blob: 80e21bbc114470e6059554929c57cd21aeef63dd [file] [log] [blame]
Laurence Lundbladecc2ed342018-09-22 17:29:55 -07001/*==============================================================================
Laurence Lundbladeee851742020-01-08 08:37:05 -08002 ieee754.c -- floating-point conversion between half, double & single-precision
Laurence Lundblade035bd782019-01-21 17:01:31 -08003
Laurence Lundbladeee851742020-01-08 08:37:05 -08004 Copyright (c) 2018-2020, Laurence Lundblade. All rights reserved.
Laurence Lundblade3aee3a32018-12-17 16:17:45 -08005
Laurence Lundbladea3fd49f2019-01-21 10:16:22 -08006 SPDX-License-Identifier: BSD-3-Clause
Laurence Lundblade035bd782019-01-21 17:01:31 -08007
Laurence Lundbladea3fd49f2019-01-21 10:16:22 -08008 See BSD-3-Clause license in README.md
Laurence Lundblade035bd782019-01-21 17:01:31 -08009
Laurence Lundbladea3fd49f2019-01-21 10:16:22 -080010 Created on 7/23/18
Laurence Lundbladeee851742020-01-08 08:37:05 -080011 =============================================================================*/
Laurence Lundbladecc2ed342018-09-22 17:29:55 -070012
Laurence Lundbladeb275cdc2020-07-12 12:34:38 -070013#ifndef QCBOR_DISABLE_PREFERRED_FLOAT
Laurence Lundblade9682a532020-06-06 18:33:04 -070014
Laurence Lundblade12d32c52018-09-19 11:25:27 -070015#include "ieee754.h"
16#include <string.h> // For memcpy()
17
Laurence Lundblade8db3d3e2018-09-29 11:46:37 -070018
Laurence Lundblade12d32c52018-09-19 11:25:27 -070019/*
Laurence Lundbladeee851742020-01-08 08:37:05 -080020 This code is written for clarity and verifiability, not for size, on
21 the assumption that the optimizer will do a good job. The LLVM
22 optimizer, -Os, does seem to do the job and the resulting object code
23 is smaller from combining code for the many different cases (normal,
Laurence Lundbladec5fef682020-01-25 11:38:45 -080024 subnormal, infinity, zero...) for the conversions. GCC is no where near
25 as good.
Laurence Lundblade3aee3a32018-12-17 16:17:45 -080026
Laurence Lundbladeee851742020-01-08 08:37:05 -080027 This code has really long lines and is much easier to read because of
28 them. Some coding guidelines prefer 80 column lines (can they not afford
29 big displays?). It would make this code much worse even to wrap at 120
30 columns.
Laurence Lundblade3aee3a32018-12-17 16:17:45 -080031
Laurence Lundbladeee851742020-01-08 08:37:05 -080032 Dead stripping is also really helpful to get code size down when
Laurence Lundbladec5fef682020-01-25 11:38:45 -080033 floating-point encoding is not needed. (If this is put in a library
34 and linking is against the library, then dead stripping is automatic).
Laurence Lundblade3aee3a32018-12-17 16:17:45 -080035
Laurence Lundbladeee851742020-01-08 08:37:05 -080036 This code works solely using shifts and masks and thus has no
37 dependency on any math libraries. It can even work if the CPU doesn't
38 have any floating-point support, though that isn't the most useful
39 thing to do.
40
41 The memcpy() dependency is only for CopyFloatToUint32() and friends
42 which only is needed to avoid type punning when converting the actual
43 float bits to an unsigned value so the bit shifts and masks can work.
Laurence Lundblade8db3d3e2018-09-29 11:46:37 -070044 */
45
46/*
47 The references used to write this code:
Laurence Lundblade3aee3a32018-12-17 16:17:45 -080048
Laurence Lundblade8db3d3e2018-09-29 11:46:37 -070049 - IEEE 754-2008, particularly section 3.6 and 6.2.1
Laurence Lundblade3aee3a32018-12-17 16:17:45 -080050
Laurence Lundblade8db3d3e2018-09-29 11:46:37 -070051 - https://en.wikipedia.org/wiki/IEEE_754 and subordinate pages
Laurence Lundblade3aee3a32018-12-17 16:17:45 -080052
Laurence Lundblade8db3d3e2018-09-29 11:46:37 -070053 - https://stackoverflow.com/questions/19800415/why-does-ieee-754-reserve-so-many-nan-values
Laurence Lundbladec5fef682020-01-25 11:38:45 -080054
55 - https://stackoverflow.com/questions/46073295/implicit-type-promotion-rules
56
57 - https://stackoverflow.com/questions/589575/what-does-the-c-standard-state-the-size-of-int-long-type-to-be
Laurence Lundblade12d32c52018-09-19 11:25:27 -070058 */
59
60
61// ----- Half Precsion -----------
62#define HALF_NUM_SIGNIFICAND_BITS (10)
63#define HALF_NUM_EXPONENT_BITS (5)
64#define HALF_NUM_SIGN_BITS (1)
65
66#define HALF_SIGNIFICAND_SHIFT (0)
67#define HALF_EXPONENT_SHIFT (HALF_NUM_SIGNIFICAND_BITS)
68#define HALF_SIGN_SHIFT (HALF_NUM_SIGNIFICAND_BITS + HALF_NUM_EXPONENT_BITS)
69
Laurence Lundblade06350ea2020-01-27 19:32:40 -080070#define HALF_SIGNIFICAND_MASK (0x3ffU) // The lower 10 bits // 0x03ff
71#define HALF_EXPONENT_MASK (0x1fU << HALF_EXPONENT_SHIFT) // 0x7c00 5 bits of exponent
72#define HALF_SIGN_MASK (0x01U << HALF_SIGN_SHIFT) // // 0x8000 1 bit of sign
73#define HALF_QUIET_NAN_BIT (0x01U << (HALF_NUM_SIGNIFICAND_BITS-1)) // 0x0200
Laurence Lundblade12d32c52018-09-19 11:25:27 -070074
75/* Biased Biased Unbiased Use
76 0x00 0 -15 0 and subnormal
77 0x01 1 -14 Smallest normal exponent
78 0x1e 30 15 Largest normal exponent
79 0x1F 31 16 NaN and Infinity */
80#define HALF_EXPONENT_BIAS (15)
81#define HALF_EXPONENT_MAX (HALF_EXPONENT_BIAS) // 15 Unbiased
82#define HALF_EXPONENT_MIN (-HALF_EXPONENT_BIAS+1) // -14 Unbiased
83#define HALF_EXPONENT_ZERO (-HALF_EXPONENT_BIAS) // -15 Unbiased
84#define HALF_EXPONENT_INF_OR_NAN (HALF_EXPONENT_BIAS+1) // 16 Unbiased
85
86
Laurence Lundbladeee851742020-01-08 08:37:05 -080087// ------ Single-Precision --------
Laurence Lundblade12d32c52018-09-19 11:25:27 -070088#define SINGLE_NUM_SIGNIFICAND_BITS (23)
89#define SINGLE_NUM_EXPONENT_BITS (8)
90#define SINGLE_NUM_SIGN_BITS (1)
91
92#define SINGLE_SIGNIFICAND_SHIFT (0)
93#define SINGLE_EXPONENT_SHIFT (SINGLE_NUM_SIGNIFICAND_BITS)
94#define SINGLE_SIGN_SHIFT (SINGLE_NUM_SIGNIFICAND_BITS + SINGLE_NUM_EXPONENT_BITS)
95
Laurence Lundblade06350ea2020-01-27 19:32:40 -080096#define SINGLE_SIGNIFICAND_MASK (0x7fffffU) // The lower 23 bits
97#define SINGLE_EXPONENT_MASK (0xffU << SINGLE_EXPONENT_SHIFT) // 8 bits of exponent
98#define SINGLE_SIGN_MASK (0x01U << SINGLE_SIGN_SHIFT) // 1 bit of sign
99#define SINGLE_QUIET_NAN_BIT (0x01U << (SINGLE_NUM_SIGNIFICAND_BITS-1))
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700100
101/* Biased Biased Unbiased Use
102 0x0000 0 -127 0 and subnormal
103 0x0001 1 -126 Smallest normal exponent
104 0x7f 127 0 1
105 0xfe 254 127 Largest normal exponent
106 0xff 255 128 NaN and Infinity */
107#define SINGLE_EXPONENT_BIAS (127)
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800108#define SINGLE_EXPONENT_MAX (SINGLE_EXPONENT_BIAS) // 127 unbiased
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700109#define SINGLE_EXPONENT_MIN (-SINGLE_EXPONENT_BIAS+1) // -126 unbiased
110#define SINGLE_EXPONENT_ZERO (-SINGLE_EXPONENT_BIAS) // -127 unbiased
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800111#define SINGLE_EXPONENT_INF_OR_NAN (SINGLE_EXPONENT_BIAS+1) // 128 unbiased
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700112
113
Laurence Lundbladeee851742020-01-08 08:37:05 -0800114// --------- Double-Precision ----------
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700115#define DOUBLE_NUM_SIGNIFICAND_BITS (52)
116#define DOUBLE_NUM_EXPONENT_BITS (11)
117#define DOUBLE_NUM_SIGN_BITS (1)
118
119#define DOUBLE_SIGNIFICAND_SHIFT (0)
120#define DOUBLE_EXPONENT_SHIFT (DOUBLE_NUM_SIGNIFICAND_BITS)
121#define DOUBLE_SIGN_SHIFT (DOUBLE_NUM_SIGNIFICAND_BITS + DOUBLE_NUM_EXPONENT_BITS)
122
Laurence Lundblade8db3d3e2018-09-29 11:46:37 -0700123#define DOUBLE_SIGNIFICAND_MASK (0xfffffffffffffULL) // The lower 52 bits
124#define DOUBLE_EXPONENT_MASK (0x7ffULL << DOUBLE_EXPONENT_SHIFT) // 11 bits of exponent
125#define DOUBLE_SIGN_MASK (0x01ULL << DOUBLE_SIGN_SHIFT) // 1 bit of sign
126#define DOUBLE_QUIET_NAN_BIT (0x01ULL << (DOUBLE_NUM_SIGNIFICAND_BITS-1))
127
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700128
129/* Biased Biased Unbiased Use
130 0x00000000 0 -1023 0 and subnormal
131 0x00000001 1 -1022 Smallest normal exponent
132 0x000007fe 2046 1023 Largest normal exponent
133 0x000007ff 2047 1024 NaN and Infinity */
134#define DOUBLE_EXPONENT_BIAS (1023)
135#define DOUBLE_EXPONENT_MAX (DOUBLE_EXPONENT_BIAS) // unbiased
136#define DOUBLE_EXPONENT_MIN (-DOUBLE_EXPONENT_BIAS+1) // unbiased
137#define DOUBLE_EXPONENT_ZERO (-DOUBLE_EXPONENT_BIAS) // unbiased
138#define DOUBLE_EXPONENT_INF_OR_NAN (DOUBLE_EXPONENT_BIAS+1) // unbiased
139
140
141
142/*
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800143 Convenient functions to avoid type punning, compiler warnings and
144 such. The optimizer reduces them to a simple assignment. This is a
145 crusty corner of C. It shouldn't be this hard.
Laurence Lundblade3aee3a32018-12-17 16:17:45 -0800146
Laurence Lundblade8db3d3e2018-09-29 11:46:37 -0700147 These are also in UsefulBuf.h under a different name. They are copied
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800148 here to avoid a dependency on UsefulBuf.h. There is no object code
149 size impact because these always optimze down to a simple assignment.
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700150 */
151static inline uint32_t CopyFloatToUint32(float f)
152{
153 uint32_t u32;
154 memcpy(&u32, &f, sizeof(uint32_t));
155 return u32;
156}
157
158static inline uint64_t CopyDoubleToUint64(double d)
159{
160 uint64_t u64;
161 memcpy(&u64, &d, sizeof(uint64_t));
162 return u64;
163}
164
Laurence Lundblade67bd5512018-11-02 21:44:06 +0700165static inline double CopyUint64ToDouble(uint64_t u64)
166{
167 double d;
168 memcpy(&d, &u64, sizeof(uint64_t));
169 return d;
170}
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700171
172
173// Public function; see ieee754.h
Laurence Lundbladecc2ed342018-09-22 17:29:55 -0700174uint16_t IEEE754_FloatToHalf(float f)
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700175{
176 // Pull the three parts out of the single-precision float
177 const uint32_t uSingle = CopyFloatToUint32(f);
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800178 const int32_t nSingleUnbiasedExponent = (int32_t)((uSingle & SINGLE_EXPONENT_MASK) >> SINGLE_EXPONENT_SHIFT) - SINGLE_EXPONENT_BIAS;
179 const uint32_t uSingleSign = (uSingle & SINGLE_SIGN_MASK) >> SINGLE_SIGN_SHIFT;
180 const uint32_t uSingleSignificand = uSingle & SINGLE_SIGNIFICAND_MASK;
Laurence Lundblade3aee3a32018-12-17 16:17:45 -0800181
182
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700183 // Now convert the three parts to half-precision.
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800184
185 // All works is done on uint32_t with conversion to uint16_t at the end.
186 // This avoids integer promotions that static analyzers complain about and
187 // reduces code size.
188 uint32_t uHalfSign, uHalfSignificand, uHalfBiasedExponent;
189
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700190 if(nSingleUnbiasedExponent == SINGLE_EXPONENT_INF_OR_NAN) {
191 // +/- Infinity and NaNs -- single biased exponent is 0xff
192 uHalfBiasedExponent = HALF_EXPONENT_INF_OR_NAN + HALF_EXPONENT_BIAS;
193 if(!uSingleSignificand) {
194 // Infinity
195 uHalfSignificand = 0;
196 } else {
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800197 // Copy the LSBs of the NaN payload that will fit from the single to the half
Laurence Lundblade8db3d3e2018-09-29 11:46:37 -0700198 uHalfSignificand = uSingleSignificand & (HALF_SIGNIFICAND_MASK & ~HALF_QUIET_NAN_BIT);
199 if(uSingleSignificand & SINGLE_QUIET_NAN_BIT) {
200 // It's a qNaN; copy the qNaN bit
201 uHalfSignificand |= HALF_QUIET_NAN_BIT;
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700202 } else {
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800203 // It's an sNaN; make sure the significand is not zero so it stays a NaN
Laurence Lundblade8db3d3e2018-09-29 11:46:37 -0700204 // This is needed because not all significand bits are copied from single
205 if(!uHalfSignificand) {
206 // Set the LSB. This is what wikipedia shows for sNAN.
207 uHalfSignificand |= 0x01;
208 }
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700209 }
210 }
211 } else if(nSingleUnbiasedExponent == SINGLE_EXPONENT_ZERO) {
212 // 0 or a subnormal number -- singled biased exponent is 0
213 uHalfBiasedExponent = 0;
214 uHalfSignificand = 0; // Any subnormal single will be too small to express as a half precision
215 } else if(nSingleUnbiasedExponent > HALF_EXPONENT_MAX) {
216 // Exponent is too large to express in half-precision; round up to infinity
217 uHalfBiasedExponent = HALF_EXPONENT_INF_OR_NAN + HALF_EXPONENT_BIAS;
218 uHalfSignificand = 0;
219 } else if(nSingleUnbiasedExponent < HALF_EXPONENT_MIN) {
220 // Exponent is too small to express in half-precision normal; make it a half-precision subnormal
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800221 uHalfBiasedExponent = HALF_EXPONENT_ZERO + HALF_EXPONENT_BIAS;
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700222 // Difference between single normal exponent and the base exponent of a half subnormal
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800223 const uint32_t uExpDiff = (uint32_t)-(nSingleUnbiasedExponent - HALF_EXPONENT_MIN);
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700224 // Also have to shift the significand by the difference in number of bits between a single and a half significand
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800225 const uint32_t uSignificandBitsDiff = SINGLE_NUM_SIGNIFICAND_BITS - HALF_NUM_SIGNIFICAND_BITS;
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700226 // Add in the 1 that is implied in the significand of a normal number; it needs to be present in a subnormal
Laurence Lundblade06350ea2020-01-27 19:32:40 -0800227 const uint32_t uSingleSignificandSubnormal = uSingleSignificand + (0x01U << SINGLE_NUM_SIGNIFICAND_BITS);
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800228 uHalfSignificand = uSingleSignificandSubnormal >> (uExpDiff + uSignificandBitsDiff);
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700229 } else {
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800230 // The normal case, exponent is in range for half-precision
231 uHalfBiasedExponent = (uint32_t)(nSingleUnbiasedExponent + HALF_EXPONENT_BIAS);
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700232 uHalfSignificand = uSingleSignificand >> (SINGLE_NUM_SIGNIFICAND_BITS - HALF_NUM_SIGNIFICAND_BITS);
233 }
234 uHalfSign = uSingleSign;
235
236 // Put the 3 values in the right place for a half precision
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800237 const uint32_t uHalfPrecision = uHalfSignificand |
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700238 (uHalfBiasedExponent << HALF_EXPONENT_SHIFT) |
239 (uHalfSign << HALF_SIGN_SHIFT);
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800240 // Cast is safe because all the masks and shifts above work to make
241 // a half precision value which is only 16 bits.
242 return (uint16_t)uHalfPrecision;
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700243}
244
245
246// Public function; see ieee754.h
Laurence Lundbladecc2ed342018-09-22 17:29:55 -0700247uint16_t IEEE754_DoubleToHalf(double d)
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700248{
249 // Pull the three parts out of the double-precision float
250 const uint64_t uDouble = CopyDoubleToUint64(d);
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800251 const int64_t nDoubleUnbiasedExponent = (int64_t)((uDouble & DOUBLE_EXPONENT_MASK) >> DOUBLE_EXPONENT_SHIFT) - DOUBLE_EXPONENT_BIAS;
252 const uint64_t uDoubleSign = (uDouble & DOUBLE_SIGN_MASK) >> DOUBLE_SIGN_SHIFT;
253 const uint64_t uDoubleSignificand = uDouble & DOUBLE_SIGNIFICAND_MASK;
Laurence Lundblade3aee3a32018-12-17 16:17:45 -0800254
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700255 // Now convert the three parts to half-precision.
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800256
257 // All works is done on uint64_t with conversion to uint16_t at the end.
258 // This avoids integer promotions that static analyzers complain about.
259 // Other options are for these to be unsigned int or fast_int16_t. Code
260 // size doesn't vary much between all these options for 64-bit LLVM,
261 // 64-bit GCC and 32-bit Armv7 LLVM.
262 uint64_t uHalfSign, uHalfSignificand, uHalfBiasedExponent;
263
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700264 if(nDoubleUnbiasedExponent == DOUBLE_EXPONENT_INF_OR_NAN) {
265 // +/- Infinity and NaNs -- single biased exponent is 0xff
266 uHalfBiasedExponent = HALF_EXPONENT_INF_OR_NAN + HALF_EXPONENT_BIAS;
267 if(!uDoubleSignificand) {
268 // Infinity
269 uHalfSignificand = 0;
270 } else {
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800271 // Copy the LSBs of the NaN payload that will fit from the double to the half
Laurence Lundblade8db3d3e2018-09-29 11:46:37 -0700272 uHalfSignificand = uDoubleSignificand & (HALF_SIGNIFICAND_MASK & ~HALF_QUIET_NAN_BIT);
273 if(uDoubleSignificand & DOUBLE_QUIET_NAN_BIT) {
274 // It's a qNaN; copy the qNaN bit
275 uHalfSignificand |= HALF_QUIET_NAN_BIT;
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700276 } else {
Laurence Lundblade8db3d3e2018-09-29 11:46:37 -0700277 // It's an sNaN; make sure the significand is not zero so it stays a NaN
278 // This is needed because not all significand bits are copied from single
279 if(!uHalfSignificand) {
280 // Set the LSB. This is what wikipedia shows for sNAN.
281 uHalfSignificand |= 0x01;
282 }
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700283 }
284 }
285 } else if(nDoubleUnbiasedExponent == DOUBLE_EXPONENT_ZERO) {
286 // 0 or a subnormal number -- double biased exponent is 0
287 uHalfBiasedExponent = 0;
288 uHalfSignificand = 0; // Any subnormal single will be too small to express as a half precision; TODO, is this really true?
289 } else if(nDoubleUnbiasedExponent > HALF_EXPONENT_MAX) {
290 // Exponent is too large to express in half-precision; round up to infinity; TODO, is this really true?
291 uHalfBiasedExponent = HALF_EXPONENT_INF_OR_NAN + HALF_EXPONENT_BIAS;
292 uHalfSignificand = 0;
293 } else if(nDoubleUnbiasedExponent < HALF_EXPONENT_MIN) {
294 // Exponent is too small to express in half-precision; round down to zero
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800295 uHalfBiasedExponent = HALF_EXPONENT_ZERO + HALF_EXPONENT_BIAS;
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700296 // Difference between double normal exponent and the base exponent of a half subnormal
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800297 const uint64_t uExpDiff = (uint64_t)-(nDoubleUnbiasedExponent - HALF_EXPONENT_MIN);
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700298 // Also have to shift the significand by the difference in number of bits between a double and a half significand
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800299 const uint64_t uSignificandBitsDiff = DOUBLE_NUM_SIGNIFICAND_BITS - HALF_NUM_SIGNIFICAND_BITS;
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700300 // Add in the 1 that is implied in the significand of a normal number; it needs to be present in a subnormal
Laurence Lundbladef2801952018-12-17 10:40:29 -0800301 const uint64_t uDoubleSignificandSubnormal = uDoubleSignificand + (0x01ULL << DOUBLE_NUM_SIGNIFICAND_BITS);
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800302 uHalfSignificand = uDoubleSignificandSubnormal >> (uExpDiff + uSignificandBitsDiff);
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700303 } else {
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800304 // The normal case, exponent is in range for half-precision
305 uHalfBiasedExponent = (uint32_t)(nDoubleUnbiasedExponent + HALF_EXPONENT_BIAS);
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700306 uHalfSignificand = uDoubleSignificand >> (DOUBLE_NUM_SIGNIFICAND_BITS - HALF_NUM_SIGNIFICAND_BITS);
307 }
308 uHalfSign = uDoubleSign;
Laurence Lundblade3aee3a32018-12-17 16:17:45 -0800309
310
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700311 // Put the 3 values in the right place for a half precision
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800312 const uint64_t uHalfPrecision = uHalfSignificand |
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700313 (uHalfBiasedExponent << HALF_EXPONENT_SHIFT) |
314 (uHalfSign << HALF_SIGN_SHIFT);
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800315 // Cast is safe because all the masks and shifts above work to make
316 // a half precision value which is only 16 bits.
317 return (uint16_t)uHalfPrecision;
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700318}
319
320
Laurence Lundbladefe09bbf2020-07-16 12:14:51 -0700321/*
322 EEE754_HalfToFloat() was created but is not needed. It can be retrieved from
323 github history if needed.
324 */
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700325
326
Laurence Lundblade67bd5512018-11-02 21:44:06 +0700327// Public function; see ieee754.h
328double IEEE754_HalfToDouble(uint16_t uHalfPrecision)
329{
330 // Pull out the three parts of the half-precision float
Laurence Lundblade9682a532020-06-06 18:33:04 -0700331 // Do all the work in 64 bits because that is what the end result is.
332 // It may give smaller code size and will keep static analyzers happier.
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800333 const uint64_t uHalfSignificand = uHalfPrecision & HALF_SIGNIFICAND_MASK;
334 const int64_t nHalfUnBiasedExponent = (int64_t)((uHalfPrecision & HALF_EXPONENT_MASK) >> HALF_EXPONENT_SHIFT) - HALF_EXPONENT_BIAS;
335 const uint64_t uHalfSign = (uHalfPrecision & HALF_SIGN_MASK) >> HALF_SIGN_SHIFT;
Laurence Lundblade3aee3a32018-12-17 16:17:45 -0800336
337
Laurence Lundblade67bd5512018-11-02 21:44:06 +0700338 // Make the three parts of hte single-precision number
339 uint64_t uDoubleSignificand, uDoubleSign, uDoubleBiasedExponent;
340 if(nHalfUnBiasedExponent == HALF_EXPONENT_ZERO) {
341 // 0 or subnormal
342 uDoubleBiasedExponent = DOUBLE_EXPONENT_ZERO + DOUBLE_EXPONENT_BIAS;
343 if(uHalfSignificand) {
344 // Subnormal case
345 uDoubleBiasedExponent = -HALF_EXPONENT_BIAS + DOUBLE_EXPONENT_BIAS +1;
346 // A half-precision subnormal can always be converted to a normal double-precision float because the ranges line up
347 uDoubleSignificand = uHalfSignificand;
348 // Shift bits from right of the decimal to left, reducing the exponent by 1 each time
349 do {
350 uDoubleSignificand <<= 1;
351 uDoubleBiasedExponent--;
352 } while ((uDoubleSignificand & 0x400) == 0);
353 uDoubleSignificand &= HALF_SIGNIFICAND_MASK;
354 uDoubleSignificand <<= (DOUBLE_NUM_SIGNIFICAND_BITS - HALF_NUM_SIGNIFICAND_BITS);
355 } else {
356 // Just zero
357 uDoubleSignificand = 0;
358 }
359 } else if(nHalfUnBiasedExponent == HALF_EXPONENT_INF_OR_NAN) {
360 // NaN or Inifinity
361 uDoubleBiasedExponent = DOUBLE_EXPONENT_INF_OR_NAN + DOUBLE_EXPONENT_BIAS;
362 if(uHalfSignificand) {
363 // NaN
364 // First preserve the NaN payload from half to single
365 uDoubleSignificand = uHalfSignificand & ~HALF_QUIET_NAN_BIT;
366 if(uHalfSignificand & HALF_QUIET_NAN_BIT) {
367 // Next, set qNaN if needed since half qNaN bit is not copied above
368 uDoubleSignificand |= DOUBLE_QUIET_NAN_BIT;
369 }
370 } else {
371 // Infinity
372 uDoubleSignificand = 0;
373 }
374 } else {
375 // Normal number
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800376 uDoubleBiasedExponent = (uint64_t)(nHalfUnBiasedExponent + DOUBLE_EXPONENT_BIAS);
377 uDoubleSignificand = uHalfSignificand << (DOUBLE_NUM_SIGNIFICAND_BITS - HALF_NUM_SIGNIFICAND_BITS);
Laurence Lundblade67bd5512018-11-02 21:44:06 +0700378 }
379 uDoubleSign = uHalfSign;
Laurence Lundblade3aee3a32018-12-17 16:17:45 -0800380
381
Laurence Lundblade67bd5512018-11-02 21:44:06 +0700382 // Shift the 3 parts into place as a double-precision
383 const uint64_t uDouble = uDoubleSignificand |
384 (uDoubleBiasedExponent << DOUBLE_EXPONENT_SHIFT) |
385 (uDoubleSign << DOUBLE_SIGN_SHIFT);
386 return CopyUint64ToDouble(uDouble);
387}
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700388
389
390// Public function; see ieee754.h
Laurence Lundblade8fa7d5d2020-07-11 16:30:47 -0700391double IEEE754_FloatToDouble(uint32_t uFloat)
Laurence Lundblade9682a532020-06-06 18:33:04 -0700392{
Laurence Lundblade9682a532020-06-06 18:33:04 -0700393 // Pull out the three parts of the single-precision float
394 // Do all the work in 64 bits because that is what the end result is.
395 // It may give smaller code size and will keep static analyzers happier.
396 const uint64_t uSingleSignificand = uFloat & SINGLE_SIGNIFICAND_MASK;
397 const int64_t nSingleUnBiasedExponent = (int64_t)((uFloat & SINGLE_EXPONENT_MASK) >> SINGLE_EXPONENT_SHIFT) - SINGLE_EXPONENT_BIAS;
398 const uint64_t uSingleSign = (uFloat & SINGLE_SIGN_MASK) >> SINGLE_SIGN_SHIFT;
399
400
401 // Make the three parts of hte single-precision number
402 uint64_t uDoubleSignificand, uDoubleSign, uDoubleBiasedExponent;
403 if(nSingleUnBiasedExponent == SINGLE_EXPONENT_ZERO) {
404 // 0 or subnormal
405 uDoubleBiasedExponent = DOUBLE_EXPONENT_ZERO + DOUBLE_EXPONENT_BIAS;
406 if(uSingleSignificand) {
407 // Subnormal case
408 uDoubleBiasedExponent = -SINGLE_EXPONENT_BIAS + DOUBLE_EXPONENT_BIAS + 1;
409 // A single-precision subnormal can always be converted to a normal double-precision float because the ranges line up
410 uDoubleSignificand = uSingleSignificand;
411 // Shift bits from right of the decimal to left, reducing the exponent by 1 each time
412 do {
413 uDoubleSignificand <<= 1;
414 uDoubleBiasedExponent--;
415 // TODO: is this right? Where does 0x400 come from?
416 } while ((uDoubleSignificand & 0x400) == 0);
417 uDoubleSignificand &= SINGLE_SIGNIFICAND_MASK;
418 uDoubleSignificand <<= (DOUBLE_NUM_SIGNIFICAND_BITS - SINGLE_NUM_SIGNIFICAND_BITS);
419 } else {
420 // Just zero
421 uDoubleSignificand = 0;
422 }
423 } else if(nSingleUnBiasedExponent == SINGLE_EXPONENT_INF_OR_NAN) {
424 // NaN or Inifinity
425 uDoubleBiasedExponent = DOUBLE_EXPONENT_INF_OR_NAN + DOUBLE_EXPONENT_BIAS;
426 if(uSingleSignificand) {
427 // NaN
428 // First preserve the NaN payload from half to single
429 // TODO: check this
430 uDoubleSignificand = uSingleSignificand & ~SINGLE_QUIET_NAN_BIT;
431 if(uSingleSignificand & SINGLE_QUIET_NAN_BIT) {
432 // Next, set qNaN if needed since half qNaN bit is not copied above
433 uDoubleSignificand |= DOUBLE_QUIET_NAN_BIT;
434 }
435 } else {
436 // Infinity
437 uDoubleSignificand = 0;
438 }
439 } else {
440 // Normal number
441 uDoubleBiasedExponent = (uint64_t)(nSingleUnBiasedExponent + DOUBLE_EXPONENT_BIAS);
442 uDoubleSignificand = uSingleSignificand << (DOUBLE_NUM_SIGNIFICAND_BITS - SINGLE_NUM_SIGNIFICAND_BITS);
443 }
444 uDoubleSign = uSingleSign;
445
446
447 // Shift the 3 parts into place as a double-precision
448 const uint64_t uDouble = uDoubleSignificand |
449 (uDoubleBiasedExponent << DOUBLE_EXPONENT_SHIFT) |
450 (uDoubleSign << DOUBLE_SIGN_SHIFT);
451 return CopyUint64ToDouble(uDouble);
452}
453
454
455
456
457// Public function; see ieee754.h
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700458IEEE754_union IEEE754_FloatToSmallest(float f)
459{
460 IEEE754_union result;
Laurence Lundblade3aee3a32018-12-17 16:17:45 -0800461
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700462 // Pull the neeed two parts out of the single-precision float
463 const uint32_t uSingle = CopyFloatToUint32(f);
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800464 const int32_t nSingleExponent = (int32_t)((uSingle & SINGLE_EXPONENT_MASK) >> SINGLE_EXPONENT_SHIFT) - SINGLE_EXPONENT_BIAS;
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700465 const uint32_t uSingleSignificand = uSingle & SINGLE_SIGNIFICAND_MASK;
Laurence Lundblade3aee3a32018-12-17 16:17:45 -0800466
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700467 // Bit mask that is the significand bits that would be lost when converting
468 // from single-precision to half-precision
469 const uint64_t uDroppedSingleBits = SINGLE_SIGNIFICAND_MASK >> HALF_NUM_SIGNIFICAND_BITS;
470
471 // Optimizer will re organize so there is only one call to IEEE754_FloatToHalf()
472 if(uSingle == 0) {
473 // Value is 0.0000, not a a subnormal
Laurence Lundblade577d8212018-11-01 14:04:08 +0700474 result.uSize = IEEE754_UNION_IS_HALF;
475 result.uValue = IEEE754_FloatToHalf(f);
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700476 } else if(nSingleExponent == SINGLE_EXPONENT_INF_OR_NAN) {
477 // NaN, +/- infinity
Laurence Lundblade577d8212018-11-01 14:04:08 +0700478 result.uSize = IEEE754_UNION_IS_HALF;
479 result.uValue = IEEE754_FloatToHalf(f);
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700480 } else if((nSingleExponent >= HALF_EXPONENT_MIN) && nSingleExponent <= HALF_EXPONENT_MAX && (!(uSingleSignificand & uDroppedSingleBits))) {
481 // Normal number in exponent range and precision won't be lost
Laurence Lundblade577d8212018-11-01 14:04:08 +0700482 result.uSize = IEEE754_UNION_IS_HALF;
483 result.uValue = IEEE754_FloatToHalf(f);
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700484 } else {
485 // Subnormal, exponent out of range, or precision will be lost
Laurence Lundblade577d8212018-11-01 14:04:08 +0700486 result.uSize = IEEE754_UNION_IS_SINGLE;
487 result.uValue = uSingle;
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700488 }
Laurence Lundblade3aee3a32018-12-17 16:17:45 -0800489
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700490 return result;
491}
492
Laurence Lundblade8db3d3e2018-09-29 11:46:37 -0700493// Public function; see ieee754.h
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700494IEEE754_union IEEE754_DoubleToSmallestInternal(double d, int bAllowHalfPrecision)
495{
496 IEEE754_union result;
Laurence Lundblade3aee3a32018-12-17 16:17:45 -0800497
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700498 // Pull the needed two parts out of the double-precision float
499 const uint64_t uDouble = CopyDoubleToUint64(d);
Laurence Lundbladec5fef682020-01-25 11:38:45 -0800500 const int64_t nDoubleExponent = (int64_t)((uDouble & DOUBLE_EXPONENT_MASK) >> DOUBLE_EXPONENT_SHIFT) - DOUBLE_EXPONENT_BIAS;
Laurence Lundbladee17e2d72020-07-16 19:15:26 -0700501 const uint64_t uDoubleSignificand = uDouble & DOUBLE_SIGNIFICAND_MASK;
Laurence Lundblade3aee3a32018-12-17 16:17:45 -0800502
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700503 // Masks to check whether dropped significand bits are zero or not
Laurence Lundbladeb992fdb2020-07-20 22:44:11 -0700504 const uint64_t uDroppedHalfBits = DOUBLE_SIGNIFICAND_MASK >> HALF_NUM_SIGNIFICAND_BITS;
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700505 const uint64_t uDroppedSingleBits = DOUBLE_SIGNIFICAND_MASK >> SINGLE_NUM_SIGNIFICAND_BITS;
Laurence Lundblade3aee3a32018-12-17 16:17:45 -0800506
Laurence Lundbladeb992fdb2020-07-20 22:44:11 -0700507 const uint64_t xx = uDroppedSingleBits & uDoubleSignificand; // TODO: get rid of
508 (void)xx;
509
510 // This will not convert to subnormals half-precion or single-precision
511
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700512 // The various cases
Laurence Lundbladed711fb22018-09-26 14:35:22 -0700513 if(d == 0.0) { // Take care of positive and negative zero
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700514 // Value is 0.0000, not a a subnormal
Laurence Lundblade577d8212018-11-01 14:04:08 +0700515 result.uSize = IEEE754_UNION_IS_HALF;
516 result.uValue = IEEE754_DoubleToHalf(d);
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700517 } else if(nDoubleExponent == DOUBLE_EXPONENT_INF_OR_NAN) {
518 // NaN, +/- infinity
Laurence Lundblade577d8212018-11-01 14:04:08 +0700519 result.uSize = IEEE754_UNION_IS_HALF;
520 result.uValue = IEEE754_DoubleToHalf(d);
Laurence Lundbladeb992fdb2020-07-20 22:44:11 -0700521 } else if(bAllowHalfPrecision && (nDoubleExponent >= HALF_EXPONENT_MIN) && nDoubleExponent <= HALF_EXPONENT_MAX && (!(uDoubleSignificand & uDroppedHalfBits))) {
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700522 // Can convert to half without precision loss
Laurence Lundblade577d8212018-11-01 14:04:08 +0700523 result.uSize = IEEE754_UNION_IS_HALF;
524 result.uValue = IEEE754_DoubleToHalf(d);
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700525 } else if((nDoubleExponent >= SINGLE_EXPONENT_MIN) && nDoubleExponent <= SINGLE_EXPONENT_MAX && (!(uDoubleSignificand & uDroppedSingleBits))) {
526 // Can convert to single without precision loss
Laurence Lundblade577d8212018-11-01 14:04:08 +0700527 result.uSize = IEEE754_UNION_IS_SINGLE;
528 result.uValue = CopyFloatToUint32((float)d);
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700529 } else {
530 // Can't convert without precision loss
Laurence Lundblade577d8212018-11-01 14:04:08 +0700531 result.uSize = IEEE754_UNION_IS_DOUBLE;
532 result.uValue = uDouble;
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700533 }
Laurence Lundblade3aee3a32018-12-17 16:17:45 -0800534
Laurence Lundblade12d32c52018-09-19 11:25:27 -0700535 return result;
536}
537
Laurence Lundbladefe09bbf2020-07-16 12:14:51 -0700538#else
539
540int x;
541
Laurence Lundbladeb275cdc2020-07-12 12:34:38 -0700542#endif /* QCBOR_DISABLE_PREFERRED_FLOAT */