|  | """Common features for bignum in test generation framework.""" | 
|  | # Copyright The Mbed TLS Contributors | 
|  | # SPDX-License-Identifier: Apache-2.0 | 
|  | # | 
|  | # Licensed under the Apache License, Version 2.0 (the "License"); you may | 
|  | # not use this file except in compliance with the License. | 
|  | # You may obtain a copy of the License at | 
|  | # | 
|  | # http://www.apache.org/licenses/LICENSE-2.0 | 
|  | # | 
|  | # Unless required by applicable law or agreed to in writing, software | 
|  | # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT | 
|  | # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | # See the License for the specific language governing permissions and | 
|  | # limitations under the License. | 
|  |  | 
|  | from abc import abstractmethod | 
|  | import enum | 
|  | from typing import Iterator, List, Tuple, TypeVar, Any | 
|  | from copy import deepcopy | 
|  | from itertools import chain | 
|  |  | 
|  | from . import test_case | 
|  | from . import test_data_generation | 
|  | from .bignum_data import INPUTS_DEFAULT, MODULI_DEFAULT | 
|  |  | 
|  | T = TypeVar('T') #pylint: disable=invalid-name | 
|  |  | 
|  | def invmod(a: int, n: int) -> int: | 
|  | """Return inverse of a to modulo n. | 
|  |  | 
|  | Equivalent to pow(a, -1, n) in Python 3.8+. Implementation is equivalent | 
|  | to long_invmod() in CPython. | 
|  | """ | 
|  | b, c = 1, 0 | 
|  | while n: | 
|  | q, r = divmod(a, n) | 
|  | a, b, c, n = n, c, b - q*c, r | 
|  | # at this point a is the gcd of the original inputs | 
|  | if a == 1: | 
|  | return b | 
|  | raise ValueError("Not invertible") | 
|  |  | 
|  | def invmod_positive(a: int, n: int) -> int: | 
|  | """Return a non-negative inverse of a to modulo n.""" | 
|  | inv = invmod(a, n) | 
|  | return inv if inv >= 0 else inv + n | 
|  |  | 
|  | def hex_to_int(val: str) -> int: | 
|  | """Implement the syntax accepted by mbedtls_test_read_mpi(). | 
|  |  | 
|  | This is a superset of what is accepted by mbedtls_test_read_mpi_core(). | 
|  | """ | 
|  | if val in ['', '-']: | 
|  | return 0 | 
|  | return int(val, 16) | 
|  |  | 
|  | def quote_str(val: str) -> str: | 
|  | return "\"{}\"".format(val) | 
|  |  | 
|  | def bound_mpi(val: int, bits_in_limb: int) -> int: | 
|  | """First number exceeding number of limbs needed for given input value.""" | 
|  | return bound_mpi_limbs(limbs_mpi(val, bits_in_limb), bits_in_limb) | 
|  |  | 
|  | def bound_mpi_limbs(limbs: int, bits_in_limb: int) -> int: | 
|  | """First number exceeding maximum of given number of limbs.""" | 
|  | bits = bits_in_limb * limbs | 
|  | return 1 << bits | 
|  |  | 
|  | def limbs_mpi(val: int, bits_in_limb: int) -> int: | 
|  | """Return the number of limbs required to store value.""" | 
|  | bit_length = max(val.bit_length(), 1) | 
|  | return (bit_length + bits_in_limb - 1) // bits_in_limb | 
|  |  | 
|  | def combination_pairs(values: List[T]) -> List[Tuple[T, T]]: | 
|  | """Return all pair combinations from input values.""" | 
|  | return [(x, y) for x in values for y in values] | 
|  |  | 
|  | def hex_digits_for_limb(limbs: int, bits_in_limb: int) -> int: | 
|  | """ Retrun the hex digits need for a number of limbs. """ | 
|  | return 2 * (limbs * bits_in_limb // 8) | 
|  |  | 
|  | def hex_digits_max_int(val: str, bits_in_limb: int) -> int: | 
|  | """ Return the first number exceeding maximum  the limb space | 
|  | required to store the input hex-string value. This method | 
|  | weights on the input str_len rather than numerical value | 
|  | and works with zero-padded inputs""" | 
|  | n = ((1 << (len(val) * 4)) - 1) | 
|  | l = limbs_mpi(n, bits_in_limb) | 
|  | return bound_mpi_limbs(l, bits_in_limb) | 
|  |  | 
|  | def zfill_match(reference: str, target: str) -> str: | 
|  | """ Zero pad target hex-string to match the limb size of | 
|  | the reference input """ | 
|  | lt = len(target) | 
|  | lr = len(reference) | 
|  | target_len = lr if lt < lr else lt | 
|  | return "{:x}".format(int(target, 16)).zfill(target_len) | 
|  |  | 
|  | class OperationCommon(test_data_generation.BaseTest): | 
|  | """Common features for bignum binary operations. | 
|  |  | 
|  | This adds functionality common in binary operation tests. | 
|  |  | 
|  | Attributes: | 
|  | symbol: Symbol to use for the operation in case description. | 
|  | input_values: List of values to use as test case inputs. These are | 
|  | combined to produce pairs of values. | 
|  | input_cases: List of tuples containing pairs of test case inputs. This | 
|  | can be used to implement specific pairs of inputs. | 
|  | unique_combinations_only: Boolean to select if test case combinations | 
|  | must be unique. If True, only A,B or B,A would be included as a test | 
|  | case. If False, both A,B and B,A would be included. | 
|  | input_style: Controls the way how test data is passed to the functions | 
|  | in the generated test cases. "variable" passes them as they are | 
|  | defined in the python source. "arch_split" pads the values with | 
|  | zeroes depending on the architecture/limb size. If this is set, | 
|  | test cases are generated for all architectures. | 
|  | arity: the number of operands for the operation. Currently supported | 
|  | values are 1 and 2. | 
|  | """ | 
|  | symbol = "" | 
|  | input_values = INPUTS_DEFAULT # type: List[str] | 
|  | input_cases = [] # type: List[Any] | 
|  | dependencies = [] # type: List[Any] | 
|  | unique_combinations_only = False | 
|  | input_styles = ["variable", "fixed", "arch_split"] # type: List[str] | 
|  | input_style = "variable" # type: str | 
|  | limb_sizes = [32, 64] # type: List[int] | 
|  | arities = [1, 2] | 
|  | arity = 2 | 
|  | suffix = False   # for arity = 1, symbol can be prefix (default) or suffix | 
|  |  | 
|  | def __init__(self, val_a: str, val_b: str = "0", bits_in_limb: int = 32) -> None: | 
|  | self.val_a = val_a | 
|  | self.val_b = val_b | 
|  | # Setting the int versions here as opposed to making them @properties | 
|  | # provides earlier/more robust input validation. | 
|  | self.int_a = hex_to_int(val_a) | 
|  | self.int_b = hex_to_int(val_b) | 
|  | self.dependencies = deepcopy(self.dependencies) | 
|  | if bits_in_limb not in self.limb_sizes: | 
|  | raise ValueError("Invalid number of bits in limb!") | 
|  | if self.input_style == "arch_split": | 
|  | self.dependencies.append("MBEDTLS_HAVE_INT{:d}".format(bits_in_limb)) | 
|  | self.bits_in_limb = bits_in_limb | 
|  |  | 
|  | @property | 
|  | def boundary(self) -> int: | 
|  | if self.arity == 1: | 
|  | return self.int_a | 
|  | elif self.arity == 2: | 
|  | return max(self.int_a, self.int_b) | 
|  | raise ValueError("Unsupported number of operands!") | 
|  |  | 
|  | @property | 
|  | def limb_boundary(self) -> int: | 
|  | return bound_mpi(self.boundary, self.bits_in_limb) | 
|  |  | 
|  | @property | 
|  | def limbs(self) -> int: | 
|  | return limbs_mpi(self.boundary, self.bits_in_limb) | 
|  |  | 
|  | @property | 
|  | def hex_digits(self) -> int: | 
|  | return hex_digits_for_limb(self.limbs, self.bits_in_limb) | 
|  |  | 
|  | def format_arg(self, val: str) -> str: | 
|  | if self.input_style not in self.input_styles: | 
|  | raise ValueError("Unknown input style!") | 
|  | if self.input_style == "variable": | 
|  | return val | 
|  | else: | 
|  | return val.zfill(self.hex_digits) | 
|  |  | 
|  | def format_result(self, res: int) -> str: | 
|  | res_str = '{:x}'.format(res) | 
|  | return quote_str(self.format_arg(res_str)) | 
|  |  | 
|  | @property | 
|  | def arg_a(self) -> str: | 
|  | return self.format_arg(self.val_a) | 
|  |  | 
|  | @property | 
|  | def arg_b(self) -> str: | 
|  | if self.arity == 1: | 
|  | raise AttributeError("Operation is unary and doesn't have arg_b!") | 
|  | return self.format_arg(self.val_b) | 
|  |  | 
|  | def arguments(self) -> List[str]: | 
|  | args = [quote_str(self.arg_a)] | 
|  | if self.arity == 2: | 
|  | args.append(quote_str(self.arg_b)) | 
|  | return args + self.result() | 
|  |  | 
|  | def description(self) -> str: | 
|  | """Generate a description for the test case. | 
|  |  | 
|  | If not set, case_description uses the form A `symbol` B, where symbol | 
|  | is used to represent the operation. Descriptions of each value are | 
|  | generated to provide some context to the test case. | 
|  | """ | 
|  | if not self.case_description: | 
|  | if self.arity == 1: | 
|  | format_string = "{1:x} {0}" if self.suffix else "{0} {1:x}" | 
|  | self.case_description = format_string.format( | 
|  | self.symbol, self.int_a | 
|  | ) | 
|  | elif self.arity == 2: | 
|  | self.case_description = "{:x} {} {:x}".format( | 
|  | self.int_a, self.symbol, self.int_b | 
|  | ) | 
|  | return super().description() | 
|  |  | 
|  | @property | 
|  | def is_valid(self) -> bool: | 
|  | return True | 
|  |  | 
|  | @abstractmethod | 
|  | def result(self) -> List[str]: | 
|  | """Get the result of the operation. | 
|  |  | 
|  | This could be calculated during initialization and stored as `_result` | 
|  | and then returned, or calculated when the method is called. | 
|  | """ | 
|  | raise NotImplementedError | 
|  |  | 
|  | @classmethod | 
|  | def get_value_pairs(cls) -> Iterator[Tuple[str, str]]: | 
|  | """Generator to yield pairs of inputs. | 
|  |  | 
|  | Combinations are first generated from all input values, and then | 
|  | specific cases provided. | 
|  | """ | 
|  | if cls.arity == 1: | 
|  | yield from ((a, "0") for a in cls.input_values) | 
|  | elif cls.arity == 2: | 
|  | if cls.unique_combinations_only: | 
|  | yield from combination_pairs(cls.input_values) | 
|  | else: | 
|  | yield from ( | 
|  | (a, b) | 
|  | for a in cls.input_values | 
|  | for b in cls.input_values | 
|  | ) | 
|  | else: | 
|  | raise ValueError("Unsupported number of operands!") | 
|  |  | 
|  | @classmethod | 
|  | def generate_function_tests(cls) -> Iterator[test_case.TestCase]: | 
|  | if cls.input_style not in cls.input_styles: | 
|  | raise ValueError("Unknown input style!") | 
|  | if cls.arity not in cls.arities: | 
|  | raise ValueError("Unsupported number of operands!") | 
|  | if cls.input_style == "arch_split": | 
|  | test_objects = (cls(a, b, bits_in_limb=bil) | 
|  | for a, b in cls.get_value_pairs() | 
|  | for bil in cls.limb_sizes) | 
|  | special_cases = (cls(*args, bits_in_limb=bil) # type: ignore | 
|  | for args in cls.input_cases | 
|  | for bil in cls.limb_sizes) | 
|  | else: | 
|  | test_objects = (cls(a, b) | 
|  | for a, b in cls.get_value_pairs()) | 
|  | special_cases = (cls(*args) for args in cls.input_cases) | 
|  | yield from (valid_test_object.create_test_case() | 
|  | for valid_test_object in filter( | 
|  | lambda test_object: test_object.is_valid, | 
|  | chain(test_objects, special_cases) | 
|  | ) | 
|  | ) | 
|  |  | 
|  |  | 
|  | class ModulusRepresentation(enum.Enum): | 
|  | """Representation selector of a modulus.""" | 
|  | # Numerical values aligned with the type mbedtls_mpi_mod_rep_selector | 
|  | INVALID = 0 | 
|  | MONTGOMERY = 2 | 
|  | OPT_RED = 3 | 
|  |  | 
|  | def symbol(self) -> str: | 
|  | """The C symbol for this representation selector.""" | 
|  | return 'MBEDTLS_MPI_MOD_REP_' + self.name | 
|  |  | 
|  | @classmethod | 
|  | def supported_representations(cls) -> List['ModulusRepresentation']: | 
|  | """Return all representations that are supported in positive test cases.""" | 
|  | return [cls.MONTGOMERY, cls.OPT_RED] | 
|  |  | 
|  |  | 
|  | class ModOperationCommon(OperationCommon): | 
|  | #pylint: disable=abstract-method | 
|  | """Target for bignum mod_raw test case generation.""" | 
|  | moduli = MODULI_DEFAULT # type: List[str] | 
|  | montgomery_form_a = False | 
|  | disallow_zero_a = False | 
|  |  | 
|  | def __init__(self, val_n: str, val_a: str, val_b: str = "0", | 
|  | bits_in_limb: int = 64) -> None: | 
|  | super().__init__(val_a=val_a, val_b=val_b, bits_in_limb=bits_in_limb) | 
|  | self.val_n = val_n | 
|  | # Setting the int versions here as opposed to making them @properties | 
|  | # provides earlier/more robust input validation. | 
|  | self.int_n = hex_to_int(val_n) | 
|  |  | 
|  | def to_montgomery(self, val: int) -> int: | 
|  | return (val * self.r) % self.int_n | 
|  |  | 
|  | def from_montgomery(self, val: int) -> int: | 
|  | return (val * self.r_inv) % self.int_n | 
|  |  | 
|  | def convert_from_canonical(self, canonical: int, | 
|  | rep: ModulusRepresentation) -> int: | 
|  | """Convert values from canonical representation to the given representation.""" | 
|  | if rep is ModulusRepresentation.MONTGOMERY: | 
|  | return self.to_montgomery(canonical) | 
|  | elif rep is ModulusRepresentation.OPT_RED: | 
|  | return canonical | 
|  | else: | 
|  | raise ValueError('Modulus representation not supported: {}' | 
|  | .format(rep.name)) | 
|  |  | 
|  | @property | 
|  | def boundary(self) -> int: | 
|  | return self.int_n | 
|  |  | 
|  | @property | 
|  | def arg_a(self) -> str: | 
|  | if self.montgomery_form_a: | 
|  | value_a = self.to_montgomery(self.int_a) | 
|  | else: | 
|  | value_a = self.int_a | 
|  | return self.format_arg('{:x}'.format(value_a)) | 
|  |  | 
|  | @property | 
|  | def arg_n(self) -> str: | 
|  | return self.format_arg(self.val_n) | 
|  |  | 
|  | def format_arg(self, val: str) -> str: | 
|  | return super().format_arg(val).zfill(self.hex_digits) | 
|  |  | 
|  | def arguments(self) -> List[str]: | 
|  | return [quote_str(self.arg_n)] + super().arguments() | 
|  |  | 
|  | @property | 
|  | def r(self) -> int: # pylint: disable=invalid-name | 
|  | l = limbs_mpi(self.int_n, self.bits_in_limb) | 
|  | return bound_mpi_limbs(l, self.bits_in_limb) | 
|  |  | 
|  | @property | 
|  | def r_inv(self) -> int: | 
|  | return invmod(self.r, self.int_n) | 
|  |  | 
|  | @property | 
|  | def r2(self) -> int: # pylint: disable=invalid-name | 
|  | return pow(self.r, 2) | 
|  |  | 
|  | @property | 
|  | def is_valid(self) -> bool: | 
|  | if self.int_a >= self.int_n: | 
|  | return False | 
|  | if self.disallow_zero_a and self.int_a == 0: | 
|  | return False | 
|  | if self.arity == 2 and self.int_b >= self.int_n: | 
|  | return False | 
|  | return True | 
|  |  | 
|  | def description(self) -> str: | 
|  | """Generate a description for the test case. | 
|  |  | 
|  | It uses the form A `symbol` B mod N, where symbol is used to represent | 
|  | the operation. | 
|  | """ | 
|  |  | 
|  | if not self.case_description: | 
|  | return super().description() + " mod {:x}".format(self.int_n) | 
|  | return super().description() | 
|  |  | 
|  | @classmethod | 
|  | def input_cases_args(cls) -> Iterator[Tuple[Any, Any, Any]]: | 
|  | if cls.arity == 1: | 
|  | yield from ((n, a, "0") for a, n in cls.input_cases) | 
|  | elif cls.arity == 2: | 
|  | yield from ((n, a, b) for a, b, n in cls.input_cases) | 
|  | else: | 
|  | raise ValueError("Unsupported number of operands!") | 
|  |  | 
|  | @classmethod | 
|  | def generate_function_tests(cls) -> Iterator[test_case.TestCase]: | 
|  | if cls.input_style not in cls.input_styles: | 
|  | raise ValueError("Unknown input style!") | 
|  | if cls.arity not in cls.arities: | 
|  | raise ValueError("Unsupported number of operands!") | 
|  | if cls.input_style == "arch_split": | 
|  | test_objects = (cls(n, a, b, bits_in_limb=bil) | 
|  | for n in cls.moduli | 
|  | for a, b in cls.get_value_pairs() | 
|  | for bil in cls.limb_sizes) | 
|  | special_cases = (cls(*args, bits_in_limb=bil) | 
|  | for args in cls.input_cases_args() | 
|  | for bil in cls.limb_sizes) | 
|  | else: | 
|  | test_objects = (cls(n, a, b) | 
|  | for n in cls.moduli | 
|  | for a, b in cls.get_value_pairs()) | 
|  | special_cases = (cls(*args) for args in cls.input_cases_args()) | 
|  | yield from (valid_test_object.create_test_case() | 
|  | for valid_test_object in filter( | 
|  | lambda test_object: test_object.is_valid, | 
|  | chain(test_objects, special_cases) | 
|  | )) |