Replace HTML files by redirection to the official spec hosting

Use HTML redirects since we can't do HTTP redirects on GitHub pages.

Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
diff --git a/docs/1.1.0/html/overview/implementation.html b/docs/1.1.0/html/overview/implementation.html
index 61d40b1..55fb431 100644
--- a/docs/1.1.0/html/overview/implementation.html
+++ b/docs/1.1.0/html/overview/implementation.html
@@ -1,376 +1 @@
-
-<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
-  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
-
-<html xmlns="http://www.w3.org/1999/xhtml">
-  <head>
-    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
-    <title>6. Implementation considerations &#8212; PSA Crypto API 1.1.0 documentation</title>
-    <link rel="stylesheet" href="../_static/alabaster.css" type="text/css" />
-    <link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
-    <script type="text/javascript">
-      var DOCUMENTATION_OPTIONS = {
-        URL_ROOT:    '../',
-        VERSION:     '1.1.0',
-        COLLAPSE_INDEX: false,
-        FILE_SUFFIX: '.html',
-        HAS_SOURCE:  false,
-        SOURCELINK_SUFFIX: '.txt'
-      };
-    </script>
-    <script type="text/javascript" src="../_static/jquery.js"></script>
-    <script type="text/javascript" src="../_static/underscore.js"></script>
-    <script type="text/javascript" src="../_static/doctools.js"></script>
-    <link rel="author" title="About these documents" href="../about.html" />
-    <link rel="index" title="Index" href="../genindex.html" />
-    <link rel="search" title="Search" href="../search.html" />
-    <link rel="next" title="7. Usage considerations" href="usage.html" />
-    <link rel="prev" title="5. Library conventions" href="conventions.html" />
-   
-  <link rel="stylesheet" href="../_static/custom.css" type="text/css" />
-  
-  <meta name="viewport" content="width=device-width, initial-scale=0.9, maximum-scale=0.9" />
-
-  </head>
-  <body>
-  
-
-    <div class="document">
-      <div class="documentwrapper">
-        <div class="bodywrapper">
-          <div class="body" role="main">
-            
-  <div class="section" id="implementation-considerations">
-<span id="id1"></span><h1>6. Implementation considerations</h1>
-<div class="section" id="implementation-specific-aspects-of-the-interface">
-<h2>6.1. Implementation-specific aspects of the interface</h2>
-<div class="section" id="implementation-profile">
-<h3>6.1.1. Implementation profile</h3>
-<p>Implementations can implement a subset of the API and a subset of the available
-algorithms. The implemented subset is known as the implementation’s profile. The
-documentation for each implementation must describe the profile that it
-implements. This specification’s companion documents also define a number of
-standard profiles.</p>
-</div>
-<div class="section" id="implementation-specific-types">
-<span id="implementation-defined-type"></span><h3>6.1.2. Implementation-specific types</h3>
-<p>This specification defines a number of implementation-specific types, which
-represent objects whose content depends on the implementation. These are defined
-as C <code class="docutils literal"><span class="pre">typedef</span></code> types in this specification, with a comment
-<em><a class="reference internal" href="#implementation-defined-type"><span class="std std-ref">/* implementation-defined type */</span></a></em> in place of the underlying type
-definition. For some types the specification constrains the type, for example,
-by requiring that the type is a <code class="docutils literal"><span class="pre">struct</span></code>, or that it is convertible to and
-from an unsigned integer. In the implementation’s version of <code class="file docutils literal"><span class="pre">psa/crypto.h</span></code>,
-these types need to be defined as complete C types so that objects of these
-types can be instantiated by application code.</p>
-<p>Applications that rely on the implementation specific definition of any of these
-types might not be portable to other implementations of this specification.</p>
-</div>
-<div class="section" id="implementation-specific-macros">
-<span id="implementation-specific-macro"></span><h3>6.1.3. Implementation-specific macros</h3>
-<p>Some macro constants and function-like macros are precisely defined by this
-specification. The use of an exact definition is essential if the definition can
-appear in more than one header file within a compilation.</p>
-<p>Other macros that are defined by this specification have a macro body that is
-implementation-specific. The description of an implementation-specific macro can
-optionally specify each of the following requirements:</p>
-<ul class="simple">
-<li>Input domains: the macro must be valid for arguments within the input domain.</li>
-<li>A return type: the macro result must be compatible with this type.</li>
-<li>Output range: the macro result must lie in the output range.</li>
-<li>Computed value: A precise mapping of valid input to output values.</li>
-</ul>
-<p>Each implementation-specific macro is in one of following categories:</p>
-<dl class="docutils" id="specification-defined-value">
-<dt><em>Specification-defined value</em></dt>
-<dd><p class="first">The result type and computed value of the macro expression is defined by
-this specification, but the definition of the macro body is provided by the
-implementation.</p>
-<p>These macros are indicated in this specification using the comment
-<em><a class="reference internal" href="#specification-defined-value"><span class="std std-ref">/* specification-defined value */</span></a></em>.</p>
-<p>For function-like macros with specification-defined values:</p>
-<ul class="last simple">
-<li>Example implementations are provided in an appendix to this specification.
-See <a class="reference internal" href="../appendix/specdef_values.html#appendix-specdef-values"><span class="secref">Example macro implementations</span></a>.</li>
-<li>The expected computation for valid and supported input arguments will be
-defined as pseudo-code in a future version of this specification.</li>
-</ul>
-</dd>
-</dl>
-<dl class="docutils" id="implementation-defined-value">
-<dt><em>Implementation-defined value</em></dt>
-<dd><p class="first">The value of the macro expression is implementation-defined.</p>
-<p>For some macros, the computed value is derived from the specification of one
-or more cryptographic algorithms. In these cases, the result must exactly
-match the value in those external specifications.</p>
-<p class="last">These macros are indicated in this specification using the comment
-<em><a class="reference internal" href="#implementation-defined-value"><span class="std std-ref">/* implementation-defined value */</span></a></em>.</p>
-</dd>
-</dl>
-<p>Some of these macros compute a result based on an algorithm or key type.
-If an implementation defines vendor-specific algorithms or
-key types, then it must provide an implementation for such macros that takes all
-relevant algorithms and types into account. Conversely, an implementation that
-does not support a certain algorithm or key type can define such macros in a
-simpler way that does not take unsupported argument values into account.</p>
-<p>Some macros define the minimum sufficient output buffer size for certain
-functions. In some cases, an implementation is allowed to require a buffer size
-that is larger than the theoretical minimum. An implementation must define
-minimum-size macros in such a way that it guarantees that the buffer of the
-resulting size is sufficient for the output of the corresponding function. Refer
-to each macro’s documentation for the applicable requirements.</p>
-</div>
-</div>
-<div class="section" id="porting-to-a-platform">
-<h2>6.2. Porting to a platform</h2>
-<div class="section" id="platform-assumptions">
-<h3>6.2.1. Platform assumptions</h3>
-<p>This specification is designed for a C99 platform. The interface is defined in
-terms of C macros, functions and objects.</p>
-<p>The specification assumes 8-bit bytes, and “byte” and “octet” are used
-synonymously.</p>
-</div>
-<div class="section" id="platform-specific-types">
-<h3>6.2.2. Platform-specific types</h3>
-<p>The specification makes use of some types defined in C99. These types must be
-defined in the implementation version of <code class="file docutils literal"><span class="pre">psa/crypto.h</span></code> or by a header
-included in this file. The following C99 types are used:</p>
-<dl class="docutils">
-<dt><code class="docutils literal"><span class="pre">uint8_t</span></code>, <code class="docutils literal"><span class="pre">uint16_t</span></code>, <code class="docutils literal"><span class="pre">uint32_t</span></code></dt>
-<dd>Unsigned integer types with 8, 16 and 32 value bits respectively.
-These types are defined by the C99 header <code class="file docutils literal"><span class="pre">stdint.h</span></code>.</dd>
-</dl>
-</div>
-<div class="section" id="cryptographic-hardware-support">
-<h3>6.2.3. Cryptographic hardware support</h3>
-<p>Implementations are encouraged to make use of hardware accelerators where
-available. A future version of this specification will define a function
-interface that calls drivers for hardware accelerators and external
-cryptographic hardware.</p>
-</div>
-</div>
-<div class="section" id="security-requirements-and-recommendations">
-<h2>6.3. Security requirements and recommendations</h2>
-<div class="section" id="error-detection">
-<h3>6.3.1. Error detection</h3>
-<p>Implementations that provide <a class="reference internal" href="../about.html#term-isolation"><span class="term">isolation</span></a> between the caller and the cryptography
-processing environment must validate parameters to ensure that the cryptography
-processing environment is protected from attacks caused by passing invalid
-parameters.</p>
-<p>Even implementations that do not provide isolation are recommended to detect bad
-parameters and fail-safe where possible.</p>
-</div>
-<div class="section" id="indirect-object-references">
-<h3>6.3.2. Indirect object references</h3>
-<p>Implementations can use different strategies for allocating key identifiers,
-and other types of indirect object reference.</p>
-<p>Implementations that provide isolation between the caller and the cryptography
-processing environment must consider the threats relating to abuse and misuse
-of key identifiers and other indirect resource references. For example,
-multi-part operations can be implemented as backend state to which the client
-only maintains an indirect reference in the application’s multi-part operation
-object.</p>
-<p>An implementation that supports multiple callers must implement strict isolation
-of API resources between different callers. For example, a client must not be
-able to obtain a reference to another client’s key by guessing the key
-identifier value. Isolation of key identifiers can be achieved in several ways.
-For example:</p>
-<ul class="simple">
-<li>There is a single identifier namespace for all clients, and the
-implementation verifies that the client is the owner of the identifier when
-looking up the key.</li>
-<li>Each client has an independent identifier namespace, and the implementation
-uses a client specific identifier-to-key mapping when looking up the key.</li>
-</ul>
-<p>After a volatile key identifier is destroyed, it is recommended that the
-implementation does not immediately reuse the same identifier value for a
-different key. This reduces the risk of an attack that is able to exploit a key
-identifier reuse vulnerability within an application.</p>
-</div>
-<div class="section" id="memory-cleanup">
-<span id="id2"></span><h3>6.3.3. Memory cleanup</h3>
-<p>Implementations must wipe all sensitive data from memory when it is no longer
-used. It is recommended that they wipe this sensitive data as soon as possible. All
-temporary data used during the execution of a function, such as stack buffers,
-must be wiped before the function returns. All data associated with an object,
-such as a multi-part operation, must be wiped, at the latest, when the object
-becomes inactive, for example, when a multi-part operation is aborted.</p>
-<p>The rationale for this non-functional requirement is to minimize impact if the
-system is compromised. If sensitive data is wiped immediately after use, only
-data that is currently in use can be leaked. It does not compromise past data.</p>
-</div>
-<div class="section" id="managing-key-material">
-<span id="key-material"></span><h3>6.3.4. Managing key material</h3>
-<p>In implementations that have limited volatile memory for keys, the
-implementation is permitted to store a <a class="reference internal" href="../about.html#term-volatile-key"><span class="term">volatile key</span></a> to a
-temporary location in non-volatile memory. The implementation must delete any
-non-volatile copies when the key is destroyed, and it is recommended that these copies
-are deleted as soon as the key is reloaded into volatile memory. An
-implementation that uses this method must clear any stored volatile key material
-on startup.</p>
-<p>Implementing the memory cleanup rule (see <a class="reference internal" href="#memory-cleanup"><span class="secref">Memory cleanup</span></a>) for a <a class="reference internal" href="../about.html#term-persistent-key"><span class="term">persistent key</span></a>
-can result in inefficiencies when the same persistent key is used sequentially
-in multiple cryptographic operations. The inefficiency stems from loading the
-key from non-volatile storage on each use of the key. The <a class="reference internal" href="../api/keys/policy.html#c.PSA_KEY_USAGE_CACHE" title="PSA_KEY_USAGE_CACHE"><code class="xref any c c-macro docutils literal"><span class="pre">PSA_KEY_USAGE_CACHE</span></code></a>
-usage flag in a key policy allows an application to request that the implementation does not cleanup
-non-essential copies of persistent key material, effectively suspending the
-cleanup rules for that key. The effects of this policy depend on the
-implementation and the key, for example:</p>
-<ul class="simple">
-<li>For volatile keys or keys in a secure element with no open/close mechanism,
-this is likely to have no effect.</li>
-<li>For persistent keys that are not in a secure element, this allows the
-implementation to keep the key in a memory cache outside of the memory used
-by ongoing operations.</li>
-<li>For keys in a secure element with an open/close mechanism, this is a hint to
-keep the key open in the secure element.</li>
-</ul>
-<p>The application can indicate when it has finished using the key by calling
-<a class="reference internal" href="../api/keys/management.html#c.psa_purge_key" title="psa_purge_key"><code class="xref any c c-func docutils literal"><span class="pre">psa_purge_key()</span></code></a>, to request that the key material is cleaned from memory.</p>
-</div>
-<div class="section" id="safe-outputs-on-error">
-<h3>6.3.5. Safe outputs on error</h3>
-<p>Implementations must ensure that confidential data is not written to output
-parameters before validating that the disclosure of this confidential data is
-authorized. This requirement is particularly important for implementations where
-the caller can share memory with another security context, as described in
-<a class="reference internal" href="conventions.html#stability-of-parameters"><span class="secref">Stability of parameters</span></a>.</p>
-<p>In most cases, the specification does not define the content of output
-parameters when an error occurs. It is recommended that implementations try to
-ensure that the content of output parameters is as safe as possible, in case an
-application flaw or a data leak causes it to be used. In particular, Arm
-recommends that implementations avoid placing partial output in output buffers
-when an action is interrupted. The meaning of “safe as possible” depends on the
-implementation, as different environments require different compromises between
-implementation complexity, overall robustness and performance. Some common
-strategies are to leave output parameters unchanged, in case of errors, or
-zeroing them out.</p>
-</div>
-<div class="section" id="attack-resistance">
-<h3>6.3.6. Attack resistance</h3>
-<p>Cryptographic code tends to manipulate high-value secrets, from which other
-secrets can be unlocked. As such, it is a high-value target for attacks. There
-is a vast body of literature on attack types, such as side channel attacks and
-glitch attacks. Typical side channels include timing, cache access patterns,
-branch-prediction access patterns, power consumption, radio emissions and more.</p>
-<p>This specification does not specify particular requirements for attack
-resistance. Implementers are encouraged to consider the attack resistance
-desired in each use case and design their implementation accordingly. Security
-standards for attack resistance for particular targets might be applicable in
-certain use cases.</p>
-</div>
-</div>
-<div class="section" id="other-implementation-considerations">
-<h2>6.4. Other implementation considerations</h2>
-<div class="section" id="philosophy-of-resource-management">
-<h3>6.4.1. Philosophy of resource management</h3>
-<p>The specification allows most functions to return
-<a class="reference internal" href="../api/library/status.html#c.PSA_ERROR_INSUFFICIENT_MEMORY" title="PSA_ERROR_INSUFFICIENT_MEMORY"><code class="xref any c c-macro docutils literal"><span class="pre">PSA_ERROR_INSUFFICIENT_MEMORY</span></code></a>. This gives implementations the freedom to
-manage memory as they please.</p>
-<p>Alternatively, the interface is also designed for conservative strategies of
-memory management. An implementation can avoid dynamic memory allocation
-altogether by obeying certain restrictions:</p>
-<ul class="simple">
-<li>Pre-allocate memory for a predefined number of keys, each with sufficient
-memory for all key types that can be stored.</li>
-<li>For multi-part operations, in an implementation with <a class="reference internal" href="../about.html#term-no-isolation"><span class="term">no isolation</span></a>, place all
-the data that needs to be carried over from one step to the next in the
-operation object. The application is then fully in control of how memory is
-allocated for the operation.</li>
-<li>In an implementation with <a class="reference internal" href="../about.html#term-isolation"><span class="term">isolation</span></a>, pre-allocate memory for a predefined
-number of operations inside the cryptoprocessor.</li>
-</ul>
-</div>
-</div>
-</div>
-
-
-          </div>
-        </div>
-      </div>
-      <div class="sphinxsidebar" role="navigation" aria-label="main navigation">
-        <div class="sphinxsidebarwrapper"><h3><a href="../index.html"><b>PSA Crypto API</b></a></h3>
-IHI 0086<br/>
-Non-confidential<br/>
-Version 1.1.0
-<span style="color: red; font-weight: bold;"></span>
-<ul>
-<li class="toctree-l1"><a class="reference internal" href="../about.html">About this document</a></li>
-</ul>
-<ul class="current">
-<li class="toctree-l1"><a class="reference internal" href="intro.html">1. Introduction</a></li>
-<li class="toctree-l1"><a class="reference internal" href="goals.html">2. Design goals</a></li>
-<li class="toctree-l1"><a class="reference internal" href="functionality.html">3. Functionality overview</a></li>
-<li class="toctree-l1"><a class="reference internal" href="sample-arch.html">4. Sample architectures</a></li>
-<li class="toctree-l1"><a class="reference internal" href="conventions.html">5. Library conventions</a></li>
-<li class="toctree-l1 current"><a class="current reference internal" href="#">6. Implementation considerations</a><ul>
-<li class="toctree-l2"><a class="reference internal" href="#implementation-specific-aspects-of-the-interface">6.1. Implementation-specific aspects of the interface</a><ul>
-<li class="toctree-l3"><a class="reference internal" href="#implementation-profile">6.1.1. Implementation profile</a></li>
-<li class="toctree-l3"><a class="reference internal" href="#implementation-specific-types">6.1.2. Implementation-specific types</a></li>
-<li class="toctree-l3"><a class="reference internal" href="#implementation-specific-macros">6.1.3. Implementation-specific macros</a></li>
-</ul>
-</li>
-<li class="toctree-l2"><a class="reference internal" href="#porting-to-a-platform">6.2. Porting to a platform</a><ul>
-<li class="toctree-l3"><a class="reference internal" href="#platform-assumptions">6.2.1. Platform assumptions</a></li>
-<li class="toctree-l3"><a class="reference internal" href="#platform-specific-types">6.2.2. Platform-specific types</a></li>
-<li class="toctree-l3"><a class="reference internal" href="#cryptographic-hardware-support">6.2.3. Cryptographic hardware support</a></li>
-</ul>
-</li>
-<li class="toctree-l2"><a class="reference internal" href="#security-requirements-and-recommendations">6.3. Security requirements and recommendations</a><ul>
-<li class="toctree-l3"><a class="reference internal" href="#error-detection">6.3.1. Error detection</a></li>
-<li class="toctree-l3"><a class="reference internal" href="#indirect-object-references">6.3.2. Indirect object references</a></li>
-<li class="toctree-l3"><a class="reference internal" href="#memory-cleanup">6.3.3. Memory cleanup</a></li>
-<li class="toctree-l3"><a class="reference internal" href="#managing-key-material">6.3.4. Managing key material</a></li>
-<li class="toctree-l3"><a class="reference internal" href="#safe-outputs-on-error">6.3.5. Safe outputs on error</a></li>
-<li class="toctree-l3"><a class="reference internal" href="#attack-resistance">6.3.6. Attack resistance</a></li>
-</ul>
-</li>
-<li class="toctree-l2"><a class="reference internal" href="#other-implementation-considerations">6.4. Other implementation considerations</a><ul>
-<li class="toctree-l3"><a class="reference internal" href="#philosophy-of-resource-management">6.4.1. Philosophy of resource management</a></li>
-</ul>
-</li>
-</ul>
-</li>
-<li class="toctree-l1"><a class="reference internal" href="usage.html">7. Usage considerations</a></li>
-<li class="toctree-l1"><a class="reference internal" href="../api/library/index.html">8. Library management reference</a></li>
-<li class="toctree-l1"><a class="reference internal" href="../api/keys/index.html">9. Key management reference</a></li>
-<li class="toctree-l1"><a class="reference internal" href="../api/ops/index.html">10. Cryptographic operation reference</a></li>
-</ul>
-<ul>
-<li class="toctree-l1"><a class="reference internal" href="../appendix/example_header.html">Example header file</a></li>
-<li class="toctree-l1"><a class="reference internal" href="../appendix/encodings.html">Algorithm and key type encoding</a></li>
-<li class="toctree-l1"><a class="reference internal" href="../appendix/specdef_values.html">Example macro implementations</a></li>
-<li class="toctree-l1"><a class="reference internal" href="../appendix/sra.html">Security Risk Assessment</a></li>
-<li class="toctree-l1"><a class="reference internal" href="../appendix/history.html">Changes to the API</a></li>
-</ul>
-<ul>
-<li class="toctree-l1"><a class="reference internal" href="../psa_c-identifiers.html">Index of API elements</a></li>
-</ul>
-<div id="searchbox" style="display: none" role="search">
-  <h3>Quick search</h3>
-    <form class="search" action="../search.html" method="get">
-      <div><input type="text" name="q" /></div>
-      <div><input type="submit" value="Go" /></div>
-      <input type="hidden" name="check_keywords" value="yes" />
-      <input type="hidden" name="area" value="default" />
-    </form>
-</div>
-<script type="text/javascript">$('#searchbox').show(0);</script>
-        </div>
-      </div>
-      <div class="clearer"></div>
-    </div>
-    <div class="footer">
-      &copy; 2018-2022, Arm Limited or its affiliates. All rights reserved.
-      
-      |
-      Powered by <a href="http://sphinx-doc.org/">Sphinx 1.6.7</a>
-      &amp; <a href="https://github.com/bitprophet/alabaster">Alabaster 0.7.8</a>
-      
-    </div>
-
-    
-
-    
-  </body>
-</html>
\ No newline at end of file
+<meta http-equiv="Refresh" content="0; url='https://arm-software.github.io/psa-api/crypto/1.1/overview/implementation.html'" />