Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2016,2017 IBM Corporation. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public License |
| 6 | * as published by the Free Software Foundation; either version |
| 7 | * 2 of the License, or (at your option) any later version. |
| 8 | */ |
| 9 | |
| 10 | #define pr_fmt(fmt) "xive: " fmt |
| 11 | |
| 12 | #include <linux/types.h> |
| 13 | #include <linux/threads.h> |
| 14 | #include <linux/kernel.h> |
| 15 | #include <linux/irq.h> |
| 16 | #include <linux/debugfs.h> |
| 17 | #include <linux/smp.h> |
| 18 | #include <linux/interrupt.h> |
| 19 | #include <linux/seq_file.h> |
| 20 | #include <linux/init.h> |
| 21 | #include <linux/cpu.h> |
| 22 | #include <linux/of.h> |
| 23 | #include <linux/slab.h> |
| 24 | #include <linux/spinlock.h> |
| 25 | #include <linux/msi.h> |
| 26 | |
| 27 | #include <asm/prom.h> |
| 28 | #include <asm/io.h> |
| 29 | #include <asm/smp.h> |
| 30 | #include <asm/machdep.h> |
| 31 | #include <asm/irq.h> |
| 32 | #include <asm/errno.h> |
| 33 | #include <asm/xive.h> |
| 34 | #include <asm/xive-regs.h> |
| 35 | #include <asm/xmon.h> |
| 36 | |
| 37 | #include "xive-internal.h" |
| 38 | |
| 39 | #undef DEBUG_FLUSH |
| 40 | #undef DEBUG_ALL |
| 41 | |
| 42 | #ifdef DEBUG_ALL |
| 43 | #define DBG_VERBOSE(fmt, ...) pr_devel("cpu %d - " fmt, \ |
| 44 | smp_processor_id(), ## __VA_ARGS__) |
| 45 | #else |
| 46 | #define DBG_VERBOSE(fmt...) do { } while(0) |
| 47 | #endif |
| 48 | |
| 49 | bool __xive_enabled; |
| 50 | EXPORT_SYMBOL_GPL(__xive_enabled); |
| 51 | bool xive_cmdline_disabled; |
| 52 | |
| 53 | /* We use only one priority for now */ |
| 54 | static u8 xive_irq_priority; |
| 55 | |
| 56 | /* TIMA exported to KVM */ |
| 57 | void __iomem *xive_tima; |
| 58 | EXPORT_SYMBOL_GPL(xive_tima); |
| 59 | u32 xive_tima_offset; |
| 60 | |
| 61 | /* Backend ops */ |
| 62 | static const struct xive_ops *xive_ops; |
| 63 | |
| 64 | /* Our global interrupt domain */ |
| 65 | static struct irq_domain *xive_irq_domain; |
| 66 | |
| 67 | #ifdef CONFIG_SMP |
| 68 | /* The IPIs all use the same logical irq number */ |
| 69 | static u32 xive_ipi_irq; |
| 70 | #endif |
| 71 | |
| 72 | /* Xive state for each CPU */ |
| 73 | static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu); |
| 74 | |
| 75 | /* |
| 76 | * A "disabled" interrupt should never fire, to catch problems |
| 77 | * we set its logical number to this |
| 78 | */ |
| 79 | #define XIVE_BAD_IRQ 0x7fffffff |
| 80 | #define XIVE_MAX_IRQ (XIVE_BAD_IRQ - 1) |
| 81 | |
| 82 | /* An invalid CPU target */ |
| 83 | #define XIVE_INVALID_TARGET (-1) |
| 84 | |
| 85 | /* |
| 86 | * Read the next entry in a queue, return its content if it's valid |
| 87 | * or 0 if there is no new entry. |
| 88 | * |
| 89 | * The queue pointer is moved forward unless "just_peek" is set |
| 90 | */ |
| 91 | static u32 xive_read_eq(struct xive_q *q, bool just_peek) |
| 92 | { |
| 93 | u32 cur; |
| 94 | |
| 95 | if (!q->qpage) |
| 96 | return 0; |
| 97 | cur = be32_to_cpup(q->qpage + q->idx); |
| 98 | |
| 99 | /* Check valid bit (31) vs current toggle polarity */ |
| 100 | if ((cur >> 31) == q->toggle) |
| 101 | return 0; |
| 102 | |
| 103 | /* If consuming from the queue ... */ |
| 104 | if (!just_peek) { |
| 105 | /* Next entry */ |
| 106 | q->idx = (q->idx + 1) & q->msk; |
| 107 | |
| 108 | /* Wrap around: flip valid toggle */ |
| 109 | if (q->idx == 0) |
| 110 | q->toggle ^= 1; |
| 111 | } |
| 112 | /* Mask out the valid bit (31) */ |
| 113 | return cur & 0x7fffffff; |
| 114 | } |
| 115 | |
| 116 | /* |
| 117 | * Scans all the queue that may have interrupts in them |
| 118 | * (based on "pending_prio") in priority order until an |
| 119 | * interrupt is found or all the queues are empty. |
| 120 | * |
| 121 | * Then updates the CPPR (Current Processor Priority |
| 122 | * Register) based on the most favored interrupt found |
| 123 | * (0xff if none) and return what was found (0 if none). |
| 124 | * |
| 125 | * If just_peek is set, return the most favored pending |
| 126 | * interrupt if any but don't update the queue pointers. |
| 127 | * |
| 128 | * Note: This function can operate generically on any number |
| 129 | * of queues (up to 8). The current implementation of the XIVE |
| 130 | * driver only uses a single queue however. |
| 131 | * |
| 132 | * Note2: This will also "flush" "the pending_count" of a queue |
| 133 | * into the "count" when that queue is observed to be empty. |
| 134 | * This is used to keep track of the amount of interrupts |
| 135 | * targetting a queue. When an interrupt is moved away from |
| 136 | * a queue, we only decrement that queue count once the queue |
| 137 | * has been observed empty to avoid races. |
| 138 | */ |
| 139 | static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek) |
| 140 | { |
| 141 | u32 irq = 0; |
| 142 | u8 prio; |
| 143 | |
| 144 | /* Find highest pending priority */ |
| 145 | while (xc->pending_prio != 0) { |
| 146 | struct xive_q *q; |
| 147 | |
| 148 | prio = ffs(xc->pending_prio) - 1; |
| 149 | DBG_VERBOSE("scan_irq: trying prio %d\n", prio); |
| 150 | |
| 151 | /* Try to fetch */ |
| 152 | irq = xive_read_eq(&xc->queue[prio], just_peek); |
| 153 | |
| 154 | /* Found something ? That's it */ |
| 155 | if (irq) |
| 156 | break; |
| 157 | |
| 158 | /* Clear pending bits */ |
| 159 | xc->pending_prio &= ~(1 << prio); |
| 160 | |
| 161 | /* |
| 162 | * Check if the queue count needs adjusting due to |
| 163 | * interrupts being moved away. See description of |
| 164 | * xive_dec_target_count() |
| 165 | */ |
| 166 | q = &xc->queue[prio]; |
| 167 | if (atomic_read(&q->pending_count)) { |
| 168 | int p = atomic_xchg(&q->pending_count, 0); |
| 169 | if (p) { |
| 170 | WARN_ON(p > atomic_read(&q->count)); |
| 171 | atomic_sub(p, &q->count); |
| 172 | } |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | /* If nothing was found, set CPPR to 0xff */ |
| 177 | if (irq == 0) |
| 178 | prio = 0xff; |
| 179 | |
| 180 | /* Update HW CPPR to match if necessary */ |
| 181 | if (prio != xc->cppr) { |
| 182 | DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio); |
| 183 | xc->cppr = prio; |
| 184 | out_8(xive_tima + xive_tima_offset + TM_CPPR, prio); |
| 185 | } |
| 186 | |
| 187 | return irq; |
| 188 | } |
| 189 | |
| 190 | /* |
| 191 | * This is used to perform the magic loads from an ESB |
| 192 | * described in xive.h |
| 193 | */ |
| 194 | static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset) |
| 195 | { |
| 196 | u64 val; |
| 197 | |
| 198 | /* Handle HW errata */ |
| 199 | if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG) |
| 200 | offset |= offset << 4; |
| 201 | |
| 202 | if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw) |
| 203 | val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0); |
| 204 | else |
| 205 | val = in_be64(xd->eoi_mmio + offset); |
| 206 | |
| 207 | return (u8)val; |
| 208 | } |
| 209 | |
| 210 | static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data) |
| 211 | { |
| 212 | /* Handle HW errata */ |
| 213 | if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG) |
| 214 | offset |= offset << 4; |
| 215 | |
| 216 | if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw) |
| 217 | xive_ops->esb_rw(xd->hw_irq, offset, data, 1); |
| 218 | else |
| 219 | out_be64(xd->eoi_mmio + offset, data); |
| 220 | } |
| 221 | |
| 222 | #ifdef CONFIG_XMON |
| 223 | static notrace void xive_dump_eq(const char *name, struct xive_q *q) |
| 224 | { |
| 225 | u32 i0, i1, idx; |
| 226 | |
| 227 | if (!q->qpage) |
| 228 | return; |
| 229 | idx = q->idx; |
| 230 | i0 = be32_to_cpup(q->qpage + idx); |
| 231 | idx = (idx + 1) & q->msk; |
| 232 | i1 = be32_to_cpup(q->qpage + idx); |
| 233 | xmon_printf(" %s Q T=%d %08x %08x ...\n", name, |
| 234 | q->toggle, i0, i1); |
| 235 | } |
| 236 | |
| 237 | notrace void xmon_xive_do_dump(int cpu) |
| 238 | { |
| 239 | struct xive_cpu *xc = per_cpu(xive_cpu, cpu); |
| 240 | |
| 241 | xmon_printf("XIVE state for CPU %d:\n", cpu); |
| 242 | xmon_printf(" pp=%02x cppr=%02x\n", xc->pending_prio, xc->cppr); |
| 243 | xive_dump_eq("IRQ", &xc->queue[xive_irq_priority]); |
| 244 | #ifdef CONFIG_SMP |
| 245 | { |
| 246 | u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET); |
| 247 | xmon_printf(" IPI state: %x:%c%c\n", xc->hw_ipi, |
| 248 | val & XIVE_ESB_VAL_P ? 'P' : 'p', |
| 249 | val & XIVE_ESB_VAL_Q ? 'Q' : 'q'); |
| 250 | } |
| 251 | #endif |
| 252 | } |
| 253 | #endif /* CONFIG_XMON */ |
| 254 | |
| 255 | static unsigned int xive_get_irq(void) |
| 256 | { |
| 257 | struct xive_cpu *xc = __this_cpu_read(xive_cpu); |
| 258 | u32 irq; |
| 259 | |
| 260 | /* |
| 261 | * This can be called either as a result of a HW interrupt or |
| 262 | * as a "replay" because EOI decided there was still something |
| 263 | * in one of the queues. |
| 264 | * |
| 265 | * First we perform an ACK cycle in order to update our mask |
| 266 | * of pending priorities. This will also have the effect of |
| 267 | * updating the CPPR to the most favored pending interrupts. |
| 268 | * |
| 269 | * In the future, if we have a way to differentiate a first |
| 270 | * entry (on HW interrupt) from a replay triggered by EOI, |
| 271 | * we could skip this on replays unless we soft-mask tells us |
| 272 | * that a new HW interrupt occurred. |
| 273 | */ |
| 274 | xive_ops->update_pending(xc); |
| 275 | |
| 276 | DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio); |
| 277 | |
| 278 | /* Scan our queue(s) for interrupts */ |
| 279 | irq = xive_scan_interrupts(xc, false); |
| 280 | |
| 281 | DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n", |
| 282 | irq, xc->pending_prio); |
| 283 | |
| 284 | /* Return pending interrupt if any */ |
| 285 | if (irq == XIVE_BAD_IRQ) |
| 286 | return 0; |
| 287 | return irq; |
| 288 | } |
| 289 | |
| 290 | /* |
| 291 | * After EOI'ing an interrupt, we need to re-check the queue |
| 292 | * to see if another interrupt is pending since multiple |
| 293 | * interrupts can coalesce into a single notification to the |
| 294 | * CPU. |
| 295 | * |
| 296 | * If we find that there is indeed more in there, we call |
| 297 | * force_external_irq_replay() to make Linux synthetize an |
| 298 | * external interrupt on the next call to local_irq_restore(). |
| 299 | */ |
| 300 | static void xive_do_queue_eoi(struct xive_cpu *xc) |
| 301 | { |
| 302 | if (xive_scan_interrupts(xc, true) != 0) { |
| 303 | DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio); |
| 304 | force_external_irq_replay(); |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | /* |
| 309 | * EOI an interrupt at the source. There are several methods |
| 310 | * to do this depending on the HW version and source type |
| 311 | */ |
| 312 | void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd) |
| 313 | { |
| 314 | /* If the XIVE supports the new "store EOI facility, use it */ |
| 315 | if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI) |
| 316 | xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0); |
| 317 | else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) { |
| 318 | /* |
| 319 | * The FW told us to call it. This happens for some |
| 320 | * interrupt sources that need additional HW whacking |
| 321 | * beyond the ESB manipulation. For example LPC interrupts |
| 322 | * on P9 DD1.0 needed a latch to be clared in the LPC bridge |
| 323 | * itself. The Firmware will take care of it. |
| 324 | */ |
| 325 | if (WARN_ON_ONCE(!xive_ops->eoi)) |
| 326 | return; |
| 327 | xive_ops->eoi(hw_irq); |
| 328 | } else { |
| 329 | u8 eoi_val; |
| 330 | |
| 331 | /* |
| 332 | * Otherwise for EOI, we use the special MMIO that does |
| 333 | * a clear of both P and Q and returns the old Q, |
| 334 | * except for LSIs where we use the "EOI cycle" special |
| 335 | * load. |
| 336 | * |
| 337 | * This allows us to then do a re-trigger if Q was set |
| 338 | * rather than synthesizing an interrupt in software |
| 339 | * |
| 340 | * For LSIs the HW EOI cycle is used rather than PQ bits, |
| 341 | * as they are automatically re-triggred in HW when still |
| 342 | * pending. |
| 343 | */ |
| 344 | if (xd->flags & XIVE_IRQ_FLAG_LSI) |
| 345 | xive_esb_read(xd, XIVE_ESB_LOAD_EOI); |
| 346 | else { |
| 347 | eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00); |
| 348 | DBG_VERBOSE("eoi_val=%x\n", eoi_val); |
| 349 | |
| 350 | /* Re-trigger if needed */ |
| 351 | if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio) |
| 352 | out_be64(xd->trig_mmio, 0); |
| 353 | } |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | /* irq_chip eoi callback */ |
| 358 | static void xive_irq_eoi(struct irq_data *d) |
| 359 | { |
| 360 | struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); |
| 361 | struct xive_cpu *xc = __this_cpu_read(xive_cpu); |
| 362 | |
| 363 | DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n", |
| 364 | d->irq, irqd_to_hwirq(d), xc->pending_prio); |
| 365 | |
| 366 | /* |
| 367 | * EOI the source if it hasn't been disabled and hasn't |
| 368 | * been passed-through to a KVM guest |
| 369 | */ |
| 370 | if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) && |
| 371 | !(xd->flags & XIVE_IRQ_NO_EOI)) |
| 372 | xive_do_source_eoi(irqd_to_hwirq(d), xd); |
| 373 | |
| 374 | /* |
| 375 | * Clear saved_p to indicate that it's no longer occupying |
| 376 | * a queue slot on the target queue |
| 377 | */ |
| 378 | xd->saved_p = false; |
| 379 | |
| 380 | /* Check for more work in the queue */ |
| 381 | xive_do_queue_eoi(xc); |
| 382 | } |
| 383 | |
| 384 | /* |
| 385 | * Helper used to mask and unmask an interrupt source. This |
| 386 | * is only called for normal interrupts that do not require |
| 387 | * masking/unmasking via firmware. |
| 388 | */ |
| 389 | static void xive_do_source_set_mask(struct xive_irq_data *xd, |
| 390 | bool mask) |
| 391 | { |
| 392 | u64 val; |
| 393 | |
| 394 | /* |
| 395 | * If the interrupt had P set, it may be in a queue. |
| 396 | * |
| 397 | * We need to make sure we don't re-enable it until it |
| 398 | * has been fetched from that queue and EOId. We keep |
| 399 | * a copy of that P state and use it to restore the |
| 400 | * ESB accordingly on unmask. |
| 401 | */ |
| 402 | if (mask) { |
| 403 | val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01); |
| 404 | xd->saved_p = !!(val & XIVE_ESB_VAL_P); |
| 405 | } else if (xd->saved_p) |
| 406 | xive_esb_read(xd, XIVE_ESB_SET_PQ_10); |
| 407 | else |
| 408 | xive_esb_read(xd, XIVE_ESB_SET_PQ_00); |
| 409 | } |
| 410 | |
| 411 | /* |
| 412 | * Try to chose "cpu" as a new interrupt target. Increments |
| 413 | * the queue accounting for that target if it's not already |
| 414 | * full. |
| 415 | */ |
| 416 | static bool xive_try_pick_target(int cpu) |
| 417 | { |
| 418 | struct xive_cpu *xc = per_cpu(xive_cpu, cpu); |
| 419 | struct xive_q *q = &xc->queue[xive_irq_priority]; |
| 420 | int max; |
| 421 | |
| 422 | /* |
| 423 | * Calculate max number of interrupts in that queue. |
| 424 | * |
| 425 | * We leave a gap of 1 just in case... |
| 426 | */ |
| 427 | max = (q->msk + 1) - 1; |
| 428 | return !!atomic_add_unless(&q->count, 1, max); |
| 429 | } |
| 430 | |
| 431 | /* |
| 432 | * Un-account an interrupt for a target CPU. We don't directly |
| 433 | * decrement q->count since the interrupt might still be present |
| 434 | * in the queue. |
| 435 | * |
| 436 | * Instead increment a separate counter "pending_count" which |
| 437 | * will be substracted from "count" later when that CPU observes |
| 438 | * the queue to be empty. |
| 439 | */ |
| 440 | static void xive_dec_target_count(int cpu) |
| 441 | { |
| 442 | struct xive_cpu *xc = per_cpu(xive_cpu, cpu); |
| 443 | struct xive_q *q = &xc->queue[xive_irq_priority]; |
| 444 | |
| 445 | if (unlikely(WARN_ON(cpu < 0 || !xc))) { |
| 446 | pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc); |
| 447 | return; |
| 448 | } |
| 449 | |
| 450 | /* |
| 451 | * We increment the "pending count" which will be used |
| 452 | * to decrement the target queue count whenever it's next |
| 453 | * processed and found empty. This ensure that we don't |
| 454 | * decrement while we still have the interrupt there |
| 455 | * occupying a slot. |
| 456 | */ |
| 457 | atomic_inc(&q->pending_count); |
| 458 | } |
| 459 | |
| 460 | /* Find a tentative CPU target in a CPU mask */ |
| 461 | static int xive_find_target_in_mask(const struct cpumask *mask, |
| 462 | unsigned int fuzz) |
| 463 | { |
| 464 | int cpu, first, num, i; |
| 465 | |
| 466 | /* Pick up a starting point CPU in the mask based on fuzz */ |
| 467 | num = min_t(int, cpumask_weight(mask), nr_cpu_ids); |
| 468 | first = fuzz % num; |
| 469 | |
| 470 | /* Locate it */ |
| 471 | cpu = cpumask_first(mask); |
| 472 | for (i = 0; i < first && cpu < nr_cpu_ids; i++) |
| 473 | cpu = cpumask_next(cpu, mask); |
| 474 | |
| 475 | /* Sanity check */ |
| 476 | if (WARN_ON(cpu >= nr_cpu_ids)) |
| 477 | cpu = cpumask_first(cpu_online_mask); |
| 478 | |
| 479 | /* Remember first one to handle wrap-around */ |
| 480 | first = cpu; |
| 481 | |
| 482 | /* |
| 483 | * Now go through the entire mask until we find a valid |
| 484 | * target. |
| 485 | */ |
| 486 | for (;;) { |
| 487 | /* |
| 488 | * We re-check online as the fallback case passes us |
| 489 | * an untested affinity mask |
| 490 | */ |
| 491 | if (cpu_online(cpu) && xive_try_pick_target(cpu)) |
| 492 | return cpu; |
| 493 | cpu = cpumask_next(cpu, mask); |
| 494 | if (cpu == first) |
| 495 | break; |
| 496 | /* Wrap around */ |
| 497 | if (cpu >= nr_cpu_ids) |
| 498 | cpu = cpumask_first(mask); |
| 499 | } |
| 500 | return -1; |
| 501 | } |
| 502 | |
| 503 | /* |
| 504 | * Pick a target CPU for an interrupt. This is done at |
| 505 | * startup or if the affinity is changed in a way that |
| 506 | * invalidates the current target. |
| 507 | */ |
| 508 | static int xive_pick_irq_target(struct irq_data *d, |
| 509 | const struct cpumask *affinity) |
| 510 | { |
| 511 | static unsigned int fuzz; |
| 512 | struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); |
| 513 | cpumask_var_t mask; |
| 514 | int cpu = -1; |
| 515 | |
| 516 | /* |
| 517 | * If we have chip IDs, first we try to build a mask of |
| 518 | * CPUs matching the CPU and find a target in there |
| 519 | */ |
| 520 | if (xd->src_chip != XIVE_INVALID_CHIP_ID && |
| 521 | zalloc_cpumask_var(&mask, GFP_ATOMIC)) { |
| 522 | /* Build a mask of matching chip IDs */ |
| 523 | for_each_cpu_and(cpu, affinity, cpu_online_mask) { |
| 524 | struct xive_cpu *xc = per_cpu(xive_cpu, cpu); |
| 525 | if (xc->chip_id == xd->src_chip) |
| 526 | cpumask_set_cpu(cpu, mask); |
| 527 | } |
| 528 | /* Try to find a target */ |
| 529 | if (cpumask_empty(mask)) |
| 530 | cpu = -1; |
| 531 | else |
| 532 | cpu = xive_find_target_in_mask(mask, fuzz++); |
| 533 | free_cpumask_var(mask); |
| 534 | if (cpu >= 0) |
| 535 | return cpu; |
| 536 | fuzz--; |
| 537 | } |
| 538 | |
| 539 | /* No chip IDs, fallback to using the affinity mask */ |
| 540 | return xive_find_target_in_mask(affinity, fuzz++); |
| 541 | } |
| 542 | |
| 543 | static unsigned int xive_irq_startup(struct irq_data *d) |
| 544 | { |
| 545 | struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); |
| 546 | unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); |
| 547 | int target, rc; |
| 548 | |
| 549 | pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n", |
| 550 | d->irq, hw_irq, d); |
| 551 | |
| 552 | #ifdef CONFIG_PCI_MSI |
| 553 | /* |
| 554 | * The generic MSI code returns with the interrupt disabled on the |
| 555 | * card, using the MSI mask bits. Firmware doesn't appear to unmask |
| 556 | * at that level, so we do it here by hand. |
| 557 | */ |
| 558 | if (irq_data_get_msi_desc(d)) |
| 559 | pci_msi_unmask_irq(d); |
| 560 | #endif |
| 561 | |
| 562 | /* Pick a target */ |
| 563 | target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d)); |
| 564 | if (target == XIVE_INVALID_TARGET) { |
| 565 | /* Try again breaking affinity */ |
| 566 | target = xive_pick_irq_target(d, cpu_online_mask); |
| 567 | if (target == XIVE_INVALID_TARGET) |
| 568 | return -ENXIO; |
| 569 | pr_warn("irq %d started with broken affinity\n", d->irq); |
| 570 | } |
| 571 | |
| 572 | /* Sanity check */ |
| 573 | if (WARN_ON(target == XIVE_INVALID_TARGET || |
| 574 | target >= nr_cpu_ids)) |
| 575 | target = smp_processor_id(); |
| 576 | |
| 577 | xd->target = target; |
| 578 | |
| 579 | /* |
| 580 | * Configure the logical number to be the Linux IRQ number |
| 581 | * and set the target queue |
| 582 | */ |
| 583 | rc = xive_ops->configure_irq(hw_irq, |
| 584 | get_hard_smp_processor_id(target), |
| 585 | xive_irq_priority, d->irq); |
| 586 | if (rc) |
| 587 | return rc; |
| 588 | |
| 589 | /* Unmask the ESB */ |
| 590 | xive_do_source_set_mask(xd, false); |
| 591 | |
| 592 | return 0; |
| 593 | } |
| 594 | |
| 595 | static void xive_irq_shutdown(struct irq_data *d) |
| 596 | { |
| 597 | struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); |
| 598 | unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); |
| 599 | |
| 600 | pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n", |
| 601 | d->irq, hw_irq, d); |
| 602 | |
| 603 | if (WARN_ON(xd->target == XIVE_INVALID_TARGET)) |
| 604 | return; |
| 605 | |
| 606 | /* Mask the interrupt at the source */ |
| 607 | xive_do_source_set_mask(xd, true); |
| 608 | |
| 609 | /* |
| 610 | * The above may have set saved_p. We clear it otherwise it |
| 611 | * will prevent re-enabling later on. It is ok to forget the |
| 612 | * fact that the interrupt might be in a queue because we are |
| 613 | * accounting that already in xive_dec_target_count() and will |
| 614 | * be re-routing it to a new queue with proper accounting when |
| 615 | * it's started up again |
| 616 | */ |
| 617 | xd->saved_p = false; |
| 618 | |
| 619 | /* |
| 620 | * Mask the interrupt in HW in the IVT/EAS and set the number |
| 621 | * to be the "bad" IRQ number |
| 622 | */ |
| 623 | xive_ops->configure_irq(hw_irq, |
| 624 | get_hard_smp_processor_id(xd->target), |
| 625 | 0xff, XIVE_BAD_IRQ); |
| 626 | |
| 627 | xive_dec_target_count(xd->target); |
| 628 | xd->target = XIVE_INVALID_TARGET; |
| 629 | } |
| 630 | |
| 631 | static void xive_irq_unmask(struct irq_data *d) |
| 632 | { |
| 633 | struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); |
| 634 | |
| 635 | pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd); |
| 636 | |
| 637 | /* |
| 638 | * This is a workaround for PCI LSI problems on P9, for |
| 639 | * these, we call FW to set the mask. The problems might |
| 640 | * be fixed by P9 DD2.0, if that is the case, firmware |
| 641 | * will no longer set that flag. |
| 642 | */ |
| 643 | if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) { |
| 644 | unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); |
| 645 | xive_ops->configure_irq(hw_irq, |
| 646 | get_hard_smp_processor_id(xd->target), |
| 647 | xive_irq_priority, d->irq); |
| 648 | return; |
| 649 | } |
| 650 | |
| 651 | xive_do_source_set_mask(xd, false); |
| 652 | } |
| 653 | |
| 654 | static void xive_irq_mask(struct irq_data *d) |
| 655 | { |
| 656 | struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); |
| 657 | |
| 658 | pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd); |
| 659 | |
| 660 | /* |
| 661 | * This is a workaround for PCI LSI problems on P9, for |
| 662 | * these, we call OPAL to set the mask. The problems might |
| 663 | * be fixed by P9 DD2.0, if that is the case, firmware |
| 664 | * will no longer set that flag. |
| 665 | */ |
| 666 | if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) { |
| 667 | unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); |
| 668 | xive_ops->configure_irq(hw_irq, |
| 669 | get_hard_smp_processor_id(xd->target), |
| 670 | 0xff, d->irq); |
| 671 | return; |
| 672 | } |
| 673 | |
| 674 | xive_do_source_set_mask(xd, true); |
| 675 | } |
| 676 | |
| 677 | static int xive_irq_set_affinity(struct irq_data *d, |
| 678 | const struct cpumask *cpumask, |
| 679 | bool force) |
| 680 | { |
| 681 | struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); |
| 682 | unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); |
| 683 | u32 target, old_target; |
| 684 | int rc = 0; |
| 685 | |
| 686 | pr_devel("xive_irq_set_affinity: irq %d\n", d->irq); |
| 687 | |
| 688 | /* Is this valid ? */ |
| 689 | if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids) |
| 690 | return -EINVAL; |
| 691 | |
| 692 | /* Don't do anything if the interrupt isn't started */ |
| 693 | if (!irqd_is_started(d)) |
| 694 | return IRQ_SET_MASK_OK; |
| 695 | |
| 696 | /* |
| 697 | * If existing target is already in the new mask, and is |
| 698 | * online then do nothing. |
| 699 | */ |
| 700 | if (xd->target != XIVE_INVALID_TARGET && |
| 701 | cpu_online(xd->target) && |
| 702 | cpumask_test_cpu(xd->target, cpumask)) |
| 703 | return IRQ_SET_MASK_OK; |
| 704 | |
| 705 | /* Pick a new target */ |
| 706 | target = xive_pick_irq_target(d, cpumask); |
| 707 | |
| 708 | /* No target found */ |
| 709 | if (target == XIVE_INVALID_TARGET) |
| 710 | return -ENXIO; |
| 711 | |
| 712 | /* Sanity check */ |
| 713 | if (WARN_ON(target >= nr_cpu_ids)) |
| 714 | target = smp_processor_id(); |
| 715 | |
| 716 | old_target = xd->target; |
| 717 | |
| 718 | /* |
| 719 | * Only configure the irq if it's not currently passed-through to |
| 720 | * a KVM guest |
| 721 | */ |
| 722 | if (!irqd_is_forwarded_to_vcpu(d)) |
| 723 | rc = xive_ops->configure_irq(hw_irq, |
| 724 | get_hard_smp_processor_id(target), |
| 725 | xive_irq_priority, d->irq); |
| 726 | if (rc < 0) { |
| 727 | pr_err("Error %d reconfiguring irq %d\n", rc, d->irq); |
| 728 | return rc; |
| 729 | } |
| 730 | |
| 731 | pr_devel(" target: 0x%x\n", target); |
| 732 | xd->target = target; |
| 733 | |
| 734 | /* Give up previous target */ |
| 735 | if (old_target != XIVE_INVALID_TARGET) |
| 736 | xive_dec_target_count(old_target); |
| 737 | |
| 738 | return IRQ_SET_MASK_OK; |
| 739 | } |
| 740 | |
| 741 | static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type) |
| 742 | { |
| 743 | struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); |
| 744 | |
| 745 | /* |
| 746 | * We only support these. This has really no effect other than setting |
| 747 | * the corresponding descriptor bits mind you but those will in turn |
| 748 | * affect the resend function when re-enabling an edge interrupt. |
| 749 | * |
| 750 | * Set set the default to edge as explained in map(). |
| 751 | */ |
| 752 | if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE) |
| 753 | flow_type = IRQ_TYPE_EDGE_RISING; |
| 754 | |
| 755 | if (flow_type != IRQ_TYPE_EDGE_RISING && |
| 756 | flow_type != IRQ_TYPE_LEVEL_LOW) |
| 757 | return -EINVAL; |
| 758 | |
| 759 | irqd_set_trigger_type(d, flow_type); |
| 760 | |
| 761 | /* |
| 762 | * Double check it matches what the FW thinks |
| 763 | * |
| 764 | * NOTE: We don't know yet if the PAPR interface will provide |
| 765 | * the LSI vs MSI information apart from the device-tree so |
| 766 | * this check might have to move into an optional backend call |
| 767 | * that is specific to the native backend |
| 768 | */ |
| 769 | if ((flow_type == IRQ_TYPE_LEVEL_LOW) != |
| 770 | !!(xd->flags & XIVE_IRQ_FLAG_LSI)) { |
| 771 | pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n", |
| 772 | d->irq, (u32)irqd_to_hwirq(d), |
| 773 | (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge", |
| 774 | (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge"); |
| 775 | } |
| 776 | |
| 777 | return IRQ_SET_MASK_OK_NOCOPY; |
| 778 | } |
| 779 | |
| 780 | static int xive_irq_retrigger(struct irq_data *d) |
| 781 | { |
| 782 | struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); |
| 783 | |
| 784 | /* This should be only for MSIs */ |
| 785 | if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI)) |
| 786 | return 0; |
| 787 | |
| 788 | /* |
| 789 | * To perform a retrigger, we first set the PQ bits to |
| 790 | * 11, then perform an EOI. |
| 791 | */ |
| 792 | xive_esb_read(xd, XIVE_ESB_SET_PQ_11); |
| 793 | |
| 794 | /* |
| 795 | * Note: We pass "0" to the hw_irq argument in order to |
| 796 | * avoid calling into the backend EOI code which we don't |
| 797 | * want to do in the case of a re-trigger. Backends typically |
| 798 | * only do EOI for LSIs anyway. |
| 799 | */ |
| 800 | xive_do_source_eoi(0, xd); |
| 801 | |
| 802 | return 1; |
| 803 | } |
| 804 | |
| 805 | static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state) |
| 806 | { |
| 807 | struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); |
| 808 | unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); |
| 809 | int rc; |
| 810 | u8 pq; |
| 811 | |
| 812 | /* |
| 813 | * We only support this on interrupts that do not require |
| 814 | * firmware calls for masking and unmasking |
| 815 | */ |
| 816 | if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) |
| 817 | return -EIO; |
| 818 | |
| 819 | /* |
| 820 | * This is called by KVM with state non-NULL for enabling |
| 821 | * pass-through or NULL for disabling it |
| 822 | */ |
| 823 | if (state) { |
| 824 | irqd_set_forwarded_to_vcpu(d); |
| 825 | |
| 826 | /* Set it to PQ=10 state to prevent further sends */ |
| 827 | pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10); |
| 828 | |
| 829 | /* No target ? nothing to do */ |
| 830 | if (xd->target == XIVE_INVALID_TARGET) { |
| 831 | /* |
| 832 | * An untargetted interrupt should have been |
| 833 | * also masked at the source |
| 834 | */ |
| 835 | WARN_ON(pq & 2); |
| 836 | |
| 837 | return 0; |
| 838 | } |
| 839 | |
| 840 | /* |
| 841 | * If P was set, adjust state to PQ=11 to indicate |
| 842 | * that a resend is needed for the interrupt to reach |
| 843 | * the guest. Also remember the value of P. |
| 844 | * |
| 845 | * This also tells us that it's in flight to a host queue |
| 846 | * or has already been fetched but hasn't been EOIed yet |
| 847 | * by the host. This it's potentially using up a host |
| 848 | * queue slot. This is important to know because as long |
| 849 | * as this is the case, we must not hard-unmask it when |
| 850 | * "returning" that interrupt to the host. |
| 851 | * |
| 852 | * This saved_p is cleared by the host EOI, when we know |
| 853 | * for sure the queue slot is no longer in use. |
| 854 | */ |
| 855 | if (pq & 2) { |
| 856 | pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_11); |
| 857 | xd->saved_p = true; |
| 858 | |
| 859 | /* |
| 860 | * Sync the XIVE source HW to ensure the interrupt |
| 861 | * has gone through the EAS before we change its |
| 862 | * target to the guest. That should guarantee us |
| 863 | * that we *will* eventually get an EOI for it on |
| 864 | * the host. Otherwise there would be a small window |
| 865 | * for P to be seen here but the interrupt going |
| 866 | * to the guest queue. |
| 867 | */ |
| 868 | if (xive_ops->sync_source) |
| 869 | xive_ops->sync_source(hw_irq); |
| 870 | } else |
| 871 | xd->saved_p = false; |
| 872 | } else { |
| 873 | irqd_clr_forwarded_to_vcpu(d); |
| 874 | |
| 875 | /* No host target ? hard mask and return */ |
| 876 | if (xd->target == XIVE_INVALID_TARGET) { |
| 877 | xive_do_source_set_mask(xd, true); |
| 878 | return 0; |
| 879 | } |
| 880 | |
| 881 | /* |
| 882 | * Sync the XIVE source HW to ensure the interrupt |
| 883 | * has gone through the EAS before we change its |
| 884 | * target to the host. |
| 885 | */ |
| 886 | if (xive_ops->sync_source) |
| 887 | xive_ops->sync_source(hw_irq); |
| 888 | |
| 889 | /* |
| 890 | * By convention we are called with the interrupt in |
| 891 | * a PQ=10 or PQ=11 state, ie, it won't fire and will |
| 892 | * have latched in Q whether there's a pending HW |
| 893 | * interrupt or not. |
| 894 | * |
| 895 | * First reconfigure the target. |
| 896 | */ |
| 897 | rc = xive_ops->configure_irq(hw_irq, |
| 898 | get_hard_smp_processor_id(xd->target), |
| 899 | xive_irq_priority, d->irq); |
| 900 | if (rc) |
| 901 | return rc; |
| 902 | |
| 903 | /* |
| 904 | * Then if saved_p is not set, effectively re-enable the |
| 905 | * interrupt with an EOI. If it is set, we know there is |
| 906 | * still a message in a host queue somewhere that will be |
| 907 | * EOId eventually. |
| 908 | * |
| 909 | * Note: We don't check irqd_irq_disabled(). Effectively, |
| 910 | * we *will* let the irq get through even if masked if the |
| 911 | * HW is still firing it in order to deal with the whole |
| 912 | * saved_p business properly. If the interrupt triggers |
| 913 | * while masked, the generic code will re-mask it anyway. |
| 914 | */ |
| 915 | if (!xd->saved_p) |
| 916 | xive_do_source_eoi(hw_irq, xd); |
| 917 | |
| 918 | } |
| 919 | return 0; |
| 920 | } |
| 921 | |
| 922 | static struct irq_chip xive_irq_chip = { |
| 923 | .name = "XIVE-IRQ", |
| 924 | .irq_startup = xive_irq_startup, |
| 925 | .irq_shutdown = xive_irq_shutdown, |
| 926 | .irq_eoi = xive_irq_eoi, |
| 927 | .irq_mask = xive_irq_mask, |
| 928 | .irq_unmask = xive_irq_unmask, |
| 929 | .irq_set_affinity = xive_irq_set_affinity, |
| 930 | .irq_set_type = xive_irq_set_type, |
| 931 | .irq_retrigger = xive_irq_retrigger, |
| 932 | .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity, |
| 933 | }; |
| 934 | |
| 935 | bool is_xive_irq(struct irq_chip *chip) |
| 936 | { |
| 937 | return chip == &xive_irq_chip; |
| 938 | } |
| 939 | EXPORT_SYMBOL_GPL(is_xive_irq); |
| 940 | |
| 941 | void xive_cleanup_irq_data(struct xive_irq_data *xd) |
| 942 | { |
| 943 | if (xd->eoi_mmio) { |
| 944 | iounmap(xd->eoi_mmio); |
| 945 | if (xd->eoi_mmio == xd->trig_mmio) |
| 946 | xd->trig_mmio = NULL; |
| 947 | xd->eoi_mmio = NULL; |
| 948 | } |
| 949 | if (xd->trig_mmio) { |
| 950 | iounmap(xd->trig_mmio); |
| 951 | xd->trig_mmio = NULL; |
| 952 | } |
| 953 | } |
| 954 | EXPORT_SYMBOL_GPL(xive_cleanup_irq_data); |
| 955 | |
| 956 | static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw) |
| 957 | { |
| 958 | struct xive_irq_data *xd; |
| 959 | int rc; |
| 960 | |
| 961 | xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL); |
| 962 | if (!xd) |
| 963 | return -ENOMEM; |
| 964 | rc = xive_ops->populate_irq_data(hw, xd); |
| 965 | if (rc) { |
| 966 | kfree(xd); |
| 967 | return rc; |
| 968 | } |
| 969 | xd->target = XIVE_INVALID_TARGET; |
| 970 | irq_set_handler_data(virq, xd); |
| 971 | |
| 972 | return 0; |
| 973 | } |
| 974 | |
| 975 | static void xive_irq_free_data(unsigned int virq) |
| 976 | { |
| 977 | struct xive_irq_data *xd = irq_get_handler_data(virq); |
| 978 | |
| 979 | if (!xd) |
| 980 | return; |
| 981 | irq_set_handler_data(virq, NULL); |
| 982 | xive_cleanup_irq_data(xd); |
| 983 | kfree(xd); |
| 984 | } |
| 985 | |
| 986 | #ifdef CONFIG_SMP |
| 987 | |
| 988 | static void xive_cause_ipi(int cpu) |
| 989 | { |
| 990 | struct xive_cpu *xc; |
| 991 | struct xive_irq_data *xd; |
| 992 | |
| 993 | xc = per_cpu(xive_cpu, cpu); |
| 994 | |
| 995 | DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n", |
| 996 | smp_processor_id(), cpu, xc->hw_ipi); |
| 997 | |
| 998 | xd = &xc->ipi_data; |
| 999 | if (WARN_ON(!xd->trig_mmio)) |
| 1000 | return; |
| 1001 | out_be64(xd->trig_mmio, 0); |
| 1002 | } |
| 1003 | |
| 1004 | static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id) |
| 1005 | { |
| 1006 | return smp_ipi_demux(); |
| 1007 | } |
| 1008 | |
| 1009 | static void xive_ipi_eoi(struct irq_data *d) |
| 1010 | { |
| 1011 | struct xive_cpu *xc = __this_cpu_read(xive_cpu); |
| 1012 | |
| 1013 | DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n", |
| 1014 | d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio); |
| 1015 | |
| 1016 | /* Handle possible race with unplug and drop stale IPIs */ |
| 1017 | if (!xc) |
| 1018 | return; |
| 1019 | xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data); |
| 1020 | xive_do_queue_eoi(xc); |
| 1021 | } |
| 1022 | |
| 1023 | static void xive_ipi_do_nothing(struct irq_data *d) |
| 1024 | { |
| 1025 | /* |
| 1026 | * Nothing to do, we never mask/unmask IPIs, but the callback |
| 1027 | * has to exist for the struct irq_chip. |
| 1028 | */ |
| 1029 | } |
| 1030 | |
| 1031 | static struct irq_chip xive_ipi_chip = { |
| 1032 | .name = "XIVE-IPI", |
| 1033 | .irq_eoi = xive_ipi_eoi, |
| 1034 | .irq_mask = xive_ipi_do_nothing, |
| 1035 | .irq_unmask = xive_ipi_do_nothing, |
| 1036 | }; |
| 1037 | |
| 1038 | static void __init xive_request_ipi(void) |
| 1039 | { |
| 1040 | unsigned int virq; |
| 1041 | |
| 1042 | /* |
| 1043 | * Initialization failed, move on, we might manage to |
| 1044 | * reach the point where we display our errors before |
| 1045 | * the system falls appart |
| 1046 | */ |
| 1047 | if (!xive_irq_domain) |
| 1048 | return; |
| 1049 | |
| 1050 | /* Initialize it */ |
| 1051 | virq = irq_create_mapping(xive_irq_domain, 0); |
| 1052 | xive_ipi_irq = virq; |
| 1053 | |
| 1054 | WARN_ON(request_irq(virq, xive_muxed_ipi_action, |
| 1055 | IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL)); |
| 1056 | } |
| 1057 | |
| 1058 | static int xive_setup_cpu_ipi(unsigned int cpu) |
| 1059 | { |
| 1060 | struct xive_cpu *xc; |
| 1061 | int rc; |
| 1062 | |
| 1063 | pr_debug("Setting up IPI for CPU %d\n", cpu); |
| 1064 | |
| 1065 | xc = per_cpu(xive_cpu, cpu); |
| 1066 | |
| 1067 | /* Check if we are already setup */ |
| 1068 | if (xc->hw_ipi != 0) |
| 1069 | return 0; |
| 1070 | |
| 1071 | /* Grab an IPI from the backend, this will populate xc->hw_ipi */ |
| 1072 | if (xive_ops->get_ipi(cpu, xc)) |
| 1073 | return -EIO; |
| 1074 | |
| 1075 | /* |
| 1076 | * Populate the IRQ data in the xive_cpu structure and |
| 1077 | * configure the HW / enable the IPIs. |
| 1078 | */ |
| 1079 | rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data); |
| 1080 | if (rc) { |
| 1081 | pr_err("Failed to populate IPI data on CPU %d\n", cpu); |
| 1082 | return -EIO; |
| 1083 | } |
| 1084 | rc = xive_ops->configure_irq(xc->hw_ipi, |
| 1085 | get_hard_smp_processor_id(cpu), |
| 1086 | xive_irq_priority, xive_ipi_irq); |
| 1087 | if (rc) { |
| 1088 | pr_err("Failed to map IPI CPU %d\n", cpu); |
| 1089 | return -EIO; |
| 1090 | } |
| 1091 | pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu, |
| 1092 | xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio); |
| 1093 | |
| 1094 | /* Unmask it */ |
| 1095 | xive_do_source_set_mask(&xc->ipi_data, false); |
| 1096 | |
| 1097 | return 0; |
| 1098 | } |
| 1099 | |
| 1100 | static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc) |
| 1101 | { |
| 1102 | /* Disable the IPI and free the IRQ data */ |
| 1103 | |
| 1104 | /* Already cleaned up ? */ |
| 1105 | if (xc->hw_ipi == 0) |
| 1106 | return; |
| 1107 | |
| 1108 | /* Mask the IPI */ |
| 1109 | xive_do_source_set_mask(&xc->ipi_data, true); |
| 1110 | |
| 1111 | /* |
| 1112 | * Note: We don't call xive_cleanup_irq_data() to free |
| 1113 | * the mappings as this is called from an IPI on kexec |
| 1114 | * which is not a safe environment to call iounmap() |
| 1115 | */ |
| 1116 | |
| 1117 | /* Deconfigure/mask in the backend */ |
| 1118 | xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(), |
| 1119 | 0xff, xive_ipi_irq); |
| 1120 | |
| 1121 | /* Free the IPIs in the backend */ |
| 1122 | xive_ops->put_ipi(cpu, xc); |
| 1123 | } |
| 1124 | |
| 1125 | void __init xive_smp_probe(void) |
| 1126 | { |
| 1127 | smp_ops->cause_ipi = xive_cause_ipi; |
| 1128 | |
| 1129 | /* Register the IPI */ |
| 1130 | xive_request_ipi(); |
| 1131 | |
| 1132 | /* Allocate and setup IPI for the boot CPU */ |
| 1133 | xive_setup_cpu_ipi(smp_processor_id()); |
| 1134 | } |
| 1135 | |
| 1136 | #endif /* CONFIG_SMP */ |
| 1137 | |
| 1138 | static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq, |
| 1139 | irq_hw_number_t hw) |
| 1140 | { |
| 1141 | int rc; |
| 1142 | |
| 1143 | /* |
| 1144 | * Mark interrupts as edge sensitive by default so that resend |
| 1145 | * actually works. Will fix that up below if needed. |
| 1146 | */ |
| 1147 | irq_clear_status_flags(virq, IRQ_LEVEL); |
| 1148 | |
| 1149 | #ifdef CONFIG_SMP |
| 1150 | /* IPIs are special and come up with HW number 0 */ |
| 1151 | if (hw == 0) { |
| 1152 | /* |
| 1153 | * IPIs are marked per-cpu. We use separate HW interrupts under |
| 1154 | * the hood but associated with the same "linux" interrupt |
| 1155 | */ |
| 1156 | irq_set_chip_and_handler(virq, &xive_ipi_chip, |
| 1157 | handle_percpu_irq); |
| 1158 | return 0; |
| 1159 | } |
| 1160 | #endif |
| 1161 | |
| 1162 | rc = xive_irq_alloc_data(virq, hw); |
| 1163 | if (rc) |
| 1164 | return rc; |
| 1165 | |
| 1166 | irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq); |
| 1167 | |
| 1168 | return 0; |
| 1169 | } |
| 1170 | |
| 1171 | static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq) |
| 1172 | { |
| 1173 | struct irq_data *data = irq_get_irq_data(virq); |
| 1174 | unsigned int hw_irq; |
| 1175 | |
| 1176 | /* XXX Assign BAD number */ |
| 1177 | if (!data) |
| 1178 | return; |
| 1179 | hw_irq = (unsigned int)irqd_to_hwirq(data); |
| 1180 | if (hw_irq) |
| 1181 | xive_irq_free_data(virq); |
| 1182 | } |
| 1183 | |
| 1184 | static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct, |
| 1185 | const u32 *intspec, unsigned int intsize, |
| 1186 | irq_hw_number_t *out_hwirq, unsigned int *out_flags) |
| 1187 | |
| 1188 | { |
| 1189 | *out_hwirq = intspec[0]; |
| 1190 | |
| 1191 | /* |
| 1192 | * If intsize is at least 2, we look for the type in the second cell, |
| 1193 | * we assume the LSB indicates a level interrupt. |
| 1194 | */ |
| 1195 | if (intsize > 1) { |
| 1196 | if (intspec[1] & 1) |
| 1197 | *out_flags = IRQ_TYPE_LEVEL_LOW; |
| 1198 | else |
| 1199 | *out_flags = IRQ_TYPE_EDGE_RISING; |
| 1200 | } else |
| 1201 | *out_flags = IRQ_TYPE_LEVEL_LOW; |
| 1202 | |
| 1203 | return 0; |
| 1204 | } |
| 1205 | |
| 1206 | static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node, |
| 1207 | enum irq_domain_bus_token bus_token) |
| 1208 | { |
| 1209 | return xive_ops->match(node); |
| 1210 | } |
| 1211 | |
| 1212 | static const struct irq_domain_ops xive_irq_domain_ops = { |
| 1213 | .match = xive_irq_domain_match, |
| 1214 | .map = xive_irq_domain_map, |
| 1215 | .unmap = xive_irq_domain_unmap, |
| 1216 | .xlate = xive_irq_domain_xlate, |
| 1217 | }; |
| 1218 | |
| 1219 | static void __init xive_init_host(void) |
| 1220 | { |
| 1221 | xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ, |
| 1222 | &xive_irq_domain_ops, NULL); |
| 1223 | if (WARN_ON(xive_irq_domain == NULL)) |
| 1224 | return; |
| 1225 | irq_set_default_host(xive_irq_domain); |
| 1226 | } |
| 1227 | |
| 1228 | static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc) |
| 1229 | { |
| 1230 | if (xc->queue[xive_irq_priority].qpage) |
| 1231 | xive_ops->cleanup_queue(cpu, xc, xive_irq_priority); |
| 1232 | } |
| 1233 | |
| 1234 | static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc) |
| 1235 | { |
| 1236 | int rc = 0; |
| 1237 | |
| 1238 | /* We setup 1 queues for now with a 64k page */ |
| 1239 | if (!xc->queue[xive_irq_priority].qpage) |
| 1240 | rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority); |
| 1241 | |
| 1242 | return rc; |
| 1243 | } |
| 1244 | |
| 1245 | static int xive_prepare_cpu(unsigned int cpu) |
| 1246 | { |
| 1247 | struct xive_cpu *xc; |
| 1248 | |
| 1249 | xc = per_cpu(xive_cpu, cpu); |
| 1250 | if (!xc) { |
| 1251 | struct device_node *np; |
| 1252 | |
| 1253 | xc = kzalloc_node(sizeof(struct xive_cpu), |
| 1254 | GFP_KERNEL, cpu_to_node(cpu)); |
| 1255 | if (!xc) |
| 1256 | return -ENOMEM; |
| 1257 | np = of_get_cpu_node(cpu, NULL); |
| 1258 | if (np) |
| 1259 | xc->chip_id = of_get_ibm_chip_id(np); |
| 1260 | of_node_put(np); |
| 1261 | |
| 1262 | per_cpu(xive_cpu, cpu) = xc; |
| 1263 | } |
| 1264 | |
| 1265 | /* Setup EQs if not already */ |
| 1266 | return xive_setup_cpu_queues(cpu, xc); |
| 1267 | } |
| 1268 | |
| 1269 | static void xive_setup_cpu(void) |
| 1270 | { |
| 1271 | struct xive_cpu *xc = __this_cpu_read(xive_cpu); |
| 1272 | |
| 1273 | /* The backend might have additional things to do */ |
| 1274 | if (xive_ops->setup_cpu) |
| 1275 | xive_ops->setup_cpu(smp_processor_id(), xc); |
| 1276 | |
| 1277 | /* Set CPPR to 0xff to enable flow of interrupts */ |
| 1278 | xc->cppr = 0xff; |
| 1279 | out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff); |
| 1280 | } |
| 1281 | |
| 1282 | #ifdef CONFIG_SMP |
| 1283 | void xive_smp_setup_cpu(void) |
| 1284 | { |
| 1285 | pr_devel("SMP setup CPU %d\n", smp_processor_id()); |
| 1286 | |
| 1287 | /* This will have already been done on the boot CPU */ |
| 1288 | if (smp_processor_id() != boot_cpuid) |
| 1289 | xive_setup_cpu(); |
| 1290 | |
| 1291 | } |
| 1292 | |
| 1293 | int xive_smp_prepare_cpu(unsigned int cpu) |
| 1294 | { |
| 1295 | int rc; |
| 1296 | |
| 1297 | /* Allocate per-CPU data and queues */ |
| 1298 | rc = xive_prepare_cpu(cpu); |
| 1299 | if (rc) |
| 1300 | return rc; |
| 1301 | |
| 1302 | /* Allocate and setup IPI for the new CPU */ |
| 1303 | return xive_setup_cpu_ipi(cpu); |
| 1304 | } |
| 1305 | |
| 1306 | #ifdef CONFIG_HOTPLUG_CPU |
| 1307 | static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc) |
| 1308 | { |
| 1309 | u32 irq; |
| 1310 | |
| 1311 | /* We assume local irqs are disabled */ |
| 1312 | WARN_ON(!irqs_disabled()); |
| 1313 | |
| 1314 | /* Check what's already in the CPU queue */ |
| 1315 | while ((irq = xive_scan_interrupts(xc, false)) != 0) { |
| 1316 | /* |
| 1317 | * We need to re-route that interrupt to its new destination. |
| 1318 | * First get and lock the descriptor |
| 1319 | */ |
| 1320 | struct irq_desc *desc = irq_to_desc(irq); |
| 1321 | struct irq_data *d = irq_desc_get_irq_data(desc); |
| 1322 | struct xive_irq_data *xd; |
| 1323 | unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); |
| 1324 | |
| 1325 | /* |
| 1326 | * Ignore anything that isn't a XIVE irq and ignore |
| 1327 | * IPIs, so can just be dropped. |
| 1328 | */ |
| 1329 | if (d->domain != xive_irq_domain || hw_irq == 0) |
| 1330 | continue; |
| 1331 | |
| 1332 | /* |
| 1333 | * The IRQ should have already been re-routed, it's just a |
| 1334 | * stale in the old queue, so re-trigger it in order to make |
| 1335 | * it reach is new destination. |
| 1336 | */ |
| 1337 | #ifdef DEBUG_FLUSH |
| 1338 | pr_info("CPU %d: Got irq %d while offline, re-sending...\n", |
| 1339 | cpu, irq); |
| 1340 | #endif |
| 1341 | raw_spin_lock(&desc->lock); |
| 1342 | xd = irq_desc_get_handler_data(desc); |
| 1343 | |
| 1344 | /* |
| 1345 | * For LSIs, we EOI, this will cause a resend if it's |
| 1346 | * still asserted. Otherwise do an MSI retrigger. |
| 1347 | */ |
| 1348 | if (xd->flags & XIVE_IRQ_FLAG_LSI) |
| 1349 | xive_do_source_eoi(irqd_to_hwirq(d), xd); |
| 1350 | else |
| 1351 | xive_irq_retrigger(d); |
| 1352 | |
| 1353 | raw_spin_unlock(&desc->lock); |
| 1354 | } |
| 1355 | } |
| 1356 | |
| 1357 | void xive_smp_disable_cpu(void) |
| 1358 | { |
| 1359 | struct xive_cpu *xc = __this_cpu_read(xive_cpu); |
| 1360 | unsigned int cpu = smp_processor_id(); |
| 1361 | |
| 1362 | /* Migrate interrupts away from the CPU */ |
| 1363 | irq_migrate_all_off_this_cpu(); |
| 1364 | |
| 1365 | /* Set CPPR to 0 to disable flow of interrupts */ |
| 1366 | xc->cppr = 0; |
| 1367 | out_8(xive_tima + xive_tima_offset + TM_CPPR, 0); |
| 1368 | |
| 1369 | /* Flush everything still in the queue */ |
| 1370 | xive_flush_cpu_queue(cpu, xc); |
| 1371 | |
| 1372 | /* Re-enable CPPR */ |
| 1373 | xc->cppr = 0xff; |
| 1374 | out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff); |
| 1375 | } |
| 1376 | |
| 1377 | void xive_flush_interrupt(void) |
| 1378 | { |
| 1379 | struct xive_cpu *xc = __this_cpu_read(xive_cpu); |
| 1380 | unsigned int cpu = smp_processor_id(); |
| 1381 | |
| 1382 | /* Called if an interrupt occurs while the CPU is hot unplugged */ |
| 1383 | xive_flush_cpu_queue(cpu, xc); |
| 1384 | } |
| 1385 | |
| 1386 | #endif /* CONFIG_HOTPLUG_CPU */ |
| 1387 | |
| 1388 | #endif /* CONFIG_SMP */ |
| 1389 | |
| 1390 | void xive_teardown_cpu(void) |
| 1391 | { |
| 1392 | struct xive_cpu *xc = __this_cpu_read(xive_cpu); |
| 1393 | unsigned int cpu = smp_processor_id(); |
| 1394 | |
| 1395 | /* Set CPPR to 0 to disable flow of interrupts */ |
| 1396 | xc->cppr = 0; |
| 1397 | out_8(xive_tima + xive_tima_offset + TM_CPPR, 0); |
| 1398 | |
| 1399 | if (xive_ops->teardown_cpu) |
| 1400 | xive_ops->teardown_cpu(cpu, xc); |
| 1401 | |
| 1402 | #ifdef CONFIG_SMP |
| 1403 | /* Get rid of IPI */ |
| 1404 | xive_cleanup_cpu_ipi(cpu, xc); |
| 1405 | #endif |
| 1406 | |
| 1407 | /* Disable and free the queues */ |
| 1408 | xive_cleanup_cpu_queues(cpu, xc); |
| 1409 | } |
| 1410 | |
| 1411 | void xive_shutdown(void) |
| 1412 | { |
| 1413 | xive_ops->shutdown(); |
| 1414 | } |
| 1415 | |
| 1416 | bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset, |
| 1417 | u8 max_prio) |
| 1418 | { |
| 1419 | xive_tima = area; |
| 1420 | xive_tima_offset = offset; |
| 1421 | xive_ops = ops; |
| 1422 | xive_irq_priority = max_prio; |
| 1423 | |
| 1424 | ppc_md.get_irq = xive_get_irq; |
| 1425 | __xive_enabled = true; |
| 1426 | |
| 1427 | pr_devel("Initializing host..\n"); |
| 1428 | xive_init_host(); |
| 1429 | |
| 1430 | pr_devel("Initializing boot CPU..\n"); |
| 1431 | |
| 1432 | /* Allocate per-CPU data and queues */ |
| 1433 | xive_prepare_cpu(smp_processor_id()); |
| 1434 | |
| 1435 | /* Get ready for interrupts */ |
| 1436 | xive_setup_cpu(); |
| 1437 | |
| 1438 | pr_info("Interrupt handling initialized with %s backend\n", |
| 1439 | xive_ops->name); |
| 1440 | pr_info("Using priority %d for all interrupts\n", max_prio); |
| 1441 | |
| 1442 | return true; |
| 1443 | } |
| 1444 | |
| 1445 | __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift) |
| 1446 | { |
| 1447 | unsigned int alloc_order; |
| 1448 | struct page *pages; |
| 1449 | __be32 *qpage; |
| 1450 | |
| 1451 | alloc_order = xive_alloc_order(queue_shift); |
| 1452 | pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order); |
| 1453 | if (!pages) |
| 1454 | return ERR_PTR(-ENOMEM); |
| 1455 | qpage = (__be32 *)page_address(pages); |
| 1456 | memset(qpage, 0, 1 << queue_shift); |
| 1457 | |
| 1458 | return qpage; |
| 1459 | } |
| 1460 | |
| 1461 | static int __init xive_off(char *arg) |
| 1462 | { |
| 1463 | xive_cmdline_disabled = true; |
| 1464 | return 0; |
| 1465 | } |
| 1466 | __setup("xive=off", xive_off); |