    if (hdr->magic1 != MAGIC1) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+        mbedtls_fprintf(stderr, "FATAL: MAGIC1 mismatch\n");
+#endif
+        return 1;
+    }
+
+    if (hdr->magic2 != MAGIC2) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+        mbedtls_fprintf(stderr, "FATAL: MAGIC2 mismatch\n");
+#endif
+        return 1;
+    }
+
+    if (hdr->alloc > 1) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+        mbedtls_fprintf(stderr, "FATAL: alloc has illegal value\n");
+#endif
+        return 1;
+    }
+
+    if (hdr->prev != NULL && hdr->prev == hdr->next) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+        mbedtls_fprintf(stderr, "FATAL: prev == next\n");
+#endif
+        return 1;
+    }
+
+    if (hdr->prev_free != NULL && hdr->prev_free == hdr->next_free) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+        mbedtls_fprintf(stderr, "FATAL: prev_free == next_free\n");
+#endif
+        return 1;
+    }
+
+    return 0;
+}
+
+static int verify_chain(void)
+{
+    memory_header *prv = heap.first, *cur;
+
+    if (prv == NULL || verify_header(prv) != 0) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+        mbedtls_fprintf(stderr, "FATAL: verification of first header "
+                                "failed\n");
+#endif
+        return 1;
+    }
+
+    if (heap.first->prev != NULL) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+        mbedtls_fprintf(stderr, "FATAL: verification failed: "
+                                "first->prev != NULL\n");
+#endif
+        return 1;
+    }
+
+    cur = heap.first->next;
+
+    while (cur != NULL) {
+        if (verify_header(cur) != 0) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+            mbedtls_fprintf(stderr, "FATAL: verification of header "
+                                    "failed\n");
+#endif
+            return 1;
+        }
+
+        if (cur->prev != prv) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+            mbedtls_fprintf(stderr, "FATAL: verification failed: "
+                                    "cur->prev != prv\n");
+#endif
+            return 1;
+        }
+
+        prv = cur;
+        cur = cur->next;
+    }
+
+    return 0;
+}
+
+static void *buffer_alloc_calloc(size_t n, size_t size)
+{
+    memory_header *new, *cur = heap.first_free;
+    unsigned char *p;
+    void *ret;
+    size_t original_len, len;
+#if defined(MBEDTLS_MEMORY_BACKTRACE)
+    void *trace_buffer[MAX_BT];
+    size_t trace_cnt;
+#endif
+
+    if (heap.buf == NULL || heap.first == NULL) {
+        return NULL;
+    }
+
+    original_len = len = n * size;
+
+    if (n == 0 || size == 0 || len / n != size) {
+        return NULL;
+    } else if (len > (size_t) -MBEDTLS_MEMORY_ALIGN_MULTIPLE) {
+        return NULL;
+    }
+
+    if (len % MBEDTLS_MEMORY_ALIGN_MULTIPLE) {
+        len -= len % MBEDTLS_MEMORY_ALIGN_MULTIPLE;
+        len += MBEDTLS_MEMORY_ALIGN_MULTIPLE;
+    }
+
+    // Find block that fits
+    //
+    while (cur != NULL) {
+        if (cur->size >= len) {
+            break;
+        }
+
+        cur = cur->next_free;
+    }
+
+    if (cur == NULL) {
+        return NULL;
+    }
+
+    if (cur->alloc != 0) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+        mbedtls_fprintf(stderr, "FATAL: block in free_list but allocated "
+                                "data\n");
+#endif
+        mbedtls_exit(1);
+    }
+
+#if defined(MBEDTLS_MEMORY_DEBUG)
+    heap.alloc_count++;
+#endif
+
+    // Found location, split block if > memory_header + 4 room left
+    //
+    if (cur->size - len < sizeof(memory_header) +
+        MBEDTLS_MEMORY_ALIGN_MULTIPLE) {
+        cur->alloc = 1;
+
+        // Remove from free_list
+        //
+        if (cur->prev_free != NULL) {
+            cur->prev_free->next_free = cur->next_free;
+        } else {
+            heap.first_free = cur->next_free;
+        }
+
+        if (cur->next_free != NULL) {
+            cur->next_free->prev_free = cur->prev_free;
+        }
+
+        cur->prev_free = NULL;
+        cur->next_free = NULL;
+
+#if defined(MBEDTLS_MEMORY_DEBUG)
+        heap.total_used += cur->size;
+        if (heap.total_used > heap.maximum_used) {
+            heap.maximum_used = heap.total_used;
+        }
+#endif
+#if defined(MBEDTLS_MEMORY_BACKTRACE)
+        trace_cnt = backtrace(trace_buffer, MAX_BT);
+        cur->trace = backtrace_symbols(trace_buffer, trace_cnt);
+        cur->trace_count = trace_cnt;
+#endif
+
+        if ((heap.verify & MBEDTLS_MEMORY_VERIFY_ALLOC) && verify_chain() != 0) {
+            mbedtls_exit(1);
+        }
+
+        ret = (unsigned char *) cur + sizeof(memory_header);
+        memset(ret, 0, original_len);
+
+        return ret;
+    }
+
+    p = ((unsigned char *) cur) + sizeof(memory_header) + len;
+    new = (memory_header *) p;
+
+    new->size = cur->size - len - sizeof(memory_header);
+    new->alloc = 0;
+    new->prev = cur;
+    new->next = cur->next;
+#if defined(MBEDTLS_MEMORY_BACKTRACE)
+    new->trace = NULL;
+    new->trace_count = 0;
+#endif
+    new->magic1 = MAGIC1;
+    new->magic2 = MAGIC2;
+
+    if (new->next != NULL) {
+        new->next->prev = new;
+    }
+
+    // Replace cur with new in free_list
+    //
+    new->prev_free = cur->prev_free;
+    new->next_free = cur->next_free;
+    if (new->prev_free != NULL) {
+        new->prev_free->next_free = new;
+    } else {
+        heap.first_free = new;
+    }
+
+    if (new->next_free != NULL) {
+        new->next_free->prev_free = new;
+    }
+
+    cur->alloc = 1;
+    cur->size = len;
+    cur->next = new;
+    cur->prev_free = NULL;
+    cur->next_free = NULL;
+
+#if defined(MBEDTLS_MEMORY_DEBUG)
+    heap.header_count++;
+    if (heap.header_count > heap.maximum_header_count) {
+        heap.maximum_header_count = heap.header_count;
+    }
+    heap.total_used += cur->size;
+    if (heap.total_used > heap.maximum_used) {
+        heap.maximum_used = heap.total_used;
+    }
+#endif
+#if defined(MBEDTLS_MEMORY_BACKTRACE)
+    trace_cnt = backtrace(trace_buffer, MAX_BT);
+    cur->trace = backtrace_symbols(trace_buffer, trace_cnt);
+    cur->trace_count = trace_cnt;
+#endif
+
+    if ((heap.verify & MBEDTLS_MEMORY_VERIFY_ALLOC) && verify_chain() != 0) {
+        mbedtls_exit(1);
+    }
+
+    ret = (unsigned char *) cur + sizeof(memory_header);
+    memset(ret, 0, original_len);
+
+    return ret;
+}
+
+static void buffer_alloc_free(void *ptr)
+{
+    memory_header *hdr, *old = NULL;
+    unsigned char *p = (unsigned char *) ptr;
+
+    if (ptr == NULL || heap.buf == NULL || heap.first == NULL) {
+        return;
+    }
+
+    if (p < heap.buf || p >= heap.buf + heap.len) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+        mbedtls_fprintf(stderr, "FATAL: mbedtls_free() outside of managed "
+                                "space\n");
+#endif
+        mbedtls_exit(1);
+    }
+
+    p -= sizeof(memory_header);
+    hdr = (memory_header *) p;
+
+    if (verify_header(hdr) != 0) {
+        mbedtls_exit(1);
+    }
+
+    if (hdr->alloc != 1) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+        mbedtls_fprintf(stderr, "FATAL: mbedtls_free() on unallocated "
+                                "data\n");
+#endif
+        mbedtls_exit(1);
+    }
+
+    hdr->alloc = 0;
+
+#if defined(MBEDTLS_MEMORY_DEBUG)
+    heap.free_count++;
+    heap.total_used -= hdr->size;
+#endif
+
+#if defined(MBEDTLS_MEMORY_BACKTRACE)
+    free(hdr->trace);
+    hdr->trace = NULL;
+    hdr->trace_count = 0;
+#endif
+
+    // Regroup with block before
+    //
+    if (hdr->prev != NULL && hdr->prev->alloc == 0) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+        heap.header_count--;
+#endif
+        hdr->prev->size += sizeof(memory_header) + hdr->size;
+        hdr->prev->next = hdr->next;
+        old = hdr;
+        hdr = hdr->prev;
+
+        if (hdr->next != NULL) {
+            hdr->next->prev = hdr;
+        }
+
+        memset(old, 0, sizeof(memory_header));
+    }
+
+    // Regroup with block after
+    //
+    if (hdr->next != NULL && hdr->next->alloc == 0) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+        heap.header_count--;
+#endif
+        hdr->size += sizeof(memory_header) + hdr->next->size;
+        old = hdr->next;
+        hdr->next = hdr->next->next;
+
+        if (hdr->prev_free != NULL || hdr->next_free != NULL) {
+            if (hdr->prev_free != NULL) {
+                hdr->prev_free->next_free = hdr->next_free;
+            } else {
+                heap.first_free = hdr->next_free;
+            }
+
+            if (hdr->next_free != NULL) {
+                hdr->next_free->prev_free = hdr->prev_free;
+            }
+        }
+
+        hdr->prev_free = old->prev_free;
+        hdr->next_free = old->next_free;
+
+        if (hdr->prev_free != NULL) {
+            hdr->prev_free->next_free = hdr;
+        } else {
+            heap.first_free = hdr;
+        }
+
+        if (hdr->next_free != NULL) {
+            hdr->next_free->prev_free = hdr;
+        }
+
+        if (hdr->next != NULL) {
+            hdr->next->prev = hdr;
+        }
+
+        memset(old, 0, sizeof(memory_header));
+    }
+
+    // Prepend to free_list if we have not merged
+    // (Does not have to stay in same order as prev / next list)
+    //
+    if (old == NULL) {
+        hdr->next_free = heap.first_free;
+        if (heap.first_free != NULL) {
+            heap.first_free->prev_free = hdr;
+        }
+        heap.first_free = hdr;
+    }
+
+    if ((heap.verify & MBEDTLS_MEMORY_VERIFY_FREE) && verify_chain() != 0) {
+        mbedtls_exit(1);
+    }
+}
+
+void mbedtls_memory_buffer_set_verify(int verify)
+{
+    heap.verify = verify;
+}
+
+int mbedtls_memory_buffer_alloc_verify(void)
+{
+    return verify_chain();
+}
+
+#if defined(MBEDTLS_MEMORY_DEBUG)
+void mbedtls_memory_buffer_alloc_status(void)
+{
+    mbedtls_fprintf(stderr,
+                    "Current use: %zu blocks / %zu bytes, max: %zu blocks / "
+                    "%zu bytes (total %zu bytes), alloc / free: %zu / %zu\n",
+                    heap.header_count, heap.total_used,
+                    heap.maximum_header_count, heap.maximum_used,
+                    heap.maximum_header_count * sizeof(memory_header)
+                    + heap.maximum_used,
+                    heap.alloc_count, heap.free_count);
+
+    if (heap.first->next == NULL) {
+        mbedtls_fprintf(stderr, "All memory de-allocated in stack buffer\n");
+    } else {
+        mbedtls_fprintf(stderr, "Memory currently allocated:\n");
+        debug_chain();
+    }
+}
+
+void mbedtls_memory_buffer_alloc_count_get(size_t *alloc_count, size_t *free_count)
+{
+    *alloc_count = heap.alloc_count;
+    *free_count = heap.free_count;
+}
+
+void mbedtls_memory_buffer_alloc_max_get(size_t *max_used, size_t *max_blocks)
+{
+    *max_used   = heap.maximum_used;
+    *max_blocks = heap.maximum_header_count;
+}
+
+void mbedtls_memory_buffer_alloc_max_reset(void)
+{
+    heap.maximum_used = 0;
+    heap.maximum_header_count = 0;
+}
+
+void mbedtls_memory_buffer_alloc_cur_get(size_t *cur_used, size_t *cur_blocks)
+{
+    *cur_used   = heap.total_used;
+    *cur_blocks = heap.header_count;
+}
+#endif /* MBEDTLS_MEMORY_DEBUG */
+
+#if defined(MBEDTLS_THREADING_C)
+static void *buffer_alloc_calloc_mutexed(size_t n, size_t size)
+{
+    void *buf;
+    if (mbedtls_mutex_lock(&heap.mutex) != 0) {
+        return NULL;
+    }
+    buf = buffer_alloc_calloc(n, size);
+    if (mbedtls_mutex_unlock(&heap.mutex)) {
+        return NULL;
+    }
+    return buf;
+}
+
+static void buffer_alloc_free_mutexed(void *ptr)
+{
+    /* We have no good option here, but corrupting the heap seems
+     * worse than losing memory. */
+    if (mbedtls_mutex_lock(&heap.mutex)) {
+        return;
+    }
+    buffer_alloc_free(ptr);
+    (void) mbedtls_mutex_unlock(&heap.mutex);
+}
+#endif /* MBEDTLS_THREADING_C */
+
+void mbedtls_memory_buffer_alloc_init(unsigned char *buf, size_t len)
+{
+    memset(&heap, 0, sizeof(buffer_alloc_ctx));
+
+#if defined(MBEDTLS_THREADING_C)
+    mbedtls_mutex_init(&heap.mutex);
+    mbedtls_platform_set_calloc_free(buffer_alloc_calloc_mutexed,
+                                     buffer_alloc_free_mutexed);
+#else
+    mbedtls_platform_set_calloc_free(buffer_alloc_calloc, buffer_alloc_free);
+#endif
+
+    if (len < sizeof(memory_header) + MBEDTLS_MEMORY_ALIGN_MULTIPLE) {
+        return;
+    } else if ((size_t) buf % MBEDTLS_MEMORY_ALIGN_MULTIPLE) {
+        /* Adjust len first since buf is used in the computation */
+        len -= MBEDTLS_MEMORY_ALIGN_MULTIPLE
+               - (size_t) buf % MBEDTLS_MEMORY_ALIGN_MULTIPLE;
+        buf += MBEDTLS_MEMORY_ALIGN_MULTIPLE
+               - (size_t) buf % MBEDTLS_MEMORY_ALIGN_MULTIPLE;
+    }
+
+    memset(buf, 0, len);
+
+    heap.buf = buf;
+    heap.len = len;
+
+    heap.first = (memory_header *) buf;
+    heap.first->size = len - sizeof(memory_header);
+    heap.first->magic1 = MAGIC1;
+    heap.first->magic2 = MAGIC2;
+    heap.first_free = heap.first;
+}
+
+void mbedtls_memory_buffer_alloc_free(void)
+{
+#if defined(MBEDTLS_THREADING_C)
+    mbedtls_mutex_free(&heap.mutex);
+#endif
+    mbedtls_platform_zeroize(&heap, sizeof(buffer_alloc_ctx));
+}
+
+#if defined(MBEDTLS_SELF_TEST)
+static int check_pointer(void *p)
+{
+    if (p == NULL) {
+        return -1;
+    }
+
+    if ((size_t) p % MBEDTLS_MEMORY_ALIGN_MULTIPLE != 0) {
+        return -1;
+    }
+
+    return 0;
+}
+
+static int check_all_free(void)
+{
+    if (
+#if defined(MBEDTLS_MEMORY_DEBUG)
+        heap.total_used != 0 ||
+#endif
+        heap.first != heap.first_free ||
+        (void *) heap.first != (void *) heap.buf) {
+        return -1;
+    }
+
+    return 0;
+}
+
+#define TEST_ASSERT(condition)            \
+    if (!(condition))                     \
+    {                                       \
+        if (verbose != 0)                  \
+        mbedtls_printf("failed\n");  \
+                                            \
+        ret = 1;                            \
+        goto cleanup;                       \
+    }
+
+int mbedtls_memory_buffer_alloc_self_test(int verbose)
+{
+    unsigned char buf[1024];
+    unsigned char *p, *q, *r, *end;
+    int ret = 0;
+
+    if (verbose != 0) {
+        mbedtls_printf("  MBA test #1 (basic alloc-free cycle): ");
+    }
+
+    mbedtls_memory_buffer_alloc_init(buf, sizeof(buf));
+
+    p = mbedtls_calloc(1, 1);
+    q = mbedtls_calloc(1, 128);
+    r = mbedtls_calloc(1, 16);
+
+    TEST_ASSERT(check_pointer(p) == 0 &&
+                check_pointer(q) == 0 &&
+                check_pointer(r) == 0);
+
+    mbedtls_free(r);
+    mbedtls_free(q);
+    mbedtls_free(p);
+
+    TEST_ASSERT(check_all_free() == 0);
+
+    /* Memorize end to compare with the next test */
+    end = heap.buf + heap.len;
+
+    mbedtls_memory_buffer_alloc_free();
+
+    if (verbose != 0) {
+        mbedtls_printf("passed\n");
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("  MBA test #2 (buf not aligned): ");
+    }
+
+    mbedtls_memory_buffer_alloc_init(buf + 1, sizeof(buf) - 1);
+
+    TEST_ASSERT(heap.buf + heap.len == end);
+
+    p = mbedtls_calloc(1, 1);
+    q = mbedtls_calloc(1, 128);
+    r = mbedtls_calloc(1, 16);
+
+    TEST_ASSERT(check_pointer(p) == 0 &&
+                check_pointer(q) == 0 &&
+                check_pointer(r) == 0);
+
+    mbedtls_free(r);
+    mbedtls_free(q);
+    mbedtls_free(p);
+
+    TEST_ASSERT(check_all_free() == 0);
+
+    mbedtls_memory_buffer_alloc_free();
+
+    if (verbose != 0) {
+        mbedtls_printf("passed\n");
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("  MBA test #3 (full): ");
+    }
+
+    mbedtls_memory_buffer_alloc_init(buf, sizeof(buf));
+
+    p = mbedtls_calloc(1, sizeof(buf) - sizeof(memory_header));
+
+    TEST_ASSERT(check_pointer(p) == 0);
+    TEST_ASSERT(mbedtls_calloc(1, 1) == NULL);
+
+    mbedtls_free(p);
+
+    p = mbedtls_calloc(1, sizeof(buf) - 2 * sizeof(memory_header) - 16);
+    q = mbedtls_calloc(1, 16);
+
+    TEST_ASSERT(check_pointer(p) == 0 && check_pointer(q) == 0);
+    TEST_ASSERT(mbedtls_calloc(1, 1) == NULL);
+
+    mbedtls_free(q);
+
+    TEST_ASSERT(mbedtls_calloc(1, 17) == NULL);
+
+    mbedtls_free(p);
+
+    TEST_ASSERT(check_all_free() == 0);
+
+    mbedtls_memory_buffer_alloc_free();
+
+    if (verbose != 0) {
+        mbedtls_printf("passed\n");
+    }
+
+cleanup:
+    mbedtls_memory_buffer_alloc_free();
+
+    return ret;
+}
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_MEMORY_BUFFER_ALLOC_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/nist_kw.c b/tf-psa-crypto/drivers/builtin/src/nist_kw.c
new file mode 100644
index 0000000..8faafe4
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/nist_kw.c
@@ -0,0 +1,729 @@
+/*
+ *  Implementation of NIST SP 800-38F key wrapping, supporting KW and KWP modes
+ *  only
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ * Definition of Key Wrapping:
+ * https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
+ * RFC 3394 "Advanced Encryption Standard (AES) Key Wrap Algorithm"
+ * RFC 5649 "Advanced Encryption Standard (AES) Key Wrap with Padding Algorithm"
+ *
+ * Note: RFC 3394 defines different methodology for intermediate operations for
+ * the wrapping and unwrapping operation than the definition in NIST SP 800-38F.
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_NIST_KW_C)
+
+#include "mbedtls/nist_kw.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+#include "mbedtls/constant_time.h"
+#include "constant_time_internal.h"
+
+#include <stdint.h>
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_NIST_KW_ALT)
+
+#define KW_SEMIBLOCK_LENGTH    8
+#define MIN_SEMIBLOCKS_COUNT   3
+
+/*! The 64-bit default integrity check value (ICV) for KW mode. */
+static const unsigned char NIST_KW_ICV1[] = { 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6 };
+/*! The 32-bit default integrity check value (ICV) for KWP mode. */
+static const  unsigned char NIST_KW_ICV2[] = { 0xA6, 0x59, 0x59, 0xA6 };
+
+/*
+ * Initialize context
+ */
+void mbedtls_nist_kw_init(mbedtls_nist_kw_context *ctx)
+{
+    memset(ctx, 0, sizeof(mbedtls_nist_kw_context));
+}
+
+int mbedtls_nist_kw_setkey(mbedtls_nist_kw_context *ctx,
+                           mbedtls_cipher_id_t cipher,
+                           const unsigned char *key,
+                           unsigned int keybits,
+                           const int is_wrap)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    const mbedtls_cipher_info_t *cipher_info;
+
+    cipher_info = mbedtls_cipher_info_from_values(cipher,
+                                                  keybits,
+                                                  MBEDTLS_MODE_ECB);
+    if (cipher_info == NULL) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    if (mbedtls_cipher_info_get_block_size(cipher_info) != 16) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    /*
+     * SP 800-38F currently defines AES cipher as the only block cipher allowed:
+     * "For KW and KWP, the underlying block cipher shall be approved, and the
+     *  block size shall be 128 bits. Currently, the AES block cipher, with key
+     *  lengths of 128, 192, or 256 bits, is the only block cipher that fits
+     *  this profile."
+     *  Currently we don't support other 128 bit block ciphers for key wrapping,
+     *  such as Camellia and Aria.
+     */
+    if (cipher != MBEDTLS_CIPHER_ID_AES) {
+        return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+    }
+
+    mbedtls_cipher_free(&ctx->cipher_ctx);
+
+    if ((ret = mbedtls_cipher_setup(&ctx->cipher_ctx, cipher_info)) != 0) {
+        return ret;
+    }
+
+    if ((ret = mbedtls_cipher_setkey(&ctx->cipher_ctx, key, keybits,
+                                     is_wrap ? MBEDTLS_ENCRYPT :
+                                     MBEDTLS_DECRYPT)
+         ) != 0) {
+        return ret;
+    }
+
+    return 0;
+}
+
+/*
+ * Free context
+ */
+void mbedtls_nist_kw_free(mbedtls_nist_kw_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_cipher_free(&ctx->cipher_ctx);
+    mbedtls_platform_zeroize(ctx, sizeof(mbedtls_nist_kw_context));
+}
+
+/*
+ * Helper function for Xoring the uint64_t "t" with the encrypted A.
+ * Defined in NIST SP 800-38F section 6.1
+ */
+static void calc_a_xor_t(unsigned char A[KW_SEMIBLOCK_LENGTH], uint64_t t)
+{
+    size_t i = 0;
+    for (i = 0; i < sizeof(t); i++) {
+        A[i] ^= (t >> ((sizeof(t) - 1 - i) * 8)) & 0xff;
+    }
+}
+
+/*
+ * KW-AE as defined in SP 800-38F section 6.2
+ * KWP-AE as defined in SP 800-38F section 6.3
+ */
+int mbedtls_nist_kw_wrap(mbedtls_nist_kw_context *ctx,
+                         mbedtls_nist_kw_mode_t mode,
+                         const unsigned char *input, size_t in_len,
+                         unsigned char *output, size_t *out_len, size_t out_size)
+{
+    int ret = 0;
+    size_t semiblocks = 0;
+    size_t s;
+    size_t olen, padlen = 0;
+    uint64_t t = 0;
+    unsigned char outbuff[KW_SEMIBLOCK_LENGTH * 2];
+    unsigned char inbuff[KW_SEMIBLOCK_LENGTH * 2];
+
+    *out_len = 0;
+    /*
+     * Generate the String to work on
+     */
+    if (mode == MBEDTLS_KW_MODE_KW) {
+        if (out_size < in_len + KW_SEMIBLOCK_LENGTH) {
+            return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+        }
+
+        /*
+         * According to SP 800-38F Table 1, the plaintext length for KW
+         * must be between 2 to 2^54-1 semiblocks inclusive.
+         */
+        if (in_len < 16 ||
+#if SIZE_MAX > 0x1FFFFFFFFFFFFF8
+            in_len > 0x1FFFFFFFFFFFFF8 ||
+#endif
+            in_len % KW_SEMIBLOCK_LENGTH != 0) {
+            return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+        }
+
+        memcpy(output, NIST_KW_ICV1, KW_SEMIBLOCK_LENGTH);
+        memmove(output + KW_SEMIBLOCK_LENGTH, input, in_len);
+    } else {
+        if (in_len % 8 != 0) {
+            padlen = (8 - (in_len % 8));
+        }
+
+        if (out_size < in_len + KW_SEMIBLOCK_LENGTH + padlen) {
+            return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+        }
+
+        /*
+         * According to SP 800-38F Table 1, the plaintext length for KWP
+         * must be between 1 and 2^32-1 octets inclusive.
+         */
+        if (in_len < 1
+#if SIZE_MAX > 0xFFFFFFFF
+            || in_len > 0xFFFFFFFF
+#endif
+            ) {
+            return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+        }
+
+        memcpy(output, NIST_KW_ICV2, KW_SEMIBLOCK_LENGTH / 2);
+        MBEDTLS_PUT_UINT32_BE((in_len & 0xffffffff), output,
+                              KW_SEMIBLOCK_LENGTH / 2);
+
+        memcpy(output + KW_SEMIBLOCK_LENGTH, input, in_len);
+        memset(output + KW_SEMIBLOCK_LENGTH + in_len, 0, padlen);
+    }
+    semiblocks = ((in_len + padlen) / KW_SEMIBLOCK_LENGTH) + 1;
+
+    s = 6 * (semiblocks - 1);
+
+    if (mode == MBEDTLS_KW_MODE_KWP
+        && in_len <= KW_SEMIBLOCK_LENGTH) {
+        memcpy(inbuff, output, 16);
+        ret = mbedtls_cipher_update(&ctx->cipher_ctx,
+                                    inbuff, 16, output, &olen);
+        if (ret != 0) {
+            goto cleanup;
+        }
+    } else {
+        unsigned char *R2 = output + KW_SEMIBLOCK_LENGTH;
+        unsigned char *A = output;
+
+        /*
+         * Do the wrapping function W, as defined in RFC 3394 section 2.2.1
+         */
+        if (semiblocks < MIN_SEMIBLOCKS_COUNT) {
+            ret = MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+            goto cleanup;
+        }
+
+        /* Calculate intermediate values */
+        for (t = 1; t <= s; t++) {
+            memcpy(inbuff, A, KW_SEMIBLOCK_LENGTH);
+            memcpy(inbuff + KW_SEMIBLOCK_LENGTH, R2, KW_SEMIBLOCK_LENGTH);
+
+            ret = mbedtls_cipher_update(&ctx->cipher_ctx,
+                                        inbuff, 16, outbuff, &olen);
+            if (ret != 0) {
+                goto cleanup;
+            }
+
+            memcpy(A, outbuff, KW_SEMIBLOCK_LENGTH);
+            calc_a_xor_t(A, t);
+
+            memcpy(R2, outbuff + KW_SEMIBLOCK_LENGTH, KW_SEMIBLOCK_LENGTH);
+            R2 += KW_SEMIBLOCK_LENGTH;
+            if (R2 >= output + (semiblocks * KW_SEMIBLOCK_LENGTH)) {
+                R2 = output + KW_SEMIBLOCK_LENGTH;
+            }
+        }
+    }
+
+    *out_len = semiblocks * KW_SEMIBLOCK_LENGTH;
+
+cleanup:
+
+    if (ret != 0) {
+        memset(output, 0, semiblocks * KW_SEMIBLOCK_LENGTH);
+    }
+    mbedtls_platform_zeroize(inbuff, KW_SEMIBLOCK_LENGTH * 2);
+    mbedtls_platform_zeroize(outbuff, KW_SEMIBLOCK_LENGTH * 2);
+
+    return ret;
+}
+
+/*
+ * W-1 function as defined in RFC 3394 section 2.2.2
+ * This function assumes the following:
+ * 1. Output buffer is at least of size ( semiblocks - 1 ) * KW_SEMIBLOCK_LENGTH.
+ * 2. The input buffer is of size semiblocks * KW_SEMIBLOCK_LENGTH.
+ * 3. Minimal number of semiblocks is 3.
+ * 4. A is a buffer to hold the first semiblock of the input buffer.
+ */
+static int unwrap(mbedtls_nist_kw_context *ctx,
+                  const unsigned char *input, size_t semiblocks,
+                  unsigned char A[KW_SEMIBLOCK_LENGTH],
+                  unsigned char *output, size_t *out_len)
+{
+    int ret = 0;
+    const size_t s = 6 * (semiblocks - 1);
+    size_t olen;
+    uint64_t t = 0;
+    unsigned char outbuff[KW_SEMIBLOCK_LENGTH * 2];
+    unsigned char inbuff[KW_SEMIBLOCK_LENGTH * 2];
+    unsigned char *R = NULL;
+    *out_len = 0;
+
+    if (semiblocks < MIN_SEMIBLOCKS_COUNT) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    memcpy(A, input, KW_SEMIBLOCK_LENGTH);
+    memmove(output, input + KW_SEMIBLOCK_LENGTH, (semiblocks - 1) * KW_SEMIBLOCK_LENGTH);
+    R = output + (semiblocks - 2) * KW_SEMIBLOCK_LENGTH;
+
+    /* Calculate intermediate values */
+    for (t = s; t >= 1; t--) {
+        calc_a_xor_t(A, t);
+
+        memcpy(inbuff, A, KW_SEMIBLOCK_LENGTH);
+        memcpy(inbuff + KW_SEMIBLOCK_LENGTH, R, KW_SEMIBLOCK_LENGTH);
+
+        ret = mbedtls_cipher_update(&ctx->cipher_ctx,
+                                    inbuff, 16, outbuff, &olen);
+        if (ret != 0) {
+            goto cleanup;
+        }
+
+        memcpy(A, outbuff, KW_SEMIBLOCK_LENGTH);
+
+        /* Set R as LSB64 of outbuff */
+        memcpy(R, outbuff + KW_SEMIBLOCK_LENGTH, KW_SEMIBLOCK_LENGTH);
+
+        if (R == output) {
+            R = output + (semiblocks - 2) * KW_SEMIBLOCK_LENGTH;
+        } else {
+            R -= KW_SEMIBLOCK_LENGTH;
+        }
+    }
+
+    *out_len = (semiblocks - 1) * KW_SEMIBLOCK_LENGTH;
+
+cleanup:
+    if (ret != 0) {
+        memset(output, 0, (semiblocks - 1) * KW_SEMIBLOCK_LENGTH);
+    }
+    mbedtls_platform_zeroize(inbuff, sizeof(inbuff));
+    mbedtls_platform_zeroize(outbuff, sizeof(outbuff));
+
+    return ret;
+}
+
+/*
+ * KW-AD as defined in SP 800-38F section 6.2
+ * KWP-AD as defined in SP 800-38F section 6.3
+ */
+int mbedtls_nist_kw_unwrap(mbedtls_nist_kw_context *ctx,
+                           mbedtls_nist_kw_mode_t mode,
+                           const unsigned char *input, size_t in_len,
+                           unsigned char *output, size_t *out_len, size_t out_size)
+{
+    int ret = 0;
+    size_t olen;
+    unsigned char A[KW_SEMIBLOCK_LENGTH];
+    int diff;
+
+    *out_len = 0;
+    if (out_size < in_len - KW_SEMIBLOCK_LENGTH) {
+        return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+    }
+
+    if (mode == MBEDTLS_KW_MODE_KW) {
+        /*
+         * According to SP 800-38F Table 1, the ciphertext length for KW
+         * must be between 3 to 2^54 semiblocks inclusive.
+         */
+        if (in_len < 24 ||
+#if SIZE_MAX > 0x200000000000000
+            in_len > 0x200000000000000 ||
+#endif
+            in_len % KW_SEMIBLOCK_LENGTH != 0) {
+            return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+        }
+
+        ret = unwrap(ctx, input, in_len / KW_SEMIBLOCK_LENGTH,
+                     A, output, out_len);
+        if (ret != 0) {
+            goto cleanup;
+        }
+
+        /* Check ICV in "constant-time" */
+        diff = mbedtls_ct_memcmp(NIST_KW_ICV1, A, KW_SEMIBLOCK_LENGTH);
+
+        if (diff != 0) {
+            ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED;
+            goto cleanup;
+        }
+
+    } else if (mode == MBEDTLS_KW_MODE_KWP) {
+        size_t padlen = 0;
+        uint32_t Plen;
+        /*
+         * According to SP 800-38F Table 1, the ciphertext length for KWP
+         * must be between 2 to 2^29 semiblocks inclusive.
+         */
+        if (in_len < KW_SEMIBLOCK_LENGTH * 2 ||
+#if SIZE_MAX > 0x100000000
+            in_len > 0x100000000 ||
+#endif
+            in_len % KW_SEMIBLOCK_LENGTH != 0) {
+            return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+        }
+
+        if (in_len == KW_SEMIBLOCK_LENGTH * 2) {
+            unsigned char outbuff[KW_SEMIBLOCK_LENGTH * 2];
+            ret = mbedtls_cipher_update(&ctx->cipher_ctx,
+                                        input, 16, outbuff, &olen);
+            if (ret != 0) {
+                goto cleanup;
+            }
+
+            memcpy(A, outbuff, KW_SEMIBLOCK_LENGTH);
+            memcpy(output, outbuff + KW_SEMIBLOCK_LENGTH, KW_SEMIBLOCK_LENGTH);
+            mbedtls_platform_zeroize(outbuff, sizeof(outbuff));
+            *out_len = KW_SEMIBLOCK_LENGTH;
+        } else {
+            /* in_len >=  KW_SEMIBLOCK_LENGTH * 3 */
+            ret = unwrap(ctx, input, in_len / KW_SEMIBLOCK_LENGTH,
+                         A, output, out_len);
+            if (ret != 0) {
+                goto cleanup;
+            }
+        }
+
+        /* Check ICV in "constant-time" */
+        diff = mbedtls_ct_memcmp(NIST_KW_ICV2, A, KW_SEMIBLOCK_LENGTH / 2);
+
+        if (diff != 0) {
+            ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED;
+        }
+
+        Plen = MBEDTLS_GET_UINT32_BE(A, KW_SEMIBLOCK_LENGTH / 2);
+
+        /*
+         * Plen is the length of the plaintext, when the input is valid.
+         * If Plen is larger than the plaintext and padding, padlen will be
+         * larger than 8, because of the type wrap around.
+         */
+        padlen = in_len - KW_SEMIBLOCK_LENGTH - Plen;
+        ret = mbedtls_ct_error_if(mbedtls_ct_uint_gt(padlen, 7),
+                                  MBEDTLS_ERR_CIPHER_AUTH_FAILED, ret);
+        padlen &= 7;
+
+        /* Check padding in "constant-time" */
+        const uint8_t zero[KW_SEMIBLOCK_LENGTH] = { 0 };
+        diff = mbedtls_ct_memcmp_partial(
+            &output[*out_len - KW_SEMIBLOCK_LENGTH], zero,
+            KW_SEMIBLOCK_LENGTH, KW_SEMIBLOCK_LENGTH - padlen, 0);
+
+        if (diff != 0) {
+            ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED;
+        }
+
+        if (ret != 0) {
+            goto cleanup;
+        }
+        memset(output + Plen, 0, padlen);
+        *out_len = Plen;
+    } else {
+        ret = MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+        goto cleanup;
+    }
+
+cleanup:
+    if (ret != 0) {
+        memset(output, 0, *out_len);
+        *out_len = 0;
+    }
+
+    mbedtls_platform_zeroize(&diff, sizeof(diff));
+    mbedtls_platform_zeroize(A, sizeof(A));
+
+    return ret;
+}
+
+#endif /* !MBEDTLS_NIST_KW_ALT */
+
+#if defined(MBEDTLS_SELF_TEST) && defined(MBEDTLS_AES_C)
+
+/*
+ * Test vectors taken from NIST
+ * https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/CAVP-TESTING-BLOCK-CIPHER-MODES#KW
+ */
+static const unsigned int key_len[] = {
+    16,
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    24,
+    32
+#endif
+};
+
+static const unsigned char kw_key[][32] = {
+    { 0x75, 0x75, 0xda, 0x3a, 0x93, 0x60, 0x7c, 0xc2,
+      0xbf, 0xd8, 0xce, 0xc7, 0xaa, 0xdf, 0xd9, 0xa6 },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { 0x2d, 0x85, 0x26, 0x08, 0x1d, 0x02, 0xfb, 0x5b,
+      0x85, 0xf6, 0x9a, 0xc2, 0x86, 0xec, 0xd5, 0x7d,
+      0x40, 0xdf, 0x5d, 0xf3, 0x49, 0x47, 0x44, 0xd3 },
+    { 0x11, 0x2a, 0xd4, 0x1b, 0x48, 0x56, 0xc7, 0x25,
+      0x4a, 0x98, 0x48, 0xd3, 0x0f, 0xdd, 0x78, 0x33,
+      0x5b, 0x03, 0x9a, 0x48, 0xa8, 0x96, 0x2c, 0x4d,
+      0x1c, 0xb7, 0x8e, 0xab, 0xd5, 0xda, 0xd7, 0x88 }
+#endif
+};
+
+static const unsigned char kw_msg[][40] = {
+    { 0x42, 0x13, 0x6d, 0x3c, 0x38, 0x4a, 0x3e, 0xea,
+      0xc9, 0x5a, 0x06, 0x6f, 0xd2, 0x8f, 0xed, 0x3f },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { 0x95, 0xc1, 0x1b, 0xf5, 0x35, 0x3a, 0xfe, 0xdb,
+      0x98, 0xfd, 0xd6, 0xc8, 0xca, 0x6f, 0xdb, 0x6d,
+      0xa5, 0x4b, 0x74, 0xb4, 0x99, 0x0f, 0xdc, 0x45,
+      0xc0, 0x9d, 0x15, 0x8f, 0x51, 0xce, 0x62, 0x9d,
+      0xe2, 0xaf, 0x26, 0xe3, 0x25, 0x0e, 0x6b, 0x4c },
+    { 0x1b, 0x20, 0xbf, 0x19, 0x90, 0xb0, 0x65, 0xd7,
+      0x98, 0xe1, 0xb3, 0x22, 0x64, 0xad, 0x50, 0xa8,
+      0x74, 0x74, 0x92, 0xba, 0x09, 0xa0, 0x4d, 0xd1 }
+#endif
+};
+
+static const size_t kw_msg_len[] = {
+    16,
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    40,
+    24
+#endif
+};
+static const size_t kw_out_len[] = {
+    24,
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    48,
+    32
+#endif
+};
+static const unsigned char kw_res[][48] = {
+    { 0x03, 0x1f, 0x6b, 0xd7, 0xe6, 0x1e, 0x64, 0x3d,
+      0xf6, 0x85, 0x94, 0x81, 0x6f, 0x64, 0xca, 0xa3,
+      0xf5, 0x6f, 0xab, 0xea, 0x25, 0x48, 0xf5, 0xfb },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { 0x44, 0x3c, 0x6f, 0x15, 0x09, 0x83, 0x71, 0x91,
+      0x3e, 0x5c, 0x81, 0x4c, 0xa1, 0xa0, 0x42, 0xec,
+      0x68, 0x2f, 0x7b, 0x13, 0x6d, 0x24, 0x3a, 0x4d,
+      0x6c, 0x42, 0x6f, 0xc6, 0x97, 0x15, 0x63, 0xe8,
+      0xa1, 0x4a, 0x55, 0x8e, 0x09, 0x64, 0x16, 0x19,
+      0xbf, 0x03, 0xfc, 0xaf, 0x90, 0xb1, 0xfc, 0x2d },
+    { 0xba, 0x8a, 0x25, 0x9a, 0x47, 0x1b, 0x78, 0x7d,
+      0xd5, 0xd5, 0x40, 0xec, 0x25, 0xd4, 0x3d, 0x87,
+      0x20, 0x0f, 0xda, 0xdc, 0x6d, 0x1f, 0x05, 0xd9,
+      0x16, 0x58, 0x4f, 0xa9, 0xf6, 0xcb, 0xf5, 0x12 }
+#endif
+};
+
+static const unsigned char kwp_key[][32] = {
+    { 0x78, 0x65, 0xe2, 0x0f, 0x3c, 0x21, 0x65, 0x9a,
+      0xb4, 0x69, 0x0b, 0x62, 0x9c, 0xdf, 0x3c, 0xc4 },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { 0xf5, 0xf8, 0x96, 0xa3, 0xbd, 0x2f, 0x4a, 0x98,
+      0x23, 0xef, 0x16, 0x2b, 0x00, 0xb8, 0x05, 0xd7,
+      0xde, 0x1e, 0xa4, 0x66, 0x26, 0x96, 0xa2, 0x58 },
+    { 0x95, 0xda, 0x27, 0x00, 0xca, 0x6f, 0xd9, 0xa5,
+      0x25, 0x54, 0xee, 0x2a, 0x8d, 0xf1, 0x38, 0x6f,
+      0x5b, 0x94, 0xa1, 0xa6, 0x0e, 0xd8, 0xa4, 0xae,
+      0xf6, 0x0a, 0x8d, 0x61, 0xab, 0x5f, 0x22, 0x5a }
+#endif
+};
+
+static const unsigned char kwp_msg[][31] = {
+    { 0xbd, 0x68, 0x43, 0xd4, 0x20, 0x37, 0x8d, 0xc8,
+      0x96 },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { 0x6c, 0xcd, 0xd5, 0x85, 0x18, 0x40, 0x97, 0xeb,
+      0xd5, 0xc3, 0xaf, 0x3e, 0x47, 0xd0, 0x2c, 0x19,
+      0x14, 0x7b, 0x4d, 0x99, 0x5f, 0x96, 0x43, 0x66,
+      0x91, 0x56, 0x75, 0x8c, 0x13, 0x16, 0x8f },
+    { 0xd1 }
+#endif
+};
+static const size_t kwp_msg_len[] = {
+    9,
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    31,
+    1
+#endif
+};
+
+static const unsigned char kwp_res[][48] = {
+    { 0x41, 0xec, 0xa9, 0x56, 0xd4, 0xaa, 0x04, 0x7e,
+      0xb5, 0xcf, 0x4e, 0xfe, 0x65, 0x96, 0x61, 0xe7,
+      0x4d, 0xb6, 0xf8, 0xc5, 0x64, 0xe2, 0x35, 0x00 },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    { 0x4e, 0x9b, 0xc2, 0xbc, 0xbc, 0x6c, 0x1e, 0x13,
+      0xd3, 0x35, 0xbc, 0xc0, 0xf7, 0x73, 0x6a, 0x88,
+      0xfa, 0x87, 0x53, 0x66, 0x15, 0xbb, 0x8e, 0x63,
+      0x8b, 0xcc, 0x81, 0x66, 0x84, 0x68, 0x17, 0x90,
+      0x67, 0xcf, 0xa9, 0x8a, 0x9d, 0x0e, 0x33, 0x26 },
+    { 0x06, 0xba, 0x7a, 0xe6, 0xf3, 0x24, 0x8c, 0xfd,
+      0xcf, 0x26, 0x75, 0x07, 0xfa, 0x00, 0x1b, 0xc4  }
+#endif
+};
+static const size_t kwp_out_len[] = {
+    24,
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+    40,
+    16
+#endif
+};
+
+int mbedtls_nist_kw_self_test(int verbose)
+{
+    mbedtls_nist_kw_context ctx;
+    unsigned char out[48];
+    size_t olen;
+    int i;
+    int ret = 0;
+    mbedtls_nist_kw_init(&ctx);
+
+    /*
+     * KW mode
+     */
+    {
+        static const int num_tests = sizeof(kw_key) / sizeof(*kw_key);
+
+        for (i = 0; i < num_tests; i++) {
+            if (verbose != 0) {
+                mbedtls_printf("  KW-AES-%u ", (unsigned int) key_len[i] * 8);
+            }
+
+            ret = mbedtls_nist_kw_setkey(&ctx, MBEDTLS_CIPHER_ID_AES,
+                                         kw_key[i], key_len[i] * 8, 1);
+            if (ret != 0) {
+                if (verbose != 0) {
+                    mbedtls_printf("  KW: setup failed ");
+                }
+
+                goto end;
+            }
+
+            ret = mbedtls_nist_kw_wrap(&ctx, MBEDTLS_KW_MODE_KW, kw_msg[i],
+                                       kw_msg_len[i], out, &olen, sizeof(out));
+            if (ret != 0 || kw_out_len[i] != olen ||
+                memcmp(out, kw_res[i], kw_out_len[i]) != 0) {
+                if (verbose != 0) {
+                    mbedtls_printf("failed. ");
+                }
+
+                ret = 1;
+                goto end;
+            }
+
+            if ((ret = mbedtls_nist_kw_setkey(&ctx, MBEDTLS_CIPHER_ID_AES,
+                                              kw_key[i], key_len[i] * 8, 0))
+                != 0) {
+                if (verbose != 0) {
+                    mbedtls_printf("  KW: setup failed ");
+                }
+
+                goto end;
+            }
+
+            ret = mbedtls_nist_kw_unwrap(&ctx, MBEDTLS_KW_MODE_KW,
+                                         out, olen, out, &olen, sizeof(out));
+
+            if (ret != 0 || olen != kw_msg_len[i] ||
+                memcmp(out, kw_msg[i], kw_msg_len[i]) != 0) {
+                if (verbose != 0) {
+                    mbedtls_printf("failed\n");
+                }
+
+                ret = 1;
+                goto end;
+            }
+
+            if (verbose != 0) {
+                mbedtls_printf(" passed\n");
+            }
+        }
+    }
+
+    /*
+     * KWP mode
+     */
+    {
+        static const int num_tests = sizeof(kwp_key) / sizeof(*kwp_key);
+
+        for (i = 0; i < num_tests; i++) {
+            olen = sizeof(out);
+            if (verbose != 0) {
+                mbedtls_printf("  KWP-AES-%u ", (unsigned int) key_len[i] * 8);
+            }
+
+            ret = mbedtls_nist_kw_setkey(&ctx, MBEDTLS_CIPHER_ID_AES, kwp_key[i],
+                                         key_len[i] * 8, 1);
+            if (ret  != 0) {
+                if (verbose != 0) {
+                    mbedtls_printf("  KWP: setup failed ");
+                }
+
+                goto end;
+            }
+            ret = mbedtls_nist_kw_wrap(&ctx, MBEDTLS_KW_MODE_KWP, kwp_msg[i],
+                                       kwp_msg_len[i], out, &olen, sizeof(out));
+
+            if (ret != 0 || kwp_out_len[i] != olen ||
+                memcmp(out, kwp_res[i], kwp_out_len[i]) != 0) {
+                if (verbose != 0) {
+                    mbedtls_printf("failed. ");
+                }
+
+                ret = 1;
+                goto end;
+            }
+
+            if ((ret = mbedtls_nist_kw_setkey(&ctx, MBEDTLS_CIPHER_ID_AES,
+                                              kwp_key[i], key_len[i] * 8, 0))
+                != 0) {
+                if (verbose != 0) {
+                    mbedtls_printf("  KWP: setup failed ");
+                }
+
+                goto end;
+            }
+
+            ret = mbedtls_nist_kw_unwrap(&ctx, MBEDTLS_KW_MODE_KWP, out,
+                                         olen, out, &olen, sizeof(out));
+
+            if (ret != 0 || olen != kwp_msg_len[i] ||
+                memcmp(out, kwp_msg[i], kwp_msg_len[i]) != 0) {
+                if (verbose != 0) {
+                    mbedtls_printf("failed. ");
+                }
+
+                ret = 1;
+                goto end;
+            }
+
+            if (verbose != 0) {
+                mbedtls_printf(" passed\n");
+            }
+        }
+    }
+end:
+    mbedtls_nist_kw_free(&ctx);
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+
+    return ret;
+}
+
+#endif /* MBEDTLS_SELF_TEST && MBEDTLS_AES_C */
+
+#endif /* MBEDTLS_NIST_KW_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/oid.c b/tf-psa-crypto/drivers/builtin/src/oid.c
new file mode 100644
index 0000000..972a859
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/oid.c
@@ -0,0 +1,1166 @@
+/**
+ * \file oid.c
+ *
+ * \brief Object Identifier (OID) database
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_OID_C)
+
+#include "mbedtls/oid.h"
+#include "mbedtls/rsa.h"
+#include "mbedtls/error.h"
+#include "mbedtls/pk.h"
+
+#include <stdio.h>
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+/*
+ * Macro to automatically add the size of #define'd OIDs
+ */
+#define ADD_LEN(s)      s, MBEDTLS_OID_SIZE(s)
+
+/*
+ * Macro to generate mbedtls_oid_descriptor_t
+ */
+#if !defined(MBEDTLS_X509_REMOVE_INFO)
+#define OID_DESCRIPTOR(s, name, description)  { ADD_LEN(s), name, description }
+#define NULL_OID_DESCRIPTOR                   { NULL, 0, NULL, NULL }
+#else
+#define OID_DESCRIPTOR(s, name, description)  { ADD_LEN(s) }
+#define NULL_OID_DESCRIPTOR                   { NULL, 0 }
+#endif
+
+/*
+ * Macro to generate an internal function for oid_XXX_from_asn1() (used by
+ * the other functions)
+ */
+#define FN_OID_TYPED_FROM_ASN1(TYPE_T, NAME, LIST)                    \
+    static const TYPE_T *oid_ ## NAME ## _from_asn1(                   \
+        const mbedtls_asn1_buf *oid)     \
+    {                                                                   \
+        const TYPE_T *p = (LIST);                                       \
+        const mbedtls_oid_descriptor_t *cur =                           \
+            (const mbedtls_oid_descriptor_t *) p;                       \
+        if (p == NULL || oid == NULL) return NULL;                  \
+        while (cur->asn1 != NULL) {                                    \
+            if (cur->asn1_len == oid->len &&                            \
+                memcmp(cur->asn1, oid->p, oid->len) == 0) {          \
+                return p;                                            \
+            }                                                           \
+            p++;                                                        \
+            cur = (const mbedtls_oid_descriptor_t *) p;                 \
+        }                                                               \
+        return NULL;                                                 \
+    }
+
+#if !defined(MBEDTLS_X509_REMOVE_INFO)
+/*
+ * Macro to generate a function for retrieving a single attribute from the
+ * descriptor of an mbedtls_oid_descriptor_t wrapper.
+ */
+#define FN_OID_GET_DESCRIPTOR_ATTR1(FN_NAME, TYPE_T, TYPE_NAME, ATTR1_TYPE, ATTR1) \
+    int FN_NAME(const mbedtls_asn1_buf *oid, ATTR1_TYPE * ATTR1)                  \
+    {                                                                       \
+        const TYPE_T *data = oid_ ## TYPE_NAME ## _from_asn1(oid);        \
+        if (data == NULL) return MBEDTLS_ERR_OID_NOT_FOUND;            \
+        *ATTR1 = data->descriptor.ATTR1;                                    \
+        return 0;                                                        \
+    }
+#endif /* MBEDTLS_X509_REMOVE_INFO */
+
+/*
+ * Macro to generate a function for retrieving a single attribute from an
+ * mbedtls_oid_descriptor_t wrapper.
+ */
+#define FN_OID_GET_ATTR1(FN_NAME, TYPE_T, TYPE_NAME, ATTR1_TYPE, ATTR1) \
+    int FN_NAME(const mbedtls_asn1_buf *oid, ATTR1_TYPE * ATTR1)                  \
+    {                                                                       \
+        const TYPE_T *data = oid_ ## TYPE_NAME ## _from_asn1(oid);        \
+        if (data == NULL) return MBEDTLS_ERR_OID_NOT_FOUND;            \
+        *ATTR1 = data->ATTR1;                                               \
+        return 0;                                                        \
+    }
+
+/*
+ * Macro to generate a function for retrieving two attributes from an
+ * mbedtls_oid_descriptor_t wrapper.
+ */
+#define FN_OID_GET_ATTR2(FN_NAME, TYPE_T, TYPE_NAME, ATTR1_TYPE, ATTR1,     \
+                         ATTR2_TYPE, ATTR2)                                 \
+    int FN_NAME(const mbedtls_asn1_buf *oid, ATTR1_TYPE * ATTR1,               \
+                ATTR2_TYPE * ATTR2)              \
+    {                                                                           \
+        const TYPE_T *data = oid_ ## TYPE_NAME ## _from_asn1(oid);            \
+        if (data == NULL) return MBEDTLS_ERR_OID_NOT_FOUND;                 \
+        *(ATTR1) = data->ATTR1;                                                 \
+        *(ATTR2) = data->ATTR2;                                                 \
+        return 0;                                                            \
+    }
+
+/*
+ * Macro to generate a function for retrieving the OID based on a single
+ * attribute from a mbedtls_oid_descriptor_t wrapper.
+ */
+#define FN_OID_GET_OID_BY_ATTR1(FN_NAME, TYPE_T, LIST, ATTR1_TYPE, ATTR1)   \
+    int FN_NAME(ATTR1_TYPE ATTR1, const char **oid, size_t *olen)             \
+    {                                                                           \
+        const TYPE_T *cur = (LIST);                                             \
+        while (cur->descriptor.asn1 != NULL) {                                 \
+            if (cur->ATTR1 == (ATTR1)) {                                       \
+                *oid = cur->descriptor.asn1;                                    \
+                *olen = cur->descriptor.asn1_len;                               \
+                return 0;                                                    \
+            }                                                                   \
+            cur++;                                                              \
+        }                                                                       \
+        return MBEDTLS_ERR_OID_NOT_FOUND;                                    \
+    }
+
+/*
+ * Macro to generate a function for retrieving the OID based on two
+ * attributes from a mbedtls_oid_descriptor_t wrapper.
+ */
+#define FN_OID_GET_OID_BY_ATTR2(FN_NAME, TYPE_T, LIST, ATTR1_TYPE, ATTR1,   \
+                                ATTR2_TYPE, ATTR2)                          \
+    int FN_NAME(ATTR1_TYPE ATTR1, ATTR2_TYPE ATTR2, const char **oid,         \
+                size_t *olen)                                                 \
+    {                                                                           \
+        const TYPE_T *cur = (LIST);                                             \
+        while (cur->descriptor.asn1 != NULL) {                                 \
+            if (cur->ATTR1 == (ATTR1) && cur->ATTR2 == (ATTR2)) {              \
+                *oid = cur->descriptor.asn1;                                    \
+                *olen = cur->descriptor.asn1_len;                               \
+                return 0;                                                    \
+            }                                                                   \
+            cur++;                                                              \
+        }                                                                       \
+        return MBEDTLS_ERR_OID_NOT_FOUND;                                   \
+    }
+
+/*
+ * For X520 attribute types
+ */
+typedef struct {
+    mbedtls_oid_descriptor_t    descriptor;
+    const char          *short_name;
+} oid_x520_attr_t;
+
+static const oid_x520_attr_t oid_x520_attr_type[] =
+{
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_AT_CN,          "id-at-commonName",               "Common Name"),
+        "CN",
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_AT_COUNTRY,     "id-at-countryName",              "Country"),
+        "C",
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_AT_LOCALITY,    "id-at-locality",                 "Locality"),
+        "L",
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_AT_STATE,       "id-at-state",                    "State"),
+        "ST",
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_AT_ORGANIZATION, "id-at-organizationName",
+                       "Organization"),
+        "O",
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_AT_ORG_UNIT,    "id-at-organizationalUnitName",   "Org Unit"),
+        "OU",
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_PKCS9_EMAIL,
+                       "emailAddress",
+                       "E-mail address"),
+        "emailAddress",
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_AT_SERIAL_NUMBER,
+                       "id-at-serialNumber",
+                       "Serial number"),
+        "serialNumber",
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_AT_POSTAL_ADDRESS,
+                       "id-at-postalAddress",
+                       "Postal address"),
+        "postalAddress",
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_AT_POSTAL_CODE, "id-at-postalCode",               "Postal code"),
+        "postalCode",
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_AT_SUR_NAME,    "id-at-surName",                  "Surname"),
+        "SN",
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_AT_GIVEN_NAME,  "id-at-givenName",                "Given name"),
+        "GN",
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_AT_INITIALS,    "id-at-initials",                 "Initials"),
+        "initials",
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_AT_GENERATION_QUALIFIER,
+                       "id-at-generationQualifier",
+                       "Generation qualifier"),
+        "generationQualifier",
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_AT_TITLE,       "id-at-title",                    "Title"),
+        "title",
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_AT_DN_QUALIFIER,
+                       "id-at-dnQualifier",
+                       "Distinguished Name qualifier"),
+        "dnQualifier",
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_AT_PSEUDONYM,   "id-at-pseudonym",                "Pseudonym"),
+        "pseudonym",
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_UID,            "id-uid",                         "User Id"),
+        "uid",
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_DOMAIN_COMPONENT,
+                       "id-domainComponent",
+                       "Domain component"),
+        "DC",
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_AT_UNIQUE_IDENTIFIER,
+                       "id-at-uniqueIdentifier",
+                       "Unique Identifier"),
+        "uniqueIdentifier",
+    },
+    {
+        NULL_OID_DESCRIPTOR,
+        NULL,
+    }
+};
+
+FN_OID_TYPED_FROM_ASN1(oid_x520_attr_t, x520_attr, oid_x520_attr_type)
+FN_OID_GET_ATTR1(mbedtls_oid_get_attr_short_name,
+                 oid_x520_attr_t,
+                 x520_attr,
+                 const char *,
+                 short_name)
+
+/*
+ * For X509 extensions
+ */
+typedef struct {
+    mbedtls_oid_descriptor_t    descriptor;
+    int                 ext_type;
+} oid_x509_ext_t;
+
+static const oid_x509_ext_t oid_x509_ext[] =
+{
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_BASIC_CONSTRAINTS,
+                       "id-ce-basicConstraints",
+                       "Basic Constraints"),
+        MBEDTLS_OID_X509_EXT_BASIC_CONSTRAINTS,
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_KEY_USAGE,            "id-ce-keyUsage",            "Key Usage"),
+        MBEDTLS_OID_X509_EXT_KEY_USAGE,
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_EXTENDED_KEY_USAGE,
+                       "id-ce-extKeyUsage",
+                       "Extended Key Usage"),
+        MBEDTLS_OID_X509_EXT_EXTENDED_KEY_USAGE,
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_SUBJECT_ALT_NAME,
+                       "id-ce-subjectAltName",
+                       "Subject Alt Name"),
+        MBEDTLS_OID_X509_EXT_SUBJECT_ALT_NAME,
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_NS_CERT_TYPE,
+                       "id-netscape-certtype",
+                       "Netscape Certificate Type"),
+        MBEDTLS_OID_X509_EXT_NS_CERT_TYPE,
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_CERTIFICATE_POLICIES,
+                       "id-ce-certificatePolicies",
+                       "Certificate Policies"),
+        MBEDTLS_OID_X509_EXT_CERTIFICATE_POLICIES,
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_SUBJECT_KEY_IDENTIFIER,
+                       "id-ce-subjectKeyIdentifier",
+                       "Subject Key Identifier"),
+        MBEDTLS_OID_X509_EXT_SUBJECT_KEY_IDENTIFIER,
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_AUTHORITY_KEY_IDENTIFIER,
+                       "id-ce-authorityKeyIdentifier",
+                       "Authority Key Identifier"),
+        MBEDTLS_OID_X509_EXT_AUTHORITY_KEY_IDENTIFIER,
+    },
+    {
+        NULL_OID_DESCRIPTOR,
+        0,
+    },
+};
+
+FN_OID_TYPED_FROM_ASN1(oid_x509_ext_t, x509_ext, oid_x509_ext)
+FN_OID_GET_ATTR1(mbedtls_oid_get_x509_ext_type, oid_x509_ext_t, x509_ext, int, ext_type)
+
+#if !defined(MBEDTLS_X509_REMOVE_INFO)
+static const mbedtls_oid_descriptor_t oid_ext_key_usage[] =
+{
+    OID_DESCRIPTOR(MBEDTLS_OID_SERVER_AUTH,
+                   "id-kp-serverAuth",
+                   "TLS Web Server Authentication"),
+    OID_DESCRIPTOR(MBEDTLS_OID_CLIENT_AUTH,
+                   "id-kp-clientAuth",
+                   "TLS Web Client Authentication"),
+    OID_DESCRIPTOR(MBEDTLS_OID_CODE_SIGNING,     "id-kp-codeSigning",     "Code Signing"),
+    OID_DESCRIPTOR(MBEDTLS_OID_EMAIL_PROTECTION, "id-kp-emailProtection", "E-mail Protection"),
+    OID_DESCRIPTOR(MBEDTLS_OID_TIME_STAMPING,    "id-kp-timeStamping",    "Time Stamping"),
+    OID_DESCRIPTOR(MBEDTLS_OID_OCSP_SIGNING,     "id-kp-OCSPSigning",     "OCSP Signing"),
+    OID_DESCRIPTOR(MBEDTLS_OID_WISUN_FAN,
+                   "id-kp-wisun-fan-device",
+                   "Wi-SUN Alliance Field Area Network (FAN)"),
+    NULL_OID_DESCRIPTOR,
+};
+
+FN_OID_TYPED_FROM_ASN1(mbedtls_oid_descriptor_t, ext_key_usage, oid_ext_key_usage)
+FN_OID_GET_ATTR1(mbedtls_oid_get_extended_key_usage,
+                 mbedtls_oid_descriptor_t,
+                 ext_key_usage,
+                 const char *,
+                 description)
+
+static const mbedtls_oid_descriptor_t oid_certificate_policies[] =
+{
+    OID_DESCRIPTOR(MBEDTLS_OID_ANY_POLICY,      "anyPolicy",       "Any Policy"),
+    NULL_OID_DESCRIPTOR,
+};
+
+FN_OID_TYPED_FROM_ASN1(mbedtls_oid_descriptor_t, certificate_policies, oid_certificate_policies)
+FN_OID_GET_ATTR1(mbedtls_oid_get_certificate_policies,
+                 mbedtls_oid_descriptor_t,
+                 certificate_policies,
+                 const char *,
+                 description)
+#endif /* MBEDTLS_X509_REMOVE_INFO */
+
+/*
+ * For SignatureAlgorithmIdentifier
+ */
+typedef struct {
+    mbedtls_oid_descriptor_t    descriptor;
+    mbedtls_md_type_t           md_alg;
+    mbedtls_pk_type_t           pk_alg;
+} oid_sig_alg_t;
+
+static const oid_sig_alg_t oid_sig_alg[] =
+{
+#if defined(MBEDTLS_RSA_C)
+#if defined(MBEDTLS_MD_CAN_MD5)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_PKCS1_MD5,        "md5WithRSAEncryption",     "RSA with MD5"),
+        MBEDTLS_MD_MD5,      MBEDTLS_PK_RSA,
+    },
+#endif /* MBEDTLS_MD_CAN_MD5 */
+#if defined(MBEDTLS_MD_CAN_SHA1)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_PKCS1_SHA1,       "sha-1WithRSAEncryption",   "RSA with SHA1"),
+        MBEDTLS_MD_SHA1,     MBEDTLS_PK_RSA,
+    },
+#endif /* MBEDTLS_MD_CAN_SHA1 */
+#if defined(PSA_WANT_ALG_SHA_224)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_PKCS1_SHA224,     "sha224WithRSAEncryption",
+                       "RSA with SHA-224"),
+        MBEDTLS_MD_SHA224,   MBEDTLS_PK_RSA,
+    },
+#endif /* PSA_WANT_ALG_SHA_224 */
+#if defined(MBEDTLS_MD_CAN_SHA256)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_PKCS1_SHA256,     "sha256WithRSAEncryption",
+                       "RSA with SHA-256"),
+        MBEDTLS_MD_SHA256,   MBEDTLS_PK_RSA,
+    },
+#endif /* MBEDTLS_MD_CAN_SHA256 */
+#if defined(PSA_WANT_ALG_SHA_384)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_PKCS1_SHA384,     "sha384WithRSAEncryption",
+                       "RSA with SHA-384"),
+        MBEDTLS_MD_SHA384,   MBEDTLS_PK_RSA,
+    },
+#endif /* PSA_WANT_ALG_SHA_384 */
+#if defined(MBEDTLS_MD_CAN_SHA512)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_PKCS1_SHA512,     "sha512WithRSAEncryption",
+                       "RSA with SHA-512"),
+        MBEDTLS_MD_SHA512,   MBEDTLS_PK_RSA,
+    },
+#endif /* MBEDTLS_MD_CAN_SHA512 */
+#if defined(MBEDTLS_MD_CAN_SHA1)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_RSA_SHA_OBS,      "sha-1WithRSAEncryption",   "RSA with SHA1"),
+        MBEDTLS_MD_SHA1,     MBEDTLS_PK_RSA,
+    },
+#endif /* MBEDTLS_MD_CAN_SHA1 */
+#endif /* MBEDTLS_RSA_C */
+#if defined(MBEDTLS_PK_CAN_ECDSA_SOME)
+#if defined(MBEDTLS_MD_CAN_SHA1)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_ECDSA_SHA1,       "ecdsa-with-SHA1",      "ECDSA with SHA1"),
+        MBEDTLS_MD_SHA1,     MBEDTLS_PK_ECDSA,
+    },
+#endif /* MBEDTLS_MD_CAN_SHA1 */
+#if defined(PSA_WANT_ALG_SHA_224)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_ECDSA_SHA224,     "ecdsa-with-SHA224",    "ECDSA with SHA224"),
+        MBEDTLS_MD_SHA224,   MBEDTLS_PK_ECDSA,
+    },
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA256)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_ECDSA_SHA256,     "ecdsa-with-SHA256",    "ECDSA with SHA256"),
+        MBEDTLS_MD_SHA256,   MBEDTLS_PK_ECDSA,
+    },
+#endif /* MBEDTLS_MD_CAN_SHA256 */
+#if defined(PSA_WANT_ALG_SHA_384)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_ECDSA_SHA384,     "ecdsa-with-SHA384",    "ECDSA with SHA384"),
+        MBEDTLS_MD_SHA384,   MBEDTLS_PK_ECDSA,
+    },
+#endif /* PSA_WANT_ALG_SHA_384 */
+#if defined(MBEDTLS_MD_CAN_SHA512)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_ECDSA_SHA512,     "ecdsa-with-SHA512",    "ECDSA with SHA512"),
+        MBEDTLS_MD_SHA512,   MBEDTLS_PK_ECDSA,
+    },
+#endif /* MBEDTLS_MD_CAN_SHA512 */
+#endif /* MBEDTLS_PK_CAN_ECDSA_SOME */
+#if defined(MBEDTLS_RSA_C)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_RSASSA_PSS,        "RSASSA-PSS",           "RSASSA-PSS"),
+        MBEDTLS_MD_NONE,     MBEDTLS_PK_RSASSA_PSS,
+    },
+#endif /* MBEDTLS_RSA_C */
+    {
+        NULL_OID_DESCRIPTOR,
+        MBEDTLS_MD_NONE, MBEDTLS_PK_NONE,
+    },
+};
+
+FN_OID_TYPED_FROM_ASN1(oid_sig_alg_t, sig_alg, oid_sig_alg)
+
+#if !defined(MBEDTLS_X509_REMOVE_INFO)
+FN_OID_GET_DESCRIPTOR_ATTR1(mbedtls_oid_get_sig_alg_desc,
+                            oid_sig_alg_t,
+                            sig_alg,
+                            const char *,
+                            description)
+#endif
+
+FN_OID_GET_ATTR2(mbedtls_oid_get_sig_alg,
+                 oid_sig_alg_t,
+                 sig_alg,
+                 mbedtls_md_type_t,
+                 md_alg,
+                 mbedtls_pk_type_t,
+                 pk_alg)
+FN_OID_GET_OID_BY_ATTR2(mbedtls_oid_get_oid_by_sig_alg,
+                        oid_sig_alg_t,
+                        oid_sig_alg,
+                        mbedtls_pk_type_t,
+                        pk_alg,
+                        mbedtls_md_type_t,
+                        md_alg)
+
+/*
+ * For PublicKeyInfo (PKCS1, RFC 5480)
+ */
+typedef struct {
+    mbedtls_oid_descriptor_t    descriptor;
+    mbedtls_pk_type_t           pk_alg;
+} oid_pk_alg_t;
+
+static const oid_pk_alg_t oid_pk_alg[] =
+{
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_PKCS1_RSA,           "rsaEncryption",    "RSA"),
+        MBEDTLS_PK_RSA,
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_EC_ALG_UNRESTRICTED, "id-ecPublicKey",   "Generic EC key"),
+        MBEDTLS_PK_ECKEY,
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_EC_ALG_ECDH,         "id-ecDH",          "EC key for ECDH"),
+        MBEDTLS_PK_ECKEY_DH,
+    },
+    {
+        NULL_OID_DESCRIPTOR,
+        MBEDTLS_PK_NONE,
+    },
+};
+
+FN_OID_TYPED_FROM_ASN1(oid_pk_alg_t, pk_alg, oid_pk_alg)
+FN_OID_GET_ATTR1(mbedtls_oid_get_pk_alg, oid_pk_alg_t, pk_alg, mbedtls_pk_type_t, pk_alg)
+FN_OID_GET_OID_BY_ATTR1(mbedtls_oid_get_oid_by_pk_alg,
+                        oid_pk_alg_t,
+                        oid_pk_alg,
+                        mbedtls_pk_type_t,
+                        pk_alg)
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+/*
+ * For elliptic curves that use namedCurve inside ECParams (RFC 5480)
+ */
+typedef struct {
+    mbedtls_oid_descriptor_t    descriptor;
+    mbedtls_ecp_group_id        grp_id;
+} oid_ecp_grp_t;
+
+static const oid_ecp_grp_t oid_ecp_grp[] =
+{
+#if defined(MBEDTLS_ECP_HAVE_SECP192R1)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_EC_GRP_SECP192R1, "secp192r1",    "secp192r1"),
+        MBEDTLS_ECP_DP_SECP192R1,
+    },
+#endif /* MBEDTLS_ECP_HAVE_SECP192R1 */
+#if defined(MBEDTLS_ECP_HAVE_SECP224R1)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_EC_GRP_SECP224R1, "secp224r1",    "secp224r1"),
+        MBEDTLS_ECP_DP_SECP224R1,
+    },
+#endif /* MBEDTLS_ECP_HAVE_SECP224R1 */
+#if defined(MBEDTLS_ECP_HAVE_SECP256R1)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_EC_GRP_SECP256R1, "secp256r1",    "secp256r1"),
+        MBEDTLS_ECP_DP_SECP256R1,
+    },
+#endif /* MBEDTLS_ECP_HAVE_SECP256R1 */
+#if defined(MBEDTLS_ECP_HAVE_SECP384R1)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_EC_GRP_SECP384R1, "secp384r1",    "secp384r1"),
+        MBEDTLS_ECP_DP_SECP384R1,
+    },
+#endif /* MBEDTLS_ECP_HAVE_SECP384R1 */
+#if defined(MBEDTLS_ECP_HAVE_SECP521R1)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_EC_GRP_SECP521R1, "secp521r1",    "secp521r1"),
+        MBEDTLS_ECP_DP_SECP521R1,
+    },
+#endif /* MBEDTLS_ECP_HAVE_SECP521R1 */
+#if defined(MBEDTLS_ECP_HAVE_SECP192K1)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_EC_GRP_SECP192K1, "secp192k1",    "secp192k1"),
+        MBEDTLS_ECP_DP_SECP192K1,
+    },
+#endif /* MBEDTLS_ECP_HAVE_SECP192K1 */
+#if defined(MBEDTLS_ECP_HAVE_SECP224K1)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_EC_GRP_SECP224K1, "secp224k1",    "secp224k1"),
+        MBEDTLS_ECP_DP_SECP224K1,
+    },
+#endif /* MBEDTLS_ECP_HAVE_SECP224K1 */
+#if defined(MBEDTLS_ECP_HAVE_SECP256K1)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_EC_GRP_SECP256K1, "secp256k1",    "secp256k1"),
+        MBEDTLS_ECP_DP_SECP256K1,
+    },
+#endif /* MBEDTLS_ECP_HAVE_SECP256K1 */
+#if defined(MBEDTLS_ECP_HAVE_BP256R1)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_EC_GRP_BP256R1,   "brainpoolP256r1", "brainpool256r1"),
+        MBEDTLS_ECP_DP_BP256R1,
+    },
+#endif /* MBEDTLS_ECP_HAVE_BP256R1 */
+#if defined(MBEDTLS_ECP_HAVE_BP384R1)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_EC_GRP_BP384R1,   "brainpoolP384r1", "brainpool384r1"),
+        MBEDTLS_ECP_DP_BP384R1,
+    },
+#endif /* MBEDTLS_ECP_HAVE_BP384R1 */
+#if defined(MBEDTLS_ECP_HAVE_BP512R1)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_EC_GRP_BP512R1,   "brainpoolP512r1", "brainpool512r1"),
+        MBEDTLS_ECP_DP_BP512R1,
+    },
+#endif /* MBEDTLS_ECP_HAVE_BP512R1 */
+    {
+        NULL_OID_DESCRIPTOR,
+        MBEDTLS_ECP_DP_NONE,
+    },
+};
+
+FN_OID_TYPED_FROM_ASN1(oid_ecp_grp_t, grp_id, oid_ecp_grp)
+FN_OID_GET_ATTR1(mbedtls_oid_get_ec_grp, oid_ecp_grp_t, grp_id, mbedtls_ecp_group_id, grp_id)
+FN_OID_GET_OID_BY_ATTR1(mbedtls_oid_get_oid_by_ec_grp,
+                        oid_ecp_grp_t,
+                        oid_ecp_grp,
+                        mbedtls_ecp_group_id,
+                        grp_id)
+
+/*
+ * For Elliptic Curve algorithms that are directly
+ * encoded in the AlgorithmIdentifier (RFC 8410)
+ */
+typedef struct {
+    mbedtls_oid_descriptor_t    descriptor;
+    mbedtls_ecp_group_id        grp_id;
+} oid_ecp_grp_algid_t;
+
+static const oid_ecp_grp_algid_t oid_ecp_grp_algid[] =
+{
+#if defined(MBEDTLS_ECP_HAVE_CURVE25519)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_X25519,               "X25519",       "X25519"),
+        MBEDTLS_ECP_DP_CURVE25519,
+    },
+#endif /* MBEDTLS_ECP_HAVE_CURVE25519 */
+#if defined(MBEDTLS_ECP_HAVE_CURVE448)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_X448,                 "X448",         "X448"),
+        MBEDTLS_ECP_DP_CURVE448,
+    },
+#endif /* MBEDTLS_ECP_HAVE_CURVE448 */
+    {
+        NULL_OID_DESCRIPTOR,
+        MBEDTLS_ECP_DP_NONE,
+    },
+};
+
+FN_OID_TYPED_FROM_ASN1(oid_ecp_grp_algid_t, grp_id_algid, oid_ecp_grp_algid)
+FN_OID_GET_ATTR1(mbedtls_oid_get_ec_grp_algid,
+                 oid_ecp_grp_algid_t,
+                 grp_id_algid,
+                 mbedtls_ecp_group_id,
+                 grp_id)
+FN_OID_GET_OID_BY_ATTR1(mbedtls_oid_get_oid_by_ec_grp_algid,
+                        oid_ecp_grp_algid_t,
+                        oid_ecp_grp_algid,
+                        mbedtls_ecp_group_id,
+                        grp_id)
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+#if defined(MBEDTLS_CIPHER_C)
+/*
+ * For PKCS#5 PBES2 encryption algorithm
+ */
+typedef struct {
+    mbedtls_oid_descriptor_t    descriptor;
+    mbedtls_cipher_type_t       cipher_alg;
+} oid_cipher_alg_t;
+
+static const oid_cipher_alg_t oid_cipher_alg[] =
+{
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_DES_CBC,              "desCBC",       "DES-CBC"),
+        MBEDTLS_CIPHER_DES_CBC,
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_DES_EDE3_CBC,         "des-ede3-cbc", "DES-EDE3-CBC"),
+        MBEDTLS_CIPHER_DES_EDE3_CBC,
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_AES_128_CBC,          "aes128-cbc", "AES128-CBC"),
+        MBEDTLS_CIPHER_AES_128_CBC,
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_AES_192_CBC,          "aes192-cbc", "AES192-CBC"),
+        MBEDTLS_CIPHER_AES_192_CBC,
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_AES_256_CBC,          "aes256-cbc", "AES256-CBC"),
+        MBEDTLS_CIPHER_AES_256_CBC,
+    },
+    {
+        NULL_OID_DESCRIPTOR,
+        MBEDTLS_CIPHER_NONE,
+    },
+};
+
+FN_OID_TYPED_FROM_ASN1(oid_cipher_alg_t, cipher_alg, oid_cipher_alg)
+FN_OID_GET_ATTR1(mbedtls_oid_get_cipher_alg,
+                 oid_cipher_alg_t,
+                 cipher_alg,
+                 mbedtls_cipher_type_t,
+                 cipher_alg)
+#endif /* MBEDTLS_CIPHER_C */
+
+/*
+ * For digestAlgorithm
+ */
+typedef struct {
+    mbedtls_oid_descriptor_t    descriptor;
+    mbedtls_md_type_t           md_alg;
+} oid_md_alg_t;
+
+static const oid_md_alg_t oid_md_alg[] =
+{
+#if defined(MBEDTLS_MD_CAN_MD5)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_DIGEST_ALG_MD5,       "id-md5",       "MD5"),
+        MBEDTLS_MD_MD5,
+    },
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA1)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_DIGEST_ALG_SHA1,      "id-sha1",      "SHA-1"),
+        MBEDTLS_MD_SHA1,
+    },
+#endif
+#if defined(PSA_WANT_ALG_SHA_224)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_DIGEST_ALG_SHA224,    "id-sha224",    "SHA-224"),
+        MBEDTLS_MD_SHA224,
+    },
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA256)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_DIGEST_ALG_SHA256,    "id-sha256",    "SHA-256"),
+        MBEDTLS_MD_SHA256,
+    },
+#endif
+#if defined(PSA_WANT_ALG_SHA_384)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_DIGEST_ALG_SHA384,    "id-sha384",    "SHA-384"),
+        MBEDTLS_MD_SHA384,
+    },
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA512)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_DIGEST_ALG_SHA512,    "id-sha512",    "SHA-512"),
+        MBEDTLS_MD_SHA512,
+    },
+#endif
+#if defined(PSA_WANT_ALG_RIPEMD160)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_DIGEST_ALG_RIPEMD160, "id-ripemd160", "RIPEMD-160"),
+        MBEDTLS_MD_RIPEMD160,
+    },
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA3_224)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_DIGEST_ALG_SHA3_224,    "id-sha3-224",    "SHA-3-224"),
+        MBEDTLS_MD_SHA3_224,
+    },
+#endif
+#if defined(PSA_WANT_ALG_SHA3_256)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_DIGEST_ALG_SHA3_256,    "id-sha3-256",    "SHA-3-256"),
+        MBEDTLS_MD_SHA3_256,
+    },
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA3_384)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_DIGEST_ALG_SHA3_384,    "id-sha3-384",    "SHA-3-384"),
+        MBEDTLS_MD_SHA3_384,
+    },
+#endif
+#if defined(PSA_WANT_ALG_SHA3_512)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_DIGEST_ALG_SHA3_512,    "id-sha3-512",    "SHA-3-512"),
+        MBEDTLS_MD_SHA3_512,
+    },
+#endif
+    {
+        NULL_OID_DESCRIPTOR,
+        MBEDTLS_MD_NONE,
+    },
+};
+
+FN_OID_TYPED_FROM_ASN1(oid_md_alg_t, md_alg, oid_md_alg)
+FN_OID_GET_ATTR1(mbedtls_oid_get_md_alg, oid_md_alg_t, md_alg, mbedtls_md_type_t, md_alg)
+FN_OID_GET_OID_BY_ATTR1(mbedtls_oid_get_oid_by_md,
+                        oid_md_alg_t,
+                        oid_md_alg,
+                        mbedtls_md_type_t,
+                        md_alg)
+
+/*
+ * For HMAC digestAlgorithm
+ */
+typedef struct {
+    mbedtls_oid_descriptor_t    descriptor;
+    mbedtls_md_type_t           md_hmac;
+} oid_md_hmac_t;
+
+static const oid_md_hmac_t oid_md_hmac[] =
+{
+#if defined(MBEDTLS_MD_CAN_SHA1)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_HMAC_SHA1,      "hmacSHA1",      "HMAC-SHA-1"),
+        MBEDTLS_MD_SHA1,
+    },
+#endif /* MBEDTLS_MD_CAN_SHA1 */
+#if defined(PSA_WANT_ALG_SHA_224)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_HMAC_SHA224,    "hmacSHA224",    "HMAC-SHA-224"),
+        MBEDTLS_MD_SHA224,
+    },
+#endif /* PSA_WANT_ALG_SHA_224 */
+#if defined(MBEDTLS_MD_CAN_SHA256)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_HMAC_SHA256,    "hmacSHA256",    "HMAC-SHA-256"),
+        MBEDTLS_MD_SHA256,
+    },
+#endif /* MBEDTLS_MD_CAN_SHA256 */
+#if defined(PSA_WANT_ALG_SHA_384)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_HMAC_SHA384,    "hmacSHA384",    "HMAC-SHA-384"),
+        MBEDTLS_MD_SHA384,
+    },
+#endif /* PSA_WANT_ALG_SHA_384 */
+#if defined(MBEDTLS_MD_CAN_SHA512)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_HMAC_SHA512,    "hmacSHA512",    "HMAC-SHA-512"),
+        MBEDTLS_MD_SHA512,
+    },
+#endif /* MBEDTLS_MD_CAN_SHA512 */
+#if defined(MBEDTLS_MD_CAN_SHA3_224)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_HMAC_SHA3_224,    "hmacSHA3-224",    "HMAC-SHA3-224"),
+        MBEDTLS_MD_SHA3_224,
+    },
+#endif /* MBEDTLS_MD_CAN_SHA3_224 */
+#if defined(PSA_WANT_ALG_SHA3_256)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_HMAC_SHA3_256,    "hmacSHA3-256",    "HMAC-SHA3-256"),
+        MBEDTLS_MD_SHA3_256,
+    },
+#endif /* PSA_WANT_ALG_SHA3_256 */
+#if defined(MBEDTLS_MD_CAN_SHA3_384)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_HMAC_SHA3_384,    "hmacSHA3-384",    "HMAC-SHA3-384"),
+        MBEDTLS_MD_SHA3_384,
+    },
+#endif /* MBEDTLS_MD_CAN_SHA3_384 */
+#if defined(PSA_WANT_ALG_SHA3_512)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_HMAC_SHA3_512,    "hmacSHA3-512",    "HMAC-SHA3-512"),
+        MBEDTLS_MD_SHA3_512,
+    },
+#endif /* PSA_WANT_ALG_SHA3_512 */
+#if defined(PSA_WANT_ALG_RIPEMD160)
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_HMAC_RIPEMD160,    "hmacRIPEMD160",    "HMAC-RIPEMD160"),
+        MBEDTLS_MD_RIPEMD160,
+    },
+#endif /* PSA_WANT_ALG_RIPEMD160 */
+    {
+        NULL_OID_DESCRIPTOR,
+        MBEDTLS_MD_NONE,
+    },
+};
+
+FN_OID_TYPED_FROM_ASN1(oid_md_hmac_t, md_hmac, oid_md_hmac)
+FN_OID_GET_ATTR1(mbedtls_oid_get_md_hmac, oid_md_hmac_t, md_hmac, mbedtls_md_type_t, md_hmac)
+
+#if defined(MBEDTLS_PKCS12_C) && defined(MBEDTLS_CIPHER_C)
+/*
+ * For PKCS#12 PBEs
+ */
+typedef struct {
+    mbedtls_oid_descriptor_t    descriptor;
+    mbedtls_md_type_t           md_alg;
+    mbedtls_cipher_type_t       cipher_alg;
+} oid_pkcs12_pbe_alg_t;
+
+static const oid_pkcs12_pbe_alg_t oid_pkcs12_pbe_alg[] =
+{
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_PKCS12_PBE_SHA1_DES3_EDE_CBC,
+                       "pbeWithSHAAnd3-KeyTripleDES-CBC",
+                       "PBE with SHA1 and 3-Key 3DES"),
+        MBEDTLS_MD_SHA1,      MBEDTLS_CIPHER_DES_EDE3_CBC,
+    },
+    {
+        OID_DESCRIPTOR(MBEDTLS_OID_PKCS12_PBE_SHA1_DES2_EDE_CBC,
+                       "pbeWithSHAAnd2-KeyTripleDES-CBC",
+                       "PBE with SHA1 and 2-Key 3DES"),
+        MBEDTLS_MD_SHA1,      MBEDTLS_CIPHER_DES_EDE_CBC,
+    },
+    {
+        NULL_OID_DESCRIPTOR,
+        MBEDTLS_MD_NONE, MBEDTLS_CIPHER_NONE,
+    },
+};
+
+FN_OID_TYPED_FROM_ASN1(oid_pkcs12_pbe_alg_t, pkcs12_pbe_alg, oid_pkcs12_pbe_alg)
+FN_OID_GET_ATTR2(mbedtls_oid_get_pkcs12_pbe_alg,
+                 oid_pkcs12_pbe_alg_t,
+                 pkcs12_pbe_alg,
+                 mbedtls_md_type_t,
+                 md_alg,
+                 mbedtls_cipher_type_t,
+                 cipher_alg)
+#endif /* MBEDTLS_PKCS12_C && MBEDTLS_CIPHER_C */
+
+/* Return the x.y.z.... style numeric string for the given OID */
+int mbedtls_oid_get_numeric_string(char *buf, size_t size,
+                                   const mbedtls_asn1_buf *oid)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    char *p = buf;
+    size_t n = size;
+    unsigned int value = 0;
+
+    if (size > INT_MAX) {
+        /* Avoid overflow computing return value */
+        return MBEDTLS_ERR_ASN1_INVALID_LENGTH;
+    }
+
+    if (oid->len <= 0) {
+        /* OID must not be empty */
+        return MBEDTLS_ERR_ASN1_OUT_OF_DATA;
+    }
+
+    for (size_t i = 0; i < oid->len; i++) {
+        /* Prevent overflow in value. */
+        if (value > (UINT_MAX >> 7)) {
+            return MBEDTLS_ERR_ASN1_INVALID_DATA;
+        }
+        if ((value == 0) && ((oid->p[i]) == 0x80)) {
+            /* Overlong encoding is not allowed */
+            return MBEDTLS_ERR_ASN1_INVALID_DATA;
+        }
+
+        value <<= 7;
+        value |= oid->p[i] & 0x7F;
+
+        if (!(oid->p[i] & 0x80)) {
+            /* Last byte */
+            if (n == size) {
+                int component1;
+                unsigned int component2;
+                /* First subidentifier contains first two OID components */
+                if (value >= 80) {
+                    component1 = '2';
+                    component2 = value - 80;
+                } else if (value >= 40) {
+                    component1 = '1';
+                    component2 = value - 40;
+                } else {
+                    component1 = '0';
+                    component2 = value;
+                }
+                ret = mbedtls_snprintf(p, n, "%c.%u", component1, component2);
+            } else {
+                ret = mbedtls_snprintf(p, n, ".%u", value);
+            }
+            if (ret < 2 || (size_t) ret >= n) {
+                return MBEDTLS_ERR_OID_BUF_TOO_SMALL;
+            }
+            n -= (size_t) ret;
+            p += ret;
+            value = 0;
+        }
+    }
+
+    if (value != 0) {
+        /* Unterminated subidentifier */
+        return MBEDTLS_ERR_ASN1_OUT_OF_DATA;
+    }
+
+    return (int) (size - n);
+}
+
+static int oid_parse_number(unsigned int *num, const char **p, const char *bound)
+{
+    int ret = MBEDTLS_ERR_ASN1_INVALID_DATA;
+
+    *num = 0;
+
+    while (*p < bound && **p >= '0' && **p <= '9') {
+        ret = 0;
+        if (*num > (UINT_MAX / 10)) {
+            return MBEDTLS_ERR_ASN1_INVALID_DATA;
+        }
+        *num *= 10;
+        *num += **p - '0';
+        (*p)++;
+    }
+    return ret;
+}
+
+static size_t oid_subidentifier_num_bytes(unsigned int value)
+{
+    size_t num_bytes = 0;
+
+    do {
+        value >>= 7;
+        num_bytes++;
+    } while (value != 0);
+
+    return num_bytes;
+}
+
+static int oid_subidentifier_encode_into(unsigned char **p,
+                                         unsigned char *bound,
+                                         unsigned int value)
+{
+    size_t num_bytes = oid_subidentifier_num_bytes(value);
+
+    if ((size_t) (bound - *p) < num_bytes) {
+        return MBEDTLS_ERR_OID_BUF_TOO_SMALL;
+    }
+    (*p)[num_bytes - 1] = (unsigned char) (value & 0x7f);
+    value >>= 7;
+
+    for (size_t i = 2; i <= num_bytes; i++) {
+        (*p)[num_bytes - i] = 0x80 | (unsigned char) (value & 0x7f);
+        value >>= 7;
+    }
+    *p += num_bytes;
+
+    return 0;
+}
+
+/* Return the OID for the given x.y.z.... style numeric string  */
+int mbedtls_oid_from_numeric_string(mbedtls_asn1_buf *oid,
+                                    const char *oid_str, size_t size)
+{
+    int ret = MBEDTLS_ERR_ASN1_INVALID_DATA;
+    const char *str_ptr = oid_str;
+    const char *str_bound = oid_str + size;
+    unsigned int val = 0;
+    unsigned int component1, component2;
+    size_t encoded_len;
+    unsigned char *resized_mem;
+
+    /* Count the number of dots to get a worst-case allocation size. */
+    size_t num_dots = 0;
+    for (size_t i = 0; i < size; i++) {
+        if (oid_str[i] == '.') {
+            num_dots++;
+        }
+    }
+    /* Allocate maximum possible required memory:
+     * There are (num_dots + 1) integer components, but the first 2 share the
+     * same subidentifier, so we only need num_dots subidentifiers maximum. */
+    if (num_dots == 0 || (num_dots > MBEDTLS_OID_MAX_COMPONENTS - 1)) {
+        return MBEDTLS_ERR_ASN1_INVALID_DATA;
+    }
+    /* Each byte can store 7 bits, calculate number of bytes for a
+     * subidentifier:
+     *
+     * bytes = ceil(subidentifer_size * 8 / 7)
+     */
+    size_t bytes_per_subidentifier = (((sizeof(unsigned int) * 8) - 1) / 7)
+                                     + 1;
+    size_t max_possible_bytes = num_dots * bytes_per_subidentifier;
+    oid->p = mbedtls_calloc(max_possible_bytes, 1);
+    if (oid->p == NULL) {
+        return MBEDTLS_ERR_ASN1_ALLOC_FAILED;
+    }
+    unsigned char *out_ptr = oid->p;
+    unsigned char *out_bound = oid->p + max_possible_bytes;
+
+    ret = oid_parse_number(&component1, &str_ptr, str_bound);
+    if (ret != 0) {
+        goto error;
+    }
+    if (component1 > 2) {
+        /* First component can't be > 2 */
+        ret = MBEDTLS_ERR_ASN1_INVALID_DATA;
+        goto error;
+    }
+    if (str_ptr >= str_bound || *str_ptr != '.') {
+        ret = MBEDTLS_ERR_ASN1_INVALID_DATA;
+        goto error;
+    }
+    str_ptr++;
+
+    ret = oid_parse_number(&component2, &str_ptr, str_bound);
+    if (ret != 0) {
+        goto error;
+    }
+    if ((component1 < 2) && (component2 > 39)) {
+        /* Root nodes 0 and 1 may have up to 40 children, numbered 0-39 */
+        ret = MBEDTLS_ERR_ASN1_INVALID_DATA;
+        goto error;
+    }
+    if (str_ptr < str_bound) {
+        if (*str_ptr == '.') {
+            str_ptr++;
+        } else {
+            ret = MBEDTLS_ERR_ASN1_INVALID_DATA;
+            goto error;
+        }
+    }
+
+    if (component2 > (UINT_MAX - (component1 * 40))) {
+        ret = MBEDTLS_ERR_ASN1_INVALID_DATA;
+        goto error;
+    }
+    ret = oid_subidentifier_encode_into(&out_ptr, out_bound,
+                                        (component1 * 40) + component2);
+    if (ret != 0) {
+        goto error;
+    }
+
+    while (str_ptr < str_bound) {
+        ret = oid_parse_number(&val, &str_ptr, str_bound);
+        if (ret != 0) {
+            goto error;
+        }
+        if (str_ptr < str_bound) {
+            if (*str_ptr == '.') {
+                str_ptr++;
+            } else {
+                ret = MBEDTLS_ERR_ASN1_INVALID_DATA;
+                goto error;
+            }
+        }
+
+        ret = oid_subidentifier_encode_into(&out_ptr, out_bound, val);
+        if (ret != 0) {
+            goto error;
+        }
+    }
+
+    encoded_len = (size_t) (out_ptr - oid->p);
+    resized_mem = mbedtls_calloc(encoded_len, 1);
+    if (resized_mem == NULL) {
+        ret = MBEDTLS_ERR_ASN1_ALLOC_FAILED;
+        goto error;
+    }
+    memcpy(resized_mem, oid->p, encoded_len);
+    mbedtls_free(oid->p);
+    oid->p = resized_mem;
+    oid->len = encoded_len;
+
+    oid->tag = MBEDTLS_ASN1_OID;
+
+    return 0;
+
+error:
+    mbedtls_free(oid->p);
+    oid->p = NULL;
+    oid->len = 0;
+    return ret;
+}
+
+#endif /* MBEDTLS_OID_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/pem.c b/tf-psa-crypto/drivers/builtin/src/pem.c
new file mode 100644
index 0000000..0207601
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/pem.c
@@ -0,0 +1,551 @@
+/*
+ *  Privacy Enhanced Mail (PEM) decoding
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PEM_PARSE_C) || defined(MBEDTLS_PEM_WRITE_C)
+
+#include "mbedtls/pem.h"
+#include "mbedtls/base64.h"
+#include "mbedtls/des.h"
+#include "mbedtls/aes.h"
+#include "mbedtls/md.h"
+#include "mbedtls/cipher.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+#include "psa/crypto.h"
+#endif
+
+#if defined(MBEDTLS_MD_CAN_MD5) &&  \
+    defined(MBEDTLS_CIPHER_MODE_CBC) &&                             \
+    (defined(MBEDTLS_DES_C) || defined(MBEDTLS_AES_C))
+#define PEM_RFC1421
+#endif /* MBEDTLS_MD_CAN_MD5 &&
+          MBEDTLS_CIPHER_MODE_CBC &&
+          ( MBEDTLS_AES_C || MBEDTLS_DES_C ) */
+
+#if defined(MBEDTLS_PEM_PARSE_C)
+void mbedtls_pem_init(mbedtls_pem_context *ctx)
+{
+    memset(ctx, 0, sizeof(mbedtls_pem_context));
+}
+
+#if defined(PEM_RFC1421)
+/*
+ * Read a 16-byte hex string and convert it to binary
+ */
+static int pem_get_iv(const unsigned char *s, unsigned char *iv,
+                      size_t iv_len)
+{
+    size_t i, j, k;
+
+    memset(iv, 0, iv_len);
+
+    for (i = 0; i < iv_len * 2; i++, s++) {
+        if (*s >= '0' && *s <= '9') {
+            j = *s - '0';
+        } else
+        if (*s >= 'A' && *s <= 'F') {
+            j = *s - '7';
+        } else
+        if (*s >= 'a' && *s <= 'f') {
+            j = *s - 'W';
+        } else {
+            return MBEDTLS_ERR_PEM_INVALID_ENC_IV;
+        }
+
+        k = ((i & 1) != 0) ? j : j << 4;
+
+        iv[i >> 1] = (unsigned char) (iv[i >> 1] | k);
+    }
+
+    return 0;
+}
+
+static int pem_pbkdf1(unsigned char *key, size_t keylen,
+                      unsigned char *iv,
+                      const unsigned char *pwd, size_t pwdlen)
+{
+    mbedtls_md_context_t md5_ctx;
+    const mbedtls_md_info_t *md5_info;
+    unsigned char md5sum[16];
+    size_t use_len;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    mbedtls_md_init(&md5_ctx);
+
+    /* Prepare the context. (setup() errors gracefully on NULL info.) */
+    md5_info = mbedtls_md_info_from_type(MBEDTLS_MD_MD5);
+    if ((ret = mbedtls_md_setup(&md5_ctx, md5_info, 0)) != 0) {
+        goto exit;
+    }
+
+    /*
+     * key[ 0..15] = MD5(pwd || IV)
+     */
+    if ((ret = mbedtls_md_starts(&md5_ctx)) != 0) {
+        goto exit;
+    }
+    if ((ret = mbedtls_md_update(&md5_ctx, pwd, pwdlen)) != 0) {
+        goto exit;
+    }
+    if ((ret = mbedtls_md_update(&md5_ctx, iv,  8)) != 0) {
+        goto exit;
+    }
+    if ((ret = mbedtls_md_finish(&md5_ctx, md5sum)) != 0) {
+        goto exit;
+    }
+
+    if (keylen <= 16) {
+        memcpy(key, md5sum, keylen);
+        goto exit;
+    }
+
+    memcpy(key, md5sum, 16);
+
+    /*
+     * key[16..23] = MD5(key[ 0..15] || pwd || IV])
+     */
+    if ((ret = mbedtls_md_starts(&md5_ctx)) != 0) {
+        goto exit;
+    }
+    if ((ret = mbedtls_md_update(&md5_ctx, md5sum, 16)) != 0) {
+        goto exit;
+    }
+    if ((ret = mbedtls_md_update(&md5_ctx, pwd, pwdlen)) != 0) {
+        goto exit;
+    }
+    if ((ret = mbedtls_md_update(&md5_ctx, iv, 8)) != 0) {
+        goto exit;
+    }
+    if ((ret = mbedtls_md_finish(&md5_ctx, md5sum)) != 0) {
+        goto exit;
+    }
+
+    use_len = 16;
+    if (keylen < 32) {
+        use_len = keylen - 16;
+    }
+
+    memcpy(key + 16, md5sum, use_len);
+
+exit:
+    mbedtls_md_free(&md5_ctx);
+    mbedtls_platform_zeroize(md5sum, 16);
+
+    return ret;
+}
+
+#if defined(MBEDTLS_DES_C)
+/*
+ * Decrypt with DES-CBC, using PBKDF1 for key derivation
+ */
+static int pem_des_decrypt(unsigned char des_iv[8],
+                           unsigned char *buf, size_t buflen,
+                           const unsigned char *pwd, size_t pwdlen)
+{
+    mbedtls_des_context des_ctx;
+    unsigned char des_key[8];
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    mbedtls_des_init(&des_ctx);
+
+    if ((ret = pem_pbkdf1(des_key, 8, des_iv, pwd, pwdlen)) != 0) {
+        goto exit;
+    }
+
+    if ((ret = mbedtls_des_setkey_dec(&des_ctx, des_key)) != 0) {
+        goto exit;
+    }
+    ret = mbedtls_des_crypt_cbc(&des_ctx, MBEDTLS_DES_DECRYPT, buflen,
+                                des_iv, buf, buf);
+
+exit:
+    mbedtls_des_free(&des_ctx);
+    mbedtls_platform_zeroize(des_key, 8);
+
+    return ret;
+}
+
+/*
+ * Decrypt with 3DES-CBC, using PBKDF1 for key derivation
+ */
+static int pem_des3_decrypt(unsigned char des3_iv[8],
+                            unsigned char *buf, size_t buflen,
+                            const unsigned char *pwd, size_t pwdlen)
+{
+    mbedtls_des3_context des3_ctx;
+    unsigned char des3_key[24];
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    mbedtls_des3_init(&des3_ctx);
+
+    if ((ret = pem_pbkdf1(des3_key, 24, des3_iv, pwd, pwdlen)) != 0) {
+        goto exit;
+    }
+
+    if ((ret = mbedtls_des3_set3key_dec(&des3_ctx, des3_key)) != 0) {
+        goto exit;
+    }
+    ret = mbedtls_des3_crypt_cbc(&des3_ctx, MBEDTLS_DES_DECRYPT, buflen,
+                                 des3_iv, buf, buf);
+
+exit:
+    mbedtls_des3_free(&des3_ctx);
+    mbedtls_platform_zeroize(des3_key, 24);
+
+    return ret;
+}
+#endif /* MBEDTLS_DES_C */
+
+#if defined(MBEDTLS_AES_C)
+/*
+ * Decrypt with AES-XXX-CBC, using PBKDF1 for key derivation
+ */
+static int pem_aes_decrypt(unsigned char aes_iv[16], unsigned int keylen,
+                           unsigned char *buf, size_t buflen,
+                           const unsigned char *pwd, size_t pwdlen)
+{
+    mbedtls_aes_context aes_ctx;
+    unsigned char aes_key[32];
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    mbedtls_aes_init(&aes_ctx);
+
+    if ((ret = pem_pbkdf1(aes_key, keylen, aes_iv, pwd, pwdlen)) != 0) {
+        goto exit;
+    }
+
+    if ((ret = mbedtls_aes_setkey_dec(&aes_ctx, aes_key, keylen * 8)) != 0) {
+        goto exit;
+    }
+    ret = mbedtls_aes_crypt_cbc(&aes_ctx, MBEDTLS_AES_DECRYPT, buflen,
+                                aes_iv, buf, buf);
+
+exit:
+    mbedtls_aes_free(&aes_ctx);
+    mbedtls_platform_zeroize(aes_key, keylen);
+
+    return ret;
+}
+#endif /* MBEDTLS_AES_C */
+
+#if defined(MBEDTLS_DES_C) || defined(MBEDTLS_AES_C)
+static int pem_check_pkcs_padding(unsigned char *input, size_t input_len, size_t *data_len)
+{
+    /* input_len > 0 is guaranteed by mbedtls_pem_read_buffer(). */
+    size_t pad_len = input[input_len - 1];
+    size_t i;
+
+    if (pad_len > input_len) {
+        return MBEDTLS_ERR_PEM_PASSWORD_MISMATCH;
+    }
+
+    *data_len = input_len - pad_len;
+
+    for (i = *data_len; i < input_len; i++) {
+        if (input[i] != pad_len) {
+            return MBEDTLS_ERR_PEM_PASSWORD_MISMATCH;
+        }
+    }
+
+    return 0;
+}
+#endif /* MBEDTLS_DES_C || MBEDTLS_AES_C */
+
+#endif /* PEM_RFC1421 */
+
+int mbedtls_pem_read_buffer(mbedtls_pem_context *ctx, const char *header, const char *footer,
+                            const unsigned char *data, const unsigned char *pwd,
+                            size_t pwdlen, size_t *use_len)
+{
+    int ret, enc;
+    size_t len;
+    unsigned char *buf;
+    const unsigned char *s1, *s2, *end;
+#if defined(PEM_RFC1421)
+    unsigned char pem_iv[16];
+    mbedtls_cipher_type_t enc_alg = MBEDTLS_CIPHER_NONE;
+#else
+    ((void) pwd);
+    ((void) pwdlen);
+#endif /* PEM_RFC1421 */
+
+    if (ctx == NULL) {
+        return MBEDTLS_ERR_PEM_BAD_INPUT_DATA;
+    }
+
+    s1 = (unsigned char *) strstr((const char *) data, header);
+
+    if (s1 == NULL) {
+        return MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT;
+    }
+
+    s2 = (unsigned char *) strstr((const char *) data, footer);
+
+    if (s2 == NULL || s2 <= s1) {
+        return MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT;
+    }
+
+    s1 += strlen(header);
+    if (*s1 == ' ') {
+        s1++;
+    }
+    if (*s1 == '\r') {
+        s1++;
+    }
+    if (*s1 == '\n') {
+        s1++;
+    } else {
+        return MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT;
+    }
+
+    end = s2;
+    end += strlen(footer);
+    if (*end == ' ') {
+        end++;
+    }
+    if (*end == '\r') {
+        end++;
+    }
+    if (*end == '\n') {
+        end++;
+    }
+    *use_len = (size_t) (end - data);
+
+    enc = 0;
+
+    if (s2 - s1 >= 22 && memcmp(s1, "Proc-Type: 4,ENCRYPTED", 22) == 0) {
+#if defined(PEM_RFC1421)
+        enc++;
+
+        s1 += 22;
+        if (*s1 == '\r') {
+            s1++;
+        }
+        if (*s1 == '\n') {
+            s1++;
+        } else {
+            return MBEDTLS_ERR_PEM_INVALID_DATA;
+        }
+
+
+#if defined(MBEDTLS_DES_C)
+        if (s2 - s1 >= 23 && memcmp(s1, "DEK-Info: DES-EDE3-CBC,", 23) == 0) {
+            enc_alg = MBEDTLS_CIPHER_DES_EDE3_CBC;
+
+            s1 += 23;
+            if (s2 - s1 < 16 || pem_get_iv(s1, pem_iv, 8) != 0) {
+                return MBEDTLS_ERR_PEM_INVALID_ENC_IV;
+            }
+
+            s1 += 16;
+        } else if (s2 - s1 >= 18 && memcmp(s1, "DEK-Info: DES-CBC,", 18) == 0) {
+            enc_alg = MBEDTLS_CIPHER_DES_CBC;
+
+            s1 += 18;
+            if (s2 - s1 < 16 || pem_get_iv(s1, pem_iv, 8) != 0) {
+                return MBEDTLS_ERR_PEM_INVALID_ENC_IV;
+            }
+
+            s1 += 16;
+        }
+#endif /* MBEDTLS_DES_C */
+
+#if defined(MBEDTLS_AES_C)
+        if (s2 - s1 >= 14 && memcmp(s1, "DEK-Info: AES-", 14) == 0) {
+            if (s2 - s1 < 22) {
+                return MBEDTLS_ERR_PEM_UNKNOWN_ENC_ALG;
+            } else if (memcmp(s1, "DEK-Info: AES-128-CBC,", 22) == 0) {
+                enc_alg = MBEDTLS_CIPHER_AES_128_CBC;
+            } else if (memcmp(s1, "DEK-Info: AES-192-CBC,", 22) == 0) {
+                enc_alg = MBEDTLS_CIPHER_AES_192_CBC;
+            } else if (memcmp(s1, "DEK-Info: AES-256-CBC,", 22) == 0) {
+                enc_alg = MBEDTLS_CIPHER_AES_256_CBC;
+            } else {
+                return MBEDTLS_ERR_PEM_UNKNOWN_ENC_ALG;
+            }
+
+            s1 += 22;
+            if (s2 - s1 < 32 || pem_get_iv(s1, pem_iv, 16) != 0) {
+                return MBEDTLS_ERR_PEM_INVALID_ENC_IV;
+            }
+
+            s1 += 32;
+        }
+#endif /* MBEDTLS_AES_C */
+
+        if (enc_alg == MBEDTLS_CIPHER_NONE) {
+            return MBEDTLS_ERR_PEM_UNKNOWN_ENC_ALG;
+        }
+
+        if (*s1 == '\r') {
+            s1++;
+        }
+        if (*s1 == '\n') {
+            s1++;
+        } else {
+            return MBEDTLS_ERR_PEM_INVALID_DATA;
+        }
+#else
+        return MBEDTLS_ERR_PEM_FEATURE_UNAVAILABLE;
+#endif /* PEM_RFC1421 */
+    }
+
+    if (s1 >= s2) {
+        return MBEDTLS_ERR_PEM_INVALID_DATA;
+    }
+
+    ret = mbedtls_base64_decode(NULL, 0, &len, s1, (size_t) (s2 - s1));
+
+    if (ret == MBEDTLS_ERR_BASE64_INVALID_CHARACTER) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PEM_INVALID_DATA, ret);
+    }
+
+    if (len == 0) {
+        return MBEDTLS_ERR_PEM_BAD_INPUT_DATA;
+    }
+
+    if ((buf = mbedtls_calloc(1, len)) == NULL) {
+        return MBEDTLS_ERR_PEM_ALLOC_FAILED;
+    }
+
+    if ((ret = mbedtls_base64_decode(buf, len, &len, s1, (size_t) (s2 - s1))) != 0) {
+        mbedtls_zeroize_and_free(buf, len);
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PEM_INVALID_DATA, ret);
+    }
+
+    if (enc != 0) {
+#if defined(PEM_RFC1421)
+        if (pwd == NULL) {
+            mbedtls_zeroize_and_free(buf, len);
+            return MBEDTLS_ERR_PEM_PASSWORD_REQUIRED;
+        }
+
+        ret = 0;
+
+#if defined(MBEDTLS_DES_C)
+        if (enc_alg == MBEDTLS_CIPHER_DES_EDE3_CBC) {
+            ret = pem_des3_decrypt(pem_iv, buf, len, pwd, pwdlen);
+        } else if (enc_alg == MBEDTLS_CIPHER_DES_CBC) {
+            ret = pem_des_decrypt(pem_iv, buf, len, pwd, pwdlen);
+        }
+#endif /* MBEDTLS_DES_C */
+
+#if defined(MBEDTLS_AES_C)
+        if (enc_alg == MBEDTLS_CIPHER_AES_128_CBC) {
+            ret = pem_aes_decrypt(pem_iv, 16, buf, len, pwd, pwdlen);
+        } else if (enc_alg == MBEDTLS_CIPHER_AES_192_CBC) {
+            ret = pem_aes_decrypt(pem_iv, 24, buf, len, pwd, pwdlen);
+        } else if (enc_alg == MBEDTLS_CIPHER_AES_256_CBC) {
+            ret = pem_aes_decrypt(pem_iv, 32, buf, len, pwd, pwdlen);
+        }
+#endif /* MBEDTLS_AES_C */
+
+        if (ret != 0) {
+            mbedtls_zeroize_and_free(buf, len);
+            return ret;
+        }
+
+        /* Check PKCS padding and update data length based on padding info.
+         * This can be used to detect invalid padding data and password
+         * mismatches. */
+        size_t unpadded_len;
+        ret = pem_check_pkcs_padding(buf, len, &unpadded_len);
+        if (ret != 0) {
+            mbedtls_zeroize_and_free(buf, len);
+            return ret;
+        }
+        len = unpadded_len;
+#else
+        mbedtls_zeroize_and_free(buf, len);
+        return MBEDTLS_ERR_PEM_FEATURE_UNAVAILABLE;
+#endif /* PEM_RFC1421 */
+    }
+
+    ctx->buf = buf;
+    ctx->buflen = len;
+
+    return 0;
+}
+
+void mbedtls_pem_free(mbedtls_pem_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    if (ctx->buf != NULL) {
+        mbedtls_zeroize_and_free(ctx->buf, ctx->buflen);
+    }
+    mbedtls_free(ctx->info);
+
+    mbedtls_platform_zeroize(ctx, sizeof(mbedtls_pem_context));
+}
+#endif /* MBEDTLS_PEM_PARSE_C */
+
+#if defined(MBEDTLS_PEM_WRITE_C)
+int mbedtls_pem_write_buffer(const char *header, const char *footer,
+                             const unsigned char *der_data, size_t der_len,
+                             unsigned char *buf, size_t buf_len, size_t *olen)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char *encode_buf = NULL, *c, *p = buf;
+    size_t len = 0, use_len, add_len = 0;
+
+    mbedtls_base64_encode(NULL, 0, &use_len, der_data, der_len);
+    add_len = strlen(header) + strlen(footer) + (((use_len > 2) ? (use_len - 2) : 0) / 64) + 1;
+
+    if (use_len + add_len > buf_len) {
+        *olen = use_len + add_len;
+        return MBEDTLS_ERR_BASE64_BUFFER_TOO_SMALL;
+    }
+
+    if (use_len != 0 &&
+        ((encode_buf = mbedtls_calloc(1, use_len)) == NULL)) {
+        return MBEDTLS_ERR_PEM_ALLOC_FAILED;
+    }
+
+    if ((ret = mbedtls_base64_encode(encode_buf, use_len, &use_len, der_data,
+                                     der_len)) != 0) {
+        mbedtls_free(encode_buf);
+        return ret;
+    }
+
+    memcpy(p, header, strlen(header));
+    p += strlen(header);
+    c = encode_buf;
+
+    while (use_len) {
+        len = (use_len > 64) ? 64 : use_len;
+        memcpy(p, c, len);
+        use_len -= len;
+        p += len;
+        c += len;
+        *p++ = '\n';
+    }
+
+    memcpy(p, footer, strlen(footer));
+    p += strlen(footer);
+
+    *p++ = '\0';
+    *olen = (size_t) (p - buf);
+
+    /* Clean any remaining data previously written to the buffer */
+    memset(buf + *olen, 0, buf_len - *olen);
+
+    mbedtls_free(encode_buf);
+    return 0;
+}
+#endif /* MBEDTLS_PEM_WRITE_C */
+#endif /* MBEDTLS_PEM_PARSE_C || MBEDTLS_PEM_WRITE_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/pk.c b/tf-psa-crypto/drivers/builtin/src/pk.c
new file mode 100644
index 0000000..3fe51ea
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/pk.c
@@ -0,0 +1,1507 @@
+/*
+ *  Public Key abstraction layer
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PK_C)
+#include "mbedtls/pk.h"
+#include "pk_wrap.h"
+#include "pkwrite.h"
+#include "pk_internal.h"
+
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#if defined(MBEDTLS_RSA_C)
+#include "mbedtls/rsa.h"
+#include "rsa_internal.h"
+#endif
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+#include "mbedtls/ecp.h"
+#endif
+#if defined(MBEDTLS_ECDSA_C)
+#include "mbedtls/ecdsa.h"
+#endif
+
+#if defined(MBEDTLS_PSA_CRYPTO_CLIENT)
+#include "psa_util_internal.h"
+#include "mbedtls/psa_util.h"
+#endif
+
+#include <limits.h>
+#include <stdint.h>
+
+#define PSA_EXPORT_KEY_PAIR_OR_PUBLIC_MAX_SIZE \
+    (PSA_EXPORT_KEY_PAIR_MAX_SIZE > PSA_EXPORT_PUBLIC_KEY_MAX_SIZE) ? \
+    PSA_EXPORT_KEY_PAIR_MAX_SIZE : PSA_EXPORT_PUBLIC_KEY_MAX_SIZE
+
+/*
+ * Initialise a mbedtls_pk_context
+ */
+void mbedtls_pk_init(mbedtls_pk_context *ctx)
+{
+    ctx->pk_info = NULL;
+    ctx->pk_ctx = NULL;
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+    ctx->priv_id = MBEDTLS_SVC_KEY_ID_INIT;
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+    memset(ctx->pub_raw, 0, sizeof(ctx->pub_raw));
+    ctx->pub_raw_len = 0;
+    ctx->ec_family = 0;
+    ctx->ec_bits = 0;
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+}
+
+/*
+ * Free (the components of) a mbedtls_pk_context
+ */
+void mbedtls_pk_free(mbedtls_pk_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    if ((ctx->pk_info != NULL) && (ctx->pk_info->ctx_free_func != NULL)) {
+        ctx->pk_info->ctx_free_func(ctx->pk_ctx);
+    }
+
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+    /* The ownership of the priv_id key for opaque keys is external of the PK
+     * module. It's the user responsibility to clear it after use. */
+    if ((ctx->pk_info != NULL) && (ctx->pk_info->type != MBEDTLS_PK_OPAQUE)) {
+        psa_destroy_key(ctx->priv_id);
+    }
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+
+    mbedtls_platform_zeroize(ctx, sizeof(mbedtls_pk_context));
+}
+
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+/*
+ * Initialize a restart context
+ */
+void mbedtls_pk_restart_init(mbedtls_pk_restart_ctx *ctx)
+{
+    ctx->pk_info = NULL;
+    ctx->rs_ctx = NULL;
+}
+
+/*
+ * Free the components of a restart context
+ */
+void mbedtls_pk_restart_free(mbedtls_pk_restart_ctx *ctx)
+{
+    if (ctx == NULL || ctx->pk_info == NULL ||
+        ctx->pk_info->rs_free_func == NULL) {
+        return;
+    }
+
+    ctx->pk_info->rs_free_func(ctx->rs_ctx);
+
+    ctx->pk_info = NULL;
+    ctx->rs_ctx = NULL;
+}
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+
+/*
+ * Get pk_info structure from type
+ */
+const mbedtls_pk_info_t *mbedtls_pk_info_from_type(mbedtls_pk_type_t pk_type)
+{
+    switch (pk_type) {
+#if defined(MBEDTLS_RSA_C)
+        case MBEDTLS_PK_RSA:
+            return &mbedtls_rsa_info;
+#endif /* MBEDTLS_RSA_C */
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+        case MBEDTLS_PK_ECKEY:
+            return &mbedtls_eckey_info;
+        case MBEDTLS_PK_ECKEY_DH:
+            return &mbedtls_eckeydh_info;
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+#if defined(MBEDTLS_PK_CAN_ECDSA_SOME)
+        case MBEDTLS_PK_ECDSA:
+            return &mbedtls_ecdsa_info;
+#endif /* MBEDTLS_PK_CAN_ECDSA_SOME */
+        /* MBEDTLS_PK_RSA_ALT omitted on purpose */
+        default:
+            return NULL;
+    }
+}
+
+/*
+ * Initialise context
+ */
+int mbedtls_pk_setup(mbedtls_pk_context *ctx, const mbedtls_pk_info_t *info)
+{
+    if (info == NULL || ctx->pk_info != NULL) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    if ((info->ctx_alloc_func != NULL) &&
+        ((ctx->pk_ctx = info->ctx_alloc_func()) == NULL)) {
+        return MBEDTLS_ERR_PK_ALLOC_FAILED;
+    }
+
+    ctx->pk_info = info;
+
+    return 0;
+}
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+/*
+ * Initialise a PSA-wrapping context
+ */
+int mbedtls_pk_setup_opaque(mbedtls_pk_context *ctx,
+                            const mbedtls_svc_key_id_t key)
+{
+    const mbedtls_pk_info_t *info = NULL;
+    psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+    psa_key_type_t type;
+
+    if (ctx == NULL || ctx->pk_info != NULL) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    if (PSA_SUCCESS != psa_get_key_attributes(key, &attributes)) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+    type = psa_get_key_type(&attributes);
+    psa_reset_key_attributes(&attributes);
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+    if (PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type)) {
+        info = &mbedtls_ecdsa_opaque_info;
+    } else
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+    if (type == PSA_KEY_TYPE_RSA_KEY_PAIR) {
+        info = &mbedtls_rsa_opaque_info;
+    } else {
+        return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+    }
+
+    ctx->pk_info = info;
+    ctx->priv_id = key;
+
+    return 0;
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+#if defined(MBEDTLS_PK_RSA_ALT_SUPPORT)
+/*
+ * Initialize an RSA-alt context
+ */
+int mbedtls_pk_setup_rsa_alt(mbedtls_pk_context *ctx, void *key,
+                             mbedtls_pk_rsa_alt_decrypt_func decrypt_func,
+                             mbedtls_pk_rsa_alt_sign_func sign_func,
+                             mbedtls_pk_rsa_alt_key_len_func key_len_func)
+{
+    mbedtls_rsa_alt_context *rsa_alt;
+    const mbedtls_pk_info_t *info = &mbedtls_rsa_alt_info;
+
+    if (ctx->pk_info != NULL) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    if ((ctx->pk_ctx = info->ctx_alloc_func()) == NULL) {
+        return MBEDTLS_ERR_PK_ALLOC_FAILED;
+    }
+
+    ctx->pk_info = info;
+
+    rsa_alt = (mbedtls_rsa_alt_context *) ctx->pk_ctx;
+
+    rsa_alt->key = key;
+    rsa_alt->decrypt_func = decrypt_func;
+    rsa_alt->sign_func = sign_func;
+    rsa_alt->key_len_func = key_len_func;
+
+    return 0;
+}
+#endif /* MBEDTLS_PK_RSA_ALT_SUPPORT */
+
+/*
+ * Tell if a PK can do the operations of the given type
+ */
+int mbedtls_pk_can_do(const mbedtls_pk_context *ctx, mbedtls_pk_type_t type)
+{
+    /* A context with null pk_info is not set up yet and can't do anything.
+     * For backward compatibility, also accept NULL instead of a context
+     * pointer. */
+    if (ctx == NULL || ctx->pk_info == NULL) {
+        return 0;
+    }
+
+    return ctx->pk_info->can_do(type);
+}
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+/*
+ * Tell if a PK can do the operations of the given PSA algorithm
+ */
+int mbedtls_pk_can_do_ext(const mbedtls_pk_context *ctx, psa_algorithm_t alg,
+                          psa_key_usage_t usage)
+{
+    psa_key_usage_t key_usage;
+
+    /* A context with null pk_info is not set up yet and can't do anything.
+     * For backward compatibility, also accept NULL instead of a context
+     * pointer. */
+    if (ctx == NULL || ctx->pk_info == NULL) {
+        return 0;
+    }
+
+    /* Filter out non allowed algorithms */
+    if (PSA_ALG_IS_ECDSA(alg) == 0 &&
+        PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) == 0 &&
+        PSA_ALG_IS_RSA_PSS(alg) == 0 &&
+        alg != PSA_ALG_RSA_PKCS1V15_CRYPT &&
+        PSA_ALG_IS_ECDH(alg) == 0) {
+        return 0;
+    }
+
+    /* Filter out non allowed usage flags */
+    if (usage == 0 ||
+        (usage & ~(PSA_KEY_USAGE_SIGN_HASH |
+                   PSA_KEY_USAGE_DECRYPT |
+                   PSA_KEY_USAGE_DERIVE)) != 0) {
+        return 0;
+    }
+
+    /* Wildcard hash is not allowed */
+    if (PSA_ALG_IS_SIGN_HASH(alg) &&
+        PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH) {
+        return 0;
+    }
+
+    if (mbedtls_pk_get_type(ctx) != MBEDTLS_PK_OPAQUE) {
+        mbedtls_pk_type_t type;
+
+        if (PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_ECDH(alg)) {
+            type = MBEDTLS_PK_ECKEY;
+        } else if (PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) ||
+                   alg == PSA_ALG_RSA_PKCS1V15_CRYPT) {
+            type = MBEDTLS_PK_RSA;
+        } else if (PSA_ALG_IS_RSA_PSS(alg)) {
+            type = MBEDTLS_PK_RSASSA_PSS;
+        } else {
+            return 0;
+        }
+
+        if (ctx->pk_info->can_do(type) == 0) {
+            return 0;
+        }
+
+        switch (type) {
+            case MBEDTLS_PK_ECKEY:
+                key_usage = PSA_KEY_USAGE_SIGN_HASH | PSA_KEY_USAGE_DERIVE;
+                break;
+            case MBEDTLS_PK_RSA:
+            case MBEDTLS_PK_RSASSA_PSS:
+                key_usage = PSA_KEY_USAGE_SIGN_HASH |
+                            PSA_KEY_USAGE_SIGN_MESSAGE |
+                            PSA_KEY_USAGE_DECRYPT;
+                break;
+            default:
+                /* Should never happen */
+                return 0;
+        }
+
+        return (key_usage & usage) == usage;
+    }
+
+    psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+    psa_status_t status;
+
+    status = psa_get_key_attributes(ctx->priv_id, &attributes);
+    if (status != PSA_SUCCESS) {
+        return 0;
+    }
+
+    psa_algorithm_t key_alg = psa_get_key_algorithm(&attributes);
+    /* Key's enrollment is available only when an Mbed TLS implementation of PSA
+     * Crypto is being used, i.e. when MBEDTLS_PSA_CRYPTO_C is defined.
+     * Even though we don't officially support using other implementations of PSA
+     * Crypto with TLS and X.509 (yet), we try to keep vendor's customizations
+     * separated. */
+#if defined(MBEDTLS_PSA_CRYPTO_C)
+    psa_algorithm_t key_alg2 = psa_get_key_enrollment_algorithm(&attributes);
+#endif /* MBEDTLS_PSA_CRYPTO_C */
+    key_usage = psa_get_key_usage_flags(&attributes);
+    psa_reset_key_attributes(&attributes);
+
+    if ((key_usage & usage) != usage) {
+        return 0;
+    }
+
+    /*
+     * Common case: the key alg [or alg2] only allows alg.
+     * This will match PSA_ALG_RSA_PKCS1V15_CRYPT & PSA_ALG_IS_ECDH
+     * directly.
+     * This would also match ECDSA/RSA_PKCS1V15_SIGN/RSA_PSS with
+     * a fixed hash on key_alg [or key_alg2].
+     */
+    if (alg == key_alg) {
+        return 1;
+    }
+#if defined(MBEDTLS_PSA_CRYPTO_C)
+    if (alg == key_alg2) {
+        return 1;
+    }
+#endif /* MBEDTLS_PSA_CRYPTO_C */
+
+    /*
+     * If key_alg [or key_alg2] is a hash-and-sign with a wildcard for the hash,
+     * and alg is the same hash-and-sign family with any hash,
+     * then alg is compliant with this key alg
+     */
+    if (PSA_ALG_IS_SIGN_HASH(alg)) {
+        if (PSA_ALG_IS_SIGN_HASH(key_alg) &&
+            PSA_ALG_SIGN_GET_HASH(key_alg) == PSA_ALG_ANY_HASH &&
+            (alg & ~PSA_ALG_HASH_MASK) == (key_alg & ~PSA_ALG_HASH_MASK)) {
+            return 1;
+        }
+#if defined(MBEDTLS_PSA_CRYPTO_C)
+        if (PSA_ALG_IS_SIGN_HASH(key_alg2) &&
+            PSA_ALG_SIGN_GET_HASH(key_alg2) == PSA_ALG_ANY_HASH &&
+            (alg & ~PSA_ALG_HASH_MASK) == (key_alg2 & ~PSA_ALG_HASH_MASK)) {
+            return 1;
+        }
+#endif /* MBEDTLS_PSA_CRYPTO_C */
+    }
+
+    return 0;
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+#if defined(MBEDTLS_PSA_CRYPTO_CLIENT)
+#if defined(MBEDTLS_RSA_C)
+static psa_algorithm_t psa_algorithm_for_rsa(const mbedtls_rsa_context *rsa,
+                                             int want_crypt)
+{
+    if (mbedtls_rsa_get_padding_mode(rsa) == MBEDTLS_RSA_PKCS_V21) {
+        if (want_crypt) {
+            mbedtls_md_type_t md_type = (mbedtls_md_type_t) mbedtls_rsa_get_md_alg(rsa);
+            return PSA_ALG_RSA_OAEP(mbedtls_md_psa_alg_from_type(md_type));
+        } else {
+            return PSA_ALG_RSA_PSS_ANY_SALT(PSA_ALG_ANY_HASH);
+        }
+    } else {
+        if (want_crypt) {
+            return PSA_ALG_RSA_PKCS1V15_CRYPT;
+        } else {
+            return PSA_ALG_RSA_PKCS1V15_SIGN(PSA_ALG_ANY_HASH);
+        }
+    }
+}
+#endif /* MBEDTLS_RSA_C */
+
+int mbedtls_pk_get_psa_attributes(const mbedtls_pk_context *pk,
+                                  psa_key_usage_t usage,
+                                  psa_key_attributes_t *attributes)
+{
+    mbedtls_pk_type_t pk_type = mbedtls_pk_get_type(pk);
+
+    psa_key_usage_t more_usage = usage;
+    if (usage == PSA_KEY_USAGE_SIGN_MESSAGE) {
+        more_usage |= PSA_KEY_USAGE_VERIFY_MESSAGE;
+    } else if (usage == PSA_KEY_USAGE_SIGN_HASH) {
+        more_usage |= PSA_KEY_USAGE_VERIFY_HASH;
+    } else if (usage == PSA_KEY_USAGE_DECRYPT) {
+        more_usage |= PSA_KEY_USAGE_ENCRYPT;
+    }
+    more_usage |= PSA_KEY_USAGE_EXPORT | PSA_KEY_USAGE_COPY;
+
+    int want_private = !(usage == PSA_KEY_USAGE_VERIFY_MESSAGE ||
+                         usage == PSA_KEY_USAGE_VERIFY_HASH ||
+                         usage == PSA_KEY_USAGE_ENCRYPT);
+
+    switch (pk_type) {
+#if defined(MBEDTLS_RSA_C)
+        case MBEDTLS_PK_RSA:
+        {
+            int want_crypt = 0; /* 0: sign/verify; 1: encrypt/decrypt */
+            switch (usage) {
+                case PSA_KEY_USAGE_SIGN_MESSAGE:
+                case PSA_KEY_USAGE_SIGN_HASH:
+                case PSA_KEY_USAGE_VERIFY_MESSAGE:
+                case PSA_KEY_USAGE_VERIFY_HASH:
+                    /* Nothing to do. */
+                    break;
+                case PSA_KEY_USAGE_DECRYPT:
+                case PSA_KEY_USAGE_ENCRYPT:
+                    want_crypt = 1;
+                    break;
+                default:
+                    return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+            }
+            /* Detect the presence of a private key in a way that works both
+             * in CRT and non-CRT configurations. */
+            mbedtls_rsa_context *rsa = mbedtls_pk_rsa(*pk);
+            int has_private = (mbedtls_rsa_check_privkey(rsa) == 0);
+            if (want_private && !has_private) {
+                return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+            }
+            psa_set_key_type(attributes, (want_private ?
+                                          PSA_KEY_TYPE_RSA_KEY_PAIR :
+                                          PSA_KEY_TYPE_RSA_PUBLIC_KEY));
+            psa_set_key_bits(attributes, mbedtls_pk_get_bitlen(pk));
+            psa_set_key_algorithm(attributes,
+                                  psa_algorithm_for_rsa(rsa, want_crypt));
+            break;
+        }
+#endif /* MBEDTLS_RSA_C */
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+        case MBEDTLS_PK_ECKEY:
+        case MBEDTLS_PK_ECKEY_DH:
+        case MBEDTLS_PK_ECDSA:
+        {
+            int sign_ok = (pk_type != MBEDTLS_PK_ECKEY_DH);
+            int derive_ok = (pk_type != MBEDTLS_PK_ECDSA);
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+            psa_ecc_family_t family = pk->ec_family;
+            size_t bits = pk->ec_bits;
+            int has_private = 0;
+            if (pk->priv_id != MBEDTLS_SVC_KEY_ID_INIT) {
+                has_private = 1;
+            }
+#else
+            const mbedtls_ecp_keypair *ec = mbedtls_pk_ec_ro(*pk);
+            int has_private = (ec->d.n != 0);
+            size_t bits = 0;
+            psa_ecc_family_t family =
+                mbedtls_ecc_group_to_psa(ec->grp.id, &bits);
+#endif
+            psa_algorithm_t alg = 0;
+            switch (usage) {
+                case PSA_KEY_USAGE_SIGN_MESSAGE:
+                case PSA_KEY_USAGE_SIGN_HASH:
+                case PSA_KEY_USAGE_VERIFY_MESSAGE:
+                case PSA_KEY_USAGE_VERIFY_HASH:
+                    if (!sign_ok) {
+                        return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+                    }
+#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
+                    alg = PSA_ALG_DETERMINISTIC_ECDSA(PSA_ALG_ANY_HASH);
+#else
+                    alg = PSA_ALG_ECDSA(PSA_ALG_ANY_HASH);
+#endif
+                    break;
+                case PSA_KEY_USAGE_DERIVE:
+                    alg = PSA_ALG_ECDH;
+                    if (!derive_ok) {
+                        return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+                    }
+                    break;
+                default:
+                    return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+            }
+            if (want_private && !has_private) {
+                return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+            }
+            psa_set_key_type(attributes, (want_private ?
+                                          PSA_KEY_TYPE_ECC_KEY_PAIR(family) :
+                                          PSA_KEY_TYPE_ECC_PUBLIC_KEY(family)));
+            psa_set_key_bits(attributes, bits);
+            psa_set_key_algorithm(attributes, alg);
+            break;
+        }
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+#if defined(MBEDTLS_PK_RSA_ALT_SUPPORT)
+        case MBEDTLS_PK_RSA_ALT:
+            return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+#endif /* MBEDTLS_PK_RSA_ALT_SUPPORT */
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+        case MBEDTLS_PK_OPAQUE:
+        {
+            psa_key_attributes_t old_attributes = PSA_KEY_ATTRIBUTES_INIT;
+            psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+            status = psa_get_key_attributes(pk->priv_id, &old_attributes);
+            if (status != PSA_SUCCESS) {
+                return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+            }
+            psa_key_type_t old_type = psa_get_key_type(&old_attributes);
+            switch (usage) {
+                case PSA_KEY_USAGE_SIGN_MESSAGE:
+                case PSA_KEY_USAGE_SIGN_HASH:
+                case PSA_KEY_USAGE_VERIFY_MESSAGE:
+                case PSA_KEY_USAGE_VERIFY_HASH:
+                    if (!(PSA_KEY_TYPE_IS_ECC_KEY_PAIR(old_type) ||
+                          old_type == PSA_KEY_TYPE_RSA_KEY_PAIR)) {
+                        return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+                    }
+                    break;
+                case PSA_KEY_USAGE_DECRYPT:
+                case PSA_KEY_USAGE_ENCRYPT:
+                    if (old_type != PSA_KEY_TYPE_RSA_KEY_PAIR) {
+                        return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+                    }
+                    break;
+                case PSA_KEY_USAGE_DERIVE:
+                    if (!(PSA_KEY_TYPE_IS_ECC_KEY_PAIR(old_type))) {
+                        return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+                    }
+                    break;
+                default:
+                    return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+            }
+            psa_key_type_t new_type = old_type;
+            /* Opaque keys are always key pairs, so we don't need a check
+             * on the input if the required usage is private. We just need
+             * to adjust the type correctly if the required usage is public. */
+            if (!want_private) {
+                new_type = PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(new_type);
+            }
+            more_usage = psa_get_key_usage_flags(&old_attributes);
+            if ((usage & more_usage) == 0) {
+                return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+            }
+            psa_set_key_type(attributes, new_type);
+            psa_set_key_bits(attributes, psa_get_key_bits(&old_attributes));
+            psa_set_key_algorithm(attributes, psa_get_key_algorithm(&old_attributes));
+            break;
+        }
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+        default:
+            return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    psa_set_key_usage_flags(attributes, more_usage);
+    /* Key's enrollment is available only when an Mbed TLS implementation of PSA
+     * Crypto is being used, i.e. when MBEDTLS_PSA_CRYPTO_C is defined.
+     * Even though we don't officially support using other implementations of PSA
+     * Crypto with TLS and X.509 (yet), we try to keep vendor's customizations
+     * separated. */
+#if defined(MBEDTLS_PSA_CRYPTO_C)
+    psa_set_key_enrollment_algorithm(attributes, PSA_ALG_NONE);
+#endif
+
+    return 0;
+}
+
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA) || defined(MBEDTLS_USE_PSA_CRYPTO)
+static psa_status_t export_import_into_psa(mbedtls_svc_key_id_t old_key_id,
+                                           const psa_key_attributes_t *attributes,
+                                           mbedtls_svc_key_id_t *new_key_id)
+{
+    unsigned char key_buffer[PSA_EXPORT_KEY_PAIR_MAX_SIZE];
+    size_t key_length = 0;
+    psa_status_t status = psa_export_key(old_key_id,
+                                         key_buffer, sizeof(key_buffer),
+                                         &key_length);
+    if (status != PSA_SUCCESS) {
+        return status;
+    }
+    status = psa_import_key(attributes, key_buffer, key_length, new_key_id);
+    mbedtls_platform_zeroize(key_buffer, key_length);
+    return status;
+}
+
+static int copy_into_psa(mbedtls_svc_key_id_t old_key_id,
+                         const psa_key_attributes_t *attributes,
+                         mbedtls_svc_key_id_t *new_key_id)
+{
+    /* Normally, we prefer copying: it's more efficient and works even
+     * for non-exportable keys. */
+    psa_status_t status = psa_copy_key(old_key_id, attributes, new_key_id);
+    if (status == PSA_ERROR_NOT_PERMITTED /*missing COPY usage*/ ||
+        status == PSA_ERROR_INVALID_ARGUMENT /*incompatible policy*/) {
+        /* There are edge cases where copying won't work, but export+import
+         * might:
+         * - If the old key does not allow PSA_KEY_USAGE_COPY.
+         * - If the old key's usage does not allow what attributes wants.
+         *   Because the key was intended for use in the pk module, and may
+         *   have had a policy chosen solely for what pk needs rather than
+         *   based on a detailed understanding of PSA policies, we are a bit
+         *   more liberal than psa_copy_key() here.
+         */
+        /* Here we need to check that the types match, otherwise we risk
+         * importing nonsensical data. */
+        psa_key_attributes_t old_attributes = PSA_KEY_ATTRIBUTES_INIT;
+        status = psa_get_key_attributes(old_key_id, &old_attributes);
+        if (status != PSA_SUCCESS) {
+            return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+        }
+        psa_key_type_t old_type = psa_get_key_type(&old_attributes);
+        psa_reset_key_attributes(&old_attributes);
+        if (old_type != psa_get_key_type(attributes)) {
+            return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+        }
+        status = export_import_into_psa(old_key_id, attributes, new_key_id);
+    }
+    return PSA_PK_TO_MBEDTLS_ERR(status);
+}
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA || MBEDTLS_USE_PSA_CRYPTO */
+
+static int import_pair_into_psa(const mbedtls_pk_context *pk,
+                                const psa_key_attributes_t *attributes,
+                                mbedtls_svc_key_id_t *key_id)
+{
+    switch (mbedtls_pk_get_type(pk)) {
+#if defined(MBEDTLS_RSA_C)
+        case MBEDTLS_PK_RSA:
+        {
+            if (psa_get_key_type(attributes) != PSA_KEY_TYPE_RSA_KEY_PAIR) {
+                return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+            }
+            unsigned char key_buffer[
+                PSA_KEY_EXPORT_RSA_KEY_PAIR_MAX_SIZE(PSA_VENDOR_RSA_MAX_KEY_BITS)];
+            unsigned char *const key_end = key_buffer + sizeof(key_buffer);
+            unsigned char *key_data = key_end;
+            int ret = mbedtls_rsa_write_key(mbedtls_pk_rsa(*pk),
+                                            key_buffer, &key_data);
+            if (ret < 0) {
+                return ret;
+            }
+            size_t key_length = key_end - key_data;
+            ret = PSA_PK_TO_MBEDTLS_ERR(psa_import_key(attributes,
+                                                       key_data, key_length,
+                                                       key_id));
+            mbedtls_platform_zeroize(key_data, key_length);
+            return ret;
+        }
+#endif /* MBEDTLS_RSA_C */
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+        case MBEDTLS_PK_ECKEY:
+        case MBEDTLS_PK_ECKEY_DH:
+        case MBEDTLS_PK_ECDSA:
+        {
+            /* We need to check the curve family, otherwise the import could
+             * succeed with nonsensical data.
+             * We don't check the bit-size: it's optional in attributes,
+             * and if it's specified, psa_import_key() will know from the key
+             * data length and will check that the bit-size matches. */
+            psa_key_type_t to_type = psa_get_key_type(attributes);
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+            psa_ecc_family_t from_family = pk->ec_family;
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+            const mbedtls_ecp_keypair *ec = mbedtls_pk_ec_ro(*pk);
+            size_t from_bits = 0;
+            psa_ecc_family_t from_family = mbedtls_ecc_group_to_psa(ec->grp.id,
+                                                                    &from_bits);
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+            if (to_type != PSA_KEY_TYPE_ECC_KEY_PAIR(from_family)) {
+                return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+            }
+
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+            if (mbedtls_svc_key_id_is_null(pk->priv_id)) {
+                /* We have a public key and want a key pair. */
+                return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+            }
+            return copy_into_psa(pk->priv_id, attributes, key_id);
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+            if (ec->d.n == 0) {
+                /* Private key not set. Assume the input is a public key only.
+                 * (The other possibility is that it's an incomplete object
+                 * where the group is set but neither the public key nor
+                 * the private key. This is not possible through ecp.h
+                 * functions, so we don't bother reporting a more suitable
+                 * error in that case.) */
+                return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+            }
+            unsigned char key_buffer[PSA_BITS_TO_BYTES(PSA_VENDOR_ECC_MAX_CURVE_BITS)];
+            size_t key_length = 0;
+            int ret = mbedtls_ecp_write_key_ext(ec, &key_length,
+                                                key_buffer, sizeof(key_buffer));
+            if (ret < 0) {
+                return ret;
+            }
+            ret = PSA_PK_TO_MBEDTLS_ERR(psa_import_key(attributes,
+                                                       key_buffer, key_length,
+                                                       key_id));
+            mbedtls_platform_zeroize(key_buffer, key_length);
+            return ret;
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+        }
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+        case MBEDTLS_PK_OPAQUE:
+            return copy_into_psa(pk->priv_id, attributes, key_id);
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+        default:
+            return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+}
+
+static int import_public_into_psa(const mbedtls_pk_context *pk,
+                                  const psa_key_attributes_t *attributes,
+                                  mbedtls_svc_key_id_t *key_id)
+{
+    psa_key_type_t psa_type = psa_get_key_type(attributes);
+
+#if defined(MBEDTLS_RSA_C) ||                                           \
+    (defined(MBEDTLS_PK_HAVE_ECC_KEYS) && !defined(MBEDTLS_PK_USE_PSA_EC_DATA)) || \
+    defined(MBEDTLS_USE_PSA_CRYPTO)
+    unsigned char key_buffer[PSA_EXPORT_PUBLIC_KEY_MAX_SIZE];
+#endif
+    unsigned char *key_data = NULL;
+    size_t key_length = 0;
+
+    switch (mbedtls_pk_get_type(pk)) {
+#if defined(MBEDTLS_RSA_C)
+        case MBEDTLS_PK_RSA:
+        {
+            if (psa_type != PSA_KEY_TYPE_RSA_PUBLIC_KEY) {
+                return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+            }
+            unsigned char *const key_end = key_buffer + sizeof(key_buffer);
+            key_data = key_end;
+            int ret = mbedtls_rsa_write_pubkey(mbedtls_pk_rsa(*pk),
+                                               key_buffer, &key_data);
+            if (ret < 0) {
+                return ret;
+            }
+            key_length = (size_t) ret;
+            break;
+        }
+#endif /*MBEDTLS_RSA_C */
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+        case MBEDTLS_PK_ECKEY:
+        case MBEDTLS_PK_ECKEY_DH:
+        case MBEDTLS_PK_ECDSA:
+        {
+            /* We need to check the curve family, otherwise the import could
+             * succeed with nonsensical data.
+             * We don't check the bit-size: it's optional in attributes,
+             * and if it's specified, psa_import_key() will know from the key
+             * data length and will check that the bit-size matches. */
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+            if (psa_type != PSA_KEY_TYPE_ECC_PUBLIC_KEY(pk->ec_family)) {
+                return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+            }
+            key_data = (unsigned char *) pk->pub_raw;
+            key_length = pk->pub_raw_len;
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+            const mbedtls_ecp_keypair *ec = mbedtls_pk_ec_ro(*pk);
+            size_t from_bits = 0;
+            psa_ecc_family_t from_family = mbedtls_ecc_group_to_psa(ec->grp.id,
+                                                                    &from_bits);
+            if (psa_type != PSA_KEY_TYPE_ECC_PUBLIC_KEY(from_family)) {
+                return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+            }
+            int ret = mbedtls_ecp_write_public_key(
+                ec, MBEDTLS_ECP_PF_UNCOMPRESSED,
+                &key_length, key_buffer, sizeof(key_buffer));
+            if (ret < 0) {
+                return ret;
+            }
+            key_data = key_buffer;
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+            break;
+        }
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+        case MBEDTLS_PK_OPAQUE:
+        {
+            psa_key_attributes_t old_attributes = PSA_KEY_ATTRIBUTES_INIT;
+            psa_status_t status =
+                psa_get_key_attributes(pk->priv_id, &old_attributes);
+            if (status != PSA_SUCCESS) {
+                return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+            }
+            psa_key_type_t old_type = psa_get_key_type(&old_attributes);
+            psa_reset_key_attributes(&old_attributes);
+            if (psa_type != PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(old_type)) {
+                return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+            }
+            status = psa_export_public_key(pk->priv_id,
+                                           key_buffer, sizeof(key_buffer),
+                                           &key_length);
+            if (status != PSA_SUCCESS) {
+                return PSA_PK_TO_MBEDTLS_ERR(status);
+            }
+            key_data = key_buffer;
+            break;
+        }
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+        default:
+            return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    return PSA_PK_TO_MBEDTLS_ERR(psa_import_key(attributes,
+                                                key_data, key_length,
+                                                key_id));
+}
+
+int mbedtls_pk_import_into_psa(const mbedtls_pk_context *pk,
+                               const psa_key_attributes_t *attributes,
+                               mbedtls_svc_key_id_t *key_id)
+{
+    /* Set the output immediately so that it won't contain garbage even
+     * if we error out before calling psa_import_key(). */
+    *key_id = MBEDTLS_SVC_KEY_ID_INIT;
+
+#if defined(MBEDTLS_PK_RSA_ALT_SUPPORT)
+    if (mbedtls_pk_get_type(pk) == MBEDTLS_PK_RSA_ALT) {
+        return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+    }
+#endif /* MBEDTLS_PK_RSA_ALT_SUPPORT */
+
+    int want_public = PSA_KEY_TYPE_IS_PUBLIC_KEY(psa_get_key_type(attributes));
+    if (want_public) {
+        return import_public_into_psa(pk, attributes, key_id);
+    } else {
+        return import_pair_into_psa(pk, attributes, key_id);
+    }
+}
+
+static int copy_from_psa(mbedtls_svc_key_id_t key_id,
+                         mbedtls_pk_context *pk,
+                         int public_only)
+{
+    psa_status_t status;
+    psa_key_attributes_t key_attr = PSA_KEY_ATTRIBUTES_INIT;
+    psa_key_type_t key_type;
+    size_t key_bits;
+    /* Use a buffer size large enough to contain either a key pair or public key. */
+    unsigned char exp_key[PSA_EXPORT_KEY_PAIR_OR_PUBLIC_MAX_SIZE];
+    size_t exp_key_len;
+    int ret = MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+
+    if (pk == NULL) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    status = psa_get_key_attributes(key_id, &key_attr);
+    if (status != PSA_SUCCESS) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    if (public_only) {
+        status = psa_export_public_key(key_id, exp_key, sizeof(exp_key), &exp_key_len);
+    } else {
+        status = psa_export_key(key_id, exp_key, sizeof(exp_key), &exp_key_len);
+    }
+    if (status != PSA_SUCCESS) {
+        ret = PSA_PK_TO_MBEDTLS_ERR(status);
+        goto exit;
+    }
+
+    key_type = psa_get_key_type(&key_attr);
+    if (public_only) {
+        key_type = PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(key_type);
+    }
+    key_bits = psa_get_key_bits(&key_attr);
+
+#if defined(MBEDTLS_RSA_C)
+    if ((key_type == PSA_KEY_TYPE_RSA_KEY_PAIR) ||
+        (key_type == PSA_KEY_TYPE_RSA_PUBLIC_KEY)) {
+
+        ret = mbedtls_pk_setup(pk, mbedtls_pk_info_from_type(MBEDTLS_PK_RSA));
+        if (ret != 0) {
+            goto exit;
+        }
+
+        if (key_type == PSA_KEY_TYPE_RSA_KEY_PAIR) {
+            ret = mbedtls_rsa_parse_key(mbedtls_pk_rsa(*pk), exp_key, exp_key_len);
+        } else {
+            ret = mbedtls_rsa_parse_pubkey(mbedtls_pk_rsa(*pk), exp_key, exp_key_len);
+        }
+        if (ret != 0) {
+            goto exit;
+        }
+
+        psa_algorithm_t alg_type = psa_get_key_algorithm(&key_attr);
+        mbedtls_md_type_t md_type = MBEDTLS_MD_NONE;
+        if (PSA_ALG_GET_HASH(alg_type) != PSA_ALG_ANY_HASH) {
+            md_type = mbedtls_md_type_from_psa_alg(alg_type);
+        }
+
+        if (PSA_ALG_IS_RSA_OAEP(alg_type) || PSA_ALG_IS_RSA_PSS(alg_type)) {
+            ret = mbedtls_rsa_set_padding(mbedtls_pk_rsa(*pk), MBEDTLS_RSA_PKCS_V21, md_type);
+        } else if (PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg_type) ||
+                   alg_type == PSA_ALG_RSA_PKCS1V15_CRYPT) {
+            ret = mbedtls_rsa_set_padding(mbedtls_pk_rsa(*pk), MBEDTLS_RSA_PKCS_V15, md_type);
+        }
+        if (ret != 0) {
+            goto exit;
+        }
+    } else
+#endif /* MBEDTLS_RSA_C */
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+    if (PSA_KEY_TYPE_IS_ECC_KEY_PAIR(key_type) ||
+        PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(key_type)) {
+        mbedtls_ecp_group_id grp_id;
+
+        ret = mbedtls_pk_setup(pk, mbedtls_pk_info_from_type(MBEDTLS_PK_ECKEY));
+        if (ret != 0) {
+            goto exit;
+        }
+
+        grp_id = mbedtls_ecc_group_from_psa(PSA_KEY_TYPE_ECC_GET_FAMILY(key_type), key_bits);
+        ret = mbedtls_pk_ecc_set_group(pk, grp_id);
+        if (ret != 0) {
+            goto exit;
+        }
+
+        if (PSA_KEY_TYPE_IS_ECC_KEY_PAIR(key_type)) {
+            ret = mbedtls_pk_ecc_set_key(pk, exp_key, exp_key_len);
+            if (ret != 0) {
+                goto exit;
+            }
+            ret = mbedtls_pk_ecc_set_pubkey_from_prv(pk, exp_key, exp_key_len,
+                                                     mbedtls_psa_get_random,
+                                                     MBEDTLS_PSA_RANDOM_STATE);
+        } else {
+            ret = mbedtls_pk_ecc_set_pubkey(pk, exp_key, exp_key_len);
+        }
+        if (ret != 0) {
+            goto exit;
+        }
+    } else
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+    {
+        (void) key_bits;
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+exit:
+    psa_reset_key_attributes(&key_attr);
+    mbedtls_platform_zeroize(exp_key, sizeof(exp_key));
+
+    return ret;
+}
+
+int mbedtls_pk_copy_from_psa(mbedtls_svc_key_id_t key_id,
+                             mbedtls_pk_context *pk)
+{
+    return copy_from_psa(key_id, pk, 0);
+}
+
+int mbedtls_pk_copy_public_from_psa(mbedtls_svc_key_id_t key_id,
+                                    mbedtls_pk_context *pk)
+{
+    return copy_from_psa(key_id, pk, 1);
+}
+#endif /* MBEDTLS_PSA_CRYPTO_CLIENT */
+
+/*
+ * Helper for mbedtls_pk_sign and mbedtls_pk_verify
+ */
+static inline int pk_hashlen_helper(mbedtls_md_type_t md_alg, size_t *hash_len)
+{
+    if (*hash_len != 0) {
+        return 0;
+    }
+
+    *hash_len = mbedtls_md_get_size_from_type(md_alg);
+
+    if (*hash_len == 0) {
+        return -1;
+    }
+
+    return 0;
+}
+
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+/*
+ * Helper to set up a restart context if needed
+ */
+static int pk_restart_setup(mbedtls_pk_restart_ctx *ctx,
+                            const mbedtls_pk_info_t *info)
+{
+    /* Don't do anything if already set up or invalid */
+    if (ctx == NULL || ctx->pk_info != NULL) {
+        return 0;
+    }
+
+    /* Should never happen when we're called */
+    if (info->rs_alloc_func == NULL || info->rs_free_func == NULL) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    if ((ctx->rs_ctx = info->rs_alloc_func()) == NULL) {
+        return MBEDTLS_ERR_PK_ALLOC_FAILED;
+    }
+
+    ctx->pk_info = info;
+
+    return 0;
+}
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+
+/*
+ * Verify a signature (restartable)
+ */
+int mbedtls_pk_verify_restartable(mbedtls_pk_context *ctx,
+                                  mbedtls_md_type_t md_alg,
+                                  const unsigned char *hash, size_t hash_len,
+                                  const unsigned char *sig, size_t sig_len,
+                                  mbedtls_pk_restart_ctx *rs_ctx)
+{
+    if ((md_alg != MBEDTLS_MD_NONE || hash_len != 0) && hash == NULL) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    if (ctx->pk_info == NULL ||
+        pk_hashlen_helper(md_alg, &hash_len) != 0) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+    /* optimization: use non-restartable version if restart disabled */
+    if (rs_ctx != NULL &&
+        mbedtls_ecp_restart_is_enabled() &&
+        ctx->pk_info->verify_rs_func != NULL) {
+        int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+        if ((ret = pk_restart_setup(rs_ctx, ctx->pk_info)) != 0) {
+            return ret;
+        }
+
+        ret = ctx->pk_info->verify_rs_func(ctx,
+                                           md_alg, hash, hash_len, sig, sig_len, rs_ctx->rs_ctx);
+
+        if (ret != MBEDTLS_ERR_ECP_IN_PROGRESS) {
+            mbedtls_pk_restart_free(rs_ctx);
+        }
+
+        return ret;
+    }
+#else /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+    (void) rs_ctx;
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+
+    if (ctx->pk_info->verify_func == NULL) {
+        return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+    }
+
+    return ctx->pk_info->verify_func(ctx, md_alg, hash, hash_len,
+                                     sig, sig_len);
+}
+
+/*
+ * Verify a signature
+ */
+int mbedtls_pk_verify(mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg,
+                      const unsigned char *hash, size_t hash_len,
+                      const unsigned char *sig, size_t sig_len)
+{
+    return mbedtls_pk_verify_restartable(ctx, md_alg, hash, hash_len,
+                                         sig, sig_len, NULL);
+}
+
+/*
+ * Verify a signature with options
+ */
+int mbedtls_pk_verify_ext(mbedtls_pk_type_t type, const void *options,
+                          mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg,
+                          const unsigned char *hash, size_t hash_len,
+                          const unsigned char *sig, size_t sig_len)
+{
+    if ((md_alg != MBEDTLS_MD_NONE || hash_len != 0) && hash == NULL) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    if (ctx->pk_info == NULL) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    if (!mbedtls_pk_can_do(ctx, type)) {
+        return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+    }
+
+    if (type != MBEDTLS_PK_RSASSA_PSS) {
+        /* General case: no options */
+        if (options != NULL) {
+            return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+        }
+
+        return mbedtls_pk_verify(ctx, md_alg, hash, hash_len, sig, sig_len);
+    }
+
+    /* Ensure the PK context is of the right type otherwise mbedtls_pk_rsa()
+     * below would return a NULL pointer. */
+    if (mbedtls_pk_get_type(ctx) != MBEDTLS_PK_RSA) {
+        return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+    }
+
+#if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PKCS1_V21)
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    const mbedtls_pk_rsassa_pss_options *pss_opts;
+
+#if SIZE_MAX > UINT_MAX
+    if (md_alg == MBEDTLS_MD_NONE && UINT_MAX < hash_len) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+#endif
+
+    if (options == NULL) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    pss_opts = (const mbedtls_pk_rsassa_pss_options *) options;
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+    if (pss_opts->mgf1_hash_id == md_alg) {
+        unsigned char buf[MBEDTLS_PK_RSA_PUB_DER_MAX_BYTES];
+        unsigned char *p;
+        int key_len;
+        size_t signature_length;
+        psa_status_t status = PSA_ERROR_DATA_CORRUPT;
+        psa_status_t destruction_status = PSA_ERROR_DATA_CORRUPT;
+
+        psa_algorithm_t psa_md_alg = mbedtls_md_psa_alg_from_type(md_alg);
+        mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
+        psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+        psa_algorithm_t psa_sig_alg = PSA_ALG_RSA_PSS_ANY_SALT(psa_md_alg);
+        p = buf + sizeof(buf);
+        key_len = mbedtls_rsa_write_pubkey(mbedtls_pk_rsa(*ctx), buf, &p);
+
+        if (key_len < 0) {
+            return key_len;
+        }
+
+        psa_set_key_type(&attributes, PSA_KEY_TYPE_RSA_PUBLIC_KEY);
+        psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_VERIFY_HASH);
+        psa_set_key_algorithm(&attributes, psa_sig_alg);
+
+        status = psa_import_key(&attributes,
+                                buf + sizeof(buf) - key_len, key_len,
+                                &key_id);
+        if (status != PSA_SUCCESS) {
+            psa_destroy_key(key_id);
+            return PSA_PK_TO_MBEDTLS_ERR(status);
+        }
+
+        /* This function requires returning MBEDTLS_ERR_PK_SIG_LEN_MISMATCH
+         * on a valid signature with trailing data in a buffer, but
+         * mbedtls_psa_rsa_verify_hash requires the sig_len to be exact,
+         * so for this reason the passed sig_len is overwritten. Smaller
+         * signature lengths should not be accepted for verification. */
+        signature_length = sig_len > mbedtls_pk_get_len(ctx) ?
+                           mbedtls_pk_get_len(ctx) : sig_len;
+        status = psa_verify_hash(key_id, psa_sig_alg, hash,
+                                 hash_len, sig, signature_length);
+        destruction_status = psa_destroy_key(key_id);
+
+        if (status == PSA_SUCCESS && sig_len > mbedtls_pk_get_len(ctx)) {
+            return MBEDTLS_ERR_PK_SIG_LEN_MISMATCH;
+        }
+
+        if (status == PSA_SUCCESS) {
+            status = destruction_status;
+        }
+
+        return PSA_PK_RSA_TO_MBEDTLS_ERR(status);
+    } else
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+    {
+        if (sig_len < mbedtls_pk_get_len(ctx)) {
+            return MBEDTLS_ERR_RSA_VERIFY_FAILED;
+        }
+
+        ret = mbedtls_rsa_rsassa_pss_verify_ext(mbedtls_pk_rsa(*ctx),
+                                                md_alg, (unsigned int) hash_len, hash,
+                                                pss_opts->mgf1_hash_id,
+                                                pss_opts->expected_salt_len,
+                                                sig);
+        if (ret != 0) {
+            return ret;
+        }
+
+        if (sig_len > mbedtls_pk_get_len(ctx)) {
+            return MBEDTLS_ERR_PK_SIG_LEN_MISMATCH;
+        }
+
+        return 0;
+    }
+#else
+    return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+#endif /* MBEDTLS_RSA_C && MBEDTLS_PKCS1_V21 */
+}
+
+/*
+ * Make a signature (restartable)
+ */
+int mbedtls_pk_sign_restartable(mbedtls_pk_context *ctx,
+                                mbedtls_md_type_t md_alg,
+                                const unsigned char *hash, size_t hash_len,
+                                unsigned char *sig, size_t sig_size, size_t *sig_len,
+                                int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
+                                mbedtls_pk_restart_ctx *rs_ctx)
+{
+    if ((md_alg != MBEDTLS_MD_NONE || hash_len != 0) && hash == NULL) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    if (ctx->pk_info == NULL || pk_hashlen_helper(md_alg, &hash_len) != 0) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+    /* optimization: use non-restartable version if restart disabled */
+    if (rs_ctx != NULL &&
+        mbedtls_ecp_restart_is_enabled() &&
+        ctx->pk_info->sign_rs_func != NULL) {
+        int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+        if ((ret = pk_restart_setup(rs_ctx, ctx->pk_info)) != 0) {
+            return ret;
+        }
+
+        ret = ctx->pk_info->sign_rs_func(ctx, md_alg,
+                                         hash, hash_len,
+                                         sig, sig_size, sig_len,
+                                         f_rng, p_rng, rs_ctx->rs_ctx);
+
+        if (ret != MBEDTLS_ERR_ECP_IN_PROGRESS) {
+            mbedtls_pk_restart_free(rs_ctx);
+        }
+
+        return ret;
+    }
+#else /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+    (void) rs_ctx;
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+
+    if (ctx->pk_info->sign_func == NULL) {
+        return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+    }
+
+    return ctx->pk_info->sign_func(ctx, md_alg,
+                                   hash, hash_len,
+                                   sig, sig_size, sig_len,
+                                   f_rng, p_rng);
+}
+
+/*
+ * Make a signature
+ */
+int mbedtls_pk_sign(mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg,
+                    const unsigned char *hash, size_t hash_len,
+                    unsigned char *sig, size_t sig_size, size_t *sig_len,
+                    int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    return mbedtls_pk_sign_restartable(ctx, md_alg, hash, hash_len,
+                                       sig, sig_size, sig_len,
+                                       f_rng, p_rng, NULL);
+}
+
+/*
+ * Make a signature given a signature type.
+ */
+int mbedtls_pk_sign_ext(mbedtls_pk_type_t pk_type,
+                        mbedtls_pk_context *ctx,
+                        mbedtls_md_type_t md_alg,
+                        const unsigned char *hash, size_t hash_len,
+                        unsigned char *sig, size_t sig_size, size_t *sig_len,
+                        int (*f_rng)(void *, unsigned char *, size_t),
+                        void *p_rng)
+{
+    if (ctx->pk_info == NULL) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    if (!mbedtls_pk_can_do(ctx, pk_type)) {
+        return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+    }
+
+    if (pk_type != MBEDTLS_PK_RSASSA_PSS) {
+        return mbedtls_pk_sign(ctx, md_alg, hash, hash_len,
+                               sig, sig_size, sig_len, f_rng, p_rng);
+    }
+
+#if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PKCS1_V21)
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+    const psa_algorithm_t psa_md_alg = mbedtls_md_psa_alg_from_type(md_alg);
+    if (psa_md_alg == 0) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    if (mbedtls_pk_get_type(ctx) == MBEDTLS_PK_OPAQUE) {
+        psa_status_t status;
+
+        /* PSA_ALG_RSA_PSS() behaves the same as PSA_ALG_RSA_PSS_ANY_SALT() when
+         * performing a signature, but they are encoded differently. Instead of
+         * extracting the proper one from the wrapped key policy, just try both. */
+        status = psa_sign_hash(ctx->priv_id, PSA_ALG_RSA_PSS(psa_md_alg),
+                               hash, hash_len,
+                               sig, sig_size, sig_len);
+        if (status == PSA_ERROR_NOT_PERMITTED) {
+            status = psa_sign_hash(ctx->priv_id, PSA_ALG_RSA_PSS_ANY_SALT(psa_md_alg),
+                                   hash, hash_len,
+                                   sig, sig_size, sig_len);
+        }
+        return PSA_PK_RSA_TO_MBEDTLS_ERR(status);
+    }
+
+    return mbedtls_pk_psa_rsa_sign_ext(PSA_ALG_RSA_PSS(psa_md_alg),
+                                       ctx->pk_ctx, hash, hash_len,
+                                       sig, sig_size, sig_len);
+#else /* MBEDTLS_USE_PSA_CRYPTO */
+
+    if (sig_size < mbedtls_pk_get_len(ctx)) {
+        return MBEDTLS_ERR_PK_BUFFER_TOO_SMALL;
+    }
+
+    if (pk_hashlen_helper(md_alg, &hash_len) != 0) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    mbedtls_rsa_context *const rsa_ctx = mbedtls_pk_rsa(*ctx);
+
+    const int ret = mbedtls_rsa_rsassa_pss_sign_no_mode_check(rsa_ctx, f_rng, p_rng, md_alg,
+                                                              (unsigned int) hash_len, hash, sig);
+    if (ret == 0) {
+        *sig_len = rsa_ctx->len;
+    }
+    return ret;
+
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+#else
+    return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+#endif /* MBEDTLS_RSA_C && MBEDTLS_PKCS1_V21 */
+}
+
+/*
+ * Decrypt message
+ */
+int mbedtls_pk_decrypt(mbedtls_pk_context *ctx,
+                       const unsigned char *input, size_t ilen,
+                       unsigned char *output, size_t *olen, size_t osize,
+                       int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    if (ctx->pk_info == NULL) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    if (ctx->pk_info->decrypt_func == NULL) {
+        return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+    }
+
+    return ctx->pk_info->decrypt_func(ctx, input, ilen,
+                                      output, olen, osize, f_rng, p_rng);
+}
+
+/*
+ * Encrypt message
+ */
+int mbedtls_pk_encrypt(mbedtls_pk_context *ctx,
+                       const unsigned char *input, size_t ilen,
+                       unsigned char *output, size_t *olen, size_t osize,
+                       int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    if (ctx->pk_info == NULL) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    if (ctx->pk_info->encrypt_func == NULL) {
+        return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+    }
+
+    return ctx->pk_info->encrypt_func(ctx, input, ilen,
+                                      output, olen, osize, f_rng, p_rng);
+}
+
+/*
+ * Check public-private key pair
+ */
+int mbedtls_pk_check_pair(const mbedtls_pk_context *pub,
+                          const mbedtls_pk_context *prv,
+                          int (*f_rng)(void *, unsigned char *, size_t),
+                          void *p_rng)
+{
+    if (pub->pk_info == NULL ||
+        prv->pk_info == NULL) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    if (f_rng == NULL) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    if (prv->pk_info->check_pair_func == NULL) {
+        return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+    }
+
+    if (prv->pk_info->type == MBEDTLS_PK_RSA_ALT) {
+        if (pub->pk_info->type != MBEDTLS_PK_RSA) {
+            return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+        }
+    } else {
+        if ((prv->pk_info->type != MBEDTLS_PK_OPAQUE) &&
+            (pub->pk_info != prv->pk_info)) {
+            return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+        }
+    }
+
+    return prv->pk_info->check_pair_func((mbedtls_pk_context *) pub,
+                                         (mbedtls_pk_context *) prv,
+                                         f_rng, p_rng);
+}
+
+/*
+ * Get key size in bits
+ */
+size_t mbedtls_pk_get_bitlen(const mbedtls_pk_context *ctx)
+{
+    /* For backward compatibility, accept NULL or a context that
+     * isn't set up yet, and return a fake value that should be safe. */
+    if (ctx == NULL || ctx->pk_info == NULL) {
+        return 0;
+    }
+
+    return ctx->pk_info->get_bitlen((mbedtls_pk_context *) ctx);
+}
+
+/*
+ * Export debug information
+ */
+int mbedtls_pk_debug(const mbedtls_pk_context *ctx, mbedtls_pk_debug_item *items)
+{
+    if (ctx->pk_info == NULL) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    if (ctx->pk_info->debug_func == NULL) {
+        return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+    }
+
+    ctx->pk_info->debug_func((mbedtls_pk_context *) ctx, items);
+    return 0;
+}
+
+/*
+ * Access the PK type name
+ */
+const char *mbedtls_pk_get_name(const mbedtls_pk_context *ctx)
+{
+    if (ctx == NULL || ctx->pk_info == NULL) {
+        return "invalid PK";
+    }
+
+    return ctx->pk_info->name;
+}
+
+/*
+ * Access the PK type
+ */
+mbedtls_pk_type_t mbedtls_pk_get_type(const mbedtls_pk_context *ctx)
+{
+    if (ctx == NULL || ctx->pk_info == NULL) {
+        return MBEDTLS_PK_NONE;
+    }
+
+    return ctx->pk_info->type;
+}
+
+#endif /* MBEDTLS_PK_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/pk_ecc.c b/tf-psa-crypto/drivers/builtin/src/pk_ecc.c
new file mode 100644
index 0000000..86218ff
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/pk_ecc.c
@@ -0,0 +1,255 @@
+/*
+ *  ECC setters for PK.
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#include "mbedtls/pk.h"
+#include "mbedtls/error.h"
+#include "mbedtls/ecp.h"
+#include "pk_internal.h"
+
+#if defined(MBEDTLS_PK_C) && defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+
+int mbedtls_pk_ecc_set_group(mbedtls_pk_context *pk, mbedtls_ecp_group_id grp_id)
+{
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+    size_t ec_bits;
+    psa_ecc_family_t ec_family = mbedtls_ecc_group_to_psa(grp_id, &ec_bits);
+
+    /* group may already be initialized; if so, make sure IDs match */
+    if ((pk->ec_family != 0 && pk->ec_family != ec_family) ||
+        (pk->ec_bits != 0 && pk->ec_bits != ec_bits)) {
+        return MBEDTLS_ERR_PK_KEY_INVALID_FORMAT;
+    }
+
+    /* set group */
+    pk->ec_family = ec_family;
+    pk->ec_bits = ec_bits;
+
+    return 0;
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+    mbedtls_ecp_keypair *ecp = mbedtls_pk_ec_rw(*pk);
+
+    /* grp may already be initialized; if so, make sure IDs match */
+    if (mbedtls_pk_ec_ro(*pk)->grp.id != MBEDTLS_ECP_DP_NONE &&
+        mbedtls_pk_ec_ro(*pk)->grp.id != grp_id) {
+        return MBEDTLS_ERR_PK_KEY_INVALID_FORMAT;
+    }
+
+    /* set group */
+    return mbedtls_ecp_group_load(&(ecp->grp), grp_id);
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+}
+
+int mbedtls_pk_ecc_set_key(mbedtls_pk_context *pk, unsigned char *key, size_t key_len)
+{
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+    psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+    psa_key_usage_t flags;
+    psa_status_t status;
+
+    psa_set_key_type(&attributes, PSA_KEY_TYPE_ECC_KEY_PAIR(pk->ec_family));
+    if (pk->ec_family == PSA_ECC_FAMILY_MONTGOMERY) {
+        /* Do not set algorithm here because Montgomery keys cannot do ECDSA and
+         * the PK module cannot do ECDH. When the key will be used in TLS for
+         * ECDH, it will be exported and then re-imported with proper flags
+         * and algorithm. */
+        flags = PSA_KEY_USAGE_EXPORT;
+    } else {
+        psa_set_key_algorithm(&attributes,
+                              MBEDTLS_PK_PSA_ALG_ECDSA_MAYBE_DET(PSA_ALG_ANY_HASH));
+        flags = PSA_KEY_USAGE_SIGN_HASH | PSA_KEY_USAGE_SIGN_MESSAGE |
+                PSA_KEY_USAGE_EXPORT;
+    }
+    psa_set_key_usage_flags(&attributes, flags);
+
+    status = psa_import_key(&attributes, key, key_len, &pk->priv_id);
+    return psa_pk_status_to_mbedtls(status);
+
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+
+    mbedtls_ecp_keypair *eck = mbedtls_pk_ec_rw(*pk);
+    int ret = mbedtls_ecp_read_key(eck->grp.id, eck, key, key_len);
+    if (ret != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+    }
+    return 0;
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+}
+
+int mbedtls_pk_ecc_set_pubkey_from_prv(mbedtls_pk_context *pk,
+                                       const unsigned char *prv, size_t prv_len,
+                                       int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+
+    (void) f_rng;
+    (void) p_rng;
+    (void) prv;
+    (void) prv_len;
+    psa_status_t status;
+
+    status = psa_export_public_key(pk->priv_id, pk->pub_raw, sizeof(pk->pub_raw),
+                                   &pk->pub_raw_len);
+    return psa_pk_status_to_mbedtls(status);
+
+#elif defined(MBEDTLS_USE_PSA_CRYPTO) /* && !MBEDTLS_PK_USE_PSA_EC_DATA */
+
+    (void) f_rng;
+    (void) p_rng;
+    psa_status_t status;
+
+    mbedtls_ecp_keypair *eck = (mbedtls_ecp_keypair *) pk->pk_ctx;
+    size_t curve_bits;
+    psa_ecc_family_t curve = mbedtls_ecc_group_to_psa(eck->grp.id, &curve_bits);
+
+    /* Import private key into PSA, from serialized input */
+    mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
+    psa_key_attributes_t key_attr = PSA_KEY_ATTRIBUTES_INIT;
+    psa_set_key_type(&key_attr, PSA_KEY_TYPE_ECC_KEY_PAIR(curve));
+    psa_set_key_usage_flags(&key_attr, PSA_KEY_USAGE_EXPORT);
+    status = psa_import_key(&key_attr, prv, prv_len, &key_id);
+    if (status != PSA_SUCCESS) {
+        return psa_pk_status_to_mbedtls(status);
+    }
+
+    /* Export public key from PSA */
+    unsigned char pub[MBEDTLS_PSA_MAX_EC_PUBKEY_LENGTH];
+    size_t pub_len;
+    status = psa_export_public_key(key_id, pub, sizeof(pub), &pub_len);
+    psa_status_t destruction_status = psa_destroy_key(key_id);
+    if (status != PSA_SUCCESS) {
+        return psa_pk_status_to_mbedtls(status);
+    } else if (destruction_status != PSA_SUCCESS) {
+        return psa_pk_status_to_mbedtls(destruction_status);
+    }
+
+    /* Load serialized public key into ecp_keypair structure */
+    return mbedtls_ecp_point_read_binary(&eck->grp, &eck->Q, pub, pub_len);
+
+#else /* MBEDTLS_USE_PSA_CRYPTO */
+
+    (void) prv;
+    (void) prv_len;
+
+    mbedtls_ecp_keypair *eck = (mbedtls_ecp_keypair *) pk->pk_ctx;
+    return mbedtls_ecp_mul(&eck->grp, &eck->Q, &eck->d, &eck->grp.G, f_rng, p_rng);
+
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+}
+
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+/*
+ * Set the public key: fallback using ECP_LIGHT in the USE_PSA_EC_DATA case.
+ *
+ * Normally, when MBEDTLS_PK_USE_PSA_EC_DATA is enabled, we only use PSA
+ * functions to handle keys. However, currently psa_import_key() does not
+ * support compressed points. In case that support was explicitly requested,
+ * this fallback uses ECP functions to get the job done. This is the reason
+ * why MBEDTLS_PK_PARSE_EC_COMPRESSED auto-enables MBEDTLS_ECP_LIGHT.
+ *
+ * [in/out] pk: in: must have the group set, see mbedtls_pk_ecc_set_group().
+ *              out: will have the public key set.
+ * [in] pub, pub_len: the public key as an ECPoint,
+ *                    in any format supported by ECP.
+ *
+ * Return:
+ * - 0 on success;
+ * - MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE if the format is potentially valid
+ *   but not supported;
+ * - another error code otherwise.
+ */
+static int pk_ecc_set_pubkey_psa_ecp_fallback(mbedtls_pk_context *pk,
+                                              const unsigned char *pub,
+                                              size_t pub_len)
+{
+#if !defined(MBEDTLS_PK_PARSE_EC_COMPRESSED)
+    (void) pk;
+    (void) pub;
+    (void) pub_len;
+    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+#else /* MBEDTLS_PK_PARSE_EC_COMPRESSED */
+    mbedtls_ecp_keypair ecp_key;
+    mbedtls_ecp_group_id ecp_group_id;
+    int ret;
+
+    ecp_group_id = mbedtls_ecc_group_from_psa(pk->ec_family, pk->ec_bits);
+
+    mbedtls_ecp_keypair_init(&ecp_key);
+    ret = mbedtls_ecp_group_load(&(ecp_key.grp), ecp_group_id);
+    if (ret != 0) {
+        goto exit;
+    }
+    ret = mbedtls_ecp_point_read_binary(&(ecp_key.grp), &ecp_key.Q,
+                                        pub, pub_len);
+    if (ret != 0) {
+        goto exit;
+    }
+    ret = mbedtls_ecp_point_write_binary(&(ecp_key.grp), &ecp_key.Q,
+                                         MBEDTLS_ECP_PF_UNCOMPRESSED,
+                                         &pk->pub_raw_len, pk->pub_raw,
+                                         sizeof(pk->pub_raw));
+
+exit:
+    mbedtls_ecp_keypair_free(&ecp_key);
+    return ret;
+#endif /* MBEDTLS_PK_PARSE_EC_COMPRESSED */
+}
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+
+int mbedtls_pk_ecc_set_pubkey(mbedtls_pk_context *pk, const unsigned char *pub, size_t pub_len)
+{
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+
+    /* Load the key */
+    if (!PSA_ECC_FAMILY_IS_WEIERSTRASS(pk->ec_family) || *pub == 0x04) {
+        /* Format directly supported by PSA:
+         * - non-Weierstrass curves that only have one format;
+         * - uncompressed format for Weierstrass curves. */
+        if (pub_len > sizeof(pk->pub_raw)) {
+            return MBEDTLS_ERR_PK_BUFFER_TOO_SMALL;
+        }
+        memcpy(pk->pub_raw, pub, pub_len);
+        pk->pub_raw_len = pub_len;
+    } else {
+        /* Other format, try the fallback */
+        int ret = pk_ecc_set_pubkey_psa_ecp_fallback(pk, pub, pub_len);
+        if (ret != 0) {
+            return ret;
+        }
+    }
+
+    /* Validate the key by trying to import it */
+    mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
+    psa_key_attributes_t key_attrs = PSA_KEY_ATTRIBUTES_INIT;
+
+    psa_set_key_usage_flags(&key_attrs, 0);
+    psa_set_key_type(&key_attrs, PSA_KEY_TYPE_ECC_PUBLIC_KEY(pk->ec_family));
+    psa_set_key_bits(&key_attrs, pk->ec_bits);
+
+    if ((psa_import_key(&key_attrs, pk->pub_raw, pk->pub_raw_len,
+                        &key_id) != PSA_SUCCESS) ||
+        (psa_destroy_key(key_id) != PSA_SUCCESS)) {
+        return MBEDTLS_ERR_PK_INVALID_PUBKEY;
+    }
+
+    return 0;
+
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+
+    int ret;
+    mbedtls_ecp_keypair *ec_key = (mbedtls_ecp_keypair *) pk->pk_ctx;
+    ret = mbedtls_ecp_point_read_binary(&ec_key->grp, &ec_key->Q, pub, pub_len);
+    if (ret != 0) {
+        return ret;
+    }
+    return mbedtls_ecp_check_pubkey(&ec_key->grp, &ec_key->Q);
+
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+}
+
+#endif /* MBEDTLS_PK_C && MBEDTLS_PK_HAVE_ECC_KEYS */
diff --git a/tf-psa-crypto/drivers/builtin/src/pk_internal.h b/tf-psa-crypto/drivers/builtin/src/pk_internal.h
new file mode 100644
index 0000000..e86a3a0
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/pk_internal.h
@@ -0,0 +1,207 @@
+/**
+ * \file pk_internal.h
+ *
+ * \brief Public Key abstraction layer: internal (i.e. library only) functions
+ *        and definitions.
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#ifndef MBEDTLS_PK_INTERNAL_H
+#define MBEDTLS_PK_INTERNAL_H
+
+#include "mbedtls/pk.h"
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+#include "mbedtls/ecp.h"
+#endif
+
+#if defined(MBEDTLS_PSA_CRYPTO_CLIENT)
+#include "psa/crypto.h"
+
+#include "psa_util_internal.h"
+#define PSA_PK_TO_MBEDTLS_ERR(status) psa_pk_status_to_mbedtls(status)
+#define PSA_PK_RSA_TO_MBEDTLS_ERR(status) PSA_TO_MBEDTLS_ERR_LIST(status,     \
+                                                                  psa_to_pk_rsa_errors,            \
+                                                                  psa_pk_status_to_mbedtls)
+#define PSA_PK_ECDSA_TO_MBEDTLS_ERR(status) PSA_TO_MBEDTLS_ERR_LIST(status,   \
+                                                                    psa_to_pk_ecdsa_errors,        \
+                                                                    psa_pk_status_to_mbedtls)
+#endif /* MBEDTLS_PSA_CRYPTO_CLIENT */
+
+/* Headers/footers for PEM files */
+#define PEM_BEGIN_PUBLIC_KEY    "-----BEGIN PUBLIC KEY-----"
+#define PEM_END_PUBLIC_KEY      "-----END PUBLIC KEY-----"
+#define PEM_BEGIN_PRIVATE_KEY_RSA   "-----BEGIN RSA PRIVATE KEY-----"
+#define PEM_END_PRIVATE_KEY_RSA     "-----END RSA PRIVATE KEY-----"
+#define PEM_BEGIN_PUBLIC_KEY_RSA     "-----BEGIN RSA PUBLIC KEY-----"
+#define PEM_END_PUBLIC_KEY_RSA     "-----END RSA PUBLIC KEY-----"
+#define PEM_BEGIN_PRIVATE_KEY_EC    "-----BEGIN EC PRIVATE KEY-----"
+#define PEM_END_PRIVATE_KEY_EC      "-----END EC PRIVATE KEY-----"
+#define PEM_BEGIN_PRIVATE_KEY_PKCS8 "-----BEGIN PRIVATE KEY-----"
+#define PEM_END_PRIVATE_KEY_PKCS8   "-----END PRIVATE KEY-----"
+#define PEM_BEGIN_ENCRYPTED_PRIVATE_KEY_PKCS8 "-----BEGIN ENCRYPTED PRIVATE KEY-----"
+#define PEM_END_ENCRYPTED_PRIVATE_KEY_PKCS8   "-----END ENCRYPTED PRIVATE KEY-----"
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS) && !defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+/**
+ * Public function mbedtls_pk_ec() can be used to get direct access to the
+ * wrapped ecp_keypair structure pointed to the pk_ctx. However this is not
+ * ideal because it bypasses the PK module on the control of its internal
+ * structure (pk_context) fields.
+ * For backward compatibility we keep mbedtls_pk_ec() when ECP_C is defined, but
+ * we provide 2 very similar functions when only ECP_LIGHT is enabled and not
+ * ECP_C.
+ * These variants embed the "ro" or "rw" keywords in their name to make the
+ * usage of the returned pointer explicit. Of course the returned value is
+ * const or non-const accordingly.
+ */
+static inline const mbedtls_ecp_keypair *mbedtls_pk_ec_ro(const mbedtls_pk_context pk)
+{
+    switch (mbedtls_pk_get_type(&pk)) {
+        case MBEDTLS_PK_ECKEY:
+        case MBEDTLS_PK_ECKEY_DH:
+        case MBEDTLS_PK_ECDSA:
+            return (const mbedtls_ecp_keypair *) (pk).MBEDTLS_PRIVATE(pk_ctx);
+        default:
+            return NULL;
+    }
+}
+
+static inline mbedtls_ecp_keypair *mbedtls_pk_ec_rw(const mbedtls_pk_context pk)
+{
+    switch (mbedtls_pk_get_type(&pk)) {
+        case MBEDTLS_PK_ECKEY:
+        case MBEDTLS_PK_ECKEY_DH:
+        case MBEDTLS_PK_ECDSA:
+            return (mbedtls_ecp_keypair *) (pk).MBEDTLS_PRIVATE(pk_ctx);
+        default:
+            return NULL;
+    }
+}
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS && !MBEDTLS_PK_USE_PSA_EC_DATA */
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+static inline mbedtls_ecp_group_id mbedtls_pk_get_ec_group_id(const mbedtls_pk_context *pk)
+{
+    mbedtls_ecp_group_id id;
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+    if (mbedtls_pk_get_type(pk) == MBEDTLS_PK_OPAQUE) {
+        psa_key_attributes_t opaque_attrs = PSA_KEY_ATTRIBUTES_INIT;
+        psa_key_type_t opaque_key_type;
+        psa_ecc_family_t curve;
+
+        if (psa_get_key_attributes(pk->priv_id, &opaque_attrs) != PSA_SUCCESS) {
+            return MBEDTLS_ECP_DP_NONE;
+        }
+        opaque_key_type = psa_get_key_type(&opaque_attrs);
+        curve = PSA_KEY_TYPE_ECC_GET_FAMILY(opaque_key_type);
+        id = mbedtls_ecc_group_from_psa(curve, psa_get_key_bits(&opaque_attrs));
+        psa_reset_key_attributes(&opaque_attrs);
+    } else
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+    {
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+        id = mbedtls_ecc_group_from_psa(pk->ec_family, pk->ec_bits);
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+        id = mbedtls_pk_ec_ro(*pk)->grp.id;
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+    }
+
+    return id;
+}
+
+/* Helper for Montgomery curves */
+#if defined(MBEDTLS_ECP_HAVE_CURVE25519) || defined(MBEDTLS_ECP_HAVE_CURVE448)
+#define MBEDTLS_PK_HAVE_RFC8410_CURVES
+#endif /* MBEDTLS_ECP_HAVE_CURVE25519 || MBEDTLS_ECP_DP_CURVE448 */
+
+#define MBEDTLS_PK_IS_RFC8410_GROUP_ID(id)  \
+    ((id == MBEDTLS_ECP_DP_CURVE25519) || (id == MBEDTLS_ECP_DP_CURVE448))
+
+static inline int mbedtls_pk_is_rfc8410(const mbedtls_pk_context *pk)
+{
+    mbedtls_ecp_group_id id = mbedtls_pk_get_ec_group_id(pk);
+
+    return MBEDTLS_PK_IS_RFC8410_GROUP_ID(id);
+}
+
+/*
+ * Set the group used by this key.
+ *
+ * [in/out] pk: in: must have been pk_setup() to an ECC type
+ *              out: will have group (curve) information set
+ * [in] grp_in: a supported group ID (not NONE)
+ */
+int mbedtls_pk_ecc_set_group(mbedtls_pk_context *pk, mbedtls_ecp_group_id grp_id);
+
+/*
+ * Set the private key material
+ *
+ * [in/out] pk: in: must have the group set already, see mbedtls_pk_ecc_set_group().
+ *              out: will have the private key set.
+ * [in] key, key_len: the raw private key (no ASN.1 wrapping).
+ */
+int mbedtls_pk_ecc_set_key(mbedtls_pk_context *pk, unsigned char *key, size_t key_len);
+
+/*
+ * Set the public key.
+ *
+ * [in/out] pk: in: must have its group set, see mbedtls_pk_ecc_set_group().
+ *              out: will have the public key set.
+ * [in] pub, pub_len: the raw public key (an ECPoint).
+ *
+ * Return:
+ * - 0 on success;
+ * - MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE if the format is potentially valid
+ *   but not supported;
+ * - another error code otherwise.
+ */
+int mbedtls_pk_ecc_set_pubkey(mbedtls_pk_context *pk, const unsigned char *pub, size_t pub_len);
+
+/*
+ * Derive a public key from its private counterpart.
+ * Computationally intensive, only use when public key is not available.
+ *
+ * [in/out] pk: in: must have the private key set, see mbedtls_pk_ecc_set_key().
+ *              out: will have the public key set.
+ * [in] prv, prv_len: the raw private key (see note below).
+ * [in] f_rng, p_rng: RNG function and context.
+ *
+ * Note: the private key information is always available from pk,
+ * however for convenience the serialized version is also passed,
+ * as it's available at each calling site, and useful in some configs
+ * (as otherwise we would have to re-serialize it from the pk context).
+ *
+ * There are three implementations of this function:
+ * 1. MBEDTLS_PK_USE_PSA_EC_DATA,
+ * 2. MBEDTLS_USE_PSA_CRYPTO but not MBEDTLS_PK_USE_PSA_EC_DATA,
+ * 3. not MBEDTLS_USE_PSA_CRYPTO.
+ */
+int mbedtls_pk_ecc_set_pubkey_from_prv(mbedtls_pk_context *pk,
+                                       const unsigned char *prv, size_t prv_len,
+                                       int (*f_rng)(void *, unsigned char *, size_t), void *p_rng);
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+/* Helper for (deterministic) ECDSA */
+#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
+#define MBEDTLS_PK_PSA_ALG_ECDSA_MAYBE_DET  PSA_ALG_DETERMINISTIC_ECDSA
+#else
+#define MBEDTLS_PK_PSA_ALG_ECDSA_MAYBE_DET  PSA_ALG_ECDSA
+#endif
+
+#if defined(MBEDTLS_TEST_HOOKS)
+MBEDTLS_STATIC_TESTABLE int mbedtls_pk_parse_key_pkcs8_encrypted_der(
+    mbedtls_pk_context *pk,
+    unsigned char *key, size_t keylen,
+    const unsigned char *pwd, size_t pwdlen,
+    int (*f_rng)(void *, unsigned char *, size_t), void *p_rng);
+#endif
+
+#if defined(MBEDTLS_FS_IO)
+int mbedtls_pk_load_file(const char *path, unsigned char **buf, size_t *n);
+#endif
+
+#endif /* MBEDTLS_PK_INTERNAL_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/pk_wrap.c b/tf-psa-crypto/drivers/builtin/src/pk_wrap.c
new file mode 100644
index 0000000..8710889
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/pk_wrap.c
@@ -0,0 +1,1578 @@
+/*
+ *  Public Key abstraction layer: wrapper functions
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#include "mbedtls/platform_util.h"
+
+#if defined(MBEDTLS_PK_C)
+#include "pk_wrap.h"
+#include "pk_internal.h"
+#include "mbedtls/error.h"
+#include "mbedtls/psa_util.h"
+
+/* Even if RSA not activated, for the sake of RSA-alt */
+#include "mbedtls/rsa.h"
+
+#if defined(MBEDTLS_ECP_C)
+#include "mbedtls/ecp.h"
+#endif
+
+#if defined(MBEDTLS_ECDSA_C)
+#include "mbedtls/ecdsa.h"
+#endif
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+#include "psa_util_internal.h"
+#include "psa/crypto.h"
+#include "mbedtls/psa_util.h"
+
+#if defined(MBEDTLS_RSA_C)
+#include "pkwrite.h"
+#include "rsa_internal.h"
+#endif
+
+#if defined(MBEDTLS_PK_CAN_ECDSA_SOME)
+#include "mbedtls/asn1write.h"
+#include "mbedtls/asn1.h"
+#endif
+#endif  /* MBEDTLS_USE_PSA_CRYPTO */
+
+#include "mbedtls/platform.h"
+
+#include <limits.h>
+#include <stdint.h>
+#include <string.h>
+
+#if defined(MBEDTLS_RSA_C)
+static int rsa_can_do(mbedtls_pk_type_t type)
+{
+    return type == MBEDTLS_PK_RSA ||
+           type == MBEDTLS_PK_RSASSA_PSS;
+}
+
+static size_t rsa_get_bitlen(mbedtls_pk_context *pk)
+{
+    const mbedtls_rsa_context *rsa = (const mbedtls_rsa_context *) pk->pk_ctx;
+    return mbedtls_rsa_get_bitlen(rsa);
+}
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+static int rsa_verify_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+                           const unsigned char *hash, size_t hash_len,
+                           const unsigned char *sig, size_t sig_len)
+{
+    mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) pk->pk_ctx;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+    mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
+    psa_status_t status;
+    int key_len;
+    unsigned char buf[MBEDTLS_PK_RSA_PUB_DER_MAX_BYTES];
+    unsigned char *p = buf + sizeof(buf);
+    psa_algorithm_t psa_alg_md;
+    size_t rsa_len = mbedtls_rsa_get_len(rsa);
+
+#if SIZE_MAX > UINT_MAX
+    if (md_alg == MBEDTLS_MD_NONE && UINT_MAX < hash_len) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+#endif
+
+    if (mbedtls_rsa_get_padding_mode(rsa) == MBEDTLS_RSA_PKCS_V21) {
+        psa_alg_md = PSA_ALG_RSA_PSS(mbedtls_md_psa_alg_from_type(md_alg));
+    } else {
+        psa_alg_md = PSA_ALG_RSA_PKCS1V15_SIGN(mbedtls_md_psa_alg_from_type(md_alg));
+    }
+
+    if (sig_len < rsa_len) {
+        return MBEDTLS_ERR_RSA_VERIFY_FAILED;
+    }
+
+    key_len = mbedtls_rsa_write_pubkey(rsa, buf, &p);
+    if (key_len <= 0) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_VERIFY_HASH);
+    psa_set_key_algorithm(&attributes, psa_alg_md);
+    psa_set_key_type(&attributes, PSA_KEY_TYPE_RSA_PUBLIC_KEY);
+
+    status = psa_import_key(&attributes,
+                            buf + sizeof(buf) - key_len, key_len,
+                            &key_id);
+    if (status != PSA_SUCCESS) {
+        ret = PSA_PK_TO_MBEDTLS_ERR(status);
+        goto cleanup;
+    }
+
+    status = psa_verify_hash(key_id, psa_alg_md, hash, hash_len,
+                             sig, sig_len);
+    if (status != PSA_SUCCESS) {
+        ret = PSA_PK_RSA_TO_MBEDTLS_ERR(status);
+        goto cleanup;
+    }
+    ret = 0;
+
+cleanup:
+    status = psa_destroy_key(key_id);
+    if (ret == 0 && status != PSA_SUCCESS) {
+        ret = PSA_PK_TO_MBEDTLS_ERR(status);
+    }
+
+    return ret;
+}
+#else /* MBEDTLS_USE_PSA_CRYPTO */
+static int rsa_verify_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+                           const unsigned char *hash, size_t hash_len,
+                           const unsigned char *sig, size_t sig_len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) pk->pk_ctx;
+    size_t rsa_len = mbedtls_rsa_get_len(rsa);
+
+#if SIZE_MAX > UINT_MAX
+    if (md_alg == MBEDTLS_MD_NONE && UINT_MAX < hash_len) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+#endif
+
+    if (sig_len < rsa_len) {
+        return MBEDTLS_ERR_RSA_VERIFY_FAILED;
+    }
+
+    if ((ret = mbedtls_rsa_pkcs1_verify(rsa, md_alg,
+                                        (unsigned int) hash_len,
+                                        hash, sig)) != 0) {
+        return ret;
+    }
+
+    /* The buffer contains a valid signature followed by extra data.
+     * We have a special error code for that so that so that callers can
+     * use mbedtls_pk_verify() to check "Does the buffer start with a
+     * valid signature?" and not just "Does the buffer contain a valid
+     * signature?". */
+    if (sig_len > rsa_len) {
+        return MBEDTLS_ERR_PK_SIG_LEN_MISMATCH;
+    }
+
+    return 0;
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+int  mbedtls_pk_psa_rsa_sign_ext(psa_algorithm_t alg,
+                                 mbedtls_rsa_context *rsa_ctx,
+                                 const unsigned char *hash, size_t hash_len,
+                                 unsigned char *sig, size_t sig_size,
+                                 size_t *sig_len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+    mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
+    psa_status_t status;
+    int key_len;
+    unsigned char *buf = NULL;
+    unsigned char *p;
+
+    buf = mbedtls_calloc(1, MBEDTLS_PK_RSA_PRV_DER_MAX_BYTES);
+    if (buf == NULL) {
+        return MBEDTLS_ERR_PK_ALLOC_FAILED;
+    }
+    p = buf + MBEDTLS_PK_RSA_PRV_DER_MAX_BYTES;
+
+    *sig_len = mbedtls_rsa_get_len(rsa_ctx);
+    if (sig_size < *sig_len) {
+        mbedtls_free(buf);
+        return MBEDTLS_ERR_PK_BUFFER_TOO_SMALL;
+    }
+
+    key_len = mbedtls_rsa_write_key(rsa_ctx, buf, &p);
+    if (key_len <= 0) {
+        mbedtls_free(buf);
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+    psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH);
+    psa_set_key_algorithm(&attributes, alg);
+    psa_set_key_type(&attributes, PSA_KEY_TYPE_RSA_KEY_PAIR);
+
+    status = psa_import_key(&attributes,
+                            buf + MBEDTLS_PK_RSA_PRV_DER_MAX_BYTES - key_len, key_len,
+                            &key_id);
+    if (status != PSA_SUCCESS) {
+        ret = PSA_PK_TO_MBEDTLS_ERR(status);
+        goto cleanup;
+    }
+    status = psa_sign_hash(key_id, alg, hash, hash_len,
+                           sig, sig_size, sig_len);
+    if (status != PSA_SUCCESS) {
+        ret = PSA_PK_RSA_TO_MBEDTLS_ERR(status);
+        goto cleanup;
+    }
+
+    ret = 0;
+
+cleanup:
+    mbedtls_free(buf);
+    status = psa_destroy_key(key_id);
+    if (ret == 0 && status != PSA_SUCCESS) {
+        ret = PSA_PK_TO_MBEDTLS_ERR(status);
+    }
+    return ret;
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+static int rsa_sign_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+                         const unsigned char *hash, size_t hash_len,
+                         unsigned char *sig, size_t sig_size, size_t *sig_len,
+                         int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    ((void) f_rng);
+    ((void) p_rng);
+
+    psa_algorithm_t psa_md_alg;
+    psa_md_alg = mbedtls_md_psa_alg_from_type(md_alg);
+    if (psa_md_alg == 0) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+    psa_algorithm_t psa_alg;
+    if (mbedtls_rsa_get_padding_mode(mbedtls_pk_rsa(*pk)) == MBEDTLS_RSA_PKCS_V21) {
+        psa_alg = PSA_ALG_RSA_PSS(psa_md_alg);
+    } else {
+        psa_alg = PSA_ALG_RSA_PKCS1V15_SIGN(psa_md_alg);
+    }
+
+    return mbedtls_pk_psa_rsa_sign_ext(psa_alg, pk->pk_ctx, hash, hash_len,
+                                       sig, sig_size, sig_len);
+}
+#else /* MBEDTLS_USE_PSA_CRYPTO */
+static int rsa_sign_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+                         const unsigned char *hash, size_t hash_len,
+                         unsigned char *sig, size_t sig_size, size_t *sig_len,
+                         int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) pk->pk_ctx;
+
+#if SIZE_MAX > UINT_MAX
+    if (md_alg == MBEDTLS_MD_NONE && UINT_MAX < hash_len) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+#endif
+
+    *sig_len = mbedtls_rsa_get_len(rsa);
+    if (sig_size < *sig_len) {
+        return MBEDTLS_ERR_PK_BUFFER_TOO_SMALL;
+    }
+
+    return mbedtls_rsa_pkcs1_sign(rsa, f_rng, p_rng,
+                                  md_alg, (unsigned int) hash_len,
+                                  hash, sig);
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+static int rsa_decrypt_wrap(mbedtls_pk_context *pk,
+                            const unsigned char *input, size_t ilen,
+                            unsigned char *output, size_t *olen, size_t osize,
+                            int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) pk->pk_ctx;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+    mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
+    psa_algorithm_t psa_md_alg, decrypt_alg;
+    psa_status_t status;
+    int key_len;
+    unsigned char buf[MBEDTLS_PK_RSA_PRV_DER_MAX_BYTES];
+    unsigned char *p = buf + sizeof(buf);
+
+    ((void) f_rng);
+    ((void) p_rng);
+
+    if (ilen != mbedtls_rsa_get_len(rsa)) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    key_len = mbedtls_rsa_write_key(rsa, buf, &p);
+    if (key_len <= 0) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    psa_set_key_type(&attributes, PSA_KEY_TYPE_RSA_KEY_PAIR);
+    psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DECRYPT);
+    if (mbedtls_rsa_get_padding_mode(rsa) == MBEDTLS_RSA_PKCS_V21) {
+        psa_md_alg = mbedtls_md_psa_alg_from_type((mbedtls_md_type_t) mbedtls_rsa_get_md_alg(rsa));
+        decrypt_alg = PSA_ALG_RSA_OAEP(psa_md_alg);
+    } else {
+        decrypt_alg = PSA_ALG_RSA_PKCS1V15_CRYPT;
+    }
+    psa_set_key_algorithm(&attributes, decrypt_alg);
+
+    status = psa_import_key(&attributes,
+                            buf + sizeof(buf) - key_len, key_len,
+                            &key_id);
+    if (status != PSA_SUCCESS) {
+        ret = PSA_PK_TO_MBEDTLS_ERR(status);
+        goto cleanup;
+    }
+
+    status = psa_asymmetric_decrypt(key_id, decrypt_alg,
+                                    input, ilen,
+                                    NULL, 0,
+                                    output, osize, olen);
+    if (status != PSA_SUCCESS) {
+        ret = PSA_PK_RSA_TO_MBEDTLS_ERR(status);
+        goto cleanup;
+    }
+
+    ret = 0;
+
+cleanup:
+    mbedtls_platform_zeroize(buf, sizeof(buf));
+    status = psa_destroy_key(key_id);
+    if (ret == 0 && status != PSA_SUCCESS) {
+        ret = PSA_PK_TO_MBEDTLS_ERR(status);
+    }
+
+    return ret;
+}
+#else /* MBEDTLS_USE_PSA_CRYPTO */
+static int rsa_decrypt_wrap(mbedtls_pk_context *pk,
+                            const unsigned char *input, size_t ilen,
+                            unsigned char *output, size_t *olen, size_t osize,
+                            int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) pk->pk_ctx;
+
+    if (ilen != mbedtls_rsa_get_len(rsa)) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    return mbedtls_rsa_pkcs1_decrypt(rsa, f_rng, p_rng,
+                                     olen, input, output, osize);
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+static int rsa_encrypt_wrap(mbedtls_pk_context *pk,
+                            const unsigned char *input, size_t ilen,
+                            unsigned char *output, size_t *olen, size_t osize,
+                            int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) pk->pk_ctx;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+    mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
+    psa_algorithm_t psa_md_alg, psa_encrypt_alg;
+    psa_status_t status;
+    int key_len;
+    unsigned char buf[MBEDTLS_PK_RSA_PUB_DER_MAX_BYTES];
+    unsigned char *p = buf + sizeof(buf);
+
+    ((void) f_rng);
+    ((void) p_rng);
+
+    if (mbedtls_rsa_get_len(rsa) > osize) {
+        return MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
+    }
+
+    key_len = mbedtls_rsa_write_pubkey(rsa, buf, &p);
+    if (key_len <= 0) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT);
+    if (mbedtls_rsa_get_padding_mode(rsa) == MBEDTLS_RSA_PKCS_V21) {
+        psa_md_alg = mbedtls_md_psa_alg_from_type((mbedtls_md_type_t) mbedtls_rsa_get_md_alg(rsa));
+        psa_encrypt_alg = PSA_ALG_RSA_OAEP(psa_md_alg);
+    } else {
+        psa_encrypt_alg = PSA_ALG_RSA_PKCS1V15_CRYPT;
+    }
+    psa_set_key_algorithm(&attributes, psa_encrypt_alg);
+    psa_set_key_type(&attributes, PSA_KEY_TYPE_RSA_PUBLIC_KEY);
+
+    status = psa_import_key(&attributes,
+                            buf + sizeof(buf) - key_len, key_len,
+                            &key_id);
+    if (status != PSA_SUCCESS) {
+        ret = PSA_PK_TO_MBEDTLS_ERR(status);
+        goto cleanup;
+    }
+
+    status = psa_asymmetric_encrypt(key_id, psa_encrypt_alg,
+                                    input, ilen,
+                                    NULL, 0,
+                                    output, osize, olen);
+    if (status != PSA_SUCCESS) {
+        ret = PSA_PK_RSA_TO_MBEDTLS_ERR(status);
+        goto cleanup;
+    }
+
+    ret = 0;
+
+cleanup:
+    status = psa_destroy_key(key_id);
+    if (ret == 0 && status != PSA_SUCCESS) {
+        ret = PSA_PK_TO_MBEDTLS_ERR(status);
+    }
+
+    return ret;
+}
+#else /* MBEDTLS_USE_PSA_CRYPTO */
+static int rsa_encrypt_wrap(mbedtls_pk_context *pk,
+                            const unsigned char *input, size_t ilen,
+                            unsigned char *output, size_t *olen, size_t osize,
+                            int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) pk->pk_ctx;
+    *olen = mbedtls_rsa_get_len(rsa);
+
+    if (*olen > osize) {
+        return MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
+    }
+
+    return mbedtls_rsa_pkcs1_encrypt(rsa, f_rng, p_rng,
+                                     ilen, input, output);
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+static int rsa_check_pair_wrap(mbedtls_pk_context *pub, mbedtls_pk_context *prv,
+                               int (*f_rng)(void *, unsigned char *, size_t),
+                               void *p_rng)
+{
+    (void) f_rng;
+    (void) p_rng;
+    return mbedtls_rsa_check_pub_priv((const mbedtls_rsa_context *) pub->pk_ctx,
+                                      (const mbedtls_rsa_context *) prv->pk_ctx);
+}
+
+static void *rsa_alloc_wrap(void)
+{
+    void *ctx = mbedtls_calloc(1, sizeof(mbedtls_rsa_context));
+
+    if (ctx != NULL) {
+        mbedtls_rsa_init((mbedtls_rsa_context *) ctx);
+    }
+
+    return ctx;
+}
+
+static void rsa_free_wrap(void *ctx)
+{
+    mbedtls_rsa_free((mbedtls_rsa_context *) ctx);
+    mbedtls_free(ctx);
+}
+
+static void rsa_debug(mbedtls_pk_context *pk, mbedtls_pk_debug_item *items)
+{
+    mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) pk->pk_ctx;
+
+    items->type = MBEDTLS_PK_DEBUG_MPI;
+    items->name = "rsa.N";
+    items->value = &(rsa->N);
+
+    items++;
+
+    items->type = MBEDTLS_PK_DEBUG_MPI;
+    items->name = "rsa.E";
+    items->value = &(rsa->E);
+}
+
+const mbedtls_pk_info_t mbedtls_rsa_info = {
+    .type = MBEDTLS_PK_RSA,
+    .name = "RSA",
+    .get_bitlen = rsa_get_bitlen,
+    .can_do = rsa_can_do,
+    .verify_func = rsa_verify_wrap,
+    .sign_func = rsa_sign_wrap,
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+    .verify_rs_func = NULL,
+    .sign_rs_func = NULL,
+    .rs_alloc_func = NULL,
+    .rs_free_func = NULL,
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+    .decrypt_func = rsa_decrypt_wrap,
+    .encrypt_func = rsa_encrypt_wrap,
+    .check_pair_func = rsa_check_pair_wrap,
+    .ctx_alloc_func = rsa_alloc_wrap,
+    .ctx_free_func = rsa_free_wrap,
+    .debug_func = rsa_debug,
+};
+#endif /* MBEDTLS_RSA_C */
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+/*
+ * Generic EC key
+ */
+static int eckey_can_do(mbedtls_pk_type_t type)
+{
+    return type == MBEDTLS_PK_ECKEY ||
+           type == MBEDTLS_PK_ECKEY_DH ||
+           type == MBEDTLS_PK_ECDSA;
+}
+
+static size_t eckey_get_bitlen(mbedtls_pk_context *pk)
+{
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+    return pk->ec_bits;
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+    mbedtls_ecp_keypair *ecp = (mbedtls_ecp_keypair *) pk->pk_ctx;
+    return ecp->grp.pbits;
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+}
+
+#if defined(MBEDTLS_PK_CAN_ECDSA_VERIFY)
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+/* Common helper for ECDSA verify using PSA functions. */
+static int ecdsa_verify_psa(unsigned char *key, size_t key_len,
+                            psa_ecc_family_t curve, size_t curve_bits,
+                            const unsigned char *hash, size_t hash_len,
+                            const unsigned char *sig, size_t sig_len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+    mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
+    psa_algorithm_t psa_sig_md = PSA_ALG_ECDSA_ANY;
+    size_t signature_len = PSA_ECDSA_SIGNATURE_SIZE(curve_bits);
+    size_t converted_sig_len;
+    unsigned char extracted_sig[PSA_VENDOR_ECDSA_SIGNATURE_MAX_SIZE];
+    unsigned char *p;
+    psa_status_t status;
+
+    if (curve == 0) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    psa_set_key_type(&attributes, PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve));
+    psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_VERIFY_HASH);
+    psa_set_key_algorithm(&attributes, psa_sig_md);
+
+    status = psa_import_key(&attributes, key, key_len, &key_id);
+    if (status != PSA_SUCCESS) {
+        ret = PSA_PK_TO_MBEDTLS_ERR(status);
+        goto cleanup;
+    }
+
+    if (signature_len > sizeof(extracted_sig)) {
+        ret = MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+        goto cleanup;
+    }
+
+    p = (unsigned char *) sig;
+    ret = mbedtls_ecdsa_der_to_raw(curve_bits, p, sig_len, extracted_sig,
+                                   sizeof(extracted_sig), &converted_sig_len);
+    if (ret != 0) {
+        goto cleanup;
+    }
+
+    if (converted_sig_len != signature_len) {
+        ret = MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+        goto cleanup;
+    }
+
+    status = psa_verify_hash(key_id, psa_sig_md, hash, hash_len,
+                             extracted_sig, signature_len);
+    if (status != PSA_SUCCESS) {
+        ret = PSA_PK_ECDSA_TO_MBEDTLS_ERR(status);
+        goto cleanup;
+    }
+
+    ret = 0;
+
+cleanup:
+    status = psa_destroy_key(key_id);
+    if (ret == 0 && status != PSA_SUCCESS) {
+        ret = PSA_PK_TO_MBEDTLS_ERR(status);
+    }
+
+    return ret;
+}
+
+static int ecdsa_opaque_verify_wrap(mbedtls_pk_context *pk,
+                                    mbedtls_md_type_t md_alg,
+                                    const unsigned char *hash, size_t hash_len,
+                                    const unsigned char *sig, size_t sig_len)
+{
+    (void) md_alg;
+    unsigned char key[MBEDTLS_PK_MAX_EC_PUBKEY_RAW_LEN];
+    size_t key_len;
+    psa_key_attributes_t key_attr = PSA_KEY_ATTRIBUTES_INIT;
+    psa_ecc_family_t curve;
+    size_t curve_bits;
+    psa_status_t status;
+
+    status = psa_get_key_attributes(pk->priv_id, &key_attr);
+    if (status != PSA_SUCCESS) {
+        return PSA_PK_ECDSA_TO_MBEDTLS_ERR(status);
+    }
+    curve = PSA_KEY_TYPE_ECC_GET_FAMILY(psa_get_key_type(&key_attr));
+    curve_bits = psa_get_key_bits(&key_attr);
+    psa_reset_key_attributes(&key_attr);
+
+    status = psa_export_public_key(pk->priv_id, key, sizeof(key), &key_len);
+    if (status != PSA_SUCCESS) {
+        return PSA_PK_ECDSA_TO_MBEDTLS_ERR(status);
+    }
+
+    return ecdsa_verify_psa(key, key_len, curve, curve_bits,
+                            hash, hash_len, sig, sig_len);
+}
+
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+static int ecdsa_verify_wrap(mbedtls_pk_context *pk,
+                             mbedtls_md_type_t md_alg,
+                             const unsigned char *hash, size_t hash_len,
+                             const unsigned char *sig, size_t sig_len)
+{
+    (void) md_alg;
+    psa_ecc_family_t curve = pk->ec_family;
+    size_t curve_bits = pk->ec_bits;
+
+    return ecdsa_verify_psa(pk->pub_raw, pk->pub_raw_len, curve, curve_bits,
+                            hash, hash_len, sig, sig_len);
+}
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+static int ecdsa_verify_wrap(mbedtls_pk_context *pk,
+                             mbedtls_md_type_t md_alg,
+                             const unsigned char *hash, size_t hash_len,
+                             const unsigned char *sig, size_t sig_len)
+{
+    (void) md_alg;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_ecp_keypair *ctx = pk->pk_ctx;
+    unsigned char key[MBEDTLS_PSA_MAX_EC_PUBKEY_LENGTH];
+    size_t key_len;
+    size_t curve_bits;
+    psa_ecc_family_t curve = mbedtls_ecc_group_to_psa(ctx->grp.id, &curve_bits);
+
+    ret = mbedtls_ecp_point_write_binary(&ctx->grp, &ctx->Q,
+                                         MBEDTLS_ECP_PF_UNCOMPRESSED,
+                                         &key_len, key, sizeof(key));
+    if (ret != 0) {
+        return ret;
+    }
+
+    return ecdsa_verify_psa(key, key_len, curve, curve_bits,
+                            hash, hash_len, sig, sig_len);
+}
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+#else /* MBEDTLS_USE_PSA_CRYPTO */
+static int ecdsa_verify_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+                             const unsigned char *hash, size_t hash_len,
+                             const unsigned char *sig, size_t sig_len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    ((void) md_alg);
+
+    ret = mbedtls_ecdsa_read_signature((mbedtls_ecdsa_context *) pk->pk_ctx,
+                                       hash, hash_len, sig, sig_len);
+
+    if (ret == MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH) {
+        return MBEDTLS_ERR_PK_SIG_LEN_MISMATCH;
+    }
+
+    return ret;
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+#endif /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
+
+#if defined(MBEDTLS_PK_CAN_ECDSA_SIGN)
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+/* Common helper for ECDSA sign using PSA functions.
+ * Instead of extracting key's properties in order to check which kind of ECDSA
+ * signature it supports, we try both deterministic and non-deterministic.
+ */
+static int ecdsa_sign_psa(mbedtls_svc_key_id_t key_id, mbedtls_md_type_t md_alg,
+                          const unsigned char *hash, size_t hash_len,
+                          unsigned char *sig, size_t sig_size, size_t *sig_len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    psa_status_t status;
+    psa_key_attributes_t key_attr = PSA_KEY_ATTRIBUTES_INIT;
+    size_t key_bits = 0;
+
+    status = psa_get_key_attributes(key_id, &key_attr);
+    if (status != PSA_SUCCESS) {
+        return PSA_PK_ECDSA_TO_MBEDTLS_ERR(status);
+    }
+    key_bits = psa_get_key_bits(&key_attr);
+    psa_reset_key_attributes(&key_attr);
+
+    status = psa_sign_hash(key_id,
+                           PSA_ALG_DETERMINISTIC_ECDSA(mbedtls_md_psa_alg_from_type(md_alg)),
+                           hash, hash_len, sig, sig_size, sig_len);
+    if (status == PSA_SUCCESS) {
+        goto done;
+    } else if (status != PSA_ERROR_NOT_PERMITTED) {
+        return PSA_PK_ECDSA_TO_MBEDTLS_ERR(status);
+    }
+
+    status = psa_sign_hash(key_id,
+                           PSA_ALG_ECDSA(mbedtls_md_psa_alg_from_type(md_alg)),
+                           hash, hash_len, sig, sig_size, sig_len);
+    if (status != PSA_SUCCESS) {
+        return PSA_PK_ECDSA_TO_MBEDTLS_ERR(status);
+    }
+
+done:
+    ret = mbedtls_ecdsa_raw_to_der(key_bits, sig, *sig_len, sig, sig_size, sig_len);
+
+    return ret;
+}
+
+static int ecdsa_opaque_sign_wrap(mbedtls_pk_context *pk,
+                                  mbedtls_md_type_t md_alg,
+                                  const unsigned char *hash, size_t hash_len,
+                                  unsigned char *sig, size_t sig_size,
+                                  size_t *sig_len,
+                                  int (*f_rng)(void *, unsigned char *, size_t),
+                                  void *p_rng)
+{
+    ((void) f_rng);
+    ((void) p_rng);
+
+    return ecdsa_sign_psa(pk->priv_id, md_alg, hash, hash_len, sig, sig_size,
+                          sig_len);
+}
+
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+/* When PK_USE_PSA_EC_DATA is defined opaque and non-opaque keys end up
+ * using the same function. */
+#define ecdsa_sign_wrap     ecdsa_opaque_sign_wrap
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+static int ecdsa_sign_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+                           const unsigned char *hash, size_t hash_len,
+                           unsigned char *sig, size_t sig_size, size_t *sig_len,
+                           int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
+    psa_status_t status;
+    mbedtls_ecp_keypair *ctx = pk->pk_ctx;
+    psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+    unsigned char buf[MBEDTLS_PSA_MAX_EC_KEY_PAIR_LENGTH];
+    size_t curve_bits;
+    psa_ecc_family_t curve =
+        mbedtls_ecc_group_to_psa(ctx->grp.id, &curve_bits);
+    size_t key_len = PSA_BITS_TO_BYTES(curve_bits);
+    psa_algorithm_t psa_hash = mbedtls_md_psa_alg_from_type(md_alg);
+    psa_algorithm_t psa_sig_md = MBEDTLS_PK_PSA_ALG_ECDSA_MAYBE_DET(psa_hash);
+    ((void) f_rng);
+    ((void) p_rng);
+
+    if (curve == 0) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    if (key_len > sizeof(buf)) {
+        return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    }
+    ret = mbedtls_mpi_write_binary(&ctx->d, buf, key_len);
+    if (ret != 0) {
+        goto cleanup;
+    }
+
+    psa_set_key_type(&attributes, PSA_KEY_TYPE_ECC_KEY_PAIR(curve));
+    psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH);
+    psa_set_key_algorithm(&attributes, psa_sig_md);
+
+    status = psa_import_key(&attributes, buf, key_len, &key_id);
+    if (status != PSA_SUCCESS) {
+        ret = PSA_PK_TO_MBEDTLS_ERR(status);
+        goto cleanup;
+    }
+
+    ret = ecdsa_sign_psa(key_id, md_alg, hash, hash_len, sig, sig_size, sig_len);
+
+cleanup:
+    mbedtls_platform_zeroize(buf, sizeof(buf));
+    status = psa_destroy_key(key_id);
+    if (ret == 0 && status != PSA_SUCCESS) {
+        ret = PSA_PK_TO_MBEDTLS_ERR(status);
+    }
+
+    return ret;
+}
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+#else /* MBEDTLS_USE_PSA_CRYPTO */
+static int ecdsa_sign_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+                           const unsigned char *hash, size_t hash_len,
+                           unsigned char *sig, size_t sig_size, size_t *sig_len,
+                           int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    return mbedtls_ecdsa_write_signature((mbedtls_ecdsa_context *) pk->pk_ctx,
+                                         md_alg, hash, hash_len,
+                                         sig, sig_size, sig_len,
+                                         f_rng, p_rng);
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+#endif /* MBEDTLS_PK_CAN_ECDSA_SIGN */
+
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+/* Forward declarations */
+static int ecdsa_verify_rs_wrap(mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg,
+                                const unsigned char *hash, size_t hash_len,
+                                const unsigned char *sig, size_t sig_len,
+                                void *rs_ctx);
+
+static int ecdsa_sign_rs_wrap(mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg,
+                              const unsigned char *hash, size_t hash_len,
+                              unsigned char *sig, size_t sig_size, size_t *sig_len,
+                              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
+                              void *rs_ctx);
+
+/*
+ * Restart context for ECDSA operations with ECKEY context
+ *
+ * We need to store an actual ECDSA context, as we need to pass the same to
+ * the underlying ecdsa function, so we can't create it on the fly every time.
+ */
+typedef struct {
+    mbedtls_ecdsa_restart_ctx ecdsa_rs;
+    mbedtls_ecdsa_context ecdsa_ctx;
+} eckey_restart_ctx;
+
+static void *eckey_rs_alloc(void)
+{
+    eckey_restart_ctx *rs_ctx;
+
+    void *ctx = mbedtls_calloc(1, sizeof(eckey_restart_ctx));
+
+    if (ctx != NULL) {
+        rs_ctx = ctx;
+        mbedtls_ecdsa_restart_init(&rs_ctx->ecdsa_rs);
+        mbedtls_ecdsa_init(&rs_ctx->ecdsa_ctx);
+    }
+
+    return ctx;
+}
+
+static void eckey_rs_free(void *ctx)
+{
+    eckey_restart_ctx *rs_ctx;
+
+    if (ctx == NULL) {
+        return;
+    }
+
+    rs_ctx = ctx;
+    mbedtls_ecdsa_restart_free(&rs_ctx->ecdsa_rs);
+    mbedtls_ecdsa_free(&rs_ctx->ecdsa_ctx);
+
+    mbedtls_free(ctx);
+}
+
+static int eckey_verify_rs_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+                                const unsigned char *hash, size_t hash_len,
+                                const unsigned char *sig, size_t sig_len,
+                                void *rs_ctx)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    eckey_restart_ctx *rs = rs_ctx;
+
+    /* Should never happen */
+    if (rs == NULL) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    /* set up our own sub-context if needed (that is, on first run) */
+    if (rs->ecdsa_ctx.grp.pbits == 0) {
+        MBEDTLS_MPI_CHK(mbedtls_ecdsa_from_keypair(&rs->ecdsa_ctx, pk->pk_ctx));
+    }
+
+    MBEDTLS_MPI_CHK(ecdsa_verify_rs_wrap(pk,
+                                         md_alg, hash, hash_len,
+                                         sig, sig_len, &rs->ecdsa_rs));
+
+cleanup:
+    return ret;
+}
+
+static int eckey_sign_rs_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+                              const unsigned char *hash, size_t hash_len,
+                              unsigned char *sig, size_t sig_size, size_t *sig_len,
+                              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
+                              void *rs_ctx)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    eckey_restart_ctx *rs = rs_ctx;
+
+    /* Should never happen */
+    if (rs == NULL) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    /* set up our own sub-context if needed (that is, on first run) */
+    if (rs->ecdsa_ctx.grp.pbits == 0) {
+        MBEDTLS_MPI_CHK(mbedtls_ecdsa_from_keypair(&rs->ecdsa_ctx, pk->pk_ctx));
+    }
+
+    MBEDTLS_MPI_CHK(ecdsa_sign_rs_wrap(pk, md_alg,
+                                       hash, hash_len, sig, sig_size, sig_len,
+                                       f_rng, p_rng, &rs->ecdsa_rs));
+
+cleanup:
+    return ret;
+}
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+static int eckey_check_pair_psa(mbedtls_pk_context *pub, mbedtls_pk_context *prv)
+{
+    psa_status_t status;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    uint8_t prv_key_buf[MBEDTLS_PSA_MAX_EC_PUBKEY_LENGTH];
+    size_t prv_key_len;
+    mbedtls_svc_key_id_t key_id = prv->priv_id;
+
+    status = psa_export_public_key(key_id, prv_key_buf, sizeof(prv_key_buf),
+                                   &prv_key_len);
+    ret = PSA_PK_TO_MBEDTLS_ERR(status);
+    if (ret != 0) {
+        return ret;
+    }
+
+    if (memcmp(prv_key_buf, pub->pub_raw, pub->pub_raw_len) != 0) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    return 0;
+}
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+static int eckey_check_pair_psa(mbedtls_pk_context *pub, mbedtls_pk_context *prv)
+{
+    psa_status_t status;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    uint8_t prv_key_buf[MBEDTLS_PSA_MAX_EC_PUBKEY_LENGTH];
+    size_t prv_key_len;
+    psa_status_t destruction_status;
+    mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
+    psa_key_attributes_t key_attr = PSA_KEY_ATTRIBUTES_INIT;
+    uint8_t pub_key_buf[MBEDTLS_PSA_MAX_EC_PUBKEY_LENGTH];
+    size_t pub_key_len;
+    size_t curve_bits;
+    const psa_ecc_family_t curve =
+        mbedtls_ecc_group_to_psa(mbedtls_pk_ec_ro(*prv)->grp.id, &curve_bits);
+    const size_t curve_bytes = PSA_BITS_TO_BYTES(curve_bits);
+
+    if (curve == 0) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    psa_set_key_type(&key_attr, PSA_KEY_TYPE_ECC_KEY_PAIR(curve));
+    psa_set_key_usage_flags(&key_attr, PSA_KEY_USAGE_EXPORT);
+
+    ret = mbedtls_mpi_write_binary(&mbedtls_pk_ec_ro(*prv)->d,
+                                   prv_key_buf, curve_bytes);
+    if (ret != 0) {
+        mbedtls_platform_zeroize(prv_key_buf, sizeof(prv_key_buf));
+        return ret;
+    }
+
+    status = psa_import_key(&key_attr, prv_key_buf, curve_bytes, &key_id);
+    mbedtls_platform_zeroize(prv_key_buf, sizeof(prv_key_buf));
+    ret = PSA_PK_TO_MBEDTLS_ERR(status);
+    if (ret != 0) {
+        return ret;
+    }
+
+    // From now on prv_key_buf is used to store the public key of prv.
+    status = psa_export_public_key(key_id, prv_key_buf, sizeof(prv_key_buf),
+                                   &prv_key_len);
+    ret = PSA_PK_TO_MBEDTLS_ERR(status);
+    destruction_status = psa_destroy_key(key_id);
+    if (ret != 0) {
+        return ret;
+    } else if (destruction_status != PSA_SUCCESS) {
+        return PSA_PK_TO_MBEDTLS_ERR(destruction_status);
+    }
+
+    ret = mbedtls_ecp_point_write_binary(&mbedtls_pk_ec_rw(*pub)->grp,
+                                         &mbedtls_pk_ec_rw(*pub)->Q,
+                                         MBEDTLS_ECP_PF_UNCOMPRESSED,
+                                         &pub_key_len, pub_key_buf,
+                                         sizeof(pub_key_buf));
+    if (ret != 0) {
+        return ret;
+    }
+
+    if (memcmp(prv_key_buf, pub_key_buf, curve_bytes) != 0) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    return 0;
+}
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+
+static int eckey_check_pair_wrap(mbedtls_pk_context *pub, mbedtls_pk_context *prv,
+                                 int (*f_rng)(void *, unsigned char *, size_t),
+                                 void *p_rng)
+{
+    (void) f_rng;
+    (void) p_rng;
+    return eckey_check_pair_psa(pub, prv);
+}
+#else /* MBEDTLS_USE_PSA_CRYPTO */
+static int eckey_check_pair_wrap(mbedtls_pk_context *pub, mbedtls_pk_context *prv,
+                                 int (*f_rng)(void *, unsigned char *, size_t),
+                                 void *p_rng)
+{
+    return mbedtls_ecp_check_pub_priv((const mbedtls_ecp_keypair *) pub->pk_ctx,
+                                      (const mbedtls_ecp_keypair *) prv->pk_ctx,
+                                      f_rng, p_rng);
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+/* When PK_USE_PSA_EC_DATA is defined opaque and non-opaque keys end up
+ * using the same function. */
+#define ecdsa_opaque_check_pair_wrap    eckey_check_pair_wrap
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+static int ecdsa_opaque_check_pair_wrap(mbedtls_pk_context *pub,
+                                        mbedtls_pk_context *prv,
+                                        int (*f_rng)(void *, unsigned char *, size_t),
+                                        void *p_rng)
+{
+    psa_status_t status;
+    uint8_t exp_pub_key[MBEDTLS_PK_MAX_EC_PUBKEY_RAW_LEN];
+    size_t exp_pub_key_len = 0;
+    uint8_t pub_key[MBEDTLS_PK_MAX_EC_PUBKEY_RAW_LEN];
+    size_t pub_key_len = 0;
+    int ret;
+    (void) f_rng;
+    (void) p_rng;
+
+    status = psa_export_public_key(prv->priv_id, exp_pub_key, sizeof(exp_pub_key),
+                                   &exp_pub_key_len);
+    if (status != PSA_SUCCESS) {
+        ret = psa_pk_status_to_mbedtls(status);
+        return ret;
+    }
+    ret = mbedtls_ecp_point_write_binary(&(mbedtls_pk_ec_ro(*pub)->grp),
+                                         &(mbedtls_pk_ec_ro(*pub)->Q),
+                                         MBEDTLS_ECP_PF_UNCOMPRESSED,
+                                         &pub_key_len, pub_key, sizeof(pub_key));
+    if (ret != 0) {
+        return ret;
+    }
+    if ((exp_pub_key_len != pub_key_len) ||
+        memcmp(exp_pub_key, pub_key, exp_pub_key_len)) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+    return 0;
+}
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+#if !defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+static void *eckey_alloc_wrap(void)
+{
+    void *ctx = mbedtls_calloc(1, sizeof(mbedtls_ecp_keypair));
+
+    if (ctx != NULL) {
+        mbedtls_ecp_keypair_init(ctx);
+    }
+
+    return ctx;
+}
+
+static void eckey_free_wrap(void *ctx)
+{
+    mbedtls_ecp_keypair_free((mbedtls_ecp_keypair *) ctx);
+    mbedtls_free(ctx);
+}
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+
+static void eckey_debug(mbedtls_pk_context *pk, mbedtls_pk_debug_item *items)
+{
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+    items->type = MBEDTLS_PK_DEBUG_PSA_EC;
+    items->name = "eckey.Q";
+    items->value = pk;
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+    mbedtls_ecp_keypair *ecp = (mbedtls_ecp_keypair *) pk->pk_ctx;
+    items->type = MBEDTLS_PK_DEBUG_ECP;
+    items->name = "eckey.Q";
+    items->value = &(ecp->Q);
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+}
+
+const mbedtls_pk_info_t mbedtls_eckey_info = {
+    .type = MBEDTLS_PK_ECKEY,
+    .name = "EC",
+    .get_bitlen = eckey_get_bitlen,
+    .can_do = eckey_can_do,
+#if defined(MBEDTLS_PK_CAN_ECDSA_VERIFY)
+    .verify_func = ecdsa_verify_wrap,   /* Compatible key structures */
+#else /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
+    .verify_func = NULL,
+#endif /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
+#if defined(MBEDTLS_PK_CAN_ECDSA_SIGN)
+    .sign_func = ecdsa_sign_wrap,   /* Compatible key structures */
+#else /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
+    .sign_func = NULL,
+#endif /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+    .verify_rs_func = eckey_verify_rs_wrap,
+    .sign_rs_func = eckey_sign_rs_wrap,
+    .rs_alloc_func = eckey_rs_alloc,
+    .rs_free_func = eckey_rs_free,
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+    .decrypt_func = NULL,
+    .encrypt_func = NULL,
+    .check_pair_func = eckey_check_pair_wrap,
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+    .ctx_alloc_func = NULL,
+    .ctx_free_func = NULL,
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+    .ctx_alloc_func = eckey_alloc_wrap,
+    .ctx_free_func = eckey_free_wrap,
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+    .debug_func = eckey_debug,
+};
+
+/*
+ * EC key restricted to ECDH
+ */
+static int eckeydh_can_do(mbedtls_pk_type_t type)
+{
+    return type == MBEDTLS_PK_ECKEY ||
+           type == MBEDTLS_PK_ECKEY_DH;
+}
+
+const mbedtls_pk_info_t mbedtls_eckeydh_info = {
+    .type = MBEDTLS_PK_ECKEY_DH,
+    .name = "EC_DH",
+    .get_bitlen = eckey_get_bitlen,         /* Same underlying key structure */
+    .can_do = eckeydh_can_do,
+    .verify_func = NULL,
+    .sign_func = NULL,
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+    .verify_rs_func = NULL,
+    .sign_rs_func = NULL,
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+    .decrypt_func = NULL,
+    .encrypt_func = NULL,
+    .check_pair_func = eckey_check_pair_wrap,
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+    .ctx_alloc_func = NULL,
+    .ctx_free_func = NULL,
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+    .ctx_alloc_func = eckey_alloc_wrap,   /* Same underlying key structure */
+    .ctx_free_func = eckey_free_wrap,    /* Same underlying key structure */
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+    .debug_func = eckey_debug,            /* Same underlying key structure */
+};
+
+#if defined(MBEDTLS_PK_CAN_ECDSA_SOME)
+static int ecdsa_can_do(mbedtls_pk_type_t type)
+{
+    return type == MBEDTLS_PK_ECDSA;
+}
+
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+static int ecdsa_verify_rs_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+                                const unsigned char *hash, size_t hash_len,
+                                const unsigned char *sig, size_t sig_len,
+                                void *rs_ctx)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    ((void) md_alg);
+
+    ret = mbedtls_ecdsa_read_signature_restartable(
+        (mbedtls_ecdsa_context *) pk->pk_ctx,
+        hash, hash_len, sig, sig_len,
+        (mbedtls_ecdsa_restart_ctx *) rs_ctx);
+
+    if (ret == MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH) {
+        return MBEDTLS_ERR_PK_SIG_LEN_MISMATCH;
+    }
+
+    return ret;
+}
+
+static int ecdsa_sign_rs_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+                              const unsigned char *hash, size_t hash_len,
+                              unsigned char *sig, size_t sig_size, size_t *sig_len,
+                              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
+                              void *rs_ctx)
+{
+    return mbedtls_ecdsa_write_signature_restartable(
+        (mbedtls_ecdsa_context *) pk->pk_ctx,
+        md_alg, hash, hash_len, sig, sig_size, sig_len, f_rng, p_rng,
+        (mbedtls_ecdsa_restart_ctx *) rs_ctx);
+
+}
+
+static void *ecdsa_rs_alloc(void)
+{
+    void *ctx = mbedtls_calloc(1, sizeof(mbedtls_ecdsa_restart_ctx));
+
+    if (ctx != NULL) {
+        mbedtls_ecdsa_restart_init(ctx);
+    }
+
+    return ctx;
+}
+
+static void ecdsa_rs_free(void *ctx)
+{
+    mbedtls_ecdsa_restart_free(ctx);
+    mbedtls_free(ctx);
+}
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+
+const mbedtls_pk_info_t mbedtls_ecdsa_info = {
+    .type = MBEDTLS_PK_ECDSA,
+    .name = "ECDSA",
+    .get_bitlen = eckey_get_bitlen,     /* Compatible key structures */
+    .can_do = ecdsa_can_do,
+#if defined(MBEDTLS_PK_CAN_ECDSA_VERIFY)
+    .verify_func = ecdsa_verify_wrap,   /* Compatible key structures */
+#else /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
+    .verify_func = NULL,
+#endif /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
+#if defined(MBEDTLS_PK_CAN_ECDSA_SIGN)
+    .sign_func = ecdsa_sign_wrap,   /* Compatible key structures */
+#else /* MBEDTLS_PK_CAN_ECDSA_SIGN */
+    .sign_func = NULL,
+#endif /* MBEDTLS_PK_CAN_ECDSA_SIGN */
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+    .verify_rs_func = ecdsa_verify_rs_wrap,
+    .sign_rs_func = ecdsa_sign_rs_wrap,
+    .rs_alloc_func = ecdsa_rs_alloc,
+    .rs_free_func = ecdsa_rs_free,
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+    .decrypt_func = NULL,
+    .encrypt_func = NULL,
+    .check_pair_func = eckey_check_pair_wrap,   /* Compatible key structures */
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+    .ctx_alloc_func = NULL,
+    .ctx_free_func = NULL,
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+    .ctx_alloc_func = eckey_alloc_wrap,   /* Compatible key structures */
+    .ctx_free_func = eckey_free_wrap,   /* Compatible key structures */
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+    .debug_func = eckey_debug,        /* Compatible key structures */
+};
+#endif /* MBEDTLS_PK_CAN_ECDSA_SOME */
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+#if defined(MBEDTLS_PK_RSA_ALT_SUPPORT)
+/*
+ * Support for alternative RSA-private implementations
+ */
+
+static int rsa_alt_can_do(mbedtls_pk_type_t type)
+{
+    return type == MBEDTLS_PK_RSA;
+}
+
+static size_t rsa_alt_get_bitlen(mbedtls_pk_context *pk)
+{
+    const mbedtls_rsa_alt_context *rsa_alt = pk->pk_ctx;
+
+    return 8 * rsa_alt->key_len_func(rsa_alt->key);
+}
+
+static int rsa_alt_sign_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+                             const unsigned char *hash, size_t hash_len,
+                             unsigned char *sig, size_t sig_size, size_t *sig_len,
+                             int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    mbedtls_rsa_alt_context *rsa_alt = pk->pk_ctx;
+
+#if SIZE_MAX > UINT_MAX
+    if (UINT_MAX < hash_len) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+#endif
+
+    *sig_len = rsa_alt->key_len_func(rsa_alt->key);
+    if (*sig_len > MBEDTLS_PK_SIGNATURE_MAX_SIZE) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+    if (*sig_len > sig_size) {
+        return MBEDTLS_ERR_PK_BUFFER_TOO_SMALL;
+    }
+
+    return rsa_alt->sign_func(rsa_alt->key, f_rng, p_rng,
+                              md_alg, (unsigned int) hash_len, hash, sig);
+}
+
+static int rsa_alt_decrypt_wrap(mbedtls_pk_context *pk,
+                                const unsigned char *input, size_t ilen,
+                                unsigned char *output, size_t *olen, size_t osize,
+                                int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    mbedtls_rsa_alt_context *rsa_alt = pk->pk_ctx;
+
+    ((void) f_rng);
+    ((void) p_rng);
+
+    if (ilen != rsa_alt->key_len_func(rsa_alt->key)) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    return rsa_alt->decrypt_func(rsa_alt->key,
+                                 olen, input, output, osize);
+}
+
+#if defined(MBEDTLS_RSA_C)
+static int rsa_alt_check_pair(mbedtls_pk_context *pub, mbedtls_pk_context *prv,
+                              int (*f_rng)(void *, unsigned char *, size_t),
+                              void *p_rng)
+{
+    unsigned char sig[MBEDTLS_MPI_MAX_SIZE];
+    unsigned char hash[32];
+    size_t sig_len = 0;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if (rsa_alt_get_bitlen(prv) != rsa_get_bitlen(pub)) {
+        return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+    }
+
+    memset(hash, 0x2a, sizeof(hash));
+
+    if ((ret = rsa_alt_sign_wrap(prv, MBEDTLS_MD_NONE,
+                                 hash, sizeof(hash),
+                                 sig, sizeof(sig), &sig_len,
+                                 f_rng, p_rng)) != 0) {
+        return ret;
+    }
+
+    if (rsa_verify_wrap(pub, MBEDTLS_MD_NONE,
+                        hash, sizeof(hash), sig, sig_len) != 0) {
+        return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+    }
+
+    return 0;
+}
+#endif /* MBEDTLS_RSA_C */
+
+static void *rsa_alt_alloc_wrap(void)
+{
+    void *ctx = mbedtls_calloc(1, sizeof(mbedtls_rsa_alt_context));
+
+    if (ctx != NULL) {
+        memset(ctx, 0, sizeof(mbedtls_rsa_alt_context));
+    }
+
+    return ctx;
+}
+
+static void rsa_alt_free_wrap(void *ctx)
+{
+    mbedtls_zeroize_and_free(ctx, sizeof(mbedtls_rsa_alt_context));
+}
+
+const mbedtls_pk_info_t mbedtls_rsa_alt_info = {
+    .type = MBEDTLS_PK_RSA_ALT,
+    .name = "RSA-alt",
+    .get_bitlen = rsa_alt_get_bitlen,
+    .can_do = rsa_alt_can_do,
+    .verify_func = NULL,
+    .sign_func = rsa_alt_sign_wrap,
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+    .verify_rs_func = NULL,
+    .sign_rs_func = NULL,
+    .rs_alloc_func = NULL,
+    .rs_free_func = NULL,
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+    .decrypt_func = rsa_alt_decrypt_wrap,
+    .encrypt_func = NULL,
+#if defined(MBEDTLS_RSA_C)
+    .check_pair_func = rsa_alt_check_pair,
+#else
+    .check_pair_func = NULL,
+#endif
+    .ctx_alloc_func = rsa_alt_alloc_wrap,
+    .ctx_free_func = rsa_alt_free_wrap,
+    .debug_func = NULL,
+};
+#endif /* MBEDTLS_PK_RSA_ALT_SUPPORT */
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+static size_t opaque_get_bitlen(mbedtls_pk_context *pk)
+{
+    size_t bits;
+    psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+
+    if (PSA_SUCCESS != psa_get_key_attributes(pk->priv_id, &attributes)) {
+        return 0;
+    }
+
+    bits = psa_get_key_bits(&attributes);
+    psa_reset_key_attributes(&attributes);
+    return bits;
+}
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+static int ecdsa_opaque_can_do(mbedtls_pk_type_t type)
+{
+    return type == MBEDTLS_PK_ECKEY ||
+           type == MBEDTLS_PK_ECDSA;
+}
+
+const mbedtls_pk_info_t mbedtls_ecdsa_opaque_info = {
+    .type = MBEDTLS_PK_OPAQUE,
+    .name = "Opaque",
+    .get_bitlen = opaque_get_bitlen,
+    .can_do = ecdsa_opaque_can_do,
+#if defined(MBEDTLS_PK_CAN_ECDSA_VERIFY)
+    .verify_func = ecdsa_opaque_verify_wrap,
+#else /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
+    .verify_func = NULL,
+#endif /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
+#if defined(MBEDTLS_PK_CAN_ECDSA_SIGN)
+    .sign_func = ecdsa_opaque_sign_wrap,
+#else /* MBEDTLS_PK_CAN_ECDSA_SIGN */
+    .sign_func = NULL,
+#endif /* MBEDTLS_PK_CAN_ECDSA_SIGN */
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+    .verify_rs_func = NULL,
+    .sign_rs_func = NULL,
+    .rs_alloc_func = NULL,
+    .rs_free_func = NULL,
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+    .decrypt_func = NULL,
+    .encrypt_func = NULL,
+    .check_pair_func = ecdsa_opaque_check_pair_wrap,
+    .ctx_alloc_func = NULL,
+    .ctx_free_func = NULL,
+    .debug_func = NULL,
+};
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+static int rsa_opaque_can_do(mbedtls_pk_type_t type)
+{
+    return type == MBEDTLS_PK_RSA ||
+           type == MBEDTLS_PK_RSASSA_PSS;
+}
+
+#if defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC)
+static int rsa_opaque_decrypt(mbedtls_pk_context *pk,
+                              const unsigned char *input, size_t ilen,
+                              unsigned char *output, size_t *olen, size_t osize,
+                              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+    psa_algorithm_t alg;
+    psa_key_type_t type;
+    psa_status_t status;
+
+    /* PSA has its own RNG */
+    (void) f_rng;
+    (void) p_rng;
+
+    status = psa_get_key_attributes(pk->priv_id, &attributes);
+    if (status != PSA_SUCCESS) {
+        return PSA_PK_TO_MBEDTLS_ERR(status);
+    }
+
+    type = psa_get_key_type(&attributes);
+    alg = psa_get_key_algorithm(&attributes);
+    psa_reset_key_attributes(&attributes);
+
+    if (!PSA_KEY_TYPE_IS_RSA(type)) {
+        return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+    }
+
+    status = psa_asymmetric_decrypt(pk->priv_id, alg, input, ilen, NULL, 0, output, osize, olen);
+    if (status != PSA_SUCCESS) {
+        return PSA_PK_RSA_TO_MBEDTLS_ERR(status);
+    }
+
+    return 0;
+}
+#endif /* PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC */
+
+static int rsa_opaque_sign_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+                                const unsigned char *hash, size_t hash_len,
+                                unsigned char *sig, size_t sig_size, size_t *sig_len,
+                                int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+#if defined(MBEDTLS_RSA_C)
+    psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+    psa_algorithm_t alg;
+    psa_key_type_t type;
+    psa_status_t status;
+
+    /* PSA has its own RNG */
+    (void) f_rng;
+    (void) p_rng;
+
+    status = psa_get_key_attributes(pk->priv_id, &attributes);
+    if (status != PSA_SUCCESS) {
+        return PSA_PK_TO_MBEDTLS_ERR(status);
+    }
+
+    type = psa_get_key_type(&attributes);
+    alg = psa_get_key_algorithm(&attributes);
+    psa_reset_key_attributes(&attributes);
+
+    if (PSA_KEY_TYPE_IS_RSA(type)) {
+        alg = (alg & ~PSA_ALG_HASH_MASK) | mbedtls_md_psa_alg_from_type(md_alg);
+    } else {
+        return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+    }
+
+    status = psa_sign_hash(pk->priv_id, alg, hash, hash_len, sig, sig_size, sig_len);
+    if (status != PSA_SUCCESS) {
+        if (PSA_KEY_TYPE_IS_RSA(type)) {
+            return PSA_PK_RSA_TO_MBEDTLS_ERR(status);
+        } else {
+            return PSA_PK_TO_MBEDTLS_ERR(status);
+        }
+    }
+
+    return 0;
+#else /* !MBEDTLS_RSA_C */
+    ((void) pk);
+    ((void) md_alg);
+    ((void) hash);
+    ((void) hash_len);
+    ((void) sig);
+    ((void) sig_size);
+    ((void) sig_len);
+    ((void) f_rng);
+    ((void) p_rng);
+    return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+#endif /* !MBEDTLS_RSA_C */
+}
+
+const mbedtls_pk_info_t mbedtls_rsa_opaque_info = {
+    .type = MBEDTLS_PK_OPAQUE,
+    .name = "Opaque",
+    .get_bitlen = opaque_get_bitlen,
+    .can_do = rsa_opaque_can_do,
+    .verify_func = NULL,
+    .sign_func = rsa_opaque_sign_wrap,
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+    .verify_rs_func = NULL,
+    .sign_rs_func = NULL,
+    .rs_alloc_func = NULL,
+    .rs_free_func = NULL,
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+#if defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC)
+    .decrypt_func = rsa_opaque_decrypt,
+#else /* PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC */
+    .decrypt_func = NULL,
+#endif /* PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC */
+    .encrypt_func = NULL,
+    .check_pair_func = NULL,
+    .ctx_alloc_func = NULL,
+    .ctx_free_func = NULL,
+    .debug_func = NULL,
+};
+
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+#endif /* MBEDTLS_PK_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/pk_wrap.h b/tf-psa-crypto/drivers/builtin/src/pk_wrap.h
new file mode 100644
index 0000000..be096da
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/pk_wrap.h
@@ -0,0 +1,138 @@
+/**
+ * \file pk_wrap.h
+ *
+ * \brief Public Key abstraction layer: wrapper functions
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_PK_WRAP_H
+#define MBEDTLS_PK_WRAP_H
+
+#include "mbedtls/build_info.h"
+
+#include "mbedtls/pk.h"
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+#include "psa/crypto.h"
+#endif
+
+struct mbedtls_pk_info_t {
+    /** Public key type */
+    mbedtls_pk_type_t type;
+
+    /** Type name */
+    const char *name;
+
+    /** Get key size in bits */
+    size_t (*get_bitlen)(mbedtls_pk_context *pk);
+
+    /** Tell if the context implements this type (e.g. ECKEY can do ECDSA) */
+    int (*can_do)(mbedtls_pk_type_t type);
+
+    /** Verify signature */
+    int (*verify_func)(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+                       const unsigned char *hash, size_t hash_len,
+                       const unsigned char *sig, size_t sig_len);
+
+    /** Make signature */
+    int (*sign_func)(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+                     const unsigned char *hash, size_t hash_len,
+                     unsigned char *sig, size_t sig_size, size_t *sig_len,
+                     int (*f_rng)(void *, unsigned char *, size_t),
+                     void *p_rng);
+
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+    /** Verify signature (restartable) */
+    int (*verify_rs_func)(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+                          const unsigned char *hash, size_t hash_len,
+                          const unsigned char *sig, size_t sig_len,
+                          void *rs_ctx);
+
+    /** Make signature (restartable) */
+    int (*sign_rs_func)(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+                        const unsigned char *hash, size_t hash_len,
+                        unsigned char *sig, size_t sig_size, size_t *sig_len,
+                        int (*f_rng)(void *, unsigned char *, size_t),
+                        void *p_rng, void *rs_ctx);
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+
+    /** Decrypt message */
+    int (*decrypt_func)(mbedtls_pk_context *pk, const unsigned char *input, size_t ilen,
+                        unsigned char *output, size_t *olen, size_t osize,
+                        int (*f_rng)(void *, unsigned char *, size_t),
+                        void *p_rng);
+
+    /** Encrypt message */
+    int (*encrypt_func)(mbedtls_pk_context *pk, const unsigned char *input, size_t ilen,
+                        unsigned char *output, size_t *olen, size_t osize,
+                        int (*f_rng)(void *, unsigned char *, size_t),
+                        void *p_rng);
+
+    /** Check public-private key pair */
+    int (*check_pair_func)(mbedtls_pk_context *pub, mbedtls_pk_context *prv,
+                           int (*f_rng)(void *, unsigned char *, size_t),
+                           void *p_rng);
+
+    /** Allocate a new context */
+    void * (*ctx_alloc_func)(void);
+
+    /** Free the given context */
+    void (*ctx_free_func)(void *ctx);
+
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+    /** Allocate the restart context */
+    void *(*rs_alloc_func)(void);
+
+    /** Free the restart context */
+    void (*rs_free_func)(void *rs_ctx);
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+
+    /** Interface with the debug module */
+    void (*debug_func)(mbedtls_pk_context *pk, mbedtls_pk_debug_item *items);
+
+};
+#if defined(MBEDTLS_PK_RSA_ALT_SUPPORT)
+/* Container for RSA-alt */
+typedef struct {
+    void *key;
+    mbedtls_pk_rsa_alt_decrypt_func decrypt_func;
+    mbedtls_pk_rsa_alt_sign_func sign_func;
+    mbedtls_pk_rsa_alt_key_len_func key_len_func;
+} mbedtls_rsa_alt_context;
+#endif
+
+#if defined(MBEDTLS_RSA_C)
+extern const mbedtls_pk_info_t mbedtls_rsa_info;
+#endif
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+extern const mbedtls_pk_info_t mbedtls_eckey_info;
+extern const mbedtls_pk_info_t mbedtls_eckeydh_info;
+#endif
+
+#if defined(MBEDTLS_PK_CAN_ECDSA_SOME)
+extern const mbedtls_pk_info_t mbedtls_ecdsa_info;
+#endif
+
+#if defined(MBEDTLS_PK_RSA_ALT_SUPPORT)
+extern const mbedtls_pk_info_t mbedtls_rsa_alt_info;
+#endif
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+extern const mbedtls_pk_info_t mbedtls_ecdsa_opaque_info;
+extern const mbedtls_pk_info_t mbedtls_rsa_opaque_info;
+
+#if defined(MBEDTLS_RSA_C)
+int mbedtls_pk_psa_rsa_sign_ext(psa_algorithm_t psa_alg_md,
+                                mbedtls_rsa_context *rsa_ctx,
+                                const unsigned char *hash, size_t hash_len,
+                                unsigned char *sig, size_t sig_size,
+                                size_t *sig_len);
+#endif /* MBEDTLS_RSA_C */
+
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+#endif /* MBEDTLS_PK_WRAP_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/pkcs12.c b/tf-psa-crypto/drivers/builtin/src/pkcs12.c
new file mode 100644
index 0000000..a3467b9
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/pkcs12.c
@@ -0,0 +1,437 @@
+/*
+ *  PKCS#12 Personal Information Exchange Syntax
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ *  The PKCS #12 Personal Information Exchange Syntax Standard v1.1
+ *
+ *  http://www.rsa.com/rsalabs/pkcs/files/h11301-wp-pkcs-12v1-1-personal-information-exchange-syntax.pdf
+ *  ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-12/pkcs-12v1-1.asn
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PKCS12_C)
+
+#include "mbedtls/pkcs12.h"
+#include "mbedtls/asn1.h"
+#if defined(MBEDTLS_CIPHER_C)
+#include "mbedtls/cipher.h"
+#endif /* MBEDTLS_CIPHER_C */
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_DES_C)
+#include "mbedtls/des.h"
+#endif
+
+#include "psa_util_internal.h"
+
+#if defined(MBEDTLS_ASN1_PARSE_C) && defined(MBEDTLS_CIPHER_C)
+
+static int pkcs12_parse_pbe_params(mbedtls_asn1_buf *params,
+                                   mbedtls_asn1_buf *salt, int *iterations)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char **p = &params->p;
+    const unsigned char *end = params->p + params->len;
+
+    /*
+     *  pkcs-12PbeParams ::= SEQUENCE {
+     *    salt          OCTET STRING,
+     *    iterations    INTEGER
+     *  }
+     *
+     */
+    if (params->tag != (MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS12_PBE_INVALID_FORMAT,
+                                 MBEDTLS_ERR_ASN1_UNEXPECTED_TAG);
+    }
+
+    if ((ret = mbedtls_asn1_get_tag(p, end, &salt->len, MBEDTLS_ASN1_OCTET_STRING)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS12_PBE_INVALID_FORMAT, ret);
+    }
+
+    salt->p = *p;
+    *p += salt->len;
+
+    if ((ret = mbedtls_asn1_get_int(p, end, iterations)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS12_PBE_INVALID_FORMAT, ret);
+    }
+
+    if (*p != end) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS12_PBE_INVALID_FORMAT,
+                                 MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);
+    }
+
+    return 0;
+}
+
+#define PKCS12_MAX_PWDLEN 128
+
+static int pkcs12_pbe_derive_key_iv(mbedtls_asn1_buf *pbe_params, mbedtls_md_type_t md_type,
+                                    const unsigned char *pwd,  size_t pwdlen,
+                                    unsigned char *key, size_t keylen,
+                                    unsigned char *iv,  size_t ivlen)
+{
+    int ret, iterations = 0;
+    mbedtls_asn1_buf salt;
+    size_t i;
+    unsigned char unipwd[PKCS12_MAX_PWDLEN * 2 + 2];
+
+    if (pwdlen > PKCS12_MAX_PWDLEN) {
+        return MBEDTLS_ERR_PKCS12_BAD_INPUT_DATA;
+    }
+
+    memset(&salt, 0, sizeof(mbedtls_asn1_buf));
+    memset(&unipwd, 0, sizeof(unipwd));
+
+    if ((ret = pkcs12_parse_pbe_params(pbe_params, &salt,
+                                       &iterations)) != 0) {
+        return ret;
+    }
+
+    for (i = 0; i < pwdlen; i++) {
+        unipwd[i * 2 + 1] = pwd[i];
+    }
+
+    if ((ret = mbedtls_pkcs12_derivation(key, keylen, unipwd, pwdlen * 2 + 2,
+                                         salt.p, salt.len, md_type,
+                                         MBEDTLS_PKCS12_DERIVE_KEY, iterations)) != 0) {
+        return ret;
+    }
+
+    if (iv == NULL || ivlen == 0) {
+        return 0;
+    }
+
+    if ((ret = mbedtls_pkcs12_derivation(iv, ivlen, unipwd, pwdlen * 2 + 2,
+                                         salt.p, salt.len, md_type,
+                                         MBEDTLS_PKCS12_DERIVE_IV, iterations)) != 0) {
+        return ret;
+    }
+    return 0;
+}
+
+#undef PKCS12_MAX_PWDLEN
+
+#if !defined(MBEDTLS_CIPHER_PADDING_PKCS7)
+int mbedtls_pkcs12_pbe_ext(mbedtls_asn1_buf *pbe_params, int mode,
+                           mbedtls_cipher_type_t cipher_type, mbedtls_md_type_t md_type,
+                           const unsigned char *pwd,  size_t pwdlen,
+                           const unsigned char *data, size_t len,
+                           unsigned char *output, size_t output_size,
+                           size_t *output_len);
+#endif
+
+#if !defined(MBEDTLS_DEPRECATED_REMOVED)
+int mbedtls_pkcs12_pbe(mbedtls_asn1_buf *pbe_params, int mode,
+                       mbedtls_cipher_type_t cipher_type, mbedtls_md_type_t md_type,
+                       const unsigned char *pwd,  size_t pwdlen,
+                       const unsigned char *data, size_t len,
+                       unsigned char *output)
+{
+    size_t output_len = 0;
+
+    /* We assume caller of the function is providing a big enough output buffer
+     * so we pass output_size as SIZE_MAX to pass checks, However, no guarantees
+     * for the output size actually being correct.
+     */
+    return mbedtls_pkcs12_pbe_ext(pbe_params, mode, cipher_type, md_type,
+                                  pwd, pwdlen, data, len, output, SIZE_MAX,
+                                  &output_len);
+}
+#endif
+
+int mbedtls_pkcs12_pbe_ext(mbedtls_asn1_buf *pbe_params, int mode,
+                           mbedtls_cipher_type_t cipher_type, mbedtls_md_type_t md_type,
+                           const unsigned char *pwd,  size_t pwdlen,
+                           const unsigned char *data, size_t len,
+                           unsigned char *output, size_t output_size,
+                           size_t *output_len)
+{
+    int ret, keylen = 0;
+    unsigned char key[32];
+    unsigned char iv[16];
+    const mbedtls_cipher_info_t *cipher_info;
+    mbedtls_cipher_context_t cipher_ctx;
+    size_t iv_len = 0;
+    size_t finish_olen = 0;
+    unsigned int padlen = 0;
+
+    if (pwd == NULL && pwdlen != 0) {
+        return MBEDTLS_ERR_PKCS12_BAD_INPUT_DATA;
+    }
+
+    cipher_info = mbedtls_cipher_info_from_type(cipher_type);
+    if (cipher_info == NULL) {
+        return MBEDTLS_ERR_PKCS12_FEATURE_UNAVAILABLE;
+    }
+
+    keylen = (int) mbedtls_cipher_info_get_key_bitlen(cipher_info) / 8;
+
+    if (mode == MBEDTLS_PKCS12_PBE_DECRYPT) {
+        if (output_size < len) {
+            return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+        }
+    }
+
+    if (mode == MBEDTLS_PKCS12_PBE_ENCRYPT) {
+        padlen = cipher_info->block_size - (len % cipher_info->block_size);
+        if (output_size < (len + padlen)) {
+            return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+        }
+    }
+
+    iv_len = mbedtls_cipher_info_get_iv_size(cipher_info);
+    if ((ret = pkcs12_pbe_derive_key_iv(pbe_params, md_type, pwd, pwdlen,
+                                        key, keylen,
+                                        iv, iv_len)) != 0) {
+        return ret;
+    }
+
+    mbedtls_cipher_init(&cipher_ctx);
+
+    if ((ret = mbedtls_cipher_setup(&cipher_ctx, cipher_info)) != 0) {
+        goto exit;
+    }
+
+    if ((ret = mbedtls_cipher_setkey(&cipher_ctx, key, 8 * keylen,
+                                     (mbedtls_operation_t) mode)) != 0) {
+        goto exit;
+    }
+
+#if defined(MBEDTLS_CIPHER_MODE_WITH_PADDING)
+    {
+        /* PKCS12 uses CBC with PKCS7 padding */
+        mbedtls_cipher_padding_t padding = MBEDTLS_PADDING_PKCS7;
+#if !defined(MBEDTLS_CIPHER_PADDING_PKCS7)
+        /* For historical reasons, when decrypting, this function works when
+         * decrypting even when support for PKCS7 padding is disabled. In this
+         * case, it ignores the padding, and so will never report a
+         * password mismatch.
+         */
+        if (mode == MBEDTLS_PKCS12_PBE_DECRYPT) {
+            padding = MBEDTLS_PADDING_NONE;
+        }
+#endif
+        if ((ret = mbedtls_cipher_set_padding_mode(&cipher_ctx, padding)) != 0) {
+            goto exit;
+        }
+    }
+#endif /* MBEDTLS_CIPHER_MODE_WITH_PADDING */
+
+    ret = mbedtls_cipher_crypt(&cipher_ctx, iv, iv_len, data, len, output, &finish_olen);
+    if (ret == MBEDTLS_ERR_CIPHER_INVALID_PADDING) {
+        ret = MBEDTLS_ERR_PKCS12_PASSWORD_MISMATCH;
+    }
+
+    *output_len += finish_olen;
+
+exit:
+    mbedtls_platform_zeroize(key, sizeof(key));
+    mbedtls_platform_zeroize(iv,  sizeof(iv));
+    mbedtls_cipher_free(&cipher_ctx);
+
+    return ret;
+}
+
+#endif /* MBEDTLS_ASN1_PARSE_C && MBEDTLS_CIPHER_C */
+
+static void pkcs12_fill_buffer(unsigned char *data, size_t data_len,
+                               const unsigned char *filler, size_t fill_len)
+{
+    unsigned char *p = data;
+    size_t use_len;
+
+    if (filler != NULL && fill_len != 0) {
+        while (data_len > 0) {
+            use_len = (data_len > fill_len) ? fill_len : data_len;
+            memcpy(p, filler, use_len);
+            p += use_len;
+            data_len -= use_len;
+        }
+    } else {
+        /* If either of the above are not true then clearly there is nothing
+         * that this function can do. The function should *not* be called
+         * under either of those circumstances, as you could end up with an
+         * incorrect output but for safety's sake, leaving the check in as
+         * otherwise we could end up with memory corruption.*/
+    }
+}
+
+
+static int calculate_hashes(mbedtls_md_type_t md_type, int iterations,
+                            unsigned char *diversifier, unsigned char *salt_block,
+                            unsigned char *pwd_block, unsigned char *hash_output, int use_salt,
+                            int use_password, size_t hlen, size_t v)
+{
+    int ret = -1;
+    size_t i;
+    const mbedtls_md_info_t *md_info;
+    mbedtls_md_context_t md_ctx;
+    md_info = mbedtls_md_info_from_type(md_type);
+    if (md_info == NULL) {
+        return MBEDTLS_ERR_PKCS12_FEATURE_UNAVAILABLE;
+    }
+
+    mbedtls_md_init(&md_ctx);
+
+    if ((ret = mbedtls_md_setup(&md_ctx, md_info, 0)) != 0) {
+        return ret;
+    }
+    // Calculate hash( diversifier || salt_block || pwd_block )
+    if ((ret = mbedtls_md_starts(&md_ctx)) != 0) {
+        goto exit;
+    }
+
+    if ((ret = mbedtls_md_update(&md_ctx, diversifier, v)) != 0) {
+        goto exit;
+    }
+
+    if (use_salt != 0) {
+        if ((ret = mbedtls_md_update(&md_ctx, salt_block, v)) != 0) {
+            goto exit;
+        }
+    }
+
+    if (use_password != 0) {
+        if ((ret = mbedtls_md_update(&md_ctx, pwd_block, v)) != 0) {
+            goto exit;
+        }
+    }
+
+    if ((ret = mbedtls_md_finish(&md_ctx, hash_output)) != 0) {
+        goto exit;
+    }
+
+    // Perform remaining ( iterations - 1 ) recursive hash calculations
+    for (i = 1; i < (size_t) iterations; i++) {
+        if ((ret = mbedtls_md(md_info, hash_output, hlen, hash_output))
+            != 0) {
+            goto exit;
+        }
+    }
+
+exit:
+    mbedtls_md_free(&md_ctx);
+    return ret;
+}
+
+
+int mbedtls_pkcs12_derivation(unsigned char *data, size_t datalen,
+                              const unsigned char *pwd, size_t pwdlen,
+                              const unsigned char *salt, size_t saltlen,
+                              mbedtls_md_type_t md_type, int id, int iterations)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned int j;
+
+    unsigned char diversifier[128];
+    unsigned char salt_block[128], pwd_block[128], hash_block[128] = { 0 };
+    unsigned char hash_output[MBEDTLS_MD_MAX_SIZE];
+    unsigned char *p;
+    unsigned char c;
+    int           use_password = 0;
+    int           use_salt = 0;
+
+    size_t hlen, use_len, v, i;
+
+    // This version only allows max of 64 bytes of password or salt
+    if (datalen > 128 || pwdlen > 64 || saltlen > 64) {
+        return MBEDTLS_ERR_PKCS12_BAD_INPUT_DATA;
+    }
+
+    if (pwd == NULL && pwdlen != 0) {
+        return MBEDTLS_ERR_PKCS12_BAD_INPUT_DATA;
+    }
+
+    if (salt == NULL && saltlen != 0) {
+        return MBEDTLS_ERR_PKCS12_BAD_INPUT_DATA;
+    }
+
+    use_password = (pwd && pwdlen != 0);
+    use_salt = (salt && saltlen != 0);
+
+    hlen = mbedtls_md_get_size_from_type(md_type);
+
+    if (hlen <= 32) {
+        v = 64;
+    } else {
+        v = 128;
+    }
+
+    memset(diversifier, (unsigned char) id, v);
+
+    if (use_salt != 0) {
+        pkcs12_fill_buffer(salt_block, v, salt, saltlen);
+    }
+
+    if (use_password != 0) {
+        pkcs12_fill_buffer(pwd_block,  v, pwd,  pwdlen);
+    }
+
+    p = data;
+    while (datalen > 0) {
+        if (calculate_hashes(md_type, iterations, diversifier, salt_block,
+                             pwd_block, hash_output, use_salt, use_password, hlen,
+                             v) != 0) {
+            goto exit;
+        }
+
+        use_len = (datalen > hlen) ? hlen : datalen;
+        memcpy(p, hash_output, use_len);
+        datalen -= use_len;
+        p += use_len;
+
+        if (datalen == 0) {
+            break;
+        }
+
+        // Concatenating copies of hash_output into hash_block (B)
+        pkcs12_fill_buffer(hash_block, v, hash_output, hlen);
+
+        // B += 1
+        for (i = v; i > 0; i--) {
+            if (++hash_block[i - 1] != 0) {
+                break;
+            }
+        }
+
+        if (use_salt != 0) {
+            // salt_block += B
+            c = 0;
+            for (i = v; i > 0; i--) {
+                j = salt_block[i - 1] + hash_block[i - 1] + c;
+                c = MBEDTLS_BYTE_1(j);
+                salt_block[i - 1] = MBEDTLS_BYTE_0(j);
+            }
+        }
+
+        if (use_password != 0) {
+            // pwd_block  += B
+            c = 0;
+            for (i = v; i > 0; i--) {
+                j = pwd_block[i - 1] + hash_block[i - 1] + c;
+                c = MBEDTLS_BYTE_1(j);
+                pwd_block[i - 1] = MBEDTLS_BYTE_0(j);
+            }
+        }
+    }
+
+    ret = 0;
+
+exit:
+    mbedtls_platform_zeroize(salt_block, sizeof(salt_block));
+    mbedtls_platform_zeroize(pwd_block, sizeof(pwd_block));
+    mbedtls_platform_zeroize(hash_block, sizeof(hash_block));
+    mbedtls_platform_zeroize(hash_output, sizeof(hash_output));
+
+    return ret;
+}
+
+#endif /* MBEDTLS_PKCS12_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/pkcs5.c b/tf-psa-crypto/drivers/builtin/src/pkcs5.c
new file mode 100644
index 0000000..c6c5305
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/pkcs5.c
@@ -0,0 +1,500 @@
+/**
+ * \file pkcs5.c
+ *
+ * \brief PKCS#5 functions
+ *
+ * \author Mathias Olsson <mathias@kompetensum.com>
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ * PKCS#5 includes PBKDF2 and more
+ *
+ * http://tools.ietf.org/html/rfc2898 (Specification)
+ * http://tools.ietf.org/html/rfc6070 (Test vectors)
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PKCS5_C)
+
+#include "mbedtls/pkcs5.h"
+#include "mbedtls/error.h"
+
+#if defined(MBEDTLS_ASN1_PARSE_C)
+#include "mbedtls/asn1.h"
+#if defined(MBEDTLS_CIPHER_C)
+#include "mbedtls/cipher.h"
+#endif /* MBEDTLS_CIPHER_C */
+#include "mbedtls/oid.h"
+#endif /* MBEDTLS_ASN1_PARSE_C */
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#include "psa_util_internal.h"
+
+#if defined(MBEDTLS_ASN1_PARSE_C) && defined(MBEDTLS_CIPHER_C)
+static int pkcs5_parse_pbkdf2_params(const mbedtls_asn1_buf *params,
+                                     mbedtls_asn1_buf *salt, int *iterations,
+                                     int *keylen, mbedtls_md_type_t *md_type)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_asn1_buf prf_alg_oid;
+    unsigned char *p = params->p;
+    const unsigned char *end = params->p + params->len;
+
+    if (params->tag != (MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS5_INVALID_FORMAT,
+                                 MBEDTLS_ERR_ASN1_UNEXPECTED_TAG);
+    }
+    /*
+     *  PBKDF2-params ::= SEQUENCE {
+     *    salt              OCTET STRING,
+     *    iterationCount    INTEGER,
+     *    keyLength         INTEGER OPTIONAL
+     *    prf               AlgorithmIdentifier DEFAULT algid-hmacWithSHA1
+     *  }
+     *
+     */
+    if ((ret = mbedtls_asn1_get_tag(&p, end, &salt->len,
+                                    MBEDTLS_ASN1_OCTET_STRING)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS5_INVALID_FORMAT, ret);
+    }
+
+    salt->p = p;
+    p += salt->len;
+
+    if ((ret = mbedtls_asn1_get_int(&p, end, iterations)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS5_INVALID_FORMAT, ret);
+    }
+
+    if (p == end) {
+        return 0;
+    }
+
+    if ((ret = mbedtls_asn1_get_int(&p, end, keylen)) != 0) {
+        if (ret != MBEDTLS_ERR_ASN1_UNEXPECTED_TAG) {
+            return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS5_INVALID_FORMAT, ret);
+        }
+    }
+
+    if (p == end) {
+        return 0;
+    }
+
+    if ((ret = mbedtls_asn1_get_alg_null(&p, end, &prf_alg_oid)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS5_INVALID_FORMAT, ret);
+    }
+
+    if (mbedtls_oid_get_md_hmac(&prf_alg_oid, md_type) != 0) {
+        return MBEDTLS_ERR_PKCS5_FEATURE_UNAVAILABLE;
+    }
+
+    if (p != end) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS5_INVALID_FORMAT,
+                                 MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);
+    }
+
+    return 0;
+}
+
+#if !defined(MBEDTLS_CIPHER_PADDING_PKCS7)
+int mbedtls_pkcs5_pbes2_ext(const mbedtls_asn1_buf *pbe_params, int mode,
+                            const unsigned char *pwd,  size_t pwdlen,
+                            const unsigned char *data, size_t datalen,
+                            unsigned char *output, size_t output_size,
+                            size_t *output_len);
+#endif
+
+#if !defined(MBEDTLS_DEPRECATED_REMOVED)
+int mbedtls_pkcs5_pbes2(const mbedtls_asn1_buf *pbe_params, int mode,
+                        const unsigned char *pwd,  size_t pwdlen,
+                        const unsigned char *data, size_t datalen,
+                        unsigned char *output)
+{
+    size_t output_len = 0;
+
+    /* We assume caller of the function is providing a big enough output buffer
+     * so we pass output_size as SIZE_MAX to pass checks, However, no guarantees
+     * for the output size actually being correct.
+     */
+    return mbedtls_pkcs5_pbes2_ext(pbe_params, mode, pwd, pwdlen, data,
+                                   datalen, output, SIZE_MAX, &output_len);
+}
+#endif
+
+int mbedtls_pkcs5_pbes2_ext(const mbedtls_asn1_buf *pbe_params, int mode,
+                            const unsigned char *pwd,  size_t pwdlen,
+                            const unsigned char *data, size_t datalen,
+                            unsigned char *output, size_t output_size,
+                            size_t *output_len)
+{
+    int ret, iterations = 0, keylen = 0;
+    unsigned char *p, *end;
+    mbedtls_asn1_buf kdf_alg_oid, enc_scheme_oid, kdf_alg_params, enc_scheme_params;
+    mbedtls_asn1_buf salt;
+    mbedtls_md_type_t md_type = MBEDTLS_MD_SHA1;
+    unsigned char key[32], iv[32];
+    const mbedtls_cipher_info_t *cipher_info;
+    mbedtls_cipher_type_t cipher_alg;
+    mbedtls_cipher_context_t cipher_ctx;
+    unsigned int padlen = 0;
+
+    p = pbe_params->p;
+    end = p + pbe_params->len;
+
+    /*
+     *  PBES2-params ::= SEQUENCE {
+     *    keyDerivationFunc AlgorithmIdentifier {{PBES2-KDFs}},
+     *    encryptionScheme AlgorithmIdentifier {{PBES2-Encs}}
+     *  }
+     */
+    if (pbe_params->tag != (MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS5_INVALID_FORMAT,
+                                 MBEDTLS_ERR_ASN1_UNEXPECTED_TAG);
+    }
+
+    if ((ret = mbedtls_asn1_get_alg(&p, end, &kdf_alg_oid,
+                                    &kdf_alg_params)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS5_INVALID_FORMAT, ret);
+    }
+
+    // Only PBKDF2 supported at the moment
+    //
+    if (MBEDTLS_OID_CMP(MBEDTLS_OID_PKCS5_PBKDF2, &kdf_alg_oid) != 0) {
+        return MBEDTLS_ERR_PKCS5_FEATURE_UNAVAILABLE;
+    }
+
+    if ((ret = pkcs5_parse_pbkdf2_params(&kdf_alg_params,
+                                         &salt, &iterations, &keylen,
+                                         &md_type)) != 0) {
+        return ret;
+    }
+
+    if ((ret = mbedtls_asn1_get_alg(&p, end, &enc_scheme_oid,
+                                    &enc_scheme_params)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS5_INVALID_FORMAT, ret);
+    }
+
+    if (mbedtls_oid_get_cipher_alg(&enc_scheme_oid, &cipher_alg) != 0) {
+        return MBEDTLS_ERR_PKCS5_FEATURE_UNAVAILABLE;
+    }
+
+    cipher_info = mbedtls_cipher_info_from_type(cipher_alg);
+    if (cipher_info == NULL) {
+        return MBEDTLS_ERR_PKCS5_FEATURE_UNAVAILABLE;
+    }
+
+    /*
+     * The value of keylen from pkcs5_parse_pbkdf2_params() is ignored
+     * since it is optional and we don't know if it was set or not
+     */
+    keylen = (int) mbedtls_cipher_info_get_key_bitlen(cipher_info) / 8;
+
+    if (enc_scheme_params.tag != MBEDTLS_ASN1_OCTET_STRING ||
+        enc_scheme_params.len != mbedtls_cipher_info_get_iv_size(cipher_info)) {
+        return MBEDTLS_ERR_PKCS5_INVALID_FORMAT;
+    }
+
+    if (mode == MBEDTLS_PKCS5_DECRYPT) {
+        if (output_size < datalen) {
+            return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+        }
+    }
+
+    if (mode == MBEDTLS_PKCS5_ENCRYPT) {
+        padlen = cipher_info->block_size - (datalen % cipher_info->block_size);
+        if (output_size < (datalen + padlen)) {
+            return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+        }
+    }
+
+    mbedtls_cipher_init(&cipher_ctx);
+
+    memcpy(iv, enc_scheme_params.p, enc_scheme_params.len);
+
+    if ((ret = mbedtls_pkcs5_pbkdf2_hmac_ext(md_type, pwd, pwdlen, salt.p,
+                                             salt.len, iterations, keylen,
+                                             key)) != 0) {
+        goto exit;
+    }
+
+    if ((ret = mbedtls_cipher_setup(&cipher_ctx, cipher_info)) != 0) {
+        goto exit;
+    }
+
+    if ((ret = mbedtls_cipher_setkey(&cipher_ctx, key, 8 * keylen,
+                                     (mbedtls_operation_t) mode)) != 0) {
+        goto exit;
+    }
+
+#if defined(MBEDTLS_CIPHER_MODE_WITH_PADDING)
+    {
+        /* PKCS5 uses CBC with PKCS7 padding (which is the same as
+         * "PKCS5 padding" except that it's typically only called PKCS5
+         * with 64-bit-block ciphers).
+         */
+        mbedtls_cipher_padding_t padding = MBEDTLS_PADDING_PKCS7;
+#if !defined(MBEDTLS_CIPHER_PADDING_PKCS7)
+        /* For historical reasons, when decrypting, this function works when
+         * decrypting even when support for PKCS7 padding is disabled. In this
+         * case, it ignores the padding, and so will never report a
+         * password mismatch.
+         */
+        if (mode == MBEDTLS_DECRYPT) {
+            padding = MBEDTLS_PADDING_NONE;
+        }
+#endif
+        if ((ret = mbedtls_cipher_set_padding_mode(&cipher_ctx, padding)) != 0) {
+            goto exit;
+        }
+    }
+#endif /* MBEDTLS_CIPHER_MODE_WITH_PADDING */
+    if ((ret = mbedtls_cipher_crypt(&cipher_ctx, iv, enc_scheme_params.len,
+                                    data, datalen, output, output_len)) != 0) {
+        ret = MBEDTLS_ERR_PKCS5_PASSWORD_MISMATCH;
+    }
+
+exit:
+    mbedtls_cipher_free(&cipher_ctx);
+
+    return ret;
+}
+#endif /* MBEDTLS_ASN1_PARSE_C && MBEDTLS_CIPHER_C */
+
+static int pkcs5_pbkdf2_hmac(mbedtls_md_context_t *ctx,
+                             const unsigned char *password,
+                             size_t plen, const unsigned char *salt, size_t slen,
+                             unsigned int iteration_count,
+                             uint32_t key_length, unsigned char *output)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned int i;
+    unsigned char md1[MBEDTLS_MD_MAX_SIZE];
+    unsigned char work[MBEDTLS_MD_MAX_SIZE];
+    unsigned char md_size = mbedtls_md_get_size(ctx->md_info);
+    size_t use_len;
+    unsigned char *out_p = output;
+    unsigned char counter[4];
+
+    memset(counter, 0, 4);
+    counter[3] = 1;
+
+#if UINT_MAX > 0xFFFFFFFF
+    if (iteration_count > 0xFFFFFFFF) {
+        return MBEDTLS_ERR_PKCS5_BAD_INPUT_DATA;
+    }
+#endif
+
+    if ((ret = mbedtls_md_hmac_starts(ctx, password, plen)) != 0) {
+        return ret;
+    }
+    while (key_length) {
+        // U1 ends up in work
+        //
+        if ((ret = mbedtls_md_hmac_update(ctx, salt, slen)) != 0) {
+            goto cleanup;
+        }
+
+        if ((ret = mbedtls_md_hmac_update(ctx, counter, 4)) != 0) {
+            goto cleanup;
+        }
+
+        if ((ret = mbedtls_md_hmac_finish(ctx, work)) != 0) {
+            goto cleanup;
+        }
+
+        if ((ret = mbedtls_md_hmac_reset(ctx)) != 0) {
+            goto cleanup;
+        }
+
+        memcpy(md1, work, md_size);
+
+        for (i = 1; i < iteration_count; i++) {
+            // U2 ends up in md1
+            //
+            if ((ret = mbedtls_md_hmac_update(ctx, md1, md_size)) != 0) {
+                goto cleanup;
+            }
+
+            if ((ret = mbedtls_md_hmac_finish(ctx, md1)) != 0) {
+                goto cleanup;
+            }
+
+            if ((ret = mbedtls_md_hmac_reset(ctx)) != 0) {
+                goto cleanup;
+            }
+
+            // U1 xor U2
+            //
+            mbedtls_xor(work, work, md1, md_size);
+        }
+
+        use_len = (key_length < md_size) ? key_length : md_size;
+        memcpy(out_p, work, use_len);
+
+        key_length -= (uint32_t) use_len;
+        out_p += use_len;
+
+        for (i = 4; i > 0; i--) {
+            if (++counter[i - 1] != 0) {
+                break;
+            }
+        }
+    }
+
+cleanup:
+    /* Zeroise buffers to clear sensitive data from memory. */
+    mbedtls_platform_zeroize(work, MBEDTLS_MD_MAX_SIZE);
+    mbedtls_platform_zeroize(md1, MBEDTLS_MD_MAX_SIZE);
+
+    return ret;
+}
+
+#if !defined(MBEDTLS_DEPRECATED_REMOVED)
+int mbedtls_pkcs5_pbkdf2_hmac(mbedtls_md_context_t *ctx,
+                              const unsigned char *password,
+                              size_t plen, const unsigned char *salt, size_t slen,
+                              unsigned int iteration_count,
+                              uint32_t key_length, unsigned char *output)
+{
+    return pkcs5_pbkdf2_hmac(ctx, password, plen, salt, slen, iteration_count,
+                             key_length, output);
+}
+#endif
+
+int mbedtls_pkcs5_pbkdf2_hmac_ext(mbedtls_md_type_t md_alg,
+                                  const unsigned char *password,
+                                  size_t plen, const unsigned char *salt, size_t slen,
+                                  unsigned int iteration_count,
+                                  uint32_t key_length, unsigned char *output)
+{
+    mbedtls_md_context_t md_ctx;
+    const mbedtls_md_info_t *md_info = NULL;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    md_info = mbedtls_md_info_from_type(md_alg);
+    if (md_info == NULL) {
+        return MBEDTLS_ERR_PKCS5_FEATURE_UNAVAILABLE;
+    }
+
+    mbedtls_md_init(&md_ctx);
+
+    if ((ret = mbedtls_md_setup(&md_ctx, md_info, 1)) != 0) {
+        goto exit;
+    }
+    ret = pkcs5_pbkdf2_hmac(&md_ctx, password, plen, salt, slen,
+                            iteration_count, key_length, output);
+exit:
+    mbedtls_md_free(&md_ctx);
+    return ret;
+}
+
+#if defined(MBEDTLS_SELF_TEST)
+
+#if !defined(MBEDTLS_MD_CAN_SHA1)
+int mbedtls_pkcs5_self_test(int verbose)
+{
+    if (verbose != 0) {
+        mbedtls_printf("  PBKDF2 (SHA1): skipped\n\n");
+    }
+
+    return 0;
+}
+#else
+
+#define MAX_TESTS   6
+
+static const size_t plen_test_data[MAX_TESTS] =
+{ 8, 8, 8, 24, 9 };
+
+static const unsigned char password_test_data[MAX_TESTS][32] =
+{
+    "password",
+    "password",
+    "password",
+    "passwordPASSWORDpassword",
+    "pass\0word",
+};
+
+static const size_t slen_test_data[MAX_TESTS] =
+{ 4, 4, 4, 36, 5 };
+
+static const unsigned char salt_test_data[MAX_TESTS][40] =
+{
+    "salt",
+    "salt",
+    "salt",
+    "saltSALTsaltSALTsaltSALTsaltSALTsalt",
+    "sa\0lt",
+};
+
+static const uint32_t it_cnt_test_data[MAX_TESTS] =
+{ 1, 2, 4096, 4096, 4096 };
+
+static const uint32_t key_len_test_data[MAX_TESTS] =
+{ 20, 20, 20, 25, 16 };
+
+static const unsigned char result_key_test_data[MAX_TESTS][32] =
+{
+    { 0x0c, 0x60, 0xc8, 0x0f, 0x96, 0x1f, 0x0e, 0x71,
+      0xf3, 0xa9, 0xb5, 0x24, 0xaf, 0x60, 0x12, 0x06,
+      0x2f, 0xe0, 0x37, 0xa6 },
+    { 0xea, 0x6c, 0x01, 0x4d, 0xc7, 0x2d, 0x6f, 0x8c,
+      0xcd, 0x1e, 0xd9, 0x2a, 0xce, 0x1d, 0x41, 0xf0,
+      0xd8, 0xde, 0x89, 0x57 },
+    { 0x4b, 0x00, 0x79, 0x01, 0xb7, 0x65, 0x48, 0x9a,
+      0xbe, 0xad, 0x49, 0xd9, 0x26, 0xf7, 0x21, 0xd0,
+      0x65, 0xa4, 0x29, 0xc1 },
+    { 0x3d, 0x2e, 0xec, 0x4f, 0xe4, 0x1c, 0x84, 0x9b,
+      0x80, 0xc8, 0xd8, 0x36, 0x62, 0xc0, 0xe4, 0x4a,
+      0x8b, 0x29, 0x1a, 0x96, 0x4c, 0xf2, 0xf0, 0x70,
+      0x38 },
+    { 0x56, 0xfa, 0x6a, 0xa7, 0x55, 0x48, 0x09, 0x9d,
+      0xcc, 0x37, 0xd7, 0xf0, 0x34, 0x25, 0xe0, 0xc3 },
+};
+
+int mbedtls_pkcs5_self_test(int verbose)
+{
+    int ret, i;
+    unsigned char key[64];
+
+    for (i = 0; i < MAX_TESTS; i++) {
+        if (verbose != 0) {
+            mbedtls_printf("  PBKDF2 (SHA1) #%d: ", i);
+        }
+
+        ret = mbedtls_pkcs5_pbkdf2_hmac_ext(MBEDTLS_MD_SHA1, password_test_data[i],
+                                            plen_test_data[i], salt_test_data[i],
+                                            slen_test_data[i], it_cnt_test_data[i],
+                                            key_len_test_data[i], key);
+        if (ret != 0 ||
+            memcmp(result_key_test_data[i], key, key_len_test_data[i]) != 0) {
+            if (verbose != 0) {
+                mbedtls_printf("failed\n");
+            }
+
+            ret = 1;
+            goto exit;
+        }
+
+        if (verbose != 0) {
+            mbedtls_printf("passed\n");
+        }
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+
+exit:
+    return ret;
+}
+#endif /* MBEDTLS_MD_CAN_SHA1 */
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_PKCS5_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/pkparse.c b/tf-psa-crypto/drivers/builtin/src/pkparse.c
new file mode 100644
index 0000000..4f6ee13
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/pkparse.c
@@ -0,0 +1,1392 @@
+/*
+ *  Public Key layer for parsing key files and structures
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PK_PARSE_C)
+
+#include "mbedtls/pk.h"
+#include "mbedtls/asn1.h"
+#include "mbedtls/oid.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/platform.h"
+#include "mbedtls/error.h"
+#include "mbedtls/ecp.h"
+#include "pk_internal.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+#include "mbedtls/psa_util.h"
+#include "psa/crypto.h"
+#endif
+
+/* Key types */
+#if defined(MBEDTLS_RSA_C)
+#include "mbedtls/rsa.h"
+#include "rsa_internal.h"
+#endif
+
+/* Extended formats */
+#if defined(MBEDTLS_PEM_PARSE_C)
+#include "mbedtls/pem.h"
+#endif
+#if defined(MBEDTLS_PKCS5_C)
+#include "mbedtls/pkcs5.h"
+#endif
+#if defined(MBEDTLS_PKCS12_C)
+#include "mbedtls/pkcs12.h"
+#endif
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+
+/***********************************************************************
+ *
+ *      Low-level ECC parsing: optional support for SpecifiedECDomain
+ *
+ * There are two functions here that are used by the rest of the code:
+ * - pk_ecc_tag_is_speficied_ec_domain()
+ * - pk_ecc_group_id_from_specified()
+ *
+ * All the other functions are internal to this section.
+ *
+ * The two "public" functions have a dummy variant provided
+ * in configs without MBEDTLS_PK_PARSE_EC_EXTENDED. This acts as an
+ * abstraction layer for this macro, which should not appear outside
+ * this section.
+ *
+ **********************************************************************/
+
+#if !defined(MBEDTLS_PK_PARSE_EC_EXTENDED)
+/* See the "real" version for documentation */
+static int pk_ecc_tag_is_specified_ec_domain(int tag)
+{
+    (void) tag;
+    return 0;
+}
+
+/* See the "real" version for documentation */
+static int pk_ecc_group_id_from_specified(const mbedtls_asn1_buf *params,
+                                          mbedtls_ecp_group_id *grp_id)
+{
+    (void) params;
+    (void) grp_id;
+    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+}
+#else /* MBEDTLS_PK_PARSE_EC_EXTENDED */
+/*
+ * Tell if the passed tag might be the start of SpecifiedECDomain
+ * (that is, a sequence).
+ */
+static int pk_ecc_tag_is_specified_ec_domain(int tag)
+{
+    return tag == (MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE);
+}
+
+/*
+ * Parse a SpecifiedECDomain (SEC 1 C.2) and (mostly) fill the group with it.
+ * WARNING: the resulting group should only be used with
+ * pk_ecc_group_id_from_specified(), since its base point may not be set correctly
+ * if it was encoded compressed.
+ *
+ *  SpecifiedECDomain ::= SEQUENCE {
+ *      version SpecifiedECDomainVersion(ecdpVer1 | ecdpVer2 | ecdpVer3, ...),
+ *      fieldID FieldID {{FieldTypes}},
+ *      curve Curve,
+ *      base ECPoint,
+ *      order INTEGER,
+ *      cofactor INTEGER OPTIONAL,
+ *      hash HashAlgorithm OPTIONAL,
+ *      ...
+ *  }
+ *
+ * We only support prime-field as field type, and ignore hash and cofactor.
+ */
+static int pk_group_from_specified(const mbedtls_asn1_buf *params, mbedtls_ecp_group *grp)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char *p = params->p;
+    const unsigned char *const end = params->p + params->len;
+    const unsigned char *end_field, *end_curve;
+    size_t len;
+    int ver;
+
+    /* SpecifiedECDomainVersion ::= INTEGER { 1, 2, 3 } */
+    if ((ret = mbedtls_asn1_get_int(&p, end, &ver)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+    }
+
+    if (ver < 1 || ver > 3) {
+        return MBEDTLS_ERR_PK_KEY_INVALID_FORMAT;
+    }
+
+    /*
+     * FieldID { FIELD-ID:IOSet } ::= SEQUENCE { -- Finite field
+     *       fieldType FIELD-ID.&id({IOSet}),
+     *       parameters FIELD-ID.&Type({IOSet}{@fieldType})
+     * }
+     */
+    if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
+                                    MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
+        return ret;
+    }
+
+    end_field = p + len;
+
+    /*
+     * FIELD-ID ::= TYPE-IDENTIFIER
+     * FieldTypes FIELD-ID ::= {
+     *       { Prime-p IDENTIFIED BY prime-field } |
+     *       { Characteristic-two IDENTIFIED BY characteristic-two-field }
+     * }
+     * prime-field OBJECT IDENTIFIER ::= { id-fieldType 1 }
+     */
+    if ((ret = mbedtls_asn1_get_tag(&p, end_field, &len, MBEDTLS_ASN1_OID)) != 0) {
+        return ret;
+    }
+
+    if (len != MBEDTLS_OID_SIZE(MBEDTLS_OID_ANSI_X9_62_PRIME_FIELD) ||
+        memcmp(p, MBEDTLS_OID_ANSI_X9_62_PRIME_FIELD, len) != 0) {
+        return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+    }
+
+    p += len;
+
+    /* Prime-p ::= INTEGER -- Field of size p. */
+    if ((ret = mbedtls_asn1_get_mpi(&p, end_field, &grp->P)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+    }
+
+    grp->pbits = mbedtls_mpi_bitlen(&grp->P);
+
+    if (p != end_field) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT,
+                                 MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);
+    }
+
+    /*
+     * Curve ::= SEQUENCE {
+     *       a FieldElement,
+     *       b FieldElement,
+     *       seed BIT STRING OPTIONAL
+     *       -- Shall be present if used in SpecifiedECDomain
+     *       -- with version equal to ecdpVer2 or ecdpVer3
+     * }
+     */
+    if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
+                                    MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
+        return ret;
+    }
+
+    end_curve = p + len;
+
+    /*
+     * FieldElement ::= OCTET STRING
+     * containing an integer in the case of a prime field
+     */
+    if ((ret = mbedtls_asn1_get_tag(&p, end_curve, &len, MBEDTLS_ASN1_OCTET_STRING)) != 0 ||
+        (ret = mbedtls_mpi_read_binary(&grp->A, p, len)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+    }
+
+    p += len;
+
+    if ((ret = mbedtls_asn1_get_tag(&p, end_curve, &len, MBEDTLS_ASN1_OCTET_STRING)) != 0 ||
+        (ret = mbedtls_mpi_read_binary(&grp->B, p, len)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+    }
+
+    p += len;
+
+    /* Ignore seed BIT STRING OPTIONAL */
+    if ((ret = mbedtls_asn1_get_tag(&p, end_curve, &len, MBEDTLS_ASN1_BIT_STRING)) == 0) {
+        p += len;
+    }
+
+    if (p != end_curve) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT,
+                                 MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);
+    }
+
+    /*
+     * ECPoint ::= OCTET STRING
+     */
+    if ((ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OCTET_STRING)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+    }
+
+    if ((ret = mbedtls_ecp_point_read_binary(grp, &grp->G,
+                                             (const unsigned char *) p, len)) != 0) {
+        /*
+         * If we can't read the point because it's compressed, cheat by
+         * reading only the X coordinate and the parity bit of Y.
+         */
+        if (ret != MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE ||
+            (p[0] != 0x02 && p[0] != 0x03) ||
+            len != mbedtls_mpi_size(&grp->P) + 1 ||
+            mbedtls_mpi_read_binary(&grp->G.X, p + 1, len - 1) != 0 ||
+            mbedtls_mpi_lset(&grp->G.Y, p[0] - 2) != 0 ||
+            mbedtls_mpi_lset(&grp->G.Z, 1) != 0) {
+            return MBEDTLS_ERR_PK_KEY_INVALID_FORMAT;
+        }
+    }
+
+    p += len;
+
+    /*
+     * order INTEGER
+     */
+    if ((ret = mbedtls_asn1_get_mpi(&p, end, &grp->N)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+    }
+
+    grp->nbits = mbedtls_mpi_bitlen(&grp->N);
+
+    /*
+     * Allow optional elements by purposefully not enforcing p == end here.
+     */
+
+    return 0;
+}
+
+/*
+ * Find the group id associated with an (almost filled) group as generated by
+ * pk_group_from_specified(), or return an error if unknown.
+ */
+static int pk_group_id_from_group(const mbedtls_ecp_group *grp, mbedtls_ecp_group_id *grp_id)
+{
+    int ret = 0;
+    mbedtls_ecp_group ref;
+    const mbedtls_ecp_group_id *id;
+
+    mbedtls_ecp_group_init(&ref);
+
+    for (id = mbedtls_ecp_grp_id_list(); *id != MBEDTLS_ECP_DP_NONE; id++) {
+        /* Load the group associated to that id */
+        mbedtls_ecp_group_free(&ref);
+        MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&ref, *id));
+
+        /* Compare to the group we were given, starting with easy tests */
+        if (grp->pbits == ref.pbits && grp->nbits == ref.nbits &&
+            mbedtls_mpi_cmp_mpi(&grp->P, &ref.P) == 0 &&
+            mbedtls_mpi_cmp_mpi(&grp->A, &ref.A) == 0 &&
+            mbedtls_mpi_cmp_mpi(&grp->B, &ref.B) == 0 &&
+            mbedtls_mpi_cmp_mpi(&grp->N, &ref.N) == 0 &&
+            mbedtls_mpi_cmp_mpi(&grp->G.X, &ref.G.X) == 0 &&
+            mbedtls_mpi_cmp_mpi(&grp->G.Z, &ref.G.Z) == 0 &&
+            /* For Y we may only know the parity bit, so compare only that */
+            mbedtls_mpi_get_bit(&grp->G.Y, 0) == mbedtls_mpi_get_bit(&ref.G.Y, 0)) {
+            break;
+        }
+    }
+
+cleanup:
+    mbedtls_ecp_group_free(&ref);
+
+    *grp_id = *id;
+
+    if (ret == 0 && *id == MBEDTLS_ECP_DP_NONE) {
+        ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+    }
+
+    return ret;
+}
+
+/*
+ * Parse a SpecifiedECDomain (SEC 1 C.2) and find the associated group ID
+ */
+static int pk_ecc_group_id_from_specified(const mbedtls_asn1_buf *params,
+                                          mbedtls_ecp_group_id *grp_id)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_ecp_group grp;
+
+    mbedtls_ecp_group_init(&grp);
+
+    if ((ret = pk_group_from_specified(params, &grp)) != 0) {
+        goto cleanup;
+    }
+
+    ret = pk_group_id_from_group(&grp, grp_id);
+
+cleanup:
+    /* The API respecting lifecycle for mbedtls_ecp_group struct is
+     * _init(), _load() and _free(). In pk_ecc_group_id_from_specified() the
+     * temporary grp breaks that flow and it's members are populated
+     * by pk_group_id_from_group(). As such mbedtls_ecp_group_free()
+     * which is assuming a group populated by _setup() may not clean-up
+     * properly -> Manually free it's members.
+     */
+    mbedtls_mpi_free(&grp.N);
+    mbedtls_mpi_free(&grp.P);
+    mbedtls_mpi_free(&grp.A);
+    mbedtls_mpi_free(&grp.B);
+    mbedtls_ecp_point_free(&grp.G);
+
+    return ret;
+}
+#endif /* MBEDTLS_PK_PARSE_EC_EXTENDED */
+
+/***********************************************************************
+ *
+ * Unsorted (yet!) from this point on until the next section header
+ *
+ **********************************************************************/
+
+/* Minimally parse an ECParameters buffer to and mbedtls_asn1_buf
+ *
+ * ECParameters ::= CHOICE {
+ *   namedCurve         OBJECT IDENTIFIER
+ *   specifiedCurve     SpecifiedECDomain -- = SEQUENCE { ... }
+ *   -- implicitCurve   NULL
+ * }
+ */
+static int pk_get_ecparams(unsigned char **p, const unsigned char *end,
+                           mbedtls_asn1_buf *params)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if (end - *p < 1) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT,
+                                 MBEDTLS_ERR_ASN1_OUT_OF_DATA);
+    }
+
+    /* Acceptable tags: OID for namedCurve, or specifiedECDomain */
+    params->tag = **p;
+    if (params->tag != MBEDTLS_ASN1_OID &&
+        !pk_ecc_tag_is_specified_ec_domain(params->tag)) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT,
+                                 MBEDTLS_ERR_ASN1_UNEXPECTED_TAG);
+    }
+
+    if ((ret = mbedtls_asn1_get_tag(p, end, &params->len, params->tag)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+    }
+
+    params->p = *p;
+    *p += params->len;
+
+    if (*p != end) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT,
+                                 MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);
+    }
+
+    return 0;
+}
+
+/*
+ * Use EC parameters to initialise an EC group
+ *
+ * ECParameters ::= CHOICE {
+ *   namedCurve         OBJECT IDENTIFIER
+ *   specifiedCurve     SpecifiedECDomain -- = SEQUENCE { ... }
+ *   -- implicitCurve   NULL
+ */
+static int pk_use_ecparams(const mbedtls_asn1_buf *params, mbedtls_pk_context *pk)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_ecp_group_id grp_id;
+
+    if (params->tag == MBEDTLS_ASN1_OID) {
+        if (mbedtls_oid_get_ec_grp(params, &grp_id) != 0) {
+            return MBEDTLS_ERR_PK_UNKNOWN_NAMED_CURVE;
+        }
+    } else {
+        ret = pk_ecc_group_id_from_specified(params, &grp_id);
+        if (ret != 0) {
+            return ret;
+        }
+    }
+
+    return mbedtls_pk_ecc_set_group(pk, grp_id);
+}
+
+#if defined(MBEDTLS_PK_HAVE_RFC8410_CURVES)
+
+/*
+ * Load an RFC8410 EC key, which doesn't have any parameters
+ */
+static int pk_use_ecparams_rfc8410(const mbedtls_asn1_buf *params,
+                                   mbedtls_ecp_group_id grp_id,
+                                   mbedtls_pk_context *pk)
+{
+    if (params->tag != 0 || params->len != 0) {
+        return MBEDTLS_ERR_PK_KEY_INVALID_FORMAT;
+    }
+
+    return mbedtls_pk_ecc_set_group(pk, grp_id);
+}
+
+/*
+ * Parse an RFC 8410 encoded private EC key
+ *
+ * CurvePrivateKey ::= OCTET STRING
+ */
+static int pk_parse_key_rfc8410_der(mbedtls_pk_context *pk,
+                                    unsigned char *key, size_t keylen, const unsigned char *end,
+                                    int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t len;
+
+    if ((ret = mbedtls_asn1_get_tag(&key, (key + keylen), &len, MBEDTLS_ASN1_OCTET_STRING)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+    }
+
+    if (key + len != end) {
+        return MBEDTLS_ERR_PK_KEY_INVALID_FORMAT;
+    }
+
+    /*
+     * Load the private key
+     */
+    ret = mbedtls_pk_ecc_set_key(pk, key, len);
+    if (ret != 0) {
+        return ret;
+    }
+
+    /* pk_parse_key_pkcs8_unencrypted_der() only supports version 1 PKCS8 keys,
+     * which never contain a public key. As such, derive the public key
+     * unconditionally. */
+    if ((ret = mbedtls_pk_ecc_set_pubkey_from_prv(pk, key, len, f_rng, p_rng)) != 0) {
+        return ret;
+    }
+
+    return 0;
+}
+#endif /* MBEDTLS_PK_HAVE_RFC8410_CURVES */
+
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+/* Get a PK algorithm identifier
+ *
+ *  AlgorithmIdentifier  ::=  SEQUENCE  {
+ *       algorithm               OBJECT IDENTIFIER,
+ *       parameters              ANY DEFINED BY algorithm OPTIONAL  }
+ */
+static int pk_get_pk_alg(unsigned char **p,
+                         const unsigned char *end,
+                         mbedtls_pk_type_t *pk_alg, mbedtls_asn1_buf *params,
+                         mbedtls_ecp_group_id *ec_grp_id)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_asn1_buf alg_oid;
+
+    memset(params, 0, sizeof(mbedtls_asn1_buf));
+
+    if ((ret = mbedtls_asn1_get_alg(p, end, &alg_oid, params)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_INVALID_ALG, ret);
+    }
+
+    ret = mbedtls_oid_get_pk_alg(&alg_oid, pk_alg);
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+    if (ret == MBEDTLS_ERR_OID_NOT_FOUND) {
+        ret = mbedtls_oid_get_ec_grp_algid(&alg_oid, ec_grp_id);
+        if (ret == 0) {
+            *pk_alg = MBEDTLS_PK_ECKEY;
+        }
+    }
+#else
+    (void) ec_grp_id;
+#endif
+    if (ret != 0) {
+        return MBEDTLS_ERR_PK_UNKNOWN_PK_ALG;
+    }
+
+    /*
+     * No parameters with RSA (only for EC)
+     */
+    if (*pk_alg == MBEDTLS_PK_RSA &&
+        ((params->tag != MBEDTLS_ASN1_NULL && params->tag != 0) ||
+         params->len != 0)) {
+        return MBEDTLS_ERR_PK_INVALID_ALG;
+    }
+
+    return 0;
+}
+
+/*
+ *  SubjectPublicKeyInfo  ::=  SEQUENCE  {
+ *       algorithm            AlgorithmIdentifier,
+ *       subjectPublicKey     BIT STRING }
+ */
+int mbedtls_pk_parse_subpubkey(unsigned char **p, const unsigned char *end,
+                               mbedtls_pk_context *pk)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t len;
+    mbedtls_asn1_buf alg_params;
+    mbedtls_pk_type_t pk_alg = MBEDTLS_PK_NONE;
+    mbedtls_ecp_group_id ec_grp_id = MBEDTLS_ECP_DP_NONE;
+    const mbedtls_pk_info_t *pk_info;
+
+    if ((ret = mbedtls_asn1_get_tag(p, end, &len,
+                                    MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+    }
+
+    end = *p + len;
+
+    if ((ret = pk_get_pk_alg(p, end, &pk_alg, &alg_params, &ec_grp_id)) != 0) {
+        return ret;
+    }
+
+    if ((ret = mbedtls_asn1_get_bitstring_null(p, end, &len)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_INVALID_PUBKEY, ret);
+    }
+
+    if (*p + len != end) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_INVALID_PUBKEY,
+                                 MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);
+    }
+
+    if ((pk_info = mbedtls_pk_info_from_type(pk_alg)) == NULL) {
+        return MBEDTLS_ERR_PK_UNKNOWN_PK_ALG;
+    }
+
+    if ((ret = mbedtls_pk_setup(pk, pk_info)) != 0) {
+        return ret;
+    }
+
+#if defined(MBEDTLS_RSA_C)
+    if (pk_alg == MBEDTLS_PK_RSA) {
+        ret = mbedtls_rsa_parse_pubkey(mbedtls_pk_rsa(*pk), *p, (size_t) (end - *p));
+        if (ret == 0) {
+            /* On success all the input has been consumed by the parsing function. */
+            *p += end - *p;
+        } else if ((ret <= MBEDTLS_ERR_ASN1_OUT_OF_DATA) &&
+                   (ret >= MBEDTLS_ERR_ASN1_BUF_TOO_SMALL)) {
+            /* In case of ASN1 error codes add MBEDTLS_ERR_PK_INVALID_PUBKEY. */
+            ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_INVALID_PUBKEY, ret);
+        } else {
+            ret = MBEDTLS_ERR_PK_INVALID_PUBKEY;
+        }
+    } else
+#endif /* MBEDTLS_RSA_C */
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+    if (pk_alg == MBEDTLS_PK_ECKEY_DH || pk_alg == MBEDTLS_PK_ECKEY) {
+#if defined(MBEDTLS_PK_HAVE_RFC8410_CURVES)
+        if (MBEDTLS_PK_IS_RFC8410_GROUP_ID(ec_grp_id)) {
+            ret = pk_use_ecparams_rfc8410(&alg_params, ec_grp_id, pk);
+        } else
+#endif
+        {
+            ret = pk_use_ecparams(&alg_params, pk);
+        }
+        if (ret == 0) {
+            ret = mbedtls_pk_ecc_set_pubkey(pk, *p, (size_t) (end - *p));
+            *p += end - *p;
+        }
+    } else
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+    ret = MBEDTLS_ERR_PK_UNKNOWN_PK_ALG;
+
+    if (ret == 0 && *p != end) {
+        ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_INVALID_PUBKEY,
+                                MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);
+    }
+
+    if (ret != 0) {
+        mbedtls_pk_free(pk);
+    }
+
+    return ret;
+}
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+/*
+ * Parse a SEC1 encoded private EC key
+ */
+static int pk_parse_key_sec1_der(mbedtls_pk_context *pk,
+                                 const unsigned char *key, size_t keylen,
+                                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    int version, pubkey_done;
+    size_t len, d_len;
+    mbedtls_asn1_buf params = { 0, 0, NULL };
+    unsigned char *p = (unsigned char *) key;
+    unsigned char *d;
+    unsigned char *end = p + keylen;
+    unsigned char *end2;
+
+    /*
+     * RFC 5915, or SEC1 Appendix C.4
+     *
+     * ECPrivateKey ::= SEQUENCE {
+     *      version        INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1),
+     *      privateKey     OCTET STRING,
+     *      parameters [0] ECParameters {{ NamedCurve }} OPTIONAL,
+     *      publicKey  [1] BIT STRING OPTIONAL
+     *    }
+     */
+    if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
+                                    MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+    }
+
+    end = p + len;
+
+    if ((ret = mbedtls_asn1_get_int(&p, end, &version)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+    }
+
+    if (version != 1) {
+        return MBEDTLS_ERR_PK_KEY_INVALID_VERSION;
+    }
+
+    if ((ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OCTET_STRING)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+    }
+
+    /* Keep a reference to the position fo the private key. It will be used
+     * later in this function. */
+    d = p;
+    d_len = len;
+
+    p += len;
+
+    pubkey_done = 0;
+    if (p != end) {
+        /*
+         * Is 'parameters' present?
+         */
+        if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
+                                        MBEDTLS_ASN1_CONTEXT_SPECIFIC | MBEDTLS_ASN1_CONSTRUCTED |
+                                        0)) == 0) {
+            if ((ret = pk_get_ecparams(&p, p + len, &params)) != 0 ||
+                (ret = pk_use_ecparams(&params, pk)) != 0) {
+                return ret;
+            }
+        } else if (ret != MBEDTLS_ERR_ASN1_UNEXPECTED_TAG) {
+            return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+        }
+    }
+
+    /*
+     * Load the private key
+     */
+    ret = mbedtls_pk_ecc_set_key(pk, d, d_len);
+    if (ret != 0) {
+        return ret;
+    }
+
+    if (p != end) {
+        /*
+         * Is 'publickey' present? If not, or if we can't read it (eg because it
+         * is compressed), create it from the private key.
+         */
+        if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
+                                        MBEDTLS_ASN1_CONTEXT_SPECIFIC | MBEDTLS_ASN1_CONSTRUCTED |
+                                        1)) == 0) {
+            end2 = p + len;
+
+            if ((ret = mbedtls_asn1_get_bitstring_null(&p, end2, &len)) != 0) {
+                return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+            }
+
+            if (p + len != end2) {
+                return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT,
+                                         MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);
+            }
+
+            if ((ret = mbedtls_pk_ecc_set_pubkey(pk, p, (size_t) (end2 - p))) == 0) {
+                pubkey_done = 1;
+            } else {
+                /*
+                 * The only acceptable failure mode of mbedtls_pk_ecc_set_pubkey() above
+                 * is if the point format is not recognized.
+                 */
+                if (ret != MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE) {
+                    return MBEDTLS_ERR_PK_KEY_INVALID_FORMAT;
+                }
+            }
+        } else if (ret != MBEDTLS_ERR_ASN1_UNEXPECTED_TAG) {
+            return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+        }
+    }
+
+    if (!pubkey_done) {
+        if ((ret = mbedtls_pk_ecc_set_pubkey_from_prv(pk, d, d_len, f_rng, p_rng)) != 0) {
+            return ret;
+        }
+    }
+
+    return 0;
+}
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+/***********************************************************************
+ *
+ *      PKCS#8 parsing functions
+ *
+ **********************************************************************/
+
+/*
+ * Parse an unencrypted PKCS#8 encoded private key
+ *
+ * Notes:
+ *
+ * - This function does not own the key buffer. It is the
+ *   responsibility of the caller to take care of zeroizing
+ *   and freeing it after use.
+ *
+ * - The function is responsible for freeing the provided
+ *   PK context on failure.
+ *
+ */
+static int pk_parse_key_pkcs8_unencrypted_der(
+    mbedtls_pk_context *pk,
+    const unsigned char *key, size_t keylen,
+    int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    int ret, version;
+    size_t len;
+    mbedtls_asn1_buf params;
+    unsigned char *p = (unsigned char *) key;
+    unsigned char *end = p + keylen;
+    mbedtls_pk_type_t pk_alg = MBEDTLS_PK_NONE;
+    mbedtls_ecp_group_id ec_grp_id = MBEDTLS_ECP_DP_NONE;
+    const mbedtls_pk_info_t *pk_info;
+
+#if !defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+    (void) f_rng;
+    (void) p_rng;
+#endif
+
+    /*
+     * This function parses the PrivateKeyInfo object (PKCS#8 v1.2 = RFC 5208)
+     *
+     *    PrivateKeyInfo ::= SEQUENCE {
+     *      version                   Version,
+     *      privateKeyAlgorithm       PrivateKeyAlgorithmIdentifier,
+     *      privateKey                PrivateKey,
+     *      attributes           [0]  IMPLICIT Attributes OPTIONAL }
+     *
+     *    Version ::= INTEGER
+     *    PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier
+     *    PrivateKey ::= OCTET STRING
+     *
+     *  The PrivateKey OCTET STRING is a SEC1 ECPrivateKey
+     */
+
+    if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
+                                    MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+    }
+
+    end = p + len;
+
+    if ((ret = mbedtls_asn1_get_int(&p, end, &version)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+    }
+
+    if (version != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_VERSION, ret);
+    }
+
+    if ((ret = pk_get_pk_alg(&p, end, &pk_alg, &params, &ec_grp_id)) != 0) {
+        return ret;
+    }
+
+    if ((ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OCTET_STRING)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+    }
+
+    if (len < 1) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT,
+                                 MBEDTLS_ERR_ASN1_OUT_OF_DATA);
+    }
+
+    if ((pk_info = mbedtls_pk_info_from_type(pk_alg)) == NULL) {
+        return MBEDTLS_ERR_PK_UNKNOWN_PK_ALG;
+    }
+
+    if ((ret = mbedtls_pk_setup(pk, pk_info)) != 0) {
+        return ret;
+    }
+
+#if defined(MBEDTLS_RSA_C)
+    if (pk_alg == MBEDTLS_PK_RSA) {
+        if ((ret = mbedtls_rsa_parse_key(mbedtls_pk_rsa(*pk), p, len)) != 0) {
+            mbedtls_pk_free(pk);
+            return ret;
+        }
+    } else
+#endif /* MBEDTLS_RSA_C */
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+    if (pk_alg == MBEDTLS_PK_ECKEY || pk_alg == MBEDTLS_PK_ECKEY_DH) {
+#if defined(MBEDTLS_PK_HAVE_RFC8410_CURVES)
+        if (MBEDTLS_PK_IS_RFC8410_GROUP_ID(ec_grp_id)) {
+            if ((ret =
+                     pk_use_ecparams_rfc8410(&params, ec_grp_id, pk)) != 0 ||
+                (ret =
+                     pk_parse_key_rfc8410_der(pk, p, len, end, f_rng,
+                                              p_rng)) != 0) {
+                mbedtls_pk_free(pk);
+                return ret;
+            }
+        } else
+#endif
+        {
+            if ((ret = pk_use_ecparams(&params, pk)) != 0 ||
+                (ret = pk_parse_key_sec1_der(pk, p, len, f_rng, p_rng)) != 0) {
+                mbedtls_pk_free(pk);
+                return ret;
+            }
+        }
+    } else
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+    return MBEDTLS_ERR_PK_UNKNOWN_PK_ALG;
+
+    end = p + len;
+    if (end != (key + keylen)) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT,
+                                 MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);
+    }
+
+    return 0;
+}
+
+/*
+ * Parse an encrypted PKCS#8 encoded private key
+ *
+ * To save space, the decryption happens in-place on the given key buffer.
+ * Also, while this function may modify the keybuffer, it doesn't own it,
+ * and instead it is the responsibility of the caller to zeroize and properly
+ * free it after use.
+ *
+ */
+#if defined(MBEDTLS_PKCS12_C) || defined(MBEDTLS_PKCS5_C)
+MBEDTLS_STATIC_TESTABLE int mbedtls_pk_parse_key_pkcs8_encrypted_der(
+    mbedtls_pk_context *pk,
+    unsigned char *key, size_t keylen,
+    const unsigned char *pwd, size_t pwdlen,
+    int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    int ret, decrypted = 0;
+    size_t len;
+    unsigned char *buf;
+    unsigned char *p, *end;
+    mbedtls_asn1_buf pbe_alg_oid, pbe_params;
+#if defined(MBEDTLS_PKCS12_C) && defined(MBEDTLS_CIPHER_PADDING_PKCS7) && defined(MBEDTLS_CIPHER_C)
+    mbedtls_cipher_type_t cipher_alg;
+    mbedtls_md_type_t md_alg;
+#endif
+    size_t outlen = 0;
+
+    p = key;
+    end = p + keylen;
+
+    if (pwdlen == 0) {
+        return MBEDTLS_ERR_PK_PASSWORD_REQUIRED;
+    }
+
+    /*
+     * This function parses the EncryptedPrivateKeyInfo object (PKCS#8)
+     *
+     *  EncryptedPrivateKeyInfo ::= SEQUENCE {
+     *    encryptionAlgorithm  EncryptionAlgorithmIdentifier,
+     *    encryptedData        EncryptedData
+     *  }
+     *
+     *  EncryptionAlgorithmIdentifier ::= AlgorithmIdentifier
+     *
+     *  EncryptedData ::= OCTET STRING
+     *
+     *  The EncryptedData OCTET STRING is a PKCS#8 PrivateKeyInfo
+     *
+     */
+    if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
+                                    MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+    }
+
+    end = p + len;
+
+    if ((ret = mbedtls_asn1_get_alg(&p, end, &pbe_alg_oid, &pbe_params)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+    }
+
+    if ((ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OCTET_STRING)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+    }
+
+    buf = p;
+
+    /*
+     * Decrypt EncryptedData with appropriate PBE
+     */
+#if defined(MBEDTLS_PKCS12_C) && defined(MBEDTLS_CIPHER_PADDING_PKCS7) && defined(MBEDTLS_CIPHER_C)
+    if (mbedtls_oid_get_pkcs12_pbe_alg(&pbe_alg_oid, &md_alg, &cipher_alg) == 0) {
+        if ((ret = mbedtls_pkcs12_pbe_ext(&pbe_params, MBEDTLS_PKCS12_PBE_DECRYPT,
+                                          cipher_alg, md_alg,
+                                          pwd, pwdlen, p, len, buf, len, &outlen)) != 0) {
+            if (ret == MBEDTLS_ERR_PKCS12_PASSWORD_MISMATCH) {
+                return MBEDTLS_ERR_PK_PASSWORD_MISMATCH;
+            }
+
+            return ret;
+        }
+
+        decrypted = 1;
+    } else
+#endif /* MBEDTLS_PKCS12_C && MBEDTLS_CIPHER_PADDING_PKCS7 && MBEDTLS_CIPHER_C */
+#if defined(MBEDTLS_PKCS5_C) && defined(MBEDTLS_CIPHER_PADDING_PKCS7) && defined(MBEDTLS_CIPHER_C)
+    if (MBEDTLS_OID_CMP(MBEDTLS_OID_PKCS5_PBES2, &pbe_alg_oid) == 0) {
+        if ((ret = mbedtls_pkcs5_pbes2_ext(&pbe_params, MBEDTLS_PKCS5_DECRYPT, pwd, pwdlen,
+                                           p, len, buf, len, &outlen)) != 0) {
+            if (ret == MBEDTLS_ERR_PKCS5_PASSWORD_MISMATCH) {
+                return MBEDTLS_ERR_PK_PASSWORD_MISMATCH;
+            }
+
+            return ret;
+        }
+
+        decrypted = 1;
+    } else
+#endif /* MBEDTLS_PKCS5_C && MBEDTLS_CIPHER_PADDING_PKCS7 && MBEDTLS_CIPHER_C */
+    {
+        ((void) pwd);
+    }
+
+    if (decrypted == 0) {
+        return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+    }
+    return pk_parse_key_pkcs8_unencrypted_der(pk, buf, outlen, f_rng, p_rng);
+}
+#endif /* MBEDTLS_PKCS12_C || MBEDTLS_PKCS5_C */
+
+/***********************************************************************
+ *
+ *      Top-level functions, with format auto-discovery
+ *
+ **********************************************************************/
+
+/*
+ * Parse a private key
+ */
+int mbedtls_pk_parse_key(mbedtls_pk_context *pk,
+                         const unsigned char *key, size_t keylen,
+                         const unsigned char *pwd, size_t pwdlen,
+                         int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    const mbedtls_pk_info_t *pk_info;
+#if defined(MBEDTLS_PEM_PARSE_C)
+    size_t len;
+    mbedtls_pem_context pem;
+#endif
+
+    if (keylen == 0) {
+        return MBEDTLS_ERR_PK_KEY_INVALID_FORMAT;
+    }
+
+#if defined(MBEDTLS_PEM_PARSE_C)
+    mbedtls_pem_init(&pem);
+
+#if defined(MBEDTLS_RSA_C)
+    /* Avoid calling mbedtls_pem_read_buffer() on non-null-terminated string */
+    if (key[keylen - 1] != '\0') {
+        ret = MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT;
+    } else {
+        ret = mbedtls_pem_read_buffer(&pem,
+                                      PEM_BEGIN_PRIVATE_KEY_RSA, PEM_END_PRIVATE_KEY_RSA,
+                                      key, pwd, pwdlen, &len);
+    }
+
+    if (ret == 0) {
+        pk_info = mbedtls_pk_info_from_type(MBEDTLS_PK_RSA);
+        if ((ret = mbedtls_pk_setup(pk, pk_info)) != 0 ||
+            (ret = mbedtls_rsa_parse_key(mbedtls_pk_rsa(*pk),
+                                         pem.buf, pem.buflen)) != 0) {
+            mbedtls_pk_free(pk);
+        }
+
+        mbedtls_pem_free(&pem);
+        return ret;
+    } else if (ret == MBEDTLS_ERR_PEM_PASSWORD_MISMATCH) {
+        return MBEDTLS_ERR_PK_PASSWORD_MISMATCH;
+    } else if (ret == MBEDTLS_ERR_PEM_PASSWORD_REQUIRED) {
+        return MBEDTLS_ERR_PK_PASSWORD_REQUIRED;
+    } else if (ret != MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT) {
+        return ret;
+    }
+#endif /* MBEDTLS_RSA_C */
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+    /* Avoid calling mbedtls_pem_read_buffer() on non-null-terminated string */
+    if (key[keylen - 1] != '\0') {
+        ret = MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT;
+    } else {
+        ret = mbedtls_pem_read_buffer(&pem,
+                                      PEM_BEGIN_PRIVATE_KEY_EC,
+                                      PEM_END_PRIVATE_KEY_EC,
+                                      key, pwd, pwdlen, &len);
+    }
+    if (ret == 0) {
+        pk_info = mbedtls_pk_info_from_type(MBEDTLS_PK_ECKEY);
+
+        if ((ret = mbedtls_pk_setup(pk, pk_info)) != 0 ||
+            (ret = pk_parse_key_sec1_der(pk,
+                                         pem.buf, pem.buflen,
+                                         f_rng, p_rng)) != 0) {
+            mbedtls_pk_free(pk);
+        }
+
+        mbedtls_pem_free(&pem);
+        return ret;
+    } else if (ret == MBEDTLS_ERR_PEM_PASSWORD_MISMATCH) {
+        return MBEDTLS_ERR_PK_PASSWORD_MISMATCH;
+    } else if (ret == MBEDTLS_ERR_PEM_PASSWORD_REQUIRED) {
+        return MBEDTLS_ERR_PK_PASSWORD_REQUIRED;
+    } else if (ret != MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT) {
+        return ret;
+    }
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+    /* Avoid calling mbedtls_pem_read_buffer() on non-null-terminated string */
+    if (key[keylen - 1] != '\0') {
+        ret = MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT;
+    } else {
+        ret = mbedtls_pem_read_buffer(&pem,
+                                      PEM_BEGIN_PRIVATE_KEY_PKCS8, PEM_END_PRIVATE_KEY_PKCS8,
+                                      key, NULL, 0, &len);
+    }
+    if (ret == 0) {
+        if ((ret = pk_parse_key_pkcs8_unencrypted_der(pk,
+                                                      pem.buf, pem.buflen, f_rng, p_rng)) != 0) {
+            mbedtls_pk_free(pk);
+        }
+
+        mbedtls_pem_free(&pem);
+        return ret;
+    } else if (ret != MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT) {
+        return ret;
+    }
+
+#if defined(MBEDTLS_PKCS12_C) || defined(MBEDTLS_PKCS5_C)
+    /* Avoid calling mbedtls_pem_read_buffer() on non-null-terminated string */
+    if (key[keylen - 1] != '\0') {
+        ret = MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT;
+    } else {
+        ret = mbedtls_pem_read_buffer(&pem,
+                                      PEM_BEGIN_ENCRYPTED_PRIVATE_KEY_PKCS8,
+                                      PEM_END_ENCRYPTED_PRIVATE_KEY_PKCS8,
+                                      key, NULL, 0, &len);
+    }
+    if (ret == 0) {
+        if ((ret = mbedtls_pk_parse_key_pkcs8_encrypted_der(pk, pem.buf, pem.buflen,
+                                                            pwd, pwdlen, f_rng, p_rng)) != 0) {
+            mbedtls_pk_free(pk);
+        }
+
+        mbedtls_pem_free(&pem);
+        return ret;
+    } else if (ret != MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT) {
+        return ret;
+    }
+#endif /* MBEDTLS_PKCS12_C || MBEDTLS_PKCS5_C */
+#else
+    ((void) pwd);
+    ((void) pwdlen);
+#endif /* MBEDTLS_PEM_PARSE_C */
+
+    /*
+     * At this point we only know it's not a PEM formatted key. Could be any
+     * of the known DER encoded private key formats
+     *
+     * We try the different DER format parsers to see if one passes without
+     * error
+     */
+#if defined(MBEDTLS_PKCS12_C) || defined(MBEDTLS_PKCS5_C)
+    if (pwdlen != 0) {
+        unsigned char *key_copy;
+
+        if ((key_copy = mbedtls_calloc(1, keylen)) == NULL) {
+            return MBEDTLS_ERR_PK_ALLOC_FAILED;
+        }
+
+        memcpy(key_copy, key, keylen);
+
+        ret = mbedtls_pk_parse_key_pkcs8_encrypted_der(pk, key_copy, keylen,
+                                                       pwd, pwdlen, f_rng, p_rng);
+
+        mbedtls_zeroize_and_free(key_copy, keylen);
+    }
+
+    if (ret == 0) {
+        return 0;
+    }
+
+    mbedtls_pk_free(pk);
+    mbedtls_pk_init(pk);
+
+    if (ret == MBEDTLS_ERR_PK_PASSWORD_MISMATCH) {
+        return ret;
+    }
+#endif /* MBEDTLS_PKCS12_C || MBEDTLS_PKCS5_C */
+
+    ret = pk_parse_key_pkcs8_unencrypted_der(pk, key, keylen, f_rng, p_rng);
+    if (ret == 0) {
+        return 0;
+    }
+
+    mbedtls_pk_free(pk);
+    mbedtls_pk_init(pk);
+
+#if defined(MBEDTLS_RSA_C)
+
+    pk_info = mbedtls_pk_info_from_type(MBEDTLS_PK_RSA);
+    if (mbedtls_pk_setup(pk, pk_info) == 0 &&
+        mbedtls_rsa_parse_key(mbedtls_pk_rsa(*pk), key, keylen) == 0) {
+        return 0;
+    }
+
+    mbedtls_pk_free(pk);
+    mbedtls_pk_init(pk);
+#endif /* MBEDTLS_RSA_C */
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+    pk_info = mbedtls_pk_info_from_type(MBEDTLS_PK_ECKEY);
+    if (mbedtls_pk_setup(pk, pk_info) == 0 &&
+        pk_parse_key_sec1_der(pk,
+                              key, keylen, f_rng, p_rng) == 0) {
+        return 0;
+    }
+    mbedtls_pk_free(pk);
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+    /* If MBEDTLS_RSA_C is defined but MBEDTLS_PK_HAVE_ECC_KEYS isn't,
+     * it is ok to leave the PK context initialized but not
+     * freed: It is the caller's responsibility to call pk_init()
+     * before calling this function, and to call pk_free()
+     * when it fails. If MBEDTLS_PK_HAVE_ECC_KEYS is defined but MBEDTLS_RSA_C
+     * isn't, this leads to mbedtls_pk_free() being called
+     * twice, once here and once by the caller, but this is
+     * also ok and in line with the mbedtls_pk_free() calls
+     * on failed PEM parsing attempts. */
+
+    return MBEDTLS_ERR_PK_KEY_INVALID_FORMAT;
+}
+
+/*
+ * Parse a public key
+ */
+int mbedtls_pk_parse_public_key(mbedtls_pk_context *ctx,
+                                const unsigned char *key, size_t keylen)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char *p;
+#if defined(MBEDTLS_RSA_C)
+    const mbedtls_pk_info_t *pk_info;
+#endif
+#if defined(MBEDTLS_PEM_PARSE_C)
+    size_t len;
+    mbedtls_pem_context pem;
+#endif
+
+    if (keylen == 0) {
+        return MBEDTLS_ERR_PK_KEY_INVALID_FORMAT;
+    }
+
+#if defined(MBEDTLS_PEM_PARSE_C)
+    mbedtls_pem_init(&pem);
+#if defined(MBEDTLS_RSA_C)
+    /* Avoid calling mbedtls_pem_read_buffer() on non-null-terminated string */
+    if (key[keylen - 1] != '\0') {
+        ret = MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT;
+    } else {
+        ret = mbedtls_pem_read_buffer(&pem,
+                                      PEM_BEGIN_PUBLIC_KEY_RSA, PEM_END_PUBLIC_KEY_RSA,
+                                      key, NULL, 0, &len);
+    }
+
+    if (ret == 0) {
+        p = pem.buf;
+        if ((pk_info = mbedtls_pk_info_from_type(MBEDTLS_PK_RSA)) == NULL) {
+            mbedtls_pem_free(&pem);
+            return MBEDTLS_ERR_PK_UNKNOWN_PK_ALG;
+        }
+
+        if ((ret = mbedtls_pk_setup(ctx, pk_info)) != 0) {
+            mbedtls_pem_free(&pem);
+            return ret;
+        }
+
+        if ((ret = mbedtls_rsa_parse_pubkey(mbedtls_pk_rsa(*ctx), p, pem.buflen)) != 0) {
+            mbedtls_pk_free(ctx);
+        }
+
+        mbedtls_pem_free(&pem);
+        return ret;
+    } else if (ret != MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT) {
+        mbedtls_pem_free(&pem);
+        return ret;
+    }
+#endif /* MBEDTLS_RSA_C */
+
+    /* Avoid calling mbedtls_pem_read_buffer() on non-null-terminated string */
+    if (key[keylen - 1] != '\0') {
+        ret = MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT;
+    } else {
+        ret = mbedtls_pem_read_buffer(&pem,
+                                      PEM_BEGIN_PUBLIC_KEY, PEM_END_PUBLIC_KEY,
+                                      key, NULL, 0, &len);
+    }
+
+    if (ret == 0) {
+        /*
+         * Was PEM encoded
+         */
+        p = pem.buf;
+
+        ret = mbedtls_pk_parse_subpubkey(&p, p + pem.buflen, ctx);
+        mbedtls_pem_free(&pem);
+        return ret;
+    } else if (ret != MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT) {
+        mbedtls_pem_free(&pem);
+        return ret;
+    }
+    mbedtls_pem_free(&pem);
+#endif /* MBEDTLS_PEM_PARSE_C */
+
+#if defined(MBEDTLS_RSA_C)
+    if ((pk_info = mbedtls_pk_info_from_type(MBEDTLS_PK_RSA)) == NULL) {
+        return MBEDTLS_ERR_PK_UNKNOWN_PK_ALG;
+    }
+
+    if ((ret = mbedtls_pk_setup(ctx, pk_info)) != 0) {
+        return ret;
+    }
+
+    p = (unsigned char *) key;
+    ret = mbedtls_rsa_parse_pubkey(mbedtls_pk_rsa(*ctx), p, keylen);
+    if (ret == 0) {
+        return ret;
+    }
+    mbedtls_pk_free(ctx);
+    if (ret != MBEDTLS_ERR_ASN1_UNEXPECTED_TAG) {
+        return ret;
+    }
+#endif /* MBEDTLS_RSA_C */
+    p = (unsigned char *) key;
+
+    ret = mbedtls_pk_parse_subpubkey(&p, p + keylen, ctx);
+
+    return ret;
+}
+
+/***********************************************************************
+ *
+ *      Top-level functions, with filesystem support
+ *
+ **********************************************************************/
+
+#if defined(MBEDTLS_FS_IO)
+/*
+ * Load all data from a file into a given buffer.
+ *
+ * The file is expected to contain either PEM or DER encoded data.
+ * A terminating null byte is always appended. It is included in the announced
+ * length only if the data looks like it is PEM encoded.
+ */
+int mbedtls_pk_load_file(const char *path, unsigned char **buf, size_t *n)
+{
+    FILE *f;
+    long size;
+
+    if ((f = fopen(path, "rb")) == NULL) {
+        return MBEDTLS_ERR_PK_FILE_IO_ERROR;
+    }
+
+    /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */
+    mbedtls_setbuf(f, NULL);
+
+    fseek(f, 0, SEEK_END);
+    if ((size = ftell(f)) == -1) {
+        fclose(f);
+        return MBEDTLS_ERR_PK_FILE_IO_ERROR;
+    }
+    fseek(f, 0, SEEK_SET);
+
+    *n = (size_t) size;
+
+    if (*n + 1 == 0 ||
+        (*buf = mbedtls_calloc(1, *n + 1)) == NULL) {
+        fclose(f);
+        return MBEDTLS_ERR_PK_ALLOC_FAILED;
+    }
+
+    if (fread(*buf, 1, *n, f) != *n) {
+        fclose(f);
+
+        mbedtls_zeroize_and_free(*buf, *n);
+
+        return MBEDTLS_ERR_PK_FILE_IO_ERROR;
+    }
+
+    fclose(f);
+
+    (*buf)[*n] = '\0';
+
+    if (strstr((const char *) *buf, "-----BEGIN ") != NULL) {
+        ++*n;
+    }
+
+    return 0;
+}
+
+/*
+ * Load and parse a private key
+ */
+int mbedtls_pk_parse_keyfile(mbedtls_pk_context *ctx,
+                             const char *path, const char *pwd,
+                             int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t n;
+    unsigned char *buf;
+
+    if ((ret = mbedtls_pk_load_file(path, &buf, &n)) != 0) {
+        return ret;
+    }
+
+    if (pwd == NULL) {
+        ret = mbedtls_pk_parse_key(ctx, buf, n, NULL, 0, f_rng, p_rng);
+    } else {
+        ret = mbedtls_pk_parse_key(ctx, buf, n,
+                                   (const unsigned char *) pwd, strlen(pwd), f_rng, p_rng);
+    }
+
+    mbedtls_zeroize_and_free(buf, n);
+
+    return ret;
+}
+
+/*
+ * Load and parse a public key
+ */
+int mbedtls_pk_parse_public_keyfile(mbedtls_pk_context *ctx, const char *path)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t n;
+    unsigned char *buf;
+
+    if ((ret = mbedtls_pk_load_file(path, &buf, &n)) != 0) {
+        return ret;
+    }
+
+    ret = mbedtls_pk_parse_public_key(ctx, buf, n);
+
+    mbedtls_zeroize_and_free(buf, n);
+
+    return ret;
+}
+#endif /* MBEDTLS_FS_IO */
+
+#endif /* MBEDTLS_PK_PARSE_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/pkwrite.c b/tf-psa-crypto/drivers/builtin/src/pkwrite.c
new file mode 100644
index 0000000..5e009c5
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/pkwrite.c
@@ -0,0 +1,621 @@
+/*
+ *  Public Key layer for writing key files and structures
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PK_WRITE_C)
+
+#include "mbedtls/pk.h"
+#include "mbedtls/asn1write.h"
+#include "mbedtls/oid.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+#include "pk_internal.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_ECP_C)
+#include "mbedtls/bignum.h"
+#include "mbedtls/ecp.h"
+#include "mbedtls/platform_util.h"
+#endif
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+#include "pk_internal.h"
+#endif
+#if defined(MBEDTLS_RSA_C) || defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+#include "pkwrite.h"
+#endif
+#if defined(MBEDTLS_PEM_WRITE_C)
+#include "mbedtls/pem.h"
+#endif
+#if defined(MBEDTLS_RSA_C)
+#include "rsa_internal.h"
+#endif
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+#include "psa/crypto.h"
+#include "psa_util_internal.h"
+#endif
+#include "mbedtls/platform.h"
+
+/* Helpers for properly sizing buffers aimed at holding public keys or
+ * key-pairs based on build symbols. */
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+#define PK_MAX_EC_PUBLIC_KEY_SIZE       PSA_EXPORT_PUBLIC_KEY_MAX_SIZE
+#define PK_MAX_EC_KEY_PAIR_SIZE         MBEDTLS_PSA_MAX_EC_KEY_PAIR_LENGTH
+#elif defined(MBEDTLS_USE_PSA_CRYPTO)
+#define PK_MAX_EC_PUBLIC_KEY_SIZE       PSA_EXPORT_PUBLIC_KEY_MAX_SIZE
+#define PK_MAX_EC_KEY_PAIR_SIZE         MBEDTLS_PSA_MAX_EC_KEY_PAIR_LENGTH
+#else
+#define PK_MAX_EC_PUBLIC_KEY_SIZE       MBEDTLS_ECP_MAX_PT_LEN
+#define PK_MAX_EC_KEY_PAIR_SIZE         MBEDTLS_ECP_MAX_BYTES
+#endif
+
+/******************************************************************************
+ * Internal functions for RSA keys.
+ ******************************************************************************/
+#if defined(MBEDTLS_RSA_C)
+static int pk_write_rsa_der(unsigned char **p, unsigned char *buf,
+                            const mbedtls_pk_context *pk)
+{
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+    if (mbedtls_pk_get_type(pk) == MBEDTLS_PK_OPAQUE) {
+        uint8_t tmp[PSA_EXPORT_KEY_PAIR_MAX_SIZE];
+        size_t len = 0, tmp_len = 0;
+
+        if (psa_export_key(pk->priv_id, tmp, sizeof(tmp), &tmp_len) != PSA_SUCCESS) {
+            return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+        }
+        *p -= tmp_len;
+        memcpy(*p, tmp, tmp_len);
+        len += tmp_len;
+        mbedtls_platform_zeroize(tmp, sizeof(tmp));
+
+        return (int) len;
+    }
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+    return mbedtls_rsa_write_key(mbedtls_pk_rsa(*pk), buf, p);
+}
+#endif /* MBEDTLS_RSA_C */
+
+/******************************************************************************
+ * Internal functions for EC keys.
+ ******************************************************************************/
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+static int pk_write_ec_pubkey(unsigned char **p, unsigned char *start,
+                              const mbedtls_pk_context *pk)
+{
+    size_t len = 0;
+    uint8_t buf[PK_MAX_EC_PUBLIC_KEY_SIZE];
+
+    if (mbedtls_pk_get_type(pk) == MBEDTLS_PK_OPAQUE) {
+        if (psa_export_public_key(pk->priv_id, buf, sizeof(buf), &len) != PSA_SUCCESS) {
+            return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+        }
+    } else {
+        len = pk->pub_raw_len;
+        memcpy(buf, pk->pub_raw, len);
+    }
+
+    if (*p < start || (size_t) (*p - start) < len) {
+        return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+    }
+
+    *p -= len;
+    memcpy(*p, buf, len);
+
+    return (int) len;
+}
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+static int pk_write_ec_pubkey(unsigned char **p, unsigned char *start,
+                              const mbedtls_pk_context *pk)
+{
+    size_t len = 0;
+    unsigned char buf[PK_MAX_EC_PUBLIC_KEY_SIZE];
+    mbedtls_ecp_keypair *ec = mbedtls_pk_ec(*pk);
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+    if (mbedtls_pk_get_type(pk) == MBEDTLS_PK_OPAQUE) {
+        if (psa_export_public_key(pk->priv_id, buf, sizeof(buf), &len) != PSA_SUCCESS) {
+            return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+        }
+        *p -= len;
+        memcpy(*p, buf, len);
+        return (int) len;
+    } else
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+    {
+        if ((ret = mbedtls_ecp_point_write_binary(&ec->grp, &ec->Q,
+                                                  MBEDTLS_ECP_PF_UNCOMPRESSED,
+                                                  &len, buf, sizeof(buf))) != 0) {
+            return ret;
+        }
+    }
+
+    if (*p < start || (size_t) (*p - start) < len) {
+        return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+    }
+
+    *p -= len;
+    memcpy(*p, buf, len);
+
+    return (int) len;
+}
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+
+/*
+ * privateKey  OCTET STRING -- always of length ceil(log2(n)/8)
+ */
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+static int pk_write_ec_private(unsigned char **p, unsigned char *start,
+                               const mbedtls_pk_context *pk)
+{
+    size_t byte_length;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char tmp[PK_MAX_EC_KEY_PAIR_SIZE];
+    psa_status_t status;
+
+    if (mbedtls_pk_get_type(pk) == MBEDTLS_PK_OPAQUE) {
+        status = psa_export_key(pk->priv_id, tmp, sizeof(tmp), &byte_length);
+        if (status != PSA_SUCCESS) {
+            ret = PSA_PK_ECDSA_TO_MBEDTLS_ERR(status);
+            return ret;
+        }
+    } else {
+        status = psa_export_key(pk->priv_id, tmp, sizeof(tmp), &byte_length);
+        if (status != PSA_SUCCESS) {
+            ret = PSA_PK_ECDSA_TO_MBEDTLS_ERR(status);
+            goto exit;
+        }
+    }
+
+    ret = mbedtls_asn1_write_octet_string(p, start, tmp, byte_length);
+exit:
+    mbedtls_platform_zeroize(tmp, sizeof(tmp));
+    return ret;
+}
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+static int pk_write_ec_private(unsigned char **p, unsigned char *start,
+                               const mbedtls_pk_context *pk)
+{
+    size_t byte_length;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char tmp[PK_MAX_EC_KEY_PAIR_SIZE];
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+    psa_status_t status;
+    if (mbedtls_pk_get_type(pk) == MBEDTLS_PK_OPAQUE) {
+        status = psa_export_key(pk->priv_id, tmp, sizeof(tmp), &byte_length);
+        if (status != PSA_SUCCESS) {
+            ret = PSA_PK_ECDSA_TO_MBEDTLS_ERR(status);
+            return ret;
+        }
+    } else
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+    {
+        mbedtls_ecp_keypair *ec = mbedtls_pk_ec_rw(*pk);
+        byte_length = (ec->grp.pbits + 7) / 8;
+
+        ret = mbedtls_ecp_write_key_ext(ec, &byte_length, tmp, sizeof(tmp));
+        if (ret != 0) {
+            goto exit;
+        }
+    }
+    ret = mbedtls_asn1_write_octet_string(p, start, tmp, byte_length);
+exit:
+    mbedtls_platform_zeroize(tmp, sizeof(tmp));
+    return ret;
+}
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+
+/*
+ * ECParameters ::= CHOICE {
+ *   namedCurve         OBJECT IDENTIFIER
+ * }
+ */
+static int pk_write_ec_param(unsigned char **p, unsigned char *start,
+                             mbedtls_ecp_group_id grp_id)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t len = 0;
+    const char *oid;
+    size_t oid_len;
+
+    if ((ret = mbedtls_oid_get_oid_by_ec_grp(grp_id, &oid, &oid_len)) != 0) {
+        return ret;
+    }
+
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_oid(p, start, oid, oid_len));
+
+    return (int) len;
+}
+
+#if defined(MBEDTLS_PK_HAVE_RFC8410_CURVES)
+/*
+ * RFC8410 section 7
+ *
+ * OneAsymmetricKey ::= SEQUENCE {
+ *    version Version,
+ *    privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
+ *    privateKey PrivateKey,
+ *    attributes [0] IMPLICIT Attributes OPTIONAL,
+ *    ...,
+ *    [[2: publicKey [1] IMPLICIT PublicKey OPTIONAL ]],
+ *    ...
+ * }
+ * ...
+ * CurvePrivateKey ::= OCTET STRING
+ */
+static int pk_write_ec_rfc8410_der(unsigned char **p, unsigned char *buf,
+                                   const mbedtls_pk_context *pk)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t len = 0;
+    size_t oid_len = 0;
+    const char *oid;
+    mbedtls_ecp_group_id grp_id;
+
+    /* privateKey */
+    MBEDTLS_ASN1_CHK_ADD(len, pk_write_ec_private(p, buf, pk));
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(p, buf, len));
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(p, buf, MBEDTLS_ASN1_OCTET_STRING));
+
+    grp_id = mbedtls_pk_get_ec_group_id(pk);
+    /* privateKeyAlgorithm */
+    if ((ret = mbedtls_oid_get_oid_by_ec_grp_algid(grp_id, &oid, &oid_len)) != 0) {
+        return ret;
+    }
+    MBEDTLS_ASN1_CHK_ADD(len,
+                         mbedtls_asn1_write_algorithm_identifier_ext(p, buf, oid, oid_len, 0, 0));
+
+    /* version */
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_int(p, buf, 0));
+
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(p, buf, len));
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(p, buf, MBEDTLS_ASN1_CONSTRUCTED |
+                                                     MBEDTLS_ASN1_SEQUENCE));
+
+    return (int) len;
+}
+#endif /* MBEDTLS_PK_HAVE_RFC8410_CURVES */
+
+/*
+ * RFC 5915, or SEC1 Appendix C.4
+ *
+ * ECPrivateKey ::= SEQUENCE {
+ *      version        INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1),
+ *      privateKey     OCTET STRING,
+ *      parameters [0] ECParameters {{ NamedCurve }} OPTIONAL,
+ *      publicKey  [1] BIT STRING OPTIONAL
+ *    }
+ */
+static int pk_write_ec_der(unsigned char **p, unsigned char *buf,
+                           const mbedtls_pk_context *pk)
+{
+    size_t len = 0;
+    int ret;
+    size_t pub_len = 0, par_len = 0;
+    mbedtls_ecp_group_id grp_id;
+
+    /* publicKey */
+    MBEDTLS_ASN1_CHK_ADD(pub_len, pk_write_ec_pubkey(p, buf, pk));
+
+    if (*p - buf < 1) {
+        return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+    }
+    (*p)--;
+    **p = 0;
+    pub_len += 1;
+
+    MBEDTLS_ASN1_CHK_ADD(pub_len, mbedtls_asn1_write_len(p, buf, pub_len));
+    MBEDTLS_ASN1_CHK_ADD(pub_len, mbedtls_asn1_write_tag(p, buf, MBEDTLS_ASN1_BIT_STRING));
+
+    MBEDTLS_ASN1_CHK_ADD(pub_len, mbedtls_asn1_write_len(p, buf, pub_len));
+    MBEDTLS_ASN1_CHK_ADD(pub_len, mbedtls_asn1_write_tag(p, buf,
+                                                         MBEDTLS_ASN1_CONTEXT_SPECIFIC |
+                                                         MBEDTLS_ASN1_CONSTRUCTED | 1));
+    len += pub_len;
+
+    /* parameters */
+    grp_id = mbedtls_pk_get_ec_group_id(pk);
+    MBEDTLS_ASN1_CHK_ADD(par_len, pk_write_ec_param(p, buf, grp_id));
+    MBEDTLS_ASN1_CHK_ADD(par_len, mbedtls_asn1_write_len(p, buf, par_len));
+    MBEDTLS_ASN1_CHK_ADD(par_len, mbedtls_asn1_write_tag(p, buf,
+                                                         MBEDTLS_ASN1_CONTEXT_SPECIFIC |
+                                                         MBEDTLS_ASN1_CONSTRUCTED | 0));
+    len += par_len;
+
+    /* privateKey */
+    MBEDTLS_ASN1_CHK_ADD(len, pk_write_ec_private(p, buf, pk));
+
+    /* version */
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_int(p, buf, 1));
+
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(p, buf, len));
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(p, buf, MBEDTLS_ASN1_CONSTRUCTED |
+                                                     MBEDTLS_ASN1_SEQUENCE));
+
+    return (int) len;
+}
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+/******************************************************************************
+ * Internal functions for Opaque keys.
+ ******************************************************************************/
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+static int pk_write_opaque_pubkey(unsigned char **p, unsigned char *start,
+                                  const mbedtls_pk_context *pk)
+{
+    size_t buffer_size;
+    size_t len = 0;
+
+    if (*p < start) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    buffer_size = (size_t) (*p - start);
+    if (psa_export_public_key(pk->priv_id, start, buffer_size,
+                              &len) != PSA_SUCCESS) {
+        return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+    }
+
+    *p -= len;
+    memmove(*p, start, len);
+
+    return (int) len;
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+/******************************************************************************
+ * Generic helpers
+ ******************************************************************************/
+
+/* Extend the public mbedtls_pk_get_type() by getting key type also in case of
+ * opaque keys. */
+static mbedtls_pk_type_t pk_get_type_ext(const mbedtls_pk_context *pk)
+{
+    mbedtls_pk_type_t pk_type = mbedtls_pk_get_type(pk);
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+    if (pk_type == MBEDTLS_PK_OPAQUE) {
+        psa_key_attributes_t opaque_attrs = PSA_KEY_ATTRIBUTES_INIT;
+        psa_key_type_t opaque_key_type;
+
+        if (psa_get_key_attributes(pk->priv_id, &opaque_attrs) != PSA_SUCCESS) {
+            return MBEDTLS_PK_NONE;
+        }
+        opaque_key_type = psa_get_key_type(&opaque_attrs);
+        psa_reset_key_attributes(&opaque_attrs);
+
+        if (PSA_KEY_TYPE_IS_ECC(opaque_key_type)) {
+            return MBEDTLS_PK_ECKEY;
+        } else if (PSA_KEY_TYPE_IS_RSA(opaque_key_type)) {
+            return MBEDTLS_PK_RSA;
+        } else {
+            return MBEDTLS_PK_NONE;
+        }
+    } else
+#endif
+    return pk_type;
+}
+
+/******************************************************************************
+ * Public functions for writing private/public DER keys.
+ ******************************************************************************/
+int mbedtls_pk_write_pubkey(unsigned char **p, unsigned char *start,
+                            const mbedtls_pk_context *key)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t len = 0;
+
+#if defined(MBEDTLS_RSA_C)
+    if (mbedtls_pk_get_type(key) == MBEDTLS_PK_RSA) {
+        MBEDTLS_ASN1_CHK_ADD(len, mbedtls_rsa_write_pubkey(mbedtls_pk_rsa(*key), start, p));
+    } else
+#endif
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+    if (mbedtls_pk_get_type(key) == MBEDTLS_PK_ECKEY) {
+        MBEDTLS_ASN1_CHK_ADD(len, pk_write_ec_pubkey(p, start, key));
+    } else
+#endif
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+    if (mbedtls_pk_get_type(key) == MBEDTLS_PK_OPAQUE) {
+        MBEDTLS_ASN1_CHK_ADD(len, pk_write_opaque_pubkey(p, start, key));
+    } else
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+    return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+
+    return (int) len;
+}
+
+int mbedtls_pk_write_pubkey_der(const mbedtls_pk_context *key, unsigned char *buf, size_t size)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char *c;
+    int has_par = 1;
+    size_t len = 0, par_len = 0, oid_len = 0;
+    mbedtls_pk_type_t pk_type;
+    const char *oid = NULL;
+
+    if (size == 0) {
+        return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+    }
+
+    c = buf + size;
+
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_pk_write_pubkey(&c, buf, key));
+
+    if (c - buf < 1) {
+        return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+    }
+
+    /*
+     *  SubjectPublicKeyInfo  ::=  SEQUENCE  {
+     *       algorithm            AlgorithmIdentifier,
+     *       subjectPublicKey     BIT STRING }
+     */
+    *--c = 0;
+    len += 1;
+
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(&c, buf, len));
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(&c, buf, MBEDTLS_ASN1_BIT_STRING));
+
+    pk_type = pk_get_type_ext(key);
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+    if (pk_get_type_ext(key) == MBEDTLS_PK_ECKEY) {
+        mbedtls_ecp_group_id ec_grp_id = mbedtls_pk_get_ec_group_id(key);
+        if (MBEDTLS_PK_IS_RFC8410_GROUP_ID(ec_grp_id)) {
+            ret = mbedtls_oid_get_oid_by_ec_grp_algid(ec_grp_id, &oid, &oid_len);
+            if (ret != 0) {
+                return ret;
+            }
+            has_par = 0;
+        } else {
+            MBEDTLS_ASN1_CHK_ADD(par_len, pk_write_ec_param(&c, buf, ec_grp_id));
+        }
+    }
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+    /* At this point oid_len is not null only for EC Montgomery keys. */
+    if (oid_len == 0) {
+        ret = mbedtls_oid_get_oid_by_pk_alg(pk_type, &oid, &oid_len);
+        if (ret != 0) {
+            return ret;
+        }
+    }
+
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_algorithm_identifier_ext(&c, buf, oid, oid_len,
+                                                                          par_len, has_par));
+
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(&c, buf, len));
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(&c, buf, MBEDTLS_ASN1_CONSTRUCTED |
+                                                     MBEDTLS_ASN1_SEQUENCE));
+
+    return (int) len;
+}
+
+int mbedtls_pk_write_key_der(const mbedtls_pk_context *key, unsigned char *buf, size_t size)
+{
+    unsigned char *c;
+
+    if (size == 0) {
+        return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+    }
+
+    c = buf + size;
+
+#if defined(MBEDTLS_RSA_C)
+    if (pk_get_type_ext(key) == MBEDTLS_PK_RSA) {
+        return pk_write_rsa_der(&c, buf, key);
+    } else
+#endif /* MBEDTLS_RSA_C */
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+    if (pk_get_type_ext(key) == MBEDTLS_PK_ECKEY) {
+#if defined(MBEDTLS_PK_HAVE_RFC8410_CURVES)
+        if (mbedtls_pk_is_rfc8410(key)) {
+            return pk_write_ec_rfc8410_der(&c, buf, key);
+        }
+#endif /* MBEDTLS_PK_HAVE_RFC8410_CURVES */
+        return pk_write_ec_der(&c, buf, key);
+    } else
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+    return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+}
+
+/******************************************************************************
+ * Public functions for wrinting private/public PEM keys.
+ ******************************************************************************/
+#if defined(MBEDTLS_PEM_WRITE_C)
+
+#define PUB_DER_MAX_BYTES                                                   \
+    (MBEDTLS_PK_RSA_PUB_DER_MAX_BYTES > MBEDTLS_PK_ECP_PUB_DER_MAX_BYTES ? \
+     MBEDTLS_PK_RSA_PUB_DER_MAX_BYTES : MBEDTLS_PK_ECP_PUB_DER_MAX_BYTES)
+#define PRV_DER_MAX_BYTES                                                   \
+    (MBEDTLS_PK_RSA_PRV_DER_MAX_BYTES > MBEDTLS_PK_ECP_PRV_DER_MAX_BYTES ? \
+     MBEDTLS_PK_RSA_PRV_DER_MAX_BYTES : MBEDTLS_PK_ECP_PRV_DER_MAX_BYTES)
+
+int mbedtls_pk_write_pubkey_pem(const mbedtls_pk_context *key, unsigned char *buf, size_t size)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char *output_buf = NULL;
+    output_buf = mbedtls_calloc(1, PUB_DER_MAX_BYTES);
+    if (output_buf == NULL) {
+        return MBEDTLS_ERR_PK_ALLOC_FAILED;
+    }
+    size_t olen = 0;
+
+    if ((ret = mbedtls_pk_write_pubkey_der(key, output_buf,
+                                           PUB_DER_MAX_BYTES)) < 0) {
+        goto cleanup;
+    }
+
+    if ((ret = mbedtls_pem_write_buffer(PEM_BEGIN_PUBLIC_KEY "\n", PEM_END_PUBLIC_KEY "\n",
+                                        output_buf + PUB_DER_MAX_BYTES - ret,
+                                        ret, buf, size, &olen)) != 0) {
+        goto cleanup;
+    }
+
+    ret = 0;
+cleanup:
+    mbedtls_free(output_buf);
+    return ret;
+}
+
+int mbedtls_pk_write_key_pem(const mbedtls_pk_context *key, unsigned char *buf, size_t size)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char *output_buf = NULL;
+    output_buf = mbedtls_calloc(1, PRV_DER_MAX_BYTES);
+    if (output_buf == NULL) {
+        return MBEDTLS_ERR_PK_ALLOC_FAILED;
+    }
+    const char *begin, *end;
+    size_t olen = 0;
+
+    if ((ret = mbedtls_pk_write_key_der(key, output_buf, PRV_DER_MAX_BYTES)) < 0) {
+        goto cleanup;
+    }
+
+#if defined(MBEDTLS_RSA_C)
+    if (pk_get_type_ext(key) == MBEDTLS_PK_RSA) {
+        begin = PEM_BEGIN_PRIVATE_KEY_RSA "\n";
+        end = PEM_END_PRIVATE_KEY_RSA "\n";
+    } else
+#endif
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+    if (pk_get_type_ext(key) == MBEDTLS_PK_ECKEY) {
+        if (mbedtls_pk_is_rfc8410(key)) {
+            begin = PEM_BEGIN_PRIVATE_KEY_PKCS8 "\n";
+            end = PEM_END_PRIVATE_KEY_PKCS8 "\n";
+        } else {
+            begin = PEM_BEGIN_PRIVATE_KEY_EC "\n";
+            end = PEM_END_PRIVATE_KEY_EC "\n";
+        }
+    } else
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+    {
+        ret = MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+        goto cleanup;
+    }
+
+    if ((ret = mbedtls_pem_write_buffer(begin, end,
+                                        output_buf + PRV_DER_MAX_BYTES - ret,
+                                        ret, buf, size, &olen)) != 0) {
+        goto cleanup;
+    }
+
+    ret = 0;
+cleanup:
+    mbedtls_zeroize_and_free(output_buf, PRV_DER_MAX_BYTES);
+    return ret;
+}
+#endif /* MBEDTLS_PEM_WRITE_C */
+
+#endif /* MBEDTLS_PK_WRITE_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/pkwrite.h b/tf-psa-crypto/drivers/builtin/src/pkwrite.h
new file mode 100644
index 0000000..01dc3d2
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/pkwrite.h
@@ -0,0 +1,121 @@
+/**
+ * \file pkwrite.h
+ *
+ * \brief Internal defines shared by the PK write module
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_PK_WRITE_H
+#define MBEDTLS_PK_WRITE_H
+
+#include "mbedtls/build_info.h"
+
+#include "mbedtls/pk.h"
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+#include "psa/crypto.h"
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+/*
+ * Max sizes of key per types. Shown as tag + len (+ content).
+ */
+
+#if defined(MBEDTLS_RSA_C)
+/*
+ * RSA public keys:
+ *  SubjectPublicKeyInfo  ::=  SEQUENCE  {          1 + 3
+ *       algorithm            AlgorithmIdentifier,  1 + 1 (sequence)
+ *                                                + 1 + 1 + 9 (rsa oid)
+ *                                                + 1 + 1 (params null)
+ *       subjectPublicKey     BIT STRING }          1 + 3 + (1 + below)
+ *  RSAPublicKey ::= SEQUENCE {                     1 + 3
+ *      modulus           INTEGER,  -- n            1 + 3 + MPI_MAX + 1
+ *      publicExponent    INTEGER   -- e            1 + 3 + MPI_MAX + 1
+ *  }
+ */
+#define MBEDTLS_PK_RSA_PUB_DER_MAX_BYTES    (38 + 2 * MBEDTLS_MPI_MAX_SIZE)
+
+/*
+ * RSA private keys:
+ *  RSAPrivateKey ::= SEQUENCE {                    1 + 3
+ *      version           Version,                  1 + 1 + 1
+ *      modulus           INTEGER,                  1 + 3 + MPI_MAX + 1
+ *      publicExponent    INTEGER,                  1 + 3 + MPI_MAX + 1
+ *      privateExponent   INTEGER,                  1 + 3 + MPI_MAX + 1
+ *      prime1            INTEGER,                  1 + 3 + MPI_MAX / 2 + 1
+ *      prime2            INTEGER,                  1 + 3 + MPI_MAX / 2 + 1
+ *      exponent1         INTEGER,                  1 + 3 + MPI_MAX / 2 + 1
+ *      exponent2         INTEGER,                  1 + 3 + MPI_MAX / 2 + 1
+ *      coefficient       INTEGER,                  1 + 3 + MPI_MAX / 2 + 1
+ *      otherPrimeInfos   OtherPrimeInfos OPTIONAL  0 (not supported)
+ *  }
+ */
+#define MBEDTLS_MPI_MAX_SIZE_2  (MBEDTLS_MPI_MAX_SIZE / 2 + \
+                                 MBEDTLS_MPI_MAX_SIZE % 2)
+#define MBEDTLS_PK_RSA_PRV_DER_MAX_BYTES    (47 + 3 * MBEDTLS_MPI_MAX_SIZE \
+                                             + 5 * MBEDTLS_MPI_MAX_SIZE_2)
+
+#else /* MBEDTLS_RSA_C */
+
+#define MBEDTLS_PK_RSA_PUB_DER_MAX_BYTES   0
+#define MBEDTLS_PK_RSA_PRV_DER_MAX_BYTES   0
+
+#endif /* MBEDTLS_RSA_C */
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+
+/* Find the maximum number of bytes necessary to store an EC point. When USE_PSA
+ * is defined this means looking for the maximum between PSA and built-in
+ * supported curves. */
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+#define MBEDTLS_PK_MAX_ECC_BYTES   (PSA_BITS_TO_BYTES(PSA_VENDOR_ECC_MAX_CURVE_BITS) > \
+                                    MBEDTLS_ECP_MAX_BYTES ? \
+                                    PSA_BITS_TO_BYTES(PSA_VENDOR_ECC_MAX_CURVE_BITS) : \
+                                    MBEDTLS_ECP_MAX_BYTES)
+#else /* MBEDTLS_USE_PSA_CRYPTO */
+#define MBEDTLS_PK_MAX_ECC_BYTES   MBEDTLS_ECP_MAX_BYTES
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+/*
+ * EC public keys:
+ *  SubjectPublicKeyInfo  ::=  SEQUENCE  {      1 + 2
+ *    algorithm         AlgorithmIdentifier,    1 + 1 (sequence)
+ *                                            + 1 + 1 + 7 (ec oid)
+ *                                            + 1 + 1 + 9 (namedCurve oid)
+ *    subjectPublicKey  BIT STRING              1 + 2 + 1               [1]
+ *                                            + 1 (point format)        [1]
+ *                                            + 2 * ECP_MAX (coords)    [1]
+ *  }
+ */
+#define MBEDTLS_PK_ECP_PUB_DER_MAX_BYTES    (30 + 2 * MBEDTLS_PK_MAX_ECC_BYTES)
+
+/*
+ * EC private keys:
+ * ECPrivateKey ::= SEQUENCE {                  1 + 2
+ *      version        INTEGER ,                1 + 1 + 1
+ *      privateKey     OCTET STRING,            1 + 1 + ECP_MAX
+ *      parameters [0] ECParameters OPTIONAL,   1 + 1 + (1 + 1 + 9)
+ *      publicKey  [1] BIT STRING OPTIONAL      1 + 2 + [1] above
+ *    }
+ */
+#define MBEDTLS_PK_ECP_PRV_DER_MAX_BYTES    (29 + 3 * MBEDTLS_PK_MAX_ECC_BYTES)
+
+#else /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+#define MBEDTLS_PK_ECP_PUB_DER_MAX_BYTES   0
+#define MBEDTLS_PK_ECP_PRV_DER_MAX_BYTES   0
+
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+/* Define the maximum available public key DER length based on the supported
+ * key types (EC and/or RSA). */
+#if (MBEDTLS_PK_RSA_PUB_DER_MAX_BYTES > MBEDTLS_PK_ECP_PUB_DER_MAX_BYTES)
+#define MBEDTLS_PK_WRITE_PUBKEY_MAX_SIZE    MBEDTLS_PK_RSA_PUB_DER_MAX_BYTES
+#else
+#define MBEDTLS_PK_WRITE_PUBKEY_MAX_SIZE    MBEDTLS_PK_ECP_PUB_DER_MAX_BYTES
+#endif
+
+#endif /* MBEDTLS_PK_WRITE_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/platform.c b/tf-psa-crypto/drivers/builtin/src/platform.c
new file mode 100644
index 0000000..890c4cb
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/platform.c
@@ -0,0 +1,402 @@
+/*
+ *  Platform abstraction layer
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PLATFORM_C)
+
+#include "mbedtls/platform.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+/* The compile time configuration of memory allocation via the macros
+ * MBEDTLS_PLATFORM_{FREE/CALLOC}_MACRO takes precedence over the runtime
+ * configuration via mbedtls_platform_set_calloc_free(). So, omit everything
+ * related to the latter if MBEDTLS_PLATFORM_{FREE/CALLOC}_MACRO are defined. */
+#if defined(MBEDTLS_PLATFORM_MEMORY) &&                 \
+    !(defined(MBEDTLS_PLATFORM_CALLOC_MACRO) &&        \
+    defined(MBEDTLS_PLATFORM_FREE_MACRO))
+
+#if !defined(MBEDTLS_PLATFORM_STD_CALLOC)
+static void *platform_calloc_uninit(size_t n, size_t size)
+{
+    ((void) n);
+    ((void) size);
+    return NULL;
+}
+
+#define MBEDTLS_PLATFORM_STD_CALLOC   platform_calloc_uninit
+#endif /* !MBEDTLS_PLATFORM_STD_CALLOC */
+
+#if !defined(MBEDTLS_PLATFORM_STD_FREE)
+static void platform_free_uninit(void *ptr)
+{
+    ((void) ptr);
+}
+
+#define MBEDTLS_PLATFORM_STD_FREE     platform_free_uninit
+#endif /* !MBEDTLS_PLATFORM_STD_FREE */
+
+static void * (*mbedtls_calloc_func)(size_t, size_t) = MBEDTLS_PLATFORM_STD_CALLOC;
+static void (*mbedtls_free_func)(void *) = MBEDTLS_PLATFORM_STD_FREE;
+
+void *mbedtls_calloc(size_t nmemb, size_t size)
+{
+    return (*mbedtls_calloc_func)(nmemb, size);
+}
+
+void mbedtls_free(void *ptr)
+{
+    (*mbedtls_free_func)(ptr);
+}
+
+int mbedtls_platform_set_calloc_free(void *(*calloc_func)(size_t, size_t),
+                                     void (*free_func)(void *))
+{
+    mbedtls_calloc_func = calloc_func;
+    mbedtls_free_func = free_func;
+    return 0;
+}
+#endif /* MBEDTLS_PLATFORM_MEMORY &&
+          !( defined(MBEDTLS_PLATFORM_CALLOC_MACRO) &&
+             defined(MBEDTLS_PLATFORM_FREE_MACRO) ) */
+
+#if defined(MBEDTLS_PLATFORM_HAS_NON_CONFORMING_SNPRINTF)
+#include <stdarg.h>
+int mbedtls_platform_win32_snprintf(char *s, size_t n, const char *fmt, ...)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    va_list argp;
+
+    va_start(argp, fmt);
+    ret = mbedtls_vsnprintf(s, n, fmt, argp);
+    va_end(argp);
+
+    return ret;
+}
+#endif
+
+#if defined(MBEDTLS_PLATFORM_SNPRINTF_ALT)
+#if !defined(MBEDTLS_PLATFORM_STD_SNPRINTF)
+/*
+ * Make dummy function to prevent NULL pointer dereferences
+ */
+static int platform_snprintf_uninit(char *s, size_t n,
+                                    const char *format, ...)
+{
+    ((void) s);
+    ((void) n);
+    ((void) format);
+    return 0;
+}
+
+#define MBEDTLS_PLATFORM_STD_SNPRINTF    platform_snprintf_uninit
+#endif /* !MBEDTLS_PLATFORM_STD_SNPRINTF */
+
+int (*mbedtls_snprintf)(char *s, size_t n,
+                        const char *format,
+                        ...) = MBEDTLS_PLATFORM_STD_SNPRINTF;
+
+int mbedtls_platform_set_snprintf(int (*snprintf_func)(char *s, size_t n,
+                                                       const char *format,
+                                                       ...))
+{
+    mbedtls_snprintf = snprintf_func;
+    return 0;
+}
+#endif /* MBEDTLS_PLATFORM_SNPRINTF_ALT */
+
+#if defined(MBEDTLS_PLATFORM_HAS_NON_CONFORMING_VSNPRINTF)
+#include <stdarg.h>
+int mbedtls_platform_win32_vsnprintf(char *s, size_t n, const char *fmt, va_list arg)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    /* Avoid calling the invalid parameter handler by checking ourselves */
+    if (s == NULL || n == 0 || fmt == NULL) {
+        return -1;
+    }
+
+#if defined(_TRUNCATE)
+    ret = vsnprintf_s(s, n, _TRUNCATE, fmt, arg);
+#else
+    ret = vsnprintf(s, n, fmt, arg);
+    if (ret < 0 || (size_t) ret == n) {
+        s[n-1] = '\0';
+        ret = -1;
+    }
+#endif
+
+    return ret;
+}
+#endif
+
+#if defined(MBEDTLS_PLATFORM_VSNPRINTF_ALT)
+#if !defined(MBEDTLS_PLATFORM_STD_VSNPRINTF)
+/*
+ * Make dummy function to prevent NULL pointer dereferences
+ */
+static int platform_vsnprintf_uninit(char *s, size_t n,
+                                     const char *format, va_list arg)
+{
+    ((void) s);
+    ((void) n);
+    ((void) format);
+    ((void) arg);
+    return -1;
+}
+
+#define MBEDTLS_PLATFORM_STD_VSNPRINTF    platform_vsnprintf_uninit
+#endif /* !MBEDTLS_PLATFORM_STD_VSNPRINTF */
+
+int (*mbedtls_vsnprintf)(char *s, size_t n,
+                         const char *format,
+                         va_list arg) = MBEDTLS_PLATFORM_STD_VSNPRINTF;
+
+int mbedtls_platform_set_vsnprintf(int (*vsnprintf_func)(char *s, size_t n,
+                                                         const char *format,
+                                                         va_list arg))
+{
+    mbedtls_vsnprintf = vsnprintf_func;
+    return 0;
+}
+#endif /* MBEDTLS_PLATFORM_VSNPRINTF_ALT */
+
+#if defined(MBEDTLS_PLATFORM_PRINTF_ALT)
+#if !defined(MBEDTLS_PLATFORM_STD_PRINTF)
+/*
+ * Make dummy function to prevent NULL pointer dereferences
+ */
+static int platform_printf_uninit(const char *format, ...)
+{
+    ((void) format);
+    return 0;
+}
+
+#define MBEDTLS_PLATFORM_STD_PRINTF    platform_printf_uninit
+#endif /* !MBEDTLS_PLATFORM_STD_PRINTF */
+
+int (*mbedtls_printf)(const char *, ...) = MBEDTLS_PLATFORM_STD_PRINTF;
+
+int mbedtls_platform_set_printf(int (*printf_func)(const char *, ...))
+{
+    mbedtls_printf = printf_func;
+    return 0;
+}
+#endif /* MBEDTLS_PLATFORM_PRINTF_ALT */
+
+#if defined(MBEDTLS_PLATFORM_FPRINTF_ALT)
+#if !defined(MBEDTLS_PLATFORM_STD_FPRINTF)
+/*
+ * Make dummy function to prevent NULL pointer dereferences
+ */
+static int platform_fprintf_uninit(FILE *stream, const char *format, ...)
+{
+    ((void) stream);
+    ((void) format);
+    return 0;
+}
+
+#define MBEDTLS_PLATFORM_STD_FPRINTF   platform_fprintf_uninit
+#endif /* !MBEDTLS_PLATFORM_STD_FPRINTF */
+
+int (*mbedtls_fprintf)(FILE *, const char *, ...) =
+    MBEDTLS_PLATFORM_STD_FPRINTF;
+
+int mbedtls_platform_set_fprintf(int (*fprintf_func)(FILE *, const char *, ...))
+{
+    mbedtls_fprintf = fprintf_func;
+    return 0;
+}
+#endif /* MBEDTLS_PLATFORM_FPRINTF_ALT */
+
+#if defined(MBEDTLS_PLATFORM_SETBUF_ALT)
+#if !defined(MBEDTLS_PLATFORM_STD_SETBUF)
+/*
+ * Make dummy function to prevent NULL pointer dereferences
+ */
+static void platform_setbuf_uninit(FILE *stream, char *buf)
+{
+    ((void) stream);
+    ((void) buf);
+}
+
+#define MBEDTLS_PLATFORM_STD_SETBUF   platform_setbuf_uninit
+#endif /* !MBEDTLS_PLATFORM_STD_SETBUF */
+void (*mbedtls_setbuf)(FILE *stream, char *buf) = MBEDTLS_PLATFORM_STD_SETBUF;
+
+int mbedtls_platform_set_setbuf(void (*setbuf_func)(FILE *stream, char *buf))
+{
+    mbedtls_setbuf = setbuf_func;
+    return 0;
+}
+#endif /* MBEDTLS_PLATFORM_SETBUF_ALT */
+
+#if defined(MBEDTLS_PLATFORM_EXIT_ALT)
+#if !defined(MBEDTLS_PLATFORM_STD_EXIT)
+/*
+ * Make dummy function to prevent NULL pointer dereferences
+ */
+static void platform_exit_uninit(int status)
+{
+    ((void) status);
+}
+
+#define MBEDTLS_PLATFORM_STD_EXIT   platform_exit_uninit
+#endif /* !MBEDTLS_PLATFORM_STD_EXIT */
+
+void (*mbedtls_exit)(int status) = MBEDTLS_PLATFORM_STD_EXIT;
+
+int mbedtls_platform_set_exit(void (*exit_func)(int status))
+{
+    mbedtls_exit = exit_func;
+    return 0;
+}
+#endif /* MBEDTLS_PLATFORM_EXIT_ALT */
+
+#if defined(MBEDTLS_HAVE_TIME)
+
+#if defined(MBEDTLS_PLATFORM_TIME_ALT)
+#if !defined(MBEDTLS_PLATFORM_STD_TIME)
+/*
+ * Make dummy function to prevent NULL pointer dereferences
+ */
+static mbedtls_time_t platform_time_uninit(mbedtls_time_t *timer)
+{
+    ((void) timer);
+    return 0;
+}
+
+#define MBEDTLS_PLATFORM_STD_TIME   platform_time_uninit
+#endif /* !MBEDTLS_PLATFORM_STD_TIME */
+
+mbedtls_time_t (*mbedtls_time)(mbedtls_time_t *timer) = MBEDTLS_PLATFORM_STD_TIME;
+
+int mbedtls_platform_set_time(mbedtls_time_t (*time_func)(mbedtls_time_t *timer))
+{
+    mbedtls_time = time_func;
+    return 0;
+}
+#endif /* MBEDTLS_PLATFORM_TIME_ALT */
+
+#endif /* MBEDTLS_HAVE_TIME */
+
+#if defined(MBEDTLS_ENTROPY_NV_SEED)
+#if !defined(MBEDTLS_PLATFORM_NO_STD_FUNCTIONS) && defined(MBEDTLS_FS_IO)
+/* Default implementations for the platform independent seed functions use
+ * standard libc file functions to read from and write to a pre-defined filename
+ */
+int mbedtls_platform_std_nv_seed_read(unsigned char *buf, size_t buf_len)
+{
+    FILE *file;
+    size_t n;
+
+    if ((file = fopen(MBEDTLS_PLATFORM_STD_NV_SEED_FILE, "rb")) == NULL) {
+        return -1;
+    }
+
+    /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */
+    mbedtls_setbuf(file, NULL);
+
+    if ((n = fread(buf, 1, buf_len, file)) != buf_len) {
+        fclose(file);
+        mbedtls_platform_zeroize(buf, buf_len);
+        return -1;
+    }
+
+    fclose(file);
+    return (int) n;
+}
+
+int mbedtls_platform_std_nv_seed_write(unsigned char *buf, size_t buf_len)
+{
+    FILE *file;
+    size_t n;
+
+    if ((file = fopen(MBEDTLS_PLATFORM_STD_NV_SEED_FILE, "w")) == NULL) {
+        return -1;
+    }
+
+    /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */
+    mbedtls_setbuf(file, NULL);
+
+    if ((n = fwrite(buf, 1, buf_len, file)) != buf_len) {
+        fclose(file);
+        return -1;
+    }
+
+    fclose(file);
+    return (int) n;
+}
+#endif /* MBEDTLS_PLATFORM_NO_STD_FUNCTIONS */
+
+#if defined(MBEDTLS_PLATFORM_NV_SEED_ALT)
+#if !defined(MBEDTLS_PLATFORM_STD_NV_SEED_READ)
+/*
+ * Make dummy function to prevent NULL pointer dereferences
+ */
+static int platform_nv_seed_read_uninit(unsigned char *buf, size_t buf_len)
+{
+    ((void) buf);
+    ((void) buf_len);
+    return -1;
+}
+
+#define MBEDTLS_PLATFORM_STD_NV_SEED_READ   platform_nv_seed_read_uninit
+#endif /* !MBEDTLS_PLATFORM_STD_NV_SEED_READ */
+
+#if !defined(MBEDTLS_PLATFORM_STD_NV_SEED_WRITE)
+/*
+ * Make dummy function to prevent NULL pointer dereferences
+ */
+static int platform_nv_seed_write_uninit(unsigned char *buf, size_t buf_len)
+{
+    ((void) buf);
+    ((void) buf_len);
+    return -1;
+}
+
+#define MBEDTLS_PLATFORM_STD_NV_SEED_WRITE   platform_nv_seed_write_uninit
+#endif /* !MBEDTLS_PLATFORM_STD_NV_SEED_WRITE */
+
+int (*mbedtls_nv_seed_read)(unsigned char *buf, size_t buf_len) =
+    MBEDTLS_PLATFORM_STD_NV_SEED_READ;
+int (*mbedtls_nv_seed_write)(unsigned char *buf, size_t buf_len) =
+    MBEDTLS_PLATFORM_STD_NV_SEED_WRITE;
+
+int mbedtls_platform_set_nv_seed(
+    int (*nv_seed_read_func)(unsigned char *buf, size_t buf_len),
+    int (*nv_seed_write_func)(unsigned char *buf, size_t buf_len))
+{
+    mbedtls_nv_seed_read = nv_seed_read_func;
+    mbedtls_nv_seed_write = nv_seed_write_func;
+    return 0;
+}
+#endif /* MBEDTLS_PLATFORM_NV_SEED_ALT */
+#endif /* MBEDTLS_ENTROPY_NV_SEED */
+
+#if !defined(MBEDTLS_PLATFORM_SETUP_TEARDOWN_ALT)
+/*
+ * Placeholder platform setup that does nothing by default
+ */
+int mbedtls_platform_setup(mbedtls_platform_context *ctx)
+{
+    (void) ctx;
+
+    return 0;
+}
+
+/*
+ * Placeholder platform teardown that does nothing by default
+ */
+void mbedtls_platform_teardown(mbedtls_platform_context *ctx)
+{
+    (void) ctx;
+}
+#endif /* MBEDTLS_PLATFORM_SETUP_TEARDOWN_ALT */
+
+#endif /* MBEDTLS_PLATFORM_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/platform_util.c b/tf-psa-crypto/drivers/builtin/src/platform_util.c
new file mode 100644
index 0000000..0741bf5
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/platform_util.c
@@ -0,0 +1,263 @@
+/*
+ * Common and shared functions used by multiple modules in the Mbed TLS
+ * library.
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * Ensure gmtime_r is available even with -std=c99; must be defined before
+ * mbedtls_config.h, which pulls in glibc's features.h. Harmless on other platforms
+ * except OpenBSD, where it stops us accessing explicit_bzero.
+ */
+#if !defined(_POSIX_C_SOURCE) && !defined(__OpenBSD__)
+#define _POSIX_C_SOURCE 200112L
+#endif
+
+#if !defined(_GNU_SOURCE)
+/* Clang requires this to get support for explicit_bzero */
+#define _GNU_SOURCE
+#endif
+
+#include "common.h"
+
+#include "mbedtls/platform_util.h"
+#include "mbedtls/platform.h"
+#include "mbedtls/threading.h"
+
+#include <stddef.h>
+
+#ifndef __STDC_WANT_LIB_EXT1__
+#define __STDC_WANT_LIB_EXT1__ 1 /* Ask for the C11 gmtime_s() and memset_s() if available */
+#endif
+#include <string.h>
+
+#if defined(_WIN32)
+#include <windows.h>
+#endif
+
+// Detect platforms known to support explicit_bzero()
+#if defined(__GLIBC__) && (__GLIBC__ >= 2) && (__GLIBC_MINOR__ >= 25)
+#define MBEDTLS_PLATFORM_HAS_EXPLICIT_BZERO 1
+#elif (defined(__FreeBSD__) && (__FreeBSD_version >= 1100037)) || defined(__OpenBSD__)
+#define MBEDTLS_PLATFORM_HAS_EXPLICIT_BZERO 1
+#endif
+
+#if !defined(MBEDTLS_PLATFORM_ZEROIZE_ALT)
+
+#undef HAVE_MEMORY_SANITIZER
+#if defined(__has_feature)
+#if __has_feature(memory_sanitizer)
+#include <sanitizer/msan_interface.h>
+#define HAVE_MEMORY_SANITIZER
+#endif
+#endif
+
+/*
+ * Where possible, we try to detect the presence of a platform-provided
+ * secure memset, such as explicit_bzero(), that is safe against being optimized
+ * out, and use that.
+ *
+ * For other platforms, we provide an implementation that aims not to be
+ * optimized out by the compiler.
+ *
+ * This implementation for mbedtls_platform_zeroize() was inspired from Colin
+ * Percival's blog article at:
+ *
+ * http://www.daemonology.net/blog/2014-09-04-how-to-zero-a-buffer.html
+ *
+ * It uses a volatile function pointer to the standard memset(). Because the
+ * pointer is volatile the compiler expects it to change at
+ * any time and will not optimize out the call that could potentially perform
+ * other operations on the input buffer instead of just setting it to 0.
+ * Nevertheless, as pointed out by davidtgoldblatt on Hacker News
+ * (refer to http://www.daemonology.net/blog/2014-09-05-erratum.html for
+ * details), optimizations of the following form are still possible:
+ *
+ * if (memset_func != memset)
+ *     memset_func(buf, 0, len);
+ *
+ * Note that it is extremely difficult to guarantee that
+ * the memset() call will not be optimized out by aggressive compilers
+ * in a portable way. For this reason, Mbed TLS also provides the configuration
+ * option MBEDTLS_PLATFORM_ZEROIZE_ALT, which allows users to configure
+ * mbedtls_platform_zeroize() to use a suitable implementation for their
+ * platform and needs.
+ */
+#if !defined(MBEDTLS_PLATFORM_HAS_EXPLICIT_BZERO) && !(defined(__STDC_LIB_EXT1__) && \
+    !defined(__IAR_SYSTEMS_ICC__)) \
+    && !defined(_WIN32)
+static void *(*const volatile memset_func)(void *, int, size_t) = memset;
+#endif
+
+void mbedtls_platform_zeroize(void *buf, size_t len)
+{
+    if (len > 0) {
+#if defined(MBEDTLS_PLATFORM_HAS_EXPLICIT_BZERO)
+        explicit_bzero(buf, len);
+#if defined(HAVE_MEMORY_SANITIZER)
+        /* You'd think that Msan would recognize explicit_bzero() as
+         * equivalent to bzero(), but it actually doesn't on several
+         * platforms, including Linux (Ubuntu 20.04).
+         * https://github.com/google/sanitizers/issues/1507
+         * https://github.com/openssh/openssh-portable/commit/74433a19bb6f4cef607680fa4d1d7d81ca3826aa
+         */
+        __msan_unpoison(buf, len);
+#endif
+#elif defined(__STDC_LIB_EXT1__) && !defined(__IAR_SYSTEMS_ICC__)
+        memset_s(buf, len, 0, len);
+#elif defined(_WIN32)
+        SecureZeroMemory(buf, len);
+#else
+        memset_func(buf, 0, len);
+#endif
+
+#if defined(__GNUC__)
+        /* For clang and recent gcc, pretend that we have some assembly that reads the
+         * zero'd memory as an additional protection against being optimised away. */
+#if defined(__clang__) || (__GNUC__ >= 10)
+#if defined(__clang__)
+#pragma clang diagnostic push
+#pragma clang diagnostic ignored "-Wvla"
+#elif defined(MBEDTLS_COMPILER_IS_GCC)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wvla"
+#endif
+        asm volatile ("" : : "m" (*(char (*)[len]) buf) :);
+#if defined(__clang__)
+#pragma clang diagnostic pop
+#elif defined(MBEDTLS_COMPILER_IS_GCC)
+#pragma GCC diagnostic pop
+#endif
+#endif
+#endif
+    }
+}
+#endif /* MBEDTLS_PLATFORM_ZEROIZE_ALT */
+
+void mbedtls_zeroize_and_free(void *buf, size_t len)
+{
+    if (buf != NULL) {
+        mbedtls_platform_zeroize(buf, len);
+    }
+
+    mbedtls_free(buf);
+}
+
+#if defined(MBEDTLS_HAVE_TIME_DATE) && !defined(MBEDTLS_PLATFORM_GMTIME_R_ALT)
+#include <time.h>
+#if !defined(_WIN32) && (defined(unix) || \
+    defined(__unix) || defined(__unix__) || (defined(__APPLE__) && \
+    defined(__MACH__)) || defined__midipix__)
+#include <unistd.h>
+#endif /* !_WIN32 && (unix || __unix || __unix__ ||
+        * (__APPLE__ && __MACH__) || __midipix__) */
+
+#if !((defined(_POSIX_VERSION) && _POSIX_VERSION >= 200809L) ||     \
+    (defined(_POSIX_THREAD_SAFE_FUNCTIONS) &&                     \
+    _POSIX_THREAD_SAFE_FUNCTIONS >= 200112L))
+/*
+ * This is a convenience shorthand macro to avoid checking the long
+ * preprocessor conditions above. Ideally, we could expose this macro in
+ * platform_util.h and simply use it in platform_util.c, threading.c and
+ * threading.h. However, this macro is not part of the Mbed TLS public API, so
+ * we keep it private by only defining it in this file
+ */
+#if !(defined(_WIN32) && !defined(EFIX64) && !defined(EFI32)) || \
+    (defined(__MINGW32__) && !defined(__MINGW64_VERSION_MAJOR))
+#define PLATFORM_UTIL_USE_GMTIME
+#endif
+
+#endif /* !( ( defined(_POSIX_VERSION) && _POSIX_VERSION >= 200809L ) || \
+             ( defined(_POSIX_THREAD_SAFE_FUNCTIONS ) && \
+                _POSIX_THREAD_SAFE_FUNCTIONS >= 200112L ) ) */
+
+struct tm *mbedtls_platform_gmtime_r(const mbedtls_time_t *tt,
+                                     struct tm *tm_buf)
+{
+#if defined(_WIN32) && !defined(PLATFORM_UTIL_USE_GMTIME)
+#if defined(__STDC_LIB_EXT1__)
+    return (gmtime_s(tt, tm_buf) == 0) ? NULL : tm_buf;
+#else
+    /* MSVC and mingw64 argument order and return value are inconsistent with the C11 standard */
+    return (gmtime_s(tm_buf, tt) == 0) ? tm_buf : NULL;
+#endif
+#elif !defined(PLATFORM_UTIL_USE_GMTIME)
+    return gmtime_r(tt, tm_buf);
+#else
+    struct tm *lt;
+
+#if defined(MBEDTLS_THREADING_C)
+    if (mbedtls_mutex_lock(&mbedtls_threading_gmtime_mutex) != 0) {
+        return NULL;
+    }
+#endif /* MBEDTLS_THREADING_C */
+
+    lt = gmtime(tt);
+
+    if (lt != NULL) {
+        memcpy(tm_buf, lt, sizeof(struct tm));
+    }
+
+#if defined(MBEDTLS_THREADING_C)
+    if (mbedtls_mutex_unlock(&mbedtls_threading_gmtime_mutex) != 0) {
+        return NULL;
+    }
+#endif /* MBEDTLS_THREADING_C */
+
+    return (lt == NULL) ? NULL : tm_buf;
+#endif /* _WIN32 && !EFIX64 && !EFI32 */
+}
+#endif /* MBEDTLS_HAVE_TIME_DATE && MBEDTLS_PLATFORM_GMTIME_R_ALT */
+
+#if defined(MBEDTLS_TEST_HOOKS)
+void (*mbedtls_test_hook_test_fail)(const char *, int, const char *);
+#endif /* MBEDTLS_TEST_HOOKS */
+
+#if defined(MBEDTLS_HAVE_TIME) && !defined(MBEDTLS_PLATFORM_MS_TIME_ALT)
+
+#include <time.h>
+#if !defined(_WIN32) && \
+    (defined(unix) || defined(__unix) || defined(__unix__) || \
+    (defined(__APPLE__) && defined(__MACH__)) || defined(__HAIKU__) || defined(__midipix__))
+#include <unistd.h>
+#endif \
+    /* !_WIN32 && (unix || __unix || __unix__ || (__APPLE__ && __MACH__) || __HAIKU__ || __midipix__) */
+#if (defined(_POSIX_VERSION) && _POSIX_VERSION >= 199309L) || defined(__HAIKU__)
+mbedtls_ms_time_t mbedtls_ms_time(void)
+{
+    int ret;
+    struct timespec tv;
+    mbedtls_ms_time_t current_ms;
+
+#if defined(__linux__) && defined(CLOCK_BOOTTIME) || defined(__midipix__)
+    ret = clock_gettime(CLOCK_BOOTTIME, &tv);
+#else
+    ret = clock_gettime(CLOCK_MONOTONIC, &tv);
+#endif
+    if (ret) {
+        return time(NULL) * 1000;
+    }
+
+    current_ms = tv.tv_sec;
+
+    return current_ms*1000 + tv.tv_nsec / 1000000;
+}
+#elif defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || \
+    defined(__MINGW32__) || defined(_WIN64)
+#include <windows.h>
+mbedtls_ms_time_t mbedtls_ms_time(void)
+{
+    FILETIME ct;
+    mbedtls_ms_time_t current_ms;
+
+    GetSystemTimeAsFileTime(&ct);
+    current_ms = ((mbedtls_ms_time_t) ct.dwLowDateTime +
+                  ((mbedtls_ms_time_t) (ct.dwHighDateTime) << 32LL))/10000;
+    return current_ms;
+}
+#else
+#error "No mbedtls_ms_time available"
+#endif
+#endif /* MBEDTLS_HAVE_TIME && !MBEDTLS_PLATFORM_MS_TIME_ALT */
diff --git a/tf-psa-crypto/drivers/builtin/src/poly1305.c b/tf-psa-crypto/drivers/builtin/src/poly1305.c
new file mode 100644
index 0000000..c9ebe9e
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/poly1305.c
@@ -0,0 +1,492 @@
+/**
+ * \file poly1305.c
+ *
+ * \brief Poly1305 authentication algorithm.
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#include "common.h"
+
+#if defined(MBEDTLS_POLY1305_C)
+
+#include "mbedtls/poly1305.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_POLY1305_ALT)
+
+#define POLY1305_BLOCK_SIZE_BYTES (16U)
+
+/*
+ * Our implementation is tuned for 32-bit platforms with a 64-bit multiplier.
+ * However we provided an alternative for platforms without such a multiplier.
+ */
+#if defined(MBEDTLS_NO_64BIT_MULTIPLICATION)
+static uint64_t mul64(uint32_t a, uint32_t b)
+{
+    /* a = al + 2**16 ah, b = bl + 2**16 bh */
+    const uint16_t al = (uint16_t) a;
+    const uint16_t bl = (uint16_t) b;
+    const uint16_t ah = a >> 16;
+    const uint16_t bh = b >> 16;
+
+    /* ab = al*bl + 2**16 (ah*bl + bl*bh) + 2**32 ah*bh */
+    const uint32_t lo = (uint32_t) al * bl;
+    const uint64_t me = (uint64_t) ((uint32_t) ah * bl) + (uint32_t) al * bh;
+    const uint32_t hi = (uint32_t) ah * bh;
+
+    return lo + (me << 16) + ((uint64_t) hi << 32);
+}
+#else
+static inline uint64_t mul64(uint32_t a, uint32_t b)
+{
+    return (uint64_t) a * b;
+}
+#endif
+
+
+/**
+ * \brief                   Process blocks with Poly1305.
+ *
+ * \param ctx               The Poly1305 context.
+ * \param nblocks           Number of blocks to process. Note that this
+ *                          function only processes full blocks.
+ * \param input             Buffer containing the input block(s).
+ * \param needs_padding     Set to 0 if the padding bit has already been
+ *                          applied to the input data before calling this
+ *                          function.  Otherwise, set this parameter to 1.
+ */
+static void poly1305_process(mbedtls_poly1305_context *ctx,
+                             size_t nblocks,
+                             const unsigned char *input,
+                             uint32_t needs_padding)
+{
+    uint64_t d0, d1, d2, d3;
+    uint32_t acc0, acc1, acc2, acc3, acc4;
+    uint32_t r0, r1, r2, r3;
+    uint32_t rs1, rs2, rs3;
+    size_t offset  = 0U;
+    size_t i;
+
+    r0 = ctx->r[0];
+    r1 = ctx->r[1];
+    r2 = ctx->r[2];
+    r3 = ctx->r[3];
+
+    rs1 = r1 + (r1 >> 2U);
+    rs2 = r2 + (r2 >> 2U);
+    rs3 = r3 + (r3 >> 2U);
+
+    acc0 = ctx->acc[0];
+    acc1 = ctx->acc[1];
+    acc2 = ctx->acc[2];
+    acc3 = ctx->acc[3];
+    acc4 = ctx->acc[4];
+
+    /* Process full blocks */
+    for (i = 0U; i < nblocks; i++) {
+        /* The input block is treated as a 128-bit little-endian integer */
+        d0   = MBEDTLS_GET_UINT32_LE(input, offset + 0);
+        d1   = MBEDTLS_GET_UINT32_LE(input, offset + 4);
+        d2   = MBEDTLS_GET_UINT32_LE(input, offset + 8);
+        d3   = MBEDTLS_GET_UINT32_LE(input, offset + 12);
+
+        /* Compute: acc += (padded) block as a 130-bit integer */
+        d0  += (uint64_t) acc0;
+        d1  += (uint64_t) acc1 + (d0 >> 32U);
+        d2  += (uint64_t) acc2 + (d1 >> 32U);
+        d3  += (uint64_t) acc3 + (d2 >> 32U);
+        acc0 = (uint32_t) d0;
+        acc1 = (uint32_t) d1;
+        acc2 = (uint32_t) d2;
+        acc3 = (uint32_t) d3;
+        acc4 += (uint32_t) (d3 >> 32U) + needs_padding;
+
+        /* Compute: acc *= r */
+        d0 = mul64(acc0, r0) +
+             mul64(acc1, rs3) +
+             mul64(acc2, rs2) +
+             mul64(acc3, rs1);
+        d1 = mul64(acc0, r1) +
+             mul64(acc1, r0) +
+             mul64(acc2, rs3) +
+             mul64(acc3, rs2) +
+             mul64(acc4, rs1);
+        d2 = mul64(acc0, r2) +
+             mul64(acc1, r1) +
+             mul64(acc2, r0) +
+             mul64(acc3, rs3) +
+             mul64(acc4, rs2);
+        d3 = mul64(acc0, r3) +
+             mul64(acc1, r2) +
+             mul64(acc2, r1) +
+             mul64(acc3, r0) +
+             mul64(acc4, rs3);
+        acc4 *= r0;
+
+        /* Compute: acc %= (2^130 - 5) (partial remainder) */
+        d1 += (d0 >> 32);
+        d2 += (d1 >> 32);
+        d3 += (d2 >> 32);
+        acc0 = (uint32_t) d0;
+        acc1 = (uint32_t) d1;
+        acc2 = (uint32_t) d2;
+        acc3 = (uint32_t) d3;
+        acc4 = (uint32_t) (d3 >> 32) + acc4;
+
+        d0 = (uint64_t) acc0 + (acc4 >> 2) + (acc4 & 0xFFFFFFFCU);
+        acc4 &= 3U;
+        acc0 = (uint32_t) d0;
+        d0 = (uint64_t) acc1 + (d0 >> 32U);
+        acc1 = (uint32_t) d0;
+        d0 = (uint64_t) acc2 + (d0 >> 32U);
+        acc2 = (uint32_t) d0;
+        d0 = (uint64_t) acc3 + (d0 >> 32U);
+        acc3 = (uint32_t) d0;
+        d0 = (uint64_t) acc4 + (d0 >> 32U);
+        acc4 = (uint32_t) d0;
+
+        offset    += POLY1305_BLOCK_SIZE_BYTES;
+    }
+
+    ctx->acc[0] = acc0;
+    ctx->acc[1] = acc1;
+    ctx->acc[2] = acc2;
+    ctx->acc[3] = acc3;
+    ctx->acc[4] = acc4;
+}
+
+/**
+ * \brief                   Compute the Poly1305 MAC
+ *
+ * \param ctx               The Poly1305 context.
+ * \param mac               The buffer to where the MAC is written. Must be
+ *                          big enough to contain the 16-byte MAC.
+ */
+static void poly1305_compute_mac(const mbedtls_poly1305_context *ctx,
+                                 unsigned char mac[16])
+{
+    uint64_t d;
+    uint32_t g0, g1, g2, g3, g4;
+    uint32_t acc0, acc1, acc2, acc3, acc4;
+    uint32_t mask;
+    uint32_t mask_inv;
+
+    acc0 = ctx->acc[0];
+    acc1 = ctx->acc[1];
+    acc2 = ctx->acc[2];
+    acc3 = ctx->acc[3];
+    acc4 = ctx->acc[4];
+
+    /* Before adding 's' we ensure that the accumulator is mod 2^130 - 5.
+     * We do this by calculating acc - (2^130 - 5), then checking if
+     * the 131st bit is set. If it is, then reduce: acc -= (2^130 - 5)
+     */
+
+    /* Calculate acc + -(2^130 - 5) */
+    d  = ((uint64_t) acc0 + 5U);
+    g0 = (uint32_t) d;
+    d  = ((uint64_t) acc1 + (d >> 32));
+    g1 = (uint32_t) d;
+    d  = ((uint64_t) acc2 + (d >> 32));
+    g2 = (uint32_t) d;
+    d  = ((uint64_t) acc3 + (d >> 32));
+    g3 = (uint32_t) d;
+    g4 = acc4 + (uint32_t) (d >> 32U);
+
+    /* mask == 0xFFFFFFFF if 131st bit is set, otherwise mask == 0 */
+    mask = (uint32_t) 0U - (g4 >> 2U);
+    mask_inv = ~mask;
+
+    /* If 131st bit is set then acc=g, otherwise, acc is unmodified */
+    acc0 = (acc0 & mask_inv) | (g0 & mask);
+    acc1 = (acc1 & mask_inv) | (g1 & mask);
+    acc2 = (acc2 & mask_inv) | (g2 & mask);
+    acc3 = (acc3 & mask_inv) | (g3 & mask);
+
+    /* Add 's' */
+    d = (uint64_t) acc0 + ctx->s[0];
+    acc0 = (uint32_t) d;
+    d = (uint64_t) acc1 + ctx->s[1] + (d >> 32U);
+    acc1 = (uint32_t) d;
+    d = (uint64_t) acc2 + ctx->s[2] + (d >> 32U);
+    acc2 = (uint32_t) d;
+    acc3 += ctx->s[3] + (uint32_t) (d >> 32U);
+
+    /* Compute MAC (128 least significant bits of the accumulator) */
+    MBEDTLS_PUT_UINT32_LE(acc0, mac,  0);
+    MBEDTLS_PUT_UINT32_LE(acc1, mac,  4);
+    MBEDTLS_PUT_UINT32_LE(acc2, mac,  8);
+    MBEDTLS_PUT_UINT32_LE(acc3, mac, 12);
+}
+
+void mbedtls_poly1305_init(mbedtls_poly1305_context *ctx)
+{
+    mbedtls_platform_zeroize(ctx, sizeof(mbedtls_poly1305_context));
+}
+
+void mbedtls_poly1305_free(mbedtls_poly1305_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_platform_zeroize(ctx, sizeof(mbedtls_poly1305_context));
+}
+
+int mbedtls_poly1305_starts(mbedtls_poly1305_context *ctx,
+                            const unsigned char key[32])
+{
+    /* r &= 0x0ffffffc0ffffffc0ffffffc0fffffff */
+    ctx->r[0] = MBEDTLS_GET_UINT32_LE(key, 0)  & 0x0FFFFFFFU;
+    ctx->r[1] = MBEDTLS_GET_UINT32_LE(key, 4)  & 0x0FFFFFFCU;
+    ctx->r[2] = MBEDTLS_GET_UINT32_LE(key, 8)  & 0x0FFFFFFCU;
+    ctx->r[3] = MBEDTLS_GET_UINT32_LE(key, 12) & 0x0FFFFFFCU;
+
+    ctx->s[0] = MBEDTLS_GET_UINT32_LE(key, 16);
+    ctx->s[1] = MBEDTLS_GET_UINT32_LE(key, 20);
+    ctx->s[2] = MBEDTLS_GET_UINT32_LE(key, 24);
+    ctx->s[3] = MBEDTLS_GET_UINT32_LE(key, 28);
+
+    /* Initial accumulator state */
+    ctx->acc[0] = 0U;
+    ctx->acc[1] = 0U;
+    ctx->acc[2] = 0U;
+    ctx->acc[3] = 0U;
+    ctx->acc[4] = 0U;
+
+    /* Queue initially empty */
+    mbedtls_platform_zeroize(ctx->queue, sizeof(ctx->queue));
+    ctx->queue_len = 0U;
+
+    return 0;
+}
+
+int mbedtls_poly1305_update(mbedtls_poly1305_context *ctx,
+                            const unsigned char *input,
+                            size_t ilen)
+{
+    size_t offset    = 0U;
+    size_t remaining = ilen;
+    size_t queue_free_len;
+    size_t nblocks;
+
+    if ((remaining > 0U) && (ctx->queue_len > 0U)) {
+        queue_free_len = (POLY1305_BLOCK_SIZE_BYTES - ctx->queue_len);
+
+        if (ilen < queue_free_len) {
+            /* Not enough data to complete the block.
+             * Store this data with the other leftovers.
+             */
+            memcpy(&ctx->queue[ctx->queue_len],
+                   input,
+                   ilen);
+
+            ctx->queue_len += ilen;
+
+            remaining = 0U;
+        } else {
+            /* Enough data to produce a complete block */
+            memcpy(&ctx->queue[ctx->queue_len],
+                   input,
+                   queue_free_len);
+
+            ctx->queue_len = 0U;
+
+            poly1305_process(ctx, 1U, ctx->queue, 1U);   /* add padding bit */
+
+            offset    += queue_free_len;
+            remaining -= queue_free_len;
+        }
+    }
+
+    if (remaining >= POLY1305_BLOCK_SIZE_BYTES) {
+        nblocks = remaining / POLY1305_BLOCK_SIZE_BYTES;
+
+        poly1305_process(ctx, nblocks, &input[offset], 1U);
+
+        offset += nblocks * POLY1305_BLOCK_SIZE_BYTES;
+        remaining %= POLY1305_BLOCK_SIZE_BYTES;
+    }
+
+    if (remaining > 0U) {
+        /* Store partial block */
+        ctx->queue_len = remaining;
+        memcpy(ctx->queue, &input[offset], remaining);
+    }
+
+    return 0;
+}
+
+int mbedtls_poly1305_finish(mbedtls_poly1305_context *ctx,
+                            unsigned char mac[16])
+{
+    /* Process any leftover data */
+    if (ctx->queue_len > 0U) {
+        /* Add padding bit */
+        ctx->queue[ctx->queue_len] = 1U;
+        ctx->queue_len++;
+
+        /* Pad with zeroes */
+        memset(&ctx->queue[ctx->queue_len],
+               0,
+               POLY1305_BLOCK_SIZE_BYTES - ctx->queue_len);
+
+        poly1305_process(ctx, 1U,           /* Process 1 block */
+                         ctx->queue, 0U);   /* Already padded above */
+    }
+
+    poly1305_compute_mac(ctx, mac);
+
+    return 0;
+}
+
+int mbedtls_poly1305_mac(const unsigned char key[32],
+                         const unsigned char *input,
+                         size_t ilen,
+                         unsigned char mac[16])
+{
+    mbedtls_poly1305_context ctx;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    mbedtls_poly1305_init(&ctx);
+
+    ret = mbedtls_poly1305_starts(&ctx, key);
+    if (ret != 0) {
+        goto cleanup;
+    }
+
+    ret = mbedtls_poly1305_update(&ctx, input, ilen);
+    if (ret != 0) {
+        goto cleanup;
+    }
+
+    ret = mbedtls_poly1305_finish(&ctx, mac);
+
+cleanup:
+    mbedtls_poly1305_free(&ctx);
+    return ret;
+}
+
+#endif /* MBEDTLS_POLY1305_ALT */
+
+#if defined(MBEDTLS_SELF_TEST)
+
+static const unsigned char test_keys[2][32] =
+{
+    {
+        0x85, 0xd6, 0xbe, 0x78, 0x57, 0x55, 0x6d, 0x33,
+        0x7f, 0x44, 0x52, 0xfe, 0x42, 0xd5, 0x06, 0xa8,
+        0x01, 0x03, 0x80, 0x8a, 0xfb, 0x0d, 0xb2, 0xfd,
+        0x4a, 0xbf, 0xf6, 0xaf, 0x41, 0x49, 0xf5, 0x1b
+    },
+    {
+        0x1c, 0x92, 0x40, 0xa5, 0xeb, 0x55, 0xd3, 0x8a,
+        0xf3, 0x33, 0x88, 0x86, 0x04, 0xf6, 0xb5, 0xf0,
+        0x47, 0x39, 0x17, 0xc1, 0x40, 0x2b, 0x80, 0x09,
+        0x9d, 0xca, 0x5c, 0xbc, 0x20, 0x70, 0x75, 0xc0
+    }
+};
+
+static const unsigned char test_data[2][127] =
+{
+    {
+        0x43, 0x72, 0x79, 0x70, 0x74, 0x6f, 0x67, 0x72,
+        0x61, 0x70, 0x68, 0x69, 0x63, 0x20, 0x46, 0x6f,
+        0x72, 0x75, 0x6d, 0x20, 0x52, 0x65, 0x73, 0x65,
+        0x61, 0x72, 0x63, 0x68, 0x20, 0x47, 0x72, 0x6f,
+        0x75, 0x70
+    },
+    {
+        0x27, 0x54, 0x77, 0x61, 0x73, 0x20, 0x62, 0x72,
+        0x69, 0x6c, 0x6c, 0x69, 0x67, 0x2c, 0x20, 0x61,
+        0x6e, 0x64, 0x20, 0x74, 0x68, 0x65, 0x20, 0x73,
+        0x6c, 0x69, 0x74, 0x68, 0x79, 0x20, 0x74, 0x6f,
+        0x76, 0x65, 0x73, 0x0a, 0x44, 0x69, 0x64, 0x20,
+        0x67, 0x79, 0x72, 0x65, 0x20, 0x61, 0x6e, 0x64,
+        0x20, 0x67, 0x69, 0x6d, 0x62, 0x6c, 0x65, 0x20,
+        0x69, 0x6e, 0x20, 0x74, 0x68, 0x65, 0x20, 0x77,
+        0x61, 0x62, 0x65, 0x3a, 0x0a, 0x41, 0x6c, 0x6c,
+        0x20, 0x6d, 0x69, 0x6d, 0x73, 0x79, 0x20, 0x77,
+        0x65, 0x72, 0x65, 0x20, 0x74, 0x68, 0x65, 0x20,
+        0x62, 0x6f, 0x72, 0x6f, 0x67, 0x6f, 0x76, 0x65,
+        0x73, 0x2c, 0x0a, 0x41, 0x6e, 0x64, 0x20, 0x74,
+        0x68, 0x65, 0x20, 0x6d, 0x6f, 0x6d, 0x65, 0x20,
+        0x72, 0x61, 0x74, 0x68, 0x73, 0x20, 0x6f, 0x75,
+        0x74, 0x67, 0x72, 0x61, 0x62, 0x65, 0x2e
+    }
+};
+
+static const size_t test_data_len[2] =
+{
+    34U,
+    127U
+};
+
+static const unsigned char test_mac[2][16] =
+{
+    {
+        0xa8, 0x06, 0x1d, 0xc1, 0x30, 0x51, 0x36, 0xc6,
+        0xc2, 0x2b, 0x8b, 0xaf, 0x0c, 0x01, 0x27, 0xa9
+    },
+    {
+        0x45, 0x41, 0x66, 0x9a, 0x7e, 0xaa, 0xee, 0x61,
+        0xe7, 0x08, 0xdc, 0x7c, 0xbc, 0xc5, 0xeb, 0x62
+    }
+};
+
+/* Make sure no other definition is already present. */
+#undef ASSERT
+
+#define ASSERT(cond, args)            \
+    do                                  \
+    {                                   \
+        if (!(cond))                \
+        {                               \
+            if (verbose != 0)          \
+            mbedtls_printf args;    \
+                                        \
+            return -1;               \
+        }                               \
+    }                                   \
+    while (0)
+
+int mbedtls_poly1305_self_test(int verbose)
+{
+    unsigned char mac[16];
+    unsigned i;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    for (i = 0U; i < 2U; i++) {
+        if (verbose != 0) {
+            mbedtls_printf("  Poly1305 test %u ", i);
+        }
+
+        ret = mbedtls_poly1305_mac(test_keys[i],
+                                   test_data[i],
+                                   test_data_len[i],
+                                   mac);
+        ASSERT(0 == ret, ("error code: %i\n", ret));
+
+        ASSERT(0 == memcmp(mac, test_mac[i], 16U), ("failed (mac)\n"));
+
+        if (verbose != 0) {
+            mbedtls_printf("passed\n");
+        }
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+
+    return 0;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_POLY1305_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/ripemd160.c b/tf-psa-crypto/drivers/builtin/src/ripemd160.c
new file mode 100644
index 0000000..b4fc3cd
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/ripemd160.c
@@ -0,0 +1,490 @@
+/*
+ *  RIPE MD-160 implementation
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ *  The RIPEMD-160 algorithm was designed by RIPE in 1996
+ *  http://homes.esat.kuleuven.be/~bosselae/mbedtls_ripemd160.html
+ *  http://ehash.iaik.tugraz.at/wiki/RIPEMD-160
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_RIPEMD160_C)
+
+#include "mbedtls/ripemd160.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_RIPEMD160_ALT)
+
+void mbedtls_ripemd160_init(mbedtls_ripemd160_context *ctx)
+{
+    memset(ctx, 0, sizeof(mbedtls_ripemd160_context));
+}
+
+void mbedtls_ripemd160_free(mbedtls_ripemd160_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_platform_zeroize(ctx, sizeof(mbedtls_ripemd160_context));
+}
+
+void mbedtls_ripemd160_clone(mbedtls_ripemd160_context *dst,
+                             const mbedtls_ripemd160_context *src)
+{
+    *dst = *src;
+}
+
+/*
+ * RIPEMD-160 context setup
+ */
+int mbedtls_ripemd160_starts(mbedtls_ripemd160_context *ctx)
+{
+    ctx->total[0] = 0;
+    ctx->total[1] = 0;
+
+    ctx->state[0] = 0x67452301;
+    ctx->state[1] = 0xEFCDAB89;
+    ctx->state[2] = 0x98BADCFE;
+    ctx->state[3] = 0x10325476;
+    ctx->state[4] = 0xC3D2E1F0;
+
+    return 0;
+}
+
+#if !defined(MBEDTLS_RIPEMD160_PROCESS_ALT)
+/*
+ * Process one block
+ */
+int mbedtls_internal_ripemd160_process(mbedtls_ripemd160_context *ctx,
+                                       const unsigned char data[64])
+{
+    struct {
+        uint32_t A, B, C, D, E, Ap, Bp, Cp, Dp, Ep, X[16];
+    } local;
+
+    local.X[0] = MBEDTLS_GET_UINT32_LE(data,  0);
+    local.X[1] = MBEDTLS_GET_UINT32_LE(data,  4);
+    local.X[2] = MBEDTLS_GET_UINT32_LE(data,  8);
+    local.X[3] = MBEDTLS_GET_UINT32_LE(data, 12);
+    local.X[4] = MBEDTLS_GET_UINT32_LE(data, 16);
+    local.X[5] = MBEDTLS_GET_UINT32_LE(data, 20);
+    local.X[6] = MBEDTLS_GET_UINT32_LE(data, 24);
+    local.X[7] = MBEDTLS_GET_UINT32_LE(data, 28);
+    local.X[8] = MBEDTLS_GET_UINT32_LE(data, 32);
+    local.X[9] = MBEDTLS_GET_UINT32_LE(data, 36);
+    local.X[10] = MBEDTLS_GET_UINT32_LE(data, 40);
+    local.X[11] = MBEDTLS_GET_UINT32_LE(data, 44);
+    local.X[12] = MBEDTLS_GET_UINT32_LE(data, 48);
+    local.X[13] = MBEDTLS_GET_UINT32_LE(data, 52);
+    local.X[14] = MBEDTLS_GET_UINT32_LE(data, 56);
+    local.X[15] = MBEDTLS_GET_UINT32_LE(data, 60);
+
+    local.A = local.Ap = ctx->state[0];
+    local.B = local.Bp = ctx->state[1];
+    local.C = local.Cp = ctx->state[2];
+    local.D = local.Dp = ctx->state[3];
+    local.E = local.Ep = ctx->state[4];
+
+#define F1(x, y, z)   ((x) ^ (y) ^ (z))
+#define F2(x, y, z)   (((x) & (y)) | (~(x) & (z)))
+#define F3(x, y, z)   (((x) | ~(y)) ^ (z))
+#define F4(x, y, z)   (((x) & (z)) | ((y) & ~(z)))
+#define F5(x, y, z)   ((x) ^ ((y) | ~(z)))
+
+#define S(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
+
+#define P(a, b, c, d, e, r, s, f, k)                      \
+    do                                                      \
+    {                                                       \
+        (a) += f((b), (c), (d)) + local.X[r] + (k);       \
+        (a) = S((a), (s)) + (e);                          \
+        (c) = S((c), 10);                                 \
+    } while (0)
+
+#define P2(a, b, c, d, e, r, s, rp, sp)                               \
+    do                                                                  \
+    {                                                                   \
+        P((a), (b), (c), (d), (e), (r), (s), F, K);                   \
+        P(a ## p, b ## p, c ## p, d ## p, e ## p,                      \
+          (rp), (sp), Fp, Kp);                                        \
+    } while (0)
+
+#define F   F1
+#define K   0x00000000
+#define Fp  F5
+#define Kp  0x50A28BE6
+    P2(local.A, local.B, local.C, local.D, local.E,  0, 11,  5,  8);
+    P2(local.E, local.A, local.B, local.C, local.D,  1, 14, 14,  9);
+    P2(local.D, local.E, local.A, local.B, local.C,  2, 15,  7,  9);
+    P2(local.C, local.D, local.E, local.A, local.B,  3, 12,  0, 11);
+    P2(local.B, local.C, local.D, local.E, local.A,  4,  5,  9, 13);
+    P2(local.A, local.B, local.C, local.D, local.E,  5,  8,  2, 15);
+    P2(local.E, local.A, local.B, local.C, local.D,  6,  7, 11, 15);
+    P2(local.D, local.E, local.A, local.B, local.C,  7,  9,  4,  5);
+    P2(local.C, local.D, local.E, local.A, local.B,  8, 11, 13,  7);
+    P2(local.B, local.C, local.D, local.E, local.A,  9, 13,  6,  7);
+    P2(local.A, local.B, local.C, local.D, local.E, 10, 14, 15,  8);
+    P2(local.E, local.A, local.B, local.C, local.D, 11, 15,  8, 11);
+    P2(local.D, local.E, local.A, local.B, local.C, 12,  6,  1, 14);
+    P2(local.C, local.D, local.E, local.A, local.B, 13,  7, 10, 14);
+    P2(local.B, local.C, local.D, local.E, local.A, 14,  9,  3, 12);
+    P2(local.A, local.B, local.C, local.D, local.E, 15,  8, 12,  6);
+#undef F
+#undef K
+#undef Fp
+#undef Kp
+
+#define F   F2
+#define K   0x5A827999
+#define Fp  F4
+#define Kp  0x5C4DD124
+    P2(local.E, local.A, local.B, local.C, local.D,  7,  7,  6,  9);
+    P2(local.D, local.E, local.A, local.B, local.C,  4,  6, 11, 13);
+    P2(local.C, local.D, local.E, local.A, local.B, 13,  8,  3, 15);
+    P2(local.B, local.C, local.D, local.E, local.A,  1, 13,  7,  7);
+    P2(local.A, local.B, local.C, local.D, local.E, 10, 11,  0, 12);
+    P2(local.E, local.A, local.B, local.C, local.D,  6,  9, 13,  8);
+    P2(local.D, local.E, local.A, local.B, local.C, 15,  7,  5,  9);
+    P2(local.C, local.D, local.E, local.A, local.B,  3, 15, 10, 11);
+    P2(local.B, local.C, local.D, local.E, local.A, 12,  7, 14,  7);
+    P2(local.A, local.B, local.C, local.D, local.E,  0, 12, 15,  7);
+    P2(local.E, local.A, local.B, local.C, local.D,  9, 15,  8, 12);
+    P2(local.D, local.E, local.A, local.B, local.C,  5,  9, 12,  7);
+    P2(local.C, local.D, local.E, local.A, local.B,  2, 11,  4,  6);
+    P2(local.B, local.C, local.D, local.E, local.A, 14,  7,  9, 15);
+    P2(local.A, local.B, local.C, local.D, local.E, 11, 13,  1, 13);
+    P2(local.E, local.A, local.B, local.C, local.D,  8, 12,  2, 11);
+#undef F
+#undef K
+#undef Fp
+#undef Kp
+
+#define F   F3
+#define K   0x6ED9EBA1
+#define Fp  F3
+#define Kp  0x6D703EF3
+    P2(local.D, local.E, local.A, local.B, local.C,  3, 11, 15,  9);
+    P2(local.C, local.D, local.E, local.A, local.B, 10, 13,  5,  7);
+    P2(local.B, local.C, local.D, local.E, local.A, 14,  6,  1, 15);
+    P2(local.A, local.B, local.C, local.D, local.E,  4,  7,  3, 11);
+    P2(local.E, local.A, local.B, local.C, local.D,  9, 14,  7,  8);
+    P2(local.D, local.E, local.A, local.B, local.C, 15,  9, 14,  6);
+    P2(local.C, local.D, local.E, local.A, local.B,  8, 13,  6,  6);
+    P2(local.B, local.C, local.D, local.E, local.A,  1, 15,  9, 14);
+    P2(local.A, local.B, local.C, local.D, local.E,  2, 14, 11, 12);
+    P2(local.E, local.A, local.B, local.C, local.D,  7,  8,  8, 13);
+    P2(local.D, local.E, local.A, local.B, local.C,  0, 13, 12,  5);
+    P2(local.C, local.D, local.E, local.A, local.B,  6,  6,  2, 14);
+    P2(local.B, local.C, local.D, local.E, local.A, 13,  5, 10, 13);
+    P2(local.A, local.B, local.C, local.D, local.E, 11, 12,  0, 13);
+    P2(local.E, local.A, local.B, local.C, local.D,  5,  7,  4,  7);
+    P2(local.D, local.E, local.A, local.B, local.C, 12,  5, 13,  5);
+#undef F
+#undef K
+#undef Fp
+#undef Kp
+
+#define F   F4
+#define K   0x8F1BBCDC
+#define Fp  F2
+#define Kp  0x7A6D76E9
+    P2(local.C, local.D, local.E, local.A, local.B,  1, 11,  8, 15);
+    P2(local.B, local.C, local.D, local.E, local.A,  9, 12,  6,  5);
+    P2(local.A, local.B, local.C, local.D, local.E, 11, 14,  4,  8);
+    P2(local.E, local.A, local.B, local.C, local.D, 10, 15,  1, 11);
+    P2(local.D, local.E, local.A, local.B, local.C,  0, 14,  3, 14);
+    P2(local.C, local.D, local.E, local.A, local.B,  8, 15, 11, 14);
+    P2(local.B, local.C, local.D, local.E, local.A, 12,  9, 15,  6);
+    P2(local.A, local.B, local.C, local.D, local.E,  4,  8,  0, 14);
+    P2(local.E, local.A, local.B, local.C, local.D, 13,  9,  5,  6);
+    P2(local.D, local.E, local.A, local.B, local.C,  3, 14, 12,  9);
+    P2(local.C, local.D, local.E, local.A, local.B,  7,  5,  2, 12);
+    P2(local.B, local.C, local.D, local.E, local.A, 15,  6, 13,  9);
+    P2(local.A, local.B, local.C, local.D, local.E, 14,  8,  9, 12);
+    P2(local.E, local.A, local.B, local.C, local.D,  5,  6,  7,  5);
+    P2(local.D, local.E, local.A, local.B, local.C,  6,  5, 10, 15);
+    P2(local.C, local.D, local.E, local.A, local.B,  2, 12, 14,  8);
+#undef F
+#undef K
+#undef Fp
+#undef Kp
+
+#define F   F5
+#define K   0xA953FD4E
+#define Fp  F1
+#define Kp  0x00000000
+    P2(local.B, local.C, local.D, local.E, local.A,  4,  9, 12,  8);
+    P2(local.A, local.B, local.C, local.D, local.E,  0, 15, 15,  5);
+    P2(local.E, local.A, local.B, local.C, local.D,  5,  5, 10, 12);
+    P2(local.D, local.E, local.A, local.B, local.C,  9, 11,  4,  9);
+    P2(local.C, local.D, local.E, local.A, local.B,  7,  6,  1, 12);
+    P2(local.B, local.C, local.D, local.E, local.A, 12,  8,  5,  5);
+    P2(local.A, local.B, local.C, local.D, local.E,  2, 13,  8, 14);
+    P2(local.E, local.A, local.B, local.C, local.D, 10, 12,  7,  6);
+    P2(local.D, local.E, local.A, local.B, local.C, 14,  5,  6,  8);
+    P2(local.C, local.D, local.E, local.A, local.B,  1, 12,  2, 13);
+    P2(local.B, local.C, local.D, local.E, local.A,  3, 13, 13,  6);
+    P2(local.A, local.B, local.C, local.D, local.E,  8, 14, 14,  5);
+    P2(local.E, local.A, local.B, local.C, local.D, 11, 11,  0, 15);
+    P2(local.D, local.E, local.A, local.B, local.C,  6,  8,  3, 13);
+    P2(local.C, local.D, local.E, local.A, local.B, 15,  5,  9, 11);
+    P2(local.B, local.C, local.D, local.E, local.A, 13,  6, 11, 11);
+#undef F
+#undef K
+#undef Fp
+#undef Kp
+
+    local.C       = ctx->state[1] + local.C + local.Dp;
+    ctx->state[1] = ctx->state[2] + local.D + local.Ep;
+    ctx->state[2] = ctx->state[3] + local.E + local.Ap;
+    ctx->state[3] = ctx->state[4] + local.A + local.Bp;
+    ctx->state[4] = ctx->state[0] + local.B + local.Cp;
+    ctx->state[0] = local.C;
+
+    /* Zeroise variables to clear sensitive data from memory. */
+    mbedtls_platform_zeroize(&local, sizeof(local));
+
+    return 0;
+}
+
+#endif /* !MBEDTLS_RIPEMD160_PROCESS_ALT */
+
+/*
+ * RIPEMD-160 process buffer
+ */
+int mbedtls_ripemd160_update(mbedtls_ripemd160_context *ctx,
+                             const unsigned char *input,
+                             size_t ilen)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t fill;
+    uint32_t left;
+
+    if (ilen == 0) {
+        return 0;
+    }
+
+    left = ctx->total[0] & 0x3F;
+    fill = 64 - left;
+
+    ctx->total[0] += (uint32_t) ilen;
+    ctx->total[0] &= 0xFFFFFFFF;
+
+    if (ctx->total[0] < (uint32_t) ilen) {
+        ctx->total[1]++;
+    }
+
+    if (left && ilen >= fill) {
+        memcpy((void *) (ctx->buffer + left), input, fill);
+
+        if ((ret = mbedtls_internal_ripemd160_process(ctx, ctx->buffer)) != 0) {
+            return ret;
+        }
+
+        input += fill;
+        ilen  -= fill;
+        left = 0;
+    }
+
+    while (ilen >= 64) {
+        if ((ret = mbedtls_internal_ripemd160_process(ctx, input)) != 0) {
+            return ret;
+        }
+
+        input += 64;
+        ilen  -= 64;
+    }
+
+    if (ilen > 0) {
+        memcpy((void *) (ctx->buffer + left), input, ilen);
+    }
+
+    return 0;
+}
+
+static const unsigned char ripemd160_padding[64] =
+{
+    0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+};
+
+/*
+ * RIPEMD-160 final digest
+ */
+int mbedtls_ripemd160_finish(mbedtls_ripemd160_context *ctx,
+                             unsigned char output[20])
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    uint32_t last, padn;
+    uint32_t high, low;
+    unsigned char msglen[8];
+
+    high = (ctx->total[0] >> 29)
+           | (ctx->total[1] <<  3);
+    low  = (ctx->total[0] <<  3);
+
+    MBEDTLS_PUT_UINT32_LE(low,  msglen, 0);
+    MBEDTLS_PUT_UINT32_LE(high, msglen, 4);
+
+    last = ctx->total[0] & 0x3F;
+    padn = (last < 56) ? (56 - last) : (120 - last);
+
+    ret = mbedtls_ripemd160_update(ctx, ripemd160_padding, padn);
+    if (ret != 0) {
+        goto exit;
+    }
+
+    ret = mbedtls_ripemd160_update(ctx, msglen, 8);
+    if (ret != 0) {
+        goto exit;
+    }
+
+    MBEDTLS_PUT_UINT32_LE(ctx->state[0], output,  0);
+    MBEDTLS_PUT_UINT32_LE(ctx->state[1], output,  4);
+    MBEDTLS_PUT_UINT32_LE(ctx->state[2], output,  8);
+    MBEDTLS_PUT_UINT32_LE(ctx->state[3], output, 12);
+    MBEDTLS_PUT_UINT32_LE(ctx->state[4], output, 16);
+
+    ret = 0;
+
+exit:
+    mbedtls_ripemd160_free(ctx);
+    return ret;
+}
+
+#endif /* ! MBEDTLS_RIPEMD160_ALT */
+
+/*
+ * output = RIPEMD-160( input buffer )
+ */
+int mbedtls_ripemd160(const unsigned char *input,
+                      size_t ilen,
+                      unsigned char output[20])
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_ripemd160_context ctx;
+
+    mbedtls_ripemd160_init(&ctx);
+
+    if ((ret = mbedtls_ripemd160_starts(&ctx)) != 0) {
+        goto exit;
+    }
+
+    if ((ret = mbedtls_ripemd160_update(&ctx, input, ilen)) != 0) {
+        goto exit;
+    }
+
+    if ((ret = mbedtls_ripemd160_finish(&ctx, output)) != 0) {
+        goto exit;
+    }
+
+exit:
+    mbedtls_ripemd160_free(&ctx);
+
+    return ret;
+}
+
+#if defined(MBEDTLS_SELF_TEST)
+/*
+ * Test vectors from the RIPEMD-160 paper and
+ * http://homes.esat.kuleuven.be/~bosselae/mbedtls_ripemd160.html#HMAC
+ */
+#define TESTS   8
+static const unsigned char ripemd160_test_str[TESTS][81] =
+{
+    { "" },
+    { "a" },
+    { "abc" },
+    { "message digest" },
+    { "abcdefghijklmnopqrstuvwxyz" },
+    { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" },
+    { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789" },
+    { "12345678901234567890123456789012345678901234567890123456789012345678901234567890" },
+};
+
+static const size_t ripemd160_test_strlen[TESTS] =
+{
+    0, 1, 3, 14, 26, 56, 62, 80
+};
+
+static const unsigned char ripemd160_test_md[TESTS][20] =
+{
+    { 0x9c, 0x11, 0x85, 0xa5, 0xc5, 0xe9, 0xfc, 0x54, 0x61, 0x28,
+      0x08, 0x97, 0x7e, 0xe8, 0xf5, 0x48, 0xb2, 0x25, 0x8d, 0x31 },
+    { 0x0b, 0xdc, 0x9d, 0x2d, 0x25, 0x6b, 0x3e, 0xe9, 0xda, 0xae,
+      0x34, 0x7b, 0xe6, 0xf4, 0xdc, 0x83, 0x5a, 0x46, 0x7f, 0xfe },
+    { 0x8e, 0xb2, 0x08, 0xf7, 0xe0, 0x5d, 0x98, 0x7a, 0x9b, 0x04,
+      0x4a, 0x8e, 0x98, 0xc6, 0xb0, 0x87, 0xf1, 0x5a, 0x0b, 0xfc },
+    { 0x5d, 0x06, 0x89, 0xef, 0x49, 0xd2, 0xfa, 0xe5, 0x72, 0xb8,
+      0x81, 0xb1, 0x23, 0xa8, 0x5f, 0xfa, 0x21, 0x59, 0x5f, 0x36 },
+    { 0xf7, 0x1c, 0x27, 0x10, 0x9c, 0x69, 0x2c, 0x1b, 0x56, 0xbb,
+      0xdc, 0xeb, 0x5b, 0x9d, 0x28, 0x65, 0xb3, 0x70, 0x8d, 0xbc },
+    { 0x12, 0xa0, 0x53, 0x38, 0x4a, 0x9c, 0x0c, 0x88, 0xe4, 0x05,
+      0xa0, 0x6c, 0x27, 0xdc, 0xf4, 0x9a, 0xda, 0x62, 0xeb, 0x2b },
+    { 0xb0, 0xe2, 0x0b, 0x6e, 0x31, 0x16, 0x64, 0x02, 0x86, 0xed,
+      0x3a, 0x87, 0xa5, 0x71, 0x30, 0x79, 0xb2, 0x1f, 0x51, 0x89 },
+    { 0x9b, 0x75, 0x2e, 0x45, 0x57, 0x3d, 0x4b, 0x39, 0xf4, 0xdb,
+      0xd3, 0x32, 0x3c, 0xab, 0x82, 0xbf, 0x63, 0x32, 0x6b, 0xfb },
+};
+
+/*
+ * Checkup routine
+ */
+int mbedtls_ripemd160_self_test(int verbose)
+{
+    int i, ret = 0;
+    unsigned char output[20];
+
+    memset(output, 0, sizeof(output));
+
+    for (i = 0; i < TESTS; i++) {
+        if (verbose != 0) {
+            mbedtls_printf("  RIPEMD-160 test #%d: ", i + 1);
+        }
+
+        ret = mbedtls_ripemd160(ripemd160_test_str[i],
+                                ripemd160_test_strlen[i], output);
+        if (ret != 0) {
+            goto fail;
+        }
+
+        if (memcmp(output, ripemd160_test_md[i], 20) != 0) {
+            ret = 1;
+            goto fail;
+        }
+
+        if (verbose != 0) {
+            mbedtls_printf("passed\n");
+        }
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+
+    return 0;
+
+fail:
+    if (verbose != 0) {
+        mbedtls_printf("failed\n");
+    }
+
+    return ret;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_RIPEMD160_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/rsa.c b/tf-psa-crypto/drivers/builtin/src/rsa.c
new file mode 100644
index 0000000..8a4c3d0
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/rsa.c
@@ -0,0 +1,3061 @@
+/*
+ *  The RSA public-key cryptosystem
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ *  The following sources were referenced in the design of this implementation
+ *  of the RSA algorithm:
+ *
+ *  [1] A method for obtaining digital signatures and public-key cryptosystems
+ *      R Rivest, A Shamir, and L Adleman
+ *      http://people.csail.mit.edu/rivest/pubs.html#RSA78
+ *
+ *  [2] Handbook of Applied Cryptography - 1997, Chapter 8
+ *      Menezes, van Oorschot and Vanstone
+ *
+ *  [3] Malware Guard Extension: Using SGX to Conceal Cache Attacks
+ *      Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice and
+ *      Stefan Mangard
+ *      https://arxiv.org/abs/1702.08719v2
+ *
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_RSA_C)
+
+#include "mbedtls/rsa.h"
+#include "bignum_core.h"
+#include "rsa_alt_helpers.h"
+#include "rsa_internal.h"
+#include "mbedtls/oid.h"
+#include "mbedtls/asn1write.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+#include "constant_time_internal.h"
+#include "mbedtls/constant_time.h"
+#include "md_psa.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_PKCS1_V15) && !defined(__OpenBSD__) && !defined(__NetBSD__)
+#include <stdlib.h>
+#endif
+
+#include "mbedtls/platform.h"
+
+/*
+ * Wrapper around mbedtls_asn1_get_mpi() that rejects zero.
+ *
+ * The value zero is:
+ * - never a valid value for an RSA parameter
+ * - interpreted as "omitted, please reconstruct" by mbedtls_rsa_complete().
+ *
+ * Since values can't be omitted in PKCS#1, passing a zero value to
+ * rsa_complete() would be incorrect, so reject zero values early.
+ */
+static int asn1_get_nonzero_mpi(unsigned char **p,
+                                const unsigned char *end,
+                                mbedtls_mpi *X)
+{
+    int ret;
+
+    ret = mbedtls_asn1_get_mpi(p, end, X);
+    if (ret != 0) {
+        return ret;
+    }
+
+    if (mbedtls_mpi_cmp_int(X, 0) == 0) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    return 0;
+}
+
+int mbedtls_rsa_parse_key(mbedtls_rsa_context *rsa, const unsigned char *key, size_t keylen)
+{
+    int ret, version;
+    size_t len;
+    unsigned char *p, *end;
+
+    mbedtls_mpi T;
+    mbedtls_mpi_init(&T);
+
+    p = (unsigned char *) key;
+    end = p + keylen;
+
+    /*
+     * This function parses the RSAPrivateKey (PKCS#1)
+     *
+     *  RSAPrivateKey ::= SEQUENCE {
+     *      version           Version,
+     *      modulus           INTEGER,  -- n
+     *      publicExponent    INTEGER,  -- e
+     *      privateExponent   INTEGER,  -- d
+     *      prime1            INTEGER,  -- p
+     *      prime2            INTEGER,  -- q
+     *      exponent1         INTEGER,  -- d mod (p-1)
+     *      exponent2         INTEGER,  -- d mod (q-1)
+     *      coefficient       INTEGER,  -- (inverse of q) mod p
+     *      otherPrimeInfos   OtherPrimeInfos OPTIONAL
+     *  }
+     */
+    if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
+                                    MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
+        return ret;
+    }
+
+    if (end != p + len) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    if ((ret = mbedtls_asn1_get_int(&p, end, &version)) != 0) {
+        return ret;
+    }
+
+    if (version != 0) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    /* Import N */
+    if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
+        (ret = mbedtls_rsa_import(rsa, &T, NULL, NULL,
+                                  NULL, NULL)) != 0) {
+        goto cleanup;
+    }
+
+    /* Import E */
+    if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
+        (ret = mbedtls_rsa_import(rsa, NULL, NULL, NULL,
+                                  NULL, &T)) != 0) {
+        goto cleanup;
+    }
+
+    /* Import D */
+    if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
+        (ret = mbedtls_rsa_import(rsa, NULL, NULL, NULL,
+                                  &T, NULL)) != 0) {
+        goto cleanup;
+    }
+
+    /* Import P */
+    if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
+        (ret = mbedtls_rsa_import(rsa, NULL, &T, NULL,
+                                  NULL, NULL)) != 0) {
+        goto cleanup;
+    }
+
+    /* Import Q */
+    if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
+        (ret = mbedtls_rsa_import(rsa, NULL, NULL, &T,
+                                  NULL, NULL)) != 0) {
+        goto cleanup;
+    }
+
+#if !defined(MBEDTLS_RSA_NO_CRT)
+    /*
+     * The RSA CRT parameters DP, DQ and QP are nominally redundant, in
+     * that they can be easily recomputed from D, P and Q. However by
+     * parsing them from the PKCS1 structure it is possible to avoid
+     * recalculating them which both reduces the overhead of loading
+     * RSA private keys into memory and also avoids side channels which
+     * can arise when computing those values, since all of D, P, and Q
+     * are secret. See https://eprint.iacr.org/2020/055 for a
+     * description of one such attack.
+     */
+
+    /* Import DP */
+    if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
+        (ret = mbedtls_mpi_copy(&rsa->DP, &T)) != 0) {
+        goto cleanup;
+    }
+
+    /* Import DQ */
+    if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
+        (ret = mbedtls_mpi_copy(&rsa->DQ, &T)) != 0) {
+        goto cleanup;
+    }
+
+    /* Import QP */
+    if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
+        (ret = mbedtls_mpi_copy(&rsa->QP, &T)) != 0) {
+        goto cleanup;
+    }
+
+#else
+    /* Verify existence of the CRT params */
+    if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
+        (ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
+        (ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0) {
+        goto cleanup;
+    }
+#endif
+
+    /* rsa_complete() doesn't complete anything with the default
+     * implementation but is still called:
+     * - for the benefit of alternative implementation that may want to
+     *   pre-compute stuff beyond what's provided (eg Montgomery factors)
+     * - as is also sanity-checks the key
+     *
+     * Furthermore, we also check the public part for consistency with
+     * mbedtls_pk_parse_pubkey(), as it includes size minima for example.
+     */
+    if ((ret = mbedtls_rsa_complete(rsa)) != 0 ||
+        (ret = mbedtls_rsa_check_pubkey(rsa)) != 0) {
+        goto cleanup;
+    }
+
+    if (p != end) {
+        ret = MBEDTLS_ERR_ASN1_LENGTH_MISMATCH;
+    }
+
+cleanup:
+
+    mbedtls_mpi_free(&T);
+
+    if (ret != 0) {
+        mbedtls_rsa_free(rsa);
+    }
+
+    return ret;
+}
+
+int mbedtls_rsa_parse_pubkey(mbedtls_rsa_context *rsa, const unsigned char *key, size_t keylen)
+{
+    unsigned char *p = (unsigned char *) key;
+    unsigned char *end = (unsigned char *) (key + keylen);
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t len;
+
+    /*
+     *  RSAPublicKey ::= SEQUENCE {
+     *      modulus           INTEGER,  -- n
+     *      publicExponent    INTEGER   -- e
+     *  }
+     */
+
+    if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
+                                    MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
+        return ret;
+    }
+
+    if (end != p + len) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    /* Import N */
+    if ((ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_INTEGER)) != 0) {
+        return ret;
+    }
+
+    if ((ret = mbedtls_rsa_import_raw(rsa, p, len, NULL, 0, NULL, 0,
+                                      NULL, 0, NULL, 0)) != 0) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    p += len;
+
+    /* Import E */
+    if ((ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_INTEGER)) != 0) {
+        return ret;
+    }
+
+    if ((ret = mbedtls_rsa_import_raw(rsa, NULL, 0, NULL, 0, NULL, 0,
+                                      NULL, 0, p, len)) != 0) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    p += len;
+
+    if (mbedtls_rsa_complete(rsa) != 0 ||
+        mbedtls_rsa_check_pubkey(rsa) != 0) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    if (p != end) {
+        return MBEDTLS_ERR_ASN1_LENGTH_MISMATCH;
+    }
+
+    return 0;
+}
+
+int mbedtls_rsa_write_key(const mbedtls_rsa_context *rsa, unsigned char *start,
+                          unsigned char **p)
+{
+    size_t len = 0;
+    int ret;
+
+    mbedtls_mpi T; /* Temporary holding the exported parameters */
+
+    /*
+     * Export the parameters one after another to avoid simultaneous copies.
+     */
+
+    mbedtls_mpi_init(&T);
+
+    /* Export QP */
+    if ((ret = mbedtls_rsa_export_crt(rsa, NULL, NULL, &T)) != 0 ||
+        (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
+        goto end_of_export;
+    }
+    len += ret;
+
+    /* Export DQ */
+    if ((ret = mbedtls_rsa_export_crt(rsa, NULL, &T, NULL)) != 0 ||
+        (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
+        goto end_of_export;
+    }
+    len += ret;
+
+    /* Export DP */
+    if ((ret = mbedtls_rsa_export_crt(rsa, &T, NULL, NULL)) != 0 ||
+        (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
+        goto end_of_export;
+    }
+    len += ret;
+
+    /* Export Q */
+    if ((ret = mbedtls_rsa_export(rsa, NULL, NULL, &T, NULL, NULL)) != 0 ||
+        (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
+        goto end_of_export;
+    }
+    len += ret;
+
+    /* Export P */
+    if ((ret = mbedtls_rsa_export(rsa, NULL, &T, NULL, NULL, NULL)) != 0 ||
+        (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
+        goto end_of_export;
+    }
+    len += ret;
+
+    /* Export D */
+    if ((ret = mbedtls_rsa_export(rsa, NULL, NULL, NULL, &T, NULL)) != 0 ||
+        (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
+        goto end_of_export;
+    }
+    len += ret;
+
+    /* Export E */
+    if ((ret = mbedtls_rsa_export(rsa, NULL, NULL, NULL, NULL, &T)) != 0 ||
+        (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
+        goto end_of_export;
+    }
+    len += ret;
+
+    /* Export N */
+    if ((ret = mbedtls_rsa_export(rsa, &T, NULL, NULL, NULL, NULL)) != 0 ||
+        (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
+        goto end_of_export;
+    }
+    len += ret;
+
+end_of_export:
+
+    mbedtls_mpi_free(&T);
+    if (ret < 0) {
+        return ret;
+    }
+
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_int(p, start, 0));
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(p, start, len));
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(p, start,
+                                                     MBEDTLS_ASN1_CONSTRUCTED |
+                                                     MBEDTLS_ASN1_SEQUENCE));
+
+    return (int) len;
+}
+
+/*
+ *  RSAPublicKey ::= SEQUENCE {
+ *      modulus           INTEGER,  -- n
+ *      publicExponent    INTEGER   -- e
+ *  }
+ */
+int mbedtls_rsa_write_pubkey(const mbedtls_rsa_context *rsa, unsigned char *start,
+                             unsigned char **p)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t len = 0;
+    mbedtls_mpi T;
+
+    mbedtls_mpi_init(&T);
+
+    /* Export E */
+    if ((ret = mbedtls_rsa_export(rsa, NULL, NULL, NULL, NULL, &T)) != 0 ||
+        (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
+        goto end_of_export;
+    }
+    len += ret;
+
+    /* Export N */
+    if ((ret = mbedtls_rsa_export(rsa, &T, NULL, NULL, NULL, NULL)) != 0 ||
+        (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
+        goto end_of_export;
+    }
+    len += ret;
+
+end_of_export:
+
+    mbedtls_mpi_free(&T);
+    if (ret < 0) {
+        return ret;
+    }
+
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(p, start, len));
+    MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(p, start, MBEDTLS_ASN1_CONSTRUCTED |
+                                                     MBEDTLS_ASN1_SEQUENCE));
+
+    return (int) len;
+}
+
+#if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C)
+
+/** This function performs the unpadding part of a PKCS#1 v1.5 decryption
+ *  operation (EME-PKCS1-v1_5 decoding).
+ *
+ * \note The return value from this function is a sensitive value
+ *       (this is unusual). #MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE shouldn't happen
+ *       in a well-written application, but 0 vs #MBEDTLS_ERR_RSA_INVALID_PADDING
+ *       is often a situation that an attacker can provoke and leaking which
+ *       one is the result is precisely the information the attacker wants.
+ *
+ * \param input          The input buffer which is the payload inside PKCS#1v1.5
+ *                       encryption padding, called the "encoded message EM"
+ *                       by the terminology.
+ * \param ilen           The length of the payload in the \p input buffer.
+ * \param output         The buffer for the payload, called "message M" by the
+ *                       PKCS#1 terminology. This must be a writable buffer of
+ *                       length \p output_max_len bytes.
+ * \param olen           The address at which to store the length of
+ *                       the payload. This must not be \c NULL.
+ * \param output_max_len The length in bytes of the output buffer \p output.
+ *
+ * \return      \c 0 on success.
+ * \return      #MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE
+ *              The output buffer is too small for the unpadded payload.
+ * \return      #MBEDTLS_ERR_RSA_INVALID_PADDING
+ *              The input doesn't contain properly formatted padding.
+ */
+static int mbedtls_ct_rsaes_pkcs1_v15_unpadding(unsigned char *input,
+                                                size_t ilen,
+                                                unsigned char *output,
+                                                size_t output_max_len,
+                                                size_t *olen)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t i, plaintext_max_size;
+
+    /* The following variables take sensitive values: their value must
+     * not leak into the observable behavior of the function other than
+     * the designated outputs (output, olen, return value). Otherwise
+     * this would open the execution of the function to
+     * side-channel-based variants of the Bleichenbacher padding oracle
+     * attack. Potential side channels include overall timing, memory
+     * access patterns (especially visible to an adversary who has access
+     * to a shared memory cache), and branches (especially visible to
+     * an adversary who has access to a shared code cache or to a shared
+     * branch predictor). */
+    size_t pad_count = 0;
+    mbedtls_ct_condition_t bad;
+    mbedtls_ct_condition_t pad_done;
+    size_t plaintext_size = 0;
+    mbedtls_ct_condition_t output_too_large;
+
+    plaintext_max_size = (output_max_len > ilen - 11) ? ilen - 11
+                                                        : output_max_len;
+
+    /* Check and get padding length in constant time and constant
+     * memory trace. The first byte must be 0. */
+    bad = mbedtls_ct_bool(input[0]);
+
+
+    /* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00
+     * where PS must be at least 8 nonzero bytes. */
+    bad = mbedtls_ct_bool_or(bad, mbedtls_ct_uint_ne(input[1], MBEDTLS_RSA_CRYPT));
+
+    /* Read the whole buffer. Set pad_done to nonzero if we find
+     * the 0x00 byte and remember the padding length in pad_count. */
+    pad_done = MBEDTLS_CT_FALSE;
+    for (i = 2; i < ilen; i++) {
+        mbedtls_ct_condition_t found = mbedtls_ct_uint_eq(input[i], 0);
+        pad_done   = mbedtls_ct_bool_or(pad_done, found);
+        pad_count += mbedtls_ct_uint_if_else_0(mbedtls_ct_bool_not(pad_done), 1);
+    }
+
+    /* If pad_done is still zero, there's no data, only unfinished padding. */
+    bad = mbedtls_ct_bool_or(bad, mbedtls_ct_bool_not(pad_done));
+
+    /* There must be at least 8 bytes of padding. */
+    bad = mbedtls_ct_bool_or(bad, mbedtls_ct_uint_gt(8, pad_count));
+
+    /* If the padding is valid, set plaintext_size to the number of
+     * remaining bytes after stripping the padding. If the padding
+     * is invalid, avoid leaking this fact through the size of the
+     * output: use the maximum message size that fits in the output
+     * buffer. Do it without branches to avoid leaking the padding
+     * validity through timing. RSA keys are small enough that all the
+     * size_t values involved fit in unsigned int. */
+    plaintext_size = mbedtls_ct_uint_if(
+        bad, (unsigned) plaintext_max_size,
+        (unsigned) (ilen - pad_count - 3));
+
+    /* Set output_too_large to 0 if the plaintext fits in the output
+     * buffer and to 1 otherwise. */
+    output_too_large = mbedtls_ct_uint_gt(plaintext_size,
+                                          plaintext_max_size);
+
+    /* Set ret without branches to avoid timing attacks. Return:
+     * - INVALID_PADDING if the padding is bad (bad != 0).
+     * - OUTPUT_TOO_LARGE if the padding is good but the decrypted
+     *   plaintext does not fit in the output buffer.
+     * - 0 if the padding is correct. */
+    ret = mbedtls_ct_error_if(
+        bad,
+        MBEDTLS_ERR_RSA_INVALID_PADDING,
+        mbedtls_ct_error_if_else_0(output_too_large, MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE)
+        );
+
+    /* If the padding is bad or the plaintext is too large, zero the
+     * data that we're about to copy to the output buffer.
+     * We need to copy the same amount of data
+     * from the same buffer whether the padding is good or not to
+     * avoid leaking the padding validity through overall timing or
+     * through memory or cache access patterns. */
+    mbedtls_ct_zeroize_if(mbedtls_ct_bool_or(bad, output_too_large), input + 11, ilen - 11);
+
+    /* If the plaintext is too large, truncate it to the buffer size.
+     * Copy anyway to avoid revealing the length through timing, because
+     * revealing the length is as bad as revealing the padding validity
+     * for a Bleichenbacher attack. */
+    plaintext_size = mbedtls_ct_uint_if(output_too_large,
+                                        (unsigned) plaintext_max_size,
+                                        (unsigned) plaintext_size);
+
+    /* Move the plaintext to the leftmost position where it can start in
+     * the working buffer, i.e. make it start plaintext_max_size from
+     * the end of the buffer. Do this with a memory access trace that
+     * does not depend on the plaintext size. After this move, the
+     * starting location of the plaintext is no longer sensitive
+     * information. */
+    mbedtls_ct_memmove_left(input + ilen - plaintext_max_size,
+                            plaintext_max_size,
+                            plaintext_max_size - plaintext_size);
+
+    /* Finally copy the decrypted plaintext plus trailing zeros into the output
+     * buffer. If output_max_len is 0, then output may be an invalid pointer
+     * and the result of memcpy() would be undefined; prevent undefined
+     * behavior making sure to depend only on output_max_len (the size of the
+     * user-provided output buffer), which is independent from plaintext
+     * length, validity of padding, success of the decryption, and other
+     * secrets. */
+    if (output_max_len != 0) {
+        memcpy(output, input + ilen - plaintext_max_size, plaintext_max_size);
+    }
+
+    /* Report the amount of data we copied to the output buffer. In case
+     * of errors (bad padding or output too large), the value of *olen
+     * when this function returns is not specified. Making it equivalent
+     * to the good case limits the risks of leaking the padding validity. */
+    *olen = plaintext_size;
+
+    return ret;
+}
+
+#endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C */
+
+int mbedtls_rsa_import(mbedtls_rsa_context *ctx,
+                       const mbedtls_mpi *N,
+                       const mbedtls_mpi *P, const mbedtls_mpi *Q,
+                       const mbedtls_mpi *D, const mbedtls_mpi *E)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    if ((N != NULL && (ret = mbedtls_mpi_copy(&ctx->N, N)) != 0) ||
+        (P != NULL && (ret = mbedtls_mpi_copy(&ctx->P, P)) != 0) ||
+        (Q != NULL && (ret = mbedtls_mpi_copy(&ctx->Q, Q)) != 0) ||
+        (D != NULL && (ret = mbedtls_mpi_copy(&ctx->D, D)) != 0) ||
+        (E != NULL && (ret = mbedtls_mpi_copy(&ctx->E, E)) != 0)) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
+    }
+
+    if (N != NULL) {
+        ctx->len = mbedtls_mpi_size(&ctx->N);
+    }
+
+    return 0;
+}
+
+int mbedtls_rsa_import_raw(mbedtls_rsa_context *ctx,
+                           unsigned char const *N, size_t N_len,
+                           unsigned char const *P, size_t P_len,
+                           unsigned char const *Q, size_t Q_len,
+                           unsigned char const *D, size_t D_len,
+                           unsigned char const *E, size_t E_len)
+{
+    int ret = 0;
+
+    if (N != NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->N, N, N_len));
+        ctx->len = mbedtls_mpi_size(&ctx->N);
+    }
+
+    if (P != NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->P, P, P_len));
+    }
+
+    if (Q != NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->Q, Q, Q_len));
+    }
+
+    if (D != NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->D, D, D_len));
+    }
+
+    if (E != NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->E, E, E_len));
+    }
+
+cleanup:
+
+    if (ret != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
+    }
+
+    return 0;
+}
+
+/*
+ * Checks whether the context fields are set in such a way
+ * that the RSA primitives will be able to execute without error.
+ * It does *not* make guarantees for consistency of the parameters.
+ */
+static int rsa_check_context(mbedtls_rsa_context const *ctx, int is_priv,
+                             int blinding_needed)
+{
+#if !defined(MBEDTLS_RSA_NO_CRT)
+    /* blinding_needed is only used for NO_CRT to decide whether
+     * P,Q need to be present or not. */
+    ((void) blinding_needed);
+#endif
+
+    if (ctx->len != mbedtls_mpi_size(&ctx->N) ||
+        ctx->len > MBEDTLS_MPI_MAX_SIZE) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    /*
+     * 1. Modular exponentiation needs positive, odd moduli.
+     */
+
+    /* Modular exponentiation wrt. N is always used for
+     * RSA public key operations. */
+    if (mbedtls_mpi_cmp_int(&ctx->N, 0) <= 0 ||
+        mbedtls_mpi_get_bit(&ctx->N, 0) == 0) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+#if !defined(MBEDTLS_RSA_NO_CRT)
+    /* Modular exponentiation for P and Q is only
+     * used for private key operations and if CRT
+     * is used. */
+    if (is_priv &&
+        (mbedtls_mpi_cmp_int(&ctx->P, 0) <= 0 ||
+         mbedtls_mpi_get_bit(&ctx->P, 0) == 0 ||
+         mbedtls_mpi_cmp_int(&ctx->Q, 0) <= 0 ||
+         mbedtls_mpi_get_bit(&ctx->Q, 0) == 0)) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+#endif /* !MBEDTLS_RSA_NO_CRT */
+
+    /*
+     * 2. Exponents must be positive
+     */
+
+    /* Always need E for public key operations */
+    if (mbedtls_mpi_cmp_int(&ctx->E, 0) <= 0) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+#if defined(MBEDTLS_RSA_NO_CRT)
+    /* For private key operations, use D or DP & DQ
+     * as (unblinded) exponents. */
+    if (is_priv && mbedtls_mpi_cmp_int(&ctx->D, 0) <= 0) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+#else
+    if (is_priv &&
+        (mbedtls_mpi_cmp_int(&ctx->DP, 0) <= 0 ||
+         mbedtls_mpi_cmp_int(&ctx->DQ, 0) <= 0)) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+#endif /* MBEDTLS_RSA_NO_CRT */
+
+    /* Blinding shouldn't make exponents negative either,
+     * so check that P, Q >= 1 if that hasn't yet been
+     * done as part of 1. */
+#if defined(MBEDTLS_RSA_NO_CRT)
+    if (is_priv && blinding_needed &&
+        (mbedtls_mpi_cmp_int(&ctx->P, 0) <= 0 ||
+         mbedtls_mpi_cmp_int(&ctx->Q, 0) <= 0)) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+#endif
+
+    /* It wouldn't lead to an error if it wasn't satisfied,
+     * but check for QP >= 1 nonetheless. */
+#if !defined(MBEDTLS_RSA_NO_CRT)
+    if (is_priv &&
+        mbedtls_mpi_cmp_int(&ctx->QP, 0) <= 0) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+#endif
+
+    return 0;
+}
+
+int mbedtls_rsa_complete(mbedtls_rsa_context *ctx)
+{
+    int ret = 0;
+    int have_N, have_P, have_Q, have_D, have_E;
+#if !defined(MBEDTLS_RSA_NO_CRT)
+    int have_DP, have_DQ, have_QP;
+#endif
+    int n_missing, pq_missing, d_missing, is_pub, is_priv;
+
+    have_N = (mbedtls_mpi_cmp_int(&ctx->N, 0) != 0);
+    have_P = (mbedtls_mpi_cmp_int(&ctx->P, 0) != 0);
+    have_Q = (mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0);
+    have_D = (mbedtls_mpi_cmp_int(&ctx->D, 0) != 0);
+    have_E = (mbedtls_mpi_cmp_int(&ctx->E, 0) != 0);
+
+#if !defined(MBEDTLS_RSA_NO_CRT)
+    have_DP = (mbedtls_mpi_cmp_int(&ctx->DP, 0) != 0);
+    have_DQ = (mbedtls_mpi_cmp_int(&ctx->DQ, 0) != 0);
+    have_QP = (mbedtls_mpi_cmp_int(&ctx->QP, 0) != 0);
+#endif
+
+    /*
+     * Check whether provided parameters are enough
+     * to deduce all others. The following incomplete
+     * parameter sets for private keys are supported:
+     *
+     * (1) P, Q missing.
+     * (2) D and potentially N missing.
+     *
+     */
+
+    n_missing  =              have_P &&  have_Q &&  have_D && have_E;
+    pq_missing =   have_N && !have_P && !have_Q &&  have_D && have_E;
+    d_missing  =              have_P &&  have_Q && !have_D && have_E;
+    is_pub     =   have_N && !have_P && !have_Q && !have_D && have_E;
+
+    /* These three alternatives are mutually exclusive */
+    is_priv = n_missing || pq_missing || d_missing;
+
+    if (!is_priv && !is_pub) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    /*
+     * Step 1: Deduce N if P, Q are provided.
+     */
+
+    if (!have_N && have_P && have_Q) {
+        if ((ret = mbedtls_mpi_mul_mpi(&ctx->N, &ctx->P,
+                                       &ctx->Q)) != 0) {
+            return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
+        }
+
+        ctx->len = mbedtls_mpi_size(&ctx->N);
+    }
+
+    /*
+     * Step 2: Deduce and verify all remaining core parameters.
+     */
+
+    if (pq_missing) {
+        ret = mbedtls_rsa_deduce_primes(&ctx->N, &ctx->E, &ctx->D,
+                                        &ctx->P, &ctx->Q);
+        if (ret != 0) {
+            return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
+        }
+
+    } else if (d_missing) {
+        if ((ret = mbedtls_rsa_deduce_private_exponent(&ctx->P,
+                                                       &ctx->Q,
+                                                       &ctx->E,
+                                                       &ctx->D)) != 0) {
+            return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
+        }
+    }
+
+    /*
+     * Step 3: Deduce all additional parameters specific
+     *         to our current RSA implementation.
+     */
+
+#if !defined(MBEDTLS_RSA_NO_CRT)
+    if (is_priv && !(have_DP && have_DQ && have_QP)) {
+        ret = mbedtls_rsa_deduce_crt(&ctx->P,  &ctx->Q,  &ctx->D,
+                                     &ctx->DP, &ctx->DQ, &ctx->QP);
+        if (ret != 0) {
+            return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
+        }
+    }
+#endif /* MBEDTLS_RSA_NO_CRT */
+
+    /*
+     * Step 3: Basic sanity checks
+     */
+
+    return rsa_check_context(ctx, is_priv, 1);
+}
+
+int mbedtls_rsa_export_raw(const mbedtls_rsa_context *ctx,
+                           unsigned char *N, size_t N_len,
+                           unsigned char *P, size_t P_len,
+                           unsigned char *Q, size_t Q_len,
+                           unsigned char *D, size_t D_len,
+                           unsigned char *E, size_t E_len)
+{
+    int ret = 0;
+    int is_priv;
+
+    /* Check if key is private or public */
+    is_priv =
+        mbedtls_mpi_cmp_int(&ctx->N, 0) != 0 &&
+        mbedtls_mpi_cmp_int(&ctx->P, 0) != 0 &&
+        mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0 &&
+        mbedtls_mpi_cmp_int(&ctx->D, 0) != 0 &&
+        mbedtls_mpi_cmp_int(&ctx->E, 0) != 0;
+
+    if (!is_priv) {
+        /* If we're trying to export private parameters for a public key,
+         * something must be wrong. */
+        if (P != NULL || Q != NULL || D != NULL) {
+            return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+        }
+
+    }
+
+    if (N != NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->N, N, N_len));
+    }
+
+    if (P != NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->P, P, P_len));
+    }
+
+    if (Q != NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->Q, Q, Q_len));
+    }
+
+    if (D != NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->D, D, D_len));
+    }
+
+    if (E != NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->E, E, E_len));
+    }
+
+cleanup:
+
+    return ret;
+}
+
+int mbedtls_rsa_export(const mbedtls_rsa_context *ctx,
+                       mbedtls_mpi *N, mbedtls_mpi *P, mbedtls_mpi *Q,
+                       mbedtls_mpi *D, mbedtls_mpi *E)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    int is_priv;
+
+    /* Check if key is private or public */
+    is_priv =
+        mbedtls_mpi_cmp_int(&ctx->N, 0) != 0 &&
+        mbedtls_mpi_cmp_int(&ctx->P, 0) != 0 &&
+        mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0 &&
+        mbedtls_mpi_cmp_int(&ctx->D, 0) != 0 &&
+        mbedtls_mpi_cmp_int(&ctx->E, 0) != 0;
+
+    if (!is_priv) {
+        /* If we're trying to export private parameters for a public key,
+         * something must be wrong. */
+        if (P != NULL || Q != NULL || D != NULL) {
+            return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+        }
+
+    }
+
+    /* Export all requested core parameters. */
+
+    if ((N != NULL && (ret = mbedtls_mpi_copy(N, &ctx->N)) != 0) ||
+        (P != NULL && (ret = mbedtls_mpi_copy(P, &ctx->P)) != 0) ||
+        (Q != NULL && (ret = mbedtls_mpi_copy(Q, &ctx->Q)) != 0) ||
+        (D != NULL && (ret = mbedtls_mpi_copy(D, &ctx->D)) != 0) ||
+        (E != NULL && (ret = mbedtls_mpi_copy(E, &ctx->E)) != 0)) {
+        return ret;
+    }
+
+    return 0;
+}
+
+/*
+ * Export CRT parameters
+ * This must also be implemented if CRT is not used, for being able to
+ * write DER encoded RSA keys. The helper function mbedtls_rsa_deduce_crt
+ * can be used in this case.
+ */
+int mbedtls_rsa_export_crt(const mbedtls_rsa_context *ctx,
+                           mbedtls_mpi *DP, mbedtls_mpi *DQ, mbedtls_mpi *QP)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    int is_priv;
+
+    /* Check if key is private or public */
+    is_priv =
+        mbedtls_mpi_cmp_int(&ctx->N, 0) != 0 &&
+        mbedtls_mpi_cmp_int(&ctx->P, 0) != 0 &&
+        mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0 &&
+        mbedtls_mpi_cmp_int(&ctx->D, 0) != 0 &&
+        mbedtls_mpi_cmp_int(&ctx->E, 0) != 0;
+
+    if (!is_priv) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+#if !defined(MBEDTLS_RSA_NO_CRT)
+    /* Export all requested blinding parameters. */
+    if ((DP != NULL && (ret = mbedtls_mpi_copy(DP, &ctx->DP)) != 0) ||
+        (DQ != NULL && (ret = mbedtls_mpi_copy(DQ, &ctx->DQ)) != 0) ||
+        (QP != NULL && (ret = mbedtls_mpi_copy(QP, &ctx->QP)) != 0)) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
+    }
+#else
+    if ((ret = mbedtls_rsa_deduce_crt(&ctx->P, &ctx->Q, &ctx->D,
+                                      DP, DQ, QP)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
+    }
+#endif
+
+    return 0;
+}
+
+/*
+ * Initialize an RSA context
+ */
+void mbedtls_rsa_init(mbedtls_rsa_context *ctx)
+{
+    memset(ctx, 0, sizeof(mbedtls_rsa_context));
+
+    ctx->padding = MBEDTLS_RSA_PKCS_V15;
+    ctx->hash_id = MBEDTLS_MD_NONE;
+
+#if defined(MBEDTLS_THREADING_C)
+    /* Set ctx->ver to nonzero to indicate that the mutex has been
+     * initialized and will need to be freed. */
+    ctx->ver = 1;
+    mbedtls_mutex_init(&ctx->mutex);
+#endif
+}
+
+/*
+ * Set padding for an existing RSA context
+ */
+int mbedtls_rsa_set_padding(mbedtls_rsa_context *ctx, int padding,
+                            mbedtls_md_type_t hash_id)
+{
+    switch (padding) {
+#if defined(MBEDTLS_PKCS1_V15)
+        case MBEDTLS_RSA_PKCS_V15:
+            break;
+#endif
+
+#if defined(MBEDTLS_PKCS1_V21)
+        case MBEDTLS_RSA_PKCS_V21:
+            break;
+#endif
+        default:
+            return MBEDTLS_ERR_RSA_INVALID_PADDING;
+    }
+
+#if defined(MBEDTLS_PKCS1_V21)
+    if ((padding == MBEDTLS_RSA_PKCS_V21) &&
+        (hash_id != MBEDTLS_MD_NONE)) {
+        /* Just make sure this hash is supported in this build. */
+        if (mbedtls_md_info_from_type(hash_id) == NULL) {
+            return MBEDTLS_ERR_RSA_INVALID_PADDING;
+        }
+    }
+#endif /* MBEDTLS_PKCS1_V21 */
+
+    ctx->padding = padding;
+    ctx->hash_id = hash_id;
+
+    return 0;
+}
+
+/*
+ * Get padding mode of initialized RSA context
+ */
+int mbedtls_rsa_get_padding_mode(const mbedtls_rsa_context *ctx)
+{
+    return ctx->padding;
+}
+
+/*
+ * Get hash identifier of mbedtls_md_type_t type
+ */
+int mbedtls_rsa_get_md_alg(const mbedtls_rsa_context *ctx)
+{
+    return ctx->hash_id;
+}
+
+/*
+ * Get length in bits of RSA modulus
+ */
+size_t mbedtls_rsa_get_bitlen(const mbedtls_rsa_context *ctx)
+{
+    return mbedtls_mpi_bitlen(&ctx->N);
+}
+
+/*
+ * Get length in bytes of RSA modulus
+ */
+size_t mbedtls_rsa_get_len(const mbedtls_rsa_context *ctx)
+{
+    return ctx->len;
+}
+
+#if defined(MBEDTLS_GENPRIME)
+
+/*
+ * Generate an RSA keypair
+ *
+ * This generation method follows the RSA key pair generation procedure of
+ * FIPS 186-4 if 2^16 < exponent < 2^256 and nbits = 2048 or nbits = 3072.
+ */
+int mbedtls_rsa_gen_key(mbedtls_rsa_context *ctx,
+                        int (*f_rng)(void *, unsigned char *, size_t),
+                        void *p_rng,
+                        unsigned int nbits, int exponent)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_mpi H, G, L;
+    int prime_quality = 0;
+
+    /*
+     * If the modulus is 1024 bit long or shorter, then the security strength of
+     * the RSA algorithm is less than or equal to 80 bits and therefore an error
+     * rate of 2^-80 is sufficient.
+     */
+    if (nbits > 1024) {
+        prime_quality = MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR;
+    }
+
+    mbedtls_mpi_init(&H);
+    mbedtls_mpi_init(&G);
+    mbedtls_mpi_init(&L);
+
+    if (exponent < 3 || nbits % 2 != 0) {
+        ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+        goto cleanup;
+    }
+
+    if (nbits < MBEDTLS_RSA_GEN_KEY_MIN_BITS) {
+        ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+        goto cleanup;
+    }
+
+    /*
+     * find primes P and Q with Q < P so that:
+     * 1.  |P-Q| > 2^( nbits / 2 - 100 )
+     * 2.  GCD( E, (P-1)*(Q-1) ) == 1
+     * 3.  E^-1 mod LCM(P-1, Q-1) > 2^( nbits / 2 )
+     */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&ctx->E, exponent));
+
+    do {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_gen_prime(&ctx->P, nbits >> 1,
+                                              prime_quality, f_rng, p_rng));
+
+        MBEDTLS_MPI_CHK(mbedtls_mpi_gen_prime(&ctx->Q, nbits >> 1,
+                                              prime_quality, f_rng, p_rng));
+
+        /* make sure the difference between p and q is not too small (FIPS 186-4 §B.3.3 step 5.4) */
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&H, &ctx->P, &ctx->Q));
+        if (mbedtls_mpi_bitlen(&H) <= ((nbits >= 200) ? ((nbits >> 1) - 99) : 0)) {
+            continue;
+        }
+
+        /* not required by any standards, but some users rely on the fact that P > Q */
+        if (H.s < 0) {
+            mbedtls_mpi_swap(&ctx->P, &ctx->Q);
+        }
+
+        /* Temporarily replace P,Q by P-1, Q-1 */
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&ctx->P, &ctx->P, 1));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&ctx->Q, &ctx->Q, 1));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&H, &ctx->P, &ctx->Q));
+
+        /* check GCD( E, (P-1)*(Q-1) ) == 1 (FIPS 186-4 §B.3.1 criterion 2(a)) */
+        MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, &ctx->E, &H));
+        if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
+            continue;
+        }
+
+        /* compute smallest possible D = E^-1 mod LCM(P-1, Q-1) (FIPS 186-4 §B.3.1 criterion 3(b)) */
+        MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, &ctx->P, &ctx->Q));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&L, NULL, &H, &G));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&ctx->D, &ctx->E, &L));
+
+        if (mbedtls_mpi_bitlen(&ctx->D) <= ((nbits + 1) / 2)) {      // (FIPS 186-4 §B.3.1 criterion 3(a))
+            continue;
+        }
+
+        break;
+    } while (1);
+
+    /* Restore P,Q */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&ctx->P,  &ctx->P, 1));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&ctx->Q,  &ctx->Q, 1));
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->N, &ctx->P, &ctx->Q));
+
+    ctx->len = mbedtls_mpi_size(&ctx->N);
+
+#if !defined(MBEDTLS_RSA_NO_CRT)
+    /*
+     * DP = D mod (P - 1)
+     * DQ = D mod (Q - 1)
+     * QP = Q^-1 mod P
+     */
+    MBEDTLS_MPI_CHK(mbedtls_rsa_deduce_crt(&ctx->P, &ctx->Q, &ctx->D,
+                                           &ctx->DP, &ctx->DQ, &ctx->QP));
+#endif /* MBEDTLS_RSA_NO_CRT */
+
+    /* Double-check */
+    MBEDTLS_MPI_CHK(mbedtls_rsa_check_privkey(ctx));
+
+cleanup:
+
+    mbedtls_mpi_free(&H);
+    mbedtls_mpi_free(&G);
+    mbedtls_mpi_free(&L);
+
+    if (ret != 0) {
+        mbedtls_rsa_free(ctx);
+
+        if ((-ret & ~0x7f) == 0) {
+            ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_KEY_GEN_FAILED, ret);
+        }
+        return ret;
+    }
+
+    return 0;
+}
+
+#endif /* MBEDTLS_GENPRIME */
+
+/*
+ * Check a public RSA key
+ */
+int mbedtls_rsa_check_pubkey(const mbedtls_rsa_context *ctx)
+{
+    if (rsa_check_context(ctx, 0 /* public */, 0 /* no blinding */) != 0) {
+        return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+    }
+
+    if (mbedtls_mpi_bitlen(&ctx->N) < 128) {
+        return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+    }
+
+    if (mbedtls_mpi_get_bit(&ctx->E, 0) == 0 ||
+        mbedtls_mpi_bitlen(&ctx->E)     < 2  ||
+        mbedtls_mpi_cmp_mpi(&ctx->E, &ctx->N) >= 0) {
+        return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+    }
+
+    return 0;
+}
+
+/*
+ * Check for the consistency of all fields in an RSA private key context
+ */
+int mbedtls_rsa_check_privkey(const mbedtls_rsa_context *ctx)
+{
+    if (mbedtls_rsa_check_pubkey(ctx) != 0 ||
+        rsa_check_context(ctx, 1 /* private */, 1 /* blinding */) != 0) {
+        return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+    }
+
+    if (mbedtls_rsa_validate_params(&ctx->N, &ctx->P, &ctx->Q,
+                                    &ctx->D, &ctx->E, NULL, NULL) != 0) {
+        return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+    }
+
+#if !defined(MBEDTLS_RSA_NO_CRT)
+    else if (mbedtls_rsa_validate_crt(&ctx->P, &ctx->Q, &ctx->D,
+                                      &ctx->DP, &ctx->DQ, &ctx->QP) != 0) {
+        return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+    }
+#endif
+
+    return 0;
+}
+
+/*
+ * Check if contexts holding a public and private key match
+ */
+int mbedtls_rsa_check_pub_priv(const mbedtls_rsa_context *pub,
+                               const mbedtls_rsa_context *prv)
+{
+    if (mbedtls_rsa_check_pubkey(pub)  != 0 ||
+        mbedtls_rsa_check_privkey(prv) != 0) {
+        return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+    }
+
+    if (mbedtls_mpi_cmp_mpi(&pub->N, &prv->N) != 0 ||
+        mbedtls_mpi_cmp_mpi(&pub->E, &prv->E) != 0) {
+        return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+    }
+
+    return 0;
+}
+
+/*
+ * Do an RSA public key operation
+ */
+int mbedtls_rsa_public(mbedtls_rsa_context *ctx,
+                       const unsigned char *input,
+                       unsigned char *output)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t olen;
+    mbedtls_mpi T;
+
+    if (rsa_check_context(ctx, 0 /* public */, 0 /* no blinding */)) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    mbedtls_mpi_init(&T);
+
+#if defined(MBEDTLS_THREADING_C)
+    if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) {
+        return ret;
+    }
+#endif
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&T, input, ctx->len));
+
+    if (mbedtls_mpi_cmp_mpi(&T, &ctx->N) >= 0) {
+        ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+        goto cleanup;
+    }
+
+    olen = ctx->len;
+    MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&T, &T, &ctx->E, &ctx->N, &ctx->RN));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&T, output, olen));
+
+cleanup:
+#if defined(MBEDTLS_THREADING_C)
+    if (mbedtls_mutex_unlock(&ctx->mutex) != 0) {
+        return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
+    }
+#endif
+
+    mbedtls_mpi_free(&T);
+
+    if (ret != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_PUBLIC_FAILED, ret);
+    }
+
+    return 0;
+}
+
+/*
+ * Generate or update blinding values, see section 10 of:
+ *  KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA,
+ *  DSS, and other systems. In : Advances in Cryptology-CRYPTO'96. Springer
+ *  Berlin Heidelberg, 1996. p. 104-113.
+ */
+static int rsa_prepare_blinding(mbedtls_rsa_context *ctx,
+                                int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+    int ret, count = 0;
+    mbedtls_mpi R;
+
+    mbedtls_mpi_init(&R);
+
+    if (ctx->Vf.p != NULL) {
+        /* We already have blinding values, just update them by squaring */
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vi, &ctx->Vi));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vf, &ctx->Vf, &ctx->Vf));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vf, &ctx->Vf, &ctx->N));
+
+        goto cleanup;
+    }
+
+    /* Unblinding value: Vf = random number, invertible mod N */
+    do {
+        if (count++ > 10) {
+            ret = MBEDTLS_ERR_RSA_RNG_FAILED;
+            goto cleanup;
+        }
+
+        MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&ctx->Vf, ctx->len - 1, f_rng, p_rng));
+
+        /* Compute Vf^-1 as R * (R Vf)^-1 to avoid leaks from inv_mod. */
+        MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, ctx->len - 1, f_rng, p_rng));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vf, &R));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N));
+
+        /* At this point, Vi is invertible mod N if and only if both Vf and R
+         * are invertible mod N. If one of them isn't, we don't need to know
+         * which one, we just loop and choose new values for both of them.
+         * (Each iteration succeeds with overwhelming probability.) */
+        ret = mbedtls_mpi_inv_mod(&ctx->Vi, &ctx->Vi, &ctx->N);
+        if (ret != 0 && ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
+            goto cleanup;
+        }
+
+    } while (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE);
+
+    /* Finish the computation of Vf^-1 = R * (R Vf)^-1 */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vi, &R));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N));
+
+    /* Blinding value: Vi = Vf^(-e) mod N
+     * (Vi already contains Vf^-1 at this point) */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN));
+
+
+cleanup:
+    mbedtls_mpi_free(&R);
+
+    return ret;
+}
+
+/*
+ * Unblind
+ * T = T * Vf mod N
+ */
+static int rsa_unblind(mbedtls_mpi *T, mbedtls_mpi *Vf, const mbedtls_mpi *N)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    const mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N->p);
+    const size_t nlimbs = N->n;
+    const size_t tlimbs = mbedtls_mpi_core_montmul_working_limbs(nlimbs);
+    mbedtls_mpi RR, M_T;
+
+    mbedtls_mpi_init(&RR);
+    mbedtls_mpi_init(&M_T);
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_core_get_mont_r2_unsafe(&RR, N));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&M_T, tlimbs));
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(T, nlimbs));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Vf, nlimbs));
+
+    /* T = T * Vf mod N
+     * Reminder: montmul(A, B, N) = A * B * R^-1 mod N
+     * Usually both operands are multiplied by R mod N beforehand (by calling
+     * `to_mont_rep()` on them), yielding a result that's also * R mod N (aka
+     * "in the Montgomery domain"). Here we only multiply one operand by R mod
+     * N, so the result is directly what we want - no need to call
+     * `from_mont_rep()` on it. */
+    mbedtls_mpi_core_to_mont_rep(T->p, T->p, N->p, nlimbs, mm, RR.p, M_T.p);
+    mbedtls_mpi_core_montmul(T->p, T->p, Vf->p, nlimbs, N->p, nlimbs, mm, M_T.p);
+
+cleanup:
+
+    mbedtls_mpi_free(&RR);
+    mbedtls_mpi_free(&M_T);
+
+    return ret;
+}
+
+/*
+ * Exponent blinding supposed to prevent side-channel attacks using multiple
+ * traces of measurements to recover the RSA key. The more collisions are there,
+ * the more bits of the key can be recovered. See [3].
+ *
+ * Collecting n collisions with m bit long blinding value requires 2^(m-m/n)
+ * observations on average.
+ *
+ * For example with 28 byte blinding to achieve 2 collisions the adversary has
+ * to make 2^112 observations on average.
+ *
+ * (With the currently (as of 2017 April) known best algorithms breaking 2048
+ * bit RSA requires approximately as much time as trying out 2^112 random keys.
+ * Thus in this sense with 28 byte blinding the security is not reduced by
+ * side-channel attacks like the one in [3])
+ *
+ * This countermeasure does not help if the key recovery is possible with a
+ * single trace.
+ */
+#define RSA_EXPONENT_BLINDING 28
+
+/*
+ * Do an RSA private key operation
+ */
+int mbedtls_rsa_private(mbedtls_rsa_context *ctx,
+                        int (*f_rng)(void *, unsigned char *, size_t),
+                        void *p_rng,
+                        const unsigned char *input,
+                        unsigned char *output)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t olen;
+
+    /* Temporary holding the result */
+    mbedtls_mpi T;
+
+    /* Temporaries holding P-1, Q-1 and the
+     * exponent blinding factor, respectively. */
+    mbedtls_mpi P1, Q1, R;
+
+#if !defined(MBEDTLS_RSA_NO_CRT)
+    /* Temporaries holding the results mod p resp. mod q. */
+    mbedtls_mpi TP, TQ;
+
+    /* Temporaries holding the blinded exponents for
+     * the mod p resp. mod q computation (if used). */
+    mbedtls_mpi DP_blind, DQ_blind;
+#else
+    /* Temporary holding the blinded exponent (if used). */
+    mbedtls_mpi D_blind;
+#endif /* MBEDTLS_RSA_NO_CRT */
+
+    /* Temporaries holding the initial input and the double
+     * checked result; should be the same in the end. */
+    mbedtls_mpi input_blinded, check_result_blinded;
+
+    if (f_rng == NULL) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    if (rsa_check_context(ctx, 1 /* private key checks */,
+                          1 /* blinding on        */) != 0) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+#if defined(MBEDTLS_THREADING_C)
+    if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) {
+        return ret;
+    }
+#endif
+
+    /* MPI Initialization */
+    mbedtls_mpi_init(&T);
+
+    mbedtls_mpi_init(&P1);
+    mbedtls_mpi_init(&Q1);
+    mbedtls_mpi_init(&R);
+
+#if defined(MBEDTLS_RSA_NO_CRT)
+    mbedtls_mpi_init(&D_blind);
+#else
+    mbedtls_mpi_init(&DP_blind);
+    mbedtls_mpi_init(&DQ_blind);
+#endif
+
+#if !defined(MBEDTLS_RSA_NO_CRT)
+    mbedtls_mpi_init(&TP); mbedtls_mpi_init(&TQ);
+#endif
+
+    mbedtls_mpi_init(&input_blinded);
+    mbedtls_mpi_init(&check_result_blinded);
+
+    /* End of MPI initialization */
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&T, input, ctx->len));
+    if (mbedtls_mpi_cmp_mpi(&T, &ctx->N) >= 0) {
+        ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+        goto cleanup;
+    }
+
+    /*
+     * Blinding
+     * T = T * Vi mod N
+     */
+    MBEDTLS_MPI_CHK(rsa_prepare_blinding(ctx, f_rng, p_rng));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &T, &ctx->Vi));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T, &T, &ctx->N));
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&input_blinded, &T));
+
+    /*
+     * Exponent blinding
+     */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&P1, &ctx->P, 1));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&Q1, &ctx->Q, 1));
+
+#if defined(MBEDTLS_RSA_NO_CRT)
+    /*
+     * D_blind = ( P - 1 ) * ( Q - 1 ) * R + D
+     */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, RSA_EXPONENT_BLINDING,
+                                            f_rng, p_rng));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&D_blind, &P1, &Q1));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&D_blind, &D_blind, &R));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&D_blind, &D_blind, &ctx->D));
+#else
+    /*
+     * DP_blind = ( P - 1 ) * R + DP
+     */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, RSA_EXPONENT_BLINDING,
+                                            f_rng, p_rng));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&DP_blind, &P1, &R));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&DP_blind, &DP_blind,
+                                        &ctx->DP));
+
+    /*
+     * DQ_blind = ( Q - 1 ) * R + DQ
+     */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, RSA_EXPONENT_BLINDING,
+                                            f_rng, p_rng));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&DQ_blind, &Q1, &R));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&DQ_blind, &DQ_blind,
+                                        &ctx->DQ));
+#endif /* MBEDTLS_RSA_NO_CRT */
+
+#if defined(MBEDTLS_RSA_NO_CRT)
+    MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&T, &T, &D_blind, &ctx->N, &ctx->RN));
+#else
+    /*
+     * Faster decryption using the CRT
+     *
+     * TP = input ^ dP mod P
+     * TQ = input ^ dQ mod Q
+     */
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&TP, &T, &DP_blind, &ctx->P, &ctx->RP));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&TQ, &T, &DQ_blind, &ctx->Q, &ctx->RQ));
+
+    /*
+     * T = (TP - TQ) * (Q^-1 mod P) mod P
+     */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&T, &TP, &TQ));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&TP, &T, &ctx->QP));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T, &TP, &ctx->P));
+
+    /*
+     * T = TQ + T * Q
+     */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&TP, &T, &ctx->Q));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&T, &TQ, &TP));
+#endif /* MBEDTLS_RSA_NO_CRT */
+
+    /* Verify the result to prevent glitching attacks. */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&check_result_blinded, &T, &ctx->E,
+                                        &ctx->N, &ctx->RN));
+    if (mbedtls_mpi_cmp_mpi(&check_result_blinded, &input_blinded) != 0) {
+        ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
+        goto cleanup;
+    }
+
+    /*
+     * Unblind
+     * T = T * Vf mod N
+     */
+    MBEDTLS_MPI_CHK(rsa_unblind(&T, &ctx->Vf, &ctx->N));
+
+    olen = ctx->len;
+    MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&T, output, olen));
+
+cleanup:
+#if defined(MBEDTLS_THREADING_C)
+    if (mbedtls_mutex_unlock(&ctx->mutex) != 0) {
+        return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
+    }
+#endif
+
+    mbedtls_mpi_free(&P1);
+    mbedtls_mpi_free(&Q1);
+    mbedtls_mpi_free(&R);
+
+#if defined(MBEDTLS_RSA_NO_CRT)
+    mbedtls_mpi_free(&D_blind);
+#else
+    mbedtls_mpi_free(&DP_blind);
+    mbedtls_mpi_free(&DQ_blind);
+#endif
+
+    mbedtls_mpi_free(&T);
+
+#if !defined(MBEDTLS_RSA_NO_CRT)
+    mbedtls_mpi_free(&TP); mbedtls_mpi_free(&TQ);
+#endif
+
+    mbedtls_mpi_free(&check_result_blinded);
+    mbedtls_mpi_free(&input_blinded);
+
+    if (ret != 0 && ret >= -0x007f) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_PRIVATE_FAILED, ret);
+    }
+
+    return ret;
+}
+
+#if defined(MBEDTLS_PKCS1_V21)
+/**
+ * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer.
+ *
+ * \param dst       buffer to mask
+ * \param dlen      length of destination buffer
+ * \param src       source of the mask generation
+ * \param slen      length of the source buffer
+ * \param md_alg    message digest to use
+ */
+static int mgf_mask(unsigned char *dst, size_t dlen, unsigned char *src,
+                    size_t slen, mbedtls_md_type_t md_alg)
+{
+    unsigned char counter[4];
+    unsigned char *p;
+    unsigned int hlen;
+    size_t i, use_len;
+    unsigned char mask[MBEDTLS_MD_MAX_SIZE];
+    int ret = 0;
+    const mbedtls_md_info_t *md_info;
+    mbedtls_md_context_t md_ctx;
+
+    mbedtls_md_init(&md_ctx);
+    md_info = mbedtls_md_info_from_type(md_alg);
+    if (md_info == NULL) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    mbedtls_md_init(&md_ctx);
+    if ((ret = mbedtls_md_setup(&md_ctx, md_info, 0)) != 0) {
+        goto exit;
+    }
+
+    hlen = mbedtls_md_get_size(md_info);
+
+    memset(mask, 0, sizeof(mask));
+    memset(counter, 0, 4);
+
+    /* Generate and apply dbMask */
+    p = dst;
+
+    while (dlen > 0) {
+        use_len = hlen;
+        if (dlen < hlen) {
+            use_len = dlen;
+        }
+
+        if ((ret = mbedtls_md_starts(&md_ctx)) != 0) {
+            goto exit;
+        }
+        if ((ret = mbedtls_md_update(&md_ctx, src, slen)) != 0) {
+            goto exit;
+        }
+        if ((ret = mbedtls_md_update(&md_ctx, counter, 4)) != 0) {
+            goto exit;
+        }
+        if ((ret = mbedtls_md_finish(&md_ctx, mask)) != 0) {
+            goto exit;
+        }
+
+        for (i = 0; i < use_len; ++i) {
+            *p++ ^= mask[i];
+        }
+
+        counter[3]++;
+
+        dlen -= use_len;
+    }
+
+exit:
+    mbedtls_platform_zeroize(mask, sizeof(mask));
+    mbedtls_md_free(&md_ctx);
+
+    return ret;
+}
+
+/**
+ * Generate Hash(M') as in RFC 8017 page 43 points 5 and 6.
+ *
+ * \param hash      the input hash
+ * \param hlen      length of the input hash
+ * \param salt      the input salt
+ * \param slen      length of the input salt
+ * \param out       the output buffer - must be large enough for \p md_alg
+ * \param md_alg    message digest to use
+ */
+static int hash_mprime(const unsigned char *hash, size_t hlen,
+                       const unsigned char *salt, size_t slen,
+                       unsigned char *out, mbedtls_md_type_t md_alg)
+{
+    const unsigned char zeros[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
+
+    mbedtls_md_context_t md_ctx;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type(md_alg);
+    if (md_info == NULL) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    mbedtls_md_init(&md_ctx);
+    if ((ret = mbedtls_md_setup(&md_ctx, md_info, 0)) != 0) {
+        goto exit;
+    }
+    if ((ret = mbedtls_md_starts(&md_ctx)) != 0) {
+        goto exit;
+    }
+    if ((ret = mbedtls_md_update(&md_ctx, zeros, sizeof(zeros))) != 0) {
+        goto exit;
+    }
+    if ((ret = mbedtls_md_update(&md_ctx, hash, hlen)) != 0) {
+        goto exit;
+    }
+    if ((ret = mbedtls_md_update(&md_ctx, salt, slen)) != 0) {
+        goto exit;
+    }
+    if ((ret = mbedtls_md_finish(&md_ctx, out)) != 0) {
+        goto exit;
+    }
+
+exit:
+    mbedtls_md_free(&md_ctx);
+
+    return ret;
+}
+
+/**
+ * Compute a hash.
+ *
+ * \param md_alg    algorithm to use
+ * \param input     input message to hash
+ * \param ilen      input length
+ * \param output    the output buffer - must be large enough for \p md_alg
+ */
+static int compute_hash(mbedtls_md_type_t md_alg,
+                        const unsigned char *input, size_t ilen,
+                        unsigned char *output)
+{
+    const mbedtls_md_info_t *md_info;
+
+    md_info = mbedtls_md_info_from_type(md_alg);
+    if (md_info == NULL) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    return mbedtls_md(md_info, input, ilen, output);
+}
+#endif /* MBEDTLS_PKCS1_V21 */
+
+#if defined(MBEDTLS_PKCS1_V21)
+/*
+ * Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function
+ */
+int mbedtls_rsa_rsaes_oaep_encrypt(mbedtls_rsa_context *ctx,
+                                   int (*f_rng)(void *, unsigned char *, size_t),
+                                   void *p_rng,
+                                   const unsigned char *label, size_t label_len,
+                                   size_t ilen,
+                                   const unsigned char *input,
+                                   unsigned char *output)
+{
+    size_t olen;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char *p = output;
+    unsigned int hlen;
+
+    if (f_rng == NULL) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    hlen = mbedtls_md_get_size_from_type((mbedtls_md_type_t) ctx->hash_id);
+    if (hlen == 0) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    olen = ctx->len;
+
+    /* first comparison checks for overflow */
+    if (ilen + 2 * hlen + 2 < ilen || olen < ilen + 2 * hlen + 2) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    memset(output, 0, olen);
+
+    *p++ = 0;
+
+    /* Generate a random octet string seed */
+    if ((ret = f_rng(p_rng, p, hlen)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_RNG_FAILED, ret);
+    }
+
+    p += hlen;
+
+    /* Construct DB */
+    ret = compute_hash((mbedtls_md_type_t) ctx->hash_id, label, label_len, p);
+    if (ret != 0) {
+        return ret;
+    }
+    p += hlen;
+    p += olen - 2 * hlen - 2 - ilen;
+    *p++ = 1;
+    if (ilen != 0) {
+        memcpy(p, input, ilen);
+    }
+
+    /* maskedDB: Apply dbMask to DB */
+    if ((ret = mgf_mask(output + hlen + 1, olen - hlen - 1, output + 1, hlen,
+                        (mbedtls_md_type_t) ctx->hash_id)) != 0) {
+        return ret;
+    }
+
+    /* maskedSeed: Apply seedMask to seed */
+    if ((ret = mgf_mask(output + 1, hlen, output + hlen + 1, olen - hlen - 1,
+                        (mbedtls_md_type_t) ctx->hash_id)) != 0) {
+        return ret;
+    }
+
+    return mbedtls_rsa_public(ctx, output, output);
+}
+#endif /* MBEDTLS_PKCS1_V21 */
+
+#if defined(MBEDTLS_PKCS1_V15)
+/*
+ * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function
+ */
+int mbedtls_rsa_rsaes_pkcs1_v15_encrypt(mbedtls_rsa_context *ctx,
+                                        int (*f_rng)(void *, unsigned char *, size_t),
+                                        void *p_rng, size_t ilen,
+                                        const unsigned char *input,
+                                        unsigned char *output)
+{
+    size_t nb_pad, olen;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char *p = output;
+
+    olen = ctx->len;
+
+    /* first comparison checks for overflow */
+    if (ilen + 11 < ilen || olen < ilen + 11) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    nb_pad = olen - 3 - ilen;
+
+    *p++ = 0;
+
+    if (f_rng == NULL) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    *p++ = MBEDTLS_RSA_CRYPT;
+
+    while (nb_pad-- > 0) {
+        int rng_dl = 100;
+
+        do {
+            ret = f_rng(p_rng, p, 1);
+        } while (*p == 0 && --rng_dl && ret == 0);
+
+        /* Check if RNG failed to generate data */
+        if (rng_dl == 0 || ret != 0) {
+            return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_RNG_FAILED, ret);
+        }
+
+        p++;
+    }
+
+    *p++ = 0;
+    if (ilen != 0) {
+        memcpy(p, input, ilen);
+    }
+
+    return mbedtls_rsa_public(ctx, output, output);
+}
+#endif /* MBEDTLS_PKCS1_V15 */
+
+/*
+ * Add the message padding, then do an RSA operation
+ */
+int mbedtls_rsa_pkcs1_encrypt(mbedtls_rsa_context *ctx,
+                              int (*f_rng)(void *, unsigned char *, size_t),
+                              void *p_rng,
+                              size_t ilen,
+                              const unsigned char *input,
+                              unsigned char *output)
+{
+    switch (ctx->padding) {
+#if defined(MBEDTLS_PKCS1_V15)
+        case MBEDTLS_RSA_PKCS_V15:
+            return mbedtls_rsa_rsaes_pkcs1_v15_encrypt(ctx, f_rng, p_rng,
+                                                       ilen, input, output);
+#endif
+
+#if defined(MBEDTLS_PKCS1_V21)
+        case MBEDTLS_RSA_PKCS_V21:
+            return mbedtls_rsa_rsaes_oaep_encrypt(ctx, f_rng, p_rng, NULL, 0,
+                                                  ilen, input, output);
+#endif
+
+        default:
+            return MBEDTLS_ERR_RSA_INVALID_PADDING;
+    }
+}
+
+#if defined(MBEDTLS_PKCS1_V21)
+/*
+ * Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function
+ */
+int mbedtls_rsa_rsaes_oaep_decrypt(mbedtls_rsa_context *ctx,
+                                   int (*f_rng)(void *, unsigned char *, size_t),
+                                   void *p_rng,
+                                   const unsigned char *label, size_t label_len,
+                                   size_t *olen,
+                                   const unsigned char *input,
+                                   unsigned char *output,
+                                   size_t output_max_len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t ilen, i, pad_len;
+    unsigned char *p;
+    mbedtls_ct_condition_t bad, in_padding;
+    unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
+    unsigned char lhash[MBEDTLS_MD_MAX_SIZE];
+    unsigned int hlen;
+
+    /*
+     * Parameters sanity checks
+     */
+    if (ctx->padding != MBEDTLS_RSA_PKCS_V21) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    ilen = ctx->len;
+
+    if (ilen < 16 || ilen > sizeof(buf)) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    hlen = mbedtls_md_get_size_from_type((mbedtls_md_type_t) ctx->hash_id);
+    if (hlen == 0) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    // checking for integer underflow
+    if (2 * hlen + 2 > ilen) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    /*
+     * RSA operation
+     */
+    ret = mbedtls_rsa_private(ctx, f_rng, p_rng, input, buf);
+
+    if (ret != 0) {
+        goto cleanup;
+    }
+
+    /*
+     * Unmask data and generate lHash
+     */
+    /* seed: Apply seedMask to maskedSeed */
+    if ((ret = mgf_mask(buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
+                        (mbedtls_md_type_t) ctx->hash_id)) != 0 ||
+        /* DB: Apply dbMask to maskedDB */
+        (ret = mgf_mask(buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
+                        (mbedtls_md_type_t) ctx->hash_id)) != 0) {
+        goto cleanup;
+    }
+
+    /* Generate lHash */
+    ret = compute_hash((mbedtls_md_type_t) ctx->hash_id,
+                       label, label_len, lhash);
+    if (ret != 0) {
+        goto cleanup;
+    }
+
+    /*
+     * Check contents, in "constant-time"
+     */
+    p = buf;
+
+    bad = mbedtls_ct_bool(*p++); /* First byte must be 0 */
+
+    p += hlen; /* Skip seed */
+
+    /* Check lHash */
+    bad = mbedtls_ct_bool_or(bad, mbedtls_ct_bool(mbedtls_ct_memcmp(lhash, p, hlen)));
+    p += hlen;
+
+    /* Get zero-padding len, but always read till end of buffer
+     * (minus one, for the 01 byte) */
+    pad_len = 0;
+    in_padding = MBEDTLS_CT_TRUE;
+    for (i = 0; i < ilen - 2 * hlen - 2; i++) {
+        in_padding = mbedtls_ct_bool_and(in_padding, mbedtls_ct_uint_eq(p[i], 0));
+        pad_len += mbedtls_ct_uint_if_else_0(in_padding, 1);
+    }
+
+    p += pad_len;
+    bad = mbedtls_ct_bool_or(bad, mbedtls_ct_uint_ne(*p++, 0x01));
+
+    /*
+     * The only information "leaked" is whether the padding was correct or not
+     * (eg, no data is copied if it was not correct). This meets the
+     * recommendations in PKCS#1 v2.2: an opponent cannot distinguish between
+     * the different error conditions.
+     */
+    if (bad != MBEDTLS_CT_FALSE) {
+        ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
+        goto cleanup;
+    }
+
+    if (ilen - ((size_t) (p - buf)) > output_max_len) {
+        ret = MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
+        goto cleanup;
+    }
+
+    *olen = ilen - ((size_t) (p - buf));
+    if (*olen != 0) {
+        memcpy(output, p, *olen);
+    }
+    ret = 0;
+
+cleanup:
+    mbedtls_platform_zeroize(buf, sizeof(buf));
+    mbedtls_platform_zeroize(lhash, sizeof(lhash));
+
+    return ret;
+}
+#endif /* MBEDTLS_PKCS1_V21 */
+
+#if defined(MBEDTLS_PKCS1_V15)
+/*
+ * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function
+ */
+int mbedtls_rsa_rsaes_pkcs1_v15_decrypt(mbedtls_rsa_context *ctx,
+                                        int (*f_rng)(void *, unsigned char *, size_t),
+                                        void *p_rng,
+                                        size_t *olen,
+                                        const unsigned char *input,
+                                        unsigned char *output,
+                                        size_t output_max_len)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t ilen;
+    unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
+
+    ilen = ctx->len;
+
+    if (ctx->padding != MBEDTLS_RSA_PKCS_V15) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    if (ilen < 16 || ilen > sizeof(buf)) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    ret = mbedtls_rsa_private(ctx, f_rng, p_rng, input, buf);
+
+    if (ret != 0) {
+        goto cleanup;
+    }
+
+    ret = mbedtls_ct_rsaes_pkcs1_v15_unpadding(buf, ilen,
+                                               output, output_max_len, olen);
+
+cleanup:
+    mbedtls_platform_zeroize(buf, sizeof(buf));
+
+    return ret;
+}
+#endif /* MBEDTLS_PKCS1_V15 */
+
+/*
+ * Do an RSA operation, then remove the message padding
+ */
+int mbedtls_rsa_pkcs1_decrypt(mbedtls_rsa_context *ctx,
+                              int (*f_rng)(void *, unsigned char *, size_t),
+                              void *p_rng,
+                              size_t *olen,
+                              const unsigned char *input,
+                              unsigned char *output,
+                              size_t output_max_len)
+{
+    switch (ctx->padding) {
+#if defined(MBEDTLS_PKCS1_V15)
+        case MBEDTLS_RSA_PKCS_V15:
+            return mbedtls_rsa_rsaes_pkcs1_v15_decrypt(ctx, f_rng, p_rng, olen,
+                                                       input, output, output_max_len);
+#endif
+
+#if defined(MBEDTLS_PKCS1_V21)
+        case MBEDTLS_RSA_PKCS_V21:
+            return mbedtls_rsa_rsaes_oaep_decrypt(ctx, f_rng, p_rng, NULL, 0,
+                                                  olen, input, output,
+                                                  output_max_len);
+#endif
+
+        default:
+            return MBEDTLS_ERR_RSA_INVALID_PADDING;
+    }
+}
+
+#if defined(MBEDTLS_PKCS1_V21)
+static int rsa_rsassa_pss_sign_no_mode_check(mbedtls_rsa_context *ctx,
+                                             int (*f_rng)(void *, unsigned char *, size_t),
+                                             void *p_rng,
+                                             mbedtls_md_type_t md_alg,
+                                             unsigned int hashlen,
+                                             const unsigned char *hash,
+                                             int saltlen,
+                                             unsigned char *sig)
+{
+    size_t olen;
+    unsigned char *p = sig;
+    unsigned char *salt = NULL;
+    size_t slen, min_slen, hlen, offset = 0;
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t msb;
+    mbedtls_md_type_t hash_id;
+
+    if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    if (f_rng == NULL) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    olen = ctx->len;
+
+    if (md_alg != MBEDTLS_MD_NONE) {
+        /* Gather length of hash to sign */
+        size_t exp_hashlen = mbedtls_md_get_size_from_type(md_alg);
+        if (exp_hashlen == 0) {
+            return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+        }
+
+        if (hashlen != exp_hashlen) {
+            return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+        }
+    }
+
+    hash_id = (mbedtls_md_type_t) ctx->hash_id;
+    if (hash_id == MBEDTLS_MD_NONE) {
+        hash_id = md_alg;
+    }
+    hlen = mbedtls_md_get_size_from_type(hash_id);
+    if (hlen == 0) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    if (saltlen == MBEDTLS_RSA_SALT_LEN_ANY) {
+        /* Calculate the largest possible salt length, up to the hash size.
+         * Normally this is the hash length, which is the maximum salt length
+         * according to FIPS 185-4 §5.5 (e) and common practice. If there is not
+         * enough room, use the maximum salt length that fits. The constraint is
+         * that the hash length plus the salt length plus 2 bytes must be at most
+         * the key length. This complies with FIPS 186-4 §5.5 (e) and RFC 8017
+         * (PKCS#1 v2.2) §9.1.1 step 3. */
+        min_slen = hlen - 2;
+        if (olen < hlen + min_slen + 2) {
+            return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+        } else if (olen >= hlen + hlen + 2) {
+            slen = hlen;
+        } else {
+            slen = olen - hlen - 2;
+        }
+    } else if ((saltlen < 0) || (saltlen + hlen + 2 > olen)) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    } else {
+        slen = (size_t) saltlen;
+    }
+
+    memset(sig, 0, olen);
+
+    /* Note: EMSA-PSS encoding is over the length of N - 1 bits */
+    msb = mbedtls_mpi_bitlen(&ctx->N) - 1;
+    p += olen - hlen - slen - 2;
+    *p++ = 0x01;
+
+    /* Generate salt of length slen in place in the encoded message */
+    salt = p;
+    if ((ret = f_rng(p_rng, salt, slen)) != 0) {
+        return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_RNG_FAILED, ret);
+    }
+
+    p += slen;
+
+    /* Generate H = Hash( M' ) */
+    ret = hash_mprime(hash, hashlen, salt, slen, p, hash_id);
+    if (ret != 0) {
+        return ret;
+    }
+
+    /* Compensate for boundary condition when applying mask */
+    if (msb % 8 == 0) {
+        offset = 1;
+    }
+
+    /* maskedDB: Apply dbMask to DB */
+    ret = mgf_mask(sig + offset, olen - hlen - 1 - offset, p, hlen, hash_id);
+    if (ret != 0) {
+        return ret;
+    }
+
+    msb = mbedtls_mpi_bitlen(&ctx->N) - 1;
+    sig[0] &= 0xFF >> (olen * 8 - msb);
+
+    p += hlen;
+    *p++ = 0xBC;
+
+    return mbedtls_rsa_private(ctx, f_rng, p_rng, sig, sig);
+}
+
+static int rsa_rsassa_pss_sign(mbedtls_rsa_context *ctx,
+                               int (*f_rng)(void *, unsigned char *, size_t),
+                               void *p_rng,
+                               mbedtls_md_type_t md_alg,
+                               unsigned int hashlen,
+                               const unsigned char *hash,
+                               int saltlen,
+                               unsigned char *sig)
+{
+    if (ctx->padding != MBEDTLS_RSA_PKCS_V21) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+    if ((ctx->hash_id == MBEDTLS_MD_NONE) && (md_alg == MBEDTLS_MD_NONE)) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+    return rsa_rsassa_pss_sign_no_mode_check(ctx, f_rng, p_rng, md_alg, hashlen, hash, saltlen,
+                                             sig);
+}
+
+int mbedtls_rsa_rsassa_pss_sign_no_mode_check(mbedtls_rsa_context *ctx,
+                                              int (*f_rng)(void *, unsigned char *, size_t),
+                                              void *p_rng,
+                                              mbedtls_md_type_t md_alg,
+                                              unsigned int hashlen,
+                                              const unsigned char *hash,
+                                              unsigned char *sig)
+{
+    return rsa_rsassa_pss_sign_no_mode_check(ctx, f_rng, p_rng, md_alg,
+                                             hashlen, hash, MBEDTLS_RSA_SALT_LEN_ANY, sig);
+}
+
+/*
+ * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function with
+ * the option to pass in the salt length.
+ */
+int mbedtls_rsa_rsassa_pss_sign_ext(mbedtls_rsa_context *ctx,
+                                    int (*f_rng)(void *, unsigned char *, size_t),
+                                    void *p_rng,
+                                    mbedtls_md_type_t md_alg,
+                                    unsigned int hashlen,
+                                    const unsigned char *hash,
+                                    int saltlen,
+                                    unsigned char *sig)
+{
+    return rsa_rsassa_pss_sign(ctx, f_rng, p_rng, md_alg,
+                               hashlen, hash, saltlen, sig);
+}
+
+/*
+ * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function
+ */
+int mbedtls_rsa_rsassa_pss_sign(mbedtls_rsa_context *ctx,
+                                int (*f_rng)(void *, unsigned char *, size_t),
+                                void *p_rng,
+                                mbedtls_md_type_t md_alg,
+                                unsigned int hashlen,
+                                const unsigned char *hash,
+                                unsigned char *sig)
+{
+    return rsa_rsassa_pss_sign(ctx, f_rng, p_rng, md_alg,
+                               hashlen, hash, MBEDTLS_RSA_SALT_LEN_ANY, sig);
+}
+#endif /* MBEDTLS_PKCS1_V21 */
+
+#if defined(MBEDTLS_PKCS1_V15)
+/*
+ * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function
+ */
+
+/* Construct a PKCS v1.5 encoding of a hashed message
+ *
+ * This is used both for signature generation and verification.
+ *
+ * Parameters:
+ * - md_alg:  Identifies the hash algorithm used to generate the given hash;
+ *            MBEDTLS_MD_NONE if raw data is signed.
+ * - hashlen: Length of hash. Must match md_alg if that's not NONE.
+ * - hash:    Buffer containing the hashed message or the raw data.
+ * - dst_len: Length of the encoded message.
+ * - dst:     Buffer to hold the encoded message.
+ *
+ * Assumptions:
+ * - hash has size hashlen.
+ * - dst points to a buffer of size at least dst_len.
+ *
+ */
+static int rsa_rsassa_pkcs1_v15_encode(mbedtls_md_type_t md_alg,
+                                       unsigned int hashlen,
+                                       const unsigned char *hash,
+                                       size_t dst_len,
+                                       unsigned char *dst)
+{
+    size_t oid_size  = 0;
+    size_t nb_pad    = dst_len;
+    unsigned char *p = dst;
+    const char *oid  = NULL;
+
+    /* Are we signing hashed or raw data? */
+    if (md_alg != MBEDTLS_MD_NONE) {
+        unsigned char md_size = mbedtls_md_get_size_from_type(md_alg);
+        if (md_size == 0) {
+            return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+        }
+
+        if (mbedtls_oid_get_oid_by_md(md_alg, &oid, &oid_size) != 0) {
+            return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+        }
+
+        if (hashlen != md_size) {
+            return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+        }
+
+        /* Double-check that 8 + hashlen + oid_size can be used as a
+         * 1-byte ASN.1 length encoding and that there's no overflow. */
+        if (8 + hashlen + oid_size  >= 0x80         ||
+            10 + hashlen            <  hashlen      ||
+            10 + hashlen + oid_size <  10 + hashlen) {
+            return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+        }
+
+        /*
+         * Static bounds check:
+         * - Need 10 bytes for five tag-length pairs.
+         *   (Insist on 1-byte length encodings to protect against variants of
+         *    Bleichenbacher's forgery attack against lax PKCS#1v1.5 verification)
+         * - Need hashlen bytes for hash
+         * - Need oid_size bytes for hash alg OID.
+         */
+        if (nb_pad < 10 + hashlen + oid_size) {
+            return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+        }
+        nb_pad -= 10 + hashlen + oid_size;
+    } else {
+        if (nb_pad < hashlen) {
+            return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+        }
+
+        nb_pad -= hashlen;
+    }
+
+    /* Need space for signature header and padding delimiter (3 bytes),
+     * and 8 bytes for the minimal padding */
+    if (nb_pad < 3 + 8) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+    nb_pad -= 3;
+
+    /* Now nb_pad is the amount of memory to be filled
+     * with padding, and at least 8 bytes long. */
+
+    /* Write signature header and padding */
+    *p++ = 0;
+    *p++ = MBEDTLS_RSA_SIGN;
+    memset(p, 0xFF, nb_pad);
+    p += nb_pad;
+    *p++ = 0;
+
+    /* Are we signing raw data? */
+    if (md_alg == MBEDTLS_MD_NONE) {
+        memcpy(p, hash, hashlen);
+        return 0;
+    }
+
+    /* Signing hashed data, add corresponding ASN.1 structure
+     *
+     * DigestInfo ::= SEQUENCE {
+     *   digestAlgorithm DigestAlgorithmIdentifier,
+     *   digest Digest }
+     * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
+     * Digest ::= OCTET STRING
+     *
+     * Schematic:
+     * TAG-SEQ + LEN [ TAG-SEQ + LEN [ TAG-OID  + LEN [ OID  ]
+     *                                 TAG-NULL + LEN [ NULL ] ]
+     *                 TAG-OCTET + LEN [ HASH ] ]
+     */
+    *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
+    *p++ = (unsigned char) (0x08 + oid_size + hashlen);
+    *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
+    *p++ = (unsigned char) (0x04 + oid_size);
+    *p++ = MBEDTLS_ASN1_OID;
+    *p++ = (unsigned char) oid_size;
+    memcpy(p, oid, oid_size);
+    p += oid_size;
+    *p++ = MBEDTLS_ASN1_NULL;
+    *p++ = 0x00;
+    *p++ = MBEDTLS_ASN1_OCTET_STRING;
+    *p++ = (unsigned char) hashlen;
+    memcpy(p, hash, hashlen);
+    p += hashlen;
+
+    /* Just a sanity-check, should be automatic
+     * after the initial bounds check. */
+    if (p != dst + dst_len) {
+        mbedtls_platform_zeroize(dst, dst_len);
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    return 0;
+}
+
+/*
+ * Do an RSA operation to sign the message digest
+ */
+int mbedtls_rsa_rsassa_pkcs1_v15_sign(mbedtls_rsa_context *ctx,
+                                      int (*f_rng)(void *, unsigned char *, size_t),
+                                      void *p_rng,
+                                      mbedtls_md_type_t md_alg,
+                                      unsigned int hashlen,
+                                      const unsigned char *hash,
+                                      unsigned char *sig)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned char *sig_try = NULL, *verif = NULL;
+
+    if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    if (ctx->padding != MBEDTLS_RSA_PKCS_V15) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    /*
+     * Prepare PKCS1-v1.5 encoding (padding and hash identifier)
+     */
+
+    if ((ret = rsa_rsassa_pkcs1_v15_encode(md_alg, hashlen, hash,
+                                           ctx->len, sig)) != 0) {
+        return ret;
+    }
+
+    /* Private key operation
+     *
+     * In order to prevent Lenstra's attack, make the signature in a
+     * temporary buffer and check it before returning it.
+     */
+
+    sig_try = mbedtls_calloc(1, ctx->len);
+    if (sig_try == NULL) {
+        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+    }
+
+    verif = mbedtls_calloc(1, ctx->len);
+    if (verif == NULL) {
+        mbedtls_free(sig_try);
+        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+    }
+
+    MBEDTLS_MPI_CHK(mbedtls_rsa_private(ctx, f_rng, p_rng, sig, sig_try));
+    MBEDTLS_MPI_CHK(mbedtls_rsa_public(ctx, sig_try, verif));
+
+    if (mbedtls_ct_memcmp(verif, sig, ctx->len) != 0) {
+        ret = MBEDTLS_ERR_RSA_PRIVATE_FAILED;
+        goto cleanup;
+    }
+
+    memcpy(sig, sig_try, ctx->len);
+
+cleanup:
+    mbedtls_zeroize_and_free(sig_try, ctx->len);
+    mbedtls_zeroize_and_free(verif, ctx->len);
+
+    if (ret != 0) {
+        memset(sig, '!', ctx->len);
+    }
+    return ret;
+}
+#endif /* MBEDTLS_PKCS1_V15 */
+
+/*
+ * Do an RSA operation to sign the message digest
+ */
+int mbedtls_rsa_pkcs1_sign(mbedtls_rsa_context *ctx,
+                           int (*f_rng)(void *, unsigned char *, size_t),
+                           void *p_rng,
+                           mbedtls_md_type_t md_alg,
+                           unsigned int hashlen,
+                           const unsigned char *hash,
+                           unsigned char *sig)
+{
+    if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    switch (ctx->padding) {
+#if defined(MBEDTLS_PKCS1_V15)
+        case MBEDTLS_RSA_PKCS_V15:
+            return mbedtls_rsa_rsassa_pkcs1_v15_sign(ctx, f_rng, p_rng,
+                                                     md_alg, hashlen, hash, sig);
+#endif
+
+#if defined(MBEDTLS_PKCS1_V21)
+        case MBEDTLS_RSA_PKCS_V21:
+            return mbedtls_rsa_rsassa_pss_sign(ctx, f_rng, p_rng, md_alg,
+                                               hashlen, hash, sig);
+#endif
+
+        default:
+            return MBEDTLS_ERR_RSA_INVALID_PADDING;
+    }
+}
+
+#if defined(MBEDTLS_PKCS1_V21)
+/*
+ * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
+ */
+int mbedtls_rsa_rsassa_pss_verify_ext(mbedtls_rsa_context *ctx,
+                                      mbedtls_md_type_t md_alg,
+                                      unsigned int hashlen,
+                                      const unsigned char *hash,
+                                      mbedtls_md_type_t mgf1_hash_id,
+                                      int expected_salt_len,
+                                      const unsigned char *sig)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t siglen;
+    unsigned char *p;
+    unsigned char *hash_start;
+    unsigned char result[MBEDTLS_MD_MAX_SIZE];
+    unsigned int hlen;
+    size_t observed_salt_len, msb;
+    unsigned char buf[MBEDTLS_MPI_MAX_SIZE] = { 0 };
+
+    if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    siglen = ctx->len;
+
+    if (siglen < 16 || siglen > sizeof(buf)) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    ret = mbedtls_rsa_public(ctx, sig, buf);
+
+    if (ret != 0) {
+        return ret;
+    }
+
+    p = buf;
+
+    if (buf[siglen - 1] != 0xBC) {
+        return MBEDTLS_ERR_RSA_INVALID_PADDING;
+    }
+
+    if (md_alg != MBEDTLS_MD_NONE) {
+        /* Gather length of hash to sign */
+        size_t exp_hashlen = mbedtls_md_get_size_from_type(md_alg);
+        if (exp_hashlen == 0) {
+            return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+        }
+
+        if (hashlen != exp_hashlen) {
+            return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+        }
+    }
+
+    hlen = mbedtls_md_get_size_from_type(mgf1_hash_id);
+    if (hlen == 0) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    /*
+     * Note: EMSA-PSS verification is over the length of N - 1 bits
+     */
+    msb = mbedtls_mpi_bitlen(&ctx->N) - 1;
+
+    if (buf[0] >> (8 - siglen * 8 + msb)) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    /* Compensate for boundary condition when applying mask */
+    if (msb % 8 == 0) {
+        p++;
+        siglen -= 1;
+    }
+
+    if (siglen < hlen + 2) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+    hash_start = p + siglen - hlen - 1;
+
+    ret = mgf_mask(p, siglen - hlen - 1, hash_start, hlen, mgf1_hash_id);
+    if (ret != 0) {
+        return ret;
+    }
+
+    buf[0] &= 0xFF >> (siglen * 8 - msb);
+
+    while (p < hash_start - 1 && *p == 0) {
+        p++;
+    }
+
+    if (*p++ != 0x01) {
+        return MBEDTLS_ERR_RSA_INVALID_PADDING;
+    }
+
+    observed_salt_len = (size_t) (hash_start - p);
+
+    if (expected_salt_len != MBEDTLS_RSA_SALT_LEN_ANY &&
+        observed_salt_len != (size_t) expected_salt_len) {
+        return MBEDTLS_ERR_RSA_INVALID_PADDING;
+    }
+
+    /*
+     * Generate H = Hash( M' )
+     */
+    ret = hash_mprime(hash, hashlen, p, observed_salt_len,
+                      result, mgf1_hash_id);
+    if (ret != 0) {
+        return ret;
+    }
+
+    if (memcmp(hash_start, result, hlen) != 0) {
+        return MBEDTLS_ERR_RSA_VERIFY_FAILED;
+    }
+
+    return 0;
+}
+
+/*
+ * Simplified PKCS#1 v2.1 RSASSA-PSS-VERIFY function
+ */
+int mbedtls_rsa_rsassa_pss_verify(mbedtls_rsa_context *ctx,
+                                  mbedtls_md_type_t md_alg,
+                                  unsigned int hashlen,
+                                  const unsigned char *hash,
+                                  const unsigned char *sig)
+{
+    mbedtls_md_type_t mgf1_hash_id;
+    if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    mgf1_hash_id = (ctx->hash_id != MBEDTLS_MD_NONE)
+                             ? (mbedtls_md_type_t) ctx->hash_id
+                             : md_alg;
+
+    return mbedtls_rsa_rsassa_pss_verify_ext(ctx,
+                                             md_alg, hashlen, hash,
+                                             mgf1_hash_id,
+                                             MBEDTLS_RSA_SALT_LEN_ANY,
+                                             sig);
+
+}
+#endif /* MBEDTLS_PKCS1_V21 */
+
+#if defined(MBEDTLS_PKCS1_V15)
+/*
+ * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function
+ */
+int mbedtls_rsa_rsassa_pkcs1_v15_verify(mbedtls_rsa_context *ctx,
+                                        mbedtls_md_type_t md_alg,
+                                        unsigned int hashlen,
+                                        const unsigned char *hash,
+                                        const unsigned char *sig)
+{
+    int ret = 0;
+    size_t sig_len;
+    unsigned char *encoded = NULL, *encoded_expected = NULL;
+
+    if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    sig_len = ctx->len;
+
+    /*
+     * Prepare expected PKCS1 v1.5 encoding of hash.
+     */
+
+    if ((encoded          = mbedtls_calloc(1, sig_len)) == NULL ||
+        (encoded_expected = mbedtls_calloc(1, sig_len)) == NULL) {
+        ret = MBEDTLS_ERR_MPI_ALLOC_FAILED;
+        goto cleanup;
+    }
+
+    if ((ret = rsa_rsassa_pkcs1_v15_encode(md_alg, hashlen, hash, sig_len,
+                                           encoded_expected)) != 0) {
+        goto cleanup;
+    }
+
+    /*
+     * Apply RSA primitive to get what should be PKCS1 encoded hash.
+     */
+
+    ret = mbedtls_rsa_public(ctx, sig, encoded);
+    if (ret != 0) {
+        goto cleanup;
+    }
+
+    /*
+     * Compare
+     */
+
+    if ((ret = mbedtls_ct_memcmp(encoded, encoded_expected,
+                                 sig_len)) != 0) {
+        ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
+        goto cleanup;
+    }
+
+cleanup:
+
+    if (encoded != NULL) {
+        mbedtls_zeroize_and_free(encoded, sig_len);
+    }
+
+    if (encoded_expected != NULL) {
+        mbedtls_zeroize_and_free(encoded_expected, sig_len);
+    }
+
+    return ret;
+}
+#endif /* MBEDTLS_PKCS1_V15 */
+
+/*
+ * Do an RSA operation and check the message digest
+ */
+int mbedtls_rsa_pkcs1_verify(mbedtls_rsa_context *ctx,
+                             mbedtls_md_type_t md_alg,
+                             unsigned int hashlen,
+                             const unsigned char *hash,
+                             const unsigned char *sig)
+{
+    if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
+        return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+    }
+
+    switch (ctx->padding) {
+#if defined(MBEDTLS_PKCS1_V15)
+        case MBEDTLS_RSA_PKCS_V15:
+            return mbedtls_rsa_rsassa_pkcs1_v15_verify(ctx, md_alg,
+                                                       hashlen, hash, sig);
+#endif
+
+#if defined(MBEDTLS_PKCS1_V21)
+        case MBEDTLS_RSA_PKCS_V21:
+            return mbedtls_rsa_rsassa_pss_verify(ctx, md_alg,
+                                                 hashlen, hash, sig);
+#endif
+
+        default:
+            return MBEDTLS_ERR_RSA_INVALID_PADDING;
+    }
+}
+
+/*
+ * Copy the components of an RSA key
+ */
+int mbedtls_rsa_copy(mbedtls_rsa_context *dst, const mbedtls_rsa_context *src)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    dst->len = src->len;
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->N, &src->N));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->E, &src->E));
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->D, &src->D));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->P, &src->P));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->Q, &src->Q));
+
+#if !defined(MBEDTLS_RSA_NO_CRT)
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->DP, &src->DP));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->DQ, &src->DQ));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->QP, &src->QP));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->RP, &src->RP));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->RQ, &src->RQ));
+#endif
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->RN, &src->RN));
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->Vi, &src->Vi));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->Vf, &src->Vf));
+
+    dst->padding = src->padding;
+    dst->hash_id = src->hash_id;
+
+cleanup:
+    if (ret != 0) {
+        mbedtls_rsa_free(dst);
+    }
+
+    return ret;
+}
+
+/*
+ * Free the components of an RSA key
+ */
+void mbedtls_rsa_free(mbedtls_rsa_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_mpi_free(&ctx->Vi);
+    mbedtls_mpi_free(&ctx->Vf);
+    mbedtls_mpi_free(&ctx->RN);
+    mbedtls_mpi_free(&ctx->D);
+    mbedtls_mpi_free(&ctx->Q);
+    mbedtls_mpi_free(&ctx->P);
+    mbedtls_mpi_free(&ctx->E);
+    mbedtls_mpi_free(&ctx->N);
+
+#if !defined(MBEDTLS_RSA_NO_CRT)
+    mbedtls_mpi_free(&ctx->RQ);
+    mbedtls_mpi_free(&ctx->RP);
+    mbedtls_mpi_free(&ctx->QP);
+    mbedtls_mpi_free(&ctx->DQ);
+    mbedtls_mpi_free(&ctx->DP);
+#endif /* MBEDTLS_RSA_NO_CRT */
+
+#if defined(MBEDTLS_THREADING_C)
+    /* Free the mutex, but only if it hasn't been freed already. */
+    if (ctx->ver != 0) {
+        mbedtls_mutex_free(&ctx->mutex);
+        ctx->ver = 0;
+    }
+#endif
+}
+
+#if defined(MBEDTLS_SELF_TEST)
+
+
+/*
+ * Example RSA-1024 keypair, for test purposes
+ */
+#define KEY_LEN 128
+
+#define RSA_N   "9292758453063D803DD603D5E777D788" \
+                "8ED1D5BF35786190FA2F23EBC0848AEA" \
+                "DDA92CA6C3D80B32C4D109BE0F36D6AE" \
+                "7130B9CED7ACDF54CFC7555AC14EEBAB" \
+                "93A89813FBF3C4F8066D2D800F7C38A8" \
+                "1AE31942917403FF4946B0A83D3D3E05" \
+                "EE57C6F5F5606FB5D4BC6CD34EE0801A" \
+                "5E94BB77B07507233A0BC7BAC8F90F79"
+
+#define RSA_E   "10001"
+
+#define RSA_D   "24BF6185468786FDD303083D25E64EFC" \
+                "66CA472BC44D253102F8B4A9D3BFA750" \
+                "91386C0077937FE33FA3252D28855837" \
+                "AE1B484A8A9A45F7EE8C0C634F99E8CD" \
+                "DF79C5CE07EE72C7F123142198164234" \
+                "CABB724CF78B8173B9F880FC86322407" \
+                "AF1FEDFDDE2BEB674CA15F3E81A1521E" \
+                "071513A1E85B5DFA031F21ECAE91A34D"
+
+#define RSA_P   "C36D0EB7FCD285223CFB5AABA5BDA3D8" \
+                "2C01CAD19EA484A87EA4377637E75500" \
+                "FCB2005C5C7DD6EC4AC023CDA285D796" \
+                "C3D9E75E1EFC42488BB4F1D13AC30A57"
+
+#define RSA_Q   "C000DF51A7C77AE8D7C7370C1FF55B69" \
+                "E211C2B9E5DB1ED0BF61D0D9899620F4" \
+                "910E4168387E3C30AA1E00C339A79508" \
+                "8452DD96A9A5EA5D9DCA68DA636032AF"
+
+#define PT_LEN  24
+#define RSA_PT  "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \
+                "\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD"
+
+#if defined(MBEDTLS_PKCS1_V15)
+static int myrand(void *rng_state, unsigned char *output, size_t len)
+{
+#if !defined(__OpenBSD__) && !defined(__NetBSD__)
+    size_t i;
+
+    if (rng_state != NULL) {
+        rng_state  = NULL;
+    }
+
+    for (i = 0; i < len; ++i) {
+        output[i] = rand();
+    }
+#else
+    if (rng_state != NULL) {
+        rng_state = NULL;
+    }
+
+    arc4random_buf(output, len);
+#endif /* !OpenBSD && !NetBSD */
+
+    return 0;
+}
+#endif /* MBEDTLS_PKCS1_V15 */
+
+/*
+ * Checkup routine
+ */
+int mbedtls_rsa_self_test(int verbose)
+{
+    int ret = 0;
+#if defined(MBEDTLS_PKCS1_V15)
+    size_t len;
+    mbedtls_rsa_context rsa;
+    unsigned char rsa_plaintext[PT_LEN];
+    unsigned char rsa_decrypted[PT_LEN];
+    unsigned char rsa_ciphertext[KEY_LEN];
+#if defined(MBEDTLS_MD_CAN_SHA1)
+    unsigned char sha1sum[20];
+#endif
+
+    mbedtls_mpi K;
+
+    mbedtls_mpi_init(&K);
+    mbedtls_rsa_init(&rsa);
+
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_N));
+    MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, &K, NULL, NULL, NULL, NULL));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_P));
+    MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, &K, NULL, NULL, NULL));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_Q));
+    MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, NULL, &K, NULL, NULL));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_D));
+    MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, NULL, NULL, &K, NULL));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_E));
+    MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, NULL, NULL, NULL, &K));
+
+    MBEDTLS_MPI_CHK(mbedtls_rsa_complete(&rsa));
+
+    if (verbose != 0) {
+        mbedtls_printf("  RSA key validation: ");
+    }
+
+    if (mbedtls_rsa_check_pubkey(&rsa) != 0 ||
+        mbedtls_rsa_check_privkey(&rsa) != 0) {
+        if (verbose != 0) {
+            mbedtls_printf("failed\n");
+        }
+
+        ret = 1;
+        goto cleanup;
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("passed\n  PKCS#1 encryption : ");
+    }
+
+    memcpy(rsa_plaintext, RSA_PT, PT_LEN);
+
+    if (mbedtls_rsa_pkcs1_encrypt(&rsa, myrand, NULL,
+                                  PT_LEN, rsa_plaintext,
+                                  rsa_ciphertext) != 0) {
+        if (verbose != 0) {
+            mbedtls_printf("failed\n");
+        }
+
+        ret = 1;
+        goto cleanup;
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("passed\n  PKCS#1 decryption : ");
+    }
+
+    if (mbedtls_rsa_pkcs1_decrypt(&rsa, myrand, NULL,
+                                  &len, rsa_ciphertext, rsa_decrypted,
+                                  sizeof(rsa_decrypted)) != 0) {
+        if (verbose != 0) {
+            mbedtls_printf("failed\n");
+        }
+
+        ret = 1;
+        goto cleanup;
+    }
+
+    if (memcmp(rsa_decrypted, rsa_plaintext, len) != 0) {
+        if (verbose != 0) {
+            mbedtls_printf("failed\n");
+        }
+
+        ret = 1;
+        goto cleanup;
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("passed\n");
+    }
+
+#if defined(MBEDTLS_MD_CAN_SHA1)
+    if (verbose != 0) {
+        mbedtls_printf("  PKCS#1 data sign  : ");
+    }
+
+    if (mbedtls_md(mbedtls_md_info_from_type(MBEDTLS_MD_SHA1),
+                   rsa_plaintext, PT_LEN, sha1sum) != 0) {
+        if (verbose != 0) {
+            mbedtls_printf("failed\n");
+        }
+
+        return 1;
+    }
+
+    if (mbedtls_rsa_pkcs1_sign(&rsa, myrand, NULL,
+                               MBEDTLS_MD_SHA1, 20,
+                               sha1sum, rsa_ciphertext) != 0) {
+        if (verbose != 0) {
+            mbedtls_printf("failed\n");
+        }
+
+        ret = 1;
+        goto cleanup;
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("passed\n  PKCS#1 sig. verify: ");
+    }
+
+    if (mbedtls_rsa_pkcs1_verify(&rsa, MBEDTLS_MD_SHA1, 20,
+                                 sha1sum, rsa_ciphertext) != 0) {
+        if (verbose != 0) {
+            mbedtls_printf("failed\n");
+        }
+
+        ret = 1;
+        goto cleanup;
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("passed\n");
+    }
+#endif /* MBEDTLS_MD_CAN_SHA1 */
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+
+cleanup:
+    mbedtls_mpi_free(&K);
+    mbedtls_rsa_free(&rsa);
+#else /* MBEDTLS_PKCS1_V15 */
+    ((void) verbose);
+#endif /* MBEDTLS_PKCS1_V15 */
+    return ret;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_RSA_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/rsa_alt_helpers.c b/tf-psa-crypto/drivers/builtin/src/rsa_alt_helpers.c
new file mode 100644
index 0000000..5c265a9
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/rsa_alt_helpers.c
@@ -0,0 +1,447 @@
+/*
+ *  Helper functions for the RSA module
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ *
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_RSA_C)
+
+#include "mbedtls/rsa.h"
+#include "mbedtls/bignum.h"
+#include "rsa_alt_helpers.h"
+
+/*
+ * Compute RSA prime factors from public and private exponents
+ *
+ * Summary of algorithm:
+ * Setting F := lcm(P-1,Q-1), the idea is as follows:
+ *
+ * (a) For any 1 <= X < N with gcd(X,N)=1, we have X^F = 1 modulo N, so X^(F/2)
+ *     is a square root of 1 in Z/NZ. Since Z/NZ ~= Z/PZ x Z/QZ by CRT and the
+ *     square roots of 1 in Z/PZ and Z/QZ are +1 and -1, this leaves the four
+ *     possibilities X^(F/2) = (+-1, +-1). If it happens that X^(F/2) = (-1,+1)
+ *     or (+1,-1), then gcd(X^(F/2) + 1, N) will be equal to one of the prime
+ *     factors of N.
+ *
+ * (b) If we don't know F/2 but (F/2) * K for some odd (!) K, then the same
+ *     construction still applies since (-)^K is the identity on the set of
+ *     roots of 1 in Z/NZ.
+ *
+ * The public and private key primitives (-)^E and (-)^D are mutually inverse
+ * bijections on Z/NZ if and only if (-)^(DE) is the identity on Z/NZ, i.e.
+ * if and only if DE - 1 is a multiple of F, say DE - 1 = F * L.
+ * Splitting L = 2^t * K with K odd, we have
+ *
+ *   DE - 1 = FL = (F/2) * (2^(t+1)) * K,
+ *
+ * so (F / 2) * K is among the numbers
+ *
+ *   (DE - 1) >> 1, (DE - 1) >> 2, ..., (DE - 1) >> ord
+ *
+ * where ord is the order of 2 in (DE - 1).
+ * We can therefore iterate through these numbers apply the construction
+ * of (a) and (b) above to attempt to factor N.
+ *
+ */
+int mbedtls_rsa_deduce_primes(mbedtls_mpi const *N,
+                              mbedtls_mpi const *E, mbedtls_mpi const *D,
+                              mbedtls_mpi *P, mbedtls_mpi *Q)
+{
+    int ret = 0;
+
+    uint16_t attempt;  /* Number of current attempt  */
+    uint16_t iter;     /* Number of squares computed in the current attempt */
+
+    uint16_t order;    /* Order of 2 in DE - 1 */
+
+    mbedtls_mpi T;  /* Holds largest odd divisor of DE - 1     */
+    mbedtls_mpi K;  /* Temporary holding the current candidate */
+
+    const unsigned char primes[] = { 2,
+                                     3,    5,    7,   11,   13,   17,   19,   23,
+                                     29,   31,   37,   41,   43,   47,   53,   59,
+                                     61,   67,   71,   73,   79,   83,   89,   97,
+                                     101,  103,  107,  109,  113,  127,  131,  137,
+                                     139,  149,  151,  157,  163,  167,  173,  179,
+                                     181,  191,  193,  197,  199,  211,  223,  227,
+                                     229,  233,  239,  241,  251 };
+
+    const size_t num_primes = sizeof(primes) / sizeof(*primes);
+
+    if (P == NULL || Q == NULL || P->p != NULL || Q->p != NULL) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    if (mbedtls_mpi_cmp_int(N, 0) <= 0 ||
+        mbedtls_mpi_cmp_int(D, 1) <= 0 ||
+        mbedtls_mpi_cmp_mpi(D, N) >= 0 ||
+        mbedtls_mpi_cmp_int(E, 1) <= 0 ||
+        mbedtls_mpi_cmp_mpi(E, N) >= 0) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    /*
+     * Initializations and temporary changes
+     */
+
+    mbedtls_mpi_init(&K);
+    mbedtls_mpi_init(&T);
+
+    /* T := DE - 1 */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, D,  E));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&T, &T, 1));
+
+    if ((order = (uint16_t) mbedtls_mpi_lsb(&T)) == 0) {
+        ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+        goto cleanup;
+    }
+
+    /* After this operation, T holds the largest odd divisor of DE - 1. */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&T, order));
+
+    /*
+     * Actual work
+     */
+
+    /* Skip trying 2 if N == 1 mod 8 */
+    attempt = 0;
+    if (N->p[0] % 8 == 1) {
+        attempt = 1;
+    }
+
+    for (; attempt < num_primes; ++attempt) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&K, primes[attempt]));
+
+        /* Check if gcd(K,N) = 1 */
+        MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(P, &K, N));
+        if (mbedtls_mpi_cmp_int(P, 1) != 0) {
+            continue;
+        }
+
+        /* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ...
+         * and check whether they have nontrivial GCD with N. */
+        MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&K, &K, &T, N,
+                                            Q /* temporarily use Q for storing Montgomery
+                                               * multiplication helper values */));
+
+        for (iter = 1; iter <= order; ++iter) {
+            /* If we reach 1 prematurely, there's no point
+             * in continuing to square K */
+            if (mbedtls_mpi_cmp_int(&K, 1) == 0) {
+                break;
+            }
+
+            MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&K, &K, 1));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(P, &K, N));
+
+            if (mbedtls_mpi_cmp_int(P, 1) ==  1 &&
+                mbedtls_mpi_cmp_mpi(P, N) == -1) {
+                /*
+                 * Have found a nontrivial divisor P of N.
+                 * Set Q := N / P.
+                 */
+
+                MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(Q, NULL, N, P));
+                goto cleanup;
+            }
+
+            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, &K, &K));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, N));
+        }
+
+        /*
+         * If we get here, then either we prematurely aborted the loop because
+         * we reached 1, or K holds primes[attempt]^(DE - 1) mod N, which must
+         * be 1 if D,E,N were consistent.
+         * Check if that's the case and abort if not, to avoid very long,
+         * yet eventually failing, computations if N,D,E were not sane.
+         */
+        if (mbedtls_mpi_cmp_int(&K, 1) != 0) {
+            break;
+        }
+    }
+
+    ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+
+cleanup:
+
+    mbedtls_mpi_free(&K);
+    mbedtls_mpi_free(&T);
+    return ret;
+}
+
+/*
+ * Given P, Q and the public exponent E, deduce D.
+ * This is essentially a modular inversion.
+ */
+int mbedtls_rsa_deduce_private_exponent(mbedtls_mpi const *P,
+                                        mbedtls_mpi const *Q,
+                                        mbedtls_mpi const *E,
+                                        mbedtls_mpi *D)
+{
+    int ret = 0;
+    mbedtls_mpi K, L;
+
+    if (D == NULL || mbedtls_mpi_cmp_int(D, 0) != 0) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    if (mbedtls_mpi_cmp_int(P, 1) <= 0 ||
+        mbedtls_mpi_cmp_int(Q, 1) <= 0 ||
+        mbedtls_mpi_cmp_int(E, 0) == 0) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    mbedtls_mpi_init(&K);
+    mbedtls_mpi_init(&L);
+
+    /* Temporarily put K := P-1 and L := Q-1 */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, Q, 1));
+
+    /* Temporarily put D := gcd(P-1, Q-1) */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(D, &K, &L));
+
+    /* K := LCM(P-1, Q-1) */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, &K, &L));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&K, NULL, &K, D));
+
+    /* Compute modular inverse of E in LCM(P-1, Q-1) */
+    MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(D, E, &K));
+
+cleanup:
+
+    mbedtls_mpi_free(&K);
+    mbedtls_mpi_free(&L);
+
+    return ret;
+}
+
+int mbedtls_rsa_deduce_crt(const mbedtls_mpi *P, const mbedtls_mpi *Q,
+                           const mbedtls_mpi *D, mbedtls_mpi *DP,
+                           mbedtls_mpi *DQ, mbedtls_mpi *QP)
+{
+    int ret = 0;
+    mbedtls_mpi K;
+    mbedtls_mpi_init(&K);
+
+    /* DP = D mod P-1 */
+    if (DP != NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(DP, D, &K));
+    }
+
+    /* DQ = D mod Q-1 */
+    if (DQ != NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, Q, 1));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(DQ, D, &K));
+    }
+
+    /* QP = Q^{-1} mod P */
+    if (QP != NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(QP, Q, P));
+    }
+
+cleanup:
+    mbedtls_mpi_free(&K);
+
+    return ret;
+}
+
+/*
+ * Check that core RSA parameters are sane.
+ */
+int mbedtls_rsa_validate_params(const mbedtls_mpi *N, const mbedtls_mpi *P,
+                                const mbedtls_mpi *Q, const mbedtls_mpi *D,
+                                const mbedtls_mpi *E,
+                                int (*f_rng)(void *, unsigned char *, size_t),
+                                void *p_rng)
+{
+    int ret = 0;
+    mbedtls_mpi K, L;
+
+    mbedtls_mpi_init(&K);
+    mbedtls_mpi_init(&L);
+
+    /*
+     * Step 1: If PRNG provided, check that P and Q are prime
+     */
+
+#if defined(MBEDTLS_GENPRIME)
+    /*
+     * When generating keys, the strongest security we support aims for an error
+     * rate of at most 2^-100 and we are aiming for the same certainty here as
+     * well.
+     */
+    if (f_rng != NULL && P != NULL &&
+        (ret = mbedtls_mpi_is_prime_ext(P, 50, f_rng, p_rng)) != 0) {
+        ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+        goto cleanup;
+    }
+
+    if (f_rng != NULL && Q != NULL &&
+        (ret = mbedtls_mpi_is_prime_ext(Q, 50, f_rng, p_rng)) != 0) {
+        ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+        goto cleanup;
+    }
+#else
+    ((void) f_rng);
+    ((void) p_rng);
+#endif /* MBEDTLS_GENPRIME */
+
+    /*
+     * Step 2: Check that 1 < N = P * Q
+     */
+
+    if (P != NULL && Q != NULL && N != NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, P, Q));
+        if (mbedtls_mpi_cmp_int(N, 1)  <= 0 ||
+            mbedtls_mpi_cmp_mpi(&K, N) != 0) {
+            ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+            goto cleanup;
+        }
+    }
+
+    /*
+     * Step 3: Check and 1 < D, E < N if present.
+     */
+
+    if (N != NULL && D != NULL && E != NULL) {
+        if (mbedtls_mpi_cmp_int(D, 1) <= 0 ||
+            mbedtls_mpi_cmp_int(E, 1) <= 0 ||
+            mbedtls_mpi_cmp_mpi(D, N) >= 0 ||
+            mbedtls_mpi_cmp_mpi(E, N) >= 0) {
+            ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+            goto cleanup;
+        }
+    }
+
+    /*
+     * Step 4: Check that D, E are inverse modulo P-1 and Q-1
+     */
+
+    if (P != NULL && Q != NULL && D != NULL && E != NULL) {
+        if (mbedtls_mpi_cmp_int(P, 1) <= 0 ||
+            mbedtls_mpi_cmp_int(Q, 1) <= 0) {
+            ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+            goto cleanup;
+        }
+
+        /* Compute DE-1 mod P-1 */
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, D, E));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, P, 1));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, &L));
+        if (mbedtls_mpi_cmp_int(&K, 0) != 0) {
+            ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+            goto cleanup;
+        }
+
+        /* Compute DE-1 mod Q-1 */
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, D, E));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, Q, 1));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, &L));
+        if (mbedtls_mpi_cmp_int(&K, 0) != 0) {
+            ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+            goto cleanup;
+        }
+    }
+
+cleanup:
+
+    mbedtls_mpi_free(&K);
+    mbedtls_mpi_free(&L);
+
+    /* Wrap MPI error codes by RSA check failure error code */
+    if (ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED) {
+        ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+    }
+
+    return ret;
+}
+
+/*
+ * Check that RSA CRT parameters are in accordance with core parameters.
+ */
+int mbedtls_rsa_validate_crt(const mbedtls_mpi *P,  const mbedtls_mpi *Q,
+                             const mbedtls_mpi *D,  const mbedtls_mpi *DP,
+                             const mbedtls_mpi *DQ, const mbedtls_mpi *QP)
+{
+    int ret = 0;
+
+    mbedtls_mpi K, L;
+    mbedtls_mpi_init(&K);
+    mbedtls_mpi_init(&L);
+
+    /* Check that DP - D == 0 mod P - 1 */
+    if (DP != NULL) {
+        if (P == NULL) {
+            ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+            goto cleanup;
+        }
+
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&L, DP, D));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&L, &L, &K));
+
+        if (mbedtls_mpi_cmp_int(&L, 0) != 0) {
+            ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+            goto cleanup;
+        }
+    }
+
+    /* Check that DQ - D == 0 mod Q - 1 */
+    if (DQ != NULL) {
+        if (Q == NULL) {
+            ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+            goto cleanup;
+        }
+
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, Q, 1));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&L, DQ, D));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&L, &L, &K));
+
+        if (mbedtls_mpi_cmp_int(&L, 0) != 0) {
+            ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+            goto cleanup;
+        }
+    }
+
+    /* Check that QP * Q - 1 == 0 mod P */
+    if (QP != NULL) {
+        if (P == NULL || Q == NULL) {
+            ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+            goto cleanup;
+        }
+
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, QP, Q));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, P));
+        if (mbedtls_mpi_cmp_int(&K, 0) != 0) {
+            ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+            goto cleanup;
+        }
+    }
+
+cleanup:
+
+    /* Wrap MPI error codes by RSA check failure error code */
+    if (ret != 0 &&
+        ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED &&
+        ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA) {
+        ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+    }
+
+    mbedtls_mpi_free(&K);
+    mbedtls_mpi_free(&L);
+
+    return ret;
+}
+
+#endif /* MBEDTLS_RSA_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/rsa_alt_helpers.h b/tf-psa-crypto/drivers/builtin/src/rsa_alt_helpers.h
new file mode 100644
index 0000000..f234036
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/rsa_alt_helpers.h
@@ -0,0 +1,212 @@
+/**
+ * \file rsa_alt_helpers.h
+ *
+ * \brief Context-independent RSA helper functions
+ *
+ *  Please note: The below explanation is historical and is no longer relevant
+ *  due to there being no compelling reason to keep these functions separate
+ *  since the RSA alt interface was removed. A future refactoring will address
+ *  this which is tracked by the following issue:
+ *  https://github.com/Mbed-TLS/TF-PSA-Crypto/issues/105.
+ *
+ *  This module declares some RSA-related helper functions useful when
+ *  implementing the RSA interface. These functions are provided in a separate
+ *  compilation unit in order to make it easy for designers of alternative RSA
+ *  implementations to use them in their own code, as it is conceived that the
+ *  functionality they provide will be necessary for most complete
+ *  implementations.
+ *
+ *  End-users of Mbed TLS who are not providing their own alternative RSA
+ *  implementations should not use these functions directly, and should instead
+ *  use only the functions declared in rsa.h.
+ *
+ *  The interface provided by this module will be maintained through LTS (Long
+ *  Term Support) branches of Mbed TLS, but may otherwise be subject to change,
+ *  and must be considered an internal interface of the library.
+ *
+ *  There are two classes of helper functions:
+ *
+ *  (1) Parameter-generating helpers. These are:
+ *      - mbedtls_rsa_deduce_primes
+ *      - mbedtls_rsa_deduce_private_exponent
+ *      - mbedtls_rsa_deduce_crt
+ *       Each of these functions takes a set of core RSA parameters and
+ *       generates some other, or CRT related parameters.
+ *
+ *  (2) Parameter-checking helpers. These are:
+ *      - mbedtls_rsa_validate_params
+ *      - mbedtls_rsa_validate_crt
+ *      They take a set of core or CRT related RSA parameters and check their
+ *      validity.
+ *
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#ifndef MBEDTLS_RSA_ALT_HELPERS_H
+#define MBEDTLS_RSA_ALT_HELPERS_H
+
+#include "mbedtls/build_info.h"
+
+#include "mbedtls/bignum.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+
+/**
+ * \brief          Compute RSA prime moduli P, Q from public modulus N=PQ
+ *                 and a pair of private and public key.
+ *
+ * \note           This is a 'static' helper function not operating on
+ *                 an RSA context. Alternative implementations need not
+ *                 overwrite it.
+ *
+ * \param N        RSA modulus N = PQ, with P, Q to be found
+ * \param E        RSA public exponent
+ * \param D        RSA private exponent
+ * \param P        Pointer to MPI holding first prime factor of N on success
+ * \param Q        Pointer to MPI holding second prime factor of N on success
+ *
+ * \return
+ *                 - 0 if successful. In this case, P and Q constitute a
+ *                   factorization of N.
+ *                 - A non-zero error code otherwise.
+ *
+ * \note           It is neither checked that P, Q are prime nor that
+ *                 D, E are modular inverses wrt. P-1 and Q-1. For that,
+ *                 use the helper function \c mbedtls_rsa_validate_params.
+ *
+ */
+int mbedtls_rsa_deduce_primes(mbedtls_mpi const *N, mbedtls_mpi const *E,
+                              mbedtls_mpi const *D,
+                              mbedtls_mpi *P, mbedtls_mpi *Q);
+
+/**
+ * \brief          Compute RSA private exponent from
+ *                 prime moduli and public key.
+ *
+ * \note           This is a 'static' helper function not operating on
+ *                 an RSA context. Alternative implementations need not
+ *                 overwrite it.
+ *
+ * \param P        First prime factor of RSA modulus
+ * \param Q        Second prime factor of RSA modulus
+ * \param E        RSA public exponent
+ * \param D        Pointer to MPI holding the private exponent on success.
+ *
+ * \return
+ *                 - 0 if successful. In this case, D is set to a simultaneous
+ *                   modular inverse of E modulo both P-1 and Q-1.
+ *                 - A non-zero error code otherwise.
+ *
+ * \note           This function does not check whether P and Q are primes.
+ *
+ */
+int mbedtls_rsa_deduce_private_exponent(mbedtls_mpi const *P,
+                                        mbedtls_mpi const *Q,
+                                        mbedtls_mpi const *E,
+                                        mbedtls_mpi *D);
+
+
+/**
+ * \brief          Generate RSA-CRT parameters
+ *
+ * \note           This is a 'static' helper function not operating on
+ *                 an RSA context. Alternative implementations need not
+ *                 overwrite it.
+ *
+ * \param P        First prime factor of N
+ * \param Q        Second prime factor of N
+ * \param D        RSA private exponent
+ * \param DP       Output variable for D modulo P-1
+ * \param DQ       Output variable for D modulo Q-1
+ * \param QP       Output variable for the modular inverse of Q modulo P.
+ *
+ * \return         0 on success, non-zero error code otherwise.
+ *
+ * \note           This function does not check whether P, Q are
+ *                 prime and whether D is a valid private exponent.
+ *
+ */
+int mbedtls_rsa_deduce_crt(const mbedtls_mpi *P, const mbedtls_mpi *Q,
+                           const mbedtls_mpi *D, mbedtls_mpi *DP,
+                           mbedtls_mpi *DQ, mbedtls_mpi *QP);
+
+
+/**
+ * \brief          Check validity of core RSA parameters
+ *
+ * \note           This is a 'static' helper function not operating on
+ *                 an RSA context. Alternative implementations need not
+ *                 overwrite it.
+ *
+ * \param N        RSA modulus N = PQ
+ * \param P        First prime factor of N
+ * \param Q        Second prime factor of N
+ * \param D        RSA private exponent
+ * \param E        RSA public exponent
+ * \param f_rng    PRNG to be used for primality check, or NULL
+ * \param p_rng    PRNG context for f_rng, or NULL
+ *
+ * \return
+ *                 - 0 if the following conditions are satisfied
+ *                   if all relevant parameters are provided:
+ *                    - P prime if f_rng != NULL (%)
+ *                    - Q prime if f_rng != NULL (%)
+ *                    - 1 < N = P * Q
+ *                    - 1 < D, E < N
+ *                    - D and E are modular inverses modulo P-1 and Q-1
+ *                   (%) This is only done if MBEDTLS_GENPRIME is defined.
+ *                 - A non-zero error code otherwise.
+ *
+ * \note           The function can be used with a restricted set of arguments
+ *                 to perform specific checks only. E.g., calling it with
+ *                 (-,P,-,-,-) and a PRNG amounts to a primality check for P.
+ */
+int mbedtls_rsa_validate_params(const mbedtls_mpi *N, const mbedtls_mpi *P,
+                                const mbedtls_mpi *Q, const mbedtls_mpi *D,
+                                const mbedtls_mpi *E,
+                                int (*f_rng)(void *, unsigned char *, size_t),
+                                void *p_rng);
+
+/**
+ * \brief          Check validity of RSA CRT parameters
+ *
+ * \note           This is a 'static' helper function not operating on
+ *                 an RSA context. Alternative implementations need not
+ *                 overwrite it.
+ *
+ * \param P        First prime factor of RSA modulus
+ * \param Q        Second prime factor of RSA modulus
+ * \param D        RSA private exponent
+ * \param DP       MPI to check for D modulo P-1
+ * \param DQ       MPI to check for D modulo P-1
+ * \param QP       MPI to check for the modular inverse of Q modulo P.
+ *
+ * \return
+ *                 - 0 if the following conditions are satisfied:
+ *                    - D = DP mod P-1 if P, D, DP != NULL
+ *                    - Q = DQ mod P-1 if P, D, DQ != NULL
+ *                    - QP = Q^-1 mod P if P, Q, QP != NULL
+ *                 - \c MBEDTLS_ERR_RSA_KEY_CHECK_FAILED if check failed,
+ *                   potentially including \c MBEDTLS_ERR_MPI_XXX if some
+ *                   MPI calculations failed.
+ *                 - \c MBEDTLS_ERR_RSA_BAD_INPUT_DATA if insufficient
+ *                   data was provided to check DP, DQ or QP.
+ *
+ * \note           The function can be used with a restricted set of arguments
+ *                 to perform specific checks only. E.g., calling it with the
+ *                 parameters (P, -, D, DP, -, -) will check DP = D mod P-1.
+ */
+int mbedtls_rsa_validate_crt(const mbedtls_mpi *P,  const mbedtls_mpi *Q,
+                             const mbedtls_mpi *D,  const mbedtls_mpi *DP,
+                             const mbedtls_mpi *DQ, const mbedtls_mpi *QP);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* rsa_alt_helpers.h */
diff --git a/tf-psa-crypto/drivers/builtin/src/rsa_internal.h b/tf-psa-crypto/drivers/builtin/src/rsa_internal.h
new file mode 100644
index 0000000..f79c3b7
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/rsa_internal.h
@@ -0,0 +1,121 @@
+/**
+ * \file rsa_internal.h
+ *
+ * \brief Internal-only RSA public-key cryptosystem API.
+ *
+ * This file declares RSA-related functions that are to be used
+ * only from within the Mbed TLS library itself.
+ *
+ */
+/*
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#ifndef MBEDTLS_RSA_INTERNAL_H
+#define MBEDTLS_RSA_INTERNAL_H
+
+#include "mbedtls/rsa.h"
+#include "mbedtls/asn1.h"
+
+/**
+ * \brief           Parse a PKCS#1 (ASN.1) encoded private RSA key.
+ *
+ * \param rsa       The RSA context where parsed data will be stored.
+ * \param key       The buffer that contains the key.
+ * \param keylen    The length of the key buffer in bytes.
+ *
+ * \return          0 on success.
+ * \return          MBEDTLS_ERR_ASN1_xxx in case of ASN.1 parsing errors.
+ * \return          MBEDTLS_ERR_RSA_xxx in case of RSA internal failures while
+ *                  parsing data.
+ * \return          MBEDTLS_ERR_RSA_KEY_CHECK_FAILED if validity checks on the
+ *                  provided key fail.
+ */
+int mbedtls_rsa_parse_key(mbedtls_rsa_context *rsa, const unsigned char *key, size_t keylen);
+
+/**
+ * \brief           Parse a PKCS#1 (ASN.1) encoded public RSA key.
+ *
+ * \param rsa       The RSA context where parsed data will be stored.
+ * \param key       The buffer that contains the key.
+ * \param keylen    The length of the key buffer in bytes.
+ *
+ * \return          0 on success.
+ * \return          MBEDTLS_ERR_ASN1_xxx in case of ASN.1 parsing errors.
+ * \return          MBEDTLS_ERR_RSA_xxx in case of RSA internal failures while
+ *                  parsing data.
+ * \return          MBEDTLS_ERR_RSA_KEY_CHECK_FAILED if validity checks on the
+ *                  provided key fail.
+ */
+int mbedtls_rsa_parse_pubkey(mbedtls_rsa_context *rsa, const unsigned char *key, size_t keylen);
+
+/**
+ * \brief           Write a PKCS#1 (ASN.1) encoded private RSA key.
+ *
+ * \param rsa       The RSA context which contains the data to be written.
+ * \param start     Beginning of the buffer that will be filled with the
+ *                  private key.
+ * \param p         End of the buffer that will be filled with the private key.
+ *                  On successful return, the referenced pointer will be
+ *                  updated in order to point to the beginning of written data.
+ *
+ * \return          On success, the number of bytes written to the output buffer
+ *                  (i.e. a value > 0).
+ * \return          MBEDTLS_ERR_RSA_BAD_INPUT_DATA if the RSA context does not
+ *                  contain a valid key pair.
+ * \return          MBEDTLS_ERR_ASN1_xxx in case of failure while writing to the
+ *                  output buffer.
+ *
+ * \note            The output buffer is filled backward, i.e. starting from its
+ *                  end and moving toward its start.
+ */
+int mbedtls_rsa_write_key(const mbedtls_rsa_context *rsa, unsigned char *start,
+                          unsigned char **p);
+
+/**
+ * \brief           Parse a PKCS#1 (ASN.1) encoded public RSA key.
+ *
+ * \param rsa       The RSA context which contains the data to be written.
+ * \param start     Beginning of the buffer that will be filled with the
+ *                  private key.
+ * \param p         End of the buffer that will be filled with the private key.
+ *                  On successful return, the referenced pointer will be
+ *                  updated in order to point to the beginning of written data.
+ *
+ * \return          On success, the number of bytes written to the output buffer
+ *                  (i.e. a value > 0).
+ * \return          MBEDTLS_ERR_RSA_BAD_INPUT_DATA if the RSA context does not
+ *                  contain a valid public key.
+ * \return          MBEDTLS_ERR_ASN1_xxx in case of failure while writing to the
+ *                  output buffer.
+ *
+ * \note            The output buffer is filled backward, i.e. starting from its
+ *                  end and moving toward its start.
+ */
+int mbedtls_rsa_write_pubkey(const mbedtls_rsa_context *rsa, unsigned char *start,
+                             unsigned char **p);
+
+#if defined(MBEDTLS_PKCS1_V21)
+/**
+ * \brief This function is analogue to \c mbedtls_rsa_rsassa_pss_sign().
+ *        The only difference between them is that this function is more flexible
+ *        on the parameters of \p ctx that are set with \c mbedtls_rsa_set_padding().
+ *
+ * \note  Compared to its counterpart, this function:
+ *        - does not check the padding setting of \p ctx.
+ *        - allows the hash_id of \p ctx to be MBEDTLS_MD_NONE,
+ *          in which case it uses \p md_alg as the hash_id.
+ *
+ * \note  Refer to \c mbedtls_rsa_rsassa_pss_sign() for a description
+ *        of the functioning and parameters of this function.
+ */
+int mbedtls_rsa_rsassa_pss_sign_no_mode_check(mbedtls_rsa_context *ctx,
+                                              int (*f_rng)(void *, unsigned char *, size_t),
+                                              void *p_rng,
+                                              mbedtls_md_type_t md_alg,
+                                              unsigned int hashlen,
+                                              const unsigned char *hash,
+                                              unsigned char *sig);
+#endif /* MBEDTLS_PKCS1_V21 */
+
+#endif /* rsa_internal.h */
diff --git a/tf-psa-crypto/drivers/builtin/src/sha1.c b/tf-psa-crypto/drivers/builtin/src/sha1.c
new file mode 100644
index 0000000..dfbe481
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/sha1.c
@@ -0,0 +1,480 @@
+/*
+ *  FIPS-180-1 compliant SHA-1 implementation
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ *  The SHA-1 standard was published by NIST in 1993.
+ *
+ *  http://www.itl.nist.gov/fipspubs/fip180-1.htm
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_SHA1_C)
+
+#include "mbedtls/sha1.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_SHA1_ALT)
+
+void mbedtls_sha1_init(mbedtls_sha1_context *ctx)
+{
+    memset(ctx, 0, sizeof(mbedtls_sha1_context));
+}
+
+void mbedtls_sha1_free(mbedtls_sha1_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_platform_zeroize(ctx, sizeof(mbedtls_sha1_context));
+}
+
+void mbedtls_sha1_clone(mbedtls_sha1_context *dst,
+                        const mbedtls_sha1_context *src)
+{
+    *dst = *src;
+}
+
+/*
+ * SHA-1 context setup
+ */
+int mbedtls_sha1_starts(mbedtls_sha1_context *ctx)
+{
+    ctx->total[0] = 0;
+    ctx->total[1] = 0;
+
+    ctx->state[0] = 0x67452301;
+    ctx->state[1] = 0xEFCDAB89;
+    ctx->state[2] = 0x98BADCFE;
+    ctx->state[3] = 0x10325476;
+    ctx->state[4] = 0xC3D2E1F0;
+
+    return 0;
+}
+
+#if !defined(MBEDTLS_SHA1_PROCESS_ALT)
+int mbedtls_internal_sha1_process(mbedtls_sha1_context *ctx,
+                                  const unsigned char data[64])
+{
+    struct {
+        uint32_t temp, W[16], A, B, C, D, E;
+    } local;
+
+    local.W[0] = MBEDTLS_GET_UINT32_BE(data,  0);
+    local.W[1] = MBEDTLS_GET_UINT32_BE(data,  4);
+    local.W[2] = MBEDTLS_GET_UINT32_BE(data,  8);
+    local.W[3] = MBEDTLS_GET_UINT32_BE(data, 12);
+    local.W[4] = MBEDTLS_GET_UINT32_BE(data, 16);
+    local.W[5] = MBEDTLS_GET_UINT32_BE(data, 20);
+    local.W[6] = MBEDTLS_GET_UINT32_BE(data, 24);
+    local.W[7] = MBEDTLS_GET_UINT32_BE(data, 28);
+    local.W[8] = MBEDTLS_GET_UINT32_BE(data, 32);
+    local.W[9] = MBEDTLS_GET_UINT32_BE(data, 36);
+    local.W[10] = MBEDTLS_GET_UINT32_BE(data, 40);
+    local.W[11] = MBEDTLS_GET_UINT32_BE(data, 44);
+    local.W[12] = MBEDTLS_GET_UINT32_BE(data, 48);
+    local.W[13] = MBEDTLS_GET_UINT32_BE(data, 52);
+    local.W[14] = MBEDTLS_GET_UINT32_BE(data, 56);
+    local.W[15] = MBEDTLS_GET_UINT32_BE(data, 60);
+
+#define S(x, n) (((x) << (n)) | (((x) & 0xFFFFFFFF) >> (32 - (n))))
+
+#define R(t)                                                    \
+    (                                                           \
+        local.temp = local.W[((t) -  3) & 0x0F] ^             \
+                     local.W[((t) -  8) & 0x0F] ^             \
+                     local.W[((t) - 14) & 0x0F] ^             \
+                     local.W[(t)        & 0x0F],              \
+        (local.W[(t) & 0x0F] = S(local.temp, 1))               \
+    )
+
+#define P(a, b, c, d, e, x)                                          \
+    do                                                          \
+    {                                                           \
+        (e) += S((a), 5) + F((b), (c), (d)) + K + (x);             \
+        (b) = S((b), 30);                                        \
+    } while (0)
+
+    local.A = ctx->state[0];
+    local.B = ctx->state[1];
+    local.C = ctx->state[2];
+    local.D = ctx->state[3];
+    local.E = ctx->state[4];
+
+#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
+#define K 0x5A827999
+
+    P(local.A, local.B, local.C, local.D, local.E, local.W[0]);
+    P(local.E, local.A, local.B, local.C, local.D, local.W[1]);
+    P(local.D, local.E, local.A, local.B, local.C, local.W[2]);
+    P(local.C, local.D, local.E, local.A, local.B, local.W[3]);
+    P(local.B, local.C, local.D, local.E, local.A, local.W[4]);
+    P(local.A, local.B, local.C, local.D, local.E, local.W[5]);
+    P(local.E, local.A, local.B, local.C, local.D, local.W[6]);
+    P(local.D, local.E, local.A, local.B, local.C, local.W[7]);
+    P(local.C, local.D, local.E, local.A, local.B, local.W[8]);
+    P(local.B, local.C, local.D, local.E, local.A, local.W[9]);
+    P(local.A, local.B, local.C, local.D, local.E, local.W[10]);
+    P(local.E, local.A, local.B, local.C, local.D, local.W[11]);
+    P(local.D, local.E, local.A, local.B, local.C, local.W[12]);
+    P(local.C, local.D, local.E, local.A, local.B, local.W[13]);
+    P(local.B, local.C, local.D, local.E, local.A, local.W[14]);
+    P(local.A, local.B, local.C, local.D, local.E, local.W[15]);
+    P(local.E, local.A, local.B, local.C, local.D, R(16));
+    P(local.D, local.E, local.A, local.B, local.C, R(17));
+    P(local.C, local.D, local.E, local.A, local.B, R(18));
+    P(local.B, local.C, local.D, local.E, local.A, R(19));
+
+#undef K
+#undef F
+
+#define F(x, y, z) ((x) ^ (y) ^ (z))
+#define K 0x6ED9EBA1
+
+    P(local.A, local.B, local.C, local.D, local.E, R(20));
+    P(local.E, local.A, local.B, local.C, local.D, R(21));
+    P(local.D, local.E, local.A, local.B, local.C, R(22));
+    P(local.C, local.D, local.E, local.A, local.B, R(23));
+    P(local.B, local.C, local.D, local.E, local.A, R(24));
+    P(local.A, local.B, local.C, local.D, local.E, R(25));
+    P(local.E, local.A, local.B, local.C, local.D, R(26));
+    P(local.D, local.E, local.A, local.B, local.C, R(27));
+    P(local.C, local.D, local.E, local.A, local.B, R(28));
+    P(local.B, local.C, local.D, local.E, local.A, R(29));
+    P(local.A, local.B, local.C, local.D, local.E, R(30));
+    P(local.E, local.A, local.B, local.C, local.D, R(31));
+    P(local.D, local.E, local.A, local.B, local.C, R(32));
+    P(local.C, local.D, local.E, local.A, local.B, R(33));
+    P(local.B, local.C, local.D, local.E, local.A, R(34));
+    P(local.A, local.B, local.C, local.D, local.E, R(35));
+    P(local.E, local.A, local.B, local.C, local.D, R(36));
+    P(local.D, local.E, local.A, local.B, local.C, R(37));
+    P(local.C, local.D, local.E, local.A, local.B, R(38));
+    P(local.B, local.C, local.D, local.E, local.A, R(39));
+
+#undef K
+#undef F
+
+#define F(x, y, z) (((x) & (y)) | ((z) & ((x) | (y))))
+#define K 0x8F1BBCDC
+
+    P(local.A, local.B, local.C, local.D, local.E, R(40));
+    P(local.E, local.A, local.B, local.C, local.D, R(41));
+    P(local.D, local.E, local.A, local.B, local.C, R(42));
+    P(local.C, local.D, local.E, local.A, local.B, R(43));
+    P(local.B, local.C, local.D, local.E, local.A, R(44));
+    P(local.A, local.B, local.C, local.D, local.E, R(45));
+    P(local.E, local.A, local.B, local.C, local.D, R(46));
+    P(local.D, local.E, local.A, local.B, local.C, R(47));
+    P(local.C, local.D, local.E, local.A, local.B, R(48));
+    P(local.B, local.C, local.D, local.E, local.A, R(49));
+    P(local.A, local.B, local.C, local.D, local.E, R(50));
+    P(local.E, local.A, local.B, local.C, local.D, R(51));
+    P(local.D, local.E, local.A, local.B, local.C, R(52));
+    P(local.C, local.D, local.E, local.A, local.B, R(53));
+    P(local.B, local.C, local.D, local.E, local.A, R(54));
+    P(local.A, local.B, local.C, local.D, local.E, R(55));
+    P(local.E, local.A, local.B, local.C, local.D, R(56));
+    P(local.D, local.E, local.A, local.B, local.C, R(57));
+    P(local.C, local.D, local.E, local.A, local.B, R(58));
+    P(local.B, local.C, local.D, local.E, local.A, R(59));
+
+#undef K
+#undef F
+
+#define F(x, y, z) ((x) ^ (y) ^ (z))
+#define K 0xCA62C1D6
+
+    P(local.A, local.B, local.C, local.D, local.E, R(60));
+    P(local.E, local.A, local.B, local.C, local.D, R(61));
+    P(local.D, local.E, local.A, local.B, local.C, R(62));
+    P(local.C, local.D, local.E, local.A, local.B, R(63));
+    P(local.B, local.C, local.D, local.E, local.A, R(64));
+    P(local.A, local.B, local.C, local.D, local.E, R(65));
+    P(local.E, local.A, local.B, local.C, local.D, R(66));
+    P(local.D, local.E, local.A, local.B, local.C, R(67));
+    P(local.C, local.D, local.E, local.A, local.B, R(68));
+    P(local.B, local.C, local.D, local.E, local.A, R(69));
+    P(local.A, local.B, local.C, local.D, local.E, R(70));
+    P(local.E, local.A, local.B, local.C, local.D, R(71));
+    P(local.D, local.E, local.A, local.B, local.C, R(72));
+    P(local.C, local.D, local.E, local.A, local.B, R(73));
+    P(local.B, local.C, local.D, local.E, local.A, R(74));
+    P(local.A, local.B, local.C, local.D, local.E, R(75));
+    P(local.E, local.A, local.B, local.C, local.D, R(76));
+    P(local.D, local.E, local.A, local.B, local.C, R(77));
+    P(local.C, local.D, local.E, local.A, local.B, R(78));
+    P(local.B, local.C, local.D, local.E, local.A, R(79));
+
+#undef K
+#undef F
+
+    ctx->state[0] += local.A;
+    ctx->state[1] += local.B;
+    ctx->state[2] += local.C;
+    ctx->state[3] += local.D;
+    ctx->state[4] += local.E;
+
+    /* Zeroise buffers and variables to clear sensitive data from memory. */
+    mbedtls_platform_zeroize(&local, sizeof(local));
+
+    return 0;
+}
+
+#endif /* !MBEDTLS_SHA1_PROCESS_ALT */
+
+/*
+ * SHA-1 process buffer
+ */
+int mbedtls_sha1_update(mbedtls_sha1_context *ctx,
+                        const unsigned char *input,
+                        size_t ilen)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t fill;
+    uint32_t left;
+
+    if (ilen == 0) {
+        return 0;
+    }
+
+    left = ctx->total[0] & 0x3F;
+    fill = 64 - left;
+
+    ctx->total[0] += (uint32_t) ilen;
+    ctx->total[0] &= 0xFFFFFFFF;
+
+    if (ctx->total[0] < (uint32_t) ilen) {
+        ctx->total[1]++;
+    }
+
+    if (left && ilen >= fill) {
+        memcpy((void *) (ctx->buffer + left), input, fill);
+
+        if ((ret = mbedtls_internal_sha1_process(ctx, ctx->buffer)) != 0) {
+            return ret;
+        }
+
+        input += fill;
+        ilen  -= fill;
+        left = 0;
+    }
+
+    while (ilen >= 64) {
+        if ((ret = mbedtls_internal_sha1_process(ctx, input)) != 0) {
+            return ret;
+        }
+
+        input += 64;
+        ilen  -= 64;
+    }
+
+    if (ilen > 0) {
+        memcpy((void *) (ctx->buffer + left), input, ilen);
+    }
+
+    return 0;
+}
+
+/*
+ * SHA-1 final digest
+ */
+int mbedtls_sha1_finish(mbedtls_sha1_context *ctx,
+                        unsigned char output[20])
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    uint32_t used;
+    uint32_t high, low;
+
+    /*
+     * Add padding: 0x80 then 0x00 until 8 bytes remain for the length
+     */
+    used = ctx->total[0] & 0x3F;
+
+    ctx->buffer[used++] = 0x80;
+
+    if (used <= 56) {
+        /* Enough room for padding + length in current block */
+        memset(ctx->buffer + used, 0, 56 - used);
+    } else {
+        /* We'll need an extra block */
+        memset(ctx->buffer + used, 0, 64 - used);
+
+        if ((ret = mbedtls_internal_sha1_process(ctx, ctx->buffer)) != 0) {
+            goto exit;
+        }
+
+        memset(ctx->buffer, 0, 56);
+    }
+
+    /*
+     * Add message length
+     */
+    high = (ctx->total[0] >> 29)
+           | (ctx->total[1] <<  3);
+    low  = (ctx->total[0] <<  3);
+
+    MBEDTLS_PUT_UINT32_BE(high, ctx->buffer, 56);
+    MBEDTLS_PUT_UINT32_BE(low,  ctx->buffer, 60);
+
+    if ((ret = mbedtls_internal_sha1_process(ctx, ctx->buffer)) != 0) {
+        goto exit;
+    }
+
+    /*
+     * Output final state
+     */
+    MBEDTLS_PUT_UINT32_BE(ctx->state[0], output,  0);
+    MBEDTLS_PUT_UINT32_BE(ctx->state[1], output,  4);
+    MBEDTLS_PUT_UINT32_BE(ctx->state[2], output,  8);
+    MBEDTLS_PUT_UINT32_BE(ctx->state[3], output, 12);
+    MBEDTLS_PUT_UINT32_BE(ctx->state[4], output, 16);
+
+    ret = 0;
+
+exit:
+    mbedtls_sha1_free(ctx);
+    return ret;
+}
+
+#endif /* !MBEDTLS_SHA1_ALT */
+
+/*
+ * output = SHA-1( input buffer )
+ */
+int mbedtls_sha1(const unsigned char *input,
+                 size_t ilen,
+                 unsigned char output[20])
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_sha1_context ctx;
+
+    mbedtls_sha1_init(&ctx);
+
+    if ((ret = mbedtls_sha1_starts(&ctx)) != 0) {
+        goto exit;
+    }
+
+    if ((ret = mbedtls_sha1_update(&ctx, input, ilen)) != 0) {
+        goto exit;
+    }
+
+    if ((ret = mbedtls_sha1_finish(&ctx, output)) != 0) {
+        goto exit;
+    }
+
+exit:
+    mbedtls_sha1_free(&ctx);
+    return ret;
+}
+
+#if defined(MBEDTLS_SELF_TEST)
+/*
+ * FIPS-180-1 test vectors
+ */
+static const unsigned char sha1_test_buf[3][57] =
+{
+    { "abc" },
+    { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" },
+    { "" }
+};
+
+static const size_t sha1_test_buflen[3] =
+{
+    3, 56, 1000
+};
+
+static const unsigned char sha1_test_sum[3][20] =
+{
+    { 0xA9, 0x99, 0x3E, 0x36, 0x47, 0x06, 0x81, 0x6A, 0xBA, 0x3E,
+      0x25, 0x71, 0x78, 0x50, 0xC2, 0x6C, 0x9C, 0xD0, 0xD8, 0x9D },
+    { 0x84, 0x98, 0x3E, 0x44, 0x1C, 0x3B, 0xD2, 0x6E, 0xBA, 0xAE,
+      0x4A, 0xA1, 0xF9, 0x51, 0x29, 0xE5, 0xE5, 0x46, 0x70, 0xF1 },
+    { 0x34, 0xAA, 0x97, 0x3C, 0xD4, 0xC4, 0xDA, 0xA4, 0xF6, 0x1E,
+      0xEB, 0x2B, 0xDB, 0xAD, 0x27, 0x31, 0x65, 0x34, 0x01, 0x6F }
+};
+
+/*
+ * Checkup routine
+ */
+int mbedtls_sha1_self_test(int verbose)
+{
+    int i, j, buflen, ret = 0;
+    unsigned char buf[1024];
+    unsigned char sha1sum[20];
+    mbedtls_sha1_context ctx;
+
+    mbedtls_sha1_init(&ctx);
+
+    /*
+     * SHA-1
+     */
+    for (i = 0; i < 3; i++) {
+        if (verbose != 0) {
+            mbedtls_printf("  SHA-1 test #%d: ", i + 1);
+        }
+
+        if ((ret = mbedtls_sha1_starts(&ctx)) != 0) {
+            goto fail;
+        }
+
+        if (i == 2) {
+            memset(buf, 'a', buflen = 1000);
+
+            for (j = 0; j < 1000; j++) {
+                ret = mbedtls_sha1_update(&ctx, buf, buflen);
+                if (ret != 0) {
+                    goto fail;
+                }
+            }
+        } else {
+            ret = mbedtls_sha1_update(&ctx, sha1_test_buf[i],
+                                      sha1_test_buflen[i]);
+            if (ret != 0) {
+                goto fail;
+            }
+        }
+
+        if ((ret = mbedtls_sha1_finish(&ctx, sha1sum)) != 0) {
+            goto fail;
+        }
+
+        if (memcmp(sha1sum, sha1_test_sum[i], 20) != 0) {
+            ret = 1;
+            goto fail;
+        }
+
+        if (verbose != 0) {
+            mbedtls_printf("passed\n");
+        }
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+
+    goto exit;
+
+fail:
+    if (verbose != 0) {
+        mbedtls_printf("failed\n");
+    }
+
+exit:
+    mbedtls_sha1_free(&ctx);
+
+    return ret;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_SHA1_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/sha256.c b/tf-psa-crypto/drivers/builtin/src/sha256.c
new file mode 100644
index 0000000..8b2c345
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/sha256.c
@@ -0,0 +1,978 @@
+/*
+ *  FIPS-180-2 compliant SHA-256 implementation
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ *  The SHA-256 Secure Hash Standard was published by NIST in 2002.
+ *
+ *  http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
+ */
+
+#if defined(__clang__) &&  (__clang_major__ >= 4)
+
+/* Ideally, we would simply use MBEDTLS_ARCH_IS_ARMV8_A in the following #if,
+ * but that is defined by build_info.h, and we need this block to happen first. */
+#if defined(__ARM_ARCH) && (__ARM_ARCH_PROFILE == 'A')
+#if __ARM_ARCH >= 8
+#define MBEDTLS_SHA256_ARCH_IS_ARMV8_A
+#endif
+#endif
+
+#if defined(MBEDTLS_SHA256_ARCH_IS_ARMV8_A) && !defined(__ARM_FEATURE_CRYPTO)
+/* TODO: Re-consider above after https://reviews.llvm.org/D131064 merged.
+ *
+ * The intrinsic declaration are guarded by predefined ACLE macros in clang:
+ * these are normally only enabled by the -march option on the command line.
+ * By defining the macros ourselves we gain access to those declarations without
+ * requiring -march on the command line.
+ *
+ * `arm_neon.h` is included by common.h, so we put these defines
+ * at the top of this file, before any includes.
+ */
+#define __ARM_FEATURE_CRYPTO 1
+/* See: https://arm-software.github.io/acle/main/acle.html#cryptographic-extensions
+ *
+ * `__ARM_FEATURE_CRYPTO` is deprecated, but we need to continue to specify it
+ * for older compilers.
+ */
+#define __ARM_FEATURE_SHA2   1
+#define MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG
+#endif
+
+#endif /* defined(__clang__) &&  (__clang_major__ >= 4) */
+
+/* Ensure that SIG_SETMASK is defined when -std=c99 is used. */
+#if !defined(_GNU_SOURCE)
+#define _GNU_SOURCE
+#endif
+
+#include "common.h"
+
+#if defined(MBEDTLS_SHA256_C) || defined(MBEDTLS_SHA224_C)
+
+#include "mbedtls/sha256.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if defined(MBEDTLS_ARCH_IS_ARMV8_A)
+
+#  if defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT) || \
+    defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_ONLY)
+#       if !defined(MBEDTLS_HAVE_NEON_INTRINSICS)
+#           if defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT)
+#               warning "Target does not support NEON instructions"
+#               undef MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT
+#           else
+#               error "Target does not support NEON instructions"
+#           endif
+#       endif
+#   endif
+
+#  if defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT) || \
+    defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_ONLY)
+/* *INDENT-OFF* */
+
+#   if !defined(__ARM_FEATURE_CRYPTO) || defined(MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG)
+#      if defined(__ARMCOMPILER_VERSION)
+#        if __ARMCOMPILER_VERSION <= 6090000
+#          error "Must use minimum -march=armv8-a+crypto for MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_*"
+#        endif
+#          pragma clang attribute push (__attribute__((target("sha2"))), apply_to=function)
+#          define MBEDTLS_POP_TARGET_PRAGMA
+#      elif defined(__clang__)
+#        if __clang_major__ < 4
+#          error "A more recent Clang is required for MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_*"
+#        endif
+#        pragma clang attribute push (__attribute__((target("crypto"))), apply_to=function)
+#        define MBEDTLS_POP_TARGET_PRAGMA
+#      elif defined(__GNUC__)
+         /* FIXME: GCC 5 claims to support Armv8 Crypto Extensions, but some
+          *        intrinsics are missing. Missing intrinsics could be worked around.
+          */
+#        if __GNUC__ < 6
+#          error "A more recent GCC is required for MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_*"
+#        else
+#          pragma GCC push_options
+#          pragma GCC target ("arch=armv8-a+crypto")
+#          define MBEDTLS_POP_TARGET_PRAGMA
+#        endif
+#      else
+#        error "Only GCC and Clang supported for MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_*"
+#      endif
+#    endif
+/* *INDENT-ON* */
+
+#  endif
+#  if defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT)
+#    if defined(__unix__)
+#      if defined(__linux__)
+/* Our preferred method of detection is getauxval() */
+#        include <sys/auxv.h>
+/* These are not always defined via sys/auxv.h */
+#        if !defined(HWCAP_SHA2)
+#          define HWCAP_SHA2  (1 << 6)
+#        endif
+#        if !defined(HWCAP2_SHA2)
+#          define HWCAP2_SHA2 (1 << 3)
+#        endif
+#      endif
+/* Use SIGILL on Unix, and fall back to it on Linux */
+#      include <signal.h>
+#    endif
+#  endif
+#elif !defined(MBEDTLS_PLATFORM_IS_WINDOWS_ON_ARM64)
+#  undef MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_ONLY
+#  undef MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT
+#endif
+
+#if defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT)
+/*
+ * Capability detection code comes early, so we can disable
+ * MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT if no detection mechanism found
+ */
+#if defined(MBEDTLS_ARCH_IS_ARM64) && defined(HWCAP_SHA2)
+static int mbedtls_a64_crypto_sha256_determine_support(void)
+{
+    return (getauxval(AT_HWCAP) & HWCAP_SHA2) ? 1 : 0;
+}
+#elif defined(MBEDTLS_ARCH_IS_ARM32) && defined(HWCAP2_SHA2)
+static int mbedtls_a64_crypto_sha256_determine_support(void)
+{
+    return (getauxval(AT_HWCAP2) & HWCAP2_SHA2) ? 1 : 0;
+}
+#elif defined(__APPLE__)
+static int mbedtls_a64_crypto_sha256_determine_support(void)
+{
+    return 1;
+}
+#elif defined(MBEDTLS_PLATFORM_IS_WINDOWS_ON_ARM64)
+#define WIN32_LEAN_AND_MEAN
+#include <Windows.h>
+#include <processthreadsapi.h>
+
+static int mbedtls_a64_crypto_sha256_determine_support(void)
+{
+    return IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE) ?
+           1 : 0;
+}
+#elif defined(__unix__) && defined(SIG_SETMASK)
+/* Detection with SIGILL, setjmp() and longjmp() */
+#include <signal.h>
+#include <setjmp.h>
+
+static jmp_buf return_from_sigill;
+
+/*
+ * Armv8-A SHA256 support detection via SIGILL
+ */
+static void sigill_handler(int signal)
+{
+    (void) signal;
+    longjmp(return_from_sigill, 1);
+}
+
+static int mbedtls_a64_crypto_sha256_determine_support(void)
+{
+    struct sigaction old_action, new_action;
+
+    sigset_t old_mask;
+    if (sigprocmask(0, NULL, &old_mask)) {
+        return 0;
+    }
+
+    sigemptyset(&new_action.sa_mask);
+    new_action.sa_flags = 0;
+    new_action.sa_handler = sigill_handler;
+
+    sigaction(SIGILL, &new_action, &old_action);
+
+    static int ret = 0;
+
+    if (setjmp(return_from_sigill) == 0) {         /* First return only */
+        /* If this traps, we will return a second time from setjmp() with 1 */
+#if defined(MBEDTLS_ARCH_IS_ARM64)
+        asm volatile ("sha256h q0, q0, v0.4s" : : : "v0");
+#else
+        asm volatile ("sha256h.32 q0, q0, q0" : : : "q0");
+#endif
+        ret = 1;
+    }
+
+    sigaction(SIGILL, &old_action, NULL);
+    sigprocmask(SIG_SETMASK, &old_mask, NULL);
+
+    return ret;
+}
+#else
+#warning "No mechanism to detect ARMV8_CRYPTO found, using C code only"
+#undef MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT
+#endif  /* HWCAP_SHA2, __APPLE__, __unix__ && SIG_SETMASK */
+
+#endif  /* MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT */
+
+#if !defined(MBEDTLS_SHA256_ALT)
+
+#define SHA256_BLOCK_SIZE 64
+
+void mbedtls_sha256_init(mbedtls_sha256_context *ctx)
+{
+    memset(ctx, 0, sizeof(mbedtls_sha256_context));
+}
+
+void mbedtls_sha256_free(mbedtls_sha256_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_platform_zeroize(ctx, sizeof(mbedtls_sha256_context));
+}
+
+void mbedtls_sha256_clone(mbedtls_sha256_context *dst,
+                          const mbedtls_sha256_context *src)
+{
+    *dst = *src;
+}
+
+/*
+ * SHA-256 context setup
+ */
+int mbedtls_sha256_starts(mbedtls_sha256_context *ctx, int is224)
+{
+#if defined(MBEDTLS_SHA224_C) && defined(MBEDTLS_SHA256_C)
+    if (is224 != 0 && is224 != 1) {
+        return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA;
+    }
+#elif defined(MBEDTLS_SHA256_C)
+    if (is224 != 0) {
+        return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA;
+    }
+#else /* defined MBEDTLS_SHA224_C only */
+    if (is224 == 0) {
+        return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA;
+    }
+#endif
+
+    ctx->total[0] = 0;
+    ctx->total[1] = 0;
+
+    if (is224 == 0) {
+#if defined(MBEDTLS_SHA256_C)
+        ctx->state[0] = 0x6A09E667;
+        ctx->state[1] = 0xBB67AE85;
+        ctx->state[2] = 0x3C6EF372;
+        ctx->state[3] = 0xA54FF53A;
+        ctx->state[4] = 0x510E527F;
+        ctx->state[5] = 0x9B05688C;
+        ctx->state[6] = 0x1F83D9AB;
+        ctx->state[7] = 0x5BE0CD19;
+#endif
+    } else {
+#if defined(MBEDTLS_SHA224_C)
+        ctx->state[0] = 0xC1059ED8;
+        ctx->state[1] = 0x367CD507;
+        ctx->state[2] = 0x3070DD17;
+        ctx->state[3] = 0xF70E5939;
+        ctx->state[4] = 0xFFC00B31;
+        ctx->state[5] = 0x68581511;
+        ctx->state[6] = 0x64F98FA7;
+        ctx->state[7] = 0xBEFA4FA4;
+#endif
+    }
+
+#if defined(MBEDTLS_SHA224_C)
+    ctx->is224 = is224;
+#endif
+
+    return 0;
+}
+
+#if !defined(MBEDTLS_SHA256_PROCESS_ALT)
+static const uint32_t K[] =
+{
+    0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
+    0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
+    0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
+    0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
+    0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
+    0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
+    0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
+    0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
+    0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
+    0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
+    0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
+    0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
+    0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
+    0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
+    0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
+    0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
+};
+
+#endif
+
+#if defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT) || \
+    defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_ONLY)
+
+#if defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_ONLY)
+#  define mbedtls_internal_sha256_process_many_a64_crypto mbedtls_internal_sha256_process_many
+#  define mbedtls_internal_sha256_process_a64_crypto      mbedtls_internal_sha256_process
+#endif
+
+static size_t mbedtls_internal_sha256_process_many_a64_crypto(
+    mbedtls_sha256_context *ctx, const uint8_t *msg, size_t len)
+{
+    uint32x4_t abcd = vld1q_u32(&ctx->state[0]);
+    uint32x4_t efgh = vld1q_u32(&ctx->state[4]);
+
+    size_t processed = 0;
+
+    for (;
+         len >= SHA256_BLOCK_SIZE;
+         processed += SHA256_BLOCK_SIZE,
+         msg += SHA256_BLOCK_SIZE,
+         len -= SHA256_BLOCK_SIZE) {
+        uint32x4_t tmp, abcd_prev;
+
+        uint32x4_t abcd_orig = abcd;
+        uint32x4_t efgh_orig = efgh;
+
+        uint32x4_t sched0 = vreinterpretq_u32_u8(vld1q_u8(msg + 16 * 0));
+        uint32x4_t sched1 = vreinterpretq_u32_u8(vld1q_u8(msg + 16 * 1));
+        uint32x4_t sched2 = vreinterpretq_u32_u8(vld1q_u8(msg + 16 * 2));
+        uint32x4_t sched3 = vreinterpretq_u32_u8(vld1q_u8(msg + 16 * 3));
+
+#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__  /* Will be true if not defined */
+                                               /* Untested on BE */
+        sched0 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(sched0)));
+        sched1 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(sched1)));
+        sched2 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(sched2)));
+        sched3 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(sched3)));
+#endif
+
+        /* Rounds 0 to 3 */
+        tmp = vaddq_u32(sched0, vld1q_u32(&K[0]));
+        abcd_prev = abcd;
+        abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
+        efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
+
+        /* Rounds 4 to 7 */
+        tmp = vaddq_u32(sched1, vld1q_u32(&K[4]));
+        abcd_prev = abcd;
+        abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
+        efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
+
+        /* Rounds 8 to 11 */
+        tmp = vaddq_u32(sched2, vld1q_u32(&K[8]));
+        abcd_prev = abcd;
+        abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
+        efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
+
+        /* Rounds 12 to 15 */
+        tmp = vaddq_u32(sched3, vld1q_u32(&K[12]));
+        abcd_prev = abcd;
+        abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
+        efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
+
+        for (int t = 16; t < 64; t += 16) {
+            /* Rounds t to t + 3 */
+            sched0 = vsha256su1q_u32(vsha256su0q_u32(sched0, sched1), sched2, sched3);
+            tmp = vaddq_u32(sched0, vld1q_u32(&K[t]));
+            abcd_prev = abcd;
+            abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
+            efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
+
+            /* Rounds t + 4 to t + 7 */
+            sched1 = vsha256su1q_u32(vsha256su0q_u32(sched1, sched2), sched3, sched0);
+            tmp = vaddq_u32(sched1, vld1q_u32(&K[t + 4]));
+            abcd_prev = abcd;
+            abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
+            efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
+
+            /* Rounds t + 8 to t + 11 */
+            sched2 = vsha256su1q_u32(vsha256su0q_u32(sched2, sched3), sched0, sched1);
+            tmp = vaddq_u32(sched2, vld1q_u32(&K[t + 8]));
+            abcd_prev = abcd;
+            abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
+            efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
+
+            /* Rounds t + 12 to t + 15 */
+            sched3 = vsha256su1q_u32(vsha256su0q_u32(sched3, sched0), sched1, sched2);
+            tmp = vaddq_u32(sched3, vld1q_u32(&K[t + 12]));
+            abcd_prev = abcd;
+            abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
+            efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
+        }
+
+        abcd = vaddq_u32(abcd, abcd_orig);
+        efgh = vaddq_u32(efgh, efgh_orig);
+    }
+
+    vst1q_u32(&ctx->state[0], abcd);
+    vst1q_u32(&ctx->state[4], efgh);
+
+    return processed;
+}
+
+#if defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT)
+/*
+ * This function is for internal use only if we are building both C and Armv8-A
+ * versions, otherwise it is renamed to be the public mbedtls_internal_sha256_process()
+ */
+static
+#endif
+int mbedtls_internal_sha256_process_a64_crypto(mbedtls_sha256_context *ctx,
+                                               const unsigned char data[SHA256_BLOCK_SIZE])
+{
+    return (mbedtls_internal_sha256_process_many_a64_crypto(ctx, data,
+                                                            SHA256_BLOCK_SIZE) ==
+            SHA256_BLOCK_SIZE) ? 0 : -1;
+}
+
+#endif /* MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT || MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_ONLY */
+
+#if defined(MBEDTLS_POP_TARGET_PRAGMA)
+#if defined(__clang__)
+#pragma clang attribute pop
+#elif defined(__GNUC__)
+#pragma GCC pop_options
+#endif
+#undef MBEDTLS_POP_TARGET_PRAGMA
+#endif
+
+#if !defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT)
+#define mbedtls_internal_sha256_process_many_c mbedtls_internal_sha256_process_many
+#define mbedtls_internal_sha256_process_c      mbedtls_internal_sha256_process
+#endif
+
+
+#if !defined(MBEDTLS_SHA256_PROCESS_ALT) && \
+    !defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_ONLY)
+
+#define  SHR(x, n) (((x) & 0xFFFFFFFF) >> (n))
+#define ROTR(x, n) (SHR(x, n) | ((x) << (32 - (n))))
+
+#define S0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^  SHR(x, 3))
+#define S1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^  SHR(x, 10))
+
+#define S2(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
+#define S3(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
+
+#define F0(x, y, z) (((x) & (y)) | ((z) & ((x) | (y))))
+#define F1(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
+
+#define R(t)                                                        \
+    (                                                               \
+        local.W[t] = S1(local.W[(t) -  2]) + local.W[(t) -  7] +    \
+                     S0(local.W[(t) - 15]) + local.W[(t) - 16]      \
+    )
+
+#define P(a, b, c, d, e, f, g, h, x, K)                                      \
+    do                                                              \
+    {                                                               \
+        local.temp1 = (h) + S3(e) + F1((e), (f), (g)) + (K) + (x);    \
+        local.temp2 = S2(a) + F0((a), (b), (c));                      \
+        (d) += local.temp1; (h) = local.temp1 + local.temp2;        \
+    } while (0)
+
+#if defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT)
+/*
+ * This function is for internal use only if we are building both C and Armv8
+ * versions, otherwise it is renamed to be the public mbedtls_internal_sha256_process()
+ */
+static
+#endif
+int mbedtls_internal_sha256_process_c(mbedtls_sha256_context *ctx,
+                                      const unsigned char data[SHA256_BLOCK_SIZE])
+{
+    struct {
+        uint32_t temp1, temp2, W[64];
+        uint32_t A[8];
+    } local;
+
+    unsigned int i;
+
+    for (i = 0; i < 8; i++) {
+        local.A[i] = ctx->state[i];
+    }
+
+#if defined(MBEDTLS_SHA256_SMALLER)
+    for (i = 0; i < 64; i++) {
+        if (i < 16) {
+            local.W[i] = MBEDTLS_GET_UINT32_BE(data, 4 * i);
+        } else {
+            R(i);
+        }
+
+        P(local.A[0], local.A[1], local.A[2], local.A[3], local.A[4],
+          local.A[5], local.A[6], local.A[7], local.W[i], K[i]);
+
+        local.temp1 = local.A[7]; local.A[7] = local.A[6];
+        local.A[6] = local.A[5]; local.A[5] = local.A[4];
+        local.A[4] = local.A[3]; local.A[3] = local.A[2];
+        local.A[2] = local.A[1]; local.A[1] = local.A[0];
+        local.A[0] = local.temp1;
+    }
+#else /* MBEDTLS_SHA256_SMALLER */
+    for (i = 0; i < 16; i++) {
+        local.W[i] = MBEDTLS_GET_UINT32_BE(data, 4 * i);
+    }
+
+    for (i = 0; i < 16; i += 8) {
+        P(local.A[0], local.A[1], local.A[2], local.A[3], local.A[4],
+          local.A[5], local.A[6], local.A[7], local.W[i+0], K[i+0]);
+        P(local.A[7], local.A[0], local.A[1], local.A[2], local.A[3],
+          local.A[4], local.A[5], local.A[6], local.W[i+1], K[i+1]);
+        P(local.A[6], local.A[7], local.A[0], local.A[1], local.A[2],
+          local.A[3], local.A[4], local.A[5], local.W[i+2], K[i+2]);
+        P(local.A[5], local.A[6], local.A[7], local.A[0], local.A[1],
+          local.A[2], local.A[3], local.A[4], local.W[i+3], K[i+3]);
+        P(local.A[4], local.A[5], local.A[6], local.A[7], local.A[0],
+          local.A[1], local.A[2], local.A[3], local.W[i+4], K[i+4]);
+        P(local.A[3], local.A[4], local.A[5], local.A[6], local.A[7],
+          local.A[0], local.A[1], local.A[2], local.W[i+5], K[i+5]);
+        P(local.A[2], local.A[3], local.A[4], local.A[5], local.A[6],
+          local.A[7], local.A[0], local.A[1], local.W[i+6], K[i+6]);
+        P(local.A[1], local.A[2], local.A[3], local.A[4], local.A[5],
+          local.A[6], local.A[7], local.A[0], local.W[i+7], K[i+7]);
+    }
+
+    for (i = 16; i < 64; i += 8) {
+        P(local.A[0], local.A[1], local.A[2], local.A[3], local.A[4],
+          local.A[5], local.A[6], local.A[7], R(i+0), K[i+0]);
+        P(local.A[7], local.A[0], local.A[1], local.A[2], local.A[3],
+          local.A[4], local.A[5], local.A[6], R(i+1), K[i+1]);
+        P(local.A[6], local.A[7], local.A[0], local.A[1], local.A[2],
+          local.A[3], local.A[4], local.A[5], R(i+2), K[i+2]);
+        P(local.A[5], local.A[6], local.A[7], local.A[0], local.A[1],
+          local.A[2], local.A[3], local.A[4], R(i+3), K[i+3]);
+        P(local.A[4], local.A[5], local.A[6], local.A[7], local.A[0],
+          local.A[1], local.A[2], local.A[3], R(i+4), K[i+4]);
+        P(local.A[3], local.A[4], local.A[5], local.A[6], local.A[7],
+          local.A[0], local.A[1], local.A[2], R(i+5), K[i+5]);
+        P(local.A[2], local.A[3], local.A[4], local.A[5], local.A[6],
+          local.A[7], local.A[0], local.A[1], R(i+6), K[i+6]);
+        P(local.A[1], local.A[2], local.A[3], local.A[4], local.A[5],
+          local.A[6], local.A[7], local.A[0], R(i+7), K[i+7]);
+    }
+#endif /* MBEDTLS_SHA256_SMALLER */
+
+    for (i = 0; i < 8; i++) {
+        ctx->state[i] += local.A[i];
+    }
+
+    /* Zeroise buffers and variables to clear sensitive data from memory. */
+    mbedtls_platform_zeroize(&local, sizeof(local));
+
+    return 0;
+}
+
+#endif /* !MBEDTLS_SHA256_PROCESS_ALT && !MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_ONLY */
+
+
+#if !defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_ONLY)
+
+static size_t mbedtls_internal_sha256_process_many_c(
+    mbedtls_sha256_context *ctx, const uint8_t *data, size_t len)
+{
+    size_t processed = 0;
+
+    while (len >= SHA256_BLOCK_SIZE) {
+        if (mbedtls_internal_sha256_process_c(ctx, data) != 0) {
+            return 0;
+        }
+
+        data += SHA256_BLOCK_SIZE;
+        len  -= SHA256_BLOCK_SIZE;
+
+        processed += SHA256_BLOCK_SIZE;
+    }
+
+    return processed;
+}
+
+#endif /* !MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_ONLY */
+
+
+#if defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT)
+
+static int mbedtls_a64_crypto_sha256_has_support(void)
+{
+    static int done = 0;
+    static int supported = 0;
+
+    if (!done) {
+        supported = mbedtls_a64_crypto_sha256_determine_support();
+        done = 1;
+    }
+
+    return supported;
+}
+
+static size_t mbedtls_internal_sha256_process_many(mbedtls_sha256_context *ctx,
+                                                   const uint8_t *msg, size_t len)
+{
+    if (mbedtls_a64_crypto_sha256_has_support()) {
+        return mbedtls_internal_sha256_process_many_a64_crypto(ctx, msg, len);
+    } else {
+        return mbedtls_internal_sha256_process_many_c(ctx, msg, len);
+    }
+}
+
+int mbedtls_internal_sha256_process(mbedtls_sha256_context *ctx,
+                                    const unsigned char data[SHA256_BLOCK_SIZE])
+{
+    if (mbedtls_a64_crypto_sha256_has_support()) {
+        return mbedtls_internal_sha256_process_a64_crypto(ctx, data);
+    } else {
+        return mbedtls_internal_sha256_process_c(ctx, data);
+    }
+}
+
+#endif /* MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT */
+
+
+/*
+ * SHA-256 process buffer
+ */
+int mbedtls_sha256_update(mbedtls_sha256_context *ctx,
+                          const unsigned char *input,
+                          size_t ilen)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t fill;
+    uint32_t left;
+
+    if (ilen == 0) {
+        return 0;
+    }
+
+    left = ctx->total[0] & 0x3F;
+    fill = SHA256_BLOCK_SIZE - left;
+
+    ctx->total[0] += (uint32_t) ilen;
+    ctx->total[0] &= 0xFFFFFFFF;
+
+    if (ctx->total[0] < (uint32_t) ilen) {
+        ctx->total[1]++;
+    }
+
+    if (left && ilen >= fill) {
+        memcpy((void *) (ctx->buffer + left), input, fill);
+
+        if ((ret = mbedtls_internal_sha256_process(ctx, ctx->buffer)) != 0) {
+            return ret;
+        }
+
+        input += fill;
+        ilen  -= fill;
+        left = 0;
+    }
+
+    while (ilen >= SHA256_BLOCK_SIZE) {
+        size_t processed =
+            mbedtls_internal_sha256_process_many(ctx, input, ilen);
+        if (processed < SHA256_BLOCK_SIZE) {
+            return MBEDTLS_ERR_ERROR_GENERIC_ERROR;
+        }
+
+        input += processed;
+        ilen  -= processed;
+    }
+
+    if (ilen > 0) {
+        memcpy((void *) (ctx->buffer + left), input, ilen);
+    }
+
+    return 0;
+}
+
+/*
+ * SHA-256 final digest
+ */
+int mbedtls_sha256_finish(mbedtls_sha256_context *ctx,
+                          unsigned char *output)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    uint32_t used;
+    uint32_t high, low;
+    int truncated = 0;
+
+    /*
+     * Add padding: 0x80 then 0x00 until 8 bytes remain for the length
+     */
+    used = ctx->total[0] & 0x3F;
+
+    ctx->buffer[used++] = 0x80;
+
+    if (used <= 56) {
+        /* Enough room for padding + length in current block */
+        memset(ctx->buffer + used, 0, 56 - used);
+    } else {
+        /* We'll need an extra block */
+        memset(ctx->buffer + used, 0, SHA256_BLOCK_SIZE - used);
+
+        if ((ret = mbedtls_internal_sha256_process(ctx, ctx->buffer)) != 0) {
+            goto exit;
+        }
+
+        memset(ctx->buffer, 0, 56);
+    }
+
+    /*
+     * Add message length
+     */
+    high = (ctx->total[0] >> 29)
+           | (ctx->total[1] <<  3);
+    low  = (ctx->total[0] <<  3);
+
+    MBEDTLS_PUT_UINT32_BE(high, ctx->buffer, 56);
+    MBEDTLS_PUT_UINT32_BE(low,  ctx->buffer, 60);
+
+    if ((ret = mbedtls_internal_sha256_process(ctx, ctx->buffer)) != 0) {
+        goto exit;
+    }
+
+    /*
+     * Output final state
+     */
+    MBEDTLS_PUT_UINT32_BE(ctx->state[0], output,  0);
+    MBEDTLS_PUT_UINT32_BE(ctx->state[1], output,  4);
+    MBEDTLS_PUT_UINT32_BE(ctx->state[2], output,  8);
+    MBEDTLS_PUT_UINT32_BE(ctx->state[3], output, 12);
+    MBEDTLS_PUT_UINT32_BE(ctx->state[4], output, 16);
+    MBEDTLS_PUT_UINT32_BE(ctx->state[5], output, 20);
+    MBEDTLS_PUT_UINT32_BE(ctx->state[6], output, 24);
+
+#if defined(MBEDTLS_SHA224_C)
+    truncated = ctx->is224;
+#endif
+    if (!truncated) {
+        MBEDTLS_PUT_UINT32_BE(ctx->state[7], output, 28);
+    }
+
+    ret = 0;
+
+exit:
+    mbedtls_sha256_free(ctx);
+    return ret;
+}
+
+#endif /* !MBEDTLS_SHA256_ALT */
+
+/*
+ * output = SHA-256( input buffer )
+ */
+int mbedtls_sha256(const unsigned char *input,
+                   size_t ilen,
+                   unsigned char *output,
+                   int is224)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_sha256_context ctx;
+
+#if defined(MBEDTLS_SHA224_C) && defined(MBEDTLS_SHA256_C)
+    if (is224 != 0 && is224 != 1) {
+        return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA;
+    }
+#elif defined(MBEDTLS_SHA256_C)
+    if (is224 != 0) {
+        return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA;
+    }
+#else /* defined MBEDTLS_SHA224_C only */
+    if (is224 == 0) {
+        return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA;
+    }
+#endif
+
+    mbedtls_sha256_init(&ctx);
+
+    if ((ret = mbedtls_sha256_starts(&ctx, is224)) != 0) {
+        goto exit;
+    }
+
+    if ((ret = mbedtls_sha256_update(&ctx, input, ilen)) != 0) {
+        goto exit;
+    }
+
+    if ((ret = mbedtls_sha256_finish(&ctx, output)) != 0) {
+        goto exit;
+    }
+
+exit:
+    mbedtls_sha256_free(&ctx);
+
+    return ret;
+}
+
+#if defined(MBEDTLS_SELF_TEST)
+/*
+ * FIPS-180-2 test vectors
+ */
+static const unsigned char sha_test_buf[3][57] =
+{
+    { "abc" },
+    { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" },
+    { "" }
+};
+
+static const size_t sha_test_buflen[3] =
+{
+    3, 56, 1000
+};
+
+typedef const unsigned char (sha_test_sum_t)[32];
+
+/*
+ * SHA-224 test vectors
+ */
+#if defined(MBEDTLS_SHA224_C)
+static sha_test_sum_t sha224_test_sum[] =
+{
+    { 0x23, 0x09, 0x7D, 0x22, 0x34, 0x05, 0xD8, 0x22,
+      0x86, 0x42, 0xA4, 0x77, 0xBD, 0xA2, 0x55, 0xB3,
+      0x2A, 0xAD, 0xBC, 0xE4, 0xBD, 0xA0, 0xB3, 0xF7,
+      0xE3, 0x6C, 0x9D, 0xA7 },
+    { 0x75, 0x38, 0x8B, 0x16, 0x51, 0x27, 0x76, 0xCC,
+      0x5D, 0xBA, 0x5D, 0xA1, 0xFD, 0x89, 0x01, 0x50,
+      0xB0, 0xC6, 0x45, 0x5C, 0xB4, 0xF5, 0x8B, 0x19,
+      0x52, 0x52, 0x25, 0x25 },
+    { 0x20, 0x79, 0x46, 0x55, 0x98, 0x0C, 0x91, 0xD8,
+      0xBB, 0xB4, 0xC1, 0xEA, 0x97, 0x61, 0x8A, 0x4B,
+      0xF0, 0x3F, 0x42, 0x58, 0x19, 0x48, 0xB2, 0xEE,
+      0x4E, 0xE7, 0xAD, 0x67 }
+};
+#endif
+
+/*
+ * SHA-256 test vectors
+ */
+#if defined(MBEDTLS_SHA256_C)
+static sha_test_sum_t sha256_test_sum[] =
+{
+    { 0xBA, 0x78, 0x16, 0xBF, 0x8F, 0x01, 0xCF, 0xEA,
+      0x41, 0x41, 0x40, 0xDE, 0x5D, 0xAE, 0x22, 0x23,
+      0xB0, 0x03, 0x61, 0xA3, 0x96, 0x17, 0x7A, 0x9C,
+      0xB4, 0x10, 0xFF, 0x61, 0xF2, 0x00, 0x15, 0xAD },
+    { 0x24, 0x8D, 0x6A, 0x61, 0xD2, 0x06, 0x38, 0xB8,
+      0xE5, 0xC0, 0x26, 0x93, 0x0C, 0x3E, 0x60, 0x39,
+      0xA3, 0x3C, 0xE4, 0x59, 0x64, 0xFF, 0x21, 0x67,
+      0xF6, 0xEC, 0xED, 0xD4, 0x19, 0xDB, 0x06, 0xC1 },
+    { 0xCD, 0xC7, 0x6E, 0x5C, 0x99, 0x14, 0xFB, 0x92,
+      0x81, 0xA1, 0xC7, 0xE2, 0x84, 0xD7, 0x3E, 0x67,
+      0xF1, 0x80, 0x9A, 0x48, 0xA4, 0x97, 0x20, 0x0E,
+      0x04, 0x6D, 0x39, 0xCC, 0xC7, 0x11, 0x2C, 0xD0 }
+};
+#endif
+
+/*
+ * Checkup routine
+ */
+static int mbedtls_sha256_common_self_test(int verbose, int is224)
+{
+    int i, buflen, ret = 0;
+    unsigned char *buf;
+    unsigned char sha256sum[32];
+    mbedtls_sha256_context ctx;
+
+#if defined(MBEDTLS_SHA224_C) && defined(MBEDTLS_SHA256_C)
+    sha_test_sum_t *sha_test_sum = (is224) ? sha224_test_sum : sha256_test_sum;
+#elif defined(MBEDTLS_SHA256_C)
+    sha_test_sum_t *sha_test_sum = sha256_test_sum;
+#else
+    sha_test_sum_t *sha_test_sum = sha224_test_sum;
+#endif
+
+    buf = mbedtls_calloc(1024, sizeof(unsigned char));
+    if (NULL == buf) {
+        if (verbose != 0) {
+            mbedtls_printf("Buffer allocation failed\n");
+        }
+
+        return 1;
+    }
+
+    mbedtls_sha256_init(&ctx);
+
+    for (i = 0; i < 3; i++) {
+        if (verbose != 0) {
+            mbedtls_printf("  SHA-%d test #%d: ", 256 - is224 * 32, i + 1);
+        }
+
+        if ((ret = mbedtls_sha256_starts(&ctx, is224)) != 0) {
+            goto fail;
+        }
+
+        if (i == 2) {
+            memset(buf, 'a', buflen = 1000);
+
+            for (int j = 0; j < 1000; j++) {
+                ret = mbedtls_sha256_update(&ctx, buf, buflen);
+                if (ret != 0) {
+                    goto fail;
+                }
+            }
+
+        } else {
+            ret = mbedtls_sha256_update(&ctx, sha_test_buf[i],
+                                        sha_test_buflen[i]);
+            if (ret != 0) {
+                goto fail;
+            }
+        }
+
+        if ((ret = mbedtls_sha256_finish(&ctx, sha256sum)) != 0) {
+            goto fail;
+        }
+
+
+        if (memcmp(sha256sum, sha_test_sum[i], 32 - is224 * 4) != 0) {
+            ret = 1;
+            goto fail;
+        }
+
+        if (verbose != 0) {
+            mbedtls_printf("passed\n");
+        }
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+
+    goto exit;
+
+fail:
+    if (verbose != 0) {
+        mbedtls_printf("failed\n");
+    }
+
+exit:
+    mbedtls_sha256_free(&ctx);
+    mbedtls_free(buf);
+
+    return ret;
+}
+
+#if defined(MBEDTLS_SHA256_C)
+int mbedtls_sha256_self_test(int verbose)
+{
+    return mbedtls_sha256_common_self_test(verbose, 0);
+}
+#endif /* MBEDTLS_SHA256_C */
+
+#if defined(MBEDTLS_SHA224_C)
+int mbedtls_sha224_self_test(int verbose)
+{
+    return mbedtls_sha256_common_self_test(verbose, 1);
+}
+#endif /* MBEDTLS_SHA224_C */
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_SHA256_C || MBEDTLS_SHA224_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/sha3.c b/tf-psa-crypto/drivers/builtin/src/sha3.c
new file mode 100644
index 0000000..5738559
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/sha3.c
@@ -0,0 +1,721 @@
+/*
+ *  FIPS-202 compliant SHA3 implementation
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ *  The SHA-3 Secure Hash Standard was published by NIST in 2015.
+ *
+ *  https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.202.pdf
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_SHA3_C)
+
+/*
+ * These macros select manually unrolled implementations of parts of the main permutation function.
+ *
+ * Unrolling has a major impact on both performance and code size. gcc performance benefits a lot
+ * from manually unrolling at higher optimisation levels.
+ *
+ * Depending on your size/perf priorities, compiler and target, it may be beneficial to adjust
+ * these; the defaults here should give sensible trade-offs for gcc and clang on aarch64 and
+ * x86-64.
+ */
+#if !defined(MBEDTLS_SHA3_THETA_UNROLL)
+    #define MBEDTLS_SHA3_THETA_UNROLL 0 //no-check-names
+#endif
+#if !defined(MBEDTLS_SHA3_CHI_UNROLL)
+    #if defined(__OPTIMIZE_SIZE__)
+        #define MBEDTLS_SHA3_CHI_UNROLL 0 //no-check-names
+    #else
+        #define MBEDTLS_SHA3_CHI_UNROLL 1 //no-check-names
+    #endif
+#endif
+#if !defined(MBEDTLS_SHA3_PI_UNROLL)
+    #define MBEDTLS_SHA3_PI_UNROLL 1 //no-check-names
+#endif
+#if !defined(MBEDTLS_SHA3_RHO_UNROLL)
+    #define MBEDTLS_SHA3_RHO_UNROLL 1 //no-check-names
+#endif
+
+#include "mbedtls/sha3.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_SELF_TEST)
+#include "mbedtls/platform.h"
+#endif /* MBEDTLS_SELF_TEST */
+
+#define XOR_BYTE 0x6
+
+/* Precomputed masks for the iota transform.
+ *
+ * Each round uses a 64-bit mask value. In each mask values, only
+ * bits whose position is of the form 2^k-1 can be set, thus only
+ * 7 of 64 bits of the mask need to be known for each mask value.
+ *
+ * We use a compressed encoding of the mask where bits 63, 31 and 15
+ * are moved to bits 4-6. This allows us to make each mask value
+ * 1 byte rather than 8 bytes, saving 7*24 = 168 bytes of data (with
+ * perhaps a little variation due to alignment). Decompressing this
+ * requires a little code, but much less than the savings on the table.
+ *
+ * The impact on performance depends on the platform and compiler.
+ * There's a bit more computation, but less memory bandwidth. A quick
+ * benchmark on x86_64 shows a 7% speed improvement with GCC and a
+ * 5% speed penalty with Clang, compared to the naive uint64_t[24] table.
+ * YMMV.
+ */
+/* Helper macro to set the values of the higher bits in unused low positions */
+#define H(b63, b31, b15) (b63 << 6 | b31 << 5 | b15 << 4)
+static const uint8_t iota_r_packed[24] = {
+    H(0, 0, 0) | 0x01, H(0, 0, 1) | 0x82, H(1, 0, 1) | 0x8a, H(1, 1, 1) | 0x00,
+    H(0, 0, 1) | 0x8b, H(0, 1, 0) | 0x01, H(1, 1, 1) | 0x81, H(1, 0, 1) | 0x09,
+    H(0, 0, 0) | 0x8a, H(0, 0, 0) | 0x88, H(0, 1, 1) | 0x09, H(0, 1, 0) | 0x0a,
+    H(0, 1, 1) | 0x8b, H(1, 0, 0) | 0x8b, H(1, 0, 1) | 0x89, H(1, 0, 1) | 0x03,
+    H(1, 0, 1) | 0x02, H(1, 0, 0) | 0x80, H(0, 0, 1) | 0x0a, H(1, 1, 0) | 0x0a,
+    H(1, 1, 1) | 0x81, H(1, 0, 1) | 0x80, H(0, 1, 0) | 0x01, H(1, 1, 1) | 0x08,
+};
+#undef H
+
+static const uint32_t rho[6] = {
+    0x3f022425, 0x1c143a09, 0x2c3d3615, 0x27191713, 0x312b382e, 0x3e030832
+};
+
+static const uint32_t pi[6] = {
+    0x110b070a, 0x10050312, 0x04181508, 0x0d13170f, 0x0e14020c, 0x01060916
+};
+
+#define ROTR64(x, y) (((x) << (64U - (y))) | ((x) >> (y))) // 64-bit rotate right
+#define ABSORB(ctx, idx, v) do { ctx->state[(idx) >> 3] ^= ((uint64_t) (v)) << (((idx) & 0x7) << 3); \
+} while (0)
+#define SQUEEZE(ctx, idx) ((uint8_t) (ctx->state[(idx) >> 3] >> (((idx) & 0x7) << 3)))
+#define SWAP(x, y) do { uint64_t tmp = (x); (x) = (y); (y) = tmp; } while (0)
+
+/* The permutation function.  */
+static void keccak_f1600(mbedtls_sha3_context *ctx)
+{
+    uint64_t lane[5];
+    uint64_t *s = ctx->state;
+    int i;
+
+    for (int round = 0; round < 24; round++) {
+        uint64_t t;
+
+        /* Theta */
+#if MBEDTLS_SHA3_THETA_UNROLL == 0 //no-check-names
+        for (i = 0; i < 5; i++) {
+            lane[i] = s[i] ^ s[i + 5] ^ s[i + 10] ^ s[i + 15] ^ s[i + 20];
+        }
+        for (i = 0; i < 5; i++) {
+            t = lane[(i + 4) % 5] ^ ROTR64(lane[(i + 1) % 5], 63);
+            s[i] ^= t; s[i + 5] ^= t; s[i + 10] ^= t; s[i + 15] ^= t; s[i + 20] ^= t;
+        }
+#else
+        lane[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20];
+        lane[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21];
+        lane[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22];
+        lane[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23];
+        lane[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24];
+
+        t = lane[4] ^ ROTR64(lane[1], 63);
+        s[0] ^= t; s[5] ^= t; s[10] ^= t; s[15] ^= t; s[20] ^= t;
+
+        t = lane[0] ^ ROTR64(lane[2], 63);
+        s[1] ^= t; s[6] ^= t; s[11] ^= t; s[16] ^= t; s[21] ^= t;
+
+        t = lane[1] ^ ROTR64(lane[3], 63);
+        s[2] ^= t; s[7] ^= t; s[12] ^= t; s[17] ^= t; s[22] ^= t;
+
+        t = lane[2] ^ ROTR64(lane[4], 63);
+        s[3] ^= t; s[8] ^= t; s[13] ^= t; s[18] ^= t; s[23] ^= t;
+
+        t = lane[3] ^ ROTR64(lane[0], 63);
+        s[4] ^= t; s[9] ^= t; s[14] ^= t; s[19] ^= t; s[24] ^= t;
+#endif
+
+        /* Rho */
+        for (i = 1; i < 25; i += 4) {
+            uint32_t r = rho[(i - 1) >> 2];
+#if MBEDTLS_SHA3_RHO_UNROLL == 0
+            for (int j = i; j < i + 4; j++) {
+                uint8_t r8 = (uint8_t) (r >> 24);
+                r <<= 8;
+                s[j] = ROTR64(s[j], r8);
+            }
+#else
+            s[i + 0] = ROTR64(s[i + 0], MBEDTLS_BYTE_3(r));
+            s[i + 1] = ROTR64(s[i + 1], MBEDTLS_BYTE_2(r));
+            s[i + 2] = ROTR64(s[i + 2], MBEDTLS_BYTE_1(r));
+            s[i + 3] = ROTR64(s[i + 3], MBEDTLS_BYTE_0(r));
+#endif
+        }
+
+        /* Pi */
+        t = s[1];
+#if MBEDTLS_SHA3_PI_UNROLL == 0
+        for (i = 0; i < 24; i += 4) {
+            uint32_t p = pi[i >> 2];
+            for (unsigned j = 0; j < 4; j++) {
+                SWAP(s[p & 0xff], t);
+                p >>= 8;
+            }
+        }
+#else
+        uint32_t p = pi[0];
+        SWAP(s[MBEDTLS_BYTE_0(p)], t); SWAP(s[MBEDTLS_BYTE_1(p)], t);
+        SWAP(s[MBEDTLS_BYTE_2(p)], t); SWAP(s[MBEDTLS_BYTE_3(p)], t);
+        p = pi[1];
+        SWAP(s[MBEDTLS_BYTE_0(p)], t); SWAP(s[MBEDTLS_BYTE_1(p)], t);
+        SWAP(s[MBEDTLS_BYTE_2(p)], t); SWAP(s[MBEDTLS_BYTE_3(p)], t);
+        p = pi[2];
+        SWAP(s[MBEDTLS_BYTE_0(p)], t); SWAP(s[MBEDTLS_BYTE_1(p)], t);
+        SWAP(s[MBEDTLS_BYTE_2(p)], t); SWAP(s[MBEDTLS_BYTE_3(p)], t);
+        p = pi[3];
+        SWAP(s[MBEDTLS_BYTE_0(p)], t); SWAP(s[MBEDTLS_BYTE_1(p)], t);
+        SWAP(s[MBEDTLS_BYTE_2(p)], t); SWAP(s[MBEDTLS_BYTE_3(p)], t);
+        p = pi[4];
+        SWAP(s[MBEDTLS_BYTE_0(p)], t); SWAP(s[MBEDTLS_BYTE_1(p)], t);
+        SWAP(s[MBEDTLS_BYTE_2(p)], t); SWAP(s[MBEDTLS_BYTE_3(p)], t);
+        p = pi[5];
+        SWAP(s[MBEDTLS_BYTE_0(p)], t); SWAP(s[MBEDTLS_BYTE_1(p)], t);
+        SWAP(s[MBEDTLS_BYTE_2(p)], t); SWAP(s[MBEDTLS_BYTE_3(p)], t);
+#endif
+
+        /* Chi */
+#if MBEDTLS_SHA3_CHI_UNROLL == 0 //no-check-names
+        for (i = 0; i <= 20; i += 5) {
+            lane[0] = s[i]; lane[1] = s[i + 1]; lane[2] = s[i + 2];
+            lane[3] = s[i + 3]; lane[4] = s[i + 4];
+            s[i + 0] ^= (~lane[1]) & lane[2];
+            s[i + 1] ^= (~lane[2]) & lane[3];
+            s[i + 2] ^= (~lane[3]) & lane[4];
+            s[i + 3] ^= (~lane[4]) & lane[0];
+            s[i + 4] ^= (~lane[0]) & lane[1];
+        }
+#else
+        lane[0] = s[0]; lane[1] = s[1]; lane[2] = s[2]; lane[3] = s[3]; lane[4] = s[4];
+        s[0] ^= (~lane[1]) & lane[2];
+        s[1] ^= (~lane[2]) & lane[3];
+        s[2] ^= (~lane[3]) & lane[4];
+        s[3] ^= (~lane[4]) & lane[0];
+        s[4] ^= (~lane[0]) & lane[1];
+
+        lane[0] = s[5]; lane[1] = s[6]; lane[2] = s[7]; lane[3] = s[8]; lane[4] = s[9];
+        s[5] ^= (~lane[1]) & lane[2];
+        s[6] ^= (~lane[2]) & lane[3];
+        s[7] ^= (~lane[3]) & lane[4];
+        s[8] ^= (~lane[4]) & lane[0];
+        s[9] ^= (~lane[0]) & lane[1];
+
+        lane[0] = s[10]; lane[1] = s[11]; lane[2] = s[12]; lane[3] = s[13]; lane[4] = s[14];
+        s[10] ^= (~lane[1]) & lane[2];
+        s[11] ^= (~lane[2]) & lane[3];
+        s[12] ^= (~lane[3]) & lane[4];
+        s[13] ^= (~lane[4]) & lane[0];
+        s[14] ^= (~lane[0]) & lane[1];
+
+        lane[0] = s[15]; lane[1] = s[16]; lane[2] = s[17]; lane[3] = s[18]; lane[4] = s[19];
+        s[15] ^= (~lane[1]) & lane[2];
+        s[16] ^= (~lane[2]) & lane[3];
+        s[17] ^= (~lane[3]) & lane[4];
+        s[18] ^= (~lane[4]) & lane[0];
+        s[19] ^= (~lane[0]) & lane[1];
+
+        lane[0] = s[20]; lane[1] = s[21]; lane[2] = s[22]; lane[3] = s[23]; lane[4] = s[24];
+        s[20] ^= (~lane[1]) & lane[2];
+        s[21] ^= (~lane[2]) & lane[3];
+        s[22] ^= (~lane[3]) & lane[4];
+        s[23] ^= (~lane[4]) & lane[0];
+        s[24] ^= (~lane[0]) & lane[1];
+#endif
+
+        /* Iota */
+        /* Decompress the round masks (see definition of rc) */
+        s[0] ^= ((iota_r_packed[round] & 0x40ull) << 57 |
+                 (iota_r_packed[round] & 0x20ull) << 26 |
+                 (iota_r_packed[round] & 0x10ull) << 11 |
+                 (iota_r_packed[round] & 0x8f));
+    }
+}
+
+void mbedtls_sha3_init(mbedtls_sha3_context *ctx)
+{
+    memset(ctx, 0, sizeof(mbedtls_sha3_context));
+}
+
+void mbedtls_sha3_free(mbedtls_sha3_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_platform_zeroize(ctx, sizeof(mbedtls_sha3_context));
+}
+
+void mbedtls_sha3_clone(mbedtls_sha3_context *dst,
+                        const mbedtls_sha3_context *src)
+{
+    *dst = *src;
+}
+
+/*
+ * SHA-3 context setup
+ */
+int mbedtls_sha3_starts(mbedtls_sha3_context *ctx, mbedtls_sha3_id id)
+{
+    switch (id) {
+        case MBEDTLS_SHA3_224:
+            ctx->olen = 224 / 8;
+            ctx->max_block_size = 1152 / 8;
+            break;
+        case MBEDTLS_SHA3_256:
+            ctx->olen = 256 / 8;
+            ctx->max_block_size = 1088 / 8;
+            break;
+        case MBEDTLS_SHA3_384:
+            ctx->olen = 384 / 8;
+            ctx->max_block_size = 832 / 8;
+            break;
+        case MBEDTLS_SHA3_512:
+            ctx->olen = 512 / 8;
+            ctx->max_block_size = 576 / 8;
+            break;
+        default:
+            return MBEDTLS_ERR_SHA3_BAD_INPUT_DATA;
+    }
+
+    memset(ctx->state, 0, sizeof(ctx->state));
+    ctx->index = 0;
+
+    return 0;
+}
+
+/*
+ * SHA-3 process buffer
+ */
+int mbedtls_sha3_update(mbedtls_sha3_context *ctx,
+                        const uint8_t *input,
+                        size_t ilen)
+{
+    if (ilen >= 8) {
+        // 8-byte align index
+        int align_bytes = 8 - (ctx->index % 8);
+        if (align_bytes) {
+            for (; align_bytes > 0; align_bytes--) {
+                ABSORB(ctx, ctx->index, *input++);
+                ilen--;
+                ctx->index++;
+            }
+            if ((ctx->index = ctx->index % ctx->max_block_size) == 0) {
+                keccak_f1600(ctx);
+            }
+        }
+
+        // process input in 8-byte chunks
+        while (ilen >= 8) {
+            ABSORB(ctx, ctx->index, MBEDTLS_GET_UINT64_LE(input, 0));
+            input += 8;
+            ilen -= 8;
+            if ((ctx->index = (ctx->index + 8) % ctx->max_block_size) == 0) {
+                keccak_f1600(ctx);
+            }
+        }
+    }
+
+    // handle remaining bytes
+    while (ilen-- > 0) {
+        ABSORB(ctx, ctx->index, *input++);
+        if ((ctx->index = (ctx->index + 1) % ctx->max_block_size) == 0) {
+            keccak_f1600(ctx);
+        }
+    }
+
+    return 0;
+}
+
+int mbedtls_sha3_finish(mbedtls_sha3_context *ctx,
+                        uint8_t *output, size_t olen)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+    /* Catch SHA-3 families, with fixed output length */
+    if (ctx->olen > 0) {
+        if (ctx->olen > olen) {
+            ret = MBEDTLS_ERR_SHA3_BAD_INPUT_DATA;
+            goto exit;
+        }
+        olen = ctx->olen;
+    }
+
+    ABSORB(ctx, ctx->index, XOR_BYTE);
+    ABSORB(ctx, ctx->max_block_size - 1, 0x80);
+    keccak_f1600(ctx);
+    ctx->index = 0;
+
+    while (olen-- > 0) {
+        *output++ = SQUEEZE(ctx, ctx->index);
+
+        if ((ctx->index = (ctx->index + 1) % ctx->max_block_size) == 0) {
+            keccak_f1600(ctx);
+        }
+    }
+
+    ret = 0;
+
+exit:
+    mbedtls_sha3_free(ctx);
+    return ret;
+}
+
+/*
+ * output = SHA-3( input buffer )
+ */
+int mbedtls_sha3(mbedtls_sha3_id id, const uint8_t *input,
+                 size_t ilen, uint8_t *output, size_t olen)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_sha3_context ctx;
+
+    mbedtls_sha3_init(&ctx);
+
+    /* Sanity checks are performed in every mbedtls_sha3_xxx() */
+    if ((ret = mbedtls_sha3_starts(&ctx, id)) != 0) {
+        goto exit;
+    }
+
+    if ((ret = mbedtls_sha3_update(&ctx, input, ilen)) != 0) {
+        goto exit;
+    }
+
+    if ((ret = mbedtls_sha3_finish(&ctx, output, olen)) != 0) {
+        goto exit;
+    }
+
+exit:
+    mbedtls_sha3_free(&ctx);
+
+    return ret;
+}
+
+/**************** Self-tests ****************/
+
+#if defined(MBEDTLS_SELF_TEST)
+
+static const unsigned char test_data[2][4] =
+{
+    "",
+    "abc",
+};
+
+static const size_t test_data_len[2] =
+{
+    0, /* "" */
+    3  /* "abc" */
+};
+
+static const unsigned char test_hash_sha3_224[2][28] =
+{
+    { /* "" */
+        0x6B, 0x4E, 0x03, 0x42, 0x36, 0x67, 0xDB, 0xB7,
+        0x3B, 0x6E, 0x15, 0x45, 0x4F, 0x0E, 0xB1, 0xAB,
+        0xD4, 0x59, 0x7F, 0x9A, 0x1B, 0x07, 0x8E, 0x3F,
+        0x5B, 0x5A, 0x6B, 0xC7
+    },
+    { /* "abc" */
+        0xE6, 0x42, 0x82, 0x4C, 0x3F, 0x8C, 0xF2, 0x4A,
+        0xD0, 0x92, 0x34, 0xEE, 0x7D, 0x3C, 0x76, 0x6F,
+        0xC9, 0xA3, 0xA5, 0x16, 0x8D, 0x0C, 0x94, 0xAD,
+        0x73, 0xB4, 0x6F, 0xDF
+    }
+};
+
+static const unsigned char test_hash_sha3_256[2][32] =
+{
+    { /* "" */
+        0xA7, 0xFF, 0xC6, 0xF8, 0xBF, 0x1E, 0xD7, 0x66,
+        0x51, 0xC1, 0x47, 0x56, 0xA0, 0x61, 0xD6, 0x62,
+        0xF5, 0x80, 0xFF, 0x4D, 0xE4, 0x3B, 0x49, 0xFA,
+        0x82, 0xD8, 0x0A, 0x4B, 0x80, 0xF8, 0x43, 0x4A
+    },
+    { /* "abc" */
+        0x3A, 0x98, 0x5D, 0xA7, 0x4F, 0xE2, 0x25, 0xB2,
+        0x04, 0x5C, 0x17, 0x2D, 0x6B, 0xD3, 0x90, 0xBD,
+        0x85, 0x5F, 0x08, 0x6E, 0x3E, 0x9D, 0x52, 0x5B,
+        0x46, 0xBF, 0xE2, 0x45, 0x11, 0x43, 0x15, 0x32
+    }
+};
+
+static const unsigned char test_hash_sha3_384[2][48] =
+{
+    { /* "" */
+        0x0C, 0x63, 0xA7, 0x5B, 0x84, 0x5E, 0x4F, 0x7D,
+        0x01, 0x10, 0x7D, 0x85, 0x2E, 0x4C, 0x24, 0x85,
+        0xC5, 0x1A, 0x50, 0xAA, 0xAA, 0x94, 0xFC, 0x61,
+        0x99, 0x5E, 0x71, 0xBB, 0xEE, 0x98, 0x3A, 0x2A,
+        0xC3, 0x71, 0x38, 0x31, 0x26, 0x4A, 0xDB, 0x47,
+        0xFB, 0x6B, 0xD1, 0xE0, 0x58, 0xD5, 0xF0, 0x04
+    },
+    { /* "abc" */
+        0xEC, 0x01, 0x49, 0x82, 0x88, 0x51, 0x6F, 0xC9,
+        0x26, 0x45, 0x9F, 0x58, 0xE2, 0xC6, 0xAD, 0x8D,
+        0xF9, 0xB4, 0x73, 0xCB, 0x0F, 0xC0, 0x8C, 0x25,
+        0x96, 0xDA, 0x7C, 0xF0, 0xE4, 0x9B, 0xE4, 0xB2,
+        0x98, 0xD8, 0x8C, 0xEA, 0x92, 0x7A, 0xC7, 0xF5,
+        0x39, 0xF1, 0xED, 0xF2, 0x28, 0x37, 0x6D, 0x25
+    }
+};
+
+static const unsigned char test_hash_sha3_512[2][64] =
+{
+    { /* "" */
+        0xA6, 0x9F, 0x73, 0xCC, 0xA2, 0x3A, 0x9A, 0xC5,
+        0xC8, 0xB5, 0x67, 0xDC, 0x18, 0x5A, 0x75, 0x6E,
+        0x97, 0xC9, 0x82, 0x16, 0x4F, 0xE2, 0x58, 0x59,
+        0xE0, 0xD1, 0xDC, 0xC1, 0x47, 0x5C, 0x80, 0xA6,
+        0x15, 0xB2, 0x12, 0x3A, 0xF1, 0xF5, 0xF9, 0x4C,
+        0x11, 0xE3, 0xE9, 0x40, 0x2C, 0x3A, 0xC5, 0x58,
+        0xF5, 0x00, 0x19, 0x9D, 0x95, 0xB6, 0xD3, 0xE3,
+        0x01, 0x75, 0x85, 0x86, 0x28, 0x1D, 0xCD, 0x26
+    },
+    { /* "abc" */
+        0xB7, 0x51, 0x85, 0x0B, 0x1A, 0x57, 0x16, 0x8A,
+        0x56, 0x93, 0xCD, 0x92, 0x4B, 0x6B, 0x09, 0x6E,
+        0x08, 0xF6, 0x21, 0x82, 0x74, 0x44, 0xF7, 0x0D,
+        0x88, 0x4F, 0x5D, 0x02, 0x40, 0xD2, 0x71, 0x2E,
+        0x10, 0xE1, 0x16, 0xE9, 0x19, 0x2A, 0xF3, 0xC9,
+        0x1A, 0x7E, 0xC5, 0x76, 0x47, 0xE3, 0x93, 0x40,
+        0x57, 0x34, 0x0B, 0x4C, 0xF4, 0x08, 0xD5, 0xA5,
+        0x65, 0x92, 0xF8, 0x27, 0x4E, 0xEC, 0x53, 0xF0
+    }
+};
+
+static const unsigned char long_kat_hash_sha3_224[28] =
+{
+    0xD6, 0x93, 0x35, 0xB9, 0x33, 0x25, 0x19, 0x2E,
+    0x51, 0x6A, 0x91, 0x2E, 0x6D, 0x19, 0xA1, 0x5C,
+    0xB5, 0x1C, 0x6E, 0xD5, 0xC1, 0x52, 0x43, 0xE7,
+    0xA7, 0xFD, 0x65, 0x3C
+};
+
+static const unsigned char long_kat_hash_sha3_256[32] =
+{
+    0x5C, 0x88, 0x75, 0xAE, 0x47, 0x4A, 0x36, 0x34,
+    0xBA, 0x4F, 0xD5, 0x5E, 0xC8, 0x5B, 0xFF, 0xD6,
+    0x61, 0xF3, 0x2A, 0xCA, 0x75, 0xC6, 0xD6, 0x99,
+    0xD0, 0xCD, 0xCB, 0x6C, 0x11, 0x58, 0x91, 0xC1
+};
+
+static const unsigned char long_kat_hash_sha3_384[48] =
+{
+    0xEE, 0xE9, 0xE2, 0x4D, 0x78, 0xC1, 0x85, 0x53,
+    0x37, 0x98, 0x34, 0x51, 0xDF, 0x97, 0xC8, 0xAD,
+    0x9E, 0xED, 0xF2, 0x56, 0xC6, 0x33, 0x4F, 0x8E,
+    0x94, 0x8D, 0x25, 0x2D, 0x5E, 0x0E, 0x76, 0x84,
+    0x7A, 0xA0, 0x77, 0x4D, 0xDB, 0x90, 0xA8, 0x42,
+    0x19, 0x0D, 0x2C, 0x55, 0x8B, 0x4B, 0x83, 0x40
+};
+
+static const unsigned char long_kat_hash_sha3_512[64] =
+{
+    0x3C, 0x3A, 0x87, 0x6D, 0xA1, 0x40, 0x34, 0xAB,
+    0x60, 0x62, 0x7C, 0x07, 0x7B, 0xB9, 0x8F, 0x7E,
+    0x12, 0x0A, 0x2A, 0x53, 0x70, 0x21, 0x2D, 0xFF,
+    0xB3, 0x38, 0x5A, 0x18, 0xD4, 0xF3, 0x88, 0x59,
+    0xED, 0x31, 0x1D, 0x0A, 0x9D, 0x51, 0x41, 0xCE,
+    0x9C, 0xC5, 0xC6, 0x6E, 0xE6, 0x89, 0xB2, 0x66,
+    0xA8, 0xAA, 0x18, 0xAC, 0xE8, 0x28, 0x2A, 0x0E,
+    0x0D, 0xB5, 0x96, 0xC9, 0x0B, 0x0A, 0x7B, 0x87
+};
+
+static int mbedtls_sha3_kat_test(int verbose,
+                                 const char *type_name,
+                                 mbedtls_sha3_id id,
+                                 int test_num)
+{
+    uint8_t hash[64];
+    int result;
+
+    result = mbedtls_sha3(id,
+                          test_data[test_num], test_data_len[test_num],
+                          hash, sizeof(hash));
+    if (result != 0) {
+        if (verbose != 0) {
+            mbedtls_printf("  %s test %d error code: %d\n",
+                           type_name, test_num, result);
+        }
+
+        return result;
+    }
+
+    switch (id) {
+        case MBEDTLS_SHA3_224:
+            result = memcmp(hash, test_hash_sha3_224[test_num], 28);
+            break;
+        case MBEDTLS_SHA3_256:
+            result = memcmp(hash, test_hash_sha3_256[test_num], 32);
+            break;
+        case MBEDTLS_SHA3_384:
+            result = memcmp(hash, test_hash_sha3_384[test_num], 48);
+            break;
+        case MBEDTLS_SHA3_512:
+            result = memcmp(hash, test_hash_sha3_512[test_num], 64);
+            break;
+        default:
+            break;
+    }
+
+    if (0 != result) {
+        if (verbose != 0) {
+            mbedtls_printf("  %s test %d failed\n", type_name, test_num);
+        }
+
+        return -1;
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("  %s test %d passed\n", type_name, test_num);
+    }
+
+    return 0;
+}
+
+static int mbedtls_sha3_long_kat_test(int verbose,
+                                      const char *type_name,
+                                      mbedtls_sha3_id id)
+{
+    mbedtls_sha3_context ctx;
+    unsigned char buffer[1000];
+    unsigned char hash[64];
+    int result = 0;
+
+    memset(buffer, 'a', 1000);
+
+    if (verbose != 0) {
+        mbedtls_printf("  %s long KAT test ", type_name);
+    }
+
+    mbedtls_sha3_init(&ctx);
+
+    result = mbedtls_sha3_starts(&ctx, id);
+    if (result != 0) {
+        if (verbose != 0) {
+            mbedtls_printf("setup failed\n ");
+        }
+    }
+
+    /* Process 1,000,000 (one million) 'a' characters */
+    for (int i = 0; i < 1000; i++) {
+        result = mbedtls_sha3_update(&ctx, buffer, 1000);
+        if (result != 0) {
+            if (verbose != 0) {
+                mbedtls_printf("update error code: %i\n", result);
+            }
+
+            goto cleanup;
+        }
+    }
+
+    result = mbedtls_sha3_finish(&ctx, hash, sizeof(hash));
+    if (result != 0) {
+        if (verbose != 0) {
+            mbedtls_printf("finish error code: %d\n", result);
+        }
+
+        goto cleanup;
+    }
+
+    switch (id) {
+        case MBEDTLS_SHA3_224:
+            result = memcmp(hash, long_kat_hash_sha3_224, 28);
+            break;
+        case MBEDTLS_SHA3_256:
+            result = memcmp(hash, long_kat_hash_sha3_256, 32);
+            break;
+        case MBEDTLS_SHA3_384:
+            result = memcmp(hash, long_kat_hash_sha3_384, 48);
+            break;
+        case MBEDTLS_SHA3_512:
+            result = memcmp(hash, long_kat_hash_sha3_512, 64);
+            break;
+        default:
+            break;
+    }
+
+    if (result != 0) {
+        if (verbose != 0) {
+            mbedtls_printf("failed\n");
+        }
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("passed\n");
+    }
+
+cleanup:
+    mbedtls_sha3_free(&ctx);
+    return result;
+}
+
+int mbedtls_sha3_self_test(int verbose)
+{
+    int i;
+
+    /* SHA-3 Known Answer Tests (KAT) */
+    for (i = 0; i < 2; i++) {
+        if (0 != mbedtls_sha3_kat_test(verbose,
+                                       "SHA3-224", MBEDTLS_SHA3_224, i)) {
+            return 1;
+        }
+
+        if (0 != mbedtls_sha3_kat_test(verbose,
+                                       "SHA3-256", MBEDTLS_SHA3_256, i)) {
+            return 1;
+        }
+
+        if (0 != mbedtls_sha3_kat_test(verbose,
+                                       "SHA3-384", MBEDTLS_SHA3_384, i)) {
+            return 1;
+        }
+
+        if (0 != mbedtls_sha3_kat_test(verbose,
+                                       "SHA3-512", MBEDTLS_SHA3_512, i)) {
+            return 1;
+        }
+    }
+
+    /* SHA-3 long KAT tests */
+    if (0 != mbedtls_sha3_long_kat_test(verbose,
+                                        "SHA3-224", MBEDTLS_SHA3_224)) {
+        return 1;
+    }
+
+    if (0 != mbedtls_sha3_long_kat_test(verbose,
+                                        "SHA3-256", MBEDTLS_SHA3_256)) {
+        return 1;
+    }
+
+    if (0 != mbedtls_sha3_long_kat_test(verbose,
+                                        "SHA3-384", MBEDTLS_SHA3_384)) {
+        return 1;
+    }
+
+    if (0 != mbedtls_sha3_long_kat_test(verbose,
+                                        "SHA3-512", MBEDTLS_SHA3_512)) {
+        return 1;
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+
+    return 0;
+}
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_SHA3_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/sha512.c b/tf-psa-crypto/drivers/builtin/src/sha512.c
new file mode 100644
index 0000000..6dcea8d
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/sha512.c
@@ -0,0 +1,1112 @@
+/*
+ *  FIPS-180-2 compliant SHA-384/512 implementation
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ *  The SHA-512 Secure Hash Standard was published by NIST in 2002.
+ *
+ *  http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
+ */
+
+#if defined(__aarch64__) && !defined(__ARM_FEATURE_SHA512) && \
+    defined(__clang__) && __clang_major__ >= 7
+/* TODO: Re-consider above after https://reviews.llvm.org/D131064 merged.
+ *
+ * The intrinsic declaration are guarded by predefined ACLE macros in clang:
+ * these are normally only enabled by the -march option on the command line.
+ * By defining the macros ourselves we gain access to those declarations without
+ * requiring -march on the command line.
+ *
+ * `arm_neon.h` is included by common.h, so we put these defines
+ * at the top of this file, before any includes.
+ */
+#define __ARM_FEATURE_SHA512 1
+#define MBEDTLS_ENABLE_ARM_SHA3_EXTENSIONS_COMPILER_FLAG
+#endif
+
+#include "common.h"
+
+#if defined(MBEDTLS_SHA512_C) || defined(MBEDTLS_SHA384_C)
+
+#include "mbedtls/sha512.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#if defined(_MSC_VER) || defined(__WATCOMC__)
+  #define UL64(x) x##ui64
+#else
+  #define UL64(x) x##ULL
+#endif
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if defined(__aarch64__)
+#  if defined(MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT) || \
+    defined(MBEDTLS_SHA512_USE_A64_CRYPTO_ONLY)
+/* *INDENT-OFF* */
+#   if !defined(MBEDTLS_HAVE_NEON_INTRINSICS)
+#       error "Target does not support NEON instructions"
+#   endif
+/*
+ * Best performance comes from most recent compilers, with intrinsics and -O3.
+ * Must compile with -march=armv8.2-a+sha3, but we can't detect armv8.2-a, and
+ * can't always detect __ARM_FEATURE_SHA512 (notably clang 7-12).
+ *
+ * GCC < 8 won't work at all (lacks the sha512 instructions)
+ * GCC >= 8 uses intrinsics, sets __ARM_FEATURE_SHA512
+ *
+ * Clang < 7 won't work at all (lacks the sha512 instructions)
+ * Clang 7-12 don't have intrinsics (but we work around that with inline
+ *            assembler) or __ARM_FEATURE_SHA512
+ * Clang == 13.0.0 same as clang 12 (only seen on macOS)
+ * Clang >= 13.0.1 has __ARM_FEATURE_SHA512 and intrinsics
+ */
+#    if !defined(__ARM_FEATURE_SHA512) || defined(MBEDTLS_ENABLE_ARM_SHA3_EXTENSIONS_COMPILER_FLAG)
+       /* Test Clang first, as it defines __GNUC__ */
+#      if defined(__ARMCOMPILER_VERSION)
+#        if __ARMCOMPILER_VERSION < 6090000
+#          error "A more recent armclang is required for MBEDTLS_SHA512_USE_A64_CRYPTO_*"
+#        elif __ARMCOMPILER_VERSION == 6090000
+#          error "Must use minimum -march=armv8.2-a+sha3 for MBEDTLS_SHA512_USE_A64_CRYPTO_*"
+#        else
+#          pragma clang attribute push (__attribute__((target("sha3"))), apply_to=function)
+#          define MBEDTLS_POP_TARGET_PRAGMA
+#        endif
+#      elif defined(__clang__)
+#        if __clang_major__ < 7
+#          error "A more recent Clang is required for MBEDTLS_SHA512_USE_A64_CRYPTO_*"
+#        else
+#          pragma clang attribute push (__attribute__((target("sha3"))), apply_to=function)
+#          define MBEDTLS_POP_TARGET_PRAGMA
+#        endif
+#      elif defined(__GNUC__)
+#        if __GNUC__ < 8
+#          error "A more recent GCC is required for MBEDTLS_SHA512_USE_A64_CRYPTO_*"
+#        else
+#          pragma GCC push_options
+#          pragma GCC target ("arch=armv8.2-a+sha3")
+#          define MBEDTLS_POP_TARGET_PRAGMA
+#        endif
+#      else
+#        error "Only GCC and Clang supported for MBEDTLS_SHA512_USE_A64_CRYPTO_*"
+#      endif
+#    endif
+/* *INDENT-ON* */
+#  endif
+#  if defined(MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT)
+#    if defined(__unix__)
+#      if defined(__linux__)
+/* Our preferred method of detection is getauxval() */
+#        include <sys/auxv.h>
+#        if !defined(HWCAP_SHA512)
+/* The same header that declares getauxval() should provide the HWCAP_xxx
+ * constants to analyze its return value. However, the libc may be too
+ * old to have the constant that we need. So if it's missing, assume that
+ * the value is the same one used by the Linux kernel ABI.
+ */
+#          define HWCAP_SHA512 (1 << 21)
+#        endif
+#      endif
+/* Use SIGILL on Unix, and fall back to it on Linux */
+#      include <signal.h>
+#    endif
+#  endif
+#elif !defined(MBEDTLS_PLATFORM_IS_WINDOWS_ON_ARM64)
+#  undef MBEDTLS_SHA512_USE_A64_CRYPTO_ONLY
+#  undef MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT
+#endif
+
+#if defined(MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT)
+/*
+ * Capability detection code comes early, so we can disable
+ * MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT if no detection mechanism found
+ */
+#if defined(HWCAP_SHA512)
+static int mbedtls_a64_crypto_sha512_determine_support(void)
+{
+    return (getauxval(AT_HWCAP) & HWCAP_SHA512) ? 1 : 0;
+}
+#elif defined(__APPLE__)
+#include <sys/types.h>
+#include <sys/sysctl.h>
+
+static int mbedtls_a64_crypto_sha512_determine_support(void)
+{
+    int value = 0;
+    size_t value_len = sizeof(value);
+
+    int ret = sysctlbyname("hw.optional.armv8_2_sha512", &value, &value_len,
+                           NULL, 0);
+    return ret == 0 && value != 0;
+}
+#elif defined(MBEDTLS_PLATFORM_IS_WINDOWS_ON_ARM64)
+/*
+ * As of March 2022, there don't appear to be any PF_ARM_V8_* flags
+ * available to pass to IsProcessorFeaturePresent() to check for
+ * SHA-512 support. So we fall back to the C code only.
+ */
+#if defined(_MSC_VER)
+#pragma message "No mechanism to detect A64_CRYPTO found, using C code only"
+#else
+#warning "No mechanism to detect A64_CRYPTO found, using C code only"
+#endif
+#elif defined(__unix__) && defined(SIG_SETMASK)
+/* Detection with SIGILL, setjmp() and longjmp() */
+#include <signal.h>
+#include <setjmp.h>
+
+static jmp_buf return_from_sigill;
+
+/*
+ * A64 SHA512 support detection via SIGILL
+ */
+static void sigill_handler(int signal)
+{
+    (void) signal;
+    longjmp(return_from_sigill, 1);
+}
+
+static int mbedtls_a64_crypto_sha512_determine_support(void)
+{
+    struct sigaction old_action, new_action;
+
+    sigset_t old_mask;
+    if (sigprocmask(0, NULL, &old_mask)) {
+        return 0;
+    }
+
+    sigemptyset(&new_action.sa_mask);
+    new_action.sa_flags = 0;
+    new_action.sa_handler = sigill_handler;
+
+    sigaction(SIGILL, &new_action, &old_action);
+
+    static int ret = 0;
+
+    if (setjmp(return_from_sigill) == 0) {         /* First return only */
+        /* If this traps, we will return a second time from setjmp() with 1 */
+        asm ("sha512h q0, q0, v0.2d" : : : "v0");
+        ret = 1;
+    }
+
+    sigaction(SIGILL, &old_action, NULL);
+    sigprocmask(SIG_SETMASK, &old_mask, NULL);
+
+    return ret;
+}
+#else
+#warning "No mechanism to detect A64_CRYPTO found, using C code only"
+#undef MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT
+#endif  /* HWCAP_SHA512, __APPLE__, __unix__ && SIG_SETMASK */
+
+#endif  /* MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT */
+
+#if !defined(MBEDTLS_SHA512_ALT)
+
+#define SHA512_BLOCK_SIZE 128
+
+#if defined(MBEDTLS_SHA512_SMALLER)
+static void sha512_put_uint64_be(uint64_t n, unsigned char *b, uint8_t i)
+{
+    MBEDTLS_PUT_UINT64_BE(n, b, i);
+}
+#else
+#define sha512_put_uint64_be    MBEDTLS_PUT_UINT64_BE
+#endif /* MBEDTLS_SHA512_SMALLER */
+
+void mbedtls_sha512_init(mbedtls_sha512_context *ctx)
+{
+    memset(ctx, 0, sizeof(mbedtls_sha512_context));
+}
+
+void mbedtls_sha512_free(mbedtls_sha512_context *ctx)
+{
+    if (ctx == NULL) {
+        return;
+    }
+
+    mbedtls_platform_zeroize(ctx, sizeof(mbedtls_sha512_context));
+}
+
+void mbedtls_sha512_clone(mbedtls_sha512_context *dst,
+                          const mbedtls_sha512_context *src)
+{
+    *dst = *src;
+}
+
+/*
+ * SHA-512 context setup
+ */
+int mbedtls_sha512_starts(mbedtls_sha512_context *ctx, int is384)
+{
+#if defined(MBEDTLS_SHA384_C) && defined(MBEDTLS_SHA512_C)
+    if (is384 != 0 && is384 != 1) {
+        return MBEDTLS_ERR_SHA512_BAD_INPUT_DATA;
+    }
+#elif defined(MBEDTLS_SHA512_C)
+    if (is384 != 0) {
+        return MBEDTLS_ERR_SHA512_BAD_INPUT_DATA;
+    }
+#else /* defined MBEDTLS_SHA384_C only */
+    if (is384 == 0) {
+        return MBEDTLS_ERR_SHA512_BAD_INPUT_DATA;
+    }
+#endif
+
+    ctx->total[0] = 0;
+    ctx->total[1] = 0;
+
+    if (is384 == 0) {
+#if defined(MBEDTLS_SHA512_C)
+        ctx->state[0] = UL64(0x6A09E667F3BCC908);
+        ctx->state[1] = UL64(0xBB67AE8584CAA73B);
+        ctx->state[2] = UL64(0x3C6EF372FE94F82B);
+        ctx->state[3] = UL64(0xA54FF53A5F1D36F1);
+        ctx->state[4] = UL64(0x510E527FADE682D1);
+        ctx->state[5] = UL64(0x9B05688C2B3E6C1F);
+        ctx->state[6] = UL64(0x1F83D9ABFB41BD6B);
+        ctx->state[7] = UL64(0x5BE0CD19137E2179);
+#endif /* MBEDTLS_SHA512_C */
+    } else {
+#if defined(MBEDTLS_SHA384_C)
+        ctx->state[0] = UL64(0xCBBB9D5DC1059ED8);
+        ctx->state[1] = UL64(0x629A292A367CD507);
+        ctx->state[2] = UL64(0x9159015A3070DD17);
+        ctx->state[3] = UL64(0x152FECD8F70E5939);
+        ctx->state[4] = UL64(0x67332667FFC00B31);
+        ctx->state[5] = UL64(0x8EB44A8768581511);
+        ctx->state[6] = UL64(0xDB0C2E0D64F98FA7);
+        ctx->state[7] = UL64(0x47B5481DBEFA4FA4);
+#endif /* MBEDTLS_SHA384_C */
+    }
+
+#if defined(MBEDTLS_SHA384_C)
+    ctx->is384 = is384;
+#endif
+
+    return 0;
+}
+
+#if !defined(MBEDTLS_SHA512_PROCESS_ALT)
+
+/*
+ * Round constants
+ */
+static const uint64_t K[80] =
+{
+    UL64(0x428A2F98D728AE22),  UL64(0x7137449123EF65CD),
+    UL64(0xB5C0FBCFEC4D3B2F),  UL64(0xE9B5DBA58189DBBC),
+    UL64(0x3956C25BF348B538),  UL64(0x59F111F1B605D019),
+    UL64(0x923F82A4AF194F9B),  UL64(0xAB1C5ED5DA6D8118),
+    UL64(0xD807AA98A3030242),  UL64(0x12835B0145706FBE),
+    UL64(0x243185BE4EE4B28C),  UL64(0x550C7DC3D5FFB4E2),
+    UL64(0x72BE5D74F27B896F),  UL64(0x80DEB1FE3B1696B1),
+    UL64(0x9BDC06A725C71235),  UL64(0xC19BF174CF692694),
+    UL64(0xE49B69C19EF14AD2),  UL64(0xEFBE4786384F25E3),
+    UL64(0x0FC19DC68B8CD5B5),  UL64(0x240CA1CC77AC9C65),
+    UL64(0x2DE92C6F592B0275),  UL64(0x4A7484AA6EA6E483),
+    UL64(0x5CB0A9DCBD41FBD4),  UL64(0x76F988DA831153B5),
+    UL64(0x983E5152EE66DFAB),  UL64(0xA831C66D2DB43210),
+    UL64(0xB00327C898FB213F),  UL64(0xBF597FC7BEEF0EE4),
+    UL64(0xC6E00BF33DA88FC2),  UL64(0xD5A79147930AA725),
+    UL64(0x06CA6351E003826F),  UL64(0x142929670A0E6E70),
+    UL64(0x27B70A8546D22FFC),  UL64(0x2E1B21385C26C926),
+    UL64(0x4D2C6DFC5AC42AED),  UL64(0x53380D139D95B3DF),
+    UL64(0x650A73548BAF63DE),  UL64(0x766A0ABB3C77B2A8),
+    UL64(0x81C2C92E47EDAEE6),  UL64(0x92722C851482353B),
+    UL64(0xA2BFE8A14CF10364),  UL64(0xA81A664BBC423001),
+    UL64(0xC24B8B70D0F89791),  UL64(0xC76C51A30654BE30),
+    UL64(0xD192E819D6EF5218),  UL64(0xD69906245565A910),
+    UL64(0xF40E35855771202A),  UL64(0x106AA07032BBD1B8),
+    UL64(0x19A4C116B8D2D0C8),  UL64(0x1E376C085141AB53),
+    UL64(0x2748774CDF8EEB99),  UL64(0x34B0BCB5E19B48A8),
+    UL64(0x391C0CB3C5C95A63),  UL64(0x4ED8AA4AE3418ACB),
+    UL64(0x5B9CCA4F7763E373),  UL64(0x682E6FF3D6B2B8A3),
+    UL64(0x748F82EE5DEFB2FC),  UL64(0x78A5636F43172F60),
+    UL64(0x84C87814A1F0AB72),  UL64(0x8CC702081A6439EC),
+    UL64(0x90BEFFFA23631E28),  UL64(0xA4506CEBDE82BDE9),
+    UL64(0xBEF9A3F7B2C67915),  UL64(0xC67178F2E372532B),
+    UL64(0xCA273ECEEA26619C),  UL64(0xD186B8C721C0C207),
+    UL64(0xEADA7DD6CDE0EB1E),  UL64(0xF57D4F7FEE6ED178),
+    UL64(0x06F067AA72176FBA),  UL64(0x0A637DC5A2C898A6),
+    UL64(0x113F9804BEF90DAE),  UL64(0x1B710B35131C471B),
+    UL64(0x28DB77F523047D84),  UL64(0x32CAAB7B40C72493),
+    UL64(0x3C9EBE0A15C9BEBC),  UL64(0x431D67C49C100D4C),
+    UL64(0x4CC5D4BECB3E42B6),  UL64(0x597F299CFC657E2A),
+    UL64(0x5FCB6FAB3AD6FAEC),  UL64(0x6C44198C4A475817)
+};
+#endif
+
+#if defined(MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT) || \
+    defined(MBEDTLS_SHA512_USE_A64_CRYPTO_ONLY)
+
+#if defined(MBEDTLS_SHA512_USE_A64_CRYPTO_ONLY)
+#  define mbedtls_internal_sha512_process_many_a64_crypto mbedtls_internal_sha512_process_many
+#  define mbedtls_internal_sha512_process_a64_crypto      mbedtls_internal_sha512_process
+#endif
+
+/* Accelerated SHA-512 implementation originally written by Simon Tatham for PuTTY,
+ * under the MIT licence; dual-licensed as Apache 2 with his kind permission.
+ */
+
+#if defined(__clang__) && \
+    (__clang_major__ < 13 || \
+     (__clang_major__ == 13 && __clang_minor__ == 0 && __clang_patchlevel__ == 0))
+static inline uint64x2_t vsha512su0q_u64(uint64x2_t x, uint64x2_t y)
+{
+    asm ("sha512su0 %0.2D,%1.2D" : "+w" (x) : "w" (y));
+    return x;
+}
+static inline uint64x2_t vsha512su1q_u64(uint64x2_t x, uint64x2_t y, uint64x2_t z)
+{
+    asm ("sha512su1 %0.2D,%1.2D,%2.2D" : "+w" (x) : "w" (y), "w" (z));
+    return x;
+}
+static inline uint64x2_t vsha512hq_u64(uint64x2_t x, uint64x2_t y, uint64x2_t z)
+{
+    asm ("sha512h %0,%1,%2.2D" : "+w" (x) : "w" (y), "w" (z));
+    return x;
+}
+static inline uint64x2_t vsha512h2q_u64(uint64x2_t x, uint64x2_t y, uint64x2_t z)
+{
+    asm ("sha512h2 %0,%1,%2.2D" : "+w" (x) : "w" (y), "w" (z));
+    return x;
+}
+#endif  /* __clang__ etc */
+
+static size_t mbedtls_internal_sha512_process_many_a64_crypto(
+    mbedtls_sha512_context *ctx, const uint8_t *msg, size_t len)
+{
+    uint64x2_t ab = vld1q_u64(&ctx->state[0]);
+    uint64x2_t cd = vld1q_u64(&ctx->state[2]);
+    uint64x2_t ef = vld1q_u64(&ctx->state[4]);
+    uint64x2_t gh = vld1q_u64(&ctx->state[6]);
+
+    size_t processed = 0;
+
+    for (;
+         len >= SHA512_BLOCK_SIZE;
+         processed += SHA512_BLOCK_SIZE,
+         msg += SHA512_BLOCK_SIZE,
+         len -= SHA512_BLOCK_SIZE) {
+        uint64x2_t initial_sum, sum, intermed;
+
+        uint64x2_t ab_orig = ab;
+        uint64x2_t cd_orig = cd;
+        uint64x2_t ef_orig = ef;
+        uint64x2_t gh_orig = gh;
+
+        uint64x2_t s0 = (uint64x2_t) vld1q_u8(msg + 16 * 0);
+        uint64x2_t s1 = (uint64x2_t) vld1q_u8(msg + 16 * 1);
+        uint64x2_t s2 = (uint64x2_t) vld1q_u8(msg + 16 * 2);
+        uint64x2_t s3 = (uint64x2_t) vld1q_u8(msg + 16 * 3);
+        uint64x2_t s4 = (uint64x2_t) vld1q_u8(msg + 16 * 4);
+        uint64x2_t s5 = (uint64x2_t) vld1q_u8(msg + 16 * 5);
+        uint64x2_t s6 = (uint64x2_t) vld1q_u8(msg + 16 * 6);
+        uint64x2_t s7 = (uint64x2_t) vld1q_u8(msg + 16 * 7);
+
+#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__  /* assume LE if these not defined; untested on BE */
+        s0 = vreinterpretq_u64_u8(vrev64q_u8(vreinterpretq_u8_u64(s0)));
+        s1 = vreinterpretq_u64_u8(vrev64q_u8(vreinterpretq_u8_u64(s1)));
+        s2 = vreinterpretq_u64_u8(vrev64q_u8(vreinterpretq_u8_u64(s2)));
+        s3 = vreinterpretq_u64_u8(vrev64q_u8(vreinterpretq_u8_u64(s3)));
+        s4 = vreinterpretq_u64_u8(vrev64q_u8(vreinterpretq_u8_u64(s4)));
+        s5 = vreinterpretq_u64_u8(vrev64q_u8(vreinterpretq_u8_u64(s5)));
+        s6 = vreinterpretq_u64_u8(vrev64q_u8(vreinterpretq_u8_u64(s6)));
+        s7 = vreinterpretq_u64_u8(vrev64q_u8(vreinterpretq_u8_u64(s7)));
+#endif
+
+        /* Rounds 0 and 1 */
+        initial_sum = vaddq_u64(s0, vld1q_u64(&K[0]));
+        sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), gh);
+        intermed = vsha512hq_u64(sum, vextq_u64(ef, gh, 1), vextq_u64(cd, ef, 1));
+        gh = vsha512h2q_u64(intermed, cd, ab);
+        cd = vaddq_u64(cd, intermed);
+
+        /* Rounds 2 and 3 */
+        initial_sum = vaddq_u64(s1, vld1q_u64(&K[2]));
+        sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), ef);
+        intermed = vsha512hq_u64(sum, vextq_u64(cd, ef, 1), vextq_u64(ab, cd, 1));
+        ef = vsha512h2q_u64(intermed, ab, gh);
+        ab = vaddq_u64(ab, intermed);
+
+        /* Rounds 4 and 5 */
+        initial_sum = vaddq_u64(s2, vld1q_u64(&K[4]));
+        sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), cd);
+        intermed = vsha512hq_u64(sum, vextq_u64(ab, cd, 1), vextq_u64(gh, ab, 1));
+        cd = vsha512h2q_u64(intermed, gh, ef);
+        gh = vaddq_u64(gh, intermed);
+
+        /* Rounds 6 and 7 */
+        initial_sum = vaddq_u64(s3, vld1q_u64(&K[6]));
+        sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), ab);
+        intermed = vsha512hq_u64(sum, vextq_u64(gh, ab, 1), vextq_u64(ef, gh, 1));
+        ab = vsha512h2q_u64(intermed, ef, cd);
+        ef = vaddq_u64(ef, intermed);
+
+        /* Rounds 8 and 9 */
+        initial_sum = vaddq_u64(s4, vld1q_u64(&K[8]));
+        sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), gh);
+        intermed = vsha512hq_u64(sum, vextq_u64(ef, gh, 1), vextq_u64(cd, ef, 1));
+        gh = vsha512h2q_u64(intermed, cd, ab);
+        cd = vaddq_u64(cd, intermed);
+
+        /* Rounds 10 and 11 */
+        initial_sum = vaddq_u64(s5, vld1q_u64(&K[10]));
+        sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), ef);
+        intermed = vsha512hq_u64(sum, vextq_u64(cd, ef, 1), vextq_u64(ab, cd, 1));
+        ef = vsha512h2q_u64(intermed, ab, gh);
+        ab = vaddq_u64(ab, intermed);
+
+        /* Rounds 12 and 13 */
+        initial_sum = vaddq_u64(s6, vld1q_u64(&K[12]));
+        sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), cd);
+        intermed = vsha512hq_u64(sum, vextq_u64(ab, cd, 1), vextq_u64(gh, ab, 1));
+        cd = vsha512h2q_u64(intermed, gh, ef);
+        gh = vaddq_u64(gh, intermed);
+
+        /* Rounds 14 and 15 */
+        initial_sum = vaddq_u64(s7, vld1q_u64(&K[14]));
+        sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), ab);
+        intermed = vsha512hq_u64(sum, vextq_u64(gh, ab, 1), vextq_u64(ef, gh, 1));
+        ab = vsha512h2q_u64(intermed, ef, cd);
+        ef = vaddq_u64(ef, intermed);
+
+        for (unsigned int t = 16; t < 80; t += 16) {
+            /* Rounds t and t + 1 */
+            s0 = vsha512su1q_u64(vsha512su0q_u64(s0, s1), s7, vextq_u64(s4, s5, 1));
+            initial_sum = vaddq_u64(s0, vld1q_u64(&K[t]));
+            sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), gh);
+            intermed = vsha512hq_u64(sum, vextq_u64(ef, gh, 1), vextq_u64(cd, ef, 1));
+            gh = vsha512h2q_u64(intermed, cd, ab);
+            cd = vaddq_u64(cd, intermed);
+
+            /* Rounds t + 2 and t + 3 */
+            s1 = vsha512su1q_u64(vsha512su0q_u64(s1, s2), s0, vextq_u64(s5, s6, 1));
+            initial_sum = vaddq_u64(s1, vld1q_u64(&K[t + 2]));
+            sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), ef);
+            intermed = vsha512hq_u64(sum, vextq_u64(cd, ef, 1), vextq_u64(ab, cd, 1));
+            ef = vsha512h2q_u64(intermed, ab, gh);
+            ab = vaddq_u64(ab, intermed);
+
+            /* Rounds t + 4 and t + 5 */
+            s2 = vsha512su1q_u64(vsha512su0q_u64(s2, s3), s1, vextq_u64(s6, s7, 1));
+            initial_sum = vaddq_u64(s2, vld1q_u64(&K[t + 4]));
+            sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), cd);
+            intermed = vsha512hq_u64(sum, vextq_u64(ab, cd, 1), vextq_u64(gh, ab, 1));
+            cd = vsha512h2q_u64(intermed, gh, ef);
+            gh = vaddq_u64(gh, intermed);
+
+            /* Rounds t + 6 and t + 7 */
+            s3 = vsha512su1q_u64(vsha512su0q_u64(s3, s4), s2, vextq_u64(s7, s0, 1));
+            initial_sum = vaddq_u64(s3, vld1q_u64(&K[t + 6]));
+            sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), ab);
+            intermed = vsha512hq_u64(sum, vextq_u64(gh, ab, 1), vextq_u64(ef, gh, 1));
+            ab = vsha512h2q_u64(intermed, ef, cd);
+            ef = vaddq_u64(ef, intermed);
+
+            /* Rounds t + 8 and t + 9 */
+            s4 = vsha512su1q_u64(vsha512su0q_u64(s4, s5), s3, vextq_u64(s0, s1, 1));
+            initial_sum = vaddq_u64(s4, vld1q_u64(&K[t + 8]));
+            sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), gh);
+            intermed = vsha512hq_u64(sum, vextq_u64(ef, gh, 1), vextq_u64(cd, ef, 1));
+            gh = vsha512h2q_u64(intermed, cd, ab);
+            cd = vaddq_u64(cd, intermed);
+
+            /* Rounds t + 10 and t + 11 */
+            s5 = vsha512su1q_u64(vsha512su0q_u64(s5, s6), s4, vextq_u64(s1, s2, 1));
+            initial_sum = vaddq_u64(s5, vld1q_u64(&K[t + 10]));
+            sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), ef);
+            intermed = vsha512hq_u64(sum, vextq_u64(cd, ef, 1), vextq_u64(ab, cd, 1));
+            ef = vsha512h2q_u64(intermed, ab, gh);
+            ab = vaddq_u64(ab, intermed);
+
+            /* Rounds t + 12 and t + 13 */
+            s6 = vsha512su1q_u64(vsha512su0q_u64(s6, s7), s5, vextq_u64(s2, s3, 1));
+            initial_sum = vaddq_u64(s6, vld1q_u64(&K[t + 12]));
+            sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), cd);
+            intermed = vsha512hq_u64(sum, vextq_u64(ab, cd, 1), vextq_u64(gh, ab, 1));
+            cd = vsha512h2q_u64(intermed, gh, ef);
+            gh = vaddq_u64(gh, intermed);
+
+            /* Rounds t + 14 and t + 15 */
+            s7 = vsha512su1q_u64(vsha512su0q_u64(s7, s0), s6, vextq_u64(s3, s4, 1));
+            initial_sum = vaddq_u64(s7, vld1q_u64(&K[t + 14]));
+            sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), ab);
+            intermed = vsha512hq_u64(sum, vextq_u64(gh, ab, 1), vextq_u64(ef, gh, 1));
+            ab = vsha512h2q_u64(intermed, ef, cd);
+            ef = vaddq_u64(ef, intermed);
+        }
+
+        ab = vaddq_u64(ab, ab_orig);
+        cd = vaddq_u64(cd, cd_orig);
+        ef = vaddq_u64(ef, ef_orig);
+        gh = vaddq_u64(gh, gh_orig);
+    }
+
+    vst1q_u64(&ctx->state[0], ab);
+    vst1q_u64(&ctx->state[2], cd);
+    vst1q_u64(&ctx->state[4], ef);
+    vst1q_u64(&ctx->state[6], gh);
+
+    return processed;
+}
+
+#if defined(MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT)
+/*
+ * This function is for internal use only if we are building both C and A64
+ * versions, otherwise it is renamed to be the public mbedtls_internal_sha512_process()
+ */
+static
+#endif
+int mbedtls_internal_sha512_process_a64_crypto(mbedtls_sha512_context *ctx,
+                                               const unsigned char data[SHA512_BLOCK_SIZE])
+{
+    return (mbedtls_internal_sha512_process_many_a64_crypto(ctx, data,
+                                                            SHA512_BLOCK_SIZE) ==
+            SHA512_BLOCK_SIZE) ? 0 : -1;
+}
+
+#endif /* MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT || MBEDTLS_SHA512_USE_A64_CRYPTO_ONLY */
+
+#if defined(MBEDTLS_POP_TARGET_PRAGMA)
+#if defined(__clang__)
+#pragma clang attribute pop
+#elif defined(__GNUC__)
+#pragma GCC pop_options
+#endif
+#undef MBEDTLS_POP_TARGET_PRAGMA
+#endif
+
+
+#if !defined(MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT)
+#define mbedtls_internal_sha512_process_many_c mbedtls_internal_sha512_process_many
+#define mbedtls_internal_sha512_process_c      mbedtls_internal_sha512_process
+#endif
+
+
+#if !defined(MBEDTLS_SHA512_PROCESS_ALT) && !defined(MBEDTLS_SHA512_USE_A64_CRYPTO_ONLY)
+
+#if defined(MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT)
+/*
+ * This function is for internal use only if we are building both C and A64
+ * versions, otherwise it is renamed to be the public mbedtls_internal_sha512_process()
+ */
+static
+#endif
+int mbedtls_internal_sha512_process_c(mbedtls_sha512_context *ctx,
+                                      const unsigned char data[SHA512_BLOCK_SIZE])
+{
+    int i;
+    struct {
+        uint64_t temp1, temp2, W[80];
+        uint64_t A[8];
+    } local;
+
+#define  SHR(x, n) ((x) >> (n))
+#define ROTR(x, n) (SHR((x), (n)) | ((x) << (64 - (n))))
+
+#define S0(x) (ROTR(x, 1) ^ ROTR(x, 8) ^  SHR(x, 7))
+#define S1(x) (ROTR(x, 19) ^ ROTR(x, 61) ^  SHR(x, 6))
+
+#define S2(x) (ROTR(x, 28) ^ ROTR(x, 34) ^ ROTR(x, 39))
+#define S3(x) (ROTR(x, 14) ^ ROTR(x, 18) ^ ROTR(x, 41))
+
+#define F0(x, y, z) (((x) & (y)) | ((z) & ((x) | (y))))
+#define F1(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
+
+#define P(a, b, c, d, e, f, g, h, x, K)                                      \
+    do                                                              \
+    {                                                               \
+        local.temp1 = (h) + S3(e) + F1((e), (f), (g)) + (K) + (x);    \
+        local.temp2 = S2(a) + F0((a), (b), (c));                      \
+        (d) += local.temp1; (h) = local.temp1 + local.temp2;        \
+    } while (0)
+
+    for (i = 0; i < 8; i++) {
+        local.A[i] = ctx->state[i];
+    }
+
+#if defined(MBEDTLS_SHA512_SMALLER)
+    for (i = 0; i < 80; i++) {
+        if (i < 16) {
+            local.W[i] = MBEDTLS_GET_UINT64_BE(data, i << 3);
+        } else {
+            local.W[i] = S1(local.W[i -  2]) + local.W[i -  7] +
+                         S0(local.W[i - 15]) + local.W[i - 16];
+        }
+
+        P(local.A[0], local.A[1], local.A[2], local.A[3], local.A[4],
+          local.A[5], local.A[6], local.A[7], local.W[i], K[i]);
+
+        local.temp1 = local.A[7]; local.A[7] = local.A[6];
+        local.A[6] = local.A[5]; local.A[5] = local.A[4];
+        local.A[4] = local.A[3]; local.A[3] = local.A[2];
+        local.A[2] = local.A[1]; local.A[1] = local.A[0];
+        local.A[0] = local.temp1;
+    }
+#else /* MBEDTLS_SHA512_SMALLER */
+    for (i = 0; i < 16; i++) {
+        local.W[i] = MBEDTLS_GET_UINT64_BE(data, i << 3);
+    }
+
+    for (; i < 80; i++) {
+        local.W[i] = S1(local.W[i -  2]) + local.W[i -  7] +
+                     S0(local.W[i - 15]) + local.W[i - 16];
+    }
+
+    i = 0;
+    do {
+        P(local.A[0], local.A[1], local.A[2], local.A[3], local.A[4],
+          local.A[5], local.A[6], local.A[7], local.W[i], K[i]); i++;
+        P(local.A[7], local.A[0], local.A[1], local.A[2], local.A[3],
+          local.A[4], local.A[5], local.A[6], local.W[i], K[i]); i++;
+        P(local.A[6], local.A[7], local.A[0], local.A[1], local.A[2],
+          local.A[3], local.A[4], local.A[5], local.W[i], K[i]); i++;
+        P(local.A[5], local.A[6], local.A[7], local.A[0], local.A[1],
+          local.A[2], local.A[3], local.A[4], local.W[i], K[i]); i++;
+        P(local.A[4], local.A[5], local.A[6], local.A[7], local.A[0],
+          local.A[1], local.A[2], local.A[3], local.W[i], K[i]); i++;
+        P(local.A[3], local.A[4], local.A[5], local.A[6], local.A[7],
+          local.A[0], local.A[1], local.A[2], local.W[i], K[i]); i++;
+        P(local.A[2], local.A[3], local.A[4], local.A[5], local.A[6],
+          local.A[7], local.A[0], local.A[1], local.W[i], K[i]); i++;
+        P(local.A[1], local.A[2], local.A[3], local.A[4], local.A[5],
+          local.A[6], local.A[7], local.A[0], local.W[i], K[i]); i++;
+    } while (i < 80);
+#endif /* MBEDTLS_SHA512_SMALLER */
+
+    for (i = 0; i < 8; i++) {
+        ctx->state[i] += local.A[i];
+    }
+
+    /* Zeroise buffers and variables to clear sensitive data from memory. */
+    mbedtls_platform_zeroize(&local, sizeof(local));
+
+    return 0;
+}
+
+#endif /* !MBEDTLS_SHA512_PROCESS_ALT && !MBEDTLS_SHA512_USE_A64_CRYPTO_ONLY */
+
+
+#if !defined(MBEDTLS_SHA512_USE_A64_CRYPTO_ONLY)
+
+static size_t mbedtls_internal_sha512_process_many_c(
+    mbedtls_sha512_context *ctx, const uint8_t *data, size_t len)
+{
+    size_t processed = 0;
+
+    while (len >= SHA512_BLOCK_SIZE) {
+        if (mbedtls_internal_sha512_process_c(ctx, data) != 0) {
+            return 0;
+        }
+
+        data += SHA512_BLOCK_SIZE;
+        len  -= SHA512_BLOCK_SIZE;
+
+        processed += SHA512_BLOCK_SIZE;
+    }
+
+    return processed;
+}
+
+#endif /* !MBEDTLS_SHA512_USE_A64_CRYPTO_ONLY */
+
+
+#if defined(MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT)
+
+static int mbedtls_a64_crypto_sha512_has_support(void)
+{
+    static int done = 0;
+    static int supported = 0;
+
+    if (!done) {
+        supported = mbedtls_a64_crypto_sha512_determine_support();
+        done = 1;
+    }
+
+    return supported;
+}
+
+static size_t mbedtls_internal_sha512_process_many(mbedtls_sha512_context *ctx,
+                                                   const uint8_t *msg, size_t len)
+{
+    if (mbedtls_a64_crypto_sha512_has_support()) {
+        return mbedtls_internal_sha512_process_many_a64_crypto(ctx, msg, len);
+    } else {
+        return mbedtls_internal_sha512_process_many_c(ctx, msg, len);
+    }
+}
+
+int mbedtls_internal_sha512_process(mbedtls_sha512_context *ctx,
+                                    const unsigned char data[SHA512_BLOCK_SIZE])
+{
+    if (mbedtls_a64_crypto_sha512_has_support()) {
+        return mbedtls_internal_sha512_process_a64_crypto(ctx, data);
+    } else {
+        return mbedtls_internal_sha512_process_c(ctx, data);
+    }
+}
+
+#endif /* MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT */
+
+/*
+ * SHA-512 process buffer
+ */
+int mbedtls_sha512_update(mbedtls_sha512_context *ctx,
+                          const unsigned char *input,
+                          size_t ilen)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    size_t fill;
+    unsigned int left;
+
+    if (ilen == 0) {
+        return 0;
+    }
+
+    left = (unsigned int) (ctx->total[0] & 0x7F);
+    fill = SHA512_BLOCK_SIZE - left;
+
+    ctx->total[0] += (uint64_t) ilen;
+
+    if (ctx->total[0] < (uint64_t) ilen) {
+        ctx->total[1]++;
+    }
+
+    if (left && ilen >= fill) {
+        memcpy((void *) (ctx->buffer + left), input, fill);
+
+        if ((ret = mbedtls_internal_sha512_process(ctx, ctx->buffer)) != 0) {
+            return ret;
+        }
+
+        input += fill;
+        ilen  -= fill;
+        left = 0;
+    }
+
+    while (ilen >= SHA512_BLOCK_SIZE) {
+        size_t processed =
+            mbedtls_internal_sha512_process_many(ctx, input, ilen);
+        if (processed < SHA512_BLOCK_SIZE) {
+            return MBEDTLS_ERR_ERROR_GENERIC_ERROR;
+        }
+
+        input += processed;
+        ilen  -= processed;
+    }
+
+    if (ilen > 0) {
+        memcpy((void *) (ctx->buffer + left), input, ilen);
+    }
+
+    return 0;
+}
+
+/*
+ * SHA-512 final digest
+ */
+int mbedtls_sha512_finish(mbedtls_sha512_context *ctx,
+                          unsigned char *output)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    unsigned used;
+    uint64_t high, low;
+    int truncated = 0;
+
+    /*
+     * Add padding: 0x80 then 0x00 until 16 bytes remain for the length
+     */
+    used = ctx->total[0] & 0x7F;
+
+    ctx->buffer[used++] = 0x80;
+
+    if (used <= 112) {
+        /* Enough room for padding + length in current block */
+        memset(ctx->buffer + used, 0, 112 - used);
+    } else {
+        /* We'll need an extra block */
+        memset(ctx->buffer + used, 0, SHA512_BLOCK_SIZE - used);
+
+        if ((ret = mbedtls_internal_sha512_process(ctx, ctx->buffer)) != 0) {
+            goto exit;
+        }
+
+        memset(ctx->buffer, 0, 112);
+    }
+
+    /*
+     * Add message length
+     */
+    high = (ctx->total[0] >> 61)
+           | (ctx->total[1] <<  3);
+    low  = (ctx->total[0] <<  3);
+
+    sha512_put_uint64_be(high, ctx->buffer, 112);
+    sha512_put_uint64_be(low,  ctx->buffer, 120);
+
+    if ((ret = mbedtls_internal_sha512_process(ctx, ctx->buffer)) != 0) {
+        goto exit;
+    }
+
+    /*
+     * Output final state
+     */
+    sha512_put_uint64_be(ctx->state[0], output,  0);
+    sha512_put_uint64_be(ctx->state[1], output,  8);
+    sha512_put_uint64_be(ctx->state[2], output, 16);
+    sha512_put_uint64_be(ctx->state[3], output, 24);
+    sha512_put_uint64_be(ctx->state[4], output, 32);
+    sha512_put_uint64_be(ctx->state[5], output, 40);
+
+#if defined(MBEDTLS_SHA384_C)
+    truncated = ctx->is384;
+#endif
+    if (!truncated) {
+        sha512_put_uint64_be(ctx->state[6], output, 48);
+        sha512_put_uint64_be(ctx->state[7], output, 56);
+    }
+
+    ret = 0;
+
+exit:
+    mbedtls_sha512_free(ctx);
+    return ret;
+}
+
+#endif /* !MBEDTLS_SHA512_ALT */
+
+/*
+ * output = SHA-512( input buffer )
+ */
+int mbedtls_sha512(const unsigned char *input,
+                   size_t ilen,
+                   unsigned char *output,
+                   int is384)
+{
+    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+    mbedtls_sha512_context ctx;
+
+#if defined(MBEDTLS_SHA384_C) && defined(MBEDTLS_SHA512_C)
+    if (is384 != 0 && is384 != 1) {
+        return MBEDTLS_ERR_SHA512_BAD_INPUT_DATA;
+    }
+#elif defined(MBEDTLS_SHA512_C)
+    if (is384 != 0) {
+        return MBEDTLS_ERR_SHA512_BAD_INPUT_DATA;
+    }
+#else /* defined MBEDTLS_SHA384_C only */
+    if (is384 == 0) {
+        return MBEDTLS_ERR_SHA512_BAD_INPUT_DATA;
+    }
+#endif
+
+    mbedtls_sha512_init(&ctx);
+
+    if ((ret = mbedtls_sha512_starts(&ctx, is384)) != 0) {
+        goto exit;
+    }
+
+    if ((ret = mbedtls_sha512_update(&ctx, input, ilen)) != 0) {
+        goto exit;
+    }
+
+    if ((ret = mbedtls_sha512_finish(&ctx, output)) != 0) {
+        goto exit;
+    }
+
+exit:
+    mbedtls_sha512_free(&ctx);
+
+    return ret;
+}
+
+#if defined(MBEDTLS_SELF_TEST)
+
+/*
+ * FIPS-180-2 test vectors
+ */
+static const unsigned char sha_test_buf[3][113] =
+{
+    { "abc" },
+    {
+        "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"
+    },
+    { "" }
+};
+
+static const size_t sha_test_buflen[3] =
+{
+    3, 112, 1000
+};
+
+typedef const unsigned char (sha_test_sum_t)[64];
+
+/*
+ * SHA-384 test vectors
+ */
+#if defined(MBEDTLS_SHA384_C)
+static sha_test_sum_t sha384_test_sum[] =
+{
+    { 0xCB, 0x00, 0x75, 0x3F, 0x45, 0xA3, 0x5E, 0x8B,
+      0xB5, 0xA0, 0x3D, 0x69, 0x9A, 0xC6, 0x50, 0x07,
+      0x27, 0x2C, 0x32, 0xAB, 0x0E, 0xDE, 0xD1, 0x63,
+      0x1A, 0x8B, 0x60, 0x5A, 0x43, 0xFF, 0x5B, 0xED,
+      0x80, 0x86, 0x07, 0x2B, 0xA1, 0xE7, 0xCC, 0x23,
+      0x58, 0xBA, 0xEC, 0xA1, 0x34, 0xC8, 0x25, 0xA7 },
+    { 0x09, 0x33, 0x0C, 0x33, 0xF7, 0x11, 0x47, 0xE8,
+      0x3D, 0x19, 0x2F, 0xC7, 0x82, 0xCD, 0x1B, 0x47,
+      0x53, 0x11, 0x1B, 0x17, 0x3B, 0x3B, 0x05, 0xD2,
+      0x2F, 0xA0, 0x80, 0x86, 0xE3, 0xB0, 0xF7, 0x12,
+      0xFC, 0xC7, 0xC7, 0x1A, 0x55, 0x7E, 0x2D, 0xB9,
+      0x66, 0xC3, 0xE9, 0xFA, 0x91, 0x74, 0x60, 0x39 },
+    { 0x9D, 0x0E, 0x18, 0x09, 0x71, 0x64, 0x74, 0xCB,
+      0x08, 0x6E, 0x83, 0x4E, 0x31, 0x0A, 0x4A, 0x1C,
+      0xED, 0x14, 0x9E, 0x9C, 0x00, 0xF2, 0x48, 0x52,
+      0x79, 0x72, 0xCE, 0xC5, 0x70, 0x4C, 0x2A, 0x5B,
+      0x07, 0xB8, 0xB3, 0xDC, 0x38, 0xEC, 0xC4, 0xEB,
+      0xAE, 0x97, 0xDD, 0xD8, 0x7F, 0x3D, 0x89, 0x85 }
+};
+#endif /* MBEDTLS_SHA384_C */
+
+/*
+ * SHA-512 test vectors
+ */
+#if defined(MBEDTLS_SHA512_C)
+static sha_test_sum_t sha512_test_sum[] =
+{
+    { 0xDD, 0xAF, 0x35, 0xA1, 0x93, 0x61, 0x7A, 0xBA,
+      0xCC, 0x41, 0x73, 0x49, 0xAE, 0x20, 0x41, 0x31,
+      0x12, 0xE6, 0xFA, 0x4E, 0x89, 0xA9, 0x7E, 0xA2,
+      0x0A, 0x9E, 0xEE, 0xE6, 0x4B, 0x55, 0xD3, 0x9A,
+      0x21, 0x92, 0x99, 0x2A, 0x27, 0x4F, 0xC1, 0xA8,
+      0x36, 0xBA, 0x3C, 0x23, 0xA3, 0xFE, 0xEB, 0xBD,
+      0x45, 0x4D, 0x44, 0x23, 0x64, 0x3C, 0xE8, 0x0E,
+      0x2A, 0x9A, 0xC9, 0x4F, 0xA5, 0x4C, 0xA4, 0x9F },
+    { 0x8E, 0x95, 0x9B, 0x75, 0xDA, 0xE3, 0x13, 0xDA,
+      0x8C, 0xF4, 0xF7, 0x28, 0x14, 0xFC, 0x14, 0x3F,
+      0x8F, 0x77, 0x79, 0xC6, 0xEB, 0x9F, 0x7F, 0xA1,
+      0x72, 0x99, 0xAE, 0xAD, 0xB6, 0x88, 0x90, 0x18,
+      0x50, 0x1D, 0x28, 0x9E, 0x49, 0x00, 0xF7, 0xE4,
+      0x33, 0x1B, 0x99, 0xDE, 0xC4, 0xB5, 0x43, 0x3A,
+      0xC7, 0xD3, 0x29, 0xEE, 0xB6, 0xDD, 0x26, 0x54,
+      0x5E, 0x96, 0xE5, 0x5B, 0x87, 0x4B, 0xE9, 0x09 },
+    { 0xE7, 0x18, 0x48, 0x3D, 0x0C, 0xE7, 0x69, 0x64,
+      0x4E, 0x2E, 0x42, 0xC7, 0xBC, 0x15, 0xB4, 0x63,
+      0x8E, 0x1F, 0x98, 0xB1, 0x3B, 0x20, 0x44, 0x28,
+      0x56, 0x32, 0xA8, 0x03, 0xAF, 0xA9, 0x73, 0xEB,
+      0xDE, 0x0F, 0xF2, 0x44, 0x87, 0x7E, 0xA6, 0x0A,
+      0x4C, 0xB0, 0x43, 0x2C, 0xE5, 0x77, 0xC3, 0x1B,
+      0xEB, 0x00, 0x9C, 0x5C, 0x2C, 0x49, 0xAA, 0x2E,
+      0x4E, 0xAD, 0xB2, 0x17, 0xAD, 0x8C, 0xC0, 0x9B }
+};
+#endif /* MBEDTLS_SHA512_C */
+
+static int mbedtls_sha512_common_self_test(int verbose, int is384)
+{
+    int i, buflen, ret = 0;
+    unsigned char *buf;
+    unsigned char sha512sum[64];
+    mbedtls_sha512_context ctx;
+
+#if defined(MBEDTLS_SHA384_C) && defined(MBEDTLS_SHA512_C)
+    sha_test_sum_t *sha_test_sum = (is384) ? sha384_test_sum : sha512_test_sum;
+#elif defined(MBEDTLS_SHA512_C)
+    sha_test_sum_t *sha_test_sum = sha512_test_sum;
+#else
+    sha_test_sum_t *sha_test_sum = sha384_test_sum;
+#endif
+
+    buf = mbedtls_calloc(1024, sizeof(unsigned char));
+    if (NULL == buf) {
+        if (verbose != 0) {
+            mbedtls_printf("Buffer allocation failed\n");
+        }
+
+        return 1;
+    }
+
+    mbedtls_sha512_init(&ctx);
+
+    for (i = 0; i < 3; i++) {
+        if (verbose != 0) {
+            mbedtls_printf("  SHA-%d test #%d: ", 512 - is384 * 128, i + 1);
+        }
+
+        if ((ret = mbedtls_sha512_starts(&ctx, is384)) != 0) {
+            goto fail;
+        }
+
+        if (i == 2) {
+            memset(buf, 'a', buflen = 1000);
+
+            for (int j = 0; j < 1000; j++) {
+                ret = mbedtls_sha512_update(&ctx, buf, buflen);
+                if (ret != 0) {
+                    goto fail;
+                }
+            }
+        } else {
+            ret = mbedtls_sha512_update(&ctx, sha_test_buf[i],
+                                        sha_test_buflen[i]);
+            if (ret != 0) {
+                goto fail;
+            }
+        }
+
+        if ((ret = mbedtls_sha512_finish(&ctx, sha512sum)) != 0) {
+            goto fail;
+        }
+
+        if (memcmp(sha512sum, sha_test_sum[i], 64 - is384 * 16) != 0) {
+            ret = 1;
+            goto fail;
+        }
+
+        if (verbose != 0) {
+            mbedtls_printf("passed\n");
+        }
+    }
+
+    if (verbose != 0) {
+        mbedtls_printf("\n");
+    }
+
+    goto exit;
+
+fail:
+    if (verbose != 0) {
+        mbedtls_printf("failed\n");
+    }
+
+exit:
+    mbedtls_sha512_free(&ctx);
+    mbedtls_free(buf);
+
+    return ret;
+}
+
+#if defined(MBEDTLS_SHA512_C)
+int mbedtls_sha512_self_test(int verbose)
+{
+    return mbedtls_sha512_common_self_test(verbose, 0);
+}
+#endif /* MBEDTLS_SHA512_C */
+
+#if defined(MBEDTLS_SHA384_C)
+int mbedtls_sha384_self_test(int verbose)
+{
+    return mbedtls_sha512_common_self_test(verbose, 1);
+}
+#endif /* MBEDTLS_SHA384_C */
+
+#undef ARRAY_LENGTH
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_SHA512_C || MBEDTLS_SHA384_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/threading.c b/tf-psa-crypto/drivers/builtin/src/threading.c
new file mode 100644
index 0000000..85db243
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/threading.c
@@ -0,0 +1,195 @@
+/*
+ *  Threading abstraction layer
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * Ensure gmtime_r is available even with -std=c99; must be defined before
+ * mbedtls_config.h, which pulls in glibc's features.h. Harmless on other platforms.
+ */
+#if !defined(_POSIX_C_SOURCE)
+#define _POSIX_C_SOURCE 200112L
+#endif
+
+#include "common.h"
+
+#if defined(MBEDTLS_THREADING_C)
+
+#include "mbedtls/threading.h"
+
+#if defined(MBEDTLS_HAVE_TIME_DATE) && !defined(MBEDTLS_PLATFORM_GMTIME_R_ALT)
+
+#if !defined(_WIN32) && (defined(unix) || \
+    defined(__unix) || defined(__unix__) || (defined(__APPLE__) && \
+    defined(__MACH__)))
+#include <unistd.h>
+#endif /* !_WIN32 && (unix || __unix || __unix__ ||
+        * (__APPLE__ && __MACH__)) */
+
+#if !((defined(_POSIX_VERSION) && _POSIX_VERSION >= 200809L) ||     \
+    (defined(_POSIX_THREAD_SAFE_FUNCTIONS) &&                     \
+    _POSIX_THREAD_SAFE_FUNCTIONS >= 200112L))
+/*
+ * This is a convenience shorthand macro to avoid checking the long
+ * preprocessor conditions above. Ideally, we could expose this macro in
+ * platform_util.h and simply use it in platform_util.c, threading.c and
+ * threading.h. However, this macro is not part of the Mbed TLS public API, so
+ * we keep it private by only defining it in this file
+ */
+
+#if !(defined(_WIN32) && !defined(EFIX64) && !defined(EFI32))
+#define THREADING_USE_GMTIME
+#endif /* ! ( defined(_WIN32) && !defined(EFIX64) && !defined(EFI32) ) */
+
+#endif /* !( ( defined(_POSIX_VERSION) && _POSIX_VERSION >= 200809L ) || \
+             ( defined(_POSIX_THREAD_SAFE_FUNCTIONS ) && \
+                _POSIX_THREAD_SAFE_FUNCTIONS >= 200112L ) ) */
+
+#endif /* MBEDTLS_HAVE_TIME_DATE && !MBEDTLS_PLATFORM_GMTIME_R_ALT */
+
+#if defined(MBEDTLS_THREADING_PTHREAD)
+static void threading_mutex_init_pthread(mbedtls_threading_mutex_t *mutex)
+{
+    if (mutex == NULL) {
+        return;
+    }
+
+    /* One problem here is that calling lock on a pthread mutex without first
+     * having initialised it is undefined behaviour. Obviously we cannot check
+     * this here in a thread safe manner without a significant performance
+     * hit, so state transitions are checked in tests only via the state
+     * variable. Please make sure any new mutex that gets added is exercised in
+     * tests; see tests/src/threading_helpers.c for more details. */
+    (void) pthread_mutex_init(&mutex->mutex, NULL);
+}
+
+static void threading_mutex_free_pthread(mbedtls_threading_mutex_t *mutex)
+{
+    if (mutex == NULL) {
+        return;
+    }
+
+    (void) pthread_mutex_destroy(&mutex->mutex);
+}
+
+static int threading_mutex_lock_pthread(mbedtls_threading_mutex_t *mutex)
+{
+    if (mutex == NULL) {
+        return MBEDTLS_ERR_THREADING_BAD_INPUT_DATA;
+    }
+
+    if (pthread_mutex_lock(&mutex->mutex) != 0) {
+        return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
+    }
+
+    return 0;
+}
+
+static int threading_mutex_unlock_pthread(mbedtls_threading_mutex_t *mutex)
+{
+    if (mutex == NULL) {
+        return MBEDTLS_ERR_THREADING_BAD_INPUT_DATA;
+    }
+
+    if (pthread_mutex_unlock(&mutex->mutex) != 0) {
+        return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
+    }
+
+    return 0;
+}
+
+void (*mbedtls_mutex_init)(mbedtls_threading_mutex_t *) = threading_mutex_init_pthread;
+void (*mbedtls_mutex_free)(mbedtls_threading_mutex_t *) = threading_mutex_free_pthread;
+int (*mbedtls_mutex_lock)(mbedtls_threading_mutex_t *) = threading_mutex_lock_pthread;
+int (*mbedtls_mutex_unlock)(mbedtls_threading_mutex_t *) = threading_mutex_unlock_pthread;
+
+/*
+ * With pthreads we can statically initialize mutexes
+ */
+#define MUTEX_INIT  = { PTHREAD_MUTEX_INITIALIZER, 1 }
+
+#endif /* MBEDTLS_THREADING_PTHREAD */
+
+#if defined(MBEDTLS_THREADING_ALT)
+static int threading_mutex_fail(mbedtls_threading_mutex_t *mutex)
+{
+    ((void) mutex);
+    return MBEDTLS_ERR_THREADING_BAD_INPUT_DATA;
+}
+static void threading_mutex_dummy(mbedtls_threading_mutex_t *mutex)
+{
+    ((void) mutex);
+    return;
+}
+
+void (*mbedtls_mutex_init)(mbedtls_threading_mutex_t *) = threading_mutex_dummy;
+void (*mbedtls_mutex_free)(mbedtls_threading_mutex_t *) = threading_mutex_dummy;
+int (*mbedtls_mutex_lock)(mbedtls_threading_mutex_t *) = threading_mutex_fail;
+int (*mbedtls_mutex_unlock)(mbedtls_threading_mutex_t *) = threading_mutex_fail;
+
+/*
+ * Set functions pointers and initialize global mutexes
+ */
+void mbedtls_threading_set_alt(void (*mutex_init)(mbedtls_threading_mutex_t *),
+                               void (*mutex_free)(mbedtls_threading_mutex_t *),
+                               int (*mutex_lock)(mbedtls_threading_mutex_t *),
+                               int (*mutex_unlock)(mbedtls_threading_mutex_t *))
+{
+    mbedtls_mutex_init = mutex_init;
+    mbedtls_mutex_free = mutex_free;
+    mbedtls_mutex_lock = mutex_lock;
+    mbedtls_mutex_unlock = mutex_unlock;
+
+#if defined(MBEDTLS_FS_IO)
+    mbedtls_mutex_init(&mbedtls_threading_readdir_mutex);
+#endif
+#if defined(THREADING_USE_GMTIME)
+    mbedtls_mutex_init(&mbedtls_threading_gmtime_mutex);
+#endif
+#if defined(MBEDTLS_PSA_CRYPTO_C)
+    mbedtls_mutex_init(&mbedtls_threading_key_slot_mutex);
+    mbedtls_mutex_init(&mbedtls_threading_psa_globaldata_mutex);
+    mbedtls_mutex_init(&mbedtls_threading_psa_rngdata_mutex);
+#endif
+}
+
+/*
+ * Free global mutexes
+ */
+void mbedtls_threading_free_alt(void)
+{
+#if defined(MBEDTLS_FS_IO)
+    mbedtls_mutex_free(&mbedtls_threading_readdir_mutex);
+#endif
+#if defined(THREADING_USE_GMTIME)
+    mbedtls_mutex_free(&mbedtls_threading_gmtime_mutex);
+#endif
+#if defined(MBEDTLS_PSA_CRYPTO_C)
+    mbedtls_mutex_free(&mbedtls_threading_key_slot_mutex);
+    mbedtls_mutex_free(&mbedtls_threading_psa_globaldata_mutex);
+    mbedtls_mutex_free(&mbedtls_threading_psa_rngdata_mutex);
+#endif
+}
+#endif /* MBEDTLS_THREADING_ALT */
+
+/*
+ * Define global mutexes
+ */
+#ifndef MUTEX_INIT
+#define MUTEX_INIT
+#endif
+#if defined(MBEDTLS_FS_IO)
+mbedtls_threading_mutex_t mbedtls_threading_readdir_mutex MUTEX_INIT;
+#endif
+#if defined(THREADING_USE_GMTIME)
+mbedtls_threading_mutex_t mbedtls_threading_gmtime_mutex MUTEX_INIT;
+#endif
+#if defined(MBEDTLS_PSA_CRYPTO_C)
+mbedtls_threading_mutex_t mbedtls_threading_key_slot_mutex MUTEX_INIT;
+mbedtls_threading_mutex_t mbedtls_threading_psa_globaldata_mutex MUTEX_INIT;
+mbedtls_threading_mutex_t mbedtls_threading_psa_rngdata_mutex MUTEX_INIT;
+#endif
+
+#endif /* MBEDTLS_THREADING_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/timing.c b/tf-psa-crypto/drivers/builtin/src/timing.c
new file mode 100644
index 0000000..58f1c1e
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/timing.c
@@ -0,0 +1,154 @@
+/*
+ *  Portable interface to the CPU cycle counter
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_TIMING_C)
+
+#include "mbedtls/timing.h"
+
+#if !defined(MBEDTLS_TIMING_ALT)
+
+#if !defined(unix) && !defined(__unix__) && !defined(__unix) && \
+    !defined(__APPLE__) && !defined(_WIN32) && !defined(__QNXNTO__) && \
+    !defined(__HAIKU__) && !defined(__midipix__)
+#error "This module only works on Unix and Windows, see MBEDTLS_TIMING_C in mbedtls_config.h"
+#endif
+
+#if defined(_WIN32) && !defined(EFIX64) && !defined(EFI32)
+
+#include <windows.h>
+#include <process.h>
+
+struct _hr_time {
+    LARGE_INTEGER start;
+};
+
+#else
+
+#include <unistd.h>
+#include <sys/types.h>
+#include <signal.h>
+/* time.h should be included independently of MBEDTLS_HAVE_TIME. If the
+ * platform matches the ifdefs above, it will be used. */
+#include <time.h>
+#include <sys/time.h>
+struct _hr_time {
+    struct timeval start;
+};
+#endif /* _WIN32 && !EFIX64 && !EFI32 */
+
+/**
+ * \brief          Return the elapsed time in milliseconds
+ *
+ * \warning        May change without notice
+ *
+ * \param val      points to a timer structure
+ * \param reset    If 0, query the elapsed time. Otherwise (re)start the timer.
+ *
+ * \return         Elapsed time since the previous reset in ms. When
+ *                 restarting, this is always 0.
+ *
+ * \note           To initialize a timer, call this function with reset=1.
+ *
+ *                 Determining the elapsed time and resetting the timer is not
+ *                 atomic on all platforms, so after the sequence
+ *                 `{ get_timer(1); ...; time1 = get_timer(1); ...; time2 =
+ *                 get_timer(0) }` the value time1+time2 is only approximately
+ *                 the delay since the first reset.
+ */
+#if defined(_WIN32) && !defined(EFIX64) && !defined(EFI32)
+
+unsigned long mbedtls_timing_get_timer(struct mbedtls_timing_hr_time *val, int reset)
+{
+    struct _hr_time *t = (struct _hr_time *) val;
+
+    if (reset) {
+        QueryPerformanceCounter(&t->start);
+        return 0;
+    } else {
+        unsigned long delta;
+        LARGE_INTEGER now, hfreq;
+        QueryPerformanceCounter(&now);
+        QueryPerformanceFrequency(&hfreq);
+        delta = (unsigned long) ((now.QuadPart - t->start.QuadPart) * 1000ul
+                                 / hfreq.QuadPart);
+        return delta;
+    }
+}
+
+#else /* _WIN32 && !EFIX64 && !EFI32 */
+
+unsigned long mbedtls_timing_get_timer(struct mbedtls_timing_hr_time *val, int reset)
+{
+    struct _hr_time *t = (struct _hr_time *) val;
+
+    if (reset) {
+        gettimeofday(&t->start, NULL);
+        return 0;
+    } else {
+        unsigned long delta;
+        struct timeval now;
+        gettimeofday(&now, NULL);
+        delta = (now.tv_sec  - t->start.tv_sec) * 1000ul
+                + (now.tv_usec - t->start.tv_usec) / 1000;
+        return delta;
+    }
+}
+
+#endif /* _WIN32 && !EFIX64 && !EFI32 */
+
+/*
+ * Set delays to watch
+ */
+void mbedtls_timing_set_delay(void *data, uint32_t int_ms, uint32_t fin_ms)
+{
+    mbedtls_timing_delay_context *ctx = (mbedtls_timing_delay_context *) data;
+
+    ctx->int_ms = int_ms;
+    ctx->fin_ms = fin_ms;
+
+    if (fin_ms != 0) {
+        (void) mbedtls_timing_get_timer(&ctx->timer, 1);
+    }
+}
+
+/*
+ * Get number of delays expired
+ */
+int mbedtls_timing_get_delay(void *data)
+{
+    mbedtls_timing_delay_context *ctx = (mbedtls_timing_delay_context *) data;
+    unsigned long elapsed_ms;
+
+    if (ctx->fin_ms == 0) {
+        return -1;
+    }
+
+    elapsed_ms = mbedtls_timing_get_timer(&ctx->timer, 0);
+
+    if (elapsed_ms >= ctx->fin_ms) {
+        return 2;
+    }
+
+    if (elapsed_ms >= ctx->int_ms) {
+        return 1;
+    }
+
+    return 0;
+}
+
+/*
+ * Get the final delay.
+ */
+uint32_t mbedtls_timing_get_final_delay(
+    const mbedtls_timing_delay_context *data)
+{
+    return data->fin_ms;
+}
+#endif /* !MBEDTLS_TIMING_ALT */
+#endif /* MBEDTLS_TIMING_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/version.c b/tf-psa-crypto/drivers/builtin/src/version.c
new file mode 100644
index 0000000..0439733
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/version.c
@@ -0,0 +1,32 @@
+/*
+ *  Version information
+ *
+ *  Copyright The Mbed TLS Contributors
+ *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_VERSION_C)
+
+#include "mbedtls/version.h"
+#include <string.h>
+
+unsigned int mbedtls_version_get_number(void)
+{
+    return MBEDTLS_VERSION_NUMBER;
+}
+
+void mbedtls_version_get_string(char *string)
+{
+    memcpy(string, MBEDTLS_VERSION_STRING,
+           sizeof(MBEDTLS_VERSION_STRING));
+}
+
+void mbedtls_version_get_string_full(char *string)
+{
+    memcpy(string, MBEDTLS_VERSION_STRING_FULL,
+           sizeof(MBEDTLS_VERSION_STRING_FULL));
+}
+
+#endif /* MBEDTLS_VERSION_C */