Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * Read-Copy Update mechanism for mutual exclusion |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License as published by |
| 6 | * the Free Software Foundation; either version 2 of the License, or |
| 7 | * (at your option) any later version. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program; if not, you can access it online at |
| 16 | * http://www.gnu.org/licenses/gpl-2.0.html. |
| 17 | * |
| 18 | * Copyright IBM Corporation, 2008 |
| 19 | * |
| 20 | * Authors: Dipankar Sarma <dipankar@in.ibm.com> |
| 21 | * Manfred Spraul <manfred@colorfullife.com> |
| 22 | * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version |
| 23 | * |
| 24 | * Based on the original work by Paul McKenney <paulmck@us.ibm.com> |
| 25 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. |
| 26 | * |
| 27 | * For detailed explanation of Read-Copy Update mechanism see - |
| 28 | * Documentation/RCU |
| 29 | */ |
| 30 | |
| 31 | #define pr_fmt(fmt) "rcu: " fmt |
| 32 | |
| 33 | #include <linux/types.h> |
| 34 | #include <linux/kernel.h> |
| 35 | #include <linux/init.h> |
| 36 | #include <linux/spinlock.h> |
| 37 | #include <linux/smp.h> |
| 38 | #include <linux/rcupdate_wait.h> |
| 39 | #include <linux/interrupt.h> |
| 40 | #include <linux/sched.h> |
| 41 | #include <linux/sched/debug.h> |
| 42 | #include <linux/nmi.h> |
| 43 | #include <linux/atomic.h> |
| 44 | #include <linux/bitops.h> |
| 45 | #include <linux/export.h> |
| 46 | #include <linux/completion.h> |
| 47 | #include <linux/moduleparam.h> |
| 48 | #include <linux/percpu.h> |
| 49 | #include <linux/notifier.h> |
| 50 | #include <linux/cpu.h> |
| 51 | #include <linux/mutex.h> |
| 52 | #include <linux/time.h> |
| 53 | #include <linux/kernel_stat.h> |
| 54 | #include <linux/wait.h> |
| 55 | #include <linux/kthread.h> |
| 56 | #include <uapi/linux/sched/types.h> |
| 57 | #include <linux/prefetch.h> |
| 58 | #include <linux/delay.h> |
| 59 | #include <linux/stop_machine.h> |
| 60 | #include <linux/random.h> |
| 61 | #include <linux/trace_events.h> |
| 62 | #include <linux/suspend.h> |
| 63 | #include <linux/ftrace.h> |
| 64 | |
| 65 | #include "tree.h" |
| 66 | #include "rcu.h" |
| 67 | |
| 68 | #ifdef MODULE_PARAM_PREFIX |
| 69 | #undef MODULE_PARAM_PREFIX |
| 70 | #endif |
| 71 | #define MODULE_PARAM_PREFIX "rcutree." |
| 72 | |
| 73 | /* Data structures. */ |
| 74 | |
| 75 | /* |
| 76 | * In order to export the rcu_state name to the tracing tools, it |
| 77 | * needs to be added in the __tracepoint_string section. |
| 78 | * This requires defining a separate variable tp_<sname>_varname |
| 79 | * that points to the string being used, and this will allow |
| 80 | * the tracing userspace tools to be able to decipher the string |
| 81 | * address to the matching string. |
| 82 | */ |
| 83 | #ifdef CONFIG_TRACING |
| 84 | # define DEFINE_RCU_TPS(sname) \ |
| 85 | static char sname##_varname[] = #sname; \ |
| 86 | static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; |
| 87 | # define RCU_STATE_NAME(sname) sname##_varname |
| 88 | #else |
| 89 | # define DEFINE_RCU_TPS(sname) |
| 90 | # define RCU_STATE_NAME(sname) __stringify(sname) |
| 91 | #endif |
| 92 | |
| 93 | #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ |
| 94 | DEFINE_RCU_TPS(sname) \ |
| 95 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \ |
| 96 | struct rcu_state sname##_state = { \ |
| 97 | .level = { &sname##_state.node[0] }, \ |
| 98 | .rda = &sname##_data, \ |
| 99 | .call = cr, \ |
| 100 | .gp_state = RCU_GP_IDLE, \ |
| 101 | .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, \ |
| 102 | .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ |
| 103 | .name = RCU_STATE_NAME(sname), \ |
| 104 | .abbr = sabbr, \ |
| 105 | .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \ |
| 106 | .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \ |
| 107 | .ofl_lock = __SPIN_LOCK_UNLOCKED(sname##_state.ofl_lock), \ |
| 108 | } |
| 109 | |
| 110 | RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); |
| 111 | RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); |
| 112 | |
| 113 | static struct rcu_state *const rcu_state_p; |
| 114 | LIST_HEAD(rcu_struct_flavors); |
| 115 | |
| 116 | /* Dump rcu_node combining tree at boot to verify correct setup. */ |
| 117 | static bool dump_tree; |
| 118 | module_param(dump_tree, bool, 0444); |
| 119 | /* Control rcu_node-tree auto-balancing at boot time. */ |
| 120 | static bool rcu_fanout_exact; |
| 121 | module_param(rcu_fanout_exact, bool, 0444); |
| 122 | /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ |
| 123 | static int rcu_fanout_leaf = RCU_FANOUT_LEAF; |
| 124 | module_param(rcu_fanout_leaf, int, 0444); |
| 125 | int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; |
| 126 | /* Number of rcu_nodes at specified level. */ |
| 127 | int num_rcu_lvl[] = NUM_RCU_LVL_INIT; |
| 128 | int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ |
| 129 | /* panic() on RCU Stall sysctl. */ |
| 130 | int sysctl_panic_on_rcu_stall __read_mostly; |
| 131 | |
| 132 | /* |
| 133 | * The rcu_scheduler_active variable is initialized to the value |
| 134 | * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the |
| 135 | * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, |
| 136 | * RCU can assume that there is but one task, allowing RCU to (for example) |
| 137 | * optimize synchronize_rcu() to a simple barrier(). When this variable |
| 138 | * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required |
| 139 | * to detect real grace periods. This variable is also used to suppress |
| 140 | * boot-time false positives from lockdep-RCU error checking. Finally, it |
| 141 | * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU |
| 142 | * is fully initialized, including all of its kthreads having been spawned. |
| 143 | */ |
| 144 | int rcu_scheduler_active __read_mostly; |
| 145 | EXPORT_SYMBOL_GPL(rcu_scheduler_active); |
| 146 | |
| 147 | /* |
| 148 | * The rcu_scheduler_fully_active variable transitions from zero to one |
| 149 | * during the early_initcall() processing, which is after the scheduler |
| 150 | * is capable of creating new tasks. So RCU processing (for example, |
| 151 | * creating tasks for RCU priority boosting) must be delayed until after |
| 152 | * rcu_scheduler_fully_active transitions from zero to one. We also |
| 153 | * currently delay invocation of any RCU callbacks until after this point. |
| 154 | * |
| 155 | * It might later prove better for people registering RCU callbacks during |
| 156 | * early boot to take responsibility for these callbacks, but one step at |
| 157 | * a time. |
| 158 | */ |
| 159 | static int rcu_scheduler_fully_active __read_mostly; |
| 160 | |
| 161 | static void |
| 162 | rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, |
| 163 | struct rcu_node *rnp, unsigned long gps, unsigned long flags); |
| 164 | static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); |
| 165 | static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); |
| 166 | static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); |
| 167 | static void invoke_rcu_core(void); |
| 168 | static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); |
| 169 | static void rcu_report_exp_rdp(struct rcu_state *rsp, |
| 170 | struct rcu_data *rdp, bool wake); |
| 171 | static void sync_sched_exp_online_cleanup(int cpu); |
| 172 | |
| 173 | /* rcuc/rcub kthread realtime priority */ |
| 174 | static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; |
| 175 | module_param(kthread_prio, int, 0644); |
| 176 | |
| 177 | /* Delay in jiffies for grace-period initialization delays, debug only. */ |
| 178 | |
| 179 | static int gp_preinit_delay; |
| 180 | module_param(gp_preinit_delay, int, 0444); |
| 181 | static int gp_init_delay; |
| 182 | module_param(gp_init_delay, int, 0444); |
| 183 | static int gp_cleanup_delay; |
| 184 | module_param(gp_cleanup_delay, int, 0444); |
| 185 | |
| 186 | /* Retreive RCU kthreads priority for rcutorture */ |
| 187 | int rcu_get_gp_kthreads_prio(void) |
| 188 | { |
| 189 | return kthread_prio; |
| 190 | } |
| 191 | EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); |
| 192 | |
| 193 | /* |
| 194 | * Number of grace periods between delays, normalized by the duration of |
| 195 | * the delay. The longer the delay, the more the grace periods between |
| 196 | * each delay. The reason for this normalization is that it means that, |
| 197 | * for non-zero delays, the overall slowdown of grace periods is constant |
| 198 | * regardless of the duration of the delay. This arrangement balances |
| 199 | * the need for long delays to increase some race probabilities with the |
| 200 | * need for fast grace periods to increase other race probabilities. |
| 201 | */ |
| 202 | #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ |
| 203 | |
| 204 | /* |
| 205 | * Compute the mask of online CPUs for the specified rcu_node structure. |
| 206 | * This will not be stable unless the rcu_node structure's ->lock is |
| 207 | * held, but the bit corresponding to the current CPU will be stable |
| 208 | * in most contexts. |
| 209 | */ |
| 210 | unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) |
| 211 | { |
| 212 | return READ_ONCE(rnp->qsmaskinitnext); |
| 213 | } |
| 214 | |
| 215 | /* |
| 216 | * Return true if an RCU grace period is in progress. The READ_ONCE()s |
| 217 | * permit this function to be invoked without holding the root rcu_node |
| 218 | * structure's ->lock, but of course results can be subject to change. |
| 219 | */ |
| 220 | static int rcu_gp_in_progress(struct rcu_state *rsp) |
| 221 | { |
| 222 | return rcu_seq_state(rcu_seq_current(&rsp->gp_seq)); |
| 223 | } |
| 224 | |
| 225 | /* |
| 226 | * Note a quiescent state. Because we do not need to know |
| 227 | * how many quiescent states passed, just if there was at least |
| 228 | * one since the start of the grace period, this just sets a flag. |
| 229 | * The caller must have disabled preemption. |
| 230 | */ |
| 231 | void rcu_sched_qs(void) |
| 232 | { |
| 233 | RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!"); |
| 234 | if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s)) |
| 235 | return; |
| 236 | trace_rcu_grace_period(TPS("rcu_sched"), |
| 237 | __this_cpu_read(rcu_sched_data.gp_seq), |
| 238 | TPS("cpuqs")); |
| 239 | __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false); |
| 240 | if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)) |
| 241 | return; |
| 242 | __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false); |
| 243 | rcu_report_exp_rdp(&rcu_sched_state, |
| 244 | this_cpu_ptr(&rcu_sched_data), true); |
| 245 | } |
| 246 | |
| 247 | void rcu_bh_qs(void) |
| 248 | { |
| 249 | RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!"); |
| 250 | if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) { |
| 251 | trace_rcu_grace_period(TPS("rcu_bh"), |
| 252 | __this_cpu_read(rcu_bh_data.gp_seq), |
| 253 | TPS("cpuqs")); |
| 254 | __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false); |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | /* |
| 259 | * Steal a bit from the bottom of ->dynticks for idle entry/exit |
| 260 | * control. Initially this is for TLB flushing. |
| 261 | */ |
| 262 | #define RCU_DYNTICK_CTRL_MASK 0x1 |
| 263 | #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) |
| 264 | #ifndef rcu_eqs_special_exit |
| 265 | #define rcu_eqs_special_exit() do { } while (0) |
| 266 | #endif |
| 267 | |
| 268 | static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { |
| 269 | .dynticks_nesting = 1, |
| 270 | .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, |
| 271 | .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), |
| 272 | }; |
| 273 | |
| 274 | /* |
| 275 | * Record entry into an extended quiescent state. This is only to be |
| 276 | * called when not already in an extended quiescent state. |
| 277 | */ |
| 278 | static void rcu_dynticks_eqs_enter(void) |
| 279 | { |
| 280 | struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); |
| 281 | int seq; |
| 282 | |
| 283 | /* |
| 284 | * CPUs seeing atomic_add_return() must see prior RCU read-side |
| 285 | * critical sections, and we also must force ordering with the |
| 286 | * next idle sojourn. |
| 287 | */ |
| 288 | seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); |
| 289 | /* Better be in an extended quiescent state! */ |
| 290 | WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && |
| 291 | (seq & RCU_DYNTICK_CTRL_CTR)); |
| 292 | /* Better not have special action (TLB flush) pending! */ |
| 293 | WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && |
| 294 | (seq & RCU_DYNTICK_CTRL_MASK)); |
| 295 | } |
| 296 | |
| 297 | /* |
| 298 | * Record exit from an extended quiescent state. This is only to be |
| 299 | * called from an extended quiescent state. |
| 300 | */ |
| 301 | static void rcu_dynticks_eqs_exit(void) |
| 302 | { |
| 303 | struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); |
| 304 | int seq; |
| 305 | |
| 306 | /* |
| 307 | * CPUs seeing atomic_add_return() must see prior idle sojourns, |
| 308 | * and we also must force ordering with the next RCU read-side |
| 309 | * critical section. |
| 310 | */ |
| 311 | seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); |
| 312 | WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && |
| 313 | !(seq & RCU_DYNTICK_CTRL_CTR)); |
| 314 | if (seq & RCU_DYNTICK_CTRL_MASK) { |
| 315 | atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks); |
| 316 | smp_mb__after_atomic(); /* _exit after clearing mask. */ |
| 317 | /* Prefer duplicate flushes to losing a flush. */ |
| 318 | rcu_eqs_special_exit(); |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | /* |
| 323 | * Reset the current CPU's ->dynticks counter to indicate that the |
| 324 | * newly onlined CPU is no longer in an extended quiescent state. |
| 325 | * This will either leave the counter unchanged, or increment it |
| 326 | * to the next non-quiescent value. |
| 327 | * |
| 328 | * The non-atomic test/increment sequence works because the upper bits |
| 329 | * of the ->dynticks counter are manipulated only by the corresponding CPU, |
| 330 | * or when the corresponding CPU is offline. |
| 331 | */ |
| 332 | static void rcu_dynticks_eqs_online(void) |
| 333 | { |
| 334 | struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); |
| 335 | |
| 336 | if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR) |
| 337 | return; |
| 338 | atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); |
| 339 | } |
| 340 | |
| 341 | /* |
| 342 | * Is the current CPU in an extended quiescent state? |
| 343 | * |
| 344 | * No ordering, as we are sampling CPU-local information. |
| 345 | */ |
| 346 | bool rcu_dynticks_curr_cpu_in_eqs(void) |
| 347 | { |
| 348 | struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); |
| 349 | |
| 350 | return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR); |
| 351 | } |
| 352 | |
| 353 | /* |
| 354 | * Snapshot the ->dynticks counter with full ordering so as to allow |
| 355 | * stable comparison of this counter with past and future snapshots. |
| 356 | */ |
| 357 | int rcu_dynticks_snap(struct rcu_dynticks *rdtp) |
| 358 | { |
| 359 | int snap = atomic_add_return(0, &rdtp->dynticks); |
| 360 | |
| 361 | return snap & ~RCU_DYNTICK_CTRL_MASK; |
| 362 | } |
| 363 | |
| 364 | /* |
| 365 | * Return true if the snapshot returned from rcu_dynticks_snap() |
| 366 | * indicates that RCU is in an extended quiescent state. |
| 367 | */ |
| 368 | static bool rcu_dynticks_in_eqs(int snap) |
| 369 | { |
| 370 | return !(snap & RCU_DYNTICK_CTRL_CTR); |
| 371 | } |
| 372 | |
| 373 | /* |
| 374 | * Return true if the CPU corresponding to the specified rcu_dynticks |
| 375 | * structure has spent some time in an extended quiescent state since |
| 376 | * rcu_dynticks_snap() returned the specified snapshot. |
| 377 | */ |
| 378 | static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap) |
| 379 | { |
| 380 | return snap != rcu_dynticks_snap(rdtp); |
| 381 | } |
| 382 | |
| 383 | /* |
| 384 | * Set the special (bottom) bit of the specified CPU so that it |
| 385 | * will take special action (such as flushing its TLB) on the |
| 386 | * next exit from an extended quiescent state. Returns true if |
| 387 | * the bit was successfully set, or false if the CPU was not in |
| 388 | * an extended quiescent state. |
| 389 | */ |
| 390 | bool rcu_eqs_special_set(int cpu) |
| 391 | { |
| 392 | int old; |
| 393 | int new; |
| 394 | struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); |
| 395 | |
| 396 | do { |
| 397 | old = atomic_read(&rdtp->dynticks); |
| 398 | if (old & RCU_DYNTICK_CTRL_CTR) |
| 399 | return false; |
| 400 | new = old | RCU_DYNTICK_CTRL_MASK; |
| 401 | } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old); |
| 402 | return true; |
| 403 | } |
| 404 | |
| 405 | /* |
| 406 | * Let the RCU core know that this CPU has gone through the scheduler, |
| 407 | * which is a quiescent state. This is called when the need for a |
| 408 | * quiescent state is urgent, so we burn an atomic operation and full |
| 409 | * memory barriers to let the RCU core know about it, regardless of what |
| 410 | * this CPU might (or might not) do in the near future. |
| 411 | * |
| 412 | * We inform the RCU core by emulating a zero-duration dyntick-idle period. |
| 413 | * |
| 414 | * The caller must have disabled interrupts and must not be idle. |
| 415 | */ |
| 416 | static void rcu_momentary_dyntick_idle(void) |
| 417 | { |
| 418 | struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); |
| 419 | int special; |
| 420 | |
| 421 | raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false); |
| 422 | special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); |
| 423 | /* It is illegal to call this from idle state. */ |
| 424 | WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); |
| 425 | } |
| 426 | |
| 427 | /* |
| 428 | * Note a context switch. This is a quiescent state for RCU-sched, |
| 429 | * and requires special handling for preemptible RCU. |
| 430 | * The caller must have disabled interrupts. |
| 431 | */ |
| 432 | void rcu_note_context_switch(bool preempt) |
| 433 | { |
| 434 | barrier(); /* Avoid RCU read-side critical sections leaking down. */ |
| 435 | trace_rcu_utilization(TPS("Start context switch")); |
| 436 | rcu_sched_qs(); |
| 437 | rcu_preempt_note_context_switch(preempt); |
| 438 | /* Load rcu_urgent_qs before other flags. */ |
| 439 | if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) |
| 440 | goto out; |
| 441 | this_cpu_write(rcu_dynticks.rcu_urgent_qs, false); |
| 442 | if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) |
| 443 | rcu_momentary_dyntick_idle(); |
| 444 | this_cpu_inc(rcu_dynticks.rcu_qs_ctr); |
| 445 | if (!preempt) |
| 446 | rcu_tasks_qs(current); |
| 447 | out: |
| 448 | trace_rcu_utilization(TPS("End context switch")); |
| 449 | barrier(); /* Avoid RCU read-side critical sections leaking up. */ |
| 450 | } |
| 451 | EXPORT_SYMBOL_GPL(rcu_note_context_switch); |
| 452 | |
| 453 | /* |
| 454 | * Register a quiescent state for all RCU flavors. If there is an |
| 455 | * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight |
| 456 | * dyntick-idle quiescent state visible to other CPUs (but only for those |
| 457 | * RCU flavors in desperate need of a quiescent state, which will normally |
| 458 | * be none of them). Either way, do a lightweight quiescent state for |
| 459 | * all RCU flavors. |
| 460 | * |
| 461 | * The barrier() calls are redundant in the common case when this is |
| 462 | * called externally, but just in case this is called from within this |
| 463 | * file. |
| 464 | * |
| 465 | */ |
| 466 | void rcu_all_qs(void) |
| 467 | { |
| 468 | unsigned long flags; |
| 469 | |
| 470 | if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs)) |
| 471 | return; |
| 472 | preempt_disable(); |
| 473 | /* Load rcu_urgent_qs before other flags. */ |
| 474 | if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) { |
| 475 | preempt_enable(); |
| 476 | return; |
| 477 | } |
| 478 | this_cpu_write(rcu_dynticks.rcu_urgent_qs, false); |
| 479 | barrier(); /* Avoid RCU read-side critical sections leaking down. */ |
| 480 | if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) { |
| 481 | local_irq_save(flags); |
| 482 | rcu_momentary_dyntick_idle(); |
| 483 | local_irq_restore(flags); |
| 484 | } |
| 485 | if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) |
| 486 | rcu_sched_qs(); |
| 487 | this_cpu_inc(rcu_dynticks.rcu_qs_ctr); |
| 488 | barrier(); /* Avoid RCU read-side critical sections leaking up. */ |
| 489 | preempt_enable(); |
| 490 | } |
| 491 | EXPORT_SYMBOL_GPL(rcu_all_qs); |
| 492 | |
| 493 | #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */ |
| 494 | static long blimit = DEFAULT_RCU_BLIMIT; |
| 495 | #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */ |
| 496 | static long qhimark = DEFAULT_RCU_QHIMARK; |
| 497 | #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */ |
| 498 | static long qlowmark = DEFAULT_RCU_QLOMARK; |
| 499 | |
| 500 | module_param(blimit, long, 0444); |
| 501 | module_param(qhimark, long, 0444); |
| 502 | module_param(qlowmark, long, 0444); |
| 503 | |
| 504 | static ulong jiffies_till_first_fqs = ULONG_MAX; |
| 505 | static ulong jiffies_till_next_fqs = ULONG_MAX; |
| 506 | static bool rcu_kick_kthreads; |
| 507 | |
| 508 | static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) |
| 509 | { |
| 510 | ulong j; |
| 511 | int ret = kstrtoul(val, 0, &j); |
| 512 | |
| 513 | if (!ret) |
| 514 | WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); |
| 515 | return ret; |
| 516 | } |
| 517 | |
| 518 | static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) |
| 519 | { |
| 520 | ulong j; |
| 521 | int ret = kstrtoul(val, 0, &j); |
| 522 | |
| 523 | if (!ret) |
| 524 | WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); |
| 525 | return ret; |
| 526 | } |
| 527 | |
| 528 | static struct kernel_param_ops first_fqs_jiffies_ops = { |
| 529 | .set = param_set_first_fqs_jiffies, |
| 530 | .get = param_get_ulong, |
| 531 | }; |
| 532 | |
| 533 | static struct kernel_param_ops next_fqs_jiffies_ops = { |
| 534 | .set = param_set_next_fqs_jiffies, |
| 535 | .get = param_get_ulong, |
| 536 | }; |
| 537 | |
| 538 | module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); |
| 539 | module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); |
| 540 | module_param(rcu_kick_kthreads, bool, 0644); |
| 541 | |
| 542 | /* |
| 543 | * How long the grace period must be before we start recruiting |
| 544 | * quiescent-state help from rcu_note_context_switch(). |
| 545 | */ |
| 546 | static ulong jiffies_till_sched_qs = HZ / 10; |
| 547 | module_param(jiffies_till_sched_qs, ulong, 0444); |
| 548 | |
| 549 | static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp)); |
| 550 | static void force_quiescent_state(struct rcu_state *rsp); |
| 551 | static int rcu_pending(void); |
| 552 | |
| 553 | /* |
| 554 | * Return the number of RCU GPs completed thus far for debug & stats. |
| 555 | */ |
| 556 | unsigned long rcu_get_gp_seq(void) |
| 557 | { |
| 558 | return READ_ONCE(rcu_state_p->gp_seq); |
| 559 | } |
| 560 | EXPORT_SYMBOL_GPL(rcu_get_gp_seq); |
| 561 | |
| 562 | /* |
| 563 | * Return the number of RCU-sched GPs completed thus far for debug & stats. |
| 564 | */ |
| 565 | unsigned long rcu_sched_get_gp_seq(void) |
| 566 | { |
| 567 | return READ_ONCE(rcu_sched_state.gp_seq); |
| 568 | } |
| 569 | EXPORT_SYMBOL_GPL(rcu_sched_get_gp_seq); |
| 570 | |
| 571 | /* |
| 572 | * Return the number of RCU-bh GPs completed thus far for debug & stats. |
| 573 | */ |
| 574 | unsigned long rcu_bh_get_gp_seq(void) |
| 575 | { |
| 576 | return READ_ONCE(rcu_bh_state.gp_seq); |
| 577 | } |
| 578 | EXPORT_SYMBOL_GPL(rcu_bh_get_gp_seq); |
| 579 | |
| 580 | /* |
| 581 | * Return the number of RCU expedited batches completed thus far for |
| 582 | * debug & stats. Odd numbers mean that a batch is in progress, even |
| 583 | * numbers mean idle. The value returned will thus be roughly double |
| 584 | * the cumulative batches since boot. |
| 585 | */ |
| 586 | unsigned long rcu_exp_batches_completed(void) |
| 587 | { |
| 588 | return rcu_state_p->expedited_sequence; |
| 589 | } |
| 590 | EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); |
| 591 | |
| 592 | /* |
| 593 | * Return the number of RCU-sched expedited batches completed thus far |
| 594 | * for debug & stats. Similar to rcu_exp_batches_completed(). |
| 595 | */ |
| 596 | unsigned long rcu_exp_batches_completed_sched(void) |
| 597 | { |
| 598 | return rcu_sched_state.expedited_sequence; |
| 599 | } |
| 600 | EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched); |
| 601 | |
| 602 | /* |
| 603 | * Force a quiescent state. |
| 604 | */ |
| 605 | void rcu_force_quiescent_state(void) |
| 606 | { |
| 607 | force_quiescent_state(rcu_state_p); |
| 608 | } |
| 609 | EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); |
| 610 | |
| 611 | /* |
| 612 | * Force a quiescent state for RCU BH. |
| 613 | */ |
| 614 | void rcu_bh_force_quiescent_state(void) |
| 615 | { |
| 616 | force_quiescent_state(&rcu_bh_state); |
| 617 | } |
| 618 | EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); |
| 619 | |
| 620 | /* |
| 621 | * Force a quiescent state for RCU-sched. |
| 622 | */ |
| 623 | void rcu_sched_force_quiescent_state(void) |
| 624 | { |
| 625 | force_quiescent_state(&rcu_sched_state); |
| 626 | } |
| 627 | EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); |
| 628 | |
| 629 | /* |
| 630 | * Show the state of the grace-period kthreads. |
| 631 | */ |
| 632 | void show_rcu_gp_kthreads(void) |
| 633 | { |
| 634 | int cpu; |
| 635 | struct rcu_data *rdp; |
| 636 | struct rcu_node *rnp; |
| 637 | struct rcu_state *rsp; |
| 638 | |
| 639 | for_each_rcu_flavor(rsp) { |
| 640 | pr_info("%s: wait state: %d ->state: %#lx\n", |
| 641 | rsp->name, rsp->gp_state, rsp->gp_kthread->state); |
| 642 | rcu_for_each_node_breadth_first(rsp, rnp) { |
| 643 | if (ULONG_CMP_GE(rsp->gp_seq, rnp->gp_seq_needed)) |
| 644 | continue; |
| 645 | pr_info("\trcu_node %d:%d ->gp_seq %lu ->gp_seq_needed %lu\n", |
| 646 | rnp->grplo, rnp->grphi, rnp->gp_seq, |
| 647 | rnp->gp_seq_needed); |
| 648 | if (!rcu_is_leaf_node(rnp)) |
| 649 | continue; |
| 650 | for_each_leaf_node_possible_cpu(rnp, cpu) { |
| 651 | rdp = per_cpu_ptr(rsp->rda, cpu); |
| 652 | if (rdp->gpwrap || |
| 653 | ULONG_CMP_GE(rsp->gp_seq, |
| 654 | rdp->gp_seq_needed)) |
| 655 | continue; |
| 656 | pr_info("\tcpu %d ->gp_seq_needed %lu\n", |
| 657 | cpu, rdp->gp_seq_needed); |
| 658 | } |
| 659 | } |
| 660 | /* sched_show_task(rsp->gp_kthread); */ |
| 661 | } |
| 662 | } |
| 663 | EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); |
| 664 | |
| 665 | /* |
| 666 | * Send along grace-period-related data for rcutorture diagnostics. |
| 667 | */ |
| 668 | void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, |
| 669 | unsigned long *gp_seq) |
| 670 | { |
| 671 | struct rcu_state *rsp = NULL; |
| 672 | |
| 673 | switch (test_type) { |
| 674 | case RCU_FLAVOR: |
| 675 | rsp = rcu_state_p; |
| 676 | break; |
| 677 | case RCU_BH_FLAVOR: |
| 678 | rsp = &rcu_bh_state; |
| 679 | break; |
| 680 | case RCU_SCHED_FLAVOR: |
| 681 | rsp = &rcu_sched_state; |
| 682 | break; |
| 683 | default: |
| 684 | break; |
| 685 | } |
| 686 | if (rsp == NULL) |
| 687 | return; |
| 688 | *flags = READ_ONCE(rsp->gp_flags); |
| 689 | *gp_seq = rcu_seq_current(&rsp->gp_seq); |
| 690 | } |
| 691 | EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); |
| 692 | |
| 693 | /* |
| 694 | * Return the root node of the specified rcu_state structure. |
| 695 | */ |
| 696 | static struct rcu_node *rcu_get_root(struct rcu_state *rsp) |
| 697 | { |
| 698 | return &rsp->node[0]; |
| 699 | } |
| 700 | |
| 701 | /* |
| 702 | * Enter an RCU extended quiescent state, which can be either the |
| 703 | * idle loop or adaptive-tickless usermode execution. |
| 704 | * |
| 705 | * We crowbar the ->dynticks_nmi_nesting field to zero to allow for |
| 706 | * the possibility of usermode upcalls having messed up our count |
| 707 | * of interrupt nesting level during the prior busy period. |
| 708 | */ |
| 709 | static void rcu_eqs_enter(bool user) |
| 710 | { |
| 711 | struct rcu_state *rsp; |
| 712 | struct rcu_data *rdp; |
| 713 | struct rcu_dynticks *rdtp; |
| 714 | |
| 715 | rdtp = this_cpu_ptr(&rcu_dynticks); |
| 716 | WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); |
| 717 | WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && |
| 718 | rdtp->dynticks_nesting == 0); |
| 719 | if (rdtp->dynticks_nesting != 1) { |
| 720 | rdtp->dynticks_nesting--; |
| 721 | return; |
| 722 | } |
| 723 | |
| 724 | lockdep_assert_irqs_disabled(); |
| 725 | trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0, rdtp->dynticks); |
| 726 | WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); |
| 727 | for_each_rcu_flavor(rsp) { |
| 728 | rdp = this_cpu_ptr(rsp->rda); |
| 729 | do_nocb_deferred_wakeup(rdp); |
| 730 | } |
| 731 | rcu_prepare_for_idle(); |
| 732 | WRITE_ONCE(rdtp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ |
| 733 | rcu_dynticks_eqs_enter(); |
| 734 | rcu_dynticks_task_enter(); |
| 735 | } |
| 736 | |
| 737 | /** |
| 738 | * rcu_idle_enter - inform RCU that current CPU is entering idle |
| 739 | * |
| 740 | * Enter idle mode, in other words, -leave- the mode in which RCU |
| 741 | * read-side critical sections can occur. (Though RCU read-side |
| 742 | * critical sections can occur in irq handlers in idle, a possibility |
| 743 | * handled by irq_enter() and irq_exit().) |
| 744 | * |
| 745 | * If you add or remove a call to rcu_idle_enter(), be sure to test with |
| 746 | * CONFIG_RCU_EQS_DEBUG=y. |
| 747 | */ |
| 748 | void rcu_idle_enter(void) |
| 749 | { |
| 750 | lockdep_assert_irqs_disabled(); |
| 751 | rcu_eqs_enter(false); |
| 752 | } |
| 753 | |
| 754 | #ifdef CONFIG_NO_HZ_FULL |
| 755 | /** |
| 756 | * rcu_user_enter - inform RCU that we are resuming userspace. |
| 757 | * |
| 758 | * Enter RCU idle mode right before resuming userspace. No use of RCU |
| 759 | * is permitted between this call and rcu_user_exit(). This way the |
| 760 | * CPU doesn't need to maintain the tick for RCU maintenance purposes |
| 761 | * when the CPU runs in userspace. |
| 762 | * |
| 763 | * If you add or remove a call to rcu_user_enter(), be sure to test with |
| 764 | * CONFIG_RCU_EQS_DEBUG=y. |
| 765 | */ |
| 766 | void rcu_user_enter(void) |
| 767 | { |
| 768 | lockdep_assert_irqs_disabled(); |
| 769 | rcu_eqs_enter(true); |
| 770 | } |
| 771 | #endif /* CONFIG_NO_HZ_FULL */ |
| 772 | |
| 773 | /** |
| 774 | * rcu_nmi_exit - inform RCU of exit from NMI context |
| 775 | * |
| 776 | * If we are returning from the outermost NMI handler that interrupted an |
| 777 | * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting |
| 778 | * to let the RCU grace-period handling know that the CPU is back to |
| 779 | * being RCU-idle. |
| 780 | * |
| 781 | * If you add or remove a call to rcu_nmi_exit(), be sure to test |
| 782 | * with CONFIG_RCU_EQS_DEBUG=y. |
| 783 | */ |
| 784 | void rcu_nmi_exit(void) |
| 785 | { |
| 786 | struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); |
| 787 | |
| 788 | /* |
| 789 | * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. |
| 790 | * (We are exiting an NMI handler, so RCU better be paying attention |
| 791 | * to us!) |
| 792 | */ |
| 793 | WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0); |
| 794 | WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); |
| 795 | |
| 796 | /* |
| 797 | * If the nesting level is not 1, the CPU wasn't RCU-idle, so |
| 798 | * leave it in non-RCU-idle state. |
| 799 | */ |
| 800 | if (rdtp->dynticks_nmi_nesting != 1) { |
| 801 | trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nmi_nesting, rdtp->dynticks_nmi_nesting - 2, rdtp->dynticks); |
| 802 | WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* No store tearing. */ |
| 803 | rdtp->dynticks_nmi_nesting - 2); |
| 804 | return; |
| 805 | } |
| 806 | |
| 807 | /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ |
| 808 | trace_rcu_dyntick(TPS("Startirq"), rdtp->dynticks_nmi_nesting, 0, rdtp->dynticks); |
| 809 | WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ |
| 810 | rcu_dynticks_eqs_enter(); |
| 811 | } |
| 812 | |
| 813 | /** |
| 814 | * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle |
| 815 | * |
| 816 | * Exit from an interrupt handler, which might possibly result in entering |
| 817 | * idle mode, in other words, leaving the mode in which read-side critical |
| 818 | * sections can occur. The caller must have disabled interrupts. |
| 819 | * |
| 820 | * This code assumes that the idle loop never does anything that might |
| 821 | * result in unbalanced calls to irq_enter() and irq_exit(). If your |
| 822 | * architecture's idle loop violates this assumption, RCU will give you what |
| 823 | * you deserve, good and hard. But very infrequently and irreproducibly. |
| 824 | * |
| 825 | * Use things like work queues to work around this limitation. |
| 826 | * |
| 827 | * You have been warned. |
| 828 | * |
| 829 | * If you add or remove a call to rcu_irq_exit(), be sure to test with |
| 830 | * CONFIG_RCU_EQS_DEBUG=y. |
| 831 | */ |
| 832 | void rcu_irq_exit(void) |
| 833 | { |
| 834 | struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); |
| 835 | |
| 836 | lockdep_assert_irqs_disabled(); |
| 837 | if (rdtp->dynticks_nmi_nesting == 1) |
| 838 | rcu_prepare_for_idle(); |
| 839 | rcu_nmi_exit(); |
| 840 | if (rdtp->dynticks_nmi_nesting == 0) |
| 841 | rcu_dynticks_task_enter(); |
| 842 | } |
| 843 | |
| 844 | /* |
| 845 | * Wrapper for rcu_irq_exit() where interrupts are enabled. |
| 846 | * |
| 847 | * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test |
| 848 | * with CONFIG_RCU_EQS_DEBUG=y. |
| 849 | */ |
| 850 | void rcu_irq_exit_irqson(void) |
| 851 | { |
| 852 | unsigned long flags; |
| 853 | |
| 854 | local_irq_save(flags); |
| 855 | rcu_irq_exit(); |
| 856 | local_irq_restore(flags); |
| 857 | } |
| 858 | |
| 859 | /* |
| 860 | * Exit an RCU extended quiescent state, which can be either the |
| 861 | * idle loop or adaptive-tickless usermode execution. |
| 862 | * |
| 863 | * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to |
| 864 | * allow for the possibility of usermode upcalls messing up our count of |
| 865 | * interrupt nesting level during the busy period that is just now starting. |
| 866 | */ |
| 867 | static void rcu_eqs_exit(bool user) |
| 868 | { |
| 869 | struct rcu_dynticks *rdtp; |
| 870 | long oldval; |
| 871 | |
| 872 | lockdep_assert_irqs_disabled(); |
| 873 | rdtp = this_cpu_ptr(&rcu_dynticks); |
| 874 | oldval = rdtp->dynticks_nesting; |
| 875 | WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); |
| 876 | if (oldval) { |
| 877 | rdtp->dynticks_nesting++; |
| 878 | return; |
| 879 | } |
| 880 | rcu_dynticks_task_exit(); |
| 881 | rcu_dynticks_eqs_exit(); |
| 882 | rcu_cleanup_after_idle(); |
| 883 | trace_rcu_dyntick(TPS("End"), rdtp->dynticks_nesting, 1, rdtp->dynticks); |
| 884 | WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); |
| 885 | WRITE_ONCE(rdtp->dynticks_nesting, 1); |
| 886 | WRITE_ONCE(rdtp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); |
| 887 | } |
| 888 | |
| 889 | /** |
| 890 | * rcu_idle_exit - inform RCU that current CPU is leaving idle |
| 891 | * |
| 892 | * Exit idle mode, in other words, -enter- the mode in which RCU |
| 893 | * read-side critical sections can occur. |
| 894 | * |
| 895 | * If you add or remove a call to rcu_idle_exit(), be sure to test with |
| 896 | * CONFIG_RCU_EQS_DEBUG=y. |
| 897 | */ |
| 898 | void rcu_idle_exit(void) |
| 899 | { |
| 900 | unsigned long flags; |
| 901 | |
| 902 | local_irq_save(flags); |
| 903 | rcu_eqs_exit(false); |
| 904 | local_irq_restore(flags); |
| 905 | } |
| 906 | |
| 907 | #ifdef CONFIG_NO_HZ_FULL |
| 908 | /** |
| 909 | * rcu_user_exit - inform RCU that we are exiting userspace. |
| 910 | * |
| 911 | * Exit RCU idle mode while entering the kernel because it can |
| 912 | * run a RCU read side critical section anytime. |
| 913 | * |
| 914 | * If you add or remove a call to rcu_user_exit(), be sure to test with |
| 915 | * CONFIG_RCU_EQS_DEBUG=y. |
| 916 | */ |
| 917 | void rcu_user_exit(void) |
| 918 | { |
| 919 | rcu_eqs_exit(1); |
| 920 | } |
| 921 | #endif /* CONFIG_NO_HZ_FULL */ |
| 922 | |
| 923 | /** |
| 924 | * rcu_nmi_enter - inform RCU of entry to NMI context |
| 925 | * |
| 926 | * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and |
| 927 | * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know |
| 928 | * that the CPU is active. This implementation permits nested NMIs, as |
| 929 | * long as the nesting level does not overflow an int. (You will probably |
| 930 | * run out of stack space first.) |
| 931 | * |
| 932 | * If you add or remove a call to rcu_nmi_enter(), be sure to test |
| 933 | * with CONFIG_RCU_EQS_DEBUG=y. |
| 934 | */ |
| 935 | void rcu_nmi_enter(void) |
| 936 | { |
| 937 | struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); |
| 938 | long incby = 2; |
| 939 | |
| 940 | /* Complain about underflow. */ |
| 941 | WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0); |
| 942 | |
| 943 | /* |
| 944 | * If idle from RCU viewpoint, atomically increment ->dynticks |
| 945 | * to mark non-idle and increment ->dynticks_nmi_nesting by one. |
| 946 | * Otherwise, increment ->dynticks_nmi_nesting by two. This means |
| 947 | * if ->dynticks_nmi_nesting is equal to one, we are guaranteed |
| 948 | * to be in the outermost NMI handler that interrupted an RCU-idle |
| 949 | * period (observation due to Andy Lutomirski). |
| 950 | */ |
| 951 | if (rcu_dynticks_curr_cpu_in_eqs()) { |
| 952 | rcu_dynticks_eqs_exit(); |
| 953 | incby = 1; |
| 954 | } |
| 955 | trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), |
| 956 | rdtp->dynticks_nmi_nesting, |
| 957 | rdtp->dynticks_nmi_nesting + incby, rdtp->dynticks); |
| 958 | WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* Prevent store tearing. */ |
| 959 | rdtp->dynticks_nmi_nesting + incby); |
| 960 | barrier(); |
| 961 | } |
| 962 | |
| 963 | /** |
| 964 | * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle |
| 965 | * |
| 966 | * Enter an interrupt handler, which might possibly result in exiting |
| 967 | * idle mode, in other words, entering the mode in which read-side critical |
| 968 | * sections can occur. The caller must have disabled interrupts. |
| 969 | * |
| 970 | * Note that the Linux kernel is fully capable of entering an interrupt |
| 971 | * handler that it never exits, for example when doing upcalls to user mode! |
| 972 | * This code assumes that the idle loop never does upcalls to user mode. |
| 973 | * If your architecture's idle loop does do upcalls to user mode (or does |
| 974 | * anything else that results in unbalanced calls to the irq_enter() and |
| 975 | * irq_exit() functions), RCU will give you what you deserve, good and hard. |
| 976 | * But very infrequently and irreproducibly. |
| 977 | * |
| 978 | * Use things like work queues to work around this limitation. |
| 979 | * |
| 980 | * You have been warned. |
| 981 | * |
| 982 | * If you add or remove a call to rcu_irq_enter(), be sure to test with |
| 983 | * CONFIG_RCU_EQS_DEBUG=y. |
| 984 | */ |
| 985 | void rcu_irq_enter(void) |
| 986 | { |
| 987 | struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); |
| 988 | |
| 989 | lockdep_assert_irqs_disabled(); |
| 990 | if (rdtp->dynticks_nmi_nesting == 0) |
| 991 | rcu_dynticks_task_exit(); |
| 992 | rcu_nmi_enter(); |
| 993 | if (rdtp->dynticks_nmi_nesting == 1) |
| 994 | rcu_cleanup_after_idle(); |
| 995 | } |
| 996 | |
| 997 | /* |
| 998 | * Wrapper for rcu_irq_enter() where interrupts are enabled. |
| 999 | * |
| 1000 | * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test |
| 1001 | * with CONFIG_RCU_EQS_DEBUG=y. |
| 1002 | */ |
| 1003 | void rcu_irq_enter_irqson(void) |
| 1004 | { |
| 1005 | unsigned long flags; |
| 1006 | |
| 1007 | local_irq_save(flags); |
| 1008 | rcu_irq_enter(); |
| 1009 | local_irq_restore(flags); |
| 1010 | } |
| 1011 | |
| 1012 | /** |
| 1013 | * rcu_is_watching - see if RCU thinks that the current CPU is idle |
| 1014 | * |
| 1015 | * Return true if RCU is watching the running CPU, which means that this |
| 1016 | * CPU can safely enter RCU read-side critical sections. In other words, |
| 1017 | * if the current CPU is in its idle loop and is neither in an interrupt |
| 1018 | * or NMI handler, return true. |
| 1019 | */ |
| 1020 | bool notrace rcu_is_watching(void) |
| 1021 | { |
| 1022 | bool ret; |
| 1023 | |
| 1024 | preempt_disable_notrace(); |
| 1025 | ret = !rcu_dynticks_curr_cpu_in_eqs(); |
| 1026 | preempt_enable_notrace(); |
| 1027 | return ret; |
| 1028 | } |
| 1029 | EXPORT_SYMBOL_GPL(rcu_is_watching); |
| 1030 | |
| 1031 | /* |
| 1032 | * If a holdout task is actually running, request an urgent quiescent |
| 1033 | * state from its CPU. This is unsynchronized, so migrations can cause |
| 1034 | * the request to go to the wrong CPU. Which is OK, all that will happen |
| 1035 | * is that the CPU's next context switch will be a bit slower and next |
| 1036 | * time around this task will generate another request. |
| 1037 | */ |
| 1038 | void rcu_request_urgent_qs_task(struct task_struct *t) |
| 1039 | { |
| 1040 | int cpu; |
| 1041 | |
| 1042 | barrier(); |
| 1043 | cpu = task_cpu(t); |
| 1044 | if (!task_curr(t)) |
| 1045 | return; /* This task is not running on that CPU. */ |
| 1046 | smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true); |
| 1047 | } |
| 1048 | |
| 1049 | #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) |
| 1050 | |
| 1051 | /* |
| 1052 | * Is the current CPU online as far as RCU is concerned? |
| 1053 | * |
| 1054 | * Disable preemption to avoid false positives that could otherwise |
| 1055 | * happen due to the current CPU number being sampled, this task being |
| 1056 | * preempted, its old CPU being taken offline, resuming on some other CPU, |
| 1057 | * then determining that its old CPU is now offline. Because there are |
| 1058 | * multiple flavors of RCU, and because this function can be called in the |
| 1059 | * midst of updating the flavors while a given CPU coming online or going |
| 1060 | * offline, it is necessary to check all flavors. If any of the flavors |
| 1061 | * believe that given CPU is online, it is considered to be online. |
| 1062 | * |
| 1063 | * Disable checking if in an NMI handler because we cannot safely |
| 1064 | * report errors from NMI handlers anyway. In addition, it is OK to use |
| 1065 | * RCU on an offline processor during initial boot, hence the check for |
| 1066 | * rcu_scheduler_fully_active. |
| 1067 | */ |
| 1068 | bool rcu_lockdep_current_cpu_online(void) |
| 1069 | { |
| 1070 | struct rcu_data *rdp; |
| 1071 | struct rcu_node *rnp; |
| 1072 | struct rcu_state *rsp; |
| 1073 | |
| 1074 | if (in_nmi() || !rcu_scheduler_fully_active) |
| 1075 | return true; |
| 1076 | preempt_disable(); |
| 1077 | for_each_rcu_flavor(rsp) { |
| 1078 | rdp = this_cpu_ptr(rsp->rda); |
| 1079 | rnp = rdp->mynode; |
| 1080 | if (rdp->grpmask & rcu_rnp_online_cpus(rnp)) { |
| 1081 | preempt_enable(); |
| 1082 | return true; |
| 1083 | } |
| 1084 | } |
| 1085 | preempt_enable(); |
| 1086 | return false; |
| 1087 | } |
| 1088 | EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); |
| 1089 | |
| 1090 | #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ |
| 1091 | |
| 1092 | /** |
| 1093 | * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle |
| 1094 | * |
| 1095 | * If the current CPU is idle or running at a first-level (not nested) |
| 1096 | * interrupt from idle, return true. The caller must have at least |
| 1097 | * disabled preemption. |
| 1098 | */ |
| 1099 | static int rcu_is_cpu_rrupt_from_idle(void) |
| 1100 | { |
| 1101 | return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 0 && |
| 1102 | __this_cpu_read(rcu_dynticks.dynticks_nmi_nesting) <= 1; |
| 1103 | } |
| 1104 | |
| 1105 | /* |
| 1106 | * We are reporting a quiescent state on behalf of some other CPU, so |
| 1107 | * it is our responsibility to check for and handle potential overflow |
| 1108 | * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. |
| 1109 | * After all, the CPU might be in deep idle state, and thus executing no |
| 1110 | * code whatsoever. |
| 1111 | */ |
| 1112 | static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) |
| 1113 | { |
| 1114 | raw_lockdep_assert_held_rcu_node(rnp); |
| 1115 | if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, |
| 1116 | rnp->gp_seq)) |
| 1117 | WRITE_ONCE(rdp->gpwrap, true); |
| 1118 | if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) |
| 1119 | rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; |
| 1120 | } |
| 1121 | |
| 1122 | /* |
| 1123 | * Snapshot the specified CPU's dynticks counter so that we can later |
| 1124 | * credit them with an implicit quiescent state. Return 1 if this CPU |
| 1125 | * is in dynticks idle mode, which is an extended quiescent state. |
| 1126 | */ |
| 1127 | static int dyntick_save_progress_counter(struct rcu_data *rdp) |
| 1128 | { |
| 1129 | rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks); |
| 1130 | if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { |
| 1131 | trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("dti")); |
| 1132 | rcu_gpnum_ovf(rdp->mynode, rdp); |
| 1133 | return 1; |
| 1134 | } |
| 1135 | return 0; |
| 1136 | } |
| 1137 | |
| 1138 | /* |
| 1139 | * Handler for the irq_work request posted when a grace period has |
| 1140 | * gone on for too long, but not yet long enough for an RCU CPU |
| 1141 | * stall warning. Set state appropriately, but just complain if |
| 1142 | * there is unexpected state on entry. |
| 1143 | */ |
| 1144 | static void rcu_iw_handler(struct irq_work *iwp) |
| 1145 | { |
| 1146 | struct rcu_data *rdp; |
| 1147 | struct rcu_node *rnp; |
| 1148 | |
| 1149 | rdp = container_of(iwp, struct rcu_data, rcu_iw); |
| 1150 | rnp = rdp->mynode; |
| 1151 | raw_spin_lock_rcu_node(rnp); |
| 1152 | if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) { |
| 1153 | rdp->rcu_iw_gp_seq = rnp->gp_seq; |
| 1154 | rdp->rcu_iw_pending = false; |
| 1155 | } |
| 1156 | raw_spin_unlock_rcu_node(rnp); |
| 1157 | } |
| 1158 | |
| 1159 | /* |
| 1160 | * Return true if the specified CPU has passed through a quiescent |
| 1161 | * state by virtue of being in or having passed through an dynticks |
| 1162 | * idle state since the last call to dyntick_save_progress_counter() |
| 1163 | * for this same CPU, or by virtue of having been offline. |
| 1164 | */ |
| 1165 | static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) |
| 1166 | { |
| 1167 | unsigned long jtsq; |
| 1168 | bool *rnhqp; |
| 1169 | bool *ruqp; |
| 1170 | struct rcu_node *rnp = rdp->mynode; |
| 1171 | |
| 1172 | /* |
| 1173 | * If the CPU passed through or entered a dynticks idle phase with |
| 1174 | * no active irq/NMI handlers, then we can safely pretend that the CPU |
| 1175 | * already acknowledged the request to pass through a quiescent |
| 1176 | * state. Either way, that CPU cannot possibly be in an RCU |
| 1177 | * read-side critical section that started before the beginning |
| 1178 | * of the current RCU grace period. |
| 1179 | */ |
| 1180 | if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) { |
| 1181 | trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("dti")); |
| 1182 | rdp->dynticks_fqs++; |
| 1183 | rcu_gpnum_ovf(rnp, rdp); |
| 1184 | return 1; |
| 1185 | } |
| 1186 | |
| 1187 | /* |
| 1188 | * Has this CPU encountered a cond_resched() since the beginning |
| 1189 | * of the grace period? For this to be the case, the CPU has to |
| 1190 | * have noticed the current grace period. This might not be the |
| 1191 | * case for nohz_full CPUs looping in the kernel. |
| 1192 | */ |
| 1193 | jtsq = jiffies_till_sched_qs; |
| 1194 | ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu); |
| 1195 | if (time_after(jiffies, rdp->rsp->gp_start + jtsq) && |
| 1196 | READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) && |
| 1197 | rcu_seq_current(&rdp->gp_seq) == rnp->gp_seq && !rdp->gpwrap) { |
| 1198 | trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("rqc")); |
| 1199 | rcu_gpnum_ovf(rnp, rdp); |
| 1200 | return 1; |
| 1201 | } else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) { |
| 1202 | /* Load rcu_qs_ctr before store to rcu_urgent_qs. */ |
| 1203 | smp_store_release(ruqp, true); |
| 1204 | } |
| 1205 | |
| 1206 | /* If waiting too long on an offline CPU, complain. */ |
| 1207 | if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) && |
| 1208 | time_after(jiffies, rdp->rsp->gp_start + HZ)) { |
| 1209 | bool onl; |
| 1210 | struct rcu_node *rnp1; |
| 1211 | |
| 1212 | WARN_ON(1); /* Offline CPUs are supposed to report QS! */ |
| 1213 | pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", |
| 1214 | __func__, rnp->grplo, rnp->grphi, rnp->level, |
| 1215 | (long)rnp->gp_seq, (long)rnp->completedqs); |
| 1216 | for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) |
| 1217 | pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", |
| 1218 | __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); |
| 1219 | onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); |
| 1220 | pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", |
| 1221 | __func__, rdp->cpu, ".o"[onl], |
| 1222 | (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, |
| 1223 | (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); |
| 1224 | return 1; /* Break things loose after complaining. */ |
| 1225 | } |
| 1226 | |
| 1227 | /* |
| 1228 | * A CPU running for an extended time within the kernel can |
| 1229 | * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode, |
| 1230 | * even context-switching back and forth between a pair of |
| 1231 | * in-kernel CPU-bound tasks cannot advance grace periods. |
| 1232 | * So if the grace period is old enough, make the CPU pay attention. |
| 1233 | * Note that the unsynchronized assignments to the per-CPU |
| 1234 | * rcu_need_heavy_qs variable are safe. Yes, setting of |
| 1235 | * bits can be lost, but they will be set again on the next |
| 1236 | * force-quiescent-state pass. So lost bit sets do not result |
| 1237 | * in incorrect behavior, merely in a grace period lasting |
| 1238 | * a few jiffies longer than it might otherwise. Because |
| 1239 | * there are at most four threads involved, and because the |
| 1240 | * updates are only once every few jiffies, the probability of |
| 1241 | * lossage (and thus of slight grace-period extension) is |
| 1242 | * quite low. |
| 1243 | */ |
| 1244 | rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu); |
| 1245 | if (!READ_ONCE(*rnhqp) && |
| 1246 | (time_after(jiffies, rdp->rsp->gp_start + jtsq) || |
| 1247 | time_after(jiffies, rdp->rsp->jiffies_resched))) { |
| 1248 | WRITE_ONCE(*rnhqp, true); |
| 1249 | /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ |
| 1250 | smp_store_release(ruqp, true); |
| 1251 | rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */ |
| 1252 | } |
| 1253 | |
| 1254 | /* |
| 1255 | * If more than halfway to RCU CPU stall-warning time, do a |
| 1256 | * resched_cpu() to try to loosen things up a bit. Also check to |
| 1257 | * see if the CPU is getting hammered with interrupts, but only |
| 1258 | * once per grace period, just to keep the IPIs down to a dull roar. |
| 1259 | */ |
| 1260 | if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) { |
| 1261 | resched_cpu(rdp->cpu); |
| 1262 | if (IS_ENABLED(CONFIG_IRQ_WORK) && |
| 1263 | !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && |
| 1264 | (rnp->ffmask & rdp->grpmask)) { |
| 1265 | init_irq_work(&rdp->rcu_iw, rcu_iw_handler); |
| 1266 | rdp->rcu_iw_pending = true; |
| 1267 | rdp->rcu_iw_gp_seq = rnp->gp_seq; |
| 1268 | irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); |
| 1269 | } |
| 1270 | } |
| 1271 | |
| 1272 | return 0; |
| 1273 | } |
| 1274 | |
| 1275 | static void record_gp_stall_check_time(struct rcu_state *rsp) |
| 1276 | { |
| 1277 | unsigned long j = jiffies; |
| 1278 | unsigned long j1; |
| 1279 | |
| 1280 | rsp->gp_start = j; |
| 1281 | j1 = rcu_jiffies_till_stall_check(); |
| 1282 | /* Record ->gp_start before ->jiffies_stall. */ |
| 1283 | smp_store_release(&rsp->jiffies_stall, j + j1); /* ^^^ */ |
| 1284 | rsp->jiffies_resched = j + j1 / 2; |
| 1285 | rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs); |
| 1286 | } |
| 1287 | |
| 1288 | /* |
| 1289 | * Convert a ->gp_state value to a character string. |
| 1290 | */ |
| 1291 | static const char *gp_state_getname(short gs) |
| 1292 | { |
| 1293 | if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names)) |
| 1294 | return "???"; |
| 1295 | return gp_state_names[gs]; |
| 1296 | } |
| 1297 | |
| 1298 | /* |
| 1299 | * Complain about starvation of grace-period kthread. |
| 1300 | */ |
| 1301 | static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp) |
| 1302 | { |
| 1303 | unsigned long gpa; |
| 1304 | unsigned long j; |
| 1305 | |
| 1306 | j = jiffies; |
| 1307 | gpa = READ_ONCE(rsp->gp_activity); |
| 1308 | if (j - gpa > 2 * HZ) { |
| 1309 | pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n", |
| 1310 | rsp->name, j - gpa, |
| 1311 | (long)rcu_seq_current(&rsp->gp_seq), |
| 1312 | rsp->gp_flags, |
| 1313 | gp_state_getname(rsp->gp_state), rsp->gp_state, |
| 1314 | rsp->gp_kthread ? rsp->gp_kthread->state : ~0, |
| 1315 | rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1); |
| 1316 | if (rsp->gp_kthread) { |
| 1317 | pr_err("RCU grace-period kthread stack dump:\n"); |
| 1318 | sched_show_task(rsp->gp_kthread); |
| 1319 | wake_up_process(rsp->gp_kthread); |
| 1320 | } |
| 1321 | } |
| 1322 | } |
| 1323 | |
| 1324 | /* |
| 1325 | * Dump stacks of all tasks running on stalled CPUs. First try using |
| 1326 | * NMIs, but fall back to manual remote stack tracing on architectures |
| 1327 | * that don't support NMI-based stack dumps. The NMI-triggered stack |
| 1328 | * traces are more accurate because they are printed by the target CPU. |
| 1329 | */ |
| 1330 | static void rcu_dump_cpu_stacks(struct rcu_state *rsp) |
| 1331 | { |
| 1332 | int cpu; |
| 1333 | unsigned long flags; |
| 1334 | struct rcu_node *rnp; |
| 1335 | |
| 1336 | rcu_for_each_leaf_node(rsp, rnp) { |
| 1337 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 1338 | for_each_leaf_node_possible_cpu(rnp, cpu) |
| 1339 | if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) |
| 1340 | if (!trigger_single_cpu_backtrace(cpu)) |
| 1341 | dump_cpu_task(cpu); |
| 1342 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 1343 | } |
| 1344 | } |
| 1345 | |
| 1346 | /* |
| 1347 | * If too much time has passed in the current grace period, and if |
| 1348 | * so configured, go kick the relevant kthreads. |
| 1349 | */ |
| 1350 | static void rcu_stall_kick_kthreads(struct rcu_state *rsp) |
| 1351 | { |
| 1352 | unsigned long j; |
| 1353 | |
| 1354 | if (!rcu_kick_kthreads) |
| 1355 | return; |
| 1356 | j = READ_ONCE(rsp->jiffies_kick_kthreads); |
| 1357 | if (time_after(jiffies, j) && rsp->gp_kthread && |
| 1358 | (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) { |
| 1359 | WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name); |
| 1360 | rcu_ftrace_dump(DUMP_ALL); |
| 1361 | wake_up_process(rsp->gp_kthread); |
| 1362 | WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ); |
| 1363 | } |
| 1364 | } |
| 1365 | |
| 1366 | static void panic_on_rcu_stall(void) |
| 1367 | { |
| 1368 | if (sysctl_panic_on_rcu_stall) |
| 1369 | panic("RCU Stall\n"); |
| 1370 | } |
| 1371 | |
| 1372 | static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gp_seq) |
| 1373 | { |
| 1374 | int cpu; |
| 1375 | unsigned long flags; |
| 1376 | unsigned long gpa; |
| 1377 | unsigned long j; |
| 1378 | int ndetected = 0; |
| 1379 | struct rcu_node *rnp = rcu_get_root(rsp); |
| 1380 | long totqlen = 0; |
| 1381 | |
| 1382 | /* Kick and suppress, if so configured. */ |
| 1383 | rcu_stall_kick_kthreads(rsp); |
| 1384 | if (rcu_cpu_stall_suppress) |
| 1385 | return; |
| 1386 | |
| 1387 | /* |
| 1388 | * OK, time to rat on our buddy... |
| 1389 | * See Documentation/RCU/stallwarn.txt for info on how to debug |
| 1390 | * RCU CPU stall warnings. |
| 1391 | */ |
| 1392 | pr_err("INFO: %s detected stalls on CPUs/tasks:", rsp->name); |
| 1393 | print_cpu_stall_info_begin(); |
| 1394 | rcu_for_each_leaf_node(rsp, rnp) { |
| 1395 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 1396 | ndetected += rcu_print_task_stall(rnp); |
| 1397 | if (rnp->qsmask != 0) { |
| 1398 | for_each_leaf_node_possible_cpu(rnp, cpu) |
| 1399 | if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) { |
| 1400 | print_cpu_stall_info(rsp, cpu); |
| 1401 | ndetected++; |
| 1402 | } |
| 1403 | } |
| 1404 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 1405 | } |
| 1406 | |
| 1407 | print_cpu_stall_info_end(); |
| 1408 | for_each_possible_cpu(cpu) |
| 1409 | totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda, |
| 1410 | cpu)->cblist); |
| 1411 | pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n", |
| 1412 | smp_processor_id(), (long)(jiffies - rsp->gp_start), |
| 1413 | (long)rcu_seq_current(&rsp->gp_seq), totqlen); |
| 1414 | if (ndetected) { |
| 1415 | rcu_dump_cpu_stacks(rsp); |
| 1416 | |
| 1417 | /* Complain about tasks blocking the grace period. */ |
| 1418 | rcu_print_detail_task_stall(rsp); |
| 1419 | } else { |
| 1420 | if (rcu_seq_current(&rsp->gp_seq) != gp_seq) { |
| 1421 | pr_err("INFO: Stall ended before state dump start\n"); |
| 1422 | } else { |
| 1423 | j = jiffies; |
| 1424 | gpa = READ_ONCE(rsp->gp_activity); |
| 1425 | pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", |
| 1426 | rsp->name, j - gpa, j, gpa, |
| 1427 | jiffies_till_next_fqs, |
| 1428 | rcu_get_root(rsp)->qsmask); |
| 1429 | /* In this case, the current CPU might be at fault. */ |
| 1430 | sched_show_task(current); |
| 1431 | } |
| 1432 | } |
| 1433 | /* Rewrite if needed in case of slow consoles. */ |
| 1434 | if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall))) |
| 1435 | WRITE_ONCE(rsp->jiffies_stall, |
| 1436 | jiffies + 3 * rcu_jiffies_till_stall_check() + 3); |
| 1437 | |
| 1438 | rcu_check_gp_kthread_starvation(rsp); |
| 1439 | |
| 1440 | panic_on_rcu_stall(); |
| 1441 | |
| 1442 | force_quiescent_state(rsp); /* Kick them all. */ |
| 1443 | } |
| 1444 | |
| 1445 | static void print_cpu_stall(struct rcu_state *rsp) |
| 1446 | { |
| 1447 | int cpu; |
| 1448 | unsigned long flags; |
| 1449 | struct rcu_data *rdp = this_cpu_ptr(rsp->rda); |
| 1450 | struct rcu_node *rnp = rcu_get_root(rsp); |
| 1451 | long totqlen = 0; |
| 1452 | |
| 1453 | /* Kick and suppress, if so configured. */ |
| 1454 | rcu_stall_kick_kthreads(rsp); |
| 1455 | if (rcu_cpu_stall_suppress) |
| 1456 | return; |
| 1457 | |
| 1458 | /* |
| 1459 | * OK, time to rat on ourselves... |
| 1460 | * See Documentation/RCU/stallwarn.txt for info on how to debug |
| 1461 | * RCU CPU stall warnings. |
| 1462 | */ |
| 1463 | pr_err("INFO: %s self-detected stall on CPU", rsp->name); |
| 1464 | print_cpu_stall_info_begin(); |
| 1465 | raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags); |
| 1466 | print_cpu_stall_info(rsp, smp_processor_id()); |
| 1467 | raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags); |
| 1468 | print_cpu_stall_info_end(); |
| 1469 | for_each_possible_cpu(cpu) |
| 1470 | totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda, |
| 1471 | cpu)->cblist); |
| 1472 | pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n", |
| 1473 | jiffies - rsp->gp_start, |
| 1474 | (long)rcu_seq_current(&rsp->gp_seq), totqlen); |
| 1475 | |
| 1476 | rcu_check_gp_kthread_starvation(rsp); |
| 1477 | |
| 1478 | rcu_dump_cpu_stacks(rsp); |
| 1479 | |
| 1480 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 1481 | /* Rewrite if needed in case of slow consoles. */ |
| 1482 | if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall))) |
| 1483 | WRITE_ONCE(rsp->jiffies_stall, |
| 1484 | jiffies + 3 * rcu_jiffies_till_stall_check() + 3); |
| 1485 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 1486 | |
| 1487 | panic_on_rcu_stall(); |
| 1488 | |
| 1489 | /* |
| 1490 | * Attempt to revive the RCU machinery by forcing a context switch. |
| 1491 | * |
| 1492 | * A context switch would normally allow the RCU state machine to make |
| 1493 | * progress and it could be we're stuck in kernel space without context |
| 1494 | * switches for an entirely unreasonable amount of time. |
| 1495 | */ |
| 1496 | resched_cpu(smp_processor_id()); |
| 1497 | } |
| 1498 | |
| 1499 | static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) |
| 1500 | { |
| 1501 | unsigned long gs1; |
| 1502 | unsigned long gs2; |
| 1503 | unsigned long gps; |
| 1504 | unsigned long j; |
| 1505 | unsigned long jn; |
| 1506 | unsigned long js; |
| 1507 | struct rcu_node *rnp; |
| 1508 | |
| 1509 | if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) || |
| 1510 | !rcu_gp_in_progress(rsp)) |
| 1511 | return; |
| 1512 | rcu_stall_kick_kthreads(rsp); |
| 1513 | j = jiffies; |
| 1514 | |
| 1515 | /* |
| 1516 | * Lots of memory barriers to reject false positives. |
| 1517 | * |
| 1518 | * The idea is to pick up rsp->gp_seq, then rsp->jiffies_stall, |
| 1519 | * then rsp->gp_start, and finally another copy of rsp->gp_seq. |
| 1520 | * These values are updated in the opposite order with memory |
| 1521 | * barriers (or equivalent) during grace-period initialization |
| 1522 | * and cleanup. Now, a false positive can occur if we get an new |
| 1523 | * value of rsp->gp_start and a old value of rsp->jiffies_stall. |
| 1524 | * But given the memory barriers, the only way that this can happen |
| 1525 | * is if one grace period ends and another starts between these |
| 1526 | * two fetches. This is detected by comparing the second fetch |
| 1527 | * of rsp->gp_seq with the previous fetch from rsp->gp_seq. |
| 1528 | * |
| 1529 | * Given this check, comparisons of jiffies, rsp->jiffies_stall, |
| 1530 | * and rsp->gp_start suffice to forestall false positives. |
| 1531 | */ |
| 1532 | gs1 = READ_ONCE(rsp->gp_seq); |
| 1533 | smp_rmb(); /* Pick up ->gp_seq first... */ |
| 1534 | js = READ_ONCE(rsp->jiffies_stall); |
| 1535 | smp_rmb(); /* ...then ->jiffies_stall before the rest... */ |
| 1536 | gps = READ_ONCE(rsp->gp_start); |
| 1537 | smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */ |
| 1538 | gs2 = READ_ONCE(rsp->gp_seq); |
| 1539 | if (gs1 != gs2 || |
| 1540 | ULONG_CMP_LT(j, js) || |
| 1541 | ULONG_CMP_GE(gps, js)) |
| 1542 | return; /* No stall or GP completed since entering function. */ |
| 1543 | rnp = rdp->mynode; |
| 1544 | jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3; |
| 1545 | if (rcu_gp_in_progress(rsp) && |
| 1546 | (READ_ONCE(rnp->qsmask) & rdp->grpmask) && |
| 1547 | cmpxchg(&rsp->jiffies_stall, js, jn) == js) { |
| 1548 | |
| 1549 | /* We haven't checked in, so go dump stack. */ |
| 1550 | print_cpu_stall(rsp); |
| 1551 | |
| 1552 | } else if (rcu_gp_in_progress(rsp) && |
| 1553 | ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) && |
| 1554 | cmpxchg(&rsp->jiffies_stall, js, jn) == js) { |
| 1555 | |
| 1556 | /* They had a few time units to dump stack, so complain. */ |
| 1557 | print_other_cpu_stall(rsp, gs2); |
| 1558 | } |
| 1559 | } |
| 1560 | |
| 1561 | /** |
| 1562 | * rcu_cpu_stall_reset - prevent further stall warnings in current grace period |
| 1563 | * |
| 1564 | * Set the stall-warning timeout way off into the future, thus preventing |
| 1565 | * any RCU CPU stall-warning messages from appearing in the current set of |
| 1566 | * RCU grace periods. |
| 1567 | * |
| 1568 | * The caller must disable hard irqs. |
| 1569 | */ |
| 1570 | void rcu_cpu_stall_reset(void) |
| 1571 | { |
| 1572 | struct rcu_state *rsp; |
| 1573 | |
| 1574 | for_each_rcu_flavor(rsp) |
| 1575 | WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2); |
| 1576 | } |
| 1577 | |
| 1578 | /* Trace-event wrapper function for trace_rcu_future_grace_period. */ |
| 1579 | static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, |
| 1580 | unsigned long gp_seq_req, const char *s) |
| 1581 | { |
| 1582 | trace_rcu_future_grace_period(rdp->rsp->name, rnp->gp_seq, gp_seq_req, |
| 1583 | rnp->level, rnp->grplo, rnp->grphi, s); |
| 1584 | } |
| 1585 | |
| 1586 | /* |
| 1587 | * rcu_start_this_gp - Request the start of a particular grace period |
| 1588 | * @rnp_start: The leaf node of the CPU from which to start. |
| 1589 | * @rdp: The rcu_data corresponding to the CPU from which to start. |
| 1590 | * @gp_seq_req: The gp_seq of the grace period to start. |
| 1591 | * |
| 1592 | * Start the specified grace period, as needed to handle newly arrived |
| 1593 | * callbacks. The required future grace periods are recorded in each |
| 1594 | * rcu_node structure's ->gp_seq_needed field. Returns true if there |
| 1595 | * is reason to awaken the grace-period kthread. |
| 1596 | * |
| 1597 | * The caller must hold the specified rcu_node structure's ->lock, which |
| 1598 | * is why the caller is responsible for waking the grace-period kthread. |
| 1599 | * |
| 1600 | * Returns true if the GP thread needs to be awakened else false. |
| 1601 | */ |
| 1602 | static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, |
| 1603 | unsigned long gp_seq_req) |
| 1604 | { |
| 1605 | bool ret = false; |
| 1606 | struct rcu_state *rsp = rdp->rsp; |
| 1607 | struct rcu_node *rnp; |
| 1608 | |
| 1609 | /* |
| 1610 | * Use funnel locking to either acquire the root rcu_node |
| 1611 | * structure's lock or bail out if the need for this grace period |
| 1612 | * has already been recorded -- or if that grace period has in |
| 1613 | * fact already started. If there is already a grace period in |
| 1614 | * progress in a non-leaf node, no recording is needed because the |
| 1615 | * end of the grace period will scan the leaf rcu_node structures. |
| 1616 | * Note that rnp_start->lock must not be released. |
| 1617 | */ |
| 1618 | raw_lockdep_assert_held_rcu_node(rnp_start); |
| 1619 | trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); |
| 1620 | for (rnp = rnp_start; 1; rnp = rnp->parent) { |
| 1621 | if (rnp != rnp_start) |
| 1622 | raw_spin_lock_rcu_node(rnp); |
| 1623 | if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || |
| 1624 | rcu_seq_started(&rnp->gp_seq, gp_seq_req) || |
| 1625 | (rnp != rnp_start && |
| 1626 | rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { |
| 1627 | trace_rcu_this_gp(rnp, rdp, gp_seq_req, |
| 1628 | TPS("Prestarted")); |
| 1629 | goto unlock_out; |
| 1630 | } |
| 1631 | rnp->gp_seq_needed = gp_seq_req; |
| 1632 | if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { |
| 1633 | /* |
| 1634 | * We just marked the leaf or internal node, and a |
| 1635 | * grace period is in progress, which means that |
| 1636 | * rcu_gp_cleanup() will see the marking. Bail to |
| 1637 | * reduce contention. |
| 1638 | */ |
| 1639 | trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, |
| 1640 | TPS("Startedleaf")); |
| 1641 | goto unlock_out; |
| 1642 | } |
| 1643 | if (rnp != rnp_start && rnp->parent != NULL) |
| 1644 | raw_spin_unlock_rcu_node(rnp); |
| 1645 | if (!rnp->parent) |
| 1646 | break; /* At root, and perhaps also leaf. */ |
| 1647 | } |
| 1648 | |
| 1649 | /* If GP already in progress, just leave, otherwise start one. */ |
| 1650 | if (rcu_gp_in_progress(rsp)) { |
| 1651 | trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); |
| 1652 | goto unlock_out; |
| 1653 | } |
| 1654 | trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); |
| 1655 | WRITE_ONCE(rsp->gp_flags, rsp->gp_flags | RCU_GP_FLAG_INIT); |
| 1656 | rsp->gp_req_activity = jiffies; |
| 1657 | if (!rsp->gp_kthread) { |
| 1658 | trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); |
| 1659 | goto unlock_out; |
| 1660 | } |
| 1661 | trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gp_seq), TPS("newreq")); |
| 1662 | ret = true; /* Caller must wake GP kthread. */ |
| 1663 | unlock_out: |
| 1664 | /* Push furthest requested GP to leaf node and rcu_data structure. */ |
| 1665 | if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { |
| 1666 | rnp_start->gp_seq_needed = rnp->gp_seq_needed; |
| 1667 | rdp->gp_seq_needed = rnp->gp_seq_needed; |
| 1668 | } |
| 1669 | if (rnp != rnp_start) |
| 1670 | raw_spin_unlock_rcu_node(rnp); |
| 1671 | return ret; |
| 1672 | } |
| 1673 | |
| 1674 | /* |
| 1675 | * Clean up any old requests for the just-ended grace period. Also return |
| 1676 | * whether any additional grace periods have been requested. |
| 1677 | */ |
| 1678 | static bool rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) |
| 1679 | { |
| 1680 | bool needmore; |
| 1681 | struct rcu_data *rdp = this_cpu_ptr(rsp->rda); |
| 1682 | |
| 1683 | needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); |
| 1684 | if (!needmore) |
| 1685 | rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ |
| 1686 | trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, |
| 1687 | needmore ? TPS("CleanupMore") : TPS("Cleanup")); |
| 1688 | return needmore; |
| 1689 | } |
| 1690 | |
| 1691 | /* |
| 1692 | * Awaken the grace-period kthread for the specified flavor of RCU. |
| 1693 | * Don't do a self-awaken, and don't bother awakening when there is |
| 1694 | * nothing for the grace-period kthread to do (as in several CPUs |
| 1695 | * raced to awaken, and we lost), and finally don't try to awaken |
| 1696 | * a kthread that has not yet been created. |
| 1697 | */ |
| 1698 | static void rcu_gp_kthread_wake(struct rcu_state *rsp) |
| 1699 | { |
| 1700 | if (current == rsp->gp_kthread || |
| 1701 | !READ_ONCE(rsp->gp_flags) || |
| 1702 | !rsp->gp_kthread) |
| 1703 | return; |
| 1704 | swake_up_one(&rsp->gp_wq); |
| 1705 | } |
| 1706 | |
| 1707 | /* |
| 1708 | * If there is room, assign a ->gp_seq number to any callbacks on this |
| 1709 | * CPU that have not already been assigned. Also accelerate any callbacks |
| 1710 | * that were previously assigned a ->gp_seq number that has since proven |
| 1711 | * to be too conservative, which can happen if callbacks get assigned a |
| 1712 | * ->gp_seq number while RCU is idle, but with reference to a non-root |
| 1713 | * rcu_node structure. This function is idempotent, so it does not hurt |
| 1714 | * to call it repeatedly. Returns an flag saying that we should awaken |
| 1715 | * the RCU grace-period kthread. |
| 1716 | * |
| 1717 | * The caller must hold rnp->lock with interrupts disabled. |
| 1718 | */ |
| 1719 | static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, |
| 1720 | struct rcu_data *rdp) |
| 1721 | { |
| 1722 | unsigned long gp_seq_req; |
| 1723 | bool ret = false; |
| 1724 | |
| 1725 | raw_lockdep_assert_held_rcu_node(rnp); |
| 1726 | |
| 1727 | /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ |
| 1728 | if (!rcu_segcblist_pend_cbs(&rdp->cblist)) |
| 1729 | return false; |
| 1730 | |
| 1731 | /* |
| 1732 | * Callbacks are often registered with incomplete grace-period |
| 1733 | * information. Something about the fact that getting exact |
| 1734 | * information requires acquiring a global lock... RCU therefore |
| 1735 | * makes a conservative estimate of the grace period number at which |
| 1736 | * a given callback will become ready to invoke. The following |
| 1737 | * code checks this estimate and improves it when possible, thus |
| 1738 | * accelerating callback invocation to an earlier grace-period |
| 1739 | * number. |
| 1740 | */ |
| 1741 | gp_seq_req = rcu_seq_snap(&rsp->gp_seq); |
| 1742 | if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) |
| 1743 | ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); |
| 1744 | |
| 1745 | /* Trace depending on how much we were able to accelerate. */ |
| 1746 | if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) |
| 1747 | trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("AccWaitCB")); |
| 1748 | else |
| 1749 | trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("AccReadyCB")); |
| 1750 | return ret; |
| 1751 | } |
| 1752 | |
| 1753 | /* |
| 1754 | * Similar to rcu_accelerate_cbs(), but does not require that the leaf |
| 1755 | * rcu_node structure's ->lock be held. It consults the cached value |
| 1756 | * of ->gp_seq_needed in the rcu_data structure, and if that indicates |
| 1757 | * that a new grace-period request be made, invokes rcu_accelerate_cbs() |
| 1758 | * while holding the leaf rcu_node structure's ->lock. |
| 1759 | */ |
| 1760 | static void rcu_accelerate_cbs_unlocked(struct rcu_state *rsp, |
| 1761 | struct rcu_node *rnp, |
| 1762 | struct rcu_data *rdp) |
| 1763 | { |
| 1764 | unsigned long c; |
| 1765 | bool needwake; |
| 1766 | |
| 1767 | lockdep_assert_irqs_disabled(); |
| 1768 | c = rcu_seq_snap(&rsp->gp_seq); |
| 1769 | if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { |
| 1770 | /* Old request still live, so mark recent callbacks. */ |
| 1771 | (void)rcu_segcblist_accelerate(&rdp->cblist, c); |
| 1772 | return; |
| 1773 | } |
| 1774 | raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ |
| 1775 | needwake = rcu_accelerate_cbs(rsp, rnp, rdp); |
| 1776 | raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ |
| 1777 | if (needwake) |
| 1778 | rcu_gp_kthread_wake(rsp); |
| 1779 | } |
| 1780 | |
| 1781 | /* |
| 1782 | * Move any callbacks whose grace period has completed to the |
| 1783 | * RCU_DONE_TAIL sublist, then compact the remaining sublists and |
| 1784 | * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL |
| 1785 | * sublist. This function is idempotent, so it does not hurt to |
| 1786 | * invoke it repeatedly. As long as it is not invoked -too- often... |
| 1787 | * Returns true if the RCU grace-period kthread needs to be awakened. |
| 1788 | * |
| 1789 | * The caller must hold rnp->lock with interrupts disabled. |
| 1790 | */ |
| 1791 | static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, |
| 1792 | struct rcu_data *rdp) |
| 1793 | { |
| 1794 | raw_lockdep_assert_held_rcu_node(rnp); |
| 1795 | |
| 1796 | /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ |
| 1797 | if (!rcu_segcblist_pend_cbs(&rdp->cblist)) |
| 1798 | return false; |
| 1799 | |
| 1800 | /* |
| 1801 | * Find all callbacks whose ->gp_seq numbers indicate that they |
| 1802 | * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. |
| 1803 | */ |
| 1804 | rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); |
| 1805 | |
| 1806 | /* Classify any remaining callbacks. */ |
| 1807 | return rcu_accelerate_cbs(rsp, rnp, rdp); |
| 1808 | } |
| 1809 | |
| 1810 | /* |
| 1811 | * Update CPU-local rcu_data state to record the beginnings and ends of |
| 1812 | * grace periods. The caller must hold the ->lock of the leaf rcu_node |
| 1813 | * structure corresponding to the current CPU, and must have irqs disabled. |
| 1814 | * Returns true if the grace-period kthread needs to be awakened. |
| 1815 | */ |
| 1816 | static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, |
| 1817 | struct rcu_data *rdp) |
| 1818 | { |
| 1819 | bool ret; |
| 1820 | bool need_gp; |
| 1821 | |
| 1822 | raw_lockdep_assert_held_rcu_node(rnp); |
| 1823 | |
| 1824 | if (rdp->gp_seq == rnp->gp_seq) |
| 1825 | return false; /* Nothing to do. */ |
| 1826 | |
| 1827 | /* Handle the ends of any preceding grace periods first. */ |
| 1828 | if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || |
| 1829 | unlikely(READ_ONCE(rdp->gpwrap))) { |
| 1830 | ret = rcu_advance_cbs(rsp, rnp, rdp); /* Advance callbacks. */ |
| 1831 | trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("cpuend")); |
| 1832 | } else { |
| 1833 | ret = rcu_accelerate_cbs(rsp, rnp, rdp); /* Recent callbacks. */ |
| 1834 | } |
| 1835 | |
| 1836 | /* Now handle the beginnings of any new-to-this-CPU grace periods. */ |
| 1837 | if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || |
| 1838 | unlikely(READ_ONCE(rdp->gpwrap))) { |
| 1839 | /* |
| 1840 | * If the current grace period is waiting for this CPU, |
| 1841 | * set up to detect a quiescent state, otherwise don't |
| 1842 | * go looking for one. |
| 1843 | */ |
| 1844 | trace_rcu_grace_period(rsp->name, rnp->gp_seq, TPS("cpustart")); |
| 1845 | need_gp = !!(rnp->qsmask & rdp->grpmask); |
| 1846 | rdp->cpu_no_qs.b.norm = need_gp; |
| 1847 | rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr); |
| 1848 | rdp->core_needs_qs = need_gp; |
| 1849 | zero_cpu_stall_ticks(rdp); |
| 1850 | } |
| 1851 | rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ |
| 1852 | if (ULONG_CMP_GE(rnp->gp_seq_needed, rdp->gp_seq_needed) || rdp->gpwrap) |
| 1853 | rdp->gp_seq_needed = rnp->gp_seq_needed; |
| 1854 | WRITE_ONCE(rdp->gpwrap, false); |
| 1855 | rcu_gpnum_ovf(rnp, rdp); |
| 1856 | return ret; |
| 1857 | } |
| 1858 | |
| 1859 | static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) |
| 1860 | { |
| 1861 | unsigned long flags; |
| 1862 | bool needwake; |
| 1863 | struct rcu_node *rnp; |
| 1864 | |
| 1865 | local_irq_save(flags); |
| 1866 | rnp = rdp->mynode; |
| 1867 | if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && |
| 1868 | !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ |
| 1869 | !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ |
| 1870 | local_irq_restore(flags); |
| 1871 | return; |
| 1872 | } |
| 1873 | needwake = __note_gp_changes(rsp, rnp, rdp); |
| 1874 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 1875 | if (needwake) |
| 1876 | rcu_gp_kthread_wake(rsp); |
| 1877 | } |
| 1878 | |
| 1879 | static void rcu_gp_slow(struct rcu_state *rsp, int delay) |
| 1880 | { |
| 1881 | if (delay > 0 && |
| 1882 | !(rcu_seq_ctr(rsp->gp_seq) % |
| 1883 | (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) |
| 1884 | schedule_timeout_uninterruptible(delay); |
| 1885 | } |
| 1886 | |
| 1887 | /* |
| 1888 | * Initialize a new grace period. Return false if no grace period required. |
| 1889 | */ |
| 1890 | static bool rcu_gp_init(struct rcu_state *rsp) |
| 1891 | { |
| 1892 | unsigned long flags; |
| 1893 | unsigned long oldmask; |
| 1894 | unsigned long mask; |
| 1895 | struct rcu_data *rdp; |
| 1896 | struct rcu_node *rnp = rcu_get_root(rsp); |
| 1897 | |
| 1898 | WRITE_ONCE(rsp->gp_activity, jiffies); |
| 1899 | raw_spin_lock_irq_rcu_node(rnp); |
| 1900 | if (!READ_ONCE(rsp->gp_flags)) { |
| 1901 | /* Spurious wakeup, tell caller to go back to sleep. */ |
| 1902 | raw_spin_unlock_irq_rcu_node(rnp); |
| 1903 | return false; |
| 1904 | } |
| 1905 | WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */ |
| 1906 | |
| 1907 | if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { |
| 1908 | /* |
| 1909 | * Grace period already in progress, don't start another. |
| 1910 | * Not supposed to be able to happen. |
| 1911 | */ |
| 1912 | raw_spin_unlock_irq_rcu_node(rnp); |
| 1913 | return false; |
| 1914 | } |
| 1915 | |
| 1916 | /* Advance to a new grace period and initialize state. */ |
| 1917 | record_gp_stall_check_time(rsp); |
| 1918 | /* Record GP times before starting GP, hence rcu_seq_start(). */ |
| 1919 | rcu_seq_start(&rsp->gp_seq); |
| 1920 | trace_rcu_grace_period(rsp->name, rsp->gp_seq, TPS("start")); |
| 1921 | raw_spin_unlock_irq_rcu_node(rnp); |
| 1922 | |
| 1923 | /* |
| 1924 | * Apply per-leaf buffered online and offline operations to the |
| 1925 | * rcu_node tree. Note that this new grace period need not wait |
| 1926 | * for subsequent online CPUs, and that quiescent-state forcing |
| 1927 | * will handle subsequent offline CPUs. |
| 1928 | */ |
| 1929 | rsp->gp_state = RCU_GP_ONOFF; |
| 1930 | rcu_for_each_leaf_node(rsp, rnp) { |
| 1931 | spin_lock(&rsp->ofl_lock); |
| 1932 | raw_spin_lock_irq_rcu_node(rnp); |
| 1933 | if (rnp->qsmaskinit == rnp->qsmaskinitnext && |
| 1934 | !rnp->wait_blkd_tasks) { |
| 1935 | /* Nothing to do on this leaf rcu_node structure. */ |
| 1936 | raw_spin_unlock_irq_rcu_node(rnp); |
| 1937 | spin_unlock(&rsp->ofl_lock); |
| 1938 | continue; |
| 1939 | } |
| 1940 | |
| 1941 | /* Record old state, apply changes to ->qsmaskinit field. */ |
| 1942 | oldmask = rnp->qsmaskinit; |
| 1943 | rnp->qsmaskinit = rnp->qsmaskinitnext; |
| 1944 | |
| 1945 | /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ |
| 1946 | if (!oldmask != !rnp->qsmaskinit) { |
| 1947 | if (!oldmask) { /* First online CPU for rcu_node. */ |
| 1948 | if (!rnp->wait_blkd_tasks) /* Ever offline? */ |
| 1949 | rcu_init_new_rnp(rnp); |
| 1950 | } else if (rcu_preempt_has_tasks(rnp)) { |
| 1951 | rnp->wait_blkd_tasks = true; /* blocked tasks */ |
| 1952 | } else { /* Last offline CPU and can propagate. */ |
| 1953 | rcu_cleanup_dead_rnp(rnp); |
| 1954 | } |
| 1955 | } |
| 1956 | |
| 1957 | /* |
| 1958 | * If all waited-on tasks from prior grace period are |
| 1959 | * done, and if all this rcu_node structure's CPUs are |
| 1960 | * still offline, propagate up the rcu_node tree and |
| 1961 | * clear ->wait_blkd_tasks. Otherwise, if one of this |
| 1962 | * rcu_node structure's CPUs has since come back online, |
| 1963 | * simply clear ->wait_blkd_tasks. |
| 1964 | */ |
| 1965 | if (rnp->wait_blkd_tasks && |
| 1966 | (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { |
| 1967 | rnp->wait_blkd_tasks = false; |
| 1968 | if (!rnp->qsmaskinit) |
| 1969 | rcu_cleanup_dead_rnp(rnp); |
| 1970 | } |
| 1971 | |
| 1972 | raw_spin_unlock_irq_rcu_node(rnp); |
| 1973 | spin_unlock(&rsp->ofl_lock); |
| 1974 | } |
| 1975 | rcu_gp_slow(rsp, gp_preinit_delay); /* Races with CPU hotplug. */ |
| 1976 | |
| 1977 | /* |
| 1978 | * Set the quiescent-state-needed bits in all the rcu_node |
| 1979 | * structures for all currently online CPUs in breadth-first order, |
| 1980 | * starting from the root rcu_node structure, relying on the layout |
| 1981 | * of the tree within the rsp->node[] array. Note that other CPUs |
| 1982 | * will access only the leaves of the hierarchy, thus seeing that no |
| 1983 | * grace period is in progress, at least until the corresponding |
| 1984 | * leaf node has been initialized. |
| 1985 | * |
| 1986 | * The grace period cannot complete until the initialization |
| 1987 | * process finishes, because this kthread handles both. |
| 1988 | */ |
| 1989 | rsp->gp_state = RCU_GP_INIT; |
| 1990 | rcu_for_each_node_breadth_first(rsp, rnp) { |
| 1991 | rcu_gp_slow(rsp, gp_init_delay); |
| 1992 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 1993 | rdp = this_cpu_ptr(rsp->rda); |
| 1994 | rcu_preempt_check_blocked_tasks(rsp, rnp); |
| 1995 | rnp->qsmask = rnp->qsmaskinit; |
| 1996 | WRITE_ONCE(rnp->gp_seq, rsp->gp_seq); |
| 1997 | if (rnp == rdp->mynode) |
| 1998 | (void)__note_gp_changes(rsp, rnp, rdp); |
| 1999 | rcu_preempt_boost_start_gp(rnp); |
| 2000 | trace_rcu_grace_period_init(rsp->name, rnp->gp_seq, |
| 2001 | rnp->level, rnp->grplo, |
| 2002 | rnp->grphi, rnp->qsmask); |
| 2003 | /* Quiescent states for tasks on any now-offline CPUs. */ |
| 2004 | mask = rnp->qsmask & ~rnp->qsmaskinitnext; |
| 2005 | rnp->rcu_gp_init_mask = mask; |
| 2006 | if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) |
| 2007 | rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags); |
| 2008 | else |
| 2009 | raw_spin_unlock_irq_rcu_node(rnp); |
| 2010 | cond_resched_tasks_rcu_qs(); |
| 2011 | WRITE_ONCE(rsp->gp_activity, jiffies); |
| 2012 | } |
| 2013 | |
| 2014 | return true; |
| 2015 | } |
| 2016 | |
| 2017 | /* |
| 2018 | * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state |
| 2019 | * time. |
| 2020 | */ |
| 2021 | static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp) |
| 2022 | { |
| 2023 | struct rcu_node *rnp = rcu_get_root(rsp); |
| 2024 | |
| 2025 | /* Someone like call_rcu() requested a force-quiescent-state scan. */ |
| 2026 | *gfp = READ_ONCE(rsp->gp_flags); |
| 2027 | if (*gfp & RCU_GP_FLAG_FQS) |
| 2028 | return true; |
| 2029 | |
| 2030 | /* The current grace period has completed. */ |
| 2031 | if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) |
| 2032 | return true; |
| 2033 | |
| 2034 | return false; |
| 2035 | } |
| 2036 | |
| 2037 | /* |
| 2038 | * Do one round of quiescent-state forcing. |
| 2039 | */ |
| 2040 | static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time) |
| 2041 | { |
| 2042 | struct rcu_node *rnp = rcu_get_root(rsp); |
| 2043 | |
| 2044 | WRITE_ONCE(rsp->gp_activity, jiffies); |
| 2045 | rsp->n_force_qs++; |
| 2046 | if (first_time) { |
| 2047 | /* Collect dyntick-idle snapshots. */ |
| 2048 | force_qs_rnp(rsp, dyntick_save_progress_counter); |
| 2049 | } else { |
| 2050 | /* Handle dyntick-idle and offline CPUs. */ |
| 2051 | force_qs_rnp(rsp, rcu_implicit_dynticks_qs); |
| 2052 | } |
| 2053 | /* Clear flag to prevent immediate re-entry. */ |
| 2054 | if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { |
| 2055 | raw_spin_lock_irq_rcu_node(rnp); |
| 2056 | WRITE_ONCE(rsp->gp_flags, |
| 2057 | READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS); |
| 2058 | raw_spin_unlock_irq_rcu_node(rnp); |
| 2059 | } |
| 2060 | } |
| 2061 | |
| 2062 | /* |
| 2063 | * Clean up after the old grace period. |
| 2064 | */ |
| 2065 | static void rcu_gp_cleanup(struct rcu_state *rsp) |
| 2066 | { |
| 2067 | unsigned long gp_duration; |
| 2068 | bool needgp = false; |
| 2069 | unsigned long new_gp_seq; |
| 2070 | struct rcu_data *rdp; |
| 2071 | struct rcu_node *rnp = rcu_get_root(rsp); |
| 2072 | struct swait_queue_head *sq; |
| 2073 | |
| 2074 | WRITE_ONCE(rsp->gp_activity, jiffies); |
| 2075 | raw_spin_lock_irq_rcu_node(rnp); |
| 2076 | gp_duration = jiffies - rsp->gp_start; |
| 2077 | if (gp_duration > rsp->gp_max) |
| 2078 | rsp->gp_max = gp_duration; |
| 2079 | |
| 2080 | /* |
| 2081 | * We know the grace period is complete, but to everyone else |
| 2082 | * it appears to still be ongoing. But it is also the case |
| 2083 | * that to everyone else it looks like there is nothing that |
| 2084 | * they can do to advance the grace period. It is therefore |
| 2085 | * safe for us to drop the lock in order to mark the grace |
| 2086 | * period as completed in all of the rcu_node structures. |
| 2087 | */ |
| 2088 | raw_spin_unlock_irq_rcu_node(rnp); |
| 2089 | |
| 2090 | /* |
| 2091 | * Propagate new ->gp_seq value to rcu_node structures so that |
| 2092 | * other CPUs don't have to wait until the start of the next grace |
| 2093 | * period to process their callbacks. This also avoids some nasty |
| 2094 | * RCU grace-period initialization races by forcing the end of |
| 2095 | * the current grace period to be completely recorded in all of |
| 2096 | * the rcu_node structures before the beginning of the next grace |
| 2097 | * period is recorded in any of the rcu_node structures. |
| 2098 | */ |
| 2099 | new_gp_seq = rsp->gp_seq; |
| 2100 | rcu_seq_end(&new_gp_seq); |
| 2101 | rcu_for_each_node_breadth_first(rsp, rnp) { |
| 2102 | raw_spin_lock_irq_rcu_node(rnp); |
| 2103 | if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) |
| 2104 | dump_blkd_tasks(rsp, rnp, 10); |
| 2105 | WARN_ON_ONCE(rnp->qsmask); |
| 2106 | WRITE_ONCE(rnp->gp_seq, new_gp_seq); |
| 2107 | rdp = this_cpu_ptr(rsp->rda); |
| 2108 | if (rnp == rdp->mynode) |
| 2109 | needgp = __note_gp_changes(rsp, rnp, rdp) || needgp; |
| 2110 | /* smp_mb() provided by prior unlock-lock pair. */ |
| 2111 | needgp = rcu_future_gp_cleanup(rsp, rnp) || needgp; |
| 2112 | sq = rcu_nocb_gp_get(rnp); |
| 2113 | raw_spin_unlock_irq_rcu_node(rnp); |
| 2114 | rcu_nocb_gp_cleanup(sq); |
| 2115 | cond_resched_tasks_rcu_qs(); |
| 2116 | WRITE_ONCE(rsp->gp_activity, jiffies); |
| 2117 | rcu_gp_slow(rsp, gp_cleanup_delay); |
| 2118 | } |
| 2119 | rnp = rcu_get_root(rsp); |
| 2120 | raw_spin_lock_irq_rcu_node(rnp); /* GP before rsp->gp_seq update. */ |
| 2121 | |
| 2122 | /* Declare grace period done. */ |
| 2123 | rcu_seq_end(&rsp->gp_seq); |
| 2124 | trace_rcu_grace_period(rsp->name, rsp->gp_seq, TPS("end")); |
| 2125 | rsp->gp_state = RCU_GP_IDLE; |
| 2126 | /* Check for GP requests since above loop. */ |
| 2127 | rdp = this_cpu_ptr(rsp->rda); |
| 2128 | if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { |
| 2129 | trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, |
| 2130 | TPS("CleanupMore")); |
| 2131 | needgp = true; |
| 2132 | } |
| 2133 | /* Advance CBs to reduce false positives below. */ |
| 2134 | if (!rcu_accelerate_cbs(rsp, rnp, rdp) && needgp) { |
| 2135 | WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); |
| 2136 | rsp->gp_req_activity = jiffies; |
| 2137 | trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gp_seq), |
| 2138 | TPS("newreq")); |
| 2139 | } else { |
| 2140 | WRITE_ONCE(rsp->gp_flags, rsp->gp_flags & RCU_GP_FLAG_INIT); |
| 2141 | } |
| 2142 | raw_spin_unlock_irq_rcu_node(rnp); |
| 2143 | } |
| 2144 | |
| 2145 | /* |
| 2146 | * Body of kthread that handles grace periods. |
| 2147 | */ |
| 2148 | static int __noreturn rcu_gp_kthread(void *arg) |
| 2149 | { |
| 2150 | bool first_gp_fqs; |
| 2151 | int gf; |
| 2152 | unsigned long j; |
| 2153 | int ret; |
| 2154 | struct rcu_state *rsp = arg; |
| 2155 | struct rcu_node *rnp = rcu_get_root(rsp); |
| 2156 | |
| 2157 | rcu_bind_gp_kthread(); |
| 2158 | for (;;) { |
| 2159 | |
| 2160 | /* Handle grace-period start. */ |
| 2161 | for (;;) { |
| 2162 | trace_rcu_grace_period(rsp->name, |
| 2163 | READ_ONCE(rsp->gp_seq), |
| 2164 | TPS("reqwait")); |
| 2165 | rsp->gp_state = RCU_GP_WAIT_GPS; |
| 2166 | swait_event_idle_exclusive(rsp->gp_wq, READ_ONCE(rsp->gp_flags) & |
| 2167 | RCU_GP_FLAG_INIT); |
| 2168 | rsp->gp_state = RCU_GP_DONE_GPS; |
| 2169 | /* Locking provides needed memory barrier. */ |
| 2170 | if (rcu_gp_init(rsp)) |
| 2171 | break; |
| 2172 | cond_resched_tasks_rcu_qs(); |
| 2173 | WRITE_ONCE(rsp->gp_activity, jiffies); |
| 2174 | WARN_ON(signal_pending(current)); |
| 2175 | trace_rcu_grace_period(rsp->name, |
| 2176 | READ_ONCE(rsp->gp_seq), |
| 2177 | TPS("reqwaitsig")); |
| 2178 | } |
| 2179 | |
| 2180 | /* Handle quiescent-state forcing. */ |
| 2181 | first_gp_fqs = true; |
| 2182 | j = jiffies_till_first_fqs; |
| 2183 | ret = 0; |
| 2184 | for (;;) { |
| 2185 | if (!ret) { |
| 2186 | rsp->jiffies_force_qs = jiffies + j; |
| 2187 | WRITE_ONCE(rsp->jiffies_kick_kthreads, |
| 2188 | jiffies + 3 * j); |
| 2189 | } |
| 2190 | trace_rcu_grace_period(rsp->name, |
| 2191 | READ_ONCE(rsp->gp_seq), |
| 2192 | TPS("fqswait")); |
| 2193 | rsp->gp_state = RCU_GP_WAIT_FQS; |
| 2194 | ret = swait_event_idle_timeout_exclusive(rsp->gp_wq, |
| 2195 | rcu_gp_fqs_check_wake(rsp, &gf), j); |
| 2196 | rsp->gp_state = RCU_GP_DOING_FQS; |
| 2197 | /* Locking provides needed memory barriers. */ |
| 2198 | /* If grace period done, leave loop. */ |
| 2199 | if (!READ_ONCE(rnp->qsmask) && |
| 2200 | !rcu_preempt_blocked_readers_cgp(rnp)) |
| 2201 | break; |
| 2202 | /* If time for quiescent-state forcing, do it. */ |
| 2203 | if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || |
| 2204 | (gf & RCU_GP_FLAG_FQS)) { |
| 2205 | trace_rcu_grace_period(rsp->name, |
| 2206 | READ_ONCE(rsp->gp_seq), |
| 2207 | TPS("fqsstart")); |
| 2208 | rcu_gp_fqs(rsp, first_gp_fqs); |
| 2209 | first_gp_fqs = false; |
| 2210 | trace_rcu_grace_period(rsp->name, |
| 2211 | READ_ONCE(rsp->gp_seq), |
| 2212 | TPS("fqsend")); |
| 2213 | cond_resched_tasks_rcu_qs(); |
| 2214 | WRITE_ONCE(rsp->gp_activity, jiffies); |
| 2215 | ret = 0; /* Force full wait till next FQS. */ |
| 2216 | j = jiffies_till_next_fqs; |
| 2217 | } else { |
| 2218 | /* Deal with stray signal. */ |
| 2219 | cond_resched_tasks_rcu_qs(); |
| 2220 | WRITE_ONCE(rsp->gp_activity, jiffies); |
| 2221 | WARN_ON(signal_pending(current)); |
| 2222 | trace_rcu_grace_period(rsp->name, |
| 2223 | READ_ONCE(rsp->gp_seq), |
| 2224 | TPS("fqswaitsig")); |
| 2225 | ret = 1; /* Keep old FQS timing. */ |
| 2226 | j = jiffies; |
| 2227 | if (time_after(jiffies, rsp->jiffies_force_qs)) |
| 2228 | j = 1; |
| 2229 | else |
| 2230 | j = rsp->jiffies_force_qs - j; |
| 2231 | } |
| 2232 | } |
| 2233 | |
| 2234 | /* Handle grace-period end. */ |
| 2235 | rsp->gp_state = RCU_GP_CLEANUP; |
| 2236 | rcu_gp_cleanup(rsp); |
| 2237 | rsp->gp_state = RCU_GP_CLEANED; |
| 2238 | } |
| 2239 | } |
| 2240 | |
| 2241 | /* |
| 2242 | * Report a full set of quiescent states to the specified rcu_state data |
| 2243 | * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period |
| 2244 | * kthread if another grace period is required. Whether we wake |
| 2245 | * the grace-period kthread or it awakens itself for the next round |
| 2246 | * of quiescent-state forcing, that kthread will clean up after the |
| 2247 | * just-completed grace period. Note that the caller must hold rnp->lock, |
| 2248 | * which is released before return. |
| 2249 | */ |
| 2250 | static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) |
| 2251 | __releases(rcu_get_root(rsp)->lock) |
| 2252 | { |
| 2253 | raw_lockdep_assert_held_rcu_node(rcu_get_root(rsp)); |
| 2254 | WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); |
| 2255 | WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); |
| 2256 | raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); |
| 2257 | rcu_gp_kthread_wake(rsp); |
| 2258 | } |
| 2259 | |
| 2260 | /* |
| 2261 | * Similar to rcu_report_qs_rdp(), for which it is a helper function. |
| 2262 | * Allows quiescent states for a group of CPUs to be reported at one go |
| 2263 | * to the specified rcu_node structure, though all the CPUs in the group |
| 2264 | * must be represented by the same rcu_node structure (which need not be a |
| 2265 | * leaf rcu_node structure, though it often will be). The gps parameter |
| 2266 | * is the grace-period snapshot, which means that the quiescent states |
| 2267 | * are valid only if rnp->gp_seq is equal to gps. That structure's lock |
| 2268 | * must be held upon entry, and it is released before return. |
| 2269 | * |
| 2270 | * As a special case, if mask is zero, the bit-already-cleared check is |
| 2271 | * disabled. This allows propagating quiescent state due to resumed tasks |
| 2272 | * during grace-period initialization. |
| 2273 | */ |
| 2274 | static void |
| 2275 | rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, |
| 2276 | struct rcu_node *rnp, unsigned long gps, unsigned long flags) |
| 2277 | __releases(rnp->lock) |
| 2278 | { |
| 2279 | unsigned long oldmask = 0; |
| 2280 | struct rcu_node *rnp_c; |
| 2281 | |
| 2282 | raw_lockdep_assert_held_rcu_node(rnp); |
| 2283 | |
| 2284 | /* Walk up the rcu_node hierarchy. */ |
| 2285 | for (;;) { |
| 2286 | if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { |
| 2287 | |
| 2288 | /* |
| 2289 | * Our bit has already been cleared, or the |
| 2290 | * relevant grace period is already over, so done. |
| 2291 | */ |
| 2292 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 2293 | return; |
| 2294 | } |
| 2295 | WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ |
| 2296 | WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && |
| 2297 | rcu_preempt_blocked_readers_cgp(rnp)); |
| 2298 | rnp->qsmask &= ~mask; |
| 2299 | trace_rcu_quiescent_state_report(rsp->name, rnp->gp_seq, |
| 2300 | mask, rnp->qsmask, rnp->level, |
| 2301 | rnp->grplo, rnp->grphi, |
| 2302 | !!rnp->gp_tasks); |
| 2303 | if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { |
| 2304 | |
| 2305 | /* Other bits still set at this level, so done. */ |
| 2306 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 2307 | return; |
| 2308 | } |
| 2309 | rnp->completedqs = rnp->gp_seq; |
| 2310 | mask = rnp->grpmask; |
| 2311 | if (rnp->parent == NULL) { |
| 2312 | |
| 2313 | /* No more levels. Exit loop holding root lock. */ |
| 2314 | |
| 2315 | break; |
| 2316 | } |
| 2317 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 2318 | rnp_c = rnp; |
| 2319 | rnp = rnp->parent; |
| 2320 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 2321 | oldmask = rnp_c->qsmask; |
| 2322 | } |
| 2323 | |
| 2324 | /* |
| 2325 | * Get here if we are the last CPU to pass through a quiescent |
| 2326 | * state for this grace period. Invoke rcu_report_qs_rsp() |
| 2327 | * to clean up and start the next grace period if one is needed. |
| 2328 | */ |
| 2329 | rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ |
| 2330 | } |
| 2331 | |
| 2332 | /* |
| 2333 | * Record a quiescent state for all tasks that were previously queued |
| 2334 | * on the specified rcu_node structure and that were blocking the current |
| 2335 | * RCU grace period. The caller must hold the specified rnp->lock with |
| 2336 | * irqs disabled, and this lock is released upon return, but irqs remain |
| 2337 | * disabled. |
| 2338 | */ |
| 2339 | static void __maybe_unused |
| 2340 | rcu_report_unblock_qs_rnp(struct rcu_state *rsp, |
| 2341 | struct rcu_node *rnp, unsigned long flags) |
| 2342 | __releases(rnp->lock) |
| 2343 | { |
| 2344 | unsigned long gps; |
| 2345 | unsigned long mask; |
| 2346 | struct rcu_node *rnp_p; |
| 2347 | |
| 2348 | raw_lockdep_assert_held_rcu_node(rnp); |
| 2349 | if (WARN_ON_ONCE(rcu_state_p == &rcu_sched_state) || |
| 2350 | WARN_ON_ONCE(rsp != rcu_state_p) || |
| 2351 | WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || |
| 2352 | rnp->qsmask != 0) { |
| 2353 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 2354 | return; /* Still need more quiescent states! */ |
| 2355 | } |
| 2356 | |
| 2357 | rnp->completedqs = rnp->gp_seq; |
| 2358 | rnp_p = rnp->parent; |
| 2359 | if (rnp_p == NULL) { |
| 2360 | /* |
| 2361 | * Only one rcu_node structure in the tree, so don't |
| 2362 | * try to report up to its nonexistent parent! |
| 2363 | */ |
| 2364 | rcu_report_qs_rsp(rsp, flags); |
| 2365 | return; |
| 2366 | } |
| 2367 | |
| 2368 | /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ |
| 2369 | gps = rnp->gp_seq; |
| 2370 | mask = rnp->grpmask; |
| 2371 | raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ |
| 2372 | raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ |
| 2373 | rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags); |
| 2374 | } |
| 2375 | |
| 2376 | /* |
| 2377 | * Record a quiescent state for the specified CPU to that CPU's rcu_data |
| 2378 | * structure. This must be called from the specified CPU. |
| 2379 | */ |
| 2380 | static void |
| 2381 | rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) |
| 2382 | { |
| 2383 | unsigned long flags; |
| 2384 | unsigned long mask; |
| 2385 | bool needwake; |
| 2386 | struct rcu_node *rnp; |
| 2387 | |
| 2388 | rnp = rdp->mynode; |
| 2389 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 2390 | if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || |
| 2391 | rdp->gpwrap) { |
| 2392 | |
| 2393 | /* |
| 2394 | * The grace period in which this quiescent state was |
| 2395 | * recorded has ended, so don't report it upwards. |
| 2396 | * We will instead need a new quiescent state that lies |
| 2397 | * within the current grace period. |
| 2398 | */ |
| 2399 | rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ |
| 2400 | rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr); |
| 2401 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 2402 | return; |
| 2403 | } |
| 2404 | mask = rdp->grpmask; |
| 2405 | if ((rnp->qsmask & mask) == 0) { |
| 2406 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 2407 | } else { |
| 2408 | rdp->core_needs_qs = false; |
| 2409 | |
| 2410 | /* |
| 2411 | * This GP can't end until cpu checks in, so all of our |
| 2412 | * callbacks can be processed during the next GP. |
| 2413 | */ |
| 2414 | needwake = rcu_accelerate_cbs(rsp, rnp, rdp); |
| 2415 | |
| 2416 | rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags); |
| 2417 | /* ^^^ Released rnp->lock */ |
| 2418 | if (needwake) |
| 2419 | rcu_gp_kthread_wake(rsp); |
| 2420 | } |
| 2421 | } |
| 2422 | |
| 2423 | /* |
| 2424 | * Check to see if there is a new grace period of which this CPU |
| 2425 | * is not yet aware, and if so, set up local rcu_data state for it. |
| 2426 | * Otherwise, see if this CPU has just passed through its first |
| 2427 | * quiescent state for this grace period, and record that fact if so. |
| 2428 | */ |
| 2429 | static void |
| 2430 | rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) |
| 2431 | { |
| 2432 | /* Check for grace-period ends and beginnings. */ |
| 2433 | note_gp_changes(rsp, rdp); |
| 2434 | |
| 2435 | /* |
| 2436 | * Does this CPU still need to do its part for current grace period? |
| 2437 | * If no, return and let the other CPUs do their part as well. |
| 2438 | */ |
| 2439 | if (!rdp->core_needs_qs) |
| 2440 | return; |
| 2441 | |
| 2442 | /* |
| 2443 | * Was there a quiescent state since the beginning of the grace |
| 2444 | * period? If no, then exit and wait for the next call. |
| 2445 | */ |
| 2446 | if (rdp->cpu_no_qs.b.norm) |
| 2447 | return; |
| 2448 | |
| 2449 | /* |
| 2450 | * Tell RCU we are done (but rcu_report_qs_rdp() will be the |
| 2451 | * judge of that). |
| 2452 | */ |
| 2453 | rcu_report_qs_rdp(rdp->cpu, rsp, rdp); |
| 2454 | } |
| 2455 | |
| 2456 | /* |
| 2457 | * Trace the fact that this CPU is going offline. |
| 2458 | */ |
| 2459 | static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) |
| 2460 | { |
| 2461 | RCU_TRACE(bool blkd;) |
| 2462 | RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);) |
| 2463 | RCU_TRACE(struct rcu_node *rnp = rdp->mynode;) |
| 2464 | |
| 2465 | if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) |
| 2466 | return; |
| 2467 | |
| 2468 | RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);) |
| 2469 | trace_rcu_grace_period(rsp->name, rnp->gp_seq, |
| 2470 | blkd ? TPS("cpuofl") : TPS("cpuofl-bgp")); |
| 2471 | } |
| 2472 | |
| 2473 | /* |
| 2474 | * All CPUs for the specified rcu_node structure have gone offline, |
| 2475 | * and all tasks that were preempted within an RCU read-side critical |
| 2476 | * section while running on one of those CPUs have since exited their RCU |
| 2477 | * read-side critical section. Some other CPU is reporting this fact with |
| 2478 | * the specified rcu_node structure's ->lock held and interrupts disabled. |
| 2479 | * This function therefore goes up the tree of rcu_node structures, |
| 2480 | * clearing the corresponding bits in the ->qsmaskinit fields. Note that |
| 2481 | * the leaf rcu_node structure's ->qsmaskinit field has already been |
| 2482 | * updated. |
| 2483 | * |
| 2484 | * This function does check that the specified rcu_node structure has |
| 2485 | * all CPUs offline and no blocked tasks, so it is OK to invoke it |
| 2486 | * prematurely. That said, invoking it after the fact will cost you |
| 2487 | * a needless lock acquisition. So once it has done its work, don't |
| 2488 | * invoke it again. |
| 2489 | */ |
| 2490 | static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) |
| 2491 | { |
| 2492 | long mask; |
| 2493 | struct rcu_node *rnp = rnp_leaf; |
| 2494 | |
| 2495 | raw_lockdep_assert_held_rcu_node(rnp_leaf); |
| 2496 | if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || |
| 2497 | WARN_ON_ONCE(rnp_leaf->qsmaskinit) || |
| 2498 | WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) |
| 2499 | return; |
| 2500 | for (;;) { |
| 2501 | mask = rnp->grpmask; |
| 2502 | rnp = rnp->parent; |
| 2503 | if (!rnp) |
| 2504 | break; |
| 2505 | raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ |
| 2506 | rnp->qsmaskinit &= ~mask; |
| 2507 | /* Between grace periods, so better already be zero! */ |
| 2508 | WARN_ON_ONCE(rnp->qsmask); |
| 2509 | if (rnp->qsmaskinit) { |
| 2510 | raw_spin_unlock_rcu_node(rnp); |
| 2511 | /* irqs remain disabled. */ |
| 2512 | return; |
| 2513 | } |
| 2514 | raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ |
| 2515 | } |
| 2516 | } |
| 2517 | |
| 2518 | /* |
| 2519 | * The CPU has been completely removed, and some other CPU is reporting |
| 2520 | * this fact from process context. Do the remainder of the cleanup. |
| 2521 | * There can only be one CPU hotplug operation at a time, so no need for |
| 2522 | * explicit locking. |
| 2523 | */ |
| 2524 | static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) |
| 2525 | { |
| 2526 | struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); |
| 2527 | struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ |
| 2528 | |
| 2529 | if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) |
| 2530 | return; |
| 2531 | |
| 2532 | /* Adjust any no-longer-needed kthreads. */ |
| 2533 | rcu_boost_kthread_setaffinity(rnp, -1); |
| 2534 | } |
| 2535 | |
| 2536 | /* |
| 2537 | * Invoke any RCU callbacks that have made it to the end of their grace |
| 2538 | * period. Thottle as specified by rdp->blimit. |
| 2539 | */ |
| 2540 | static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) |
| 2541 | { |
| 2542 | unsigned long flags; |
| 2543 | struct rcu_head *rhp; |
| 2544 | struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); |
| 2545 | long bl, count; |
| 2546 | |
| 2547 | /* If no callbacks are ready, just return. */ |
| 2548 | if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { |
| 2549 | trace_rcu_batch_start(rsp->name, |
| 2550 | rcu_segcblist_n_lazy_cbs(&rdp->cblist), |
| 2551 | rcu_segcblist_n_cbs(&rdp->cblist), 0); |
| 2552 | trace_rcu_batch_end(rsp->name, 0, |
| 2553 | !rcu_segcblist_empty(&rdp->cblist), |
| 2554 | need_resched(), is_idle_task(current), |
| 2555 | rcu_is_callbacks_kthread()); |
| 2556 | return; |
| 2557 | } |
| 2558 | |
| 2559 | /* |
| 2560 | * Extract the list of ready callbacks, disabling to prevent |
| 2561 | * races with call_rcu() from interrupt handlers. Leave the |
| 2562 | * callback counts, as rcu_barrier() needs to be conservative. |
| 2563 | */ |
| 2564 | local_irq_save(flags); |
| 2565 | WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); |
| 2566 | bl = rdp->blimit; |
| 2567 | trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist), |
| 2568 | rcu_segcblist_n_cbs(&rdp->cblist), bl); |
| 2569 | rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); |
| 2570 | local_irq_restore(flags); |
| 2571 | |
| 2572 | /* Invoke callbacks. */ |
| 2573 | rhp = rcu_cblist_dequeue(&rcl); |
| 2574 | for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { |
| 2575 | debug_rcu_head_unqueue(rhp); |
| 2576 | if (__rcu_reclaim(rsp->name, rhp)) |
| 2577 | rcu_cblist_dequeued_lazy(&rcl); |
| 2578 | /* |
| 2579 | * Stop only if limit reached and CPU has something to do. |
| 2580 | * Note: The rcl structure counts down from zero. |
| 2581 | */ |
| 2582 | if (-rcl.len >= bl && |
| 2583 | (need_resched() || |
| 2584 | (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) |
| 2585 | break; |
| 2586 | } |
| 2587 | |
| 2588 | local_irq_save(flags); |
| 2589 | count = -rcl.len; |
| 2590 | trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(), |
| 2591 | is_idle_task(current), rcu_is_callbacks_kthread()); |
| 2592 | |
| 2593 | /* Update counts and requeue any remaining callbacks. */ |
| 2594 | rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); |
| 2595 | smp_mb(); /* List handling before counting for rcu_barrier(). */ |
| 2596 | rcu_segcblist_insert_count(&rdp->cblist, &rcl); |
| 2597 | |
| 2598 | /* Reinstate batch limit if we have worked down the excess. */ |
| 2599 | count = rcu_segcblist_n_cbs(&rdp->cblist); |
| 2600 | if (rdp->blimit == LONG_MAX && count <= qlowmark) |
| 2601 | rdp->blimit = blimit; |
| 2602 | |
| 2603 | /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ |
| 2604 | if (count == 0 && rdp->qlen_last_fqs_check != 0) { |
| 2605 | rdp->qlen_last_fqs_check = 0; |
| 2606 | rdp->n_force_qs_snap = rsp->n_force_qs; |
| 2607 | } else if (count < rdp->qlen_last_fqs_check - qhimark) |
| 2608 | rdp->qlen_last_fqs_check = count; |
| 2609 | |
| 2610 | /* |
| 2611 | * The following usually indicates a double call_rcu(). To track |
| 2612 | * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. |
| 2613 | */ |
| 2614 | WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0)); |
| 2615 | |
| 2616 | local_irq_restore(flags); |
| 2617 | |
| 2618 | /* Re-invoke RCU core processing if there are callbacks remaining. */ |
| 2619 | if (rcu_segcblist_ready_cbs(&rdp->cblist)) |
| 2620 | invoke_rcu_core(); |
| 2621 | } |
| 2622 | |
| 2623 | /* |
| 2624 | * Check to see if this CPU is in a non-context-switch quiescent state |
| 2625 | * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). |
| 2626 | * Also schedule RCU core processing. |
| 2627 | * |
| 2628 | * This function must be called from hardirq context. It is normally |
| 2629 | * invoked from the scheduling-clock interrupt. |
| 2630 | */ |
| 2631 | void rcu_check_callbacks(int user) |
| 2632 | { |
| 2633 | trace_rcu_utilization(TPS("Start scheduler-tick")); |
| 2634 | increment_cpu_stall_ticks(); |
| 2635 | if (user || rcu_is_cpu_rrupt_from_idle()) { |
| 2636 | |
| 2637 | /* |
| 2638 | * Get here if this CPU took its interrupt from user |
| 2639 | * mode or from the idle loop, and if this is not a |
| 2640 | * nested interrupt. In this case, the CPU is in |
| 2641 | * a quiescent state, so note it. |
| 2642 | * |
| 2643 | * No memory barrier is required here because both |
| 2644 | * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local |
| 2645 | * variables that other CPUs neither access nor modify, |
| 2646 | * at least not while the corresponding CPU is online. |
| 2647 | */ |
| 2648 | |
| 2649 | rcu_sched_qs(); |
| 2650 | rcu_bh_qs(); |
| 2651 | rcu_note_voluntary_context_switch(current); |
| 2652 | |
| 2653 | } else if (!in_softirq()) { |
| 2654 | |
| 2655 | /* |
| 2656 | * Get here if this CPU did not take its interrupt from |
| 2657 | * softirq, in other words, if it is not interrupting |
| 2658 | * a rcu_bh read-side critical section. This is an _bh |
| 2659 | * critical section, so note it. |
| 2660 | */ |
| 2661 | |
| 2662 | rcu_bh_qs(); |
| 2663 | } |
| 2664 | rcu_preempt_check_callbacks(); |
| 2665 | /* The load-acquire pairs with the store-release setting to true. */ |
| 2666 | if (smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) { |
| 2667 | /* Idle and userspace execution already are quiescent states. */ |
| 2668 | if (!rcu_is_cpu_rrupt_from_idle() && !user) { |
| 2669 | set_tsk_need_resched(current); |
| 2670 | set_preempt_need_resched(); |
| 2671 | } |
| 2672 | __this_cpu_write(rcu_dynticks.rcu_urgent_qs, false); |
| 2673 | } |
| 2674 | if (rcu_pending()) |
| 2675 | invoke_rcu_core(); |
| 2676 | |
| 2677 | trace_rcu_utilization(TPS("End scheduler-tick")); |
| 2678 | } |
| 2679 | |
| 2680 | /* |
| 2681 | * Scan the leaf rcu_node structures, processing dyntick state for any that |
| 2682 | * have not yet encountered a quiescent state, using the function specified. |
| 2683 | * Also initiate boosting for any threads blocked on the root rcu_node. |
| 2684 | * |
| 2685 | * The caller must have suppressed start of new grace periods. |
| 2686 | */ |
| 2687 | static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp)) |
| 2688 | { |
| 2689 | int cpu; |
| 2690 | unsigned long flags; |
| 2691 | unsigned long mask; |
| 2692 | struct rcu_node *rnp; |
| 2693 | |
| 2694 | rcu_for_each_leaf_node(rsp, rnp) { |
| 2695 | cond_resched_tasks_rcu_qs(); |
| 2696 | mask = 0; |
| 2697 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 2698 | if (rnp->qsmask == 0) { |
| 2699 | if (rcu_state_p == &rcu_sched_state || |
| 2700 | rsp != rcu_state_p || |
| 2701 | rcu_preempt_blocked_readers_cgp(rnp)) { |
| 2702 | /* |
| 2703 | * No point in scanning bits because they |
| 2704 | * are all zero. But we might need to |
| 2705 | * priority-boost blocked readers. |
| 2706 | */ |
| 2707 | rcu_initiate_boost(rnp, flags); |
| 2708 | /* rcu_initiate_boost() releases rnp->lock */ |
| 2709 | continue; |
| 2710 | } |
| 2711 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 2712 | continue; |
| 2713 | } |
| 2714 | for_each_leaf_node_possible_cpu(rnp, cpu) { |
| 2715 | unsigned long bit = leaf_node_cpu_bit(rnp, cpu); |
| 2716 | if ((rnp->qsmask & bit) != 0) { |
| 2717 | if (f(per_cpu_ptr(rsp->rda, cpu))) |
| 2718 | mask |= bit; |
| 2719 | } |
| 2720 | } |
| 2721 | if (mask != 0) { |
| 2722 | /* Idle/offline CPUs, report (releases rnp->lock). */ |
| 2723 | rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags); |
| 2724 | } else { |
| 2725 | /* Nothing to do here, so just drop the lock. */ |
| 2726 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 2727 | } |
| 2728 | } |
| 2729 | } |
| 2730 | |
| 2731 | /* |
| 2732 | * Force quiescent states on reluctant CPUs, and also detect which |
| 2733 | * CPUs are in dyntick-idle mode. |
| 2734 | */ |
| 2735 | static void force_quiescent_state(struct rcu_state *rsp) |
| 2736 | { |
| 2737 | unsigned long flags; |
| 2738 | bool ret; |
| 2739 | struct rcu_node *rnp; |
| 2740 | struct rcu_node *rnp_old = NULL; |
| 2741 | |
| 2742 | /* Funnel through hierarchy to reduce memory contention. */ |
| 2743 | rnp = __this_cpu_read(rsp->rda->mynode); |
| 2744 | for (; rnp != NULL; rnp = rnp->parent) { |
| 2745 | ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || |
| 2746 | !raw_spin_trylock(&rnp->fqslock); |
| 2747 | if (rnp_old != NULL) |
| 2748 | raw_spin_unlock(&rnp_old->fqslock); |
| 2749 | if (ret) |
| 2750 | return; |
| 2751 | rnp_old = rnp; |
| 2752 | } |
| 2753 | /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ |
| 2754 | |
| 2755 | /* Reached the root of the rcu_node tree, acquire lock. */ |
| 2756 | raw_spin_lock_irqsave_rcu_node(rnp_old, flags); |
| 2757 | raw_spin_unlock(&rnp_old->fqslock); |
| 2758 | if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { |
| 2759 | raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); |
| 2760 | return; /* Someone beat us to it. */ |
| 2761 | } |
| 2762 | WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); |
| 2763 | raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); |
| 2764 | rcu_gp_kthread_wake(rsp); |
| 2765 | } |
| 2766 | |
| 2767 | /* |
| 2768 | * This function checks for grace-period requests that fail to motivate |
| 2769 | * RCU to come out of its idle mode. |
| 2770 | */ |
| 2771 | static void |
| 2772 | rcu_check_gp_start_stall(struct rcu_state *rsp, struct rcu_node *rnp, |
| 2773 | struct rcu_data *rdp) |
| 2774 | { |
| 2775 | const unsigned long gpssdelay = rcu_jiffies_till_stall_check() * HZ; |
| 2776 | unsigned long flags; |
| 2777 | unsigned long j; |
| 2778 | struct rcu_node *rnp_root = rcu_get_root(rsp); |
| 2779 | static atomic_t warned = ATOMIC_INIT(0); |
| 2780 | |
| 2781 | if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress(rsp) || |
| 2782 | ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed)) |
| 2783 | return; |
| 2784 | j = jiffies; /* Expensive access, and in common case don't get here. */ |
| 2785 | if (time_before(j, READ_ONCE(rsp->gp_req_activity) + gpssdelay) || |
| 2786 | time_before(j, READ_ONCE(rsp->gp_activity) + gpssdelay) || |
| 2787 | atomic_read(&warned)) |
| 2788 | return; |
| 2789 | |
| 2790 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 2791 | j = jiffies; |
| 2792 | if (rcu_gp_in_progress(rsp) || |
| 2793 | ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) || |
| 2794 | time_before(j, READ_ONCE(rsp->gp_req_activity) + gpssdelay) || |
| 2795 | time_before(j, READ_ONCE(rsp->gp_activity) + gpssdelay) || |
| 2796 | atomic_read(&warned)) { |
| 2797 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 2798 | return; |
| 2799 | } |
| 2800 | /* Hold onto the leaf lock to make others see warned==1. */ |
| 2801 | |
| 2802 | if (rnp_root != rnp) |
| 2803 | raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ |
| 2804 | j = jiffies; |
| 2805 | if (rcu_gp_in_progress(rsp) || |
| 2806 | ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) || |
| 2807 | time_before(j, rsp->gp_req_activity + gpssdelay) || |
| 2808 | time_before(j, rsp->gp_activity + gpssdelay) || |
| 2809 | atomic_xchg(&warned, 1)) { |
| 2810 | raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */ |
| 2811 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 2812 | return; |
| 2813 | } |
| 2814 | pr_alert("%s: g%ld->%ld gar:%lu ga:%lu f%#x gs:%d %s->state:%#lx\n", |
| 2815 | __func__, (long)READ_ONCE(rsp->gp_seq), |
| 2816 | (long)READ_ONCE(rnp_root->gp_seq_needed), |
| 2817 | j - rsp->gp_req_activity, j - rsp->gp_activity, |
| 2818 | rsp->gp_flags, rsp->gp_state, rsp->name, |
| 2819 | rsp->gp_kthread ? rsp->gp_kthread->state : 0x1ffffL); |
| 2820 | WARN_ON(1); |
| 2821 | if (rnp_root != rnp) |
| 2822 | raw_spin_unlock_rcu_node(rnp_root); |
| 2823 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 2824 | } |
| 2825 | |
| 2826 | /* |
| 2827 | * This does the RCU core processing work for the specified rcu_state |
| 2828 | * and rcu_data structures. This may be called only from the CPU to |
| 2829 | * whom the rdp belongs. |
| 2830 | */ |
| 2831 | static void |
| 2832 | __rcu_process_callbacks(struct rcu_state *rsp) |
| 2833 | { |
| 2834 | unsigned long flags; |
| 2835 | struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); |
| 2836 | struct rcu_node *rnp = rdp->mynode; |
| 2837 | |
| 2838 | WARN_ON_ONCE(!rdp->beenonline); |
| 2839 | |
| 2840 | /* Update RCU state based on any recent quiescent states. */ |
| 2841 | rcu_check_quiescent_state(rsp, rdp); |
| 2842 | |
| 2843 | /* No grace period and unregistered callbacks? */ |
| 2844 | if (!rcu_gp_in_progress(rsp) && |
| 2845 | rcu_segcblist_is_enabled(&rdp->cblist)) { |
| 2846 | local_irq_save(flags); |
| 2847 | if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) |
| 2848 | rcu_accelerate_cbs_unlocked(rsp, rnp, rdp); |
| 2849 | local_irq_restore(flags); |
| 2850 | } |
| 2851 | |
| 2852 | rcu_check_gp_start_stall(rsp, rnp, rdp); |
| 2853 | |
| 2854 | /* If there are callbacks ready, invoke them. */ |
| 2855 | if (rcu_segcblist_ready_cbs(&rdp->cblist)) |
| 2856 | invoke_rcu_callbacks(rsp, rdp); |
| 2857 | |
| 2858 | /* Do any needed deferred wakeups of rcuo kthreads. */ |
| 2859 | do_nocb_deferred_wakeup(rdp); |
| 2860 | } |
| 2861 | |
| 2862 | /* |
| 2863 | * Do RCU core processing for the current CPU. |
| 2864 | */ |
| 2865 | static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused) |
| 2866 | { |
| 2867 | struct rcu_state *rsp; |
| 2868 | |
| 2869 | if (cpu_is_offline(smp_processor_id())) |
| 2870 | return; |
| 2871 | trace_rcu_utilization(TPS("Start RCU core")); |
| 2872 | for_each_rcu_flavor(rsp) |
| 2873 | __rcu_process_callbacks(rsp); |
| 2874 | trace_rcu_utilization(TPS("End RCU core")); |
| 2875 | } |
| 2876 | |
| 2877 | /* |
| 2878 | * Schedule RCU callback invocation. If the specified type of RCU |
| 2879 | * does not support RCU priority boosting, just do a direct call, |
| 2880 | * otherwise wake up the per-CPU kernel kthread. Note that because we |
| 2881 | * are running on the current CPU with softirqs disabled, the |
| 2882 | * rcu_cpu_kthread_task cannot disappear out from under us. |
| 2883 | */ |
| 2884 | static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) |
| 2885 | { |
| 2886 | if (unlikely(!READ_ONCE(rcu_scheduler_fully_active))) |
| 2887 | return; |
| 2888 | if (likely(!rsp->boost)) { |
| 2889 | rcu_do_batch(rsp, rdp); |
| 2890 | return; |
| 2891 | } |
| 2892 | invoke_rcu_callbacks_kthread(); |
| 2893 | } |
| 2894 | |
| 2895 | static void invoke_rcu_core(void) |
| 2896 | { |
| 2897 | if (cpu_online(smp_processor_id())) |
| 2898 | raise_softirq(RCU_SOFTIRQ); |
| 2899 | } |
| 2900 | |
| 2901 | /* |
| 2902 | * Handle any core-RCU processing required by a call_rcu() invocation. |
| 2903 | */ |
| 2904 | static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, |
| 2905 | struct rcu_head *head, unsigned long flags) |
| 2906 | { |
| 2907 | /* |
| 2908 | * If called from an extended quiescent state, invoke the RCU |
| 2909 | * core in order to force a re-evaluation of RCU's idleness. |
| 2910 | */ |
| 2911 | if (!rcu_is_watching()) |
| 2912 | invoke_rcu_core(); |
| 2913 | |
| 2914 | /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ |
| 2915 | if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) |
| 2916 | return; |
| 2917 | |
| 2918 | /* |
| 2919 | * Force the grace period if too many callbacks or too long waiting. |
| 2920 | * Enforce hysteresis, and don't invoke force_quiescent_state() |
| 2921 | * if some other CPU has recently done so. Also, don't bother |
| 2922 | * invoking force_quiescent_state() if the newly enqueued callback |
| 2923 | * is the only one waiting for a grace period to complete. |
| 2924 | */ |
| 2925 | if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > |
| 2926 | rdp->qlen_last_fqs_check + qhimark)) { |
| 2927 | |
| 2928 | /* Are we ignoring a completed grace period? */ |
| 2929 | note_gp_changes(rsp, rdp); |
| 2930 | |
| 2931 | /* Start a new grace period if one not already started. */ |
| 2932 | if (!rcu_gp_in_progress(rsp)) { |
| 2933 | rcu_accelerate_cbs_unlocked(rsp, rdp->mynode, rdp); |
| 2934 | } else { |
| 2935 | /* Give the grace period a kick. */ |
| 2936 | rdp->blimit = LONG_MAX; |
| 2937 | if (rsp->n_force_qs == rdp->n_force_qs_snap && |
| 2938 | rcu_segcblist_first_pend_cb(&rdp->cblist) != head) |
| 2939 | force_quiescent_state(rsp); |
| 2940 | rdp->n_force_qs_snap = rsp->n_force_qs; |
| 2941 | rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); |
| 2942 | } |
| 2943 | } |
| 2944 | } |
| 2945 | |
| 2946 | /* |
| 2947 | * RCU callback function to leak a callback. |
| 2948 | */ |
| 2949 | static void rcu_leak_callback(struct rcu_head *rhp) |
| 2950 | { |
| 2951 | } |
| 2952 | |
| 2953 | /* |
| 2954 | * Helper function for call_rcu() and friends. The cpu argument will |
| 2955 | * normally be -1, indicating "currently running CPU". It may specify |
| 2956 | * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() |
| 2957 | * is expected to specify a CPU. |
| 2958 | */ |
| 2959 | static void |
| 2960 | __call_rcu(struct rcu_head *head, rcu_callback_t func, |
| 2961 | struct rcu_state *rsp, int cpu, bool lazy) |
| 2962 | { |
| 2963 | unsigned long flags; |
| 2964 | struct rcu_data *rdp; |
| 2965 | |
| 2966 | /* Misaligned rcu_head! */ |
| 2967 | WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); |
| 2968 | |
| 2969 | if (debug_rcu_head_queue(head)) { |
| 2970 | /* |
| 2971 | * Probable double call_rcu(), so leak the callback. |
| 2972 | * Use rcu:rcu_callback trace event to find the previous |
| 2973 | * time callback was passed to __call_rcu(). |
| 2974 | */ |
| 2975 | WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n", |
| 2976 | head, head->func); |
| 2977 | WRITE_ONCE(head->func, rcu_leak_callback); |
| 2978 | return; |
| 2979 | } |
| 2980 | head->func = func; |
| 2981 | head->next = NULL; |
| 2982 | local_irq_save(flags); |
| 2983 | rdp = this_cpu_ptr(rsp->rda); |
| 2984 | |
| 2985 | /* Add the callback to our list. */ |
| 2986 | if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) { |
| 2987 | int offline; |
| 2988 | |
| 2989 | if (cpu != -1) |
| 2990 | rdp = per_cpu_ptr(rsp->rda, cpu); |
| 2991 | if (likely(rdp->mynode)) { |
| 2992 | /* Post-boot, so this should be for a no-CBs CPU. */ |
| 2993 | offline = !__call_rcu_nocb(rdp, head, lazy, flags); |
| 2994 | WARN_ON_ONCE(offline); |
| 2995 | /* Offline CPU, _call_rcu() illegal, leak callback. */ |
| 2996 | local_irq_restore(flags); |
| 2997 | return; |
| 2998 | } |
| 2999 | /* |
| 3000 | * Very early boot, before rcu_init(). Initialize if needed |
| 3001 | * and then drop through to queue the callback. |
| 3002 | */ |
| 3003 | BUG_ON(cpu != -1); |
| 3004 | WARN_ON_ONCE(!rcu_is_watching()); |
| 3005 | if (rcu_segcblist_empty(&rdp->cblist)) |
| 3006 | rcu_segcblist_init(&rdp->cblist); |
| 3007 | } |
| 3008 | rcu_segcblist_enqueue(&rdp->cblist, head, lazy); |
| 3009 | if (!lazy) |
| 3010 | rcu_idle_count_callbacks_posted(); |
| 3011 | |
| 3012 | if (__is_kfree_rcu_offset((unsigned long)func)) |
| 3013 | trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, |
| 3014 | rcu_segcblist_n_lazy_cbs(&rdp->cblist), |
| 3015 | rcu_segcblist_n_cbs(&rdp->cblist)); |
| 3016 | else |
| 3017 | trace_rcu_callback(rsp->name, head, |
| 3018 | rcu_segcblist_n_lazy_cbs(&rdp->cblist), |
| 3019 | rcu_segcblist_n_cbs(&rdp->cblist)); |
| 3020 | |
| 3021 | /* Go handle any RCU core processing required. */ |
| 3022 | __call_rcu_core(rsp, rdp, head, flags); |
| 3023 | local_irq_restore(flags); |
| 3024 | } |
| 3025 | |
| 3026 | /** |
| 3027 | * call_rcu_sched() - Queue an RCU for invocation after sched grace period. |
| 3028 | * @head: structure to be used for queueing the RCU updates. |
| 3029 | * @func: actual callback function to be invoked after the grace period |
| 3030 | * |
| 3031 | * The callback function will be invoked some time after a full grace |
| 3032 | * period elapses, in other words after all currently executing RCU |
| 3033 | * read-side critical sections have completed. call_rcu_sched() assumes |
| 3034 | * that the read-side critical sections end on enabling of preemption |
| 3035 | * or on voluntary preemption. |
| 3036 | * RCU read-side critical sections are delimited by: |
| 3037 | * |
| 3038 | * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR |
| 3039 | * - anything that disables preemption. |
| 3040 | * |
| 3041 | * These may be nested. |
| 3042 | * |
| 3043 | * See the description of call_rcu() for more detailed information on |
| 3044 | * memory ordering guarantees. |
| 3045 | */ |
| 3046 | void call_rcu_sched(struct rcu_head *head, rcu_callback_t func) |
| 3047 | { |
| 3048 | __call_rcu(head, func, &rcu_sched_state, -1, 0); |
| 3049 | } |
| 3050 | EXPORT_SYMBOL_GPL(call_rcu_sched); |
| 3051 | |
| 3052 | /** |
| 3053 | * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. |
| 3054 | * @head: structure to be used for queueing the RCU updates. |
| 3055 | * @func: actual callback function to be invoked after the grace period |
| 3056 | * |
| 3057 | * The callback function will be invoked some time after a full grace |
| 3058 | * period elapses, in other words after all currently executing RCU |
| 3059 | * read-side critical sections have completed. call_rcu_bh() assumes |
| 3060 | * that the read-side critical sections end on completion of a softirq |
| 3061 | * handler. This means that read-side critical sections in process |
| 3062 | * context must not be interrupted by softirqs. This interface is to be |
| 3063 | * used when most of the read-side critical sections are in softirq context. |
| 3064 | * RCU read-side critical sections are delimited by: |
| 3065 | * |
| 3066 | * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context, OR |
| 3067 | * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. |
| 3068 | * |
| 3069 | * These may be nested. |
| 3070 | * |
| 3071 | * See the description of call_rcu() for more detailed information on |
| 3072 | * memory ordering guarantees. |
| 3073 | */ |
| 3074 | void call_rcu_bh(struct rcu_head *head, rcu_callback_t func) |
| 3075 | { |
| 3076 | __call_rcu(head, func, &rcu_bh_state, -1, 0); |
| 3077 | } |
| 3078 | EXPORT_SYMBOL_GPL(call_rcu_bh); |
| 3079 | |
| 3080 | /* |
| 3081 | * Queue an RCU callback for lazy invocation after a grace period. |
| 3082 | * This will likely be later named something like "call_rcu_lazy()", |
| 3083 | * but this change will require some way of tagging the lazy RCU |
| 3084 | * callbacks in the list of pending callbacks. Until then, this |
| 3085 | * function may only be called from __kfree_rcu(). |
| 3086 | */ |
| 3087 | void kfree_call_rcu(struct rcu_head *head, |
| 3088 | rcu_callback_t func) |
| 3089 | { |
| 3090 | __call_rcu(head, func, rcu_state_p, -1, 1); |
| 3091 | } |
| 3092 | EXPORT_SYMBOL_GPL(kfree_call_rcu); |
| 3093 | |
| 3094 | /* |
| 3095 | * Because a context switch is a grace period for RCU-sched and RCU-bh, |
| 3096 | * any blocking grace-period wait automatically implies a grace period |
| 3097 | * if there is only one CPU online at any point time during execution |
| 3098 | * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to |
| 3099 | * occasionally incorrectly indicate that there are multiple CPUs online |
| 3100 | * when there was in fact only one the whole time, as this just adds |
| 3101 | * some overhead: RCU still operates correctly. |
| 3102 | */ |
| 3103 | static int rcu_blocking_is_gp(void) |
| 3104 | { |
| 3105 | int ret; |
| 3106 | |
| 3107 | might_sleep(); /* Check for RCU read-side critical section. */ |
| 3108 | preempt_disable(); |
| 3109 | ret = num_online_cpus() <= 1; |
| 3110 | preempt_enable(); |
| 3111 | return ret; |
| 3112 | } |
| 3113 | |
| 3114 | /** |
| 3115 | * synchronize_sched - wait until an rcu-sched grace period has elapsed. |
| 3116 | * |
| 3117 | * Control will return to the caller some time after a full rcu-sched |
| 3118 | * grace period has elapsed, in other words after all currently executing |
| 3119 | * rcu-sched read-side critical sections have completed. These read-side |
| 3120 | * critical sections are delimited by rcu_read_lock_sched() and |
| 3121 | * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), |
| 3122 | * local_irq_disable(), and so on may be used in place of |
| 3123 | * rcu_read_lock_sched(). |
| 3124 | * |
| 3125 | * This means that all preempt_disable code sequences, including NMI and |
| 3126 | * non-threaded hardware-interrupt handlers, in progress on entry will |
| 3127 | * have completed before this primitive returns. However, this does not |
| 3128 | * guarantee that softirq handlers will have completed, since in some |
| 3129 | * kernels, these handlers can run in process context, and can block. |
| 3130 | * |
| 3131 | * Note that this guarantee implies further memory-ordering guarantees. |
| 3132 | * On systems with more than one CPU, when synchronize_sched() returns, |
| 3133 | * each CPU is guaranteed to have executed a full memory barrier since the |
| 3134 | * end of its last RCU-sched read-side critical section whose beginning |
| 3135 | * preceded the call to synchronize_sched(). In addition, each CPU having |
| 3136 | * an RCU read-side critical section that extends beyond the return from |
| 3137 | * synchronize_sched() is guaranteed to have executed a full memory barrier |
| 3138 | * after the beginning of synchronize_sched() and before the beginning of |
| 3139 | * that RCU read-side critical section. Note that these guarantees include |
| 3140 | * CPUs that are offline, idle, or executing in user mode, as well as CPUs |
| 3141 | * that are executing in the kernel. |
| 3142 | * |
| 3143 | * Furthermore, if CPU A invoked synchronize_sched(), which returned |
| 3144 | * to its caller on CPU B, then both CPU A and CPU B are guaranteed |
| 3145 | * to have executed a full memory barrier during the execution of |
| 3146 | * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but |
| 3147 | * again only if the system has more than one CPU). |
| 3148 | */ |
| 3149 | void synchronize_sched(void) |
| 3150 | { |
| 3151 | RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || |
| 3152 | lock_is_held(&rcu_lock_map) || |
| 3153 | lock_is_held(&rcu_sched_lock_map), |
| 3154 | "Illegal synchronize_sched() in RCU-sched read-side critical section"); |
| 3155 | if (rcu_blocking_is_gp()) |
| 3156 | return; |
| 3157 | if (rcu_gp_is_expedited()) |
| 3158 | synchronize_sched_expedited(); |
| 3159 | else |
| 3160 | wait_rcu_gp(call_rcu_sched); |
| 3161 | } |
| 3162 | EXPORT_SYMBOL_GPL(synchronize_sched); |
| 3163 | |
| 3164 | /** |
| 3165 | * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. |
| 3166 | * |
| 3167 | * Control will return to the caller some time after a full rcu_bh grace |
| 3168 | * period has elapsed, in other words after all currently executing rcu_bh |
| 3169 | * read-side critical sections have completed. RCU read-side critical |
| 3170 | * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), |
| 3171 | * and may be nested. |
| 3172 | * |
| 3173 | * See the description of synchronize_sched() for more detailed information |
| 3174 | * on memory ordering guarantees. |
| 3175 | */ |
| 3176 | void synchronize_rcu_bh(void) |
| 3177 | { |
| 3178 | RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || |
| 3179 | lock_is_held(&rcu_lock_map) || |
| 3180 | lock_is_held(&rcu_sched_lock_map), |
| 3181 | "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); |
| 3182 | if (rcu_blocking_is_gp()) |
| 3183 | return; |
| 3184 | if (rcu_gp_is_expedited()) |
| 3185 | synchronize_rcu_bh_expedited(); |
| 3186 | else |
| 3187 | wait_rcu_gp(call_rcu_bh); |
| 3188 | } |
| 3189 | EXPORT_SYMBOL_GPL(synchronize_rcu_bh); |
| 3190 | |
| 3191 | /** |
| 3192 | * get_state_synchronize_rcu - Snapshot current RCU state |
| 3193 | * |
| 3194 | * Returns a cookie that is used by a later call to cond_synchronize_rcu() |
| 3195 | * to determine whether or not a full grace period has elapsed in the |
| 3196 | * meantime. |
| 3197 | */ |
| 3198 | unsigned long get_state_synchronize_rcu(void) |
| 3199 | { |
| 3200 | /* |
| 3201 | * Any prior manipulation of RCU-protected data must happen |
| 3202 | * before the load from ->gp_seq. |
| 3203 | */ |
| 3204 | smp_mb(); /* ^^^ */ |
| 3205 | return rcu_seq_snap(&rcu_state_p->gp_seq); |
| 3206 | } |
| 3207 | EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); |
| 3208 | |
| 3209 | /** |
| 3210 | * cond_synchronize_rcu - Conditionally wait for an RCU grace period |
| 3211 | * |
| 3212 | * @oldstate: return value from earlier call to get_state_synchronize_rcu() |
| 3213 | * |
| 3214 | * If a full RCU grace period has elapsed since the earlier call to |
| 3215 | * get_state_synchronize_rcu(), just return. Otherwise, invoke |
| 3216 | * synchronize_rcu() to wait for a full grace period. |
| 3217 | * |
| 3218 | * Yes, this function does not take counter wrap into account. But |
| 3219 | * counter wrap is harmless. If the counter wraps, we have waited for |
| 3220 | * more than 2 billion grace periods (and way more on a 64-bit system!), |
| 3221 | * so waiting for one additional grace period should be just fine. |
| 3222 | */ |
| 3223 | void cond_synchronize_rcu(unsigned long oldstate) |
| 3224 | { |
| 3225 | if (!rcu_seq_done(&rcu_state_p->gp_seq, oldstate)) |
| 3226 | synchronize_rcu(); |
| 3227 | else |
| 3228 | smp_mb(); /* Ensure GP ends before subsequent accesses. */ |
| 3229 | } |
| 3230 | EXPORT_SYMBOL_GPL(cond_synchronize_rcu); |
| 3231 | |
| 3232 | /** |
| 3233 | * get_state_synchronize_sched - Snapshot current RCU-sched state |
| 3234 | * |
| 3235 | * Returns a cookie that is used by a later call to cond_synchronize_sched() |
| 3236 | * to determine whether or not a full grace period has elapsed in the |
| 3237 | * meantime. |
| 3238 | */ |
| 3239 | unsigned long get_state_synchronize_sched(void) |
| 3240 | { |
| 3241 | /* |
| 3242 | * Any prior manipulation of RCU-protected data must happen |
| 3243 | * before the load from ->gp_seq. |
| 3244 | */ |
| 3245 | smp_mb(); /* ^^^ */ |
| 3246 | return rcu_seq_snap(&rcu_sched_state.gp_seq); |
| 3247 | } |
| 3248 | EXPORT_SYMBOL_GPL(get_state_synchronize_sched); |
| 3249 | |
| 3250 | /** |
| 3251 | * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period |
| 3252 | * |
| 3253 | * @oldstate: return value from earlier call to get_state_synchronize_sched() |
| 3254 | * |
| 3255 | * If a full RCU-sched grace period has elapsed since the earlier call to |
| 3256 | * get_state_synchronize_sched(), just return. Otherwise, invoke |
| 3257 | * synchronize_sched() to wait for a full grace period. |
| 3258 | * |
| 3259 | * Yes, this function does not take counter wrap into account. But |
| 3260 | * counter wrap is harmless. If the counter wraps, we have waited for |
| 3261 | * more than 2 billion grace periods (and way more on a 64-bit system!), |
| 3262 | * so waiting for one additional grace period should be just fine. |
| 3263 | */ |
| 3264 | void cond_synchronize_sched(unsigned long oldstate) |
| 3265 | { |
| 3266 | if (!rcu_seq_done(&rcu_sched_state.gp_seq, oldstate)) |
| 3267 | synchronize_sched(); |
| 3268 | else |
| 3269 | smp_mb(); /* Ensure GP ends before subsequent accesses. */ |
| 3270 | } |
| 3271 | EXPORT_SYMBOL_GPL(cond_synchronize_sched); |
| 3272 | |
| 3273 | /* |
| 3274 | * Check to see if there is any immediate RCU-related work to be done |
| 3275 | * by the current CPU, for the specified type of RCU, returning 1 if so. |
| 3276 | * The checks are in order of increasing expense: checks that can be |
| 3277 | * carried out against CPU-local state are performed first. However, |
| 3278 | * we must check for CPU stalls first, else we might not get a chance. |
| 3279 | */ |
| 3280 | static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) |
| 3281 | { |
| 3282 | struct rcu_node *rnp = rdp->mynode; |
| 3283 | |
| 3284 | /* Check for CPU stalls, if enabled. */ |
| 3285 | check_cpu_stall(rsp, rdp); |
| 3286 | |
| 3287 | /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ |
| 3288 | if (rcu_nohz_full_cpu(rsp)) |
| 3289 | return 0; |
| 3290 | |
| 3291 | /* Is the RCU core waiting for a quiescent state from this CPU? */ |
| 3292 | if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) |
| 3293 | return 1; |
| 3294 | |
| 3295 | /* Does this CPU have callbacks ready to invoke? */ |
| 3296 | if (rcu_segcblist_ready_cbs(&rdp->cblist)) |
| 3297 | return 1; |
| 3298 | |
| 3299 | /* Has RCU gone idle with this CPU needing another grace period? */ |
| 3300 | if (!rcu_gp_in_progress(rsp) && |
| 3301 | rcu_segcblist_is_enabled(&rdp->cblist) && |
| 3302 | !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) |
| 3303 | return 1; |
| 3304 | |
| 3305 | /* Have RCU grace period completed or started? */ |
| 3306 | if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || |
| 3307 | unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ |
| 3308 | return 1; |
| 3309 | |
| 3310 | /* Does this CPU need a deferred NOCB wakeup? */ |
| 3311 | if (rcu_nocb_need_deferred_wakeup(rdp)) |
| 3312 | return 1; |
| 3313 | |
| 3314 | /* nothing to do */ |
| 3315 | return 0; |
| 3316 | } |
| 3317 | |
| 3318 | /* |
| 3319 | * Check to see if there is any immediate RCU-related work to be done |
| 3320 | * by the current CPU, returning 1 if so. This function is part of the |
| 3321 | * RCU implementation; it is -not- an exported member of the RCU API. |
| 3322 | */ |
| 3323 | static int rcu_pending(void) |
| 3324 | { |
| 3325 | struct rcu_state *rsp; |
| 3326 | |
| 3327 | for_each_rcu_flavor(rsp) |
| 3328 | if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda))) |
| 3329 | return 1; |
| 3330 | return 0; |
| 3331 | } |
| 3332 | |
| 3333 | /* |
| 3334 | * Return true if the specified CPU has any callback. If all_lazy is |
| 3335 | * non-NULL, store an indication of whether all callbacks are lazy. |
| 3336 | * (If there are no callbacks, all of them are deemed to be lazy.) |
| 3337 | */ |
| 3338 | static bool rcu_cpu_has_callbacks(bool *all_lazy) |
| 3339 | { |
| 3340 | bool al = true; |
| 3341 | bool hc = false; |
| 3342 | struct rcu_data *rdp; |
| 3343 | struct rcu_state *rsp; |
| 3344 | |
| 3345 | for_each_rcu_flavor(rsp) { |
| 3346 | rdp = this_cpu_ptr(rsp->rda); |
| 3347 | if (rcu_segcblist_empty(&rdp->cblist)) |
| 3348 | continue; |
| 3349 | hc = true; |
| 3350 | if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) { |
| 3351 | al = false; |
| 3352 | break; |
| 3353 | } |
| 3354 | } |
| 3355 | if (all_lazy) |
| 3356 | *all_lazy = al; |
| 3357 | return hc; |
| 3358 | } |
| 3359 | |
| 3360 | /* |
| 3361 | * Helper function for _rcu_barrier() tracing. If tracing is disabled, |
| 3362 | * the compiler is expected to optimize this away. |
| 3363 | */ |
| 3364 | static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, |
| 3365 | int cpu, unsigned long done) |
| 3366 | { |
| 3367 | trace_rcu_barrier(rsp->name, s, cpu, |
| 3368 | atomic_read(&rsp->barrier_cpu_count), done); |
| 3369 | } |
| 3370 | |
| 3371 | /* |
| 3372 | * RCU callback function for _rcu_barrier(). If we are last, wake |
| 3373 | * up the task executing _rcu_barrier(). |
| 3374 | */ |
| 3375 | static void rcu_barrier_callback(struct rcu_head *rhp) |
| 3376 | { |
| 3377 | struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); |
| 3378 | struct rcu_state *rsp = rdp->rsp; |
| 3379 | |
| 3380 | if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { |
| 3381 | _rcu_barrier_trace(rsp, TPS("LastCB"), -1, |
| 3382 | rsp->barrier_sequence); |
| 3383 | complete(&rsp->barrier_completion); |
| 3384 | } else { |
| 3385 | _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence); |
| 3386 | } |
| 3387 | } |
| 3388 | |
| 3389 | /* |
| 3390 | * Called with preemption disabled, and from cross-cpu IRQ context. |
| 3391 | */ |
| 3392 | static void rcu_barrier_func(void *type) |
| 3393 | { |
| 3394 | struct rcu_state *rsp = type; |
| 3395 | struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); |
| 3396 | |
| 3397 | _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence); |
| 3398 | rdp->barrier_head.func = rcu_barrier_callback; |
| 3399 | debug_rcu_head_queue(&rdp->barrier_head); |
| 3400 | if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) { |
| 3401 | atomic_inc(&rsp->barrier_cpu_count); |
| 3402 | } else { |
| 3403 | debug_rcu_head_unqueue(&rdp->barrier_head); |
| 3404 | _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1, |
| 3405 | rsp->barrier_sequence); |
| 3406 | } |
| 3407 | } |
| 3408 | |
| 3409 | /* |
| 3410 | * Orchestrate the specified type of RCU barrier, waiting for all |
| 3411 | * RCU callbacks of the specified type to complete. |
| 3412 | */ |
| 3413 | static void _rcu_barrier(struct rcu_state *rsp) |
| 3414 | { |
| 3415 | int cpu; |
| 3416 | struct rcu_data *rdp; |
| 3417 | unsigned long s = rcu_seq_snap(&rsp->barrier_sequence); |
| 3418 | |
| 3419 | _rcu_barrier_trace(rsp, TPS("Begin"), -1, s); |
| 3420 | |
| 3421 | /* Take mutex to serialize concurrent rcu_barrier() requests. */ |
| 3422 | mutex_lock(&rsp->barrier_mutex); |
| 3423 | |
| 3424 | /* Did someone else do our work for us? */ |
| 3425 | if (rcu_seq_done(&rsp->barrier_sequence, s)) { |
| 3426 | _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1, |
| 3427 | rsp->barrier_sequence); |
| 3428 | smp_mb(); /* caller's subsequent code after above check. */ |
| 3429 | mutex_unlock(&rsp->barrier_mutex); |
| 3430 | return; |
| 3431 | } |
| 3432 | |
| 3433 | /* Mark the start of the barrier operation. */ |
| 3434 | rcu_seq_start(&rsp->barrier_sequence); |
| 3435 | _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence); |
| 3436 | |
| 3437 | /* |
| 3438 | * Initialize the count to one rather than to zero in order to |
| 3439 | * avoid a too-soon return to zero in case of a short grace period |
| 3440 | * (or preemption of this task). Exclude CPU-hotplug operations |
| 3441 | * to ensure that no offline CPU has callbacks queued. |
| 3442 | */ |
| 3443 | init_completion(&rsp->barrier_completion); |
| 3444 | atomic_set(&rsp->barrier_cpu_count, 1); |
| 3445 | get_online_cpus(); |
| 3446 | |
| 3447 | /* |
| 3448 | * Force each CPU with callbacks to register a new callback. |
| 3449 | * When that callback is invoked, we will know that all of the |
| 3450 | * corresponding CPU's preceding callbacks have been invoked. |
| 3451 | */ |
| 3452 | for_each_possible_cpu(cpu) { |
| 3453 | if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) |
| 3454 | continue; |
| 3455 | rdp = per_cpu_ptr(rsp->rda, cpu); |
| 3456 | if (rcu_is_nocb_cpu(cpu)) { |
| 3457 | if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) { |
| 3458 | _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu, |
| 3459 | rsp->barrier_sequence); |
| 3460 | } else { |
| 3461 | _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu, |
| 3462 | rsp->barrier_sequence); |
| 3463 | smp_mb__before_atomic(); |
| 3464 | atomic_inc(&rsp->barrier_cpu_count); |
| 3465 | __call_rcu(&rdp->barrier_head, |
| 3466 | rcu_barrier_callback, rsp, cpu, 0); |
| 3467 | } |
| 3468 | } else if (rcu_segcblist_n_cbs(&rdp->cblist)) { |
| 3469 | _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu, |
| 3470 | rsp->barrier_sequence); |
| 3471 | smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); |
| 3472 | } else { |
| 3473 | _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu, |
| 3474 | rsp->barrier_sequence); |
| 3475 | } |
| 3476 | } |
| 3477 | put_online_cpus(); |
| 3478 | |
| 3479 | /* |
| 3480 | * Now that we have an rcu_barrier_callback() callback on each |
| 3481 | * CPU, and thus each counted, remove the initial count. |
| 3482 | */ |
| 3483 | if (atomic_dec_and_test(&rsp->barrier_cpu_count)) |
| 3484 | complete(&rsp->barrier_completion); |
| 3485 | |
| 3486 | /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ |
| 3487 | wait_for_completion(&rsp->barrier_completion); |
| 3488 | |
| 3489 | /* Mark the end of the barrier operation. */ |
| 3490 | _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence); |
| 3491 | rcu_seq_end(&rsp->barrier_sequence); |
| 3492 | |
| 3493 | /* Other rcu_barrier() invocations can now safely proceed. */ |
| 3494 | mutex_unlock(&rsp->barrier_mutex); |
| 3495 | } |
| 3496 | |
| 3497 | /** |
| 3498 | * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. |
| 3499 | */ |
| 3500 | void rcu_barrier_bh(void) |
| 3501 | { |
| 3502 | _rcu_barrier(&rcu_bh_state); |
| 3503 | } |
| 3504 | EXPORT_SYMBOL_GPL(rcu_barrier_bh); |
| 3505 | |
| 3506 | /** |
| 3507 | * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. |
| 3508 | */ |
| 3509 | void rcu_barrier_sched(void) |
| 3510 | { |
| 3511 | _rcu_barrier(&rcu_sched_state); |
| 3512 | } |
| 3513 | EXPORT_SYMBOL_GPL(rcu_barrier_sched); |
| 3514 | |
| 3515 | /* |
| 3516 | * Propagate ->qsinitmask bits up the rcu_node tree to account for the |
| 3517 | * first CPU in a given leaf rcu_node structure coming online. The caller |
| 3518 | * must hold the corresponding leaf rcu_node ->lock with interrrupts |
| 3519 | * disabled. |
| 3520 | */ |
| 3521 | static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) |
| 3522 | { |
| 3523 | long mask; |
| 3524 | long oldmask; |
| 3525 | struct rcu_node *rnp = rnp_leaf; |
| 3526 | |
| 3527 | raw_lockdep_assert_held_rcu_node(rnp_leaf); |
| 3528 | WARN_ON_ONCE(rnp->wait_blkd_tasks); |
| 3529 | for (;;) { |
| 3530 | mask = rnp->grpmask; |
| 3531 | rnp = rnp->parent; |
| 3532 | if (rnp == NULL) |
| 3533 | return; |
| 3534 | raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ |
| 3535 | oldmask = rnp->qsmaskinit; |
| 3536 | rnp->qsmaskinit |= mask; |
| 3537 | raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ |
| 3538 | if (oldmask) |
| 3539 | return; |
| 3540 | } |
| 3541 | } |
| 3542 | |
| 3543 | /* |
| 3544 | * Do boot-time initialization of a CPU's per-CPU RCU data. |
| 3545 | */ |
| 3546 | static void __init |
| 3547 | rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) |
| 3548 | { |
| 3549 | struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); |
| 3550 | |
| 3551 | /* Set up local state, ensuring consistent view of global state. */ |
| 3552 | rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); |
| 3553 | rdp->dynticks = &per_cpu(rcu_dynticks, cpu); |
| 3554 | WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != 1); |
| 3555 | WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks))); |
| 3556 | rdp->rcu_ofl_gp_seq = rsp->gp_seq; |
| 3557 | rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; |
| 3558 | rdp->rcu_onl_gp_seq = rsp->gp_seq; |
| 3559 | rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; |
| 3560 | rdp->cpu = cpu; |
| 3561 | rdp->rsp = rsp; |
| 3562 | rcu_boot_init_nocb_percpu_data(rdp); |
| 3563 | } |
| 3564 | |
| 3565 | /* |
| 3566 | * Initialize a CPU's per-CPU RCU data. Note that only one online or |
| 3567 | * offline event can be happening at a given time. Note also that we can |
| 3568 | * accept some slop in the rsp->gp_seq access due to the fact that this |
| 3569 | * CPU cannot possibly have any RCU callbacks in flight yet. |
| 3570 | */ |
| 3571 | static void |
| 3572 | rcu_init_percpu_data(int cpu, struct rcu_state *rsp) |
| 3573 | { |
| 3574 | unsigned long flags; |
| 3575 | struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); |
| 3576 | struct rcu_node *rnp = rcu_get_root(rsp); |
| 3577 | |
| 3578 | /* Set up local state, ensuring consistent view of global state. */ |
| 3579 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 3580 | rdp->qlen_last_fqs_check = 0; |
| 3581 | rdp->n_force_qs_snap = rsp->n_force_qs; |
| 3582 | rdp->blimit = blimit; |
| 3583 | if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */ |
| 3584 | !init_nocb_callback_list(rdp)) |
| 3585 | rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ |
| 3586 | rdp->dynticks->dynticks_nesting = 1; /* CPU not up, no tearing. */ |
| 3587 | rcu_dynticks_eqs_online(); |
| 3588 | raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ |
| 3589 | |
| 3590 | /* |
| 3591 | * Add CPU to leaf rcu_node pending-online bitmask. Any needed |
| 3592 | * propagation up the rcu_node tree will happen at the beginning |
| 3593 | * of the next grace period. |
| 3594 | */ |
| 3595 | rnp = rdp->mynode; |
| 3596 | raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ |
| 3597 | rdp->beenonline = true; /* We have now been online. */ |
| 3598 | rdp->gp_seq = rnp->gp_seq; |
| 3599 | rdp->gp_seq_needed = rnp->gp_seq; |
| 3600 | rdp->cpu_no_qs.b.norm = true; |
| 3601 | rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu); |
| 3602 | rdp->core_needs_qs = false; |
| 3603 | rdp->rcu_iw_pending = false; |
| 3604 | rdp->rcu_iw_gp_seq = rnp->gp_seq - 1; |
| 3605 | trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("cpuonl")); |
| 3606 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 3607 | } |
| 3608 | |
| 3609 | /* |
| 3610 | * Invoked early in the CPU-online process, when pretty much all |
| 3611 | * services are available. The incoming CPU is not present. |
| 3612 | */ |
| 3613 | int rcutree_prepare_cpu(unsigned int cpu) |
| 3614 | { |
| 3615 | struct rcu_state *rsp; |
| 3616 | |
| 3617 | for_each_rcu_flavor(rsp) |
| 3618 | rcu_init_percpu_data(cpu, rsp); |
| 3619 | |
| 3620 | rcu_prepare_kthreads(cpu); |
| 3621 | rcu_spawn_all_nocb_kthreads(cpu); |
| 3622 | |
| 3623 | return 0; |
| 3624 | } |
| 3625 | |
| 3626 | /* |
| 3627 | * Update RCU priority boot kthread affinity for CPU-hotplug changes. |
| 3628 | */ |
| 3629 | static void rcutree_affinity_setting(unsigned int cpu, int outgoing) |
| 3630 | { |
| 3631 | struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); |
| 3632 | |
| 3633 | rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); |
| 3634 | } |
| 3635 | |
| 3636 | /* |
| 3637 | * Near the end of the CPU-online process. Pretty much all services |
| 3638 | * enabled, and the CPU is now very much alive. |
| 3639 | */ |
| 3640 | int rcutree_online_cpu(unsigned int cpu) |
| 3641 | { |
| 3642 | unsigned long flags; |
| 3643 | struct rcu_data *rdp; |
| 3644 | struct rcu_node *rnp; |
| 3645 | struct rcu_state *rsp; |
| 3646 | |
| 3647 | for_each_rcu_flavor(rsp) { |
| 3648 | rdp = per_cpu_ptr(rsp->rda, cpu); |
| 3649 | rnp = rdp->mynode; |
| 3650 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 3651 | rnp->ffmask |= rdp->grpmask; |
| 3652 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 3653 | } |
| 3654 | if (IS_ENABLED(CONFIG_TREE_SRCU)) |
| 3655 | srcu_online_cpu(cpu); |
| 3656 | if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) |
| 3657 | return 0; /* Too early in boot for scheduler work. */ |
| 3658 | sync_sched_exp_online_cleanup(cpu); |
| 3659 | rcutree_affinity_setting(cpu, -1); |
| 3660 | return 0; |
| 3661 | } |
| 3662 | |
| 3663 | /* |
| 3664 | * Near the beginning of the process. The CPU is still very much alive |
| 3665 | * with pretty much all services enabled. |
| 3666 | */ |
| 3667 | int rcutree_offline_cpu(unsigned int cpu) |
| 3668 | { |
| 3669 | unsigned long flags; |
| 3670 | struct rcu_data *rdp; |
| 3671 | struct rcu_node *rnp; |
| 3672 | struct rcu_state *rsp; |
| 3673 | |
| 3674 | for_each_rcu_flavor(rsp) { |
| 3675 | rdp = per_cpu_ptr(rsp->rda, cpu); |
| 3676 | rnp = rdp->mynode; |
| 3677 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 3678 | rnp->ffmask &= ~rdp->grpmask; |
| 3679 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 3680 | } |
| 3681 | |
| 3682 | rcutree_affinity_setting(cpu, cpu); |
| 3683 | if (IS_ENABLED(CONFIG_TREE_SRCU)) |
| 3684 | srcu_offline_cpu(cpu); |
| 3685 | return 0; |
| 3686 | } |
| 3687 | |
| 3688 | /* |
| 3689 | * Near the end of the offline process. We do only tracing here. |
| 3690 | */ |
| 3691 | int rcutree_dying_cpu(unsigned int cpu) |
| 3692 | { |
| 3693 | struct rcu_state *rsp; |
| 3694 | |
| 3695 | for_each_rcu_flavor(rsp) |
| 3696 | rcu_cleanup_dying_cpu(rsp); |
| 3697 | return 0; |
| 3698 | } |
| 3699 | |
| 3700 | /* |
| 3701 | * The outgoing CPU is gone and we are running elsewhere. |
| 3702 | */ |
| 3703 | int rcutree_dead_cpu(unsigned int cpu) |
| 3704 | { |
| 3705 | struct rcu_state *rsp; |
| 3706 | |
| 3707 | for_each_rcu_flavor(rsp) { |
| 3708 | rcu_cleanup_dead_cpu(cpu, rsp); |
| 3709 | do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu)); |
| 3710 | } |
| 3711 | return 0; |
| 3712 | } |
| 3713 | |
| 3714 | static DEFINE_PER_CPU(int, rcu_cpu_started); |
| 3715 | |
| 3716 | /* |
| 3717 | * Mark the specified CPU as being online so that subsequent grace periods |
| 3718 | * (both expedited and normal) will wait on it. Note that this means that |
| 3719 | * incoming CPUs are not allowed to use RCU read-side critical sections |
| 3720 | * until this function is called. Failing to observe this restriction |
| 3721 | * will result in lockdep splats. |
| 3722 | * |
| 3723 | * Note that this function is special in that it is invoked directly |
| 3724 | * from the incoming CPU rather than from the cpuhp_step mechanism. |
| 3725 | * This is because this function must be invoked at a precise location. |
| 3726 | */ |
| 3727 | void rcu_cpu_starting(unsigned int cpu) |
| 3728 | { |
| 3729 | unsigned long flags; |
| 3730 | unsigned long mask; |
| 3731 | int nbits; |
| 3732 | unsigned long oldmask; |
| 3733 | struct rcu_data *rdp; |
| 3734 | struct rcu_node *rnp; |
| 3735 | struct rcu_state *rsp; |
| 3736 | |
| 3737 | if (per_cpu(rcu_cpu_started, cpu)) |
| 3738 | return; |
| 3739 | |
| 3740 | per_cpu(rcu_cpu_started, cpu) = 1; |
| 3741 | |
| 3742 | for_each_rcu_flavor(rsp) { |
| 3743 | rdp = per_cpu_ptr(rsp->rda, cpu); |
| 3744 | rnp = rdp->mynode; |
| 3745 | mask = rdp->grpmask; |
| 3746 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 3747 | rnp->qsmaskinitnext |= mask; |
| 3748 | oldmask = rnp->expmaskinitnext; |
| 3749 | rnp->expmaskinitnext |= mask; |
| 3750 | oldmask ^= rnp->expmaskinitnext; |
| 3751 | nbits = bitmap_weight(&oldmask, BITS_PER_LONG); |
| 3752 | /* Allow lockless access for expedited grace periods. */ |
| 3753 | smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */ |
| 3754 | rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ |
| 3755 | rdp->rcu_onl_gp_seq = READ_ONCE(rsp->gp_seq); |
| 3756 | rdp->rcu_onl_gp_flags = READ_ONCE(rsp->gp_flags); |
| 3757 | if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */ |
| 3758 | /* Report QS -after- changing ->qsmaskinitnext! */ |
| 3759 | rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags); |
| 3760 | } else { |
| 3761 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 3762 | } |
| 3763 | } |
| 3764 | smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ |
| 3765 | } |
| 3766 | |
| 3767 | #ifdef CONFIG_HOTPLUG_CPU |
| 3768 | /* |
| 3769 | * The CPU is exiting the idle loop into the arch_cpu_idle_dead() |
| 3770 | * function. We now remove it from the rcu_node tree's ->qsmaskinitnext |
| 3771 | * bit masks. |
| 3772 | */ |
| 3773 | static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp) |
| 3774 | { |
| 3775 | unsigned long flags; |
| 3776 | unsigned long mask; |
| 3777 | struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); |
| 3778 | struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ |
| 3779 | |
| 3780 | /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ |
| 3781 | mask = rdp->grpmask; |
| 3782 | spin_lock(&rsp->ofl_lock); |
| 3783 | raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ |
| 3784 | rdp->rcu_ofl_gp_seq = READ_ONCE(rsp->gp_seq); |
| 3785 | rdp->rcu_ofl_gp_flags = READ_ONCE(rsp->gp_flags); |
| 3786 | if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ |
| 3787 | /* Report quiescent state -before- changing ->qsmaskinitnext! */ |
| 3788 | rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags); |
| 3789 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 3790 | } |
| 3791 | rnp->qsmaskinitnext &= ~mask; |
| 3792 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 3793 | spin_unlock(&rsp->ofl_lock); |
| 3794 | } |
| 3795 | |
| 3796 | /* |
| 3797 | * The outgoing function has no further need of RCU, so remove it from |
| 3798 | * the list of CPUs that RCU must track. |
| 3799 | * |
| 3800 | * Note that this function is special in that it is invoked directly |
| 3801 | * from the outgoing CPU rather than from the cpuhp_step mechanism. |
| 3802 | * This is because this function must be invoked at a precise location. |
| 3803 | */ |
| 3804 | void rcu_report_dead(unsigned int cpu) |
| 3805 | { |
| 3806 | struct rcu_state *rsp; |
| 3807 | |
| 3808 | /* QS for any half-done expedited RCU-sched GP. */ |
| 3809 | preempt_disable(); |
| 3810 | rcu_report_exp_rdp(&rcu_sched_state, |
| 3811 | this_cpu_ptr(rcu_sched_state.rda), true); |
| 3812 | preempt_enable(); |
| 3813 | for_each_rcu_flavor(rsp) |
| 3814 | rcu_cleanup_dying_idle_cpu(cpu, rsp); |
| 3815 | |
| 3816 | per_cpu(rcu_cpu_started, cpu) = 0; |
| 3817 | } |
| 3818 | |
| 3819 | /* Migrate the dead CPU's callbacks to the current CPU. */ |
| 3820 | static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp) |
| 3821 | { |
| 3822 | unsigned long flags; |
| 3823 | struct rcu_data *my_rdp; |
| 3824 | struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); |
| 3825 | struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); |
| 3826 | bool needwake; |
| 3827 | |
| 3828 | if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist)) |
| 3829 | return; /* No callbacks to migrate. */ |
| 3830 | |
| 3831 | local_irq_save(flags); |
| 3832 | my_rdp = this_cpu_ptr(rsp->rda); |
| 3833 | if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) { |
| 3834 | local_irq_restore(flags); |
| 3835 | return; |
| 3836 | } |
| 3837 | raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ |
| 3838 | /* Leverage recent GPs and set GP for new callbacks. */ |
| 3839 | needwake = rcu_advance_cbs(rsp, rnp_root, rdp) || |
| 3840 | rcu_advance_cbs(rsp, rnp_root, my_rdp); |
| 3841 | rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); |
| 3842 | WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != |
| 3843 | !rcu_segcblist_n_cbs(&my_rdp->cblist)); |
| 3844 | raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags); |
| 3845 | if (needwake) |
| 3846 | rcu_gp_kthread_wake(rsp); |
| 3847 | WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || |
| 3848 | !rcu_segcblist_empty(&rdp->cblist), |
| 3849 | "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", |
| 3850 | cpu, rcu_segcblist_n_cbs(&rdp->cblist), |
| 3851 | rcu_segcblist_first_cb(&rdp->cblist)); |
| 3852 | } |
| 3853 | |
| 3854 | /* |
| 3855 | * The outgoing CPU has just passed through the dying-idle state, |
| 3856 | * and we are being invoked from the CPU that was IPIed to continue the |
| 3857 | * offline operation. We need to migrate the outgoing CPU's callbacks. |
| 3858 | */ |
| 3859 | void rcutree_migrate_callbacks(int cpu) |
| 3860 | { |
| 3861 | struct rcu_state *rsp; |
| 3862 | |
| 3863 | for_each_rcu_flavor(rsp) |
| 3864 | rcu_migrate_callbacks(cpu, rsp); |
| 3865 | } |
| 3866 | #endif |
| 3867 | |
| 3868 | /* |
| 3869 | * On non-huge systems, use expedited RCU grace periods to make suspend |
| 3870 | * and hibernation run faster. |
| 3871 | */ |
| 3872 | static int rcu_pm_notify(struct notifier_block *self, |
| 3873 | unsigned long action, void *hcpu) |
| 3874 | { |
| 3875 | switch (action) { |
| 3876 | case PM_HIBERNATION_PREPARE: |
| 3877 | case PM_SUSPEND_PREPARE: |
| 3878 | if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ |
| 3879 | rcu_expedite_gp(); |
| 3880 | break; |
| 3881 | case PM_POST_HIBERNATION: |
| 3882 | case PM_POST_SUSPEND: |
| 3883 | if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ |
| 3884 | rcu_unexpedite_gp(); |
| 3885 | break; |
| 3886 | default: |
| 3887 | break; |
| 3888 | } |
| 3889 | return NOTIFY_OK; |
| 3890 | } |
| 3891 | |
| 3892 | /* |
| 3893 | * Spawn the kthreads that handle each RCU flavor's grace periods. |
| 3894 | */ |
| 3895 | static int __init rcu_spawn_gp_kthread(void) |
| 3896 | { |
| 3897 | unsigned long flags; |
| 3898 | int kthread_prio_in = kthread_prio; |
| 3899 | struct rcu_node *rnp; |
| 3900 | struct rcu_state *rsp; |
| 3901 | struct sched_param sp; |
| 3902 | struct task_struct *t; |
| 3903 | |
| 3904 | /* Force priority into range. */ |
| 3905 | if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 |
| 3906 | && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) |
| 3907 | kthread_prio = 2; |
| 3908 | else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) |
| 3909 | kthread_prio = 1; |
| 3910 | else if (kthread_prio < 0) |
| 3911 | kthread_prio = 0; |
| 3912 | else if (kthread_prio > 99) |
| 3913 | kthread_prio = 99; |
| 3914 | |
| 3915 | if (kthread_prio != kthread_prio_in) |
| 3916 | pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", |
| 3917 | kthread_prio, kthread_prio_in); |
| 3918 | |
| 3919 | rcu_scheduler_fully_active = 1; |
| 3920 | for_each_rcu_flavor(rsp) { |
| 3921 | t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name); |
| 3922 | BUG_ON(IS_ERR(t)); |
| 3923 | rnp = rcu_get_root(rsp); |
| 3924 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 3925 | rsp->gp_kthread = t; |
| 3926 | if (kthread_prio) { |
| 3927 | sp.sched_priority = kthread_prio; |
| 3928 | sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); |
| 3929 | } |
| 3930 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 3931 | wake_up_process(t); |
| 3932 | } |
| 3933 | rcu_spawn_nocb_kthreads(); |
| 3934 | rcu_spawn_boost_kthreads(); |
| 3935 | return 0; |
| 3936 | } |
| 3937 | early_initcall(rcu_spawn_gp_kthread); |
| 3938 | |
| 3939 | /* |
| 3940 | * This function is invoked towards the end of the scheduler's |
| 3941 | * initialization process. Before this is called, the idle task might |
| 3942 | * contain synchronous grace-period primitives (during which time, this idle |
| 3943 | * task is booting the system, and such primitives are no-ops). After this |
| 3944 | * function is called, any synchronous grace-period primitives are run as |
| 3945 | * expedited, with the requesting task driving the grace period forward. |
| 3946 | * A later core_initcall() rcu_set_runtime_mode() will switch to full |
| 3947 | * runtime RCU functionality. |
| 3948 | */ |
| 3949 | void rcu_scheduler_starting(void) |
| 3950 | { |
| 3951 | WARN_ON(num_online_cpus() != 1); |
| 3952 | WARN_ON(nr_context_switches() > 0); |
| 3953 | rcu_test_sync_prims(); |
| 3954 | rcu_scheduler_active = RCU_SCHEDULER_INIT; |
| 3955 | rcu_test_sync_prims(); |
| 3956 | } |
| 3957 | |
| 3958 | /* |
| 3959 | * Helper function for rcu_init() that initializes one rcu_state structure. |
| 3960 | */ |
| 3961 | static void __init rcu_init_one(struct rcu_state *rsp) |
| 3962 | { |
| 3963 | static const char * const buf[] = RCU_NODE_NAME_INIT; |
| 3964 | static const char * const fqs[] = RCU_FQS_NAME_INIT; |
| 3965 | static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; |
| 3966 | static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; |
| 3967 | |
| 3968 | int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ |
| 3969 | int cpustride = 1; |
| 3970 | int i; |
| 3971 | int j; |
| 3972 | struct rcu_node *rnp; |
| 3973 | |
| 3974 | BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ |
| 3975 | |
| 3976 | /* Silence gcc 4.8 false positive about array index out of range. */ |
| 3977 | if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) |
| 3978 | panic("rcu_init_one: rcu_num_lvls out of range"); |
| 3979 | |
| 3980 | /* Initialize the level-tracking arrays. */ |
| 3981 | |
| 3982 | for (i = 1; i < rcu_num_lvls; i++) |
| 3983 | rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1]; |
| 3984 | rcu_init_levelspread(levelspread, num_rcu_lvl); |
| 3985 | |
| 3986 | /* Initialize the elements themselves, starting from the leaves. */ |
| 3987 | |
| 3988 | for (i = rcu_num_lvls - 1; i >= 0; i--) { |
| 3989 | cpustride *= levelspread[i]; |
| 3990 | rnp = rsp->level[i]; |
| 3991 | for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { |
| 3992 | raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); |
| 3993 | lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), |
| 3994 | &rcu_node_class[i], buf[i]); |
| 3995 | raw_spin_lock_init(&rnp->fqslock); |
| 3996 | lockdep_set_class_and_name(&rnp->fqslock, |
| 3997 | &rcu_fqs_class[i], fqs[i]); |
| 3998 | rnp->gp_seq = rsp->gp_seq; |
| 3999 | rnp->gp_seq_needed = rsp->gp_seq; |
| 4000 | rnp->completedqs = rsp->gp_seq; |
| 4001 | rnp->qsmask = 0; |
| 4002 | rnp->qsmaskinit = 0; |
| 4003 | rnp->grplo = j * cpustride; |
| 4004 | rnp->grphi = (j + 1) * cpustride - 1; |
| 4005 | if (rnp->grphi >= nr_cpu_ids) |
| 4006 | rnp->grphi = nr_cpu_ids - 1; |
| 4007 | if (i == 0) { |
| 4008 | rnp->grpnum = 0; |
| 4009 | rnp->grpmask = 0; |
| 4010 | rnp->parent = NULL; |
| 4011 | } else { |
| 4012 | rnp->grpnum = j % levelspread[i - 1]; |
| 4013 | rnp->grpmask = 1UL << rnp->grpnum; |
| 4014 | rnp->parent = rsp->level[i - 1] + |
| 4015 | j / levelspread[i - 1]; |
| 4016 | } |
| 4017 | rnp->level = i; |
| 4018 | INIT_LIST_HEAD(&rnp->blkd_tasks); |
| 4019 | rcu_init_one_nocb(rnp); |
| 4020 | init_waitqueue_head(&rnp->exp_wq[0]); |
| 4021 | init_waitqueue_head(&rnp->exp_wq[1]); |
| 4022 | init_waitqueue_head(&rnp->exp_wq[2]); |
| 4023 | init_waitqueue_head(&rnp->exp_wq[3]); |
| 4024 | spin_lock_init(&rnp->exp_lock); |
| 4025 | } |
| 4026 | } |
| 4027 | |
| 4028 | init_swait_queue_head(&rsp->gp_wq); |
| 4029 | init_swait_queue_head(&rsp->expedited_wq); |
| 4030 | rnp = rcu_first_leaf_node(rsp); |
| 4031 | for_each_possible_cpu(i) { |
| 4032 | while (i > rnp->grphi) |
| 4033 | rnp++; |
| 4034 | per_cpu_ptr(rsp->rda, i)->mynode = rnp; |
| 4035 | rcu_boot_init_percpu_data(i, rsp); |
| 4036 | } |
| 4037 | list_add(&rsp->flavors, &rcu_struct_flavors); |
| 4038 | } |
| 4039 | |
| 4040 | /* |
| 4041 | * Compute the rcu_node tree geometry from kernel parameters. This cannot |
| 4042 | * replace the definitions in tree.h because those are needed to size |
| 4043 | * the ->node array in the rcu_state structure. |
| 4044 | */ |
| 4045 | static void __init rcu_init_geometry(void) |
| 4046 | { |
| 4047 | ulong d; |
| 4048 | int i; |
| 4049 | int rcu_capacity[RCU_NUM_LVLS]; |
| 4050 | |
| 4051 | /* |
| 4052 | * Initialize any unspecified boot parameters. |
| 4053 | * The default values of jiffies_till_first_fqs and |
| 4054 | * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS |
| 4055 | * value, which is a function of HZ, then adding one for each |
| 4056 | * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. |
| 4057 | */ |
| 4058 | d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; |
| 4059 | if (jiffies_till_first_fqs == ULONG_MAX) |
| 4060 | jiffies_till_first_fqs = d; |
| 4061 | if (jiffies_till_next_fqs == ULONG_MAX) |
| 4062 | jiffies_till_next_fqs = d; |
| 4063 | |
| 4064 | /* If the compile-time values are accurate, just leave. */ |
| 4065 | if (rcu_fanout_leaf == RCU_FANOUT_LEAF && |
| 4066 | nr_cpu_ids == NR_CPUS) |
| 4067 | return; |
| 4068 | pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", |
| 4069 | rcu_fanout_leaf, nr_cpu_ids); |
| 4070 | |
| 4071 | /* |
| 4072 | * The boot-time rcu_fanout_leaf parameter must be at least two |
| 4073 | * and cannot exceed the number of bits in the rcu_node masks. |
| 4074 | * Complain and fall back to the compile-time values if this |
| 4075 | * limit is exceeded. |
| 4076 | */ |
| 4077 | if (rcu_fanout_leaf < 2 || |
| 4078 | rcu_fanout_leaf > sizeof(unsigned long) * 8) { |
| 4079 | rcu_fanout_leaf = RCU_FANOUT_LEAF; |
| 4080 | WARN_ON(1); |
| 4081 | return; |
| 4082 | } |
| 4083 | |
| 4084 | /* |
| 4085 | * Compute number of nodes that can be handled an rcu_node tree |
| 4086 | * with the given number of levels. |
| 4087 | */ |
| 4088 | rcu_capacity[0] = rcu_fanout_leaf; |
| 4089 | for (i = 1; i < RCU_NUM_LVLS; i++) |
| 4090 | rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; |
| 4091 | |
| 4092 | /* |
| 4093 | * The tree must be able to accommodate the configured number of CPUs. |
| 4094 | * If this limit is exceeded, fall back to the compile-time values. |
| 4095 | */ |
| 4096 | if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { |
| 4097 | rcu_fanout_leaf = RCU_FANOUT_LEAF; |
| 4098 | WARN_ON(1); |
| 4099 | return; |
| 4100 | } |
| 4101 | |
| 4102 | /* Calculate the number of levels in the tree. */ |
| 4103 | for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { |
| 4104 | } |
| 4105 | rcu_num_lvls = i + 1; |
| 4106 | |
| 4107 | /* Calculate the number of rcu_nodes at each level of the tree. */ |
| 4108 | for (i = 0; i < rcu_num_lvls; i++) { |
| 4109 | int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; |
| 4110 | num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); |
| 4111 | } |
| 4112 | |
| 4113 | /* Calculate the total number of rcu_node structures. */ |
| 4114 | rcu_num_nodes = 0; |
| 4115 | for (i = 0; i < rcu_num_lvls; i++) |
| 4116 | rcu_num_nodes += num_rcu_lvl[i]; |
| 4117 | } |
| 4118 | |
| 4119 | /* |
| 4120 | * Dump out the structure of the rcu_node combining tree associated |
| 4121 | * with the rcu_state structure referenced by rsp. |
| 4122 | */ |
| 4123 | static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp) |
| 4124 | { |
| 4125 | int level = 0; |
| 4126 | struct rcu_node *rnp; |
| 4127 | |
| 4128 | pr_info("rcu_node tree layout dump\n"); |
| 4129 | pr_info(" "); |
| 4130 | rcu_for_each_node_breadth_first(rsp, rnp) { |
| 4131 | if (rnp->level != level) { |
| 4132 | pr_cont("\n"); |
| 4133 | pr_info(" "); |
| 4134 | level = rnp->level; |
| 4135 | } |
| 4136 | pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); |
| 4137 | } |
| 4138 | pr_cont("\n"); |
| 4139 | } |
| 4140 | |
| 4141 | struct workqueue_struct *rcu_gp_wq; |
| 4142 | struct workqueue_struct *rcu_par_gp_wq; |
| 4143 | |
| 4144 | void __init rcu_init(void) |
| 4145 | { |
| 4146 | int cpu; |
| 4147 | |
| 4148 | rcu_early_boot_tests(); |
| 4149 | |
| 4150 | rcu_bootup_announce(); |
| 4151 | rcu_init_geometry(); |
| 4152 | rcu_init_one(&rcu_bh_state); |
| 4153 | rcu_init_one(&rcu_sched_state); |
| 4154 | if (dump_tree) |
| 4155 | rcu_dump_rcu_node_tree(&rcu_sched_state); |
| 4156 | __rcu_init_preempt(); |
| 4157 | open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); |
| 4158 | |
| 4159 | /* |
| 4160 | * We don't need protection against CPU-hotplug here because |
| 4161 | * this is called early in boot, before either interrupts |
| 4162 | * or the scheduler are operational. |
| 4163 | */ |
| 4164 | pm_notifier(rcu_pm_notify, 0); |
| 4165 | for_each_online_cpu(cpu) { |
| 4166 | rcutree_prepare_cpu(cpu); |
| 4167 | rcu_cpu_starting(cpu); |
| 4168 | rcutree_online_cpu(cpu); |
| 4169 | } |
| 4170 | |
| 4171 | /* Create workqueue for expedited GPs and for Tree SRCU. */ |
| 4172 | rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); |
| 4173 | WARN_ON(!rcu_gp_wq); |
| 4174 | rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); |
| 4175 | WARN_ON(!rcu_par_gp_wq); |
| 4176 | } |
| 4177 | |
| 4178 | #include "tree_exp.h" |
| 4179 | #include "tree_plugin.h" |