blob: 14f84f70c5571879f58336c763d1888a2060415e [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
Olivier Deprez157378f2022-04-04 15:47:50 +020024 * mm->mmap_lock
25 * page->flags PG_locked (lock_page) * (see huegtlbfs below)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000026 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
Olivier Deprez157378f2022-04-04 15:47:50 +020028 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000029 * anon_vma->rwsem
30 * mm->page_table_lock or pte_lock
David Brazdil0f672f62019-12-10 10:32:29 +000031 * pgdat->lru_lock (in mark_page_accessed, isolate_lru_page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000032 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in __set_page_dirty_buffers)
35 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
36 * i_pages lock (widely used)
37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39 * sb_lock (within inode_lock in fs/fs-writeback.c)
40 * i_pages lock (widely used, in set_page_dirty,
41 * in arch-dependent flush_dcache_mmap_lock,
42 * within bdi.wb->list_lock in __sync_single_inode)
43 *
44 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
45 * ->tasklist_lock
46 * pte map lock
Olivier Deprez157378f2022-04-04 15:47:50 +020047 *
48 * * hugetlbfs PageHuge() pages take locks in this order:
49 * mapping->i_mmap_rwsem
50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51 * page->flags PG_locked (lock_page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000052 */
53
54#include <linux/mm.h>
55#include <linux/sched/mm.h>
56#include <linux/sched/task.h>
57#include <linux/pagemap.h>
58#include <linux/swap.h>
59#include <linux/swapops.h>
60#include <linux/slab.h>
61#include <linux/init.h>
62#include <linux/ksm.h>
63#include <linux/rmap.h>
64#include <linux/rcupdate.h>
65#include <linux/export.h>
66#include <linux/memcontrol.h>
67#include <linux/mmu_notifier.h>
68#include <linux/migrate.h>
69#include <linux/hugetlb.h>
David Brazdil0f672f62019-12-10 10:32:29 +000070#include <linux/huge_mm.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000071#include <linux/backing-dev.h>
72#include <linux/page_idle.h>
73#include <linux/memremap.h>
74#include <linux/userfaultfd_k.h>
75
76#include <asm/tlbflush.h>
77
78#include <trace/events/tlb.h>
79
80#include "internal.h"
81
82static struct kmem_cache *anon_vma_cachep;
83static struct kmem_cache *anon_vma_chain_cachep;
84
85static inline struct anon_vma *anon_vma_alloc(void)
86{
87 struct anon_vma *anon_vma;
88
89 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
90 if (anon_vma) {
91 atomic_set(&anon_vma->refcount, 1);
92 anon_vma->degree = 1; /* Reference for first vma */
93 anon_vma->parent = anon_vma;
94 /*
95 * Initialise the anon_vma root to point to itself. If called
96 * from fork, the root will be reset to the parents anon_vma.
97 */
98 anon_vma->root = anon_vma;
99 }
100
101 return anon_vma;
102}
103
104static inline void anon_vma_free(struct anon_vma *anon_vma)
105{
106 VM_BUG_ON(atomic_read(&anon_vma->refcount));
107
108 /*
109 * Synchronize against page_lock_anon_vma_read() such that
110 * we can safely hold the lock without the anon_vma getting
111 * freed.
112 *
113 * Relies on the full mb implied by the atomic_dec_and_test() from
114 * put_anon_vma() against the acquire barrier implied by
115 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
116 *
117 * page_lock_anon_vma_read() VS put_anon_vma()
118 * down_read_trylock() atomic_dec_and_test()
119 * LOCK MB
120 * atomic_read() rwsem_is_locked()
121 *
122 * LOCK should suffice since the actual taking of the lock must
123 * happen _before_ what follows.
124 */
125 might_sleep();
126 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
127 anon_vma_lock_write(anon_vma);
128 anon_vma_unlock_write(anon_vma);
129 }
130
131 kmem_cache_free(anon_vma_cachep, anon_vma);
132}
133
134static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
135{
136 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
137}
138
139static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
140{
141 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
142}
143
144static void anon_vma_chain_link(struct vm_area_struct *vma,
145 struct anon_vma_chain *avc,
146 struct anon_vma *anon_vma)
147{
148 avc->vma = vma;
149 avc->anon_vma = anon_vma;
150 list_add(&avc->same_vma, &vma->anon_vma_chain);
151 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
152}
153
154/**
155 * __anon_vma_prepare - attach an anon_vma to a memory region
156 * @vma: the memory region in question
157 *
158 * This makes sure the memory mapping described by 'vma' has
159 * an 'anon_vma' attached to it, so that we can associate the
160 * anonymous pages mapped into it with that anon_vma.
161 *
162 * The common case will be that we already have one, which
163 * is handled inline by anon_vma_prepare(). But if
164 * not we either need to find an adjacent mapping that we
165 * can re-use the anon_vma from (very common when the only
166 * reason for splitting a vma has been mprotect()), or we
167 * allocate a new one.
168 *
169 * Anon-vma allocations are very subtle, because we may have
170 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
171 * and that may actually touch the spinlock even in the newly
172 * allocated vma (it depends on RCU to make sure that the
173 * anon_vma isn't actually destroyed).
174 *
175 * As a result, we need to do proper anon_vma locking even
176 * for the new allocation. At the same time, we do not want
177 * to do any locking for the common case of already having
178 * an anon_vma.
179 *
Olivier Deprez157378f2022-04-04 15:47:50 +0200180 * This must be called with the mmap_lock held for reading.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000181 */
182int __anon_vma_prepare(struct vm_area_struct *vma)
183{
184 struct mm_struct *mm = vma->vm_mm;
185 struct anon_vma *anon_vma, *allocated;
186 struct anon_vma_chain *avc;
187
188 might_sleep();
189
190 avc = anon_vma_chain_alloc(GFP_KERNEL);
191 if (!avc)
192 goto out_enomem;
193
194 anon_vma = find_mergeable_anon_vma(vma);
195 allocated = NULL;
196 if (!anon_vma) {
197 anon_vma = anon_vma_alloc();
198 if (unlikely(!anon_vma))
199 goto out_enomem_free_avc;
200 allocated = anon_vma;
201 }
202
203 anon_vma_lock_write(anon_vma);
204 /* page_table_lock to protect against threads */
205 spin_lock(&mm->page_table_lock);
206 if (likely(!vma->anon_vma)) {
207 vma->anon_vma = anon_vma;
208 anon_vma_chain_link(vma, avc, anon_vma);
209 /* vma reference or self-parent link for new root */
210 anon_vma->degree++;
211 allocated = NULL;
212 avc = NULL;
213 }
214 spin_unlock(&mm->page_table_lock);
215 anon_vma_unlock_write(anon_vma);
216
217 if (unlikely(allocated))
218 put_anon_vma(allocated);
219 if (unlikely(avc))
220 anon_vma_chain_free(avc);
221
222 return 0;
223
224 out_enomem_free_avc:
225 anon_vma_chain_free(avc);
226 out_enomem:
227 return -ENOMEM;
228}
229
230/*
231 * This is a useful helper function for locking the anon_vma root as
232 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
233 * have the same vma.
234 *
235 * Such anon_vma's should have the same root, so you'd expect to see
236 * just a single mutex_lock for the whole traversal.
237 */
238static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
239{
240 struct anon_vma *new_root = anon_vma->root;
241 if (new_root != root) {
242 if (WARN_ON_ONCE(root))
243 up_write(&root->rwsem);
244 root = new_root;
245 down_write(&root->rwsem);
246 }
247 return root;
248}
249
250static inline void unlock_anon_vma_root(struct anon_vma *root)
251{
252 if (root)
253 up_write(&root->rwsem);
254}
255
256/*
257 * Attach the anon_vmas from src to dst.
258 * Returns 0 on success, -ENOMEM on failure.
259 *
Olivier Deprez157378f2022-04-04 15:47:50 +0200260 * anon_vma_clone() is called by __vma_split(), __split_vma(), copy_vma() and
261 * anon_vma_fork(). The first three want an exact copy of src, while the last
262 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
263 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
264 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
265 *
266 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
267 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
268 * This prevents degradation of anon_vma hierarchy to endless linear chain in
269 * case of constantly forking task. On the other hand, an anon_vma with more
270 * than one child isn't reused even if there was no alive vma, thus rmap
271 * walker has a good chance of avoiding scanning the whole hierarchy when it
272 * searches where page is mapped.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000273 */
274int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
275{
276 struct anon_vma_chain *avc, *pavc;
277 struct anon_vma *root = NULL;
278
279 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
280 struct anon_vma *anon_vma;
281
282 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
283 if (unlikely(!avc)) {
284 unlock_anon_vma_root(root);
285 root = NULL;
286 avc = anon_vma_chain_alloc(GFP_KERNEL);
287 if (!avc)
288 goto enomem_failure;
289 }
290 anon_vma = pavc->anon_vma;
291 root = lock_anon_vma_root(root, anon_vma);
292 anon_vma_chain_link(dst, avc, anon_vma);
293
294 /*
295 * Reuse existing anon_vma if its degree lower than two,
296 * that means it has no vma and only one anon_vma child.
297 *
298 * Do not chose parent anon_vma, otherwise first child
299 * will always reuse it. Root anon_vma is never reused:
300 * it has self-parent reference and at least one child.
301 */
Olivier Deprez157378f2022-04-04 15:47:50 +0200302 if (!dst->anon_vma && src->anon_vma &&
303 anon_vma != src->anon_vma && anon_vma->degree < 2)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000304 dst->anon_vma = anon_vma;
305 }
306 if (dst->anon_vma)
307 dst->anon_vma->degree++;
308 unlock_anon_vma_root(root);
309 return 0;
310
311 enomem_failure:
312 /*
313 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
314 * decremented in unlink_anon_vmas().
315 * We can safely do this because callers of anon_vma_clone() don't care
316 * about dst->anon_vma if anon_vma_clone() failed.
317 */
318 dst->anon_vma = NULL;
319 unlink_anon_vmas(dst);
320 return -ENOMEM;
321}
322
323/*
324 * Attach vma to its own anon_vma, as well as to the anon_vmas that
325 * the corresponding VMA in the parent process is attached to.
326 * Returns 0 on success, non-zero on failure.
327 */
328int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
329{
330 struct anon_vma_chain *avc;
331 struct anon_vma *anon_vma;
332 int error;
333
334 /* Don't bother if the parent process has no anon_vma here. */
335 if (!pvma->anon_vma)
336 return 0;
337
338 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
339 vma->anon_vma = NULL;
340
341 /*
342 * First, attach the new VMA to the parent VMA's anon_vmas,
343 * so rmap can find non-COWed pages in child processes.
344 */
345 error = anon_vma_clone(vma, pvma);
346 if (error)
347 return error;
348
349 /* An existing anon_vma has been reused, all done then. */
350 if (vma->anon_vma)
351 return 0;
352
353 /* Then add our own anon_vma. */
354 anon_vma = anon_vma_alloc();
355 if (!anon_vma)
356 goto out_error;
357 avc = anon_vma_chain_alloc(GFP_KERNEL);
358 if (!avc)
359 goto out_error_free_anon_vma;
360
361 /*
362 * The root anon_vma's spinlock is the lock actually used when we
363 * lock any of the anon_vmas in this anon_vma tree.
364 */
365 anon_vma->root = pvma->anon_vma->root;
366 anon_vma->parent = pvma->anon_vma;
367 /*
368 * With refcounts, an anon_vma can stay around longer than the
369 * process it belongs to. The root anon_vma needs to be pinned until
370 * this anon_vma is freed, because the lock lives in the root.
371 */
372 get_anon_vma(anon_vma->root);
373 /* Mark this anon_vma as the one where our new (COWed) pages go. */
374 vma->anon_vma = anon_vma;
375 anon_vma_lock_write(anon_vma);
376 anon_vma_chain_link(vma, avc, anon_vma);
377 anon_vma->parent->degree++;
378 anon_vma_unlock_write(anon_vma);
379
380 return 0;
381
382 out_error_free_anon_vma:
383 put_anon_vma(anon_vma);
384 out_error:
385 unlink_anon_vmas(vma);
386 return -ENOMEM;
387}
388
389void unlink_anon_vmas(struct vm_area_struct *vma)
390{
391 struct anon_vma_chain *avc, *next;
392 struct anon_vma *root = NULL;
393
394 /*
395 * Unlink each anon_vma chained to the VMA. This list is ordered
396 * from newest to oldest, ensuring the root anon_vma gets freed last.
397 */
398 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
399 struct anon_vma *anon_vma = avc->anon_vma;
400
401 root = lock_anon_vma_root(root, anon_vma);
402 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
403
404 /*
405 * Leave empty anon_vmas on the list - we'll need
406 * to free them outside the lock.
407 */
408 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
409 anon_vma->parent->degree--;
410 continue;
411 }
412
413 list_del(&avc->same_vma);
414 anon_vma_chain_free(avc);
415 }
416 if (vma->anon_vma)
417 vma->anon_vma->degree--;
418 unlock_anon_vma_root(root);
419
420 /*
421 * Iterate the list once more, it now only contains empty and unlinked
422 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
423 * needing to write-acquire the anon_vma->root->rwsem.
424 */
425 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
426 struct anon_vma *anon_vma = avc->anon_vma;
427
428 VM_WARN_ON(anon_vma->degree);
429 put_anon_vma(anon_vma);
430
431 list_del(&avc->same_vma);
432 anon_vma_chain_free(avc);
433 }
434}
435
436static void anon_vma_ctor(void *data)
437{
438 struct anon_vma *anon_vma = data;
439
440 init_rwsem(&anon_vma->rwsem);
441 atomic_set(&anon_vma->refcount, 0);
442 anon_vma->rb_root = RB_ROOT_CACHED;
443}
444
445void __init anon_vma_init(void)
446{
447 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
448 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
449 anon_vma_ctor);
450 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
451 SLAB_PANIC|SLAB_ACCOUNT);
452}
453
454/*
455 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
456 *
457 * Since there is no serialization what so ever against page_remove_rmap()
458 * the best this function can do is return a locked anon_vma that might
459 * have been relevant to this page.
460 *
461 * The page might have been remapped to a different anon_vma or the anon_vma
462 * returned may already be freed (and even reused).
463 *
464 * In case it was remapped to a different anon_vma, the new anon_vma will be a
465 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
466 * ensure that any anon_vma obtained from the page will still be valid for as
467 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
468 *
469 * All users of this function must be very careful when walking the anon_vma
470 * chain and verify that the page in question is indeed mapped in it
471 * [ something equivalent to page_mapped_in_vma() ].
472 *
Olivier Deprez157378f2022-04-04 15:47:50 +0200473 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
474 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
475 * if there is a mapcount, we can dereference the anon_vma after observing
476 * those.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000477 */
478struct anon_vma *page_get_anon_vma(struct page *page)
479{
480 struct anon_vma *anon_vma = NULL;
481 unsigned long anon_mapping;
482
483 rcu_read_lock();
484 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
485 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
486 goto out;
487 if (!page_mapped(page))
488 goto out;
489
490 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
491 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
492 anon_vma = NULL;
493 goto out;
494 }
495
496 /*
497 * If this page is still mapped, then its anon_vma cannot have been
498 * freed. But if it has been unmapped, we have no security against the
499 * anon_vma structure being freed and reused (for another anon_vma:
500 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
501 * above cannot corrupt).
502 */
503 if (!page_mapped(page)) {
504 rcu_read_unlock();
505 put_anon_vma(anon_vma);
506 return NULL;
507 }
508out:
509 rcu_read_unlock();
510
511 return anon_vma;
512}
513
514/*
515 * Similar to page_get_anon_vma() except it locks the anon_vma.
516 *
517 * Its a little more complex as it tries to keep the fast path to a single
518 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
519 * reference like with page_get_anon_vma() and then block on the mutex.
520 */
521struct anon_vma *page_lock_anon_vma_read(struct page *page)
522{
523 struct anon_vma *anon_vma = NULL;
524 struct anon_vma *root_anon_vma;
525 unsigned long anon_mapping;
526
527 rcu_read_lock();
528 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
529 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
530 goto out;
531 if (!page_mapped(page))
532 goto out;
533
534 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
535 root_anon_vma = READ_ONCE(anon_vma->root);
536 if (down_read_trylock(&root_anon_vma->rwsem)) {
537 /*
538 * If the page is still mapped, then this anon_vma is still
539 * its anon_vma, and holding the mutex ensures that it will
540 * not go away, see anon_vma_free().
541 */
542 if (!page_mapped(page)) {
543 up_read(&root_anon_vma->rwsem);
544 anon_vma = NULL;
545 }
546 goto out;
547 }
548
549 /* trylock failed, we got to sleep */
550 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
551 anon_vma = NULL;
552 goto out;
553 }
554
555 if (!page_mapped(page)) {
556 rcu_read_unlock();
557 put_anon_vma(anon_vma);
558 return NULL;
559 }
560
561 /* we pinned the anon_vma, its safe to sleep */
562 rcu_read_unlock();
563 anon_vma_lock_read(anon_vma);
564
565 if (atomic_dec_and_test(&anon_vma->refcount)) {
566 /*
567 * Oops, we held the last refcount, release the lock
568 * and bail -- can't simply use put_anon_vma() because
569 * we'll deadlock on the anon_vma_lock_write() recursion.
570 */
571 anon_vma_unlock_read(anon_vma);
572 __put_anon_vma(anon_vma);
573 anon_vma = NULL;
574 }
575
576 return anon_vma;
577
578out:
579 rcu_read_unlock();
580 return anon_vma;
581}
582
583void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
584{
585 anon_vma_unlock_read(anon_vma);
586}
587
588#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
589/*
590 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
591 * important if a PTE was dirty when it was unmapped that it's flushed
592 * before any IO is initiated on the page to prevent lost writes. Similarly,
593 * it must be flushed before freeing to prevent data leakage.
594 */
595void try_to_unmap_flush(void)
596{
597 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
598
599 if (!tlb_ubc->flush_required)
600 return;
601
602 arch_tlbbatch_flush(&tlb_ubc->arch);
603 tlb_ubc->flush_required = false;
604 tlb_ubc->writable = false;
605}
606
607/* Flush iff there are potentially writable TLB entries that can race with IO */
608void try_to_unmap_flush_dirty(void)
609{
610 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
611
612 if (tlb_ubc->writable)
613 try_to_unmap_flush();
614}
615
616static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
617{
618 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
619
620 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
621 tlb_ubc->flush_required = true;
622
623 /*
624 * Ensure compiler does not re-order the setting of tlb_flush_batched
625 * before the PTE is cleared.
626 */
627 barrier();
628 mm->tlb_flush_batched = true;
629
630 /*
631 * If the PTE was dirty then it's best to assume it's writable. The
632 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
633 * before the page is queued for IO.
634 */
635 if (writable)
636 tlb_ubc->writable = true;
637}
638
639/*
640 * Returns true if the TLB flush should be deferred to the end of a batch of
641 * unmap operations to reduce IPIs.
642 */
643static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
644{
645 bool should_defer = false;
646
647 if (!(flags & TTU_BATCH_FLUSH))
648 return false;
649
650 /* If remote CPUs need to be flushed then defer batch the flush */
651 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
652 should_defer = true;
653 put_cpu();
654
655 return should_defer;
656}
657
658/*
659 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
660 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
661 * operation such as mprotect or munmap to race between reclaim unmapping
662 * the page and flushing the page. If this race occurs, it potentially allows
663 * access to data via a stale TLB entry. Tracking all mm's that have TLB
664 * batching in flight would be expensive during reclaim so instead track
665 * whether TLB batching occurred in the past and if so then do a flush here
666 * if required. This will cost one additional flush per reclaim cycle paid
667 * by the first operation at risk such as mprotect and mumap.
668 *
669 * This must be called under the PTL so that an access to tlb_flush_batched
670 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
671 * via the PTL.
672 */
673void flush_tlb_batched_pending(struct mm_struct *mm)
674{
Olivier Deprez157378f2022-04-04 15:47:50 +0200675 if (data_race(mm->tlb_flush_batched)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000676 flush_tlb_mm(mm);
677
678 /*
679 * Do not allow the compiler to re-order the clearing of
680 * tlb_flush_batched before the tlb is flushed.
681 */
682 barrier();
683 mm->tlb_flush_batched = false;
684 }
685}
686#else
687static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
688{
689}
690
691static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
692{
693 return false;
694}
695#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
696
697/*
698 * At what user virtual address is page expected in vma?
699 * Caller should check the page is actually part of the vma.
700 */
701unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
702{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000703 if (PageAnon(page)) {
704 struct anon_vma *page__anon_vma = page_anon_vma(page);
705 /*
706 * Note: swapoff's unuse_vma() is more efficient with this
707 * check, and needs it to match anon_vma when KSM is active.
708 */
709 if (!vma->anon_vma || !page__anon_vma ||
710 vma->anon_vma->root != page__anon_vma->root)
711 return -EFAULT;
Olivier Deprez0e641232021-09-23 10:07:05 +0200712 } else if (!vma->vm_file) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000713 return -EFAULT;
Olivier Deprez0e641232021-09-23 10:07:05 +0200714 } else if (vma->vm_file->f_mapping != compound_head(page)->mapping) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000715 return -EFAULT;
Olivier Deprez0e641232021-09-23 10:07:05 +0200716 }
717
718 return vma_address(page, vma);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000719}
720
721pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
722{
723 pgd_t *pgd;
724 p4d_t *p4d;
725 pud_t *pud;
726 pmd_t *pmd = NULL;
727 pmd_t pmde;
728
729 pgd = pgd_offset(mm, address);
730 if (!pgd_present(*pgd))
731 goto out;
732
733 p4d = p4d_offset(pgd, address);
734 if (!p4d_present(*p4d))
735 goto out;
736
737 pud = pud_offset(p4d, address);
738 if (!pud_present(*pud))
739 goto out;
740
741 pmd = pmd_offset(pud, address);
742 /*
743 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
744 * without holding anon_vma lock for write. So when looking for a
745 * genuine pmde (in which to find pte), test present and !THP together.
746 */
747 pmde = *pmd;
748 barrier();
749 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
750 pmd = NULL;
751out:
752 return pmd;
753}
754
755struct page_referenced_arg {
756 int mapcount;
757 int referenced;
758 unsigned long vm_flags;
759 struct mem_cgroup *memcg;
760};
761/*
762 * arg: page_referenced_arg will be passed
763 */
764static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
765 unsigned long address, void *arg)
766{
767 struct page_referenced_arg *pra = arg;
768 struct page_vma_mapped_walk pvmw = {
769 .page = page,
770 .vma = vma,
771 .address = address,
772 };
773 int referenced = 0;
774
775 while (page_vma_mapped_walk(&pvmw)) {
776 address = pvmw.address;
777
778 if (vma->vm_flags & VM_LOCKED) {
779 page_vma_mapped_walk_done(&pvmw);
780 pra->vm_flags |= VM_LOCKED;
781 return false; /* To break the loop */
782 }
783
784 if (pvmw.pte) {
785 if (ptep_clear_flush_young_notify(vma, address,
786 pvmw.pte)) {
787 /*
788 * Don't treat a reference through
789 * a sequentially read mapping as such.
790 * If the page has been used in another mapping,
791 * we will catch it; if this other mapping is
792 * already gone, the unmap path will have set
793 * PG_referenced or activated the page.
794 */
795 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
796 referenced++;
797 }
798 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
799 if (pmdp_clear_flush_young_notify(vma, address,
800 pvmw.pmd))
801 referenced++;
802 } else {
803 /* unexpected pmd-mapped page? */
804 WARN_ON_ONCE(1);
805 }
806
807 pra->mapcount--;
808 }
809
810 if (referenced)
811 clear_page_idle(page);
812 if (test_and_clear_page_young(page))
813 referenced++;
814
815 if (referenced) {
816 pra->referenced++;
817 pra->vm_flags |= vma->vm_flags;
818 }
819
820 if (!pra->mapcount)
821 return false; /* To break the loop */
822
823 return true;
824}
825
826static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
827{
828 struct page_referenced_arg *pra = arg;
829 struct mem_cgroup *memcg = pra->memcg;
830
831 if (!mm_match_cgroup(vma->vm_mm, memcg))
832 return true;
833
834 return false;
835}
836
837/**
838 * page_referenced - test if the page was referenced
839 * @page: the page to test
840 * @is_locked: caller holds lock on the page
841 * @memcg: target memory cgroup
842 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
843 *
844 * Quick test_and_clear_referenced for all mappings to a page,
845 * returns the number of ptes which referenced the page.
846 */
847int page_referenced(struct page *page,
848 int is_locked,
849 struct mem_cgroup *memcg,
850 unsigned long *vm_flags)
851{
852 int we_locked = 0;
853 struct page_referenced_arg pra = {
854 .mapcount = total_mapcount(page),
855 .memcg = memcg,
856 };
857 struct rmap_walk_control rwc = {
858 .rmap_one = page_referenced_one,
859 .arg = (void *)&pra,
860 .anon_lock = page_lock_anon_vma_read,
861 };
862
863 *vm_flags = 0;
David Brazdil0f672f62019-12-10 10:32:29 +0000864 if (!pra.mapcount)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000865 return 0;
866
867 if (!page_rmapping(page))
868 return 0;
869
870 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
871 we_locked = trylock_page(page);
872 if (!we_locked)
873 return 1;
874 }
875
876 /*
877 * If we are reclaiming on behalf of a cgroup, skip
878 * counting on behalf of references from different
879 * cgroups
880 */
881 if (memcg) {
882 rwc.invalid_vma = invalid_page_referenced_vma;
883 }
884
885 rmap_walk(page, &rwc);
886 *vm_flags = pra.vm_flags;
887
888 if (we_locked)
889 unlock_page(page);
890
891 return pra.referenced;
892}
893
894static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
895 unsigned long address, void *arg)
896{
897 struct page_vma_mapped_walk pvmw = {
898 .page = page,
899 .vma = vma,
900 .address = address,
901 .flags = PVMW_SYNC,
902 };
David Brazdil0f672f62019-12-10 10:32:29 +0000903 struct mmu_notifier_range range;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000904 int *cleaned = arg;
905
906 /*
907 * We have to assume the worse case ie pmd for invalidation. Note that
908 * the page can not be free from this function.
909 */
David Brazdil0f672f62019-12-10 10:32:29 +0000910 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
911 0, vma, vma->vm_mm, address,
Olivier Deprez0e641232021-09-23 10:07:05 +0200912 vma_address_end(page, vma));
David Brazdil0f672f62019-12-10 10:32:29 +0000913 mmu_notifier_invalidate_range_start(&range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000914
915 while (page_vma_mapped_walk(&pvmw)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000916 int ret = 0;
917
David Brazdil0f672f62019-12-10 10:32:29 +0000918 address = pvmw.address;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000919 if (pvmw.pte) {
920 pte_t entry;
921 pte_t *pte = pvmw.pte;
922
923 if (!pte_dirty(*pte) && !pte_write(*pte))
924 continue;
925
926 flush_cache_page(vma, address, pte_pfn(*pte));
927 entry = ptep_clear_flush(vma, address, pte);
928 entry = pte_wrprotect(entry);
929 entry = pte_mkclean(entry);
930 set_pte_at(vma->vm_mm, address, pte, entry);
931 ret = 1;
932 } else {
Olivier Deprez157378f2022-04-04 15:47:50 +0200933#ifdef CONFIG_TRANSPARENT_HUGEPAGE
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000934 pmd_t *pmd = pvmw.pmd;
935 pmd_t entry;
936
937 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
938 continue;
939
940 flush_cache_page(vma, address, page_to_pfn(page));
David Brazdil0f672f62019-12-10 10:32:29 +0000941 entry = pmdp_invalidate(vma, address, pmd);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000942 entry = pmd_wrprotect(entry);
943 entry = pmd_mkclean(entry);
944 set_pmd_at(vma->vm_mm, address, pmd, entry);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000945 ret = 1;
946#else
947 /* unexpected pmd-mapped page? */
948 WARN_ON_ONCE(1);
949#endif
950 }
951
952 /*
953 * No need to call mmu_notifier_invalidate_range() as we are
954 * downgrading page table protection not changing it to point
955 * to a new page.
956 *
957 * See Documentation/vm/mmu_notifier.rst
958 */
959 if (ret)
960 (*cleaned)++;
961 }
962
David Brazdil0f672f62019-12-10 10:32:29 +0000963 mmu_notifier_invalidate_range_end(&range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000964
965 return true;
966}
967
968static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
969{
970 if (vma->vm_flags & VM_SHARED)
971 return false;
972
973 return true;
974}
975
976int page_mkclean(struct page *page)
977{
978 int cleaned = 0;
979 struct address_space *mapping;
980 struct rmap_walk_control rwc = {
981 .arg = (void *)&cleaned,
982 .rmap_one = page_mkclean_one,
983 .invalid_vma = invalid_mkclean_vma,
984 };
985
986 BUG_ON(!PageLocked(page));
987
988 if (!page_mapped(page))
989 return 0;
990
991 mapping = page_mapping(page);
992 if (!mapping)
993 return 0;
994
995 rmap_walk(page, &rwc);
996
997 return cleaned;
998}
999EXPORT_SYMBOL_GPL(page_mkclean);
1000
1001/**
1002 * page_move_anon_rmap - move a page to our anon_vma
1003 * @page: the page to move to our anon_vma
1004 * @vma: the vma the page belongs to
1005 *
1006 * When a page belongs exclusively to one process after a COW event,
1007 * that page can be moved into the anon_vma that belongs to just that
1008 * process, so the rmap code will not search the parent or sibling
1009 * processes.
1010 */
1011void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1012{
1013 struct anon_vma *anon_vma = vma->anon_vma;
1014
1015 page = compound_head(page);
1016
1017 VM_BUG_ON_PAGE(!PageLocked(page), page);
1018 VM_BUG_ON_VMA(!anon_vma, vma);
1019
1020 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1021 /*
1022 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1023 * simultaneously, so a concurrent reader (eg page_referenced()'s
1024 * PageAnon()) will not see one without the other.
1025 */
1026 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1027}
1028
1029/**
1030 * __page_set_anon_rmap - set up new anonymous rmap
David Brazdil0f672f62019-12-10 10:32:29 +00001031 * @page: Page or Hugepage to add to rmap
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001032 * @vma: VM area to add page to.
1033 * @address: User virtual address of the mapping
1034 * @exclusive: the page is exclusively owned by the current process
1035 */
1036static void __page_set_anon_rmap(struct page *page,
1037 struct vm_area_struct *vma, unsigned long address, int exclusive)
1038{
1039 struct anon_vma *anon_vma = vma->anon_vma;
1040
1041 BUG_ON(!anon_vma);
1042
1043 if (PageAnon(page))
1044 return;
1045
1046 /*
1047 * If the page isn't exclusively mapped into this vma,
1048 * we must use the _oldest_ possible anon_vma for the
1049 * page mapping!
1050 */
1051 if (!exclusive)
1052 anon_vma = anon_vma->root;
1053
1054 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1055 page->mapping = (struct address_space *) anon_vma;
1056 page->index = linear_page_index(vma, address);
1057}
1058
1059/**
1060 * __page_check_anon_rmap - sanity check anonymous rmap addition
1061 * @page: the page to add the mapping to
1062 * @vma: the vm area in which the mapping is added
1063 * @address: the user virtual address mapped
1064 */
1065static void __page_check_anon_rmap(struct page *page,
1066 struct vm_area_struct *vma, unsigned long address)
1067{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001068 /*
1069 * The page's anon-rmap details (mapping and index) are guaranteed to
1070 * be set up correctly at this point.
1071 *
1072 * We have exclusion against page_add_anon_rmap because the caller
1073 * always holds the page locked, except if called from page_dup_rmap,
1074 * in which case the page is already known to be setup.
1075 *
1076 * We have exclusion against page_add_new_anon_rmap because those pages
1077 * are initially only visible via the pagetables, and the pte is locked
1078 * over the call to page_add_new_anon_rmap.
1079 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001080 VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1081 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1082 page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001083}
1084
1085/**
1086 * page_add_anon_rmap - add pte mapping to an anonymous page
1087 * @page: the page to add the mapping to
1088 * @vma: the vm area in which the mapping is added
1089 * @address: the user virtual address mapped
1090 * @compound: charge the page as compound or small page
1091 *
1092 * The caller needs to hold the pte lock, and the page must be locked in
1093 * the anon_vma case: to serialize mapping,index checking after setting,
1094 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1095 * (but PageKsm is never downgraded to PageAnon).
1096 */
1097void page_add_anon_rmap(struct page *page,
1098 struct vm_area_struct *vma, unsigned long address, bool compound)
1099{
1100 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1101}
1102
1103/*
1104 * Special version of the above for do_swap_page, which often runs
1105 * into pages that are exclusively owned by the current process.
1106 * Everybody else should continue to use page_add_anon_rmap above.
1107 */
1108void do_page_add_anon_rmap(struct page *page,
1109 struct vm_area_struct *vma, unsigned long address, int flags)
1110{
1111 bool compound = flags & RMAP_COMPOUND;
1112 bool first;
1113
Olivier Deprez157378f2022-04-04 15:47:50 +02001114 if (unlikely(PageKsm(page)))
1115 lock_page_memcg(page);
1116 else
1117 VM_BUG_ON_PAGE(!PageLocked(page), page);
1118
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001119 if (compound) {
1120 atomic_t *mapcount;
1121 VM_BUG_ON_PAGE(!PageLocked(page), page);
1122 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1123 mapcount = compound_mapcount_ptr(page);
1124 first = atomic_inc_and_test(mapcount);
1125 } else {
1126 first = atomic_inc_and_test(&page->_mapcount);
1127 }
1128
1129 if (first) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001130 int nr = compound ? thp_nr_pages(page) : 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001131 /*
1132 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1133 * these counters are not modified in interrupt context, and
1134 * pte lock(a spinlock) is held, which implies preemption
1135 * disabled.
1136 */
1137 if (compound)
Olivier Deprez157378f2022-04-04 15:47:50 +02001138 __inc_lruvec_page_state(page, NR_ANON_THPS);
1139 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001140 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001141
Olivier Deprez157378f2022-04-04 15:47:50 +02001142 if (unlikely(PageKsm(page))) {
1143 unlock_page_memcg(page);
1144 return;
1145 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001146
1147 /* address might be in next vma when migration races vma_adjust */
1148 if (first)
1149 __page_set_anon_rmap(page, vma, address,
1150 flags & RMAP_EXCLUSIVE);
1151 else
1152 __page_check_anon_rmap(page, vma, address);
1153}
1154
1155/**
1156 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1157 * @page: the page to add the mapping to
1158 * @vma: the vm area in which the mapping is added
1159 * @address: the user virtual address mapped
1160 * @compound: charge the page as compound or small page
1161 *
1162 * Same as page_add_anon_rmap but must only be called on *new* pages.
1163 * This means the inc-and-test can be bypassed.
1164 * Page does not have to be locked.
1165 */
1166void page_add_new_anon_rmap(struct page *page,
1167 struct vm_area_struct *vma, unsigned long address, bool compound)
1168{
Olivier Deprez157378f2022-04-04 15:47:50 +02001169 int nr = compound ? thp_nr_pages(page) : 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001170
1171 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1172 __SetPageSwapBacked(page);
1173 if (compound) {
1174 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1175 /* increment count (starts at -1) */
1176 atomic_set(compound_mapcount_ptr(page), 0);
Olivier Deprez157378f2022-04-04 15:47:50 +02001177 if (hpage_pincount_available(page))
1178 atomic_set(compound_pincount_ptr(page), 0);
1179
1180 __inc_lruvec_page_state(page, NR_ANON_THPS);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001181 } else {
1182 /* Anon THP always mapped first with PMD */
1183 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1184 /* increment count (starts at -1) */
1185 atomic_set(&page->_mapcount, 0);
1186 }
Olivier Deprez157378f2022-04-04 15:47:50 +02001187 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001188 __page_set_anon_rmap(page, vma, address, 1);
1189}
1190
1191/**
1192 * page_add_file_rmap - add pte mapping to a file page
1193 * @page: the page to add the mapping to
1194 * @compound: charge the page as compound or small page
1195 *
1196 * The caller needs to hold the pte lock.
1197 */
1198void page_add_file_rmap(struct page *page, bool compound)
1199{
1200 int i, nr = 1;
1201
1202 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1203 lock_page_memcg(page);
1204 if (compound && PageTransHuge(page)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001205 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001206 if (atomic_inc_and_test(&page[i]._mapcount))
1207 nr++;
1208 }
1209 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1210 goto out;
David Brazdil0f672f62019-12-10 10:32:29 +00001211 if (PageSwapBacked(page))
1212 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1213 else
1214 __inc_node_page_state(page, NR_FILE_PMDMAPPED);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001215 } else {
1216 if (PageTransCompound(page) && page_mapping(page)) {
1217 VM_WARN_ON_ONCE(!PageLocked(page));
1218
1219 SetPageDoubleMap(compound_head(page));
1220 if (PageMlocked(page))
1221 clear_page_mlock(compound_head(page));
1222 }
1223 if (!atomic_inc_and_test(&page->_mapcount))
1224 goto out;
1225 }
1226 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1227out:
1228 unlock_page_memcg(page);
1229}
1230
1231static void page_remove_file_rmap(struct page *page, bool compound)
1232{
1233 int i, nr = 1;
1234
1235 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001236
1237 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1238 if (unlikely(PageHuge(page))) {
1239 /* hugetlb pages are always mapped with pmds */
1240 atomic_dec(compound_mapcount_ptr(page));
Olivier Deprez157378f2022-04-04 15:47:50 +02001241 return;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001242 }
1243
1244 /* page still mapped by someone else? */
1245 if (compound && PageTransHuge(page)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001246 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001247 if (atomic_add_negative(-1, &page[i]._mapcount))
1248 nr++;
1249 }
1250 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
Olivier Deprez157378f2022-04-04 15:47:50 +02001251 return;
David Brazdil0f672f62019-12-10 10:32:29 +00001252 if (PageSwapBacked(page))
1253 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1254 else
1255 __dec_node_page_state(page, NR_FILE_PMDMAPPED);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001256 } else {
1257 if (!atomic_add_negative(-1, &page->_mapcount))
Olivier Deprez157378f2022-04-04 15:47:50 +02001258 return;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001259 }
1260
1261 /*
1262 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1263 * these counters are not modified in interrupt context, and
1264 * pte lock(a spinlock) is held, which implies preemption disabled.
1265 */
1266 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1267
1268 if (unlikely(PageMlocked(page)))
1269 clear_page_mlock(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001270}
1271
1272static void page_remove_anon_compound_rmap(struct page *page)
1273{
1274 int i, nr;
1275
1276 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1277 return;
1278
1279 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1280 if (unlikely(PageHuge(page)))
1281 return;
1282
1283 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1284 return;
1285
Olivier Deprez157378f2022-04-04 15:47:50 +02001286 __dec_lruvec_page_state(page, NR_ANON_THPS);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001287
1288 if (TestClearPageDoubleMap(page)) {
1289 /*
1290 * Subpages can be mapped with PTEs too. Check how many of
Olivier Deprez157378f2022-04-04 15:47:50 +02001291 * them are still mapped.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001292 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001293 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001294 if (atomic_add_negative(-1, &page[i]._mapcount))
1295 nr++;
1296 }
Olivier Deprez157378f2022-04-04 15:47:50 +02001297
1298 /*
1299 * Queue the page for deferred split if at least one small
1300 * page of the compound page is unmapped, but at least one
1301 * small page is still mapped.
1302 */
1303 if (nr && nr < thp_nr_pages(page))
1304 deferred_split_huge_page(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001305 } else {
Olivier Deprez157378f2022-04-04 15:47:50 +02001306 nr = thp_nr_pages(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001307 }
1308
1309 if (unlikely(PageMlocked(page)))
1310 clear_page_mlock(page);
1311
Olivier Deprez157378f2022-04-04 15:47:50 +02001312 if (nr)
1313 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001314}
1315
1316/**
1317 * page_remove_rmap - take down pte mapping from a page
1318 * @page: page to remove mapping from
1319 * @compound: uncharge the page as compound or small page
1320 *
1321 * The caller needs to hold the pte lock.
1322 */
1323void page_remove_rmap(struct page *page, bool compound)
1324{
Olivier Deprez157378f2022-04-04 15:47:50 +02001325 lock_page_memcg(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001326
Olivier Deprez157378f2022-04-04 15:47:50 +02001327 if (!PageAnon(page)) {
1328 page_remove_file_rmap(page, compound);
1329 goto out;
1330 }
1331
1332 if (compound) {
1333 page_remove_anon_compound_rmap(page);
1334 goto out;
1335 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001336
1337 /* page still mapped by someone else? */
1338 if (!atomic_add_negative(-1, &page->_mapcount))
Olivier Deprez157378f2022-04-04 15:47:50 +02001339 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001340
1341 /*
1342 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1343 * these counters are not modified in interrupt context, and
1344 * pte lock(a spinlock) is held, which implies preemption disabled.
1345 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001346 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001347
1348 if (unlikely(PageMlocked(page)))
1349 clear_page_mlock(page);
1350
1351 if (PageTransCompound(page))
1352 deferred_split_huge_page(compound_head(page));
1353
1354 /*
1355 * It would be tidy to reset the PageAnon mapping here,
1356 * but that might overwrite a racing page_add_anon_rmap
1357 * which increments mapcount after us but sets mapping
1358 * before us: so leave the reset to free_unref_page,
1359 * and remember that it's only reliable while mapped.
1360 * Leaving it set also helps swapoff to reinstate ptes
1361 * faster for those pages still in swapcache.
1362 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001363out:
1364 unlock_page_memcg(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001365}
1366
1367/*
1368 * @arg: enum ttu_flags will be passed to this argument
1369 */
1370static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1371 unsigned long address, void *arg)
1372{
1373 struct mm_struct *mm = vma->vm_mm;
1374 struct page_vma_mapped_walk pvmw = {
1375 .page = page,
1376 .vma = vma,
1377 .address = address,
1378 };
1379 pte_t pteval;
1380 struct page *subpage;
1381 bool ret = true;
David Brazdil0f672f62019-12-10 10:32:29 +00001382 struct mmu_notifier_range range;
Olivier Deprez157378f2022-04-04 15:47:50 +02001383 enum ttu_flags flags = (enum ttu_flags)(long)arg;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001384
Olivier Deprez0e641232021-09-23 10:07:05 +02001385 /*
1386 * When racing against e.g. zap_pte_range() on another cpu,
1387 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1388 * try_to_unmap() may return false when it is about to become true,
1389 * if page table locking is skipped: use TTU_SYNC to wait for that.
1390 */
1391 if (flags & TTU_SYNC)
1392 pvmw.flags = PVMW_SYNC;
1393
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001394 /* munlock has nothing to gain from examining un-locked vmas */
1395 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1396 return true;
1397
1398 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1399 is_zone_device_page(page) && !is_device_private_page(page))
1400 return true;
1401
1402 if (flags & TTU_SPLIT_HUGE_PMD) {
1403 split_huge_pmd_address(vma, address,
1404 flags & TTU_SPLIT_FREEZE, page);
1405 }
1406
1407 /*
1408 * For THP, we have to assume the worse case ie pmd for invalidation.
1409 * For hugetlb, it could be much worse if we need to do pud
1410 * invalidation in the case of pmd sharing.
1411 *
1412 * Note that the page can not be free in this function as call of
1413 * try_to_unmap() must hold a reference on the page.
1414 */
Olivier Deprez0e641232021-09-23 10:07:05 +02001415 range.end = PageKsm(page) ?
1416 address + PAGE_SIZE : vma_address_end(page, vma);
David Brazdil0f672f62019-12-10 10:32:29 +00001417 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
Olivier Deprez0e641232021-09-23 10:07:05 +02001418 address, range.end);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001419 if (PageHuge(page)) {
1420 /*
1421 * If sharing is possible, start and end will be adjusted
1422 * accordingly.
1423 */
David Brazdil0f672f62019-12-10 10:32:29 +00001424 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1425 &range.end);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001426 }
David Brazdil0f672f62019-12-10 10:32:29 +00001427 mmu_notifier_invalidate_range_start(&range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001428
1429 while (page_vma_mapped_walk(&pvmw)) {
1430#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1431 /* PMD-mapped THP migration entry */
1432 if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1433 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1434
1435 set_pmd_migration_entry(&pvmw, page);
1436 continue;
1437 }
1438#endif
1439
1440 /*
1441 * If the page is mlock()d, we cannot swap it out.
1442 * If it's recently referenced (perhaps page_referenced
1443 * skipped over this mm) then we should reactivate it.
1444 */
1445 if (!(flags & TTU_IGNORE_MLOCK)) {
1446 if (vma->vm_flags & VM_LOCKED) {
1447 /* PTE-mapped THP are never mlocked */
1448 if (!PageTransCompound(page)) {
1449 /*
1450 * Holding pte lock, we do *not* need
Olivier Deprez157378f2022-04-04 15:47:50 +02001451 * mmap_lock here
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001452 */
1453 mlock_vma_page(page);
1454 }
1455 ret = false;
1456 page_vma_mapped_walk_done(&pvmw);
1457 break;
1458 }
1459 if (flags & TTU_MUNLOCK)
1460 continue;
1461 }
1462
1463 /* Unexpected PMD-mapped THP? */
1464 VM_BUG_ON_PAGE(!pvmw.pte, page);
1465
1466 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1467 address = pvmw.address;
1468
Olivier Deprez157378f2022-04-04 15:47:50 +02001469 if (PageHuge(page) && !PageAnon(page)) {
1470 /*
1471 * To call huge_pmd_unshare, i_mmap_rwsem must be
1472 * held in write mode. Caller needs to explicitly
1473 * do this outside rmap routines.
1474 */
1475 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1476 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001477 /*
1478 * huge_pmd_unshare unmapped an entire PMD
1479 * page. There is no way of knowing exactly
1480 * which PMDs may be cached for this mm, so
1481 * we must flush them all. start/end were
1482 * already adjusted above to cover this range.
1483 */
David Brazdil0f672f62019-12-10 10:32:29 +00001484 flush_cache_range(vma, range.start, range.end);
1485 flush_tlb_range(vma, range.start, range.end);
1486 mmu_notifier_invalidate_range(mm, range.start,
1487 range.end);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001488
1489 /*
1490 * The ref count of the PMD page was dropped
1491 * which is part of the way map counting
1492 * is done for shared PMDs. Return 'true'
1493 * here. When there is no other sharing,
1494 * huge_pmd_unshare returns false and we will
1495 * unmap the actual page and drop map count
1496 * to zero.
1497 */
1498 page_vma_mapped_walk_done(&pvmw);
1499 break;
1500 }
1501 }
1502
1503 if (IS_ENABLED(CONFIG_MIGRATION) &&
1504 (flags & TTU_MIGRATION) &&
1505 is_zone_device_page(page)) {
1506 swp_entry_t entry;
1507 pte_t swp_pte;
1508
1509 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1510
1511 /*
1512 * Store the pfn of the page in a special migration
1513 * pte. do_swap_page() will wait until the migration
1514 * pte is removed and then restart fault handling.
1515 */
1516 entry = make_migration_entry(page, 0);
1517 swp_pte = swp_entry_to_pte(entry);
Olivier Deprez157378f2022-04-04 15:47:50 +02001518
1519 /*
1520 * pteval maps a zone device page and is therefore
1521 * a swap pte.
1522 */
1523 if (pte_swp_soft_dirty(pteval))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001524 swp_pte = pte_swp_mksoft_dirty(swp_pte);
Olivier Deprez157378f2022-04-04 15:47:50 +02001525 if (pte_swp_uffd_wp(pteval))
1526 swp_pte = pte_swp_mkuffd_wp(swp_pte);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001527 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1528 /*
1529 * No need to invalidate here it will synchronize on
1530 * against the special swap migration pte.
David Brazdil0f672f62019-12-10 10:32:29 +00001531 *
1532 * The assignment to subpage above was computed from a
1533 * swap PTE which results in an invalid pointer.
1534 * Since only PAGE_SIZE pages can currently be
1535 * migrated, just set it to page. This will need to be
1536 * changed when hugepage migrations to device private
1537 * memory are supported.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001538 */
David Brazdil0f672f62019-12-10 10:32:29 +00001539 subpage = page;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001540 goto discard;
1541 }
1542
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001543 /* Nuke the page table entry. */
1544 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1545 if (should_defer_flush(mm, flags)) {
1546 /*
1547 * We clear the PTE but do not flush so potentially
1548 * a remote CPU could still be writing to the page.
1549 * If the entry was previously clean then the
1550 * architecture must guarantee that a clear->dirty
1551 * transition on a cached TLB entry is written through
1552 * and traps if the PTE is unmapped.
1553 */
1554 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1555
1556 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1557 } else {
1558 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1559 }
1560
1561 /* Move the dirty bit to the page. Now the pte is gone. */
1562 if (pte_dirty(pteval))
1563 set_page_dirty(page);
1564
1565 /* Update high watermark before we lower rss */
1566 update_hiwater_rss(mm);
1567
1568 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1569 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1570 if (PageHuge(page)) {
David Brazdil0f672f62019-12-10 10:32:29 +00001571 hugetlb_count_sub(compound_nr(page), mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001572 set_huge_swap_pte_at(mm, address,
1573 pvmw.pte, pteval,
1574 vma_mmu_pagesize(vma));
1575 } else {
1576 dec_mm_counter(mm, mm_counter(page));
1577 set_pte_at(mm, address, pvmw.pte, pteval);
1578 }
1579
1580 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1581 /*
1582 * The guest indicated that the page content is of no
1583 * interest anymore. Simply discard the pte, vmscan
1584 * will take care of the rest.
1585 * A future reference will then fault in a new zero
1586 * page. When userfaultfd is active, we must not drop
1587 * this page though, as its main user (postcopy
1588 * migration) will not expect userfaults on already
1589 * copied pages.
1590 */
1591 dec_mm_counter(mm, mm_counter(page));
1592 /* We have to invalidate as we cleared the pte */
1593 mmu_notifier_invalidate_range(mm, address,
1594 address + PAGE_SIZE);
1595 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1596 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1597 swp_entry_t entry;
1598 pte_t swp_pte;
1599
1600 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1601 set_pte_at(mm, address, pvmw.pte, pteval);
1602 ret = false;
1603 page_vma_mapped_walk_done(&pvmw);
1604 break;
1605 }
1606
1607 /*
1608 * Store the pfn of the page in a special migration
1609 * pte. do_swap_page() will wait until the migration
1610 * pte is removed and then restart fault handling.
1611 */
1612 entry = make_migration_entry(subpage,
1613 pte_write(pteval));
1614 swp_pte = swp_entry_to_pte(entry);
1615 if (pte_soft_dirty(pteval))
1616 swp_pte = pte_swp_mksoft_dirty(swp_pte);
Olivier Deprez157378f2022-04-04 15:47:50 +02001617 if (pte_uffd_wp(pteval))
1618 swp_pte = pte_swp_mkuffd_wp(swp_pte);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001619 set_pte_at(mm, address, pvmw.pte, swp_pte);
1620 /*
1621 * No need to invalidate here it will synchronize on
1622 * against the special swap migration pte.
1623 */
1624 } else if (PageAnon(page)) {
1625 swp_entry_t entry = { .val = page_private(subpage) };
1626 pte_t swp_pte;
1627 /*
1628 * Store the swap location in the pte.
1629 * See handle_pte_fault() ...
1630 */
1631 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1632 WARN_ON_ONCE(1);
1633 ret = false;
1634 /* We have to invalidate as we cleared the pte */
1635 mmu_notifier_invalidate_range(mm, address,
1636 address + PAGE_SIZE);
1637 page_vma_mapped_walk_done(&pvmw);
1638 break;
1639 }
1640
1641 /* MADV_FREE page check */
1642 if (!PageSwapBacked(page)) {
1643 if (!PageDirty(page)) {
1644 /* Invalidate as we cleared the pte */
1645 mmu_notifier_invalidate_range(mm,
1646 address, address + PAGE_SIZE);
1647 dec_mm_counter(mm, MM_ANONPAGES);
1648 goto discard;
1649 }
1650
1651 /*
1652 * If the page was redirtied, it cannot be
1653 * discarded. Remap the page to page table.
1654 */
1655 set_pte_at(mm, address, pvmw.pte, pteval);
1656 SetPageSwapBacked(page);
1657 ret = false;
1658 page_vma_mapped_walk_done(&pvmw);
1659 break;
1660 }
1661
1662 if (swap_duplicate(entry) < 0) {
1663 set_pte_at(mm, address, pvmw.pte, pteval);
1664 ret = false;
1665 page_vma_mapped_walk_done(&pvmw);
1666 break;
1667 }
1668 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1669 set_pte_at(mm, address, pvmw.pte, pteval);
1670 ret = false;
1671 page_vma_mapped_walk_done(&pvmw);
1672 break;
1673 }
1674 if (list_empty(&mm->mmlist)) {
1675 spin_lock(&mmlist_lock);
1676 if (list_empty(&mm->mmlist))
1677 list_add(&mm->mmlist, &init_mm.mmlist);
1678 spin_unlock(&mmlist_lock);
1679 }
1680 dec_mm_counter(mm, MM_ANONPAGES);
1681 inc_mm_counter(mm, MM_SWAPENTS);
1682 swp_pte = swp_entry_to_pte(entry);
1683 if (pte_soft_dirty(pteval))
1684 swp_pte = pte_swp_mksoft_dirty(swp_pte);
Olivier Deprez157378f2022-04-04 15:47:50 +02001685 if (pte_uffd_wp(pteval))
1686 swp_pte = pte_swp_mkuffd_wp(swp_pte);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001687 set_pte_at(mm, address, pvmw.pte, swp_pte);
1688 /* Invalidate as we cleared the pte */
1689 mmu_notifier_invalidate_range(mm, address,
1690 address + PAGE_SIZE);
1691 } else {
1692 /*
1693 * This is a locked file-backed page, thus it cannot
1694 * be removed from the page cache and replaced by a new
1695 * page before mmu_notifier_invalidate_range_end, so no
1696 * concurrent thread might update its page table to
1697 * point at new page while a device still is using this
1698 * page.
1699 *
1700 * See Documentation/vm/mmu_notifier.rst
1701 */
1702 dec_mm_counter(mm, mm_counter_file(page));
1703 }
1704discard:
1705 /*
1706 * No need to call mmu_notifier_invalidate_range() it has be
1707 * done above for all cases requiring it to happen under page
1708 * table lock before mmu_notifier_invalidate_range_end()
1709 *
1710 * See Documentation/vm/mmu_notifier.rst
1711 */
1712 page_remove_rmap(subpage, PageHuge(page));
1713 put_page(page);
1714 }
1715
David Brazdil0f672f62019-12-10 10:32:29 +00001716 mmu_notifier_invalidate_range_end(&range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001717
1718 return ret;
1719}
1720
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001721static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1722{
Olivier Deprez157378f2022-04-04 15:47:50 +02001723 return vma_is_temporary_stack(vma);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001724}
1725
Olivier Deprez0e641232021-09-23 10:07:05 +02001726static int page_not_mapped(struct page *page)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001727{
Olivier Deprez0e641232021-09-23 10:07:05 +02001728 return !page_mapped(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001729}
1730
1731/**
1732 * try_to_unmap - try to remove all page table mappings to a page
1733 * @page: the page to get unmapped
1734 * @flags: action and flags
1735 *
1736 * Tries to remove all the page table entries which are mapping this
1737 * page, used in the pageout path. Caller must hold the page lock.
1738 *
1739 * If unmap is successful, return true. Otherwise, false.
1740 */
1741bool try_to_unmap(struct page *page, enum ttu_flags flags)
1742{
1743 struct rmap_walk_control rwc = {
1744 .rmap_one = try_to_unmap_one,
1745 .arg = (void *)flags,
Olivier Deprez0e641232021-09-23 10:07:05 +02001746 .done = page_not_mapped,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001747 .anon_lock = page_lock_anon_vma_read,
1748 };
1749
1750 /*
1751 * During exec, a temporary VMA is setup and later moved.
1752 * The VMA is moved under the anon_vma lock but not the
1753 * page tables leading to a race where migration cannot
1754 * find the migration ptes. Rather than increasing the
1755 * locking requirements of exec(), migration skips
1756 * temporary VMAs until after exec() completes.
1757 */
1758 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1759 && !PageKsm(page) && PageAnon(page))
1760 rwc.invalid_vma = invalid_migration_vma;
1761
1762 if (flags & TTU_RMAP_LOCKED)
1763 rmap_walk_locked(page, &rwc);
1764 else
1765 rmap_walk(page, &rwc);
1766
Olivier Deprez0e641232021-09-23 10:07:05 +02001767 /*
1768 * When racing against e.g. zap_pte_range() on another cpu,
1769 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1770 * try_to_unmap() may return false when it is about to become true,
1771 * if page table locking is skipped: use TTU_SYNC to wait for that.
1772 */
1773 return !page_mapcount(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001774}
1775
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001776/**
1777 * try_to_munlock - try to munlock a page
1778 * @page: the page to be munlocked
1779 *
1780 * Called from munlock code. Checks all of the VMAs mapping the page
1781 * to make sure nobody else has this page mlocked. The page will be
1782 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1783 */
1784
1785void try_to_munlock(struct page *page)
1786{
1787 struct rmap_walk_control rwc = {
1788 .rmap_one = try_to_unmap_one,
1789 .arg = (void *)TTU_MUNLOCK,
1790 .done = page_not_mapped,
1791 .anon_lock = page_lock_anon_vma_read,
1792
1793 };
1794
1795 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1796 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1797
1798 rmap_walk(page, &rwc);
1799}
1800
1801void __put_anon_vma(struct anon_vma *anon_vma)
1802{
1803 struct anon_vma *root = anon_vma->root;
1804
1805 anon_vma_free(anon_vma);
1806 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1807 anon_vma_free(root);
1808}
1809
1810static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1811 struct rmap_walk_control *rwc)
1812{
1813 struct anon_vma *anon_vma;
1814
1815 if (rwc->anon_lock)
1816 return rwc->anon_lock(page);
1817
1818 /*
1819 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1820 * because that depends on page_mapped(); but not all its usages
Olivier Deprez157378f2022-04-04 15:47:50 +02001821 * are holding mmap_lock. Users without mmap_lock are required to
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001822 * take a reference count to prevent the anon_vma disappearing
1823 */
1824 anon_vma = page_anon_vma(page);
1825 if (!anon_vma)
1826 return NULL;
1827
1828 anon_vma_lock_read(anon_vma);
1829 return anon_vma;
1830}
1831
1832/*
1833 * rmap_walk_anon - do something to anonymous page using the object-based
1834 * rmap method
1835 * @page: the page to be handled
1836 * @rwc: control variable according to each walk type
1837 *
1838 * Find all the mappings of a page using the mapping pointer and the vma chains
1839 * contained in the anon_vma struct it points to.
1840 *
Olivier Deprez157378f2022-04-04 15:47:50 +02001841 * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001842 * where the page was found will be held for write. So, we won't recheck
1843 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1844 * LOCKED.
1845 */
1846static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1847 bool locked)
1848{
1849 struct anon_vma *anon_vma;
1850 pgoff_t pgoff_start, pgoff_end;
1851 struct anon_vma_chain *avc;
1852
1853 if (locked) {
1854 anon_vma = page_anon_vma(page);
1855 /* anon_vma disappear under us? */
1856 VM_BUG_ON_PAGE(!anon_vma, page);
1857 } else {
1858 anon_vma = rmap_walk_anon_lock(page, rwc);
1859 }
1860 if (!anon_vma)
1861 return;
1862
1863 pgoff_start = page_to_pgoff(page);
Olivier Deprez157378f2022-04-04 15:47:50 +02001864 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001865 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1866 pgoff_start, pgoff_end) {
1867 struct vm_area_struct *vma = avc->vma;
1868 unsigned long address = vma_address(page, vma);
1869
Olivier Deprez0e641232021-09-23 10:07:05 +02001870 VM_BUG_ON_VMA(address == -EFAULT, vma);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001871 cond_resched();
1872
1873 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1874 continue;
1875
1876 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1877 break;
1878 if (rwc->done && rwc->done(page))
1879 break;
1880 }
1881
1882 if (!locked)
1883 anon_vma_unlock_read(anon_vma);
1884}
1885
1886/*
1887 * rmap_walk_file - do something to file page using the object-based rmap method
1888 * @page: the page to be handled
1889 * @rwc: control variable according to each walk type
1890 *
1891 * Find all the mappings of a page using the mapping pointer and the vma chains
1892 * contained in the address_space struct it points to.
1893 *
Olivier Deprez157378f2022-04-04 15:47:50 +02001894 * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001895 * where the page was found will be held for write. So, we won't recheck
1896 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1897 * LOCKED.
1898 */
1899static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1900 bool locked)
1901{
1902 struct address_space *mapping = page_mapping(page);
1903 pgoff_t pgoff_start, pgoff_end;
1904 struct vm_area_struct *vma;
1905
1906 /*
1907 * The page lock not only makes sure that page->mapping cannot
1908 * suddenly be NULLified by truncation, it makes sure that the
1909 * structure at mapping cannot be freed and reused yet,
1910 * so we can safely take mapping->i_mmap_rwsem.
1911 */
1912 VM_BUG_ON_PAGE(!PageLocked(page), page);
1913
1914 if (!mapping)
1915 return;
1916
1917 pgoff_start = page_to_pgoff(page);
Olivier Deprez157378f2022-04-04 15:47:50 +02001918 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001919 if (!locked)
1920 i_mmap_lock_read(mapping);
1921 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1922 pgoff_start, pgoff_end) {
1923 unsigned long address = vma_address(page, vma);
1924
Olivier Deprez0e641232021-09-23 10:07:05 +02001925 VM_BUG_ON_VMA(address == -EFAULT, vma);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001926 cond_resched();
1927
1928 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1929 continue;
1930
1931 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1932 goto done;
1933 if (rwc->done && rwc->done(page))
1934 goto done;
1935 }
1936
1937done:
1938 if (!locked)
1939 i_mmap_unlock_read(mapping);
1940}
1941
1942void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1943{
1944 if (unlikely(PageKsm(page)))
1945 rmap_walk_ksm(page, rwc);
1946 else if (PageAnon(page))
1947 rmap_walk_anon(page, rwc, false);
1948 else
1949 rmap_walk_file(page, rwc, false);
1950}
1951
1952/* Like rmap_walk, but caller holds relevant rmap lock */
1953void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1954{
1955 /* no ksm support for now */
1956 VM_BUG_ON_PAGE(PageKsm(page), page);
1957 if (PageAnon(page))
1958 rmap_walk_anon(page, rwc, true);
1959 else
1960 rmap_walk_file(page, rwc, true);
1961}
1962
1963#ifdef CONFIG_HUGETLB_PAGE
1964/*
David Brazdil0f672f62019-12-10 10:32:29 +00001965 * The following two functions are for anonymous (private mapped) hugepages.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001966 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1967 * and no lru code, because we handle hugepages differently from common pages.
1968 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001969void hugepage_add_anon_rmap(struct page *page,
1970 struct vm_area_struct *vma, unsigned long address)
1971{
1972 struct anon_vma *anon_vma = vma->anon_vma;
1973 int first;
1974
1975 BUG_ON(!PageLocked(page));
1976 BUG_ON(!anon_vma);
1977 /* address might be in next vma when migration races vma_adjust */
1978 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1979 if (first)
David Brazdil0f672f62019-12-10 10:32:29 +00001980 __page_set_anon_rmap(page, vma, address, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001981}
1982
1983void hugepage_add_new_anon_rmap(struct page *page,
1984 struct vm_area_struct *vma, unsigned long address)
1985{
1986 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1987 atomic_set(compound_mapcount_ptr(page), 0);
Olivier Deprez157378f2022-04-04 15:47:50 +02001988 if (hpage_pincount_available(page))
1989 atomic_set(compound_pincount_ptr(page), 0);
1990
David Brazdil0f672f62019-12-10 10:32:29 +00001991 __page_set_anon_rmap(page, vma, address, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001992}
1993#endif /* CONFIG_HUGETLB_PAGE */