David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /** |
| 3 | * inode.c - NTFS kernel inode handling. |
| 4 | * |
| 5 | * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 6 | */ |
| 7 | |
| 8 | #include <linux/buffer_head.h> |
| 9 | #include <linux/fs.h> |
| 10 | #include <linux/mm.h> |
| 11 | #include <linux/mount.h> |
| 12 | #include <linux/mutex.h> |
| 13 | #include <linux/pagemap.h> |
| 14 | #include <linux/quotaops.h> |
| 15 | #include <linux/slab.h> |
| 16 | #include <linux/log2.h> |
| 17 | |
| 18 | #include "aops.h" |
| 19 | #include "attrib.h" |
| 20 | #include "bitmap.h" |
| 21 | #include "dir.h" |
| 22 | #include "debug.h" |
| 23 | #include "inode.h" |
| 24 | #include "lcnalloc.h" |
| 25 | #include "malloc.h" |
| 26 | #include "mft.h" |
| 27 | #include "time.h" |
| 28 | #include "ntfs.h" |
| 29 | |
| 30 | /** |
| 31 | * ntfs_test_inode - compare two (possibly fake) inodes for equality |
| 32 | * @vi: vfs inode which to test |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 33 | * @data: data which is being tested with |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 34 | * |
| 35 | * Compare the ntfs attribute embedded in the ntfs specific part of the vfs |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 36 | * inode @vi for equality with the ntfs attribute @data. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 37 | * |
| 38 | * If searching for the normal file/directory inode, set @na->type to AT_UNUSED. |
| 39 | * @na->name and @na->name_len are then ignored. |
| 40 | * |
| 41 | * Return 1 if the attributes match and 0 if not. |
| 42 | * |
| 43 | * NOTE: This function runs with the inode_hash_lock spin lock held so it is not |
| 44 | * allowed to sleep. |
| 45 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 46 | int ntfs_test_inode(struct inode *vi, void *data) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 47 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 48 | ntfs_attr *na = (ntfs_attr *)data; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 49 | ntfs_inode *ni; |
| 50 | |
| 51 | if (vi->i_ino != na->mft_no) |
| 52 | return 0; |
| 53 | ni = NTFS_I(vi); |
| 54 | /* If !NInoAttr(ni), @vi is a normal file or directory inode. */ |
| 55 | if (likely(!NInoAttr(ni))) { |
| 56 | /* If not looking for a normal inode this is a mismatch. */ |
| 57 | if (unlikely(na->type != AT_UNUSED)) |
| 58 | return 0; |
| 59 | } else { |
| 60 | /* A fake inode describing an attribute. */ |
| 61 | if (ni->type != na->type) |
| 62 | return 0; |
| 63 | if (ni->name_len != na->name_len) |
| 64 | return 0; |
| 65 | if (na->name_len && memcmp(ni->name, na->name, |
| 66 | na->name_len * sizeof(ntfschar))) |
| 67 | return 0; |
| 68 | } |
| 69 | /* Match! */ |
| 70 | return 1; |
| 71 | } |
| 72 | |
| 73 | /** |
| 74 | * ntfs_init_locked_inode - initialize an inode |
| 75 | * @vi: vfs inode to initialize |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 76 | * @data: data which to initialize @vi to |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 77 | * |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 78 | * Initialize the vfs inode @vi with the values from the ntfs attribute @data in |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 79 | * order to enable ntfs_test_inode() to do its work. |
| 80 | * |
| 81 | * If initializing the normal file/directory inode, set @na->type to AT_UNUSED. |
| 82 | * In that case, @na->name and @na->name_len should be set to NULL and 0, |
| 83 | * respectively. Although that is not strictly necessary as |
| 84 | * ntfs_read_locked_inode() will fill them in later. |
| 85 | * |
| 86 | * Return 0 on success and -errno on error. |
| 87 | * |
| 88 | * NOTE: This function runs with the inode->i_lock spin lock held so it is not |
| 89 | * allowed to sleep. (Hence the GFP_ATOMIC allocation.) |
| 90 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 91 | static int ntfs_init_locked_inode(struct inode *vi, void *data) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 92 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 93 | ntfs_attr *na = (ntfs_attr *)data; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 94 | ntfs_inode *ni = NTFS_I(vi); |
| 95 | |
| 96 | vi->i_ino = na->mft_no; |
| 97 | |
| 98 | ni->type = na->type; |
| 99 | if (na->type == AT_INDEX_ALLOCATION) |
| 100 | NInoSetMstProtected(ni); |
| 101 | |
| 102 | ni->name = na->name; |
| 103 | ni->name_len = na->name_len; |
| 104 | |
| 105 | /* If initializing a normal inode, we are done. */ |
| 106 | if (likely(na->type == AT_UNUSED)) { |
| 107 | BUG_ON(na->name); |
| 108 | BUG_ON(na->name_len); |
| 109 | return 0; |
| 110 | } |
| 111 | |
| 112 | /* It is a fake inode. */ |
| 113 | NInoSetAttr(ni); |
| 114 | |
| 115 | /* |
| 116 | * We have I30 global constant as an optimization as it is the name |
| 117 | * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC |
| 118 | * allocation but that is ok. And most attributes are unnamed anyway, |
| 119 | * thus the fraction of named attributes with name != I30 is actually |
| 120 | * absolutely tiny. |
| 121 | */ |
| 122 | if (na->name_len && na->name != I30) { |
| 123 | unsigned int i; |
| 124 | |
| 125 | BUG_ON(!na->name); |
| 126 | i = na->name_len * sizeof(ntfschar); |
| 127 | ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC); |
| 128 | if (!ni->name) |
| 129 | return -ENOMEM; |
| 130 | memcpy(ni->name, na->name, i); |
| 131 | ni->name[na->name_len] = 0; |
| 132 | } |
| 133 | return 0; |
| 134 | } |
| 135 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 136 | static int ntfs_read_locked_inode(struct inode *vi); |
| 137 | static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi); |
| 138 | static int ntfs_read_locked_index_inode(struct inode *base_vi, |
| 139 | struct inode *vi); |
| 140 | |
| 141 | /** |
| 142 | * ntfs_iget - obtain a struct inode corresponding to a specific normal inode |
| 143 | * @sb: super block of mounted volume |
| 144 | * @mft_no: mft record number / inode number to obtain |
| 145 | * |
| 146 | * Obtain the struct inode corresponding to a specific normal inode (i.e. a |
| 147 | * file or directory). |
| 148 | * |
| 149 | * If the inode is in the cache, it is just returned with an increased |
| 150 | * reference count. Otherwise, a new struct inode is allocated and initialized, |
| 151 | * and finally ntfs_read_locked_inode() is called to read in the inode and |
| 152 | * fill in the remainder of the inode structure. |
| 153 | * |
| 154 | * Return the struct inode on success. Check the return value with IS_ERR() and |
| 155 | * if true, the function failed and the error code is obtained from PTR_ERR(). |
| 156 | */ |
| 157 | struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no) |
| 158 | { |
| 159 | struct inode *vi; |
| 160 | int err; |
| 161 | ntfs_attr na; |
| 162 | |
| 163 | na.mft_no = mft_no; |
| 164 | na.type = AT_UNUSED; |
| 165 | na.name = NULL; |
| 166 | na.name_len = 0; |
| 167 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 168 | vi = iget5_locked(sb, mft_no, ntfs_test_inode, |
| 169 | ntfs_init_locked_inode, &na); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 170 | if (unlikely(!vi)) |
| 171 | return ERR_PTR(-ENOMEM); |
| 172 | |
| 173 | err = 0; |
| 174 | |
| 175 | /* If this is a freshly allocated inode, need to read it now. */ |
| 176 | if (vi->i_state & I_NEW) { |
| 177 | err = ntfs_read_locked_inode(vi); |
| 178 | unlock_new_inode(vi); |
| 179 | } |
| 180 | /* |
| 181 | * There is no point in keeping bad inodes around if the failure was |
| 182 | * due to ENOMEM. We want to be able to retry again later. |
| 183 | */ |
| 184 | if (unlikely(err == -ENOMEM)) { |
| 185 | iput(vi); |
| 186 | vi = ERR_PTR(err); |
| 187 | } |
| 188 | return vi; |
| 189 | } |
| 190 | |
| 191 | /** |
| 192 | * ntfs_attr_iget - obtain a struct inode corresponding to an attribute |
| 193 | * @base_vi: vfs base inode containing the attribute |
| 194 | * @type: attribute type |
| 195 | * @name: Unicode name of the attribute (NULL if unnamed) |
| 196 | * @name_len: length of @name in Unicode characters (0 if unnamed) |
| 197 | * |
| 198 | * Obtain the (fake) struct inode corresponding to the attribute specified by |
| 199 | * @type, @name, and @name_len, which is present in the base mft record |
| 200 | * specified by the vfs inode @base_vi. |
| 201 | * |
| 202 | * If the attribute inode is in the cache, it is just returned with an |
| 203 | * increased reference count. Otherwise, a new struct inode is allocated and |
| 204 | * initialized, and finally ntfs_read_locked_attr_inode() is called to read the |
| 205 | * attribute and fill in the inode structure. |
| 206 | * |
| 207 | * Note, for index allocation attributes, you need to use ntfs_index_iget() |
| 208 | * instead of ntfs_attr_iget() as working with indices is a lot more complex. |
| 209 | * |
| 210 | * Return the struct inode of the attribute inode on success. Check the return |
| 211 | * value with IS_ERR() and if true, the function failed and the error code is |
| 212 | * obtained from PTR_ERR(). |
| 213 | */ |
| 214 | struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type, |
| 215 | ntfschar *name, u32 name_len) |
| 216 | { |
| 217 | struct inode *vi; |
| 218 | int err; |
| 219 | ntfs_attr na; |
| 220 | |
| 221 | /* Make sure no one calls ntfs_attr_iget() for indices. */ |
| 222 | BUG_ON(type == AT_INDEX_ALLOCATION); |
| 223 | |
| 224 | na.mft_no = base_vi->i_ino; |
| 225 | na.type = type; |
| 226 | na.name = name; |
| 227 | na.name_len = name_len; |
| 228 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 229 | vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode, |
| 230 | ntfs_init_locked_inode, &na); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 231 | if (unlikely(!vi)) |
| 232 | return ERR_PTR(-ENOMEM); |
| 233 | |
| 234 | err = 0; |
| 235 | |
| 236 | /* If this is a freshly allocated inode, need to read it now. */ |
| 237 | if (vi->i_state & I_NEW) { |
| 238 | err = ntfs_read_locked_attr_inode(base_vi, vi); |
| 239 | unlock_new_inode(vi); |
| 240 | } |
| 241 | /* |
| 242 | * There is no point in keeping bad attribute inodes around. This also |
| 243 | * simplifies things in that we never need to check for bad attribute |
| 244 | * inodes elsewhere. |
| 245 | */ |
| 246 | if (unlikely(err)) { |
| 247 | iput(vi); |
| 248 | vi = ERR_PTR(err); |
| 249 | } |
| 250 | return vi; |
| 251 | } |
| 252 | |
| 253 | /** |
| 254 | * ntfs_index_iget - obtain a struct inode corresponding to an index |
| 255 | * @base_vi: vfs base inode containing the index related attributes |
| 256 | * @name: Unicode name of the index |
| 257 | * @name_len: length of @name in Unicode characters |
| 258 | * |
| 259 | * Obtain the (fake) struct inode corresponding to the index specified by @name |
| 260 | * and @name_len, which is present in the base mft record specified by the vfs |
| 261 | * inode @base_vi. |
| 262 | * |
| 263 | * If the index inode is in the cache, it is just returned with an increased |
| 264 | * reference count. Otherwise, a new struct inode is allocated and |
| 265 | * initialized, and finally ntfs_read_locked_index_inode() is called to read |
| 266 | * the index related attributes and fill in the inode structure. |
| 267 | * |
| 268 | * Return the struct inode of the index inode on success. Check the return |
| 269 | * value with IS_ERR() and if true, the function failed and the error code is |
| 270 | * obtained from PTR_ERR(). |
| 271 | */ |
| 272 | struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name, |
| 273 | u32 name_len) |
| 274 | { |
| 275 | struct inode *vi; |
| 276 | int err; |
| 277 | ntfs_attr na; |
| 278 | |
| 279 | na.mft_no = base_vi->i_ino; |
| 280 | na.type = AT_INDEX_ALLOCATION; |
| 281 | na.name = name; |
| 282 | na.name_len = name_len; |
| 283 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 284 | vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode, |
| 285 | ntfs_init_locked_inode, &na); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 286 | if (unlikely(!vi)) |
| 287 | return ERR_PTR(-ENOMEM); |
| 288 | |
| 289 | err = 0; |
| 290 | |
| 291 | /* If this is a freshly allocated inode, need to read it now. */ |
| 292 | if (vi->i_state & I_NEW) { |
| 293 | err = ntfs_read_locked_index_inode(base_vi, vi); |
| 294 | unlock_new_inode(vi); |
| 295 | } |
| 296 | /* |
| 297 | * There is no point in keeping bad index inodes around. This also |
| 298 | * simplifies things in that we never need to check for bad index |
| 299 | * inodes elsewhere. |
| 300 | */ |
| 301 | if (unlikely(err)) { |
| 302 | iput(vi); |
| 303 | vi = ERR_PTR(err); |
| 304 | } |
| 305 | return vi; |
| 306 | } |
| 307 | |
| 308 | struct inode *ntfs_alloc_big_inode(struct super_block *sb) |
| 309 | { |
| 310 | ntfs_inode *ni; |
| 311 | |
| 312 | ntfs_debug("Entering."); |
| 313 | ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS); |
| 314 | if (likely(ni != NULL)) { |
| 315 | ni->state = 0; |
| 316 | return VFS_I(ni); |
| 317 | } |
| 318 | ntfs_error(sb, "Allocation of NTFS big inode structure failed."); |
| 319 | return NULL; |
| 320 | } |
| 321 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 322 | void ntfs_free_big_inode(struct inode *inode) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 323 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 324 | kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode)); |
| 325 | } |
| 326 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 327 | static inline ntfs_inode *ntfs_alloc_extent_inode(void) |
| 328 | { |
| 329 | ntfs_inode *ni; |
| 330 | |
| 331 | ntfs_debug("Entering."); |
| 332 | ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS); |
| 333 | if (likely(ni != NULL)) { |
| 334 | ni->state = 0; |
| 335 | return ni; |
| 336 | } |
| 337 | ntfs_error(NULL, "Allocation of NTFS inode structure failed."); |
| 338 | return NULL; |
| 339 | } |
| 340 | |
| 341 | static void ntfs_destroy_extent_inode(ntfs_inode *ni) |
| 342 | { |
| 343 | ntfs_debug("Entering."); |
| 344 | BUG_ON(ni->page); |
| 345 | if (!atomic_dec_and_test(&ni->count)) |
| 346 | BUG(); |
| 347 | kmem_cache_free(ntfs_inode_cache, ni); |
| 348 | } |
| 349 | |
| 350 | /* |
| 351 | * The attribute runlist lock has separate locking rules from the |
| 352 | * normal runlist lock, so split the two lock-classes: |
| 353 | */ |
| 354 | static struct lock_class_key attr_list_rl_lock_class; |
| 355 | |
| 356 | /** |
| 357 | * __ntfs_init_inode - initialize ntfs specific part of an inode |
| 358 | * @sb: super block of mounted volume |
| 359 | * @ni: freshly allocated ntfs inode which to initialize |
| 360 | * |
| 361 | * Initialize an ntfs inode to defaults. |
| 362 | * |
| 363 | * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left |
| 364 | * untouched. Make sure to initialize them elsewhere. |
| 365 | * |
| 366 | * Return zero on success and -ENOMEM on error. |
| 367 | */ |
| 368 | void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni) |
| 369 | { |
| 370 | ntfs_debug("Entering."); |
| 371 | rwlock_init(&ni->size_lock); |
| 372 | ni->initialized_size = ni->allocated_size = 0; |
| 373 | ni->seq_no = 0; |
| 374 | atomic_set(&ni->count, 1); |
| 375 | ni->vol = NTFS_SB(sb); |
| 376 | ntfs_init_runlist(&ni->runlist); |
| 377 | mutex_init(&ni->mrec_lock); |
| 378 | ni->page = NULL; |
| 379 | ni->page_ofs = 0; |
| 380 | ni->attr_list_size = 0; |
| 381 | ni->attr_list = NULL; |
| 382 | ntfs_init_runlist(&ni->attr_list_rl); |
| 383 | lockdep_set_class(&ni->attr_list_rl.lock, |
| 384 | &attr_list_rl_lock_class); |
| 385 | ni->itype.index.block_size = 0; |
| 386 | ni->itype.index.vcn_size = 0; |
| 387 | ni->itype.index.collation_rule = 0; |
| 388 | ni->itype.index.block_size_bits = 0; |
| 389 | ni->itype.index.vcn_size_bits = 0; |
| 390 | mutex_init(&ni->extent_lock); |
| 391 | ni->nr_extents = 0; |
| 392 | ni->ext.base_ntfs_ino = NULL; |
| 393 | } |
| 394 | |
| 395 | /* |
| 396 | * Extent inodes get MFT-mapped in a nested way, while the base inode |
| 397 | * is still mapped. Teach this nesting to the lock validator by creating |
| 398 | * a separate class for nested inode's mrec_lock's: |
| 399 | */ |
| 400 | static struct lock_class_key extent_inode_mrec_lock_key; |
| 401 | |
| 402 | inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb, |
| 403 | unsigned long mft_no) |
| 404 | { |
| 405 | ntfs_inode *ni = ntfs_alloc_extent_inode(); |
| 406 | |
| 407 | ntfs_debug("Entering."); |
| 408 | if (likely(ni != NULL)) { |
| 409 | __ntfs_init_inode(sb, ni); |
| 410 | lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key); |
| 411 | ni->mft_no = mft_no; |
| 412 | ni->type = AT_UNUSED; |
| 413 | ni->name = NULL; |
| 414 | ni->name_len = 0; |
| 415 | } |
| 416 | return ni; |
| 417 | } |
| 418 | |
| 419 | /** |
| 420 | * ntfs_is_extended_system_file - check if a file is in the $Extend directory |
| 421 | * @ctx: initialized attribute search context |
| 422 | * |
| 423 | * Search all file name attributes in the inode described by the attribute |
| 424 | * search context @ctx and check if any of the names are in the $Extend system |
| 425 | * directory. |
| 426 | * |
| 427 | * Return values: |
| 428 | * 1: file is in $Extend directory |
| 429 | * 0: file is not in $Extend directory |
| 430 | * -errno: failed to determine if the file is in the $Extend directory |
| 431 | */ |
| 432 | static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx) |
| 433 | { |
| 434 | int nr_links, err; |
| 435 | |
| 436 | /* Restart search. */ |
| 437 | ntfs_attr_reinit_search_ctx(ctx); |
| 438 | |
| 439 | /* Get number of hard links. */ |
| 440 | nr_links = le16_to_cpu(ctx->mrec->link_count); |
| 441 | |
| 442 | /* Loop through all hard links. */ |
| 443 | while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0, |
| 444 | ctx))) { |
| 445 | FILE_NAME_ATTR *file_name_attr; |
| 446 | ATTR_RECORD *attr = ctx->attr; |
| 447 | u8 *p, *p2; |
| 448 | |
| 449 | nr_links--; |
| 450 | /* |
| 451 | * Maximum sanity checking as we are called on an inode that |
| 452 | * we suspect might be corrupt. |
| 453 | */ |
| 454 | p = (u8*)attr + le32_to_cpu(attr->length); |
| 455 | if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec + |
| 456 | le32_to_cpu(ctx->mrec->bytes_in_use)) { |
| 457 | err_corrupt_attr: |
| 458 | ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name " |
| 459 | "attribute. You should run chkdsk."); |
| 460 | return -EIO; |
| 461 | } |
| 462 | if (attr->non_resident) { |
| 463 | ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file " |
| 464 | "name. You should run chkdsk."); |
| 465 | return -EIO; |
| 466 | } |
| 467 | if (attr->flags) { |
| 468 | ntfs_error(ctx->ntfs_ino->vol->sb, "File name with " |
| 469 | "invalid flags. You should run " |
| 470 | "chkdsk."); |
| 471 | return -EIO; |
| 472 | } |
| 473 | if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) { |
| 474 | ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file " |
| 475 | "name. You should run chkdsk."); |
| 476 | return -EIO; |
| 477 | } |
| 478 | file_name_attr = (FILE_NAME_ATTR*)((u8*)attr + |
| 479 | le16_to_cpu(attr->data.resident.value_offset)); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 480 | p2 = (u8 *)file_name_attr + le32_to_cpu(attr->data.resident.value_length); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 481 | if (p2 < (u8*)attr || p2 > p) |
| 482 | goto err_corrupt_attr; |
| 483 | /* This attribute is ok, but is it in the $Extend directory? */ |
| 484 | if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend) |
| 485 | return 1; /* YES, it's an extended system file. */ |
| 486 | } |
| 487 | if (unlikely(err != -ENOENT)) |
| 488 | return err; |
| 489 | if (unlikely(nr_links)) { |
| 490 | ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count " |
| 491 | "doesn't match number of name attributes. You " |
| 492 | "should run chkdsk."); |
| 493 | return -EIO; |
| 494 | } |
| 495 | return 0; /* NO, it is not an extended system file. */ |
| 496 | } |
| 497 | |
| 498 | /** |
| 499 | * ntfs_read_locked_inode - read an inode from its device |
| 500 | * @vi: inode to read |
| 501 | * |
| 502 | * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode |
| 503 | * described by @vi into memory from the device. |
| 504 | * |
| 505 | * The only fields in @vi that we need to/can look at when the function is |
| 506 | * called are i_sb, pointing to the mounted device's super block, and i_ino, |
| 507 | * the number of the inode to load. |
| 508 | * |
| 509 | * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino |
| 510 | * for reading and sets up the necessary @vi fields as well as initializing |
| 511 | * the ntfs inode. |
| 512 | * |
| 513 | * Q: What locks are held when the function is called? |
| 514 | * A: i_state has I_NEW set, hence the inode is locked, also |
| 515 | * i_count is set to 1, so it is not going to go away |
| 516 | * i_flags is set to 0 and we have no business touching it. Only an ioctl() |
| 517 | * is allowed to write to them. We should of course be honouring them but |
| 518 | * we need to do that using the IS_* macros defined in include/linux/fs.h. |
| 519 | * In any case ntfs_read_locked_inode() has nothing to do with i_flags. |
| 520 | * |
| 521 | * Return 0 on success and -errno on error. In the error case, the inode will |
| 522 | * have had make_bad_inode() executed on it. |
| 523 | */ |
| 524 | static int ntfs_read_locked_inode(struct inode *vi) |
| 525 | { |
| 526 | ntfs_volume *vol = NTFS_SB(vi->i_sb); |
| 527 | ntfs_inode *ni; |
| 528 | struct inode *bvi; |
| 529 | MFT_RECORD *m; |
| 530 | ATTR_RECORD *a; |
| 531 | STANDARD_INFORMATION *si; |
| 532 | ntfs_attr_search_ctx *ctx; |
| 533 | int err = 0; |
| 534 | |
| 535 | ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); |
| 536 | |
| 537 | /* Setup the generic vfs inode parts now. */ |
| 538 | vi->i_uid = vol->uid; |
| 539 | vi->i_gid = vol->gid; |
| 540 | vi->i_mode = 0; |
| 541 | |
| 542 | /* |
| 543 | * Initialize the ntfs specific part of @vi special casing |
| 544 | * FILE_MFT which we need to do at mount time. |
| 545 | */ |
| 546 | if (vi->i_ino != FILE_MFT) |
| 547 | ntfs_init_big_inode(vi); |
| 548 | ni = NTFS_I(vi); |
| 549 | |
| 550 | m = map_mft_record(ni); |
| 551 | if (IS_ERR(m)) { |
| 552 | err = PTR_ERR(m); |
| 553 | goto err_out; |
| 554 | } |
| 555 | ctx = ntfs_attr_get_search_ctx(ni, m); |
| 556 | if (!ctx) { |
| 557 | err = -ENOMEM; |
| 558 | goto unm_err_out; |
| 559 | } |
| 560 | |
| 561 | if (!(m->flags & MFT_RECORD_IN_USE)) { |
| 562 | ntfs_error(vi->i_sb, "Inode is not in use!"); |
| 563 | goto unm_err_out; |
| 564 | } |
| 565 | if (m->base_mft_record) { |
| 566 | ntfs_error(vi->i_sb, "Inode is an extent inode!"); |
| 567 | goto unm_err_out; |
| 568 | } |
| 569 | |
| 570 | /* Transfer information from mft record into vfs and ntfs inodes. */ |
| 571 | vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); |
| 572 | |
| 573 | /* |
| 574 | * FIXME: Keep in mind that link_count is two for files which have both |
| 575 | * a long file name and a short file name as separate entries, so if |
| 576 | * we are hiding short file names this will be too high. Either we need |
| 577 | * to account for the short file names by subtracting them or we need |
| 578 | * to make sure we delete files even though i_nlink is not zero which |
| 579 | * might be tricky due to vfs interactions. Need to think about this |
| 580 | * some more when implementing the unlink command. |
| 581 | */ |
| 582 | set_nlink(vi, le16_to_cpu(m->link_count)); |
| 583 | /* |
| 584 | * FIXME: Reparse points can have the directory bit set even though |
| 585 | * they would be S_IFLNK. Need to deal with this further below when we |
| 586 | * implement reparse points / symbolic links but it will do for now. |
| 587 | * Also if not a directory, it could be something else, rather than |
| 588 | * a regular file. But again, will do for now. |
| 589 | */ |
| 590 | /* Everyone gets all permissions. */ |
| 591 | vi->i_mode |= S_IRWXUGO; |
| 592 | /* If read-only, no one gets write permissions. */ |
| 593 | if (IS_RDONLY(vi)) |
| 594 | vi->i_mode &= ~S_IWUGO; |
| 595 | if (m->flags & MFT_RECORD_IS_DIRECTORY) { |
| 596 | vi->i_mode |= S_IFDIR; |
| 597 | /* |
| 598 | * Apply the directory permissions mask set in the mount |
| 599 | * options. |
| 600 | */ |
| 601 | vi->i_mode &= ~vol->dmask; |
| 602 | /* Things break without this kludge! */ |
| 603 | if (vi->i_nlink > 1) |
| 604 | set_nlink(vi, 1); |
| 605 | } else { |
| 606 | vi->i_mode |= S_IFREG; |
| 607 | /* Apply the file permissions mask set in the mount options. */ |
| 608 | vi->i_mode &= ~vol->fmask; |
| 609 | } |
| 610 | /* |
| 611 | * Find the standard information attribute in the mft record. At this |
| 612 | * stage we haven't setup the attribute list stuff yet, so this could |
| 613 | * in fact fail if the standard information is in an extent record, but |
| 614 | * I don't think this actually ever happens. |
| 615 | */ |
| 616 | err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0, |
| 617 | ctx); |
| 618 | if (unlikely(err)) { |
| 619 | if (err == -ENOENT) { |
| 620 | /* |
| 621 | * TODO: We should be performing a hot fix here (if the |
| 622 | * recover mount option is set) by creating a new |
| 623 | * attribute. |
| 624 | */ |
| 625 | ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute " |
| 626 | "is missing."); |
| 627 | } |
| 628 | goto unm_err_out; |
| 629 | } |
| 630 | a = ctx->attr; |
| 631 | /* Get the standard information attribute value. */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 632 | if ((u8 *)a + le16_to_cpu(a->data.resident.value_offset) |
| 633 | + le32_to_cpu(a->data.resident.value_length) > |
| 634 | (u8 *)ctx->mrec + vol->mft_record_size) { |
| 635 | ntfs_error(vi->i_sb, "Corrupt standard information attribute in inode."); |
| 636 | goto unm_err_out; |
| 637 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 638 | si = (STANDARD_INFORMATION*)((u8*)a + |
| 639 | le16_to_cpu(a->data.resident.value_offset)); |
| 640 | |
| 641 | /* Transfer information from the standard information into vi. */ |
| 642 | /* |
| 643 | * Note: The i_?times do not quite map perfectly onto the NTFS times, |
| 644 | * but they are close enough, and in the end it doesn't really matter |
| 645 | * that much... |
| 646 | */ |
| 647 | /* |
| 648 | * mtime is the last change of the data within the file. Not changed |
| 649 | * when only metadata is changed, e.g. a rename doesn't affect mtime. |
| 650 | */ |
| 651 | vi->i_mtime = ntfs2utc(si->last_data_change_time); |
| 652 | /* |
| 653 | * ctime is the last change of the metadata of the file. This obviously |
| 654 | * always changes, when mtime is changed. ctime can be changed on its |
| 655 | * own, mtime is then not changed, e.g. when a file is renamed. |
| 656 | */ |
| 657 | vi->i_ctime = ntfs2utc(si->last_mft_change_time); |
| 658 | /* |
| 659 | * Last access to the data within the file. Not changed during a rename |
| 660 | * for example but changed whenever the file is written to. |
| 661 | */ |
| 662 | vi->i_atime = ntfs2utc(si->last_access_time); |
| 663 | |
| 664 | /* Find the attribute list attribute if present. */ |
| 665 | ntfs_attr_reinit_search_ctx(ctx); |
| 666 | err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); |
| 667 | if (err) { |
| 668 | if (unlikely(err != -ENOENT)) { |
| 669 | ntfs_error(vi->i_sb, "Failed to lookup attribute list " |
| 670 | "attribute."); |
| 671 | goto unm_err_out; |
| 672 | } |
| 673 | } else /* if (!err) */ { |
| 674 | if (vi->i_ino == FILE_MFT) |
| 675 | goto skip_attr_list_load; |
| 676 | ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino); |
| 677 | NInoSetAttrList(ni); |
| 678 | a = ctx->attr; |
| 679 | if (a->flags & ATTR_COMPRESSION_MASK) { |
| 680 | ntfs_error(vi->i_sb, "Attribute list attribute is " |
| 681 | "compressed."); |
| 682 | goto unm_err_out; |
| 683 | } |
| 684 | if (a->flags & ATTR_IS_ENCRYPTED || |
| 685 | a->flags & ATTR_IS_SPARSE) { |
| 686 | if (a->non_resident) { |
| 687 | ntfs_error(vi->i_sb, "Non-resident attribute " |
| 688 | "list attribute is encrypted/" |
| 689 | "sparse."); |
| 690 | goto unm_err_out; |
| 691 | } |
| 692 | ntfs_warning(vi->i_sb, "Resident attribute list " |
| 693 | "attribute in inode 0x%lx is marked " |
| 694 | "encrypted/sparse which is not true. " |
| 695 | "However, Windows allows this and " |
| 696 | "chkdsk does not detect or correct it " |
| 697 | "so we will just ignore the invalid " |
| 698 | "flags and pretend they are not set.", |
| 699 | vi->i_ino); |
| 700 | } |
| 701 | /* Now allocate memory for the attribute list. */ |
| 702 | ni->attr_list_size = (u32)ntfs_attr_size(a); |
| 703 | ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); |
| 704 | if (!ni->attr_list) { |
| 705 | ntfs_error(vi->i_sb, "Not enough memory to allocate " |
| 706 | "buffer for attribute list."); |
| 707 | err = -ENOMEM; |
| 708 | goto unm_err_out; |
| 709 | } |
| 710 | if (a->non_resident) { |
| 711 | NInoSetAttrListNonResident(ni); |
| 712 | if (a->data.non_resident.lowest_vcn) { |
| 713 | ntfs_error(vi->i_sb, "Attribute list has non " |
| 714 | "zero lowest_vcn."); |
| 715 | goto unm_err_out; |
| 716 | } |
| 717 | /* |
| 718 | * Setup the runlist. No need for locking as we have |
| 719 | * exclusive access to the inode at this time. |
| 720 | */ |
| 721 | ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, |
| 722 | a, NULL); |
| 723 | if (IS_ERR(ni->attr_list_rl.rl)) { |
| 724 | err = PTR_ERR(ni->attr_list_rl.rl); |
| 725 | ni->attr_list_rl.rl = NULL; |
| 726 | ntfs_error(vi->i_sb, "Mapping pairs " |
| 727 | "decompression failed."); |
| 728 | goto unm_err_out; |
| 729 | } |
| 730 | /* Now load the attribute list. */ |
| 731 | if ((err = load_attribute_list(vol, &ni->attr_list_rl, |
| 732 | ni->attr_list, ni->attr_list_size, |
| 733 | sle64_to_cpu(a->data.non_resident. |
| 734 | initialized_size)))) { |
| 735 | ntfs_error(vi->i_sb, "Failed to load " |
| 736 | "attribute list attribute."); |
| 737 | goto unm_err_out; |
| 738 | } |
| 739 | } else /* if (!a->non_resident) */ { |
| 740 | if ((u8*)a + le16_to_cpu(a->data.resident.value_offset) |
| 741 | + le32_to_cpu( |
| 742 | a->data.resident.value_length) > |
| 743 | (u8*)ctx->mrec + vol->mft_record_size) { |
| 744 | ntfs_error(vi->i_sb, "Corrupt attribute list " |
| 745 | "in inode."); |
| 746 | goto unm_err_out; |
| 747 | } |
| 748 | /* Now copy the attribute list. */ |
| 749 | memcpy(ni->attr_list, (u8*)a + le16_to_cpu( |
| 750 | a->data.resident.value_offset), |
| 751 | le32_to_cpu( |
| 752 | a->data.resident.value_length)); |
| 753 | } |
| 754 | } |
| 755 | skip_attr_list_load: |
| 756 | /* |
| 757 | * If an attribute list is present we now have the attribute list value |
| 758 | * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes. |
| 759 | */ |
| 760 | if (S_ISDIR(vi->i_mode)) { |
| 761 | loff_t bvi_size; |
| 762 | ntfs_inode *bni; |
| 763 | INDEX_ROOT *ir; |
| 764 | u8 *ir_end, *index_end; |
| 765 | |
| 766 | /* It is a directory, find index root attribute. */ |
| 767 | ntfs_attr_reinit_search_ctx(ctx); |
| 768 | err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE, |
| 769 | 0, NULL, 0, ctx); |
| 770 | if (unlikely(err)) { |
| 771 | if (err == -ENOENT) { |
| 772 | // FIXME: File is corrupt! Hot-fix with empty |
| 773 | // index root attribute if recovery option is |
| 774 | // set. |
| 775 | ntfs_error(vi->i_sb, "$INDEX_ROOT attribute " |
| 776 | "is missing."); |
| 777 | } |
| 778 | goto unm_err_out; |
| 779 | } |
| 780 | a = ctx->attr; |
| 781 | /* Set up the state. */ |
| 782 | if (unlikely(a->non_resident)) { |
| 783 | ntfs_error(vol->sb, "$INDEX_ROOT attribute is not " |
| 784 | "resident."); |
| 785 | goto unm_err_out; |
| 786 | } |
| 787 | /* Ensure the attribute name is placed before the value. */ |
| 788 | if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= |
| 789 | le16_to_cpu(a->data.resident.value_offset)))) { |
| 790 | ntfs_error(vol->sb, "$INDEX_ROOT attribute name is " |
| 791 | "placed after the attribute value."); |
| 792 | goto unm_err_out; |
| 793 | } |
| 794 | /* |
| 795 | * Compressed/encrypted index root just means that the newly |
| 796 | * created files in that directory should be created compressed/ |
| 797 | * encrypted. However index root cannot be both compressed and |
| 798 | * encrypted. |
| 799 | */ |
| 800 | if (a->flags & ATTR_COMPRESSION_MASK) |
| 801 | NInoSetCompressed(ni); |
| 802 | if (a->flags & ATTR_IS_ENCRYPTED) { |
| 803 | if (a->flags & ATTR_COMPRESSION_MASK) { |
| 804 | ntfs_error(vi->i_sb, "Found encrypted and " |
| 805 | "compressed attribute."); |
| 806 | goto unm_err_out; |
| 807 | } |
| 808 | NInoSetEncrypted(ni); |
| 809 | } |
| 810 | if (a->flags & ATTR_IS_SPARSE) |
| 811 | NInoSetSparse(ni); |
| 812 | ir = (INDEX_ROOT*)((u8*)a + |
| 813 | le16_to_cpu(a->data.resident.value_offset)); |
| 814 | ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); |
| 815 | if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { |
| 816 | ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " |
| 817 | "corrupt."); |
| 818 | goto unm_err_out; |
| 819 | } |
| 820 | index_end = (u8*)&ir->index + |
| 821 | le32_to_cpu(ir->index.index_length); |
| 822 | if (index_end > ir_end) { |
| 823 | ntfs_error(vi->i_sb, "Directory index is corrupt."); |
| 824 | goto unm_err_out; |
| 825 | } |
| 826 | if (ir->type != AT_FILE_NAME) { |
| 827 | ntfs_error(vi->i_sb, "Indexed attribute is not " |
| 828 | "$FILE_NAME."); |
| 829 | goto unm_err_out; |
| 830 | } |
| 831 | if (ir->collation_rule != COLLATION_FILE_NAME) { |
| 832 | ntfs_error(vi->i_sb, "Index collation rule is not " |
| 833 | "COLLATION_FILE_NAME."); |
| 834 | goto unm_err_out; |
| 835 | } |
| 836 | ni->itype.index.collation_rule = ir->collation_rule; |
| 837 | ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); |
| 838 | if (ni->itype.index.block_size & |
| 839 | (ni->itype.index.block_size - 1)) { |
| 840 | ntfs_error(vi->i_sb, "Index block size (%u) is not a " |
| 841 | "power of two.", |
| 842 | ni->itype.index.block_size); |
| 843 | goto unm_err_out; |
| 844 | } |
| 845 | if (ni->itype.index.block_size > PAGE_SIZE) { |
| 846 | ntfs_error(vi->i_sb, "Index block size (%u) > " |
| 847 | "PAGE_SIZE (%ld) is not " |
| 848 | "supported. Sorry.", |
| 849 | ni->itype.index.block_size, |
| 850 | PAGE_SIZE); |
| 851 | err = -EOPNOTSUPP; |
| 852 | goto unm_err_out; |
| 853 | } |
| 854 | if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { |
| 855 | ntfs_error(vi->i_sb, "Index block size (%u) < " |
| 856 | "NTFS_BLOCK_SIZE (%i) is not " |
| 857 | "supported. Sorry.", |
| 858 | ni->itype.index.block_size, |
| 859 | NTFS_BLOCK_SIZE); |
| 860 | err = -EOPNOTSUPP; |
| 861 | goto unm_err_out; |
| 862 | } |
| 863 | ni->itype.index.block_size_bits = |
| 864 | ffs(ni->itype.index.block_size) - 1; |
| 865 | /* Determine the size of a vcn in the directory index. */ |
| 866 | if (vol->cluster_size <= ni->itype.index.block_size) { |
| 867 | ni->itype.index.vcn_size = vol->cluster_size; |
| 868 | ni->itype.index.vcn_size_bits = vol->cluster_size_bits; |
| 869 | } else { |
| 870 | ni->itype.index.vcn_size = vol->sector_size; |
| 871 | ni->itype.index.vcn_size_bits = vol->sector_size_bits; |
| 872 | } |
| 873 | |
| 874 | /* Setup the index allocation attribute, even if not present. */ |
| 875 | NInoSetMstProtected(ni); |
| 876 | ni->type = AT_INDEX_ALLOCATION; |
| 877 | ni->name = I30; |
| 878 | ni->name_len = 4; |
| 879 | |
| 880 | if (!(ir->index.flags & LARGE_INDEX)) { |
| 881 | /* No index allocation. */ |
| 882 | vi->i_size = ni->initialized_size = |
| 883 | ni->allocated_size = 0; |
| 884 | /* We are done with the mft record, so we release it. */ |
| 885 | ntfs_attr_put_search_ctx(ctx); |
| 886 | unmap_mft_record(ni); |
| 887 | m = NULL; |
| 888 | ctx = NULL; |
| 889 | goto skip_large_dir_stuff; |
| 890 | } /* LARGE_INDEX: Index allocation present. Setup state. */ |
| 891 | NInoSetIndexAllocPresent(ni); |
| 892 | /* Find index allocation attribute. */ |
| 893 | ntfs_attr_reinit_search_ctx(ctx); |
| 894 | err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4, |
| 895 | CASE_SENSITIVE, 0, NULL, 0, ctx); |
| 896 | if (unlikely(err)) { |
| 897 | if (err == -ENOENT) |
| 898 | ntfs_error(vi->i_sb, "$INDEX_ALLOCATION " |
| 899 | "attribute is not present but " |
| 900 | "$INDEX_ROOT indicated it is."); |
| 901 | else |
| 902 | ntfs_error(vi->i_sb, "Failed to lookup " |
| 903 | "$INDEX_ALLOCATION " |
| 904 | "attribute."); |
| 905 | goto unm_err_out; |
| 906 | } |
| 907 | a = ctx->attr; |
| 908 | if (!a->non_resident) { |
| 909 | ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " |
| 910 | "is resident."); |
| 911 | goto unm_err_out; |
| 912 | } |
| 913 | /* |
| 914 | * Ensure the attribute name is placed before the mapping pairs |
| 915 | * array. |
| 916 | */ |
| 917 | if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= |
| 918 | le16_to_cpu( |
| 919 | a->data.non_resident.mapping_pairs_offset)))) { |
| 920 | ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name " |
| 921 | "is placed after the mapping pairs " |
| 922 | "array."); |
| 923 | goto unm_err_out; |
| 924 | } |
| 925 | if (a->flags & ATTR_IS_ENCRYPTED) { |
| 926 | ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " |
| 927 | "is encrypted."); |
| 928 | goto unm_err_out; |
| 929 | } |
| 930 | if (a->flags & ATTR_IS_SPARSE) { |
| 931 | ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " |
| 932 | "is sparse."); |
| 933 | goto unm_err_out; |
| 934 | } |
| 935 | if (a->flags & ATTR_COMPRESSION_MASK) { |
| 936 | ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " |
| 937 | "is compressed."); |
| 938 | goto unm_err_out; |
| 939 | } |
| 940 | if (a->data.non_resident.lowest_vcn) { |
| 941 | ntfs_error(vi->i_sb, "First extent of " |
| 942 | "$INDEX_ALLOCATION attribute has non " |
| 943 | "zero lowest_vcn."); |
| 944 | goto unm_err_out; |
| 945 | } |
| 946 | vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); |
| 947 | ni->initialized_size = sle64_to_cpu( |
| 948 | a->data.non_resident.initialized_size); |
| 949 | ni->allocated_size = sle64_to_cpu( |
| 950 | a->data.non_resident.allocated_size); |
| 951 | /* |
| 952 | * We are done with the mft record, so we release it. Otherwise |
| 953 | * we would deadlock in ntfs_attr_iget(). |
| 954 | */ |
| 955 | ntfs_attr_put_search_ctx(ctx); |
| 956 | unmap_mft_record(ni); |
| 957 | m = NULL; |
| 958 | ctx = NULL; |
| 959 | /* Get the index bitmap attribute inode. */ |
| 960 | bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4); |
| 961 | if (IS_ERR(bvi)) { |
| 962 | ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); |
| 963 | err = PTR_ERR(bvi); |
| 964 | goto unm_err_out; |
| 965 | } |
| 966 | bni = NTFS_I(bvi); |
| 967 | if (NInoCompressed(bni) || NInoEncrypted(bni) || |
| 968 | NInoSparse(bni)) { |
| 969 | ntfs_error(vi->i_sb, "$BITMAP attribute is compressed " |
| 970 | "and/or encrypted and/or sparse."); |
| 971 | goto iput_unm_err_out; |
| 972 | } |
| 973 | /* Consistency check bitmap size vs. index allocation size. */ |
| 974 | bvi_size = i_size_read(bvi); |
| 975 | if ((bvi_size << 3) < (vi->i_size >> |
| 976 | ni->itype.index.block_size_bits)) { |
| 977 | ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) " |
| 978 | "for index allocation (0x%llx).", |
| 979 | bvi_size << 3, vi->i_size); |
| 980 | goto iput_unm_err_out; |
| 981 | } |
| 982 | /* No longer need the bitmap attribute inode. */ |
| 983 | iput(bvi); |
| 984 | skip_large_dir_stuff: |
| 985 | /* Setup the operations for this inode. */ |
| 986 | vi->i_op = &ntfs_dir_inode_ops; |
| 987 | vi->i_fop = &ntfs_dir_ops; |
| 988 | vi->i_mapping->a_ops = &ntfs_mst_aops; |
| 989 | } else { |
| 990 | /* It is a file. */ |
| 991 | ntfs_attr_reinit_search_ctx(ctx); |
| 992 | |
| 993 | /* Setup the data attribute, even if not present. */ |
| 994 | ni->type = AT_DATA; |
| 995 | ni->name = NULL; |
| 996 | ni->name_len = 0; |
| 997 | |
| 998 | /* Find first extent of the unnamed data attribute. */ |
| 999 | err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx); |
| 1000 | if (unlikely(err)) { |
| 1001 | vi->i_size = ni->initialized_size = |
| 1002 | ni->allocated_size = 0; |
| 1003 | if (err != -ENOENT) { |
| 1004 | ntfs_error(vi->i_sb, "Failed to lookup $DATA " |
| 1005 | "attribute."); |
| 1006 | goto unm_err_out; |
| 1007 | } |
| 1008 | /* |
| 1009 | * FILE_Secure does not have an unnamed $DATA |
| 1010 | * attribute, so we special case it here. |
| 1011 | */ |
| 1012 | if (vi->i_ino == FILE_Secure) |
| 1013 | goto no_data_attr_special_case; |
| 1014 | /* |
| 1015 | * Most if not all the system files in the $Extend |
| 1016 | * system directory do not have unnamed data |
| 1017 | * attributes so we need to check if the parent |
| 1018 | * directory of the file is FILE_Extend and if it is |
| 1019 | * ignore this error. To do this we need to get the |
| 1020 | * name of this inode from the mft record as the name |
| 1021 | * contains the back reference to the parent directory. |
| 1022 | */ |
| 1023 | if (ntfs_is_extended_system_file(ctx) > 0) |
| 1024 | goto no_data_attr_special_case; |
| 1025 | // FIXME: File is corrupt! Hot-fix with empty data |
| 1026 | // attribute if recovery option is set. |
| 1027 | ntfs_error(vi->i_sb, "$DATA attribute is missing."); |
| 1028 | goto unm_err_out; |
| 1029 | } |
| 1030 | a = ctx->attr; |
| 1031 | /* Setup the state. */ |
| 1032 | if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { |
| 1033 | if (a->flags & ATTR_COMPRESSION_MASK) { |
| 1034 | NInoSetCompressed(ni); |
| 1035 | if (vol->cluster_size > 4096) { |
| 1036 | ntfs_error(vi->i_sb, "Found " |
| 1037 | "compressed data but " |
| 1038 | "compression is " |
| 1039 | "disabled due to " |
| 1040 | "cluster size (%i) > " |
| 1041 | "4kiB.", |
| 1042 | vol->cluster_size); |
| 1043 | goto unm_err_out; |
| 1044 | } |
| 1045 | if ((a->flags & ATTR_COMPRESSION_MASK) |
| 1046 | != ATTR_IS_COMPRESSED) { |
| 1047 | ntfs_error(vi->i_sb, "Found unknown " |
| 1048 | "compression method " |
| 1049 | "or corrupt file."); |
| 1050 | goto unm_err_out; |
| 1051 | } |
| 1052 | } |
| 1053 | if (a->flags & ATTR_IS_SPARSE) |
| 1054 | NInoSetSparse(ni); |
| 1055 | } |
| 1056 | if (a->flags & ATTR_IS_ENCRYPTED) { |
| 1057 | if (NInoCompressed(ni)) { |
| 1058 | ntfs_error(vi->i_sb, "Found encrypted and " |
| 1059 | "compressed data."); |
| 1060 | goto unm_err_out; |
| 1061 | } |
| 1062 | NInoSetEncrypted(ni); |
| 1063 | } |
| 1064 | if (a->non_resident) { |
| 1065 | NInoSetNonResident(ni); |
| 1066 | if (NInoCompressed(ni) || NInoSparse(ni)) { |
| 1067 | if (NInoCompressed(ni) && a->data.non_resident. |
| 1068 | compression_unit != 4) { |
| 1069 | ntfs_error(vi->i_sb, "Found " |
| 1070 | "non-standard " |
| 1071 | "compression unit (%u " |
| 1072 | "instead of 4). " |
| 1073 | "Cannot handle this.", |
| 1074 | a->data.non_resident. |
| 1075 | compression_unit); |
| 1076 | err = -EOPNOTSUPP; |
| 1077 | goto unm_err_out; |
| 1078 | } |
| 1079 | if (a->data.non_resident.compression_unit) { |
| 1080 | ni->itype.compressed.block_size = 1U << |
| 1081 | (a->data.non_resident. |
| 1082 | compression_unit + |
| 1083 | vol->cluster_size_bits); |
| 1084 | ni->itype.compressed.block_size_bits = |
| 1085 | ffs(ni->itype. |
| 1086 | compressed. |
| 1087 | block_size) - 1; |
| 1088 | ni->itype.compressed.block_clusters = |
| 1089 | 1U << a->data. |
| 1090 | non_resident. |
| 1091 | compression_unit; |
| 1092 | } else { |
| 1093 | ni->itype.compressed.block_size = 0; |
| 1094 | ni->itype.compressed.block_size_bits = |
| 1095 | 0; |
| 1096 | ni->itype.compressed.block_clusters = |
| 1097 | 0; |
| 1098 | } |
| 1099 | ni->itype.compressed.size = sle64_to_cpu( |
| 1100 | a->data.non_resident. |
| 1101 | compressed_size); |
| 1102 | } |
| 1103 | if (a->data.non_resident.lowest_vcn) { |
| 1104 | ntfs_error(vi->i_sb, "First extent of $DATA " |
| 1105 | "attribute has non zero " |
| 1106 | "lowest_vcn."); |
| 1107 | goto unm_err_out; |
| 1108 | } |
| 1109 | vi->i_size = sle64_to_cpu( |
| 1110 | a->data.non_resident.data_size); |
| 1111 | ni->initialized_size = sle64_to_cpu( |
| 1112 | a->data.non_resident.initialized_size); |
| 1113 | ni->allocated_size = sle64_to_cpu( |
| 1114 | a->data.non_resident.allocated_size); |
| 1115 | } else { /* Resident attribute. */ |
| 1116 | vi->i_size = ni->initialized_size = le32_to_cpu( |
| 1117 | a->data.resident.value_length); |
| 1118 | ni->allocated_size = le32_to_cpu(a->length) - |
| 1119 | le16_to_cpu( |
| 1120 | a->data.resident.value_offset); |
| 1121 | if (vi->i_size > ni->allocated_size) { |
| 1122 | ntfs_error(vi->i_sb, "Resident data attribute " |
| 1123 | "is corrupt (size exceeds " |
| 1124 | "allocation)."); |
| 1125 | goto unm_err_out; |
| 1126 | } |
| 1127 | } |
| 1128 | no_data_attr_special_case: |
| 1129 | /* We are done with the mft record, so we release it. */ |
| 1130 | ntfs_attr_put_search_ctx(ctx); |
| 1131 | unmap_mft_record(ni); |
| 1132 | m = NULL; |
| 1133 | ctx = NULL; |
| 1134 | /* Setup the operations for this inode. */ |
| 1135 | vi->i_op = &ntfs_file_inode_ops; |
| 1136 | vi->i_fop = &ntfs_file_ops; |
| 1137 | vi->i_mapping->a_ops = &ntfs_normal_aops; |
| 1138 | if (NInoMstProtected(ni)) |
| 1139 | vi->i_mapping->a_ops = &ntfs_mst_aops; |
| 1140 | else if (NInoCompressed(ni)) |
| 1141 | vi->i_mapping->a_ops = &ntfs_compressed_aops; |
| 1142 | } |
| 1143 | /* |
| 1144 | * The number of 512-byte blocks used on disk (for stat). This is in so |
| 1145 | * far inaccurate as it doesn't account for any named streams or other |
| 1146 | * special non-resident attributes, but that is how Windows works, too, |
| 1147 | * so we are at least consistent with Windows, if not entirely |
| 1148 | * consistent with the Linux Way. Doing it the Linux Way would cause a |
| 1149 | * significant slowdown as it would involve iterating over all |
| 1150 | * attributes in the mft record and adding the allocated/compressed |
| 1151 | * sizes of all non-resident attributes present to give us the Linux |
| 1152 | * correct size that should go into i_blocks (after division by 512). |
| 1153 | */ |
| 1154 | if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni))) |
| 1155 | vi->i_blocks = ni->itype.compressed.size >> 9; |
| 1156 | else |
| 1157 | vi->i_blocks = ni->allocated_size >> 9; |
| 1158 | ntfs_debug("Done."); |
| 1159 | return 0; |
| 1160 | iput_unm_err_out: |
| 1161 | iput(bvi); |
| 1162 | unm_err_out: |
| 1163 | if (!err) |
| 1164 | err = -EIO; |
| 1165 | if (ctx) |
| 1166 | ntfs_attr_put_search_ctx(ctx); |
| 1167 | if (m) |
| 1168 | unmap_mft_record(ni); |
| 1169 | err_out: |
| 1170 | ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt " |
| 1171 | "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino); |
| 1172 | make_bad_inode(vi); |
| 1173 | if (err != -EOPNOTSUPP && err != -ENOMEM) |
| 1174 | NVolSetErrors(vol); |
| 1175 | return err; |
| 1176 | } |
| 1177 | |
| 1178 | /** |
| 1179 | * ntfs_read_locked_attr_inode - read an attribute inode from its base inode |
| 1180 | * @base_vi: base inode |
| 1181 | * @vi: attribute inode to read |
| 1182 | * |
| 1183 | * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the |
| 1184 | * attribute inode described by @vi into memory from the base mft record |
| 1185 | * described by @base_ni. |
| 1186 | * |
| 1187 | * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for |
| 1188 | * reading and looks up the attribute described by @vi before setting up the |
| 1189 | * necessary fields in @vi as well as initializing the ntfs inode. |
| 1190 | * |
| 1191 | * Q: What locks are held when the function is called? |
| 1192 | * A: i_state has I_NEW set, hence the inode is locked, also |
| 1193 | * i_count is set to 1, so it is not going to go away |
| 1194 | * |
| 1195 | * Return 0 on success and -errno on error. In the error case, the inode will |
| 1196 | * have had make_bad_inode() executed on it. |
| 1197 | * |
| 1198 | * Note this cannot be called for AT_INDEX_ALLOCATION. |
| 1199 | */ |
| 1200 | static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi) |
| 1201 | { |
| 1202 | ntfs_volume *vol = NTFS_SB(vi->i_sb); |
| 1203 | ntfs_inode *ni, *base_ni; |
| 1204 | MFT_RECORD *m; |
| 1205 | ATTR_RECORD *a; |
| 1206 | ntfs_attr_search_ctx *ctx; |
| 1207 | int err = 0; |
| 1208 | |
| 1209 | ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); |
| 1210 | |
| 1211 | ntfs_init_big_inode(vi); |
| 1212 | |
| 1213 | ni = NTFS_I(vi); |
| 1214 | base_ni = NTFS_I(base_vi); |
| 1215 | |
| 1216 | /* Just mirror the values from the base inode. */ |
| 1217 | vi->i_uid = base_vi->i_uid; |
| 1218 | vi->i_gid = base_vi->i_gid; |
| 1219 | set_nlink(vi, base_vi->i_nlink); |
| 1220 | vi->i_mtime = base_vi->i_mtime; |
| 1221 | vi->i_ctime = base_vi->i_ctime; |
| 1222 | vi->i_atime = base_vi->i_atime; |
| 1223 | vi->i_generation = ni->seq_no = base_ni->seq_no; |
| 1224 | |
| 1225 | /* Set inode type to zero but preserve permissions. */ |
| 1226 | vi->i_mode = base_vi->i_mode & ~S_IFMT; |
| 1227 | |
| 1228 | m = map_mft_record(base_ni); |
| 1229 | if (IS_ERR(m)) { |
| 1230 | err = PTR_ERR(m); |
| 1231 | goto err_out; |
| 1232 | } |
| 1233 | ctx = ntfs_attr_get_search_ctx(base_ni, m); |
| 1234 | if (!ctx) { |
| 1235 | err = -ENOMEM; |
| 1236 | goto unm_err_out; |
| 1237 | } |
| 1238 | /* Find the attribute. */ |
| 1239 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, |
| 1240 | CASE_SENSITIVE, 0, NULL, 0, ctx); |
| 1241 | if (unlikely(err)) |
| 1242 | goto unm_err_out; |
| 1243 | a = ctx->attr; |
| 1244 | if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { |
| 1245 | if (a->flags & ATTR_COMPRESSION_MASK) { |
| 1246 | NInoSetCompressed(ni); |
| 1247 | if ((ni->type != AT_DATA) || (ni->type == AT_DATA && |
| 1248 | ni->name_len)) { |
| 1249 | ntfs_error(vi->i_sb, "Found compressed " |
| 1250 | "non-data or named data " |
| 1251 | "attribute. Please report " |
| 1252 | "you saw this message to " |
| 1253 | "linux-ntfs-dev@lists." |
| 1254 | "sourceforge.net"); |
| 1255 | goto unm_err_out; |
| 1256 | } |
| 1257 | if (vol->cluster_size > 4096) { |
| 1258 | ntfs_error(vi->i_sb, "Found compressed " |
| 1259 | "attribute but compression is " |
| 1260 | "disabled due to cluster size " |
| 1261 | "(%i) > 4kiB.", |
| 1262 | vol->cluster_size); |
| 1263 | goto unm_err_out; |
| 1264 | } |
| 1265 | if ((a->flags & ATTR_COMPRESSION_MASK) != |
| 1266 | ATTR_IS_COMPRESSED) { |
| 1267 | ntfs_error(vi->i_sb, "Found unknown " |
| 1268 | "compression method."); |
| 1269 | goto unm_err_out; |
| 1270 | } |
| 1271 | } |
| 1272 | /* |
| 1273 | * The compressed/sparse flag set in an index root just means |
| 1274 | * to compress all files. |
| 1275 | */ |
| 1276 | if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { |
| 1277 | ntfs_error(vi->i_sb, "Found mst protected attribute " |
| 1278 | "but the attribute is %s. Please " |
| 1279 | "report you saw this message to " |
| 1280 | "linux-ntfs-dev@lists.sourceforge.net", |
| 1281 | NInoCompressed(ni) ? "compressed" : |
| 1282 | "sparse"); |
| 1283 | goto unm_err_out; |
| 1284 | } |
| 1285 | if (a->flags & ATTR_IS_SPARSE) |
| 1286 | NInoSetSparse(ni); |
| 1287 | } |
| 1288 | if (a->flags & ATTR_IS_ENCRYPTED) { |
| 1289 | if (NInoCompressed(ni)) { |
| 1290 | ntfs_error(vi->i_sb, "Found encrypted and compressed " |
| 1291 | "data."); |
| 1292 | goto unm_err_out; |
| 1293 | } |
| 1294 | /* |
| 1295 | * The encryption flag set in an index root just means to |
| 1296 | * encrypt all files. |
| 1297 | */ |
| 1298 | if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { |
| 1299 | ntfs_error(vi->i_sb, "Found mst protected attribute " |
| 1300 | "but the attribute is encrypted. " |
| 1301 | "Please report you saw this message " |
| 1302 | "to linux-ntfs-dev@lists.sourceforge." |
| 1303 | "net"); |
| 1304 | goto unm_err_out; |
| 1305 | } |
| 1306 | if (ni->type != AT_DATA) { |
| 1307 | ntfs_error(vi->i_sb, "Found encrypted non-data " |
| 1308 | "attribute."); |
| 1309 | goto unm_err_out; |
| 1310 | } |
| 1311 | NInoSetEncrypted(ni); |
| 1312 | } |
| 1313 | if (!a->non_resident) { |
| 1314 | /* Ensure the attribute name is placed before the value. */ |
| 1315 | if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= |
| 1316 | le16_to_cpu(a->data.resident.value_offset)))) { |
| 1317 | ntfs_error(vol->sb, "Attribute name is placed after " |
| 1318 | "the attribute value."); |
| 1319 | goto unm_err_out; |
| 1320 | } |
| 1321 | if (NInoMstProtected(ni)) { |
| 1322 | ntfs_error(vi->i_sb, "Found mst protected attribute " |
| 1323 | "but the attribute is resident. " |
| 1324 | "Please report you saw this message to " |
| 1325 | "linux-ntfs-dev@lists.sourceforge.net"); |
| 1326 | goto unm_err_out; |
| 1327 | } |
| 1328 | vi->i_size = ni->initialized_size = le32_to_cpu( |
| 1329 | a->data.resident.value_length); |
| 1330 | ni->allocated_size = le32_to_cpu(a->length) - |
| 1331 | le16_to_cpu(a->data.resident.value_offset); |
| 1332 | if (vi->i_size > ni->allocated_size) { |
| 1333 | ntfs_error(vi->i_sb, "Resident attribute is corrupt " |
| 1334 | "(size exceeds allocation)."); |
| 1335 | goto unm_err_out; |
| 1336 | } |
| 1337 | } else { |
| 1338 | NInoSetNonResident(ni); |
| 1339 | /* |
| 1340 | * Ensure the attribute name is placed before the mapping pairs |
| 1341 | * array. |
| 1342 | */ |
| 1343 | if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= |
| 1344 | le16_to_cpu( |
| 1345 | a->data.non_resident.mapping_pairs_offset)))) { |
| 1346 | ntfs_error(vol->sb, "Attribute name is placed after " |
| 1347 | "the mapping pairs array."); |
| 1348 | goto unm_err_out; |
| 1349 | } |
| 1350 | if (NInoCompressed(ni) || NInoSparse(ni)) { |
| 1351 | if (NInoCompressed(ni) && a->data.non_resident. |
| 1352 | compression_unit != 4) { |
| 1353 | ntfs_error(vi->i_sb, "Found non-standard " |
| 1354 | "compression unit (%u instead " |
| 1355 | "of 4). Cannot handle this.", |
| 1356 | a->data.non_resident. |
| 1357 | compression_unit); |
| 1358 | err = -EOPNOTSUPP; |
| 1359 | goto unm_err_out; |
| 1360 | } |
| 1361 | if (a->data.non_resident.compression_unit) { |
| 1362 | ni->itype.compressed.block_size = 1U << |
| 1363 | (a->data.non_resident. |
| 1364 | compression_unit + |
| 1365 | vol->cluster_size_bits); |
| 1366 | ni->itype.compressed.block_size_bits = |
| 1367 | ffs(ni->itype.compressed. |
| 1368 | block_size) - 1; |
| 1369 | ni->itype.compressed.block_clusters = 1U << |
| 1370 | a->data.non_resident. |
| 1371 | compression_unit; |
| 1372 | } else { |
| 1373 | ni->itype.compressed.block_size = 0; |
| 1374 | ni->itype.compressed.block_size_bits = 0; |
| 1375 | ni->itype.compressed.block_clusters = 0; |
| 1376 | } |
| 1377 | ni->itype.compressed.size = sle64_to_cpu( |
| 1378 | a->data.non_resident.compressed_size); |
| 1379 | } |
| 1380 | if (a->data.non_resident.lowest_vcn) { |
| 1381 | ntfs_error(vi->i_sb, "First extent of attribute has " |
| 1382 | "non-zero lowest_vcn."); |
| 1383 | goto unm_err_out; |
| 1384 | } |
| 1385 | vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); |
| 1386 | ni->initialized_size = sle64_to_cpu( |
| 1387 | a->data.non_resident.initialized_size); |
| 1388 | ni->allocated_size = sle64_to_cpu( |
| 1389 | a->data.non_resident.allocated_size); |
| 1390 | } |
| 1391 | vi->i_mapping->a_ops = &ntfs_normal_aops; |
| 1392 | if (NInoMstProtected(ni)) |
| 1393 | vi->i_mapping->a_ops = &ntfs_mst_aops; |
| 1394 | else if (NInoCompressed(ni)) |
| 1395 | vi->i_mapping->a_ops = &ntfs_compressed_aops; |
| 1396 | if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT) |
| 1397 | vi->i_blocks = ni->itype.compressed.size >> 9; |
| 1398 | else |
| 1399 | vi->i_blocks = ni->allocated_size >> 9; |
| 1400 | /* |
| 1401 | * Make sure the base inode does not go away and attach it to the |
| 1402 | * attribute inode. |
| 1403 | */ |
| 1404 | igrab(base_vi); |
| 1405 | ni->ext.base_ntfs_ino = base_ni; |
| 1406 | ni->nr_extents = -1; |
| 1407 | |
| 1408 | ntfs_attr_put_search_ctx(ctx); |
| 1409 | unmap_mft_record(base_ni); |
| 1410 | |
| 1411 | ntfs_debug("Done."); |
| 1412 | return 0; |
| 1413 | |
| 1414 | unm_err_out: |
| 1415 | if (!err) |
| 1416 | err = -EIO; |
| 1417 | if (ctx) |
| 1418 | ntfs_attr_put_search_ctx(ctx); |
| 1419 | unmap_mft_record(base_ni); |
| 1420 | err_out: |
| 1421 | ntfs_error(vol->sb, "Failed with error code %i while reading attribute " |
| 1422 | "inode (mft_no 0x%lx, type 0x%x, name_len %i). " |
| 1423 | "Marking corrupt inode and base inode 0x%lx as bad. " |
| 1424 | "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len, |
| 1425 | base_vi->i_ino); |
| 1426 | make_bad_inode(vi); |
| 1427 | if (err != -ENOMEM) |
| 1428 | NVolSetErrors(vol); |
| 1429 | return err; |
| 1430 | } |
| 1431 | |
| 1432 | /** |
| 1433 | * ntfs_read_locked_index_inode - read an index inode from its base inode |
| 1434 | * @base_vi: base inode |
| 1435 | * @vi: index inode to read |
| 1436 | * |
| 1437 | * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the |
| 1438 | * index inode described by @vi into memory from the base mft record described |
| 1439 | * by @base_ni. |
| 1440 | * |
| 1441 | * ntfs_read_locked_index_inode() maps, pins and locks the base inode for |
| 1442 | * reading and looks up the attributes relating to the index described by @vi |
| 1443 | * before setting up the necessary fields in @vi as well as initializing the |
| 1444 | * ntfs inode. |
| 1445 | * |
| 1446 | * Note, index inodes are essentially attribute inodes (NInoAttr() is true) |
| 1447 | * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they |
| 1448 | * are setup like directory inodes since directories are a special case of |
| 1449 | * indices ao they need to be treated in much the same way. Most importantly, |
| 1450 | * for small indices the index allocation attribute might not actually exist. |
| 1451 | * However, the index root attribute always exists but this does not need to |
| 1452 | * have an inode associated with it and this is why we define a new inode type |
| 1453 | * index. Also, like for directories, we need to have an attribute inode for |
| 1454 | * the bitmap attribute corresponding to the index allocation attribute and we |
| 1455 | * can store this in the appropriate field of the inode, just like we do for |
| 1456 | * normal directory inodes. |
| 1457 | * |
| 1458 | * Q: What locks are held when the function is called? |
| 1459 | * A: i_state has I_NEW set, hence the inode is locked, also |
| 1460 | * i_count is set to 1, so it is not going to go away |
| 1461 | * |
| 1462 | * Return 0 on success and -errno on error. In the error case, the inode will |
| 1463 | * have had make_bad_inode() executed on it. |
| 1464 | */ |
| 1465 | static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi) |
| 1466 | { |
| 1467 | loff_t bvi_size; |
| 1468 | ntfs_volume *vol = NTFS_SB(vi->i_sb); |
| 1469 | ntfs_inode *ni, *base_ni, *bni; |
| 1470 | struct inode *bvi; |
| 1471 | MFT_RECORD *m; |
| 1472 | ATTR_RECORD *a; |
| 1473 | ntfs_attr_search_ctx *ctx; |
| 1474 | INDEX_ROOT *ir; |
| 1475 | u8 *ir_end, *index_end; |
| 1476 | int err = 0; |
| 1477 | |
| 1478 | ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); |
| 1479 | ntfs_init_big_inode(vi); |
| 1480 | ni = NTFS_I(vi); |
| 1481 | base_ni = NTFS_I(base_vi); |
| 1482 | /* Just mirror the values from the base inode. */ |
| 1483 | vi->i_uid = base_vi->i_uid; |
| 1484 | vi->i_gid = base_vi->i_gid; |
| 1485 | set_nlink(vi, base_vi->i_nlink); |
| 1486 | vi->i_mtime = base_vi->i_mtime; |
| 1487 | vi->i_ctime = base_vi->i_ctime; |
| 1488 | vi->i_atime = base_vi->i_atime; |
| 1489 | vi->i_generation = ni->seq_no = base_ni->seq_no; |
| 1490 | /* Set inode type to zero but preserve permissions. */ |
| 1491 | vi->i_mode = base_vi->i_mode & ~S_IFMT; |
| 1492 | /* Map the mft record for the base inode. */ |
| 1493 | m = map_mft_record(base_ni); |
| 1494 | if (IS_ERR(m)) { |
| 1495 | err = PTR_ERR(m); |
| 1496 | goto err_out; |
| 1497 | } |
| 1498 | ctx = ntfs_attr_get_search_ctx(base_ni, m); |
| 1499 | if (!ctx) { |
| 1500 | err = -ENOMEM; |
| 1501 | goto unm_err_out; |
| 1502 | } |
| 1503 | /* Find the index root attribute. */ |
| 1504 | err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len, |
| 1505 | CASE_SENSITIVE, 0, NULL, 0, ctx); |
| 1506 | if (unlikely(err)) { |
| 1507 | if (err == -ENOENT) |
| 1508 | ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " |
| 1509 | "missing."); |
| 1510 | goto unm_err_out; |
| 1511 | } |
| 1512 | a = ctx->attr; |
| 1513 | /* Set up the state. */ |
| 1514 | if (unlikely(a->non_resident)) { |
| 1515 | ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident."); |
| 1516 | goto unm_err_out; |
| 1517 | } |
| 1518 | /* Ensure the attribute name is placed before the value. */ |
| 1519 | if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= |
| 1520 | le16_to_cpu(a->data.resident.value_offset)))) { |
| 1521 | ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed " |
| 1522 | "after the attribute value."); |
| 1523 | goto unm_err_out; |
| 1524 | } |
| 1525 | /* |
| 1526 | * Compressed/encrypted/sparse index root is not allowed, except for |
| 1527 | * directories of course but those are not dealt with here. |
| 1528 | */ |
| 1529 | if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED | |
| 1530 | ATTR_IS_SPARSE)) { |
| 1531 | ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index " |
| 1532 | "root attribute."); |
| 1533 | goto unm_err_out; |
| 1534 | } |
| 1535 | ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset)); |
| 1536 | ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); |
| 1537 | if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { |
| 1538 | ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt."); |
| 1539 | goto unm_err_out; |
| 1540 | } |
| 1541 | index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length); |
| 1542 | if (index_end > ir_end) { |
| 1543 | ntfs_error(vi->i_sb, "Index is corrupt."); |
| 1544 | goto unm_err_out; |
| 1545 | } |
| 1546 | if (ir->type) { |
| 1547 | ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).", |
| 1548 | le32_to_cpu(ir->type)); |
| 1549 | goto unm_err_out; |
| 1550 | } |
| 1551 | ni->itype.index.collation_rule = ir->collation_rule; |
| 1552 | ntfs_debug("Index collation rule is 0x%x.", |
| 1553 | le32_to_cpu(ir->collation_rule)); |
| 1554 | ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); |
| 1555 | if (!is_power_of_2(ni->itype.index.block_size)) { |
| 1556 | ntfs_error(vi->i_sb, "Index block size (%u) is not a power of " |
| 1557 | "two.", ni->itype.index.block_size); |
| 1558 | goto unm_err_out; |
| 1559 | } |
| 1560 | if (ni->itype.index.block_size > PAGE_SIZE) { |
| 1561 | ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE " |
| 1562 | "(%ld) is not supported. Sorry.", |
| 1563 | ni->itype.index.block_size, PAGE_SIZE); |
| 1564 | err = -EOPNOTSUPP; |
| 1565 | goto unm_err_out; |
| 1566 | } |
| 1567 | if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { |
| 1568 | ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE " |
| 1569 | "(%i) is not supported. Sorry.", |
| 1570 | ni->itype.index.block_size, NTFS_BLOCK_SIZE); |
| 1571 | err = -EOPNOTSUPP; |
| 1572 | goto unm_err_out; |
| 1573 | } |
| 1574 | ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1; |
| 1575 | /* Determine the size of a vcn in the index. */ |
| 1576 | if (vol->cluster_size <= ni->itype.index.block_size) { |
| 1577 | ni->itype.index.vcn_size = vol->cluster_size; |
| 1578 | ni->itype.index.vcn_size_bits = vol->cluster_size_bits; |
| 1579 | } else { |
| 1580 | ni->itype.index.vcn_size = vol->sector_size; |
| 1581 | ni->itype.index.vcn_size_bits = vol->sector_size_bits; |
| 1582 | } |
| 1583 | /* Check for presence of index allocation attribute. */ |
| 1584 | if (!(ir->index.flags & LARGE_INDEX)) { |
| 1585 | /* No index allocation. */ |
| 1586 | vi->i_size = ni->initialized_size = ni->allocated_size = 0; |
| 1587 | /* We are done with the mft record, so we release it. */ |
| 1588 | ntfs_attr_put_search_ctx(ctx); |
| 1589 | unmap_mft_record(base_ni); |
| 1590 | m = NULL; |
| 1591 | ctx = NULL; |
| 1592 | goto skip_large_index_stuff; |
| 1593 | } /* LARGE_INDEX: Index allocation present. Setup state. */ |
| 1594 | NInoSetIndexAllocPresent(ni); |
| 1595 | /* Find index allocation attribute. */ |
| 1596 | ntfs_attr_reinit_search_ctx(ctx); |
| 1597 | err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len, |
| 1598 | CASE_SENSITIVE, 0, NULL, 0, ctx); |
| 1599 | if (unlikely(err)) { |
| 1600 | if (err == -ENOENT) |
| 1601 | ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " |
| 1602 | "not present but $INDEX_ROOT " |
| 1603 | "indicated it is."); |
| 1604 | else |
| 1605 | ntfs_error(vi->i_sb, "Failed to lookup " |
| 1606 | "$INDEX_ALLOCATION attribute."); |
| 1607 | goto unm_err_out; |
| 1608 | } |
| 1609 | a = ctx->attr; |
| 1610 | if (!a->non_resident) { |
| 1611 | ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " |
| 1612 | "resident."); |
| 1613 | goto unm_err_out; |
| 1614 | } |
| 1615 | /* |
| 1616 | * Ensure the attribute name is placed before the mapping pairs array. |
| 1617 | */ |
| 1618 | if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= |
| 1619 | le16_to_cpu( |
| 1620 | a->data.non_resident.mapping_pairs_offset)))) { |
| 1621 | ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is " |
| 1622 | "placed after the mapping pairs array."); |
| 1623 | goto unm_err_out; |
| 1624 | } |
| 1625 | if (a->flags & ATTR_IS_ENCRYPTED) { |
| 1626 | ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " |
| 1627 | "encrypted."); |
| 1628 | goto unm_err_out; |
| 1629 | } |
| 1630 | if (a->flags & ATTR_IS_SPARSE) { |
| 1631 | ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse."); |
| 1632 | goto unm_err_out; |
| 1633 | } |
| 1634 | if (a->flags & ATTR_COMPRESSION_MASK) { |
| 1635 | ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " |
| 1636 | "compressed."); |
| 1637 | goto unm_err_out; |
| 1638 | } |
| 1639 | if (a->data.non_resident.lowest_vcn) { |
| 1640 | ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION " |
| 1641 | "attribute has non zero lowest_vcn."); |
| 1642 | goto unm_err_out; |
| 1643 | } |
| 1644 | vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); |
| 1645 | ni->initialized_size = sle64_to_cpu( |
| 1646 | a->data.non_resident.initialized_size); |
| 1647 | ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size); |
| 1648 | /* |
| 1649 | * We are done with the mft record, so we release it. Otherwise |
| 1650 | * we would deadlock in ntfs_attr_iget(). |
| 1651 | */ |
| 1652 | ntfs_attr_put_search_ctx(ctx); |
| 1653 | unmap_mft_record(base_ni); |
| 1654 | m = NULL; |
| 1655 | ctx = NULL; |
| 1656 | /* Get the index bitmap attribute inode. */ |
| 1657 | bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len); |
| 1658 | if (IS_ERR(bvi)) { |
| 1659 | ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); |
| 1660 | err = PTR_ERR(bvi); |
| 1661 | goto unm_err_out; |
| 1662 | } |
| 1663 | bni = NTFS_I(bvi); |
| 1664 | if (NInoCompressed(bni) || NInoEncrypted(bni) || |
| 1665 | NInoSparse(bni)) { |
| 1666 | ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or " |
| 1667 | "encrypted and/or sparse."); |
| 1668 | goto iput_unm_err_out; |
| 1669 | } |
| 1670 | /* Consistency check bitmap size vs. index allocation size. */ |
| 1671 | bvi_size = i_size_read(bvi); |
| 1672 | if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) { |
| 1673 | ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for " |
| 1674 | "index allocation (0x%llx).", bvi_size << 3, |
| 1675 | vi->i_size); |
| 1676 | goto iput_unm_err_out; |
| 1677 | } |
| 1678 | iput(bvi); |
| 1679 | skip_large_index_stuff: |
| 1680 | /* Setup the operations for this index inode. */ |
| 1681 | vi->i_mapping->a_ops = &ntfs_mst_aops; |
| 1682 | vi->i_blocks = ni->allocated_size >> 9; |
| 1683 | /* |
| 1684 | * Make sure the base inode doesn't go away and attach it to the |
| 1685 | * index inode. |
| 1686 | */ |
| 1687 | igrab(base_vi); |
| 1688 | ni->ext.base_ntfs_ino = base_ni; |
| 1689 | ni->nr_extents = -1; |
| 1690 | |
| 1691 | ntfs_debug("Done."); |
| 1692 | return 0; |
| 1693 | iput_unm_err_out: |
| 1694 | iput(bvi); |
| 1695 | unm_err_out: |
| 1696 | if (!err) |
| 1697 | err = -EIO; |
| 1698 | if (ctx) |
| 1699 | ntfs_attr_put_search_ctx(ctx); |
| 1700 | if (m) |
| 1701 | unmap_mft_record(base_ni); |
| 1702 | err_out: |
| 1703 | ntfs_error(vi->i_sb, "Failed with error code %i while reading index " |
| 1704 | "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino, |
| 1705 | ni->name_len); |
| 1706 | make_bad_inode(vi); |
| 1707 | if (err != -EOPNOTSUPP && err != -ENOMEM) |
| 1708 | NVolSetErrors(vol); |
| 1709 | return err; |
| 1710 | } |
| 1711 | |
| 1712 | /* |
| 1713 | * The MFT inode has special locking, so teach the lock validator |
| 1714 | * about this by splitting off the locking rules of the MFT from |
| 1715 | * the locking rules of other inodes. The MFT inode can never be |
| 1716 | * accessed from the VFS side (or even internally), only by the |
| 1717 | * map_mft functions. |
| 1718 | */ |
| 1719 | static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key; |
| 1720 | |
| 1721 | /** |
| 1722 | * ntfs_read_inode_mount - special read_inode for mount time use only |
| 1723 | * @vi: inode to read |
| 1724 | * |
| 1725 | * Read inode FILE_MFT at mount time, only called with super_block lock |
| 1726 | * held from within the read_super() code path. |
| 1727 | * |
| 1728 | * This function exists because when it is called the page cache for $MFT/$DATA |
| 1729 | * is not initialized and hence we cannot get at the contents of mft records |
| 1730 | * by calling map_mft_record*(). |
| 1731 | * |
| 1732 | * Further it needs to cope with the circular references problem, i.e. cannot |
| 1733 | * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because |
| 1734 | * we do not know where the other extent mft records are yet and again, because |
| 1735 | * we cannot call map_mft_record*() yet. Obviously this applies only when an |
| 1736 | * attribute list is actually present in $MFT inode. |
| 1737 | * |
| 1738 | * We solve these problems by starting with the $DATA attribute before anything |
| 1739 | * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each |
| 1740 | * extent is found, we ntfs_mapping_pairs_decompress() including the implied |
| 1741 | * ntfs_runlists_merge(). Each step of the iteration necessarily provides |
| 1742 | * sufficient information for the next step to complete. |
| 1743 | * |
| 1744 | * This should work but there are two possible pit falls (see inline comments |
| 1745 | * below), but only time will tell if they are real pits or just smoke... |
| 1746 | */ |
| 1747 | int ntfs_read_inode_mount(struct inode *vi) |
| 1748 | { |
| 1749 | VCN next_vcn, last_vcn, highest_vcn; |
| 1750 | s64 block; |
| 1751 | struct super_block *sb = vi->i_sb; |
| 1752 | ntfs_volume *vol = NTFS_SB(sb); |
| 1753 | struct buffer_head *bh; |
| 1754 | ntfs_inode *ni; |
| 1755 | MFT_RECORD *m = NULL; |
| 1756 | ATTR_RECORD *a; |
| 1757 | ntfs_attr_search_ctx *ctx; |
| 1758 | unsigned int i, nr_blocks; |
| 1759 | int err; |
| 1760 | |
| 1761 | ntfs_debug("Entering."); |
| 1762 | |
| 1763 | /* Initialize the ntfs specific part of @vi. */ |
| 1764 | ntfs_init_big_inode(vi); |
| 1765 | |
| 1766 | ni = NTFS_I(vi); |
| 1767 | |
| 1768 | /* Setup the data attribute. It is special as it is mst protected. */ |
| 1769 | NInoSetNonResident(ni); |
| 1770 | NInoSetMstProtected(ni); |
| 1771 | NInoSetSparseDisabled(ni); |
| 1772 | ni->type = AT_DATA; |
| 1773 | ni->name = NULL; |
| 1774 | ni->name_len = 0; |
| 1775 | /* |
| 1776 | * This sets up our little cheat allowing us to reuse the async read io |
| 1777 | * completion handler for directories. |
| 1778 | */ |
| 1779 | ni->itype.index.block_size = vol->mft_record_size; |
| 1780 | ni->itype.index.block_size_bits = vol->mft_record_size_bits; |
| 1781 | |
| 1782 | /* Very important! Needed to be able to call map_mft_record*(). */ |
| 1783 | vol->mft_ino = vi; |
| 1784 | |
| 1785 | /* Allocate enough memory to read the first mft record. */ |
| 1786 | if (vol->mft_record_size > 64 * 1024) { |
| 1787 | ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).", |
| 1788 | vol->mft_record_size); |
| 1789 | goto err_out; |
| 1790 | } |
| 1791 | i = vol->mft_record_size; |
| 1792 | if (i < sb->s_blocksize) |
| 1793 | i = sb->s_blocksize; |
| 1794 | m = (MFT_RECORD*)ntfs_malloc_nofs(i); |
| 1795 | if (!m) { |
| 1796 | ntfs_error(sb, "Failed to allocate buffer for $MFT record 0."); |
| 1797 | goto err_out; |
| 1798 | } |
| 1799 | |
| 1800 | /* Determine the first block of the $MFT/$DATA attribute. */ |
| 1801 | block = vol->mft_lcn << vol->cluster_size_bits >> |
| 1802 | sb->s_blocksize_bits; |
| 1803 | nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits; |
| 1804 | if (!nr_blocks) |
| 1805 | nr_blocks = 1; |
| 1806 | |
| 1807 | /* Load $MFT/$DATA's first mft record. */ |
| 1808 | for (i = 0; i < nr_blocks; i++) { |
| 1809 | bh = sb_bread(sb, block++); |
| 1810 | if (!bh) { |
| 1811 | ntfs_error(sb, "Device read failed."); |
| 1812 | goto err_out; |
| 1813 | } |
| 1814 | memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data, |
| 1815 | sb->s_blocksize); |
| 1816 | brelse(bh); |
| 1817 | } |
| 1818 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1819 | if (le32_to_cpu(m->bytes_allocated) != vol->mft_record_size) { |
| 1820 | ntfs_error(sb, "Incorrect mft record size %u in superblock, should be %u.", |
| 1821 | le32_to_cpu(m->bytes_allocated), vol->mft_record_size); |
| 1822 | goto err_out; |
| 1823 | } |
| 1824 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1825 | /* Apply the mst fixups. */ |
| 1826 | if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) { |
| 1827 | /* FIXME: Try to use the $MFTMirr now. */ |
| 1828 | ntfs_error(sb, "MST fixup failed. $MFT is corrupt."); |
| 1829 | goto err_out; |
| 1830 | } |
| 1831 | |
Olivier Deprez | 92d4c21 | 2022-12-06 15:05:30 +0100 | [diff] [blame] | 1832 | /* Sanity check offset to the first attribute */ |
| 1833 | if (le16_to_cpu(m->attrs_offset) >= le32_to_cpu(m->bytes_allocated)) { |
| 1834 | ntfs_error(sb, "Incorrect mft offset to the first attribute %u in superblock.", |
| 1835 | le16_to_cpu(m->attrs_offset)); |
| 1836 | goto err_out; |
| 1837 | } |
| 1838 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1839 | /* Need this to sanity check attribute list references to $MFT. */ |
| 1840 | vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); |
| 1841 | |
| 1842 | /* Provides readpage() for map_mft_record(). */ |
| 1843 | vi->i_mapping->a_ops = &ntfs_mst_aops; |
| 1844 | |
| 1845 | ctx = ntfs_attr_get_search_ctx(ni, m); |
| 1846 | if (!ctx) { |
| 1847 | err = -ENOMEM; |
| 1848 | goto err_out; |
| 1849 | } |
| 1850 | |
| 1851 | /* Find the attribute list attribute if present. */ |
| 1852 | err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); |
| 1853 | if (err) { |
| 1854 | if (unlikely(err != -ENOENT)) { |
| 1855 | ntfs_error(sb, "Failed to lookup attribute list " |
| 1856 | "attribute. You should run chkdsk."); |
| 1857 | goto put_err_out; |
| 1858 | } |
| 1859 | } else /* if (!err) */ { |
| 1860 | ATTR_LIST_ENTRY *al_entry, *next_al_entry; |
| 1861 | u8 *al_end; |
| 1862 | static const char *es = " Not allowed. $MFT is corrupt. " |
| 1863 | "You should run chkdsk."; |
| 1864 | |
| 1865 | ntfs_debug("Attribute list attribute found in $MFT."); |
| 1866 | NInoSetAttrList(ni); |
| 1867 | a = ctx->attr; |
| 1868 | if (a->flags & ATTR_COMPRESSION_MASK) { |
| 1869 | ntfs_error(sb, "Attribute list attribute is " |
| 1870 | "compressed.%s", es); |
| 1871 | goto put_err_out; |
| 1872 | } |
| 1873 | if (a->flags & ATTR_IS_ENCRYPTED || |
| 1874 | a->flags & ATTR_IS_SPARSE) { |
| 1875 | if (a->non_resident) { |
| 1876 | ntfs_error(sb, "Non-resident attribute list " |
| 1877 | "attribute is encrypted/" |
| 1878 | "sparse.%s", es); |
| 1879 | goto put_err_out; |
| 1880 | } |
| 1881 | ntfs_warning(sb, "Resident attribute list attribute " |
| 1882 | "in $MFT system file is marked " |
| 1883 | "encrypted/sparse which is not true. " |
| 1884 | "However, Windows allows this and " |
| 1885 | "chkdsk does not detect or correct it " |
| 1886 | "so we will just ignore the invalid " |
| 1887 | "flags and pretend they are not set."); |
| 1888 | } |
| 1889 | /* Now allocate memory for the attribute list. */ |
| 1890 | ni->attr_list_size = (u32)ntfs_attr_size(a); |
Olivier Deprez | 92d4c21 | 2022-12-06 15:05:30 +0100 | [diff] [blame] | 1891 | if (!ni->attr_list_size) { |
| 1892 | ntfs_error(sb, "Attr_list_size is zero"); |
| 1893 | goto put_err_out; |
| 1894 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1895 | ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); |
| 1896 | if (!ni->attr_list) { |
| 1897 | ntfs_error(sb, "Not enough memory to allocate buffer " |
| 1898 | "for attribute list."); |
| 1899 | goto put_err_out; |
| 1900 | } |
| 1901 | if (a->non_resident) { |
| 1902 | NInoSetAttrListNonResident(ni); |
| 1903 | if (a->data.non_resident.lowest_vcn) { |
| 1904 | ntfs_error(sb, "Attribute list has non zero " |
| 1905 | "lowest_vcn. $MFT is corrupt. " |
| 1906 | "You should run chkdsk."); |
| 1907 | goto put_err_out; |
| 1908 | } |
| 1909 | /* Setup the runlist. */ |
| 1910 | ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, |
| 1911 | a, NULL); |
| 1912 | if (IS_ERR(ni->attr_list_rl.rl)) { |
| 1913 | err = PTR_ERR(ni->attr_list_rl.rl); |
| 1914 | ni->attr_list_rl.rl = NULL; |
| 1915 | ntfs_error(sb, "Mapping pairs decompression " |
| 1916 | "failed with error code %i.", |
| 1917 | -err); |
| 1918 | goto put_err_out; |
| 1919 | } |
| 1920 | /* Now load the attribute list. */ |
| 1921 | if ((err = load_attribute_list(vol, &ni->attr_list_rl, |
| 1922 | ni->attr_list, ni->attr_list_size, |
| 1923 | sle64_to_cpu(a->data. |
| 1924 | non_resident.initialized_size)))) { |
| 1925 | ntfs_error(sb, "Failed to load attribute list " |
| 1926 | "attribute with error code %i.", |
| 1927 | -err); |
| 1928 | goto put_err_out; |
| 1929 | } |
| 1930 | } else /* if (!ctx.attr->non_resident) */ { |
| 1931 | if ((u8*)a + le16_to_cpu( |
| 1932 | a->data.resident.value_offset) + |
| 1933 | le32_to_cpu( |
| 1934 | a->data.resident.value_length) > |
| 1935 | (u8*)ctx->mrec + vol->mft_record_size) { |
| 1936 | ntfs_error(sb, "Corrupt attribute list " |
| 1937 | "attribute."); |
| 1938 | goto put_err_out; |
| 1939 | } |
| 1940 | /* Now copy the attribute list. */ |
| 1941 | memcpy(ni->attr_list, (u8*)a + le16_to_cpu( |
| 1942 | a->data.resident.value_offset), |
| 1943 | le32_to_cpu( |
| 1944 | a->data.resident.value_length)); |
| 1945 | } |
| 1946 | /* The attribute list is now setup in memory. */ |
| 1947 | /* |
| 1948 | * FIXME: I don't know if this case is actually possible. |
| 1949 | * According to logic it is not possible but I have seen too |
| 1950 | * many weird things in MS software to rely on logic... Thus we |
| 1951 | * perform a manual search and make sure the first $MFT/$DATA |
| 1952 | * extent is in the base inode. If it is not we abort with an |
| 1953 | * error and if we ever see a report of this error we will need |
| 1954 | * to do some magic in order to have the necessary mft record |
| 1955 | * loaded and in the right place in the page cache. But |
| 1956 | * hopefully logic will prevail and this never happens... |
| 1957 | */ |
| 1958 | al_entry = (ATTR_LIST_ENTRY*)ni->attr_list; |
| 1959 | al_end = (u8*)al_entry + ni->attr_list_size; |
| 1960 | for (;; al_entry = next_al_entry) { |
| 1961 | /* Out of bounds check. */ |
| 1962 | if ((u8*)al_entry < ni->attr_list || |
| 1963 | (u8*)al_entry > al_end) |
| 1964 | goto em_put_err_out; |
| 1965 | /* Catch the end of the attribute list. */ |
| 1966 | if ((u8*)al_entry == al_end) |
| 1967 | goto em_put_err_out; |
| 1968 | if (!al_entry->length) |
| 1969 | goto em_put_err_out; |
| 1970 | if ((u8*)al_entry + 6 > al_end || (u8*)al_entry + |
| 1971 | le16_to_cpu(al_entry->length) > al_end) |
| 1972 | goto em_put_err_out; |
| 1973 | next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry + |
| 1974 | le16_to_cpu(al_entry->length)); |
| 1975 | if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA)) |
| 1976 | goto em_put_err_out; |
| 1977 | if (AT_DATA != al_entry->type) |
| 1978 | continue; |
| 1979 | /* We want an unnamed attribute. */ |
| 1980 | if (al_entry->name_length) |
| 1981 | goto em_put_err_out; |
| 1982 | /* Want the first entry, i.e. lowest_vcn == 0. */ |
| 1983 | if (al_entry->lowest_vcn) |
| 1984 | goto em_put_err_out; |
| 1985 | /* First entry has to be in the base mft record. */ |
| 1986 | if (MREF_LE(al_entry->mft_reference) != vi->i_ino) { |
| 1987 | /* MFT references do not match, logic fails. */ |
| 1988 | ntfs_error(sb, "BUG: The first $DATA extent " |
| 1989 | "of $MFT is not in the base " |
| 1990 | "mft record. Please report " |
| 1991 | "you saw this message to " |
| 1992 | "linux-ntfs-dev@lists." |
| 1993 | "sourceforge.net"); |
| 1994 | goto put_err_out; |
| 1995 | } else { |
| 1996 | /* Sequence numbers must match. */ |
| 1997 | if (MSEQNO_LE(al_entry->mft_reference) != |
| 1998 | ni->seq_no) |
| 1999 | goto em_put_err_out; |
| 2000 | /* Got it. All is ok. We can stop now. */ |
| 2001 | break; |
| 2002 | } |
| 2003 | } |
| 2004 | } |
| 2005 | |
| 2006 | ntfs_attr_reinit_search_ctx(ctx); |
| 2007 | |
| 2008 | /* Now load all attribute extents. */ |
| 2009 | a = NULL; |
| 2010 | next_vcn = last_vcn = highest_vcn = 0; |
| 2011 | while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0, |
| 2012 | ctx))) { |
| 2013 | runlist_element *nrl; |
| 2014 | |
| 2015 | /* Cache the current attribute. */ |
| 2016 | a = ctx->attr; |
| 2017 | /* $MFT must be non-resident. */ |
| 2018 | if (!a->non_resident) { |
| 2019 | ntfs_error(sb, "$MFT must be non-resident but a " |
| 2020 | "resident extent was found. $MFT is " |
| 2021 | "corrupt. Run chkdsk."); |
| 2022 | goto put_err_out; |
| 2023 | } |
| 2024 | /* $MFT must be uncompressed and unencrypted. */ |
| 2025 | if (a->flags & ATTR_COMPRESSION_MASK || |
| 2026 | a->flags & ATTR_IS_ENCRYPTED || |
| 2027 | a->flags & ATTR_IS_SPARSE) { |
| 2028 | ntfs_error(sb, "$MFT must be uncompressed, " |
| 2029 | "non-sparse, and unencrypted but a " |
| 2030 | "compressed/sparse/encrypted extent " |
| 2031 | "was found. $MFT is corrupt. Run " |
| 2032 | "chkdsk."); |
| 2033 | goto put_err_out; |
| 2034 | } |
| 2035 | /* |
| 2036 | * Decompress the mapping pairs array of this extent and merge |
| 2037 | * the result into the existing runlist. No need for locking |
| 2038 | * as we have exclusive access to the inode at this time and we |
| 2039 | * are a mount in progress task, too. |
| 2040 | */ |
| 2041 | nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl); |
| 2042 | if (IS_ERR(nrl)) { |
| 2043 | ntfs_error(sb, "ntfs_mapping_pairs_decompress() " |
| 2044 | "failed with error code %ld. $MFT is " |
| 2045 | "corrupt.", PTR_ERR(nrl)); |
| 2046 | goto put_err_out; |
| 2047 | } |
| 2048 | ni->runlist.rl = nrl; |
| 2049 | |
| 2050 | /* Are we in the first extent? */ |
| 2051 | if (!next_vcn) { |
| 2052 | if (a->data.non_resident.lowest_vcn) { |
| 2053 | ntfs_error(sb, "First extent of $DATA " |
| 2054 | "attribute has non zero " |
| 2055 | "lowest_vcn. $MFT is corrupt. " |
| 2056 | "You should run chkdsk."); |
| 2057 | goto put_err_out; |
| 2058 | } |
| 2059 | /* Get the last vcn in the $DATA attribute. */ |
| 2060 | last_vcn = sle64_to_cpu( |
| 2061 | a->data.non_resident.allocated_size) |
| 2062 | >> vol->cluster_size_bits; |
| 2063 | /* Fill in the inode size. */ |
| 2064 | vi->i_size = sle64_to_cpu( |
| 2065 | a->data.non_resident.data_size); |
| 2066 | ni->initialized_size = sle64_to_cpu( |
| 2067 | a->data.non_resident.initialized_size); |
| 2068 | ni->allocated_size = sle64_to_cpu( |
| 2069 | a->data.non_resident.allocated_size); |
| 2070 | /* |
| 2071 | * Verify the number of mft records does not exceed |
| 2072 | * 2^32 - 1. |
| 2073 | */ |
| 2074 | if ((vi->i_size >> vol->mft_record_size_bits) >= |
| 2075 | (1ULL << 32)) { |
| 2076 | ntfs_error(sb, "$MFT is too big! Aborting."); |
| 2077 | goto put_err_out; |
| 2078 | } |
| 2079 | /* |
| 2080 | * We have got the first extent of the runlist for |
| 2081 | * $MFT which means it is now relatively safe to call |
| 2082 | * the normal ntfs_read_inode() function. |
| 2083 | * Complete reading the inode, this will actually |
| 2084 | * re-read the mft record for $MFT, this time entering |
| 2085 | * it into the page cache with which we complete the |
| 2086 | * kick start of the volume. It should be safe to do |
| 2087 | * this now as the first extent of $MFT/$DATA is |
| 2088 | * already known and we would hope that we don't need |
| 2089 | * further extents in order to find the other |
| 2090 | * attributes belonging to $MFT. Only time will tell if |
| 2091 | * this is really the case. If not we will have to play |
| 2092 | * magic at this point, possibly duplicating a lot of |
| 2093 | * ntfs_read_inode() at this point. We will need to |
| 2094 | * ensure we do enough of its work to be able to call |
| 2095 | * ntfs_read_inode() on extents of $MFT/$DATA. But lets |
| 2096 | * hope this never happens... |
| 2097 | */ |
| 2098 | ntfs_read_locked_inode(vi); |
| 2099 | if (is_bad_inode(vi)) { |
| 2100 | ntfs_error(sb, "ntfs_read_inode() of $MFT " |
| 2101 | "failed. BUG or corrupt $MFT. " |
| 2102 | "Run chkdsk and if no errors " |
| 2103 | "are found, please report you " |
| 2104 | "saw this message to " |
| 2105 | "linux-ntfs-dev@lists." |
| 2106 | "sourceforge.net"); |
| 2107 | ntfs_attr_put_search_ctx(ctx); |
| 2108 | /* Revert to the safe super operations. */ |
| 2109 | ntfs_free(m); |
| 2110 | return -1; |
| 2111 | } |
| 2112 | /* |
| 2113 | * Re-initialize some specifics about $MFT's inode as |
| 2114 | * ntfs_read_inode() will have set up the default ones. |
| 2115 | */ |
| 2116 | /* Set uid and gid to root. */ |
| 2117 | vi->i_uid = GLOBAL_ROOT_UID; |
| 2118 | vi->i_gid = GLOBAL_ROOT_GID; |
| 2119 | /* Regular file. No access for anyone. */ |
| 2120 | vi->i_mode = S_IFREG; |
| 2121 | /* No VFS initiated operations allowed for $MFT. */ |
| 2122 | vi->i_op = &ntfs_empty_inode_ops; |
| 2123 | vi->i_fop = &ntfs_empty_file_ops; |
| 2124 | } |
| 2125 | |
| 2126 | /* Get the lowest vcn for the next extent. */ |
| 2127 | highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); |
| 2128 | next_vcn = highest_vcn + 1; |
| 2129 | |
| 2130 | /* Only one extent or error, which we catch below. */ |
| 2131 | if (next_vcn <= 0) |
| 2132 | break; |
| 2133 | |
| 2134 | /* Avoid endless loops due to corruption. */ |
| 2135 | if (next_vcn < sle64_to_cpu( |
| 2136 | a->data.non_resident.lowest_vcn)) { |
| 2137 | ntfs_error(sb, "$MFT has corrupt attribute list " |
| 2138 | "attribute. Run chkdsk."); |
| 2139 | goto put_err_out; |
| 2140 | } |
| 2141 | } |
| 2142 | if (err != -ENOENT) { |
| 2143 | ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. " |
| 2144 | "$MFT is corrupt. Run chkdsk."); |
| 2145 | goto put_err_out; |
| 2146 | } |
| 2147 | if (!a) { |
| 2148 | ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is " |
| 2149 | "corrupt. Run chkdsk."); |
| 2150 | goto put_err_out; |
| 2151 | } |
| 2152 | if (highest_vcn && highest_vcn != last_vcn - 1) { |
| 2153 | ntfs_error(sb, "Failed to load the complete runlist for " |
| 2154 | "$MFT/$DATA. Driver bug or corrupt $MFT. " |
| 2155 | "Run chkdsk."); |
| 2156 | ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx", |
| 2157 | (unsigned long long)highest_vcn, |
| 2158 | (unsigned long long)last_vcn - 1); |
| 2159 | goto put_err_out; |
| 2160 | } |
| 2161 | ntfs_attr_put_search_ctx(ctx); |
| 2162 | ntfs_debug("Done."); |
| 2163 | ntfs_free(m); |
| 2164 | |
| 2165 | /* |
| 2166 | * Split the locking rules of the MFT inode from the |
| 2167 | * locking rules of other inodes: |
| 2168 | */ |
| 2169 | lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key); |
| 2170 | lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key); |
| 2171 | |
| 2172 | return 0; |
| 2173 | |
| 2174 | em_put_err_out: |
| 2175 | ntfs_error(sb, "Couldn't find first extent of $DATA attribute in " |
| 2176 | "attribute list. $MFT is corrupt. Run chkdsk."); |
| 2177 | put_err_out: |
| 2178 | ntfs_attr_put_search_ctx(ctx); |
| 2179 | err_out: |
| 2180 | ntfs_error(sb, "Failed. Marking inode as bad."); |
| 2181 | make_bad_inode(vi); |
| 2182 | ntfs_free(m); |
| 2183 | return -1; |
| 2184 | } |
| 2185 | |
| 2186 | static void __ntfs_clear_inode(ntfs_inode *ni) |
| 2187 | { |
| 2188 | /* Free all alocated memory. */ |
| 2189 | down_write(&ni->runlist.lock); |
| 2190 | if (ni->runlist.rl) { |
| 2191 | ntfs_free(ni->runlist.rl); |
| 2192 | ni->runlist.rl = NULL; |
| 2193 | } |
| 2194 | up_write(&ni->runlist.lock); |
| 2195 | |
| 2196 | if (ni->attr_list) { |
| 2197 | ntfs_free(ni->attr_list); |
| 2198 | ni->attr_list = NULL; |
| 2199 | } |
| 2200 | |
| 2201 | down_write(&ni->attr_list_rl.lock); |
| 2202 | if (ni->attr_list_rl.rl) { |
| 2203 | ntfs_free(ni->attr_list_rl.rl); |
| 2204 | ni->attr_list_rl.rl = NULL; |
| 2205 | } |
| 2206 | up_write(&ni->attr_list_rl.lock); |
| 2207 | |
| 2208 | if (ni->name_len && ni->name != I30) { |
| 2209 | /* Catch bugs... */ |
| 2210 | BUG_ON(!ni->name); |
| 2211 | kfree(ni->name); |
| 2212 | } |
| 2213 | } |
| 2214 | |
| 2215 | void ntfs_clear_extent_inode(ntfs_inode *ni) |
| 2216 | { |
| 2217 | ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); |
| 2218 | |
| 2219 | BUG_ON(NInoAttr(ni)); |
| 2220 | BUG_ON(ni->nr_extents != -1); |
| 2221 | |
| 2222 | #ifdef NTFS_RW |
| 2223 | if (NInoDirty(ni)) { |
| 2224 | if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino))) |
| 2225 | ntfs_error(ni->vol->sb, "Clearing dirty extent inode! " |
| 2226 | "Losing data! This is a BUG!!!"); |
| 2227 | // FIXME: Do something!!! |
| 2228 | } |
| 2229 | #endif /* NTFS_RW */ |
| 2230 | |
| 2231 | __ntfs_clear_inode(ni); |
| 2232 | |
| 2233 | /* Bye, bye... */ |
| 2234 | ntfs_destroy_extent_inode(ni); |
| 2235 | } |
| 2236 | |
| 2237 | /** |
| 2238 | * ntfs_evict_big_inode - clean up the ntfs specific part of an inode |
| 2239 | * @vi: vfs inode pending annihilation |
| 2240 | * |
| 2241 | * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode() |
| 2242 | * is called, which deallocates all memory belonging to the NTFS specific part |
| 2243 | * of the inode and returns. |
| 2244 | * |
| 2245 | * If the MFT record is dirty, we commit it before doing anything else. |
| 2246 | */ |
| 2247 | void ntfs_evict_big_inode(struct inode *vi) |
| 2248 | { |
| 2249 | ntfs_inode *ni = NTFS_I(vi); |
| 2250 | |
| 2251 | truncate_inode_pages_final(&vi->i_data); |
| 2252 | clear_inode(vi); |
| 2253 | |
| 2254 | #ifdef NTFS_RW |
| 2255 | if (NInoDirty(ni)) { |
| 2256 | bool was_bad = (is_bad_inode(vi)); |
| 2257 | |
| 2258 | /* Committing the inode also commits all extent inodes. */ |
| 2259 | ntfs_commit_inode(vi); |
| 2260 | |
| 2261 | if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) { |
| 2262 | ntfs_error(vi->i_sb, "Failed to commit dirty inode " |
| 2263 | "0x%lx. Losing data!", vi->i_ino); |
| 2264 | // FIXME: Do something!!! |
| 2265 | } |
| 2266 | } |
| 2267 | #endif /* NTFS_RW */ |
| 2268 | |
| 2269 | /* No need to lock at this stage as no one else has a reference. */ |
| 2270 | if (ni->nr_extents > 0) { |
| 2271 | int i; |
| 2272 | |
| 2273 | for (i = 0; i < ni->nr_extents; i++) |
| 2274 | ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]); |
| 2275 | kfree(ni->ext.extent_ntfs_inos); |
| 2276 | } |
| 2277 | |
| 2278 | __ntfs_clear_inode(ni); |
| 2279 | |
| 2280 | if (NInoAttr(ni)) { |
| 2281 | /* Release the base inode if we are holding it. */ |
| 2282 | if (ni->nr_extents == -1) { |
| 2283 | iput(VFS_I(ni->ext.base_ntfs_ino)); |
| 2284 | ni->nr_extents = 0; |
| 2285 | ni->ext.base_ntfs_ino = NULL; |
| 2286 | } |
| 2287 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2288 | BUG_ON(ni->page); |
| 2289 | if (!atomic_dec_and_test(&ni->count)) |
| 2290 | BUG(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2291 | return; |
| 2292 | } |
| 2293 | |
| 2294 | /** |
| 2295 | * ntfs_show_options - show mount options in /proc/mounts |
| 2296 | * @sf: seq_file in which to write our mount options |
| 2297 | * @root: root of the mounted tree whose mount options to display |
| 2298 | * |
| 2299 | * Called by the VFS once for each mounted ntfs volume when someone reads |
| 2300 | * /proc/mounts in order to display the NTFS specific mount options of each |
| 2301 | * mount. The mount options of fs specified by @root are written to the seq file |
| 2302 | * @sf and success is returned. |
| 2303 | */ |
| 2304 | int ntfs_show_options(struct seq_file *sf, struct dentry *root) |
| 2305 | { |
| 2306 | ntfs_volume *vol = NTFS_SB(root->d_sb); |
| 2307 | int i; |
| 2308 | |
| 2309 | seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid)); |
| 2310 | seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid)); |
| 2311 | if (vol->fmask == vol->dmask) |
| 2312 | seq_printf(sf, ",umask=0%o", vol->fmask); |
| 2313 | else { |
| 2314 | seq_printf(sf, ",fmask=0%o", vol->fmask); |
| 2315 | seq_printf(sf, ",dmask=0%o", vol->dmask); |
| 2316 | } |
| 2317 | seq_printf(sf, ",nls=%s", vol->nls_map->charset); |
| 2318 | if (NVolCaseSensitive(vol)) |
| 2319 | seq_printf(sf, ",case_sensitive"); |
| 2320 | if (NVolShowSystemFiles(vol)) |
| 2321 | seq_printf(sf, ",show_sys_files"); |
| 2322 | if (!NVolSparseEnabled(vol)) |
| 2323 | seq_printf(sf, ",disable_sparse"); |
| 2324 | for (i = 0; on_errors_arr[i].val; i++) { |
| 2325 | if (on_errors_arr[i].val & vol->on_errors) |
| 2326 | seq_printf(sf, ",errors=%s", on_errors_arr[i].str); |
| 2327 | } |
| 2328 | seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier); |
| 2329 | return 0; |
| 2330 | } |
| 2331 | |
| 2332 | #ifdef NTFS_RW |
| 2333 | |
| 2334 | static const char *es = " Leaving inconsistent metadata. Unmount and run " |
| 2335 | "chkdsk."; |
| 2336 | |
| 2337 | /** |
| 2338 | * ntfs_truncate - called when the i_size of an ntfs inode is changed |
| 2339 | * @vi: inode for which the i_size was changed |
| 2340 | * |
| 2341 | * We only support i_size changes for normal files at present, i.e. not |
| 2342 | * compressed and not encrypted. This is enforced in ntfs_setattr(), see |
| 2343 | * below. |
| 2344 | * |
| 2345 | * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and |
| 2346 | * that the change is allowed. |
| 2347 | * |
| 2348 | * This implies for us that @vi is a file inode rather than a directory, index, |
| 2349 | * or attribute inode as well as that @vi is a base inode. |
| 2350 | * |
| 2351 | * Returns 0 on success or -errno on error. |
| 2352 | * |
| 2353 | * Called with ->i_mutex held. |
| 2354 | */ |
| 2355 | int ntfs_truncate(struct inode *vi) |
| 2356 | { |
| 2357 | s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size; |
| 2358 | VCN highest_vcn; |
| 2359 | unsigned long flags; |
| 2360 | ntfs_inode *base_ni, *ni = NTFS_I(vi); |
| 2361 | ntfs_volume *vol = ni->vol; |
| 2362 | ntfs_attr_search_ctx *ctx; |
| 2363 | MFT_RECORD *m; |
| 2364 | ATTR_RECORD *a; |
| 2365 | const char *te = " Leaving file length out of sync with i_size."; |
| 2366 | int err, mp_size, size_change, alloc_change; |
| 2367 | u32 attr_len; |
| 2368 | |
| 2369 | ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); |
| 2370 | BUG_ON(NInoAttr(ni)); |
| 2371 | BUG_ON(S_ISDIR(vi->i_mode)); |
| 2372 | BUG_ON(NInoMstProtected(ni)); |
| 2373 | BUG_ON(ni->nr_extents < 0); |
| 2374 | retry_truncate: |
| 2375 | /* |
| 2376 | * Lock the runlist for writing and map the mft record to ensure it is |
| 2377 | * safe to mess with the attribute runlist and sizes. |
| 2378 | */ |
| 2379 | down_write(&ni->runlist.lock); |
| 2380 | if (!NInoAttr(ni)) |
| 2381 | base_ni = ni; |
| 2382 | else |
| 2383 | base_ni = ni->ext.base_ntfs_ino; |
| 2384 | m = map_mft_record(base_ni); |
| 2385 | if (IS_ERR(m)) { |
| 2386 | err = PTR_ERR(m); |
| 2387 | ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx " |
| 2388 | "(error code %d).%s", vi->i_ino, err, te); |
| 2389 | ctx = NULL; |
| 2390 | m = NULL; |
| 2391 | goto old_bad_out; |
| 2392 | } |
| 2393 | ctx = ntfs_attr_get_search_ctx(base_ni, m); |
| 2394 | if (unlikely(!ctx)) { |
| 2395 | ntfs_error(vi->i_sb, "Failed to allocate a search context for " |
| 2396 | "inode 0x%lx (not enough memory).%s", |
| 2397 | vi->i_ino, te); |
| 2398 | err = -ENOMEM; |
| 2399 | goto old_bad_out; |
| 2400 | } |
| 2401 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, |
| 2402 | CASE_SENSITIVE, 0, NULL, 0, ctx); |
| 2403 | if (unlikely(err)) { |
| 2404 | if (err == -ENOENT) { |
| 2405 | ntfs_error(vi->i_sb, "Open attribute is missing from " |
| 2406 | "mft record. Inode 0x%lx is corrupt. " |
| 2407 | "Run chkdsk.%s", vi->i_ino, te); |
| 2408 | err = -EIO; |
| 2409 | } else |
| 2410 | ntfs_error(vi->i_sb, "Failed to lookup attribute in " |
| 2411 | "inode 0x%lx (error code %d).%s", |
| 2412 | vi->i_ino, err, te); |
| 2413 | goto old_bad_out; |
| 2414 | } |
| 2415 | m = ctx->mrec; |
| 2416 | a = ctx->attr; |
| 2417 | /* |
| 2418 | * The i_size of the vfs inode is the new size for the attribute value. |
| 2419 | */ |
| 2420 | new_size = i_size_read(vi); |
| 2421 | /* The current size of the attribute value is the old size. */ |
| 2422 | old_size = ntfs_attr_size(a); |
| 2423 | /* Calculate the new allocated size. */ |
| 2424 | if (NInoNonResident(ni)) |
| 2425 | new_alloc_size = (new_size + vol->cluster_size - 1) & |
| 2426 | ~(s64)vol->cluster_size_mask; |
| 2427 | else |
| 2428 | new_alloc_size = (new_size + 7) & ~7; |
| 2429 | /* The current allocated size is the old allocated size. */ |
| 2430 | read_lock_irqsave(&ni->size_lock, flags); |
| 2431 | old_alloc_size = ni->allocated_size; |
| 2432 | read_unlock_irqrestore(&ni->size_lock, flags); |
| 2433 | /* |
| 2434 | * The change in the file size. This will be 0 if no change, >0 if the |
| 2435 | * size is growing, and <0 if the size is shrinking. |
| 2436 | */ |
| 2437 | size_change = -1; |
| 2438 | if (new_size - old_size >= 0) { |
| 2439 | size_change = 1; |
| 2440 | if (new_size == old_size) |
| 2441 | size_change = 0; |
| 2442 | } |
| 2443 | /* As above for the allocated size. */ |
| 2444 | alloc_change = -1; |
| 2445 | if (new_alloc_size - old_alloc_size >= 0) { |
| 2446 | alloc_change = 1; |
| 2447 | if (new_alloc_size == old_alloc_size) |
| 2448 | alloc_change = 0; |
| 2449 | } |
| 2450 | /* |
| 2451 | * If neither the size nor the allocation are being changed there is |
| 2452 | * nothing to do. |
| 2453 | */ |
| 2454 | if (!size_change && !alloc_change) |
| 2455 | goto unm_done; |
| 2456 | /* If the size is changing, check if new size is allowed in $AttrDef. */ |
| 2457 | if (size_change) { |
| 2458 | err = ntfs_attr_size_bounds_check(vol, ni->type, new_size); |
| 2459 | if (unlikely(err)) { |
| 2460 | if (err == -ERANGE) { |
| 2461 | ntfs_error(vol->sb, "Truncate would cause the " |
| 2462 | "inode 0x%lx to %simum size " |
| 2463 | "for its attribute type " |
| 2464 | "(0x%x). Aborting truncate.", |
| 2465 | vi->i_ino, |
| 2466 | new_size > old_size ? "exceed " |
| 2467 | "the max" : "go under the min", |
| 2468 | le32_to_cpu(ni->type)); |
| 2469 | err = -EFBIG; |
| 2470 | } else { |
| 2471 | ntfs_error(vol->sb, "Inode 0x%lx has unknown " |
| 2472 | "attribute type 0x%x. " |
| 2473 | "Aborting truncate.", |
| 2474 | vi->i_ino, |
| 2475 | le32_to_cpu(ni->type)); |
| 2476 | err = -EIO; |
| 2477 | } |
| 2478 | /* Reset the vfs inode size to the old size. */ |
| 2479 | i_size_write(vi, old_size); |
| 2480 | goto err_out; |
| 2481 | } |
| 2482 | } |
| 2483 | if (NInoCompressed(ni) || NInoEncrypted(ni)) { |
| 2484 | ntfs_warning(vi->i_sb, "Changes in inode size are not " |
| 2485 | "supported yet for %s files, ignoring.", |
| 2486 | NInoCompressed(ni) ? "compressed" : |
| 2487 | "encrypted"); |
| 2488 | err = -EOPNOTSUPP; |
| 2489 | goto bad_out; |
| 2490 | } |
| 2491 | if (a->non_resident) |
| 2492 | goto do_non_resident_truncate; |
| 2493 | BUG_ON(NInoNonResident(ni)); |
| 2494 | /* Resize the attribute record to best fit the new attribute size. */ |
| 2495 | if (new_size < vol->mft_record_size && |
| 2496 | !ntfs_resident_attr_value_resize(m, a, new_size)) { |
| 2497 | /* The resize succeeded! */ |
| 2498 | flush_dcache_mft_record_page(ctx->ntfs_ino); |
| 2499 | mark_mft_record_dirty(ctx->ntfs_ino); |
| 2500 | write_lock_irqsave(&ni->size_lock, flags); |
| 2501 | /* Update the sizes in the ntfs inode and all is done. */ |
| 2502 | ni->allocated_size = le32_to_cpu(a->length) - |
| 2503 | le16_to_cpu(a->data.resident.value_offset); |
| 2504 | /* |
| 2505 | * Note ntfs_resident_attr_value_resize() has already done any |
| 2506 | * necessary data clearing in the attribute record. When the |
| 2507 | * file is being shrunk vmtruncate() will already have cleared |
| 2508 | * the top part of the last partial page, i.e. since this is |
| 2509 | * the resident case this is the page with index 0. However, |
| 2510 | * when the file is being expanded, the page cache page data |
| 2511 | * between the old data_size, i.e. old_size, and the new_size |
| 2512 | * has not been zeroed. Fortunately, we do not need to zero it |
| 2513 | * either since on one hand it will either already be zero due |
| 2514 | * to both readpage and writepage clearing partial page data |
| 2515 | * beyond i_size in which case there is nothing to do or in the |
| 2516 | * case of the file being mmap()ped at the same time, POSIX |
| 2517 | * specifies that the behaviour is unspecified thus we do not |
| 2518 | * have to do anything. This means that in our implementation |
| 2519 | * in the rare case that the file is mmap()ped and a write |
| 2520 | * occurred into the mmap()ped region just beyond the file size |
| 2521 | * and writepage has not yet been called to write out the page |
| 2522 | * (which would clear the area beyond the file size) and we now |
| 2523 | * extend the file size to incorporate this dirty region |
| 2524 | * outside the file size, a write of the page would result in |
| 2525 | * this data being written to disk instead of being cleared. |
| 2526 | * Given both POSIX and the Linux mmap(2) man page specify that |
| 2527 | * this corner case is undefined, we choose to leave it like |
| 2528 | * that as this is much simpler for us as we cannot lock the |
| 2529 | * relevant page now since we are holding too many ntfs locks |
| 2530 | * which would result in a lock reversal deadlock. |
| 2531 | */ |
| 2532 | ni->initialized_size = new_size; |
| 2533 | write_unlock_irqrestore(&ni->size_lock, flags); |
| 2534 | goto unm_done; |
| 2535 | } |
| 2536 | /* If the above resize failed, this must be an attribute extension. */ |
| 2537 | BUG_ON(size_change < 0); |
| 2538 | /* |
| 2539 | * We have to drop all the locks so we can call |
| 2540 | * ntfs_attr_make_non_resident(). This could be optimised by try- |
| 2541 | * locking the first page cache page and only if that fails dropping |
| 2542 | * the locks, locking the page, and redoing all the locking and |
| 2543 | * lookups. While this would be a huge optimisation, it is not worth |
| 2544 | * it as this is definitely a slow code path as it only ever can happen |
| 2545 | * once for any given file. |
| 2546 | */ |
| 2547 | ntfs_attr_put_search_ctx(ctx); |
| 2548 | unmap_mft_record(base_ni); |
| 2549 | up_write(&ni->runlist.lock); |
| 2550 | /* |
| 2551 | * Not enough space in the mft record, try to make the attribute |
| 2552 | * non-resident and if successful restart the truncation process. |
| 2553 | */ |
| 2554 | err = ntfs_attr_make_non_resident(ni, old_size); |
| 2555 | if (likely(!err)) |
| 2556 | goto retry_truncate; |
| 2557 | /* |
| 2558 | * Could not make non-resident. If this is due to this not being |
| 2559 | * permitted for this attribute type or there not being enough space, |
| 2560 | * try to make other attributes non-resident. Otherwise fail. |
| 2561 | */ |
| 2562 | if (unlikely(err != -EPERM && err != -ENOSPC)) { |
| 2563 | ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute " |
| 2564 | "type 0x%x, because the conversion from " |
| 2565 | "resident to non-resident attribute failed " |
| 2566 | "with error code %i.", vi->i_ino, |
| 2567 | (unsigned)le32_to_cpu(ni->type), err); |
| 2568 | if (err != -ENOMEM) |
| 2569 | err = -EIO; |
| 2570 | goto conv_err_out; |
| 2571 | } |
| 2572 | /* TODO: Not implemented from here, abort. */ |
| 2573 | if (err == -ENOSPC) |
| 2574 | ntfs_error(vol->sb, "Not enough space in the mft record/on " |
| 2575 | "disk for the non-resident attribute value. " |
| 2576 | "This case is not implemented yet."); |
| 2577 | else /* if (err == -EPERM) */ |
| 2578 | ntfs_error(vol->sb, "This attribute type may not be " |
| 2579 | "non-resident. This case is not implemented " |
| 2580 | "yet."); |
| 2581 | err = -EOPNOTSUPP; |
| 2582 | goto conv_err_out; |
| 2583 | #if 0 |
| 2584 | // TODO: Attempt to make other attributes non-resident. |
| 2585 | if (!err) |
| 2586 | goto do_resident_extend; |
| 2587 | /* |
| 2588 | * Both the attribute list attribute and the standard information |
| 2589 | * attribute must remain in the base inode. Thus, if this is one of |
| 2590 | * these attributes, we have to try to move other attributes out into |
| 2591 | * extent mft records instead. |
| 2592 | */ |
| 2593 | if (ni->type == AT_ATTRIBUTE_LIST || |
| 2594 | ni->type == AT_STANDARD_INFORMATION) { |
| 2595 | // TODO: Attempt to move other attributes into extent mft |
| 2596 | // records. |
| 2597 | err = -EOPNOTSUPP; |
| 2598 | if (!err) |
| 2599 | goto do_resident_extend; |
| 2600 | goto err_out; |
| 2601 | } |
| 2602 | // TODO: Attempt to move this attribute to an extent mft record, but |
| 2603 | // only if it is not already the only attribute in an mft record in |
| 2604 | // which case there would be nothing to gain. |
| 2605 | err = -EOPNOTSUPP; |
| 2606 | if (!err) |
| 2607 | goto do_resident_extend; |
| 2608 | /* There is nothing we can do to make enough space. )-: */ |
| 2609 | goto err_out; |
| 2610 | #endif |
| 2611 | do_non_resident_truncate: |
| 2612 | BUG_ON(!NInoNonResident(ni)); |
| 2613 | if (alloc_change < 0) { |
| 2614 | highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); |
| 2615 | if (highest_vcn > 0 && |
| 2616 | old_alloc_size >> vol->cluster_size_bits > |
| 2617 | highest_vcn + 1) { |
| 2618 | /* |
| 2619 | * This attribute has multiple extents. Not yet |
| 2620 | * supported. |
| 2621 | */ |
| 2622 | ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, " |
| 2623 | "attribute type 0x%x, because the " |
| 2624 | "attribute is highly fragmented (it " |
| 2625 | "consists of multiple extents) and " |
| 2626 | "this case is not implemented yet.", |
| 2627 | vi->i_ino, |
| 2628 | (unsigned)le32_to_cpu(ni->type)); |
| 2629 | err = -EOPNOTSUPP; |
| 2630 | goto bad_out; |
| 2631 | } |
| 2632 | } |
| 2633 | /* |
| 2634 | * If the size is shrinking, need to reduce the initialized_size and |
| 2635 | * the data_size before reducing the allocation. |
| 2636 | */ |
| 2637 | if (size_change < 0) { |
| 2638 | /* |
| 2639 | * Make the valid size smaller (i_size is already up-to-date). |
| 2640 | */ |
| 2641 | write_lock_irqsave(&ni->size_lock, flags); |
| 2642 | if (new_size < ni->initialized_size) { |
| 2643 | ni->initialized_size = new_size; |
| 2644 | a->data.non_resident.initialized_size = |
| 2645 | cpu_to_sle64(new_size); |
| 2646 | } |
| 2647 | a->data.non_resident.data_size = cpu_to_sle64(new_size); |
| 2648 | write_unlock_irqrestore(&ni->size_lock, flags); |
| 2649 | flush_dcache_mft_record_page(ctx->ntfs_ino); |
| 2650 | mark_mft_record_dirty(ctx->ntfs_ino); |
| 2651 | /* If the allocated size is not changing, we are done. */ |
| 2652 | if (!alloc_change) |
| 2653 | goto unm_done; |
| 2654 | /* |
| 2655 | * If the size is shrinking it makes no sense for the |
| 2656 | * allocation to be growing. |
| 2657 | */ |
| 2658 | BUG_ON(alloc_change > 0); |
| 2659 | } else /* if (size_change >= 0) */ { |
| 2660 | /* |
| 2661 | * The file size is growing or staying the same but the |
| 2662 | * allocation can be shrinking, growing or staying the same. |
| 2663 | */ |
| 2664 | if (alloc_change > 0) { |
| 2665 | /* |
| 2666 | * We need to extend the allocation and possibly update |
| 2667 | * the data size. If we are updating the data size, |
| 2668 | * since we are not touching the initialized_size we do |
| 2669 | * not need to worry about the actual data on disk. |
| 2670 | * And as far as the page cache is concerned, there |
| 2671 | * will be no pages beyond the old data size and any |
| 2672 | * partial region in the last page between the old and |
| 2673 | * new data size (or the end of the page if the new |
| 2674 | * data size is outside the page) does not need to be |
| 2675 | * modified as explained above for the resident |
| 2676 | * attribute truncate case. To do this, we simply drop |
| 2677 | * the locks we hold and leave all the work to our |
| 2678 | * friendly helper ntfs_attr_extend_allocation(). |
| 2679 | */ |
| 2680 | ntfs_attr_put_search_ctx(ctx); |
| 2681 | unmap_mft_record(base_ni); |
| 2682 | up_write(&ni->runlist.lock); |
| 2683 | err = ntfs_attr_extend_allocation(ni, new_size, |
| 2684 | size_change > 0 ? new_size : -1, -1); |
| 2685 | /* |
| 2686 | * ntfs_attr_extend_allocation() will have done error |
| 2687 | * output already. |
| 2688 | */ |
| 2689 | goto done; |
| 2690 | } |
| 2691 | if (!alloc_change) |
| 2692 | goto alloc_done; |
| 2693 | } |
| 2694 | /* alloc_change < 0 */ |
| 2695 | /* Free the clusters. */ |
| 2696 | nr_freed = ntfs_cluster_free(ni, new_alloc_size >> |
| 2697 | vol->cluster_size_bits, -1, ctx); |
| 2698 | m = ctx->mrec; |
| 2699 | a = ctx->attr; |
| 2700 | if (unlikely(nr_freed < 0)) { |
| 2701 | ntfs_error(vol->sb, "Failed to release cluster(s) (error code " |
| 2702 | "%lli). Unmount and run chkdsk to recover " |
| 2703 | "the lost cluster(s).", (long long)nr_freed); |
| 2704 | NVolSetErrors(vol); |
| 2705 | nr_freed = 0; |
| 2706 | } |
| 2707 | /* Truncate the runlist. */ |
| 2708 | err = ntfs_rl_truncate_nolock(vol, &ni->runlist, |
| 2709 | new_alloc_size >> vol->cluster_size_bits); |
| 2710 | /* |
| 2711 | * If the runlist truncation failed and/or the search context is no |
| 2712 | * longer valid, we cannot resize the attribute record or build the |
| 2713 | * mapping pairs array thus we mark the inode bad so that no access to |
| 2714 | * the freed clusters can happen. |
| 2715 | */ |
| 2716 | if (unlikely(err || IS_ERR(m))) { |
| 2717 | ntfs_error(vol->sb, "Failed to %s (error code %li).%s", |
| 2718 | IS_ERR(m) ? |
| 2719 | "restore attribute search context" : |
| 2720 | "truncate attribute runlist", |
| 2721 | IS_ERR(m) ? PTR_ERR(m) : err, es); |
| 2722 | err = -EIO; |
| 2723 | goto bad_out; |
| 2724 | } |
| 2725 | /* Get the size for the shrunk mapping pairs array for the runlist. */ |
| 2726 | mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1); |
| 2727 | if (unlikely(mp_size <= 0)) { |
| 2728 | ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " |
| 2729 | "attribute type 0x%x, because determining the " |
| 2730 | "size for the mapping pairs failed with error " |
| 2731 | "code %i.%s", vi->i_ino, |
| 2732 | (unsigned)le32_to_cpu(ni->type), mp_size, es); |
| 2733 | err = -EIO; |
| 2734 | goto bad_out; |
| 2735 | } |
| 2736 | /* |
| 2737 | * Shrink the attribute record for the new mapping pairs array. Note, |
| 2738 | * this cannot fail since we are making the attribute smaller thus by |
| 2739 | * definition there is enough space to do so. |
| 2740 | */ |
| 2741 | attr_len = le32_to_cpu(a->length); |
| 2742 | err = ntfs_attr_record_resize(m, a, mp_size + |
| 2743 | le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); |
| 2744 | BUG_ON(err); |
| 2745 | /* |
| 2746 | * Generate the mapping pairs array directly into the attribute record. |
| 2747 | */ |
| 2748 | err = ntfs_mapping_pairs_build(vol, (u8*)a + |
| 2749 | le16_to_cpu(a->data.non_resident.mapping_pairs_offset), |
| 2750 | mp_size, ni->runlist.rl, 0, -1, NULL); |
| 2751 | if (unlikely(err)) { |
| 2752 | ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " |
| 2753 | "attribute type 0x%x, because building the " |
| 2754 | "mapping pairs failed with error code %i.%s", |
| 2755 | vi->i_ino, (unsigned)le32_to_cpu(ni->type), |
| 2756 | err, es); |
| 2757 | err = -EIO; |
| 2758 | goto bad_out; |
| 2759 | } |
| 2760 | /* Update the allocated/compressed size as well as the highest vcn. */ |
| 2761 | a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >> |
| 2762 | vol->cluster_size_bits) - 1); |
| 2763 | write_lock_irqsave(&ni->size_lock, flags); |
| 2764 | ni->allocated_size = new_alloc_size; |
| 2765 | a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size); |
| 2766 | if (NInoSparse(ni) || NInoCompressed(ni)) { |
| 2767 | if (nr_freed) { |
| 2768 | ni->itype.compressed.size -= nr_freed << |
| 2769 | vol->cluster_size_bits; |
| 2770 | BUG_ON(ni->itype.compressed.size < 0); |
| 2771 | a->data.non_resident.compressed_size = cpu_to_sle64( |
| 2772 | ni->itype.compressed.size); |
| 2773 | vi->i_blocks = ni->itype.compressed.size >> 9; |
| 2774 | } |
| 2775 | } else |
| 2776 | vi->i_blocks = new_alloc_size >> 9; |
| 2777 | write_unlock_irqrestore(&ni->size_lock, flags); |
| 2778 | /* |
| 2779 | * We have shrunk the allocation. If this is a shrinking truncate we |
| 2780 | * have already dealt with the initialized_size and the data_size above |
| 2781 | * and we are done. If the truncate is only changing the allocation |
| 2782 | * and not the data_size, we are also done. If this is an extending |
| 2783 | * truncate, need to extend the data_size now which is ensured by the |
| 2784 | * fact that @size_change is positive. |
| 2785 | */ |
| 2786 | alloc_done: |
| 2787 | /* |
| 2788 | * If the size is growing, need to update it now. If it is shrinking, |
| 2789 | * we have already updated it above (before the allocation change). |
| 2790 | */ |
| 2791 | if (size_change > 0) |
| 2792 | a->data.non_resident.data_size = cpu_to_sle64(new_size); |
| 2793 | /* Ensure the modified mft record is written out. */ |
| 2794 | flush_dcache_mft_record_page(ctx->ntfs_ino); |
| 2795 | mark_mft_record_dirty(ctx->ntfs_ino); |
| 2796 | unm_done: |
| 2797 | ntfs_attr_put_search_ctx(ctx); |
| 2798 | unmap_mft_record(base_ni); |
| 2799 | up_write(&ni->runlist.lock); |
| 2800 | done: |
| 2801 | /* Update the mtime and ctime on the base inode. */ |
| 2802 | /* normally ->truncate shouldn't update ctime or mtime, |
| 2803 | * but ntfs did before so it got a copy & paste version |
| 2804 | * of file_update_time. one day someone should fix this |
| 2805 | * for real. |
| 2806 | */ |
| 2807 | if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) { |
| 2808 | struct timespec64 now = current_time(VFS_I(base_ni)); |
| 2809 | int sync_it = 0; |
| 2810 | |
| 2811 | if (!timespec64_equal(&VFS_I(base_ni)->i_mtime, &now) || |
| 2812 | !timespec64_equal(&VFS_I(base_ni)->i_ctime, &now)) |
| 2813 | sync_it = 1; |
| 2814 | VFS_I(base_ni)->i_mtime = now; |
| 2815 | VFS_I(base_ni)->i_ctime = now; |
| 2816 | |
| 2817 | if (sync_it) |
| 2818 | mark_inode_dirty_sync(VFS_I(base_ni)); |
| 2819 | } |
| 2820 | |
| 2821 | if (likely(!err)) { |
| 2822 | NInoClearTruncateFailed(ni); |
| 2823 | ntfs_debug("Done."); |
| 2824 | } |
| 2825 | return err; |
| 2826 | old_bad_out: |
| 2827 | old_size = -1; |
| 2828 | bad_out: |
| 2829 | if (err != -ENOMEM && err != -EOPNOTSUPP) |
| 2830 | NVolSetErrors(vol); |
| 2831 | if (err != -EOPNOTSUPP) |
| 2832 | NInoSetTruncateFailed(ni); |
| 2833 | else if (old_size >= 0) |
| 2834 | i_size_write(vi, old_size); |
| 2835 | err_out: |
| 2836 | if (ctx) |
| 2837 | ntfs_attr_put_search_ctx(ctx); |
| 2838 | if (m) |
| 2839 | unmap_mft_record(base_ni); |
| 2840 | up_write(&ni->runlist.lock); |
| 2841 | out: |
| 2842 | ntfs_debug("Failed. Returning error code %i.", err); |
| 2843 | return err; |
| 2844 | conv_err_out: |
| 2845 | if (err != -ENOMEM && err != -EOPNOTSUPP) |
| 2846 | NVolSetErrors(vol); |
| 2847 | if (err != -EOPNOTSUPP) |
| 2848 | NInoSetTruncateFailed(ni); |
| 2849 | else |
| 2850 | i_size_write(vi, old_size); |
| 2851 | goto out; |
| 2852 | } |
| 2853 | |
| 2854 | /** |
| 2855 | * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value |
| 2856 | * @vi: inode for which the i_size was changed |
| 2857 | * |
| 2858 | * Wrapper for ntfs_truncate() that has no return value. |
| 2859 | * |
| 2860 | * See ntfs_truncate() description above for details. |
| 2861 | */ |
| 2862 | #ifdef NTFS_RW |
| 2863 | void ntfs_truncate_vfs(struct inode *vi) { |
| 2864 | ntfs_truncate(vi); |
| 2865 | } |
| 2866 | #endif |
| 2867 | |
| 2868 | /** |
| 2869 | * ntfs_setattr - called from notify_change() when an attribute is being changed |
| 2870 | * @dentry: dentry whose attributes to change |
| 2871 | * @attr: structure describing the attributes and the changes |
| 2872 | * |
| 2873 | * We have to trap VFS attempts to truncate the file described by @dentry as |
| 2874 | * soon as possible, because we do not implement changes in i_size yet. So we |
| 2875 | * abort all i_size changes here. |
| 2876 | * |
| 2877 | * We also abort all changes of user, group, and mode as we do not implement |
| 2878 | * the NTFS ACLs yet. |
| 2879 | * |
| 2880 | * Called with ->i_mutex held. |
| 2881 | */ |
| 2882 | int ntfs_setattr(struct dentry *dentry, struct iattr *attr) |
| 2883 | { |
| 2884 | struct inode *vi = d_inode(dentry); |
| 2885 | int err; |
| 2886 | unsigned int ia_valid = attr->ia_valid; |
| 2887 | |
| 2888 | err = setattr_prepare(dentry, attr); |
| 2889 | if (err) |
| 2890 | goto out; |
| 2891 | /* We do not support NTFS ACLs yet. */ |
| 2892 | if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) { |
| 2893 | ntfs_warning(vi->i_sb, "Changes in user/group/mode are not " |
| 2894 | "supported yet, ignoring."); |
| 2895 | err = -EOPNOTSUPP; |
| 2896 | goto out; |
| 2897 | } |
| 2898 | if (ia_valid & ATTR_SIZE) { |
| 2899 | if (attr->ia_size != i_size_read(vi)) { |
| 2900 | ntfs_inode *ni = NTFS_I(vi); |
| 2901 | /* |
| 2902 | * FIXME: For now we do not support resizing of |
| 2903 | * compressed or encrypted files yet. |
| 2904 | */ |
| 2905 | if (NInoCompressed(ni) || NInoEncrypted(ni)) { |
| 2906 | ntfs_warning(vi->i_sb, "Changes in inode size " |
| 2907 | "are not supported yet for " |
| 2908 | "%s files, ignoring.", |
| 2909 | NInoCompressed(ni) ? |
| 2910 | "compressed" : "encrypted"); |
| 2911 | err = -EOPNOTSUPP; |
| 2912 | } else { |
| 2913 | truncate_setsize(vi, attr->ia_size); |
| 2914 | ntfs_truncate_vfs(vi); |
| 2915 | } |
| 2916 | if (err || ia_valid == ATTR_SIZE) |
| 2917 | goto out; |
| 2918 | } else { |
| 2919 | /* |
| 2920 | * We skipped the truncate but must still update |
| 2921 | * timestamps. |
| 2922 | */ |
| 2923 | ia_valid |= ATTR_MTIME | ATTR_CTIME; |
| 2924 | } |
| 2925 | } |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 2926 | if (ia_valid & ATTR_ATIME) |
| 2927 | vi->i_atime = attr->ia_atime; |
| 2928 | if (ia_valid & ATTR_MTIME) |
| 2929 | vi->i_mtime = attr->ia_mtime; |
| 2930 | if (ia_valid & ATTR_CTIME) |
| 2931 | vi->i_ctime = attr->ia_ctime; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2932 | mark_inode_dirty(vi); |
| 2933 | out: |
| 2934 | return err; |
| 2935 | } |
| 2936 | |
| 2937 | /** |
| 2938 | * ntfs_write_inode - write out a dirty inode |
| 2939 | * @vi: inode to write out |
| 2940 | * @sync: if true, write out synchronously |
| 2941 | * |
| 2942 | * Write out a dirty inode to disk including any extent inodes if present. |
| 2943 | * |
| 2944 | * If @sync is true, commit the inode to disk and wait for io completion. This |
| 2945 | * is done using write_mft_record(). |
| 2946 | * |
| 2947 | * If @sync is false, just schedule the write to happen but do not wait for i/o |
| 2948 | * completion. In 2.6 kernels, scheduling usually happens just by virtue of |
| 2949 | * marking the page (and in this case mft record) dirty but we do not implement |
| 2950 | * this yet as write_mft_record() largely ignores the @sync parameter and |
| 2951 | * always performs synchronous writes. |
| 2952 | * |
| 2953 | * Return 0 on success and -errno on error. |
| 2954 | */ |
| 2955 | int __ntfs_write_inode(struct inode *vi, int sync) |
| 2956 | { |
| 2957 | sle64 nt; |
| 2958 | ntfs_inode *ni = NTFS_I(vi); |
| 2959 | ntfs_attr_search_ctx *ctx; |
| 2960 | MFT_RECORD *m; |
| 2961 | STANDARD_INFORMATION *si; |
| 2962 | int err = 0; |
| 2963 | bool modified = false; |
| 2964 | |
| 2965 | ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "", |
| 2966 | vi->i_ino); |
| 2967 | /* |
| 2968 | * Dirty attribute inodes are written via their real inodes so just |
| 2969 | * clean them here. Access time updates are taken care off when the |
| 2970 | * real inode is written. |
| 2971 | */ |
| 2972 | if (NInoAttr(ni)) { |
| 2973 | NInoClearDirty(ni); |
| 2974 | ntfs_debug("Done."); |
| 2975 | return 0; |
| 2976 | } |
| 2977 | /* Map, pin, and lock the mft record belonging to the inode. */ |
| 2978 | m = map_mft_record(ni); |
| 2979 | if (IS_ERR(m)) { |
| 2980 | err = PTR_ERR(m); |
| 2981 | goto err_out; |
| 2982 | } |
| 2983 | /* Update the access times in the standard information attribute. */ |
| 2984 | ctx = ntfs_attr_get_search_ctx(ni, m); |
| 2985 | if (unlikely(!ctx)) { |
| 2986 | err = -ENOMEM; |
| 2987 | goto unm_err_out; |
| 2988 | } |
| 2989 | err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, |
| 2990 | CASE_SENSITIVE, 0, NULL, 0, ctx); |
| 2991 | if (unlikely(err)) { |
| 2992 | ntfs_attr_put_search_ctx(ctx); |
| 2993 | goto unm_err_out; |
| 2994 | } |
| 2995 | si = (STANDARD_INFORMATION*)((u8*)ctx->attr + |
| 2996 | le16_to_cpu(ctx->attr->data.resident.value_offset)); |
| 2997 | /* Update the access times if they have changed. */ |
| 2998 | nt = utc2ntfs(vi->i_mtime); |
| 2999 | if (si->last_data_change_time != nt) { |
| 3000 | ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, " |
| 3001 | "new = 0x%llx", vi->i_ino, (long long) |
| 3002 | sle64_to_cpu(si->last_data_change_time), |
| 3003 | (long long)sle64_to_cpu(nt)); |
| 3004 | si->last_data_change_time = nt; |
| 3005 | modified = true; |
| 3006 | } |
| 3007 | nt = utc2ntfs(vi->i_ctime); |
| 3008 | if (si->last_mft_change_time != nt) { |
| 3009 | ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, " |
| 3010 | "new = 0x%llx", vi->i_ino, (long long) |
| 3011 | sle64_to_cpu(si->last_mft_change_time), |
| 3012 | (long long)sle64_to_cpu(nt)); |
| 3013 | si->last_mft_change_time = nt; |
| 3014 | modified = true; |
| 3015 | } |
| 3016 | nt = utc2ntfs(vi->i_atime); |
| 3017 | if (si->last_access_time != nt) { |
| 3018 | ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, " |
| 3019 | "new = 0x%llx", vi->i_ino, |
| 3020 | (long long)sle64_to_cpu(si->last_access_time), |
| 3021 | (long long)sle64_to_cpu(nt)); |
| 3022 | si->last_access_time = nt; |
| 3023 | modified = true; |
| 3024 | } |
| 3025 | /* |
| 3026 | * If we just modified the standard information attribute we need to |
| 3027 | * mark the mft record it is in dirty. We do this manually so that |
| 3028 | * mark_inode_dirty() is not called which would redirty the inode and |
| 3029 | * hence result in an infinite loop of trying to write the inode. |
| 3030 | * There is no need to mark the base inode nor the base mft record |
| 3031 | * dirty, since we are going to write this mft record below in any case |
| 3032 | * and the base mft record may actually not have been modified so it |
| 3033 | * might not need to be written out. |
| 3034 | * NOTE: It is not a problem when the inode for $MFT itself is being |
| 3035 | * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES |
| 3036 | * on the $MFT inode and hence ntfs_write_inode() will not be |
| 3037 | * re-invoked because of it which in turn is ok since the dirtied mft |
| 3038 | * record will be cleaned and written out to disk below, i.e. before |
| 3039 | * this function returns. |
| 3040 | */ |
| 3041 | if (modified) { |
| 3042 | flush_dcache_mft_record_page(ctx->ntfs_ino); |
| 3043 | if (!NInoTestSetDirty(ctx->ntfs_ino)) |
| 3044 | mark_ntfs_record_dirty(ctx->ntfs_ino->page, |
| 3045 | ctx->ntfs_ino->page_ofs); |
| 3046 | } |
| 3047 | ntfs_attr_put_search_ctx(ctx); |
| 3048 | /* Now the access times are updated, write the base mft record. */ |
| 3049 | if (NInoDirty(ni)) |
| 3050 | err = write_mft_record(ni, m, sync); |
| 3051 | /* Write all attached extent mft records. */ |
| 3052 | mutex_lock(&ni->extent_lock); |
| 3053 | if (ni->nr_extents > 0) { |
| 3054 | ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos; |
| 3055 | int i; |
| 3056 | |
| 3057 | ntfs_debug("Writing %i extent inodes.", ni->nr_extents); |
| 3058 | for (i = 0; i < ni->nr_extents; i++) { |
| 3059 | ntfs_inode *tni = extent_nis[i]; |
| 3060 | |
| 3061 | if (NInoDirty(tni)) { |
| 3062 | MFT_RECORD *tm = map_mft_record(tni); |
| 3063 | int ret; |
| 3064 | |
| 3065 | if (IS_ERR(tm)) { |
| 3066 | if (!err || err == -ENOMEM) |
| 3067 | err = PTR_ERR(tm); |
| 3068 | continue; |
| 3069 | } |
| 3070 | ret = write_mft_record(tni, tm, sync); |
| 3071 | unmap_mft_record(tni); |
| 3072 | if (unlikely(ret)) { |
| 3073 | if (!err || err == -ENOMEM) |
| 3074 | err = ret; |
| 3075 | } |
| 3076 | } |
| 3077 | } |
| 3078 | } |
| 3079 | mutex_unlock(&ni->extent_lock); |
| 3080 | unmap_mft_record(ni); |
| 3081 | if (unlikely(err)) |
| 3082 | goto err_out; |
| 3083 | ntfs_debug("Done."); |
| 3084 | return 0; |
| 3085 | unm_err_out: |
| 3086 | unmap_mft_record(ni); |
| 3087 | err_out: |
| 3088 | if (err == -ENOMEM) { |
| 3089 | ntfs_warning(vi->i_sb, "Not enough memory to write inode. " |
| 3090 | "Marking the inode dirty again, so the VFS " |
| 3091 | "retries later."); |
| 3092 | mark_inode_dirty(vi); |
| 3093 | } else { |
| 3094 | ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err); |
| 3095 | NVolSetErrors(ni->vol); |
| 3096 | } |
| 3097 | return err; |
| 3098 | } |
| 3099 | |
| 3100 | #endif /* NTFS_RW */ |