CMSIS-NN: Update revision history

1. ARM.CMSIS.pdsc file updated with recent file changes
2. Updated revision history and version number
3. arm_nnfunctions.h file is clang formatted

Change-Id: I378656d62b371759910b38b28ed68c0012a384c5
diff --git a/ARM.CMSIS.pdsc b/ARM.CMSIS.pdsc
index 2096821..ecac24a 100644
--- a/ARM.CMSIS.pdsc
+++ b/ARM.CMSIS.pdsc
@@ -24,6 +24,11 @@
        - RTX4: Purged pre-built libs from Git
       CMSIS-RTOS2:
        - RTX5: Purged pre-built libs from Git
+      CMSIS-NN: 1.4.0 (see revision history for details)
+       - Major interface change for functions compatible with TensorFlow Lite for Microcontroller
+       - Added optimization for SVDF kernel - DSP extension only
+       - Improved MVE performance for fully Connected and max pool operator
+       - Expanded unit test suite along with support for FVP
     </release>
     <release version="5.7.0" date="2020-04-09">
       CMSIS-Build: 0.9.0 (beta)
@@ -3321,10 +3326,11 @@
     </component>
 
     <!-- CMSIS-NN component -->
-    <component Cclass="CMSIS" Cgroup="NN Lib" Cversion="1.3.0" condition="CMSIS NN">
+    <component Cclass="CMSIS" Cgroup="NN Lib" Cversion="1.4.0" condition="CMSIS NN">
       <description>CMSIS-NN Neural Network Library</description>
       <files>
         <file category="doc" name="CMSIS/Documentation/NN/html/index.html"/>
+        <file category="header" name="CMSIS/NN/Include/arm_nn_types.h"/>
         <file category="header" name="CMSIS/NN/Include/arm_nnfunctions.h"/>
         <file category="header" name="CMSIS/NN/Include/arm_nnsupportfunctions.h"/>
         <file category="header" name="CMSIS/NN/Include/arm_nn_tables.h"/>
@@ -3337,6 +3343,7 @@
         <file category="source" name="CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_u8_basic_ver1.c"/>
         <file category="source" name="CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_s8_s16_reordered.c"/>
         <file category="source" name="CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7.c"/>
+        <file category="source" name="CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_wrapper_s8.c"/>
         <file category="source" name="CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15.c"/>
         <file category="source" name="CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_basic.c"/>
         <file category="source" name="CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_1x1_s8_fast.c"/>
@@ -3348,6 +3355,7 @@
         <file category="source" name="CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7_nonsquare.c"/>
         <file category="source" name="CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic.c"/>
         <file category="source" name="CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_s8_opt.c"/>
+        <file category="source" name="CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_wrapper_s8.c"/>
         <file category="source" name="CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast.c"/>
         <file category="source" name="CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15_reordered.c"/>
         <file category="source" name="CMSIS/NN/Source/ConvolutionFunctions/arm_nn_depthwise_conv_s8_core.c"/>
@@ -3357,7 +3365,7 @@
         <file category="source" name="CMSIS/NN/Source/ConcatenationFunctions/arm_concatenation_s8_w.c"/>
         <file category="source" name="CMSIS/NN/Source/ConcatenationFunctions/arm_concatenation_s8_y.c"/>
         <file category="source" name="CMSIS/NN/Source/ConcatenationFunctions/arm_concatenation_s8_z.c"/>
-        <file category="source" name="CMSIS/NN/Source/PoolingFunctions/arm_max_pool_s8_opt.c"/>
+        <file category="source" name="CMSIS/NN/Source/SVDFunctions/arm_svdf_s8.c"/>
         <file category="source" name="CMSIS/NN/Source/PoolingFunctions/arm_max_pool_s8.c"/>
         <file category="source" name="CMSIS/NN/Source/PoolingFunctions/arm_avgpool_s8.c"/>
         <file category="source" name="CMSIS/NN/Source/PoolingFunctions/arm_pool_q7_HWC.c"/>
@@ -3375,9 +3383,11 @@
         <file category="source" name="CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_with_offset.c"/>
         <file category="source" name="CMSIS/NN/Source/NNSupportFunctions/arm_nn_accumulate_q7_to_q15.c"/>
         <file category="source" name="CMSIS/NN/Source/NNSupportFunctions/arm_nn_mat_mult_nt_t_s8.c"/>
+        <file category="source" name="CMSIS/NN/Source/NNSupportFunctions/arm_nn_depthwise_conv_nt_t_padded_s8.c"/>
         <file category="source" name="CMSIS/NN/Source/NNSupportFunctions/arm_nn_add_q7.c"/>
         <file category="source" name="CMSIS/NN/Source/NNSupportFunctions/arm_nn_mat_mul_core_4x_s8.c"/>
         <file category="source" name="CMSIS/NN/Source/NNSupportFunctions/arm_nntables.c"/>
+        <file category="source" name="CMSIS/NN/Source/NNSupportFunctions/arm_nn_depthwise_conv_nt_t_s8.c"/>
         <file category="source" name="CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_no_shift.c"/>
         <file category="source" name="CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_reordered_with_offset.c"/>
         <file category="source" name="CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q15.c"/>
diff --git a/CMSIS/DoxyGen/NN/src/history.txt b/CMSIS/DoxyGen/NN/src/history.txt
index 7ae0678..495e2ff 100644
--- a/CMSIS/DoxyGen/NN/src/history.txt
+++ b/CMSIS/DoxyGen/NN/src/history.txt
@@ -7,7 +7,7 @@
     <th>Description</th>
   </tr>
     <tr>
-    <td>V1.x.0</td>
+    <td>V1.4.0</td>
     <td>
       Added the following function for int8 SVDF operator.<br>
       <ul>
diff --git a/CMSIS/NN/Include/arm_nnfunctions.h b/CMSIS/NN/Include/arm_nnfunctions.h
index 7f77e9a..f96ea49 100644
--- a/CMSIS/NN/Include/arm_nnfunctions.h
+++ b/CMSIS/NN/Include/arm_nnfunctions.h
@@ -1,5 +1,5 @@
 /*
- * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
  *
  * SPDX-License-Identifier: Apache-2.0
  *
@@ -21,7 +21,7 @@
  * Title:        arm_nnfunctions.h
  * Description:  Public header file for CMSIS NN Library
  *
- * $Date:        09. October 2020
+ * $Date:        19 January 2021
  * $Revision:    V.6.5.3
  *
  * Target Processor:  Cortex-M CPUs
@@ -99,47 +99,6 @@
    *
    * Define macro ARM_NN_TRUNCATE to use floor instead of round-to-the-nearest-int for the computation.
    *
-   * Upcoming Interface Change
-   * --------
-   * Starting from the 1.4.0 next release, CMSIS-NN will gradually switch to a new API interface to:
-   *
-   * -# have a stable API
-   * -# avoid passing many variables by value
-   * -# improve security
-   * -# improve validation
-   * -# improve code readability
-   *
-   * The upcoming API interface change will be based on "struct" and only affect the TensorFlowLite micro compliant
-   * APIs [4] (functions with _s8 suffix)
-   *
-   * Below you can find a snapshot of how the new API interface will look like (names can change)
-   *
-   * i.e. arm_convolve_1x1_s8_fast
-   *
-   * Current API interface | New API interface proposal
-   * ------------- | -------------
-   * const q7_t *input                | const cmsis_nn_context &ctx
-   * const uint16_t input_x           | const cmsis_nn_conv_params &params
-   * const uint16_t input_y           | const cmsis_nn_dims &input_dims
-   * const uint16_t input_ch          | const q7_t *input_data
-   * const uint16_t input_batches     | const cmsis_nn_dims &filter_dims
-   * const q7_t *kernel               | const q7_t *filter_data
-   * const uint16_t output_ch         | const cmsis_nn_dims &bias_dims
-   * const uint16_t pad_x             | const q31_t *bias_data
-   * const uint16_t pad_y             | const cmsis_nn_dims &output_dims
-   * const uint16_t stride_x          | q7_t *output_data
-   * const uint16_t stride_y          | <br>
-   * const int32_t *bias              | <br>
-   * q7_t *output                     | <br>
-   * const int32_t *output_shift      | <br>
-   * const int32_t *output_mult       | <br>
-   * const int32_t out_offset         | <br>
-   * const int32_t input_offset       | <br>
-   * const int32_t out_activation_min | <br>
-   * const int32_t out_activation_max | <br>
-   * const uint16_t output_x          | <br>
-   * const uint16_t output_y          | <br>
-   * q15_t *buffer_a                  | <br>
    *
    * Copyright Notice
    * ------------
@@ -173,390 +132,337 @@
 //#define ARM_NN_TRUNCATE /* This config the rounding model to floor or round to the nearest int */
 
 #ifdef __cplusplus
-extern "C" {
+extern "C"
+{
 #endif
 
-/**
- * @brief Struct for specifying activation function types
- *
- */
-typedef enum {
-    ARM_SIGMOID = 0,
-    /**< Sigmoid activation function */
-    ARM_TANH = 1,
-    /**< Tanh activation function */
-} arm_nn_activation_type;
+    /**
+     * @brief Struct for specifying activation function types
+     *
+     */
+    typedef enum
+    {
+        ARM_SIGMOID = 0,
+        /**< Sigmoid activation function */
+        ARM_TANH = 1,
+        /**< Tanh activation function */
+    } arm_nn_activation_type;
 
-/**
- * @defgroup NNConv Convolution Functions
- *
- * Collection of convolution, depthwise convolution functions and their variants.
- *
- * The convolution is implemented in 2 steps: im2col and GEMM
- *
- * im2col is a process of converting each patch of image data into
- * a column. After im2col, the convolution is computed as matrix-matrix
- * multiplication.
- *
- * To reduce the memory footprint, the im2col is performed partially.
- * Each iteration, only a few column (i.e., patches) are generated and
- * computed with GEMM kernels similar to CMSIS-DSP arm_mat_mult functions.
- *
- */
+    /**
+     * @defgroup NNConv Convolution Functions
+     *
+     * Collection of convolution, depthwise convolution functions and their variants.
+     *
+     * The convolution is implemented in 2 steps: im2col and GEMM
+     *
+     * im2col is a process of converting each patch of image data into
+     * a column. After im2col, the convolution is computed as matrix-matrix
+     * multiplication.
+     *
+     * To reduce the memory footprint, the im2col is performed partially.
+     * Each iteration, only a few column (i.e., patches) are generated and
+     * computed with GEMM kernels similar to CMSIS-DSP arm_mat_mult functions.
+     *
+     */
 
-/**
- * @brief s8 convolution layer wrapper function with the main purpose to call the optimal kernel available in cmsis-nn
- *        to perform the convolution.
- *
- * @param[in, out] ctx            Function context that contains the additional buffer if required by the function.
-                                  arm_convolve_wrapper_s8_get_buffer_size will return the buffer_size if required
- * @param[in]      conv_params    Convolution parameters (e.g. strides, dilations, pads,...).
- *                                Range of conv_params->input_offset  : [-127, 128]
- *                                Range of conv_params->output_offset : [-128, 127]
- * @param[in]      quant_params   Per-channel quantization info.
- *                                It contains the multiplier and shift values to be applied to each output channel
- * @param[in]      input_dims     Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in]      input_data     Input (activation) data pointer. Data type: int8
- * @param[in]      filter_dims    Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the
- *                                spatial filter dimensions
- * @param[in]      filter_data    Filter data pointer. Data type: int8
- * @param[in]      bias_dims      Bias tensor dimensions. Format: [C_OUT]
- * @param[in]      bias_data      Bias data pointer. Data type: int32
- * @param[in]      output_dims    Output tensor dimensions. Format: [N, H, W, C_OUT]
- * @param[out]     output_data    Output data pointer. Data type: int8
- *
- * @return     The function returns either
- *                  <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or,
- *                  <code>ARM_MATH_SUCCESS</code> on successful completion.
- *
- */
-arm_status arm_convolve_wrapper_s8(const cmsis_nn_context *ctx,
-                                   const cmsis_nn_conv_params *conv_params,
-                                   const cmsis_nn_per_channel_quant_params *quant_params,
-                                   const cmsis_nn_dims *input_dims,
-                                   const q7_t *input_data,
-                                   const cmsis_nn_dims *filter_dims,
-                                   const q7_t *filter_data,
-                                   const cmsis_nn_dims *bias_dims,
-                                   const int32_t *bias_data,
-                                   const cmsis_nn_dims *output_dims,
-                                   q7_t *output_data);
+    /**
+     * @brief s8 convolution layer wrapper function with the main purpose to call the optimal kernel available in
+     cmsis-nn
+     *        to perform the convolution.
+     *
+     * @param[in, out] ctx            Function context that contains the additional buffer if required by the function.
+                                      arm_convolve_wrapper_s8_get_buffer_size will return the buffer_size if required
+     * @param[in]      conv_params    Convolution parameters (e.g. strides, dilations, pads,...).
+     *                                Range of conv_params->input_offset  : [-127, 128]
+     *                                Range of conv_params->output_offset : [-128, 127]
+     * @param[in]      quant_params   Per-channel quantization info.
+     *                                It contains the multiplier and shift values to be applied to each output channel
+     * @param[in]      input_dims     Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
+     * @param[in]      input_data     Input (activation) data pointer. Data type: int8
+     * @param[in]      filter_dims    Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the
+     *                                spatial filter dimensions
+     * @param[in]      filter_data    Filter data pointer. Data type: int8
+     * @param[in]      bias_dims      Bias tensor dimensions. Format: [C_OUT]
+     * @param[in]      bias_data      Bias data pointer. Data type: int32
+     * @param[in]      output_dims    Output tensor dimensions. Format: [N, H, W, C_OUT]
+     * @param[out]     output_data    Output data pointer. Data type: int8
+     *
+     * @return     The function returns either
+     *                  <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or,
+     *                  <code>ARM_MATH_SUCCESS</code> on successful completion.
+     *
+     */
+    arm_status arm_convolve_wrapper_s8(const cmsis_nn_context *ctx,
+                                       const cmsis_nn_conv_params *conv_params,
+                                       const cmsis_nn_per_channel_quant_params *quant_params,
+                                       const cmsis_nn_dims *input_dims,
+                                       const q7_t *input_data,
+                                       const cmsis_nn_dims *filter_dims,
+                                       const q7_t *filter_data,
+                                       const cmsis_nn_dims *bias_dims,
+                                       const int32_t *bias_data,
+                                       const cmsis_nn_dims *output_dims,
+                                       q7_t *output_data);
 
-/**
- * @brief Get the required buffer size for arm_convolve_wrapper_s8
- *
- * @param[in]      conv_params    Convolution parameters (e.g. strides, dilations, pads,...).
- *                                Range of conv_params->input_offset  : [-127, 128]
- *                                Range of conv_params->output_offset : [-128, 127]
- * @param[in]      input_dims     Input (activation) dimensions. Format: [N, H, W, C_IN]
- * @param[in]      filter_dims    Filter dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the spatial
- *                                filter dimensions
- * @param[in]      output_dims    Output tensor dimensions. Format: [N, H, W, C_OUT]
- *
- * @return         The function returns  required buffer size(bytes)
- *
- */
-int32_t arm_convolve_wrapper_s8_get_buffer_size(const cmsis_nn_conv_params *conv_params,
-                                                const cmsis_nn_dims *input_dims,
-                                                const cmsis_nn_dims *filter_dims,
-                                                const cmsis_nn_dims *output_dims);
+    /**
+     * @brief Get the required buffer size for arm_convolve_wrapper_s8
+     *
+     * @param[in]      conv_params    Convolution parameters (e.g. strides, dilations, pads,...).
+     *                                Range of conv_params->input_offset  : [-127, 128]
+     *                                Range of conv_params->output_offset : [-128, 127]
+     * @param[in]      input_dims     Input (activation) dimensions. Format: [N, H, W, C_IN]
+     * @param[in]      filter_dims    Filter dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the spatial
+     *                                filter dimensions
+     * @param[in]      output_dims    Output tensor dimensions. Format: [N, H, W, C_OUT]
+     *
+     * @return         The function returns  required buffer size(bytes)
+     *
+     */
+    int32_t arm_convolve_wrapper_s8_get_buffer_size(const cmsis_nn_conv_params *conv_params,
+                                                    const cmsis_nn_dims *input_dims,
+                                                    const cmsis_nn_dims *filter_dims,
+                                                    const cmsis_nn_dims *output_dims);
 
-/**
- * @brief Basic s8 convolution function
- * @param[in, out] ctx            Function context that contains the additional buffer if required by the function.
-                                  arm_convolve_s8_get_buffer_size will return the buffer_size if required
- * @param[in]      conv_params    Convolution parameters (e.g. strides, dilations, pads,...).
- *                                Range of conv_params->input_offset  : [-127, 128]
- *                                Range of conv_params->output_offset : [-128, 127]
- * @param[in]      quant_params   Per-channel quantization info.
- *                                It contains the multiplier and shift values to be applied to each output channel
- * @param[in]      input_dims     Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in]      input_data     Input (activation) data pointer. Data type: int8
- * @param[in]      filter_dims    Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the
- *                                spatial filter dimensions
- * @param[in]      filter_data    Filter data pointer. Data type: int8
- * @param[in]      bias_dims      Bias tensor dimensions. Format: [C_OUT]
- * @param[in]      bias_data      Optional bias data pointer. Data type: int32
- * @param[in]      output_dims    Output tensor dimensions. Format: [N, H, W, C_OUT]
- * @param[out]     output_data    Output data pointer. Data type: int8
+    /**
+     * @brief Basic s8 convolution function
+     * @param[in, out] ctx            Function context that contains the additional buffer if required by the function.
+                                      arm_convolve_s8_get_buffer_size will return the buffer_size if required
+     * @param[in]      conv_params    Convolution parameters (e.g. strides, dilations, pads,...).
+     *                                Range of conv_params->input_offset  : [-127, 128]
+     *                                Range of conv_params->output_offset : [-128, 127]
+     * @param[in]      quant_params   Per-channel quantization info.
+     *                                It contains the multiplier and shift values to be applied to each output channel
+     * @param[in]      input_dims     Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
+     * @param[in]      input_data     Input (activation) data pointer. Data type: int8
+     * @param[in]      filter_dims    Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the
+     *                                spatial filter dimensions
+     * @param[in]      filter_data    Filter data pointer. Data type: int8
+     * @param[in]      bias_dims      Bias tensor dimensions. Format: [C_OUT]
+     * @param[in]      bias_data      Optional bias data pointer. Data type: int32
+     * @param[in]      output_dims    Output tensor dimensions. Format: [N, H, W, C_OUT]
+     * @param[out]     output_data    Output data pointer. Data type: int8
 
- * @return     The function returns <code>ARM_MATH_SUCCESS</code>
- *
- * @details
- *    1. Supported framework: TensorFlow Lite micro
- *    2. q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
- *    3. Additional memory is required for optimization. Refer to argument 'ctx' for details.
- *
- */
-arm_status arm_convolve_s8(const cmsis_nn_context *ctx,
-                           const cmsis_nn_conv_params *conv_params,
-                           const cmsis_nn_per_channel_quant_params *quant_params,
-                           const cmsis_nn_dims *input_dims,
-                           const q7_t *input_data,
-                           const cmsis_nn_dims *filter_dims,
-                           const q7_t *filter_data,
-                           const cmsis_nn_dims *bias_dims,
-                           const int32_t *bias_data,
-                           const cmsis_nn_dims *output_dims,
-                           q7_t *output_data);
+     * @return     The function returns <code>ARM_MATH_SUCCESS</code>
+     *
+     * @details
+     *    1. Supported framework: TensorFlow Lite micro
+     *    2. q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
+     *    3. Additional memory is required for optimization. Refer to argument 'ctx' for details.
+     *
+     */
+    arm_status arm_convolve_s8(const cmsis_nn_context *ctx,
+                               const cmsis_nn_conv_params *conv_params,
+                               const cmsis_nn_per_channel_quant_params *quant_params,
+                               const cmsis_nn_dims *input_dims,
+                               const q7_t *input_data,
+                               const cmsis_nn_dims *filter_dims,
+                               const q7_t *filter_data,
+                               const cmsis_nn_dims *bias_dims,
+                               const int32_t *bias_data,
+                               const cmsis_nn_dims *output_dims,
+                               q7_t *output_data);
 
-/**
- * @brief Get the required buffer size for s8 convolution function
- *
- * @param[in]       input_dims            Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in]       filter_dims           Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are
- *                                        the spatial filter dimensions
- * @return          The function returns  required buffer size(bytes)
- *
- */
-int32_t arm_convolve_s8_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims);
+    /**
+     * @brief Get the required buffer size for s8 convolution function
+     *
+     * @param[in]       input_dims            Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
+     * @param[in]       filter_dims           Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK
+     * are the spatial filter dimensions
+     * @return          The function returns  required buffer size(bytes)
+     *
+     */
+    int32_t arm_convolve_s8_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims);
 
-/**
- * @brief Basic Q7 convolution function
- * @param[in]       Im_in       pointer to input tensor
- * @param[in]       dim_im_in   input tensor dimension
- * @param[in]       ch_im_in    number of input tensor channels
- * @param[in]       wt          pointer to kernel weights
- * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
- * @param[in]       dim_kernel  filter kernel size
- * @param[in]       padding     padding sizes
- * @param[in]       stride      convolution stride
- * @param[in]       bias        pointer to bias
- * @param[in]       bias_shift  amount of left-shift for bias
- * @param[in]       out_shift   amount of right-shift for output
- * @param[in,out]   Im_out      pointer to output tensor
- * @param[in]       dim_im_out  output tensor dimension
- * @param[in,out]   bufferA     pointer to buffer space for input
- * @param[in,out]   bufferB     pointer to buffer space for output
- * @return     The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
-arm_status arm_convolve_HWC_q7_basic(const q7_t *Im_in,
-                                     const uint16_t dim_im_in,
-                                     const uint16_t ch_im_in,
-                                     const q7_t *wt,
-                                     const uint16_t ch_im_out,
-                                     const uint16_t dim_kernel,
-                                     const uint16_t padding,
-                                     const uint16_t stride,
-                                     const q7_t *bias,
-                                     const uint16_t bias_shift,
-                                     const uint16_t out_shift,
-                                     q7_t *Im_out,
-                                     const uint16_t dim_im_out,
-                                     q15_t *bufferA,
-                                     q7_t *bufferB);
+    /**
+     * @brief Basic Q7 convolution function
+     * @param[in]       Im_in       pointer to input tensor
+     * @param[in]       dim_im_in   input tensor dimension
+     * @param[in]       ch_im_in    number of input tensor channels
+     * @param[in]       wt          pointer to kernel weights
+     * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
+     * @param[in]       dim_kernel  filter kernel size
+     * @param[in]       padding     padding sizes
+     * @param[in]       stride      convolution stride
+     * @param[in]       bias        pointer to bias
+     * @param[in]       bias_shift  amount of left-shift for bias
+     * @param[in]       out_shift   amount of right-shift for output
+     * @param[in,out]   Im_out      pointer to output tensor
+     * @param[in]       dim_im_out  output tensor dimension
+     * @param[in,out]   bufferA     pointer to buffer space for input
+     * @param[in,out]   bufferB     pointer to buffer space for output
+     * @return     The function returns <code>ARM_MATH_SUCCESS</code>
+     *
+     */
+    arm_status arm_convolve_HWC_q7_basic(const q7_t *Im_in,
+                                         const uint16_t dim_im_in,
+                                         const uint16_t ch_im_in,
+                                         const q7_t *wt,
+                                         const uint16_t ch_im_out,
+                                         const uint16_t dim_kernel,
+                                         const uint16_t padding,
+                                         const uint16_t stride,
+                                         const q7_t *bias,
+                                         const uint16_t bias_shift,
+                                         const uint16_t out_shift,
+                                         q7_t *Im_out,
+                                         const uint16_t dim_im_out,
+                                         q15_t *bufferA,
+                                         q7_t *bufferB);
 
-/**
- * @brief Basic Q7 convolution function (non-square shape)
- * @param[in]       Im_in        pointer to input tensor
- * @param[in]       dim_im_in_x  input tensor dimension x
- * @param[in]       dim_im_in_y  input tensor dimension y
- * @param[in]       ch_im_in     number of input tensor channels
- * @param[in]       wt           pointer to kernel weights
- * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
- * @param[in]       dim_kernel_x filter kernel size x
- * @param[in]       dim_kernel_y filter kernel size y
- * @param[in]       padding_x    padding size x
- * @param[in]       padding_y    padding size y
- * @param[in]       stride_x     convolution stride x
- * @param[in]       stride_y     convolution stride y
- * @param[in]       bias         pointer to bias
- * @param[in]       bias_shift   amount of left-shift for bias
- * @param[in]       out_shift    amount of right-shift for output
- * @param[in,out]   Im_out       pointer to output tensor
- * @param[in]       dim_im_out_x output tensor dimension x
- * @param[in]       dim_im_out_y output tensor dimension y
- * @param[in,out]   bufferA      pointer to buffer space for input
- * @param[in,out]   bufferB      pointer to buffer space for output
- * @return     The function returns <code>ARM_MATH_SUCCESS</code>
- */
-arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t *Im_in,
-                                               const uint16_t dim_im_in_x,
-                                               const uint16_t dim_im_in_y,
-                                               const uint16_t ch_im_in,
-                                               const q7_t *wt,
-                                               const uint16_t ch_im_out,
-                                               const uint16_t dim_kernel_x,
-                                               const uint16_t dim_kernel_y,
-                                               const uint16_t padding_x,
-                                               const uint16_t padding_y,
-                                               const uint16_t stride_x,
-                                               const uint16_t stride_y,
-                                               const q7_t *bias,
-                                               const uint16_t bias_shift,
-                                               const uint16_t out_shift,
-                                               q7_t *Im_out,
-                                               const uint16_t dim_im_out_x,
-                                               const uint16_t dim_im_out_y,
-                                               q15_t *bufferA,
-                                               q7_t *bufferB);
+    /**
+     * @brief Basic Q7 convolution function (non-square shape)
+     * @param[in]       Im_in        pointer to input tensor
+     * @param[in]       dim_im_in_x  input tensor dimension x
+     * @param[in]       dim_im_in_y  input tensor dimension y
+     * @param[in]       ch_im_in     number of input tensor channels
+     * @param[in]       wt           pointer to kernel weights
+     * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
+     * @param[in]       dim_kernel_x filter kernel size x
+     * @param[in]       dim_kernel_y filter kernel size y
+     * @param[in]       padding_x    padding size x
+     * @param[in]       padding_y    padding size y
+     * @param[in]       stride_x     convolution stride x
+     * @param[in]       stride_y     convolution stride y
+     * @param[in]       bias         pointer to bias
+     * @param[in]       bias_shift   amount of left-shift for bias
+     * @param[in]       out_shift    amount of right-shift for output
+     * @param[in,out]   Im_out       pointer to output tensor
+     * @param[in]       dim_im_out_x output tensor dimension x
+     * @param[in]       dim_im_out_y output tensor dimension y
+     * @param[in,out]   bufferA      pointer to buffer space for input
+     * @param[in,out]   bufferB      pointer to buffer space for output
+     * @return     The function returns <code>ARM_MATH_SUCCESS</code>
+     */
+    arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t *Im_in,
+                                                   const uint16_t dim_im_in_x,
+                                                   const uint16_t dim_im_in_y,
+                                                   const uint16_t ch_im_in,
+                                                   const q7_t *wt,
+                                                   const uint16_t ch_im_out,
+                                                   const uint16_t dim_kernel_x,
+                                                   const uint16_t dim_kernel_y,
+                                                   const uint16_t padding_x,
+                                                   const uint16_t padding_y,
+                                                   const uint16_t stride_x,
+                                                   const uint16_t stride_y,
+                                                   const q7_t *bias,
+                                                   const uint16_t bias_shift,
+                                                   const uint16_t out_shift,
+                                                   q7_t *Im_out,
+                                                   const uint16_t dim_im_out_x,
+                                                   const uint16_t dim_im_out_y,
+                                                   q15_t *bufferA,
+                                                   q7_t *bufferB);
 
-/**
- * @brief Basic Q15 convolution function
- * @param[in]       Im_in       pointer to input tensor
- * @param[in]       dim_im_in   input tensor dimension
- * @param[in]       ch_im_in    number of input tensor channels
- * @param[in]       wt          pointer to kernel weights
- * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
- * @param[in]       dim_kernel  filter kernel size
- * @param[in]       padding     padding sizes
- * @param[in]       stride      convolution stride
- * @param[in]       bias        pointer to bias
- * @param[in]       bias_shift  amount of left-shift for bias
- * @param[in]       out_shift   amount of right-shift for output
- * @param[in,out]   Im_out      pointer to output tensor
- * @param[in]       dim_im_out  output tensor dimension
- * @param[in,out]   bufferA     pointer to buffer space for input
- * @param[in,out]   bufferB     pointer to buffer space for output
- * @return     The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
-arm_status arm_convolve_HWC_q15_basic(const q15_t *Im_in,
-                                      const uint16_t dim_im_in,
-                                      const uint16_t ch_im_in,
-                                      const q15_t *wt,
-                                      const uint16_t ch_im_out,
-                                      const uint16_t dim_kernel,
-                                      const uint16_t padding,
-                                      const uint16_t stride,
-                                      const q15_t *bias,
-                                      const uint16_t bias_shift,
-                                      const uint16_t out_shift,
-                                      q15_t *Im_out,
-                                      const uint16_t dim_im_out,
-                                      q15_t *bufferA,
-                                      q7_t *bufferB);
+    /**
+     * @brief Basic Q15 convolution function
+     * @param[in]       Im_in       pointer to input tensor
+     * @param[in]       dim_im_in   input tensor dimension
+     * @param[in]       ch_im_in    number of input tensor channels
+     * @param[in]       wt          pointer to kernel weights
+     * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
+     * @param[in]       dim_kernel  filter kernel size
+     * @param[in]       padding     padding sizes
+     * @param[in]       stride      convolution stride
+     * @param[in]       bias        pointer to bias
+     * @param[in]       bias_shift  amount of left-shift for bias
+     * @param[in]       out_shift   amount of right-shift for output
+     * @param[in,out]   Im_out      pointer to output tensor
+     * @param[in]       dim_im_out  output tensor dimension
+     * @param[in,out]   bufferA     pointer to buffer space for input
+     * @param[in,out]   bufferB     pointer to buffer space for output
+     * @return     The function returns <code>ARM_MATH_SUCCESS</code>
+     *
+     */
+    arm_status arm_convolve_HWC_q15_basic(const q15_t *Im_in,
+                                          const uint16_t dim_im_in,
+                                          const uint16_t ch_im_in,
+                                          const q15_t *wt,
+                                          const uint16_t ch_im_out,
+                                          const uint16_t dim_kernel,
+                                          const uint16_t padding,
+                                          const uint16_t stride,
+                                          const q15_t *bias,
+                                          const uint16_t bias_shift,
+                                          const uint16_t out_shift,
+                                          q15_t *Im_out,
+                                          const uint16_t dim_im_out,
+                                          q15_t *bufferA,
+                                          q7_t *bufferB);
 
-/**
- * @brief Fast Q7 convolution function
- * @param[in]       Im_in       pointer to input tensor
- * @param[in]       dim_im_in   input tensor dimension
- * @param[in]       ch_im_in    number of input tensor channels
- * @param[in]       wt          pointer to kernel weights
- * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
- * @param[in]       dim_kernel  filter kernel size
- * @param[in]       padding     padding sizes
- * @param[in]       stride      convolution stride
- * @param[in]       bias        pointer to bias
- * @param[in]       bias_shift  amount of left-shift for bias
- * @param[in]       out_shift   amount of right-shift for output
- * @param[in,out]   Im_out      pointer to output tensor
- * @param[in]       dim_im_out  output tensor dimension
- * @param[in,out]   bufferA     pointer to buffer space for input
- * @param[in,out]   bufferB     pointer to buffer space for output
- * @return     The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * This function is the version with full list of optimization tricks, but with
- * some contraints:
- *   ch_im_in is multiple of 4
- *   ch_im_out is multiple of 2
- */
-arm_status arm_convolve_HWC_q7_fast(const q7_t *Im_in,
-                                    const uint16_t dim_im_in,
-                                    const uint16_t ch_im_in,
-                                    const q7_t *wt,
-                                    const uint16_t ch_im_out,
-                                    const uint16_t dim_kernel,
-                                    const uint16_t padding,
-                                    const uint16_t stride,
-                                    const q7_t *bias,
-                                    const uint16_t bias_shift,
-                                    const uint16_t out_shift,
-                                    q7_t *Im_out,
-                                    const uint16_t dim_im_out,
-                                    q15_t *bufferA,
-                                    q7_t *bufferB);
+    /**
+     * @brief Fast Q7 convolution function
+     * @param[in]       Im_in       pointer to input tensor
+     * @param[in]       dim_im_in   input tensor dimension
+     * @param[in]       ch_im_in    number of input tensor channels
+     * @param[in]       wt          pointer to kernel weights
+     * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
+     * @param[in]       dim_kernel  filter kernel size
+     * @param[in]       padding     padding sizes
+     * @param[in]       stride      convolution stride
+     * @param[in]       bias        pointer to bias
+     * @param[in]       bias_shift  amount of left-shift for bias
+     * @param[in]       out_shift   amount of right-shift for output
+     * @param[in,out]   Im_out      pointer to output tensor
+     * @param[in]       dim_im_out  output tensor dimension
+     * @param[in,out]   bufferA     pointer to buffer space for input
+     * @param[in,out]   bufferB     pointer to buffer space for output
+     * @return     The function returns either
+     * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+     *
+     * This function is the version with full list of optimization tricks, but with
+     * some contraints:
+     *   ch_im_in is multiple of 4
+     *   ch_im_out is multiple of 2
+     */
+    arm_status arm_convolve_HWC_q7_fast(const q7_t *Im_in,
+                                        const uint16_t dim_im_in,
+                                        const uint16_t ch_im_in,
+                                        const q7_t *wt,
+                                        const uint16_t ch_im_out,
+                                        const uint16_t dim_kernel,
+                                        const uint16_t padding,
+                                        const uint16_t stride,
+                                        const q7_t *bias,
+                                        const uint16_t bias_shift,
+                                        const uint16_t out_shift,
+                                        q7_t *Im_out,
+                                        const uint16_t dim_im_out,
+                                        q15_t *bufferA,
+                                        q7_t *bufferB);
 
-/**
- * @brief Fast Q7 convolution function (non-sqaure shape)
- * @param[in]       Im_in        pointer to input tensor
- * @param[in]       dim_im_in_x  input tensor dimension x
- * @param[in]       dim_im_in_y  input tensor dimension y
- * @param[in]       ch_im_in     number of input tensor channels
- * @param[in]       wt           pointer to kernel weights
- * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
- * @param[in]       dim_kernel_x filter kernel size x
- * @param[in]       dim_kernel_y filter kernel size y
- * @param[in]       padding_x    padding size x
- * @param[in]       padding_y    padding size y
- * @param[in]       stride_x     convolution stride x
- * @param[in]       stride_y     convolution stride y
- * @param[in]       bias         pointer to bias
- * @param[in]       bias_shift   amount of left-shift for bias
- * @param[in]       out_shift    amount of right-shift for output
- * @param[in,out]   Im_out       pointer to output tensor
- * @param[in]       dim_im_out_x output tensor dimension x
- * @param[in]       dim_im_out_y output tensor dimension y
- * @param[in,out]   bufferA      pointer to buffer space for input
- * @param[in,out]   bufferB      pointer to buffer space for output
- * @return     The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * This function is the version with full list of optimization tricks, but with
- * some contraints:
- *   ch_im_in is multiple of 4
- *   ch_im_out is multiple of 2
- */
+    /**
+     * @brief Fast Q7 convolution function (non-sqaure shape)
+     * @param[in]       Im_in        pointer to input tensor
+     * @param[in]       dim_im_in_x  input tensor dimension x
+     * @param[in]       dim_im_in_y  input tensor dimension y
+     * @param[in]       ch_im_in     number of input tensor channels
+     * @param[in]       wt           pointer to kernel weights
+     * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
+     * @param[in]       dim_kernel_x filter kernel size x
+     * @param[in]       dim_kernel_y filter kernel size y
+     * @param[in]       padding_x    padding size x
+     * @param[in]       padding_y    padding size y
+     * @param[in]       stride_x     convolution stride x
+     * @param[in]       stride_y     convolution stride y
+     * @param[in]       bias         pointer to bias
+     * @param[in]       bias_shift   amount of left-shift for bias
+     * @param[in]       out_shift    amount of right-shift for output
+     * @param[in,out]   Im_out       pointer to output tensor
+     * @param[in]       dim_im_out_x output tensor dimension x
+     * @param[in]       dim_im_out_y output tensor dimension y
+     * @param[in,out]   bufferA      pointer to buffer space for input
+     * @param[in,out]   bufferB      pointer to buffer space for output
+     * @return     The function returns either
+     * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+     *
+     * This function is the version with full list of optimization tricks, but with
+     * some contraints:
+     *   ch_im_in is multiple of 4
+     *   ch_im_out is multiple of 2
+     */
 
-arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t *Im_in,
-                                              const uint16_t dim_im_in_x,
-                                              const uint16_t dim_im_in_y,
-                                              const uint16_t ch_im_in,
-                                              const q7_t *wt,
-                                              const uint16_t ch_im_out,
-                                              const uint16_t dim_kernel_x,
-                                              const uint16_t dim_kernel_y,
-                                              const uint16_t padding_x,
-                                              const uint16_t padding_y,
-                                              const uint16_t stride_x,
-                                              const uint16_t stride_y,
-                                              const q7_t *bias,
-                                              const uint16_t bias_shift,
-                                              const uint16_t out_shift,
-                                              q7_t *Im_out,
-                                              const uint16_t dim_im_out_x,
-                                              const uint16_t dim_im_out_y,
-                                              q15_t *bufferA,
-                                              q7_t *bufferB);
-
-/**
- * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape)
- * @param[in]       Im_in        pointer to input tensor
- * @param[in]       dim_im_in_x  input tensor dimension x
- * @param[in]       dim_im_in_y  input tensor dimension y
- * @param[in]       ch_im_in     number of input tensor channels
- * @param[in]       wt           pointer to kernel weights
- * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
- * @param[in]       dim_kernel_x filter kernel size x
- * @param[in]       dim_kernel_y filter kernel size y
- * @param[in]       padding_x    padding size x
- * @param[in]       padding_y    padding size y
- * @param[in]       stride_x     convolution stride x
- * @param[in]       stride_y     convolution stride y
- * @param[in]       bias         pointer to bias
- * @param[in]       bias_shift   amount of left-shift for bias
- * @param[in]       out_shift    amount of right-shift for output
- * @param[in,out]   Im_out       pointer to output tensor
- * @param[in]       dim_im_out_x output tensor dimension x
- * @param[in]       dim_im_out_y output tensor dimension y
- * @param[in,out]   bufferA      pointer to buffer space for input
- * @param[in,out]   bufferB      pointer to buffer space for output
- * @return     The function returns either
- *                          <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or,
- *                          <code>ARM_MATH_SUCCESS</code> on successful completion.
- *
- * This function implement convolution with 1x1 kernel size (i.e., dim_kernel_x=1
- * and dim_kernel_y=1). It can be used for
- * second half of MobileNets after depthwise separable convolution.
- *
- * This function is the version with full list of optimization tricks, but with
- * some contraints:
- *   ch_im_in is multiple of 4
- *   ch_im_out is multiple of 2
- */
-arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t *Im_in,
+    arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t *Im_in,
                                                   const uint16_t dim_im_in_x,
                                                   const uint16_t dim_im_in_y,
                                                   const uint16_t ch_im_in,
@@ -577,391 +483,539 @@
                                                   q15_t *bufferA,
                                                   q7_t *bufferB);
 
-/**
- * @brief Fast s8 version for 1x1 convolution (non-square shape)
- *
- * @param[in, out] ctx            Function context that contains the additional buffer if required by the function.
-                                  arm_convolve_1x1_s8_fast_get_buffer_size will return the buffer_size if required
- * @param[in]      conv_params    Convolution parameters (e.g. strides, dilations, pads,...).
- *                                Range of conv_params->input_offset  : [-127, 128]
- *                                Range of conv_params->output_offset : [-128, 127]
- * @param[in]      quant_params   Per-channel quantization info.
- *                                It contains the multiplier and shift values to be applied to each output channel
- * @param[in]      input_dims     Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in]      input_data     Input (activation) data pointer. Data type: int8
- * @param[in]      filter_dims    Filter tensor dimensions. Format: [C_OUT, 1, 1, C_IN]
- * @param[in]      filter_data    Filter data pointer. Data type: int8
- * @param[in]      bias_dims      Bias tensor dimensions. Format: [C_OUT]
- * @param[in]      bias_data      Optional bias data pointer. Data type: int32
- * @param[in]      output_dims    Output tensor dimensions. Format: [N, H, W, C_OUT]
- * @param[out]     output_data    Output data pointer. Data type: int8
- *
- * @return     The function returns either
- *                  <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or,
- *                  <code>ARM_MATH_SUCCESS</code> on successful completion.
- *
- * @details
- *   - Supported framework : TensorFlow Lite Micro
- *   - The following constrains on the arguments apply
- *      -# input_dims->c is a multiple of 4
- *      -# conv_params->padding.w = conv_params->padding.h = 0
- *      -# conv_params->stride.w = conv_params->stride.h = 1
- *
- */
-arm_status arm_convolve_1x1_s8_fast(const cmsis_nn_context *ctx,
-                                    const cmsis_nn_conv_params *conv_params,
-                                    const cmsis_nn_per_channel_quant_params *quant_params,
-                                    const cmsis_nn_dims *input_dims,
-                                    const q7_t *input_data,
-                                    const cmsis_nn_dims *filter_dims,
-                                    const q7_t *filter_data,
-                                    const cmsis_nn_dims *bias_dims,
-                                    const int32_t *bias_data,
-                                    const cmsis_nn_dims *output_dims,
-                                    q7_t *output_data);
+    /**
+     * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape)
+     * @param[in]       Im_in        pointer to input tensor
+     * @param[in]       dim_im_in_x  input tensor dimension x
+     * @param[in]       dim_im_in_y  input tensor dimension y
+     * @param[in]       ch_im_in     number of input tensor channels
+     * @param[in]       wt           pointer to kernel weights
+     * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
+     * @param[in]       dim_kernel_x filter kernel size x
+     * @param[in]       dim_kernel_y filter kernel size y
+     * @param[in]       padding_x    padding size x
+     * @param[in]       padding_y    padding size y
+     * @param[in]       stride_x     convolution stride x
+     * @param[in]       stride_y     convolution stride y
+     * @param[in]       bias         pointer to bias
+     * @param[in]       bias_shift   amount of left-shift for bias
+     * @param[in]       out_shift    amount of right-shift for output
+     * @param[in,out]   Im_out       pointer to output tensor
+     * @param[in]       dim_im_out_x output tensor dimension x
+     * @param[in]       dim_im_out_y output tensor dimension y
+     * @param[in,out]   bufferA      pointer to buffer space for input
+     * @param[in,out]   bufferB      pointer to buffer space for output
+     * @return     The function returns either
+     *                          <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or,
+     *                          <code>ARM_MATH_SUCCESS</code> on successful completion.
+     *
+     * This function implement convolution with 1x1 kernel size (i.e., dim_kernel_x=1
+     * and dim_kernel_y=1). It can be used for
+     * second half of MobileNets after depthwise separable convolution.
+     *
+     * This function is the version with full list of optimization tricks, but with
+     * some contraints:
+     *   ch_im_in is multiple of 4
+     *   ch_im_out is multiple of 2
+     */
+    arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t *Im_in,
+                                                      const uint16_t dim_im_in_x,
+                                                      const uint16_t dim_im_in_y,
+                                                      const uint16_t ch_im_in,
+                                                      const q7_t *wt,
+                                                      const uint16_t ch_im_out,
+                                                      const uint16_t dim_kernel_x,
+                                                      const uint16_t dim_kernel_y,
+                                                      const uint16_t padding_x,
+                                                      const uint16_t padding_y,
+                                                      const uint16_t stride_x,
+                                                      const uint16_t stride_y,
+                                                      const q7_t *bias,
+                                                      const uint16_t bias_shift,
+                                                      const uint16_t out_shift,
+                                                      q7_t *Im_out,
+                                                      const uint16_t dim_im_out_x,
+                                                      const uint16_t dim_im_out_y,
+                                                      q15_t *bufferA,
+                                                      q7_t *bufferB);
 
-/**
- * @brief Get the required buffer size for arm_convolve_1x1_s8_fast
- *
- * @param[in]       input_dims            Input (activation) dimensions
- * @return          The function returns the required buffer size in bytes
- *
- */
-int32_t arm_convolve_1x1_s8_fast_get_buffer_size(const cmsis_nn_dims *input_dims);
+    /**
+     * @brief Fast s8 version for 1x1 convolution (non-square shape)
+     *
+     * @param[in, out] ctx            Function context that contains the additional buffer if required by the function.
+                                      arm_convolve_1x1_s8_fast_get_buffer_size will return the buffer_size if required
+     * @param[in]      conv_params    Convolution parameters (e.g. strides, dilations, pads,...).
+     *                                Range of conv_params->input_offset  : [-127, 128]
+     *                                Range of conv_params->output_offset : [-128, 127]
+     * @param[in]      quant_params   Per-channel quantization info.
+     *                                It contains the multiplier and shift values to be applied to each output channel
+     * @param[in]      input_dims     Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
+     * @param[in]      input_data     Input (activation) data pointer. Data type: int8
+     * @param[in]      filter_dims    Filter tensor dimensions. Format: [C_OUT, 1, 1, C_IN]
+     * @param[in]      filter_data    Filter data pointer. Data type: int8
+     * @param[in]      bias_dims      Bias tensor dimensions. Format: [C_OUT]
+     * @param[in]      bias_data      Optional bias data pointer. Data type: int32
+     * @param[in]      output_dims    Output tensor dimensions. Format: [N, H, W, C_OUT]
+     * @param[out]     output_data    Output data pointer. Data type: int8
+     *
+     * @return     The function returns either
+     *                  <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or,
+     *                  <code>ARM_MATH_SUCCESS</code> on successful completion.
+     *
+     * @details
+     *   - Supported framework : TensorFlow Lite Micro
+     *   - The following constrains on the arguments apply
+     *      -# input_dims->c is a multiple of 4
+     *      -# conv_params->padding.w = conv_params->padding.h = 0
+     *      -# conv_params->stride.w = conv_params->stride.h = 1
+     *
+     */
+    arm_status arm_convolve_1x1_s8_fast(const cmsis_nn_context *ctx,
+                                        const cmsis_nn_conv_params *conv_params,
+                                        const cmsis_nn_per_channel_quant_params *quant_params,
+                                        const cmsis_nn_dims *input_dims,
+                                        const q7_t *input_data,
+                                        const cmsis_nn_dims *filter_dims,
+                                        const q7_t *filter_data,
+                                        const cmsis_nn_dims *bias_dims,
+                                        const int32_t *bias_data,
+                                        const cmsis_nn_dims *output_dims,
+                                        q7_t *output_data);
 
-/**
- * @brief 1xn convolution
- *
- * @param[in, out] ctx            Function context that contains the additional buffer if required by the function.
-                                  arm_convolve_1_x_n_s8_get_buffer_size will return the buffer_size if required
- * @param[in]      conv_params    Convolution parameters (e.g. strides, dilations, pads,...).
- *                                Range of conv_params->input_offset  : [-127, 128]
- *                                Range of conv_params->output_offset : [-128, 127]
- * @param[in]      quant_params   Per-channel quantization info.
- *                                It contains the multiplier and shift values to be applied to each output channel
- * @param[in]      input_dims     Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in]      input_data     Input (activation) data pointer. Data type: int8
- * @param[in]      filter_dims    Filter tensor dimensions. Format: [C_OUT, 1, WK, C_IN] where WK is the horizontal
- *                                spatial filter dimension
- * @param[in]      filter_data    Filter data pointer. Data type: int8
- * @param[in]      bias_dims      Bias tensor dimensions. Format: [C_OUT]
- * @param[in]      bias_data      Optional bias data pointer. Data type: int32
- * @param[in]      output_dims    Output tensor dimensions. Format: [N, H, W, C_OUT]
- * @param[out]     output_data    Output data pointer. Data type: int8
- *
- * @return     The function returns either
- *                  <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or,
- *                  <code>ARM_MATH_SUCCESS</code> on successful completion.
- *
- * @details
- *   - Supported framework : TensorFlow Lite Micro
- *   - The following constrains on the arguments apply
- *      -# input_dims->n equals 1
- *      -# ouput_dims->w is a multiple of 4
- *      -# Explicit constraints(since it is for 1xN convolution)
- *      -## input_dims->h equals 1
- *      -## output_dims->h equals 1
- *      -## filter_dims->h equals 1
- *@todo  Remove constraint on output_dims->w to make the function generic.
- *
- */
-arm_status arm_convolve_1_x_n_s8(const cmsis_nn_context *ctx,
-                                 const cmsis_nn_conv_params *conv_params,
-                                 const cmsis_nn_per_channel_quant_params *quant_params,
-                                 const cmsis_nn_dims *input_dims,
-                                 const q7_t *input_data,
-                                 const cmsis_nn_dims *filter_dims,
-                                 const q7_t *filter_data,
-                                 const cmsis_nn_dims *bias_dims,
-                                 const int32_t *bias_data,
-                                 const cmsis_nn_dims *output_dims,
-                                 q7_t *output_data);
+    /**
+     * @brief Get the required buffer size for arm_convolve_1x1_s8_fast
+     *
+     * @param[in]       input_dims            Input (activation) dimensions
+     * @return          The function returns the required buffer size in bytes
+     *
+     */
+    int32_t arm_convolve_1x1_s8_fast_get_buffer_size(const cmsis_nn_dims *input_dims);
 
-/**
- * @brief Get the required additional buffer size for 1xn convolution
- *
- * @param[in]       input_dims            Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in]       filter_dims           Filter tensor dimensions. Format: [C_OUT, 1, WK, C_IN] where WK is the
- *                                        horizontal spatial filter dimension
- * @return          The function returns  required buffer size(bytes)
- *
- */
-int32_t arm_convolve_1_x_n_s8_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims);
+    /**
+     * @brief 1xn convolution
+     *
+     * @param[in, out] ctx            Function context that contains the additional buffer if required by the function.
+                                      arm_convolve_1_x_n_s8_get_buffer_size will return the buffer_size if required
+     * @param[in]      conv_params    Convolution parameters (e.g. strides, dilations, pads,...).
+     *                                Range of conv_params->input_offset  : [-127, 128]
+     *                                Range of conv_params->output_offset : [-128, 127]
+     * @param[in]      quant_params   Per-channel quantization info.
+     *                                It contains the multiplier and shift values to be applied to each output channel
+     * @param[in]      input_dims     Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
+     * @param[in]      input_data     Input (activation) data pointer. Data type: int8
+     * @param[in]      filter_dims    Filter tensor dimensions. Format: [C_OUT, 1, WK, C_IN] where WK is the horizontal
+     *                                spatial filter dimension
+     * @param[in]      filter_data    Filter data pointer. Data type: int8
+     * @param[in]      bias_dims      Bias tensor dimensions. Format: [C_OUT]
+     * @param[in]      bias_data      Optional bias data pointer. Data type: int32
+     * @param[in]      output_dims    Output tensor dimensions. Format: [N, H, W, C_OUT]
+     * @param[out]     output_data    Output data pointer. Data type: int8
+     *
+     * @return     The function returns either
+     *                  <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or,
+     *                  <code>ARM_MATH_SUCCESS</code> on successful completion.
+     *
+     * @details
+     *   - Supported framework : TensorFlow Lite Micro
+     *   - The following constrains on the arguments apply
+     *      -# input_dims->n equals 1
+     *      -# ouput_dims->w is a multiple of 4
+     *      -# Explicit constraints(since it is for 1xN convolution)
+     *      -## input_dims->h equals 1
+     *      -## output_dims->h equals 1
+     *      -## filter_dims->h equals 1
+     *@todo  Remove constraint on output_dims->w to make the function generic.
+     *
+     */
+    arm_status arm_convolve_1_x_n_s8(const cmsis_nn_context *ctx,
+                                     const cmsis_nn_conv_params *conv_params,
+                                     const cmsis_nn_per_channel_quant_params *quant_params,
+                                     const cmsis_nn_dims *input_dims,
+                                     const q7_t *input_data,
+                                     const cmsis_nn_dims *filter_dims,
+                                     const q7_t *filter_data,
+                                     const cmsis_nn_dims *bias_dims,
+                                     const int32_t *bias_data,
+                                     const cmsis_nn_dims *output_dims,
+                                     q7_t *output_data);
 
-/**
- * @brief Q7 version of convolution for RGB image
- * @param[in]       Im_in       pointer to input tensor
- * @param[in]       dim_im_in   input tensor dimension
- * @param[in]       ch_im_in    number of input tensor channels
- * @param[in]       wt          pointer to kernel weights
- * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
- * @param[in]       dim_kernel  filter kernel size
- * @param[in]       padding     padding sizes
- * @param[in]       stride      convolution stride
- * @param[in]       bias        pointer to bias
- * @param[in]       bias_shift  amount of left-shift for bias
- * @param[in]       out_shift   amount of right-shift for output
- * @param[in,out]   Im_out      pointer to output tensor
- * @param[in]       dim_im_out  output tensor dimension
- * @param[in,out]   bufferA     pointer to buffer space for input
- * @param[in,out]   bufferB     pointer to buffer space for output
- * @return     The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * This kernel is written exclusively for convolution with ch_im_in
- * equals 3. This applies on the first layer of CNNs which has input
- * image with RGB format.
- */
+    /**
+     * @brief Get the required additional buffer size for 1xn convolution
+     *
+     * @param[in]       input_dims            Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
+     * @param[in]       filter_dims           Filter tensor dimensions. Format: [C_OUT, 1, WK, C_IN] where WK is the
+     *                                        horizontal spatial filter dimension
+     * @return          The function returns  required buffer size(bytes)
+     *
+     */
+    int32_t arm_convolve_1_x_n_s8_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims);
 
-arm_status arm_convolve_HWC_q7_RGB(const q7_t *Im_in,
-                                   const uint16_t dim_im_in,
-                                   const uint16_t ch_im_in,
-                                   const q7_t *wt,
-                                   const uint16_t ch_im_out,
-                                   const uint16_t dim_kernel,
-                                   const uint16_t padding,
-                                   const uint16_t stride,
-                                   const q7_t *bias,
-                                   const uint16_t bias_shift,
-                                   const uint16_t out_shift,
-                                   q7_t *Im_out,
-                                   const uint16_t dim_im_out,
-                                   q15_t *bufferA,
-                                   q7_t *bufferB);
+    /**
+     * @brief Q7 version of convolution for RGB image
+     * @param[in]       Im_in       pointer to input tensor
+     * @param[in]       dim_im_in   input tensor dimension
+     * @param[in]       ch_im_in    number of input tensor channels
+     * @param[in]       wt          pointer to kernel weights
+     * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
+     * @param[in]       dim_kernel  filter kernel size
+     * @param[in]       padding     padding sizes
+     * @param[in]       stride      convolution stride
+     * @param[in]       bias        pointer to bias
+     * @param[in]       bias_shift  amount of left-shift for bias
+     * @param[in]       out_shift   amount of right-shift for output
+     * @param[in,out]   Im_out      pointer to output tensor
+     * @param[in]       dim_im_out  output tensor dimension
+     * @param[in,out]   bufferA     pointer to buffer space for input
+     * @param[in,out]   bufferB     pointer to buffer space for output
+     * @return     The function returns either
+     * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+     *
+     * This kernel is written exclusively for convolution with ch_im_in
+     * equals 3. This applies on the first layer of CNNs which has input
+     * image with RGB format.
+     */
 
-/**
- * @brief Fast Q15 convolution function
- * @param[in]       Im_in       pointer to input tensor
- * @param[in]       dim_im_in   input tensor dimension
- * @param[in]       ch_im_in    number of input tensor channels
- * @param[in]       wt          pointer to kernel weights
- * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
- * @param[in]       dim_kernel  filter kernel size
- * @param[in]       padding     padding sizes
- * @param[in]       stride      convolution stride
- * @param[in]       bias        pointer to bias
- * @param[in]       bias_shift  amount of left-shift for bias
- * @param[in]       out_shift   amount of right-shift for output
- * @param[in,out]   Im_out      pointer to output tensor
- * @param[in]       dim_im_out  output tensor dimension
- * @param[in,out]   bufferA     pointer to buffer space for input
- * @param[in,out]   bufferB     pointer to buffer space for output
- * @return     The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * This function is the version with full list of optimization tricks, but with
- * some contraints:
- *   ch_im_in is multiple of 2
- *   ch_im_out is multiple of 2
- */
+    arm_status arm_convolve_HWC_q7_RGB(const q7_t *Im_in,
+                                       const uint16_t dim_im_in,
+                                       const uint16_t ch_im_in,
+                                       const q7_t *wt,
+                                       const uint16_t ch_im_out,
+                                       const uint16_t dim_kernel,
+                                       const uint16_t padding,
+                                       const uint16_t stride,
+                                       const q7_t *bias,
+                                       const uint16_t bias_shift,
+                                       const uint16_t out_shift,
+                                       q7_t *Im_out,
+                                       const uint16_t dim_im_out,
+                                       q15_t *bufferA,
+                                       q7_t *bufferB);
 
-arm_status arm_convolve_HWC_q15_fast(const q15_t *Im_in,
-                                     const uint16_t dim_im_in,
-                                     const uint16_t ch_im_in,
-                                     const q15_t *wt,
-                                     const uint16_t ch_im_out,
-                                     const uint16_t dim_kernel,
-                                     const uint16_t padding,
-                                     const uint16_t stride,
-                                     const q15_t *bias,
-                                     const uint16_t bias_shift,
-                                     const uint16_t out_shift,
-                                     q15_t *Im_out,
-                                     const uint16_t dim_im_out,
-                                     q15_t *bufferA,
-                                     q7_t *bufferB);
+    /**
+     * @brief Fast Q15 convolution function
+     * @param[in]       Im_in       pointer to input tensor
+     * @param[in]       dim_im_in   input tensor dimension
+     * @param[in]       ch_im_in    number of input tensor channels
+     * @param[in]       wt          pointer to kernel weights
+     * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
+     * @param[in]       dim_kernel  filter kernel size
+     * @param[in]       padding     padding sizes
+     * @param[in]       stride      convolution stride
+     * @param[in]       bias        pointer to bias
+     * @param[in]       bias_shift  amount of left-shift for bias
+     * @param[in]       out_shift   amount of right-shift for output
+     * @param[in,out]   Im_out      pointer to output tensor
+     * @param[in]       dim_im_out  output tensor dimension
+     * @param[in,out]   bufferA     pointer to buffer space for input
+     * @param[in,out]   bufferB     pointer to buffer space for output
+     * @return     The function returns either
+     * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+     *
+     * This function is the version with full list of optimization tricks, but with
+     * some contraints:
+     *   ch_im_in is multiple of 2
+     *   ch_im_out is multiple of 2
+     */
 
-/**
- * @brief Fast Q15 convolution function (non-sqaure shape)
- * @param[in]       Im_in        pointer to input tensor
- * @param[in]       dim_im_in_x  input tensor dimension x
- * @param[in]       dim_im_in_y  input tensor dimension y
- * @param[in]       ch_im_in     number of input tensor channels
- * @param[in]       wt           pointer to kernel weights
- * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
- * @param[in]       dim_kernel_x filter kernel size x
- * @param[in]       dim_kernel_y filter kernel size y
- * @param[in]       padding_x    padding size x
- * @param[in]       padding_y    padding size y
- * @param[in]       stride_x     convolution stride x
- * @param[in]       stride_y     convolution stride y
- * @param[in]       bias         pointer to bias
- * @param[in]       bias_shift   amount of left-shift for bias
- * @param[in]       out_shift    amount of right-shift for output
- * @param[in,out]   Im_out       pointer to output tensor
- * @param[in]       dim_im_out_x output tensor dimension x
- * @param[in]       dim_im_out_y output tensor dimension y
- * @param[in,out]   bufferA      pointer to buffer space for input
- * @param[in,out]   bufferB      pointer to buffer space for output
- * @return     The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * @details
- *
- * <b>Buffer size:</b>
- *
- * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
- *
- * bufferB size: 0
- *
- * <b>Input dimension constraints:</b>
- *
- * ch_im_in is multiple of 2
- *
- * ch_im_out is multipe of 2
- *
- */
+    arm_status arm_convolve_HWC_q15_fast(const q15_t *Im_in,
+                                         const uint16_t dim_im_in,
+                                         const uint16_t ch_im_in,
+                                         const q15_t *wt,
+                                         const uint16_t ch_im_out,
+                                         const uint16_t dim_kernel,
+                                         const uint16_t padding,
+                                         const uint16_t stride,
+                                         const q15_t *bias,
+                                         const uint16_t bias_shift,
+                                         const uint16_t out_shift,
+                                         q15_t *Im_out,
+                                         const uint16_t dim_im_out,
+                                         q15_t *bufferA,
+                                         q7_t *bufferB);
 
-arm_status arm_convolve_HWC_q15_fast_nonsquare(const q15_t *Im_in,
-                                               const uint16_t dim_im_in_x,
-                                               const uint16_t dim_im_in_y,
-                                               const uint16_t ch_im_in,
-                                               const q15_t *wt,
-                                               const uint16_t ch_im_out,
-                                               const uint16_t dim_kernel_x,
-                                               const uint16_t dim_kernel_y,
-                                               const uint16_t padding_x,
-                                               const uint16_t padding_y,
-                                               const uint16_t stride_x,
-                                               const uint16_t stride_y,
-                                               const q15_t *bias,
-                                               const uint16_t bias_shift,
-                                               const uint16_t out_shift,
-                                               q15_t *Im_out,
-                                               const uint16_t dim_im_out_x,
-                                               const uint16_t dim_im_out_y,
-                                               q15_t *bufferA,
-                                               q7_t *bufferB);
+    /**
+     * @brief Fast Q15 convolution function (non-sqaure shape)
+     * @param[in]       Im_in        pointer to input tensor
+     * @param[in]       dim_im_in_x  input tensor dimension x
+     * @param[in]       dim_im_in_y  input tensor dimension y
+     * @param[in]       ch_im_in     number of input tensor channels
+     * @param[in]       wt           pointer to kernel weights
+     * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
+     * @param[in]       dim_kernel_x filter kernel size x
+     * @param[in]       dim_kernel_y filter kernel size y
+     * @param[in]       padding_x    padding size x
+     * @param[in]       padding_y    padding size y
+     * @param[in]       stride_x     convolution stride x
+     * @param[in]       stride_y     convolution stride y
+     * @param[in]       bias         pointer to bias
+     * @param[in]       bias_shift   amount of left-shift for bias
+     * @param[in]       out_shift    amount of right-shift for output
+     * @param[in,out]   Im_out       pointer to output tensor
+     * @param[in]       dim_im_out_x output tensor dimension x
+     * @param[in]       dim_im_out_y output tensor dimension y
+     * @param[in,out]   bufferA      pointer to buffer space for input
+     * @param[in,out]   bufferB      pointer to buffer space for output
+     * @return     The function returns either
+     * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+     *
+     * @details
+     *
+     * <b>Buffer size:</b>
+     *
+     * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
+     *
+     * bufferB size: 0
+     *
+     * <b>Input dimension constraints:</b>
+     *
+     * ch_im_in is multiple of 2
+     *
+     * ch_im_out is multipe of 2
+     *
+     */
 
-/**
- * @brief Q7 depthwise separable convolution function
- * @param[in]       Im_in       pointer to input tensor
- * @param[in]       dim_im_in   input tensor dimension
- * @param[in]       ch_im_in    number of input tensor channels
- * @param[in]       wt          pointer to kernel weights
- * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
- * @param[in]       dim_kernel  filter kernel size
- * @param[in]       padding     padding sizes
- * @param[in]       stride      convolution stride
- * @param[in]       bias        pointer to bias
- * @param[in]       bias_shift  amount of left-shift for bias
- * @param[in]       out_shift   amount of right-shift for output
- * @param[in,out]   Im_out      pointer to output tensor
- * @param[in]       dim_im_out  output tensor dimension
- * @param[in,out]   bufferA     pointer to buffer space for input
- * @param[in,out]   bufferB     pointer to buffer space for output
- * @return     The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * This function is the version with full list of optimization tricks, but with
- * some contraints:
- *   ch_im_in is multiple of 2
- *   ch_im_out is multiple of 2
- */
+    arm_status arm_convolve_HWC_q15_fast_nonsquare(const q15_t *Im_in,
+                                                   const uint16_t dim_im_in_x,
+                                                   const uint16_t dim_im_in_y,
+                                                   const uint16_t ch_im_in,
+                                                   const q15_t *wt,
+                                                   const uint16_t ch_im_out,
+                                                   const uint16_t dim_kernel_x,
+                                                   const uint16_t dim_kernel_y,
+                                                   const uint16_t padding_x,
+                                                   const uint16_t padding_y,
+                                                   const uint16_t stride_x,
+                                                   const uint16_t stride_y,
+                                                   const q15_t *bias,
+                                                   const uint16_t bias_shift,
+                                                   const uint16_t out_shift,
+                                                   q15_t *Im_out,
+                                                   const uint16_t dim_im_out_x,
+                                                   const uint16_t dim_im_out_y,
+                                                   q15_t *bufferA,
+                                                   q7_t *bufferB);
 
-arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t *Im_in,
-                                               const uint16_t dim_im_in,
-                                               const uint16_t ch_im_in,
-                                               const q7_t *wt,
-                                               const uint16_t ch_im_out,
-                                               const uint16_t dim_kernel,
-                                               const uint16_t padding,
-                                               const uint16_t stride,
-                                               const q7_t *bias,
-                                               const uint16_t bias_shift,
-                                               const uint16_t out_shift,
-                                               q7_t *Im_out,
-                                               const uint16_t dim_im_out,
-                                               q15_t *bufferA,
-                                               q7_t *bufferB);
+    /**
+     * @brief Q7 depthwise separable convolution function
+     * @param[in]       Im_in       pointer to input tensor
+     * @param[in]       dim_im_in   input tensor dimension
+     * @param[in]       ch_im_in    number of input tensor channels
+     * @param[in]       wt          pointer to kernel weights
+     * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
+     * @param[in]       dim_kernel  filter kernel size
+     * @param[in]       padding     padding sizes
+     * @param[in]       stride      convolution stride
+     * @param[in]       bias        pointer to bias
+     * @param[in]       bias_shift  amount of left-shift for bias
+     * @param[in]       out_shift   amount of right-shift for output
+     * @param[in,out]   Im_out      pointer to output tensor
+     * @param[in]       dim_im_out  output tensor dimension
+     * @param[in,out]   bufferA     pointer to buffer space for input
+     * @param[in,out]   bufferB     pointer to buffer space for output
+     * @return     The function returns either
+     * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+     *
+     * This function is the version with full list of optimization tricks, but with
+     * some contraints:
+     *   ch_im_in is multiple of 2
+     *   ch_im_out is multiple of 2
+     */
 
-/**
- * @brief Q7 depthwise separable convolution function (non-square shape)
- * @param[in]       Im_in         pointer to input tensor
- * @param[in]       dim_im_in_x   input tensor dimension x
- * @param[in]       dim_im_in_y   input tensor dimension y
- * @param[in]       ch_im_in      number of input tensor channels
- * @param[in]       wt            pointer to kernel weights
- * @param[in]       ch_im_out     number of filters, i.e., output tensor channels
- * @param[in]       dim_kernel_x  filter kernel size x
- * @param[in]       dim_kernel_y  filter kernel size y
- * @param[in]       padding_x     padding sizes x
- * @param[in]       padding_y     padding sizes y
- * @param[in]       stride_x      convolution stride x
- * @param[in]       stride_y      convolution stride y
- * @param[in]       bias          pointer to bias
- * @param[in]       bias_shift    amount of left-shift for bias
- * @param[in]       out_shift     amount of right-shift for output
- * @param[in,out]   Im_out        pointer to output tensor
- * @param[in]       dim_im_out_x  output tensor dimension x
- * @param[in]       dim_im_out_y  output tensor dimension y
- * @param[in,out]   bufferA       pointer to buffer space for input
- * @param[in,out]   bufferB       pointer to buffer space for output
- * @return     The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * This function is the version with full list of optimization tricks, but with
- * some contraints:
- *   ch_im_in is multiple of 2
- *   ch_im_out is multiple of 2
- */
-arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t *Im_in,
-                                                         const uint16_t dim_im_in_x,
-                                                         const uint16_t dim_im_in_y,
-                                                         const uint16_t ch_im_in,
-                                                         const q7_t *wt,
-                                                         const uint16_t ch_im_out,
-                                                         const uint16_t dim_kernel_x,
-                                                         const uint16_t dim_kernel_y,
-                                                         const uint16_t padding_x,
-                                                         const uint16_t padding_y,
-                                                         const uint16_t stride_x,
-                                                         const uint16_t stride_y,
-                                                         const q7_t *bias,
-                                                         const uint16_t bias_shift,
-                                                         const uint16_t out_shift,
-                                                         q7_t *Im_out,
-                                                         const uint16_t dim_im_out_x,
-                                                         const uint16_t dim_im_out_y,
-                                                         q15_t *bufferA,
-                                                         q7_t *bufferB);
+    arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t *Im_in,
+                                                   const uint16_t dim_im_in,
+                                                   const uint16_t ch_im_in,
+                                                   const q7_t *wt,
+                                                   const uint16_t ch_im_out,
+                                                   const uint16_t dim_kernel,
+                                                   const uint16_t padding,
+                                                   const uint16_t stride,
+                                                   const q7_t *bias,
+                                                   const uint16_t bias_shift,
+                                                   const uint16_t out_shift,
+                                                   q7_t *Im_out,
+                                                   const uint16_t dim_im_out,
+                                                   q15_t *bufferA,
+                                                   q7_t *bufferB);
 
-/**
-* @brief Wrapper function to pick the right optimized s8 depthwise convolution function
-*
-* @param[in, out] ctx            Function context (e.g. temporary buffer). Check the function
-*                                definition file to see if an additional buffer is required.
-*                                Optional function {API}_get_buffer_size() provides the buffer
-*                                size if required.
-* @param[in]      dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...)
-*                                dw_conv_params->dilation is not used.
-*                                Range of dw_conv_params->input_offset : [-127, 128]
-*                                Range of dw_conv_params->output_offset : [-128, 127]
-* @param[in]      quant_params   Per-channel quantization info.
- *                               It contains the multiplier and shift values to be applied to each
- *                               output channel
-* @param[in]      input_dims     Input (activation) tensor dimensions. Format: [H, W, C_IN]
-*                                Batch argument N is not used and assumed to be 1.
-* @param[in]      input_data     Input (activation) data pointer. Data type: int8
-* @param[in]      filter_dims    Filter tensor dimensions. Format: [1, H, W, C_OUT]
-* @param[in]      filter_data    Filter data pointer. Data type: int8
-* @param[in]      bias_dims      Bias tensor dimensions. Format: [C_OUT]
-* @param[in]      bias_data      Bias data pointer. Data type: int32
-* @param[in]      output_dims    Output tensor dimensions. Format: [1, H, W, C_OUT]
-* @param[in, out] output_data    Output data pointer. Data type: int8
-* @return     The function returns
-*                <code>ARM_MATH_SUCCESS</code>   -  Successful completion.
-*
-* @details
-*    - Supported framework: TensorFlow Lite
-*    - Picks one of the the following functions
-*        -# arm_depthwise_conv_s8()
-*        -# arm_depthwise_conv_3x3_s8() - Cortex-M CPUs with DSP extension only
-*        -# arm_depthwise_conv_s8_opt()
-*    - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
-*    - Check details of arm_depthwise_conv_s8_opt() for potential data that can be accessed outside of the boundary.
-*/
-arm_status arm_depthwise_conv_wrapper_s8(const cmsis_nn_context *ctx,
+    /**
+     * @brief Q7 depthwise separable convolution function (non-square shape)
+     * @param[in]       Im_in         pointer to input tensor
+     * @param[in]       dim_im_in_x   input tensor dimension x
+     * @param[in]       dim_im_in_y   input tensor dimension y
+     * @param[in]       ch_im_in      number of input tensor channels
+     * @param[in]       wt            pointer to kernel weights
+     * @param[in]       ch_im_out     number of filters, i.e., output tensor channels
+     * @param[in]       dim_kernel_x  filter kernel size x
+     * @param[in]       dim_kernel_y  filter kernel size y
+     * @param[in]       padding_x     padding sizes x
+     * @param[in]       padding_y     padding sizes y
+     * @param[in]       stride_x      convolution stride x
+     * @param[in]       stride_y      convolution stride y
+     * @param[in]       bias          pointer to bias
+     * @param[in]       bias_shift    amount of left-shift for bias
+     * @param[in]       out_shift     amount of right-shift for output
+     * @param[in,out]   Im_out        pointer to output tensor
+     * @param[in]       dim_im_out_x  output tensor dimension x
+     * @param[in]       dim_im_out_y  output tensor dimension y
+     * @param[in,out]   bufferA       pointer to buffer space for input
+     * @param[in,out]   bufferB       pointer to buffer space for output
+     * @return     The function returns either
+     * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+     *
+     * This function is the version with full list of optimization tricks, but with
+     * some contraints:
+     *   ch_im_in is multiple of 2
+     *   ch_im_out is multiple of 2
+     */
+    arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t *Im_in,
+                                                             const uint16_t dim_im_in_x,
+                                                             const uint16_t dim_im_in_y,
+                                                             const uint16_t ch_im_in,
+                                                             const q7_t *wt,
+                                                             const uint16_t ch_im_out,
+                                                             const uint16_t dim_kernel_x,
+                                                             const uint16_t dim_kernel_y,
+                                                             const uint16_t padding_x,
+                                                             const uint16_t padding_y,
+                                                             const uint16_t stride_x,
+                                                             const uint16_t stride_y,
+                                                             const q7_t *bias,
+                                                             const uint16_t bias_shift,
+                                                             const uint16_t out_shift,
+                                                             q7_t *Im_out,
+                                                             const uint16_t dim_im_out_x,
+                                                             const uint16_t dim_im_out_y,
+                                                             q15_t *bufferA,
+                                                             q7_t *bufferB);
+
+    /**
+     * @brief Wrapper function to pick the right optimized s8 depthwise convolution function
+     *
+     * @param[in, out] ctx            Function context (e.g. temporary buffer). Check the function
+     *                                definition file to see if an additional buffer is required.
+     *                                Optional function {API}_get_buffer_size() provides the buffer
+     *                                size if required.
+     * @param[in]      dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...)
+     *                                dw_conv_params->dilation is not used.
+     *                                Range of dw_conv_params->input_offset : [-127, 128]
+     *                                Range of dw_conv_params->output_offset : [-128, 127]
+     * @param[in]      quant_params   Per-channel quantization info.
+     *                               It contains the multiplier and shift values to be applied to each
+     *                               output channel
+     * @param[in]      input_dims     Input (activation) tensor dimensions. Format: [H, W, C_IN]
+     *                                Batch argument N is not used and assumed to be 1.
+     * @param[in]      input_data     Input (activation) data pointer. Data type: int8
+     * @param[in]      filter_dims    Filter tensor dimensions. Format: [1, H, W, C_OUT]
+     * @param[in]      filter_data    Filter data pointer. Data type: int8
+     * @param[in]      bias_dims      Bias tensor dimensions. Format: [C_OUT]
+     * @param[in]      bias_data      Bias data pointer. Data type: int32
+     * @param[in]      output_dims    Output tensor dimensions. Format: [1, H, W, C_OUT]
+     * @param[in, out] output_data    Output data pointer. Data type: int8
+     * @return     The function returns
+     *                <code>ARM_MATH_SUCCESS</code>   -  Successful completion.
+     *
+     * @details
+     *    - Supported framework: TensorFlow Lite
+     *    - Picks one of the the following functions
+     *        -# arm_depthwise_conv_s8()
+     *        -# arm_depthwise_conv_3x3_s8() - Cortex-M CPUs with DSP extension only
+     *        -# arm_depthwise_conv_s8_opt()
+     *    - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
+     *    - Check details of arm_depthwise_conv_s8_opt() for potential data that can be accessed outside of the
+     * boundary.
+     */
+    arm_status arm_depthwise_conv_wrapper_s8(const cmsis_nn_context *ctx,
+                                             const cmsis_nn_dw_conv_params *dw_conv_params,
+                                             const cmsis_nn_per_channel_quant_params *quant_params,
+                                             const cmsis_nn_dims *input_dims,
+                                             const q7_t *input_data,
+                                             const cmsis_nn_dims *filter_dims,
+                                             const q7_t *filter_data,
+                                             const cmsis_nn_dims *bias_dims,
+                                             const int32_t *bias_data,
+                                             const cmsis_nn_dims *output_dims,
+                                             q7_t *output_data);
+
+    /**
+     * @brief Get size of additional buffer required by arm_depthwise_conv_wrapper_s8()
+     *
+     * @param[in]      dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...)
+     *                                dw_conv_params->dilation is not used.
+     *                                Range of dw_conv_params->input_offset : [-127, 128]
+     *                                Range of dw_conv_params->input_offset : [-128, 127]
+     * @param[in]      input_dims     Input (activation) tensor dimensions. Format: [H, W, C_IN]
+     *                                Batch argument N is not used and assumed to be 1.
+     * @param[in]      filter_dims    Filter tensor dimensions. Format: [1, H, W, C_OUT]
+     * @param[in]      output_dims    Output tensor dimensions. Format: [1, H, W, C_OUT]
+     * @return                        Size of additional memory required for optimizations in bytes.
+     *
+     */
+    int32_t arm_depthwise_conv_wrapper_s8_get_buffer_size(const cmsis_nn_dw_conv_params *dw_conv_params,
+                                                          const cmsis_nn_dims *input_dims,
+                                                          const cmsis_nn_dims *filter_dims,
+                                                          const cmsis_nn_dims *output_dims);
+
+    /**
+     * @brief Basic s8 depthwise convolution function that doesn't have any constraints on the input dimensions.
+     *
+     * @param[in, out] ctx            Function context (e.g. temporary buffer). Check the function
+     *                                definition file to see if an additional buffer is required.
+     *                                Optional function {API}_get_buffer_size() provides the buffer
+     *                                size if an additional buffer is required.
+     *                                exists if additional memory is.
+     * @param[in]      dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...)
+     *                                dw_conv_params->dilation is not used.
+     *                                Range of dw_conv_params->input_offset : [-127, 128]
+     *                                Range of dw_conv_params->input_offset : [-128, 127]
+     * @param[in]      quant_params   Per-channel quantization info.
+     *                               It contains the multiplier and shift values to be applied to each
+     *                               output channel
+     * @param[in]      input_dims     Input (activation) tensor dimensions. Format: [1, H, W, C_IN]
+     *                                Batch argument N is not used.
+     * @param[in]      input_data     Input (activation) data pointer. Data type: int8
+     * @param[in]      filter_dims    Filter tensor dimensions. Format: [1, H, W, C_OUT]
+     * @param[in]      filter_data    Filter data pointer. Data type: int8
+     * @param[in]      bias_dims      Bias tensor dimensions. Format: [C_OUT]
+     * @param[in]      bias_data      Bias data pointer. Data type: int32
+     * @param[in]      output_dims    Output tensor dimensions. Format: [1, H, W, C_OUT]
+     * @param[in, out] output_data    Output data pointer. Data type: int8
+     * @return     The function returns <code>ARM_MATH_SUCCESS</code>
+     *
+     * @details
+     *    - Supported framework: TensorFlow Lite
+     *    - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
+     */
+    arm_status arm_depthwise_conv_s8(const cmsis_nn_context *ctx,
+                                     const cmsis_nn_dw_conv_params *dw_conv_params,
+                                     const cmsis_nn_per_channel_quant_params *quant_params,
+                                     const cmsis_nn_dims *input_dims,
+                                     const q7_t *input_data,
+                                     const cmsis_nn_dims *filter_dims,
+                                     const q7_t *filter_data,
+                                     const cmsis_nn_dims *bias_dims,
+                                     const int32_t *bias_data,
+                                     const cmsis_nn_dims *output_dims,
+                                     q7_t *output_data);
+
+    /**
+     * @brief Optimized s8 depthwise convolution function for 3x3 kernel size with some constraints on
+     *        the input arguments(documented below). Refer arm_depthwise_conv_s8() for function
+     *        argument details.
+     *
+     * @return     The function returns one of the following
+     *                <code>ARM_MATH_SIZE_MISMATCH</code> - Unsupported dimension of tensors
+     *                <code>ARM_MATH_ARGUMENT_ERROR</code> - Unsupported pad size along the x axis
+     *                <code>ARM_MATH_SUCCESS</code> - Successful operation
+     *
+     * @details
+     *   - Supported framework : TensorFlow Lite Micro
+     *   - The following constrains on the arguments apply
+     *      -# Number of input channel equals number of output channels
+     *      -# Filter height and width equals 3
+     *      -# Padding along x is either 0 or 1.
+     *
+     */
+    arm_status arm_depthwise_conv_3x3_s8(const cmsis_nn_context *ctx,
                                          const cmsis_nn_dw_conv_params *dw_conv_params,
                                          const cmsis_nn_per_channel_quant_params *quant_params,
                                          const cmsis_nn_dims *input_dims,
@@ -973,256 +1027,85 @@
                                          const cmsis_nn_dims *output_dims,
                                          q7_t *output_data);
 
-/**
-* @brief Get size of additional buffer required by arm_depthwise_conv_wrapper_s8()
-*
-* @param[in]      dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...)
-*                                dw_conv_params->dilation is not used.
-*                                Range of dw_conv_params->input_offset : [-127, 128]
-*                                Range of dw_conv_params->input_offset : [-128, 127]
-* @param[in]      input_dims     Input (activation) tensor dimensions. Format: [H, W, C_IN]
-*                                Batch argument N is not used and assumed to be 1.
-* @param[in]      filter_dims    Filter tensor dimensions. Format: [1, H, W, C_OUT]
-* @param[in]      output_dims    Output tensor dimensions. Format: [1, H, W, C_OUT]
-* @return                        Size of additional memory required for optimizations in bytes.
-*
-*/
-int32_t arm_depthwise_conv_wrapper_s8_get_buffer_size(const cmsis_nn_dw_conv_params *dw_conv_params,
-                                                      const cmsis_nn_dims *input_dims,
-                                                      const cmsis_nn_dims *filter_dims,
-                                                      const cmsis_nn_dims *output_dims);
+    /**
+     * @brief Optimized s8 depthwise convolution function with constraint that in_channel equals out_channel.
+     *        Refer arm_depthwise_conv_s8() for function argument details.
+     *
+     * @return     The function returns one of the following
+     *                <code>ARM_MATH_SIZE_MISMATCH</code> - input channel != output channel or
+     *                                                      ch_mult != 1
+     *                <code>ARM_MATH_SUCCESS</code> - Successful operation
+     *
+     * @note       If number of channels is not a multiple of 4, upto 3 elements outside the boundary will be read out
+     *             for the following if MVE optimizations(Arm Helium Technology) are used.
+     *               - Output shift
+     *               - Output multiplier
+     *               - Output bias
+     *               - kernel
+     * @details
+     *    - Supported framework: TensorFlow Lite
+     *    - The following constrains on the arguments apply
+     *        -# Number of input channel equals number of output channels or ch_mult equals 1
+     *    - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
+     *    - Reccomended when number of channels is 4 or greater.
+     *
+     */
+    arm_status arm_depthwise_conv_s8_opt(const cmsis_nn_context *ctx,
+                                         const cmsis_nn_dw_conv_params *dw_conv_params,
+                                         const cmsis_nn_per_channel_quant_params *quant_params,
+                                         const cmsis_nn_dims *input_dims,
+                                         const q7_t *input_data,
+                                         const cmsis_nn_dims *filter_dims,
+                                         const q7_t *filter_data,
+                                         const cmsis_nn_dims *bias_dims,
+                                         const int32_t *bias_data,
+                                         const cmsis_nn_dims *output_dims,
+                                         q7_t *output_data);
 
-/**
-* @brief Basic s8 depthwise convolution function that doesn't have any constraints on the input dimensions.
-*
-* @param[in, out] ctx            Function context (e.g. temporary buffer). Check the function
-*                                definition file to see if an additional buffer is required.
-*                                Optional function {API}_get_buffer_size() provides the buffer
-*                                size if an additional buffer is required.
-*                                exists if additional memory is.
-* @param[in]      dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...)
-*                                dw_conv_params->dilation is not used.
-*                                Range of dw_conv_params->input_offset : [-127, 128]
-*                                Range of dw_conv_params->input_offset : [-128, 127]
-* @param[in]      quant_params   Per-channel quantization info.
- *                               It contains the multiplier and shift values to be applied to each
- *                               output channel
-* @param[in]      input_dims     Input (activation) tensor dimensions. Format: [1, H, W, C_IN]
-*                                Batch argument N is not used.
-* @param[in]      input_data     Input (activation) data pointer. Data type: int8
-* @param[in]      filter_dims    Filter tensor dimensions. Format: [1, H, W, C_OUT]
-* @param[in]      filter_data    Filter data pointer. Data type: int8
-* @param[in]      bias_dims      Bias tensor dimensions. Format: [C_OUT]
-* @param[in]      bias_data      Bias data pointer. Data type: int32
-* @param[in]      output_dims    Output tensor dimensions. Format: [1, H, W, C_OUT]
-* @param[in, out] output_data    Output data pointer. Data type: int8
-* @return     The function returns <code>ARM_MATH_SUCCESS</code>
-*
-* @details
-*    - Supported framework: TensorFlow Lite
-*    - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
-*/
-arm_status arm_depthwise_conv_s8(const cmsis_nn_context *ctx,
-                                 const cmsis_nn_dw_conv_params *dw_conv_params,
-                                 const cmsis_nn_per_channel_quant_params *quant_params,
-                                 const cmsis_nn_dims *input_dims,
-                                 const q7_t *input_data,
-                                 const cmsis_nn_dims *filter_dims,
-                                 const q7_t *filter_data,
-                                 const cmsis_nn_dims *bias_dims,
-                                 const int32_t *bias_data,
-                                 const cmsis_nn_dims *output_dims,
-                                 q7_t *output_data);
+    /**
+     * @brief Get the required buffer size for optimized s8 depthwise convolution
+     * function with constraint that in_channel equals out_channel.
+     * @param[in]       input_dims     Input (activation) tensor dimensions. Format: [1, H, W, C_IN]
+     *                                 Batch argument N is not used.
+     * @param[in]       filter_dims    Filter tensor dimensions. Format: [1, H, W, C_OUT]
+     * @return          The function returns  required buffer size in bytes
+     *
+     */
+    int32_t arm_depthwise_conv_s8_opt_get_buffer_size(const cmsis_nn_dims *input_dims,
+                                                      const cmsis_nn_dims *filter_dims);
 
-/**
-* @brief Optimized s8 depthwise convolution function for 3x3 kernel size with some constraints on
-*        the input arguments(documented below). Refer arm_depthwise_conv_s8() for function
-*        argument details.
-*
-* @return     The function returns one of the following
-*                <code>ARM_MATH_SIZE_MISMATCH</code> - Unsupported dimension of tensors
-*                <code>ARM_MATH_ARGUMENT_ERROR</code> - Unsupported pad size along the x axis
-*                <code>ARM_MATH_SUCCESS</code> - Successful operation
-*
-* @details
-*   - Supported framework : TensorFlow Lite Micro
-*   - The following constrains on the arguments apply
-*      -# Number of input channel equals number of output channels
-*      -# Filter height and width equals 3
-*      -# Padding along x is either 0 or 1.
-*
-*/
-arm_status arm_depthwise_conv_3x3_s8(const cmsis_nn_context *ctx,
-                                     const cmsis_nn_dw_conv_params *dw_conv_params,
-                                     const cmsis_nn_per_channel_quant_params *quant_params,
-                                     const cmsis_nn_dims *input_dims,
-                                     const q7_t *input_data,
-                                     const cmsis_nn_dims *filter_dims,
-                                     const q7_t *filter_data,
-                                     const cmsis_nn_dims *bias_dims,
-                                     const int32_t *bias_data,
-                                     const cmsis_nn_dims *output_dims,
-                                     q7_t *output_data);
+    /**
+     * @defgroup FC Fully-connected Layer Functions
+     *
+     * Collection of fully-connected and matrix multiplication functions.
+     *
+     * Fully-connected layer is basically a matrix-vector multiplication
+     * with bias. The matrix is the weights and the input/output vectors
+     * are the activation values. Supported {weight, activation} precisions
+     * include {8-bit, 8-bit}, {16-bit, 16-bit}, and {8-bit, 16-bit}.
+     *
+     * Here we have two types of kernel functions. The basic function
+     * implements the function using regular GEMV approach. The opt functions
+     * operates with weights in interleaved formats.
+     *
+     */
 
-/**
-* @brief Optimized s8 depthwise convolution function with constraint that in_channel equals out_channel.
-*        Refer arm_depthwise_conv_s8() for function argument details.
-*
-* @return     The function returns one of the following
-*                <code>ARM_MATH_SIZE_MISMATCH</code> - input channel != output channel or
-*                                                      ch_mult != 1
-*                <code>ARM_MATH_SUCCESS</code> - Successful operation
-*
-* @note       If number of channels is not a multiple of 4, upto 3 elements outside the boundary will be read out
-*             for the following if MVE optimizations(Arm Helium Technology) are used.
-*               - Output shift
-*               - Output multiplier
-*               - Output bias
-*               - kernel
-* @details
-*    - Supported framework: TensorFlow Lite
-*    - The following constrains on the arguments apply
-*        -# Number of input channel equals number of output channels or ch_mult equals 1
-*    - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
-*    - Reccomended when number of channels is 4 or greater.
-*
-*/
-arm_status arm_depthwise_conv_s8_opt(const cmsis_nn_context *ctx,
-                                     const cmsis_nn_dw_conv_params *dw_conv_params,
-                                     const cmsis_nn_per_channel_quant_params *quant_params,
-                                     const cmsis_nn_dims *input_dims,
-                                     const q7_t *input_data,
-                                     const cmsis_nn_dims *filter_dims,
-                                     const q7_t *filter_data,
-                                     const cmsis_nn_dims *bias_dims,
-                                     const int32_t *bias_data,
-                                     const cmsis_nn_dims *output_dims,
-                                     q7_t *output_data);
+    /**
+     *@brief Q7 basic fully-connected layer function
+     *@param[in]       pV          pointer to input vector
+     *@param[in]       pM          pointer to matrix weights
+     *@param[in]       dim_vec     length of the vector
+     *@param[in]       num_of_rows number of rows in weight matrix
+     *@param[in]       bias_shift  amount of left-shift for bias
+     *@param[in]       out_shift   amount of right-shift for output
+     *@param[in]       bias        pointer to bias
+     *@param[in,out]   pOut        pointer to output vector
+     *@param[in,out]   vec_buffer  pointer to buffer space for input
+     *@return     The function returns <code>ARM_MATH_SUCCESS</code>
+     *
+     */
 
-/**
-* @brief Get the required buffer size for optimized s8 depthwise convolution
-* function with constraint that in_channel equals out_channel.
-* @param[in]       input_dims     Input (activation) tensor dimensions. Format: [1, H, W, C_IN]
-*                                 Batch argument N is not used.
-* @param[in]       filter_dims    Filter tensor dimensions. Format: [1, H, W, C_OUT]
-* @return          The function returns  required buffer size in bytes
-*
-*/
-int32_t arm_depthwise_conv_s8_opt_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims);
-
-/**
-* @defgroup FC Fully-connected Layer Functions
-*
-* Collection of fully-connected and matrix multiplication functions.
-*
-* Fully-connected layer is basically a matrix-vector multiplication
-* with bias. The matrix is the weights and the input/output vectors
-* are the activation values. Supported {weight, activation} precisions
-* include {8-bit, 8-bit}, {16-bit, 16-bit}, and {8-bit, 16-bit}.
-*
-* Here we have two types of kernel functions. The basic function
-* implements the function using regular GEMV approach. The opt functions
-* operates with weights in interleaved formats.
-*
-*/
-
-/**
-*@brief Q7 basic fully-connected layer function
-*@param[in]       pV          pointer to input vector
-*@param[in]       pM          pointer to matrix weights
-*@param[in]       dim_vec     length of the vector
-*@param[in]       num_of_rows number of rows in weight matrix
-*@param[in]       bias_shift  amount of left-shift for bias
-*@param[in]       out_shift   amount of right-shift for output
-*@param[in]       bias        pointer to bias
-*@param[in,out]   pOut        pointer to output vector
-*@param[in,out]   vec_buffer  pointer to buffer space for input
-*@return     The function returns <code>ARM_MATH_SUCCESS</code>
-*
-*/
-
-arm_status arm_fully_connected_q7(const q7_t *pV,
-                                  const q7_t *pM,
-                                  const uint16_t dim_vec,
-                                  const uint16_t num_of_rows,
-                                  const uint16_t bias_shift,
-                                  const uint16_t out_shift,
-                                  const q7_t *bias,
-                                  q7_t *pOut,
-                                  q15_t *vec_buffer);
-
-/**
-* @brief Basic s8 Fully Connected function.
-*
-* @param[in, out] ctx            Function context (e.g. temporary buffer). Check the function
-*                                definition file to see if an additional buffer is required.
-*                                Optional function {API}_get_buffer_size() provides the buffer
-*                                size if an additional buffer is required.
-* @param[in]      fc_params      Fully Connected layer parameters (e.g. strides, dilations, pads,...)
-*                                Range of fc_params->input_offset  : [-127, 128]
-*                                Range of fc_params->filter_offset : [-127, 128]
-*                                Range of fc_params->output_offset : [-128, 127]
-* @param[in]      quant_params   Per-tensor quantization info.
-*                                It contains the multiplier and shift values to be applied to the output tensor.
-* @param[in]      input_dims     Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
-*                                Input dimension is taken as Nx(H * W * C_IN)
-* @param[in]      input_data     Input (activation) data pointer. Data type: int8
-* @param[in]      filter_dims    Two dimensional filter dimensions. Format: [N, C]
-*                                N : accumulation depth and equals (H * W * C_IN) from input_dims
-*                                C : output depth and equals C_OUT in output_dims
-*                                H & W : Not used
-* @param[in]      filter_data    Filter data pointer. Data type: int8
-* @param[in]      bias_dims      Bias tensor dimensions. Format: [C_OUT]
-*                                N, H, W : Not used
-* @param[in]      bias_data      Bias data pointer. Data type: int32
-* @param[in]      output_dims    Output tensor dimensions. Format: [N, C_OUT]
-*                                N : Batches
-*                                C_OUT : Output depth
-*                                H & W : Not used.
-* @param[in, out] output_data    Output data pointer. Data type: int8
-* @return     The function returns <code>ARM_MATH_SUCCESS</code>
-*
-* @details
-*    - Supported framework: TensorFlow Lite
-*    - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
-*/
-arm_status arm_fully_connected_s8(const cmsis_nn_context *ctx,
-                                  const cmsis_nn_fc_params *fc_params,
-                                  const cmsis_nn_per_tensor_quant_params *quant_params,
-                                  const cmsis_nn_dims *input_dims,
-                                  const q7_t *input_data,
-                                  const cmsis_nn_dims *filter_dims,
-                                  const q7_t *filter_data,
-                                  const cmsis_nn_dims *bias_dims,
-                                  const int32_t *bias_data,
-                                  const cmsis_nn_dims *output_dims,
-                                  q7_t *output_data);
-
-/**
- * @brief Get the required buffer size for S8 basic fully-connected and
- * matrix multiplication layer function for TF Lite
- * @param[in]      filter_dims             dimension of filter
- * @return         The function returns    required buffer size in bytes
- *
- */
-int32_t arm_fully_connected_s8_get_buffer_size(const cmsis_nn_dims *filter_dims);
-
-/**
- * @brief Q7 opt fully-connected layer function
- * @param[in]       pV          pointer to input vector
- * @param[in]       pM          pointer to matrix weights
- * @param[in]       dim_vec     length of the vector
- * @param[in]       num_of_rows number of rows in weight matrix
- * @param[in]       bias_shift  amount of left-shift for bias
- * @param[in]       out_shift   amount of right-shift for output
- * @param[in]       bias        pointer to bias
- * @param[in,out]   pOut        pointer to output vector
- * @param[in,out]   vec_buffer  pointer to buffer space for input
- * @return     The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
-
-arm_status arm_fully_connected_q7_opt(const q7_t *pV,
+    arm_status arm_fully_connected_q7(const q7_t *pV,
                                       const q7_t *pM,
                                       const uint16_t dim_vec,
                                       const uint16_t num_of_rows,
@@ -1232,47 +1115,103 @@
                                       q7_t *pOut,
                                       q15_t *vec_buffer);
 
-/**
- * @brief Q15 basic fully-connected layer function
- * @param[in]       pV          pointer to input vector
- * @param[in]       pM          pointer to matrix weights
- * @param[in]       dim_vec     length of the vector
- * @param[in]       num_of_rows number of rows in weight matrix
- * @param[in]       bias_shift  amount of left-shift for bias
- * @param[in]       out_shift   amount of right-shift for output
- * @param[in]       bias        pointer to bias
- * @param[in,out]   pOut        pointer to output vector
- * @param[in,out]   vec_buffer  pointer to buffer space for input
- * @return     The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
+    /**
+     * @brief Basic s8 Fully Connected function.
+     *
+     * @param[in, out] ctx            Function context (e.g. temporary buffer). Check the function
+     *                                definition file to see if an additional buffer is required.
+     *                                Optional function {API}_get_buffer_size() provides the buffer
+     *                                size if an additional buffer is required.
+     * @param[in]      fc_params      Fully Connected layer parameters (e.g. strides, dilations, pads,...)
+     *                                Range of fc_params->input_offset  : [-127, 128]
+     *                                Range of fc_params->filter_offset : [-127, 128]
+     *                                Range of fc_params->output_offset : [-128, 127]
+     * @param[in]      quant_params   Per-tensor quantization info.
+     *                                It contains the multiplier and shift values to be applied to the output tensor.
+     * @param[in]      input_dims     Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
+     *                                Input dimension is taken as Nx(H * W * C_IN)
+     * @param[in]      input_data     Input (activation) data pointer. Data type: int8
+     * @param[in]      filter_dims    Two dimensional filter dimensions. Format: [N, C]
+     *                                N : accumulation depth and equals (H * W * C_IN) from input_dims
+     *                                C : output depth and equals C_OUT in output_dims
+     *                                H & W : Not used
+     * @param[in]      filter_data    Filter data pointer. Data type: int8
+     * @param[in]      bias_dims      Bias tensor dimensions. Format: [C_OUT]
+     *                                N, H, W : Not used
+     * @param[in]      bias_data      Bias data pointer. Data type: int32
+     * @param[in]      output_dims    Output tensor dimensions. Format: [N, C_OUT]
+     *                                N : Batches
+     *                                C_OUT : Output depth
+     *                                H & W : Not used.
+     * @param[in, out] output_data    Output data pointer. Data type: int8
+     * @return     The function returns <code>ARM_MATH_SUCCESS</code>
+     *
+     * @details
+     *    - Supported framework: TensorFlow Lite
+     *    - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
+     */
+    arm_status arm_fully_connected_s8(const cmsis_nn_context *ctx,
+                                      const cmsis_nn_fc_params *fc_params,
+                                      const cmsis_nn_per_tensor_quant_params *quant_params,
+                                      const cmsis_nn_dims *input_dims,
+                                      const q7_t *input_data,
+                                      const cmsis_nn_dims *filter_dims,
+                                      const q7_t *filter_data,
+                                      const cmsis_nn_dims *bias_dims,
+                                      const int32_t *bias_data,
+                                      const cmsis_nn_dims *output_dims,
+                                      q7_t *output_data);
 
-arm_status arm_fully_connected_q15(const q15_t *pV,
-                                   const q15_t *pM,
-                                   const uint16_t dim_vec,
-                                   const uint16_t num_of_rows,
-                                   const uint16_t bias_shift,
-                                   const uint16_t out_shift,
-                                   const q15_t *bias,
-                                   q15_t *pOut,
-                                   q15_t *vec_buffer);
+    /**
+     * @brief Get the required buffer size for S8 basic fully-connected and
+     * matrix multiplication layer function for TF Lite
+     * @param[in]      filter_dims             dimension of filter
+     * @return         The function returns    required buffer size in bytes
+     *
+     */
+    int32_t arm_fully_connected_s8_get_buffer_size(const cmsis_nn_dims *filter_dims);
 
-/**
- * @brief Q15 opt fully-connected layer function
- * @param[in]       pV          pointer to input vector
- * @param[in]       pM          pointer to matrix weights
- * @param[in]       dim_vec     length of the vector
- * @param[in]       num_of_rows number of rows in weight matrix
- * @param[in]       bias_shift  amount of left-shift for bias
- * @param[in]       out_shift   amount of right-shift for output
- * @param[in]       bias        pointer to bias
- * @param[in,out]   pOut        pointer to output vector
- * @param[in,out]   vec_buffer  pointer to buffer space for input
- * @return     The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
+    /**
+     * @brief Q7 opt fully-connected layer function
+     * @param[in]       pV          pointer to input vector
+     * @param[in]       pM          pointer to matrix weights
+     * @param[in]       dim_vec     length of the vector
+     * @param[in]       num_of_rows number of rows in weight matrix
+     * @param[in]       bias_shift  amount of left-shift for bias
+     * @param[in]       out_shift   amount of right-shift for output
+     * @param[in]       bias        pointer to bias
+     * @param[in,out]   pOut        pointer to output vector
+     * @param[in,out]   vec_buffer  pointer to buffer space for input
+     * @return     The function returns <code>ARM_MATH_SUCCESS</code>
+     *
+     */
 
-arm_status arm_fully_connected_q15_opt(const q15_t *pV,
+    arm_status arm_fully_connected_q7_opt(const q7_t *pV,
+                                          const q7_t *pM,
+                                          const uint16_t dim_vec,
+                                          const uint16_t num_of_rows,
+                                          const uint16_t bias_shift,
+                                          const uint16_t out_shift,
+                                          const q7_t *bias,
+                                          q7_t *pOut,
+                                          q15_t *vec_buffer);
+
+    /**
+     * @brief Q15 basic fully-connected layer function
+     * @param[in]       pV          pointer to input vector
+     * @param[in]       pM          pointer to matrix weights
+     * @param[in]       dim_vec     length of the vector
+     * @param[in]       num_of_rows number of rows in weight matrix
+     * @param[in]       bias_shift  amount of left-shift for bias
+     * @param[in]       out_shift   amount of right-shift for output
+     * @param[in]       bias        pointer to bias
+     * @param[in,out]   pOut        pointer to output vector
+     * @param[in,out]   vec_buffer  pointer to buffer space for input
+     * @return     The function returns <code>ARM_MATH_SUCCESS</code>
+     *
+     */
+
+    arm_status arm_fully_connected_q15(const q15_t *pV,
                                        const q15_t *pM,
                                        const uint16_t dim_vec,
                                        const uint16_t num_of_rows,
@@ -1282,47 +1221,47 @@
                                        q15_t *pOut,
                                        q15_t *vec_buffer);
 
-/**
- * @brief Mixed Q15-Q7 fully-connected layer function
- * @param[in]       pV          pointer to input vector
- * @param[in]       pM          pointer to matrix weights
- * @param[in]       dim_vec     length of the vector
- * @param[in]       num_of_rows number of rows in weight matrix
- * @param[in]       bias_shift  amount of left-shift for bias
- * @param[in]       out_shift   amount of right-shift for output
- * @param[in]       bias        pointer to bias
- * @param[in,out]   pOut        pointer to output vector
- * @param[in,out]   vec_buffer  pointer to buffer space for input
- * @return     The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
+    /**
+     * @brief Q15 opt fully-connected layer function
+     * @param[in]       pV          pointer to input vector
+     * @param[in]       pM          pointer to matrix weights
+     * @param[in]       dim_vec     length of the vector
+     * @param[in]       num_of_rows number of rows in weight matrix
+     * @param[in]       bias_shift  amount of left-shift for bias
+     * @param[in]       out_shift   amount of right-shift for output
+     * @param[in]       bias        pointer to bias
+     * @param[in,out]   pOut        pointer to output vector
+     * @param[in,out]   vec_buffer  pointer to buffer space for input
+     * @return     The function returns <code>ARM_MATH_SUCCESS</code>
+     *
+     */
 
-arm_status arm_fully_connected_mat_q7_vec_q15(const q15_t *pV,
-                                              const q7_t *pM,
-                                              const uint16_t dim_vec,
-                                              const uint16_t num_of_rows,
-                                              const uint16_t bias_shift,
-                                              const uint16_t out_shift,
-                                              const q7_t *bias,
-                                              q15_t *pOut,
-                                              q15_t *vec_buffer);
+    arm_status arm_fully_connected_q15_opt(const q15_t *pV,
+                                           const q15_t *pM,
+                                           const uint16_t dim_vec,
+                                           const uint16_t num_of_rows,
+                                           const uint16_t bias_shift,
+                                           const uint16_t out_shift,
+                                           const q15_t *bias,
+                                           q15_t *pOut,
+                                           q15_t *vec_buffer);
 
-/**
- * @brief Mixed Q15-Q7 opt fully-connected layer function
- * @param[in]       pV          pointer to input vector
- * @param[in]       pM          pointer to matrix weights
- * @param[in]       dim_vec     length of the vector
- * @param[in]       num_of_rows number of rows in weight matrix
- * @param[in]       bias_shift  amount of left-shift for bias
- * @param[in]       out_shift   amount of right-shift for output
- * @param[in]       bias        pointer to bias
- * @param[in,out]   pOut        pointer to output vector
- * @param[in,out]   vec_buffer  pointer to buffer space for input
- * @return     The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
+    /**
+     * @brief Mixed Q15-Q7 fully-connected layer function
+     * @param[in]       pV          pointer to input vector
+     * @param[in]       pM          pointer to matrix weights
+     * @param[in]       dim_vec     length of the vector
+     * @param[in]       num_of_rows number of rows in weight matrix
+     * @param[in]       bias_shift  amount of left-shift for bias
+     * @param[in]       out_shift   amount of right-shift for output
+     * @param[in]       bias        pointer to bias
+     * @param[in,out]   pOut        pointer to output vector
+     * @param[in,out]   vec_buffer  pointer to buffer space for input
+     * @return     The function returns <code>ARM_MATH_SUCCESS</code>
+     *
+     */
 
-arm_status arm_fully_connected_mat_q7_vec_q15_opt(const q15_t *pV,
+    arm_status arm_fully_connected_mat_q7_vec_q15(const q15_t *pV,
                                                   const q7_t *pM,
                                                   const uint16_t dim_vec,
                                                   const uint16_t num_of_rows,
@@ -1332,120 +1271,145 @@
                                                   q15_t *pOut,
                                                   q15_t *vec_buffer);
 
-/**
- * @brief Matrix-Multiplication Kernels for Convolution
- *
- * These functions are used within convolution layer functions for
- * matrix multiplication.
- *
- * The implementation is similar to CMSIS-DSP arm_mat_mult functions
- * with one Q7 and one Q15 operands. The Q15 operand is the im2col
- * output which is always with 2 columns.
- *
- */
+    /**
+     * @brief Mixed Q15-Q7 opt fully-connected layer function
+     * @param[in]       pV          pointer to input vector
+     * @param[in]       pM          pointer to matrix weights
+     * @param[in]       dim_vec     length of the vector
+     * @param[in]       num_of_rows number of rows in weight matrix
+     * @param[in]       bias_shift  amount of left-shift for bias
+     * @param[in]       out_shift   amount of right-shift for output
+     * @param[in]       bias        pointer to bias
+     * @param[in,out]   pOut        pointer to output vector
+     * @param[in,out]   vec_buffer  pointer to buffer space for input
+     * @return     The function returns <code>ARM_MATH_SUCCESS</code>
+     *
+     */
 
-/**
-* @brief Matrix-multiplication function for convolution
-* @param[in]       pA          pointer to operand A
-* @param[in]       pInBuffer   pointer to operand B, always conssists of 2 vectors
-* @param[in]       ch_im_out   numRow of A
-* @param[in]       numCol_A    numCol of A
-* @param[in]       bias_shift  amount of left-shift for bias
-* @param[in]       out_shift   amount of right-shift for output
-* @param[in]       bias        the bias
-* @param[in,out]   pOut        pointer to output
-* @return     The function returns the incremented output pointer
-*/
+    arm_status arm_fully_connected_mat_q7_vec_q15_opt(const q15_t *pV,
+                                                      const q7_t *pM,
+                                                      const uint16_t dim_vec,
+                                                      const uint16_t num_of_rows,
+                                                      const uint16_t bias_shift,
+                                                      const uint16_t out_shift,
+                                                      const q7_t *bias,
+                                                      q15_t *pOut,
+                                                      q15_t *vec_buffer);
 
-q7_t *arm_nn_mat_mult_kernel_q7_q15(const q7_t *pA,
-                                    const q15_t *pInBuffer,
-                                    const uint16_t ch_im_out,
-                                    const uint16_t numCol_A,
-                                    const uint16_t bias_shift,
-                                    const uint16_t out_shift,
-                                    const q7_t *bias,
-                                    q7_t *pOut);
-/**
-* @brief Matrix-multiplication function for convolution with per-channel requantization.
-* @param[in]       input_a     pointer to operand A
-* @param[in]       input_b     pointer to operand B, always consists of 2 vectors.
-* @param[in]       output_ch   number of rows of A
-* @param[in]       out_shift  pointer to per output channel requantization shift parameter.
-* @param[in]       out_mult   pointer to per output channel requantization multiplier parameter.
-* @param[in]       out_offset      output tensor offset.
-* @param[in]       activation_min   minimum value to clamp the output to. Range : int8
-* @param[in]       activation_max   maximum value to clamp the output to. Range : int8
-* @param[in]       num_col_a   number of columns of A
-* @param[in]       output_bias per output channel bias. Range : int32
-* @param[in,out]   out_0       pointer to output
-* @return     The function returns one of the two
-*              1. The incremented output pointer for a successful operation or
-*              2. NULL if implementation is not available.
-*
-* @details   This function does the matrix multiplication of weight matrix for all output channels
-*            with 2 columns from im2col and produces two elements/output_channel. The outputs are
-*            clamped in the range provided by activation min and max.
-*            Supported framework: TensorFlow Lite micro.
-*/
-q7_t *arm_nn_mat_mult_kernel_s8_s16(const q7_t *input_a,
-                                    const q15_t *input_b,
-                                    const uint16_t output_ch,
-                                    const int32_t *out_shift,
-                                    const int32_t *out_mult,
-                                    const int32_t out_offset,
-                                    const int16_t activation_min,
-                                    const int16_t activation_max,
-                                    const uint16_t num_col_a,
-                                    const int32_t *const output_bias,
-                                    q7_t *out_0);
+    /**
+     * @brief Matrix-Multiplication Kernels for Convolution
+     *
+     * These functions are used within convolution layer functions for
+     * matrix multiplication.
+     *
+     * The implementation is similar to CMSIS-DSP arm_mat_mult functions
+     * with one Q7 and one Q15 operands. The Q15 operand is the im2col
+     * output which is always with 2 columns.
+     *
+     */
 
-/**
-* @brief Matrix-multiplication of re-ordered input B with A.
-*
-* @details  For arguments, refer arm_nn_mat_mult_kernel_s8_s16. The re-ordering is a consequence
-*           of sign extension done by the SXTB16 command on input_b. The outputs are clamped in the range
-*           provided by activation min and max.
-*   * @details
-*   - Supported framework : TensorFlow Lite Micro
-*   - The following constrains on the arguments apply
-*      -# num_col_a is a multiple of 4
-*      -# output_ch is a multiple of 2
-*
-*/
-q7_t *arm_nn_mat_mult_kernel_s8_s16_reordered(const q7_t *input_a,
-                                              const q15_t *input_b,
-                                              const uint16_t output_ch,
-                                              const int32_t *out_shift,
-                                              const int32_t *out_mult,
-                                              const int32_t out_offset,
-                                              const int16_t activation_min,
-                                              const int16_t activation_max,
-                                              const uint16_t num_col_a,
-                                              const int32_t *const output_bias,
-                                              q7_t *out_0);
+    /**
+     * @brief Matrix-multiplication function for convolution
+     * @param[in]       pA          pointer to operand A
+     * @param[in]       pInBuffer   pointer to operand B, always conssists of 2 vectors
+     * @param[in]       ch_im_out   numRow of A
+     * @param[in]       numCol_A    numCol of A
+     * @param[in]       bias_shift  amount of left-shift for bias
+     * @param[in]       out_shift   amount of right-shift for output
+     * @param[in]       bias        the bias
+     * @param[in,out]   pOut        pointer to output
+     * @return     The function returns the incremented output pointer
+     */
 
-/**
-*@brief Matrix-multiplication function for convolution with reordered columns
-*@param[in]       pA          pointer to operand A
-*@param[in]       pInBuffer   pointer to operand B, always conssists of 2 vectors
-*@param[in]       ch_im_out   numRow of A
-*@param[in]       numCol_A    numCol of A
-*@param[in]       bias_shift  amount of left-shift for bias
-*@param[in]       out_shift   amount of right-shift for output
-*@param[in]       bias        the bias
-*@param[in,out]   pOut        pointer to output
-*@return     The function returns the incremented output pointer
-*
-*@details  This function assumes that data in pInBuffer are reordered
-*/
-q7_t *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t *pA,
-                                              const q15_t *pInBuffer,
-                                              const uint16_t ch_im_out,
-                                              const uint16_t numCol_A,
-                                              const uint16_t bias_shift,
-                                              const uint16_t out_shift,
-                                              const q7_t *bias,
-                                              q7_t *pOut);
+    q7_t *arm_nn_mat_mult_kernel_q7_q15(const q7_t *pA,
+                                        const q15_t *pInBuffer,
+                                        const uint16_t ch_im_out,
+                                        const uint16_t numCol_A,
+                                        const uint16_t bias_shift,
+                                        const uint16_t out_shift,
+                                        const q7_t *bias,
+                                        q7_t *pOut);
+    /**
+     * @brief Matrix-multiplication function for convolution with per-channel requantization.
+     * @param[in]       input_a     pointer to operand A
+     * @param[in]       input_b     pointer to operand B, always consists of 2 vectors.
+     * @param[in]       output_ch   number of rows of A
+     * @param[in]       out_shift  pointer to per output channel requantization shift parameter.
+     * @param[in]       out_mult   pointer to per output channel requantization multiplier parameter.
+     * @param[in]       out_offset      output tensor offset.
+     * @param[in]       activation_min   minimum value to clamp the output to. Range : int8
+     * @param[in]       activation_max   maximum value to clamp the output to. Range : int8
+     * @param[in]       num_col_a   number of columns of A
+     * @param[in]       output_bias per output channel bias. Range : int32
+     * @param[in,out]   out_0       pointer to output
+     * @return     The function returns one of the two
+     *              1. The incremented output pointer for a successful operation or
+     *              2. NULL if implementation is not available.
+     *
+     * @details   This function does the matrix multiplication of weight matrix for all output channels
+     *            with 2 columns from im2col and produces two elements/output_channel. The outputs are
+     *            clamped in the range provided by activation min and max.
+     *            Supported framework: TensorFlow Lite micro.
+     */
+    q7_t *arm_nn_mat_mult_kernel_s8_s16(const q7_t *input_a,
+                                        const q15_t *input_b,
+                                        const uint16_t output_ch,
+                                        const int32_t *out_shift,
+                                        const int32_t *out_mult,
+                                        const int32_t out_offset,
+                                        const int16_t activation_min,
+                                        const int16_t activation_max,
+                                        const uint16_t num_col_a,
+                                        const int32_t *const output_bias,
+                                        q7_t *out_0);
+
+    /**
+     * @brief Matrix-multiplication of re-ordered input B with A.
+     *
+     * @details  For arguments, refer arm_nn_mat_mult_kernel_s8_s16. The re-ordering is a consequence
+     *           of sign extension done by the SXTB16 command on input_b. The outputs are clamped in the range
+     *           provided by activation min and max.
+     *   * @details
+     *   - Supported framework : TensorFlow Lite Micro
+     *   - The following constrains on the arguments apply
+     *      -# num_col_a is a multiple of 4
+     *      -# output_ch is a multiple of 2
+     *
+     */
+    q7_t *arm_nn_mat_mult_kernel_s8_s16_reordered(const q7_t *input_a,
+                                                  const q15_t *input_b,
+                                                  const uint16_t output_ch,
+                                                  const int32_t *out_shift,
+                                                  const int32_t *out_mult,
+                                                  const int32_t out_offset,
+                                                  const int16_t activation_min,
+                                                  const int16_t activation_max,
+                                                  const uint16_t num_col_a,
+                                                  const int32_t *const output_bias,
+                                                  q7_t *out_0);
+
+    /**
+     *@brief Matrix-multiplication function for convolution with reordered columns
+     *@param[in]       pA          pointer to operand A
+     *@param[in]       pInBuffer   pointer to operand B, always conssists of 2 vectors
+     *@param[in]       ch_im_out   numRow of A
+     *@param[in]       numCol_A    numCol of A
+     *@param[in]       bias_shift  amount of left-shift for bias
+     *@param[in]       out_shift   amount of right-shift for output
+     *@param[in]       bias        the bias
+     *@param[in,out]   pOut        pointer to output
+     *@return     The function returns the incremented output pointer
+     *
+     *@details  This function assumes that data in pInBuffer are reordered
+     */
+    q7_t *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t *pA,
+                                                  const q15_t *pInBuffer,
+                                                  const uint16_t ch_im_out,
+                                                  const uint16_t numCol_A,
+                                                  const uint16_t bias_shift,
+                                                  const uint16_t out_shift,
+                                                  const q7_t *bias,
+                                                  q7_t *pOut);
 
 #ifdef __cplusplus
 }
@@ -1458,675 +1422,676 @@
  */
 
 #ifdef __cplusplus
-extern "C" {
+extern "C"
+{
 #endif
 
-/**
- * @defgroup BasicMath Basic math functions
- *
- * Element wise add and multiplication functions.
- *
- */
+    /**
+     * @defgroup BasicMath Basic math functions
+     *
+     * Element wise add and multiplication functions.
+     *
+     */
 
-/**
-   * @brief s8 element wise add of two vectors
-   * @param[in]       input_1_vect            pointer to input vector 1
-   * @param[in]       input_2_vect            pointer to input vector 2
-   * @param[in]       input_1_offset          offset for input 1. Range: Range: -127 to 128
-   * @param[in]       input_1_mult            multiplier for input 1
-   * @param[in]       input_1_shift           shift for input 1
-   * @param[in]       input_2_offset          offset for input 2. Range: Range: -127 to 128
-   * @param[in]       input_2_mult            multiplier for input 2
-   * @param[in]       input_2_shift           shift for input 2
-   * @param[in]       left_shift              input left shift
-   * @param[in,out]   output                  pointer to output vector
-   * @param[in]       out_offset              output offset
-   * @param[in]       out_mult                output multiplier
-   * @param[in]       out_shift               output shift
-   * @param[in]       out_activation_min      minimum value to clamp output to
-   * @param[in]       out_activation_max      maximum value to clamp output to
-   * @param[in]       block_size              number of samples
-   * @return          The function returns    ARM_MATH_SUCCESS
-   */
-arm_status arm_elementwise_add_s8(const int8_t *input_1_vect,
-                                  const int8_t *input_2_vect,
-                                  const int32_t input_1_offset,
-                                  const int32_t input_1_mult,
-                                  const int32_t input_1_shift,
-                                  const int32_t input_2_offset,
-                                  const int32_t input_2_mult,
-                                  const int32_t input_2_shift,
-                                  const int32_t left_shift,
-                                  int8_t *output,
-                                  const int32_t out_offset,
-                                  const int32_t out_mult,
-                                  const int32_t out_shift,
-                                  const int32_t out_activation_min,
-                                  const int32_t out_activation_max,
-                                  const uint32_t block_size);
+    /**
+     * @brief s8 element wise add of two vectors
+     * @param[in]       input_1_vect            pointer to input vector 1
+     * @param[in]       input_2_vect            pointer to input vector 2
+     * @param[in]       input_1_offset          offset for input 1. Range: Range: -127 to 128
+     * @param[in]       input_1_mult            multiplier for input 1
+     * @param[in]       input_1_shift           shift for input 1
+     * @param[in]       input_2_offset          offset for input 2. Range: Range: -127 to 128
+     * @param[in]       input_2_mult            multiplier for input 2
+     * @param[in]       input_2_shift           shift for input 2
+     * @param[in]       left_shift              input left shift
+     * @param[in,out]   output                  pointer to output vector
+     * @param[in]       out_offset              output offset
+     * @param[in]       out_mult                output multiplier
+     * @param[in]       out_shift               output shift
+     * @param[in]       out_activation_min      minimum value to clamp output to
+     * @param[in]       out_activation_max      maximum value to clamp output to
+     * @param[in]       block_size              number of samples
+     * @return          The function returns    ARM_MATH_SUCCESS
+     */
+    arm_status arm_elementwise_add_s8(const int8_t *input_1_vect,
+                                      const int8_t *input_2_vect,
+                                      const int32_t input_1_offset,
+                                      const int32_t input_1_mult,
+                                      const int32_t input_1_shift,
+                                      const int32_t input_2_offset,
+                                      const int32_t input_2_mult,
+                                      const int32_t input_2_shift,
+                                      const int32_t left_shift,
+                                      int8_t *output,
+                                      const int32_t out_offset,
+                                      const int32_t out_mult,
+                                      const int32_t out_shift,
+                                      const int32_t out_activation_min,
+                                      const int32_t out_activation_max,
+                                      const uint32_t block_size);
 
-/**
-   * @brief s8 element wise multiplication
-   * @param[in]       input_1_vect            pointer to input vector 1
-   * @param[in]       input_2_vect            pointer to input vector 2
-   * @param[in]       input_1_offset          offset for input 1. Range: Range: -127 to 128
-   * @param[in]       input_2_offset          offset for input 2. Range: Range: -127 to 128
-   * @param[in,out]   output                  pointer to output vector
-   * @param[in]       out_offset              output offset
-   * @param[in]       out_mult                output multiplier
-   * @param[in]       out_shift               output shift
-   * @param[in]       out_activation_min      minimum value to clamp output to
-   * @param[in]       out_activation_max      maximum value to clamp output to
-   * @param[in]       block_size              number of samples
-   * @return          The function returns    ARM_MATH_SUCCESS
-   *
-   * @details   Supported framework: TensorFlow Lite micro
-   */
-arm_status arm_elementwise_mul_s8(const int8_t *input_1_vect,
-                                  const int8_t *input_2_vect,
-                                  const int32_t input_1_offset,
-                                  const int32_t input_2_offset,
-                                  int8_t *output,
-                                  const int32_t out_offset,
-                                  const int32_t out_mult,
-                                  const int32_t out_shift,
-                                  const int32_t out_activation_min,
-                                  const int32_t out_activation_max,
-                                  const uint32_t block_size);
-/**
- * @defgroup Acti Activation Functions
- *
- * Perform activation layers, including ReLU (Rectified Linear Unit),
- * sigmoid and tanh
- *
- */
+    /**
+     * @brief s8 element wise multiplication
+     * @param[in]       input_1_vect            pointer to input vector 1
+     * @param[in]       input_2_vect            pointer to input vector 2
+     * @param[in]       input_1_offset          offset for input 1. Range: Range: -127 to 128
+     * @param[in]       input_2_offset          offset for input 2. Range: Range: -127 to 128
+     * @param[in,out]   output                  pointer to output vector
+     * @param[in]       out_offset              output offset
+     * @param[in]       out_mult                output multiplier
+     * @param[in]       out_shift               output shift
+     * @param[in]       out_activation_min      minimum value to clamp output to
+     * @param[in]       out_activation_max      maximum value to clamp output to
+     * @param[in]       block_size              number of samples
+     * @return          The function returns    ARM_MATH_SUCCESS
+     *
+     * @details   Supported framework: TensorFlow Lite micro
+     */
+    arm_status arm_elementwise_mul_s8(const int8_t *input_1_vect,
+                                      const int8_t *input_2_vect,
+                                      const int32_t input_1_offset,
+                                      const int32_t input_2_offset,
+                                      int8_t *output,
+                                      const int32_t out_offset,
+                                      const int32_t out_mult,
+                                      const int32_t out_shift,
+                                      const int32_t out_activation_min,
+                                      const int32_t out_activation_max,
+                                      const uint32_t block_size);
+    /**
+     * @defgroup Acti Activation Functions
+     *
+     * Perform activation layers, including ReLU (Rectified Linear Unit),
+     * sigmoid and tanh
+     *
+     */
 
-/**
- * @brief Q7 RELU function
- * @param[in,out]   data        pointer to input
- * @param[in]       size        number of elements
- * @return none.
- */
+    /**
+     * @brief Q7 RELU function
+     * @param[in,out]   data        pointer to input
+     * @param[in]       size        number of elements
+     * @return none.
+     */
 
-void arm_relu_q7(q7_t *data, uint16_t size);
+    void arm_relu_q7(q7_t *data, uint16_t size);
 
-/**
- * @brief s8 ReLU6 function
- * @param[in,out]   data        pointer to input
- * @param[in]       size        number of elements
- */
+    /**
+     * @brief s8 ReLU6 function
+     * @param[in,out]   data        pointer to input
+     * @param[in]       size        number of elements
+     */
 
-void arm_relu6_s8(q7_t *data, uint16_t size);
+    void arm_relu6_s8(q7_t *data, uint16_t size);
 
-/**
- * @brief Q15 RELU function
- * @param[in,out]   data        pointer to input
- * @param[in]       size        number of elements
- * @return none.
- */
+    /**
+     * @brief Q15 RELU function
+     * @param[in,out]   data        pointer to input
+     * @param[in]       size        number of elements
+     * @return none.
+     */
 
-void arm_relu_q15(q15_t *data, uint16_t size);
+    void arm_relu_q15(q15_t *data, uint16_t size);
 
-/**
- * @brief Q7 neural network activation function using direct table look-up
- * @param[in,out]   data        pointer to input
- * @param[in]       size        number of elements
- * @param[in]       int_width   bit-width of the integer part, assume to be smaller than 3
- * @param[in]       type        type of activation functions
- * @return none.
- */
+    /**
+     * @brief Q7 neural network activation function using direct table look-up
+     * @param[in,out]   data        pointer to input
+     * @param[in]       size        number of elements
+     * @param[in]       int_width   bit-width of the integer part, assume to be smaller than 3
+     * @param[in]       type        type of activation functions
+     * @return none.
+     */
 
-void arm_nn_activations_direct_q7(q7_t *data, uint16_t size, uint16_t int_width, arm_nn_activation_type type);
+    void arm_nn_activations_direct_q7(q7_t *data, uint16_t size, uint16_t int_width, arm_nn_activation_type type);
 
-/**
- * @brief Q15 neural network activation function using direct table look-up
- * @param[in,out]   data        pointer to input
- * @param[in]       size        number of elements
- * @param[in]       int_width   bit-width of the integer part, assume to be smaller than 3
- * @param[in]       type        type of activation functions
- * @return none.
- *
- * @details
- *
- * This is the direct table look-up approach.
- *
- * Assume here the integer part of the fixed-point is <= 3.
- * More than 3 just not making much sense, makes no difference with
- * saturation followed by any of these activation functions.
- */
+    /**
+     * @brief Q15 neural network activation function using direct table look-up
+     * @param[in,out]   data        pointer to input
+     * @param[in]       size        number of elements
+     * @param[in]       int_width   bit-width of the integer part, assume to be smaller than 3
+     * @param[in]       type        type of activation functions
+     * @return none.
+     *
+     * @details
+     *
+     * This is the direct table look-up approach.
+     *
+     * Assume here the integer part of the fixed-point is <= 3.
+     * More than 3 just not making much sense, makes no difference with
+     * saturation followed by any of these activation functions.
+     */
 
-void arm_nn_activations_direct_q15(q15_t *data, uint16_t size, uint16_t int_width, arm_nn_activation_type type);
+    void arm_nn_activations_direct_q15(q15_t *data, uint16_t size, uint16_t int_width, arm_nn_activation_type type);
 
-/**
- * @defgroup Pooling Pooling Functions
- *
- * Perform pooling functions, including max pooling and average pooling
- *
- */
+    /**
+     * @defgroup Pooling Pooling Functions
+     *
+     * Perform pooling functions, including max pooling and average pooling
+     *
+     */
 
-/**
- * @brief Q7 max pooling function
- * @param[in]       Im_in       pointer to input tensor
- * @param[in]       dim_im_in   input tensor dimension
- * @param[in]       ch_im_in    number of input tensor channels
- * @param[in]       dim_kernel  filter kernel size
- * @param[in]       padding     padding sizes
- * @param[in]       stride      convolution stride
- * @param[in]       dim_im_out  output tensor dimension
- * @param[in,out]   bufferA     pointer to buffer space for input
- * @param[in,out]   Im_out      pointer to output tensor
- * @return none.
- *
- */
+    /**
+     * @brief Q7 max pooling function
+     * @param[in]       Im_in       pointer to input tensor
+     * @param[in]       dim_im_in   input tensor dimension
+     * @param[in]       ch_im_in    number of input tensor channels
+     * @param[in]       dim_kernel  filter kernel size
+     * @param[in]       padding     padding sizes
+     * @param[in]       stride      convolution stride
+     * @param[in]       dim_im_out  output tensor dimension
+     * @param[in,out]   bufferA     pointer to buffer space for input
+     * @param[in,out]   Im_out      pointer to output tensor
+     * @return none.
+     *
+     */
 
-void arm_maxpool_q7_HWC(q7_t *Im_in,
-                        const uint16_t dim_im_in,
-                        const uint16_t ch_im_in,
-                        const uint16_t dim_kernel,
-                        const uint16_t padding,
-                        const uint16_t stride,
-                        const uint16_t dim_im_out,
-                        q7_t *bufferA,
-                        q7_t *Im_out);
+    void arm_maxpool_q7_HWC(q7_t *Im_in,
+                            const uint16_t dim_im_in,
+                            const uint16_t ch_im_in,
+                            const uint16_t dim_kernel,
+                            const uint16_t padding,
+                            const uint16_t stride,
+                            const uint16_t dim_im_out,
+                            q7_t *bufferA,
+                            q7_t *Im_out);
 
-/**
- * @brief Q7 average pooling function
- * @param[in]       Im_in       pointer to input tensor
- * @param[in]       dim_im_in   input tensor dimension
- * @param[in]       ch_im_in    number of input tensor channels
- * @param[in]       dim_kernel  filter kernel size
- * @param[in]       padding     padding sizes
- * @param[in]       stride      convolution stride
- * @param[in]       dim_im_out  output tensor dimension
- * @param[in,out]   bufferA     pointer to buffer space for input
- * @param[in,out]   Im_out      pointer to output tensor
- * @return none.
- *
- */
+    /**
+     * @brief Q7 average pooling function
+     * @param[in]       Im_in       pointer to input tensor
+     * @param[in]       dim_im_in   input tensor dimension
+     * @param[in]       ch_im_in    number of input tensor channels
+     * @param[in]       dim_kernel  filter kernel size
+     * @param[in]       padding     padding sizes
+     * @param[in]       stride      convolution stride
+     * @param[in]       dim_im_out  output tensor dimension
+     * @param[in,out]   bufferA     pointer to buffer space for input
+     * @param[in,out]   Im_out      pointer to output tensor
+     * @return none.
+     *
+     */
 
-void arm_avepool_q7_HWC(q7_t *Im_in,
-                        const uint16_t dim_im_in,
-                        const uint16_t ch_im_in,
-                        const uint16_t dim_kernel,
-                        const uint16_t padding,
-                        const uint16_t stride,
-                        const uint16_t dim_im_out,
-                        q7_t *bufferA,
-                        q7_t *Im_out);
+    void arm_avepool_q7_HWC(q7_t *Im_in,
+                            const uint16_t dim_im_in,
+                            const uint16_t ch_im_in,
+                            const uint16_t dim_kernel,
+                            const uint16_t padding,
+                            const uint16_t stride,
+                            const uint16_t dim_im_out,
+                            q7_t *bufferA,
+                            q7_t *Im_out);
 
-/**
-* @brief s8 average pooling function.
-*
-* @param[in, out] ctx            Function context (e.g. temporary buffer). Check the function
-*                                definition file to see if an additional buffer is required.
-*                                Optional function {API}_get_buffer_size() provides the buffer
-*                                size if an additional buffer is required.
-* @param[in]      pool_params    Pooling parameters
-* @param[in]      input_dims     Input (activation) tensor dimensions. Format: [H, W, C_IN]
-*                                Argument 'N' is not used.
-* @param[in]      input_data     Input (activation) data pointer. Data type: int8
-* @param[in]      filter_dims    Filter tensor dimensions. Format: [H, W]
-*                                Argument N and C are not used.
-* @param[in]      output_dims    Output tensor dimensions. Format: [H, W, C_OUT]
-*                                Argument N is not used.
-*                                C_OUT equals C_IN.
-* @param[in, out] output_data    Output data pointer. Data type: int8
-* @return                        The function returns
-*                                    <code>ARM_MATH_SUCCESS</code> - Successful operation
-*
-* @details
-*    - Supported Framework: TensorFlow Lite
-*
-*/
-arm_status arm_avgpool_s8(const cmsis_nn_context *ctx,
-                          const cmsis_nn_pool_params *pool_params,
-                          const cmsis_nn_dims *input_dims,
-                          const q7_t *input_data,
-                          const cmsis_nn_dims *filter_dims,
-                          const cmsis_nn_dims *output_dims,
-                          q7_t *output_data);
+    /**
+     * @brief s8 average pooling function.
+     *
+     * @param[in, out] ctx            Function context (e.g. temporary buffer). Check the function
+     *                                definition file to see if an additional buffer is required.
+     *                                Optional function {API}_get_buffer_size() provides the buffer
+     *                                size if an additional buffer is required.
+     * @param[in]      pool_params    Pooling parameters
+     * @param[in]      input_dims     Input (activation) tensor dimensions. Format: [H, W, C_IN]
+     *                                Argument 'N' is not used.
+     * @param[in]      input_data     Input (activation) data pointer. Data type: int8
+     * @param[in]      filter_dims    Filter tensor dimensions. Format: [H, W]
+     *                                Argument N and C are not used.
+     * @param[in]      output_dims    Output tensor dimensions. Format: [H, W, C_OUT]
+     *                                Argument N is not used.
+     *                                C_OUT equals C_IN.
+     * @param[in, out] output_data    Output data pointer. Data type: int8
+     * @return                        The function returns
+     *                                    <code>ARM_MATH_SUCCESS</code> - Successful operation
+     *
+     * @details
+     *    - Supported Framework: TensorFlow Lite
+     *
+     */
+    arm_status arm_avgpool_s8(const cmsis_nn_context *ctx,
+                              const cmsis_nn_pool_params *pool_params,
+                              const cmsis_nn_dims *input_dims,
+                              const q7_t *input_data,
+                              const cmsis_nn_dims *filter_dims,
+                              const cmsis_nn_dims *output_dims,
+                              q7_t *output_data);
 
-/**
- * @brief Get the required buffer size for S8 average pooling function
- * @param[in]       dim_dst_width         output tensor dimension
- * @param[in]       ch_src                number of input tensor channels
- * @return          The function returns  required buffer size in bytes
- *
- */
-int32_t arm_avgpool_s8_get_buffer_size(const int dim_dst_width, const int ch_src);
+    /**
+     * @brief Get the required buffer size for S8 average pooling function
+     * @param[in]       dim_dst_width         output tensor dimension
+     * @param[in]       ch_src                number of input tensor channels
+     * @return          The function returns  required buffer size in bytes
+     *
+     */
+    int32_t arm_avgpool_s8_get_buffer_size(const int dim_dst_width, const int ch_src);
 
-/**
-* @brief s8 max pooling function.
-*
-* @param[in, out] ctx            Function context (e.g. temporary buffer). Check the function
-*                                definition file to see if an additional buffer is required.
-*                                Optional function {API}_get_buffer_size() provides the buffer
-*                                size if an additional buffer is required.
-* @param[in]      pool_params    Pooling parameters
-* @param[in]      input_dims     Input (activation) tensor dimensions. Format: [H, W, C_IN]
-*                                Argument 'N' is not used.
-* @param[in]      input_data     Input (activation) data pointer. Data type: int8
-* @param[in]      filter_dims    Filter tensor dimensions. Format: [H, W]
-*                                Argument N and C are not used.
-* @param[in]      output_dims    Output tensor dimensions. Format: [H, W, C_OUT]
-*                                Argument N is not used.
-*                                C_OUT equals C_IN.
-* @param[in, out] output_data    Output data pointer. Data type: int8
-* @return                        The function returns
-*                                    <code>ARM_MATH_SUCCESS</code> - Successful operation
-*
-* @details
-*    - Supported Framework: TensorFlow Lite
-*
-*/
-arm_status arm_max_pool_s8(const cmsis_nn_context *ctx,
-                           const cmsis_nn_pool_params *pool_params,
+    /**
+     * @brief s8 max pooling function.
+     *
+     * @param[in, out] ctx            Function context (e.g. temporary buffer). Check the function
+     *                                definition file to see if an additional buffer is required.
+     *                                Optional function {API}_get_buffer_size() provides the buffer
+     *                                size if an additional buffer is required.
+     * @param[in]      pool_params    Pooling parameters
+     * @param[in]      input_dims     Input (activation) tensor dimensions. Format: [H, W, C_IN]
+     *                                Argument 'N' is not used.
+     * @param[in]      input_data     Input (activation) data pointer. Data type: int8
+     * @param[in]      filter_dims    Filter tensor dimensions. Format: [H, W]
+     *                                Argument N and C are not used.
+     * @param[in]      output_dims    Output tensor dimensions. Format: [H, W, C_OUT]
+     *                                Argument N is not used.
+     *                                C_OUT equals C_IN.
+     * @param[in, out] output_data    Output data pointer. Data type: int8
+     * @return                        The function returns
+     *                                    <code>ARM_MATH_SUCCESS</code> - Successful operation
+     *
+     * @details
+     *    - Supported Framework: TensorFlow Lite
+     *
+     */
+    arm_status arm_max_pool_s8(const cmsis_nn_context *ctx,
+                               const cmsis_nn_pool_params *pool_params,
+                               const cmsis_nn_dims *input_dims,
+                               const q7_t *input_data,
+                               const cmsis_nn_dims *filter_dims,
+                               const cmsis_nn_dims *output_dims,
+                               q7_t *output_data);
+    /**
+     * @defgroup Softmax Softmax Functions
+     *
+     * EXP(2) based softmax functions.
+     *
+     */
+
+    /**
+     * @brief Q7 softmax function
+     * @param[in]       vec_in      pointer to input vector
+     * @param[in]       dim_vec     input vector dimension
+     * @param[out]      p_out       pointer to output vector
+     *
+     * @note This function is an optimized version which is not bit-accurate with
+     *       TensorFlow Lite's kernel
+     *
+     */
+
+    void arm_softmax_q7(const q7_t *vec_in, const uint16_t dim_vec, q7_t *p_out);
+
+    /**
+     * @brief Q7 softmax function with batch parameter
+     * @param[in]       vec_in      pointer to input vector
+     * @param[in]       nb_batches  number of batches
+     * @param[in]       dim_vec     input vector dimension
+     * @param[out]      p_out       pointer to output vector
+     * @return none.
+     *
+     * @note This function is an optimized version which is not bit-accurate with
+     *       TensorFlow Lite's kernel
+     *
+     */
+
+    void arm_softmax_with_batch_q7(const q7_t *vec_in, const uint16_t nb_batches, const uint16_t dim_vec, q7_t *p_out);
+    /**
+     * @brief Q15 softmax function
+     * @param[in]       vec_in      pointer to input vector
+     * @param[in]       dim_vec     input vector dimension
+     * @param[out]      p_out       pointer to output vector
+     * @return none.
+     *
+     * @note This function is an optimized version which is not bit-accurate with
+     *       TensorFlow Lite's kernel
+     *
+     */
+
+    void arm_softmax_q15(const q15_t *vec_in, const uint16_t dim_vec, q15_t *p_out);
+
+    /**
+     * @brief S8 softmax function
+     * @param[in]  input     Pointer to the input tensor
+     * @param[in]  num_rows  Number of rows in the input tensor
+     * @param[in]  row_size  Number of elements in each input row
+     * @param[in]  mult      Input quantization multiplier
+     * @param[in]  shift     Input quantization shift within the range [0, 31]
+     * @param[in]  diff_min  Minimum difference with max in row. Used to check if
+     *                       the quantized exponential operation can be performed
+     * @param[out] output    Pointer to the output tensor
+     *
+     * @note Supported framework: TensorFlow Lite micro (bit-accurate)
+     *
+     */
+
+    void arm_softmax_s8(const int8_t *input,
+                        const int32_t num_rows,
+                        const int32_t row_size,
+                        const int32_t mult,
+                        const int32_t shift,
+                        const int32_t diff_min,
+                        int8_t *output);
+
+    /**
+     * @brief U8 softmax function
+     * @param[in]  input     Pointer to the input tensor
+     * @param[in]  num_rows  Number of rows in the input tensor
+     * @param[in]  row_size  Number of elements in each input row
+     * @param[in]  mult      Input quantization multiplier
+     * @param[in]  shift     Input quantization shift within the range [0, 31]
+     * @param[in]  diff_min  Minimum difference with max in row. Used to check if
+     *                       the quantized exponential operation can be performed
+     * @param[out] output    Pointer to the output tensor
+     *
+     * @note Supported framework: TensorFlow Lite micro (bit-accurate)
+     *
+     */
+
+    void arm_softmax_u8(const uint8_t *input,
+                        const int32_t num_rows,
+                        const int32_t row_size,
+                        const int32_t mult,
+                        const int32_t shift,
+                        const int32_t diff_min,
+                        uint8_t *output);
+
+    /**
+     * @brief uint8 depthwise convolution function with asymmetric quantization
+     *        Unless specified otherwise, arguments are mandatory.
+     *
+     * @param[in]     input     Pointer to input tensor
+     * @param[in]     input_x   Width of input tensor
+     * @param[in]     input_y   Height of input tensor
+     * @param[in]     input_ch  Channels in input tensor
+     * @param[in]     kernel    Pointer to kernel weights
+     * @param[in]     kernel_x  Width of kernel
+     * @param[in]     kernel_y  Height of kernel
+     * @param[in]     ch_mult   Number of channel multiplier
+     * @param[in]     pad_x     Padding sizes x
+     * @param[in]     pad_y     Padding sizes y
+     * @param[in]     stride_x  stride along the width
+     * @param[in]     stride_y  stride along the height
+     * @param[in]     dilation_x Dilation along width. Not used and intended for future enhancement.
+     * @param[in]     dilation_y Dilation along height. Not used and intended for future enhancement.
+     * @param[in]     bias       Pointer to optional bias values. If no bias is
+     *                           availble, NULL is expected
+     * @param[in]     input_offset  Input tensor zero offset
+     * @param[in]     filter_offset Kernel tensor zero offset
+     * @param[in]     output_offset Output tensor zero offset
+     * @param[in,out] output        Pointer to output tensor
+     * @param[in]     output_x  Width of output tensor
+     * @param[in]     output_y  Height of output tensor
+     * @param[in]     output_activation_min   Minimum value to clamp the output to. Range : {0, 255}
+     * @param[in]     output_activation_max   Minimum value to clamp the output to. Range : {0, 255}
+     * @param[in]     out_shift  Amount of right-shift for output
+     * @param[in]     out_mult   Output multiplier for requantization
+     * @return        The function returns the following
+     *                <code>ARM_MATH_SUCCESS</code> - Successful operation
+     *
+     */
+    arm_status arm_depthwise_conv_u8_basic_ver1(const uint8_t *input,
+                                                const uint16_t input_x,
+                                                const uint16_t input_y,
+                                                const uint16_t input_ch,
+                                                const uint8_t *kernel,
+                                                const uint16_t kernel_x,
+                                                const uint16_t kernel_y,
+                                                const int16_t ch_mult,
+                                                const int16_t pad_x,
+                                                const int16_t pad_y,
+                                                const int16_t stride_x,
+                                                const int16_t stride_y,
+                                                const int16_t dilation_x,
+                                                const int16_t dilation_y,
+                                                const int32_t *bias,
+                                                const int32_t input_offset,
+                                                const int32_t filter_offset,
+                                                const int32_t output_offset,
+                                                uint8_t *output,
+                                                const uint16_t output_x,
+                                                const uint16_t output_y,
+                                                const int32_t output_activation_min,
+                                                const int32_t output_activation_max,
+                                                const int32_t out_shift,
+                                                const int32_t out_mult);
+
+    /**
+     * @defgroup Reshape Reshape Functions
+     *
+     */
+
+    /**
+     * @brief Reshape a s8 vector into another with different shape
+     * @param[in]  input      points to the s8 input vector
+     * @param[out] output     points to the s8 output vector
+     * @param[in]  total_size total size of the input and output vectors in bytes
+     *
+     * @note The output is expected to be in a memory area that does not overlap with the input's
+     *
+     */
+    void arm_reshape_s8(const int8_t *input, int8_t *output, const uint32_t total_size);
+
+    /**
+     * @defgroup Concatenation Concatenation Functions
+     *
+     */
+
+    /**
+     * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the X axis
+     *        This function should be called for each input tensor to concatenate. The argument offset_x
+     *        will be used to store the input tensor in the correct position in the output tensor
+     *
+     *        i.e.    offset_x = 0
+     *                for(i = 0 i < num_input_tensors; ++i)
+     *                {
+     *                    arm_concatenation_s8_x(&input[i], ..., &output, ..., ..., offset_x)
+     *                    offset_x += input_x[i]
+     *                }
+     *
+     *        This function assumes that the output tensor has:
+     *        -# The same height of the input tensor
+     *        -# The same number of channels of the input tensor
+     *        -# The same batch size of the input tensor
+     *
+     *        Unless specified otherwise, arguments are mandatory.
+     *
+     * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it
+     *      does not involve any arithmetic operation
+     *
+     * @param[in]  input    Pointer to input tensor
+     * @param[in]  input_x  Width of input tensor
+     * @param[in]  input_y  Height of input tensor
+     * @param[in]  input_z  Channels in input tensor
+     * @param[in]  input_w  Batch size in input tensor
+     * @param[out] output   Pointer to output tensor
+     * @param[in]  output_x Width of output tensor
+     * @param[in]  offset_x The offset (in number of elements) on the X axis to start concatenating the input tensor
+     *                      It is user responsibility to provide the correct value
+     *
+     * <b> Input constraints</b>
+     * offset_x is less than output_x
+     *
+     */
+    void arm_concatenation_s8_x(const int8_t *input,
+                                const uint16_t input_x,
+                                const uint16_t input_y,
+                                const uint16_t input_z,
+                                const uint16_t input_w,
+                                int8_t *output,
+                                const uint16_t output_x,
+                                const uint32_t offset_x);
+
+    /**
+     * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the Y axis
+     *        This function should be called for each input tensor to concatenate. The argument offset_y
+     *        will be used to store the input tensor in the correct position in the output tensor
+     *
+     *        i.e.    offset_y = 0
+     *                for(i = 0 i < num_input_tensors; ++i)
+     *                {
+     *                    arm_concatenation_s8_y(&input[i], ..., &output, ..., ..., offset_y)
+     *                    offset_y += input_y[i]
+     *                }
+     *
+     *        This function assumes that the output tensor has:
+     *        -# The same width of the input tensor
+     *        -# The same number of channels of the input tensor
+     *        -# The same batch size of the input tensor
+     *
+     *        Unless specified otherwise, arguments are mandatory.
+     *
+     * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it
+     *       does not involve any arithmetic operation
+     *
+     * @param[in]  input    Pointer to input tensor
+     * @param[in]  input_x  Width of input tensor
+     * @param[in]  input_y  Height of input tensor
+     * @param[in]  input_z  Channels in input tensor
+     * @param[in]  input_w  Batch size in input tensor
+     * @param[out] output   Pointer to output tensor
+     * @param[in]  output_y Height of output tensor
+     * @param[in]  offset_y The offset on the Y axis to start concatenating the input tensor
+     *                      It is user responsibility to provide the correct value
+     *
+     * <b> Input constraints</b>
+     * offset_y is less than output_y
+     *
+     */
+    void arm_concatenation_s8_y(const int8_t *input,
+                                const uint16_t input_x,
+                                const uint16_t input_y,
+                                const uint16_t input_z,
+                                const uint16_t input_w,
+                                int8_t *output,
+                                const uint16_t output_y,
+                                const uint32_t offset_y);
+
+    /**
+     * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the Z axis
+     *        This function should be called for each input tensor to concatenate. The argument offset_z
+     *        will be used to store the input tensor in the correct position in the output tensor
+     *
+     *        i.e.    offset_z = 0
+     *                for(i = 0 i < num_input_tensors; ++i)
+     *                {
+     *                    arm_concatenation_s8_z(&input[i], ..., &output, ..., ..., offset_z)
+     *                    offset_z += input_z[i]
+     *                }
+     *
+     *        This function assumes that the output tensor has:
+     *        -# The same width of the input tensor
+     *        -# The same height of the input tensor
+     *        -# The same batch size of the input tensor
+     *
+     *        Unless specified otherwise, arguments are mandatory.
+     *
+     * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it
+     *       does not involve any arithmetic operation
+     *
+     * @param[in]  input    Pointer to input tensor
+     * @param[in]  input_x  Width of input tensor
+     * @param[in]  input_y  Height of input tensor
+     * @param[in]  input_z  Channels in input tensor
+     * @param[in]  input_w  Batch size in input tensor
+     * @param[out] output   Pointer to output tensor
+     * @param[in]  output_z Channels in output tensor
+     * @param[in]  offset_z The offset on the Z axis to start concatenating the input tensor
+     *                      It is user responsibility to provide the correct value
+     *
+     * <b> Input constraints</b>
+     * offset_z is less than output_z
+     *
+     */
+    void arm_concatenation_s8_z(const int8_t *input,
+                                const uint16_t input_x,
+                                const uint16_t input_y,
+                                const uint16_t input_z,
+                                const uint16_t input_w,
+                                int8_t *output,
+                                const uint16_t output_z,
+                                const uint32_t offset_z);
+
+    /**
+     * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the W axis (Batch size)
+     *        This function should be called for each input tensor to concatenate. The argument offset_w
+     *        will be used to store the input tensor in the correct position in the output tensor
+     *
+     *        i.e.    offset_w = 0
+     *                for(i = 0 i < num_input_tensors; ++i)
+     *                {
+     *                    arm_concatenation_s8_w(&input[i], ..., &output, ..., ..., offset_w)
+     *                    offset_w += input_w[i]
+     *                }
+     *
+     *        This function assumes that the output tensor has:
+     *        -# The same width of the input tensor
+     *        -# The same height of the input tensor
+     *        -# The same number o channels of the input tensor
+     *
+     *        Unless specified otherwise, arguments are mandatory.
+     *
+     * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it
+     *       does not involve any arithmetic operation
+     *
+     * @param[in]  input    Pointer to input tensor
+     * @param[in]  input_x  Width of input tensor
+     * @param[in]  input_y  Height of input tensor
+     * @param[in]  input_z  Channels in input tensor
+     * @param[in]  input_w  Batch size in input tensor
+     * @param[out] output   Pointer to output tensor
+     * @param[in]  offset_w The offset on the W axis to start concatenating the input tensor
+     *                      It is user responsibility to provide the correct value
+     *
+     */
+    void arm_concatenation_s8_w(const int8_t *input,
+                                const uint16_t input_x,
+                                const uint16_t input_y,
+                                const uint16_t input_z,
+                                const uint16_t input_w,
+                                int8_t *output,
+                                const uint32_t offset_w);
+    /**
+     * @defgroup SVDF SVDF Layer Functions
+     *
+     */
+
+    /**
+     * @brief s8 SVDF function
+     *
+     * @param[in]   input_ctx Temporary scratch buffer
+     * @param[in]   output_ctx Temporary output scratch buffer
+     * @param[in]   svdf_params SVDF Parameters
+     *              Range of svdf_params->input_offset  : [-128, 127]
+     *              Range of svdf_params->output_offset  : [-128, 127]
+     * @param[in]   input_quant_params Input quantization parameters
+     * @param[in]   output_quant_params Output quantization parameters
+     * @param[in]   input_dims Input tensor dimensions
+     * @param[in]   input_data Pointer to input tensor
+     * @param[in]   state_dims State tensor dimensions
+     * @param[in]   state_data Pointer to state tensor
+     * @param[in]   weights_feature_dims Weights (feature) tensor dimensions
+     * @param[in]   weights_feature_data Pointer to the weights (feature) tensor
+     * @param[in]   weights_time_dims Weights (time) tensor dimensions
+     * @param[in]   weights_time_data Pointer to the weights (time) tensor
+     * @param[in]   bias_dims Bias tensor dimensions
+     * @param[in]   bias_data Pointer to bias tensor
+     * @param[in]   output_dims Output tensor dimensions
+     * @param[out]  output_data Pointer to the output tensor
+     *
+     * @return     The function returns <code>ARM_MATH_SUCCESS</code>
+     *
+     * @details
+     *    1. Supported framework: TensorFlow Lite micro
+     *    2. q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
+     *
+     */
+    arm_status arm_svdf_s8(const cmsis_nn_context *input_ctx,
+                           const cmsis_nn_context *output_ctx,
+                           const cmsis_nn_svdf_params *svdf_params,
+                           const cmsis_nn_per_tensor_quant_params *input_quant_params,
+                           const cmsis_nn_per_tensor_quant_params *output_quant_params,
                            const cmsis_nn_dims *input_dims,
                            const q7_t *input_data,
-                           const cmsis_nn_dims *filter_dims,
+                           const cmsis_nn_dims *state_dims,
+                           q15_t *state_data,
+                           const cmsis_nn_dims *weights_feature_dims,
+                           const q7_t *weights_feature_data,
+                           const cmsis_nn_dims *weights_time_dims,
+                           const q15_t *weights_time_data,
+                           const cmsis_nn_dims *bias_dims,
+                           const q31_t *bias_data,
                            const cmsis_nn_dims *output_dims,
                            q7_t *output_data);
-/**
- * @defgroup Softmax Softmax Functions
- *
- * EXP(2) based softmax functions.
- *
- */
-
-/**
- * @brief Q7 softmax function
- * @param[in]       vec_in      pointer to input vector
- * @param[in]       dim_vec     input vector dimension
- * @param[out]      p_out       pointer to output vector
- *
- * @note This function is an optimized version which is not bit-accurate with
- *       TensorFlow Lite's kernel
- *
- */
-
-void arm_softmax_q7(const q7_t *vec_in, const uint16_t dim_vec, q7_t *p_out);
-
-/**
- * @brief Q7 softmax function with batch parameter
- * @param[in]       vec_in      pointer to input vector
- * @param[in]       nb_batches  number of batches
- * @param[in]       dim_vec     input vector dimension
- * @param[out]      p_out       pointer to output vector
- * @return none.
- *
- * @note This function is an optimized version which is not bit-accurate with
- *       TensorFlow Lite's kernel
- *
- */
-
-void arm_softmax_with_batch_q7(const q7_t *vec_in, const uint16_t nb_batches, const uint16_t dim_vec, q7_t *p_out);
-/**
- * @brief Q15 softmax function
- * @param[in]       vec_in      pointer to input vector
- * @param[in]       dim_vec     input vector dimension
- * @param[out]      p_out       pointer to output vector
- * @return none.
- *
- * @note This function is an optimized version which is not bit-accurate with
- *       TensorFlow Lite's kernel
- *
- */
-
-void arm_softmax_q15(const q15_t *vec_in, const uint16_t dim_vec, q15_t *p_out);
-
-/**
- * @brief S8 softmax function
- * @param[in]  input     Pointer to the input tensor
- * @param[in]  num_rows  Number of rows in the input tensor
- * @param[in]  row_size  Number of elements in each input row
- * @param[in]  mult      Input quantization multiplier
- * @param[in]  shift     Input quantization shift within the range [0, 31]
- * @param[in]  diff_min  Minimum difference with max in row. Used to check if
- *                       the quantized exponential operation can be performed
- * @param[out] output    Pointer to the output tensor
- *
- * @note Supported framework: TensorFlow Lite micro (bit-accurate)
- *
- */
-
-void arm_softmax_s8(const int8_t *input,
-                    const int32_t num_rows,
-                    const int32_t row_size,
-                    const int32_t mult,
-                    const int32_t shift,
-                    const int32_t diff_min,
-                    int8_t *output);
-
-/**
- * @brief U8 softmax function
- * @param[in]  input     Pointer to the input tensor
- * @param[in]  num_rows  Number of rows in the input tensor
- * @param[in]  row_size  Number of elements in each input row
- * @param[in]  mult      Input quantization multiplier
- * @param[in]  shift     Input quantization shift within the range [0, 31]
- * @param[in]  diff_min  Minimum difference with max in row. Used to check if
- *                       the quantized exponential operation can be performed
- * @param[out] output    Pointer to the output tensor
- *
- * @note Supported framework: TensorFlow Lite micro (bit-accurate)
- *
- */
-
-void arm_softmax_u8(const uint8_t *input,
-                    const int32_t num_rows,
-                    const int32_t row_size,
-                    const int32_t mult,
-                    const int32_t shift,
-                    const int32_t diff_min,
-                    uint8_t *output);
-
-/**
- * @brief uint8 depthwise convolution function with asymmetric quantization
- *        Unless specified otherwise, arguments are mandatory.
- *
- * @param[in]     input     Pointer to input tensor
- * @param[in]     input_x   Width of input tensor
- * @param[in]     input_y   Height of input tensor
- * @param[in]     input_ch  Channels in input tensor
- * @param[in]     kernel    Pointer to kernel weights
- * @param[in]     kernel_x  Width of kernel
- * @param[in]     kernel_y  Height of kernel
- * @param[in]     ch_mult   Number of channel multiplier
- * @param[in]     pad_x     Padding sizes x
- * @param[in]     pad_y     Padding sizes y
- * @param[in]     stride_x  stride along the width
- * @param[in]     stride_y  stride along the height
- * @param[in]     dilation_x Dilation along width. Not used and intended for future enhancement.
- * @param[in]     dilation_y Dilation along height. Not used and intended for future enhancement.
- * @param[in]     bias       Pointer to optional bias values. If no bias is
- *                           availble, NULL is expected
- * @param[in]     input_offset  Input tensor zero offset
- * @param[in]     filter_offset Kernel tensor zero offset
- * @param[in]     output_offset Output tensor zero offset
- * @param[in,out] output        Pointer to output tensor
- * @param[in]     output_x  Width of output tensor
- * @param[in]     output_y  Height of output tensor
- * @param[in]     output_activation_min   Minimum value to clamp the output to. Range : {0, 255}
- * @param[in]     output_activation_max   Minimum value to clamp the output to. Range : {0, 255}
- * @param[in]     out_shift  Amount of right-shift for output
- * @param[in]     out_mult   Output multiplier for requantization
- * @return        The function returns the following
- *                <code>ARM_MATH_SUCCESS</code> - Successful operation
- *
- */
-arm_status arm_depthwise_conv_u8_basic_ver1(const uint8_t *input,
-                                            const uint16_t input_x,
-                                            const uint16_t input_y,
-                                            const uint16_t input_ch,
-                                            const uint8_t *kernel,
-                                            const uint16_t kernel_x,
-                                            const uint16_t kernel_y,
-                                            const int16_t ch_mult,
-                                            const int16_t pad_x,
-                                            const int16_t pad_y,
-                                            const int16_t stride_x,
-                                            const int16_t stride_y,
-                                            const int16_t dilation_x,
-                                            const int16_t dilation_y,
-                                            const int32_t *bias,
-                                            const int32_t input_offset,
-                                            const int32_t filter_offset,
-                                            const int32_t output_offset,
-                                            uint8_t *output,
-                                            const uint16_t output_x,
-                                            const uint16_t output_y,
-                                            const int32_t output_activation_min,
-                                            const int32_t output_activation_max,
-                                            const int32_t out_shift,
-                                            const int32_t out_mult);
-
-/**
- * @defgroup Reshape Reshape Functions
- *
- */
-
-/**
- * @brief Reshape a s8 vector into another with different shape
- * @param[in]  input      points to the s8 input vector
- * @param[out] output     points to the s8 output vector
- * @param[in]  total_size total size of the input and output vectors in bytes
- *
- * @note The output is expected to be in a memory area that does not overlap with the input's
- *
- */
-void arm_reshape_s8(const int8_t *input, int8_t *output, const uint32_t total_size);
-
-/**
- * @defgroup Concatenation Concatenation Functions
- *
- */
-
-/**
- * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the X axis
- *        This function should be called for each input tensor to concatenate. The argument offset_x
- *        will be used to store the input tensor in the correct position in the output tensor
- *
- *        i.e.    offset_x = 0
- *                for(i = 0 i < num_input_tensors; ++i)
- *                {
- *                    arm_concatenation_s8_x(&input[i], ..., &output, ..., ..., offset_x)
- *                    offset_x += input_x[i]
- *                }
- *
- *        This function assumes that the output tensor has:
- *        -# The same height of the input tensor
- *        -# The same number of channels of the input tensor
- *        -# The same batch size of the input tensor
- *
- *        Unless specified otherwise, arguments are mandatory.
- *
- * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it
- *      does not involve any arithmetic operation
- *
- * @param[in]  input    Pointer to input tensor
- * @param[in]  input_x  Width of input tensor
- * @param[in]  input_y  Height of input tensor
- * @param[in]  input_z  Channels in input tensor
- * @param[in]  input_w  Batch size in input tensor
- * @param[out] output   Pointer to output tensor
- * @param[in]  output_x Width of output tensor
- * @param[in]  offset_x The offset (in number of elements) on the X axis to start concatenating the input tensor
- *                      It is user responsibility to provide the correct value
- *
- * <b> Input constraints</b>
- * offset_x is less than output_x
- *
- */
-void arm_concatenation_s8_x(const int8_t *input,
-                            const uint16_t input_x,
-                            const uint16_t input_y,
-                            const uint16_t input_z,
-                            const uint16_t input_w,
-                            int8_t *output,
-                            const uint16_t output_x,
-                            const uint32_t offset_x);
-
-/**
- * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the Y axis
- *        This function should be called for each input tensor to concatenate. The argument offset_y
- *        will be used to store the input tensor in the correct position in the output tensor
- *
- *        i.e.    offset_y = 0
- *                for(i = 0 i < num_input_tensors; ++i)
- *                {
- *                    arm_concatenation_s8_y(&input[i], ..., &output, ..., ..., offset_y)
- *                    offset_y += input_y[i]
- *                }
- *
- *        This function assumes that the output tensor has:
- *        -# The same width of the input tensor
- *        -# The same number of channels of the input tensor
- *        -# The same batch size of the input tensor
- *
- *        Unless specified otherwise, arguments are mandatory.
- *
- * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it
- *       does not involve any arithmetic operation
- *
- * @param[in]  input    Pointer to input tensor
- * @param[in]  input_x  Width of input tensor
- * @param[in]  input_y  Height of input tensor
- * @param[in]  input_z  Channels in input tensor
- * @param[in]  input_w  Batch size in input tensor
- * @param[out] output   Pointer to output tensor
- * @param[in]  output_y Height of output tensor
- * @param[in]  offset_y The offset on the Y axis to start concatenating the input tensor
- *                      It is user responsibility to provide the correct value
- *
- * <b> Input constraints</b>
- * offset_y is less than output_y
- *
- */
-void arm_concatenation_s8_y(const int8_t *input,
-                            const uint16_t input_x,
-                            const uint16_t input_y,
-                            const uint16_t input_z,
-                            const uint16_t input_w,
-                            int8_t *output,
-                            const uint16_t output_y,
-                            const uint32_t offset_y);
-
-/**
- * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the Z axis
- *        This function should be called for each input tensor to concatenate. The argument offset_z
- *        will be used to store the input tensor in the correct position in the output tensor
- *
- *        i.e.    offset_z = 0
- *                for(i = 0 i < num_input_tensors; ++i)
- *                {
- *                    arm_concatenation_s8_z(&input[i], ..., &output, ..., ..., offset_z)
- *                    offset_z += input_z[i]
- *                }
- *
- *        This function assumes that the output tensor has:
- *        -# The same width of the input tensor
- *        -# The same height of the input tensor
- *        -# The same batch size of the input tensor
- *
- *        Unless specified otherwise, arguments are mandatory.
- *
- * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it
- *       does not involve any arithmetic operation
- *
- * @param[in]  input    Pointer to input tensor
- * @param[in]  input_x  Width of input tensor
- * @param[in]  input_y  Height of input tensor
- * @param[in]  input_z  Channels in input tensor
- * @param[in]  input_w  Batch size in input tensor
- * @param[out] output   Pointer to output tensor
- * @param[in]  output_z Channels in output tensor
- * @param[in]  offset_z The offset on the Z axis to start concatenating the input tensor
- *                      It is user responsibility to provide the correct value
- *
- * <b> Input constraints</b>
- * offset_z is less than output_z
- *
- */
-void arm_concatenation_s8_z(const int8_t *input,
-                            const uint16_t input_x,
-                            const uint16_t input_y,
-                            const uint16_t input_z,
-                            const uint16_t input_w,
-                            int8_t *output,
-                            const uint16_t output_z,
-                            const uint32_t offset_z);
-
-/**
- * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the W axis (Batch size)
- *        This function should be called for each input tensor to concatenate. The argument offset_w
- *        will be used to store the input tensor in the correct position in the output tensor
- *
- *        i.e.    offset_w = 0
- *                for(i = 0 i < num_input_tensors; ++i)
- *                {
- *                    arm_concatenation_s8_w(&input[i], ..., &output, ..., ..., offset_w)
- *                    offset_w += input_w[i]
- *                }
- *
- *        This function assumes that the output tensor has:
- *        -# The same width of the input tensor
- *        -# The same height of the input tensor
- *        -# The same number o channels of the input tensor
- *
- *        Unless specified otherwise, arguments are mandatory.
- *
- * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it
- *       does not involve any arithmetic operation
- *
- * @param[in]  input    Pointer to input tensor
- * @param[in]  input_x  Width of input tensor
- * @param[in]  input_y  Height of input tensor
- * @param[in]  input_z  Channels in input tensor
- * @param[in]  input_w  Batch size in input tensor
- * @param[out] output   Pointer to output tensor
- * @param[in]  offset_w The offset on the W axis to start concatenating the input tensor
- *                      It is user responsibility to provide the correct value
- *
- */
-void arm_concatenation_s8_w(const int8_t *input,
-                            const uint16_t input_x,
-                            const uint16_t input_y,
-                            const uint16_t input_z,
-                            const uint16_t input_w,
-                            int8_t *output,
-                            const uint32_t offset_w);
-/**
- * @defgroup SVDF SVDF Layer Functions
- *
- */
-
-/**
- * @brief s8 SVDF function
- *
- * @param[in]   input_ctx Temporary scratch buffer
- * @param[in]   output_ctx Temporary output scratch buffer
- * @param[in]   svdf_params SVDF Parameters
- *              Range of svdf_params->input_offset  : [-128, 127]
- *              Range of svdf_params->output_offset  : [-128, 127]
- * @param[in]   input_quant_params Input quantization parameters
- * @param[in]   output_quant_params Output quantization parameters
- * @param[in]   input_dims Input tensor dimensions
- * @param[in]   input_data Pointer to input tensor
- * @param[in]   state_dims State tensor dimensions
- * @param[in]   state_data Pointer to state tensor
- * @param[in]   weights_feature_dims Weights (feature) tensor dimensions
- * @param[in]   weights_feature_data Pointer to the weights (feature) tensor
- * @param[in]   weights_time_dims Weights (time) tensor dimensions
- * @param[in]   weights_time_data Pointer to the weights (time) tensor
- * @param[in]   bias_dims Bias tensor dimensions
- * @param[in]   bias_data Pointer to bias tensor
- * @param[in]   output_dims Output tensor dimensions
- * @param[out]  output_data Pointer to the output tensor
- *
- * @return     The function returns <code>ARM_MATH_SUCCESS</code>
- *
- * @details
- *    1. Supported framework: TensorFlow Lite micro
- *    2. q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
- *
- */
-arm_status arm_svdf_s8(const cmsis_nn_context *input_ctx,
-                       const cmsis_nn_context *output_ctx,
-                       const cmsis_nn_svdf_params *svdf_params,
-                       const cmsis_nn_per_tensor_quant_params *input_quant_params,
-                       const cmsis_nn_per_tensor_quant_params *output_quant_params,
-                       const cmsis_nn_dims *input_dims,
-                       const q7_t *input_data,
-                       const cmsis_nn_dims *state_dims,
-                       q15_t *state_data,
-                       const cmsis_nn_dims *weights_feature_dims,
-                       const q7_t *weights_feature_data,
-                       const cmsis_nn_dims *weights_time_dims,
-                       const q15_t *weights_time_data,
-                       const cmsis_nn_dims *bias_dims,
-                       const q31_t *bias_data,
-                       const cmsis_nn_dims *output_dims,
-                       q7_t *output_data);
 
 #ifdef __cplusplus
 }