Document number:

Release Quality:
Issue Number:
Confidentiality:

Date of Issue:

IHI 0086

Final

1
Non-confidential

27/08/2020

PSA Cryptography API 1.0

Copyright © 2018-2020, Arm Limited. All rights reserved.

Contents

About this document

Release information

Arm Non-Confidential Document Licence (“Licence”)
References

Terms and abbreviations

Potential for change

Conventions
Typographical conventions
Numbers

Pseudocode descriptions
Assembler syntax descriptions

Feedback
Feedback on this book

1 Introduction

2 Design goals

21
22
23
24
25

2.6
261
2.6.2
2.6.3
2.64
2.6.5
2.6.6
2.6.7

Suitable for constrained devices
A keystore interface

Optional isolation

Choice of algorithms

Ease of use

Example use cases
Network Security (TLS)
Secure Storage
Network Credentials
Device Pairing

Secure Boot
Attestation

Factory Provisioning

3 Functionality overview

3.1

IHI 0086
1.0.1

Library management

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

Non-confidential

Vil
Vii

viii

Xiii
XV

XV
XV
XV

XVi
XVi

XVi
XVi

17

17
17
18
18
19
19

19
19
19
20
20
20
20
20

20
20

Page i

3.2
3.2.1
3.2.2
3.2.3
3.24

3.3
3.3.1
3.3.2
3.3.3
3.34
3.3.5
3.3.6
3.3.7
3.3.8

34
34.1
3.4.2
34.3

3.5

Key management

Key identifiers

Key lifetimes

Key policies

Recommendations of minimum standards for key management

Symmetric cryptography

Single-part Functions

Multi-part operations

Message digests (Hashes)

Message authentication codes (MACs)
Encryption and decryption

Authenticated encryption (AEAD)

Key derivation

Example of the symmetric cryptography API

Asymmetric cryptography
Asymmetric encryption
Hash-and-sign

Key agreement

Randomness and key generation

4 Sample architectures

41
4.2
4.3
4.4
4.5

Single-partition architecture

Cryptographic token and single-application processor
Cryptoprocessor with no key storage

Multi-client cryptoprocessor

Multi-cryptoprocessor architecture

5 Library conventions

5.1
511
5.1.2

5.2
521
5.2.2
5.23
524
5.25

5.3
531

54

IHI 0086
1.0.1

Error handling
Return status
Behavior on error

Parameter conventions
Pointer conventions

Input buffer sizes

Output buffer sizes

Overlap between parameters
Stability of parameters

Key types and algorithms
Structure of key and algorithm types

Concurrent calls

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

Non-confidential

21
21
22
22
22

22
23
23
24
25
25
26
27
28

28
29
29
29

29

29
30
30
30
31
31

31

31
31
32

33
33
33
33
34
34

35
35

35

Page ii

6 Implementation considerations

6.1
6.1.1
6.1.2
6.1.3

6.2
6.2.1
6.2.2
6.2.3

6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6

6.4
64.1

Implementation-specific aspects of the interface
Implementation profile

Implementation-specific types
Implementation-specific macros

Porting to a platform

Platform assumptions
Platform-specific types
Cryptographic hardware support

Security requirements and recommendations
Error detection

Indirect object references

Memory cleanup

Managing key material

Safe outputs on error

Attack resistance

Other implementation considerations
Philosophy of resource management

7 Usage considerations

7.1
7.11
7.1.2
7.1.3

Security recommendations
Always check for errors

Shared memory and concurrency
Cleaning up after use

8 Library management reference

8.1
8.1.1
8.1.2
8.1.3

8.2
8.2.1
8.2.2

PSA status codes
Status type
Success codes
Error codes

PSA Crypto library
API version
Library initialization

9 Key management reference

9.1
92.11

9.2
921
922
9.23
924

IHI 0086
1.0.1

Key attributes
Managing key attributes

Key types

Key type encoding
Key categories
Symmetric keys
RSA keys

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

Non-confidential

36

36
36
36
36

37
37
37
38

38
38
38
38
39
39
40

40
40

40

40
40
41
41

41

41
41
42
42

48
48
48

49

49
49

53
53
54
55
58

Page iii

9.25
9.2.6
9.2.7

9.3
9.3.1
932
9.3.3
934
9.3.5
9.3.6

9.4
9.4.1
9.4.2

9.5
951
9.5.2

9.6
9.6.1
9.6.2
9.6.3

Elliptic Curve keys
Diffie Hellman keys
Attribute accessors

Key lifetimes
Volatile keys
Persistent keys
Lifetime encodings
Lifetime values
Attribute accessors
Support macros

Key identifiers
Key identifier type
Attribute accessors

Key policies
Permitted algorithms
Key usage flags

Key management functions
Key creation

Key destruction

Key export

10 Cryptographic operation reference

101
10.1.1
10.1.2

10.2
10.2.1
10.2.2
10.2.3
10.2.4
10.2.5

10.3
10.3.1
10.3.2
10.3.3
10.3.4

104
104.1
10.4.2
10.4.3
10.4.4

10.5
10.5.1

IHI 0086
1.0.1

Algorithms
Algorithm encoding
Algorithm categories

Message digests

Hash algorithms

Single-part hashing functions
Multi-part hashing operations
Support macros

Hash suspend state

Message authentication codes (MAC)
MAC algorithms

Single-part MAC functions

Multi-part MAC operations

Support macros

Unauthenticated ciphers
Cipher algorithms
Single-part cipher functions
Multi-part cipher operations
Support macros

Authenticated encryption with associated data (AEAD)
AEAD algorithms

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

Non-confidential

58
63
65

68
68
68
69
72
73
74

75
76
77

78
78
80

84
84
90
92

98

98
99
100

103
103
106
108
117
120

122
122
123
126
133

135
135
139
142
151

157
157

Page iv

10.5.2 Single-part AEAD functions 158

10.5.3 Multi-part AEAD operations 162
10.5.4 Support macros 176
10.6 Key derivation 181
10.6.1 Key derivation algorithms 181
10.6.2 Input step types 184
10.6.3 Key derivation functions 185
10.6.4 Support macros 196
10.7 Asymmetric signature 198
10.7.1 Asymmetric signature algorithms 198
10.7.2 Asymmetric signature functions 201
10.7.3 Support macros 207
10.8 Asymmetric encryption 211
10.8.1 Asymmetric encryption algorithms 211
10.8.2 Asymmetric encryption functions 212
10.8.3 Support macros 215
10.9 Key agreement 217
10.9.1 Key agreement algorithms 217
10.9.2 Standalone key agreement 218
10.9.3 Combining key agreement and key derivation 220
10.9.4 Support macros 221
10.10 Other cryptographic services 224
10.10.1 Random number generation 224
A Example header file 226
Al psa/crypto.h 226
B Example macro implementations 237
B.1 Algorithm macros 237
B.2 Key type macros 240
B.3 Hash suspend state macros 241
C Changes to the API 242
Ci1 Document change history 242
C.1.1 Changes between 1.0.0 and 1.0.1 242
C.1.2 Changes between 1.0 beta 3 and 1.0.0 243
C.1.3 Changes between 1.0 beta 2 and 1.0 beta 3 253
C.1.4 Changes between 1.0 beta 1 and 1.0 beta 2 254
C2 Planned changes for version 1.0.x 254
C3 Future additions 254
IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page v

1.0.1 Non-confidential

Index of API elements 256

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page vi
1.0.1 Non-confidential

About this document

Release information

The change history table lists the changes that have been made to this document.

Date
January 2019
February 2019

May 2019

February 2020
August 2020

Version
1.0Beta 1
1.0 Beta 2

1.0 Beta 3

1.0 Final
1.0.1 Final

Confidentiality
Non-confidential

Non-confidential

Non-confidential

Non-confidential

Non-confidential

Change
First public beta release.

Update for release with other PSA Dev API
specifications.

Update for release with other PSA API
specifications.

1.0 API finalized.

Update to fix errors and provide
clarifications.

The detailed changes in each release are described in Document change history on page 242.

IHI 0086
1.0.1

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page vii
Non-confidential

PSA Cryptography API

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. The copyright statement reflects
the fact that some draft issues of this document have been released, to a limited circulation.

Arm Non-Confidential Document Licence (“Licence”)

This Licence is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual property (including,
without limitation, any copyright) embodied in the document accompanying this Licence (“Document”). Arm licenses its
intellectual property in the Document to you on condition that you agree to the terms of this Licence. By using or copying the
Document you indicate that you agree to be bound by the terms of this Licence.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled, directly or
indirectly, by you. A company shall be a Subsidiary only for the period during which such control exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to the terms of this
Licence between you and Arm.

Subject to the terms and conditions of this Licence, Arm hereby grants to Licensee under the intellectual property in the
Document owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable, royalty-free, worldwide licence to:

(i) use and copy the Document for the purpose of designing and having designed products that comply with the Document;
(i) manufacture and have manufactured products which have been created under the licence granted in (i) above; and

(i) sell, supply and distribute products which have been created under the licence granted in (i) above.

Licensee hereby agrees that the licences granted above shall not extend to any portion or function of a product that is not itself
compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any intellectual property
embodied therein.

THE DOCUMENT IS PROVIDED “AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED
OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY
QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. Arm may
make changes to the Document at any time and without notice. For the avoidance of doubt, Arm makes no representation with
respect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights,
trade secrets, or other rights.

NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENCE, TO THE FULLEST EXTENT
PERMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT, TORT OR OTHERWISE, IN
CONNECTION WITH THE SUBJECT MATTER OF THIS LICENCE (INCLUDING WITHOUT LIMITATION) (I) LICENSEE’S USE OF
THE DOCUMENT; AND (Il) THE IMPLEMENTATION OF THE DOCUMENT IN ANY PRODUCT CREATED BY LICENSEE UNDER
THIS LICENCE). THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR EXTEND THE LIMIT.
LICENSEE RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN EXCESS OF THIS LIMITATION.

This Licence shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other rights, if Licensee
is in breach of any of the terms and conditions of this Licence then Arm may terminate this Licence immediately upon giving
written notice to Licensee. Licensee may terminate this Licence at any time. Upon termination of this Licence by Licensee or by
Arm, Licensee shall stop using the Document and destroy all copies of the Document in its possession. Upon termination of this
Licence, all terms shall survive except for the licence grants.

Any breach of this Licence by a Subsidiary shall entitle Arm to terminate this Licence as if you were the party in breach. Any
termination of this Licence shall be effective in respect of all Subsidiaries. Any rights granted to any Subsidiary hereunder shall
automatically terminate upon such Subsidiary ceasing to be a Subsidiary.

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use, duplication or
disclosure of the Document complies fully with any relevant export laws and regulations to assure that the Document or any
portion thereof is not exported, directly or indirectly, in violation of such export laws.

This Licence may be translated into other languages for convenience, and Licensee agrees that if there is any conflict between the
English version of this Licence and any translation, the terms of the English version of this Licence shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page viii
1.0.1 Non-confidential

trademarks of their respective owners. No licence, express, implied or otherwise, is granted to Licensee under this Licence, to use
the Arm trade marks in connection with the Document or any products based thereon. Visit Arm’s website at
https:/www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.

The validity, construction and performance of this Licence shall be governed by English Law.

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: LES-PRE-21585 version 4.0

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page ix
1.0.1 Non-confidential

https://www.arm.com/company/policies/trademarks

References

This document refers to the following documents.

Ref
[PSA-ITS]

Ref
[CHACHAZ20]

[Curve25519]

[Curve448]

[FIPS180-4]

[FIPS186-4]

[FIPS197]

[FIPS202]

[FRP]

[IEEE-XTS]

[IETF-SM3]

[IETF-SM4]

[1SO10118]

IHI 0086
1.0.1

Table 1 Arm documents referenced by this document
Document Number Title

ARM |HI 0087 PSA Storage API.
https:/developer.arm.com/architectures/security-architectures/
platform-security-architecture/documentation

Table 2 Other documents referenced by this document
Title

Bernstein, D., ChaCha, a variant of Salsa20, January 2008.
http://cr.yp.to/chacha/chacha-20080128.pdf

Bernstein et al., Curve25519: new Diffie-Hellman speed records, LNCS 3958, 2006.
https:/www.iacr.org/archive/pkc2006/39580209/39580209.pdf

Hamburg, Ed448-Goldilocks, a new elliptic curve, NIST ECC Workshop, 2015.
https:/eprint.iacr.org/2015/625.pdf

NIST, FIPS Publication 180-4: Secure Hash Standard (SHS), August 2015.
https://doi.org/10.6028/NIST.FIPS.180-4

NIST, FIPS Publication 186-4: Digital Signature Standard (DSS), July 2013.
https://doi.org/10.6028/NIST.FIPS.186-4

NIST, FIPS Publication 197: Advanced Encryption Standard (AES), November 2001.
https://doi.org/10.6028/NIST.FIPS.197

NIST, FIPS Publication 202: SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions, August 2015. https:/doi.org/10.6028/NIST.FIPS.202

Agence nationale de la sécurité des systéemes d’information, Publication d’'un
paramétrage de courbe elliptique visant des applications de passeport électronique et de
I'administration électronique francaise, 21 November 2011. https:/www.ssi.gouv.fr/
agence/rayonnement-scientifique/publications-scientifiques/articles-ouvrages-actes

IEEE, 1619-2018 - IEEE Standard for Cryptographic Protection of Data on Block-Oriented
Storage Devices, January 2019.
https://ieeexplore.ieee.org/servlet/opac?punumber=8637986

IETF, The SM3 Cryptographic Hash Function, November 2017.
https:/tools.ietf.org/id/draft-oscca-cfrg-sm3-02.html

IETF, The SM4 Blockcipher Algorithm And Its Modes Of Operations, April 2018.
https:/tools.ietf.org/html/draft-ribose-cfrg-sm4-10

ISO/IEC, ISO/IEC 10118-3:2018 IT Security techniques — Hash-functions — Part 3:
Dedicated hash-functions, October 2018. https:/www.iso.org/standard/67116.html

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page x
Non-confidential

https://developer.arm.com/architectures/security-architectures/platform-security-architecture/documentation
https://developer.arm.com/architectures/security-architectures/platform-security-architecture/documentation
http://cr.yp.to/chacha/chacha-20080128.pdf
https://www.iacr.org/archive/pkc2006/39580209/39580209.pdf
https://eprint.iacr.org/2015/625.pdf
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.202
https://www.ssi.gouv.fr/agence/rayonnement-scientifique/publications-scientifiques/articles-ouvrages-actes
https://www.ssi.gouv.fr/agence/rayonnement-scientifique/publications-scientifiques/articles-ouvrages-actes
https://ieeexplore.ieee.org/servlet/opac?punumber=8637986
https://tools.ietf.org/id/draft-oscca-cfrg-sm3-02.html
https://tools.ietf.org/html/draft-ribose-cfrg-sm4-10
https://www.iso.org/standard/67116.html

Ref
[1SO9797]

[NTT-CAM]

[PRC-SM3]

[PRC-SM4]

[RFC1319]

[RFC1320]

[RFC1321]

[RFC2104]

[RFC2315]

[RFC3279]

[RFC3610]

[RFC3713]

[RFC4279]

[RFC5116]

[RFC5246]

[RFC5639]

IHI 0086
1.0.1

Table 2 (continued)
Title

ISO/IEC, ISO/IEC 9797-1:2011 Information technology — Security techniques — Message
Authentication Codes (MACs) — Part 1: Mechanisms using a block cipher, March 2011.
https:/www.iso.org/standard/50375.html

NTT Corporation and Mitsubishi Electric Corporation, Specification of Camellia — a
128-bit Block Cipher, September 2001.
https:/info.isl.ntt.co.jp/crypt/eng/camellia/specifications

Standardization Administration of the People’s Republic of China, GB/T 32905-2016:
Information security techniques — SM3 cryptographic hash algorithm, August 2016. http://
www.gh688.cn/bzgk/gh/newGblinfo?hcno=45B1A67F20F3BF339211C391E9278F5E

Standardization Administration of the People’s Republic of China, GB/T 32907-2016:
Information security technology — SM4 block cipher algorithm, August 2016. http:/www.
gh688.cn/bzgk/gb/newGbinfo?hcno=7803DE42D3BC5E80BOC3ESD8E873D56A

IETF, The MD2 Message-Digest Algorithm, April 1992.
https:/tools.ietf.org/html/rfc1319.html

IETF, The MD4 Message-Digest Algorithm, April 1992.
https:/tools.ietf.org/html/rfc1320.html

IETF, The MD5 Message-Digest Algorithm, April 1992.
https:/tools.ietf.org/html/rfc1321.html

IETF, HMAC: Keyed-Hashing for Message Authentication, February 1997.
https:/tools.ietf.org/html/rfc2104.html

IETF, PKCS #7: Cryptographic Message Syntax Version 1.5, March 1998.
https:/tools.ietf.org/html/rfc2315.html

IETF, Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile, April 2002.
https:/tools.ietf.org/html/rfc3279.html

IETF, Counter with CBC-MAC (CCM), September 2003.
https:/tools.ietf.org/html/rfc3610

IETF, A Description of the Camellia Encryption Algorithm, April 2004.
https:/tools.ietf.org/html/rfc3713

IETF, Pre-Shared Key Ciphersuites for Transport Layer Security (TLS), December 2005.
https:/tools.ietf.org/html/rfc4279.html

IETF, An Interface and Algorithms for Authenticated Encryption, January 2008.
https://tools.ietf.org/html/rfc5116.html

|IETF, The Transport Layer Security (TLS) Protocol Version 1.2, August 2008.
https:/tools.ietf.org/html/rfc5246.html

IETF, Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation,
March 2010. https:/tools.ietf.org/html/rfc5639.html

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.
Non-confidential

Page xi

https://www.iso.org/standard/50375.html
https://info.isl.ntt.co.jp/crypt/eng/camellia/specifications
http://www.gb688.cn/bzgk/gb/newGbInfo?hcno=45B1A67F20F3BF339211C391E9278F5E
http://www.gb688.cn/bzgk/gb/newGbInfo?hcno=45B1A67F20F3BF339211C391E9278F5E
http://www.gb688.cn/bzgk/gb/newGbInfo?hcno=7803DE42D3BC5E80B0C3E5D8E873D56A
http://www.gb688.cn/bzgk/gb/newGbInfo?hcno=7803DE42D3BC5E80B0C3E5D8E873D56A
https://tools.ietf.org/html/rfc1319.html
https://tools.ietf.org/html/rfc1320.html
https://tools.ietf.org/html/rfc1321.html
https://tools.ietf.org/html/rfc2104.html
https://tools.ietf.org/html/rfc2315.html
https://tools.ietf.org/html/rfc3279.html
https://tools.ietf.org/html/rfc3610
https://tools.ietf.org/html/rfc3713
https://tools.ietf.org/html/rfc4279.html
https://tools.ietf.org/html/rfc5116.html
https://tools.ietf.org/html/rfc5246.html
https://tools.ietf.org/html/rfc5639.html

Ref
[RFC5869]

[RFC5915]

[RFC6979]

[RFC7539]

[RFC7748]
[RFC7919]

[RFC8017]

[RIPEMD]

[SEC1]

[SEC2]

[SEC2v1]

[SP800-38A]

[SP800-38B]

[SP80O0-

38D]

[SP800-56A]

[SP800-67]

IHI 0086
1.0.1

Table 2 (continued)
Title

IETF, HMAC-based Extract-and-Expand Key Derivation Function (HKDF), May 2010.
https:/tools.ietf.org/html/rfc5869.html

|IETF, Elliptic Curve Private Key Structure, June 2010.
https:/tools.ietf.org/html/rfc5915.html

IETF, Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital
Signature Algorithm (ECDSA), August 2013. https:/tools.ietf.org/html/rfc6979.html

IETF, ChaCha20 and Poly1305 for IETF Protocols, May 2015.
https://tools.ietf.org/html/rfc7539.html

IETF, Elliptic Curves for Security, January 2016. https://tools.ietf.org/html/rfc7748.html

IETF, Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport Layer
Security (TLS), August 2016. https:/tools.ietf.org/html/rfc7919.html

IETF, PKCS #1: RSA Cryptography Specifications Version 2.2, November 2016.
https:/tools.ietf.org/html/rfc8017.html

Dobbertin, Bosselaers and Preneel, RIPEMD-160: A Strengthened Version of RIPEMD,
April 1996. https:/homes.esat.kuleuven.be/~bosselae/ripemd160.html

Standards for Efficient Cryptography, SEC 1: Elliptic Curve Cryptography, May 2009.
https:/www.secg.org/sec1-v2.pdf

Standards for Efficient Cryptography, SEC 2: Recommended Elliptic Curve Domain
Parameters, January 2010. https:/www.secg.org/sec2-v2.pdf

Standards for Efficient Cryptography, SEC 2: Recommended Elliptic Curve Domain
Parameters, Version 1.0, September 2000. https:/www.secg.org/SEC2-Ver-1.0.pdf

NIST, NIST Special Publication 800-38A: Recommendation for Block Cipher Modes of
Operation: Methods and Techniques, December 2001.
https:/doi.org/10.6028/NIST.SP.800-38A

NIST, NIST Special Publication 800-38B: Recommendation for Block Cipher Modes of
Operation: the CMAC Mode for Authentication, May 2005.
https://doi.org/10.6028/NIST.SP.800-38B

NIST, NIST Special Publication 800-38D: Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC, November 2007.
https:/doi.org/10.6028/NIST.SP.800-38D

NIST, NIST Special Publication 800-56A: Recommendation for Pair-Wise Key-Establishment
Schemes Using Discrete Logarithm Cryptography, April 2018.
https:/doi.org/10.6028/NIST.SP.800-56Ar3

NIST, NIST Special Publication 800-67: Recommendation for the Triple Data Encryption
Algorithm (TDEA) Block Cipher, November 2017.
https:/doi.org/10.6028/NIST.SP.800-67r2

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page xii
Non-confidential

https://tools.ietf.org/html/rfc5869.html
https://tools.ietf.org/html/rfc5915.html
https://tools.ietf.org/html/rfc6979.html
https://tools.ietf.org/html/rfc7539.html
https://tools.ietf.org/html/rfc7748.html
https://tools.ietf.org/html/rfc7919.html
https://tools.ietf.org/html/rfc8017.html
https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
https://www.secg.org/sec1-v2.pdf
https://www.secg.org/sec2-v2.pdf
https://www.secg.org/SEC2-Ver-1.0.pdf
https://doi.org/10.6028/NIST.SP.800-38A
https://doi.org/10.6028/NIST.SP.800-38B
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-67r2

Ref Title
[X9-62]

Table 2 (continued)

ANSI, Public Key Cryptography For The Financial Services Industry: The Elliptic Curve Digital

Signature Algorithm (ECDSA).
https://standards.globalspec.com/std/1955141/ANSI%20X9.62

Terms and abbreviations

This document uses the following terms and abbreviations.

Term
AEAD
Algorithm

API
Asymmetric

Authenticated
Encryption with
Associated Data
(AEAD)

Byte

Cipher

Cryptoprocessor

Hash
HMAC

IMPLEMENTATION DEFINED

Initialization vector (IV)

v
KDF

Key agreement

IHI 0086
1.0.1

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

Meaning
See Authenticated Encryption with Associated Data.

A finite sequence of steps to perform a particular operation.

In this specification, an algorithm is a cipher or a related function. Other texts
call this a cryptographic mechanism.

Application Programming Interface.
See Public-key cryptography.

A type of encryption that provides confidentiality and authenticity of data
using symmetric keys.

In this specification, a unit of storage comprising eight bits, also called an
octet.

An algorithm used for encryption or decryption with a symmetric key.

The component that performs cryptographic operations. A cryptoprocessor
might contain a keystore and countermeasures against a range of physical and
timing attacks.

A cryptographic hash function, or the value returned by such a function.
A type of MAC that uses a cryptographic key with a hash function.

Behavior that is not defined by the architecture, but is defined and
documented by individual implementations.

An additional input that is not part of the message. It is used to prevent an
attacker from making any correlation between cipher text and plain text.

This specification uses the term for such initial inputs in all contexts. For
example, the initial counter in CTR mode is called the IV.

See Initialization vector.
See Key Derivation Function.
An algorithm for two or more parties to establish a common secret key.

Page xiii
Non-confidential

https://standards.globalspec.com/std/1955141/ANSI%20X9.62

Term

Key Derivation
Function (KDF)

Key identifier

Key policy

Key size

Key type

Keystore

Lifetime
MAC

Message
Authentication Code
(MAQ)

Message digest

Multi-part operation

Non-extractable key

Nonce

Persistent key
PSA

Public-key
cryptography

Salt

Signature

Single-part function
SPECIFICATION DEFINED

Symmetric

IHI 0086
1.0.1

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

Table 3 (continued)
Meaning

Key Derivation Function. An algorithm for deriving keys from secret material.

A reference to a cryptographic key. Key identifiers in the PSA Crypto API are
32-bit integers.

Key metadata that describes and restricts what a key can be used for.

The size of a key as defined by common conventions for each key type. For
keys that are built from several numbers of strings, this is the size of a
particular one of these numbers or strings.

This specification expresses key sizes in bits.
Key metadata that describes the structure and content of a key.

A hardware or software component that protects, stores, and manages
cryptographic keys.

Key metadata that describes when a key is destroyed.
See Message Authentication Code.

A short piece of information used to authenticate a message. It is created
and verified using a symmetric key.

A hash of a message. Used to determine if a message has been tampered.

An API which splits a single cryptographic operation into a sequence of
separate steps.

A key with a key policy that prevents it from being read by ordinary means.

Used as an input for certain AEAD algorithms. Nonces must not be reused
with the same key because this can break a cryptographic protocol.

A key that is stored in protected non-volatile memory.
Platform Security Architecture

A type of cryptographic system that uses key pairs. A keypair consists of a
(secret) private key and a public key (not secret). A public key cryptographic
algorithm can be used for key distribution and for digital signatures.

Used as an input for certain algorithms, such as key derivations.

The output of a digital signature scheme that uses an asymmetric keypair.
Used to establish who produced a message.

An API that implements the cryptographic operation in a single function call.
Behavior that is defined by this specification.

A type of cryptographic algorithm that uses a single key. A symmetric key
can be used with a block cipher or a stream cipher.

Page xiv
Non-confidential

Table 3 (continued)
Term Meaning

Volatile key A key that has a short lifespan and is guaranteed not to exist after a restart of
an application instance.

Potential for change

The contents of this specification are stable for version 1.0.

The following may change in updates to the version 1.0 specification:

e Small optional feature additions.
o Clarifications.

Significant additions, or any changes that affect the compatibility of the interfaces defined in this
specification will only be included in a new major or minor version of the specification.

Conventions

Typographical conventions
The typographical conventions are:

italic Introduces special terminology, and denotes citations.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items
appearing in assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS
Used for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Terms
and abbreviations.

Red text Indicates an open issue.
Blue text Indicates a link. This can be

e A cross-reference to another location within the document
e A URL, for example http:/infocenter.arm.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by Ob, and hexadecimal numbers
by ox.

In both cases, the prefix and the associated value are written in a monospace font, for example oxFFFFoo00.
To improve readability, long numbers can be written with an underscore separator between every four
characters, for example oxFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a
number.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page xv
1.0.1 Non-confidential

http://infocenter.arm.com

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode is written in a monospace font. The pseudocode language is described in the Arm
Architecture Reference Manual.

Assembler syntax descriptions

This book is not expected to contain assembler code or pseudo code examples.

Any code examples are shown in a monospace font.

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to arm.psa-feedback@arm.com. Give:

The title (PSA Cryptography API).
The number and issue (IHI 0086 1.0.1).

The page numbers to which your comments apply.

The rule identifiers to which your comments apply, if applicable.

A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page xvi
1.0.1 Non-confidential

mailto:arm.psa-feedback@arm.com

1 Introduction

Arm’s Platform Security Architecture (PSA) is a holistic set of threat models, security analyses, hardware
and firmware architecture specifications, an open source firmware reference implementation, and an
independent evaluation and certification scheme. PSA provides a recipe, based on industry best practice,
that allows security to be consistently designed in, at both a hardware and firmware level.

The PSA Cryptographic API (Crypto API) described in this document is an important PSA component that
provides a portable interface to cryptographic operations on a wide range of hardware. The interface is
user-friendly, while still providing access to the low-level primitives used in modern cryptography. It does
not require that the user has access to the key material. Instead, it uses opaque key identifiers.

This document is part of the PSA family of specifications. It defines an interface for cryptographic services,
including cryptography primitives and a key storage functionality.

This document includes:

e Arationale for the design.

e A high-level overview of the functionality provided by the interface.

A description of typical architectures of implementations for this specification.

General considerations for implementers of this specification and for applications that use the
interface defined in this specification.

e A detailed definition of the API.

Companion documents will define profiles for this specification. A profile is a minimum mandatory subset
of the interface that a compliant implementation must provide.

2 Design goals

2.1 Suitable for constrained devices

The interface is suitable for a vast range of devices: from special-purpose cryptographic processors that
process data with a built-in key, to constrained devices running custom application code, such as
microcontrollers, and multi-application devices, such as servers. Consequentially, the interface is scalable
and modular.

e Scalable: devices only need to implement the functionality that they will use.

e Modular: larger devices implement larger subsets of the same interface, rather than different
interfaces.

In this interface, all operations on unbounded amounts of data allow multi-part processing, as long as the
calculations on the data are performed in a streaming manner. This means that the application does not
need to store the whole message in memory at one time. As a result, this specification is suitable for very
constrained devices, including those where memory is very limited.

Memory outside the keystore boundary is managed by the application. An implementation of the interface
is not required to retain any state between function calls, apart from the content of the keystore and other
data that must be kept inside the keystore security boundary.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 17
1.0.1 Non-confidential

The interface does not expose the representation of keys and intermediate data, except when required for
interchange. This allows each implementation to choose optimal data representations. Implementations
with multiple components are also free to choose which memory area to use for internal data.

2.2 A keystore interface

The specification allows cryptographic operations to be performed on a key to which the application does
not have direct access. Except where required for interchange, applications access all keys indirectly, by an
identifier. The key material corresponding to that identifier can reside inside a security boundary that
prevents it from being extracted, except as permitted by a policy that is defined when the key is created.

2.3 Optional isolation

Implementations can isolate the cryptoprocessor from the calling application, and can further isolate
multiple calling applications. The interface allows the implementation to be separated between a frontend
and a backend. In an isolated implementation, the frontend is the part of the implementation that is
located in the same isolation boundary as the application, which the application accesses by function calls.
The backend is the part of the implementation that is located in a different environment, which is
protected from the frontend. Various technologies can provide protection, for example:

e Process isolation in an operating system.
e Partition isolation, either with a virtual machine or a partition manager.

e Physical separation between devices.

Communication between the frontend and backend is beyond the scope of this specification.

In an isolated implementation, the backend can serve more than one implementation instance. In this case,
a single backend communicates with multiple instances of the frontend. The backend must enforce caller
isolation: it must ensure that assets of one frontend are not visible to any other frontend. The mechanism
for identifying callers is beyond the scope of this specification. An implementation that provides caller
isolation must document the identification mechanism. An implementation that provides isolation must
document any implementation-specific extension of the API that enables frontend instances to share data
in any form.

In summary, there are three types of implementation:

e No isolation: there is no security boundary between the application and the cryptoprocessor. For
example, a statically or dynamically linked library is an implementation with no isolation.

e Cryptoprocessor isolation: there is a security boundary between the application and the
cryptoprocessor, but the cryptoprocessor does not communicate with other applications. For
example, a cryptoprocessor chip that is a companion to an application processor is an
implementation with cryptoprocessor isolation.

e Caller isolation: there are multiple application instances, with a security boundary between the
application instances among themselves, as well as between the cryptoprocessor and the application
instances. For example, a cryptography service in a multiprocess environment is an implementation
with caller and cryptoprocessor isolation.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 18
1.0.1 Non-confidential

2.4 Choice of algorithms

The specification defines a low-level cryptographic interface, where the caller explicitly chooses which
algorithm and which security parameters they use. This is necessary to implement protocols that are
inescapable in various use cases. The design of the interface enables applications to implement
widely-used protocols and data exchange formats, as well as custom ones.

As a consequence, all cryptographic functionality operates according to the precise algorithm specified by
the caller. However, this does not apply to device-internal functionality, which does not involve any form
of interoperability, such as random number generation. The specification does not include generic
higher-level interfaces, where the implementation chooses the best algorithm for a purpose. However,
higher-level libraries can be built on top of the PSA Crypto API.

Another consequence is that the specification permits the use of algorithms, key sizes and other
parameters that, while known to be insecure, might be necessary to support legacy protocols or legacy
data. Where major weaknesses are known, the algorithm descriptions give applicable warnings. However,
the lack of a warning both does not and cannot indicate that an algorithm is secure in all circumstances.
Application developers need to research the security of the protocols and algorithms that they plan to use
to determine if these meet their requirements.

The interface facilitates algorithm agility. As a consequence, cryptographic primitives are presented
through generic functions with a parameter indicating the specific choice of algorithm. For example, there
is a single function to calculate a message digest, which takes a parameter that identifies the specific hash
algorithm.

2.5 Ease of use

The interface is designed to be as user-friendly as possible, given the aforementioned constraints on
suitability for various types of devices and on the freedom to choose algorithms.

In particular, the code flows are designed to reduce the risk of dangerous misuse. The interface is designed
in part to make it harder to misuse. Where possible, it is designed so that typical mistakes result in test
failures, rather than subtle security issues. Implementations avoid leaking data when a function is called
with invalid parameters, to the extent allowed by the C language and by implementation size constraints.

2.6 Example use cases

This section lists some of the use cases that were considered during the design of this API. This list is not
exhaustive, nor are all implementations required to support all use cases.

2.6.1 Network Security (TLS)

The API provides all of the cryptographic primitives needed to establish TLS connections.

2.6.2 Secure Storage

The API provides all primitives related to storage encryption, block or file-based, with master encryption
keys stored inside a key store.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 19
1.0.1 Non-confidential

2.6.3 Network Credentials

The API provides network credential management inside a key store, for example, for X.509-based
authentication or pre-shared keys on enterprise networks.

2.6.4 Device Pairing

The API provides support for key agreement protocols that are often used for secure pairing of devices
over wireless channels. For example, the pairing of an NFC token or a Bluetooth device might use key
agreement protocols upon first use.

2.6.5 Secure Boot

The API provides primitives for use during firmware integrity and authenticity validation, during a secure
or trusted boot process.

2.6.6 Attestation

The API provides primitives used in attestation activities. Attestation is the ability for a device to sign an
array of bytes with a device private key and return the result to the caller. There are several use cases;
ranging from attestation of the device state, to the ability to generate a key pair and prove that it has been
generated inside a secure key store. The API provides access to the algorithms commonly used for
attestation.

2.6.7 Factory Provisioning

Most loT devices receive a unique identity during the factory provisioning process, or once they have been
deployed to the field. This API provides the APIs necessary for populating a device with keys that
represent that identity.

3 Functionality overview

This section provides a high-level overview of the functionality provided by the interface defined in this
specification. Refer to the API definition for a detailed description.

Future additions describes features that might be included in future versions of this specification.

Due to the modularity of the interface, almost every part of the library is optional. The only mandatory
function is psa_crypto_init().

3.1 Library management

Applications must call psa_crypto_init() to initialize the library before using any other function.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 20
1.0.1 Non-confidential

3.2 Key management

Applications always access keys indirectly via an identifier, and can perform operations using a key without
accessing the key material. This allows keys to be non-extractable, where an application can use a key but is
not permitted to obtain the key material. Non-extractable keys are bound to the device, can be
rate-limited and can have their usage restricted by policies.

Each key has a set of attributes that describe the key and the policy for using the key. A
psa_key_attributes_t object contains all of the attributes, which is used when creating a key and when
querying key attributes.

The key attributes include:

e A type and size that describe the key material.
e The key identifier that the application uses to refer to the key.
e A lifetime that determines when the key material is destroyed, and where it is stored.

e A policy that determines how the key can be used.
Keys are created using one of the key creation functions:

e psa_import_key()
e psa_generate_key()
® psa_key_derivation_output_key()

e psa_copy_key()

These output the key identifier, that is used to access the key in all other parts of the API.

All of the key attributes are set when the key is created and cannot be changed without destroying the key
first. If the original key permits copying, then the application can specify a different lifetime or restricted
policy for the copy of the key.

A call to psa_destroy_key() destroys the key material, and will cause any active operations that are using
the key to fail. Therefore an application must not destroy a key while an operation using that key is in
progress, unless the application is prepared to handle a failure of the operation.

3.2.1 Key identifiers

Key identifiers are integral values that act as permanent names for persistent keys, or as transient
references to volatile keys. Key identifiers are defined by the application for persistent keys, and by the
implementation for volatile keys and for built-in keys.

Key identifiers are output from a successful call to one of the key creation functions.

Valid key identifiers must have distinct values within the same application. If the implementation provides
caller isolation, then key identifiers are local to each application. That is, the same key identifier in two
applications corresponds to two different keys.

See Key identifiers on page 75.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 21
1.0.1 Non-confidential

3.2.2 Key lifetimes

The lifetime of a key indicates where it is stored and which application and system actions will create and
destroy it.

There are two main types of lifetimes: volatile and persistent.

Volatile keys are automatically destroyed when the application instance terminates or on a power reset of
the device. Volatile key identifiers are allocated by the implementation when the key is created. Volatile
keys can be explicitly destroyed with a call to psa_destroy_key().

Persistent keys are preserved until the application explicitly destroys them or until an
implementation-specific device management event occurs, for example, a factory reset. The key identifier
for a persistent key is set by the application when creating the key, and remains valid throughout the
lifetime of the key, even if the application instance that created the key terminates.

See Key lifetimes on page 68.

3.2.3 Key policies

All keys have an associated policy that regulates which operations are permitted on the key. Each key
policy is a set of usage flags and a specific algorithm that is permitted with the key. See Key policies on
page 78.

3.2.4 Recommendations of minimum standards for key management

Most implementations provide the following functions:

e psa_import_key(). The exceptions are implementations that only give access to a key or keys that are
provisioned by proprietary means, and do not allow the main application to use its own
cryptographic material.

e psa_get_key_attributes() and the psa_get_key_xxx() accessor functions. They are easy to implement,
and it is difficult to write applications and to diagnose issues without being able to check the
metadata.

e psa_export_public_key(). This function is usually provided if the implementation supports any
asymmetric algorithm, since public-key cryptography often requires the delivery of a public key that
is associated with a protected private key.

e psa_export_key(). However, highly constrained implementations that are designed to work only with
short-term keys, or only with long-term non-extractable keys, do not need to provide this function.

3.3 Symmetric cryptography

This specification defines interfaces for the following types of symmetric cryptographic operation:
e Message digests, commonly known as hash functions.
e Message authentication codes (MAC).

e Symmetric ciphers.

e Authenticated encryption with associated data (AEAD).

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 22
1.0.1 Non-confidential

For each type of symmetric cryptographic operation, the API includes:

e A pair of single-part functions. For example, compute and verify, or encrypt and decrypt.

e A series of functions that permit multi-part operations.

3.3.1 Single-part Functions

Single-part functions are APIs that implement the cryptographic operation in a single function call. This is
the easiest API to use when all of the inputs and outputs fit into the application memory.

Some use cases involve messages that are too large to be assembled in memory, or require non-default
configuration of the algorithm. These use cases require the use of a multi-part operation.

3.3.2 Multi-part operations

Multi-part operations are APIs which split a single cryptographic operation into a sequence of separate
steps. This enables fine control over the configuration of the cryptographic operation, and allows the
message data to be processed in fragments instead of all at once. For example, the following situations
require the use of a multi-part operation:

Processing messages that cannot be assembled in memory.

Using a deterministic IV for unauthenticated encryption.

Providing the IV separately for unauthenticated encryption or decryption.

Separating the AEAD authentication tag from the cipher text.

Each multi-part operation defines a specific object type to maintain the state of the operation. These types
are implementation-defined. All multi-part operations follow the same pattern of use:

1. Allocate: Allocate memory for an operation object of the appropriate type. The application can use
any allocation strategy: stack, heap, static, etc.

2. Initialize: Initialize or assign the operation object by one of the following methods:
e Set it to logical zero. This is automatic for static and global variables. Explicit initialization must
use the associated PSA_xxx_INIT macro as the type is implementation-defined.
e Set it to all-bits zero. This is automatic if the object was allocated with calloc().
e Assign the value of the associated macro PSA_xxx_INIT.
e Assign the result of calling the associated function psa_xxx_init().
The resulting object is now inactive.
It is an error to initialize an operation object that is in active or error states. This can leak memory or
other resources.
3. Setup: Start a new multi-part operation on an inactive operation object. Each operation object will
define one or more setup functions to start a specific operation.
On success, a setup function will put an operation object into an active state. On failure, the
operation object will remain inactive.

4. Update: Update an active operation object. The update function can provide additional parameters,
supply data for processing or generate outputs.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 23
1.0.1 Non-confidential

On success, the operation object remains active. On failure, the operation object will enter an error
state.

5. Finish: To end the operation, call the applicable finishing function. This will take any final inputs,
produce any final outputs, and then release any resources associated with the operation.

On success, the operation object returns to the inactive state. On failure, the operation object will
enter an error state.

An operation can be aborted at any stage during its use by calling the associated psa_xxx_abort() function.
This will release any resources associated with the operation and return the operation object to the
inactive state.

Any error that occurs to an operation while it is in an active state will result in the operation entering an
error state. The application must call the associated psa_xxx_abort () function to release the operation
resources and return the object to the inactive state.

Once an operation object is returned to the inactive state, it can be reused by calling one of the applicable
setup functions again.

If a multi-part operation object is not initialized before use, the behavior is undefined.

If a multi-part operation function determines that the operation object is not in any valid state, it can
return PSA_ERROR_CORRUPTION_DETECTED.

If a multi-part operation function is called with an operation object in the wrong state, the function will
return PSA_ERROR_BAD_STATE and the operation object will enter the error state.

It is safe to move a multi-part operation object to a different memory location, for example, using a bitwise
copy, and then to use the object in the new location. For example, an application can allocate an operation
object on the stack and return it, or the operation object can be allocated within memory managed by a
garbage collector. However, this does not permit the following behaviors:

e Moving the object while a function is being called on the object. This is not safe. See also Concurrent
calls.

e Working with both the original and the copied operation objects. This requires cloning the operation,
which is only available for hash operations using psa_hash_clone().

Each type of multi-part operation can have multiple active states. Documentation for the specific operation

describes the configuration and update functions, and any requirements about their usage and ordering.

3.3.3 Message digests (Hashes)

The single-part hash functions are:

e psa_hash_compute() to calculate the hash of a message.

e psa_hash_compare() to compare the hash of a message with a reference value.
The psa_hash_operation_t multi-part operation allows messages to be processed in fragments:

1. Initialize the psa_hash_operation_t object to zero, or by assigning the value of the associated macro
PSA_HASH_OPERATION_INIT.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 24
1.0.1 Non-confidential

2. Call psa_hash_setup() to specify the required hash algorithm, call psa_hash_clone() to duplicate the
state of active psa_hash_operation_t object, or call psa_hash_resume() to restart a hash operation with
the output from a previously suspended hash operation.

3. Call the psa_hash_update() function on successive chunks of the message.

4. At the end of the message, call the required finishing function:

e To suspend the hash operation and extract a hash suspend state, call psa_hash_suspend(). The
output state can subsequently be used to resume the hash operation.

e To calculate the digest of a message, call psa_hash_finish().
e To verify the digest of a message against a reference value, call psa_hash_verify().

To abort the operation or recover from an error, call psa_hash_abort ().

3.3.4 Message authentication codes (MACs)
The single-part MAC functions are:

e psa_mac_compute() to calculate the MAC of a message.

e psa_mac_verify() to compare the MAC of a message with a reference value.
The psa_mac_operation_t multi-part operation allows messages to be processed in fragments:

1. Initialize the psa_mac_operation_t object to zero, or by assigning the value of the associated macro
PSA_MAC_OPERATION_INIT.

2. Call psa_mac_sign_setup() or psa_mac_verify_setup() to specify the algorithm and key.
3. Call the psa_mac_update () function on successive chunks of the message.
4. At the end of the message, call the required finishing function:

e To calculate the MAC of the message, call psa_mac_sign_finish().

e To verify the MAC of the message against a reference value, call psa_mac_verify_finish().

To abort the operation or recover from an error, call psa_mac_abort().
3.3.5 Encryption and decryption

Note:

The unauthenticated cipher APl is provided to implement legacy protocols and for use cases where
the data integrity and authenticity is guaranteed by non-cryptographic means. It is recommended
that newer protocols use Authenticated encryption (AEAD) on page 26.

The single-part functions for encrypting or decrypting a message using an unauthenticated symmetric
cipher are:

e psa_cipher_encrypt() to encrypt a message using an unauthenticated symmetric cipher. The
encryption function generates a random |V. Use the multi-part API to provide a deterministic IV: this
is not secure in general, but can be secure in some conditions that depend on the algorithm.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 25
1.0.1 Non-confidential

e psa_cipher_decrypt() to decrypt a message using an unauthenticated symmetric cipher.

The psa_cipher_operation_t multi-part operation permits alternative initialization parameters and allows
messages to be processed in fragments:

1. Initialize the psa_cipher_operation_t object to zero, or by assigning the value of the associated macro
PSA_CIPHER_OPERATION_INIT.

2. Call psa_cipher_encrypt_setup() Or psa_cipher_decrypt_setup() to specify the algorithm and key.
3. Provide additional parameters:

o When encrypting data, generate or set an initialization vector (IV), nonce, or similar initial value
such as an initial counter value. To generate a random IV, which is recommended in most
protocols, call psa_cipher_generate_iv(). To set the IV, call psa_cipher_set_iv().

e When decrypting, set the IV or nonce. To set the IV, call psa_cipher_set_iv().
4. Call the psa_cipher_update() function on successive chunks of the message.

5. Call psa_cipher_finish() to complete the operation and return any final output.

To abort the operation or recover from an error, call psa_cipher_abort().

3.3.6 Authenticated encryption (AEAD)
The single-part AEAD functions are:

e psa_aead_encrypt() to encrypt a message using an authenticated symmetric cipher.

e psa_aead_decrypt() to decrypt a message using an authenticated symmetric cipher.
These functions follow the interface recommended by An Interface and Algorithms for Authenticated
Encryption [RFC5116].

The encryption function requires a nonce to be provided. To generate a random nonce, either call
psa_generate_random() or use the AEAD multi-part API.

The psa_aead_operation_t multi-part operation permits alternative initialization parameters and allows
messages to be processed in fragments:
1. Initialize the psa_aead_operation_t object to zero, or by assigning the value of the associated macro
PSA_AEAD_OPERATION_INIT.
2. Call psa_aead_encrypt_setup() or psa_aead_decrypt_setup() to specify the algorithm and key.
3. Provide additional parameters:

e If the algorithm requires it, call psa_aead_set_lengths() to specify the length of the
non-encrypted and encrypted inputs to the operation.

e When encrypting, call either psa_aead_generate_nonce() or psa_aead_set_nonce() to generate or
set the nonce.

e When decrypting, call psa_aead_set_nonce() to set the nonce.
4., Call psa_aead_update_ad() zero or more times with fragments of the non-encrypted additional data.

5. Call psa_aead_update() zero or more times with fragments of the plaintext or ciphertext to encrypt or
decrypt.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 26
1.0.1 Non-confidential

6. At the end of the message, call the required finishing function:

e To complete an encryption operation, call psa_aead_finish() to compute and return
authentication tag.

e To complete a decryption operation, call psa_aead_verify() to compute the authentication tag
and verify it against a reference value.

To abort the operation or recover from an error, call psa_aead_abort().
Having a multi-part interface to authenticated encryption raises specific issues.

Multi-part authenticated decryption produces partial results that are not authenticated. Applications must
not use or expose partial results of authenticated decryption until psa_aead_verify() has returned a
success status and must destroy all partial results without revealing them if psa_aead_verify() returns a
failure status. Revealing partial results, either directly or indirectly through the application’s behavior, can
compromise the confidentiality of all inputs that are encrypted with the same key.

For encryption, some common algorithms cannot be processed in a streaming fashion. For SIV mode, the
whole plaintext must be known before the encryption can start; the multi-part AEAD API is not meant to
be usable with SIV mode. For CCM mode, the length of the plaintext must be known before the
encryption can start; the application can call the function psa_aead_set_lengths() to provide these lengths
before providing input.

3.3.7 Key derivation

A key derivation encodes a deterministic method to generate a finite stream of bytes. This data stream is
computed by the cryptoprocessor and extracted in chunks. If two key derivation operations are
constructed with the same parameters, then they produce the same output.

A key derivation consists of two phases:

1. Input collection. This is sometimes known as extraction: the operation “extracts” information from
the inputs to generate a pseudorandom intermediate secret value.

2. Output generation. This is sometimes known as expansion: the operation “expands” the intermediate
secret value to the desired output length.

The specification defines a multi-part operation API for key derivation that allows for multiple key and
non-key outputs to be extracted from a single derivation operation object.

In an implementation with isolation, the intermediate state of the key derivation is not visible to the caller,
and if an output of the derivation is a non-exportable key, then this key cannot be recovered outside the
isolation boundary.

Applications use the psa_key_derivation_operation_t type to create key derivation operations. The
operation object is used as follows:

1. Initialize a psa_key_derivation_operation_t object to zero or to PSA_KEY_DERIVATION_OPERATION_INIT.
2. Call psa_key_derivation_setup() to select a key derivation algorithm.

3. Call the functions psa_key_derivation_input_bytes() and psa_key_derivation_input_key(), or
psa_key_derivation_key_agreement() to provide the inputs to the key derivation algorithm. Many key
derivation algorithms take multiple inputs; the step parameter to these functions indicates which
input is being provided. The documentation for each key derivation algorithm describes the
expected inputs for that algorithm and in what order to pass them.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 27
1.0.1 Non-confidential

4. Optionally, call psa_key_derivation_set_capacity() to set a limit on the amount of data that can be
output from the key derivation operation.

5. Call psa_key_derivation_output_key() to create a derived key, or psa_key_derivation_output_bytes()
to export the derived data. These functions can be called multiple times to read successive output
from the key derivation, until the stream is exhausted when its capacity has been reached.

6. Key derivation does not finish in the same way as other multi-part operations. Call
psa_key_derivation_abort() to release the key derivation operation memory when the object is no
longer required.

To recover from an error, call psa_key_derivation_abort() to release the key derivation operation memory.

A key derivation operation cannot be rewound. Once a part of the stream has been output, it cannot be
output again. This ensures that the same part of the output will not be used for different purposes.

3.3.8 Example of the symmetric cryptography API

Here is an example of a use case where a master key is used to generate both a message encryption key
and an IV for the encryption, and the derived key and IV are then used to encrypt a message.

1. Derive the message encryption material from the master key.
a. Initialize a psa_key_derivation_operation_t object to zero or to
PSA_KEY_DERIVATION_OPERATION_INIT.
b. Call psa_key_derivation_setup() with PSA_ALG_HKDF as the algorithm.
c. Call psa_key_derivation_input_key() with the step PSA_KEY_DERIVATION_INPUT_SECRET and the
master key.
d. Call psa_key_derivation_input_bytes() with the step PSA_KEY_DERIVATION_INPUT_INFO and a public
value that uniquely identifies the message.
Populate a psa_key_attributes_t object with the derived message encryption key's attributes.
Call psa_key_derivation_output_key() to create the derived message key.
Call psa_key_derivation_output_bytes() to generate the derived IV.
Call psa_key_derivation_abort() to release the key derivation operation memory.

S @ -0

2. Encrypt the message with the derived material.

Initialize a psa_cipher_operation_t object to zero or to PSA_CIPHER_OPERATION_INIT.
Call psa_cipher_encrypt_setup() with the derived message encryption key.

Call psa_cipher_set_iv() using the derived IV retrieved above.

Call psa_cipher_update() one or more times to encrypt the message.

e. Call psa_cipher_finish() at the end of the message.

&0 T o

3. Call psa_destroy_key() to clear the generated key.

3.4 Asymmetric cryptography

This specification defines functions for asymmetric cryptography, including asymmetric encryption,
asymmetric signature, and two-way key agreement.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 28
1.0.1 Non-confidential

3.4.1 Asymmetric encryption

Asymmetric encryption is provided through the functions psa_asymmetric_encrypt() and
psa_asymmetric_decrypt().

3.4.2 Hash-and-sign

The signature and verification functions psa_sign_message() and psa_verify_message() take a message as
one of their inputs and perform a hash-and-sign algorithm.

The functions psa_sign_hash() and psa_verify_hash() take a message hash as one of their inputs. This is
useful for signing pre-computed hashes, or for implementing hash-and-sign using a multi-part hash
operation before signing the resulting hash. To determine which hash algorithm to use, call the macro
PSA_ALG_GET_HASH() on the corresponding signature algorithm.

Some hash-and-sign algorithms add padding to the message hash before completing the signing operation.
The format of the padding that is used depends on the algorithm used to construct the signature.

3.4.3 Key agreement

This specification defines two functions for a Diffie-Hellman-style key agreement where each party
combines its own private key with the peer’s public key.

The recommended approach is to use a key derivation operation with the
psa_key_derivation_key_agreement() input function, which calculates a shared secret for the key derivation
function.

Where an application needs direct access to the shared secret, it can call psa_raw_key_agreement () instead.
Note that in general the shared secret is not directly suitable for use as a key because it is biased.

3.5 Randomness and key generation

We strongly recommended that implementations include a random generator, consisting of a
cryptographically secure pseudo-random generator (CSPRNG), which is adequately seeded with a
cryptographic-quality hardware entropy source, commonly referred to as a true random number generator
(TRNG). Constrained implementations can omit the random generation functionality if they do not
implement any algorithm that requires randomness internally, and they do not provide a key generation
functionality. For example, a special-purpose component for signature verification can omit this.

It is recommended that applications use psa_generate_key(), psa_cipher_generate_iv() or
psa_aead_generate_nonce() to generate suitably-formatted random data, as applicable. In addition, the API
includes a function psa_generate_random() to generate and extract arbitrary random data.

4 Sample architectures

This section describes some example architectures that can be used for implementations of the interface
described in this specification. This list is not exhaustive and the section is entirely non-normative.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 29
1.0.1 Non-confidential

4.1 Single-partition architecture

In the single-partition architecture, there is no security boundary inside the system. The application code
can access all the system memory, including the memory used by the cryptographic services described in
this specification. Thus, the architecture provides no isolation.

This architecture does not conform to the Arm Platform Security Architecture Security Model. However, it is
useful for providing cryptographic services that use the same interface, even on devices that cannot
support any security boundary. So, while this architecture is not the primary design goal of the API defined
in the present specification, it is supported.

The functions in this specification simply execute the underlying algorithmic code. Security checks can be
kept to a minimum, since the cryptoprocessor cannot defend against a malicious application. Key import
and export copy data inside the same memory space.

This architecture also describes a subset of some larger systems, where the cryptographic services are
implemented inside a high-security partition, separate from the code of the main application, though it
shares this high-security partition with other platform security services.

4.2 Cryptographic token and single-application processor

This system is composed of two partitions: one is a cryptoprocessor and the other partition runs an
application. There is a security boundary between the two partitions, so that the application cannot access
the cryptoprocessor, except through its public interface. Thus, the architecture provides cryptoprocessor
isolation. The cryptoprocessor has some non-volatile storage, a TRNG, and possibly, some cryptographic
accelerators.

There are a number of potential physical realizations: the cryptoprocessor might be a separate chip, a
separate processor on the same chip, or a logical partition using a combination of hardware and software
to provide the isolation. These realizations are functionally equivalent in terms of the offered software
interface, but they would typically offer different levels of security guarantees.

The PSA crypto API in the application processor consists of a thin layer of code that translates function
calls to remote procedure calls in the cryptoprocessor. All cryptographic computations are, therefore,
performed inside the cryptoprocessor. Non-volatile keys are stored inside the cryptoprocessor.

4.3 Cryptoprocessor with no key storage

As in the Cryptographic token and single-application processor architecture, this system is also composed of
two partitions separated by a security boundary and also provides cryptoprocessor isolation. However,
unlike the previous architecture, in this system, the cryptoprocessor does not have any secure, persistent
storage that could be used to store application keys.

If the cryptoprocessor is not capable of storing cryptographic material, then there is little use for a
separate cryptoprocessor, since all data would have to be imported by the application.

The cryptoprocessor can provide useful services if it is able to store at least one key. This might be a
hardware unique key that is burnt to one-time programmable memory during the manufacturing of the
device. This key can be used for one or more purposes:

e Encrypt and authenticate data stored in the application processor.

e Communicate with a paired device.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 30
1.0.1 Non-confidential

e Allow the application to perform operations with keys that are derived from the hardware unique key.

4.4 Multi-client cryptoprocessor

This is an expanded variant of the cryptographic token plus application architecture. In this variant, the
cryptoprocessor serves multiple applications that are mutually untrustworthy. This architecture provides
caller isolation.

In this architecture, API calls are translated to remote procedure calls, which encode the identity of the
client application. The cryptoprocessor carefully segments its internal storage to ensure that a client’s data
is never leaked to another client.

4.5 Multi-cryptoprocessor architecture

This system includes multiple cryptoprocessors. There are several reasons to have multiple
cryptoprocessors:

e Different compromises between security and performance for different keys. Typically, this means a
cryptoprocessor that runs on the same hardware as the main application and processes short-term
secrets, a secure element or a similar separate chip that retains long-term secrets.

e Independent provisioning of certain secrets.

e A combination of a non-removable cryptoprocessor and removable ones, for example, a smartcard or
HSM.

e Cryptoprocessors managed by different stakeholders who do not trust each other.
The keystore implementation needs to dispatch each request to the correct processor. For example:

e All requests involving a non-extractable key must be processed in the cryptoprocessor that holds
that key.

e Requests involving a persistent key must be processed in the cryptoprocessor that corresponds to
the key's lifetime value.

e Requests involving a volatile key might target a cryptoprocessor based on parameters supplied by
the application, or based on considerations such as performance inside the implementation.

5 Library conventions
5.1 Error handling

5.1.1 Return status

Almost all functions return a status indication of type psa_status_t. This is an enumeration of integer
values, with o (PsA_success) indicating successful operation and other values indicating errors. The
exceptions are functions which only access objects that are intended to be implemented as simple data
structures. Such functions cannot fail and either return void or a data value.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 31
1.0.1 Non-confidential

Unless specified otherwise, if multiple error conditions apply, an implementation is free to return any of
the applicable error codes. The choice of error code is considered an implementation quality issue.
Different implementations can make different choices, for example to favor code size over ease of
debugging or vice versa.

If the behavior is undefined, for example, if a function receives an invalid pointer as a parameter, this
specification makes no guarantee that the function will return an error. Implementations are encouraged
to return an error or halt the application in a manner that is appropriate for the platform if the undefined
behavior condition can be detected. However, application developers need to be aware that undefined
behavior conditions cannot be detected in general.

5.1.2 Behavior on error

All function calls must be implemented atomically:

e When a function returns a type other than psa_status_t, the requested action has been carried out.
o When a function returns the status PsA_SUCCESS, the requested action has been carried out.

e When a function returns another status of type psa_status_t, no action has been carried out. The
content of the output parameters is undefined, but otherwise the state of the system has not
changed, except as described below.

In general, functions that modify the system state, for example, creating or destroying a key, must leave
the system state unchanged if they return an error code. There are specific conditions that can result in
different behavior:

e The status PSA_ERROR_BAD_STATE indicates that a parameter was not in a valid state for the requested
action. This parameter might have been modified by the call and is now in an undefined state. The
only valid action on an object in an undefined state is to abort it with the appropriate
psa_abort_xxx() function.

e The status PSA_ERROR_INSUFFICIENT_DATA indicates that a key derivation object has reached its
maximum capacity. The key derivation operation might have been modified by the call. Any further
attempt to obtain output from the key derivation operation will return PSA_ERROR_INSUFFICIENT_DATA.

e The status PSA_ERROR_COMMUNICATION_FAILURE indicates that the communication between the
application and the cryptoprocessor has broken down. In this case, the cryptoprocessor must either
finish the requested action successfully, or interrupt the action and roll back the system to its original
state. Because it is often impossible to report the outcome to the application after a communication
failure, this specification does not provide a way for the application to determine whether the action
was successful.

e The statuses PSA_ERROR_STORAGE _FAILURE, PSA_ERROR_DATA_CORRUPT, PSA_ERROR_HARDWARE _FAILURE and
PSA_ERROR_CORRUPTION_DETECTED might indicate data corruption in the system state. When a function
returns one of these statuses, the system state might have changed from its previous state before
the function call, even though the function call failed.

e Some system states cannot be rolled back, for example, the internal state of the random number
generator or the content of access logs.

Unless otherwise documented, the content of output parameters is not defined when a function returns a
status other than Psa_succEss. It is recommended that implementations set output parameters to safe

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 32
1.0.1 Non-confidential

defaults to avoid leaking confidential data and limit risk, in case an application does not properly handle all
errors.

5.2 Parameter conventions

5.2.1 Pointer conventions

Unless explicitly stated in the documentation of a function, all pointers must be valid pointers to an object
of the specified type.

A parameter is considered a buffer if it points to an array of bytes. A buffer parameter always has the type
uint8_t * or const uint8_t *, and always has an associated parameter indicating the size of the array. Note
that a parameter of type void = is never considered a buffer.

All parameters of pointer type must be valid non-null pointers, unless the pointer is to a buffer of length o
or the function’s documentation explicitly describes the behavior when the pointer is null. Passing a null
pointer as a function parameter in other cases is expected to abort the caller on implementations where
this is the normal behavior for a null pointer dereference.

Pointers to input parameters can be in read-only memory. Output parameters must be in writable memory.
Output parameters that are not buffers must also be readable, and the implementation must be able to
write to a non-buffer output parameter and read back the same value, as explained in the Stability of
parameters on page 34 section.

5.2.2 Input buffer sizes
For input buffers, the parameter convention is:

const uint8_t *foo
Pointer to the first byte of the data. The pointer can be invalid if the buffer size is o.

size_t foo_length
Size of the buffer in bytes.

The interface never uses input-output buffers.

5.2.3 Output buffer sizes
For output buffers, the parameter convention is:

uint8_t *foo
Pointer to the first byte of the data. The pointer can be invalid if the buffer size is o.

size_t foo_size

The size of the buffer in bytes.

size_t *foo_length
On successful return, contains the length of the output in bytes.

The content of the data buffer and of *foo_length on errors is unspecified, unless explicitly mentioned in
the function description. They might be unmodified or set to a safe default. On successful completion, the
content of the buffer between the offsets *foo_length and foo_size is also unspecified.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 33
1.0.1 Non-confidential

Functions return PSA_ERROR_BUFFER_T00_SMALL if the buffer size is insufficient to carry out the requested
operation. The interface defines macros to calculate a sufficient buffer size for each operation that has an
output buffer. These macros return compile-time constants if their arguments are compile-time constants,
so they are suitable for static or stack allocation. Refer to an individual function’s documentation for the
associated output size macro.

Some functions always return exactly as much data as the size of the output buffer. In this case, the
parameter convention changes to:

uint8_t *foo
Pointer to the first byte of the output. The pointer can be invalid if the buffer size is o.

size_t foo_length
The number of bytes to return in foo if successful.

5.2.4 Overlap between parameters

Output parameters that are not buffers must not overlap with any input buffer or with any other output
parameter. Otherwise, the behavior is undefined.

Output buffers can overlap with input buffers. In this event, the implementation must return the same
result as if the buffers did not overlap. The implementation must behave as if it had copied all the inputs
into temporary memory, as far as the result is concerned. However, it is possible that overlap between
parameters will affect the performance of a function call. Overlap might also affect memory management
security if the buffer is located in memory that the caller shares with another security context, as
described in the Stability of parameters section.

5.2.5 Stability of parameters

In some environments, it is possible for the content of a parameter to change while a function is executing.
It might also be possible for the content of an output parameter to be read before the function terminates.
This can happen if the application is multithreaded. In some implementations, memory can be shared
between security contexts, for example, between tasks in a multitasking operating system, between a user
land task and the kernel, or between the Non-secure world and the Secure world of a trusted execution
environment.

This section describes the assumptions that an implementation can make about function parameters, and
the guarantees that the implementation must provide about how it accesses parameters.

Parameters that are not buffers are assumed to be under the caller’s full control. In a shared memory
environment, this means that the parameter must be in memory that is exclusively accessible by the
application. In a multithreaded environment, this means that the parameter must not be modified during
the execution, and the value of an output parameter is undetermined until the function returns. The
implementation can read an input parameter that is not a buffer multiple times and expect to read the
same data. The implementation can write to an output parameter that is not a buffer and expect to read
back the value that it last wrote. The implementation has the same permissions on buffers that overlap
with a buffer in the opposite direction.

In an environment with multiple threads or with shared memory, the implementation carefully accesses
non-overlapping buffer parameters in order to prevent any security risk resulting from the content of the
buffer being modified or observed during the execution of the function. In an input buffer that does not
overlap with an output buffer, the implementation reads each byte of the input once, at most. The

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 34
1.0.1 Non-confidential

implementation does not read from an output buffer that does not overlap with an input buffer.
Additionally, the implementation does not write data to a non-overlapping output buffer if this data is
potentially confidential and the implementation has not yet verified that outputting this data is authorized.

Unless otherwise specified, the implementation must not keep a reference to any parameter once a
function call has returned.

5.3 Key types and algorithms

Types of cryptographic keys and cryptographic algorithms are encoded separately. Each is encoded by
using an integral type: psa_key_type_t and psa_algorithm_t, respectively.

There is some overlap in the information conveyed by key types and algorithms. Both types contain
enough information, so that the meaning of an algorithm type value does not depend on what type of key
it is used with, and vice versa. However, the particular instance of an algorithm might depend on the key
type. For example, the algorithm PSA_ALG_GCM can be instantiated as any AEAD algorithm using the GCM
mode over a block cipher. The underlying block cipher is determined by the key type.

Key types do not encode the key size. For example, AES-128, AES-192 and AES-256 share a key type
PSA_KEY_TYPE_AES.

5.3.1 Structure of key and algorithm types

Both types use a partial bitmask structure, which allows the analysis and building of values from parts.
However, the interface defines constants, so that applications do not need to depend on the encoding,
and an implementation might only care about the encoding for code size optimization.

The encodings follows a few conventions:

e The highest bit is a vendor flag. Current and future versions of this specification will only define
values where this bit is clear. Implementations that wish to define additional implementation-specific
values must use values where this bit is set, to avoid conflicts with future versions of this
specification.

e The next few highest bits indicate the corresponding algorithm category: hash, MAC, symmetric
cipher, asymmetric encryption, and so on.

e The following bits identify a family of algorithms in a category-dependent manner.

¢ In some categories and algorithm families, the lowest-order bits indicate a variant in a systematic
way. For example, algorithm families that are parametrized around a hash function encode the hash
in the 8 lowest bits.

5.4 Concurrent calls

In some environments, an application can make calls to the PSA crypto API in separate threads. In such an
environment, concurrent calls are two or more calls to the APl whose execution can overlap in time.

Concurrent calls are performed correctly, as if the calls were executed in sequence, provided that they
obey the following constraints:

e There is no overlap between an output parameter of one call and an input or output parameter of
another call. Overlap between input parameters is permitted.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 35
1.0.1 Non-confidential

e A call to destroy a key must not overlap with a concurrent call to any of the following functions:

— Any call where the same key identifier is a parameter to the call.

— Any call in a multi-part operation, where the same key identifier was used as a parameter to a
previous step in the multi-part operation.

e Concurrent calls must not use the same operation object.

If any of these constraints are violated, the behavior is undefined.
If the application modifies an input parameter while a function call is in progress, the behavior is undefined.

Individual implementations can provide additional guarantees.

6 Implementation considerations

6.1 Implementation-specific aspects of the interface

6.1.1 Implementation profile

Implementations can implement a subset of the API and a subset of the available algorithms. The
implemented subset is known as the implementation’s profile. The documentation for each
implementation must describe the profile that it implements. This specification’s companion documents
also define a number of standard profiles.

6.1.2 Implementation-specific types

This specification defines a number of implementation-specific types, which represent objects whose
content depends on the implementation. These are defined as C typedef types in this specification, with a
comment /* implementation-defined type */ in place of the underlying type definition. For some types the
specification constrains the type, for example, by requiring that the type is a struct, or that it is convertible
to and from an unsigned integer. In the implementation’s version of psa/crypto.h, these types need to be
defined as complete C types so that objects of these types can be instantiated by application code.

Applications that rely on the implementation specific definition of any of these types might not be
portable to other implementations of this specification.

6.1.3 Implementation-specific macros

Some macro constants and function-like macros are precisely defined by this specification. The use of an
exact definition is essential if the definition can appear in more than one header file within a compilation.

Other macros that are defined by this specification have a macro body that is implementation-specific. The
description of an implementation-specific macro can optionally specify each of the following requirements:

Input domains: the macro must be valid for arguments within the input domain.

A return type: the macro result must be compatible with this type.

Output range: the macro result must lie in the output range.

Computed value: A precise mapping of valid input to output values.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 36
1.0.1 Non-confidential

Each implementation-specific macro is in one of following categories:
Specification-defined value

The result type and computed value of the macro expression is defined by this specification,
but the definition of the macro body is provided by the implementation.

These macros are indicated in this specification using the comment /* specification-defined
value */.

For function-like macros with specification-defined values:

e Example implementations are provided in an appendix to this specification. See Example
macro implementations on page 237.

e The expected computation for valid and supported input arguments will be defined as
pseudo-code in a future version of this specification.

Implementation-defined value
The value of the macro expression is implementation-defined.

For some macros, the computed value is derived from the specification of one or more
cryptographic algorithms. In these cases, the result must exactly match the value in those
external specifications.

These macros are indicated in this specification using the comment /* implementation-defined
value */.

Some of these macros compute a result based on an algorithm or key type. If an implementation defines
vendor-specific algorithms or key types, then it must provide an implementation for such macros that
takes all relevant algorithms and types into account. Conversely, an implementation that does not support
a certain algorithm or key type can define such macros in a simpler way that does not take unsupported
argument values into account.

Some macros define the minimum sufficient output buffer size for certain functions. In some cases, an
implementation is allowed to require a buffer size that is larger than the theoretical minimum. An
implementation must define minimum-size macros in such a way that it guarantees that the buffer of the
resulting size is sufficient for the output of the corresponding function. Refer to each macro’s
documentation for the applicable requirements.

6.2 Porting to a platform

6.2.1 Platform assumptions

This specification is designed for a C99 platform. The interface is defined in terms of C macros, functions
and objects.

The specification assumes 8-bit bytes, and “byte” and “octet” are used synonymously.

6.2.2 Platform-specific types

The specification makes use of some types defined in C99. These types must be defined in the
implementation version of psa/crypto.h or by a header included in this file. The following C99 types are
used:

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 37
1.0.1 Non-confidential

uint8_t, uint16_t, uint32_t
Unsigned integer types with 8, 16 and 32 value bits respectively. These types are defined
by the C99 header stdint.h.

6.2.3 Cryptographic hardware support

Implementations are encouraged to make use of hardware accelerators where available. A future version
of this specification will define a function interface that calls drivers for hardware accelerators and external
cryptographic hardware.

6.3 Security requirements and recommendations

6.3.1 Error detection

Implementations that provide isolation between the caller and the cryptography processing environment
must validate parameters to ensure that the cryptography processing environment is protected from
attacks caused by passing invalid parameters.

Even implementations that do not provide isolation are recommended to detect bad parameters and
fail-safe where possible.

6.3.2 Indirect object references

Implementations can use different strategies for allocating key identifiers, and other types of indirect
object reference.

Implementations that provide isolation between the caller and the cryptography processing environment
must consider the threats relating to abuse and misuse of key identifiers and other indirect resource
references. For example, multi-part operations can be implemented as backend state to which the client
only maintains an indirect reference in the application’s multi-part operation object.

An implementation that supports multiple callers must implement strict isolation of API resources between
different callers. For example, a client must not be able to obtain a reference to another client’s key by
guessing the key identifier value. Isolation of key identifiers can be achieved in several ways. For example:

e There is a single identifier namespace for all clients, and the implementation verifies that the client is
the owner of the identifier when looking up the key.

e Each client has an independent identifier namespace, and the implementation uses a client specific
identifier-to-key mapping when looking up the key.

After a volatile key identifier is destroyed, it is recommended that the implementation does not
immediately reuse the same identifier value for a different key. This reduces the risk of an attack that is
able to exploit a key identifier reuse vulnerability within an application.

6.3.3 Memory cleanup

Implementations must wipe all sensitive data from memory when it is no longer used. It is recommended
that they wipe this sensitive data as soon as possible. All temporary data used during the execution of a
function, such as stack buffers, must be wiped before the function returns. All data associated with an

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 38
1.0.1 Non-confidential

object, such as a multi-part operation, must be wiped, at the latest, when the object becomes inactive, for
example, when a multi-part operation is aborted.

The rationale for this non-functional requirement is to minimize impact if the system is compromised. If
sensitive data is wiped immediately after use, only data that is currently in use can be leaked. It does not
compromise past data.

6.3.4 Managing key material

In implementations that have limited volatile memory for keys, the implementation is permitted to store a
volatile key to a temporary location in non-volatile memory. The implementation must delete any such
copies when the key is destroyed, and it is recommended that these copies are deleted as soon as the key
is reloaded into volatile memory. An implementation that uses this method must clear any stored volatile
key material on startup.

Implementing the memory cleanup rule for persistent keys can result in inefficiencies when the same
persistent key is used sequentially in multiple cryptographic operations. The inefficiency stems from
loading the key from non-volatile storage on each use of the key. The PSA_KEY_USAGE_CACHE usage flagin a
key policy allows an application to request that the implementation does not cleanup non-essential copies
of persistent key material, effectively suspending the cleanup rules for that key. The effects of this policy
depend on the implementation and the key, for example:

e For volatile keys or keys in a secure element with no open/close mechanism, this is likely to have no
effect.

e For persistent keys that are not in a secure element, this allows the implementation to keep the key
in a memory cache outside of the memory used by ongoing operations.

e For keys in a secure element with an open/close mechanism, this is a hint to keep the key open in the
secure element.

The application can indicate when it has finished using the key by calling psa_purge_key(), to request that
the key material is cleaned from memory.

6.3.5 Safe outputs on error

Implementations must ensure that confidential data is not written to output parameters before validating
that the disclosure of this confidential data is authorized. This requirement is particularly important for
implementations where the caller can share memory with another security context, as described in the
Stability of parameters section.

In most cases, the specification does not define the content of output parameters when an error occurs. It
is recommended that implementations try to ensure that the content of output parameters is as safe as
possible, in case an application flaw or a data leak causes it to be used. In particular, Arm recommends that
implementations avoid placing partial output in output buffers when an action is interrupted. The meaning
of “safe as possible” depends on the implementation, as different environments require different
compromises between implementation complexity, overall robustness and performance. Some common
strategies are to leave output parameters unchanged, in case of errors, or zeroing them out.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 39
1.0.1 Non-confidential

6.3.6 Attack resistance

Cryptographic code tends to manipulate high-value secrets, from which other secrets can be unlocked. As
such, it is a high-value target for attacks. There is a vast body of literature on attack types, such as side
channel attacks and glitch attacks. Typical side channels include timing, cache access patterns,
branch-prediction access patterns, power consumption, radio emissions and more.

This specification does not specify particular requirements for attack resistance. Implementers are
encouraged to consider the attack resistance desired in each use case and design their implementation
accordingly. Security standards for attack resistance for particular targets might be applicable in certain
use cases.

6.4 Other implementation considerations

6.4.1 Philosophy of resource management

The specification allows most functions to return PSA_ERROR_INSUFFICIENT_MEMORY. This gives
implementations the freedom to manage memory as they please.

Alternatively, the interface is also designed for conservative strategies of memory management. An
implementation can avoid dynamic memory allocation altogether by obeying certain restrictions:
e Pre-allocate memory for a predefined number of keys, each with sufficient memory for all key types
that can be stored.

e For multi-part operations, in an implementation without isolation, place all the data that needs to be
carried over from one step to the next in the operation object. The application is then fully in control
of how memory is allocated for the operation.

e In an implementation with isolation, pre-allocate memory for a predefined number of operations
inside the cryptoprocessor.

7 Usage considerations

7.1 Security recommendations

7.1.1 Always check for errors

Most functions in this API can return errors. All functions that can fail have the return type psa_status_t. A
few functions cannot fail, and thus, return void or some other type.

If an error occurs, unless otherwise specified, the content of the output parameters is undefined and must
not be used.

Some common causes of errors include:

e In implementations where the keys are stored and processed in a separate environment from the
application, all functions that need to access the cryptography processing environment might fail due
to an error in the communication between the two environments.

e If an algorithm is implemented with a hardware accelerator, which is logically separate from the
application processor, the accelerator might fail, even when the application processor keeps running
normally.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 40
1.0.1 Non-confidential

e Most functions might fail due to a lack of resources. However, some implementations guarantee that
certain functions always have sufficient memory.

e All functions that access persistent keys might fail due to a storage failure.

e All functions that require randomness might fail due to a lack of entropy. Implementations are
encouraged to seed the random generator with sufficient entropy during the execution of
psa_crypto_init(). However, some security standards require periodic reseeding from a hardware
random generator, which can fail.

7.1.2 Shared memory and concurrency

Some environments allow applications to be multithreaded, while others do not. In some environments,
applications can share memory with a different security context. In environments with multithreaded
applications or shared memory, applications must be written carefully to avoid data corruption or leakage.
This specification requires the application to obey certain constraints.

In general, this API allows either one writer or any number of simultaneous readers, on any given object. In
other words, if two or more calls access the same object concurrently, then the behavior is only
well-defined if all the calls are only reading from the object and do not modify it. Read accesses include
reading memory by input parameters and reading keystore content by using a key. For more details, refer
to the Concurrent calls section.

If an application shares memory with another security context, it can pass shared memory blocks as input
buffers or output buffers, but not as non-buffer parameters. For more details, refer to the Stability of
parameters on page 34 section.

7.1.3 Cleaning up after use

To minimize impact if the system is compromised, it is recommended that applications wipe all sensitive
data from memory when it is no longer used. That way, only data that is currently in use can be leaked, and
past data is not compromised.

Wiping sensitive data includes:

e Clearing temporary buffers in the stack or on the heap.
e Aborting operations if they will not be finished.

e Destroying keys that are no longer used.

8 Library management reference

8.1 PSA status codes
8.1.1 Status type

psa_status_t (type)

Function return status.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 41
1.0.1 Non-confidential

typedef int32_t psa_status_t;

This is either PSA_suUCCESS, which is zero, indicating success; or a small negative value indicating that an
error occurred. Errors are encoded as one of the PSA_ERROR_xxx values defined here.

8.1.2 Success codes
PSA_SUCCESS (macro)
The action was completed successfully.

#define PSA_SUCCESS ((psa_status_t)0)

8.1.3 Error codes
PSA_ERROR_GENERIC_ERROR (macro)
An error occurred that does not correspond to any defined failure cause.

#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)

Implementations can use this error code if none of the other standard error codes are applicable.

PSA_ERROR_NOT_SUPPORTED (macro)
The requested operation or a parameter is not supported by this implementation.

#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)

It is recommended that implementations return this error code when an enumeration parameter such as a
key type, algorithm, etc. is not recognized. If a combination of parameters is recognized and identified as
not valid, return PSA_ERROR_INVALID_ARGUMENT instead.

PSA_ERROR_NOT_PERMITTED (macro)

The requested action is denied by a policy.

#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)

It is recommended that implementations return this error code when the parameters are recognized as
valid and supported, and a policy explicitly denies the requested operation.

If a subset of the parameters of a function call identify a forbidden operation, and another subset of the
parameters are not valid or not supported, it is unspecified whether the function returns
PSA_ERROR_NOT_PERMITTED, PSA_ERROR_NOT_SUPPORTED OF PSA_ERROR_INVALID_ARGUMENT.

PSA_ERROR_BUFFER_TOO_SMALL (macro)

An output buffer is too small.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 42
1.0.1 Non-confidential

#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)

Applications can call the PsA_xxx_SIZE macro listed in the function description to determine a sufficient
buffer size.

It is recommended that implementations only return this error code in cases when performing the
operation with a larger output buffer would succeed. However, implementations can also return this error
if a function has invalid or unsupported parameters in addition to an insufficient output buffer size.
PSA_ERROR_ALREADY_EXISTS (macro)

Asking for an item that already exists.

#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)

It is recommended that implementations return this error code when attempting to write to a location
where a key is already present.

PSA_ERROR_DOES_NOT_EXIST (macro)

Asking for an item that doesn’t exist.

#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)

Implementations must not return this error code to indicate that a key identifier is invalid, but must return
PSA_ERROR_INVALID_HANDLE instead.

PSA_ERROR_BAD_STATE (macro)

The requested action cannot be performed in the current state.

#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)

Multi-part operations return this error when one of the functions is called out of sequence. Refer to the
function descriptions for permitted sequencing of functions.

Implementations must not return this error code to indicate that a key identifier is invalid, but must return
PSA_ERROR_INVALID_HANDLE instead.

PSA_ERROR_INVALID_ARGUMENT (macro)

The parameters passed to the function are invalid.

#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Implementations can return this error any time a parameter or combination of parameters are recognized
as invalid.

Implementations must not return this error code to indicate that a key identifier is invalid, but must return
PSA_ERROR_INVALID_HANDLE instead.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 43
1.0.1 Non-confidential

PSA_ERROR_INSUFFICIENT_MEMORY (macro)
There is not enough runtime memory.

#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)

If the action is carried out across multiple security realms, this error can refer to available memory in any of
the security realms.

PSA_ERROR_INSUFFICIENT_STORAGE (macro)

There is not enough persistent storage.

#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)

Functions that modify the key storage return this error code if there is insufficient storage space on the
host media. In addition, many functions that do not otherwise access storage might return this error code
if the implementation requires a mandatory log entry for the requested action and the log storage space is
full.

PSA_ERROR_COMMUNICATION_FAILURE (macro)

There was a communication failure inside the implementation.

#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)

This can indicate a communication failure between the application and an external cryptoprocessor or
between the cryptoprocessor and an external volatile or persistent memory. A communication failure can
be transient or permanent depending on the cause.

Warning: If a function returns this error, it is undetermined whether the requested action has
completed. Returning PSA_SUCCESS is recommended on successful completion whenever possible,
however functions can return PSA_ERROR_COMMUNICATION_FAILURE if the requested action was completed
successfully in an external cryptoprocessor but there was a breakdown of communication before the
cryptoprocessor could report the status to the application.

PSA_ERROR_STORAGE_FAILURE (macro)
There was a storage failure that might have led to data loss.

#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)

This error indicates that some persistent storage could not be read or written by the implementation. It
does not indicate the following situations, which have specific error codes:

e A corruption of volatile memory - use PSA_ERROR_CORRUPTION_DETECTED.

e A communication error between the cryptoprocessor and its external storage - use
PSA_ERROR_COMMUNICATION_FAILURE.

e When the storage is in a valid state but is full - use PSA_ERROR_INSUFFICIENT_STORAGE.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 44
1.0.1 Non-confidential

e When the storage or stored data is corrupted - use PSA_ERROR_DATA_CORRUPT.

e When the stored data is not valid - use PSA_ERROR_DATA_INVALID.

A storage failure does not indicate that any data that was previously read is invalid. However this
previously read data might no longer be readable from storage.

When a storage failure occurs, it is no longer possible to ensure the global integrity of the keystore.
Depending on the global integrity guarantees offered by the implementation, access to other data might
fail even if the data is still readable but its integrity cannot be guaranteed.

It is recommended to only use this error code to report a permanent storage corruption. However
application writers must keep in mind that transient errors while reading the storage might be reported
using this error code.

PSA_ERROR_DATA_CORRUPT (macro)

Stored data has been corrupted.

#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)

This error indicates that some persistent storage has suffered corruption. It does not indicate the following
situations, which have specific error codes:

A corruption of volatile memory - use PSA_ERROR_CORRUPTION_DETECTED.

A communication error between the cryptoprocessor and its external storage - use
PSA_ERROR_COMMUNICATION_FAILURE.

e When the storage is in a valid state but is full - use PSA_ERROR_INSUFFICIENT_STORAGE.
e When the storage fails for other reasons - use PSA_ERROR_STORAGE _FAILURE.

e When the stored data is not valid - use PSA_ERROR_DATA_INVALID.

Note that a storage corruption does not indicate that any data that was previously read is invalid. However
this previously read data might no longer be readable from storage.

When a storage failure occurs, it is no longer possible to ensure the global integrity of the keystore.
Depending on the global integrity guarantees offered by the implementation, access to other data might
fail even if the data is still readable but its integrity cannot be guaranteed.

It is recommended to only use this error code to report when a storage component indicates that the
stored data is corrupt, or fails an integrity check. For example, in situations that the PSA Storage API
[PSA-ITS] reports PSA_ERROR_DATA_CORRUPT Or PSA_ERROR_INVALID_SIGNATURE.
PSA_ERROR_DATA_INVALID (macro)

Data read from storage is not valid for the implementation.

#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)

This error indicates that some data read from storage does not have a valid format. It does not indicate the
following situations, which have specific error codes:

e When the storage or stored data is corrupted - use PSA_ERROR_DATA_CORRUPT.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 45
1.0.1 Non-confidential

e When the storage fails for other reasons - use PSA_ERROR_STORAGE _FAILURE.

e An invalid argument to the API - use PSA_ERROR_INVALID_ARGUMENT.

This error is typically a result of an integration failure, where the implementation reading the data is not
compatible with the implementation that stored the data.

It is recommended to only use this error code to report when data that is successfully read from storage is
invalid.

PSA_ERROR_HARDWARE_FAILURE (macro)
A hardware failure was detected.

#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)

A hardware failure can be transient or permanent depending on the cause.

PSA_ERROR_CORRUPTION_DETECTED (macro)
A tampering attempt was detected.

#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)

If an application receives this error code, there is no guarantee that previously accessed or computed data
was correct and remains confidential. In this situation, it is recommended that applications perform no
further security functions and enter a safe failure state.

Implementations can return this error code if they detect an invalid state that cannot happen during
normal operation and that indicates that the implementation’s security guarantees no longer hold.
Depending on the implementation architecture and on its security and safety goals, the implementation
might forcibly terminate the application.

This error code is intended as a last resort when a security breach is detected and it is unsure whether the
keystore data is still protected. Implementations must only return this error code to report an alarm from a
tampering detector, to indicate that the confidentiality of stored data can no longer be guaranteed, or to
indicate that the integrity of previously returned data is now considered compromised. Implementations
must not use this error code to indicate a hardware failure that merely makes it impossible to perform the
requested operation, instead use PSA_ERROR_COMMUNICATION_FAILURE, PSA_ERROR_STORAGE _FAILURE,
PSA_ERROR_HARDWARE_FAILURE, PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code.

This error indicates an attack against the application. Implementations must not return this error code as a
consequence of the behavior of the application itself.

PSA_ERROR_INSUFFICIENT_ENTROPY (macro)
There is not enough entropy to generate random data needed for the requested action.

#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)

This error indicates a failure of a hardware random generator. Application writers must note that this error
can be returned not only by functions whose purpose is to generate random data, such as key, IV or nonce

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 46
1.0.1 Non-confidential

generation, but also by functions that execute an algorithm with a randomized result, as well as functions
that use randomization of intermediate computations as a countermeasure to certain attacks.

It is recommended that implementations do not return this error after psa_crypto_init() has succeeded.
This can be achieved if the implementation generates sufficient entropy during initialization and
subsequently a cryptographically secure pseudorandom generator (PRNG) is used. However,
implementations might return this error at any time, for example, if a policy requires the PRNG to be
reseeded during normal operation.

PSA_ERROR_INVALID_SIGNATURE (macro)

The signature, MAC or hash is incorrect.

#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)

Verification functions return this error if the verification calculations completed successfully, and the value
to be verified was determined to be incorrect.

If the value to verify has an invalid size, implementations can return either PSA_ERROR_INVALID_ARGUMENT or
PSA_ERROR_INVALID_SIGNATURE.

PSA_ERROR_INVALID_PADDING (macro)

The decrypted padding is incorrect.

#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)

Warning: In some protocols, when decrypting data, it is essential that the behavior of the application
does not depend on whether the padding is correct, down to precise timing. Protocols that use
authenticated encryption are recommended for use by applications, rather than plain encryption. If the
application must perform a decryption of unauthenticated data, the application writer must take care
not to reveal whether the padding is invalid.

Implementations must handle padding carefully, aiming to make it impossible for an external observer to
distinguish between valid and invalid padding. In particular, it is recommended that the timing of a
decryption operation does not depend on the validity of the padding.

PSA_ERROR_INSUFFICIENT_DATA (macro)

Return this error when there’s insufficient data when attempting to read from a resource.

#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)

PSA_ERROR_INVALID_HANDLE (macro)
The key identifier is not valid.

#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)

See also Key identifiers on page 21.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 47
1.0.1 Non-confidential

8.2 PSA Crypto library

8.2.1 API version

PSA_CRYPTO_API_VERSION_MAJOR (macro)

The major version of this implementation of the PSA Crypto API.

#define PSA_CRYPTO_API_VERSION_MAJOR 1

PSA_CRYPTO_API_VERSION_MINOR (macro)
The minor version of this implementation of the PSA Crypto API.

#define PSA_CRYPTO_API_VERSION_MINOR @

8.2.2 Library initialization
psa_crypto_init (function)
Library initialization.

psa_status_t psa_crypto_init(void);

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_INSUFFICIENT_ENTROPY

Description
Applications must call this function before calling any other function in this module.

Applications are permitted to call this function more than once. Once a call succeeds, subsequent calls are
guaranteed to succeed.

If the application calls other functions before calling psa_crypto_init(), the behavior is undefined. In this
situation:

e Implementations are encouraged to either perform the operation as if the library had been initialized
or to return PSA_ERROR_BAD_STATE or some other applicable error.

e Implementations must not return a success status if the lack of initialization might have security
implications, for example due to improper seeding of the random number generator.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 48
1.0.1 Non-confidential

9 Key management reference
9.1 Key attributes

Key attributes are managed in a psa_key_attributes_t object. These are used when a key is created, after
which the key attributes are fixed. Attributes of an existing key can be queried using
psa_get_key_attributes().

Description of the individual attributes is found in the following sections:

Key types on page 53

Key identifiers on page 75

Key lifetimes on page 68
Key policies on page 78

9.1.1 Managing key attributes
psa_key_attributes_t (type)
The type of an object containing key attributes.

typedef /x implementation-defined type */ psa_key_attributes_t;

This is the object that represents the metadata of a key object. Metadata that can be stored in attributes
includes:

e The location of the key in storage, indicated by its key identifier and its lifetime.
e The key'’s policy, comprising usage flags and a specification of the permitted algorithm(s).
e Information about the key itself: the key type and its size.

e Implementations can define additional attributes.

The actual key material is not considered an attribute of a key. Key attributes do not contain information
that is generally considered highly confidential.

Note:

Implementations are recommended to define the attribute object as a simple data structure, with
fields corresponding to the individual key attributes. In such an implementation, each function
psa_set_key_xxx() sets a field and the corresponding function psa_get_key_xxx() retrieves the value
of the field.

An implementations can report attribute values that are equivalent to the original one, but have a
different encoding. For example, an implementation can use a more compact representation for
types where many bit-patterns are invalid or not supported, and store all values that it does not
support as a special marker value. In such an implementation, after setting an invalid value, the
corresponding get function returns an invalid value which might not be the one that was originally
stored.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 49
1.0.1 Non-confidential

This is an implementation-defined type. Applications that make assumptions about the content of this
object will result in in implementation-specific behavior, and are non-portable.

An attribute object can contain references to auxiliary resources, for example pointers to allocated
memory or indirect references to pre-calculated values. In order to free such resources, the application
must call psa_reset_key_attributes(). As an exception, calling psa_reset_key_attributes() on an attribute
object is optional if the object has only been modified by the following functions since it was initialized or
last reset with psa_reset_key_attributes():

psa_set_key_id()
psa_set_key_lifetime()
psa_set_key_type()
psa_set_key_bits()
psa_set_key_usage_flags()

psa_set_key_algorithm()

Before calling any function on a key attribute object, the application must initialize it by any of the
following means:

Set the object to all-bits-zero, for example:

psa_key_attributes_t attributes;
memset(&attributes, @, sizeof(attributes));

Initialize the object to logical zero values by declaring the object as static or global without an
explicit initializer, for example:

static psa_key_attributes_t attributes;

Initialize the object to the initializer PSA_KEY_ATTRIBUTES_INIT, for example:

psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;

e Assign the result of the function psa_key_attributes_init() to the object, for example:

psa_key_attributes_t attributes;
attributes = psa_key_attributes_init();

A freshly initialized attribute object contains the following values:

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

1.0.1

Non-confidential

Page 50

Attribute Value

lifetime PSA_KEY_LIFETIME_VOLATILE.

key identifier PSA_KEY_ID_NULL - which is not a valid key identifier.

type PSA_KEY_TYPE_NONE - meaning that the type is unspecified.
key size 0 - meaning that the size is unspecified.

usage flags 0 - which allows no usage except exporting a public key.

algorithm PSA_ALG_NONE - which does not allow cryptographic usage, but allows exporting.

Usage

A typical sequence to create a key is as follows:

1. Create and initialize an attribute object.

2. If the key is persistent, call psa_set_key_id(). Also call psa_set_key_lifetime() to place the key in a
non-default location.

3. Set the key policy with psa_set_key_usage_flags() and psa_set_key_algorithm().

4. Set the key type with psa_set_key_type(). Skip this step if copying an existing key with
psa_copy_key().

5. When generating a random key with psa_generate_key() or deriving a key with
psa_key_derivation_output_key(), set the desired key size with psa_set_key_bits().

6. Call a key creation function: psa_import_key(), psa_generate_key(), psa_key_derivation_output_key()
or psa_copy_key (). This function reads the attribute object, creates a key with these attributes, and
outputs an identifier for the newly created key.

7. Optionally call psa_reset_key_attributes(), now that the attribute object is no longer needed.
Currently this call is not required as the attributes defined in this specification do not require
additional resources beyond the object itself.

A typical sequence to query a key's attributes is as follows:

1. Call psa_get_key_attributes().
2. Call psa_get_key_xxx() functions to retrieve the required attribute(s).

3. Call psa_reset_key_attributes() to free any resources that can be used by the attribute object.

Once a key has been created, it is impossible to change its attributes.

PSA_KEY_ATTRIBUTES_INIT (macro)
This macro returns a suitable initializer for a key attribute object of type psa_key_attributes_t.

#define PSA_KEY_ATTRIBUTES_INIT /* implementation-defined value */

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 51
1.0.1 Non-confidential

psa_key_attributes_init (function)
Return an initial value for a key attribute object.

psa_key_attributes_t psa_key_attributes_init(void);

Returns: psa_key_attributes_t

psa_get_key_attributes (function)
Retrieve the attributes of a key.

psa_status_t psa_get_key_attributes(psa_key_id_t key,
psa_key_attributes_t * attributes);

Parameters
key Identifier of the key to query.
attributes On entry, *attributes must be in a valid state. On successful return, it

contains the attributes of the key. On failure, it is equivalent to a
freshly-initialized attribute object.

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_INVALID_HANDLE
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

This function first resets the attribute object as with psa_reset_key_attributes(). It then copies the
attributes of the given key into the given attribute object.

Note:

This function clears any previous content from the attribute object and therefore expects it to be in
a valid state. In particular, if this function is called on a newly allocated attribute object, the attribute
object must be initialized before calling this function.

Note:

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 52
1.0.1 Non-confidential

This function might allocate memory or other resources. Once this function has been called on an
attribute object, psa_reset_key_attributes() must be called to free these resources.

psa_reset_key_attributes (function)
Reset a key attribute object to a freshly initialized state.

void psa_reset_key_attributes(psa_key_attributes_t * attributes);

Parameters

attributes The attribute object to reset.
Returns: void
Description

The attribute object must be initialized as described in the documentation of the type psa_key_attributes_t
before calling this function. Once the object has been initialized, this function can be called at any time.

This function frees any auxiliary resources that the object might contain.

9.2 Key types

9.2.1 Key type encoding
psa_key_type_t (type)
Encoding of a key type.

typedef uint16_t psa_key_type_t;

This is a structured bitfield that identifies the category and type of key. The range of key type values is
divided as follows:

PSA_KEY_TYPE_NONE == 0
Reserved as an invalid key type.

0x0001 - Ox7fff
Specification-defined key types. Key types defined by this standard always have bit 15
clear. Unallocated key type values in this range are reserved for future use.

0x8000 - Oxffff
Implementation-defined key types. Implementations that define additional key types must
use an encoding with bit 15 set. The related support macros will be easier to write if these
key encodings also respect the bitwise structure used by standard encodings.
PSA_KEY_TYPE_NONE (macro)

An invalid key type value.

#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)

Zero is not the encoding of any key type.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 53
1.0.1 Non-confidential

9.2.2 Key categories
PSA_KEY_TYPE_IS_UNSTRUCTURED (macro)
Whether a key type is an unstructured array of bytes.

#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) /* specification-defined value */

Parameters

type A key type (value of type psa_key_type_t).
Description
This encompasses both symmetric keys and non-key data.

See Symmetric keys on page 55 for a list of symmetric key types.

PSA_KEY_TYPE_IS_ASYMMETRIC (macro)
Whether a key type is asymmetric: either a key pair or a public key.

#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) /* specification-defined value */

Parameters
type A key type (value of type psa_key_type_t).
Description

See RSA keys on page 58 for a list of asymmetric key types.

PSA_KEY_TYPE_IS_PUBLIC_KEY (macro)
Whether a key type is the public part of a key pair.

#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) /* specification-defined value */

Parameters

type A key type (value of type psa_key_type_t).

PSA_KEY_TYPE_IS_KEY_PAIR (macro)
Whether a key type is a key pair containing a private part and a public part.

#define PSA_KEY_TYPE_IS_KEY_PAIR(type) /x specification-defined value */

Parameters
type A key type (value of type psa_key_type_t).
IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

1.0.1 Non-confidential

Page 54

9.2.3 Symmetric keys
PSA_KEY_TYPE_RAW_DATA (macro)
Raw data.

#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)

A “key” of this type cannot be used for any cryptographic operation. Applications can use this type to store
arbitrary data in the keystore.

The bit size of a raw key must be a non-zero multiple of 8. The maximum size of a raw key is
IMPLEMENTATION DEFINED.

PSA_KEY_TYPE_HMAC (macro)

HMAC key.

#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)

The key policy determines which underlying hash algorithm the key can be used for.

The bit size of an HMAC key must be a non-zero multiple of 8. An HMAC key is typically the same size as
the output of the underlying hash algorithm. An HMAC key that is longer than the block size of the
underlying hash algorithm will be hashed before use.

When an HMAC key is created that is longer than the block size, it is IMPLEMENTATION DEFINED Whether the
implementation stores the original HMAC key, or the hash of the HMAC key. If the hash of the key is
stored, the key size reported by psa_get_key_attributes() will be the size of the hashed key.

Note:
PSA_HASH_LENGTH(alg) provides the output size of hash algorithm alg, in bytes.

PSA_HASH_BLOCK_LENGTH(alg) provides the block size of hash algorithm alg, in bytes.

PSA_KEY_TYPE_DERIVE (macro)
A secret for key derivation.
#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)@x1200)

The key policy determines which key derivation algorithm the key can be used for.

The bit size of a secret for key derivation must be a non-zero multiple of 8. The maximum size of a secret
for key derivation is IMPLEMENTATION DEFINED.

PSA_KEY_TYPE_AES (macro)
Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.

#define PSA_KEY_TYPE_AES ((psa_key_type_t)@0x2400)

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 55
1.0.1 Non-confidential

The size of the key is related to the AES algorithm variant. For algorithms except the XTS block cipher
mode, the following key sizes are used:

e AES-128 uses a 16-byte key : key_bits
e AES-192 uses a 24-byte key : key_bits = 192

128

e AES-256 uses a 32-byte key : key_bits = 256
For the XTS block cipher mode (PsA_ALG_xTs), the following key sizes are used:

e AES-128-XTS uses two 16-byte keys : key_bits = 256
e AES-192-XTS uses two 24-byte keys : key_bits = 384
e AES-256-XTS uses two 32-byte keys : key_bits = 512

The AES block cipher is defined in FIPS Publication 197: Advanced Encryption Standard (AES) [FIPS197].

PSA_KEY_TYPE_DES (macro)
Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).

#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)

The size of the key determines which DES algorithm is used:

e Single DES uses an 8-byte key : key_bits = 64
o 2-key 3DES uses a 16-byte key : key_bits = 128
e 3-key 3DES uses a 24-byte key : key_bits = 192

Warning: Single DES and 2-key 3DES are weak and strongly deprecated and are only recommended
for decrypting legacy data.

3-key 3DES is weak and deprecated and is only recommended for use in legacy protocols.

The DES and 3DES block ciphers are defined in NIST Special Publication 800-67: Recommendation for the
Triple Data Encryption Algorithm (TDEA) Block Cipher [SP800-67].

PSA_KEY_TYPE_CAMELLIA (macro)
Key for a cipher, AEAD or MAC algorithm based on the Camellia block cipher.

#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)

The size of the key is related to the Camellia algorithm variant. For algorithms except the XTS block cipher
mode, the following key sizes are used:

e Camellia-128 uses a 16-byte key : key_bits = 128
o Camellia-192 uses a 24-byte key : key_bits = 192
o Camellia-256 uses a 32-byte key : key_bits = 256
IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 56

1.0.1 Non-confidential

For the XTS block cipher mode (PSA_ALG_XTS), the following key sizes are used:

e Camellia-128-XTS uses two 16-byte keys : key_bits = 256

e Camellia-192-XTS uses two 24-byte keys : key_bits = 384

e Camellia-256-XTS uses two 32-byte keys : key_bits = 512

The Camellia block cipher is defined in Specification of Camellia — a 128-bit Block Cipher [NTT-CAM] and
also described in A Description of the Camellia Encryption Algorithm [RFC3713].

PSA_KEY_TYPE_SM4 (macro)

Key for a cipher, AEAD or MAC algorithm based on the SM4 block cipher.

#define PSA_KEY_TYPE_SM4 ((psa_key_type_t)@x2405)

For algorithms except the XTS block cipher mode, the SM4 key size is 128 bits (16 bytes).

For the XTS block cipher mode (PsA_ALG_xTS), the SM4 key size is 256 bits (two 16-byte keys).

The SM4 block cipher is defined in GB/T 32907-2016: Information security technology — SM4 block cipher
algorithm [PRC-SM4] and also described in The SM4 Blockcipher Algorithm And Its Modes Of Operations
[IETF-SM4].

PSA_KEY_TYPE_ARC4 (macro)

Key for the ARC4 stream cipher.

#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)

Warning: The ARC4 cipher is weak and deprecated and is only recommended for use in legacy
protocols.

The ARC4 cipher supports key sizes between 40 and 2048 bits, that are multiples of 8. (5 to 256 bytes)

Use algorithm PSA_ALG_STREAM_CIPHER to use this key with the ARC4 cipher.

PSA_KEY_TYPE_CHACHA20 (macro)
Key for the ChaCha20 stream cipher or the ChaCha20-Poly1305 AEAD algorithm.

#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)

The ChaCha20 key size is 256 bits (32 bytes).

e Use algorithm PSA_ALG_STREAM_CIPHER to use this key with the ChaCha20 cipher for unauthenticated
encryption. See PSA_ALG_STREAM_CIPHER for details of this algorithm.

e Use algorithm PSA_ALG_CHACHA20_POLY1305 to use this key with the ChaCha20 cipher and Poly1305
authenticator for AEAD. See PSA_ALG_CHACHA20_POL Y1305 for details of this algorithm.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 57
1.0.1 Non-confidential

9.2.4 RSA keys
PSA_KEY_TYPE_RSA_PUBLIC_KEY (macro)
RSA public key.

#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)@x4001)

PSA_KEY_TYPE_RSA_KEY_PAIR (macro)
RSA key pair: both the private and public key.

#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)

PSA_KEY_TYPE_IS_RSA (macro)
Whether a key type is an RSA key. This includes both key pairs and public keys.

#define PSA_KEY_TYPE_IS_RSA(type) /* specification-defined value */

Parameters

type A key type (value of type psa_key_type_t).

9.2.5 Elliptic Curve keys
psa_ecc_family_t (type)
The type of PSA elliptic curve family identifiers.

typedef uint8_t psa_ecc_family_t;

The curve identifier is required to create an ECC key using the PSA_KEY_TYPE_ECC_KEY_PAIR() or
PSA_KEY_TYPE_ECC_PUBLIC_KEY() macros.

The specific ECC curve within a family is identified by the key_bits attribute of the key.

The range of Elliptic curve family identifier values is divided as follows:

oxe0 - ox7f ECC family identifiers defined by this standard. Unallocated values in this range are
reserved for future use.

0x80 - oxff Implementations that define additional families must use an encoding in this range.

PSA_KEY_TYPE_ECC_KEY_PAIR (macro)
Elliptic curve key pair: both the private and public key.

#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) /x specification-defined value */

Parameters
curve A value of type psa_ecc_family_t that identifies the ECC curve family
to be used.
IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 58

1.0.1 Non-confidential

PSA_KEY_TYPE_ECC_PUBLIC_KEY (macro)
Elliptic curve public key.

#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) /* specification-defined value */

Parameters

curve A value of type psa_ecc_family_t that identifies the ECC curve family

to be used.

PSA_ECC_FAMILY_SECP_K1 (macro)

SEC Koblitz curves over prime fields.

#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
This family comprises the following curves:

e secp192kl : key_bits

192

o secp224kl : key_bits

225

e secp256kl : key_bits = 256

They are defined in SEC 2: Recommended Elliptic Curve Domain Parameters [SEC2].

PSA_ECC_FAMILY_SECP_R1 (macro)
SEC random curves over prime fields.

#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)

This family comprises the following curves:
e secpl192rl : key_bits = 192
e secp224rl : key_bits = 224
e secp256rl : key_bits = 256
e secp384rl : key_bits = 384

e secp521rl : key_bits = 521

They are defined in [SEC2].

PSA_ECC_FAMILY_SECP_R2 (macro)

Warning: This family of curves is weak and deprecated.

#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

1.0.1 Non-confidential

Page 59

This family comprises the following curves:

e secpl60r2 : key_bits = 160 (Deprecated)

It is defined in the superseded SEC 2: Recommended Elliptic Curve Domain Parameters, Version 1.0 [SEC2v1].

PSA_ECC_FAMILY_SECT_K1 (macro)

SEC Koblitz curves over binary fields.

#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)

This family comprises the following curves:

They are defined in [SEC2].

sect163k1
sect233k1

sect239k1 :
sect283k1 :
sect409k1 :

sect571k1

: key_bits
:key_bits
key_bits
key_bits
key_bits

: key_bits

163 (Deprecated)
233
239
283
409

571

Warning: The 163-bit curve sect163k1 is weak and deprecated and is only recommended for use in
legacy protocols.

PSA_ECC_FAMILY_SECT_R1 (macro)

SEC random curves over binary fields.

#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)

This family comprises the following curves:

They are defined in [SEC2].

sect163rl :
sect233rl:
sect283rl :
sect409r1 :
sect571rl:

key_bits
key_bits
key_bits
key_bits

key_bits

163 (Deprecated)
233
283
409

571

Warning: The 163-bit curve sect163rl is weak and deprecated and is only recommended for use in
legacy protocols.

IHI 0086

1.0.1

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

Non-confidential

Page 60

PSA_ECC_FAMILY_SECT_R2 (macro)
SEC additional random curves over binary fields.
#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) @x2b)
This family comprises the following curves:
e sect163r2 : key_bits = 163 (Deprecated)

It is defined in [SEC2].

Warning: The 163-bit curve sect163r2 is weak and deprecated and is only recommended for use in
legacy protocols.

PSA_ECC_FAMILY_BRAINPOOL_P_R1 (macro)

Brainpool P random curves.

#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
This family comprises the following curves:

e brainpoolP160r1 : key_bits = 160 (Deprecated)

brainpoolP192r1 : key_bits = 192
brainpoolP224r1 : key_bits = 224

brainpoolP256r1 : key_bits = 256

brainpoolP320r1 : key_bits = 320

brainpoolP384r1 : key_bits = 384

brainpoolP512r1 : key_bits

512

They are defined in Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation
[RFC5639].

Warning: The 160-bit curve brainpoolP160r1 is weak and deprecated and is only recommended for
use in legacy protocols.

PSA_ECC_FAMILY_FRP (macro)
Curve used primarily in France and elsewhere in Europe.

#define PSA_ECC_FAMILY_FRP ((psa_ecc_family_t) @x33)

This family comprises one 256-bit curve:

e FRP256Vv1 : key_bits = 256

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 61
101 Non-confidential

This is defined by Publication d’'un paramétrage de courbe elliptique visant des applications de passeport

électronique et de I'administration électronique francaise [FRP].

PSA_ECC_FAMILY_MONTGOMERY (macro)
Montgomery curves.

#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)

This family comprises the following Montgomery curves:

e Curve25519 : key_bits = 255

o Curved48 : key_bits = 448

Keys in this family can only be used with the PSA_ALG_ECDH key agreement algorithm.
Curve25519 is defined in Curve25519: new Diffie-Hellman speed records [Curve25519]. Curved448 is

defined in Ed448-Goldilocks, a new elliptic curve [Curve448].

PSA_KEY_TYPE_IS_ECC (macro)
Whether a key type is an elliptic curve key, either a key pair or a public key.
#define PSA_KEY_TYPE_IS_ECC(type) /* specification-defined value */

Parameters

type A key type (value of type psa_key_type_t).

PSA_KEY_TYPE_IS_ECC_KEY_PAIR (macro)
Whether a key type is an elliptic curve key pair.
#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) /* specification-defined value */

Parameters

type A key type (value of type psa_key_type_t).

PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY (macro)
Whether a key type is an elliptic curve public key.

#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) /* specification-defined value */

Parameters

type A key type (value of type psa_key_type_t).

PSA_KEY_TYPE_ECC_GET_FAMILY (macro)

Extract the curve family from an elliptic curve key type.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.
1.0.1 Non-confidential

Page 62

#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) /* specification-defined value =*/

Parameters

type An elliptic curve key type (value of type psa_key_type_t such that
PSA_KEY_TYPE_IS_ECC(type) is true).

Returns: psa_ecc_family_t

The elliptic curve family id, if type is a supported elliptic curve key. Unspecified if type is not a supported
elliptic curve key.

9.2.6 Diffie Hellman keys
psa_dh_family_t (type)
The type of PSA finite-field Diffie-Hellman group family identifiers.

typedef uint8_t psa_dh_family_t;

The group family identifier is required to create a finite-field Diffie-Hellman key using the
PSA_KEY_TYPE_DH_KEY_PAIR() Of PSA_KEY_TYPE_DH_PUBLIC_KEY() macros.

The specific Diffie-Hellman group within a family is identified by the key_bits attribute of the key.

The range of Diffie-Hellman group family identifier values is divided as follows:

0x00 - ox7f DH group family identifiers defined by this standard. Unallocated values in this range are
reserved for future use.

0x80 - oxff Implementations that define additional families must use an encoding in this range.

PSA_KEY_TYPE_DH_KEY_PAIR (macro)
Finite-field Diffie-Hellman key pair: both the private key and public key.

#define PSA_KEY_TYPE_DH_KEY_PAIR(group) /* specification-defined value */

Parameters

group A value of type psa_dh_family_t that identifies the Diffie-Hellman
group family to be used.

PSA_KEY_TYPE_DH_PUBLIC_KEY (macro)
Finite-field Diffie-Hellman public key.

#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) /x specification-defined value */

Parameters
group A value of type psa_dh_family_t that identifies the Diffie-Hellman
group family to be used.
IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 63

1.0.1 Non-confidential

PSA_DH_FAMILY_RFC7919 (macro)
Finite-field Diffie-Hellman groups defined for TLS in RFC 7919.

#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) @x@3)

This family includes groups with the following key sizes (in bits): 2048, 3072, 4096, 6144, 8192. An
implementation can support all of these sizes or only a subset.

Keys is this group can only be used with the PsA_ALG_FFDH key agreement algorithm.

These groups are defined by Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport Layer
Security (TLS) [RFC7919] Appendix A.

PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY (macro)

The key pair type corresponding to a public key type.

#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
/* specification-defined value */

Parameters

type A public key type or key pair type.

Returns

The corresponding key pair type. If type is not a public key or a key pair, the return value is undefined.

Description

If type is a key pair type, it will be left unchanged.

PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR (macro)
The public key type corresponding to a key pair type.

#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
/* specification-defined value */

Parameters

type A public key type or key pair type.

Returns

The corresponding public key type. If type is not a public key or a key pair, the return value is undefined.

Description

If type is a public key type, it will be left unchanged.

PSA_KEY_TYPE_IS_DH (macro)

Whether a key type is a Diffie-Hellman key, either a key pair or a public key.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 64
1.0.1 Non-confidential

https://tools.ietf.org/html/rfc7919.html#appendix-A

#define PSA_KEY_TYPE_IS_DH(type) /* specification-defined value */

Parameters

type A key type (value of type psa_key_type_t).

PSA_KEY_TYPE_IS_DH_KEY_PAIR (macro)
Whether a key type is a Diffie-Hellman key pair.

#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) /x specification-defined value */

Parameters

type A key type (value of type psa_key_type_t).

PSA_KEY_TYPE_IS_DH_PUBLIC_KEY (macro)
Whether a key type is a Diffie-Hellman public key.

#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) /* specification-defined value */

Parameters

type A key type (value of type psa_key_type_t).

PSA_KEY_TYPE_DH_GET_FAMILY (macro)
Extract the group family from a Diffie-Hellman key type.

#define PSA_KEY_TYPE_DH_GET_FAMILY(type) /* specification-defined value */

Parameters

type A Diffie-Hellman key type (value of type psa_key_type_t such that
PSA_KEY_TYPE_IS_DH(type) is true).

Returns: psa_dh_family_t

The Diffie-Hellman group family id, if type is a supported Diffie-Hellman key. Unspecified if type is not a
supported Diffie-Hellman key.

9.2.7 Attribute accessors
psa_set_key_type (function)

Declare the type of a key.

void psa_set_key_type(psa_key_attributes_t * attributes,
psa_key_type_t type);

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 65
1.0.1 Non-confidential

Parameters

attributes The attribute object to write to.

type The key type to write. If this is PSA_KEY_TYPE_NONE, the key type in
attributes becomes unspecified.

Returns: void

Description

This function overwrites any key type previously set in attributes.

Implementation note

This is a simple accessor function that is not required to validate its inputs. The following approaches
can be used to provide an efficient implementation:

e This function can be declared as static or inline, instead of using the default external linkage.

e This function can be provided as a function-like macro. In this form, the macro must evaluate
each of its arguments exactly once, as if it was a function call.

psa_get_key_type (function)
Retrieve the key type from key attributes.

psa_key_type_t psa_get_key_type(const psa_key_attributes_t * attributes);

Parameters

attributes The key attribute object to query.
Returns: psa_key_type_t
The key type stored in the attribute object.

Description

Implementation note

This is a simple accessor function that is not required to validate its inputs. The following approaches
can be used to provide an efficient implementation:

e This function can be declared as static or inline, instead of using the default external linkage.

e This function can be provided as a function-like macro. In this form, the macro must evaluate
each of its arguments exactly once, as if it was a function call.

psa_get_key_bits (function)

Retrieve the key size from key attributes.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 66
1.0.1 Non-confidential

size_t psa_get_key_bits(const psa_key_attributes_t * attributes);

Parameters

attributes The key attribute object to query.
Returns: size_t
The key size stored in the attribute object, in bits.

Description

Implementation note

This is a simple accessor function that is not required to validate its inputs. The following approaches
can be used to provide an efficient implementation:

e This function can be declared as static or inline, instead of using the default external linkage.

e This function can be provided as a function-like macro. In this form, the macro must evaluate
each of its arguments exactly once, as if it was a function call.

psa_set_key_bits (function)
Declare the size of a key.

void psa_set_key_bits(psa_key_attributes_t * attributes,
size_t bits);

Parameters
attributes The attribute object to write to.
bits The key size in bits. If this is o, the key size in attributes becomes

unspecified. Keys of size ¢ are not supported.

Returns: void

Description

This function overwrites any key size previously set in attributes.

Implementation note

This is a simple accessor function that is not required to validate its inputs. The following approaches
can be used to provide an efficient implementation:

e This function can be declared as static or inline, instead of using the default external linkage.

e This function can be provided as a function-like macro. In this form, the macro must evaluate
each of its arguments exactly once, as if it was a function call.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 67
1.0.1 Non-confidential

9.3 Key lifetimes

The lifetime of a key indicates where it is stored and which application and system actions will create and
destroy it.

Lifetime values are composed from:

e A persistence level, which indicates what device management actions can cause it to be destroyed.
In particular, it indicates whether the key is volatile or persistent. See psa_key_persistence_t for more
information.

e A location indicator, which indicates where the key is stored and where operations on the key are
performed. See psa_key_location_t for more information.

There are two main types of lifetime, indicated by the persistence level: volatile and persistent.

9.3.1 Volatile keys

Volatile keys are automatically destroyed when the application instance terminates or on a power reset of
the device. Volatile keys can be explicitly destroyed by the application.

Conceptually, a volatile key is stored in RAM. Volatile keys have the lifetime PSA_KEY_LIFETIME_VOLATILE.

To create a volatile key:

1. Populate a psa_key_attributes_t object with the required type, size, policy and other key attributes.

2. Create the key with one of the key creation functions. If successful, these functions output a
transient key identifier.

To destroy a volatile key: call psa_destroy_key() with the key identifier. There must be a matching call to
psa_destroy_key() for each successful call to a create a volatile key.

9.3.2 Persistent keys

Persistent keys are preserved until the application explicitly destroys them or until an
implementation-specific device management event occurs, for example, a factory reset.

Each persistent key has a permanent key identifier, which acts as a name for the key. Within an
application, the key identifier corresponds to a single key. The application specifies the key identifier when
the key is created and when using the key.

The lifetime attribute of a persistent key indicates how and where it is stored. The default lifetime value
for a persistent key is PSA_KEY_LIFETIME_PERSISTENT, which corresponds to a default storage area. This
specification defines how implementations can provide other lifetime values corresponding to different
storage areas with different retention policies, or to secure elements with different security characteristics.

To create a persistent key:

1. Populate a psa_key_attributes_t object with the key’s type, size, policy and other attributes.
2. In the attributes object, set the desired lifetime and persistent identifier for the key.

3. Create the key with one of the key creation functions. If successful, these functions output the key
identifier that was specified by the application in step 2.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 68
1.0.1 Non-confidential

To access an existing persistent key: use the key identifier in any API that requires a key.

To destroy a persistent key: call psa_destroy_key() with the key identifier. Destroying a persistent key
permanently removes it from memory and storage.

By default, persistent key material is removed from volatile memory when not in use. Frequently used
persistent keys can benefit from caching, depending on the implementation and the application. Caching
can be enabled by creating the key with the PsA_KEY_USAGE_CACHE policy. Cached keys can be removed from
volatile memory by calling psa_purge_key (). See also Memory cleanup on page 38 and Managing key material
on page 39.

9.3.3 Lifetime encodings
psa_key_lifetime_t (type)
Encoding of key lifetimes.

typedef uint32_t psa_key_lifetime_t;

The lifetime of a key indicates where it is stored and which application and system actions will create and
destroy it.

Lifetime values have the following structure:

Bits[7:0]: Persistence level
This value indicates what device management actions can cause it to be destroyed. In
particular, it indicates whether the key is volatile or persistent. See psa_key_persistence_t for
more information.

PSA_KEY_LIFETIME_GET_PERSISTENCE (lifetime) returns the persistence level for a key lifetime
value.

Bits[31:8]: Location indicator
This value indicates where the key material is stored (or at least where it is accessible in
cleartext) and where operations on the key are performed. See psa_key_location_t for more
information.

PSA_KEY_LIFETIME_GET_LOCATION(lifetime) returns the location indicator for a key lifetime
value.

Volatile keys are automatically destroyed when the application instance terminates or on a power reset of
the device. Persistent keys are preserved until the application explicitly destroys them or until an
implementation-specific device management event occurs, for example, a factory reset.

Persistent keys have a key identifier of type psa_key_id_t. This identifier remains valid throughout the
lifetime of the key, even if the application instance that created the key terminates.

This specification defines two basic lifetime values:

e Keys with the lifetime PSA_KEY_LIFETIME_VOLATILE are volatile. All implementations should support
this lifetime.

e Keys with the lifetime PSA_KEY_LIFETIME_PERSISTENT are persistent. All implementations that have
access to persistent storage with appropriate security guarantees should support this lifetime.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 69
1.0.1 Non-confidential

psa_key_persistence_t (type)
Encoding of key persistence levels.

typedef uint8_t psa_key_persistence_t;

What distinguishes different persistence levels is which device management events can cause keys to be
destroyed. For example, power reset, transfer of device ownership, or a factory reset are device
management events that can affect keys at different persistence levels. The specific management events
which affect persistent keys at different levels is outside the scope of the PSA Cryptography specification.

Values for persistence levels defined by this specification are shown in Table 4.

Table 4 Key persistence level values
Persistence level Definition

0

PSA_KEY_PERSISTENCE_VOLATILE Volatile key.

A volatile key is automatically destroyed by the
implementation when the application instance terminates. In
particular, a volatile key is automatically destroyed on a
power reset of the device.

PSA_KEY_PERSISTENCE_DEFAULT Persistent key with a default lifetime.

-
1

Implementations should support this value if they support
persistent keys at all. Applications should use this value if
they have no specific needs that are only met by
implementation-specific features.

2 - 127 Persistent key with a PSA-specified lifetime.

The PSA Cryptography specification does not define the
meaning of these values, but other PSA specifications may
do so.

128 - 254 Persistent key with a vendor-specified lifetime.

No PSA specification will define the meaning of these values,
so implementations may choose the meaning freely. As a
guideline, higher persistence levels should cause a key to
survive more management events than lower levels.

255 = PSA_KEY_PERSISTENCE_READ_ONLY Read-only or write-once key.

A key with this persistence level cannot be destroyed.
Implementations that support such keys may either allow
their creation through the PSA Cryptography API, preferably
only to applications with the appropriate privilege, or only
expose keys created through implementation-specific means
such as a factory ROM engraving process.

Note that keys that are read-only due to policy restrictions
rather than due to physical limitations should not have this
persistence level.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 70
1.0.1 Non-confidential

Note:

Key persistence levels are 8-bit values. Key management interfaces operate on lifetimes (type
psa_key_lifetime_t), and encode the persistence value as the lower 8 bits of a 32-bit value.

psa_key_location_t (type)
Encoding of key location indicators.

typedef uint32_t psa_key_location_t;

If an implementation of this API can make calls to external cryptoprocessors such as secure elements, the
location of a key indicates which secure element performs the operations on the key. If the key material is
not stored persistently inside the secure element, it must be stored in a wrapped form such that only the

secure element can access the key material in cleartext.

Values for location indicators defined by this specification are shown in Table 5.

Table 5 Key location indicator values
Location indicator Definition

0 Primary local storage.

All implementations should support this value. The primary local storage is
typically the same storage area that contains the key metadata.

1 Primary secure element.

Implementations should support this value if there is a secure element
attached to the operating environment. As a guideline, secure elements may
provide higher resistance against side channel and physical attacks than the
primary local storage, but may have restrictions on supported key types,
sizes, policies and operations and may have different performance
characteristics.

2 - Ox7fffff Other locations defined by a PSA specification.

The PSA Cryptography API does not currently assign any meaning to these
locations, but future versions of this specification or other PSA specifications
may do so.

0x800000 - Oxffffff Vendor-defined locations.
No PSA specification will assign a meaning to locations in this range.

Note:

Key location indicators are 24-bit values. Key management interfaces operate on lifetimes (type
psa_key_lifetime_t), and encode the location as the upper 24 bits of a 32-bit value.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 71
1.0.1 Non-confidential

9.3.4 Lifetime values
PSA_KEY_LIFETIME_VOLATILE (macro)
The default lifetime for volatile keys.

#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t) 0x00000000)

A volatile key only exists as long as its identifier is not destroyed. The key material is guaranteed to be
erased on a power reset.

A key with this lifetime is typically stored in the RAM area of the PSA Crypto subsystem. However this is
an implementation choice. If an implementation stores data about the key in a non-volatile memory, it
must release all the resources associated with the key and erase the key material if the calling application
terminates.

PSA_KEY_LIFETIME_PERSISTENT (macro)

The default lifetime for persistent keys.

#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t) 0x00000001)

A persistent key remains in storage until it is explicitly destroyed or until the corresponding storage area is
wiped. This specification does not define any mechanism to wipe a storage area. Implementations are
permitted to provide their own mechanism, for example, to perform a factory reset, to prepare for device
refurbishment, or to uninstall an application.

This lifetime value is the default storage area for the calling application. Implementations can offer other
storage areas designated by other lifetime values as implementation-specific extensions.

PSA_KEY_PERSISTENCE_VOLATILE (macro)
The persistence level of volatile keys.

#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t) 0x00)
See psa_key_persistence_t for more information.
PSA_KEY_PERSISTENCE_DEFAULT (macro)

The default persistence level for persistent keys.

#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t) 0x01)
See psa_key_persistence_t for more information.
PSA_KEY_PERSISTENCE_READ_ONLY (macro)

A persistence level indicating that a key is never destroyed.

#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t) 0Oxff)

See psa_key_persistence_t for more information.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 72
1.0.1 Non-confidential

PSA_KEY_LOCATION_LOCAL_STORAGE (macro)
The local storage area for persistent keys.

#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t) 0x000000)

This storage area is available on all systems that can store persistent keys without delegating the storage
to a third-party cryptoprocessor.

See psa_key_location_t for more information.

PSA_KEY_LOCATION_PRIMARY_SECURE_ELEMENT (macro)
The default secure element storage area for persistent keys.

#define PSA_KEY_LOCATION_PRIMARY_SECURE_ELEMENT ((psa_key_location_t) 0x000001)

This storage location is available on systems that have one or more secure elements that are able to store
keys.

Vendor-defined locations must be provided by the system for storing keys in additional secure elements.

See psa_key_location_t for more information.

9.3.5 Attribute accessors
psa_set_key_lifetime (function)
Set the location of a persistent key.

void psa_set_key_lifetime(psa_key_attributes_t * attributes,
psa_key_lifetime_t lifetime);

Parameters
attributes The attribute object to write to.
lifetime The lifetime for the key. If this is PSA_KEY_LIFETIME_VOLATILE, the key

will be volatile, and the key identifier attribute is reset to
PSA_KEY_ID_NULL.

Returns: void

Description

To make a key persistent, give it a persistent key identifier by using psa_set_key_id(). By default, a key that

has a persistent identifier is stored in the default storage area identifier by PSA_KEY_LIFETIME_PERSISTENT.
Call this function to choose a storage area, or to explicitly declare the key as volatile.

This function does not access storage, it merely stores the given value in the attribute object. The
persistent key will be written to storage when the attribute object is passed to a key creation function
such as psa_import_key(), psa_generate_key(), psa_key_derivation_output_key() Or psa_copy_key().

Implementation note

This is a simple accessor function that is not required to validate its inputs. The following approaches
can be used to provide an efficient implementation:

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 73
1.0.1 Non-confidential

e This function can be declared as static or inline, instead of using the default external linkage.

e This function can be provided as a function-like macro. In this form, the macro must evaluate
each of its arguments exactly once, as if it was a function call.

psa_get_key_lifetime (function)
Retrieve the lifetime from key attributes.

psa_key_lifetime_t psa_get_key_lifetime(const psa_key_attributes_t * attributes);

Parameters

attributes The key attribute object to query.
Returns: psa_key_lifetime_t
The lifetime value stored in the attribute object.

Description

Implementation note

This is a simple accessor function that is not required to validate its inputs. The following approaches
can be used to provide an efficient implementation:

e This function can be declared as static or inline, instead of using the default external linkage.

e This function can be provided as a function-like macro. In this form, the macro must evaluate
each of its arguments exactly once, as if it was a function call.

9.3.6 Support macros
PSA_KEY_LIFETIME_GET_PERSISTENCE (macro)
Extract the persistence level from a key lifetime.

#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
((psa_key_persistence_t) ((lifetime) & 0x000000ff))

Parameters

lifetime The lifetime value to query (value of type psa_key_lifetime_t).

PSA_KEY_LIFETIME_GET_LOCATION (macro)
Extract the location indicator from a key lifetime.

#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
((psa_key_location_t) ((lifetime) >> 8))

Parameters
lifetime The lifetime value to query (value of type psa_key_lifetime_t).
IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 74

1.0.1 Non-confidential

PSA_KEY_LIFETIME_IS_VOLATILE (macro)
Whether a key lifetime indicates that the key is volatile.

#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
(PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == PSA_KEY_PERSISTENCE_VOLATILE)
Parameters
lifetime The lifetime value to query (value of type psa_key_lifetime_t).
Returns
1 if the key is volatile, otherwise o.
Description

A volatile key is automatically destroyed by the implementation when the application instance terminates.
In particular, a volatile key is automatically destroyed on a power reset of the device.

A key that is not volatile is persistent. Persistent keys are preserved until the application explicitly destroys
them or until an implementation-specific device management event occurs, for example, a factory reset.
PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION (macro)

Construct a lifetime from a persistence level and a location.

#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
((location) << 8 | (persistence))

Parameters
persistence The persistence level (value of type psa_key_persistence_t).
location The location indicator (value of type psa_key_location_t).
Returns

The constructed lifetime value.

9.4 Key identifiers

Key identifiers are integral values that act as permanent names for persistent keys, or as transient
references to volatile keys. Key identifiers use the psa_key_id_t type, and the range of identifier values is
divided as follows:

PSA_KEY_ID_NULL = @
Reserved as an invalid key identifier.

PSA_KEY_ID_USER_MIN - PSA_KEY_ID_USER_MAX
Applications can freely choose persistent key identifiers in this range.

PSA_KEY_ID_VENDOR_MIN - PSA_KEY_ID_VENDOR_MAX
Implementations can define additional persistent key identifiers in this range, and must
allocate any volatile key identifiers from this range.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 75
1.0.1 Non-confidential

Key identifiers outside these ranges are reserved for future use.

Key identifiers are output from a successful call to one of the key creation functions. For persistent keys,
this is the same identifier as the one specified in the key attributes used to create the key. The key
identifier remains valid until it is invalidated by passing it to psa_destroy_key(). A volatile key identifier
must not be used after it has been invalidated.

If an invalid key identifier is provided as a parameter in any function, the function will return
PSA_ERROR_INVALID_HANDLE; except for the special case of calling psa_destroy_key(PSA_KEY_ID_NULL), which
has no effect and always returns PSA_SUCCESS.

Valid key identifiers must have distinct values within the same application. If the implementation provides
caller isolation, then key identifiers are local to each application. That is, the same key identifier in two
applications corresponds to two different keys.

9.4.1 Key identifier type
psa_key_id_t (type)
Key identifier.

typedef uint32_t psa_key_id_t;

A key identifier can be a permanent name for a persistent key, or a transient reference to volatile key. See
Key identifiers on page 75.

PSA_KEY_ID_NULL (macro)
The null key identifier.

#define PSA_KEY_ID_NULL ((psa_key_id_t)@)

The null key identifier is always invalid, except when used without in a call to psa_destroy_key() which will
return PSA_SUCCESS.

PSA_KEY_ID_USER_MIN (macro)
The minimum value for a key identifier chosen by the application.

#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)

PSA_KEY_ID_USER_MAX (macro)
The maximum value for a key identifier chosen by the application.

#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)@x3fffffff)

PSA_KEY_ID_VENDOR_MIN (macro)

The minimum value for a key identifier chosen by the implementation.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 76
1.0.1 Non-confidential

#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)@x40000000)

PSA_KEY_ID_VENDOR_MAX (macro)
The maximum value for a key identifier chosen by the implementation.

#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)@x7fffffff)

9.4.2 Attribute accessors
psa_set_key_id (function)
Declare a key as persistent and set its key identifier.

void psa_set_key_id(psa_key_attributes_t x attributes,
psa_key_id_t id);

Parameters
attributes The attribute object to write to.
id The persistent identifier for the key.

Returns: void

Description
The application must choose a value for id between PSA_KEY_ID_USER_MIN and PSA_KEY_ID_USER_MAX.

If the attribute object currently declares the key as volatile, which is the default lifetime of an attribute
object, this function sets the lifetime attribute to PSA_KEY_LIFETIME_PERSISTENT.

This function does not access storage, it merely stores the given value in the attribute object. The
persistent key will be written to storage when the attribute object is passed to a key creation function
such as psa_import_key(), psa_generate_key(), psa_key_derivation_output_key() or psa_copy_key().

Implementation note

This is a simple accessor function that is not required to validate its inputs. The following approaches
can be used to provide an efficient implementation:

e This function can be declared as static or inline, instead of using the default external linkage.

e This function can be provided as a function-like macro. In this form, the macro must evaluate
each of its arguments exactly once, as if it was a function call.

psa_get_key_id (function)
Retrieve the key identifier from key attributes.

psa_key_id_t psa_get_key_id(const psa_key_attributes_t * attributes);

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 77
1.0.1 Non-confidential

Parameters
attributes The key attribute object to query.
Returns: psa_key_id_t

The persistent identifier stored in the attribute object. This value is unspecified if the attribute object
declares the key as volatile.

Description

Implementation note

This is a simple accessor function that is not required to validate its inputs. The following approaches
can be used to provide an efficient implementation:

e This function can be declared as static or inline, instead of using the default external linkage.

e This function can be provided as a function-like macro. In this form, the macro must evaluate
each of its arguments exactly once, as if it was a function call.

9.5 Key policies

All keys have an associated policy that regulates which operations are permitted on the key. A key policy is
composed of two elements:

e A set of usage flags. See Key usage flags on page 80.
e A specific algorithm that is permitted with the key. See Permitted algorithms.

The policy is part of the key attributes that are managed by a psa_key_attributes_t object.

A highly constrained implementation might not be able to support all the policies that can be expressed
through this interface. If an implementation cannot create a key with the required policy, it must return an
appropriate error code when the key is created.

9.5.1 Permitted algorithms

The permitted algorithm is encoded using a algorithm identifier, as described in Algorithms on page 98.

This specification only defines policies that restrict keys to a single algorithm, which is consistent with
both common practice and security good practice.

The following algorithm policies are supported:

e PSA_ALG_NONE does not allow any cryptographic operation with the key. The key can still be used for
non-cryptographic actions such as exporting, if permitted by the usage flags.

e A specific algorithm value permits this particular algorithm.
e A signature algorithm wildcard built from PSA_ALG_ANY_HASH allows the specified signature scheme
with any hash algorithm.

When a key is used in a cryptographic operation, the application must supply the algorithm to use for the
operation. This algorithm is checked against the key’s permitted algorithm policy.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 78
1.0.1 Non-confidential

psa_set_key_algorithm (function)
Declare the permitted algorithm policy for a key.

void psa_set_key_algorithm(psa_key_attributes_t * attributes,
psa_algorithm_t alg);

Parameters
attributes The attribute object to write to.
alg The permitted algorithm to write.

Returns: void
Description

The permitted algorithm policy of a key encodes which algorithm or algorithms are permitted to be used
with this key.

This function overwrites any permitted algorithm policy previously set in attributes.

Implementation note

This is a simple accessor function that is not required to validate its inputs. The following approaches
can be used to provide an efficient implementation:

e This function can be declared as static or inline, instead of using the default external linkage.

e This function can be provided as a function-like macro. In this form, the macro must evaluate
each of its arguments exactly once, as if it was a function call.

psa_get_key_algorithm (function)
Retrieve the permitted algorithm policy from key attributes.

psa_algorithm_t psa_get_key_algorithm(const psa_key_attributes_t * attributes);

Parameters
attributes The key attribute object to query.
Returns: psa_algorithm_t

The algorithm stored in the attribute object.

Description

Implementation note

This is a simple accessor function that is not required to validate its inputs. The following approaches
can be used to provide an efficient implementation:

e This function can be declared as static or inline, instead of using the default external linkage.

e This function can be provided as a function-like macro. In this form, the macro must evaluate
each of its arguments exactly once, as if it was a function call.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 79
1.0.1 Non-confidential

9.5.2 Key usage flags

The usage flags are encoded in a bitmask, which has the type psa_key_usage_t. Four kinds of usage flag can
be specified:

e The extractable flag PSA_KEY_USAGE_EXPORT determines whether the key material can be extracted.

e The copyable flag PsA_KEY_USAGE_COPY determines whether the key material can be copied into a new
key, which can have a different lifetime or a more restrictive policy.

e The cacheable flag PsA_KEY_USAGE_CACHE determines whether the implementation is permitted to
retain non-essential copies of the key material in RAM. This policy only applies to persistent keys.
See also Managing key material on page 39.

e The other usage flags, for example, PSA_KEY_USAGE_ENCRYPT and PSA_KEY_USAGE_SIGN_MESSAGE,
determine whether the corresponding operation is permitted on the key.

psa_key_usage_t (type)
Encoding of permitted usage on a key.

typedef uint32_t psa_key_usage_t;

PSA_KEY_USAGE_EXPORT (macro)
Permission to export the key.

#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)

This flag allows the use of psa_export_key() to export a key from the cryptoprocessor. A public key or the
public part of a key pair can always be exported regardless of the value of this permission flag.

This flag can also be required to copy a key using psa_copy_key () outside of a secure element. See also
PSA_KEY_USAGE_COPY.

If a key does not have export permission, implementations must not allow the key to be exported in plain
form from the cryptoprocessor, whether through psa_export_key () or through a proprietary interface. The
key might still be exportable in a wrapped form, i.e. in a form where it is encrypted by another key.

PSA_KEY_USAGE_COPY (macro)
Permission to copy the key.

#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)

This flag allows the use of psa_copy_key () to make a copy of the key with the same policy or a more
restrictive policy.

For lifetimes for which the key is located in a secure element which enforce the non-exportability of keys,
copying a key outside the secure element also requires the usage flag PSA_KEY_USAGE_EXPORT. Copying the
key inside the secure element is permitted with just PSA_KEY_USAGE_cOPY if the secure element supports it.
For keys with the lifetime PSA_KEY_LIFETIME_VOLATILE or PSA_KEY_LIFETIME_PERSISTENT, the usage flag
PSA_KEY_USAGE_COPY is sufficient to permit the copy.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 80
1.0.1 Non-confidential

PSA_KEY_USAGE_CACHE (macro)
Permission for the implementation to cache the key.

#define PSA_KEY_USAGE_CACHE ((psa_key_usage_t)@x00000004)

This flag allows the implementation to make additional copies of the key material that are not in storage
and not for the purpose of an ongoing operation. Applications can use it as a hint to keep the key around
for repeated access.

An application can request that cached key material is removed from memory by calling psa_purge_key().

The presence of this usage flag when creating a key is a hint:

e An implementation is not required to cache keys that have this usage flag.

e An implementation must not report an error if it does not cache keys.

If this usage flag is not present, the implementation must ensure key material is removed from memory as
soon as it is not required for an operation or for maintenance of a volatile key.

This flag must be preserved when reading back the attributes for all keys, regardless of key type or
implementation behavior.

See also Managing key material on page 39.

PSA_KEY_USAGE_ENCRYPT (macro)
Permission to encrypt a message with the key.

#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)

This flag allows the key to be used for a symmetric encryption operation, for an AEAD
encryption-and-authentication operation, or for an asymmetric encryption operation, if otherwise
permitted by the key’s type and policy. The flag must be present on keys used with the following APlIs:

e psa_cipher_encrypt()

e psa_cipher_encrypt_setup()
e psa_aead_encrypt()

e psa_aead_encrypt_setup()

® psa_asymmetric_encrypt()

For a key pair, this concerns the public key.

PSA_KEY_USAGE_DECRYPT (macro)
Permission to decrypt a message with the key.

#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)

This flag allows the key to be used for a symmetric decryption operation, for an AEAD
decryption-and-verification operation, or for an asymmetric decryption operation, if otherwise permitted
by the key’s type and policy. The flag must be present on keys used with the following APlIs:

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 81
1.0.1 Non-confidential

psa_cipher_decrypt()

psa_cipher_decrypt_setup()
® psa_aead_decrypt()
® psa_aead_decrypt_setup()

® psa_asymmetric_decrypt()

For a key pair, this concerns the private key.

PSA_KEY_USAGE_SIGN_MESSAGE (macro)
Permission to sign a message with the key.

#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400)

This flag allows the key to be used for a MAC calculation operation or for an asymmetric message
signature operation, if otherwise permitted by the key’s type and policy. The flag must be present on keys
used with the following APlIs:

® psa_mac_compute()
® psa_mac_sign_setup()

® psa_sign_message()

For a key pair, this concerns the private key.

PSA_KEY_USAGE_VERIFY_MESSAGE (macro)
Permission to verify a message signature with the key.

#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)

This flag allows the key to be used for a MAC verification operation or for an asymmetric message
signature verification operation, if otherwise permitted by the key’s type and policy. The flag must be
present on keys used with the following APlIs:

® psa_mac_verify()
® psa_mac_verify_setup()

e psa_verify_message()

For a key pair, this concerns the public key.

PSA_KEY_USAGE_SIGN_HASH (macro)
Permission to sign a message hash with the key.

#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)@x00001000)

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 82
1.0.1 Non-confidential

This flag allows the key to be used to sign a message hash as part of an asymmetric signature operation, if
otherwise permitted by the key’s type and policy. The flag must be present on keys used when calling
psa_sign_hash().

This flag automatically sets PSA_KEY_USAGE_SIGN_MESSAGE: if an application sets the flag
PSA_KEY_USAGE_SIGN_HASH when creating a key, then the key always has the permissions conveyed by
PSA_KEY_USAGE_SIGN_MESSAGE, and the flag PSA_KEY_USAGE_SIGN_MESSAGE will also be present when the
application queries the usage flags of the key.

For a key pair, this concerns the private key.

PSA_KEY_USAGE_VERIFY_HASH (macro)
Permission to verify a message hash with the key.

#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)@x00002000)

This flag allows the key to be used to verify a message hash as part of an asymmetric signature verification
operation, if otherwise permitted by the key’s type and policy. The flag must be present on keys used
when calling psa_verify_hash().

This flag automatically sets PSA_KEY_USAGE_VERIFY_MESSAGE: if an application sets the flag
PSA_KEY_USAGE_VERIFY_HASH when creating a key, then the key always has the permissions conveyed by
PSA_KEY_USAGE_VERIFY_MESSAGE, and the flag PSA_KEY_USAGE_VERIFY_MESSAGE will also be present when the
application queries the usage flags of the key.

For a key pair, this concerns the public key.

PSA_KEY_USAGE_DERIVE (macro)
Permission to derive other keys from this key.

#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)

This flag allows the key to be used for a key derivation operation or for a key agreement operation, if
otherwise permitted by by the key's type and policy. The flag must be present on keys used with the
following APlIs:

® psa_key_derivation_input_key()
® psa_key_derivation_key_agreement()

® psa_raw_key_agreement()

psa_set_key_usage_flags (function)
Declare usage flags for a key.

void psa_set_key_usage_flags(psa_key_attributes_t * attributes,
psa_key_usage_t usage_flags);

Parameters
attributes The attribute object to write to.
usage_flags The usage flags to write.
IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 83

1.0.1 Non-confidential

Returns: void

Description

Usage flags are part of a key’s policy. They encode what kind of operations are permitted on the key. For
more details, see Key policies on page 78.

This function overwrites any usage flags previously set in attributes.

Implementation note

This is a simple accessor function that is not required to validate its inputs. The following approaches
can be used to provide an efficient implementation:

e This function can be declared as static or inline, instead of using the default external linkage.

e This function can be provided as a function-like macro. In this form, the macro must evaluate
each of its arguments exactly once, as if it was a function call.

psa_get_key_usage_flags (function)
Retrieve the usage flags from key attributes.

psa_key_usage_t psa_get_key_usage_flags(const psa_key_attributes_t * attributes);

Parameters

attributes The key attribute object to query.
Returns: psa_key_usage_t
The usage flags stored in the attribute object.

Description

Implementation note

This is a simple accessor function that is not required to validate its inputs. The following approaches
can be used to provide an efficient implementation:

e This function can be declared as static or inline, instead of using the default external linkage.

e This function can be provided as a function-like macro. In this form, the macro must evaluate
each of its arguments exactly once, as if it was a function call.

9.6 Key management functions

9.6.1 Key creation

New keys can be created in the following ways:

e psa_import_key() creates a key from a data buffer provided by the application.

e psa_generate_key() creates a key from randomly generated data.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 84
1.0.1 Non-confidential

e psa_key_derivation_output_key() creates a key from data generated by a pseudorandom derivation
process. See Key derivation on page 181.

e psa_copy_key () duplicates an existing key with a different lifetime or with a more restrictive usage

policy.

When creating a key, the attributes for the new key are specified in a psa_key_attributes_t object. Each
key creation function defines how it uses the attributes.

Note:

The attributes for a key are immutable after the key has been created.

The application must set the key algorithm policy and the appropriate key usage flags in the
attributes in order for the key to be used in any cryptographic operations.

psa_import_key (function)

Import a key in binary format.

psa_status_t psa_import_key(const psa_key_attributes_t * attributes,
const uint8_t * data,
size_t data_length,
psa_key_id_t * key);

Parameters

attributes The attributes for the new key. This function uses the attributes as
follows:

The key type is required, and determines how the data buffer is
interpreted.

The key size is always determined from the data buffer. If the
key size in attributes is nonzero, it must be equal to the size
determined from data.

The key permitted-algorithm policy is required for keys that will
be used for a cryptographic operation, see Permitted algorithms
on page 78.

The key usage flags define what operations are permitted with
the key, see Key usage flags on page 80.

The key lifetime and identifier are required for a persistent key.

Note:

This is an input parameter: it is not updated with the final key
attributes. The final attributes of the new key can be queried
by calling psa_get_key_attributes() with the key’s identifier.

data Buffer containing the key data. The content of this buffer is
interpreted according to the type declared in attributes. All
implementations must support at least the format described in the

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 85

1.0.1

Non-confidential

documentation of psa_export_key() or psa_export_public_key() for
the chosen type. Implementations can support other formats, but be
conservative in interpreting the key data: it is recommended that
implementations reject content if it might be erroneous, for example,
if it is the wrong type or is truncated.

data_length Size of the data buffer in bytes.
key On success, an identifier for the newly created key. PSA_KEY_ID_NULL
on failure.

Returns: psa_status_t

PSA_SUCCESS Success. If the key is persistent, the key material and the key’s
metadata have been saved to persistent storage.

PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already a
persistent key with the given identifier.

PSA_ERROR_NOT_SUPPORTED The key type or key size is not supported, either by the
implementation in general or in this particular persistent location.

PSA_ERROR_INVALID_ARGUMENT The key attributes, as a whole, are invalid.

PSA_ERROR_INVALID_ARGUMENT The key data is not correctly formatted.

PSA_ERROR_INVALID_ARGUMENT The size in attributes is nonzero and does not match the size of the
key data.

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_INSUFFICIENT_STORAGE
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID
PSA_ERROR_HARDWARE_FAILURE
PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

This function supports any output from psa_export_key(). Refer to the documentation of
psa_export_public_key() for the format of public keys and to the documentation of psa_export_key() for
the format for other key types.

The key data determines the key size. The attributes can optionally specify a key size; in this case it must
match the size determined from the key data. A key size of @ in attributes indicates that the key size is
solely determined by the key data.

Implementations must reject an attempt to import a key of size o.

This specification defines a single format for each key type. Implementations can optionally support other
formats in addition to the standard format. It is recommended that implementations that support other

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 86
1.0.1 Non-confidential

formats ensure that the formats are clearly unambiguous, to minimize the risk that an invalid input is
accidentally interpreted according to a different format.

Note:

The PSA Crypto API does not support asymmetric private key objects outside of a key pair. To
import a private key, the attributes must specify the corresponding key pair type. Depending on the
key type, either the import format contains the public key data or the implementation will
reconstruct the public key from the private key as needed.

psa_generate_key (function)
Generate a key or key pair.

psa_status_t psa_generate_key(const psa_key_attributes_t * attributes,
psa_key_id_t * key);

Parameters

attributes The attributes for the new key. This function uses the attributes as
follows:

e The key type is required. It cannot be an asymmetric public key.

e The key size is required. It must be a valid size for the key type.

e The key permitted-algorithm policy is required for keys that will
be used for a cryptographic operation, see Permitted algorithms
on page 78.

e The key usage flags define what operations are permitted with
the key, see Key usage flags on page 80.

e The key lifetime and identifier are required for a persistent key.

Note:

This is an input parameter: it is not updated with the final key
attributes. The final attributes of the new key can be queried
by calling psa_get_key_attributes() with the key’s identifier.

key On success, an identifier for the newly created key. PSA_KEY_ID_NULL
on failure.

Returns: psa_status_t

PSA_SUCCESS Success. If the key is persistent, the key material and the key's
metadata have been saved to persistent storage.

PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already a
persistent key with the given identifier.

PSA_ERROR_NOT_SUPPORTED The key type or key size is not supported, either by the
implementation in general or in this particular persistent location.

PSA_ERROR_INVALID_ARGUMENT The key attributes, as a whole, are invalid.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 87
1.0.1 Non-confidential

PSA_ERROR_INVALID_ARGUMENT The key type is an asymmetric public key type.
PSA_ERROR_INVALID_ARGUMENT The key size is not a valid size for the key type.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_HARDWARE_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_INSUFFICIENT_STORAGE

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

The key is generated randomly. Its location, policy, type and size are taken from attributes.
Implementations must reject an attempt to generate a key of size o.

The following type-specific considerations apply:

e For RSA keys (PSA_KEY_TYPE_RSA_KEY_PAIR), the public exponent is 65537. The modulus is a product of
two probabilistic primes between 2”{n-1} and 2”n where n is the bit size specified in the attributes.

psa_copy_key (function)
Make a copy of a key.

psa_status_t psa_copy_key(psa_key_id_t source_key,
const psa_key_attributes_t * attributes,
psa_key_id_t * target_key);

Parameters

source_key The key to copy. It must allow the usage PSA_KEY_USAGE_COPY. If a
private or secret key is being copied outside of a secure element it
must also allow PSA_KEY_USAGE_EXPORT.

attributes The attributes for the new key. This function uses the attributes as
follows:

e The key type and size can be o. If either is nonzero, it must
match the corresponding attribute of the source key.

e The key location (the lifetime and, for persistent keys, the key
identifier) is used directly.

e The key policy (usage flags and permitted algorithm) are
combined from the source key and attributes so that both sets

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 88
1.0.1 Non-confidential

of restrictions apply, as described in the documentation of this
function.

Note:

This is an input parameter: it is not updated with the final key
attributes. The final attributes of the new key can be queried
by calling psa_get_key_attributes() with the key’s identifier.

target_key On success, an identifier for the newly created key. PSA_KEY_ID_NULL
on failure.

Returns: psa_status_t

PSA_SUCCESS Success. If the new key is persistent, the key material and the key’s
metadata have been saved to persistent storage.

PSA_ERROR_INVALID_HANDLE source_key is invalid.

PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already a
persistent key with the given identifier.

PSA_ERROR_INVALID_ARGUMENT The lifetime or identifier in attributes are invalid.

PSA_ERROR_INVALID_ARGUMENT The key policies from source_key and specified in attributes are
incompatible.

PSA_ERROR_INVALID_ARGUMENT attributes specifies a key type or key size which does not match the
attributes of source key.

PSA_ERROR_NOT_PERMITTED source_key does not have the PSA_KEY_USAGE_COPY usage flag.

PSA_ERROR_NOT_PERMITTED source_key does not have the PSA_KEY_USAGE_EXPORT usage flag and its

lifetime does not allow copying it to the target’s lifetime.
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_INSUFFICIENT_STORAGE
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE_FAILURE
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID
PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description
Copy key material from one location to another.

This function is primarily useful to copy a key from one location to another, as it populates a key using the
material from another key which can have a different lifetime.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 89
1.0.1 Non-confidential

This function can be used to share a key with a different party, subject to implementation-defined
restrictions on key sharing.

The policy on the source key must have the usage flag PSA_KEY_USAGE_COPY set. This flag is sufficient to
permit the copy if the key has the lifetime PSA_KEY_LIFETIME_VOLATILE Or PSA_KEY_LIFETIME_PERSISTENT.
Some secure elements do not provide a way to copy a key without making it extractable from the secure
element. If a key is located in such a secure element, then the key must have both usage flags
PSA_KEY_USAGE_COPY and PSA_KEY_USAGE_EXPORT in order to make a copy of the key outside the secure
element.

The resulting key can only be used in a way that conforms to both the policy of the original key and the
policy specified in the attributes parameter:
e The usage flags on the resulting key are the bitwise-and of the usage flags on the source policy and
the usage flags in attributes.

e If both permit the same algorithm or wildcard-based algorithm, the resulting key has the same
permitted algorithm.

o If either of the policies permits an algorithm and the other policy allows a wildcard-based permitted
algorithm that includes this algorithm, the resulting key uses this permitted algorithm.

e If the policies do not permit any algorithm in common, this function fails with the status
PSA_ERROR_INVALID_ARGUMENT.

The effect of this function on implementation-defined attributes is implementation-defined.

9.6.2 Key destruction
psa_destroy_key (function)
Destroy a key.

psa_status_t psa_destroy_key(psa_key_id_t key);

Parameters

key Identifier of the key to erase. If this is PSA_KEY_ID_NULL, do nothing
and return PSA_SUCCESS.

Returns: psa_status_t

PSA_SUCCESS key was a valid key identifier and the key material that it referred to
has been erased. Alternatively, key is PSA_KEY_ID_NULL.

PSA_ERROR_NOT_PERMITTED The key cannot be erased because it is read-only, either due to a
policy or due to physical restrictions.

PSA_ERROR_INVALID_HANDLE key is not a valid handle nor PSA_KEY_ID_NULL.

PSA_ERROR_COMMUNICATION_FAILURE There was an failure in communication with the cryptoprocessor. The
key material might still be present in the cryptoprocessor.

PSA_ERROR_STORAGE_FAILURE The storage operation failed. Implementations must make a best
effort to erase key material even in this situation, however, it might
be impossible to guarantee that the key material is not recoverable in
such cases.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 90
1.0.1 Non-confidential

PSA_ERROR_DATA_CORRUPT The storage is corrupted. Implementations must make a best effort to
erase key material even in this situation, however, it might be
impossible to guarantee that the key material is not recoverable in
such cases.

PSA_ERROR_DATA_INVALID

PSA_ERROR_CORRUPTION_DETECTED An unexpected condition which is not a storage corruption or a
communication failure occurred. The cryptoprocessor might have
been compromised.

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

This function destroys a key from both volatile memory and, if applicable, non-volatile storage.
Implementations must make a best effort to ensure that that the key material cannot be recovered.

This function also erases any metadata such as policies and frees resources associated with the key.

Destroying the key makes the key identifier invalid, and the key identifier must not be used again by the
application.

If a key is currently in use in a multi-part operation, then destroying the key will cause the multi-part
operation to fail.

psa_purge_key (function)
Remove non-essential copies of key material from memory.

psa_status_t psa_purge_key(psa_key_id_t key);

Parameters

key Identifier of the key to purge.

Returns: psa_status_t

PSA_SUCCESS The key material will have been removed from memory if it is not
currently required.

PSA_ERROR_INVALID_HANDLE
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_STORAGE _FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID
PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 91
1.0.1 Non-confidential

Description

For keys that have been created with the PSA_KEY_USAGE_CACHE usage flag, an implementation is permitted
to make additional copies of the key material that are not in storage and not for the purpose of ongoing
operations.

This function will remove these extra copies of the key material from memory.

This function is not required to remove key material from memory in any of the following situations:

e The key is currently in use in a cryptographic operation.

e The key is volatile.

See also Managing key material on page 39.

9.6.3 Key export
psa_export_key (function)
Export a key in binary format.

psa_status_t psa_export_key(psa_key_id_t key,
uint8_t * data,
size_t data_size,
size_t * data_length);

Parameters

key Identifier of the key to export. It must allow the usage
PSA_KEY_USAGE_EXPORT, unless it is a public key.

data Buffer where the key data is to be written.
data_size Size of the data buffer in bytes. This must be appropriate for the key:

e The required output size is PSA_EXPORT_KEY_OUTPUT_SIZE(type,
bits) where type is the key type and bits is the key size in bits.

e PSA_EXPORT_KEY_PAIR_MAX_SIZE evaluates to the maximum output
size of any supported key pair.

e PSA_EXPORT_PUBLIC_KEY_MAX_SIZE evaluates to the maximum
output size of any supported public key.

e This API defines no maximum size for symmetric keys.
Arbitrarily large data items can be stored in the key store, for
example certificates that correspond to a stored private key or
input material for key derivation.

data_length On success, the number of bytes that make up the key data.

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_INVALID_HANDLE
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_EXPORT flag.
PSA_ERROR_NOT_SUPPORTED

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 92
1.0.1 Non-confidential

PSA_ERROR_BUFFER_TO0O_SMALL The size of the data buffer is too small. PSA_EXPORT_KEY_OUTPUT_SIZE()
or PSA_EXPORT_KEY_PAIR_MAX_SIZE can be used to determine the
required buffer size.

PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE_FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description
The output of this function can be passed to psa_import_key() to create an equivalent object.

If the implementation of psa_import_key() supports other formats beyond the format specified here, the
output from psa_export_key() must use the representation specified here, not the original representation.

For standard key types, the output format is as follows:

e For symmetric keys, excluding HMAC keys, the format is the raw bytes of the key.

e For HMAC keys that are shorter than, or equal in size to, the underlying hash algorithm block size,
the format is the raw bytes of the key.

For HMAC keys that are longer than the underlying hash algorithm block size, the format is an
IMPLEMENTATION DEFINED choice between the following formats:

1. The raw bytes of the key.
2. The raw bytes of the hash of the key, using the underlying hash algorithm.

See also PSA_KEY_TYPE_HMAC.
e For DES, the key data consists of 8 bytes. The parity bits must be correct.
e For Triple-DES, the format is the concatenation of the two or three DES keys.

e For RSA key pairs, with key type PSA_KEY_TYPE_RSA_KEY_PAIR, the format is the non-encrypted DER
encoding of the representation defined by in PKCS #1: RSA Cryptography Specifications Version 2.2
[RFC8017] as RSAPrivateKey, version 0.

RSAPrivateKey ::= SEQUENCE {

version INTEGER, -- must be 0

modulus INTEGER, --n

publicExponent INTEGER, -- e

privateExponent INTEGER, --d

primel INTEGER, --p

prime2 INTEGER, -- ¢

exponent1 INTEGER, -- d mod (p-1)

exponent2 INTEGER, -- d mod (g-1)

(continues on next page)

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 93

1.0.1 Non-confidential

(continued from previous page)

coefficient INTEGER, -- (inverse of q) mod p

Note:

Although it is possible to define an RSA key pair or private key using a subset of these
elements, the output from psa_export_key() for an RSA key pair must include all of these

elements.

e For elliptic curve key pairs, with key types for which PSA_KEY_TYPE_IS_ECC_KEY_PAIR() is true, the
format is a representation of the private value.

— For Weierstrass curve families PSA_ECC_FAMILY_SECT_XX, PSA_ECC_FAMILY_SECP_XX,
PSA_ECC_FAMILY_FRP and PSA_ECC_FAMILY_BRAINPOOL_P_RT1, the content of the privateKey field of
the ECPrivateKey format defined by Elliptic Curve Private Key Structure [RFC5915].

This is a ceiling(m/8)-byte string in big-endian order where m is the key size in bits.

— For curve family PSA_ECC_FAMILY_MONTGOMERY, the scalar value of the ‘private key’ in little-endian
order as defined by Elliptic Curves for Security [RFC7748] §6. The value must have the forced bits
set to zero or one as specified by decodeScalar25519() and decodeScalar448() in [RFC7748] §5.
This is a ceiling(m/8)-byte string where m is the key size in bits. This is 32 bytes for
Curve25519, and 56 bytes for Curve448.

e For Diffie-Hellman key exchange key pairs, with key types for which PSA_KEY_TYPE_IS_DH_KEY_PAIR() is
true, the format is the representation of the private key x as a big-endian byte string. The length of
the byte string is the private key size in bytes, and leading zeroes are not stripped.

e For public keys, with key types for which PSA_KEY_TYPE_IS_PUBLIC_KEY() is true, the format is the same
as for psa_export_public_key().

The policy on the key must have the usage flag PSA_KEY_USAGE_EXPORT set.

psa_export_public_key (function)

Export a public key or the public part of a key pair in binary format.

psa_status_t psa_export_public_key(psa_key_id_t key,

Parameters
key
data

data_size

IHI 0086
1.0.1

uint8_t * data,
size_t data_size,
size_t * data_length);

Identifier of the key to export.
Buffer where the key data is to be written.
Size of the data buffer in bytes. This must be appropriate for the key:

e The required output size is
PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE(type, bits) where type is
the key type and bits is the key size in bits.

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 94
Non-confidential

https://tools.ietf.org/html/rfc7748.html#section-6
https://tools.ietf.org/html/rfc7748.html#section-5

e PSA_EXPORT_PUBLIC_KEY_MAX_SIZE evaluates to the maximum
output size of any supported public key or public part of a key

pair.

data_length On success, the number of bytes that make up the key data.
Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_INVALID_HANDLE

PSA_ERROR_INVALID_ARGUMENT The key is neither a public key nor a key pair.

PSA_ERROR_NOT_SUPPORTED

PSA_ERROR_BUFFER_TOO_SMALL The size of the data buffer is too small.

PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE() or
PSA_EXPORT_PUBLIC_KEY_MAX_SIZE can be used to determine the
required buffer size.

PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE_FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

The output of this function can be passed to psa_import_key() to create an object that is equivalent to the
public key.

If the implementation of psa_import_key () supports other formats beyond the format specified here, the
output from psa_export_public_key() must use the representation specified here, not the original
representation.

For standard key types, the output format is as follows:

e For RSA public keys, with key type PsA_KEY_TYPE_RSA_PUBLIC_KEY, the DER encoding of the
representation defined by Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile [RFC3279] §2.3.1 as RSAPublicKey.

RSAPublicKey ::= SEQUENCE {
modulus INTEGER, --n
publicExponent INTEGER } --e

e For elliptic curve key pairs, with key types for which PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY() is true, the
format depends on the key family:

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 95
1.0.1 Non-confidential

https://tools.ietf.org/html/rfc3279.html#section-2.3.1

— For Weierstrass curve families PSA_ECC_FAMILY_SECT_XX, PSA_ECC_FAMILY_SECP_XX,
PSA_ECC_FAMILY_FRP and PSA_ECC_FAMILY_BRAINPOOL_P_R1, the uncompressed representation of an
elliptic curve point as an octet string defined in SEC 1: Elliptic Curve Cryptography [SEC1] §2.3.3.
If mis the bit size associated with the curve, i.e. the bit size of q for a curve over F_q. The
representation consists of:

o The byte ox04;
o x_P as a ceiling(m/8)-byte string, big-endian;
o y_P as aceiling(m/8)-byte string, big-endian.

— For curve family PSA_ECC_FAMILY_MONTGOMERY, the scalar value of the ‘public key' in little-endian
order as defined by Elliptic Curves for Security [RFC7748] §6. This is a ceiling(m/8)-byte string
where mis the key size in bits.

o This is 32 bytes for Curve25519, computed as X25519(private_key, 9).
o This is 56 bytes for Curve448, computed as X448 (private_key, 5).

e For Diffie-Hellman key exchange public keys, with key types for which
PSA_KEY_TYPE_IS_DH_PUBLIC_KEY is true, the format is the representation of the public key y = g*x mod
p as a big-endian byte string. The length of the byte string is the length of the base prime p in bytes.

Exporting a public key object or the public part of a key pair is always permitted, regardless of the key's
usage flags.

PSA_EXPORT_KEY_OUTPUT_SIZE (macro)

Sufficient output buffer size for psa_export_key().

#define PSA_EXPORT_KEY_OUTPUT_SIZE(key_type, key_bits) \
/* implementation-defined value */

Parameters
key_type A supported key type.
key_bits The size of the key in bits.
Returns

If the parameters are valid and supported, return a buffer size in bytes that guarantees that
psa_export_key() Or psa_export_public_key() will not fail with PSA_ERROR_BUFFER_T00_SMALL. If the
parameters are a valid combination that is not supported by the implementation, this macro must return
either a sensible size or o. If the parameters are not valid, the return value is unspecified.

Description

This macro returns a compile-time constant if its arguments are compile-time constants.

Warning: This function can evaluate its arguments multiple times or zero times. Providing arguments
that have side effects will result in implementation-specific behavior, and is non-portable.

The following code illustrates how to allocate enough memory to export a key by querying the key type
and size at runtime.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 96
1.0.1 Non-confidential

https://tools.ietf.org/html/rfc7748.html#section-6

psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t status;
status = psa_get_key_attributes(key, &attributes);
if (status != PSA_SUCCESS)
handle_error(...);
psa_key_type_t key_type = psa_get_key_type(&attributes);
size_t key_bits = psa_get_key_bits(&attributes);
size_t buffer_size = PSA_EXPORT_KEY_OUTPUT_SIZE (key_type, key_bits);
psa_reset_key_attributes(&attributes);
uint8_t *buffer = malloc(buffer_size);
if (buffer == NULL)
handle_error(...);
size_t buffer_length;
status = psa_export_key(key, buffer, buffer_size, &buffer_length);
if (status != PSA_SUCCESS)
handle_error(...);

See also PSA_EXPORT_KEY_PAIR_MAX_SIZE and PSA_EXPORT_PUBLIC_KEY_MAX_SIZE.

PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE (macro)
Sufficient output buffer size for psa_export_public_key().

#define PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE(key_type, key_bits) \
/* implementation-defined value */

Parameters
key_type A public key or key pair key type.
key_bits The size of the key in bits.
Returns

If the parameters are valid and supported, return a buffer size in bytes that guarantees that
psa_export_public_key() will not fail with PSA_ERROR_BUFFER_TOO_SMALL. If the parameters are a valid
combination that is not supported by the implementation, this macro must return either a sensible size or
0. If the parameters are not valid, the return value is unspecified.

If the parameters are valid and supported, it is recommended that this macro returns the same result as
PSA_EXPORT_KEY_OUTPUT_SIZE(PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(key_type), key_bits).

Description

This macro returns a compile-time constant if its arguments are compile-time constants.

Warning: This function can evaluate its arguments multiple times or zero times. Providing arguments
that have side effects will result in implementation-specific behavior, and is non-portable.

The following code illustrates how to allocate enough memory to export a public key by querying the key
type and size at runtime.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 97
1.0.1 Non-confidential

psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t status;
status = psa_get_key_attributes(key, &attributes);
if (status != PSA_SUCCESS)
handle_error(...);
psa_key_type_t key_type = psa_get_key_type(&attributes);
size_t key_bits = psa_get_key_bits(&attributes);
size_t buffer_size = PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE(key_type, key_bits);
psa_reset_key_attributes(&attributes);
uint8_t *buffer = malloc(buffer_size);
if (buffer == NULL)
handle_error(...);
size_t buffer_length;
status = psa_export_public_key(key, buffer, buffer_size, &buffer_length);
if (status != PSA_SUCCESS)
handle_error(...);

See also PSA_EXPORT_PUBLIC_KEY_MAX_SIZE.
PSA_EXPORT_KEY_PAIR_MAX_SIZE (macro)

Sufficient buffer size for exporting any asymmetric key pair.

#define PSA_EXPORT_KEY_PAIR_MAX_SIZE /* implementation-defined value */

This macro must expand to a compile-time constant integer. This value must be a sufficient buffer size
when calling psa_export_key () to export any asymmetric key pair that is supported by the implementation,

regardless of the exact key type and key size.

See also PSA_EXPORT_KEY_OUTPUT_SIZE().

PSA_EXPORT_PUBLIC_KEY_MAX_SIZE (macro)
Sufficient buffer size for exporting any asymmetric public key.

#define PSA_EXPORT_PUBLIC_KEY_MAX_SIZE /* implementation-defined value =*/

This macro must expand to a compile-time constant integer. This value must be a sufficient buffer size
when calling psa_export_key() or psa_export_public_key() to export any asymmetric public key that is

supported by the implementation, regardless of the exact key type and key size.

See also PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE().

10 Cryptographic operation reference
10.1 Algorithms

This specification encodes algorithms into a structured 32-bit integer value.

Algorithm identifiers are used for two purposes in this API:

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

1.0.1 Non-confidential

Page 98

1. To specify a specific algorithm to use in a cryptographic operation. These are all defined in
Cryptographic operation reference on page 98.

2. To specify the policy for a key, identifying the permitted algorithm for use with the key. This use is
described in Key policies on page 78.

The specific algorithm identifiers are described alongside the cryptographic operation functions to which
they apply:

Hash algorithms on page 103

MAC algorithms on page 122

Cipher algorithms on page 135
AEAD algorithms on page 157

Key derivation algorithms on page 181

Asymmetric signature algorithms on page 198

Asymmetric encryption algorithms on page 211

Key agreement algorithms on page 217

10.1.1 Algorithm encoding
psa_algorithm_t (type)
Encoding of a cryptographic algorithm.

typedef uint32_t psa_algorithm_t;

This is a structured bitfield that identifies the category and type of algorithm. The range of algorithm
identifier values is divided as follows:

0x00000000 Reserved as an invalid algorithm identifier.

0x00000001 - Ox7fFFFfff
Specification-defined algorithm identifiers. Algorithm identifiers defined by this standard
always have bit 31 clear. Unallocated algorithm identifier values in this range are reserved
for future use.

0x80000000 - Oxffffffff
Implementation-defined algorithm identifiers. Implementations that define additional
algorithms must use an encoding with bit 31 set. The related support macros will be easier
to write if these algorithm identifier encodings also respect the bitwise structure used by
standard encodings.

For algorithms that can be applied to multiple key types, this identifier does not encode the key type. For
example, for symmetric ciphers based on a block cipher, psa_algorithm_t encodes the block cipher mode
and the padding mode while the block cipher itself is encoded via psa_key_type_t.

PSA_ALG_NONE (macro)

An invalid algorithm identifier value.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 99
1.0.1 Non-confidential

#define PSA_ALG_NONE ((psa_algorithm_t)@)

Zero is not the encoding of any algorithm.

10.1.2 Algorithm categories
PSA_ALG_IS_HASH (macro)
Whether the specified algorithm is a hash algorithm.

#define PSA_ALG_IS_HASH(alg) /* specification-defined value */

Parameters

alg An algorithm identifier (value of type psa_algorithm_t).
Returns

1 if alg is a hash algorithm, @ otherwise. This macro can return either @ or 1 if alg is not a supported
algorithm identifier.

Description

See Hash algorithms on page 103 for a list of defined hash algorithms.

PSA_ALG_IS_MAC (macro)
Whether the specified algorithm is a MAC algorithm.

#define PSA_ALG_IS_MAC(alg) /* specification-defined value =*/

Parameters

alg An algorithm identifier (value of type psa_algorithm_t).

Returns

1 if alg is a MAC algorithm, @ otherwise. This macro can return either o or 1 if alg is not a supported
algorithm identifier.

Description

See MAC algorithms on page 122 for a list of defined MAC algorithms.

PSA_ALG_IS_CIPHER (macro)
Whether the specified algorithm is a symmetric cipher algorithm.

#define PSA_ALG_IS_CIPHER(alg) /* specification-defined value */

Parameters
alg An algorithm identifier (value of type psa_algorithm_t).
IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 100

1.0.1 Non-confidential

Returns

1 if alg is a symmetric cipher algorithm, ¢ otherwise. This macro can return either @ or 1 if algis not a
supported algorithm identifier.

Description

See Cipher algorithms on page 135 for a list of defined cipher algorithms.

PSA_ALG_IS_AEAD (macro)
Whether the specified algorithm is an authenticated encryption with associated data (AEAD) algorithm.

#define PSA_ALG_IS_AEAD(alg) /* specification-defined value */

Parameters

alg An algorithm identifier (value of type psa_algorithm_t).

Returns

1 if alg is an AEAD algorithm, @ otherwise. This macro can return either ¢ or 1 if alg is not a supported
algorithm identifier.

Description

See AEAD algorithms on page 157 for a list of defined AEAD algorithms.

PSA_ALG_IS_SIGN (macro)

Whether the specified algorithm is an asymmetric signature algorithm, also known as public-key signature
algorithm.

#define PSA_ALG_IS_SIGN(alg) /* specification-defined value */

Parameters

alg An algorithm identifier (value of type psa_algorithm_t).

Returns

1 if alg is an asymmetric signature algorithm, o otherwise. This macro can return either @ or 1 if alg is not a
supported algorithm identifier.

Description

See Asymmetric signature algorithms on page 198 for a list of defined signature algorithms.

PSA_ALG_IS_ASYMMETRIC_ENCRYPTION (macro)

Whether the specified algorithm is an asymmetric encryption algorithm, also known as public-key
encryption algorithm.

#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) /* specification-defined value =*/

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 101
1.0.1 Non-confidential

Parameters

alg An algorithm identifier (value of type psa_algorithm_t).

Returns

1 if alg is an asymmetric encryption algorithm, @ otherwise. This macro can return either @ or 1 if alg is not
a supported algorithm identifier.

Description

See Asymmetric encryption algorithms on page 211 for a list of defined asymmetric encryption algorithms.

PSA_ALG_IS_KEY_AGREEMENT (macro)
Whether the specified algorithm is a key agreement algorithm.

#define PSA_ALG_IS_KEY_AGREEMENT(alg) /* specification-defined value */

Parameters

alg An algorithm identifier (value of type psa_algorithm_t).

Returns

1 if alg is a key agreement algorithm, @ otherwise. This macro can return either @ or 1 if alg is not a
supported algorithm identifier.

Description

See Key agreement algorithms on page 217 for a list of defined key agreement algorithms.

PSA_ALG_IS_KEY_DERIVATION (macro)
Whether the specified algorithm is a key derivation algorithm.

#define PSA_ALG_IS_KEY_DERIVATION(alg) /x specification-defined value */

Parameters

alg An algorithm identifier (value of type psa_algorithm_t).

Returns

1 if alg is a key derivation algorithm, @ otherwise. This macro can return either ¢ or 1 if alg is not a
supported algorithm identifier.

Description

See Key derivation algorithms on page 181 for a list of defined key derivation algorithms.

PSA_ALG_IS_WILDCARD (macro)
Whether the specified algorithm encoding is a wildcard.

#define PSA_ALG_IS_WILDCARD(alg) /* specification-defined value */

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 102
1.0.1 Non-confidential

Parameters
alg An algorithm identifier (value of type psa_algorithm_t).
Returns
1 if alg is a wildcard algorithm encoding.
0 if alg is a non-wildcard algorithm encoding that is suitable for an operation.
This macro can return either o or 1 if alg is not a supported algorithm identifier.
Description

Wildcard algorithm values can only be used to set the permitted algorithm field in a key policy, wildcard
values cannot be used to perform an operation.

See PSA_ALG_ANY_HASH for example of how a wildcard algorithm can be used in a key policy.

PSA_ALG_GET_HASH (macro)
Get the hash used by a composite algorithm.

#define PSA_ALG_GET_HASH(alg) /* specification-defined value x/

Parameters

alg An algorithm identifier (value of type psa_algorithm_t).
Returns
The underlying hash algorithm if alg is a composite algorithm that uses a hash algorithm.
PSA_ALG_NONE if alg is not a composite algorithm that uses a hash.
Description

The following composite algorithms require a hash algorithm:

® PSA_ALG_ECDSA()

® PSA_ALG_HKDF ()

® PSA_ALG_HMAC()

® PSA_ALG_RSA_OAEP()

® PSA_ALG_IS_RSA_PKCSTV15_SIGN()
® PSA_ALG_RSA_PSS()

® PSA_ALG_TLS12_PRF()

® PSA_ALG_TLS12_PSK_TO_MS()

10.2 Message digests

10.2.1 Hash algorithms
PSA_ALG_MD2 (macro)
The MD2 message-digest algorithm.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 103
1.0.1 Non-confidential

#define PSA_ALG_MD2 ((psa_algorithm_t)0x02000001)

Warning: The MD2 hash is weak and deprecated and is only recommended for use in legacy protocols.

MD?2 is defined in The MD2 Message-Digest Algorithm [RFC1319].

PSA_ALG_MD4 (macro)
The MD4 message-digest algorithm.

#define PSA_ALG_MD4 ((psa_algorithm_t)0x02000002)

Warning: The MD4 hash is weak and deprecated and is only recommended for use in legacy protocols.

MD4 is defined in The MD4 Message-Digest Algorithm [RFC1320].

PSA_ALG_MD5 (macro)
The MD5 message-digest algorithm.

#define PSA_ALG_MD5 ((psa_algorithm_t)0@x02000003)

Warning: The MD5 hash is weak and deprecated and is only recommended for use in legacy protocols.

MD?5 is defined in The MD5 Message-Digest Algorithm [RFC1321].

PSA_ALG_RIPEMD160 (macro)
The RIPEMD-160 message-digest algorithm.

#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)

RIPEMD-160 is defined in RIPEMD-160: A Strengthened Version of RIPEMD [RIPEMD], and also in ISO/IEC
10118-3:2018 IT Security techniques — Hash-functions — Part 3: Dedicated hash-functions [ISO10118].

PSA_ALG_SHA_1 (macro)
The SHA-1 message-digest algorithm.

#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)

Warning: The SHA-1 hash is weak and deprecated and is only recommended for use in legacy
protocols.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 104
101 Non-confidential

SHA-1 is defined in FIPS Publication 180-4: Secure Hash Standard (SHS) [FIPS180-4].

PSA_ALG_SHA_224 (macro)
The SHA-224 message-digest algorithm.

#define PSA_ALG_SHA_224 ((psa_algorithm_t)@x02000008)

SHA-224 is defined in [FIPS180-4].

PSA_ALG_SHA_256 (macro)
The SHA-256 message-digest algorithm.

#define PSA_ALG_SHA_256 ((psa_algorithm_t)@x02000009)

SHA-256 is defined in [FIPS180-4].

PSA_ALG_SHA_384 (macro)
The SHA-384 message-digest algorithm.

#define PSA_ALG_SHA_384 ((psa_algorithm_t)@x0200000a)

SHA-384 is defined in [FIPS180-4].

PSA_ALG_SHA_512 (macro)
The SHA-512 message-digest algorithm.

#define PSA_ALG_SHA_512 ((psa_algorithm_t)@x0200000b)

SHA-512 is defined in [FIPS180-4].

PSA_ALG_SHA_512_224 (macro)
The SHA-512/224 message-digest algorithm.

#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
SHA-512/224 is defined in [FIPS180-4].
PSA_ALG_SHA_512_256 (macro)

The SHA-512/256 message-digest algorithm.

#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)

SHA-512/256 is defined in [FIPS180-4].

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 105
1.0.1 Non-confidential

PSA_ALG_SHA3_224 (macro)
The SHA3-224 message-digest algorithm.

#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)

SHA3-224 is defined in FIPS Publication 202: SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions [FIPS202].

PSA_ALG_SHA3_256 (macro)
The SHA3-256 message-digest algorithm.

#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)

SHA3-256 is defined in [FIPS202].

PSA_ALG_SHA3_384 (macro)
The SHA3-384 message-digest algorithm.

#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)

SHA3-384 is defined in [FIPS202].

PSA_ALG_SHA3_512 (macro)
The SHA3-512 message-digest algorithm.

#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)

SHA3-512 is defined in [FIPS202].

PSA_ALG_SM3 (macro)
The SM3 message-digest algorithm.

#define PSA_ALG_SM3 ((psa_algorithm_t)0@x02000014)

SM3 is defined in GB/T 32905-2016: Information security techniques — SM3 cryptographic hash algorithm
[PRC-SM3] and The SM3 Cryptographic Hash Function [IETF-SM3].

10.2.2 Single-part hashing functions
psa_hash_compute (function)

Calculate the hash (digest) of a message.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 106
1.0.1 Non-confidential

psa_status_t psa_hash_compute(psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
uint8_t * hash,
size_t hash_size,
size_t * hash_length);

Parameters

alg

input
input_length
hash

hash_size

hash_length

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_NOT_SUPPORTED
PSA_ERROR_INVALID_ARGUMENT
PSA_ERROR_BUFFER_TOO_SMALL

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_BAD_STATE

Description

Note:

The hash algorithm to compute (PSA_ALG_XXX value such that
PSA_ALG_IS_HASH(alg) is true).

Buffer containing the message to hash.
Size of the input buffer in bytes.
Buffer where the hash is to be written.

Size of the hash buffer in bytes. This must be at least
PSA_HASH_LENGTH(alg).

On success, the number of bytes that make up the hash value. This is
always PSA_HASH_LENGTH(alg).

Success.

alg is not supported or is not a hash algorithm.

hash_size is too small. PSA_HASH_LENGTH() can be used to determine
the required buffer size.

The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

To verify the hash of a message against an expected value, use psa_hash_compare() instead.

psa_hash_compare (function)

Calculate the hash (digest) of a message and compare it with a reference value.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 107

1.0.1

Non-confidential

psa_status_t psa_hash_compare(psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * hash,
size_t hash_length);

Parameters
alg The hash algorithm to compute (PSA_ALG_XXX value such that
PSA_ALG_IS_HASH(alg) is true).
input Buffer containing the message to hash.
input_length Size of the input buffer in bytes.
hash Buffer containing the expected hash value.
hash_length Size of the hash buffer in bytes.

Returns: psa_status_t

PSA_SUCCESS The expected hash is identical to the actual hash of the input.

PSA_ERROR_INVALID_SIGNATURE The hash of the message was calculated successfully, but it differs
from the expected hash.

PSA_ERROR_NOT_SUPPORTED alg is not supported or is not a hash algorithm.

PSA_ERROR_INVALID_ARGUMENT input_length or hash_length do not match the hash size for alg

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

10.2.3 Multi-part hashing operations
psa_hash_operation_t (type)

The type of the state object for multi-part hash operations.

typedef /* implementation-defined type */ psa_hash_operation_t;

Before calling any function on a hash operation object, the application must initialize it by any of the
following means:

e Set the object to all-bits-zero, for example:

psa_hash_operation_t operation;
memset (&operation, @, sizeof(operation));

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 108
1.0.1 Non-confidential

e Initialize the object to logical zero values by declaring the object as static or global without an
explicit initializer, for example:

static psa_hash_operation_t operation;

e Initialize the object to the initializer PSA_HASH_OPERATION_INIT, for example:

psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;

e Assign the result of the function psa_hash_operation_init() to the object, for example:

psa_hash_operation_t operation;
operation = psa_hash_operation_init();

This is an implementation-defined type. Applications that make assumptions about the content of this
object will result in in implementation-specific behavior, and are non-portable.
PSA_HASH_OPERATION_INIT (macro)

This macro returns a suitable initializer for a hash operation object of type psa_hash_operation_t.

#define PSA_HASH_OPERATION_INIT /* implementation-defined value */

psa_hash_operation_init (function)
Return an initial value for a hash operation object.

psa_hash_operation_t psa_hash_operation_init(void);

Returns: psa_hash_operation_t

psa_hash_setup (function)
Set up a multi-part hash operation.

psa_status_t psa_hash_setup(psa_hash_operation_t * operation,
psa_algorithm_t alg);

Parameters
operation The operation object to set up. It must have been initialized as per
the documentation for psa_hash_operation_t and not yet in use.
alg The hash algorithm to compute (PSA_ALG_XxX value such that

PSA_ALG_IS_HASH(alg) is true).

Returns: psa_status_t

PSA_SUCCESS Success.
PSA_ERROR_NOT_SUPPORTED alg is not a supported hash algorithm.
PSA_ERROR_INVALID_ARGUMENT alg is not a hash algorithm.
PSA_ERROR_BAD_STATE The operation state is not valid: it must be inactive.
IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 109

1.0.1 Non-confidential

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE_FAILURE
PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

The sequence of operations to calculate a hash (message digest) is as follows:

1. Allocate an operation object which will be passed to all the functions listed here.

2. Initialize the operation object with one of the methods described in the documentation for
psa_hash_operation_t, €.g. PSA_HASH_OPERATION_INIT.

3. Call psa_hash_setup() to specify the algorithm.

4. Call psa_hash_update() zero, one or more times, passing a fragment of the message each time. The
hash that is calculated is the hash of the concatenation of these messages in order.

5. To calculate the hash, call psa_hash_finish(). To compare the hash with an expected value, call
psa_hash_verify(). To suspend the hash operation and extract the current state, call
psa_hash_suspend().

If an error occurs at any step after a call to psa_hash_setup(), the operation will need to be reset by a call to
psa_hash_abort(). The application can call psa_hash_abort () at any time after the operation has been
initialized.

After a successful call to psa_hash_setup(), the application must eventually terminate the operation. The
following events terminate an operation:

e A successful call to psa_hash_finish() or psa_hash_verify() or psa_hash_suspend().

e A call to psa_hash_abort().

psa_hash_update (function)
Add a message fragment to a multi-part hash operation.

psa_status_t psa_hash_update(psa_hash_operation_t * operation,
const uint8_t * input,
size_t input_length);

Parameters
operation Active hash operation.
input Buffer containing the message fragment to hash.
input_length Size of the input buffer in bytes.
IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 110

1.0.1 Non-confidential

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The operation state is not valid: it must be active.
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE_FAILURE
PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description
The application must call psa_hash_setup() or psa_hash_resume () before calling this function.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_hash_abort().

psa_hash_finish (function)

Finish the calculation of the hash of a message.

psa_status_t psa_hash_finish(psa_hash_operation_t * operation,
uint8_t * hash,
size_t hash_size,
size_t * hash_length);

Parameters
operation Active hash operation.
hash Buffer where the hash is to be written.
hash_size Size of the hash buffer in bytes. This must be at least
PSA_HASH_LENGTH(alg) where alg is the algorithm that the operation
performs.
hash_length On success, the number of bytes that make up the hash value. This is

always PSA_HASH_LENGTH(alg) where alg is the hash algorithm that the
operation performs.

Returns: psa_status_t

PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The operation state is not valid: it must be active.
PSA_ERROR_BUFFER_TOO_SMALL The size of the hash buffer is too small. PSA_HASH_LENGTH() can be used

to determine the required buffer size.
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE_FAILURE

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 111
1.0.1 Non-confidential

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

The application must call psa_hash_setup() or psa_hash_resume () before calling this function. This function
calculates the hash of the message formed by concatenating the inputs passed to preceding calls to
psa_hash_update().

When this function returns successfully, the operation becomes inactive. If this function returns an error
status, the operation enters an error state and must be aborted by calling psa_hash_abort ().

Warning: It is not recommended to use this function when a specific value is expected for the hash.
Call psa_hash_verify() instead with the expected hash value.

Comparing integrity or authenticity data such as hash values with a function such as memecmp () is risky
because the time taken by the comparison might leak information about the hashed data which could
allow an attacker to guess a valid hash and thereby bypass security controls.

psa_hash_verify (function)
Finish the calculation of the hash of a message and compare it with an expected value.

psa_status_t psa_hash_verify(psa_hash_operation_t * operation,
const uint8_t * hash,
size_t hash_length);

Parameters
operation Active hash operation.
hash Buffer containing the expected hash value.
hash_length Size of the hash buffer in bytes.

Returns: psa_status_t
PSA_SUCCESS The expected hash is identical to the actual hash of the message.

PSA_ERROR_INVALID_SIGNATURE The hash of the message was calculated successfully, but it differs
from the expected hash.

PSA_ERROR_BAD_STATE The operation state is not valid: it must be active.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_HARDWARE_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 112
1.0.1 Non-confidential

Description

The application must call psa_hash_setup() before calling this function. This function calculates the hash of
the message formed by concatenating the inputs passed to preceding calls to psa_hash_update(). It then
compares the calculated hash with the expected hash passed as a parameter to this function.

When this function returns successfully, the operation becomes inactive. If this function returns an error
status, the operation enters an error state and must be aborted by calling psa_hash_abort ().

Note:

Implementations must make the best effort to ensure that the comparison between the actual hash
and the expected hash is performed in constant time.

psa_hash_abort (function)
Abort a hash operation.

psa_status_t psa_hash_abort(psa_hash_operation_t * operation);

Parameters

operation Initialized hash operation.

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE_FAILURE
PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

Aborting an operation frees all associated resources except for the operation object itself. Once aborted,
the operation object can be reused for another operation by calling psa_hash_setup() again.

This function can be called any time after the operation object has been initialized by one of the methods
described in psa_hash_operation_t.

In particular, calling psa_hash_abort () after the operation has been terminated by a call to psa_hash_abort(),
psa_hash_finish() or psa_hash_verify() is safe and has no effect.

psa_hash_suspend (function)

Halt the hash operation and extract the intermediate state of the hash computation.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 113
1.0.1 Non-confidential

psa_status_t psa_hash_suspend(psa_hash_operation_t * operation,
uint8_t * hash_state,
size_t hash_state_size,
size_t * hash_state_length);

Parameters
operation Active hash operation.
hash_state Buffer where the hash suspend state is to be written.
hash_state_size Size of the hash_state buffer in bytes. This must be appropriate for
the selected algorithm:
e A sufficient output size is PSA_HASH_SUSPEND_OUTPUT_SIZE(alg)
where alg is the algorithm that was used to set up the operation.
e PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE evaluates to the maximum
output size of any supported hash algorithm.
hash_state_length On success, the number of bytes that make up the hash suspend
state.
Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The operation state is not valid: it must be active.
PSA_ERROR_BUFFER_TOO_SMALL The size of the hash_state buffer is too small.

PSA_HASH_SUSPEND_OUTPUT_SIZE() Or PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE
can be used to determine the required buffer size.

PSA_ERROR_NOT_SUPPORTED The hash algorithm being computed does not support suspend and
resume.

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

The application must call psa_hash_setup() or psa_hash_resume () before calling this function. This function
extracts an intermediate state of the hash computation of the message formed by concatenating the
inputs passed to preceding calls to psa_hash_update().

This function can be used to halt a hash operation, and then resume the hash operation at a later time, or
in another application, by transferring the extracted hash suspend state to a call to psa_hash_resume().

When this function returns successfully, the operation becomes inactive. If this function returns an error
status, the operation enters an error state and must be aborted by calling psa_hash_abort ().

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 114
1.0.1 Non-confidential

Hash suspend and resume is not defined for the SHA3 family of hash algorithms. Hash suspend state on
page 120 defines the format of the output from psa_hash_suspend().

Warning: Applications must not use any of the hash suspend state as if it was a hash output. Instead,
the suspend state must only be used to resume a hash operation, and psa_hash_finish() or
psa_hash_verify() can then calculate or verify the final hash value.

Usage

The sequence of operations to suspend and resume a hash operation is as follows:

1. Compute the first part of the hash.
a. Allocate an operation object and initialize it as described in the documentation for
psa_hash_operation_t.
b. Call psa_hash_setup() to specify the algorithm.
c. Call psa_hash_update() zero, one or more times, passing a fragment of the message each time.
d. Call psa_hash_suspend() to extract the hash suspend state into a buffer.

2. Pass the hash state buffer to the application which will resume the operation.
3. Compute the rest of the hash.
a. Allocate an operation object and initialize it as described in the documentation for
psa_hash_operation_t.
b. Call psa_hash_resume () with the extracted hash state.

c. Call psa_hash_update() zero, one or more times, passing a fragment of the message each time.

d. To calculate the hash, call psa_hash_finish(). To compare the hash with an expected value, call
psa_hash_verify().

If an error occurs at any step after a call to psa_hash_setup() or psa_hash_resume(), the operation will need
to be reset by a call to psa_hash_abort (). The application can call psa_hash_abort () at any time after the
operation has been initialized.

psa_hash_resume (function)

Set up a multi-part hash operation using the hash suspend state from a previously suspended hash
operation.

psa_status_t psa_hash_resume(psa_hash_operation_t * operation,
const uint8_t * hash_state,
size_t hash_state_length);

Parameters
operation The operation object to set up. It must have been initialized as per
the documentation for psa_hash_operation_t and not yet in use.
hash_state A buffer containing the suspended hash state which is to be
resumed. This must be in the format output by psa_hash_suspend(),
which is described in Hash suspend state format on page 120.
hash_state_length Length of hash_state in bytes.
IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 115

1.0.1 Non-confidential

Returns: psa_status_t

PSA_SUCCESS Success.

PSA_ERROR_NOT_SUPPORTED The provided hash suspend state is for an algorithm that is not
supported.

PSA_ERROR_INVALID_ARGUMENT hash_state does not correspond to a valid hash suspend state. See

Hash suspend state format on page 120 for the definition.
PSA_ERROR_BAD_STATE The operation state is not valid: it must be inactive.
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE_FAILURE
PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

See psa_hash_suspend() for an example of how to use this function to suspend and resume a hash
operation.

After a successful call to psa_hash_resume(), the application must eventually terminate the operation. The
following events terminate an operation:

e A successful call to psa_hash_finish(), psa_hash_verify() or psa_hash_suspend().

e A call to psa_hash_abort().

psa_hash_clone (function)
Clone a hash operation.

psa_status_t psa_hash_clone(const psa_hash_operation_t * source_operation,
psa_hash_operation_t * target_operation);

Parameters
source_operation The active hash operation to clone.
target_operation The operation object to set up. It must be initialized but not active.

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_BAD_STATE The source_operation state is not valid: it must be active.
PSA_ERROR_BAD_STATE The target_operation state is not valid: it must be inactive.
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 116
1.0.1 Non-confidential

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

This function copies the state of an ongoing hash operation to a new operation object. In other words, this
function is equivalent to calling psa_hash_setup() on target_operation with the same algorithm that
source_operation was set up for, then psa_hash_update() on target_operation with the same input that that
was passed to source_operation. After this function returns, the two objects are independent, i.e.
subsequent calls involving one of the objects do not affect the other object.

10.2.4 Support macros
PSA_HASH_LENGTH (macro)
The size of the output of psa_hash_compute() and psa_hash_finish(), in bytes.

#define PSA_HASH_LENGTH(alg) /* implementation-defined value */

Parameters
alg A hash algorithm (PSA_ALG_xXX value such that PSA_ALG_IS_HASH(alg) is
true), or an HMAC algorithm (PSA_ALG_HMAC(hash_alg) where hash_alg
is a hash algorithm).
Returns

The hash length for the specified hash algorithm. If the hash algorithm is not recognized, return o. An
implementation can return either ¢ or the correct size for a hash algorithm that it recognizes, but does not
support.

Description
This is also the hash length that psa_hash_compare() and psa_hash_verify() expect.

See also PSA_HASH_MAX_SIZE.

PSA_HASH_MAX_SIZE (macro)
Maximum size of a hash.

#define PSA_HASH_MAX_SIZE /* implementation-defined value x/

This macro must expand to a compile-time constant integer. It is recommended that this value is the
maximum size of a hash supported by the implementation, in bytes. The value must not be smaller than
this maximum.

See also PSA_HASH_LENGTH().

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 117
1.0.1 Non-confidential

PSA_HASH_SUSPEND_OUTPUT_SIZE (macro)
A sufficient hash suspend state buffer size for psa_hash_suspend().

#define PSA_HASH_SUSPEND_OUTPUT_SIZE(alg) /* specification-defined value =*/

Parameters
alg A hash algorithm (PSA_ALG_xxX value such that PSA_ALG_IS_HASH(alg) is
true).
Returns

A sufficient output size for the algorithm. If the hash algorithm is not recognized, or is not supported by
psa_hash_suspend(), return @. An implementation can return either @ or a correct size for a hash algorithm
that it recognizes, but does not support.

For a supported hash algorithm alg, the following expression is true:
PSA_HASH_SUSPEND_OUTPUT_SIZE(alg) == PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH +
PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) +

PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) +
PSA_HASH_BLOCK_LENGTH(alg) - 1

Description

If the size of the hash state buffer is at least this large, it is guaranteed that psa_hash_suspend() will not fail
due to an insufficient buffer size. The actual size of the output might be smaller in any given call.

See also PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE.

PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE (macro)
A sufficient hash suspend state buffer size for psa_hash_suspend(), for any supported hash algorithms.

#define PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE /x implementation-defined value */

See also PSA_HASH_SUSPEND_OUTPUT_SIZE().

PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH (macro)
The size of the algorithm field that is part of the output of psa_hash_suspend(), in bytes.

#define PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH ((size_t)4)

Applications can use this value to unpack the hash suspend state that is output by psa_hash_suspend().

PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH (macro)
The size of the input-length field that is part of the output of psa_hash_suspend(), in bytes.

#define PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) \
/* specification-defined value */

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 118
1.0.1 Non-confidential

Parameters

alg A hash algorithm (PSA_ALG_XXX value such that PSA_ALG_IS_HASH(alg) is
true).

Returns

The size, in bytes, of the input-length field of the hash suspend state for the specified hash algorithm. If the
hash algorithm is not recognized, return o. An implementation can return either ¢ or the correct size for a
hash algorithm that it recognizes, but does not support.

The algorithm-specific values are defined in Hash suspend state field sizes on page 121.

Description

Applications can use this value to unpack the hash suspend state that is output by psa_hash_suspend().

PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH (macro)
The size of the hash-state field that is part of the output of psa_hash_suspend(), in bytes.

#define PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) \
/* specification-defined value */

Parameters
alg A hash algorithm (PSA_ALG_xXX value such that PSA_ALG_IS_HASH(alg) is
true).
Returns

The size, in bytes, of the hash-state field of the hash suspend state for the specified hash algorithm. If the
hash algorithm is not recognized, return o. An implementation can return either ¢ or the correct size for a
hash algorithm that it recognizes, but does not support.

The algorithm-specific values are defined in Hash suspend state field sizes on page 121.

Description

Applications can use this value to unpack the hash suspend state that is output by psa_hash_suspend().

PSA_HASH_BLOCK_LENGTH (macro)
The input block size of a hash algorithm, in bytes.

#define PSA_HASH_BLOCK_LENGTH(alg) /* implementation-defined value */

Parameters
alg A hash algorithm (PSA_ALG_xxX value such that PSA_ALG_IS_HASH(alg) is
true).
Returns

The block size in bytes for the specified hash algorithm. If the hash algorithm is not recognized, return o.
An implementation can return either ¢ or the correct size for a hash algorithm that it recognizes, but does
not support.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 119
1.0.1 Non-confidential

Description

Hash algorithms process their input data in blocks. Hash operations will retain any partial blocks until they
have enough input to fill the block or until the operation is finished.

This affects the output from psa_hash_suspend().

10.2.5 Hash suspend state

The hash suspend state is output by psa_hash_suspend() and input to psa_hash_resume().

Note:
Hash suspend and resume is not defined for the SHA3 family of hash algorithms.

Hash suspend state format

The hash suspend state has the following format:
hash-suspend-state = algorithm || input-length || hash-state || unprocessed-input

The fields in the hash suspend state are defined as follows:

algorithm A big-endian 32-bit unsigned integer.
The PSA Crypto API algorithm identifier value.
The byte length of the algorithm field can be evaluated using
PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH.
input-length
A big-endian unsigned integer
The content of this field is algorithm-specific:
e For MD2, this is the number of bytes in the unprocessed-input.
e For all other hash algorithms, this is the total number of bytes of input to the hash
computation. This includes the unprocessed-input bytes.
The size of this field is algorithm-specific:

e For MD2: input-length is an 8-bit unsigned integer.
e For MD4, MD5, RIPEMD-160, SHA-1, SHA-224 and SHA-256: input-length is a 64-bit
unsigned integer.

e For SHA-512, SHA-384 and SHA-512/256: input-length is a 128-bit unsigned integer.
The length, in bytes, of the input-length field can be calculated using
PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) where alg is a hash algorithm. See Hash
suspend state field sizes on page 121.

hash-state An array of bytes

Algorithm-specific intermediate hash state:

e For MD2: 16 bytes of internal checksum, then 48 bytes of intermediate digest.

e For MD4 and MD5: 4x 32-bit integers, in little-endian encoding.
e For RIPEMD-160: 5x 32-bit integers, in little-endian encoding.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 120
1.0.1 Non-confidential

e For SHA-1: 5x 32-bit integers, in big-endian encoding.
e For SHA-224 and SHA-256: 8x 32-bit integers, in big-endian encoding.
e For SHA-512, SHA-384 and SHA-512/256: 8x 64-bit integers, in big-endian encoding.

The length of this field is specific to the algorithm. The length, in bytes, of the hash-state
field can be calculated using PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) where alg is a
hash algorithm. See Hash suspend state field sizes.

unprocessed-input
0 to (hash-block-size-1) bytes

A partial block of unprocessed input data. This is between zero and hash-block-size-1 bytes
of data, the length can be calculated by:

length(unprocessed-input) = input-length % hash-block-size.

The hash-block-size is specific to the algorithm. The size of a hash block can be calculated
using PSA_HASH_BLOCK_LENGTH(alg) where alg is a hash algorithm. See Hash suspend state field
sizes.

Hash suspend state field sizes

The following table defines the algorithm-specific field lengths for the hash suspend state returned by
psa_hash_suspend(). All of the field lengths are in bytes. To compute the field lengths for algorithm alg, use
the following expressions:

e PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH returns the length of the algorithm field.

e PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) returns the length of the input-length field.
e PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) returns the length of the hash-state field.

e PSA_HASH_BLOCK_LENGTH(alg)-1 is the maximum length of the unprocessed-bytes field.

e PSA_HASH_SUSPEND_OUTPUT_SIZE(slg) returns the maximum size of the hash suspend state.

Hash algorithm input-length size (bytes) hash-state length (bytes) unprocessed-bytes length (bytes)
PSA_ALG_MD2 1 64 0-15

PSA_ALG_MD4 8 16 0-63

PSA_ALG_MD5 8 16 0-63

PSA_ALG_RIPEMD160 8 20 0-63

PSA_ALG_SHA_1 8 20 0-63

PSA_ALG_SHA_224 8 32 0-63

PSA_ALG_SHA_256 8 32 0-63

PSA_ALG_SHA_512_256 16 64 0-127

PSA_ALG_SHA_384 16 64 0-127

PSA_ALG_SHA_512 16 64 0-127

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 121

1.0.1 Non-confidential

10.3 Message authentication codes (MAC)

10.3.1 MAC algorithms
PSA_ALG_HMAC (macro)
Macro to build an HMAC message-authentication-code algorithm from an underlying hash algorithm.

#define PSA_ALG_HMAC(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm (PSA_ALG_xxX value such that
PSA_ALG_IS_HASH(hash_alg) is true).
Returns

The corresponding HMAC algorithm.

Unspecified if hash_alg is not a supported hash algorithm.

Description
For example, PSA_ALG_HMAC(PSA_ALG_SHA_256) is HMAC-SHA-256.
The HMAC construction is defined in HMAC: Keyed-Hashing for Message Authentication [RFC2104].

PSA_ALG_TRUNCATED_MAC (macro)
Macro to build a truncated MAC algorithm.

#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
/* specification-defined value */

Parameters
mac_alg A MAC algorithm identifier (value of type psa_algorithm_t such that
PSA_ALG_IS_MAC(alg) is true). This can be a truncated or untruncated
MAC algorithm.
mac_length Desired length of the truncated MAC in bytes. This must be at most
the full length of the MAC and must be at least an
implementation-specified minimum. The implementation-specified
minimum must not be zero.
Returns

The corresponding MAC algorithm with the specified length.

Unspecified if alg is not a supported MAC algorithm or if mac_length is too small or too large for the
specified MAC algorithm.

Description

A truncated MAC algorithm is identical to the corresponding MAC algorithm except that the MAC value
for the truncated algorithm consists of only the first mac_length bytes of the MAC value for the
untruncated algorithm.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 122
1.0.1 Non-confidential

Note:

This macro might allow constructing algorithm identifiers that are not valid, either because the
specified length is larger than the untruncated MAC or because the specified length is smaller than
permitted by the implementation.

Note:

It is implementation-defined whether a truncated MAC that is truncated to the same length as the
MAC of the untruncated algorithm is considered identical to the untruncated algorithm for policy
comparison purposes.

The full-length MAC algorithm can be recovered using PSA_ALG_FULL_LENGTH_MAC().

PSA_ALG_CBC_MAC (macro)
The CBC-MAC message-authentication-code algorithm, constructed over a block cipher.

#define PSA_ALG_CBC_MAC ((psa_algorithm_t)@x03c00100)

Warning: CBC-MAC is insecure in many cases. A more secure mode, such as PSA_ALG_CMAC, is
recommended.

The CBC-MAC algorithm must be used with a key for a block cipher. For example, one of PSA_KEY_TYPE_AES.
CBC-MAC is defined as MAC Algorithm 1 in ISO/IEC 9797-1:2011 Information technology — Security

techniques — Message Authentication Codes (MACs) — Part 1: Mechanisms using a block cipher [ISO9797].
PSA_ALG_CMAC (macro)
The CMAC message-authentication-code algorithm, constructed over a block cipher.

#define PSA_ALG_CMAC ((psa_algorithm_t)@x03c00200)

The CMAC algorithm must be used with a key for a block cipher. For example, when used with a key with
type PSA_KEY_TYPE_AES, the resulting operation is AES-CMAC.

CMAC is defined in NIST Special Publication 800-38B: Recommendation for Block Cipher Modes of Operation:
the CMAC Mode for Authentication [SP800-38B].
10.3.2 Single-part MAC functions

psa_mac_compute (function)

Calculate the message authentication code (MAC) of a message.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 123
1.0.1 Non-confidential

psa_status_t psa_mac_compute(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
uint8_t * mac,
size_t mac_size,
size_t * mac_length);

Parameters

key

alg

input
input_length
mac

mac_size

mac_length

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_INVALID_HANDLE
PSA_ERROR_NOT_PERMITTED

PSA_ERROR_INVALID_ARGUMENT
PSA_ERROR_NOT_SUPPORTED
PSA_ERROR_BUFFER_TOO_SMALL

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

Identifier of the key to use for the operation. It must allow the usage
PSA_KEY_USAGE_SIGN_MESSAGE.

The MAC algorithm to compute (PSA_ALG_XXX value such that
PSA_ALG_IS_MAC(alg) is true).

Buffer containing the input message.
Size of the input buffer in bytes.
Buffer where the MAC value is to be written.

Size of the mac buffer in bytes. This must be appropriate for the
selected algorithm and key:

e The exact MAC size is PSA_MAC_LENGTH(key_type, key_bits, alg)
where key_type and key_bits are attributes of the key used to
compute the MAC.

e PSA_MAC_MAX_SIZE evaluates to the maximum MAC size of any
supported MAC algorithm.

On success, the number of bytes that make up the MAC value.

Success.

The key does not have the PSA_KEY_USAGE_SIGN_MESSAGE flag, or it does
not permit the requested algorithm.

key is not compatible with alg.
alg is not supported or is not a MAC algorithm.

The size of the mac buffer is too small. PSA_MAC_LENGTH() or
PSA_MAC_MAX_SIZE can be used to determine the required buffer size.

The key could not be retrieved from storage.
The key could not be retrieved from storage.

The key could not be retrieved from storage.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 124

1.0.1

Non-confidential

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

Note:

To verify the MAC of a message against an expected value, use psa_mac_verify() instead. Beware
that comparing integrity or authenticity data such as MAC values with a function such as mememp() is
risky because the time taken by the comparison might leak information about the MAC value which
could allow an attacker to guess a valid MAC and thereby bypass security controls.

psa_mac_verify (function)
Calculate the MAC of a message and compare it with a reference value.

psa_status_t psa_mac_verify(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * mac,
size_t mac_length);

Parameters

key Identifier of the key to use for the operation. It must allow the usage
PSA_KEY_USAGE__VERIFY_MESSAGE.

alg The MAC algorithm to compute (PSA_ALG_XXX value such that
PSA_ALG_IS_MAC(alg) is true).

input Buffer containing the input message.

input_length Size of the input buffer in bytes.

mac Buffer containing the expected MAC value.

mac_length Size of the mac buffer in bytes.

Returns: psa_status_t
PSA_SUCCESS The expected MAC is identical to the actual MAC of the input.

PSA_ERROR_INVALID_SIGNATURE The MAC of the message was calculated successfully, but it differs
from the expected value.

PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_VERIFY_MESSAGE flag, or it
does not permit the requested algorithm.

PSA_ERROR_INVALID_ARGUMENT key is not compatible with alg.

PSA_ERROR_NOT_SUPPORTED alg is not supported or is not a MAC algorithm.

PSA_ERROR_INSUFFICIENT_MEMORY

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 125
1.0.1 Non-confidential

PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE _FAILURE The key could not be retrieved from storage.
PSA_ERROR_DATA_CORRUPT The key could not be retrieved from storage.
PSA_ERROR_DATA_INVALID The key could not be retrieved from storage.
PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It

is implementation-dependent whether a failure to initialize results in
this error code.

10.3.3 Multi-part MAC operations
psa_mac_operation_t (type)

The type of the state object for multi-part MAC operations.

typedef /x implementation-defined type */ psa_mac_operation_t;

Before calling any function on a MAC operation object, the application must initialize it by any of the
following means:

e Set the object to all-bits-zero, for example:

psa_mac_operation_t operation;
memset (&operation, @, sizeof(operation));

e Initialize the object to logical zero values by declaring the object as static or global without an
explicit initializer, for example:

static psa_mac_operation_t operation;

e Initialize the object to the initializer PSA_MAC_OPERATION_INIT, for example:

psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;

e Assign the result of the function psa_mac_operation_init() to the object, for example:

psa_mac_operation_t operation;
operation = psa_mac_operation_init();

This is an implementation-defined type. Applications that make assumptions about the content of this
object will result in in implementation-specific behavior, and are non-portable.

PSA_MAC_OPERATION_INIT (macro)
This macro returns a suitable initializer for a MAC operation object of type psa_mac_operation_t.

#define PSA_MAC_OPERATION_INIT /* implementation-defined value */

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 126
1.0.1 Non-confidential

psa_mac_operation_init (function)

Return an initial value for a MAC operation object.

psa_mac_operation_t psa_mac_operation_init(void);

Returns: psa_mac_operation_t

psa_mac_sign_setup (function)

Set up a multi-part MAC calculation operation.

psa_status_t psa_mac_sign_setup(psa_mac_operation_t * operation,
psa_key_id_t key,
psa_algorithm_t alg);

Parameters

operation

key

alg

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_INVALID_HANDLE
PSA_ERROR_NOT_PERMITTED

PSA_ERROR_INVALID_ARGUMENT
PSA_ERROR_NOT_SUPPORTED
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID
PSA_ERROR_BAD_STATE

PSA_ERROR_BAD_STATE

The operation object to set up. It must have been initialized as per
the documentation for psa_mac_operation_t and not yet in use.

Identifier of the key to use for the operation. It must remain valid
until the operation terminates. It must allow the usage
PSA_KEY_USAGE_SIGN_MESSAGE.

The MAC algorithm to compute (PSA_ALG_XXX value such that
PSA_ALG_IS_MAC(alg) is true).

Success.

The key does not have the PSA_KEY_USAGE_SIGN_MESSAGE flag, or it does
not permit the requested algorithm.

key is not compatible with alg.

alg is not supported or is not a MAC algorithm.

The key could not be retrieved from storage.
The key could not be retrieved from storage.
The key could not be retrieved from storage.
The operation state is not valid: it must be inactive.

The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 127

1.0.1

Non-confidential

Description

This function sets up the calculation of the message authentication code (MAC) of a byte string. To verify
the MAC of a message against an expected value, use psa_mac_verify_setup() instead.

The sequence of operations to calculate a MAC is as follows:

1. Allocate an operation object which will be passed to all the functions listed here.

2. Initialize the operation object with one of the methods described in the documentation for
psa_mac_operation_t, €.g. PSA_MAC_OPERATION_INIT.

3. Call psa_mac_sign_setup() to specify the algorithm and key.

4. Call psa_mac_update() zero, one or more times, passing a fragment of the message each time. The
MAC that is calculated is the MAC of the concatenation of these messages in order.

5. At the end of the message, call psa_mac_sign_finish() to finish calculating the MAC value and
retrieve it.

If an error occurs at any step after a call to psa_mac_sign_setup(), the operation will need to be reset by a
call to psa_mac_abort (). The application can call psa_mac_abort () at any time after the operation has been
initialized.

After a successful call to psa_mac_sign_setup(), the application must eventually terminate the operation
through one of the following methods:

e A successful call to psa_mac_sign_finish().

e A call to psa_mac_abort().

psa_mac_verify_setup (function)
Set up a multi-part MAC verification operation.

psa_status_t psa_mac_verify_setup(psa_mac_operation_t * operation,
psa_key_id_t key,
psa_algorithm_t alg);

Parameters
operation The operation object to set up. It must have been initialized as per
the documentation for psa_mac_operation_t and not yet in use.
key Identifier of the key to use for the operation. It must remain valid
until the operation terminates. It must allow the usage
PSA_KEY_USAGE_VERIFY_MESSAGE.
alg The MAC algorithm to compute (PSA_ALG_XxX value such that

PSA_ALG_IS_MAC(alg) is true).
Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_VERIFY_MESSAGE flag, or it
does not permit the requested algorithm.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 128
1.0.1 Non-confidential

PSA_ERROR_INVALID_ARGUMENT key is not compatible with alg.
PSA_ERROR_NOT_SUPPORTED alg is not supported or is not a MAC algorithm.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_HARDWARE_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE _FAILURE The key could not be retrieved from storage

PSA_ERROR_DATA_CORRUPT The key could not be retrieved from storage.

PSA_ERROR_DATA_INVALID The key could not be retrieved from storage.

PSA_ERROR_BAD_STATE The operation state is not valid: it must be inactive.
PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It

is implementation-dependent whether a failure to initialize results in
this error code.

Description

This function sets up the verification of the message authentication code (MAC) of a byte string against an
expected value.

The sequence of operations to verify a MAC is as follows:

1. Allocate an operation object which will be passed to all the functions listed here.

2. Initialize the operation object with one of the methods described in the documentation for
psa_mac_operation_t, €.g. PSA_MAC_OPERATION_INIT.

3. Call psa_mac_verify_setup() to specify the algorithm and key.

4. Call psa_mac_update() zero, one or more times, passing a fragment of the message each time. The
MAC that is calculated is the MAC of the concatenation of these messages in order.

5. At the end of the message, call psa_mac_verify_finish() to finish calculating the actual MAC of the
message and verify it against the expected value.

If an error occurs at any step after a call to psa_mac_verify_setup(), the operation will need to be reset by a
call to psa_mac_abort (). The application can call psa_mac_abort () at any time after the operation has been
initialized.

After a successful call to psa_mac_verify_setup(), the application must eventually terminate the operation
through one of the following methods:

e A successful call to psa_mac_verify_finish().

e A call to psa_mac_abort().

psa_mac_update (function)

Add a message fragment to a multi-part MAC operation.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 129
1.0.1 Non-confidential

psa_status_t psa_mac_update(psa_mac_operation_t * operation,

const uint8_t * input,
size_t input_length);

Parameters
operation Active MAC operation.
input Buffer containing the message fragment to add to the MAC
calculation.
input_length Size of the input buffer in bytes.
Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The operation state is not valid: it must be active.
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID
PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.
Description

The application must call psa_mac_sign_setup() or psa_mac_verify_setup() before calling this function.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_mac_abort().

psa_mac_sign_finish (function)

Finish the calculation of the MAC of a message.

psa_status_t psa_mac_sign_finish(psa_mac_operation_t * operation,

Parameters
operation
mac

mac_size

IHI 0086
1.0.1

uint8_t * mac,
size_t mac_size,
size_t * mac_length);

Active MAC operation.
Buffer where the MAC value is to be written.

Size of the mac buffer in bytes. This must be appropriate for the
selected algorithm and key:

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 130
Non-confidential

e The exact MAC size is PSA_MAC_LENGTH(key_type, key_bits, alg)
where key_type and key_bits are attributes of the key, and alg is
the algorithm used to compute the MAC.

e PSA_MAC_MAX_SIZE evaluates to the maximum MAC size of any
supported MAC algorithm.

mac_length On success, the number of bytes that make up the MAC value. This is
always PSA_MAC_FINAL_SIZE (key_type, key_bits, alg) where key_type
and key_bits are the type and bit-size respectively of the key and alg
is the MAC algorithm that is calculated.

Returns: psa_status_t

PSA_SUCCESS Success.

PSA_ERROR_BAD_STATE The operation state is not valid: it must be an active mac sign
operation.

PSA_ERROR_BUFFER_TOO_SMALL The size of the mac buffer is too small. PSA_MAC_LENGTH() or

PSA_MAC_MAX_SIZE can be used to determine the required buffer size.
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE_FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE _FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

The application must call psa_mac_sign_setup() before calling this function. This function calculates the
MAC of the message formed by concatenating the inputs passed to preceding calls to psa_mac_update().

When this function returns successfully, the operation becomes inactive. If this function returns an error
status, the operation enters an error state and must be aborted by calling psa_mac_abort ().

Warning: It is not recommended to use this function when a specific value is expected for the MAC.
Call psa_mac_verify_finish() instead with the expected MAC value.

Comparing integrity or authenticity data such as MAC values with a function such as mememp() is risky
because the time taken by the comparison might leak information about the hashed data which could
allow an attacker to guess a valid MAC and thereby bypass security controls.

psa_mac_verify_finish (function)

Finish the calculation of the MAC of a message and compare it with an expected value.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 131
1.0.1 Non-confidential

psa_status_t psa_mac_verify_finish(psa_mac_operation_t * operation,
const uint8_t * mac,
size_t mac_length);

Parameters
operation Active MAC operation.
mac Buffer containing the expected MAC value.
mac_length Size of the mac buffer in bytes.

Returns: psa_status_t

PSA_SUCCESS The expected MAC is identical to the actual MAC of the message.

PSA_ERROR_INVALID_SIGNATURE The MAC of the message was calculated successfully, but it differs
from the expected MAC.

PSA_ERROR_BAD_STATE The operation state is not valid: it must be an active mac verify
operation.

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE_FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

The application must call psa_mac_verify_setup() before calling this function. This function calculates the
MAC of the message formed by concatenating the inputs passed to preceding calls to psa_mac_update(). It
then compares the calculated MAC with the expected MAC passed as a parameter to this function.

When this function returns successfully, the operation becomes inactive. If this function returns an error
status, the operation enters an error state and must be aborted by calling psa_mac_abort ().

Note:

Implementations must make the best effort to ensure that the comparison between the actual MAC
and the expected MAC is performed in constant time.

psa_mac_abort (function)

Abort a MAC operation.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 132
1.0.1 Non-confidential

psa_status_t psa_mac_abort(psa_mac_operation_t * operation);

Parameters

operation Initialized MAC operation.
Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_HARDWARE _FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

Aborting an operation frees all associated resources except for the operation object itself. Once aborted,
the operation object can be reused for another operation by calling psa_mac_sign_setup() or
psa_mac_verify_setup() again.

This function can be called any time after the operation object has been initialized by one of the methods
described in psa_mac_operation_t.

In particular, calling psa_mac_abort () after the operation has been terminated by a call to psa_mac_abort (),
psa_mac_sign_finish() or psa_mac_verify_finish() is safe and has no effect.

10.3.4 Support macros
PSA_ALG_IS_HMAC (macro)
Whether the specified algorithm is an HMAC algorithm.

#define PSA_ALG_IS_HMAC(alg) /* specification-defined value */

Parameters
alg An algorithm identifier (value of type psa_algorithm_t).
Returns

1 if alg is an HMAC algorithm, @ otherwise. This macro can return either o or 1 if alg is not a supported
algorithm identifier.

Description

HMAC is a family of MAC algorithms that are based on a hash function.

PSA_ALG_IS_BLOCK_CIPHER_MAC (macro)

Whether the specified algorithm is a MAC algorithm based on a block cipher.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 133
1.0.1 Non-confidential

#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) /x specification-defined value =*/

Parameters
alg An algorithm identifier (value of type psa_algorithm_t).
Returns

1 if alg is a MAC algorithm based on a block cipher, o otherwise. This macro can return either o or 1 if alg is
not a supported algorithm identifier.

PSA_ALG_FULL_LENGTH_MAC (macro)
Macro to construct the MAC algorithm with a full length MAC, from a truncated MAC algorithm.

#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) /* specification-defined value */

Parameters
mac_alg A MAC algorithm identifier (value of type psa_algorithm_t such that
PSA_ALG_IS_MAC(alg) is true). This can be a truncated or untruncated
MAC algorithm.
Returns

The corresponding MAC algorithm with a full length MAC.
Unspecified if alg is not a supported MAC algorithm.

PSA_MAC_LENGTH (macro)
The size of the output of psa_mac_compute() and psa_mac_sign_finish(), in bytes.

#tdefine PSA_MAC_LENGTH(key_type, key_bits, alg) \
/* implementation-defined value */

Parameters
key_type The type of the MAC key.
key_bits The size of the MAC key in bits.
alg A MAC algorithm (PSA_ALG_XXX value such that PSA_ALG_IS_MAC(alg) is
true).
Returns

The MAC length for the specified algorithm with the specified key parameters.
0 if the MAC algorithm is not recognized.

Either @ or the correct length for a MAC algorithm that the implementation recognizes, but does not
support.

Unspecified if the key parameters are not consistent with the algorithm.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 134
1.0.1 Non-confidential

Description
This is also the MAC length that psa_mac_verify() and psa_mac_verify_finish() expects.

See also PSA_MAC_MAX_SIZE.

PSA_MAC_MAX_SIZE (macro)
Maximum size of a MAC.

#define PSA_MAC_MAX_SIZE /x implementation-defined value */

This macro must expand to a compile-time constant integer. It is recommended that this value is the
maximum size of a MAC supported by the implementation, in bytes. The value must not be smaller than
this maximum.

See also PSA_MAC_LENGTH().

10.4 Unauthenticated ciphers

Warning: The unauthenticated cipher API is provided to implement legacy protocols and for use cases
where the data integrity and authenticity is guaranteed by non-cryptographic means.

It is recommended that newer protocols use Authenticated encryption with associated data (AEAD) on
page 157.

10.4.1 Cipher algorithms
PSA_ALG_STREAM_CIPHER (macro)
The stream cipher mode of a stream cipher algorithm.

#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)@x04800100)

The underlying stream cipher is determined by the key type. The ARC4 and ChaCha20 ciphers use this
algorithm identifier.

ARC4
To use ARC4, use a key type of PsA_KEY_TYPE_ARC4 and algorithm id PSA_ALG_STREAM_CIPHER.

Warning: The ARC4 cipher is weak and deprecated and is only recommended for use in legacy
protocols.

The ARC4 cipher does not use an initialization vector (V). When using a multi-part cipher operation with
the PSA_ALG_STREAM_CIPHER algorithm and an ARC4 key, psa_cipher_generate_iv() and psa_cipher_set_iv()
must not be called.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 135
101 Non-confidential

ChaCha20
To use ChaCha20, use a key type of PSA_KEY_TYPE_CHACHA20 and algorithm id PSA_ALG_STREAM_CIPHER.

Implementations must support the variant that is defined in ChaCha20 and Poly1305 for IETF Protocols
[RFC7539] §2.4, which has a 96-bit nonce and a 32-bit counter. Implementations can optionally also
support the original variant, as defined in ChaCha, a variant of Salsa20 [CHACHA20], which has a 64-bit
nonce and a 64-bit counter. Except where noted, the [RFC7539] variant must be used.

ChaCha20 defines a nonce and an initial counter to be provided to the encryption and decryption
operations. When using a ChaCha20 key with the PSA_ALG_STREAM_CIPHER algorithm, these values are
provided using the initialization vector (V) functions in the following ways:

e A call to psa_cipher_encrypt () will generate a random 12-byte nonce, and set the counter value to
zero. The random nonce is output as a 12-byte IV value in the output.

e A call to psa_cipher_decrypt () will use first 12 bytes of the input buffer as the nonce and set the
counter value to zero.

e A call to psa_cipher_generate_iv() on a multi-part cipher operation will generate and return a random
12-byte nonce and set the counter value to zero.

e A call to psa_cipher_set_iv() on a multi-part cipher operation can support the following IV sizes:

— 12 bytes: the provided IV is used as the nonce, and the counter value is set to zero.

— 16 bytes: the first four bytes of the IV are used as the counter value (encoded as little-endian),
and the remaining 12 bytes is used as the nonce.

— 8 bytes: the cipher operation uses the original [CHACHA20] definition of ChaCha20: the
provided IV is used as the 64-bit nonce, and the 64-bit counter value is set to zero.

— It is recommended that implementations do not support other sizes of IV.

PSA_ALG_CTR (macro)
A stream cipher built using the Counter (CTR) mode of a block cipher.

#define PSA_ALG_CTR ((psa_algorithm_t)@x04c01000)

CTR is a stream cipher which is built from a block cipher. The underlying block cipher is determined by the
key type. For example, to use AES-128-CTR, use this algorithm with a key of type PSA_KEY_TYPE_AES and a
size of 128 bits (16 bytes).

The CTR block cipher mode is defined in NIST Special Publication 800-38A: Recommendation for Block
Cipher Modes of Operation: Methods and Techniques [SP800-38A].

CTR mode requires a counter block which is the same size as the cipher block length. The counter block is
updated for each block (or a partial final block) that is encrypted or decrypted.

A counter block value must only be used once across all messages encrypted using the same key value.
This is typically achieved by splitting the counter block into a nonce, which is unique among all message
encrypted with the key, and a counter which is incremented for each block of a message.

For example, when using AES-CTR encryption, which uses a 16-byte block, the application can provide a
12-byte nonce when setting the IV. This leaves 4 bytes for the counter, allowing up to 2”32 blocks (64GB)
of message data to be encrypted in each message.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 136
1.0.1 Non-confidential

https://tools.ietf.org/html/rfc7539.html#section-2.4

The first counter block is constructed from the initialization vector (IV). The initial counter block is is
constructed in the following ways:

e A call to psa_cipher_encrypt () will generate a random counter block value. This is the first block of
output.

e A call to psa_cipher_decrypt () will use first block of the input buffer as the initial counter block value.

e A call to psa_cipher_generate_iv() on a multi-part cipher operation will generate and return a random
counter block value.

e A call to psa_cipher_set_iv() on a multi-part cipher operation requires an IV must be between 1 and
n bytes in length, where n is the cipher block length. The counter block is initialized using the 1V, and
padded with zero bytes up to the block length.

During the counter block update operation, the counter block is treated as a single big-endian encoded
integer and the update operation increments this integer by 1.

This scheme meets the recommendations in Appendix B of [SP800-38A].

Note:

The cipher block length can be determined using PSA_BLOCK_CIPHER_BLOCK_LENGTH().

PSA_ALG_CFB (macro)
A stream cipher built using the Cipher Feedback (CFB) mode of a block cipher.

#define PSA_ALG_CFB ((psa_algorithm_t)@x04c01100)

The underlying block cipher is determined by the key type. This is the variant of CFB where each iteration
encrypts or decrypts a segment of the input that is the same length as the cipher block size. For example,
using PSA_ALG_CFB with a key of type PsA_KEY_TYPE_AES will result in the AES-CFB-128 cipher.

CFB mode requires an initialization vector (IV) that is the same size as the cipher block length.

Note:

The cipher block length can be determined using PSA_BLOCK_CIPHER_BLOCK_LENGTH().

The CFB block cipher mode is defined in NIST Special Publication 800-38A: Recommendation for Block Cipher
Modes of Operation: Methods and Techniques [SP800-38A], using a segment size s equal to the block size b.
The definition in [SP800-38A] is extended to allow an incomplete final block of input, in which case the
algorithm discards the final bytes of the key stream when encrypting or decrypting the final partial block.
PSA_ALG_OFB (macro)

A stream cipher built using the Output Feedback (OFB) mode of a block cipher.

#define PSA_ALG_OFB ((psa_algorithm_t)@x04c01200)

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 137
1.0.1 Non-confidential

The underlying block cipher is determined by the key type.

OFB mode requires an initialization vector (IV) that is the same size as the cipher block length. OFB mode
requires that the IV is a nonce, and must be unique for each use of the mode with the same key.

Note:

The cipher block length can be determined using PSA_BLOCK_CIPHER_BLOCK_LENGTH().

The OFB block cipher mode is defined in NIST Special Publication 800-38A: Recommendation for Block
Cipher Modes of Operation: Methods and Techniques [SP800-38A].

PSA_ALG_XTS (macro)
The XEX with Ciphertext Stealing (XTS) cipher mode of a block cipher.

#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)

XTS is a cipher mode which is built from a block cipher, designed for use in disk encryption. It requires at
least one full cipher block length of input, but beyond this minimum the input does not need to be a whole
number of blocks.

XTS mode uses two keys for the underlying block cipher. These are provided by using a key that is twice
the normal key size for the cipher. For example, to use AES-256-XTS the application must create a key
with type PSA_KEY_TYPE_AES and bit size 512.

XTS mode requires an initialization vector (IV) that is the same size as the cipher block length. The IV for
XTS is typically defined to be the sector number of the disk block being encrypted or decrypted.

The XTS block cipher mode is defined in 1619-2018 - IEEE Standard for Cryptographic Protection of Data on
Block-Oriented Storage Devices [IEEE-XTS].

PSA_ALG_ECB_NO_PADDING (macro)
The Electronic Codebook (ECB) mode of a block cipher, with no padding.

#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0@x04404400)

Warning: ECB mode does not protect the confidentiality of the encrypted data except in extremely
narrow circumstances. It is recommended that applications only use ECB if they need to construct an
operating mode that the implementation does not provide. Implementations are encouraged to provide
the modes that applications need in preference to supporting direct access to ECB.

The underlying block cipher is determined by the key type.

This symmetric cipher mode can only be used with messages whose lengths are a multiple of the block
size of the chosen block cipher.

ECB mode does not accept an initialization vector (IV). When using a multi-part cipher operation with this
algorithm, psa_cipher_generate_iv() and psa_cipher_set_iv() must not be called.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 138
1.0.1 Non-confidential

Note:

The cipher block length can be determined using PSA_BLOCK_CIPHER_BLOCK_LENGTH().

The ECB block cipher mode is defined in NIST Special Publication 800-38A: Recommendation for Block
Cipher Modes of Operation: Methods and Techniques [SP800-38A].

PSA_ALG_CBC_NO_PADDING (macro)

The Cipher Block Chaining (CBC) mode of a block cipher, with no padding.

#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)@x04404000)

The underlying block cipher is determined by the key type.

This symmetric cipher mode can only be used with messages whose lengths are a multiple of the block
size of the chosen block cipher.

CBC mode requires an initialization vector (IV) that is the same size as the cipher block length.

Note:

The cipher block length can be determined using PSA_BLOCK_CIPHER_BLOCK_LENGTH().

The CBC block cipher mode is defined in NIST Special Publication 800-38A: Recommendation for Block
Cipher Modes of Operation: Methods and Techniques [SP800-38A].

PSA_ALG_CBC_PKCS7 (macro)
The Cipher Block Chaining (CBC) mode of a block cipher, with PKCS#7 padding.
#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)

The underlying block cipher is determined by the key type.

CBC mode requires an initialization vector (IV) that is the same size as the cipher block length.

Note:

The cipher block length can be determined using PSA_BLOCK_CIPHER_BLOCK_LENGTH().

The CBC block cipher mode is defined in NIST Special Publication 800-38A: Recommendation for Block
Cipher Modes of Operation: Methods and Techniques [SP800-38A]. The padding operation is defined by
PKCS #7: Cryptographic Message Syntax Version 1.5 [RFC2315] §10.3.

10.4.2 Single-part cipher functions
psa_cipher_encrypt (function)

Encrypt a message using a symmetric cipher.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 139
1.0.1 Non-confidential

https://tools.ietf.org/html/rfc2315.html#section-10.3

psa_status_t psa_cipher_encrypt(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
uint8_t * output,
size_t output_size,
size_t * output_length);

Parameters
key Identifier of the key to use for the operation. It must allow the usage
PSA_KEY_USAGE _ENCRYPT.
alg The cipher algorithm to compute (PSA_ALG_XXX value such that
PSA_ALG_IS_CIPHER(alg) is true).
input Buffer containing the message to encrypt.

input_length

output

output_size

output_length

Returns: psa_status_t

PSA_SUCCESS
PSA_ERROR_INVALID_HANDLE
PSA_ERROR_NOT_PERMITTED

PSA_ERROR_INVALID_ARGUMENT
PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_NOT_SUPPORTED
PSA_ERROR_BUFFER_TOO_SMALL

Size of the input buffer in bytes.

Buffer where the output is to be written. The output contains the IV
followed by the ciphertext proper.

Size of the output buffer in bytes. This must be appropriate for the
selected algorithm and key:

e A sufficient output size is
PSA_CIPHER_ENCRYPT_OUTPUT_SIZE(key_type, alg, input_length)
where key_type is the type of key.

e PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE(input_length) evaluates to
the maximum output size of any supported cipher encryption.

On success, the number of bytes that make up the output.

Success.

The key does not have the PSA_KEY_USAGE_ENCRYPT flag, or it does not
permit the requested algorithm.

key is not compatible with alg.

The input_length is not valid for the algorithm and key type. For
example, the algorithm is a based on block cipher and requires a
whole number of blocks, but the total input size is not a multiple of
the block size.

alg is not supported or is not a cipher algorithm.

output_size is too small. PSA_CIPHER_ENCRYPT_OUTPUT_SIZE() or
PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE() can be used to determine the
required buffer size.

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.
1.0.1 Non-confidential

Page 140

PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID
PSA_ERROR_BAD_STATE

Description

The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

This function encrypts a message with a random initialization vector (IV). The length of the IV is
PSA_CIPHER_IV_LENGTH(key_type, alg) where key_type is the type of key. The output of psa_cipher_encrypt()
is the IV followed by the ciphertext.

Use the multi-part operation interface with a psa_cipher_operation_t object to provide other forms of IV or
to manage the IV and ciphertext independently.

psa_cipher_decrypt (function)

Decrypt a message using a symmetric cipher.

psa_status_t psa_cipher_decrypt(psa_key_id_t key,

Parameters

key

alg

input

input_length
output

output_size

psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
uint8_t * output,

size_t output_size,
size_t * output_length);

Identifier of the key to use for the operation. It must remain valid
until the operation terminates. It must allow the usage
PSA_KEY_USAGE_DECRYPT.

The cipher algorithm to compute (PSA_ALG_XXX value such that
PSA_ALG_IS_CIPHER(alg) is true).

Buffer containing the message to decrypt. This consists of the IV
followed by the ciphertext proper.

Size of the input buffer in bytes.
Buffer where the plaintext is to be written.

Size of the output buffer in bytes. This must be appropriate for the
selected algorithm and key:

e A sufficient output size is
PSA_CIPHER_DECRYPT_OUTPUT_SIZE (key_type, alg, input_length)
where key_type is the type of key.

e PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE(input_length) evaluates to
the maximum output size of any supported cipher decryption.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 141

1.0.1

Non-confidential

output_length On success, the number of bytes that make up the output.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_DECRYPT flag, or it does not
permit the requested algorithm.

PSA_ERROR_INVALID_ARGUMENT key is not compatible with alg.

PSA_ERROR_INVALID_ARGUMENT The input_length is not valid for the algorithm and key type. For

example, the algorithm is a based on block cipher and requires a
whole number of blocks, but the total input size is not a multiple of
the block size.

PSA_ERROR_NOT_SUPPORTED alg is not supported or is not a cipher algorithm.

PSA_ERROR_BUFFER_TOO_SMALL output_size is too small. PSA_CIPHER_DECRYPT_OUTPUT_SIZE() or
PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE() can be used to determine the
required buffer size.

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE_FAILURE
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID
PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description
This function decrypts a message encrypted with a symmetric cipher.

The input to this function must contain the IV followed by the ciphertext, as output by
psa_cipher_encrypt(). The IV must be PSA_CIPHER_IV_LENGTH(key_type, alg) bytes in length, where key_type
is the type of key.

Use the multi-part operation interface with a psa_cipher_operation_t object to decrypt data which is not in
the expected input format.

10.4.3 Multi-part cipher operations
psa_cipher_operation_t (type)

The type of the state object for multi-part cipher operations.

typedef /x implementation-defined type */ psa_cipher_operation_t;

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 142
1.0.1 Non-confidential

Before calling any function on a cipher operation object, the application must initialize it by any of the
following means:

e Set the object to all-bits-zero, for example:

psa_cipher_operation_t operation;
memset (&operation, @, sizeof(operation));

e Initialize the object to logical zero values by declaring the object as static or global without an
explicit initializer, for example:

static psa_cipher_operation_t operation;

e Initialize the object to the initializer PSA_CIPHER_OPERATION_INIT, for example:

psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;

e Assign the result of the function psa_cipher_operation_init() to the object, for example:
psa_cipher_operation_t operation;

operation = psa_cipher_operation_init();

This is an implementation-defined type. Applications that make assumptions about the content of this
object will result in in implementation-specific behavior, and are non-portable.
PSA_CIPHER_OPERATION_INIT (macro)

This macro returns a suitable initializer for a cipher operation object of type psa_cipher_operation_t.

#define PSA_CIPHER_OPERATION_INIT /* implementation-defined value */

psa_cipher_operation_init (function)
Return an initial value for a cipher operation object.

psa_cipher_operation_t psa_cipher_operation_init(void);

Returns: psa_cipher_operation_t

psa_cipher_encrypt_setup (function)
Set the key for a multi-part symmetric encryption operation.

psa_status_t psa_cipher_encrypt_setup(psa_cipher_operation_t * operation,
psa_key_id_t key,
psa_algorithm_t alg);

Parameters
operation The operation object to set up. It must have been initialized as per
the documentation for psa_cipher_operation_t and not yet in use.
IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 143

1.0.1 Non-confidential

key

alg

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED

PSA_ERROR_INVALID_ARGUMENT
PSA_ERROR_NOT_SUPPORTED
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID
PSA_ERROR_BAD_STATE

PSA_ERROR_BAD_STATE

Description

Identifier of the key to use for the operation. It must remain valid
until the operation terminates. It must allow the usage
PSA_KEY_USAGE_ENCRYPT.

The cipher algorithm to compute (PSA_ALG_XXX value such that
PSA_ALG_IS_CIPHER(alg) is true).

Success.

The key does not have the PSA_KEY_USAGE_ENCRYPT flag, or it does not
permit the requested algorithm.

key is not compatible with alg.

alg is not supported or is not a cipher algorithm.

The operation state is not valid: it must be inactive.

The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

The sequence of operations to encrypt a message with a symmetric cipher is as follows:

1. Allocate an operation object which will be passed to all the functions listed here.

2. Initialize the operation object with one of the methods described in the documentation for
psa_cipher_operation_t, €.8. PSA_CIPHER_OPERATION_INIT.

3. Call psa_cipher_encrypt_setup() to specify the algorithm and key.

4. Call either psa_cipher_generate_iv() or psa_cipher_set_iv() to generate or set the initialization
vector (IV), if the algorithm requires one. It is recommended to use psa_cipher_generate_iv() unless
the protocol being implemented requires a specific IV value.

5. Call psa_cipher_update() zero, one or more times, passing a fragment of the message each time.

6. Call psa_cipher_finish().

If an error occurs at any step after a call to psa_cipher_encrypt_setup(), the operation will need to be reset
by a call to psa_cipher_abort (). The application can call psa_cipher_abort () at any time after the operation

has been initialized.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 144

1.0.1

Non-confidential

After a successful call to psa_cipher_encrypt_setup(), the application must eventually terminate the
operation. The following events terminate an operation:

e A successful call to psa_cipher_finish().

o A call to psa_cipher_abort().

psa_cipher_decrypt_setup (function)

Set the key for a multi-part symmetric decryption operation.

psa_status_t psa_cipher_decrypt_setup(psa_cipher_operation_t * operation,

Parameters

operation

key

alg

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_INVALID_HANDLE
PSA_ERROR_NOT_PERMITTED

PSA_ERROR_INVALID_ARGUMENT
PSA_ERROR_NOT_SUPPORTED
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE _FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID
PSA_ERROR_BAD_STATE
PSA_ERROR_BAD_STATE

psa_key_id_t key,
psa_algorithm_t alg);

The operation object to set up. It must have been initialized as per
the documentation for psa_cipher_operation_t and not yet in use.

Identifier of the key to use for the operation. It must remain valid
until the operation terminates. It must allow the usage
PSA_KEY_USAGE_DECRYPT.

The cipher algorithm to compute (PSA_ALG_XXX value such that
PSA_ALG_IS_CIPHER(alg) is true).

Success.

The key does not have the PSA_KEY_USAGE_DECRYPT flag, or it does not
permit the requested algorithm.

key is not compatible with alg.

alg is not supported or is not a cipher algorithm.

The operation state is not valid: it must be inactive.

The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 145

1.0.1

Non-confidential

Description

The sequence of operations to decrypt a message with a symmetric cipher is as follows:

1. Allocate an operation object which will be passed to all the functions listed here.

2. Initialize the operation object with one of the methods described in the documentation for
psa_cipher_operation_t, €.8. PSA_CIPHER_OPERATION_INIT.

3. Call psa_cipher_decrypt_setup() to specify the algorithm and key.

4. Call psa_cipher_set_iv() with the initialization vector (V) for the decryption, if the algorithm requires
one. This must match the IV used for the encryption.

5. Call psa_cipher_update() zero, one or more times, passing a fragment of the message each time.

6. Call psa_cipher_finish().

If an error occurs at any step after a call to psa_cipher_decrypt_setup(), the operation will need to be reset
by a call to psa_cipher_abort (). The application can call psa_cipher_abort () at any time after the operation
has been initialized.

After a successful call to psa_cipher_decrypt_setup(), the application must eventually terminate the
operation. The following events terminate an operation:

e A successful call to psa_cipher_finish().

e A call to psa_cipher_abort().

psa_cipher_generate_iv (function)
Generate an initialization vector (V) for a symmetric encryption operation.

psa_status_t psa_cipher_generate_iv(psa_cipher_operation_t * operation,
uint8_t * 1iv,
size_t iv_size,
size_t * iv_length);

Parameters

operation Active cipher operation.

iv Buffer where the generated IV is to be written.

iv_size Size of the iv buffer in bytes. This must be at least
PSA_CIPHER_IV_LENGTH(key_type, alg) where key_type and alg are type
of key and the algorithm respectively that were used to set up the
cipher operation.

iv_length On success, the number of bytes of the generated IV.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE Either:

e The cipher algorithm does not use an IV.
e The operation state is not valid: it must be active, with no IV set.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 146
1.0.1 Non-confidential

PSA_ERROR_BUFFER_TOO_SMALL The size of the iv buffer is too small. PSA_CIPHER_IV_LENGTH() or
PSA_CIPHER_IV_MAX_SIZE can be used to determine the required buffer
size.

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE_FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

This function generates a random IV, nonce or initial counter value for the encryption operation as
appropriate for the chosen algorithm, key type and key size.

The generated IV is always the default length for the key and algorithm: PSA_CIPHER_IV_LENGTH(key_type,
alg), where key_type is the type of key and alg is the algorithm that were used to set up the operation. To
generate different lengths of IV, use psa_generate_random() and psa_cipher_set_iv().

If the cipher algorithm does not use an IV, calling this function returns a PSA_ERROR_BAD_STATE error. For
these algorithms, PSA_CIPHER_IV_LENGTH(key_type, alg) will be zero.

The application must call psa_cipher_encrypt_setup() before calling this function.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_cipher_abort().

psa_cipher_set_iv (function)

Set the initialization vector (IV) for a symmetric encryption or decryption operation.

psa_status_t psa_cipher_set_iv(psa_cipher_operation_t * operation,
const uint8_t * iv,
size_t iv_length);

Parameters
operation Active cipher operation.
iv Buffer containing the IV to use.
iv_length Size of the IV in bytes.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE Either:

e The cipher algorithm does not use an IV.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 147
1.0.1 Non-confidential

e The operation state is not valid: it must be an active cipher
encrypt operation, with no IV set.

PSA_ERROR_INVALID_ARGUMENT The size of iv is not acceptable for the chosen algorithm, or the
chosen algorithm does not use an IV.

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_ _FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description
This function sets the IV, nonce or initial counter value for the encryption or decryption operation.

If the cipher algorithm does not use an IV, calling this function returns a PSA_ERROR_BAD_STATE error. For
these algorithms, PSA_CIPHER_IV_LENGTH(key_type, alg) will be zero.

The application must call psa_cipher_encrypt_setup() or psa_cipher_decrypt_setup() before calling this
function.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_cipher_abort().

Note:

When encrypting, psa_cipher_generate_iv() is recommended instead of using this function, unless
implementing a protocol that requires a non-random V.

psa_cipher_update (function)
Encrypt or decrypt a message fragment in an active cipher operation.

psa_status_t psa_cipher_update(psa_cipher_operation_t * operation,
const uint8_t * input,
size_t input_length,
uint8_t * output,
size_t output_size,
size_t * output_length);

Parameters
operation Active cipher operation.
input Buffer containing the message fragment to encrypt or decrypt.
IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 148

1.0.1 Non-confidential

input_length Size of the input buffer in bytes.
output Buffer where the output is to be written.

output_size Size of the output buffer in bytes. This must be appropriate for the
selected algorithm and key:

e A sufficient output size is
PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type, alg, input_length)
where key_type is the type of key and alg is the algorithm that
were used to set up the operation.

e PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE(input_length) evaluates to
the maximum output size of any supported cipher algorithm.

output_length On success, the number of bytes that make up the returned output.

Returns: psa_status_t
PSA_SUCCESS Success.

PSA_ERROR_BAD_STATE The operation state is not valid: it must be active, with an IV set if
required for the algorithm.

PSA_ERROR_BUFFER_TOO_SMALL The size of the output buffer is too small.
PSA_CIPHER_UPDATE_OUTPUT_SIZE() or
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE() can be used to determine the
required buffer size.

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE_FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

The following must occur before calling this function:

1. Call either psa_cipher_encrypt_setup() or psa_cipher_decrypt_setup(). The choice of setup function
determines whether this function encrypts or decrypts its input.

2. If the algorithm requires an |V, call psa_cipher_generate_iv() or psa_cipher_set_iv().
psa_cipher_generate_iv() is recommended when encrypting.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_cipher_abort().

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 149
1.0.1 Non-confidential

psa_cipher_finish (function)
Finish encrypting or decrypting a message in a cipher operation.

psa_status_t psa_cipher_finish(psa_cipher_operation_t * operation,
uint8_t * output,
size_t output_size,
size_t * output_length);

Parameters
operation
output

output_size

output_length

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_INVALID_PADDING

PSA_ERROR_BAD_STATE

PSA_ERROR_BUFFER_TOO_SMALL

Active cipher operation.
Buffer where the output is to be written.

Size of the output buffer in bytes. This must be appropriate for the
selected algorithm and key:

e A sufficient output size is
PSA_CIPHER_FINISH_OUTPUT_SIZE(key_type, alg) where key_type is
the type of key and alg is the algorithm that were used to set up
the operation.

e PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE evaluates to the maximum
output size of any supported cipher algorithm.

On success, the number of bytes that make up the returned output.

Success.

The total input size passed to this operation is not valid for this
particular algorithm. For example, the algorithm is a based on block
cipher and requires a whole number of blocks, but the total input size
is not a multiple of the block size.

This is a decryption operation for an algorithm that includes padding,
and the ciphertext does not contain valid padding.

The operation state is not valid: it must be active, with an IV set if
required for the algorithm.

The size of the output buffer is too small.
PSA_CIPHER_FINISH_OUTPUT_SIZE() or
PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE can be used to determine the
required buffer size.

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

1.0.1 Non-confidential

Page 150

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

The application must call psa_cipher_encrypt_setup() or psa_cipher_decrypt_setup() before calling this
function. The choice of setup function determines whether this function encrypts or decrypts its input.

This function finishes the encryption or decryption of the message formed by concatenating the inputs
passed to preceding calls to psa_cipher_update().

When this function returns successfully, the operation becomes inactive. If this function returns an error
status, the operation enters an error state and must be aborted by calling psa_cipher_abort().

psa_cipher_abort (function)
Abort a cipher operation.

psa_status_t psa_cipher_abort(psa_cipher_operation_t * operation);

Parameters

operation Initialized cipher operation.
Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_HARDWARE _FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

Aborting an operation frees all associated resources except for the operation object itself. Once aborted,
the operation object can be reused for another operation by calling psa_cipher_encrypt_setup() or
psa_cipher_decrypt_setup() again.

This function can be called any time after the operation object has been initialized as described in
psa_cipher_operation_t.

In particular, calling psa_cipher_abort () after the operation has been terminated by a call to
psa_cipher_abort() or psa_cipher_finish() is safe and has no effect.

10.4.4 Support macros

PSA_ALG_IS_STREAM_CIPHER (macro)

Whether the specified algorithm is a stream cipher.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 151
1.0.1 Non-confidential

#define PSA_ALG_IS_STREAM_CIPHER(alg) /* specification-defined value */

Parameters
alg An algorithm identifier (value of type psa_algorithm_t).
Returns

1 if alg is a stream cipher algorithm, @ otherwise. This macro can return either ¢ or 1 if alg is not a
supported algorithm identifier or if it is not a symmetric cipher algorithm.

Description

A stream cipher is a symmetric cipher that encrypts or decrypts messages by applying a bitwise-xor with a
stream of bytes that is generated from a key.

PSA_CIPHER_ENCRYPT_OUTPUT_SIZE (macro)

The maximum size of the output of psa_cipher_encrypt(), in bytes.

#define PSA_CIPHER_ENCRYPT_OUTPUT_SIZE(key_type, alg, input_length) \
/* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg A cipher algorithm (PSA_ALG_xxx value such that
PSA_ALG_IS_CIPHER(alg) is true).
input_length Size of the input in bytes.
Returns

A sufficient output size for the specified key type and algorithm. If the key type or cipher algorithm is not
recognized, or the parameters are incompatible, return e. An implementation can return either o or a
correct size for a key type and cipher algorithm that it recognizes, but does not support.

Description

If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_encrypt () will not fail
due to an insufficient buffer size. Depending on the algorithm, the actual size of the output might be
smaller.

See also PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE.

PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE (macro)

A sufficient output buffer size for psa_cipher_encrypt (), for any of the supported key types and cipher
algorithms.

#define PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE(input_length) \
/* implementation-defined value */

Parameters
input_length Size of the input in bytes.
IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 152

1.0.1 Non-confidential

Description

If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_encrypt () will not fail
due to an insufficient buffer size.

See also PSA_CIPHER_ENCRYPT_OUTPUT_SIZE().

PSA_CIPHER_DECRYPT_OUTPUT_SIZE (macro)
The maximum size of the output of psa_cipher_decrypt(), in bytes.

#define PSA_CIPHER_DECRYPT_OUTPUT_SIZE(key_type, alg, input_length) \
/* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg A cipher algorithm (PSA_ALG_XXX value such that
PSA_ALG_IS_CIPHER(alg) is true).
input_length Size of the input in bytes.
Returns

A sufficient output size for the specified key type and algorithm. If the key type or cipher algorithm is not
recognized, or the parameters are incompatible, return e. An implementation can return either ¢ or a
correct size for a key type and cipher algorithm that it recognizes, but does not support.

Description

If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_decrypt () will not fail
due to an insufficient buffer size. Depending on the algorithm, the actual size of the output might be
smaller.

See also PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE.

PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE (macro)

A sufficient output buffer size for psa_cipher_decrypt (), for any of the supported key types and cipher
algorithms.

#define PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE(input_length) \
/* implementation-defined value */

Parameters
input_length Size of the input in bytes.

Description

If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_decrypt () will not fail
due to an insufficient buffer size.

See also PSA_CIPHER_DECRYPT_OUTPUT_SIZE().

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 153
1.0.1 Non-confidential

PSA_CIPHER_IV_LENGTH (macro)
The default IV size for a cipher algorithm, in bytes.

#define PSA_CIPHER_IV_LENGTH(key_type, alg) /* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg A cipher algorithm (PSA_ALG_XXX value such that
PSA_ALG_IS_CIPHER(alg) is true).
Returns

The default IV size for the specified key type and algorithm. If the algorithm does not use an IV, return o. If
the key type or cipher algorithm is not recognized, or the parameters are incompatible, return o. An
implementation can return either ¢ or a correct size for a key type and cipher algorithm that it recognizes,
but does not support.

Description

The IV that is generated as part of a call to psa_cipher_encrypt() is always the default IV length for the
algorithm.

This macro can be used to allocate a buffer of sufficient size to store the IV output from
psa_cipher_generate_iv() when using a multi-part cipher operation.

See also PSA_CIPHER_IV_MAX_SIZE.

PSA_CIPHER_IV_MAX_SIZE (macro)
The maximum IV size for all supported cipher algorithms, in bytes.

#define PSA_CIPHER_IV_MAX_SIZE /* implementation-defined value */

See also PSA_CIPHER_IV_LENGTH().

PSA_CIPHER_UPDATE_OUTPUT_SIZE (macro)
A sufficient output buffer size for psa_cipher_update().

#define PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type, alg, input_length) \
/* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg A cipher algorithm (PSA_ALG_XXX value such that
PSA_ALG_IS_CIPHER(alg) is true).
input_length Size of the input in bytes.
Returns

A sufficient output size for the specified key type and algorithm. If the key type or cipher algorithm is not
recognized, or the parameters are incompatible, return e. An implementation can return either o or a
correct size for a key type and cipher algorithm that it recognizes, but does not support.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 154
1.0.1 Non-confidential

Description

If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_update () will not fail
due to an insufficient buffer size. The actual size of the output might be smaller in any given call.

See also PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE.

PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE (macro)

A sufficient output buffer size for psa_cipher_update(), for any of the supported key types and cipher
algorithms.

#define PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE(input_length) \
/* implementation-defined value */

Parameters
input_length Size of the input in bytes.
Description

If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_update () will not fail
due to an insufficient buffer size.

See also PSA_CIPHER_UPDATE_OUTPUT_SIZE().

PSA_CIPHER_FINISH_OUTPUT_SIZE (macro)
A sufficient ciphertext buffer size for psa_cipher_finish().

#define PSA_CIPHER_FINISH_OUTPUT_SIZE(key_type, alg) \
/* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg A cipher algorithm (PSA_ALG_xxX value such that
PSA_ALG_IS_CIPHER(alg) is true).
Returns

A sufficient output size for the specified key type and algorithm. If the key type or cipher algorithm is not
recognized, or the parameters are incompatible, return e. An implementation can return either ¢ or a
correct size for a key type and cipher algorithm that it recognizes, but does not support.

Description

If the size of the ciphertext buffer is at least this large, it is guaranteed that psa_cipher_finish() will not fail
due to an insufficient ciphertext buffer size. The actual size of the output might be smaller in any given call.

See also PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 155
1.0.1 Non-confidential

PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE (macro)

A sufficient ciphertext buffer size for psa_cipher_finish(), for any of the supported key types and cipher
algorithms.

#define PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE /x implementation-defined value */

See also PSA_CIPHER_FINISH_OUTPUT_SIZE().

PSA_BLOCK_CIPHER_BLOCK_LENGTH (macro)
The block size of a block cipher.

#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) /* specification-defined value */

Parameters
type A cipher key type (value of type psa_key_type_t).
Returns

The block size for a block cipher, or 1 for a stream cipher. The return value is undefined if type is not a
supported cipher key type.

Description

Note:

It is possible to build stream cipher algorithms on top of a block cipher, for example CTR mode
(PsA_ALG_CTR). This macro only takes the key type into account, so it cannot be used to determine the
size of the data that psa_cipher_update () might buffer for future processing in general.

Note:

This macro expression is a compile-time constant if type is a compile-time constant.

Warning: This macro is permitted to evaluate its argument multiple times.

See also PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE.

PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE (macro)
The maximum size of a block cipher supported by the implementation.

#define PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE /* implementation-defined value */

See also PSA_BLOCK_CIPHER_BLOCK_LENGTH().

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 156
1.0.1 Non-confidential

10.5 Authenticated encryption with associated data (AEAD)

10.5.1 AEAD algorithms
PSA_ALG_CCM (macro)
The Counter with CBC-MAC (CCM) authenticated encryption algorithm.

#define PSA_ALG_CCM ((psa_algorithm_t)@x05500100)

CCM is defined for block ciphers that have a 128-bit block size. The underlying block cipher is determined
by the key type.

To use PSA_ALG_ccM with a multi-part AEAD operation, the application must call psa_aead_set_lengths()
before providing the nonce, the additional data and plaintext to the operation.

CCM requires a nonce of between 7 and 13 bytes in length. The length of the nonce depends on the
length of the plaintext:

e CCM encodes the plaintext length pLen in L octets, with L the smallest integer >= 2 where pLen <
2/(8L).

e The nonce length is then 15 - L bytes.
If the application is generating a random nonce using psa_aead_generate_nonce(), the size of the generated
nonce is 15 - L bytes.

CCM supports authentication tag sizes of 4, 6, 8, 10, 12, 14, and 16 bytes. The default tag length is 16.
Shortened tag lengths can be requested using PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_CCM, tag_length),
where tag_length is a valid CCM tag length.

The CCM block cipher mode is defined in Counter with CBC-MAC (CCM) [RFC3610].

PSA_ALG_GCM (macro)
The Galois/Counter Mode (GCM) authenticated encryption algorithm.

#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)

GCM is defined for block ciphers that have a 128-bit block size. The underlying block cipher is determined
by the key type.

GCM requires a nonce of at least 1 byte in length. The maximum supported nonce size is IMPLEMENTATION
DEFINED. Calling psa_aead_generate_nonce() will generate a random 12-byte nonce.

GCM supports authentication tag sizes of 4, 8, 12, 13, 14, 15, and 16 bytes. The default tag length is 16.
Shortened tag lengths can be requested using PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_GCM, tag_length),
where tag_length is a valid GCM tag length.

The GCM block cipher mode is defined in NIST Special Publication 800-38D: Recommendation for Block
Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC [SP800-38D].

PSA_ALG_CHACHA20_POLY1305 (macro)
The ChaCha20-Poly1305 AEAD algorithm.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 157
1.0.1 Non-confidential

#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)@x@5100500)

There are two defined variants of ChaCha20-Poly1305:

e An implementation that supports ChaCha20-Poly1305 must support the variant defined by
ChaCha20 and Poly1305 for IETF Protocols [RFC7539], which has a 96-bit nonce and 32-bit counter.

e An implementation can optionally also support the original variant defined by ChaCha, a variant of
Salsa20 [CHACHAZ20], which has a 64-bit nonce and 64-bit counter.

The variant used for the AEAD encryption or decryption operation, depends on the nonce provided for an
AEAD operation using PSA_ALG_CHACHA20_POLY1305:

e A nonce provided in a call to psa_aead_encrypt (), psa_aead_decrypt() Or psa_aead_set_nonce() must be
8 or 12 bytes. The size of nonce will select the appropriate variant of the algorithm.

e A nonce generated by a call to psa_aead_generate_nonce() will be 12 bytes, and will use the
[RFC7539] variant.

Implementations must support 16-byte tags. It is recommended that truncated tag sizes are rejected.

PSA_ALG_AEAD_WITH_SHORTENED_TAG (macro)
Macro to build a AEAD algorithm with a shortened tag.

#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
/* specification-defined value */

Parameters
aead_alg An AEAD algorithm identifier (value of type psa_algorithm_t such
that PSA_ALG_IS_AEAD(alg) is true).
tag_length Desired length of the authentication tag in bytes.
Returns

The corresponding AEAD algorithm with the specified tag length.

Unspecified if alg is not a supported AEAD algorithm or if tag_length is not valid for the specified AEAD
algorithm.

Description

An AEAD algorithm with a shortened tag is similar to the corresponding AEAD algorithm, but has an
authentication tag that consists of fewer bytes. Depending on the algorithm, the tag length might affect
the calculation of the ciphertext.

The AEAD algorithm with a default length tag can be recovered using
PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG().

10.5.2 Single-part AEAD functions

psa_aead_encrypt (function)

Process an authenticated encryption operation.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 158
1.0.1 Non-confidential

psa_status_t psa_aead_encrypt(psa_key_id_t key,

Parameters

key

alg

nonce

nonce_length

additional_data
additional_data_length
plaintext
plaintext_length

ciphertext

ciphertext_size

ciphertext_length

Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED

psa_algorithm_t alg,

const uint8_t * nonce,

size_t nonce_length,

const uint8_t * additional_data,
size_t additional_data_length,
const uint8_t * plaintext,
size_t plaintext_length,

uint8_t * ciphertext,

size_t ciphertext_size,

size_t * ciphertext_length);

Identifier of the key to use for the operation. It must allow the usage
PSA_KEY_USAGE_ENCRYPT.

The AEAD algorithm to compute (PSA_ALG_XXX value such that
PSA_ALG_IS_AEAD(alg) is true).

Nonce or IV to use.

Size of the nonce buffer in bytes. This must be appropriate for the
selected algorithm. The default nonce size is
PSA_AEAD_NONCE_LENGTH(key_type, alg) where key_type is the type of
key.

Additional data that will be authenticated but not encrypted.
Size of additional_data in bytes.

Data that will be authenticated and encrypted.

Size of plaintext in bytes.

Output buffer for the authenticated and encrypted data. The

additional data is not part of this output. For algorithms where the
encrypted data and the authentication tag are defined as separate
outputs, the authentication tag is appended to the encrypted data.

Size of the ciphertext buffer in bytes. This must be appropriate for
the selected algorithm and key:

e A sufficient output size is
PSA_AEAD_ENCRYPT_OUTPUT_SIZE(key_type, alg, plaintext_length)
where key_type is the type of key.

e PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE(plaintext_length) evaluates
to the maximum ciphertext size of any supported AEAD
encryption.

On success, the size of the output in the ciphertext buffer.

Success.

The key does not have the PSA_KEY_USAGE_ENCRYPT flag, or it does not

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 159

1.0.1

Non-confidential

permit the requested algorithm.
PSA_ERROR_INVALID_ARGUMENT key is not compatible with alg.
PSA_ERROR_NOT_SUPPORTED alg is not supported or is not an AEAD algorithm.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_BUFFER_TOO_SMALL ciphertext_size is too small. PSA_AEAD_ENCRYPT_OUTPUT_SIZE() or
PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE() can be used to determine the
required buffer size.

PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

psa_aead_decrypt (function)
Process an authenticated decryption operation.

psa_status_t psa_aead_decrypt(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * nonce,
size_t nonce_length,
const uint8_t * additional_data,
size_t additional_data_length,
const uint8_t * ciphertext,
size_t ciphertext_length,
uint8_t * plaintext,
size_t plaintext_size,
size_t * plaintext_length);

Parameters
key Identifier of the key to use for the operation. It must allow the usage
PSA_KEY_USAGE_DECRYPT.
alg The AEAD algorithm to compute (PSA_ALG_xXxX value such that
PSA_ALG_IS_AEAD(alg) is true).
nonce Nonce or IV to use.
nonce_length Size of the nonce buffer in bytes. This must be appropriate for the
selected algorithm. The default nonce size is
PSA_AEAD_NONCE_LENGTH(key_type, alg) where key_type is the type of
key.
additional_data Additional data that has been authenticated but not encrypted.
IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 160

1.0.1 Non-confidential

additional_data_length

ciphertext

ciphertext_length
plaintext

plaintext_size

plaintext_length

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_INVALID_HANDLE
PSA_ERROR_INVALID_SIGNATURE
PSA_ERROR_NOT_PERMITTED

PSA_ERROR_INVALID_ARGUMENT
PSA_ERROR_NOT_SUPPORTED
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_BUFFER_TOO_SMALL

PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

PSA_ERROR_BAD_STATE

Size of additional_data in bytes.

Data that has been authenticated and encrypted. For algorithms
where the encrypted data and the authentication tag are defined as
separate inputs, the buffer must contain the encrypted data followed
by the authentication tag.

Size of ciphertext in bytes.
Output buffer for the decrypted data.

Size of the plaintext buffer in bytes. This must be appropriate for the
selected algorithm and key:

e A sufficient output size is
PSA_AEAD_DECRYPT_OUTPUT_SIZE (key_type, alg,
ciphertext_length) where key_type is the type of key.

e PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE(ciphertext_length) evaluates
to the maximum plaintext size of any supported AEAD
decryption.

On success, the size of the output in the plaintext buffer.

Success.

The ciphertext is not authentic.

The key does not have the PSA_KEY_USAGE_DECRYPT flag, or it does not
permit the requested algorithm.

key is not compatible with alg.

alg is not supported or is not an AEAD algorithm.

plaintext_size is too small. PSA_AEAD_DECRYPT_OUTPUT_SIZE() or
PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE() can be used to determine the
required buffer size.

The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 161

1.0.1

Non-confidential

10.5.3 Multi-part AEAD operations

Warning: When decrypting using a multi-part AEAD operation, there is no guarantee that the input or
output is valid until psa_aead_verify() has returned PSA_SUCCESS.

A call to psa_aead_update() or psa_aead_update_ad() returning PsA_SUCCESS does not indicate that the
input and output is valid.

Until an application calls psa_aead_verify() and it has returned pPsA_succCEss, the following rules apply to
input and output data from a multi-part AEAD operation:

e Do not trust the input. If the application takes any action that depends on the input data, this
action will need to be undone if the input turns out to be invalid.

e Store the output in a confidential location. In particular, the application must not copy the output
to a memory or storage space which is shared.

e Do not trust the output. If the application takes any action that depends on the tentative
decrypted data, this action will need to be undone if the input turns out to be invalid.
Furthermore, if an adversary can observe that this action took place, for example, through timing,
they might be able to use this fact as an oracle to decrypt any message encrypted with the same
key.

An application that does not follow these rules might be vulnerable to maliciously constructed AEAD
input data.

psa_aead_operation_t (type)
The type of the state object for multi-part AEAD operations.

typedef /x implementation-defined type */ psa_aead_operation_t;

Before calling any function on an AEAD operation object, the application must initialize it by any of the
following means:

e Set the object to all-bits-zero, for example:

psa_aead_operation_t operation;
memset (&operation, @, sizeof(operation));

e Initialize the object to logical zero values by declaring the object as static or global without an
explicit initializer, for example:

static psa_aead_operation_t operation;

e Initialize the object to the initializer PSA_AEAD_OPERATION_INIT, for example:

psa_aead_operation_t operation = PSA_AEAD_OPERATION_INIT;

e Assign the result of the function psa_aead_operation_init() to the object, for example:

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 162
1.0.1 Non-confidential

psa_aead_operation_t operation;
operation = psa_aead_operation_init();

This is an implementation-defined type. Applications that make assumptions about the content of this
object will result in in implementation-specific behavior, and are non-portable.
PSA_AEAD_OPERATION_INIT (macro)

This macro returns a suitable initializer for an AEAD operation object of type psa_aead_operation_t.

#define PSA_AEAD_OPERATION_INIT /* implementation-defined value */

psa_aead_operation_init (function)
Return an initial value for an AEAD operation object.

psa_aead_operation_t psa_aead_operation_init(void);

Returns: psa_aead_operation_t

psa_aead_encrypt_setup (function)
Set the key for a multi-part authenticated encryption operation.

psa_status_t psa_aead_encrypt_setup(psa_aead_operation_t * operation,
psa_key_id_t key,
psa_algorithm_t alg);

Parameters
operation The operation object to set up. It must have been initialized as per
the documentation for psa_aead_operation_t and not yet in use.
key Identifier of the key to use for the operation. It must remain valid
until the operation terminates. It must allow the usage
PSA_KEY_USAGE_ENCRYPT.
alg The AEAD algorithm to compute (PSA_ALG_XXX value such that

PSA_ALG_IS_AEAD(alg) is true).
Returns: psa_status_t
PSA_SUCCESS Success.

PSA_ERROR_BAD_STATE The operation state is not valid: it must be inactive.

PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_ENCRYPT flag, or it does not
permit the requested algorithm.

PSA_ERROR_INVALID_ARGUMENT key is not compatible with alg.

PSA_ERROR_NOT_SUPPORTED alg is not supported or is not an AEAD algorithm.

PSA_ERROR_INSUFFICIENT_MEMORY

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 163

1.0.1 Non-confidential

PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

The sequence of operations to encrypt a message with authentication is as follows:

1. Allocate an operation object which will be passed to all the functions listed here.

2. Initialize the operation object with one of the methods described in the documentation for
psa_aead_operation_t, €.g. PSA_AEAD_OPERATION_INIT.

3. Call psa_aead_encrypt_setup() to specify the algorithm and key.

4. If needed, call psa_aead_set_lengths() to specify the length of the inputs to the subsequent calls to
psa_aead_update_ad() and psa_aead_update(). See the documentation of psa_aead_set_lengths() for
details.

5. Call either psa_aead_generate_nonce() or psa_aead_set_nonce() to generate or set the nonce. It is
recommended to use psa_aead_generate_nonce() unless the protocol being implemented requires a
specific nonce value.

6. Call psa_aead_update_ad() zero, one or more times, passing a fragment of the non-encrypted
additional authenticated data each time.

7. Call psa_aead_update() zero, one or more times, passing a fragment of the message to encrypt each
time.

8. Call psa_aead_finish().

If an error occurs at any step after a call to psa_aead_encrypt_setup(), the operation will need to be reset by
a call to psa_aead_abort(). The application can call psa_aead_abort() at any time after the operation has
been initialized.

After a successful call to psa_aead_encrypt_setup(), the application must eventually terminate the
operation. The following events terminate an operation:

e A successful call to psa_aead_finish().

e A call to psa_aead_abort().

psa_aead_decrypt_setup (function)

Set the key for a multi-part authenticated decryption operation.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 164
1.0.1 Non-confidential

psa_status_t psa_aead_decrypt_setup(psa_aead_operation_t * operation,

Parameters

operation

key

alg

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_BAD_STATE
PSA_ERROR_INVALID_HANDLE
PSA_ERROR_NOT_PERMITTED

PSA_ERROR_INVALID_ARGUMENT
PSA_ERROR_NOT_SUPPORTED

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_HARDWARE _FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

PSA_ERROR_BAD_STATE

Description

psa_key_id_t key,
psa_algorithm_t alg);

The operation object to set up. It must have been initialized as per
the documentation for psa_aead_operation_t and not yet in use.

Identifier of the key to use for the operation. It must remain valid
until the operation terminates. It must allow the usage
PSA_KEY_USAGE_DECRYPT.

The AEAD algorithm to compute (PSA_ALG_XXxX value such that
PSA_ALG_IS_AEAD(alg) is true).

Success.

The operation state is not valid: it must be inactive.

The key does not have the PSA_KEY_USAGE_DECRYPT flag, or it does not
permit the requested algorithm.

key is not compatible with alg.

alg is not supported or is not an AEAD algorithm.

The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

The sequence of operations to decrypt a message with authentication is as follows:

1. Allocate an operation object which will be passed to all the functions listed here.

2. Initialize the operation object with one of the methods described in the documentation for
psa_aead_operation_t, €.8. PSA_AEAD_OPERATION_INIT.

3. Call psa_aead_decrypt_setup() to specify the algorithm and key.

4. If needed, call psa_aead_set_lengths() to specify the length of the inputs to the subsequent calls to
psa_aead_update_ad() and psa_aead_update(). See the documentation of psa_aead_set_lengths() for

details.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 165

1.0.1

Non-confidential

5. Call psa_aead_set_nonce() with the nonce for the decryption.

6. Call psa_aead_update_ad() zero, one or more times, passing a fragment of the non-encrypted
additional authenticated data each time.

7. Call psa_aead_update() zero, one or more times, passing a fragment of the ciphertext to decrypt each
time.

8. Call psa_aead_verify().

If an error occurs at any step after a call to psa_aead_decrypt_setup(), the operation will need to be reset by
a call to psa_aead_abort(). The application can call psa_aead_abort () at any time after the operation has
been initialized.

After a successful call to psa_aead_decrypt_setup(), the application must eventually terminate the
operation. The following events terminate an operation:

e A successful call to psa_aead_verify().

e A call to psa_aead_abort().

psa_aead_set_lengths (function)
Declare the lengths of the message and additional data for AEAD.

psa_status_t psa_aead_set_lengths(psa_aead_operation_t * operation,
size_t ad_length,
size_t plaintext_length);

Parameters
operation Active AEAD operation.
ad_length Size of the non-encrypted additional authenticated data in bytes.
plaintext_length Size of the plaintext to encrypt in bytes.

Returns: psa_status_t
PSA_SUCCESS Success.

PSA_ERROR_BAD_STATE The operation state is not valid: it must be active, and
psa_aead_set_nonce() and psa_aead_generate_nonce() must not have
been called yet.

PSA_ERROR_INVALID_ARGUMENT At least one of the lengths is not acceptable for the chosen algorithm.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_HARDWARE_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 166
1.0.1 Non-confidential

Description

The application must call this function before calling psa_aead_set_nonce() or psa_aead_generate_nonce(), if
the algorithm for the operation requires it. If the algorithm does not require it, calling this function is
optional, but if this function is called then the implementation must enforce the lengths.

e For PSA_ALG_ccM, calling this function is required.
e For the other AEAD algorithms defined in this specification, calling this function is not required.

e For vendor-defined algorithm, refer to the vendor documentation.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_aead_abort().

psa_aead_generate_nonce (function)

Generate a random nonce for an authenticated encryption operation.

psa_status_t psa_aead_generate_nonce(psa_aead_operation_t * operation,
uint8_t * nonce,
size_t nonce_size,
size_t * nonce_length);

Parameters
operation Active AEAD operation.
nonce Buffer where the generated nonce is to be written.
nonce_size Size of the nonce buffer in bytes. This must be at least
PSA_AEAD_NONCE_LENGTH(key_type, alg) where key_type and alg are
type of key and the algorithm respectively that were used to set up
the AEAD operation.
nonce_length On success, the number of bytes of the generated nonce.
Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The operation state is not valid: it must be an active AEAD
encryption operation, with no nonce set.
PSA_ERROR_BAD_STATE The operation state is not valid: this is an algorithm which requires
psa_aead_set_lengths() to be called before setting the nonce.
PSA_ERROR_BUFFER_TOO0_SMALL The size of the nonce buffer is too small. PSA_AEAD_NONCE_LENGTH() or
PSA_AEAD_NONCE_MAX_SIZE can be used to determine the required
buffer size.

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_ _FAILURE

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 167
1.0.1 Non-confidential

PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

This function generates a random nonce for the authenticated encryption operation with an appropriate
size for the chosen algorithm, key type and key size.

The application must call psa_aead_encrypt_setup() before calling this function. If applicable for the
algorithm, the application must call psa_aead_set_lengths() before calling this function.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_aead_abort().

psa_aead_set_nonce (function)

Set the nonce for an authenticated encryption or decryption operation.

psa_status_t psa_aead_set_nonce(psa_aead_operation_t * operation,
const uint8_t * nonce,
size_t nonce_length);

Parameters
operation Active AEAD operation.
nonce Buffer containing the nonce to use.
nonce_length Size of the nonce in bytes. This must be a valid nonce size for the

chosen algorithm. The default nonce size is
PSA_AEAD_NONCE_LENGTH(key_type, alg) where key_type and alg are
type of key and the algorithm respectively that were used to set up

the AEAD operation.
Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The operation state is not valid: it must be active, with no nonce set.
PSA_ERROR_BAD_STATE The operation state is not valid: this is an algorithm which requires

psa_aead_set_lengths() to be called before setting the nonce.
PSA_ERROR_INVALID_ARGUMENT The size of nonce is not acceptable for the chosen algorithm.
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE_FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 168
1.0.1 Non-confidential

PSA_ERROR_DATA_INVALID

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description
This function sets the nonce for the authenticated encryption or decryption operation.

The application must call psa_aead_encrypt_setup() or psa_aead_decrypt_setup() before calling this function.
If applicable for the algorithm, the application must call psa_aead_set_lengths() before calling this function.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_aead_abort().

Note:

When encrypting, psa_aead_generate_nonce() is recommended instead of using this function, unless
implementing a protocol that requires a non-random V.

psa_aead_update_ad (function)
Pass additional data to an active AEAD operation.
psa_status_t psa_aead_update_ad(psa_aead_operation_t * operation,

const uint8_t * input,
size_t input_length);

Parameters
operation Active AEAD operation.
input Buffer containing the fragment of additional data.
input_length Size of the input buffer in bytes.

Returns: psa_status_t

PSA_SUCCESS Success.

Warning: When decrypting, do not trust the input until
psa_aead_verify() succeeds.

See the detailed warning.

PSA_ERROR_BAD_STATE The operation state is not valid: it must be active, have a nonce set,
have lengths set if required by the algorithm, and psa_aead_update()
must not have been called yet.

PSA_ERROR_INVALID_ARGUMENT The total input length overflows the additional data length that was
previously specified with psa_aead_set_lengths().

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 169
1.0.1 Non-confidential

PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description
Additional data is authenticated, but not encrypted.

This function can be called multiple times to pass successive fragments of the additional data. This
function must not be called after passing data to encrypt or decrypt with psa_aead_update().

The following must occur before calling this function:

1. Call either psa_aead_encrypt_setup() or psa_aead_decrypt_setup().

2. Set the nonce with psa_aead_generate_nonce() oOf psa_aead_set_nonce().

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_aead_abort().

psa_aead_update (function)
Encrypt or decrypt a message fragment in an active AEAD operation.

psa_status_t psa_aead_update(psa_aead_operation_t * operation,
const uint8_t * input,
size_t input_length,
uint8_t * output,
size_t output_size,
size_t * output_length);

Parameters
operation Active AEAD operation.
input Buffer containing the message fragment to encrypt or decrypt.
input_length Size of the input buffer in bytes.
output Buffer where the output is to be written.
output_size Size of the output buffer in bytes. This must be appropriate for the
selected algorithm and key:
e A sufficient output size is
PSA_AEAD_UPDATE_OUTPUT_SIZE(key_type, alg, input_length)
where key_type is the type of key and alg is the algorithm that
were used to set up the operation.
e PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE(input_length) evaluates to the
maximum output size of any supported AEAD algorithm.
IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 170

1.0.1 Non-confidential

output_length On success, the number of bytes that make up the returned output.

Returns: psa_status_t

PSA_SUCCESS Success.

Warning: When decrypting, do not use the output until
psa_aead_verify() succeeds.

See the detailed warning.

PSA_ERROR_BAD_STATE The operation state is not valid: it must be active, have a nonce set,
and have lengths set if required by the algorithm.

PSA_ERROR_BUFFER_TOQO_SMALL The size of the output buffer is too small.
PSA_AEAD_UPDATE_OUTPUT_SIZE() Or PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE()
can be used to determine the required buffer size.

PSA_ERROR_INVALID_ARGUMENT The total length of input to psa_aead_update_ad() so far is less than
the additional data length that was previously specified with
psa_aead_set_lengths().

PSA_ERROR_INVALID_ARGUMENT The total input length overflows the plaintext length that was
previously specified with psa_aead_set_lengths().

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE _FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

The following must occur before calling this function:

1. Call either psa_aead_encrypt_setup() or psa_aead_decrypt_setup(). The choice of setup function
determines whether this function encrypts or decrypts its input.
2. Set the nonce with psa_aead_generate_nonce() Of psa_aead_set_nonce().
3. Call psa_aead_update_ad() to pass all the additional data.
If this function returns an error status, the operation enters an error state and must be aborted by calling

psa_aead_abort().

This function does not require the input to be aligned to any particular block boundary. If the
implementation can only process a whole block at a time, it must consume all the input provided, but it
might delay the end of the corresponding output until a subsequent call to psa_aead_update(),

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 171
1.0.1 Non-confidential

psa_aead_finish() or psa_aead_verify() provides sufficient input. The amount of data that can be delayed
in this way is bounded by PSA_AEAD_UPDATE_OUTPUT_SIZE().

psa_aead_finish (function)

Finish encrypting a message in an AEAD operation.

psa_status_t psa_aead_finish(psa_aead_operation_t * operation,

Parameters
operation
ciphertext

ciphertext_size

ciphertext_length
tag

tag_size

tag_length
Returns: psa_status_t

PSA_SUCCESS
PSA_ERROR_BAD_STATE

PSA_ERROR_BUFFER_TOO_SMALL

uint8_t * ciphertext,
size_t ciphertext_size,
size_t * ciphertext_length,
uint8_t * tag,

size_t tag_size,

size_t * tag_length);

Active AEAD operation.
Buffer where the last part of the ciphertext is to be written.

Size of the ciphertext buffer in bytes. This must be appropriate for
the selected algorithm and key:

e A sufficient output size is
PSA_AEAD_FINISH_OUTPUT_SIZE (key_type, alg) where key_type is
the type of key and alg is the algorithm that were used to set up
the operation.

® PSA_AEAD_FINISH_OUTPUT_MAX_SIZE evaluates to the maximum
output size of any supported AEAD algorithm.

On success, the number of bytes of returned ciphertext.
Buffer where the authentication tag is to be written.

Size of the tag buffer in bytes. This must be appropriate for the
selected algorithm and key:

e The exact tag size is PSA_AEAD_TAG_LENGTH(key_type, key_bits,
alg) where key_type and key_bits are the type and bit-size of
the key, and alg is the algorithm that were used in the call to
psa_aead_encrypt_setup().

e PSA_AEAD_TAG_MAX_SIZE evaluates to the maximum tag size of any
supported AEAD algorithm.

On success, the number of bytes that make up the returned tag.

Success.

The operation state is not valid: it must be an active encryption
operation with a nonce set.

The size of the ciphertext or tag buffer is too small.
PSA_AEAD_FINISH_OUTPUT_SIZE() Or PSA_AEAD_FINISH_OUTPUT_MAX_SIZE
can be used to determine the required ciphertext buffer size.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 172

1.0.1

Non-confidential

PSA_AEAD_TAG_LENGTH() or PSA_AEAD_TAG_MAX_SIZE can be used to
determine the required tag buffer size.

PSA_ERROR_INVALID_ARGUMENT The total length of input to psa_aead_update_ad() so far is less than
the additional data length that was previously specified with
psa_aead_set_lengths().

PSA_ERROR_INVALID_ARGUMENT The total length of input to psa_aead_update() so far is less than the
plaintext length that was previously specified with
psa_aead_set_lengths().

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description
The operation must have been set up with psa_aead_encrypt_setup().

This function finishes the authentication of the additional data formed by concatenating the inputs passed
to preceding calls to psa_aead_update_ad() with the plaintext formed by concatenating the inputs passed to
preceding calls to psa_aead_update().

This function has two output buffers:

e ciphertext contains trailing ciphertext that was buffered from preceding calls to psa_aead_update().

e tag contains the authentication tag.

When this function returns successfully, the operation becomes inactive. If this function returns an error
status, the operation enters an error state and must be aborted by calling psa_aead_abort ().

psa_aead_verify (function)
Finish authenticating and decrypting a message in an AEAD operation.

psa_status_t psa_aead_verify(psa_aead_operation_t * operation,
uint8_t * plaintext,
size_t plaintext_size,
size_t * plaintext_length,
const uint8_t * tag,
size_t tag_length);

Parameters
operation Active AEAD operation.
IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 173

1.0.1 Non-confidential

plaintext

plaintext_size

plaintext_length

tag

tag_length
Returns: psa_status_t

PSA_SUCCESS
PSA_ERROR_INVALID_SIGNATURE

PSA_ERROR_BAD_STATE

PSA_ERROR_BUFFER_TOO_SMALL

PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_HARDWARE _FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID
PSA_ERROR_BAD_STATE

Buffer where the last part of the plaintext is to be written. This is the
remaining data from previous calls to psa_aead_update() that could
not be processed until the end of the input.

Size of the plaintext buffer in bytes. This must be appropriate for the
selected algorithm and key:

e A sufficient output size is
PSA_AEAD_VERIFY_OUTPUT_SIZE (key_type, alg) where key_type is
the type of key and alg is the algorithm that were used to set up
the operation.

e PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE evaluates to the maximum
output size of any supported AEAD algorithm.

On success, the number of bytes of returned plaintext.
Buffer containing the authentication tag.

Size of the tag buffer in bytes.

Success.

The calculations were successful, but the authentication tag is not
correct.

The operation state is not valid: it must be an active decryption
operation with a nonce set.

The size of the plaintext buffer is too small.
PSA_AEAD_VERIFY_OUTPUT_SIZE() Or PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE
can be used to determine the required buffer size.

The total length of input to psa_aead_update_ad() so far is less than
the additional data length that was previously specified with
psa_aead_set_lengths().

The total length of input to psa_aead_update() so far is less than the
plaintext length that was previously specified with
psa_aead_set_lengths().

The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 174

1.0.1

Non-confidential

Description
The operation must have been set up with psa_aead_decrypt_setup().

This function finishes the authenticated decryption of the message components:

e The additional data consisting of the concatenation of the inputs passed to preceding calls to
psa_aead_update_ad().

e The ciphertext consisting of the concatenation of the inputs passed to preceding calls to
psa_aead_update().

e The tag passed to this function call.

If the authentication tag is correct, this function outputs any remaining plaintext and reports success. If the
authentication tag is not correct, this function returns PSA_ERROR_INVALID_SIGNATURE.

When this function returns successfully, the operation becomes inactive. If this function returns an error
status, the operation enters an error state and must be aborted by calling psa_aead_abort ().

Note:

Implementations must make the best effort to ensure that the comparison between the actual tag
and the expected tag is performed in constant time.

psa_aead_abort (function)

Abort an AEAD operation.

psa_status_t psa_aead_abort(psa_aead_operation_t * operation);

Parameters
operation Initialized AEAD operation.

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

Aborting an operation frees all associated resources except for the operation object itself. Once aborted,
the operation object can be reused for another operation by calling psa_aead_encrypt_setup() or
psa_aead_decrypt_setup() again.

This function can be called any time after the operation object has been initialized as described in
psa_aead_operation_t.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 175
1.0.1 Non-confidential

In particular, calling psa_aead_abort () after the operation has been terminated by a call to psa_aead_abort(),
psa_aead_finish() or psa_aead_verify() is safe and has no effect.

10.5.4 Support macros
PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER (macro)
Whether the specified algorithm is an AEAD mode on a block cipher.

#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) /x specification-defined value */

Parameters

alg An algorithm identifier (value of type psa_algorithm_t).

Returns
1 if alg is an AEAD algorithm which is an AEAD mode based on a block cipher, o otherwise.

This macro can return either @ or 1 if alg is not a supported algorithm identifier.

PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG (macro)
An AEAD algorithm with the default tag length.

#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
/* specification-defined value */

Parameters
aead_alg An AEAD algorithm (PSA_ALG_xXX value such that
PSA_ALG_IS_AEAD(alg) is true).
Returns

The corresponding AEAD algorithm with the default tag length for that algorithm.

Description

This macro can be used to construct the AEAD algorithm with default tag length from an AEAD algorithm
with a shortened tag. See also PSA_ALG_AEAD_WITH_SHORTENED_TAG().

PSA_AEAD_ENCRYPT_OUTPUT_SIZE (macro)

The maximum size of the output of psa_aead_encrypt(), in bytes.

#define PSA_AEAD_ENCRYPT_OUTPUT_SIZE(key_type, alg, plaintext_length) \
/* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg An AEAD algorithm (PSA_ALG_xXX value such that
PSA_ALG_IS_AEAD(alg) is true).
plaintext_length Size of the plaintext in bytes.
IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 176

1.0.1 Non-confidential

Returns

The AEAD ciphertext size for the specified key type and algorithm. If the key type or AEAD algorithm is
not recognized, or the parameters are incompatible, return e. An implementation can return either o or a
correct size for a key type and AEAD algorithm that it recognizes, but does not support.

Description

If the size of the ciphertext buffer is at least this large, it is guaranteed that psa_aead_encrypt () will not fail
due to an insufficient buffer size. Depending on the algorithm, the actual size of the ciphertext might be
smaller.

See also PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE.

PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE (macro)

A sufficient output buffer size for psa_aead_encrypt (), for any of the supported key types and AEAD
algorithms.

#define PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE(plaintext_length) \
/* implementation-defined value */

Parameters

plaintext_length Size of the plaintext in bytes.

Description

If the size of the ciphertext buffer is at least this large, it is guaranteed that psa_aead_encrypt () will not fail
due to an insufficient buffer size.

See also PSA_AEAD_ENCRYPT_OUTPUT_SIZE().

PSA_AEAD_DECRYPT_OUTPUT_SIZE (macro)
The maximum size of the output of psa_aead_decrypt (), in bytes.

#define PSA_AEAD_DECRYPT_OUTPUT_SIZE(key_type, alg, ciphertext_length) \
/* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg An AEAD algorithm (PSA_ALG_xXX value such that
PSA_ALG_IS_AEAD(alg) is true).
ciphertext_length Size of the ciphertext in bytes.
Returns

The AEAD plaintext size for the specified key type and algorithm. If the key type or AEAD algorithm is not
recognized, or the parameters are incompatible, return e. An implementation can return either ¢ or a
correct size for a key type and AEAD algorithm that it recognizes, but does not support.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 177
1.0.1 Non-confidential

Description

If the size of the plaintext buffer is at least this large, it is guaranteed that psa_aead_decrypt () will not fail
due to an insufficient buffer size. Depending on the algorithm, the actual size of the plaintext might be
smaller.

See also PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE.

PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE (macro)

A sufficient output buffer size for psa_aead_decrypt (), for any of the supported key types and AEAD
algorithms.

#define PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE(ciphertext_length) \
/* implementation-defined value */

Parameters

ciphertext_length Size of the ciphertext in bytes.

Description

If the size of the plaintext buffer is at least this large, it is guaranteed that psa_aead_decrypt () will not fail
due to an insufficient buffer size.

See also PSA_AEAD_DECRYPT_OUTPUT_SIZE().

PSA_AEAD_NONCE_LENGTH (macro)
The default nonce size for an AEAD algorithm, in bytes.

#define PSA_AEAD_NONCE_LENGTH(key_type, alg) /x implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg An AEAD algorithm (PSA_ALG_xXX value such that
PSA_ALG_IS_AEAD(alg) is true).
Returns

The default nonce size for the specified key type and algorithm. If the key type or AEAD algorithm is not
recognized, or the parameters are incompatible, return e. An implementation can return either ¢ or a
correct size for a key type and AEAD algorithm that it recognizes, but does not support.

Description

This macro can be used to allocate a buffer of sufficient size to store the nonce output from
psa_aead_generate_nonce().

See also PSA_AEAD_NONCE_MAX_SIZE.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 178
1.0.1 Non-confidential

PSA_AEAD_NONCE_MAX_SIZE (macro)
The maximum nonce size for all supported AEAD algorithms, in bytes.

#define PSA_AEAD_NONCE_MAX_SIZE /* implementation-defined value */

See also PSA_AEAD_NONCE_LENGTH().

PSA_AEAD_UPDATE_OUTPUT_SIZE (macro)
A sufficient output buffer size for psa_aead_update().

#define PSA_AEAD_UPDATE_OUTPUT_SIZE(key_type, alg, input_length) \
/* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg An AEAD algorithm (PSA_ALG_xXX value such that
PSA_ALG_IS_AEAD(alg) is true).
input_length Size of the input in bytes.
Returns

A sufficient output buffer size for the specified key type and algorithm. If the key type or AEAD algorithm
is not recognized, or the parameters are incompatible, return @. An implementation can return either ¢ or a
correct size for a key type and AEAD algorithm that it recognizes, but does not support.

Description

If the size of the output buffer is at least this large, it is guaranteed that psa_aead_update () will not fail due
to an insufficient buffer size. The actual size of the output might be smaller in any given call.

See also PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE.

PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE (macro)

A sufficient output buffer size for psa_aead_update(), for any of the supported key types and AEAD
algorithms.

#define PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE (input_length) \
/* implementation-defined value */

Parameters
input_length Size of the input in bytes.

Description

If the size of the output buffer is at least this large, it is guaranteed that psa_aead_update () will not fail due
to an insufficient buffer size.

See also PSA_AEAD_UPDATE_OUTPUT_SIZE().

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 179
1.0.1 Non-confidential

PSA_AEAD_FINISH_OUTPUT_SIZE (macro)
A sufficient ciphertext buffer size for psa_aead_finish().

#define PSA_AEAD_FINISH_OUTPUT_SIZE (key_type, alg) \
/* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg An AEAD algorithm (PSA_ALG_xxX value such that
PSA_ALG_IS_AEAD(alg) is true).
Returns

A sufficient ciphertext buffer size for the specified key type and algorithm. If the key type or AEAD
algorithm is not recognized, or the parameters are incompatible, return o. An implementation can return
either @ or a correct size for a key type and AEAD algorithm that it recognizes, but does not support.

Description

If the size of the ciphertext buffer is at least this large, it is guaranteed that psa_aead_finish() will not fail
due to an insufficient ciphertext buffer size. The actual size of the output might be smaller in any given call.

See also PSA_AEAD_FINISH_OUTPUT_MAX_SIZE.

PSA_AEAD_FINISH_OUTPUT_MAX_SIZE (macro)

A sufficient ciphertext buffer size for psa_aead_finish(), for any of the supported key types and AEAD
algorithms.

#define PSA_AEAD_FINISH_OUTPUT_MAX_SIZE /* implementation-defined value */

See also PSA_AEAD_FINISH_OUTPUT_SIZE().

PSA_AEAD_TAG_LENGTH (macro)
The length of a tag for an AEAD algorithm, in bytes.

#define PSA_AEAD_TAG_LENGTH(key_type, key_bits, alg) \
/* implementation-defined value */

Parameters
key_type The type of the AEAD key.
key_bits The size of the AEAD key in bits.
alg An AEAD algorithm (PSA_ALG_xxX value such that
PSA_ALG_IS_AEAD(alg) is true).
Returns

The tag length for the specified algorithm and key. If the AEAD algorithm does not have an identified tag
that can be distinguished from the rest of the ciphertext, return e. If the AEAD algorithm is not recognized,
return 0. An implementation can return either @ or a correct size for an AEAD algorithm that it recognizes,
but does not support.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 180
1.0.1 Non-confidential

Description
This macro can be used to allocate a buffer of sufficient size to store the tag output from psa_aead_finish().

See also PSA_AEAD_TAG_MAX_SIZE.

PSA_AEAD_TAG_MAX_SIZE (macro)
The maximum tag size for all supported AEAD algorithms, in bytes.

#define PSA_AEAD_TAG_MAX_SIZE /* implementation-defined value */

See also PSA_AEAD_TAG_LENGTH().

PSA_AEAD_VERIFY_OUTPUT_SIZE (macro)
A sufficient plaintext buffer size for psa_aead_verify().

#define PSA_AEAD_VERIFY_OUTPUT_SIZE(key_type, alg) \
/* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg An AEAD algorithm (PSA_ALG_XxX value such that
PSA_ALG_IS_AEAD(alg) is true).
Returns

A sufficient plaintext buffer size for the specified key type and algorithm. If the key type or AEAD
algorithm is not recognized, or the parameters are incompatible, return . An implementation can return
either 0 or a correct size for a key type and AEAD algorithm that it recognizes, but does not support.

Description

If the size of the plaintext buffer is at least this large, it is guaranteed that psa_aead_verify() will not fail
due to an insufficient plaintext buffer size. The actual size of the output might be smaller in any given call.

See also PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE.

PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE (macro)

A sufficient plaintext buffer size for psa_aead_verify(), for any of the supported key types and AEAD
algorithms.

#define PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE /x implementation-defined value */

See also PSA_AEAD_VERIFY_OUTPUT_SIZE().

10.6 Key derivation

10.6.1 Key derivation algorithms
PSA_ALG_HKDF (macro)

Macro to build an HKDF algorithm.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 181
1.0.1 Non-confidential

#define PSA_ALG_HKDF (hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm (PSA_ALG_XXX value such that
PSA_ALG_IS_HASH(hash_alg) is true).
Returns

The corresponding HKDF algorithm. For example, PSA_ALG_HKDF (PSA_ALG_SHA_256) is HKDF using
HMAC-SHA-256.

Unspecified if hash_alg is not a supported hash algorithm.

Description

This is the HMAC-based Extract-and-Expand Key Derivation Function (HKDF) specified by HMAC-based
Extract-and-Expand Key Derivation Function (HKDF) [RFC5869].

This key derivation algorithm uses the following inputs:

e PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the “extract” step. It is optional; if omitted, the
derivation uses an empty salt.

e PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the “extract” step.

e PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the “expand” step.

If PSA_KEY_DERIVATION_INPUT_SALT is provided, it must be before PSA_KEY_DERIVATION_INPUT_SECRET.
PSA_KEY_DERIVATION_INPUT_INFO can be provided at any time after setup and before starting to generate
output.

Each input may only be passed once.

PSA_ALG_TLS12_PRF (macro)
Macro to build a TLS-1.2 PRF algorithm.

#define PSA_ALG_TLS12_PRF(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm (PSA_ALG_XxX value such that
PSA_ALG_IS_HASH(hash_alg) is true).
Returns

The corresponding TLS-1.2 PRF algorithm. For example, PSA_ALG_TLS12_PRF (PSA_ALG_SHA_256) represents
the TLS 1.2 PRF using HMAC-SHA-256.

Unspecified if hash_alg is not a supported hash algorithm.
Description

TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule, specified in The Transport Layer
Security (TLS) Protocol Version 1.2 [RFC5246] §5. It is based on HMAC and can be used with either
SHA-256 or SHA-384.

This key derivation algorithm uses the following inputs, which must be passed in the order given here:

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 182
1.0.1 Non-confidential

https://tools.ietf.org/html/rfc5246.html#section-5

e PSA_KEY_DERIVATION_INPUT_SEED is the seed.
e PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.

e PSA_KEY_DERIVATION_INPUT_LABEL is the label.

Each input may only be passed once.

For the application to TLS-1.2 key expansion:

e The seed is the concatenation of ServerHello.Random + ClientHello.Random.

e The label is "key expansion”.

PSA_ALG_TLS12_PSK_TO_MS (macro)
Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.

#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) /* specification-defined value =*/

Parameters
hash_alg A hash algorithm (PSA_ALG_XxX value such that
PSA_ALG_IS_HASH(hash_alg) is true).
Returns

The corresponding TLS-1.2 PSK to MS algorithm. For example, PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA_256)
represents the TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.

Unspecified if hash_alg is not a supported hash algorithm.

Description

In a pure-PSK handshake in TLS 1.2, the master secret (MS) is derived from the pre-shared key (PSK)
through the application of padding (Pre-Shared Key Ciphersuites for Transport Layer Security (TLS) [RFC4279]
§2) and the TLS-1.2 PRF (The Transport Layer Security (TLS) Protocol Version 1.2 [RFC5246] §5). The latter is
based on HMAC and can be used with either SHA-256 or SHA-384.

This key derivation algorithm uses the following inputs, which must be passed in the order given here:

e PSA_KEY_DERIVATION_INPUT_SEED is the seed.

e PSA_KEY_DERIVATION_INPUT_SECRET is the PSK. The PSK must not be larger than
PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE.

e PSA_KEY_DERIVATION_INPUT_LABEL is the label.

Each input may only be passed once.

For the application to TLS-1.2:

e The seed, which is forwarded to the TLS-1.2 PRF, is the concatenation of the ClientHello.Random +
ServerHello.Random.

e The label is "master secret” or "extended master secret”.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 183
1.0.1 Non-confidential

https://tools.ietf.org/html/rfc4279.html#section-2
https://tools.ietf.org/html/rfc5246.html#section-5

10.6.2 Input step types
psa_key_derivation_step_t (type)
Encoding of the step of a key derivation.

typedef uint16_t psa_key_derivation_step_t;

PSA_KEY_DERIVATION_INPUT_SECRET (macro)
A secret input for key derivation.

#define PSA_KEY_DERIVATION_INPUT_SECRET /* implementation-defined value */

This is typically a key of type PSA_KEY_TYPE_DERIVE passed to psa_key_derivation_input_key(), or the shared

secret resulting from a key agreement obtained via psa_key_derivation_key_agreement().

The secret can also be a direct input passed to psa_key_derivation_input_bytes(). In this case, the

derivation operation cannot be used to derive keys: the operation will only allow
psa_key_derivation_output_bytes(), not psa_key_derivation_output_key().

PSA_KEY_DERIVATION_INPUT_LABEL (macro)
A label for key derivation.

#define PSA_KEY_DERIVATION_INPUT_LABEL /* implementation-defined value */
This is typically a direct input. It can also be a key of type PSA_KEY_TYPE_RAW_DATA.
PSA_KEY_DERIVATION_INPUT_CONTEXT (macro)

A context for key derivation.

#define PSA_KEY_DERIVATION_INPUT_CONTEXT /* implementation-defined value */
This is typically a direct input. It can also be a key of type PSA_KEY_TYPE_RAW_DATA.
PSA_KEY_DERIVATION_INPUT_SALT (macro)

A salt for key derivation.

#define PSA_KEY_DERIVATION_INPUT_SALT /* implementation-defined value */
This is typically a direct input. It can also be a key of type PSA_KEY_TYPE_RAW_DATA.
PSA_KEY_DERIVATION_INPUT_INFO (macro)

An information string for key derivation.

#define PSA_KEY_DERIVATION_INPUT_INFO /* implementation-defined value */

This is typically a direct input. It can also be a key of type PSA_KEY_TYPE_RAW_DATA.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

1.0.1 Non-confidential

Page 184

PSA_KEY_DERIVATION_INPUT_SEED (macro)
A seed for key derivation.

#define PSA_KEY_DERIVATION_INPUT_SEED /* implementation-defined value x/

This is typically a direct input. It can also be a key of type PSA_KEY_TYPE_RAW_DATA.

10.6.3 Key derivation functions
psa_key_derivation_operation_t (type)
The type of the state object for key derivation operations.

typedef /* implementation-defined type */ psa_key_derivation_operation_t;

Before calling any function on a key derivation operation object, the application must initialize it by any of
the following means:

e Set the object to all-bits-zero, for example:

psa_key_derivation_operation_t operation;
memset (&operation, @, sizeof(operation));

o Initialize the object to logical zero values by declaring the object as static or global without an
explicit initializer, for example:

static psa_key_derivation_operation_t operation;

e Initialize the object to the initializer PSA_KEY_DERIVATION_OPERATION_INIT, for example:

psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;

e Assign the result of the function psa_key_derivation_operation_init() to the object, for example:

psa_key_derivation_operation_t operation;
operation = psa_key_derivation_operation_init();

This is an implementation-defined type. Applications that make assumptions about the content of this
object will result in in implementation-specific behavior, and are non-portable.
PSA_KEY_DERIVATION_OPERATION_INIT (macro)

This macro returns a suitable initializer for a key derivation operation object of type
psa_key_derivation_operation_t.

#define PSA_KEY_DERIVATION_OPERATION_INIT /* implementation-defined value */

psa_key_derivation_operation_init (function)

Return an initial value for a key derivation operation object.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 185
1.0.1 Non-confidential

psa_key_derivation_operation_t psa_key_derivation_operation_init(void);

Returns: psa_key_derivation_operation_t

psa_key_derivation_setup (function)
Set up a key derivation operation.

psa_status_t psa_key_derivation_setup(psa_key_derivation_operation_t * operation,
psa_algorithm_t alg);

Parameters
operation The key derivation operation object to set up. It must have been
initialized but not set up yet.
alg The key derivation algorithm to compute (PSA_ALG_XxX value such that

PSA_ALG_IS_KEY_DERIVATION(alg) is true).

Returns: psa_status_t

PSA_SUCCESS Success.
PSA_ERROR_INVALID_ARGUMENT alg is not a key derivation algorithm.
PSA_ERROR_NOT_SUPPORTED alg is not supported or is not a key derivation algorithm.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_HARDWARE_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE _FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

PSA_ERROR_BAD_STATE The operation state is not valid: it must be inactive.

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

A key derivation algorithm takes some inputs and uses them to generate a byte stream in a deterministic
way. This byte stream can be used to produce keys and other cryptographic material.

To derive a key:

1. Start with an initialized object of type psa_key_derivation_operation_t.
2. Call psa_key_derivation_setup() to select the algorithm.

3. Provide the inputs for the key derivation by calling psa_key_derivation_input_bytes() or
psa_key_derivation_input_key() as appropriate. Which inputs are needed, in what order, whether
keys are permitted, and what type of keys depends on the algorithm.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 186
1.0.1 Non-confidential

4. Optionally set the operation’s maximum capacity with psa_key_derivation_set_capacity(). This can
be done before, in the middle of, or after providing inputs. For some algorithms, this step is
mandatory because the output depends on the maximum capacity.

5. To derive a key, call psa_key_derivation_output_key(). To derive a byte string for a different purpose,
call psa_key_derivation_output_bytes(). Successive calls to these functions use successive output
bytes calculated by the key derivation algorithm.

6. Clean up the key derivation operation object with psa_key_derivation_abort().

If this function returns an error, the key derivation operation object is not changed.

If an error occurs at any step after a call to psa_key_derivation_setup(), the operation will need to be reset
by a call to psa_key_derivation_abort().

Implementations must reject an attempt to derive a key of size o.

psa_key_derivation_get_capacity (function)
Retrieve the current capacity of a key derivation operation.

psa_status_t psa_key_derivation_get_capacity(const psa_key_derivation_operation_t * operation,
size_t * capacity);

Parameters
operation The operation to query.
capacity On success, the capacity of the operation.

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_BAD_STATE The operation state is not valid: it must be active.
PSA_ERROR_HARDWARE_FAILURE
PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

The capacity of a key derivation is the maximum number of bytes that it can return. Reading N bytes of
output from a key derivation operation reduces its capacity by at least N. The capacity can be reduced by
more than N in the following situations:

e Calling psa_key_derivation_output_key() can reduce the capacity by more than the key size,
depending on the type of key being generated. See psa_key_derivation_output_key() for details of
the key derivation process.

e When the psa_key_derivation_operation_t object is operating as a deterministic random bit
generator (DBRG), which reduces capacity in whole blocks, even when less than a block is read.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 187
1.0.1 Non-confidential

psa_key_derivation_set_capacity (function)
Set the maximum capacity of a key derivation operation.

psa_status_t psa_key_derivation_set_capacity(psa_key_derivation_operation_t * operation,
size_t capacity);

Parameters
operation The key derivation operation object to modify.
capacity The new capacity of the operation. It must be less or equal to the

operation’s current capacity.

Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_INVALID_ARGUMENT capacity is larger than the operation’s current capacity. In this case,
the operation object remains valid and its capacity remains
unchanged.

PSA_ERROR_BAD_STATE The operation state is not valid: it must be active.

PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

The capacity of a key derivation operation is the maximum number of bytes that the key derivation
operation can return from this point onwards.

psa_key_derivation_input_bytes (function)

Provide an input for key derivation or key agreement.

psa_status_t psa_key_derivation_input_bytes(psa_key_derivation_operation_t * operation,
psa_key_derivation_step_t step,

const uint8_t * data,
size_t data_length);

Parameters
operation The key derivation operation object to use. It must have been set up
with psa_key_derivation_setup() and must not have produced any
output yet.
step Which step the input data is for.
data Input data to use.
data_length Size of the data buffer in bytes.
IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 188

1.0.1 Non-confidential

Returns: psa_status_t

PSA_SUCCESS Success.
PSA_ERROR_INVALID_ARGUMENT step is not compatible with the operation’s algorithm.
PSA_ERROR_INVALID_ARGUMENT step does not allow direct inputs.

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

PSA_ERROR_BAD_STATE The operation state is not valid for this input step. This can happen if
the application provides a step out of order or repeats a step that
may not be repeated.

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

Which inputs are required and in what order depends on the algorithm. Refer to the documentation of
each key derivation or key agreement algorithm for information.

This function passes direct inputs, which is usually correct for non-secret inputs. To pass a secret input,
which is normally in a key object, call psa_key_derivation_input_key() instead of this function. Refer to the
documentation of individual step types (PSA_KEY_DERIVATION_INPUT_xxx values of type
psa_key_derivation_step_t) for more information.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_key_derivation_abort().

psa_key_derivation_input_key (function)

Provide an input for key derivation in the form of a key.

psa_status_t psa_key_derivation_input_key(psa_key_derivation_operation_t * operation,
psa_key_derivation_step_t step,
psa_key_id_t key);

Parameters
operation The key derivation operation object to use. It must have been set up
with psa_key_derivation_setup() and must not have produced any
output yet.
step Which step the input data is for.
key Identifier of the key. It must have an appropriate type for step and
must allow the usage PSA_KEY_USAGE_DERIVE.
IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 189

1.0.1 Non-confidential

Returns: psa_status_t

PSA_SUCCESS Success.
PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_DERIVE flag.
PSA_ERROR_INVALID_ARGUMENT step is not compatible with the operation’s algorithm.
PSA_ERROR_INVALID_ARGUMENT step does not allow key inputs of the given type or does not allow

key inputs at all.
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE_FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE _FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

PSA_ERROR_BAD_STATE The operation state is not valid for this input step. This can happen if
the application provides a step out of order or repeats a step that
may not be repeated.

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

Which inputs are required and in what order depends on the algorithm. Refer to the documentation of
each key derivation or key agreement algorithm for information.

This function obtains input from a key object, which is usually correct for secret inputs or for non-secret
personalization strings kept in the key store. To pass a non-secret parameter which is not in the key store,
call psa_key_derivation_input_bytes() instead of this function. Refer to the documentation of individual
step types (PSA_KEY_DERIVATION_INPUT_xxx values of type psa_key_derivation_step_t) for more information.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_key_derivation_abort().

psa_key_derivation_output_bytes (function)

Read some data from a key derivation operation.

psa_status_t psa_key_derivation_output_bytes(psa_key_derivation_operation_t * operation,

uint8_t * output,
size_t output_length);

Parameters
operation The key derivation operation object to read from.
output Buffer where the output will be written.
IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 190

1.0.1 Non-confidential

output_length Number of bytes to output.

Returns: psa_status_t
PSA_SUCCESS

PSA_ERROR_INSUFFICIENT_DATA The operation’s capacity was less than output_length bytes. Note that
in this case, no output is written to the output buffer. The operation’s
capacity is set to o, thus subsequent calls to this function will not
succeed, even with a smaller output buffer.

PSA_ERROR_BAD_STATE The operation state is not valid: it must be active and completed all
required input steps.

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

This function calculates output bytes from a key derivation algorithm and returns those bytes. If the key
derivation’s output is viewed as a stream of bytes, this function consumes the requested number of bytes
from the stream and returns them to the caller. The operation’s capacity decreases by the number of bytes
read.

If this function returns an error status other than PSA_ERROR_INSUFFICIENT_DATA, the operation enters an
error state and must be aborted by calling psa_key_derivation_abort().
psa_key_derivation_output_key (function)

Derive a key from an ongoing key derivation operation.

psa_status_t psa_key_derivation_output_key(const psa_key_attributes_t * attributes,

psa_key_derivation_operation_t * operation,
psa_key_id_t * key);

Parameters
attributes The attributes for the new key. This function uses the attributes as
follows:
e The key type is required. It cannot be an asymmetric public key.
e The key size is required. It must be a valid size for the key type.
IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 191

1.0.1 Non-confidential

e The key permitted-algorithm policy is required for keys that will
be used for a cryptographic operation, see Permitted algorithms
on page 78.

e The key usage flags define what operations are permitted with
the key, see Key usage flags on page 80.

e The key lifetime and identifier are required for a persistent key.

Note:

This is an input parameter: it is not updated with the final key
attributes. The final attributes of the new key can be queried
by calling psa_get_key_attributes() with the key’s identifier.

operation The key derivation operation object to read from.
key On success, an identifier for the newly created key. PSA_KEY_ID_NULL
on failure.

Returns: psa_status_t

PSA_SUCCESS Success. If the key is persistent, the key material and the key's
metadata have been saved to persistent storage.

PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already a
persistent key with the given identifier.

PSA_ERROR_INSUFFICIENT_DATA There was not enough data to create the desired key. Note that in
this case, no output is written to the output buffer. The operation’s
capacity is set to o, thus subsequent calls to this function will not
succeed, even with a smaller output buffer.

PSA_ERROR_NOT_SUPPORTED The key type or key size is not supported, either by the
implementation in general or in this particular location.
PSA_ERROR_INVALID_ARGUMENT The key attributes, as a whole, are invalid.
PSA_ERROR_INVALID_ARGUMENT The key type is an asymmetric public key type.
PSA_ERROR_INVALID_ARGUMENT The key size is not a valid size for the key type.
PSA_ERROR_NOT_PERMITTED The PSA_KEY_DERIVATION_INPUT_SECRET input was neither provided

through a key nor the result of a key agreement.

PSA_ERROR_BAD_STATE The operation state is not valid: it must be active and completed all
required input steps.

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_INSUFFICIENT_STORAGE
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 192
1.0.1 Non-confidential

PSA_ERROR_DATA_INVALID

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

This function calculates output bytes from a key derivation algorithm and uses those bytes to generate a
key deterministically. The key's location, policy, type and size are taken from attributes.

If the key derivation’s output is viewed as a stream of bytes, this function consumes the required number of
bytes from the stream. The operation’s capacity decreases by the number of bytes used to derive the key.

If this function returns an error status other than PSA_ERROR_INSUFFICIENT_DATA, the operation enters an
error state and must be aborted by calling psa_key_derivation_abort().

How much output is produced and consumed from the operation, and how the key is derived, depends on
the key type. Table 6 describes the required key derivation procedures for standard key derivation
algorithms. Implementations can use other methods for implementation-specific algorithms.

In all cases, the data that is read is discarded from the operation. The operation’s capacity is decreased by
the number of bytes read.

Table 6 Standard key derivation process

Key type Key type details and derivation procedure
AES PSA_KEY_TYPE_AES

ARC4 PSA_KEY_TYPE_ARC4

CAMELLIA PSA_KEY_TYPE_CAMELLIA

ChaCha20 PSA_KEY_TYPE_CHACHA20

SM4 PSA_KEY_TYPE_SM4

Secrets for derivation PSA_KEY_TYPE_DERIVE

HMAC PSA_KEY_TYPE_HMAC

For key types for which the key is an arbitrary sequence of bytes of a
given size, this function is functionally equivalent to calling
psa_key_derivation_output_bytes() and passing the resulting output to
psa_import_key (). However, this function has a security benefit: if the
implementation provides an isolation boundary then the key material is
not exposed outside the isolation boundary. As a consequence, for these
key types, this function always consumes exactly (bits/8) bytes from the
operation.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 193
1.0.1 Non-confidential

Table 6 (continued)

Key type Key type details and derivation procedure

DES PSA_KEY_TYPE_DES, 64 bits.
This function generates a key using the following process:

1. Draw an 8-byte string.

2. Set/clear the parity bits in each byte.

3. If the result is a forbidden weak key, discard the result and return to
step 1.

4. Output the string.

2-key 3DES PSA_KEY_TYPE_DES, 192 bits.

3-key 3DES PSA_KEY_TYPE_DES, 128 bits.
The two or three keys are generated by repeated application of the
process used to generate a DES key.
For example, for 3-key 3DES, if the first 8 bytes specify a weak key and
the next 8 bytes do not, discard the first 8 bytes, use the next 8 bytes as
the first key, and continue reading output from the operation to derive
the other two keys.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 194
1.0.1 Non-confidential

Key type
Finite-field Diffie-Hellman
keys

ECC keys on a Weierstrass
elliptic curve

ECC keyson a
Montgomery elliptic curve

Table 6 (continued)
Key type details and derivation procedure

PSA_KEY_TYPE_DH_KEY_PAIR(dh_family) where dh_family designates any
Diffie-Hellman family.

PSA_KEY_TYPE_ECC_KEY_PAIR(ecc_family) where ecc_family designates a
Weierstrass curve family.

These key types require the generation of a private key which is an
integer in the range [1, N - 1], where N is the boundary of the private key
domain: N is the prime p for Diffie-Hellman, or the order of the curve’s
base point for ECC.

Let m be the bit size of N, such that 2*m > N >= 2~(m-1). This function
generates the private key using the following process:

1. Draw a byte string of length ceiling(m/8) bytes.

2. If mis not a multiple of 8, set the most significant (8 * ceiling(m/8)
- m) bits of the first byte in the string to zero.

3. Convert the string to integer k by decoding it as a big-endian byte
string.

4. If k > N - 2, discard the result and return to step 1.

5. Output k + 1 as the private key.

This method allows compliance to NIST standards, specifically the

methods titled Key-Pair Generation by Testing Candidates in the following
publications:

e NIST Special Publication 800-56A: Recommendation for Pair-Wise
Key-Establishment Schemes Using Discrete Logarithm Cryptography
[SP800-56A] §5.6.1.1.4 for Diffie-Hellman keys.

e [SP800-56A] §5.6.1.2.2 or FIPS Publication 186-4: Digital Signature
Standard (DSS) [FIPS186-4] §B.4.2 for elliptic curve keys.

PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_MONTGOMERY)

This function always draws a byte string whose length is determined by
the curve, and sets the mandatory bits accordingly. That is:

e Curve25519 (PSA_ECC_FAMILY_MONTGOMERY, 255 bits): draw a 32-byte
string and process it as specified in Elliptic Curves for Security
[RFC7748] §5.

e Curve448 (PSA_ECC_FAMILY_MONTGOMERY, 448 bits): draw a 56-byte
string and process it as specified in [RFC7748] §5.

Other key types This includes PSA_KEY_TYPE_RSA_KEY_PAIR.
The way in which the operation output is consumed is
implementation-defined.
IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 195

1.0.1

Non-confidential

https://tools.ietf.org/html/rfc7748.html#section-5
https://tools.ietf.org/html/rfc7748.html#section-5

For algorithms that take an input step PSA_KEY_DERIVATION_INPUT_SECRET, the input to that step must be
provided with psa_key_derivation_input_key(). Future versions of this specification might include
additional restrictions on the derived key based on the attributes and strength of the secret key.

psa_key_derivation_abort (function)
Abort a key derivation operation.

psa_status_t psa_key_derivation_abort(psa_key_derivation_operation_t * operation);

Parameters

operation The operation to abort.

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

Aborting an operation frees all associated resources except for the operation object itself. Once aborted,
the operation object can be reused for another operation by calling psa_key_derivation_setup() again.

This function can be called at any time after the operation object has been initialized as described in
psa_key_derivation_operation_t.

In particular, it is valid to call psa_key_derivation_abort() twice, or to call psa_key_derivation_abort() on an
operation that has not been set up.

10.6.4 Support macros
PSA_ALG_IS_HKDF (macro)
Whether the specified algorithm is an HKDF algorithm.

#define PSA_ALG_IS_HKDF(alg) /* specification-defined value */

Parameters
alg An algorithm identifier (value of type psa_algorithm_t).
Returns

1 if alg is an HKDF algorithm, o otherwise. This macro can return either @ or 1 if alg is not a supported key
derivation algorithm identifier.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 196
1.0.1 Non-confidential

Description

HKDF is a family of key derivation algorithms that are based on a hash function and the HMAC
construction.

PSA_ALG_IS_TLS12_PRF (macro)

Whether the specified algorithm is a TLS-1.2 PRF algorithm.

#define PSA_ALG_IS_TLS12_PRF(alg) /* specification-defined value */

Parameters

alg An algorithm identifier (value of type psa_algorithm_t).

Returns

1 if algis a TLS-1.2 PRF algorithm, @ otherwise. This macro can return either o or 1 if alg is not a supported
key derivation algorithm identifier.

PSA_ALG_IS_TLS12_PSK_TO_MS (macro)

Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.

#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) /* specification-defined value */

Parameters

alg An algorithm identifier (value of type psa_algorithm_t).

Returns

1 if algis a TLS-1.2 PSK to MS algorithm, @ otherwise. This macro can return either @ or 1 if alg is not a
supported key derivation algorithm identifier.

PSA_KEY_DERIVATION_UNLIMITED_CAPACITY (macro)

Use the maximum possible capacity for a key derivation operation.

#define PSA_KEY_DERIVATION_UNLIMITED_CAPACITY \
/* implementation-defined value */

Use this value as the capacity argument when setting up a key derivation to specify that the operation will
use the maximum possible capacity. The value of the maximum possible capacity depends on the key
derivation algorithm.

PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE (macro)

This macro returns the maximum supported length of the PSK for the TLS-1.2 PSK-to-MS key derivation.

#define PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE /* implementation-defined value */

This implementation-defined value specifies the maximum length for the PSK input used with a
PSA_ALG_TLS12_PSK_TO_MS() key agreement algorithm.

Quoting Pre-Shared Key Ciphersuites for Transport Layer Security (TLS) [RFC4279] §5.3:

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 197
1.0.1 Non-confidential

https://tools.ietf.org/html/rfc4279.html#section-5.3

TLS implementations supporting these cipher suites MUST support arbitrary PSK identities up
to 128 octets in length, and arbitrary PSKs up to 64 octets in length. Supporting longer
identities and keys is RECOMMENDED.

Therefore, it is recommended that implementations define PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE with a value
greater than or equal to 64.

10.7 Asymmetric signature

10.7.1 Asymmetric signature algorithms
PSA_ALG_RSA_PKCS1V15_SIGN (macro)

The RSA PKCS#1 v1.5 message signature scheme, with hashing.

#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm (PSA_ALG_XXX value such that
PSA_ALG_IS_HASH(hash_alg) is true). This includes PSA_ALG_ANY_HASH
when specifying the algorithm in a key policy.
Returns

The corresponding RSA PKCS#1 v1.5 signature algorithm.
Unspecified if hash_alg is not a supported hash algorithm.
Description

This algorithm can be used with both the message and hash signature functions.

This signature scheme is defined by PKCS #1: RSA Cryptography Specifications Version 2.2 [RFC8017] §8.2
under the name RSASSA-PKCS1-v1 5.

When used with psa_sign_hash() or psa_verify_hash(), the provided hash parameter is used as H from step
2 onwards in the message encoding algorithm EMSA-PKCS1-V1_5-ENCODE () in [RFC8017] §9.2. H is usually the
message digest, using the hash_alg hash algorithm.

PSA_ALG_RSA_PKCS1V15_SIGN_RAW (macro)

The raw RSA PKCS#1 v1.5 signature algorithm, without hashing.

#define PSA_ALG_RSA_PKCSTV15_SIGN_RAW ((psa_algorithm_t) 0x06000200)

This algorithm can be only used with the psa_sign_hash() and psa_verify_hash() functions.

This signature scheme is defined by PKCS #1: RSA Cryptography Specifications Version 2.2 [RFC8017] §8.2
under the name RSASSA-PKCS1-v1_5.

The hash parameter to psa_sign_hash() or psa_verify_hash() is used as T from step 3 onwards in the
message encoding algorithm EMSA-PKCS1-V1_5-ENCODE() in [RFC8017] §9.2. T is the DER encoding of the
Digestinfo structure normally produced by step 2 in the message encoding algorithm.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 198
1.0.1 Non-confidential

https://tools.ietf.org/html/rfc8017.html#section-8.2
https://tools.ietf.org/html/rfc8017.html#section-9.2
https://tools.ietf.org/html/rfc8017.html#section-8.2
https://tools.ietf.org/html/rfc8017.html#section-9.2

PSA_ALG_RSA_PSS (macro)
The RSA PSS message signature scheme, with hashing.

#define PSA_ALG_RSA_PSS(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm (PSA_ALG_XxX value such that
PSA_ALG_IS_HASH(hash_alg) is true). This includes PSA_ALG_ANY_HASH
when specifying the algorithm in a key policy.
Returns

The corresponding RSA PSS signature algorithm.
Unspecified if hash_alg is not a supported hash algorithm.
Description
This algorithm can be used with both the message and hash signature functions.
This algorithm is randomized: each invocation returns a different, equally valid signature.
This is the signature scheme defined by [RFC8017] §8.1 under the name RSASSA-PSS, with the following
options:
e The mask generation function is MGF1 defined by [RFC8017] Appendix B.
e The salt length is equal to the length of the hash.

e The specified hash algorithm is used to hash the input message, to create the salted hash, and for the
mask generation.
PSA_ALG_ECDSA (macro)
The randomized ECDSA signature scheme, with hashing.

#define PSA_ALG_ECDSA(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm (PSA_ALG_XXx value such that
PSA_ALG_IS_HASH(hash_alg) is true). This includes PSA_ALG_ANY_HASH
when specifying the algorithm in a key policy.
Returns

The corresponding randomized ECDSA signature algorithm.

Unspecified if hash_alg is not a supported hash algorithm.

Description

This algorithm can be used with both the message and hash signature functions.

This algorithm is randomized: each invocation returns a different, equally valid signature.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 199
1.0.1 Non-confidential

https://tools.ietf.org/html/rfc8017.html#section-8.1
https://tools.ietf.org/html/rfc8017.html#appendix-B

Note:

When based on the same hash algorithm, the verification operations for PSA_ALG_ECDSA and
PSA_ALG_DETERMINISTIC_ECDSA are identical. A signature created using PSA_ALG_ECDSA can be verified
with the same key using either PSA_ALG_ECDSA or PSA_ALG_DETERMINISTIC_ECDSA. Similarly, a signature
created using PSA_ALG_DETERMINISTIC_ECDSA can be verified with the same key using either
PSA_ALG_ECDSA Or PSA_ALG_DETERMINISTIC_ECDSA.

In particular, it is impossible to determine whether a signature was produced with deterministic
ECDSA or with randomized ECDSA: it is only possible to verify that a signature was made with
ECDSA with the private key corresponding to the public key used for the verification.

This signature scheme is defined by SEC 1: Elliptic Curve Cryptography [SEC1], and also by Public Key
Cryptography For The Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA)
[X9-62], with a random per-message secret number k.

The representation of the signature as a byte string consists of the concatenation of the signature values r
and s. Each of r and s is encoded as an N-octet string, where N is the length of the base point of the curve
in octets. Each value is represented in big-endian order, with the most significant octet first.

PSA_ALG_ECDSA_ANY (macro)

The randomized ECDSA signature scheme, without hashing.

#define PSA_ALG_ECDSA_ANY ((psa_algorithm_t) 0x06000600)

This algorithm can be only used with the psa_sign_hash() and psa_verify_hash() functions.
This algorithm is randomized: each invocation returns a different, equally valid signature.

This is the same signature scheme as PSA_ALG_ECDSA(), but without specifying a hash algorithm, and
skipping the message hashing operation.

This algorithm is only recommended to sign or verify a sequence of bytes that are an already-calculated
hash. Note that the input is padded with zeros on the left or truncated on the right as required to fit the
curve size.

PSA_ALG_DETERMINISTIC_ECDSA (macro)

Deterministic ECDSA signature scheme, with hashing.

#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm (PSA_ALG_XxX value such that
PSA_ALG_IS_HASH(hash_alg) is true). This includes PSA_ALG_ANY_HASH
when specifying the algorithm in a key policy.
Returns

The corresponding deterministic ECDSA signature algorithm.

Unspecified if hash_alg is not a supported hash algorithm.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 200
1.0.1 Non-confidential

Description

This algorithm can be used with both the message and hash signature functions.

Note:

When based on the same hash algorithm, the verification operations for PSA_ALG_ECDSA and
PSA_ALG_DETERMINISTIC_ECDSA are identical. A signature created using PSA_ALG_ECDSA can be verified
with the same key using either PSA_ALG_ECDSA or PSA_ALG_DETERMINISTIC_ECDSA. Similarly, a signature
created using PSA_ALG_DETERMINISTIC_ECDSA can be verified with the same key using either
PSA_ALG_ECDSA OF PSA_ALG_DETERMINISTIC_ECDSA.

In particular, it is impossible to determine whether a signature was produced with deterministic
ECDSA or with randomized ECDSA: it is only possible to verify that a signature was made with
ECDSA with the private key corresponding to the public key used for the verification.

This is the deterministic ECDSA signature scheme defined by Deterministic Usage of the Digital Signature
Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA) [RFC6979].

The representation of a signature is the same as with PSA_ALG_ECDSA().

10.7.2 Asymmetric signature functions

psa_sign_message (function)

Sign a message with a private key. For hash-and-sign algorithms, this includes the hashing step.

psa_status_t psa_sign_message(psa_key_id_t key,

Parameters

key

alg

input
input_length
signature

signature_size

IHI 0086
1.0.1

psa_algorithm_t alg,

const uint8_t * input,
size_t input_length,
uint8_t * signature,

size_t signature_size,
size_t * signature_length);

Identifier of the key to use for the operation. It must be an
asymmetric key pair. The key must allow the usage
PSA_KEY_USAGE__SIGN_MESSAGE.

An asymmetric signature algorithm (PSA_ALG_XXX value such that
PSA_ALG_IS_SIGN_MESSAGE (alg) is true), that is compatible with the
type of key.

The input message to sign.
Size of the input buffer in bytes.
Buffer where the signature is to be written.

Size of the signature buffer in bytes. This must be appropriate for the
selected algorithm and key:

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 201
Non-confidential

e The required signature size is PSA_SIGN_OUTPUT_SIZE (key_type,
key_bits, alg) where key_type and key_bits are the type and
bit-size respectively of key.

e PSA_SIGNATURE_MAX_SIZE evaluates to the maximum signature size
of any supported signature algorithm.

signature_length On success, the number of bytes that make up the returned signature
value.

Returns: psa_status_t
PSA_SUCCESS

PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_SIGN_MESSAGE flag, or it does
not permit the requested algorithm.

PSA_ERROR_BUFFER_TOO_SMALL The size of the signature buffer is too small. PSA_SIGN_OUTPUT_SIZE()
or PSA_SIGNATURE_MAX_SIZE can be used to determine the required
buffer size.

PSA_ERROR_NOT_SUPPORTED
PSA_ERROR_INVALID_ARGUMENT
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE _FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID
PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

Note:

To perform a multi-part hash-and-sign signature algorithm, first use a multi-part hash operation and
then pass the resulting hash to psa_sign_hash(). PSA_ALG_GET_HASH(alg) can be used to determine the
hash algorithm to use.

psa_verify_message (function)

Verify the signature of a message with a public key, using a hash-and-sign verification algorithm.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 202
1.0.1 Non-confidential

psa_status_t psa_verify_message(psa_key_id_t key,

Parameters

key

alg

input

input_length

signature

signature_length
Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED

PSA_ERROR_INVALID_SIGNATURE

PSA_ERROR_NOT_SUPPORTED
PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_HARDWARE_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID
PSA_ERROR_BAD_STATE

Description

Note:

psa_algorithm_t alg,

const uint8_t * input,
size_t input_length,

const uint8_t * signature,
size_t signature_length);

Identifier of the key to use for the operation. It must be a public key
or an asymmetric key pair. The key must allow the usage
PSA_KEY_USAGE_VERIFY_MESSAGE.

An asymmetric signature algorithm (PSA_ALG_xXX value such that
PSA_ALG_IS_SIGN_MESSAGE (alg) is true), that is compatible with the
type of key.

The message whose signature is to be verified.
Size of the input buffer in bytes.
Buffer containing the signature to verify.

Size of the signature buffer in bytes.

The signature is valid.

The key does not have the PSA_KEY_USAGE_VERIFY_MESSAGE flag, or it
does not permit the requested algorithm.

The calculation was performed successfully, but the passed signature
is not a valid signature.

The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 203

1.0.1

Non-confidential

To perform a multi-part hash-and-sign signature verification algorithm, first use a multi-part hash
operation to hash the message and then pass the resulting hash to psa_verify_hash().
PSA_ALG_GET_HASH(alg) can be used to determine the hash algorithm to use.

psa_sign_hash (function)

Sign an already-calculated hash with a private key.

psa_status_t psa_sign_hash(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * hash,
size_t hash_length,
uint8_t * signature,
size_t signature_size,
size_t * signature_length);

Parameters

key

alg

hash

hash_length
signature

signature_size

signature_length

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_INVALID_HANDLE
PSA_ERROR_NOT_PERMITTED

PSA_ERROR_BUFFER_TOO_SMALL

Identifier of the key to use for the operation. It must be an
asymmetric key pair. The key must allow the usage
PSA_KEY_USAGE_SIGN_HASH.

An asymmetric signature algorithm that separates the hash and sign
operations (PSA_ALG_XXX value such that PSA_ALG_IS_SIGN_HASH(alg) is
true), that is compatible with the type of key.

The input to sign. This is usually the hash of a message. See the
detailed description of this function and the description of individual
signature algorithms for a detailed description of acceptable inputs.

Size of the hash buffer in bytes.
Buffer where the signature is to be written.

Size of the signature buffer in bytes. This must be appropriate for the
selected algorithm and key:

e The required signature size is PSA_SIGN_OUTPUT_SIZE (key_type,
key_bits, alg) where key_type and key_bits are the type and
bit-size respectively of key.

e PSA_SIGNATURE_MAX_SIZE evaluates to the maximum signature size
of any supported signature algorithm.

On success, the number of bytes that make up the returned signature
value.

The key does not have the PSA_KEY_USAGE_SIGN_HASH flag, or it does
not permit the requested algorithm.

The size of the signature buffer is too small. PSA_SIGN_OUTPUT_SIZE()

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 204

1.0.1

Non-confidential

or PSA_SIGNATURE_MAX_SIZE can be used to determine the required
buffer size.

PSA_ERROR_NOT_SUPPORTED
PSA_ERROR_INVALID_ARGUMENT
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE_FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID
PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

With most signature mechanisms that follow the hash-and-sign paradigm, the hash input to this function is
the hash of the message to sign. The hash algorithm is encoded in the signature algorithm.

Some hash-and-sign mechanisms apply a padding or encoding to the hash. In such cases, the encoded
hash must be passed to this function. The current version of this specification defines one such signature
algorithm: PSA_ALG_RSA_PKCS1V15_SIGN_RAW.

Note:

To perform a hash-and-sign algorithm, the hash must be calculated before passing it to this function.
This can be done by calling psa_hash_compute() or with a multi-part hash operation. Alternatively, to
hash and sign a message in a single call, use psa_sign_message().

psa_verify_hash (function)
Verify the signature of a hash or short message using a public key.

psa_status_t psa_verify_hash(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * hash,
size_t hash_length,
const uint8_t * signature,
size_t signature_length);

Parameters
key Identifier of the key to use for the operation. It must be a public key
or an asymmetric key pair. The key must allow the usage
PSA_KEY_USAGE_VERIFY_HASH.
IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 205

1.0.1 Non-confidential

alg An asymmetric signature algorithm that separates the hash and sign
operations (PSA_ALG_XXX value such that PSA_ALG_IS_SIGN_HASH(alg) is
true), that is compatible with the type of key.

hash The input whose signature is to be verified. This is usually the hash of
a message. See the detailed description of this function and the
description of individual signature algorithms for a detailed
description of acceptable inputs.

hash_length Size of the hash buffer in bytes.
signature Buffer containing the signature to verify.
signature_length Size of the signature buffer in bytes.

Returns: psa_status_t
PSA_SUCCESS The signature is valid.
PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_VERIFY_HASH flag, or it does
not permit the requested algorithm.

PSA_ERROR_INVALID_SIGNATURE The calculation was performed successfully, but the passed signature
is not a valid signature.

PSA_ERROR_NOT_SUPPORTED
PSA_ERROR_INVALID_ARGUMENT
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

With most signature mechanisms that follow the hash-and-sign paradigm, the hash input to this function is
the hash of the message to sign. The hash algorithm is encoded in the signature algorithm.

Some hash-and-sign mechanisms apply a padding or encoding to the hash. In such cases, the encoded
hash must be passed to this function. The current version of this specification defines one such signature
algorithm: PSA_ALG_RSA_PKCS1V15_SIGN_RAW.

Note:

To perform a hash-and-sign verification algorithm, the hash must be calculated before passing it to
this function. This can be done by calling psa_hash_compute () or with a multi-part hash operation.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 206
1.0.1 Non-confidential

Alternatively, to hash and verify a message signature in a single call, use psa_verify_message().

10.7.3 Support macros
PSA_ALG_IS_SIGN_MESSAGE (macro)

Whether the specified algorithm is a signature algorithm that can be used with psa_sign_message() and
psa_verify_message().

#define PSA_ALG_IS_SIGN_MESSAGE(alg) /* specification-defined value */

Parameters
alg An algorithm identifier (value of type psa_algorithm_t).
Returns

1 if alg is a signature algorithm that can be used to sign a message. @ if alg is a signature algorithm that can
only be used to sign an already-calculated hash. ¢ if alg is not a signature algorithm. This macro can return
either @ or 1 if alg is not a supported algorithm identifier.

PSA_ALG_IS_SIGN_HASH (macro)

Whether the specified algorithm is a signature algorithm that can be used with psa_sign_hash() and
psa_verify_hash().

#define PSA_ALG_IS_SIGN_HASH(alg) /* specification-defined value */

Parameters
alg An algorithm identifier (value of type psa_algorithm_t).
Returns

1 if alg is a signature algorithm that can be used to sign a hash. ¢ if alg is a signature algorithm that can
only be used to sign a message. @ if alg is not a signature algorithm. This macro can return either @ or 1 if
alg is not a supported algorithm identifier.

PSA_ALG_IS_RSA_PKCS1V15_SIGN (macro)

Whether the specified algorithm is an RSA PKCS#1 v1.5 signature algorithm.

#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) /* specification-defined value =*/

Parameters

alg An algorithm identifier (value of type psa_algorithm_t).
Returns
1 if alg is an RSA PKCS#1 v1.5 signature algorithm, @ otherwise.

This macro can return either @ or 1 if alg is not a supported algorithm identifier.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 207
1.0.1 Non-confidential

PSA_ALG_IS_RSA_PSS (macro)
Whether the specified algorithm is an RSA PSS signature algorithm.

#define PSA_ALG_IS_RSA_PSS(alg) /x specification-defined value */

Parameters

alg An algorithm identifier (value of type psa_algorithm_t).

Returns
1 if alg is an RSA PSS signature algorithm, @ otherwise.

This macro can return either @ or 1 if alg is not a supported algorithm identifier.

PSA_ALG_IS_ECDSA (macro)
Whether the specified algorithm is ECDSA.

#define PSA_ALG_IS_ECDSA(alg) /x specification-defined value */

Parameters

alg An algorithm identifier (value of type psa_algorithm_t).
Returns
1 if alg is an ECDSA algorithm, @ otherwise.

This macro can return either @ or 1 if alg is not a supported algorithm identifier.

PSA_ALG_IS_DETERMINISTIC_ECDSA (macro)
Whether the specified algorithm is deterministic ECDSA.

#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) /+* specification-defined value */

Parameters

alg An algorithm identifier (value of type psa_algorithm_t).

Returns
1 if alg is a deterministic ECDSA algorithm, o otherwise.

This macro can return either @ or 1 if alg is not a supported algorithm identifier.

Description

See also PSA_ALG_IS_ECDSA() and PSA_ALG_IS_RANDOMIZED_ECDSA().

PSA_ALG_IS_RANDOMIZED_ECDSA (macro)
Whether the specified algorithm is randomized ECDSA.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 208
1.0.1 Non-confidential

#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) /x specification-defined value =*/

Parameters
alg An algorithm identifier (value of type psa_algorithm_t).
Returns
1 if alg is a randomized ECDSA algorithm, @ otherwise.
This macro can return either @ or 1 if alg is not a supported algorithm identifier.
Description

See also PSA_ALG_IS_ECDSA() and PSA_ALG_IS_DETERMINISTIC_ECDSA().

PSA_ALG_IS_HASH_AND_SIGN (macro)
Whether the specified algorithm is a hash-and-sign algorithm that signs exactly the hash value.

#define PSA_ALG_IS_HASH_AND_SIGN(alg) /* specification-defined value */

Parameters

alg An algorithm identifier (value of type psa_algorithm_t).

Returns

1 if alg is a hash-and-sign algorithm that signs exactly the hash value, @ otherwise. This macro can return
either @ or 1 if alg is not a supported algorithm identifier.

Description

This macro identifies algorithms that can be used with psa_sign_hash() that use the exact message hash
value as an input the signature operation. This excludes hash-and-sign algorithms that require a encoded
or modified hash for the signature step in the algorithm, such as PSA_ALG_RSA_PKCS1V15_SIGN_RAW.

PSA_ALG_ANY_HASH (macro)
When setting a hash-and-sign algorithm in a key policy, permit any hash algorithm.

#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)

This value can be used to form the permitted algorithm attribute of a key policy for a signature algorithm
that is parametrized by a hash. A key with this policy can then be used to perform operations using the
same signature algorithm parametrized with any supported hash. A signature algorithm created using this
macro is a wildcard algorithm, and PsA_ALG_IS_WILDCARD() will return true.

This value must not be used to build other algorithms that are parametrized over a hash. For any valid use
of this macro to build an algorithm alg, PSA_ALG_IS_HASH_AND_SIGN(alg) is true.

This value must not be used to build an algorithm specification to perform an operation. It is only valid for
setting the permitted algorithm in a key policy.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 209
1.0.1 Non-confidential

Usage

For example, suppose that PSA_xxx_SIGNATURE is one of the following macros:

® PSA_ALG_RSA_PKCST1V15_SIGN

PSA_ALG_RSA_PSS

PSA_ALG_ECDSA

® PSA_ALG_DETERMINISTIC_ECDSA
The following sequence of operations shows how PSA_ALG_ANY_HASH can be used in a key policy:
1. Set the key usage flags using PSA_ALG_ANY_HASH, for example:

psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_MESSAGE); // or VERIFY_MESSAGE
psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE (PSA_ALG_ANY_HASH));
2. Import or generate key material.

3. Call psa_sign_message() or psa_verify_message(), passing an algorithm built from PSA_xxx_SIGNATURE
and a specific hash. Each call to sign or verify a message can use a different hash algorithm.

psa_sign_message(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
psa_sign_message(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
psa_sign_message(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);

PSA_SIGN_OUTPUT_SIZE (macro)
Sufficient signature buffer size for psa_sign_message () and psa_sign_hash().

#define PSA_SIGN_OUTPUT_SIZE(key_type, key_bits, alg) \
/* implementation-defined value */

Parameters
key_type An asymmetric key type. This can be a key pair type or a public key
type.
key_bits The size of the key in bits.
alg The signature algorithm.
Returns

If the parameters are valid and supported, return a buffer size in bytes that guarantees that
psa_sign_message() and psa_sign_hash() will not fail with PSA_ERROR_BUFFER_T00_SMALL. If the parameters are
a valid combination that is not supported by the implementation, this macro must return either a sensible
size or 0. If the parameters are not valid, the return value is unspecified.

Description

This macro returns a sufficient buffer size for a signature using a key of the specified type and size, with
the specified algorithm. Note that the actual size of the signature might be smaller, as some algorithms
produce a variable-size signature.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 210
1.0.1 Non-confidential

Warning: This function might evaluate its arguments multiple times or zero times. Providing arguments
that have side effects will result in implementation-specific behavior, and is non-portable.

See also PSA_SIGNATURE_MAX_SIZE.

PSA_SIGNATURE_MAX_SIZE (macro)
Maximum size of an asymmetric signature.

#define PSA_SIGNATURE_MAX_SIZE /* implementation-defined value */

This macro must expand to a compile-time constant integer. It is recommended that this value is the
maximum size of an asymmetric signature supported by the implementation, in bytes. The value must not
be smaller than this maximum.

See also PSA_SIGN_OUTPUT_SIZE().

10.8 Asymmetric encryption

10.8.1 Asymmetric encryption algorithms
PSA_ALG_RSA_PKCS1V15_CRYPT (macro)

The RSA PKCS#1 v1.5 asymmetric encryption algorithm.

#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)

This encryption scheme is defined by PKCS #1: RSA Cryptography Specifications Version 2.2 [RFC8017] §7.2
under the name RSAES-PKCS-v1 5.

PSA_ALG_RSA_OAEP (macro)

The RSA OAEP asymmetric encryption algorithm.

#define PSA_ALG_RSA_OAEP(hash_alg) /* specification-defined value */

Parameters
hash_alg The hash algorithm (PSA_ALG_xxX value such that
PSA_ALG_IS_HASH(hash_alg) is true) to use for MGF1.
Returns

The corresponding RSA OAEP encryption algorithm.
Unspecified if hash_alg is not a supported hash algorithm.

Description

This encryption scheme is defined by [RFC8017] §7.1 under the name RSAES-OAEP, with the mask
generation function MGF1 defined in [RFC8017] Appendix B.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 211
1.0.1 Non-confidential

https://tools.ietf.org/html/rfc8017.html#section-7.2
https://tools.ietf.org/html/rfc8017.html#section-7.1
https://tools.ietf.org/html/rfc8017.html#appendix-B

10.8.2 Asymmetric encryption functions

psa_asymmetric_encrypt (function)

Encrypt a short message with a public key.

psa_status_t psa_asymmetric_encrypt(psa_key_id_t key,

Parameters

key

alg

input
input_length

salt

salt_length
output

output_size

output_length

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_INVALID_HANDLE
PSA_ERROR_NOT_PERMITTED

PSA_ERROR_BUFFER_TOO_SMALL

psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * salt,
size_t salt_length,
uint8_t * output,

size_t output_size,
size_t * output_length);

Identifer of the key to use for the operation. It must be a public key
or an asymmetric key pair. It must allow the usage
PSA_KEY_USAGE_ENCRYPT.

An asymmetric encryption algorithm that is compatible with the type
of key.

The message to encrypt.
Size of the input buffer in bytes.

A salt or label, if supported by the encryption algorithm. If the
algorithm does not support a salt, pass NULL. If the algorithm supports
an optional salt, pass NULL to indicate that there is no salt.

Size of the salt buffer in bytes. If salt is NULL, pass @.
Buffer where the encrypted message is to be written.

Size of the output buffer in bytes. This must be appropriate for the
selected algorithm and key:

e The required output size is
PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE(key_type, key_bits, alg)
where key_type and key_bits are the type and bit-size
respectively of key.

e PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE evaluates to the
maximum output size of any supported asymmetric encryption.

On success, the number of bytes that make up the returned output.

The key does not have the PSA_KEY_USAGE_ENCRYPT flag, or it does not
permit the requested algorithm.

The size of the output buffer is too small.
PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE() or

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 212

1.0.1

Non-confidential

PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE can be used to determine
the required buffer size.

PSA_ERROR_NOT_SUPPORTED
PSA_ERROR_INVALID_ARGUMENT
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE_FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID
PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

e For PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is supported.

psa_asymmetric_decrypt (function)
Decrypt a short message with a private key.

psa_status_t psa_asymmetric_decrypt(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * salt,
size_t salt_length,
uint8_t * output,
size_t output_size,
size_t * output_length);

Parameters
key Identifier of the key to use for the operation. It must be an
asymmetric key pair. It must allow the usage PSA_KEY_USAGE_DECRYPT.
alg An asymmetric encryption algorithm that is compatible with the type
of key.
input The message to decrypt.
input_length Size of the input buffer in bytes.
salt A salt or label, if supported by the encryption algorithm. If the
algorithm does not support a salt, pass NULL. If the algorithm supports
an optional salt, pass NULL to indicate that there is no salt.
salt_length Size of the salt buffer in bytes. If salt is NULL, pass o.
IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 213

1.0.1 Non-confidential

output Buffer where the decrypted message is to be written.

output_size Size of the output buffer in bytes. This must be appropriate for the
selected algorithm and key:

e The required output size is
PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE(key_type, key_bits, alg)
where key_type and key_bits are the type and bit-size
respectively of key.

e PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE evaluates to the
maximum output size of any supported asymmetric decryption.

output_length On success, the number of bytes that make up the returned output.

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_DECRYPT flag, or it does not
permit the requested algorithm.

PSA_ERROR_BUFFER_TOO_SMALL The size of the output buffer is too small.
PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE() or
PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE can be used to determine
the required buffer size.

PSA_ERROR_NOT_SUPPORTED
PSA_ERROR_INVALID_ARGUMENT
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE _FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID
PSA_ERROR_INSUFFICIENT_ENTROPY
PSA_ERROR_INVALID_PADDING

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

e For PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is supported.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 214
1.0.1 Non-confidential

10.8.3 Support macros
PSA_ALG_IS_RSA_OAEP (macro)
Whether the specified algorithm is an RSA OAEP encryption algorithm.

#define PSA_ALG_IS_RSA_OAEP(alg) /* specification-defined value */

Parameters

alg An algorithm identifier (value of type psa_algorithm_t).

Returns
1 if alg is an RSA OAEP algorithm, ¢ otherwise.

This macro can return either @ or 1 if alg is not a supported algorithm identifier.

PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE (macro)
Sufficient output buffer size for psa_asymmetric_encrypt().

#define PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE (key_type, key_bits, alg) \
/* implementation-defined value */

Parameters
key_type An asymmetric key type, either a key pair or a public key.
key_bits The size of the key in bits.
alg The asymmetric encryption algorithm.

Returns

If the parameters are valid and supported, return a buffer size in bytes that guarantees that
psa_asymmetric_encrypt() will not fail with PSA_ERROR_BUFFER_TOO_SMALL. If the parameters are a valid
combination that is not supported by the implementation, this macro must return either a sensible size or
0. If the parameters are not valid, the return value is unspecified.

Description

This macro returns a sufficient buffer size for a ciphertext produced using a key of the specified type and
size, with the specified algorithm. Note that the actual size of the ciphertext might be smaller, depending
on the algorithm.

Warning: This function might evaluate its arguments multiple times or zero times. Providing arguments
that have side effects will result in implementation-specific behavior, and is non-portable.

See also PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE.

PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE (macro)

A sufficient output buffer size for psa_asymmetric_encrypt(), for any supported asymmetric encryption.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 215
1.0.1 Non-confidential

#define PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE \
/* implementation-defined value */

See also PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE().

PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE (macro)
Sufficient output buffer size for psa_asymmetric_decrypt().

#define PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE (key_type, key_bits, alg) \
/* implementation-defined value */

Parameters
key_type An asymmetric key type, either a key pair or a public key.
key_bits The size of the key in bits.
alg The asymmetric encryption algorithm.

Returns

If the parameters are valid and supported, return a buffer size in bytes that guarantees that
psa_asymmetric_decrypt() will not fail with PSA_ERROR_BUFFER_T00_SMALL. If the parameters are a valid
combination that is not supported by the implementation, this macro must return either a sensible size or
0. If the parameters are not valid, the return value is unspecified.

Description

This macro returns a sufficient buffer size for a plaintext produced using a key of the specified type and
size, with the specified algorithm. Note that the actual size of the plaintext might be smaller, depending on
the algorithm.

Warning: This function might evaluate its arguments multiple times or zero times. Providing arguments
that have side effects will result in implementation-specific behavior, and is non-portable.

See also PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE.

PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE (macro)
A sufficient output buffer size for psa_asymmetric_decrypt(), for any supported asymmetric decryption.

#define PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE \
/* implementation-defined value */

See also PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE().

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 216
1.0.1 Non-confidential

10.9 Key agreement

10.9.1 Key agreement algorithms

PSA_ALG_KEY_AGREEMENT (macro)

Macro to build a combined algorithm that chains a key agreement with a key derivation.

#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
/* specification-defined value */

Parameters
ka_alg A key agreement algorithm (PSA_ALG_xXX value such that
PSA_ALG_IS_KEY_AGREEMENT (ka_alg) is true).
kdf_alg A key derivation algorithm (PSA_ALG_XxX value such that
PSA_ALG_IS_KEY_DERIVATION(kdf_alg) is true).
Returns

The corresponding key agreement and derivation algorithm.

Unspecified if ka_alg is not a supported key agreement algorithm or kdf_alg is not a supported key
derivation algorithm.

Description

A combined key agreement algorithm is used with a multi-part key derivation operation, using a call to
psa_key_derivation_key_agreement().

The component parts of a key agreement algorithm can be extracted using
PSA_ALG_KEY_AGREEMENT_GET_BASE () and PSA_ALG_KEY_AGREEMENT_GET_KDF ().

PSA_ALG_FFDH (macro)
The finite-field Diffie-Hellman (DH) key agreement algorithm.

#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)

This algorithm can be used directly in a call to psa_raw_key_agreement (), or combined with a key derivation
operation using PSA_ALG_KEY_AGREEMENT () for use with psa_key_derivation_key_agreement().

When used as part of a multi-part key derivation operation, this implements a Diffie-Hellman key
agreement scheme using a single Diffie-Hellman key-pair for each participant. This includes the dhEphem,
dhOneFlow, and dhStatic schemes. The input step PSA_KEY_DERIVATION_INPUT_SECRET is used when providing
the secret and peer keys to the operation.

The shared secret produced by this key agreement algorithm is g*{ab} in big-endian format. It is ceiling(m
/ 8) bytes long where m is the size of the prime p in bits.

This key agreement scheme is defined by NIST Special Publication 800-56A: Recommendation for Pair-Wise
Key-Establishment Schemes Using Discrete Logarithm Cryptography [SP800-56A] §5.7.1.1 under the name
FFC DH.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 217
1.0.1 Non-confidential

PSA_ALG_ECDH (macro)
The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.

#define PSA_ALG_ECDH ((psa_algorithm_t)@x09020000)

This algorithm can be used directly in a call to psa_raw_key_agreement (), or combined with a key derivation
operation using PSA_ALG_KEY_AGREEMENT () for use with psa_key_derivation_key_agreement().

When used as part of a multi-part key derivation operation, this implements a Diffie-Hellman key
agreement scheme using a single elliptic curve key-pair for each participant. This includes the Ephemeral
unified model, the Static unified model, and the One-pass Diffie-Hellman schemes. The input step
PSA_KEY_DERIVATION_INPUT_SECRET is used when providing the secret and peer keys to the operation.

The shared secret produced by key agreement is the x-coordinate of the shared secret point. It is always

ceiling(m / 8) bytes long where mis the bit size associated with the curve, i.e. the bit size of the order of
the curve’s coordinate field. When m is not a multiple of 8, the byte containing the most significant bit of

the shared secret is padded with zero bits. The byte order is either little-endian or big-endian depending

on the curve type.

e For Montgomery curves (curve family PSA_ECC_FAMILY_MONTGOMERY), the shared secret is the
x-coordinate of Z = d_A Q_B = d_B Q_A in little-endian byte order.

— For Curve25519, this is the X25519 function defined in Curve25519: new Diffie-Hellman speed
records [Curve25519]. The bit size mis 255.

— For Curve448, this is the X448 function defined in Ed448-Goldilocks, a new elliptic curve
[Curved48]. The bit size m is 448.

e For Weierstrass curves (curve families PSA_ECC_FAMILY_SECP_XX, PSA_ECC_FAMILY_SECT_XX,
PSA_ECC_FAMILY_BRAINPOOL_P_R1 and PSA_ECC_FAMILY_FRP) the shared secret is the x-coordinate of z = h
d_A Q_B = h d_B Q_Ain big-endian byte order. This is the Elliptic Curve Cryptography Cofactor
Diffie-Hellman primitive defined by SEC 1: Elliptic Curve Cryptography [SEC1] §3.3.2 as, and also as
ECC CDH by NIST Special Publication 800-56A: Recommendation for Pair-Wise Key-Establishment
Schemes Using Discrete Logarithm Cryptography [SP800-56A] §5.7.1.2.

— Over prime fields (curve families PSA_ECC_FAMILY_SECP_XX, PSA_ECC_FAMILY_BRAINPOOL_P_R1 and
PSA_ECC_FAMILY_FRP), the bit size ism = ceiling(log_2(p)) for the field F_p.

— Over binary fields (curve families PSA_ECC_FAMILY_SECT_XX), the bit size is m for the field F_{2*m}.

Note:

The cofactor Diffie-Hellman primitive is equivalent to the standard elliptic curve
Diffie-Hellman calculation z = d_A Q_B = d_B Q_A ([SEC1] §3.3.1) for curves where the cofactor
his 1. This is true for all curves in the PSA_ECC_FAMILY_SECP_XX, PSA_ECC_FAMILY_BRAINPOOL_P_R1,
and PSA_ECC_FAMILY_FRP families.

10.9.2 Standalone key agreement
psa_raw_key_agreement (function)

Perform a key agreement and return the raw shared secret.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 218
1.0.1 Non-confidential

psa_status_t psa_raw_key_agreement(psa_algorithm_t alg,
psa_key_id_t private_key,
const uint8_t * peer_key,
size_t peer_key_length,
uint8_t * output,
size_t output_size,
size_t * output_length);

Parameters

alg The key agreement algorithm to compute (PSA_ALG_XXX value such
that PSA_ALG_IS_RAW_KEY_AGREEMENT (alg) is true).

private_key Identifier of the private key to use. It must allow the usage
PSA_KEY_USAGE_DERIVE.

peer_key Public key of the peer. It must be in the same format that
psa_import_key() accepts. The standard formats for public keys are
documented in the documentation of psa_export_public_key().

peer_key_length Size of peer_key in bytes.

output Buffer where the raw shared secret is to be written.

output_size Size of the output buffer in bytes. This must be appropriate for the
keys:

e The required output size is
PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE(type, bits) where type is
the type of private_key and bits is the bit-size of either
private_key or the peer_key.

e PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE evaluates to the
maximum output size of any supported raw key agreement
algorithm.

output_length On success, the number of bytes that make up the returned output.

Returns: psa_status_t

PSA_SUCCESS Success.

PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_DERIVE flag, or it does not
permit the requested algorithm.

PSA_ERROR_INVALID_ARGUMENT alg is not a key agreement algorithm

PSA_ERROR_INVALID_ARGUMENT private_key is not compatible with alg, or peer_key is not valid for alg
or not compatible with private_key.

PSA_ERROR_BUFFER_T00_SMALL The size of the output buffer is too small.

PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE() or
PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE can be used to determine the
required buffer size.

PSA_ERROR_NOT_SUPPORTED alg is not a supported key agreement algorithm.
PSA_ERROR_INSUFFICIENT_MEMORY

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 219
1.0.1 Non-confidential

PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

Warning: The raw result of a key agreement algorithm such as finite-field Diffie-Hellman or elliptic
curve Diffie-Hellman has biases, and is not suitable for use as key material. Instead it is recommended
that the result is used as input to a key derivation algorithm. To chain a key agreement with a key
derivation, use psa_key_derivation_key_agreement() and other functions from the key derivation
interface.

10.9.3 Combining key agreement and key derivation
psa_key_derivation_key_agreement (function)
Perform a key agreement and use the shared secret as input to a key derivation.

psa_status_t psa_key_derivation_key_agreement(psa_key_derivation_operation_t * operation,
psa_key_derivation_step_t step,
psa_key_id_t private_key,
const uint8_t * peer_key,
size_t peer_key_length);

Parameters

operation The key derivation operation object to use. It must have been set up
with psa_key_derivation_setup() with a key agreement and derivation
algorithm alg (PSA_ALG_XXX value such that
PSA_ALG_IS_KEY_AGREEMENT (alg) is true and
PSA_ALG_IS_RAW_KEY_AGREEMENT (alg) is false). The operation must be
ready for an input of the type given by step.

step Which step the input data is for.

private_key Identifier of the private key to use. It must allow the usage
PSA_KEY_USAGE_DERIVE.

peer_key Public key of the peer. The peer key must be in the same format that
psa_import_key() accepts for the public key type corresponding to
the type of private_key. That is, this function performs the equivalent
of psa_import_key(..., peer_key, peer_key_length) where with key
attributes indicating the public key type corresponding to the type of
private_key. For example, for EC keys, this means that peer_key is

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 220
1.0.1 Non-confidential

interpreted as a point on the curve that the private key is on. The
standard formats for public keys are documented in the
documentation of psa_export_public_key().

peer_key_length Size of peer_key in bytes.
Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The operation state is not valid for this key agreement step.
PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_DERIVE flag, or it does not
permit the requested algorithm.

PSA_ERROR_INVALID_ARGUMENT private_key is not compatible with alg, or peer_key is not valid for alg
or not compatible with private_key.

PSA_ERROR_NOT_SUPPORTED alg is not supported or is not a key derivation algorithm.

PSA_ERROR_INVALID_ARGUMENT step does not allow an input resulting from a key agreement.

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

A key agreement algorithm takes two inputs: a private key private_key a public key peer_key. The result of
this function is passed as input to a key derivation. The output of this key derivation can be extracted by
reading from the resulting operation to produce keys and other cryptographic material.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_key_derivation_abort().

10.9.4 Support macros
PSA_ALG_KEY_AGREEMENT_GET_BASE (macro)
Get the raw key agreement algorithm from a full key agreement algorithm.

#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) /* specification-defined value */

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 221
1.0.1 Non-confidential

Parameters

alg A key agreement algorithm identifier (value of type psa_algorithm_t
such that PSA_ALG_IS_KEY_AGREEMENT (alg) is true).

Returns
The underlying raw key agreement algorithm if alg is a key agreement algorithm.

Unspecified if alg is not a key agreement algorithm or if it is not supported by the implementation.

Description

See also PSA_ALG_KEY_AGREEMENT () and PSA_ALG_KEY_AGREEMENT_GET_KDF ().

PSA_ALG_KEY_AGREEMENT _GET_KDF (macro)
Get the key derivation algorithm used in a full key agreement algorithm.

#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) /* specification-defined value */

Parameters
alg A key agreement algorithm identifier (value of type psa_algorithm_t
such that PSA_ALG_IS_KEY_AGREEMENT (alg) is true).
Returns

The underlying key derivation algorithm if alg is a key agreement algorithm.
Unspecified if alg is not a key agreement algorithm or if it is not supported by the implementation.

Description

See also PSA_ALG_KEY_AGREEMENT () and PSA_ALG_KEY_AGREEMENT _GET_BASE ().

PSA_ALG_IS_RAW_KEY_AGREEMENT (macro)
Whether the specified algorithm is a raw key agreement algorithm.

#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) /x specification-defined value */

Parameters

alg An algorithm identifier (value of type psa_algorithm_t).

Returns

1 if alg is a raw key agreement algorithm, @ otherwise. This macro can return either ¢ or 1 if alg is not a
supported algorithm identifier.

Description

A raw key agreement algorithm is one that does not specify a key derivation function. Usually, raw key
agreement algorithms are constructed directly with a PSA_ALG_xxx macro while non-raw key agreement
algorithms are constructed with PSA_ALG_KEY_AGREEMENT().

The raw key agreement algorithm can be extracted from a full key agreement algorithm identifier using
PSA_ALG_KEY_AGREEMENT_GET_BASE ().

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 222
1.0.1 Non-confidential

PSA_ALG_IS_FFDH (macro)
Whether the specified algorithm is a finite field Diffie-Hellman algorithm.

#define PSA_ALG_IS_FFDH(alg) /* specification-defined value */

Parameters

alg An algorithm identifier (value of type psa_algorithm_t).

Returns

1 if alg is a finite field Diffie-Hellman algorithm, @ otherwise. This macro can return either o or 1 if alg is not
a supported key agreement algorithm identifier.

Description

This includes the raw finite field Diffie-Hellman algorithm as well as finite-field Diffie-Hellman followed by
any supporter key derivation algorithm.

PSA_ALG_IS_ECDH (macro)

Whether the specified algorithm is an elliptic curve Diffie-Hellman algorithm.

#define PSA_ALG_IS_ECDH(alg) /* specification-defined value */

Parameters
alg An algorithm identifier (value of type psa_algorithm_t).
Returns

1 if alg is an elliptic curve Diffie-Hellman algorithm, @ otherwise. This macro can return either @ or 1 if alg is
not a supported key agreement algorithm identifier.

Description

This includes the raw elliptic curve Diffie-Hellman algorithm as well as elliptic curve Diffie-Hellman
followed by any supporter key derivation algorithm.

PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE (macro)

Sufficient output buffer size for psa_raw_key_agreement().

#define PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE(key_type, key_bits) \
/* implementation-defined value */

Parameters
key_type A supported key type.
key_bits The size of the key in bits.
Returns

If the parameters are valid and supported, return a buffer size in bytes that guarantees that
psa_raw_key_agreement () will not fail with PSA_ERROR_BUFFER_TOO_SMALL. If the parameters are a valid
combination that is not supported by the implementation, this macro must return either a sensible size or
0. If the parameters are not valid, the return value is unspecified.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 223
1.0.1 Non-confidential

Description

This macro returns a compile-time constant if its arguments are compile-time constants.

Warning: This function might evaluate its arguments multiple times or zero times. Providing arguments
that have side effects will result in implementation-specific behavior, and is non-portable.

See also PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE.

PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE (macro)
Maximum size of the output from psa_raw_key_agreement().

#define PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE \
/* implementation-defined value */

This macro must expand to a compile-time constant integer. It is recommended that this value is the
maximum size of the output any raw key agreement algorithm supported by the implementation, in bytes.

The value must not be smaller than this maximum.

See also PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE().

10.10 Other cryptographic services
10.10.1 Random number generation
psa_generate_random (function)

Generate random bytes.

psa_status_t psa_generate_random(uint8_t * output,
size_t output_size);

Parameters
output Output buffer for the generated data.
output_size Number of bytes to generate and output.

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_NOT_SUPPORTED
PSA_ERROR_INSUFFICIENT_ENTROPY
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE
PSA_ERROR_HARDWARE _FAILURE
PSA_ERROR_CORRUPTION_DETECTED

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

1.0.1 Non-confidential

Page 224

PSA_ERROR_BAD_STATE The library has not been previously initialized by psa_crypto_init(). It
is implementation-dependent whether a failure to initialize results in
this error code.

Description

Warning: This function can fail! Callers MUST check the return status and MUST NOT use the content
of the output buffer if the return status is not PSA_SUCCESS.

Note:

To generate a key, use psa_generate_key() instead.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 225
101 Non-confidential

Appendix A: Example header file

Each implementation of the PSA Crypto API must provide a header file named psa/crypto.h, in which the
API elements in this specification are defined.

This appendix provides a example of the psa/crypto.h header file with all of the API elements. This can be
used as a starting point or reference for an implementation.

A.1 psa/crypto.h

typedef /x implementation-defined type */ psa_aead_operation_t;
typedef uint32_t psa_algorithm_t;
typedef /x implementation-defined type */ psa_cipher_operation_t;
typedef uint8_t psa_dh_family_t;
typedef uint8_t psa_ecc_family_t;
typedef /x implementation-defined type */ psa_hash_operation_t;
typedef /x implementation-defined type */ psa_key_attributes_t;
typedef /x implementation-defined type */ psa_key_derivation_operation_t;
typedef uint16_t psa_key_derivation_step_t;
typedef uint32_t psa_key_id_t;
typedef uint32_t psa_key_lifetime_t;
typedef uint32_t psa_key_location_t;
typedef uint8_t psa_key_persistence_t;
typedef uint16_t psa_key_type_t;
typedef uint32_t psa_key_usage_t;
typedef /x implementation-defined type */ psa_mac_operation_t;
typedef int32_t psa_status_t;
#define PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE(ciphertext_length) \
/* implementation-defined value */
#define PSA_AEAD_DECRYPT_OUTPUT_SIZE(key_type, alg, ciphertext_length) \
/* implementation-defined value =*/
#define PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE(plaintext_length) \
/* implementation-defined value */
#define PSA_AEAD_ENCRYPT_OUTPUT_SIZE(key_type, alg, plaintext_length) \
/* implementation-defined value */
#define PSA_AEAD_FINISH_OUTPUT_MAX_SIZE /x implementation-defined value */
#define PSA_AEAD_FINISH_OUTPUT_SIZE(key_type, alg) \
/* implementation-defined value */
#define PSA_AEAD_NONCE_LENGTH(key_type, alg) /x implementation-defined value */
#define PSA_AEAD_NONCE_MAX_SIZE /* implementation-defined value */
#define PSA_AEAD_OPERATION_INIT /* implementation-defined value */
#define PSA_AEAD_TAG_LENGTH(key_type, key_bits, alg) \
/* implementation-defined value */
#define PSA_AEAD_TAG_MAX_SIZE /* implementation-defined value */
#define PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE (input_length) \
/* implementation-defined value =*/
#define PSA_AEAD_UPDATE_OUTPUT_SIZE(key_type, alg, input_length) \
/* implementation-defined value */
#define PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE /* implementation-defined value */
#define PSA_AEAD_VERIFY_OUTPUT_SIZE(key_type, alg) \
/* implementation-defined value */
#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \

(continues on next page)

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 226
101 Non-confidential

(continued from previous page)

/* specification-defined value */

#define

PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \

/* specification-defined value =*/

#define
#define
#define
#tdefine
#define
#define
#define
#define
#define
#tdefine
#define
#define
#define
#tdefine
#define
#define
#define
#define
#define
#tdefine
#define
#define
#define
#define
#tdefine
#define
#define
#define
#define
#tdefine
#tdefine
#define
#define
#define
#define
#tdefine
#define
#define
#define
#define
#tdefine
#define
#define
#define
#define
#tdefine
#tdefine
#define
#define

IHI 0086
1.0.1

PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)

PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)

PSA_ALG_CCM ((psa_algorithm_t)@x05500100)

PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)

PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)@x05100500)
PSA_ALG_CMAC ((psa_algorithm_t)@x03c00200)

PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) /x specification-defined value */
PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)@x04404400)

PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)

PSA_ALG_ECDSA(hash_alg) /x specification-defined value */
PSA_ALG_ECDSA_ANY ((psa_algorithm_t) 0x06000600)

PSA_ALG_FFDH ((psa_algorithm_t)0@x09010000)
PSA_ALG_FULL_LENGTH_MAC(mac_alg) /* specification-defined value */
PSA_ALG_GCM ((psa_algorithm_t)0x05500200)

PSA_ALG_GET_HASH(alg) /* specification-defined value */
PSA_ALG_HKDF (hash_alg) /* specification-defined value *x/
PSA_ALG_HMAC(hash_alg) /x specification-defined value */
PSA_ALG_IS_AEAD(alg) /* specification-defined value */
PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) /* specification-defined value */
PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) /x specification-defined value */
PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) /* specification-defined value x/
PSA_ALG_IS_CIPHER(alg) /x specification-defined value */
PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) /* specification-defined value */
PSA_ALG_IS_ECDH(alg) /* specification-defined value =*/
PSA_ALG_IS_ECDSA(alg) /* specification-defined value */
PSA_ALG_IS_FFDH(alg) /* specification-defined value =*/
PSA_ALG_IS_HASH(alg) /* specification-defined value */
PSA_ALG_IS_HASH_AND_SIGN(alg) /* specification-defined value */
PSA_ALG_IS_HKDF (alg) /* specification-defined value =*/
PSA_ALG_IS_HMAC(alg) /* specification-defined value =*/
PSA_ALG_IS_KEY_AGREEMENT (alg) /* specification-defined value =*/
PSA_ALG_IS_KEY_DERIVATION(alg) /* specification-defined value */
PSA_ALG_IS_MAC(alg) /* specification-defined value */
PSA_ALG_IS_RANDOMIZED_ECDSA(alg) /* specification-defined value */
PSA_ALG_IS_RAW_KEY_AGREEMENT (alg) /* specification-defined value */
PSA_ALG_IS_RSA_OAEP(alg) /* specification-defined value */
PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) /* specification-defined value =*/
PSA_ALG_IS_RSA_PSS(alg) /* specification-defined value */
PSA_ALG_IS_SIGN(alg) /* specification-defined value */
PSA_ALG_IS_SIGN_HASH(alg) /x specification-defined value */
PSA_ALG_IS_SIGN_MESSAGE (alg) /x specification-defined value */
PSA_ALG_IS_STREAM_CIPHER(alg) /* specification-defined value =*/
PSA_ALG_IS_TLS12_PRF(alg) /x specification-defined value */
PSA_ALG_IS_TLS12_PSK_TO_MS(alg) /x specification-defined value */
PSA_ALG_IS_WILDCARD(alg) /* specification-defined value */
PSA_ALG_KEY_AGREEMENT (ka_alg, kdf_alg) \

(continues on next page)

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 227
Non-confidential

(continued from previous page)

/* specification-defined value */
#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) /* specification-defined value */
#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) /* specification-defined value */
#define PSA_ALG_MD2 ((psa_algorithm_t)0x02000001)
#define PSA_ALG_MD4 ((psa_algorithm_t)0x02000002)
#tdefine PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
#define PSA_ALG_NONE ((psa_algorithm_t)@)
#define PSA_ALG_OFB ((psa_algorithm_t)@x04c0@1200)
#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
#define PSA_ALG_RSA_OAEP(hash_alg) /* specification-defined value */
#tdefine PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) /* specification-defined value */
#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW ((psa_algorithm_t) 0x06000200)
#define PSA_ALG_RSA_PSS(hash_alg) /* specification-defined value */
#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
#tdefine PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
#define PSA_ALG_SHA_384 ((psa_algorithm_t)@x0200000a)
#define PSA_ALG_SHA_512 ((psa_algorithm_t)@x0200000b)
#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)@x0200000c)
#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)@x0200000d)
#define PSA_ALG_SM3 ((psa_algorithm_t)0x02000014)
#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
#define PSA_ALG_TLS12_PRF(hash_alg) /x specification-defined value x/
#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) /x specification-defined value */
#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
/* specification-defined value =*/
#define PSA_ALG_XTS ((psa_algorithm_t)@x0440ff00)
#define PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE \
/* implementation-defined value */
#define PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE(key_type, key_bits, alg) \
/* implementation-defined value */
#define PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE \
/* implementation-defined value =*/
#define PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE (key_type, key_bits, alg) \
/* implementation-defined value */
#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) /* specification-defined value */
#define PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE /* implementation-defined value */
#define PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE(input_length) \
/* implementation-defined value */
#define PSA_CIPHER_DECRYPT_OUTPUT_SIZE(key_type, alg, input_length) \
/* implementation-defined value */
#define PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE(input_length) \
/* implementation-defined value =*/
#define PSA_CIPHER_ENCRYPT_OUTPUT_SIZE(key_type, alg, input_length) \
/* implementation-defined value */
#define PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE /x implementation-defined value */
#define PSA_CIPHER_FINISH_OUTPUT_SIZE(key_type, alg) \

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

1.0.1 Non-confidential

(continues on next page)

Page 228

(continued from previous page)

/* implementation-defined value */
#define PSA_CIPHER_IV_LENGTH(key_type, alg) /* implementation-defined value */
#define PSA_CIPHER_IV_MAX_SIZE /* implementation-defined value */
#define PSA_CIPHER_OPERATION_INIT /* implementation-defined value */
#define PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE(input_length) \
/* implementation-defined value */
#define PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type, alg, input_length) \
/* implementation-defined value */
#define PSA_CRYPTO_API_VERSION_MAJOR 1
#define PSA_CRYPTO_API_VERSION_MINOR @
#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x@3)
#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
#define PSA_ECC_FAMILY_FRP ((psa_ecc_family_t) 0x33)
#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) @x41)
#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) @x1b)
#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) @x2b)
#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
#define PSA_EXPORT_KEY_OUTPUT_SIZE(key_type, key_bits) \
/* implementation-defined value =*/
#define PSA_EXPORT_KEY_PAIR_MAX_SIZE /* implementation-defined value */
#define PSA_EXPORT_PUBLIC_KEY_MAX_SIZE /* implementation-defined value */
#define PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE(key_type, key_bits) \
/* implementation-defined value */
#define PSA_HASH_BLOCK_LENGTH(alg) /* implementation-defined value x/
#define PSA_HASH_LENGTH(alg) /* implementation-defined value */
#define PSA_HASH_MAX_SIZE /* implementation-defined value x/
#define PSA_HASH_OPERATION_INIT /* implementation-defined value */
#define PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH ((size_t)4)

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.
101 Non-confidential

(continues on next page)

Page 229

(continued from previous page)

#define PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) \
/* specification-defined value */
#define PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) \
/* specification-defined value =*/
#define PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE /* implementation-defined value */
#define PSA_HASH_SUSPEND_OUTPUT_SIZE(alg) /x specification-defined value */
#define PSA_KEY_ATTRIBUTES_INIT /* implementation-defined value */
#define PSA_KEY_DERIVATION_INPUT_CONTEXT /* implementation-defined value */
#define PSA_KEY_DERIVATION_INPUT_INFO /* implementation-defined value */
#define PSA_KEY_DERIVATION_INPUT_LABEL /* implementation-defined value */
#define PSA_KEY_DERIVATION_INPUT_SALT /* implementation-defined value */
#define PSA_KEY_DERIVATION_INPUT_SECRET /% implementation-defined value */
#define PSA_KEY_DERIVATION_INPUT_SEED /* implementation-defined value */
#define PSA_KEY_DERIVATION_OPERATION_INIT /x implementation-defined value */
#define PSA_KEY_DERIVATION_UNLIMITED_CAPACITY \
/* implementation-defined value =*/
#define PSA_KEY_ID_NULL ((psa_key_id_t)®@)
#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)@x3fffffff)
#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)@x7fffffff)
#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)@x40000000)
#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
((location) << 8 | (persistence))
#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
((psa_key_location_t) ((lifetime) >> 8))
#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
((psa_key_persistence_t) ((lifetime) & 0x000000ff))
#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
(PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == PSA_KEY_PERSISTENCE_VOLATILE)
#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t) 0x00000001)
#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t) 0x00000000)
#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t) 0x000000)
#define PSA_KEY_LOCATION_PRIMARY_SECURE_ELEMENT ((psa_key_location_t) 0x000001)
#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t) 0x01)
#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t) 0xff)
#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t) 0x00)
#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)
#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)@x1200)
#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
#define PSA_KEY_TYPE_DH_GET_FAMILY(type) /* specification-defined value */
#define PSA_KEY_TYPE_DH_KEY_PAIR(group) /* specification-defined value */
#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) /x specification-defined value */
#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) /x specification-defined value */
#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) /#* specification-defined value */
#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) /* specification-defined value */
#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) /* specification-defined value */
#define PSA_KEY_TYPE_IS_DH(type) /* specification-defined value */
#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) /* specification-defined value */

(continues on next page)

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 230
101 Non-confidential

(continued from previous page)

#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) /* specification-defined value */
#define PSA_KEY_TYPE_IS_ECC(type) /* specification-defined value */
#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) /* specification-defined value */
#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) /* specification-defined value */
#define PSA_KEY_TYPE_IS_KEY_PAIR(type) /* specification-defined value */
#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) /* specification-defined value */
#define PSA_KEY_TYPE_IS_RSA(type) /* specification-defined value */
#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) /* specification-defined value */
#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
/* specification-defined value */
#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
/* specification-defined value */
#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)@x7001)
#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
#define PSA_KEY_TYPE_SM4 ((psa_key_type_t)0x2405)
#define PSA_KEY_USAGE_CACHE ((psa_key_usage_t)0x00000004)
#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0@x00000200)
#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
#tdefine PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0@x00000400)
#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)
#define PSA_MAC_LENGTH(key_type, key_bits, alg) \
/* implementation-defined value */
#define PSA_MAC_MAX_SIZE /x implementation-defined value */
#define PSA_MAC_OPERATION_INIT /* implementation-defined value */
#tdefine PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE \
/* implementation-defined value */
#tdefine PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE(key_type, key_bits) \
/* implementation-defined value */
#define PSA_SIGNATURE_MAX_SIZE /* implementation-defined value */
#define PSA_SIGN_OUTPUT_SIZE(key_type, key_bits, alg) \
/* implementation-defined value =*/
#define PSA_SUCCESS ((psa_status_t)0)
#define PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE /* implementation-defined value */
psa_status_t psa_aead_abort(psa_aead_operation_t * operation);
psa_status_t psa_aead_decrypt(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * nonce,
size_t nonce_length,
const uint8_t * additional_data,
size_t additional_data_length,
const uint8_t * ciphertext,
size_t ciphertext_length,
uint8_t * plaintext,
size_t plaintext_size,
size_t * plaintext_length);

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.
101 Non-confidential

(continues on next page)

Page 231

(continued from previous page)

psa_status_t psa_aead_decrypt_setup(psa_aead_operation_t * operation,
psa_key_id_t key,
psa_algorithm_t alg);
psa_status_t psa_aead_encrypt(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * nonce,
size_t nonce_length,
const uint8_t * additional_data,
size_t additional_data_length,
const uint8_t * plaintext,
size_t plaintext_length,
uint8_t * ciphertext,
size_t ciphertext_size,
size_t * ciphertext_length);
psa_status_t psa_aead_encrypt_setup(psa_aead_operation_t * operation,
psa_key_id_t key,
psa_algorithm_t alg);
psa_status_t psa_aead_finish(psa_aead_operation_t * operation,
uint8_t * ciphertext,
size_t ciphertext_size,
size_t * ciphertext_length,
uint8_t * tag,
size_t tag_size,
size_t * tag_length);
psa_status_t psa_aead_generate_nonce(psa_aead_operation_t * operation,
uint8_t * nonce,
size_t nonce_size,
size_t * nonce_length);
psa_aead_operation_t psa_aead_operation_init(void);
psa_status_t psa_aead_set_lengths(psa_aead_operation_t * operation,
size_t ad_length,
size_t plaintext_length);
psa_status_t psa_aead_set_nonce(psa_aead_operation_t * operation,
const uint8_t * nonce,
size_t nonce_length);
psa_status_t psa_aead_update(psa_aead_operation_t * operation,
const uint8_t * input,
size_t input_length,
uint8_t * output,
size_t output_size,
size_t * output_length);
psa_status_t psa_aead_update_ad(psa_aead_operation_t * operation,
const uint8_t * input,
size_t input_length);
psa_status_t psa_aead_verify(psa_aead_operation_t * operation,
uint8_t * plaintext,
size_t plaintext_size,
size_t * plaintext_length,
const uint8_t * tag,
size_t tag_length);
psa_status_t psa_asymmetric_decrypt(psa_key_id_t key,
psa_algorithm_t alg,

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

1.0.1 Non-confidential

(continues on next page)

Page 232

(continued from previous page)

const uint8_t * input,
size_t input_length,
const uint8_t * salt,
size_t salt_length,
uint8_t * output,

size_t output_size,
size_t * output_length);

psa_status_t psa_asymmetric_encrypt(psa_key_id_t key,

psa_status_t
psa_status_t

psa_status_t

psa_status_t

psa_status_t

psa_status_t

psa_status_t

psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * salt,
size_t salt_length,
uint8_t * output,

size_t output_size,
size_t * output_length);

psa_cipher_abort(psa_cipher_operation_t * operation);
psa_cipher_decrypt(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
uint8_t * output,

size_t output_size,
size_t * output_length);

psa_cipher_decrypt_setup(psa_cipher_operation_t * operation,

psa_key_id_t key,
psa_algorithm_t alg);

psa_cipher_encrypt(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
uint8_t * output,

size_t output_size,
size_t * output_length);

psa_cipher_encrypt_setup(psa_cipher_operation_t * operation,

psa_key_id_t key,
psa_algorithm_t alg);

psa_cipher_finish(psa_cipher_operation_t * operation,

uint8_t * output,
size_t output_size,
size_t * output_length);

psa_cipher_generate_iv(psa_cipher_operation_t * operation,

uint8_t * iv,
size_t iv_size,
size_t * iv_length);

psa_cipher_operation_t psa_cipher_operation_init(void);
psa_status_t psa_cipher_set_iv(psa_cipher_operation_t * operation,

const uint8_t * iv,
size_t iv_length);

psa_status_t psa_cipher_update(psa_cipher_operation_t * operation,

IHI 0086
1.0.1

const uint8_t * input,
size_t input_length,

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

Non-confidential

(continues on next page)

Page 233

(continued from previous page)

uint8_t * output,
size_t output_size,
size_t * output_length);
psa_status_t psa_copy_key(psa_key_id_t source_key,
const psa_key_attributes_t * attributes,
psa_key_id_t * target_key);
psa_status_t psa_crypto_init(void);
psa_status_t psa_destroy_key(psa_key_id_t key);
psa_status_t psa_export_key(psa_key_id_t key,
uint8_t * data,
size_t data_size,
size_t * data_length);
psa_status_t psa_export_public_key(psa_key_id_t key,
uint8_t * data,
size_t data_size,
size_t * data_length);
psa_status_t psa_generate_key(const psa_key_attributes_t * attributes,
psa_key_id_t * key);
psa_status_t psa_generate_random(uint8_t * output,
size_t output_size);

psa_algorithm_t psa_get_key_algorithm(const psa_key_attributes_t * attributes);

psa_status_t psa_get_key_attributes(psa_key_id_t key,
psa_key_attributes_t * attributes);

size_t psa_get_key_bits(const psa_key_attributes_t * attributes);

psa_key_id_t psa_get_key_id(const psa_key_attributes_t * attributes);

psa_key_lifetime_t psa_get_key_lifetime(const psa_key_attributes_t * attributes);

psa_key_type_t psa_get_key_type(const psa_key_attributes_t * attributes);

psa_key_usage_t psa_get_key_usage_flags(const psa_key_attributes_t * attributes);

psa_status_t psa_hash_abort(psa_hash_operation_t * operation);
psa_status_t psa_hash_clone(const psa_hash_operation_t * source_operation,
psa_hash_operation_t * target_operation);
psa_status_t psa_hash_compare(psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * hash,
size_t hash_length);
psa_status_t psa_hash_compute(psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
uint8_t * hash,
size_t hash_size,
size_t * hash_length);
psa_status_t psa_hash_finish(psa_hash_operation_t * operation,
uint8_t * hash,
size_t hash_size,
size_t * hash_length);
psa_hash_operation_t psa_hash_operation_init(void);
psa_status_t psa_hash_resume(psa_hash_operation_t * operation,
const uint8_t * hash_state,
size_t hash_state_length);
psa_status_t psa_hash_setup(psa_hash_operation_t * operation,
psa_algorithm_t alg);

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

1.0.1 Non-confidential

(continues on next page)

Page 234

(continued from previous page)

psa_status_t psa_hash_suspend(psa_hash_operation_t * operation,
uint8_t * hash_state,
size_t hash_state_size,
size_t * hash_state_length);
psa_status_t psa_hash_update(psa_hash_operation_t * operation,
const uint8_t * input,
size_t input_length);
psa_status_t psa_hash_verify(psa_hash_operation_t * operation,
const uint8_t * hash,
size_t hash_length);
psa_status_t psa_import_key(const psa_key_attributes_t * attributes,
const uint8_t * data,
size_t data_length,
psa_key_id_t * key);
psa_key_attributes_t psa_key_attributes_init(void);
psa_status_t psa_key_derivation_abort(psa_key_derivation_operation_t * operation);
psa_status_t psa_key_derivation_get_capacity(const psa_key_derivation_operation_t * operation,
size_t * capacity);
psa_status_t psa_key_derivation_input_bytes(psa_key_derivation_operation_t * operation,
psa_key_derivation_step_t step,
const uint8_t * data,
size_t data_length);
psa_status_t psa_key_derivation_input_key(psa_key_derivation_operation_t * operation,
psa_key_derivation_step_t step,
psa_key_id_t key);
psa_status_t psa_key_derivation_key_agreement(psa_key_derivation_operation_t * operation,
psa_key_derivation_step_t step,
psa_key_id_t private_key,
const uint8_t * peer_key,
size_t peer_key_length);
psa_key_derivation_operation_t psa_key_derivation_operation_init(void);
psa_status_t psa_key_derivation_output_bytes(psa_key_derivation_operation_t * operation,
uint8_t * output,
size_t output_length);
psa_status_t psa_key_derivation_output_key(const psa_key_attributes_t * attributes,
psa_key_derivation_operation_t * operation,
psa_key_id_t * key);
psa_status_t psa_key_derivation_set_capacity(psa_key_derivation_operation_t * operation,
size_t capacity);
psa_status_t psa_key_derivation_setup(psa_key_derivation_operation_t * operation,
psa_algorithm_t alg);
psa_status_t psa_mac_abort(psa_mac_operation_t * operation);
psa_status_t psa_mac_compute(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
uint8_t * mac,
size_t mac_size,
size_t * mac_length);
psa_mac_operation_t psa_mac_operation_init(void);
psa_status_t psa_mac_sign_finish(psa_mac_operation_t * operation,
uint8_t * mac,

(continues on next page)

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 235
101 Non-confidential

psa_status_t

psa_status_t

psa_status_t

psa_status_t

psa_status_t

psa_status_t
psa_status_t

(continued from previous page)

size_t mac_size,
size_t * mac_length);

psa_mac_sign_setup(psa_mac_operation_t * operation,

psa_key_id_t key,
psa_algorithm_t alg);

psa_mac_update(psa_mac_operation_t * operation,

const uint8_t * input,
size_t input_length);

psa_mac_verify(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * mac,
size_t mac_length);

psa_mac_verify_finish(psa_mac_operation_t * operation,

const uint8_t * mac,
size_t mac_length);

psa_mac_verify_setup(psa_mac_operation_t * operation,

psa_key_id_t key,
psa_algorithm_t alg);

psa_purge_key(psa_key_id_t key);
psa_raw_key_agreement(psa_algorithm_t alg,

psa_key_id_t private_key,
const uint8_t * peer_key,
size_t peer_key_length,
uint8_t * output,

size_t output_size,
size_t * output_length);

void psa_reset_key_attributes(psa_key_attributes_t * attributes);
void psa_set_key_algorithm(psa_key_attributes_t * attributes,

psa_algorithm_t alg);

void psa_set_key_bits(psa_key_attributes_t * attributes,

size_t bits);

void psa_set_key_id(psa_key_attributes_t * attributes,

psa_key_id_t id);

void psa_set_key_lifetime(psa_key_attributes_t * attributes,

psa_key_lifetime_t lifetime);

void psa_set_key_type(psa_key_attributes_t * attributes,

psa_key_type_t type);

void psa_set_key_usage_flags(psa_key_attributes_t * attributes,

psa_key_usage_t usage_flags);

psa_status_t psa_sign_hash(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * hash,
size_t hash_length,

uint8_t * signature,

size_t signature_size,
size_t * signature_length);

psa_status_t psa_sign_message(psa_key_id_t key,

IHI 0086
1.0.1

psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

Non-confidential

(continues on next page)

Page 236

(continued from previous page)
uint8_t * signature,
size_t signature_size,
size_t * signature_length);
psa_status_t psa_verify_hash(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * hash,
size_t hash_length,
const uint8_t * signature,
size_t signature_length);
psa_status_t psa_verify_message(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * signature,
size_t signature_length);

Appendix B: Example macro implementations

This appendix provides example implementations of the function-like macros that have
specification-defined values.

Note:

In a future version of this specification, these example implementations will be replaced with a
pseudo-code representation of the macro’s computation in the macro description.

The examples here provide correct results for the valid inputs defined by each API, for an implementation
that supports all of the defined algorithms and key types. An implementation can provide alternative
definitions of these macros:

e If the implementation does not support all of the algorithms or key types, it can provide a simpler
definition of applicable macros.

e If the implementation provides vendor-specific algorithms or key types, it needs to extend the
definitions of applicable macros.

B.1 Algorithm macros

#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
((((aead_alg) & ~0x003f0000) == 0x05400100) ? PSA_ALG_CCM : \
(((aead_alg) & ~0x003f0000) == 0x05400200) ? PSA_ALG_GCM : \
(((aead_alg) & ~0x003f0000) == 0x05000500) ? PSA_ALG_CHACHA20_POLY1305 : \
PSA_ALG_NONE)

#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
((psa_algorithm_t) (((aead_alg) & ~0x003f0000) | (((tag_length) & @x3f) << 16)))

(continues on next page)

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 237
1.0.1 Non-confidential

(continued from previous page)

#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
((psa_algorithm_t) (0x06000700 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_ECDSA(hash_alg) \
((psa_algorithm_t) (0x06000600 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
((psa_algorithm_t) ((mac_alg) & ~0x003f0000))

#define PSA_ALG_GET_HASH(alg) \
(((alg) & 0x000000ff) == @ ? PSA_ALG_NONE : 0x02000000 | ((alg) & 0x000000ff))

#define PSA_ALG_HKDF (hash_alg) \
((psa_algorithm_t) (0x08000100 | ((hash_alg) & 0x000000ff)))

#tdefine PSA_ALG_HMAC(hash_alg) \
((psa_algorithm_t) (0x03800000 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_IS_AEAD(alg) \
(((alg) & 0x7f000000) == 0x05000000)

#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
(((alg) & 0x7f400000) == 0x05400000)

#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
(((alg) & 0x7f000000) == 0x07000000)

#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
(((alg) & 0x7fc00000) == 0x03c00000)

#define PSA_ALG_IS_CIPHER(alg) \
(((alg) & 0x7f000000) == 0x03000000)

#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
(((alg) & ~0xQ0Q0Q0Ff) == Ox06000700)

#define PSA_ALG_IS_ECDH(alg) \
(((alg) & Ox7fffo000) == 0x09020000)

#define PSA_ALG_IS_ECDSA(alg) \
(((alg) & ~0xQ00001ff) == Ox06000600)

#define PSA_ALG_IS_FFDH(alg) \
(((alg) & Ox7fff0000) == 0x09010000)

#tdefine PSA_ALG_IS_HASH(alg) \
(((alg) & 0x7f000000) == 0x02000000)

#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
(PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || PSA_ALG_IS_ECDSA(alg))

(continues on next page)

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 238
1.0.1 Non-confidential

(continued from previous page)

#define PSA_ALG_IS_HKDF(alg) \
(((alg) & ~0x000000ff) == 0x08000100)

#define PSA_ALG_IS_HMAC(alg) \
(((alg) & Ox7fcoffeo) == 0x03800000)

#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
(((alg) & 0x7f000000) == 0x09000000)

#define PSA_ALG_IS_KEY_DERIVATION(alg) \
(((alg) & 0x7f000000) == 0x08000000)

#define PSA_ALG_IS_MAC(alg) \
(((alg) & 0x7f000000) == 0x03000000)

#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
(((alg) & ~0x000000ff) == 0x06000600)

#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
(((alg) & Ox7fORffff) == 0x09000000)

#define PSA_ALG_IS_RSA_OAEP(alg) \
(((alg) & ~0x000000ff) == 0x07000300)

#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
(((alg) & ~0xQ0Q0Q0Ff) == Ox06000200)

#define PSA_ALG_IS_RSA_PSS(alg) \
(((alg) & ~0xQ0Q0Q0Ff) == Ox06000300)

#define PSA_ALG_IS_SIGN(alg) \
(((alg) & 0x7f000000) == Ox06000000)

#define PSA_ALG_IS_SIGN_HASH(alg) \
PSA_ALG_IS_SIGN(alg)

#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
(PSA_ALG_IS_SIGN(alg) && \
(alg) '= PSA_ALG_ECDSA_ANY && (alg) !'= PSA_ALG_RSA_PKCS1V15_SIGN_RAW)

#define PSA_ALG_IS_STREAM_CIPHER(alg) \
(((alg) & 0x7f800000) == 0x04800000)

#define PSA_ALG_IS_TLS12_PRF(alg) \
(((alg) & ~0x000000ff) == 0x08000200)

#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
(((alg) & ~0x000000ff) == 0x08000300)

#define PSA_ALG_IS_WILDCARD(alg) \
(PSA_ALG_GET_HASH(alg) == PSA_ALG_HASH_ANY)

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

1.0.1 Non-confidential

(continues on next page)

Page 239

(continued from previous page)

#tdefine PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
((ka_alg) | (kdf_alg))

#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
((psa_algorithm_t)((alg) & oxffffoeoo))

#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
((psa_algorithm_t)((alg) & oxfeooffff))

#tdefine PSA_ALG_RSA_OAEP(hash_alg) \
((psa_algorithm_t) (0x07000300 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
((psa_algorithm_t) (0x06000200 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_RSA_PSS(hash_alg) \
((psa_algorithm_t) (0x06000300 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_TLS12_PRF(hash_alg) \
((psa_algorithm_t) (0x08000200 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
((psa_algorithm_t) (0x08000300 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
((psa_algorithm_t) (((mac_alg) & ~0x003f0000) | (((mac_length) & 0x3f) << 16)))

B.2 Key type macros

#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
(Tu << (((type) >> 8) & 7))

#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
((psa_dh_family_t) ((type) & 0xQ0ff))

#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
((psa_key_type_t) (0x7200 | (group)))

#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
((psa_key_type_t) (0x4200 | (group)))

#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
((psa_ecc_family_t) ((type) & 0xQ0ff))

#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
((psa_key_type_t) (0x7100 | (curve)))

#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
((psa_key_type_t) (0x4100 | (curve)))

#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
(continues on next page)

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 240
1.0.1 Non-confidential

(((type) & 0x4000) == 0x4000)

#define PSA_KEY_TYPE_IS_DH(type) \

((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & 0xffoQ) == 0x4200)

#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
(((type) & 0xffoQ) == 0x7200)

#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
(((type) & oxffoQ) == 0x4200)

#define PSA_KEY_TYPE_IS_ECC(type) \

((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & OxffoQ) == 0x4100)

#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
(((type) & 0xffoo) == 0x7100)

#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
(((type) & Oxff@0) == 0x4100)

#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
(((type) & 0x7000) == 0Ox7000)

#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
(((type) & 0x7000) == 0x4000)

#define PSA_KEY_TYPE_IS_RSA(type) \
(PSA_KEY_TYPE_PUBLIC_KEY_OF _KEY_PAIR(type) == 0x4001)

#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \

(((type) & 0x7000) == 0x1000 || ((type) & 0x7000) == 0x2000)

#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY (type) \
((psa_key_type_t) ((type) | 0x3000))

#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
((psa_key_type_t) ((type) & ~0x3000))

B.3 Hash suspend state macros

#define PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) \
((alg)==PSA_ALG_MD2 ? 64 : \
(alg)==PSA_ALG_MD4 || (alg)==PSA_ALG_MD5 ? 16 : \

(alg)==PSA_ALG_RIPEMD160 || (alg)==PSA_ALG_SHA_1 ? 20 :
(alg)==PSA_ALG_SHA_224 || (alg)==PSA_ALG_SHA_256 ? 32 :

(continued from previous page)

(alg)==PSA_ALG_SHA_512 || (alg)==PSA_ALG_SHA_384 || (alg)==PSA_ALG_SHA_512_256 ? 64 : \

)

#define PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) \
((alg)==PSA_ALG_MD2 ? 1 : \

(alg)==PSA_ALG_MD4 || (alg)==PSA_ALG_MD5 || (alg)==PSA_ALG_RIPEMD160 || \

(continues on next page)

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 241

1.0.1 Non-confidential

(continued from previous page)

(alg)==PSA_ALG_SHA_1 || (alg)==PSA_ALG_SHA_224 || (alg)==PSA_ALG_SHA_256 ? 8 : \
(alg)==PSA_ALG_SHA_512 || (alg)==PSA_ALG_SHA_384 || (alg)==PSA_ALG_SHA_512_256 ? 16 : \
0)

#define PSA_HASH_SUSPEND_OUTPUT_SIZE(alg) \
(PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH + \
PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) + \
PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) + \
PSA_HASH_BLOCK_LENGTH(alg) - 1)

Appendix C: Changes to the API

C.1 Document change history

This section provides the detailed changes made between published version of the document.

C.1.1 Changes between 1.0.0 and 1.0.1
Changes to the API

e Added subtypes psa_key_persistence_t and psa_key_location_t for key lifetimes, and defined
standard values for these attributes.

o Added identifiers for PSA_ALG_SM3 and PSA_KEY_TYPE_SM4.

Clarifications and fixes

e Provided citation references for all cryptographic algorithms in the specification.

e Provided precise key size information for all key types.

e Permitted implementations to store and export long HMAC keys in hashed form.
e Provided details for initialization vectors in all unauthenticated cipher algorithms.
e Provided details for nonces in all AEAD algorithms.

e Clarified the input steps for HKDF.

e Provided details of signature algorithms, include requirements when using with psa_sign_hash() and
psa_verify_hash().

e Provided details of key agreement algorithms, and how to use them.

e Aligned terminology relating to key policies, to clarify the combination of the usage flags and
permitted algorithm in the policy.

e Clarified the use of the individual key attributes for all of the key creation functions.

e Restructured the description for psa_key_derivation_output_key(), to clarify the handling of the
excess bits in ECC key generation when needing a string of bits whose length is not a multiple of 8.

e Referenced the correct buffer size macros for psa_export_key().

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 242
1.0.1 Non-confidential

Removed the use of the PSA_ERROR_DOES_NOT_EXIST error.

Clarified concurrency rules.

Document that psa_key_derivation_output_key() does not return PSA_ERROR_NOT_PERMITTED if the
secret input is the result of a key agreement. This matches what was already documented for
PSA_KEY_DERIVATION_INPUT_SECRET.

Relax the requirement to use the defined key derivation methods in

psa_key_derivation_output_key(): implementation-specific KDF algorithms can use

implementation-defined methods to derive the key material.

Other changes

e Provided a glossary of terms.

e Provided a table of references.

e Restructured the Key management reference on page 49 chapter.

— Moved individual attribute types, values and accessor functions into their own sections.
— Placed permitted algorithms and usage flags into Key policies on page 78.

— Moved most introductory material from the Functionality overview on page 20 into the relevant

API sections.

C.1.2 Changes between 1.0 beta 3 and 1.0.0
Changes to the API

e Added PSA_CRYPTO_API_VERSION_MAJOR and PSA_CRYPTO_API_VERSION_MINOR to report the PSA Crypto API
version.

e Removed PSA_ALG_GMAC algorithm identifier.

e Removed internal implementation macros from the API specification:

IHI 0086

1.0.1

PSA_AEAD_TAG_LENGTH_OFFSET
PSA_ALG_AEAD_FROM_BLOCK_FLAG
PSA_ALG_AEAD_TAG_LENGTH_MASK
PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE
PSA_ALG_CATEGORY_AEAD
PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION
PSA_ALG_CATEGORY_CIPHER
PSA_ALG_CATEGORY_HASH
PSA_ALG_CATEGORY_KEY_AGREEMENT
PSA_ALG_CATEGORY_KEY_DERIVATION
PSA_ALG_CATEGORY_MAC
PSA_ALG_CATEGORY_MASK
PSA_ALG_CATEGORY_SIGN
PSA_ALG_CIPHER_FROM_BLOCK_FLAG
PSA_ALG_CIPHER_MAC_BASE
PSA_ALG_CIPHER_STREAM_FLAG

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

Non-confidential

Page 243

IHI 0086
1.0.1

PSA_ALG_DETERMINISTIC_ECDSA_BASE
PSA_ALG_ECDSA_BASE
PSA_ALG_ECDSA_IS_DETERMINISTIC
PSA_ALG_HASH_MASK

PSA_ALG_HKDF _BASE

PSA_ALG_HMAC_BASE
PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT
PSA_ALG_IS_VENDOR_DEFINED
PSA_ALG_KEY_AGREEMENT_MASK
PSA_ALG_KEY_DERIVATION_MASK
PSA_ALG_MAC_SUBCATEGORY_MASK
PSA_ALG_MAC_TRUNCATION_MASK
PSA_ALG_RSA_OAEP_BASE
PSA_ALG_RSA_PKCS1V15_SIGN_BASE
PSA_ALG_RSA_PSS_BASE
PSA_ALG_TLS12_PRF_BASE
PSA_ALG_TLS12_PSK_TO_MS_BASE
PSA_ALG_VENDOR_FLAG
PSA_BITS_TO_BYTES

PSA_BYTES_TO_BITS
PSA_ECDSA_SIGNATURE_SIZE
PSA_HMAC_MAX_HASH_BLOCK_SIZE
PSA_KEY_EXPORT_ASN1_INTEGER_MAX_SIZE
PSA_KEY_EXPORT_DSA_KEY_PAIR_MAX_SIZE
PSA_KEY_EXPORT_DSA_PUBLIC_KEY_MAX_SIZE
PSA_KEY_EXPORT_ECC_KEY_PAIR_MAX_SIZE
PSA_KEY_EXPORT_ECC_PUBLIC_KEY_MAX_SIZE
PSA_KEY_EXPORT_RSA_KEY_PAIR_MAX_SIZE
PSA_KEY_EXPORT_RSA_PUBLIC_KEY_MAX_SIZE
PSA_KEY_TYPE_CATEGORY_FLAG_PAIR
PSA_KEY_TYPE_CATEGORY_KEY_PAIR
PSA_KEY_TYPE_CATEGORY_MASK
PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY
PSA_KEY_TYPE_CATEGORY_RAW
PSA_KEY_TYPE_CATEGORY_SYMMETRIC
PSA_KEY_TYPE_DH_GROUP_MASK
PSA_KEY_TYPE_DH_KEY_PAIR_BASE
PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE
PSA_KEY_TYPE_ECC_CURVE_MASK
PSA_KEY_TYPE_ECC_KEY_PAIR_BASE
PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE
PSA_KEY_TYPE_IS_VENDOR_DEFINED

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

Non-confidential

Page 244

— PSA_KEY_TYPE_VENDOR_FLAG

— PSA_MAC_TRUNCATED_LENGTH

— PSA_MAC_TRUNCATION_OFFSET

— PSA_ROUND_UP_TO_MULTIPLE

— PSA_RSA_MINIMUM_PADDING_SIZE
— PSA_VENDOR_ECC_MAX_CURVE_BITS
— PSA_VENDOR_RSA_MAX_KEY_BITS

e Remove the definition of implementation-defined macros from the specification, and clarified the
implementation requirements for these macros in Implementation-specific macros on page 36.

— Macros with implementation-defined values are indicated by /* implementation-defined value
%/ in the API prototype. The implementation must provide the implementation.

— Macros for algorithm and key type construction and inspection have specification-defined
values. This is indicated by /* specification-defined value x/ in the API prototype. Example
definitions of these macros is provided in Example macro implementations on page 237.

e Changed the semantics of multi-part operations.

— Formalize the standard pattern for multi-part operations.

— Require all errors to result in an error state, requiring a call to psa_xxx_abort() to reset the
object.

— Define behavior in illegal and impossible operation states, and for copying and reusing
operation objects.

Although the API signatures have not changed, this change requires modifications to application
flows that handle error conditions in multi-part operations.

e Merge the key identifier and key handle concepts in the API.

— Replaced all references to key handles with key identifiers, or something similar.

— Replaced all uses of psa_key_handle_t with psa_key_id_t in the API, and removes the
psa_key_handle_t type.

— Removed psa_open_key and psa_close_key.

— Added psA_KEY_ID_NULL for the never valid zero key identifier.

— Document rules related to destroying keys whilst in use.

— Added the PsA_KEY_USAGE_CACHE usage flag and the related psa_purge_key () APL

— Added clarification about caching keys to non-volatile memory.

e Renamed PSA_ALG_TLS12_PSK_TO_MS_MAX_PSK_LEN to PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE.

e Relax definition of implementation-defined types.

— This is indicated in the specification by /x implementation-defined type */ in the type definition.
— The specification only defines the name of implementation-defined types, and does not require
that the implementation is a C struct.
e Zero-length keys are not permitted. Attempting to create one will now result in an error.

e Relax the constraints on inputs to key derivation:

— psa_key_derivation_input_bytes() can be used for secret input steps. This is necessary if a
zero-length input is required by the application.
— psa_key_derivation_input_key() can be used for non-secret input steps.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 245
1.0.1 Non-confidential

e Multi-part cipher operations now require that the IV is passed using psa_cipher_set_iv(), the option
to provide this as part of the input to psa_cipher_update() has been removed.

The format of the output from psa_cipher_encrypt (), and input to psa_cipher_decrypt(), is
documented.

e Support macros to calculate the size of output buffers, IVs and nonces.

— Macros to calculate a key and/or algorithm specific result are provided for all output buffers.
The new macros are:

o

o

(¢]

(e]

PSA_AEAD_NONCE_LENGTH()
PSA_CIPHER_ENCRYPT_OUTPUT_SIZE()
PSA_CIPHER_DECRYPT_OUTPUT_SIZE()
PSA_CIPHER_UPDATE_OUTPUT_SIZE()
PSA_CIPHER_FINISH_OUTPUT_SIZE()
PSA_CIPHER_IV_LENGTH()
PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE()
PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE()

— Macros that evaluate to a maximum type-independent buffer size are provided. The new
macros are:

(¢]

(e]

o

o

PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE()
PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE()
PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE()
PSA_AEAD_FINISH_OUTPUT_MAX_SIZE
PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE
PSA_AEAD_NONCE_MAX_SIZE
PSA_AEAD_TAG_MAX_SIZE
PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE
PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE
PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE()
PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE()
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE()
PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE
PSA_CIPHER_IV_MAX_SIZE
PSA_EXPORT_KEY_PAIR_MAX_SIZE
PSA_EXPORT_PUBLIC_KEY_MAX_SIZE
PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE

— AEAD output buffer size macros are now parameterized on the key type as well as the
algorithm:

(e]

o

(e]

IHI 0086

1.0.1

PSA_AEAD_ENCRYPT_OUTPUT_SIZE()
PSA_AEAD_DECRYPT_OUTPUT_SIZE()
PSA_AEAD_UPDATE_OUTPUT_SIZE()
PSA_AEAD_FINISH_OUTPUT_SIZE()
PSA_AEAD_TAG_LENGTH()
PSA_AEAD_VERIFY_OUTPUT_SIZE()

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 246
Non-confidential

— Some existing macros have been renamed to ensure that the name of the support macros are
consistent. The following macros have been renamed:

o

(e]

(@]

(e]

o

(e]

(@]

PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH() — PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG()
PSA_ALG_AEAD_WITH_TAG_LENGTH() — PSA_ALG_AEAD_WITH_SHORTENED_TAG()
PSA_KEY_EXPORT_MAX_SIZE() — PSA_EXPORT_KEY_OUTPUT_SIZE()

PSA_HASH_SIZE() — PSA_HASH_LENGTH()

PSA_MAC_FINAL_SIZE() — PSA_MAC_LENGTH()

PSA_BLOCK_CIPHER_BLOCK_SIZE() — PSA_BLOCK_CIPHER_BLOCK_LENGTH()
PSA_MAX_BLOCK_CIPHER_BLOCK_SIZE — PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE

— Documentation of the macros and of related APIs has been updated to reference the related
API elements.

e Provide hash-and-sign operations as well as sign-the-hash operations. The API for asymmetric
signature has been changed to clarify the use of the new functions.

— The existing asymmetric signature APl has been renamed to clarify that this is for signing a hash
that is already computed:

(e]

(e]

(e]

(@]

PSA_KEY_USAGE_SIGN — PSA_KEY_USAGE _SIGN_HASH
PSA_KEY_USAGE_VERIFY — PSA_KEY_USAGE_VERIFY_HASH
psa_asymmetric_sign() — psa_sign_hash()

psa_asymmetric_verify() — psa_verify_hash()

New APIs added to provide the complete message signing operation:

(e]

o

(¢]

o

PSA_KEY_USAGE_SIGN_MESSAGE
PSA_KEY_USAGE_VERIFY_MESSAGE
psa_sign_message()

psa_verify_message()

New Support macros to identify which algorithms can be used in which signing API:

(e]

(¢]

PSA_ALG_IS_SIGN_HASH()
PSA_ALG_IS_SIGN_MESSAGE ()

Renamed support macros that apply to both signing APIs:

(e]

(e]

PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE() — PSA_SIGN_OUTPUT_SIZE()
PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE — PSA_SIGNATURE_MAX_SIZE

The usage flag values have been changed, including for PSA_KEY_USAGE_DERIVE.

e Restructure psa_key_type_t and reassign all key type values.

IHI 0086
1.0.1

psa_

key_type_t changes from 32-bit to 16-bit integer.

Reassigned the key type categories.
Add a parity bit to the key type to ensure that valid key type values differ by at least 2 bits.

16-bit elliptic curve ids (psa_ecc_curve_t) replaced by 8-bit ECC curve family ids
(psa_ecc_family_t). 16-bit Diffie-Hellman group ids (psa_dh_group_t) replaced by 8-bit DH group
family ids (psa_dh_family_t).

(¢]

(e]

These ids are no longer related to the IANA Group Registry specification.

The new key type values do not encode the key size for ECC curves or DH groups. The key
bit size from the key attributes identify a specific ECC curve or DH group within the family.

The following macros have been removed:

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 247
Non-confidential

IHI 0086
1.0.1

(¢]

(e]

PSA_DH_GROUP_FFDHE2048
PSA_DH_GROUP_FFDHE3072
PSA_DH_GROUP_FFDHE4096
PSA_DH_GROUP_FFDHE6144
PSA_DH_GROUP_FFDHE8192
PSA_ECC_CURVE_BITS

PSA_ECC_CURVE_BRAINPOOL_P256R1
PSA_ECC_CURVE_BRAINPOOL_P384R1
PSA_ECC_CURVE_BRAINPOOL_P512R1

PSA_ECC_CURVE_CURVE25519
PSA_ECC_CURVE_CURVE448
PSA_ECC_CURVE_SECP160K1
PSA_ECC_CURVE_SECP160R1
PSA_ECC_CURVE_SECP160R2
PSA_ECC_CURVE_SECP192K1
PSA_ECC_CURVE_SECP192R1
PSA_ECC_CURVE_SECP224K1
PSA_ECC_CURVE_SECP224R1
PSA_ECC_CURVE_SECP256K1
PSA_ECC_CURVE_SECP256R1
PSA_ECC_CURVE_SECP384R1
PSA_ECC_CURVE_SECP521R1
PSA_ECC_CURVE_SECT163K1
PSA_ECC_CURVE_SECT163R1
PSA_ECC_CURVE_SECT163R2
PSA_ECC_CURVE_SECT193R1
PSA_ECC_CURVE_SECT193R2
PSA_ECC_CURVE_SECT233K1
PSA_ECC_CURVE_SECT233R1
PSA_ECC_CURVE_SECT239K1
PSA_ECC_CURVE_SECT283K1
PSA_ECC_CURVE_SECT283R1
PSA_ECC_CURVE_SECT409K1
PSA_ECC_CURVE_SECT409R1
PSA_ECC_CURVE_SECT571K1
PSA_ECC_CURVE_SECT571R1
PSA_KEY_TYPE_GET_CURVE
PSA_KEY_TYPE_GET_GROUP

— The following macros have been added:

o PSA_DH_FAMILY_RFC7919

o PSA_ECC_FAMILY_BRAINPOOL_P_R1

o PSA_ECC_FAMILY_SECP_K1

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

Non-confidential

Page 248

o PSA_ECC_FAMILY_SECP_R1
o PSA_ECC_FAMILY_SECP_R2
o PSA_ECC_FAMILY_SECT_K1
o PSA_ECC_FAMILY_SECT_R1
o PSA_ECC_FAMILY_SECT_R2
o PSA_ECC_FAMILY_MONTGOMERY
o PSA_KEY_TYPE_DH_GET_FAMILY
o PSA_KEY_TYPE_ECC_GET_FAMILY
— The following macros have new values:
o PSA_KEY_TYPE_AES
o PSA_KEY_TYPE_ARC4
o PSA_KEY_TYPE_CAMELLIA
o PSA_KEY_TYPE_CHACHA20
o PSA_KEY_TYPE_DERIVE
o PSA_KEY_TYPE_DES
o PSA_KEY_TYPE_HMAC
o PSA_KEY_TYPE_NONE
o PSA_KEY_TYPE_RAW_DATA
o PSA_KEY_TYPE_RSA_KEY_PAIR
o PSA_KEY_TYPE_RSA_PUBLIC_KEY
— The following macros with specification-defined values have new example implementations:
o PSA_BLOCK_CIPHER_BLOCK_LENGTH
o PSA_KEY_TYPE_DH_KEY_PAIR
o PSA_KEY_TYPE_DH_PUBLIC_KEY
o PSA_KEY_TYPE_ECC_KEY_PAIR
o PSA_KEY_TYPE_ECC_PUBLIC_KEY
o PSA_KEY_TYPE_IS_ASYMMETRIC
o PSA_KEY_TYPE_IS_DH
o PSA_KEY_TYPE_IS_DH_KEY_PAIR
o PSA_KEY_TYPE_IS_DH_PUBLIC_KEY
o PSA_KEY_TYPE_IS_ECC
o PSA_KEY_TYPE_IS_ECC_KEY_PAIR
o PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY
o PSA_KEY_TYPE_IS_KEY_PAIR
o PSA_KEY_TYPE_IS_PUBLIC_KEY
o PSA_KEY_TYPE_IS_RSA
o PSA_KEY_TYPE_IS_UNSTRUCTURED
o PSA_KEY_TYPE_KEY_PAIR_OF _PUBLIC_KEY
o PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR

e Add ECC family psa_EcC_FAMILY_FRP for the FRP256v1 curve.

e Restructure psa_algorithm_t encoding, to increase consistency across algorithm categories.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 249
101 Non-confidential

— Algorithms that include a hash operation all use the same structure to encode the hash
algorithm. The following PSA_ALG_XXXX_GET_HASH() macros have all been replaced by a single
Macro PSA_ALG_GET_HASH():

0 PSA_ALG_HKDF_GET_HASH()

0 PSA_ALG_HMAC_GET_HASH()

o PSA_ALG_RSA_OAEP_GET_HASH()

o PSA_ALG_SIGN_GET_HASH()

o PSA_ALG_TLS12_PRF_GET_HASH()

0 PSA_ALG_TLS12_PSK_TO_MS_GET_HASH()

— Stream cipher algorithm macros have been removed; the key type indicates which cipher to use.
Instead of PSA_ALG_ARC4 and PSA_ALG_CHACHA2@, use PSA_ALG_STREAM_CIPHER.

All of the other PSA_ALG_XXX macros have updated values or updated example implementations.

— The following macros have new values:
o PSA_ALG_ANY_HASH
o PSA_ALG_CBC_MAC
o PSA_ALG_CBC_NO_PADDING
o PSA_ALG_CBC_PKCS7
o PSA_ALG_CCM
o PSA_ALG_CFB
o PSA_ALG_CHACHA20_POLY1305
o PSA_ALG_CMAC
o PSA_ALG_CTR
o PSA_ALG_ECDH
o PSA_ALG_ECDSA_ANY
o PSA_ALG_FFDH
o PSA_ALG_GCM
o PSA_ALG_MD2
o PSA_ALG_MD4
o PSA_ALG_MD5
o PSA_ALG_OFB
o PSA_ALG_RIPEMD160
o PSA_ALG_RSA_PKCS1V15_CRYPT
o PSA_ALG_RSA_PKCS1V15_SIGN_RAW
o PSA_ALG_SHA_1
o PSA_ALG_SHA_224
o PSA_ALG_SHA_256
o PSA_ALG_SHA_384
o PSA_ALG_SHA_512
o PSA_ALG_SHA_512_224
o PSA_ALG_SHA_512_256
o PSA_ALG_SHA3_224
o PSA_ALG_SHA3_256

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 250
1.0.1 Non-confidential

IHI 0086
1.0.1

(e]

o

(e]

PSA_ALG_SHA3_384
PSA_ALG_SHA3_512
PSA_ALG_XTS

— The following macros with specification-defined values have new example implementations:

(¢]

(e]

(@]

PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG()
PSA_ALG_AEAD_WITH_SHORTENED_TAG()
PSA_ALG_DETERMINISTIC_ECDSA()
PSA_ALG_ECDSA()
PSA_ALG_FULL_LENGTH_MAC()
PSA_ALG_HKDF ()

PSA_ALG_HMAC ()

PSA_ALG_IS_AEAD()
PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER()
PSA_ALG_IS_ASYMMETRIC_ENCRYPTION()
PSA_ALG_IS_BLOCK_CIPHER_MAC()
PSA_ALG_IS_CIPHER()
PSA_ALG_IS_DETERMINISTIC_ECDSA()
PSA_ALG_IS_ECDH()
PSA_ALG_IS_ECDSA()
PSA_ALG_IS_FFDH()
PSA_ALG_IS_HASH()
PSA_ALG_IS_HASH_AND_SIGN()
PSA_ALG_IS_HKDF ()
PSA_ALG_IS_HMAC()
PSA_ALG_IS_KEY_AGREEMENT ()
PSA_ALG_IS_KEY_DERIVATION()
PSA_ALG_IS_MAC()
PSA_ALG_IS_RANDOMIZED_ECDSA()
PSA_ALG_IS_RAW_KEY_AGREEMENT ()
PSA_ALG_IS_RSA_OAEP()
PSA_ALG_IS_RSA_PKCSTV15_SIGN()
PSA_ALG_IS_RSA_PSS()
PSA_ALG_IS_SIGN()
PSA_ALG_IS_SIGN_MESSAGE ()
PSA_ALG_IS_STREAM_CIPHER()
PSA_ALG_IS_TLS12_PRF()
PSA_ALG_IS_TLS12_PSK_TO_MS()
PSA_ALG_IS_WILDCARD()
PSA_ALG_KEY_AGREEMENT ()
PSA_ALG_KEY_AGREEMENT _GET_BASE ()
PSA_ALG_KEY_AGREEMENT_GET_KDF ()
PSA_ALG_RSA_OAEP ()

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

Non-confidential

Page 251

o PSA_ALG_RSA_PKCSTV15_SIGN()
o PSA_ALG_RSA_PSS()

o PSA_ALG_TLS12_PRF()

o PSA_ALG_TLS12_PSK_TO_MS()

o PSA_ALG_TRUNCATED_MAC ()

e Added ECB block cipher mode, with no padding, as PSA_ALG_ECB_NO_PADDING.

e Add functions to suspend and resume hash operations:

psa_hash_suspend() halts the current operation and outputs a hash suspend state.
psa_hash_resume () continues a previously suspended hash operation.

The format of the hash suspend state is documented in Hash suspend state on page 120, and
supporting macros are provided for using this API:

PSA_HASH_SUSPEND_OUTPUT_SIZE()
PSA_HASH_SUSPEND_OUTPUT _MAX_SIZE
PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH
PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH()
PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH()
PSA_HASH_BLOCK_LENGTH()

e Complement PSA_ERROR_STORAGE_FAILURE with new error codes PSA_ERROR_DATA_CORRUPT and
PSA_ERROR_DATA_INVALID. These permit an implementation to distinguish different causes of failure
when reading from key storage.

e Added input step PSA_KEY_DERIVATION_INPUT_CONTEXT for key derivation, supporting obvious mapping
from the step identifiers to common KDF constructions.

Clarifications

e Clarified rules regarding modification of parameters in concurrent environments.

e Guarantee that psa_destroy_key(PSA_KEY_ID_NULL) always returns PSA_SUCCESS.
e Clarified the TLS PSK to MS key agreement algorithm.

Document the key policy requirements for all APIs that accept a key parameter.

Document more of the error codes for each function.

Other changes

e Require C99 for this specification instead of C89.

e Removed references to non-standard mbed-crypto header files. The only header file that
applications need to include is psa/crypto.h.

e Reorganized the API reference, grouping the elements in a more natural way.

e Improved the cross referencing between all of the document sections, and from code snippets to API
element descriptions.

IHI 0086
1.0.1

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 252
Non-confidential

C.1.3 Changes between 1.0 beta 2 and 1.0 beta 3

Changes to the API

e Change the value of error codes, and some names, to align with other PSA specifications. The name
changes are:

PSA_ERROR_UNKNOWN_ERROR —> PSA_ERROR_GENERIC_ERROR
PSA_ERROR_OCCUPIED_SLOT —> PSA_ERROR_ALREADY_EXISTS
PSA_ERROR_EMPTY_SLOT — PSA_ERROR_DOES_NOT_EXIST
PSA_ERROR_INSUFFICIENT_CAPACITY — PSA_ERROR_INSUFFICIENT_DATA
PSA_ERROR_TAMPERING_DETECTED — PSA_ERROR_CORRUPTION_DETECTED

e Change the way keys are created to avoid “half-filled” handles that contained key metadata, but no
key material. Now, to create a key, first fill in a data structure containing its attributes, then pass this
structure to a function that both allocates resources for the key and fills in the key material. This
affects the following functions:

psa_import_key(), psa_generate_key(), psa_generator_import_key() and psa_copy_key() now take
an attribute structure, as a pointer to psa_key_attributes_t, to specify key metadata. This
replaces the previous method of passing arguments to psa_create_key () or to the key material
creation function or calling psa_set_key_policy().

psa_key_policy_t and functions operating on that type no longer exist. A key’s policy is now
accessible as part of its attributes.

psa_get_key_information() is also replaced by accessing the key’s attributes, retrieved with
psa_get_key_attributes().

psa_create_key() no longer exists. Instead, set the key id attribute and the lifetime attribute
before creating the key material.

o Allow psa_aead_update() to buffer data.

o New buffer size calculation macros.

e Key identifiers are no longer specific to a given lifetime value. psa_open_key () no longer takes a
lifetime parameter.

e Define a range of key identifiers for use by applications and a separate range for use by
implementations.

e Avoid the unusual terminology “generator”: call them “key derivation operations” instead. Rename a
number of functions and other identifiers related to for clarity and consistency:

IHI 0086
1.0.1

psa_crypto_generator_t — psa_key_derivation_operation_t
PSA_CRYPTO_GENERATOR_INIT — PSA_KEY_DERIVATION_OPERATION_INIT
psa_crypto_generator_init() — psa_key_derivation_operation_init()
PSA_GENERATOR_UNBRIDLED_CAPACITY — PSA_KEY_DERIVATION_UNLIMITED_CAPACITY
psa_set_generator_capacity() — psa_key_derivation_set_capacity()
psa_get_generator_capacity() — psa_key_derivation_get_capacity()
psa_key_agreement() — psa_key_derivation_key_agreement()
psa_generator_read() — psa_key_derivation_output_bytes()
psa_generate_derived_key() — psa_key_derivation_output_key()

psa_generator_abort() — psa_key_derivation_abort()

Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 253
Non-confidential

— psa_key_agreement_raw_shared_secret() — psa_raw_key_agreement()
— PSA_KDF_STEP_xxx — PSA_KEY_DERIVATION_INPUT_xxx
— PSA_xxx_KEYPAIR — PSA_xxx_KEY_PAIR

e Convert TLS1.2 KDF descriptions to multi-part key derivation.

Clarifications

e Specify psa_generator_import_key() for most key types.
e Clarify the behavior in various corner cases.

e Document more error conditions.

C.1.4 Changes between 1.0 beta 1 and 1.0 beta 2
Changes to the API

e Remove obsolete definition PSA_ALG_IS_KEY_SELECTION.

e PSA_AEAD_FINISH_OUTPUT_SIZE: remove spurious parameter plaintext_length.

Clarifications

e psa_key_agreement(): document alg parameter.

Other changes

e Document formatting improvements.

C.2 Planned changes for version 1.0.x

Future versions of this specification that use a 1.0.x version will describe the same API as this
specification. Any changes will not affect application compatibility and will not introduce major features.
These updates are intended to add minor requirements on implementations, introduce optional definitions,
make corrections, clarify potential or actual ambiguities, or improve the documentation.

These are the changes that we are currently planning to make for version 1.0.x:

e Declare identifiers for additional cryptographic algorithms.
e Mandate certain checks when importing some types of asymmetric keys.
e Specify the computation of algorithm and key type values.

e Further clarifications on APl usage and implementation.

C.3 Future additions

Major additions to the API will be defined in future drafts and editions of a 1.x or 2.x version of this
specification. Features that are being considered include:

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 254
1.0.1 Non-confidential

e Multi-part operations for hybrid cryptography. For example, this includes hash-and-sign for EDDSA,
and hybrid encryption for ECIES.

e A more general interface to key derivation and key exchange. This would enable an application to
derive a non-extractable session key from non-extractable secrets, without leaking the intermediate
material.

e Key wrapping mechanisms to extract and import keys in an encrypted and authenticated form.
e Key discovery mechanisms. This would enable an application to locate a key by its name or attributes.

e Implementation capability description. This would enable an application to determine the algorithms,
key types and storage lifetimes that the implementation provides.

e An ownership and access control mechanism allowing a multi-client implementation to have
privileged clients that are able to manage keys of other clients.

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved. Page 255
1.0.1 Non-confidential

Index of API elements

PSA_A

PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE, 178
PSA_AEAD_DECRYPT_OUTPUT_SIZE, 177
PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE, 177
PSA_AEAD_ENCRYPT_OUTPUT_SIZE, 176
PSA_AEAD_FINISH_OUTPUT_MAX_SIZE, 180
PSA_AEAD_FINISH_OUTPUT_SIZE, 180
PSA_AEAD_NONCE_LENGTH, 178
PSA_AEAD_NONCE_MAX_SIZE, 179
PSA_AEAD_OPERATION_INIT, 163
PSA_AEAD_TAG_LENGTH, 180
PSA_AEAD_TAG_MAX_SIZE, 181
PSA_AEAD_UPDATE _OUTPUT_MAX_SIZE, 179
PSA_AEAD_UPDATE_OUTPUT_SIZE, 179
PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE, 181
PSA_AEAD_VERIFY_OUTPUT_SIZE, 181
PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG, 176
PSA_ALG_AEAD_WITH_SHORTENED_TAG, 158
PSA_ALG_ANY_HASH, 209
PSA_ALG_CBC_MAC, 123
PSA_ALG_CBC_NO_PADDING, 139
PSA_ALG_CBC_PKCS7, 139

PSA_ALG_CCM, 157

PSA_ALG_CFB, 137
PSA_ALG_CHACHA20_POLY1305, 157
PSA_ALG_CMAC, 123

PSA_ALG_CTR, 136
PSA_ALG_DETERMINISTIC_ECDSA, 200
PSA_ALG_ECB_NO_PADDING, 138
PSA_ALG_ECDH, 218

PSA_ALG_ECDSA, 199
PSA_ALG_ECDSA_ANY, 200

PSA_ALG_FFDH, 217
PSA_ALG_FULL_LENGTH_MAC, 134
PSA_ALG_GCM, 157

PSA_ALG_GET_HASH, 103

PSA_ALG_HKDF, 181

PSA_ALG_HMAC, 122

PSA_ALG_IS_AEAD, 101
PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER, 176

PSA_ALG_IS_ASYMMETRIC_ENCRYPTION, 101
PSA_ALG_IS_BLOCK_CIPHER_MAC, 133
PSA_ALG_IS_CIPHER, 100
PSA_ALG_IS_DETERMINISTIC_ECDSA, 208
PSA_ALG_IS_ECDH, 223
PSA_ALG_IS_ECDSA, 208
PSA_ALG_IS_FFDH, 223
PSA_ALG_IS_HASH, 100
PSA_ALG_IS_HASH_AND_SIGN, 209
PSA_ALG_IS_HKDF, 196
PSA_ALG_IS_HMAC, 133
PSA_ALG_IS_KEY_AGREEMENT, 102
PSA_ALG_IS_KEY_DERIVATION, 102
PSA_ALG_IS_MAC, 100
PSA_ALG_IS_RANDOMIZED_ECDSA, 208
PSA_ALG_IS_RAW_KEY_AGREEMENT, 222
PSA_ALG_IS_RSA_OAEP, 215
PSA_ALG_IS_RSA_PKCS1V15_SIGN, 207
PSA_ALG_IS_RSA_PSS, 208
PSA_ALG_IS_SIGN, 101
PSA_ALG_IS_SIGN_HASH, 207
PSA_ALG_IS_SIGN_MESSAGE, 207
PSA_ALG_IS_STREAM_CIPHER, 151
PSA_ALG_IS_TLS12_PRF, 197
PSA_ALG_IS_TLS12_PSK_TO_MS, 197
PSA_ALG_IS_WILDCARD, 102
PSA_ALG_KEY_AGREEMENT, 217
PSA_ALG_KEY_AGREEMENT_GET_BASE, 221
PSA_ALG_KEY_AGREEMENT_GET_KDF, 222
PSA_ALG_MD2, 103

PSA_ALG_MD4, 104

PSA_ALG_MD5, 104

PSA_ALG_NONE, 99

PSA_ALG_OFB, 137
PSA_ALG_RIPEMD160, 104
PSA_ALG_RSA_OAEP, 211
PSA_ALG_RSA_PKCS1V15_CRYPT, 211
PSA_ALG_RSA_PKCS1V15_SIGN, 198
PSA_ALG_RSA_PKCS1V15_SIGN_RAW, 198
PSA_ALG_RSA_PSS, 199

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

1.0.1

Non-confidential

Page 256

PSA_ALG_SHA3_224, 106
PSA_ALG_SHA3_256, 106
PSA_ALG_SHA3_384, 106
PSA_ALG_SHA3_512, 106
PSA_ALG_SHA_1, 104
PSA_ALG_SHA_224, 105
PSA_ALG_SHA_256, 105
PSA_ALG_SHA_384, 105
PSA_ALG_SHA_512, 105
PSA_ALG_SHA_512_224, 105
PSA_ALG_SHA_512_256, 105
PSA_ALG_SM3, 106
PSA_ALG_STREAM_CIPHER, 135
PSA_ALG_TLS12_PRF, 182
PSA_ALG_TLS12_PSK_TO_MS, 183
PSA_ALG_TRUNCATED_MAC, 122
PSA_ALG_XTS, 138

PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE, 216

PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE, 216

PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE, 215

PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE, 215
psa_aead_abort, 175
psa_aead_decrypt, 160
psa_aead_decrypt_setup, 164
psa_aead_encrypt, 158
psa_aead_encrypt_setup, 163
psa_aead_finish, 172
psa_aead_generate_nonce, 167
psa_aead_operation_init, 163
psa_aead_operation_t, 162
psa_aead_set_lengths, 166
psa_aead_set_nonce, 168
psa_aead_update, 170
psa_aead_update_ad, 169
psa_aead_verify, 173
psa_algorithm_t, 99
psa_asymmetric_decrypt, 213
psa_asymmetric_encrypt, 212

PSA_B

PSA_BLOCK_CIPHER_BLOCK_LENGTH, 156
PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE, 156

PSA_C

PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE, 153
PSA_CIPHER_DECRYPT_OUTPUT_SIZE, 153
PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE, 152
PSA_CIPHER_ENCRYPT_OUTPUT_SIZE, 152

PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE, 156
PSA_CIPHER_FINISH_OUTPUT_SIZE, 155
PSA_CIPHER_IV_LENGTH, 154
PSA_CIPHER_IV_MAX_SIZE, 154
PSA_CIPHER_OPERATION_INIT, 143
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE, 155
PSA_CIPHER_UPDATE_OUTPUT_SIZE, 154
PSA_CRYPTO_API_VERSION_MAJOR, 48
PSA_CRYPTO_API_VERSION_MINOR, 48
psa_cipher_abort, 151
psa_cipher_decrypt, 141
psa_cipher_decrypt_setup, 145
psa_cipher_encrypt, 139
psa_cipher_encrypt_setup, 143
psa_cipher_finish, 150
psa_cipher_generate_iv, 146
psa_cipher_operation_init, 143
psa_cipher_operation_t, 142
psa_cipher_set_iv, 147
psa_cipher_update, 148
psa_copy_key, 88

psa_crypto_init, 48

PSA_D

PSA_DH_FAMILY_RFC7919, 64
psa_destroy_key, 90
psa_dh_family_t, 63

PSA_E

PSA_ECC_FAMILY_BRAINPOOL_P_RT, 61
PSA_ECC_FAMILY_FRP, 61
PSA_ECC_FAMILY_MONTGOMERY, 62
PSA_ECC_FAMILY_SECP_K1, 59
PSA_ECC_FAMILY_SECP_R1, 59
PSA_ECC_FAMILY_SECP_R2, 59
PSA_ECC_FAMILY_SECT_K1, 60
PSA_ECC_FAMILY_SECT_R1, 60
PSA_ECC_FAMILY_SECT_R2, 61
PSA_ERROR_ALREADY_EXISTS, 43
PSA_ERROR_BAD_STATE, 43
PSA_ERROR_BUFFER_TOO_SMALL, 42
PSA_ERROR_COMMUNICATION_FAILURE, 44
PSA_ERROR_CORRUPTION_DETECTED, 46
PSA_ERROR_DATA_CORRUPT, 45
PSA_ERROR_DATA_INVALID, 45
PSA_ERROR_DOES_NOT_EXIST, 43
PSA_ERROR_GENERIC_ERROR, 42
PSA_ERROR_HARDWARE _FAILURE, 46

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

1.0.1

Non-confidential

Page 257

PSA_ERROR_INSUFFICIENT_DATA, 47
PSA_ERROR_INSUFFICIENT_ENTROPY, 46
PSA_ERROR_INSUFFICIENT_MEMORY, 44
PSA_ERROR_INSUFFICIENT_STORAGE, 44
PSA_ERROR_INVALID_ARGUMENT, 43
PSA_ERROR_INVALID_HANDLE, 47
PSA_ERROR_INVALID_PADDING, 47
PSA_ERROR_INVALID_SIGNATURE, 47
PSA_ERROR_NOT_PERMITTED, 42
PSA_ERROR_NOT_SUPPORTED, 42
PSA_ERROR_STORAGE_ _FAILURE, 44

psa_hash_setup, 109
psa_hash_suspend, 113
psa_hash_update, 110
psa_hash_verify, 112
PSA_I

psa_import_key, 85

PSA_K

PSA_KEY_ATTRIBUTES_INIT, 51
PSA_KEY_DERIVATION_INPUT_CONTEXT, 184

PSA_EXPORT_KEY_OUTPUT_SIZE, 96
PSA_EXPORT_KEY_PAIR_MAX_SIZE, 98
PSA_EXPORT_PUBLIC_KEY_MAX_SIZE, 98
PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE, 97
psa_ecc_family_t, 58

PSA_KEY_DERIVATION_INPUT_INFO, 184
PSA_KEY_DERIVATION_INPUT_LABEL, 184
PSA_KEY_DERIVATION_INPUT_SALT, 184
PSA_KEY_DERIVATION_INPUT_SECRET, 184
PSA_KEY_DERIVATION_INPUT_SEED, 185

psa_export_key, 92
psa_export_public_key, 94

PSA_KEY_DERIVATION_OPERATION_INIT, 185
PSA_KEY_DERIVATION_UNLIMITED_CAPACITY, 197
PSA_KEY_ID_NULL, 76
PSA_KEY_ID_USER_MAX, 76
PSA_KEY_ID_USER_MIN, 76
PSA_KEY_ID_VENDOR_MAX, 77
PSA_KEY_ID_VENDOR_MIN, 76
PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION, 75
PSA_KEY_LIFETIME_GET_LOCATION, 74
PSA_KEY_LIFETIME_GET_PERSISTENCE, 74
PSA_KEY_LIFETIME_IS_VOLATILE, 75
PSA_KEY_LIFETIME_PERSISTENT, 72
PSA_KEY_LIFETIME_VOLATILE, 72
PSA_KEY_LOCATION_LOCAL_STORAGE, 73
PSA_KEY_LOCATION_PRIMARY_SECURE_ELEMENT, 73
PSA_KEY_PERSISTENCE_DEFAULT, 72
PSA_KEY_PERSISTENCE_READ_ONLY, 72
PSA_KEY_PERSISTENCE_VOLATILE, 72
PSA_KEY_TYPE_AES, 55
PSA_KEY_TYPE_ARC4, 57
PSA_KEY_TYPE_CAMELLIA, 56
PSA_KEY_TYPE_CHACHA20, 57
PSA_KEY_TYPE_DERIVE, 55
PSA_KEY_TYPE_DES, 56
PSA_KEY_TYPE_DH_GET_FAMILY, 65
PSA_KEY_TYPE_DH_KEY_PAIR, 63
PSA_KEY_TYPE_DH_PUBLIC_KEY, 63
PSA_KEY_TYPE_ECC_GET_FAMILY, 62
PSA_KEY_TYPE_ECC_KEY_PAIR, 58
PSA_KEY_TYPE_ECC_PUBLIC_KEY, 59
PSA_KEY_TYPE_HMAC, 55
PSA_KEY_TYPE_IS_ASYMMETRIC, 54

PSA_G

psa_generate_key, 87
psa_generate_random, 224
psa_get_key_algorithm, 79
psa_get_key_attributes, 52
psa_get_key_bits, 66
psa_get_key_id, 77
psa_get_key_lifetime, 74
psa_get_key_type, 66
psa_get_key_usage_flags, 84

PSA_H

PSA_HASH_BLOCK_LENGTH, 119
PSA_HASH_LENGTH, 117

PSA_HASH_MAX_SIZE, 117
PSA_HASH_OPERATION_INIT, 109
PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH, 118
PSA_HASH_SUSPEND_HASH_STATE _FIELD_LENGTH, 119
PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH, 118
PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE, 118
PSA_HASH_SUSPEND_OUTPUT_SIZE, 118
psa_hash_abort, 113

psa_hash_clone, 116

psa_hash_compare, 107

psa_hash_compute, 106

psa_hash_finish, 111

psa_hash_operation_init, 109
psa_hash_operation_t, 108

psa_hash_resume, 115

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.
1.0.1 Non-confidential

Page 258

PSA_KEY_TYPE_IS_DH, 64
PSA_KEY_TYPE_IS_DH_KEY_PAIR, 65
PSA_KEY_TYPE_IS_DH_PUBLIC_KEY, 65
PSA_KEY_TYPE_IS_ECC, 62
PSA_KEY_TYPE_IS_ECC_KEY_PAIR, 62
PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY, 62
PSA_KEY_TYPE_IS_KEY_PAIR, 54
PSA_KEY_TYPE_IS_PUBLIC_KEY, 54
PSA_KEY_TYPE_IS_RSA, 58
PSA_KEY_TYPE_IS_UNSTRUCTURED, 54
PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY, 64
PSA_KEY_TYPE_NONE, 53
PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR, 64
PSA_KEY_TYPE_RAW_DATA, 55
PSA_KEY_TYPE_RSA_KEY_PAIR, 58
PSA_KEY_TYPE_RSA_PUBLIC_KEY, 58
PSA_KEY_TYPE_SM4, 57
PSA_KEY_USAGE_CACHE, 81
PSA_KEY_USAGE_COPY, 80
PSA_KEY_USAGE_DECRYPT, 81
PSA_KEY_USAGE_DERIVE, 83
PSA_KEY_USAGE_ENCRYPT, 81
PSA_KEY_USAGE_EXPORT, 80
PSA_KEY_USAGE_SIGN_HASH, 82
PSA_KEY_USAGE_SIGN_MESSAGE, 82
PSA_KEY_USAGE_VERIFY_HASH, 83
PSA_KEY_USAGE_VERIFY_MESSAGE, 82
psa_key_attributes_init, 52
psa_key_attributes_t, 49
psa_key_derivation_abort, 196
psa_key_derivation_get_capacity, 187
psa_key_derivation_input_bytes, 188
psa_key_derivation_input_key, 189
psa_key_derivation_key_agreement, 220
psa_key_derivation_operation_init, 185
psa_key_derivation_operation_t, 185
psa_key_derivation_output_bytes, 190
psa_key_derivation_output_key, 191
psa_key_derivation_set_capacity, 188
psa_key_derivation_setup, 186
psa_key_derivation_step_t, 184
psa_key_id_t, 76

psa_key_lifetime_t, 69
psa_key_location_t, 71
psa_key_persistence_t, 70
psa_key_type_t, 53

psa_key_usage_t, 80

PSA_M

PSA_MAC_LENGTH, 134
PSA_MAC_MAX_SIZE, 135
PSA_MAC_OPERATION_INIT, 126
psa_mac_abort, 132
psa_mac_compute, 123
psa_mac_operation_init, 127
psa_mac_operation_t, 126
psa_mac_sign_finish, 130
psa_mac_sign_setup, 127
psa_mac_update, 129
psa_mac_verify, 125
psa_mac_verify_finish, 131
psa_mac_verify_setup, 128

PSA_P
psa_purge_key, 91

PSA_R

PSA_RAW_KEY_AGREEMENT_OUTPUT _MAX_SIZE, 224

PSA_RAW_KEY_AGREEMENT _OUTPUT_SIZE, 223
psa_raw_key_agreement, 218
psa_reset_key_attributes, 53

PSA_S

PSA_SIGNATURE_MAX_SIZE, 211
PSA_SIGN_OUTPUT_SIZE, 210
PSA_SUCCESS, 42
psa_set_key_algorithm, 79
psa_set_key_bits, 67
psa_set_key_id, 77
psa_set_key_lifetime, 73
psa_set_key_type, 65
psa_set_key_usage_flags, 83
psa_sign_hash, 204
psa_sign_message, 201
psa_status_t, 41

PSA_T
PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE, 197

PSA_V

psa_verify_hash, 205
psa_verify_message, 202

IHI 0086 Copyright © 2018-2020, Arm Limited or its affiliates. All rights reserved.

1.0.1

Non-confidential

Page 259

	About this document
	Release information
	Arm Non-Confidential Document Licence (“Licence”)
	References
	Terms and abbreviations
	Potential for change
	Conventions
	Typographical conventions
	Numbers

	Pseudocode descriptions
	Assembler syntax descriptions
	Feedback
	Feedback on this book

	1 Introduction
	2 Design goals
	2.1 Suitable for constrained devices
	2.2 A keystore interface
	2.3 Optional isolation
	2.4 Choice of algorithms
	2.5 Ease of use
	2.6 Example use cases
	2.6.1 Network Security (TLS)
	2.6.2 Secure Storage
	2.6.3 Network Credentials
	2.6.4 Device Pairing
	2.6.5 Secure Boot
	2.6.6 Attestation
	2.6.7 Factory Provisioning

	3 Functionality overview
	3.1 Library management
	3.2 Key management
	3.2.1 Key identifiers
	3.2.2 Key lifetimes
	3.2.3 Key policies
	3.2.4 Recommendations of minimum standards for key management

	3.3 Symmetric cryptography
	3.3.1 Single-part Functions
	3.3.2 Multi-part operations
	3.3.3 Message digests (Hashes)
	3.3.4 Message authentication codes (MACs)
	3.3.5 Encryption and decryption
	3.3.6 Authenticated encryption (AEAD)
	3.3.7 Key derivation
	3.3.8 Example of the symmetric cryptography API

	3.4 Asymmetric cryptography
	3.4.1 Asymmetric encryption
	3.4.2 Hash-and-sign
	3.4.3 Key agreement

	3.5 Randomness and key generation

	4 Sample architectures
	4.1 Single-partition architecture
	4.2 Cryptographic token and single-application processor
	4.3 Cryptoprocessor with no key storage
	4.4 Multi-client cryptoprocessor
	4.5 Multi-cryptoprocessor architecture

	5 Library conventions
	5.1 Error handling
	5.1.1 Return status
	5.1.2 Behavior on error

	5.2 Parameter conventions
	5.2.1 Pointer conventions
	5.2.2 Input buffer sizes
	5.2.3 Output buffer sizes
	5.2.4 Overlap between parameters
	5.2.5 Stability of parameters

	5.3 Key types and algorithms
	5.3.1 Structure of key and algorithm types

	5.4 Concurrent calls

	6 Implementation considerations
	6.1 Implementation-specific aspects of the interface
	6.1.1 Implementation profile
	6.1.2 Implementation-specific types
	6.1.3 Implementation-specific macros

	6.2 Porting to a platform
	6.2.1 Platform assumptions
	6.2.2 Platform-specific types
	6.2.3 Cryptographic hardware support

	6.3 Security requirements and recommendations
	6.3.1 Error detection
	6.3.2 Indirect object references
	6.3.3 Memory cleanup
	6.3.4 Managing key material
	6.3.5 Safe outputs on error
	6.3.6 Attack resistance

	6.4 Other implementation considerations
	6.4.1 Philosophy of resource management

	7 Usage considerations
	7.1 Security recommendations
	7.1.1 Always check for errors
	7.1.2 Shared memory and concurrency
	7.1.3 Cleaning up after use

	8 Library management reference
	8.1 PSA status codes
	8.1.1 Status type
	psa_status_t (type)

	8.1.2 Success codes
	PSA_SUCCESS (macro)

	8.1.3 Error codes
	PSA_ERROR_GENERIC_ERROR (macro)
	PSA_ERROR_NOT_SUPPORTED (macro)
	PSA_ERROR_NOT_PERMITTED (macro)
	PSA_ERROR_BUFFER_TOO_SMALL (macro)
	PSA_ERROR_ALREADY_EXISTS (macro)
	PSA_ERROR_DOES_NOT_EXIST (macro)
	PSA_ERROR_BAD_STATE (macro)
	PSA_ERROR_INVALID_ARGUMENT (macro)
	PSA_ERROR_INSUFFICIENT_MEMORY (macro)
	PSA_ERROR_INSUFFICIENT_STORAGE (macro)
	PSA_ERROR_COMMUNICATION_FAILURE (macro)
	PSA_ERROR_STORAGE_FAILURE (macro)
	PSA_ERROR_DATA_CORRUPT (macro)
	PSA_ERROR_DATA_INVALID (macro)
	PSA_ERROR_HARDWARE_FAILURE (macro)
	PSA_ERROR_CORRUPTION_DETECTED (macro)
	PSA_ERROR_INSUFFICIENT_ENTROPY (macro)
	PSA_ERROR_INVALID_SIGNATURE (macro)
	PSA_ERROR_INVALID_PADDING (macro)
	PSA_ERROR_INSUFFICIENT_DATA (macro)
	PSA_ERROR_INVALID_HANDLE (macro)

	8.2 PSA Crypto library
	8.2.1 API version
	PSA_CRYPTO_API_VERSION_MAJOR (macro)
	PSA_CRYPTO_API_VERSION_MINOR (macro)

	8.2.2 Library initialization
	psa_crypto_init (function)

	9 Key management reference
	9.1 Key attributes
	9.1.1 Managing key attributes
	psa_key_attributes_t (type)
	PSA_KEY_ATTRIBUTES_INIT (macro)
	psa_key_attributes_init (function)
	psa_get_key_attributes (function)
	psa_reset_key_attributes (function)

	9.2 Key types
	9.2.1 Key type encoding
	psa_key_type_t (type)
	PSA_KEY_TYPE_NONE (macro)

	9.2.2 Key categories
	PSA_KEY_TYPE_IS_UNSTRUCTURED (macro)
	PSA_KEY_TYPE_IS_ASYMMETRIC (macro)
	PSA_KEY_TYPE_IS_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_IS_KEY_PAIR (macro)

	9.2.3 Symmetric keys
	PSA_KEY_TYPE_RAW_DATA (macro)
	PSA_KEY_TYPE_HMAC (macro)
	PSA_KEY_TYPE_DERIVE (macro)
	PSA_KEY_TYPE_AES (macro)
	PSA_KEY_TYPE_DES (macro)
	PSA_KEY_TYPE_CAMELLIA (macro)
	PSA_KEY_TYPE_SM4 (macro)
	PSA_KEY_TYPE_ARC4 (macro)
	PSA_KEY_TYPE_CHACHA20 (macro)

	9.2.4 RSA keys
	PSA_KEY_TYPE_RSA_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_RSA_KEY_PAIR (macro)
	PSA_KEY_TYPE_IS_RSA (macro)

	9.2.5 Elliptic Curve keys
	psa_ecc_family_t (type)
	PSA_KEY_TYPE_ECC_KEY_PAIR (macro)
	PSA_KEY_TYPE_ECC_PUBLIC_KEY (macro)
	PSA_ECC_FAMILY_SECP_K1 (macro)
	PSA_ECC_FAMILY_SECP_R1 (macro)
	PSA_ECC_FAMILY_SECP_R2 (macro)
	PSA_ECC_FAMILY_SECT_K1 (macro)
	PSA_ECC_FAMILY_SECT_R1 (macro)
	PSA_ECC_FAMILY_SECT_R2 (macro)
	PSA_ECC_FAMILY_BRAINPOOL_P_R1 (macro)
	PSA_ECC_FAMILY_FRP (macro)
	PSA_ECC_FAMILY_MONTGOMERY (macro)
	PSA_KEY_TYPE_IS_ECC (macro)
	PSA_KEY_TYPE_IS_ECC_KEY_PAIR (macro)
	PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_ECC_GET_FAMILY (macro)

	9.2.6 Diffie Hellman keys
	psa_dh_family_t (type)
	PSA_KEY_TYPE_DH_KEY_PAIR (macro)
	PSA_KEY_TYPE_DH_PUBLIC_KEY (macro)
	PSA_DH_FAMILY_RFC7919 (macro)
	PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR (macro)
	PSA_KEY_TYPE_IS_DH (macro)
	PSA_KEY_TYPE_IS_DH_KEY_PAIR (macro)
	PSA_KEY_TYPE_IS_DH_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_DH_GET_FAMILY (macro)

	9.2.7 Attribute accessors
	psa_set_key_type (function)
	psa_get_key_type (function)
	psa_get_key_bits (function)
	psa_set_key_bits (function)

	9.3 Key lifetimes
	9.3.1 Volatile keys
	9.3.2 Persistent keys
	9.3.3 Lifetime encodings
	psa_key_lifetime_t (type)
	psa_key_persistence_t (type)
	psa_key_location_t (type)

	9.3.4 Lifetime values
	PSA_KEY_LIFETIME_VOLATILE (macro)
	PSA_KEY_LIFETIME_PERSISTENT (macro)
	PSA_KEY_PERSISTENCE_VOLATILE (macro)
	PSA_KEY_PERSISTENCE_DEFAULT (macro)
	PSA_KEY_PERSISTENCE_READ_ONLY (macro)
	PSA_KEY_LOCATION_LOCAL_STORAGE (macro)
	PSA_KEY_LOCATION_PRIMARY_SECURE_ELEMENT (macro)

	9.3.5 Attribute accessors
	psa_set_key_lifetime (function)
	psa_get_key_lifetime (function)

	9.3.6 Support macros
	PSA_KEY_LIFETIME_GET_PERSISTENCE (macro)
	PSA_KEY_LIFETIME_GET_LOCATION (macro)
	PSA_KEY_LIFETIME_IS_VOLATILE (macro)
	PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION (macro)

	9.4 Key identifiers
	9.4.1 Key identifier type
	psa_key_id_t (type)
	PSA_KEY_ID_NULL (macro)
	PSA_KEY_ID_USER_MIN (macro)
	PSA_KEY_ID_USER_MAX (macro)
	PSA_KEY_ID_VENDOR_MIN (macro)
	PSA_KEY_ID_VENDOR_MAX (macro)

	9.4.2 Attribute accessors
	psa_set_key_id (function)
	psa_get_key_id (function)

	9.5 Key policies
	9.5.1 Permitted algorithms
	psa_set_key_algorithm (function)
	psa_get_key_algorithm (function)

	9.5.2 Key usage flags
	psa_key_usage_t (type)
	PSA_KEY_USAGE_EXPORT (macro)
	PSA_KEY_USAGE_COPY (macro)
	PSA_KEY_USAGE_CACHE (macro)
	PSA_KEY_USAGE_ENCRYPT (macro)
	PSA_KEY_USAGE_DECRYPT (macro)
	PSA_KEY_USAGE_SIGN_MESSAGE (macro)
	PSA_KEY_USAGE_VERIFY_MESSAGE (macro)
	PSA_KEY_USAGE_SIGN_HASH (macro)
	PSA_KEY_USAGE_VERIFY_HASH (macro)
	PSA_KEY_USAGE_DERIVE (macro)
	psa_set_key_usage_flags (function)
	psa_get_key_usage_flags (function)

	9.6 Key management functions
	9.6.1 Key creation
	psa_import_key (function)
	psa_generate_key (function)
	psa_copy_key (function)

	9.6.2 Key destruction
	psa_destroy_key (function)
	psa_purge_key (function)

	9.6.3 Key export
	psa_export_key (function)
	psa_export_public_key (function)
	PSA_EXPORT_KEY_OUTPUT_SIZE (macro)
	PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE (macro)
	PSA_EXPORT_KEY_PAIR_MAX_SIZE (macro)
	PSA_EXPORT_PUBLIC_KEY_MAX_SIZE (macro)

	10 Cryptographic operation reference
	10.1 Algorithms
	10.1.1 Algorithm encoding
	psa_algorithm_t (type)
	PSA_ALG_NONE (macro)

	10.1.2 Algorithm categories
	PSA_ALG_IS_HASH (macro)
	PSA_ALG_IS_MAC (macro)
	PSA_ALG_IS_CIPHER (macro)
	PSA_ALG_IS_AEAD (macro)
	PSA_ALG_IS_SIGN (macro)
	PSA_ALG_IS_ASYMMETRIC_ENCRYPTION (macro)
	PSA_ALG_IS_KEY_AGREEMENT (macro)
	PSA_ALG_IS_KEY_DERIVATION (macro)
	PSA_ALG_IS_WILDCARD (macro)
	PSA_ALG_GET_HASH (macro)

	10.2 Message digests
	10.2.1 Hash algorithms
	PSA_ALG_MD2 (macro)
	PSA_ALG_MD4 (macro)
	PSA_ALG_MD5 (macro)
	PSA_ALG_RIPEMD160 (macro)
	PSA_ALG_SHA_1 (macro)
	PSA_ALG_SHA_224 (macro)
	PSA_ALG_SHA_256 (macro)
	PSA_ALG_SHA_384 (macro)
	PSA_ALG_SHA_512 (macro)
	PSA_ALG_SHA_512_224 (macro)
	PSA_ALG_SHA_512_256 (macro)
	PSA_ALG_SHA3_224 (macro)
	PSA_ALG_SHA3_256 (macro)
	PSA_ALG_SHA3_384 (macro)
	PSA_ALG_SHA3_512 (macro)
	PSA_ALG_SM3 (macro)

	10.2.2 Single-part hashing functions
	psa_hash_compute (function)
	psa_hash_compare (function)

	10.2.3 Multi-part hashing operations
	psa_hash_operation_t (type)
	PSA_HASH_OPERATION_INIT (macro)
	psa_hash_operation_init (function)
	psa_hash_setup (function)
	psa_hash_update (function)
	psa_hash_finish (function)
	psa_hash_verify (function)
	psa_hash_abort (function)
	psa_hash_suspend (function)
	psa_hash_resume (function)
	psa_hash_clone (function)

	10.2.4 Support macros
	PSA_HASH_LENGTH (macro)
	PSA_HASH_MAX_SIZE (macro)
	PSA_HASH_SUSPEND_OUTPUT_SIZE (macro)
	PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE (macro)
	PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH (macro)
	PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH (macro)
	PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH (macro)
	PSA_HASH_BLOCK_LENGTH (macro)

	10.2.5 Hash suspend state
	Hash suspend state format
	Hash suspend state field sizes

	10.3 Message authentication codes (MAC)
	10.3.1 MAC algorithms
	PSA_ALG_HMAC (macro)
	PSA_ALG_TRUNCATED_MAC (macro)
	PSA_ALG_CBC_MAC (macro)
	PSA_ALG_CMAC (macro)

	10.3.2 Single-part MAC functions
	psa_mac_compute (function)
	psa_mac_verify (function)

	10.3.3 Multi-part MAC operations
	psa_mac_operation_t (type)
	PSA_MAC_OPERATION_INIT (macro)
	psa_mac_operation_init (function)
	psa_mac_sign_setup (function)
	psa_mac_verify_setup (function)
	psa_mac_update (function)
	psa_mac_sign_finish (function)
	psa_mac_verify_finish (function)
	psa_mac_abort (function)

	10.3.4 Support macros
	PSA_ALG_IS_HMAC (macro)
	PSA_ALG_IS_BLOCK_CIPHER_MAC (macro)
	PSA_ALG_FULL_LENGTH_MAC (macro)
	PSA_MAC_LENGTH (macro)
	PSA_MAC_MAX_SIZE (macro)

	10.4 Unauthenticated ciphers
	10.4.1 Cipher algorithms
	PSA_ALG_STREAM_CIPHER (macro)
	PSA_ALG_CTR (macro)
	PSA_ALG_CFB (macro)
	PSA_ALG_OFB (macro)
	PSA_ALG_XTS (macro)
	PSA_ALG_ECB_NO_PADDING (macro)
	PSA_ALG_CBC_NO_PADDING (macro)
	PSA_ALG_CBC_PKCS7 (macro)

	10.4.2 Single-part cipher functions
	psa_cipher_encrypt (function)
	psa_cipher_decrypt (function)

	10.4.3 Multi-part cipher operations
	psa_cipher_operation_t (type)
	PSA_CIPHER_OPERATION_INIT (macro)
	psa_cipher_operation_init (function)
	psa_cipher_encrypt_setup (function)
	psa_cipher_decrypt_setup (function)
	psa_cipher_generate_iv (function)
	psa_cipher_set_iv (function)
	psa_cipher_update (function)
	psa_cipher_finish (function)
	psa_cipher_abort (function)

	10.4.4 Support macros
	PSA_ALG_IS_STREAM_CIPHER (macro)
	PSA_CIPHER_ENCRYPT_OUTPUT_SIZE (macro)
	PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE (macro)
	PSA_CIPHER_DECRYPT_OUTPUT_SIZE (macro)
	PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE (macro)
	PSA_CIPHER_IV_LENGTH (macro)
	PSA_CIPHER_IV_MAX_SIZE (macro)
	PSA_CIPHER_UPDATE_OUTPUT_SIZE (macro)
	PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE (macro)
	PSA_CIPHER_FINISH_OUTPUT_SIZE (macro)
	PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE (macro)
	PSA_BLOCK_CIPHER_BLOCK_LENGTH (macro)
	PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE (macro)

	10.5 Authenticated encryption with associated data (AEAD)
	10.5.1 AEAD algorithms
	PSA_ALG_CCM (macro)
	PSA_ALG_GCM (macro)
	PSA_ALG_CHACHA20_POLY1305 (macro)
	PSA_ALG_AEAD_WITH_SHORTENED_TAG (macro)

	10.5.2 Single-part AEAD functions
	psa_aead_encrypt (function)
	psa_aead_decrypt (function)

	10.5.3 Multi-part AEAD operations
	psa_aead_operation_t (type)
	PSA_AEAD_OPERATION_INIT (macro)
	psa_aead_operation_init (function)
	psa_aead_encrypt_setup (function)
	psa_aead_decrypt_setup (function)
	psa_aead_set_lengths (function)
	psa_aead_generate_nonce (function)
	psa_aead_set_nonce (function)
	psa_aead_update_ad (function)
	psa_aead_update (function)
	psa_aead_finish (function)
	psa_aead_verify (function)
	psa_aead_abort (function)

	10.5.4 Support macros
	PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER (macro)
	PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG (macro)
	PSA_AEAD_ENCRYPT_OUTPUT_SIZE (macro)
	PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE (macro)
	PSA_AEAD_DECRYPT_OUTPUT_SIZE (macro)
	PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE (macro)
	PSA_AEAD_NONCE_LENGTH (macro)
	PSA_AEAD_NONCE_MAX_SIZE (macro)
	PSA_AEAD_UPDATE_OUTPUT_SIZE (macro)
	PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE (macro)
	PSA_AEAD_FINISH_OUTPUT_SIZE (macro)
	PSA_AEAD_FINISH_OUTPUT_MAX_SIZE (macro)
	PSA_AEAD_TAG_LENGTH (macro)
	PSA_AEAD_TAG_MAX_SIZE (macro)
	PSA_AEAD_VERIFY_OUTPUT_SIZE (macro)
	PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE (macro)

	10.6 Key derivation
	10.6.1 Key derivation algorithms
	PSA_ALG_HKDF (macro)
	PSA_ALG_TLS12_PRF (macro)
	PSA_ALG_TLS12_PSK_TO_MS (macro)

	10.6.2 Input step types
	psa_key_derivation_step_t (type)
	PSA_KEY_DERIVATION_INPUT_SECRET (macro)
	PSA_KEY_DERIVATION_INPUT_LABEL (macro)
	PSA_KEY_DERIVATION_INPUT_CONTEXT (macro)
	PSA_KEY_DERIVATION_INPUT_SALT (macro)
	PSA_KEY_DERIVATION_INPUT_INFO (macro)
	PSA_KEY_DERIVATION_INPUT_SEED (macro)

	10.6.3 Key derivation functions
	psa_key_derivation_operation_t (type)
	PSA_KEY_DERIVATION_OPERATION_INIT (macro)
	psa_key_derivation_operation_init (function)
	psa_key_derivation_setup (function)
	psa_key_derivation_get_capacity (function)
	psa_key_derivation_set_capacity (function)
	psa_key_derivation_input_bytes (function)
	psa_key_derivation_input_key (function)
	psa_key_derivation_output_bytes (function)
	psa_key_derivation_output_key (function)
	psa_key_derivation_abort (function)

	10.6.4 Support macros
	PSA_ALG_IS_HKDF (macro)
	PSA_ALG_IS_TLS12_PRF (macro)
	PSA_ALG_IS_TLS12_PSK_TO_MS (macro)
	PSA_KEY_DERIVATION_UNLIMITED_CAPACITY (macro)
	PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE (macro)

	10.7 Asymmetric signature
	10.7.1 Asymmetric signature algorithms
	PSA_ALG_RSA_PKCS1V15_SIGN (macro)
	PSA_ALG_RSA_PKCS1V15_SIGN_RAW (macro)
	PSA_ALG_RSA_PSS (macro)
	PSA_ALG_ECDSA (macro)
	PSA_ALG_ECDSA_ANY (macro)
	PSA_ALG_DETERMINISTIC_ECDSA (macro)

	10.7.2 Asymmetric signature functions
	psa_sign_message (function)
	psa_verify_message (function)
	psa_sign_hash (function)
	psa_verify_hash (function)

	10.7.3 Support macros
	PSA_ALG_IS_SIGN_MESSAGE (macro)
	PSA_ALG_IS_SIGN_HASH (macro)
	PSA_ALG_IS_RSA_PKCS1V15_SIGN (macro)
	PSA_ALG_IS_RSA_PSS (macro)
	PSA_ALG_IS_ECDSA (macro)
	PSA_ALG_IS_DETERMINISTIC_ECDSA (macro)
	PSA_ALG_IS_RANDOMIZED_ECDSA (macro)
	PSA_ALG_IS_HASH_AND_SIGN (macro)
	PSA_ALG_ANY_HASH (macro)
	PSA_SIGN_OUTPUT_SIZE (macro)
	PSA_SIGNATURE_MAX_SIZE (macro)

	10.8 Asymmetric encryption
	10.8.1 Asymmetric encryption algorithms
	PSA_ALG_RSA_PKCS1V15_CRYPT (macro)
	PSA_ALG_RSA_OAEP (macro)

	10.8.2 Asymmetric encryption functions
	psa_asymmetric_encrypt (function)
	psa_asymmetric_decrypt (function)

	10.8.3 Support macros
	PSA_ALG_IS_RSA_OAEP (macro)
	PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE (macro)
	PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE (macro)
	PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE (macro)
	PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE (macro)

	10.9 Key agreement
	10.9.1 Key agreement algorithms
	PSA_ALG_KEY_AGREEMENT (macro)
	PSA_ALG_FFDH (macro)
	PSA_ALG_ECDH (macro)

	10.9.2 Standalone key agreement
	psa_raw_key_agreement (function)

	10.9.3 Combining key agreement and key derivation
	psa_key_derivation_key_agreement (function)

	10.9.4 Support macros
	PSA_ALG_KEY_AGREEMENT_GET_BASE (macro)
	PSA_ALG_KEY_AGREEMENT_GET_KDF (macro)
	PSA_ALG_IS_RAW_KEY_AGREEMENT (macro)
	PSA_ALG_IS_FFDH (macro)
	PSA_ALG_IS_ECDH (macro)
	PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE (macro)
	PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE (macro)

	10.10 Other cryptographic services
	10.10.1 Random number generation
	psa_generate_random (function)

	A Example header file
	A.1 psa/crypto.h

	B Example macro implementations
	B.1 Algorithm macros
	B.2 Key type macros
	B.3 Hash suspend state macros

	C Changes to the API
	C.1 Document change history
	C.1.1 Changes between 1.0.0 and 1.0.1
	Changes to the API
	Clarifications and fixes
	Other changes

	C.1.2 Changes between 1.0 beta 3 and 1.0.0
	Changes to the API
	Clarifications
	Other changes

	C.1.3 Changes between 1.0 beta 2 and 1.0 beta 3
	Changes to the API
	Clarifications

	C.1.4 Changes between 1.0 beta 1 and 1.0 beta 2
	Changes to the API
	Clarifications
	Other changes

	C.2 Planned changes for version 1.0.x
	C.3 Future additions

	Index of API elements

