Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * sched_clock.c: Generic sched_clock() support, to extend low level |
| 3 | * hardware time counters to full 64-bit ns values. |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License version 2 as |
| 7 | * published by the Free Software Foundation. |
| 8 | */ |
| 9 | #include <linux/clocksource.h> |
| 10 | #include <linux/init.h> |
| 11 | #include <linux/jiffies.h> |
| 12 | #include <linux/ktime.h> |
| 13 | #include <linux/kernel.h> |
| 14 | #include <linux/moduleparam.h> |
| 15 | #include <linux/sched.h> |
| 16 | #include <linux/sched/clock.h> |
| 17 | #include <linux/syscore_ops.h> |
| 18 | #include <linux/hrtimer.h> |
| 19 | #include <linux/sched_clock.h> |
| 20 | #include <linux/seqlock.h> |
| 21 | #include <linux/bitops.h> |
| 22 | |
| 23 | /** |
| 24 | * struct clock_read_data - data required to read from sched_clock() |
| 25 | * |
| 26 | * @epoch_ns: sched_clock() value at last update |
| 27 | * @epoch_cyc: Clock cycle value at last update. |
| 28 | * @sched_clock_mask: Bitmask for two's complement subtraction of non 64bit |
| 29 | * clocks. |
| 30 | * @read_sched_clock: Current clock source (or dummy source when suspended). |
| 31 | * @mult: Multipler for scaled math conversion. |
| 32 | * @shift: Shift value for scaled math conversion. |
| 33 | * |
| 34 | * Care must be taken when updating this structure; it is read by |
| 35 | * some very hot code paths. It occupies <=40 bytes and, when combined |
| 36 | * with the seqcount used to synchronize access, comfortably fits into |
| 37 | * a 64 byte cache line. |
| 38 | */ |
| 39 | struct clock_read_data { |
| 40 | u64 epoch_ns; |
| 41 | u64 epoch_cyc; |
| 42 | u64 sched_clock_mask; |
| 43 | u64 (*read_sched_clock)(void); |
| 44 | u32 mult; |
| 45 | u32 shift; |
| 46 | }; |
| 47 | |
| 48 | /** |
| 49 | * struct clock_data - all data needed for sched_clock() (including |
| 50 | * registration of a new clock source) |
| 51 | * |
| 52 | * @seq: Sequence counter for protecting updates. The lowest |
| 53 | * bit is the index for @read_data. |
| 54 | * @read_data: Data required to read from sched_clock. |
| 55 | * @wrap_kt: Duration for which clock can run before wrapping. |
| 56 | * @rate: Tick rate of the registered clock. |
| 57 | * @actual_read_sched_clock: Registered hardware level clock read function. |
| 58 | * |
| 59 | * The ordering of this structure has been chosen to optimize cache |
| 60 | * performance. In particular 'seq' and 'read_data[0]' (combined) should fit |
| 61 | * into a single 64-byte cache line. |
| 62 | */ |
| 63 | struct clock_data { |
| 64 | seqcount_t seq; |
| 65 | struct clock_read_data read_data[2]; |
| 66 | ktime_t wrap_kt; |
| 67 | unsigned long rate; |
| 68 | |
| 69 | u64 (*actual_read_sched_clock)(void); |
| 70 | }; |
| 71 | |
| 72 | static struct hrtimer sched_clock_timer; |
| 73 | static int irqtime = -1; |
| 74 | |
| 75 | core_param(irqtime, irqtime, int, 0400); |
| 76 | |
| 77 | static u64 notrace jiffy_sched_clock_read(void) |
| 78 | { |
| 79 | /* |
| 80 | * We don't need to use get_jiffies_64 on 32-bit arches here |
| 81 | * because we register with BITS_PER_LONG |
| 82 | */ |
| 83 | return (u64)(jiffies - INITIAL_JIFFIES); |
| 84 | } |
| 85 | |
| 86 | static struct clock_data cd ____cacheline_aligned = { |
| 87 | .read_data[0] = { .mult = NSEC_PER_SEC / HZ, |
| 88 | .read_sched_clock = jiffy_sched_clock_read, }, |
| 89 | .actual_read_sched_clock = jiffy_sched_clock_read, |
| 90 | }; |
| 91 | |
| 92 | static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift) |
| 93 | { |
| 94 | return (cyc * mult) >> shift; |
| 95 | } |
| 96 | |
| 97 | unsigned long long notrace sched_clock(void) |
| 98 | { |
| 99 | u64 cyc, res; |
| 100 | unsigned long seq; |
| 101 | struct clock_read_data *rd; |
| 102 | |
| 103 | do { |
| 104 | seq = raw_read_seqcount(&cd.seq); |
| 105 | rd = cd.read_data + (seq & 1); |
| 106 | |
| 107 | cyc = (rd->read_sched_clock() - rd->epoch_cyc) & |
| 108 | rd->sched_clock_mask; |
| 109 | res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift); |
| 110 | } while (read_seqcount_retry(&cd.seq, seq)); |
| 111 | |
| 112 | return res; |
| 113 | } |
| 114 | |
| 115 | /* |
| 116 | * Updating the data required to read the clock. |
| 117 | * |
| 118 | * sched_clock() will never observe mis-matched data even if called from |
| 119 | * an NMI. We do this by maintaining an odd/even copy of the data and |
| 120 | * steering sched_clock() to one or the other using a sequence counter. |
| 121 | * In order to preserve the data cache profile of sched_clock() as much |
| 122 | * as possible the system reverts back to the even copy when the update |
| 123 | * completes; the odd copy is used *only* during an update. |
| 124 | */ |
| 125 | static void update_clock_read_data(struct clock_read_data *rd) |
| 126 | { |
| 127 | /* update the backup (odd) copy with the new data */ |
| 128 | cd.read_data[1] = *rd; |
| 129 | |
| 130 | /* steer readers towards the odd copy */ |
| 131 | raw_write_seqcount_latch(&cd.seq); |
| 132 | |
| 133 | /* now its safe for us to update the normal (even) copy */ |
| 134 | cd.read_data[0] = *rd; |
| 135 | |
| 136 | /* switch readers back to the even copy */ |
| 137 | raw_write_seqcount_latch(&cd.seq); |
| 138 | } |
| 139 | |
| 140 | /* |
| 141 | * Atomically update the sched_clock() epoch. |
| 142 | */ |
| 143 | static void update_sched_clock(void) |
| 144 | { |
| 145 | u64 cyc; |
| 146 | u64 ns; |
| 147 | struct clock_read_data rd; |
| 148 | |
| 149 | rd = cd.read_data[0]; |
| 150 | |
| 151 | cyc = cd.actual_read_sched_clock(); |
| 152 | ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift); |
| 153 | |
| 154 | rd.epoch_ns = ns; |
| 155 | rd.epoch_cyc = cyc; |
| 156 | |
| 157 | update_clock_read_data(&rd); |
| 158 | } |
| 159 | |
| 160 | static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt) |
| 161 | { |
| 162 | update_sched_clock(); |
| 163 | hrtimer_forward_now(hrt, cd.wrap_kt); |
| 164 | |
| 165 | return HRTIMER_RESTART; |
| 166 | } |
| 167 | |
| 168 | void __init |
| 169 | sched_clock_register(u64 (*read)(void), int bits, unsigned long rate) |
| 170 | { |
| 171 | u64 res, wrap, new_mask, new_epoch, cyc, ns; |
| 172 | u32 new_mult, new_shift; |
| 173 | unsigned long r; |
| 174 | char r_unit; |
| 175 | struct clock_read_data rd; |
| 176 | |
| 177 | if (cd.rate > rate) |
| 178 | return; |
| 179 | |
| 180 | WARN_ON(!irqs_disabled()); |
| 181 | |
| 182 | /* Calculate the mult/shift to convert counter ticks to ns. */ |
| 183 | clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600); |
| 184 | |
| 185 | new_mask = CLOCKSOURCE_MASK(bits); |
| 186 | cd.rate = rate; |
| 187 | |
| 188 | /* Calculate how many nanosecs until we risk wrapping */ |
| 189 | wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL); |
| 190 | cd.wrap_kt = ns_to_ktime(wrap); |
| 191 | |
| 192 | rd = cd.read_data[0]; |
| 193 | |
| 194 | /* Update epoch for new counter and update 'epoch_ns' from old counter*/ |
| 195 | new_epoch = read(); |
| 196 | cyc = cd.actual_read_sched_clock(); |
| 197 | ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift); |
| 198 | cd.actual_read_sched_clock = read; |
| 199 | |
| 200 | rd.read_sched_clock = read; |
| 201 | rd.sched_clock_mask = new_mask; |
| 202 | rd.mult = new_mult; |
| 203 | rd.shift = new_shift; |
| 204 | rd.epoch_cyc = new_epoch; |
| 205 | rd.epoch_ns = ns; |
| 206 | |
| 207 | update_clock_read_data(&rd); |
| 208 | |
| 209 | if (sched_clock_timer.function != NULL) { |
| 210 | /* update timeout for clock wrap */ |
| 211 | hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL); |
| 212 | } |
| 213 | |
| 214 | r = rate; |
| 215 | if (r >= 4000000) { |
| 216 | r /= 1000000; |
| 217 | r_unit = 'M'; |
| 218 | } else { |
| 219 | if (r >= 1000) { |
| 220 | r /= 1000; |
| 221 | r_unit = 'k'; |
| 222 | } else { |
| 223 | r_unit = ' '; |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | /* Calculate the ns resolution of this counter */ |
| 228 | res = cyc_to_ns(1ULL, new_mult, new_shift); |
| 229 | |
| 230 | pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n", |
| 231 | bits, r, r_unit, res, wrap); |
| 232 | |
| 233 | /* Enable IRQ time accounting if we have a fast enough sched_clock() */ |
| 234 | if (irqtime > 0 || (irqtime == -1 && rate >= 1000000)) |
| 235 | enable_sched_clock_irqtime(); |
| 236 | |
| 237 | pr_debug("Registered %pF as sched_clock source\n", read); |
| 238 | } |
| 239 | |
| 240 | void __init generic_sched_clock_init(void) |
| 241 | { |
| 242 | /* |
| 243 | * If no sched_clock() function has been provided at that point, |
| 244 | * make it the final one one. |
| 245 | */ |
| 246 | if (cd.actual_read_sched_clock == jiffy_sched_clock_read) |
| 247 | sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ); |
| 248 | |
| 249 | update_sched_clock(); |
| 250 | |
| 251 | /* |
| 252 | * Start the timer to keep sched_clock() properly updated and |
| 253 | * sets the initial epoch. |
| 254 | */ |
| 255 | hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| 256 | sched_clock_timer.function = sched_clock_poll; |
| 257 | hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL); |
| 258 | } |
| 259 | |
| 260 | /* |
| 261 | * Clock read function for use when the clock is suspended. |
| 262 | * |
| 263 | * This function makes it appear to sched_clock() as if the clock |
| 264 | * stopped counting at its last update. |
| 265 | * |
| 266 | * This function must only be called from the critical |
| 267 | * section in sched_clock(). It relies on the read_seqcount_retry() |
| 268 | * at the end of the critical section to be sure we observe the |
| 269 | * correct copy of 'epoch_cyc'. |
| 270 | */ |
| 271 | static u64 notrace suspended_sched_clock_read(void) |
| 272 | { |
| 273 | unsigned long seq = raw_read_seqcount(&cd.seq); |
| 274 | |
| 275 | return cd.read_data[seq & 1].epoch_cyc; |
| 276 | } |
| 277 | |
| 278 | static int sched_clock_suspend(void) |
| 279 | { |
| 280 | struct clock_read_data *rd = &cd.read_data[0]; |
| 281 | |
| 282 | update_sched_clock(); |
| 283 | hrtimer_cancel(&sched_clock_timer); |
| 284 | rd->read_sched_clock = suspended_sched_clock_read; |
| 285 | |
| 286 | return 0; |
| 287 | } |
| 288 | |
| 289 | static void sched_clock_resume(void) |
| 290 | { |
| 291 | struct clock_read_data *rd = &cd.read_data[0]; |
| 292 | |
| 293 | rd->epoch_cyc = cd.actual_read_sched_clock(); |
| 294 | hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL); |
| 295 | rd->read_sched_clock = cd.actual_read_sched_clock; |
| 296 | } |
| 297 | |
| 298 | static struct syscore_ops sched_clock_ops = { |
| 299 | .suspend = sched_clock_suspend, |
| 300 | .resume = sched_clock_resume, |
| 301 | }; |
| 302 | |
| 303 | static int __init sched_clock_syscore_init(void) |
| 304 | { |
| 305 | register_syscore_ops(&sched_clock_ops); |
| 306 | |
| 307 | return 0; |
| 308 | } |
| 309 | device_initcall(sched_clock_syscore_init); |