blob: 14cb2be7b22868cd2615e67f61815ce5fd3f3a31 [file] [log] [blame]
Christophe Favergeon3b2a0ee2019-06-12 13:29:14 +02001# Process the test results
2# Test status (like passed, or failed with error code)
3
4import argparse
5import re
6import TestScripts.NewParser as parse
7import TestScripts.CodeGen
8from collections import deque
9import os.path
10import numpy as np
11import pandas as pd
12import statsmodels.api as sm
13import statsmodels.formula.api as smf
14import csv
Christophe Favergeon37b86222019-07-17 11:49:00 +020015import TestScripts.Deprecate as d
Christophe Favergeon3b2a0ee2019-06-12 13:29:14 +020016
17def findItem(root,path):
18 """ Find a node in a tree
19
20 Args:
21 path (list) : A list of node ID
22 This list is describing a path in the tree.
23 By starting from the root and following this path,
24 we can find the node in the tree.
25 Raises:
26 Nothing
27 Returns:
28 TreeItem : A node
29 """
30 # The list is converted into a queue.
31 q = deque(path)
32 q.popleft()
33 c = root
34 while q:
35 n = q.popleft()
36 # We get the children based on its ID and continue
37 c = c[n-1]
38 return(c)
39
40
41
42NORMAL = 1
43INTEST = 2
44TESTPARAM = 3
45
46def joinit(iterable, delimiter):
47 it = iter(iterable)
48 yield next(it)
49 for x in it:
50 yield delimiter
51 yield x
52
53def formatProd(a,b):
54 if a == "Intercept":
55 return(str(b))
56 return("%s * %s" % (a,b))
57
Christophe Favergeon5cacf9d2019-08-14 10:41:17 +020058def summaryBenchmark(resultPath,elem,path):
Christophe Favergeon3b2a0ee2019-06-12 13:29:14 +020059 regressionPath=os.path.join(os.path.dirname(path),"regression.csv")
Christophe Favergeon37b86222019-07-17 11:49:00 +020060 print(" Generating %s" % regressionPath)
61 full=pd.read_csv(path,dtype={'OLDID': str} ,keep_default_na = False)
62 #print(full)
Christophe Favergeon3b2a0ee2019-06-12 13:29:14 +020063
64 csvheaders = []
Christophe Favergeon5cacf9d2019-08-14 10:41:17 +020065 with open(os.path.join(resultPath,'currentConfig.csv'), 'r') as f:
Christophe Favergeon3b2a0ee2019-06-12 13:29:14 +020066 reader = csv.reader(f)
67 csvheaders = next(reader, None)
68
69 groupList = list(set(elem.params.full) - set(elem.params.summary))
70 #grouped=full.groupby(list(elem.params.summary) + ['ID','CATEGORY']).max()
71 #grouped.reset_index(level=grouped.index.names, inplace=True)
72 #print(grouped)
73 #print(grouped.columns)
74
75
76 def reg(d):
77 m=d["CYCLES"].max()
78 results = smf.ols('CYCLES ~ ' + elem.params.formula, data=d).fit()
79 f=joinit([formatProd(a,b) for (a,b) in zip(results.params.index,results.params.values)]," + ")
80 f="".join(f)
81 f = re.sub(r':','*',f)
82 #print(results.summary())
Christophe Favergeon4a8d9dc2019-08-14 08:55:46 +020083 return(pd.Series({'Regression':"%s" % f,'MAX' : m,'MAXREGCOEF' : results.params.values[-1]}))
Christophe Favergeon3b2a0ee2019-06-12 13:29:14 +020084
Christophe Favergeon37b86222019-07-17 11:49:00 +020085 regList = ['ID','OLDID','CATEGORY','NAME'] + csvheaders + groupList
Christophe Favergeon3b2a0ee2019-06-12 13:29:14 +020086
87 regression=full.groupby(regList).apply(reg)
88 regression.reset_index(level=regression.index.names, inplace=True)
89 renamingDict = { a : b for (a,b) in zip(elem.params.full,elem.params.paramNames)}
90 regression = regression.rename(columns=renamingDict)
91 regression.to_csv(regressionPath,index=False,quoting=csv.QUOTE_NONNUMERIC)
92
93
Christophe Favergeon5cacf9d2019-08-14 10:41:17 +020094def extractBenchmarks(resultPath,benchmark,elem):
Christophe Favergeon37b86222019-07-17 11:49:00 +020095 if not elem.data["deprecated"]:
96 if elem.params:
97 benchPath = os.path.join(benchmark,elem.fullPath(),"fullBenchmark.csv")
98 print("Processing %s" % benchPath)
Christophe Favergeon5cacf9d2019-08-14 10:41:17 +020099 summaryBenchmark(resultPath,elem,benchPath)
Christophe Favergeon37b86222019-07-17 11:49:00 +0200100
101 for c in elem.children:
Christophe Favergeon5cacf9d2019-08-14 10:41:17 +0200102 extractBenchmarks(resultPath,benchmark,c)
Christophe Favergeon3b2a0ee2019-06-12 13:29:14 +0200103
Christophe Favergeon3b2a0ee2019-06-12 13:29:14 +0200104
105
106parser = argparse.ArgumentParser(description='Generate summary benchmarks')
107
108parser.add_argument('-f', nargs='?',type = str, default=None, help="Test description file path")
Christophe Favergeon3b2a0ee2019-06-12 13:29:14 +0200109parser.add_argument('-b', nargs='?',type = str, default="FullBenchmark", help="Full Benchmark dir path")
Christophe Favergeon5cacf9d2019-08-14 10:41:17 +0200110# Needed to find the currentConfig.csv and know the headers
111parser.add_argument('-r', nargs='?',type = str, default=None, help="Result file path")
Christophe Favergeon3b2a0ee2019-06-12 13:29:14 +0200112
Christophe Favergeon37b86222019-07-17 11:49:00 +0200113parser.add_argument('others', nargs=argparse.REMAINDER)
114
Christophe Favergeon3b2a0ee2019-06-12 13:29:14 +0200115args = parser.parse_args()
116
117if args.f is not None:
118 p = parse.Parser()
119 # Parse the test description file
120 root = p.parse(args.f)
Christophe Favergeon37b86222019-07-17 11:49:00 +0200121 d.deprecate(root,args.others)
Christophe Favergeon5cacf9d2019-08-14 10:41:17 +0200122 resultPath=os.path.dirname(args.r)
123 extractBenchmarks(resultPath,args.b,root)
Christophe Favergeon3b2a0ee2019-06-12 13:29:14 +0200124
125else:
126 parser.print_help()