blob: 08db8e095e48f5bf507b8977697d4828ba73e934 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Scheduler internal types and methods:
4 */
5#include <linux/sched.h>
6
7#include <linux/sched/autogroup.h>
8#include <linux/sched/clock.h>
9#include <linux/sched/coredump.h>
10#include <linux/sched/cpufreq.h>
11#include <linux/sched/cputime.h>
12#include <linux/sched/deadline.h>
13#include <linux/sched/debug.h>
14#include <linux/sched/hotplug.h>
15#include <linux/sched/idle.h>
16#include <linux/sched/init.h>
17#include <linux/sched/isolation.h>
18#include <linux/sched/jobctl.h>
19#include <linux/sched/loadavg.h>
20#include <linux/sched/mm.h>
21#include <linux/sched/nohz.h>
22#include <linux/sched/numa_balancing.h>
23#include <linux/sched/prio.h>
24#include <linux/sched/rt.h>
25#include <linux/sched/signal.h>
26#include <linux/sched/smt.h>
27#include <linux/sched/stat.h>
28#include <linux/sched/sysctl.h>
29#include <linux/sched/task.h>
30#include <linux/sched/task_stack.h>
31#include <linux/sched/topology.h>
32#include <linux/sched/user.h>
33#include <linux/sched/wake_q.h>
34#include <linux/sched/xacct.h>
35
36#include <uapi/linux/sched/types.h>
37
38#include <linux/binfmts.h>
39#include <linux/blkdev.h>
40#include <linux/compat.h>
41#include <linux/context_tracking.h>
42#include <linux/cpufreq.h>
43#include <linux/cpuidle.h>
44#include <linux/cpuset.h>
45#include <linux/ctype.h>
46#include <linux/debugfs.h>
47#include <linux/delayacct.h>
David Brazdil0f672f62019-12-10 10:32:29 +000048#include <linux/energy_model.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000049#include <linux/init_task.h>
50#include <linux/kprobes.h>
51#include <linux/kthread.h>
52#include <linux/membarrier.h>
53#include <linux/migrate.h>
54#include <linux/mmu_context.h>
55#include <linux/nmi.h>
56#include <linux/proc_fs.h>
57#include <linux/prefetch.h>
58#include <linux/profile.h>
David Brazdil0f672f62019-12-10 10:32:29 +000059#include <linux/psi.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000060#include <linux/rcupdate_wait.h>
61#include <linux/security.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000062#include <linux/stop_machine.h>
63#include <linux/suspend.h>
64#include <linux/swait.h>
65#include <linux/syscalls.h>
66#include <linux/task_work.h>
67#include <linux/tsacct_kern.h>
68
69#include <asm/tlb.h>
Olivier Deprez157378f2022-04-04 15:47:50 +020070#include <asm-generic/vmlinux.lds.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000071
72#ifdef CONFIG_PARAVIRT
73# include <asm/paravirt.h>
74#endif
75
76#include "cpupri.h"
77#include "cpudeadline.h"
78
Olivier Deprez157378f2022-04-04 15:47:50 +020079#include <trace/events/sched.h>
80
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000081#ifdef CONFIG_SCHED_DEBUG
82# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
83#else
84# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
85#endif
86
87struct rq;
88struct cpuidle_state;
89
90/* task_struct::on_rq states: */
91#define TASK_ON_RQ_QUEUED 1
92#define TASK_ON_RQ_MIGRATING 2
93
94extern __read_mostly int scheduler_running;
95
96extern unsigned long calc_load_update;
97extern atomic_long_t calc_load_tasks;
98
99extern void calc_global_load_tick(struct rq *this_rq);
100extern long calc_load_fold_active(struct rq *this_rq, long adjust);
101
Olivier Deprez157378f2022-04-04 15:47:50 +0200102extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000103/*
104 * Helpers for converting nanosecond timing to jiffy resolution
105 */
106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107
108/*
109 * Increase resolution of nice-level calculations for 64-bit architectures.
110 * The extra resolution improves shares distribution and load balancing of
111 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
112 * hierarchies, especially on larger systems. This is not a user-visible change
113 * and does not change the user-interface for setting shares/weights.
114 *
115 * We increase resolution only if we have enough bits to allow this increased
116 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
117 * are pretty high and the returns do not justify the increased costs.
118 *
119 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
120 * increase coverage and consistency always enable it on 64-bit platforms.
121 */
122#ifdef CONFIG_64BIT
123# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
124# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
Olivier Deprez0e641232021-09-23 10:07:05 +0200125# define scale_load_down(w) \
126({ \
127 unsigned long __w = (w); \
128 if (__w) \
129 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
130 __w; \
131})
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000132#else
133# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
134# define scale_load(w) (w)
135# define scale_load_down(w) (w)
136#endif
137
138/*
139 * Task weight (visible to users) and its load (invisible to users) have
140 * independent resolution, but they should be well calibrated. We use
141 * scale_load() and scale_load_down(w) to convert between them. The
142 * following must be true:
143 *
144 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
145 *
146 */
147#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
148
149/*
150 * Single value that decides SCHED_DEADLINE internal math precision.
151 * 10 -> just above 1us
152 * 9 -> just above 0.5us
153 */
154#define DL_SCALE 10
155
156/*
157 * Single value that denotes runtime == period, ie unlimited time.
158 */
159#define RUNTIME_INF ((u64)~0ULL)
160
161static inline int idle_policy(int policy)
162{
163 return policy == SCHED_IDLE;
164}
165static inline int fair_policy(int policy)
166{
167 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
168}
169
170static inline int rt_policy(int policy)
171{
172 return policy == SCHED_FIFO || policy == SCHED_RR;
173}
174
175static inline int dl_policy(int policy)
176{
177 return policy == SCHED_DEADLINE;
178}
179static inline bool valid_policy(int policy)
180{
181 return idle_policy(policy) || fair_policy(policy) ||
182 rt_policy(policy) || dl_policy(policy);
183}
184
David Brazdil0f672f62019-12-10 10:32:29 +0000185static inline int task_has_idle_policy(struct task_struct *p)
186{
187 return idle_policy(p->policy);
188}
189
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000190static inline int task_has_rt_policy(struct task_struct *p)
191{
192 return rt_policy(p->policy);
193}
194
195static inline int task_has_dl_policy(struct task_struct *p)
196{
197 return dl_policy(p->policy);
198}
199
200#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
201
Olivier Deprez157378f2022-04-04 15:47:50 +0200202static inline void update_avg(u64 *avg, u64 sample)
203{
204 s64 diff = sample - *avg;
205 *avg += diff / 8;
206}
207
208/*
209 * Shifting a value by an exponent greater *or equal* to the size of said value
210 * is UB; cap at size-1.
211 */
212#define shr_bound(val, shift) \
213 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
214
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000215/*
216 * !! For sched_setattr_nocheck() (kernel) only !!
217 *
218 * This is actually gross. :(
219 *
220 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
221 * tasks, but still be able to sleep. We need this on platforms that cannot
222 * atomically change clock frequency. Remove once fast switching will be
223 * available on such platforms.
224 *
225 * SUGOV stands for SchedUtil GOVernor.
226 */
227#define SCHED_FLAG_SUGOV 0x10000000
228
Olivier Deprez0e641232021-09-23 10:07:05 +0200229#define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
230
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000231static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
232{
233#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
234 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
235#else
236 return false;
237#endif
238}
239
240/*
241 * Tells if entity @a should preempt entity @b.
242 */
243static inline bool
244dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
245{
246 return dl_entity_is_special(a) ||
247 dl_time_before(a->deadline, b->deadline);
248}
249
250/*
251 * This is the priority-queue data structure of the RT scheduling class:
252 */
253struct rt_prio_array {
254 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
255 struct list_head queue[MAX_RT_PRIO];
256};
257
258struct rt_bandwidth {
259 /* nests inside the rq lock: */
260 raw_spinlock_t rt_runtime_lock;
261 ktime_t rt_period;
262 u64 rt_runtime;
263 struct hrtimer rt_period_timer;
264 unsigned int rt_period_active;
265};
266
267void __dl_clear_params(struct task_struct *p);
268
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000269struct dl_bandwidth {
270 raw_spinlock_t dl_runtime_lock;
271 u64 dl_runtime;
272 u64 dl_period;
273};
274
275static inline int dl_bandwidth_enabled(void)
276{
277 return sysctl_sched_rt_runtime >= 0;
278}
279
Olivier Deprez0e641232021-09-23 10:07:05 +0200280/*
281 * To keep the bandwidth of -deadline tasks under control
282 * we need some place where:
283 * - store the maximum -deadline bandwidth of each cpu;
284 * - cache the fraction of bandwidth that is currently allocated in
285 * each root domain;
286 *
287 * This is all done in the data structure below. It is similar to the
288 * one used for RT-throttling (rt_bandwidth), with the main difference
289 * that, since here we are only interested in admission control, we
290 * do not decrease any runtime while the group "executes", neither we
291 * need a timer to replenish it.
292 *
293 * With respect to SMP, bandwidth is given on a per root domain basis,
294 * meaning that:
295 * - bw (< 100%) is the deadline bandwidth of each CPU;
296 * - total_bw is the currently allocated bandwidth in each root domain;
297 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000298struct dl_bw {
299 raw_spinlock_t lock;
300 u64 bw;
301 u64 total_bw;
302};
303
304static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
305
306static inline
307void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
308{
309 dl_b->total_bw -= tsk_bw;
310 __dl_update(dl_b, (s32)tsk_bw / cpus);
311}
312
313static inline
314void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
315{
316 dl_b->total_bw += tsk_bw;
317 __dl_update(dl_b, -((s32)tsk_bw / cpus));
318}
319
Olivier Deprez157378f2022-04-04 15:47:50 +0200320static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
321 u64 old_bw, u64 new_bw)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000322{
323 return dl_b->bw != -1 &&
Olivier Deprez157378f2022-04-04 15:47:50 +0200324 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000325}
326
Olivier Deprez157378f2022-04-04 15:47:50 +0200327/*
328 * Verify the fitness of task @p to run on @cpu taking into account the
329 * CPU original capacity and the runtime/deadline ratio of the task.
330 *
331 * The function will return true if the CPU original capacity of the
332 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
333 * task and false otherwise.
334 */
335static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
336{
337 unsigned long cap = arch_scale_cpu_capacity(cpu);
338
339 return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
340}
341
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000342extern void init_dl_bw(struct dl_bw *dl_b);
343extern int sched_dl_global_validate(void);
344extern void sched_dl_do_global(void);
345extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
346extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
347extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
348extern bool __checkparam_dl(const struct sched_attr *attr);
349extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
350extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
351extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
352extern bool dl_cpu_busy(unsigned int cpu);
353
354#ifdef CONFIG_CGROUP_SCHED
355
356#include <linux/cgroup.h>
David Brazdil0f672f62019-12-10 10:32:29 +0000357#include <linux/psi.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000358
359struct cfs_rq;
360struct rt_rq;
361
362extern struct list_head task_groups;
363
364struct cfs_bandwidth {
365#ifdef CONFIG_CFS_BANDWIDTH
366 raw_spinlock_t lock;
367 ktime_t period;
368 u64 quota;
369 u64 runtime;
370 s64 hierarchical_quota;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000371
David Brazdil0f672f62019-12-10 10:32:29 +0000372 u8 idle;
373 u8 period_active;
David Brazdil0f672f62019-12-10 10:32:29 +0000374 u8 slack_started;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000375 struct hrtimer period_timer;
376 struct hrtimer slack_timer;
377 struct list_head throttled_cfs_rq;
378
379 /* Statistics: */
380 int nr_periods;
381 int nr_throttled;
382 u64 throttled_time;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000383#endif
384};
385
386/* Task group related information */
387struct task_group {
388 struct cgroup_subsys_state css;
389
390#ifdef CONFIG_FAIR_GROUP_SCHED
391 /* schedulable entities of this group on each CPU */
392 struct sched_entity **se;
393 /* runqueue "owned" by this group on each CPU */
394 struct cfs_rq **cfs_rq;
395 unsigned long shares;
396
397#ifdef CONFIG_SMP
398 /*
399 * load_avg can be heavily contended at clock tick time, so put
400 * it in its own cacheline separated from the fields above which
401 * will also be accessed at each tick.
402 */
403 atomic_long_t load_avg ____cacheline_aligned;
404#endif
405#endif
406
407#ifdef CONFIG_RT_GROUP_SCHED
408 struct sched_rt_entity **rt_se;
409 struct rt_rq **rt_rq;
410
411 struct rt_bandwidth rt_bandwidth;
412#endif
413
414 struct rcu_head rcu;
415 struct list_head list;
416
417 struct task_group *parent;
418 struct list_head siblings;
419 struct list_head children;
420
421#ifdef CONFIG_SCHED_AUTOGROUP
422 struct autogroup *autogroup;
423#endif
424
425 struct cfs_bandwidth cfs_bandwidth;
David Brazdil0f672f62019-12-10 10:32:29 +0000426
427#ifdef CONFIG_UCLAMP_TASK_GROUP
428 /* The two decimal precision [%] value requested from user-space */
429 unsigned int uclamp_pct[UCLAMP_CNT];
430 /* Clamp values requested for a task group */
431 struct uclamp_se uclamp_req[UCLAMP_CNT];
432 /* Effective clamp values used for a task group */
433 struct uclamp_se uclamp[UCLAMP_CNT];
434#endif
435
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000436};
437
438#ifdef CONFIG_FAIR_GROUP_SCHED
439#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
440
441/*
442 * A weight of 0 or 1 can cause arithmetics problems.
443 * A weight of a cfs_rq is the sum of weights of which entities
444 * are queued on this cfs_rq, so a weight of a entity should not be
445 * too large, so as the shares value of a task group.
446 * (The default weight is 1024 - so there's no practical
447 * limitation from this.)
448 */
449#define MIN_SHARES (1UL << 1)
450#define MAX_SHARES (1UL << 18)
451#endif
452
453typedef int (*tg_visitor)(struct task_group *, void *);
454
455extern int walk_tg_tree_from(struct task_group *from,
456 tg_visitor down, tg_visitor up, void *data);
457
458/*
459 * Iterate the full tree, calling @down when first entering a node and @up when
460 * leaving it for the final time.
461 *
462 * Caller must hold rcu_lock or sufficient equivalent.
463 */
464static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
465{
466 return walk_tg_tree_from(&root_task_group, down, up, data);
467}
468
469extern int tg_nop(struct task_group *tg, void *data);
470
471extern void free_fair_sched_group(struct task_group *tg);
472extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
473extern void online_fair_sched_group(struct task_group *tg);
474extern void unregister_fair_sched_group(struct task_group *tg);
475extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
476 struct sched_entity *se, int cpu,
477 struct sched_entity *parent);
478extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
479
480extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
481extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
482extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
483
484extern void free_rt_sched_group(struct task_group *tg);
485extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
486extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
487 struct sched_rt_entity *rt_se, int cpu,
488 struct sched_rt_entity *parent);
489extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
490extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
491extern long sched_group_rt_runtime(struct task_group *tg);
492extern long sched_group_rt_period(struct task_group *tg);
493extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
494
495extern struct task_group *sched_create_group(struct task_group *parent);
496extern void sched_online_group(struct task_group *tg,
497 struct task_group *parent);
498extern void sched_destroy_group(struct task_group *tg);
499extern void sched_offline_group(struct task_group *tg);
500
501extern void sched_move_task(struct task_struct *tsk);
502
503#ifdef CONFIG_FAIR_GROUP_SCHED
504extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
505
506#ifdef CONFIG_SMP
507extern void set_task_rq_fair(struct sched_entity *se,
508 struct cfs_rq *prev, struct cfs_rq *next);
509#else /* !CONFIG_SMP */
510static inline void set_task_rq_fair(struct sched_entity *se,
511 struct cfs_rq *prev, struct cfs_rq *next) { }
512#endif /* CONFIG_SMP */
513#endif /* CONFIG_FAIR_GROUP_SCHED */
514
515#else /* CONFIG_CGROUP_SCHED */
516
517struct cfs_bandwidth { };
518
519#endif /* CONFIG_CGROUP_SCHED */
520
521/* CFS-related fields in a runqueue */
522struct cfs_rq {
523 struct load_weight load;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000524 unsigned int nr_running;
David Brazdil0f672f62019-12-10 10:32:29 +0000525 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
526 unsigned int idle_h_nr_running; /* SCHED_IDLE */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000527
528 u64 exec_clock;
529 u64 min_vruntime;
530#ifndef CONFIG_64BIT
531 u64 min_vruntime_copy;
532#endif
533
534 struct rb_root_cached tasks_timeline;
535
536 /*
537 * 'curr' points to currently running entity on this cfs_rq.
538 * It is set to NULL otherwise (i.e when none are currently running).
539 */
540 struct sched_entity *curr;
541 struct sched_entity *next;
542 struct sched_entity *last;
543 struct sched_entity *skip;
544
545#ifdef CONFIG_SCHED_DEBUG
546 unsigned int nr_spread_over;
547#endif
548
549#ifdef CONFIG_SMP
550 /*
551 * CFS load tracking
552 */
553 struct sched_avg avg;
554#ifndef CONFIG_64BIT
555 u64 load_last_update_time_copy;
556#endif
557 struct {
558 raw_spinlock_t lock ____cacheline_aligned;
559 int nr;
560 unsigned long load_avg;
561 unsigned long util_avg;
Olivier Deprez157378f2022-04-04 15:47:50 +0200562 unsigned long runnable_avg;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000563 } removed;
564
565#ifdef CONFIG_FAIR_GROUP_SCHED
566 unsigned long tg_load_avg_contrib;
567 long propagate;
568 long prop_runnable_sum;
569
570 /*
571 * h_load = weight * f(tg)
572 *
573 * Where f(tg) is the recursive weight fraction assigned to
574 * this group.
575 */
576 unsigned long h_load;
577 u64 last_h_load_update;
578 struct sched_entity *h_load_next;
579#endif /* CONFIG_FAIR_GROUP_SCHED */
580#endif /* CONFIG_SMP */
581
582#ifdef CONFIG_FAIR_GROUP_SCHED
583 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
584
585 /*
586 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
587 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
588 * (like users, containers etc.)
589 *
590 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
591 * This list is used during load balance.
592 */
593 int on_list;
594 struct list_head leaf_cfs_rq_list;
595 struct task_group *tg; /* group that "owns" this runqueue */
596
597#ifdef CONFIG_CFS_BANDWIDTH
598 int runtime_enabled;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000599 s64 runtime_remaining;
600
601 u64 throttled_clock;
602 u64 throttled_clock_task;
603 u64 throttled_clock_task_time;
604 int throttled;
605 int throttle_count;
606 struct list_head throttled_list;
607#endif /* CONFIG_CFS_BANDWIDTH */
608#endif /* CONFIG_FAIR_GROUP_SCHED */
609};
610
611static inline int rt_bandwidth_enabled(void)
612{
613 return sysctl_sched_rt_runtime >= 0;
614}
615
616/* RT IPI pull logic requires IRQ_WORK */
617#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
618# define HAVE_RT_PUSH_IPI
619#endif
620
621/* Real-Time classes' related field in a runqueue: */
622struct rt_rq {
623 struct rt_prio_array active;
624 unsigned int rt_nr_running;
625 unsigned int rr_nr_running;
626#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
627 struct {
628 int curr; /* highest queued rt task prio */
629#ifdef CONFIG_SMP
630 int next; /* next highest */
631#endif
632 } highest_prio;
633#endif
634#ifdef CONFIG_SMP
635 unsigned long rt_nr_migratory;
636 unsigned long rt_nr_total;
637 int overloaded;
638 struct plist_head pushable_tasks;
639
640#endif /* CONFIG_SMP */
641 int rt_queued;
642
643 int rt_throttled;
644 u64 rt_time;
645 u64 rt_runtime;
646 /* Nests inside the rq lock: */
647 raw_spinlock_t rt_runtime_lock;
648
649#ifdef CONFIG_RT_GROUP_SCHED
650 unsigned long rt_nr_boosted;
651
652 struct rq *rq;
653 struct task_group *tg;
654#endif
655};
656
657static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
658{
659 return rt_rq->rt_queued && rt_rq->rt_nr_running;
660}
661
662/* Deadline class' related fields in a runqueue */
663struct dl_rq {
664 /* runqueue is an rbtree, ordered by deadline */
665 struct rb_root_cached root;
666
667 unsigned long dl_nr_running;
668
669#ifdef CONFIG_SMP
670 /*
671 * Deadline values of the currently executing and the
672 * earliest ready task on this rq. Caching these facilitates
David Brazdil0f672f62019-12-10 10:32:29 +0000673 * the decision whether or not a ready but not running task
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000674 * should migrate somewhere else.
675 */
676 struct {
677 u64 curr;
678 u64 next;
679 } earliest_dl;
680
681 unsigned long dl_nr_migratory;
682 int overloaded;
683
684 /*
685 * Tasks on this rq that can be pushed away. They are kept in
686 * an rb-tree, ordered by tasks' deadlines, with caching
687 * of the leftmost (earliest deadline) element.
688 */
689 struct rb_root_cached pushable_dl_tasks_root;
690#else
691 struct dl_bw dl_bw;
692#endif
693 /*
694 * "Active utilization" for this runqueue: increased when a
695 * task wakes up (becomes TASK_RUNNING) and decreased when a
696 * task blocks
697 */
698 u64 running_bw;
699
700 /*
701 * Utilization of the tasks "assigned" to this runqueue (including
702 * the tasks that are in runqueue and the tasks that executed on this
703 * CPU and blocked). Increased when a task moves to this runqueue, and
704 * decreased when the task moves away (migrates, changes scheduling
705 * policy, or terminates).
706 * This is needed to compute the "inactive utilization" for the
707 * runqueue (inactive utilization = this_bw - running_bw).
708 */
709 u64 this_bw;
710 u64 extra_bw;
711
712 /*
713 * Inverse of the fraction of CPU utilization that can be reclaimed
714 * by the GRUB algorithm.
715 */
716 u64 bw_ratio;
717};
718
719#ifdef CONFIG_FAIR_GROUP_SCHED
720/* An entity is a task if it doesn't "own" a runqueue */
721#define entity_is_task(se) (!se->my_q)
Olivier Deprez157378f2022-04-04 15:47:50 +0200722
723static inline void se_update_runnable(struct sched_entity *se)
724{
725 if (!entity_is_task(se))
726 se->runnable_weight = se->my_q->h_nr_running;
727}
728
729static inline long se_runnable(struct sched_entity *se)
730{
731 if (entity_is_task(se))
732 return !!se->on_rq;
733 else
734 return se->runnable_weight;
735}
736
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000737#else
738#define entity_is_task(se) 1
Olivier Deprez157378f2022-04-04 15:47:50 +0200739
740static inline void se_update_runnable(struct sched_entity *se) {}
741
742static inline long se_runnable(struct sched_entity *se)
743{
744 return !!se->on_rq;
745}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000746#endif
747
748#ifdef CONFIG_SMP
749/*
750 * XXX we want to get rid of these helpers and use the full load resolution.
751 */
752static inline long se_weight(struct sched_entity *se)
753{
754 return scale_load_down(se->load.weight);
755}
756
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000757
758static inline bool sched_asym_prefer(int a, int b)
759{
760 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
761}
762
David Brazdil0f672f62019-12-10 10:32:29 +0000763struct perf_domain {
764 struct em_perf_domain *em_pd;
765 struct perf_domain *next;
766 struct rcu_head rcu;
767};
768
769/* Scheduling group status flags */
770#define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
771#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
772
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000773/*
774 * We add the notion of a root-domain which will be used to define per-domain
775 * variables. Each exclusive cpuset essentially defines an island domain by
776 * fully partitioning the member CPUs from any other cpuset. Whenever a new
777 * exclusive cpuset is created, we also create and attach a new root-domain
778 * object.
779 *
780 */
781struct root_domain {
782 atomic_t refcount;
783 atomic_t rto_count;
784 struct rcu_head rcu;
785 cpumask_var_t span;
786 cpumask_var_t online;
787
David Brazdil0f672f62019-12-10 10:32:29 +0000788 /*
789 * Indicate pullable load on at least one CPU, e.g:
790 * - More than one runnable task
791 * - Running task is misfit
792 */
793 int overload;
794
795 /* Indicate one or more cpus over-utilized (tipping point) */
796 int overutilized;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000797
798 /*
799 * The bit corresponding to a CPU gets set here if such CPU has more
800 * than one runnable -deadline task (as it is below for RT tasks).
801 */
802 cpumask_var_t dlo_mask;
803 atomic_t dlo_count;
804 struct dl_bw dl_bw;
805 struct cpudl cpudl;
806
807#ifdef HAVE_RT_PUSH_IPI
808 /*
809 * For IPI pull requests, loop across the rto_mask.
810 */
811 struct irq_work rto_push_work;
812 raw_spinlock_t rto_lock;
813 /* These are only updated and read within rto_lock */
814 int rto_loop;
815 int rto_cpu;
816 /* These atomics are updated outside of a lock */
817 atomic_t rto_loop_next;
818 atomic_t rto_loop_start;
819#endif
820 /*
821 * The "RT overload" flag: it gets set if a CPU has more than
822 * one runnable RT task.
823 */
824 cpumask_var_t rto_mask;
825 struct cpupri cpupri;
826
827 unsigned long max_cpu_capacity;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000828
David Brazdil0f672f62019-12-10 10:32:29 +0000829 /*
830 * NULL-terminated list of performance domains intersecting with the
831 * CPUs of the rd. Protected by RCU.
832 */
833 struct perf_domain __rcu *pd;
834};
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000835
836extern void init_defrootdomain(void);
837extern int sched_init_domains(const struct cpumask *cpu_map);
838extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
839extern void sched_get_rd(struct root_domain *rd);
840extern void sched_put_rd(struct root_domain *rd);
841
842#ifdef HAVE_RT_PUSH_IPI
843extern void rto_push_irq_work_func(struct irq_work *work);
844#endif
845#endif /* CONFIG_SMP */
846
David Brazdil0f672f62019-12-10 10:32:29 +0000847#ifdef CONFIG_UCLAMP_TASK
848/*
849 * struct uclamp_bucket - Utilization clamp bucket
850 * @value: utilization clamp value for tasks on this clamp bucket
851 * @tasks: number of RUNNABLE tasks on this clamp bucket
852 *
853 * Keep track of how many tasks are RUNNABLE for a given utilization
854 * clamp value.
855 */
856struct uclamp_bucket {
857 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
858 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
859};
860
861/*
862 * struct uclamp_rq - rq's utilization clamp
863 * @value: currently active clamp values for a rq
864 * @bucket: utilization clamp buckets affecting a rq
865 *
866 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
867 * A clamp value is affecting a rq when there is at least one task RUNNABLE
868 * (or actually running) with that value.
869 *
870 * There are up to UCLAMP_CNT possible different clamp values, currently there
871 * are only two: minimum utilization and maximum utilization.
872 *
873 * All utilization clamping values are MAX aggregated, since:
874 * - for util_min: we want to run the CPU at least at the max of the minimum
875 * utilization required by its currently RUNNABLE tasks.
876 * - for util_max: we want to allow the CPU to run up to the max of the
877 * maximum utilization allowed by its currently RUNNABLE tasks.
878 *
879 * Since on each system we expect only a limited number of different
880 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
881 * the metrics required to compute all the per-rq utilization clamp values.
882 */
883struct uclamp_rq {
884 unsigned int value;
885 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
886};
Olivier Deprez0e641232021-09-23 10:07:05 +0200887
888DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
David Brazdil0f672f62019-12-10 10:32:29 +0000889#endif /* CONFIG_UCLAMP_TASK */
890
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000891/*
892 * This is the main, per-CPU runqueue data structure.
893 *
894 * Locking rule: those places that want to lock multiple runqueues
895 * (such as the load balancing or the thread migration code), lock
896 * acquire operations must be ordered by ascending &runqueue.
897 */
898struct rq {
899 /* runqueue lock: */
900 raw_spinlock_t lock;
901
902 /*
903 * nr_running and cpu_load should be in the same cacheline because
904 * remote CPUs use both these fields when doing load calculation.
905 */
906 unsigned int nr_running;
907#ifdef CONFIG_NUMA_BALANCING
908 unsigned int nr_numa_running;
909 unsigned int nr_preferred_running;
910 unsigned int numa_migrate_on;
911#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000912#ifdef CONFIG_NO_HZ_COMMON
913#ifdef CONFIG_SMP
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000914 unsigned long last_blocked_load_update_tick;
915 unsigned int has_blocked_load;
Olivier Deprez157378f2022-04-04 15:47:50 +0200916 call_single_data_t nohz_csd;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000917#endif /* CONFIG_SMP */
918 unsigned int nohz_tick_stopped;
Olivier Deprez157378f2022-04-04 15:47:50 +0200919 atomic_t nohz_flags;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000920#endif /* CONFIG_NO_HZ_COMMON */
921
Olivier Deprez157378f2022-04-04 15:47:50 +0200922#ifdef CONFIG_SMP
923 unsigned int ttwu_pending;
924#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000925 u64 nr_switches;
926
David Brazdil0f672f62019-12-10 10:32:29 +0000927#ifdef CONFIG_UCLAMP_TASK
928 /* Utilization clamp values based on CPU's RUNNABLE tasks */
929 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
930 unsigned int uclamp_flags;
931#define UCLAMP_FLAG_IDLE 0x01
932#endif
933
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000934 struct cfs_rq cfs;
935 struct rt_rq rt;
936 struct dl_rq dl;
937
938#ifdef CONFIG_FAIR_GROUP_SCHED
939 /* list of leaf cfs_rq on this CPU: */
940 struct list_head leaf_cfs_rq_list;
941 struct list_head *tmp_alone_branch;
942#endif /* CONFIG_FAIR_GROUP_SCHED */
943
944 /*
945 * This is part of a global counter where only the total sum
946 * over all CPUs matters. A task can increase this counter on
947 * one CPU and if it got migrated afterwards it may decrease
948 * it on another CPU. Always updated under the runqueue lock:
949 */
950 unsigned long nr_uninterruptible;
951
Olivier Deprez157378f2022-04-04 15:47:50 +0200952 struct task_struct __rcu *curr;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000953 struct task_struct *idle;
954 struct task_struct *stop;
955 unsigned long next_balance;
956 struct mm_struct *prev_mm;
957
958 unsigned int clock_update_flags;
959 u64 clock;
David Brazdil0f672f62019-12-10 10:32:29 +0000960 /* Ensure that all clocks are in the same cache line */
961 u64 clock_task ____cacheline_aligned;
962 u64 clock_pelt;
963 unsigned long lost_idle_time;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000964
965 atomic_t nr_iowait;
966
David Brazdil0f672f62019-12-10 10:32:29 +0000967#ifdef CONFIG_MEMBARRIER
968 int membarrier_state;
969#endif
970
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000971#ifdef CONFIG_SMP
David Brazdil0f672f62019-12-10 10:32:29 +0000972 struct root_domain *rd;
973 struct sched_domain __rcu *sd;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000974
975 unsigned long cpu_capacity;
976 unsigned long cpu_capacity_orig;
977
978 struct callback_head *balance_callback;
979
Olivier Deprez157378f2022-04-04 15:47:50 +0200980 unsigned char nohz_idle_balance;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000981 unsigned char idle_balance;
982
David Brazdil0f672f62019-12-10 10:32:29 +0000983 unsigned long misfit_task_load;
984
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000985 /* For active balancing */
986 int active_balance;
987 int push_cpu;
988 struct cpu_stop_work active_balance_work;
989
990 /* CPU of this runqueue: */
991 int cpu;
992 int online;
993
994 struct list_head cfs_tasks;
995
996 struct sched_avg avg_rt;
997 struct sched_avg avg_dl;
998#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
999 struct sched_avg avg_irq;
1000#endif
Olivier Deprez157378f2022-04-04 15:47:50 +02001001#ifdef CONFIG_SCHED_THERMAL_PRESSURE
1002 struct sched_avg avg_thermal;
1003#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001004 u64 idle_stamp;
1005 u64 avg_idle;
1006
1007 /* This is used to determine avg_idle's max value */
1008 u64 max_idle_balance_cost;
Olivier Deprez157378f2022-04-04 15:47:50 +02001009#endif /* CONFIG_SMP */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001010
1011#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1012 u64 prev_irq_time;
1013#endif
1014#ifdef CONFIG_PARAVIRT
1015 u64 prev_steal_time;
1016#endif
1017#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1018 u64 prev_steal_time_rq;
1019#endif
1020
1021 /* calc_load related fields */
1022 unsigned long calc_load_update;
1023 long calc_load_active;
1024
1025#ifdef CONFIG_SCHED_HRTICK
1026#ifdef CONFIG_SMP
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001027 call_single_data_t hrtick_csd;
1028#endif
1029 struct hrtimer hrtick_timer;
Olivier Deprez0e641232021-09-23 10:07:05 +02001030 ktime_t hrtick_time;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001031#endif
1032
1033#ifdef CONFIG_SCHEDSTATS
1034 /* latency stats */
1035 struct sched_info rq_sched_info;
1036 unsigned long long rq_cpu_time;
1037 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1038
1039 /* sys_sched_yield() stats */
1040 unsigned int yld_count;
1041
1042 /* schedule() stats */
1043 unsigned int sched_count;
1044 unsigned int sched_goidle;
1045
1046 /* try_to_wake_up() stats */
1047 unsigned int ttwu_count;
1048 unsigned int ttwu_local;
1049#endif
1050
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001051#ifdef CONFIG_CPU_IDLE
1052 /* Must be inspected within a rcu lock section */
1053 struct cpuidle_state *idle_state;
1054#endif
1055};
1056
David Brazdil0f672f62019-12-10 10:32:29 +00001057#ifdef CONFIG_FAIR_GROUP_SCHED
1058
1059/* CPU runqueue to which this cfs_rq is attached */
1060static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1061{
1062 return cfs_rq->rq;
1063}
1064
1065#else
1066
1067static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1068{
1069 return container_of(cfs_rq, struct rq, cfs);
1070}
1071#endif
1072
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001073static inline int cpu_of(struct rq *rq)
1074{
1075#ifdef CONFIG_SMP
1076 return rq->cpu;
1077#else
1078 return 0;
1079#endif
1080}
1081
1082
1083#ifdef CONFIG_SCHED_SMT
1084extern void __update_idle_core(struct rq *rq);
1085
1086static inline void update_idle_core(struct rq *rq)
1087{
1088 if (static_branch_unlikely(&sched_smt_present))
1089 __update_idle_core(rq);
1090}
1091
1092#else
1093static inline void update_idle_core(struct rq *rq) { }
1094#endif
1095
1096DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1097
1098#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
1099#define this_rq() this_cpu_ptr(&runqueues)
1100#define task_rq(p) cpu_rq(task_cpu(p))
1101#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
1102#define raw_rq() raw_cpu_ptr(&runqueues)
1103
David Brazdil0f672f62019-12-10 10:32:29 +00001104extern void update_rq_clock(struct rq *rq);
1105
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001106static inline u64 __rq_clock_broken(struct rq *rq)
1107{
1108 return READ_ONCE(rq->clock);
1109}
1110
1111/*
1112 * rq::clock_update_flags bits
1113 *
1114 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1115 * call to __schedule(). This is an optimisation to avoid
1116 * neighbouring rq clock updates.
1117 *
1118 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1119 * in effect and calls to update_rq_clock() are being ignored.
1120 *
1121 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1122 * made to update_rq_clock() since the last time rq::lock was pinned.
1123 *
1124 * If inside of __schedule(), clock_update_flags will have been
1125 * shifted left (a left shift is a cheap operation for the fast path
1126 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1127 *
1128 * if (rq-clock_update_flags >= RQCF_UPDATED)
1129 *
1130 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1131 * one position though, because the next rq_unpin_lock() will shift it
1132 * back.
1133 */
1134#define RQCF_REQ_SKIP 0x01
1135#define RQCF_ACT_SKIP 0x02
1136#define RQCF_UPDATED 0x04
1137
1138static inline void assert_clock_updated(struct rq *rq)
1139{
1140 /*
1141 * The only reason for not seeing a clock update since the
1142 * last rq_pin_lock() is if we're currently skipping updates.
1143 */
1144 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1145}
1146
1147static inline u64 rq_clock(struct rq *rq)
1148{
1149 lockdep_assert_held(&rq->lock);
1150 assert_clock_updated(rq);
1151
1152 return rq->clock;
1153}
1154
1155static inline u64 rq_clock_task(struct rq *rq)
1156{
1157 lockdep_assert_held(&rq->lock);
1158 assert_clock_updated(rq);
1159
1160 return rq->clock_task;
1161}
1162
Olivier Deprez157378f2022-04-04 15:47:50 +02001163/**
1164 * By default the decay is the default pelt decay period.
1165 * The decay shift can change the decay period in
1166 * multiples of 32.
1167 * Decay shift Decay period(ms)
1168 * 0 32
1169 * 1 64
1170 * 2 128
1171 * 3 256
1172 * 4 512
1173 */
1174extern int sched_thermal_decay_shift;
1175
1176static inline u64 rq_clock_thermal(struct rq *rq)
1177{
1178 return rq_clock_task(rq) >> sched_thermal_decay_shift;
1179}
1180
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001181static inline void rq_clock_skip_update(struct rq *rq)
1182{
1183 lockdep_assert_held(&rq->lock);
1184 rq->clock_update_flags |= RQCF_REQ_SKIP;
1185}
1186
1187/*
1188 * See rt task throttling, which is the only time a skip
1189 * request is cancelled.
1190 */
1191static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1192{
1193 lockdep_assert_held(&rq->lock);
1194 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1195}
1196
1197struct rq_flags {
1198 unsigned long flags;
1199 struct pin_cookie cookie;
1200#ifdef CONFIG_SCHED_DEBUG
1201 /*
1202 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1203 * current pin context is stashed here in case it needs to be
1204 * restored in rq_repin_lock().
1205 */
1206 unsigned int clock_update_flags;
1207#endif
1208};
1209
Olivier Deprez157378f2022-04-04 15:47:50 +02001210/*
1211 * Lockdep annotation that avoids accidental unlocks; it's like a
1212 * sticky/continuous lockdep_assert_held().
1213 *
1214 * This avoids code that has access to 'struct rq *rq' (basically everything in
1215 * the scheduler) from accidentally unlocking the rq if they do not also have a
1216 * copy of the (on-stack) 'struct rq_flags rf'.
1217 *
1218 * Also see Documentation/locking/lockdep-design.rst.
1219 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001220static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1221{
1222 rf->cookie = lockdep_pin_lock(&rq->lock);
1223
1224#ifdef CONFIG_SCHED_DEBUG
1225 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1226 rf->clock_update_flags = 0;
1227#endif
1228}
1229
1230static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1231{
1232#ifdef CONFIG_SCHED_DEBUG
1233 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1234 rf->clock_update_flags = RQCF_UPDATED;
1235#endif
1236
1237 lockdep_unpin_lock(&rq->lock, rf->cookie);
1238}
1239
1240static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1241{
1242 lockdep_repin_lock(&rq->lock, rf->cookie);
1243
1244#ifdef CONFIG_SCHED_DEBUG
1245 /*
1246 * Restore the value we stashed in @rf for this pin context.
1247 */
1248 rq->clock_update_flags |= rf->clock_update_flags;
1249#endif
1250}
1251
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001252struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1253 __acquires(rq->lock);
1254
1255struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1256 __acquires(p->pi_lock)
1257 __acquires(rq->lock);
1258
1259static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1260 __releases(rq->lock)
1261{
1262 rq_unpin_lock(rq, rf);
1263 raw_spin_unlock(&rq->lock);
1264}
1265
1266static inline void
1267task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1268 __releases(rq->lock)
1269 __releases(p->pi_lock)
1270{
1271 rq_unpin_lock(rq, rf);
1272 raw_spin_unlock(&rq->lock);
1273 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1274}
1275
1276static inline void
1277rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1278 __acquires(rq->lock)
1279{
1280 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1281 rq_pin_lock(rq, rf);
1282}
1283
1284static inline void
1285rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1286 __acquires(rq->lock)
1287{
1288 raw_spin_lock_irq(&rq->lock);
1289 rq_pin_lock(rq, rf);
1290}
1291
1292static inline void
1293rq_lock(struct rq *rq, struct rq_flags *rf)
1294 __acquires(rq->lock)
1295{
1296 raw_spin_lock(&rq->lock);
1297 rq_pin_lock(rq, rf);
1298}
1299
1300static inline void
1301rq_relock(struct rq *rq, struct rq_flags *rf)
1302 __acquires(rq->lock)
1303{
1304 raw_spin_lock(&rq->lock);
1305 rq_repin_lock(rq, rf);
1306}
1307
1308static inline void
1309rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1310 __releases(rq->lock)
1311{
1312 rq_unpin_lock(rq, rf);
1313 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1314}
1315
1316static inline void
1317rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1318 __releases(rq->lock)
1319{
1320 rq_unpin_lock(rq, rf);
1321 raw_spin_unlock_irq(&rq->lock);
1322}
1323
1324static inline void
1325rq_unlock(struct rq *rq, struct rq_flags *rf)
1326 __releases(rq->lock)
1327{
1328 rq_unpin_lock(rq, rf);
1329 raw_spin_unlock(&rq->lock);
1330}
1331
David Brazdil0f672f62019-12-10 10:32:29 +00001332static inline struct rq *
1333this_rq_lock_irq(struct rq_flags *rf)
1334 __acquires(rq->lock)
1335{
1336 struct rq *rq;
1337
1338 local_irq_disable();
1339 rq = this_rq();
1340 rq_lock(rq, rf);
1341 return rq;
1342}
1343
1344#ifdef CONFIG_NUMA
1345enum numa_topology_type {
1346 NUMA_DIRECT,
1347 NUMA_GLUELESS_MESH,
1348 NUMA_BACKPLANE,
1349};
1350extern enum numa_topology_type sched_numa_topology_type;
1351extern int sched_max_numa_distance;
1352extern bool find_numa_distance(int distance);
1353extern void sched_init_numa(void);
1354extern void sched_domains_numa_masks_set(unsigned int cpu);
1355extern void sched_domains_numa_masks_clear(unsigned int cpu);
1356extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1357#else
1358static inline void sched_init_numa(void) { }
1359static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1360static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1361static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1362{
1363 return nr_cpu_ids;
1364}
1365#endif
1366
1367#ifdef CONFIG_NUMA_BALANCING
1368/* The regions in numa_faults array from task_struct */
1369enum numa_faults_stats {
1370 NUMA_MEM = 0,
1371 NUMA_CPU,
1372 NUMA_MEMBUF,
1373 NUMA_CPUBUF
1374};
1375extern void sched_setnuma(struct task_struct *p, int node);
1376extern int migrate_task_to(struct task_struct *p, int cpu);
1377extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1378 int cpu, int scpu);
1379extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1380#else
1381static inline void
1382init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1383{
1384}
1385#endif /* CONFIG_NUMA_BALANCING */
1386
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001387#ifdef CONFIG_SMP
David Brazdil0f672f62019-12-10 10:32:29 +00001388
1389static inline void
1390queue_balance_callback(struct rq *rq,
1391 struct callback_head *head,
1392 void (*func)(struct rq *rq))
1393{
1394 lockdep_assert_held(&rq->lock);
1395
1396 if (unlikely(head->next))
1397 return;
1398
1399 head->func = (void (*)(struct callback_head *))func;
1400 head->next = rq->balance_callback;
1401 rq->balance_callback = head;
1402}
1403
David Brazdil0f672f62019-12-10 10:32:29 +00001404#define rcu_dereference_check_sched_domain(p) \
1405 rcu_dereference_check((p), \
1406 lockdep_is_held(&sched_domains_mutex))
1407
1408/*
1409 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1410 * See destroy_sched_domains: call_rcu for details.
1411 *
1412 * The domain tree of any CPU may only be accessed from within
1413 * preempt-disabled sections.
1414 */
1415#define for_each_domain(cpu, __sd) \
1416 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1417 __sd; __sd = __sd->parent)
1418
David Brazdil0f672f62019-12-10 10:32:29 +00001419/**
1420 * highest_flag_domain - Return highest sched_domain containing flag.
1421 * @cpu: The CPU whose highest level of sched domain is to
1422 * be returned.
1423 * @flag: The flag to check for the highest sched_domain
1424 * for the given CPU.
1425 *
1426 * Returns the highest sched_domain of a CPU which contains the given flag.
1427 */
1428static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1429{
1430 struct sched_domain *sd, *hsd = NULL;
1431
1432 for_each_domain(cpu, sd) {
1433 if (!(sd->flags & flag))
1434 break;
1435 hsd = sd;
1436 }
1437
1438 return hsd;
1439}
1440
1441static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1442{
1443 struct sched_domain *sd;
1444
1445 for_each_domain(cpu, sd) {
1446 if (sd->flags & flag)
1447 break;
1448 }
1449
1450 return sd;
1451}
1452
1453DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1454DECLARE_PER_CPU(int, sd_llc_size);
1455DECLARE_PER_CPU(int, sd_llc_id);
1456DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1457DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1458DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1459DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1460extern struct static_key_false sched_asym_cpucapacity;
1461
1462struct sched_group_capacity {
1463 atomic_t ref;
1464 /*
1465 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1466 * for a single CPU.
1467 */
1468 unsigned long capacity;
1469 unsigned long min_capacity; /* Min per-CPU capacity in group */
1470 unsigned long max_capacity; /* Max per-CPU capacity in group */
1471 unsigned long next_update;
1472 int imbalance; /* XXX unrelated to capacity but shared group state */
1473
1474#ifdef CONFIG_SCHED_DEBUG
1475 int id;
1476#endif
1477
Olivier Deprez157378f2022-04-04 15:47:50 +02001478 unsigned long cpumask[]; /* Balance mask */
David Brazdil0f672f62019-12-10 10:32:29 +00001479};
1480
1481struct sched_group {
1482 struct sched_group *next; /* Must be a circular list */
1483 atomic_t ref;
1484
1485 unsigned int group_weight;
1486 struct sched_group_capacity *sgc;
1487 int asym_prefer_cpu; /* CPU of highest priority in group */
1488
1489 /*
1490 * The CPUs this group covers.
1491 *
1492 * NOTE: this field is variable length. (Allocated dynamically
1493 * by attaching extra space to the end of the structure,
1494 * depending on how many CPUs the kernel has booted up with)
1495 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001496 unsigned long cpumask[];
David Brazdil0f672f62019-12-10 10:32:29 +00001497};
1498
1499static inline struct cpumask *sched_group_span(struct sched_group *sg)
1500{
1501 return to_cpumask(sg->cpumask);
1502}
1503
1504/*
1505 * See build_balance_mask().
1506 */
1507static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1508{
1509 return to_cpumask(sg->sgc->cpumask);
1510}
1511
1512/**
1513 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1514 * @group: The group whose first CPU is to be returned.
1515 */
1516static inline unsigned int group_first_cpu(struct sched_group *group)
1517{
1518 return cpumask_first(sched_group_span(group));
1519}
1520
1521extern int group_balance_cpu(struct sched_group *sg);
1522
1523#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1524void register_sched_domain_sysctl(void);
1525void dirty_sched_domain_sysctl(int cpu);
1526void unregister_sched_domain_sysctl(void);
1527#else
1528static inline void register_sched_domain_sysctl(void)
1529{
1530}
1531static inline void dirty_sched_domain_sysctl(int cpu)
1532{
1533}
1534static inline void unregister_sched_domain_sysctl(void)
1535{
1536}
1537#endif
1538
Olivier Deprez157378f2022-04-04 15:47:50 +02001539extern void flush_smp_call_function_from_idle(void);
David Brazdil0f672f62019-12-10 10:32:29 +00001540
Olivier Deprez157378f2022-04-04 15:47:50 +02001541#else /* !CONFIG_SMP: */
1542static inline void flush_smp_call_function_from_idle(void) { }
1543#endif
David Brazdil0f672f62019-12-10 10:32:29 +00001544
1545#include "stats.h"
1546#include "autogroup.h"
1547
1548#ifdef CONFIG_CGROUP_SCHED
1549
1550/*
1551 * Return the group to which this tasks belongs.
1552 *
1553 * We cannot use task_css() and friends because the cgroup subsystem
1554 * changes that value before the cgroup_subsys::attach() method is called,
1555 * therefore we cannot pin it and might observe the wrong value.
1556 *
1557 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1558 * core changes this before calling sched_move_task().
1559 *
1560 * Instead we use a 'copy' which is updated from sched_move_task() while
1561 * holding both task_struct::pi_lock and rq::lock.
1562 */
1563static inline struct task_group *task_group(struct task_struct *p)
1564{
1565 return p->sched_task_group;
1566}
1567
1568/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1569static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1570{
1571#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1572 struct task_group *tg = task_group(p);
1573#endif
1574
1575#ifdef CONFIG_FAIR_GROUP_SCHED
1576 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1577 p->se.cfs_rq = tg->cfs_rq[cpu];
1578 p->se.parent = tg->se[cpu];
1579#endif
1580
1581#ifdef CONFIG_RT_GROUP_SCHED
1582 p->rt.rt_rq = tg->rt_rq[cpu];
1583 p->rt.parent = tg->rt_se[cpu];
1584#endif
1585}
1586
1587#else /* CONFIG_CGROUP_SCHED */
1588
1589static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1590static inline struct task_group *task_group(struct task_struct *p)
1591{
1592 return NULL;
1593}
1594
1595#endif /* CONFIG_CGROUP_SCHED */
1596
1597static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1598{
1599 set_task_rq(p, cpu);
1600#ifdef CONFIG_SMP
1601 /*
1602 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1603 * successfully executed on another CPU. We must ensure that updates of
1604 * per-task data have been completed by this moment.
1605 */
1606 smp_wmb();
1607#ifdef CONFIG_THREAD_INFO_IN_TASK
1608 WRITE_ONCE(p->cpu, cpu);
1609#else
1610 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1611#endif
1612 p->wake_cpu = cpu;
1613#endif
1614}
1615
1616/*
1617 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1618 */
1619#ifdef CONFIG_SCHED_DEBUG
1620# include <linux/static_key.h>
1621# define const_debug __read_mostly
1622#else
1623# define const_debug const
1624#endif
1625
1626#define SCHED_FEAT(name, enabled) \
1627 __SCHED_FEAT_##name ,
1628
1629enum {
1630#include "features.h"
1631 __SCHED_FEAT_NR,
1632};
1633
1634#undef SCHED_FEAT
1635
Olivier Deprez0e641232021-09-23 10:07:05 +02001636#ifdef CONFIG_SCHED_DEBUG
David Brazdil0f672f62019-12-10 10:32:29 +00001637
1638/*
1639 * To support run-time toggling of sched features, all the translation units
1640 * (but core.c) reference the sysctl_sched_features defined in core.c.
1641 */
1642extern const_debug unsigned int sysctl_sched_features;
1643
Olivier Deprez0e641232021-09-23 10:07:05 +02001644#ifdef CONFIG_JUMP_LABEL
David Brazdil0f672f62019-12-10 10:32:29 +00001645#define SCHED_FEAT(name, enabled) \
1646static __always_inline bool static_branch_##name(struct static_key *key) \
1647{ \
1648 return static_key_##enabled(key); \
1649}
1650
1651#include "features.h"
1652#undef SCHED_FEAT
1653
1654extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1655#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1656
Olivier Deprez0e641232021-09-23 10:07:05 +02001657#else /* !CONFIG_JUMP_LABEL */
1658
1659#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1660
1661#endif /* CONFIG_JUMP_LABEL */
1662
1663#else /* !SCHED_DEBUG */
David Brazdil0f672f62019-12-10 10:32:29 +00001664
1665/*
1666 * Each translation unit has its own copy of sysctl_sched_features to allow
1667 * constants propagation at compile time and compiler optimization based on
1668 * features default.
1669 */
1670#define SCHED_FEAT(name, enabled) \
1671 (1UL << __SCHED_FEAT_##name) * enabled |
1672static const_debug __maybe_unused unsigned int sysctl_sched_features =
1673#include "features.h"
1674 0;
1675#undef SCHED_FEAT
1676
1677#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1678
Olivier Deprez0e641232021-09-23 10:07:05 +02001679#endif /* SCHED_DEBUG */
David Brazdil0f672f62019-12-10 10:32:29 +00001680
1681extern struct static_key_false sched_numa_balancing;
1682extern struct static_key_false sched_schedstats;
1683
1684static inline u64 global_rt_period(void)
1685{
1686 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1687}
1688
1689static inline u64 global_rt_runtime(void)
1690{
1691 if (sysctl_sched_rt_runtime < 0)
1692 return RUNTIME_INF;
1693
1694 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1695}
1696
1697static inline int task_current(struct rq *rq, struct task_struct *p)
1698{
1699 return rq->curr == p;
1700}
1701
1702static inline int task_running(struct rq *rq, struct task_struct *p)
1703{
1704#ifdef CONFIG_SMP
1705 return p->on_cpu;
1706#else
1707 return task_current(rq, p);
1708#endif
1709}
1710
1711static inline int task_on_rq_queued(struct task_struct *p)
1712{
1713 return p->on_rq == TASK_ON_RQ_QUEUED;
1714}
1715
1716static inline int task_on_rq_migrating(struct task_struct *p)
1717{
1718 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
1719}
1720
1721/*
1722 * wake flags
1723 */
1724#define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1725#define WF_FORK 0x02 /* Child wakeup after fork */
Olivier Deprez157378f2022-04-04 15:47:50 +02001726#define WF_MIGRATED 0x04 /* Internal use, task got migrated */
1727#define WF_ON_CPU 0x08 /* Wakee is on_cpu */
David Brazdil0f672f62019-12-10 10:32:29 +00001728
1729/*
1730 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1731 * of tasks with abnormal "nice" values across CPUs the contribution that
1732 * each task makes to its run queue's load is weighted according to its
1733 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1734 * scaled version of the new time slice allocation that they receive on time
1735 * slice expiry etc.
1736 */
1737
1738#define WEIGHT_IDLEPRIO 3
1739#define WMULT_IDLEPRIO 1431655765
1740
1741extern const int sched_prio_to_weight[40];
1742extern const u32 sched_prio_to_wmult[40];
1743
1744/*
1745 * {de,en}queue flags:
1746 *
1747 * DEQUEUE_SLEEP - task is no longer runnable
1748 * ENQUEUE_WAKEUP - task just became runnable
1749 *
1750 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1751 * are in a known state which allows modification. Such pairs
1752 * should preserve as much state as possible.
1753 *
1754 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1755 * in the runqueue.
1756 *
1757 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1758 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1759 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1760 *
1761 */
1762
1763#define DEQUEUE_SLEEP 0x01
1764#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1765#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1766#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
1767
1768#define ENQUEUE_WAKEUP 0x01
1769#define ENQUEUE_RESTORE 0x02
1770#define ENQUEUE_MOVE 0x04
1771#define ENQUEUE_NOCLOCK 0x08
1772
1773#define ENQUEUE_HEAD 0x10
1774#define ENQUEUE_REPLENISH 0x20
1775#ifdef CONFIG_SMP
1776#define ENQUEUE_MIGRATED 0x40
1777#else
1778#define ENQUEUE_MIGRATED 0x00
1779#endif
1780
1781#define RETRY_TASK ((void *)-1UL)
1782
1783struct sched_class {
David Brazdil0f672f62019-12-10 10:32:29 +00001784
1785#ifdef CONFIG_UCLAMP_TASK
1786 int uclamp_enabled;
1787#endif
1788
1789 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1790 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1791 void (*yield_task) (struct rq *rq);
Olivier Deprez157378f2022-04-04 15:47:50 +02001792 bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
David Brazdil0f672f62019-12-10 10:32:29 +00001793
1794 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1795
Olivier Deprez157378f2022-04-04 15:47:50 +02001796 struct task_struct *(*pick_next_task)(struct rq *rq);
1797
David Brazdil0f672f62019-12-10 10:32:29 +00001798 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
Olivier Deprez0e641232021-09-23 10:07:05 +02001799 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
David Brazdil0f672f62019-12-10 10:32:29 +00001800
1801#ifdef CONFIG_SMP
1802 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1803 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1804 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1805
1806 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1807
1808 void (*set_cpus_allowed)(struct task_struct *p,
1809 const struct cpumask *newmask);
1810
1811 void (*rq_online)(struct rq *rq);
1812 void (*rq_offline)(struct rq *rq);
1813#endif
1814
1815 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1816 void (*task_fork)(struct task_struct *p);
1817 void (*task_dead)(struct task_struct *p);
1818
1819 /*
1820 * The switched_from() call is allowed to drop rq->lock, therefore we
1821 * cannot assume the switched_from/switched_to pair is serliazed by
1822 * rq->lock. They are however serialized by p->pi_lock.
1823 */
1824 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1825 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1826 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1827 int oldprio);
1828
1829 unsigned int (*get_rr_interval)(struct rq *rq,
1830 struct task_struct *task);
1831
1832 void (*update_curr)(struct rq *rq);
1833
1834#define TASK_SET_GROUP 0
1835#define TASK_MOVE_GROUP 1
1836
1837#ifdef CONFIG_FAIR_GROUP_SCHED
1838 void (*task_change_group)(struct task_struct *p, int type);
1839#endif
Olivier Deprez157378f2022-04-04 15:47:50 +02001840} __aligned(STRUCT_ALIGNMENT); /* STRUCT_ALIGN(), vmlinux.lds.h */
David Brazdil0f672f62019-12-10 10:32:29 +00001841
1842static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1843{
1844 WARN_ON_ONCE(rq->curr != prev);
1845 prev->sched_class->put_prev_task(rq, prev);
1846}
1847
1848static inline void set_next_task(struct rq *rq, struct task_struct *next)
1849{
1850 WARN_ON_ONCE(rq->curr != next);
Olivier Deprez0e641232021-09-23 10:07:05 +02001851 next->sched_class->set_next_task(rq, next, false);
David Brazdil0f672f62019-12-10 10:32:29 +00001852}
1853
Olivier Deprez157378f2022-04-04 15:47:50 +02001854/* Defined in include/asm-generic/vmlinux.lds.h */
1855extern struct sched_class __begin_sched_classes[];
1856extern struct sched_class __end_sched_classes[];
1857
1858#define sched_class_highest (__end_sched_classes - 1)
1859#define sched_class_lowest (__begin_sched_classes - 1)
David Brazdil0f672f62019-12-10 10:32:29 +00001860
1861#define for_class_range(class, _from, _to) \
Olivier Deprez157378f2022-04-04 15:47:50 +02001862 for (class = (_from); class != (_to); class--)
David Brazdil0f672f62019-12-10 10:32:29 +00001863
1864#define for_each_class(class) \
Olivier Deprez157378f2022-04-04 15:47:50 +02001865 for_class_range(class, sched_class_highest, sched_class_lowest)
David Brazdil0f672f62019-12-10 10:32:29 +00001866
1867extern const struct sched_class stop_sched_class;
1868extern const struct sched_class dl_sched_class;
1869extern const struct sched_class rt_sched_class;
1870extern const struct sched_class fair_sched_class;
1871extern const struct sched_class idle_sched_class;
1872
1873static inline bool sched_stop_runnable(struct rq *rq)
1874{
1875 return rq->stop && task_on_rq_queued(rq->stop);
1876}
1877
1878static inline bool sched_dl_runnable(struct rq *rq)
1879{
1880 return rq->dl.dl_nr_running > 0;
1881}
1882
1883static inline bool sched_rt_runnable(struct rq *rq)
1884{
1885 return rq->rt.rt_queued > 0;
1886}
1887
1888static inline bool sched_fair_runnable(struct rq *rq)
1889{
1890 return rq->cfs.nr_running > 0;
1891}
1892
Olivier Deprez157378f2022-04-04 15:47:50 +02001893extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1894extern struct task_struct *pick_next_task_idle(struct rq *rq);
1895
David Brazdil0f672f62019-12-10 10:32:29 +00001896#ifdef CONFIG_SMP
1897
1898extern void update_group_capacity(struct sched_domain *sd, int cpu);
1899
1900extern void trigger_load_balance(struct rq *rq);
1901
1902extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1903
1904#endif
1905
1906#ifdef CONFIG_CPU_IDLE
1907static inline void idle_set_state(struct rq *rq,
1908 struct cpuidle_state *idle_state)
1909{
1910 rq->idle_state = idle_state;
1911}
1912
1913static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1914{
1915 SCHED_WARN_ON(!rcu_read_lock_held());
1916
1917 return rq->idle_state;
1918}
1919#else
1920static inline void idle_set_state(struct rq *rq,
1921 struct cpuidle_state *idle_state)
1922{
1923}
1924
1925static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1926{
1927 return NULL;
1928}
1929#endif
1930
1931extern void schedule_idle(void);
1932
1933extern void sysrq_sched_debug_show(void);
1934extern void sched_init_granularity(void);
1935extern void update_max_interval(void);
1936
1937extern void init_sched_dl_class(void);
1938extern void init_sched_rt_class(void);
1939extern void init_sched_fair_class(void);
1940
1941extern void reweight_task(struct task_struct *p, int prio);
1942
1943extern void resched_curr(struct rq *rq);
1944extern void resched_cpu(int cpu);
1945
1946extern struct rt_bandwidth def_rt_bandwidth;
1947extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1948
1949extern struct dl_bandwidth def_dl_bandwidth;
1950extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1951extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1952extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
David Brazdil0f672f62019-12-10 10:32:29 +00001953
1954#define BW_SHIFT 20
1955#define BW_UNIT (1 << BW_SHIFT)
1956#define RATIO_SHIFT 8
Olivier Deprez0e641232021-09-23 10:07:05 +02001957#define MAX_BW_BITS (64 - BW_SHIFT)
1958#define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
David Brazdil0f672f62019-12-10 10:32:29 +00001959unsigned long to_ratio(u64 period, u64 runtime);
1960
1961extern void init_entity_runnable_average(struct sched_entity *se);
1962extern void post_init_entity_util_avg(struct task_struct *p);
1963
1964#ifdef CONFIG_NO_HZ_FULL
1965extern bool sched_can_stop_tick(struct rq *rq);
1966extern int __init sched_tick_offload_init(void);
1967
1968/*
1969 * Tick may be needed by tasks in the runqueue depending on their policy and
1970 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1971 * nohz mode if necessary.
1972 */
1973static inline void sched_update_tick_dependency(struct rq *rq)
1974{
Olivier Deprez157378f2022-04-04 15:47:50 +02001975 int cpu = cpu_of(rq);
David Brazdil0f672f62019-12-10 10:32:29 +00001976
1977 if (!tick_nohz_full_cpu(cpu))
1978 return;
1979
1980 if (sched_can_stop_tick(rq))
1981 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1982 else
1983 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1984}
1985#else
1986static inline int sched_tick_offload_init(void) { return 0; }
1987static inline void sched_update_tick_dependency(struct rq *rq) { }
1988#endif
1989
1990static inline void add_nr_running(struct rq *rq, unsigned count)
1991{
1992 unsigned prev_nr = rq->nr_running;
1993
1994 rq->nr_running = prev_nr + count;
Olivier Deprez157378f2022-04-04 15:47:50 +02001995 if (trace_sched_update_nr_running_tp_enabled()) {
1996 call_trace_sched_update_nr_running(rq, count);
1997 }
David Brazdil0f672f62019-12-10 10:32:29 +00001998
1999#ifdef CONFIG_SMP
2000 if (prev_nr < 2 && rq->nr_running >= 2) {
2001 if (!READ_ONCE(rq->rd->overload))
2002 WRITE_ONCE(rq->rd->overload, 1);
2003 }
2004#endif
2005
2006 sched_update_tick_dependency(rq);
2007}
2008
2009static inline void sub_nr_running(struct rq *rq, unsigned count)
2010{
2011 rq->nr_running -= count;
Olivier Deprez157378f2022-04-04 15:47:50 +02002012 if (trace_sched_update_nr_running_tp_enabled()) {
2013 call_trace_sched_update_nr_running(rq, -count);
2014 }
2015
David Brazdil0f672f62019-12-10 10:32:29 +00002016 /* Check if we still need preemption */
2017 sched_update_tick_dependency(rq);
2018}
2019
2020extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2021extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2022
2023extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2024
2025extern const_debug unsigned int sysctl_sched_nr_migrate;
2026extern const_debug unsigned int sysctl_sched_migration_cost;
2027
2028#ifdef CONFIG_SCHED_HRTICK
2029
2030/*
2031 * Use hrtick when:
2032 * - enabled by features
2033 * - hrtimer is actually high res
2034 */
2035static inline int hrtick_enabled(struct rq *rq)
2036{
2037 if (!sched_feat(HRTICK))
2038 return 0;
2039 if (!cpu_active(cpu_of(rq)))
2040 return 0;
2041 return hrtimer_is_hres_active(&rq->hrtick_timer);
2042}
2043
2044void hrtick_start(struct rq *rq, u64 delay);
2045
2046#else
2047
2048static inline int hrtick_enabled(struct rq *rq)
2049{
2050 return 0;
2051}
2052
2053#endif /* CONFIG_SCHED_HRTICK */
2054
Olivier Deprez157378f2022-04-04 15:47:50 +02002055#ifndef arch_scale_freq_tick
2056static __always_inline
2057void arch_scale_freq_tick(void)
2058{
2059}
2060#endif
2061
David Brazdil0f672f62019-12-10 10:32:29 +00002062#ifndef arch_scale_freq_capacity
Olivier Deprez157378f2022-04-04 15:47:50 +02002063/**
2064 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2065 * @cpu: the CPU in question.
2066 *
2067 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2068 *
2069 * f_curr
2070 * ------ * SCHED_CAPACITY_SCALE
2071 * f_max
2072 */
David Brazdil0f672f62019-12-10 10:32:29 +00002073static __always_inline
2074unsigned long arch_scale_freq_capacity(int cpu)
2075{
2076 return SCHED_CAPACITY_SCALE;
2077}
2078#endif
2079
2080#ifdef CONFIG_SMP
2081#ifdef CONFIG_PREEMPTION
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002082
2083static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
2084
2085/*
2086 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2087 * way at the expense of forcing extra atomic operations in all
2088 * invocations. This assures that the double_lock is acquired using the
2089 * same underlying policy as the spinlock_t on this architecture, which
2090 * reduces latency compared to the unfair variant below. However, it
2091 * also adds more overhead and therefore may reduce throughput.
2092 */
2093static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2094 __releases(this_rq->lock)
2095 __acquires(busiest->lock)
2096 __acquires(this_rq->lock)
2097{
2098 raw_spin_unlock(&this_rq->lock);
2099 double_rq_lock(this_rq, busiest);
2100
2101 return 1;
2102}
2103
2104#else
2105/*
2106 * Unfair double_lock_balance: Optimizes throughput at the expense of
2107 * latency by eliminating extra atomic operations when the locks are
2108 * already in proper order on entry. This favors lower CPU-ids and will
2109 * grant the double lock to lower CPUs over higher ids under contention,
2110 * regardless of entry order into the function.
2111 */
2112static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2113 __releases(this_rq->lock)
2114 __acquires(busiest->lock)
2115 __acquires(this_rq->lock)
2116{
2117 int ret = 0;
2118
2119 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2120 if (busiest < this_rq) {
2121 raw_spin_unlock(&this_rq->lock);
2122 raw_spin_lock(&busiest->lock);
2123 raw_spin_lock_nested(&this_rq->lock,
2124 SINGLE_DEPTH_NESTING);
2125 ret = 1;
2126 } else
2127 raw_spin_lock_nested(&busiest->lock,
2128 SINGLE_DEPTH_NESTING);
2129 }
2130 return ret;
2131}
2132
David Brazdil0f672f62019-12-10 10:32:29 +00002133#endif /* CONFIG_PREEMPTION */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002134
2135/*
2136 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2137 */
2138static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2139{
2140 if (unlikely(!irqs_disabled())) {
2141 /* printk() doesn't work well under rq->lock */
2142 raw_spin_unlock(&this_rq->lock);
2143 BUG_ON(1);
2144 }
2145
2146 return _double_lock_balance(this_rq, busiest);
2147}
2148
2149static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2150 __releases(busiest->lock)
2151{
2152 raw_spin_unlock(&busiest->lock);
2153 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2154}
2155
2156static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2157{
2158 if (l1 > l2)
2159 swap(l1, l2);
2160
2161 spin_lock(l1);
2162 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2163}
2164
2165static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2166{
2167 if (l1 > l2)
2168 swap(l1, l2);
2169
2170 spin_lock_irq(l1);
2171 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2172}
2173
2174static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2175{
2176 if (l1 > l2)
2177 swap(l1, l2);
2178
2179 raw_spin_lock(l1);
2180 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2181}
2182
2183/*
2184 * double_rq_lock - safely lock two runqueues
2185 *
2186 * Note this does not disable interrupts like task_rq_lock,
2187 * you need to do so manually before calling.
2188 */
2189static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2190 __acquires(rq1->lock)
2191 __acquires(rq2->lock)
2192{
2193 BUG_ON(!irqs_disabled());
2194 if (rq1 == rq2) {
2195 raw_spin_lock(&rq1->lock);
2196 __acquire(rq2->lock); /* Fake it out ;) */
2197 } else {
2198 if (rq1 < rq2) {
2199 raw_spin_lock(&rq1->lock);
2200 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2201 } else {
2202 raw_spin_lock(&rq2->lock);
2203 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2204 }
2205 }
2206}
2207
2208/*
2209 * double_rq_unlock - safely unlock two runqueues
2210 *
2211 * Note this does not restore interrupts like task_rq_unlock,
2212 * you need to do so manually after calling.
2213 */
2214static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2215 __releases(rq1->lock)
2216 __releases(rq2->lock)
2217{
2218 raw_spin_unlock(&rq1->lock);
2219 if (rq1 != rq2)
2220 raw_spin_unlock(&rq2->lock);
2221 else
2222 __release(rq2->lock);
2223}
2224
2225extern void set_rq_online (struct rq *rq);
2226extern void set_rq_offline(struct rq *rq);
2227extern bool sched_smp_initialized;
2228
2229#else /* CONFIG_SMP */
2230
2231/*
2232 * double_rq_lock - safely lock two runqueues
2233 *
2234 * Note this does not disable interrupts like task_rq_lock,
2235 * you need to do so manually before calling.
2236 */
2237static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2238 __acquires(rq1->lock)
2239 __acquires(rq2->lock)
2240{
2241 BUG_ON(!irqs_disabled());
2242 BUG_ON(rq1 != rq2);
2243 raw_spin_lock(&rq1->lock);
2244 __acquire(rq2->lock); /* Fake it out ;) */
2245}
2246
2247/*
2248 * double_rq_unlock - safely unlock two runqueues
2249 *
2250 * Note this does not restore interrupts like task_rq_unlock,
2251 * you need to do so manually after calling.
2252 */
2253static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2254 __releases(rq1->lock)
2255 __releases(rq2->lock)
2256{
2257 BUG_ON(rq1 != rq2);
2258 raw_spin_unlock(&rq1->lock);
2259 __release(rq2->lock);
2260}
2261
2262#endif
2263
2264extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2265extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2266
2267#ifdef CONFIG_SCHED_DEBUG
2268extern bool sched_debug_enabled;
2269
2270extern void print_cfs_stats(struct seq_file *m, int cpu);
2271extern void print_rt_stats(struct seq_file *m, int cpu);
2272extern void print_dl_stats(struct seq_file *m, int cpu);
2273extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2274extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2275extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2276#ifdef CONFIG_NUMA_BALANCING
2277extern void
2278show_numa_stats(struct task_struct *p, struct seq_file *m);
2279extern void
2280print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2281 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2282#endif /* CONFIG_NUMA_BALANCING */
2283#endif /* CONFIG_SCHED_DEBUG */
2284
2285extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2286extern void init_rt_rq(struct rt_rq *rt_rq);
2287extern void init_dl_rq(struct dl_rq *dl_rq);
2288
2289extern void cfs_bandwidth_usage_inc(void);
2290extern void cfs_bandwidth_usage_dec(void);
2291
2292#ifdef CONFIG_NO_HZ_COMMON
2293#define NOHZ_BALANCE_KICK_BIT 0
2294#define NOHZ_STATS_KICK_BIT 1
2295
2296#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2297#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2298
2299#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2300
2301#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2302
2303extern void nohz_balance_exit_idle(struct rq *rq);
2304#else
2305static inline void nohz_balance_exit_idle(struct rq *rq) { }
2306#endif
2307
2308
2309#ifdef CONFIG_SMP
2310static inline
2311void __dl_update(struct dl_bw *dl_b, s64 bw)
2312{
2313 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2314 int i;
2315
2316 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2317 "sched RCU must be held");
2318 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2319 struct rq *rq = cpu_rq(i);
2320
2321 rq->dl.extra_bw += bw;
2322 }
2323}
2324#else
2325static inline
2326void __dl_update(struct dl_bw *dl_b, s64 bw)
2327{
2328 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2329
2330 dl->extra_bw += bw;
2331}
2332#endif
2333
2334
2335#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2336struct irqtime {
2337 u64 total;
2338 u64 tick_delta;
2339 u64 irq_start_time;
2340 struct u64_stats_sync sync;
2341};
2342
2343DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2344
2345/*
2346 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2347 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2348 * and never move forward.
2349 */
2350static inline u64 irq_time_read(int cpu)
2351{
2352 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2353 unsigned int seq;
2354 u64 total;
2355
2356 do {
2357 seq = __u64_stats_fetch_begin(&irqtime->sync);
2358 total = irqtime->total;
2359 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2360
2361 return total;
2362}
2363#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2364
2365#ifdef CONFIG_CPU_FREQ
David Brazdil0f672f62019-12-10 10:32:29 +00002366DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002367
2368/**
2369 * cpufreq_update_util - Take a note about CPU utilization changes.
2370 * @rq: Runqueue to carry out the update for.
2371 * @flags: Update reason flags.
2372 *
2373 * This function is called by the scheduler on the CPU whose utilization is
2374 * being updated.
2375 *
2376 * It can only be called from RCU-sched read-side critical sections.
2377 *
2378 * The way cpufreq is currently arranged requires it to evaluate the CPU
2379 * performance state (frequency/voltage) on a regular basis to prevent it from
2380 * being stuck in a completely inadequate performance level for too long.
2381 * That is not guaranteed to happen if the updates are only triggered from CFS
2382 * and DL, though, because they may not be coming in if only RT tasks are
2383 * active all the time (or there are RT tasks only).
2384 *
2385 * As a workaround for that issue, this function is called periodically by the
2386 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2387 * but that really is a band-aid. Going forward it should be replaced with
2388 * solutions targeted more specifically at RT tasks.
2389 */
2390static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2391{
2392 struct update_util_data *data;
2393
2394 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2395 cpu_of(rq)));
2396 if (data)
2397 data->func(data, rq_clock(rq), flags);
2398}
2399#else
2400static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2401#endif /* CONFIG_CPU_FREQ */
2402
David Brazdil0f672f62019-12-10 10:32:29 +00002403#ifdef CONFIG_UCLAMP_TASK
Olivier Deprez157378f2022-04-04 15:47:50 +02002404unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
David Brazdil0f672f62019-12-10 10:32:29 +00002405
Olivier Deprez0e641232021-09-23 10:07:05 +02002406/**
Olivier Deprez157378f2022-04-04 15:47:50 +02002407 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
Olivier Deprez0e641232021-09-23 10:07:05 +02002408 * @rq: The rq to clamp against. Must not be NULL.
2409 * @util: The util value to clamp.
2410 * @p: The task to clamp against. Can be NULL if you want to clamp
2411 * against @rq only.
2412 *
2413 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2414 *
2415 * If sched_uclamp_used static key is disabled, then just return the util
2416 * without any clamping since uclamp aggregation at the rq level in the fast
2417 * path is disabled, rendering this operation a NOP.
2418 *
2419 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2420 * will return the correct effective uclamp value of the task even if the
2421 * static key is disabled.
2422 */
David Brazdil0f672f62019-12-10 10:32:29 +00002423static __always_inline
Olivier Deprez157378f2022-04-04 15:47:50 +02002424unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2425 struct task_struct *p)
David Brazdil0f672f62019-12-10 10:32:29 +00002426{
Olivier Deprez157378f2022-04-04 15:47:50 +02002427 unsigned long min_util = 0;
2428 unsigned long max_util = 0;
Olivier Deprez0e641232021-09-23 10:07:05 +02002429
2430 if (!static_branch_likely(&sched_uclamp_used))
2431 return util;
2432
David Brazdil0f672f62019-12-10 10:32:29 +00002433 if (p) {
Olivier Deprez157378f2022-04-04 15:47:50 +02002434 min_util = uclamp_eff_value(p, UCLAMP_MIN);
2435 max_util = uclamp_eff_value(p, UCLAMP_MAX);
2436
2437 /*
2438 * Ignore last runnable task's max clamp, as this task will
2439 * reset it. Similarly, no need to read the rq's min clamp.
2440 */
2441 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
2442 goto out;
David Brazdil0f672f62019-12-10 10:32:29 +00002443 }
2444
Olivier Deprez157378f2022-04-04 15:47:50 +02002445 min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value));
2446 max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value));
2447out:
David Brazdil0f672f62019-12-10 10:32:29 +00002448 /*
2449 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2450 * RUNNABLE tasks with _different_ clamps, we can end up with an
2451 * inversion. Fix it now when the clamps are applied.
2452 */
2453 if (unlikely(min_util >= max_util))
2454 return min_util;
2455
2456 return clamp(util, min_util, max_util);
2457}
2458
Olivier Deprez0e641232021-09-23 10:07:05 +02002459/*
2460 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2461 * by default in the fast path and only gets turned on once userspace performs
2462 * an operation that requires it.
2463 *
2464 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2465 * hence is active.
2466 */
2467static inline bool uclamp_is_used(void)
2468{
2469 return static_branch_likely(&sched_uclamp_used);
2470}
David Brazdil0f672f62019-12-10 10:32:29 +00002471#else /* CONFIG_UCLAMP_TASK */
Olivier Deprez157378f2022-04-04 15:47:50 +02002472static inline
2473unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2474 struct task_struct *p)
David Brazdil0f672f62019-12-10 10:32:29 +00002475{
2476 return util;
2477}
Olivier Deprez0e641232021-09-23 10:07:05 +02002478
2479static inline bool uclamp_is_used(void)
2480{
2481 return false;
2482}
David Brazdil0f672f62019-12-10 10:32:29 +00002483#endif /* CONFIG_UCLAMP_TASK */
2484
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002485#ifdef arch_scale_freq_capacity
2486# ifndef arch_scale_freq_invariant
2487# define arch_scale_freq_invariant() true
2488# endif
2489#else
2490# define arch_scale_freq_invariant() false
2491#endif
2492
David Brazdil0f672f62019-12-10 10:32:29 +00002493#ifdef CONFIG_SMP
2494static inline unsigned long capacity_orig_of(int cpu)
2495{
2496 return cpu_rq(cpu)->cpu_capacity_orig;
2497}
2498#endif
2499
2500/**
2501 * enum schedutil_type - CPU utilization type
2502 * @FREQUENCY_UTIL: Utilization used to select frequency
2503 * @ENERGY_UTIL: Utilization used during energy calculation
2504 *
2505 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2506 * need to be aggregated differently depending on the usage made of them. This
2507 * enum is used within schedutil_freq_util() to differentiate the types of
2508 * utilization expected by the callers, and adjust the aggregation accordingly.
2509 */
2510enum schedutil_type {
2511 FREQUENCY_UTIL,
2512 ENERGY_UTIL,
2513};
2514
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002515#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
David Brazdil0f672f62019-12-10 10:32:29 +00002516
2517unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2518 unsigned long max, enum schedutil_type type,
2519 struct task_struct *p);
2520
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002521static inline unsigned long cpu_bw_dl(struct rq *rq)
2522{
2523 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2524}
2525
2526static inline unsigned long cpu_util_dl(struct rq *rq)
2527{
2528 return READ_ONCE(rq->avg_dl.util_avg);
2529}
2530
2531static inline unsigned long cpu_util_cfs(struct rq *rq)
2532{
2533 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2534
2535 if (sched_feat(UTIL_EST)) {
2536 util = max_t(unsigned long, util,
2537 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2538 }
2539
2540 return util;
2541}
2542
2543static inline unsigned long cpu_util_rt(struct rq *rq)
2544{
2545 return READ_ONCE(rq->avg_rt.util_avg);
2546}
David Brazdil0f672f62019-12-10 10:32:29 +00002547#else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2548static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2549 unsigned long max, enum schedutil_type type,
2550 struct task_struct *p)
2551{
2552 return 0;
2553}
2554#endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002555
2556#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2557static inline unsigned long cpu_util_irq(struct rq *rq)
2558{
2559 return rq->avg_irq.util_avg;
2560}
2561
2562static inline
2563unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2564{
2565 util *= (max - irq);
2566 util /= max;
2567
2568 return util;
2569
2570}
2571#else
2572static inline unsigned long cpu_util_irq(struct rq *rq)
2573{
2574 return 0;
2575}
2576
2577static inline
2578unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2579{
2580 return util;
2581}
2582#endif
David Brazdil0f672f62019-12-10 10:32:29 +00002583
2584#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2585
2586#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2587
2588DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2589
2590static inline bool sched_energy_enabled(void)
2591{
2592 return static_branch_unlikely(&sched_energy_present);
2593}
2594
2595#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2596
2597#define perf_domain_span(pd) NULL
2598static inline bool sched_energy_enabled(void) { return false; }
2599
2600#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2601
2602#ifdef CONFIG_MEMBARRIER
2603/*
2604 * The scheduler provides memory barriers required by membarrier between:
2605 * - prior user-space memory accesses and store to rq->membarrier_state,
2606 * - store to rq->membarrier_state and following user-space memory accesses.
2607 * In the same way it provides those guarantees around store to rq->curr.
2608 */
2609static inline void membarrier_switch_mm(struct rq *rq,
2610 struct mm_struct *prev_mm,
2611 struct mm_struct *next_mm)
2612{
2613 int membarrier_state;
2614
2615 if (prev_mm == next_mm)
2616 return;
2617
2618 membarrier_state = atomic_read(&next_mm->membarrier_state);
2619 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2620 return;
2621
2622 WRITE_ONCE(rq->membarrier_state, membarrier_state);
2623}
2624#else
2625static inline void membarrier_switch_mm(struct rq *rq,
2626 struct mm_struct *prev_mm,
2627 struct mm_struct *next_mm)
2628{
2629}
2630#endif
Olivier Deprez157378f2022-04-04 15:47:50 +02002631
2632#ifdef CONFIG_SMP
2633static inline bool is_per_cpu_kthread(struct task_struct *p)
2634{
2635 if (!(p->flags & PF_KTHREAD))
2636 return false;
2637
2638 if (p->nr_cpus_allowed != 1)
2639 return false;
2640
2641 return true;
2642}
2643#endif
2644
2645void swake_up_all_locked(struct swait_queue_head *q);
2646void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);