Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Main bcache entry point - handle a read or a write request and decide what to |
| 4 | * do with it; the make_request functions are called by the block layer. |
| 5 | * |
| 6 | * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> |
| 7 | * Copyright 2012 Google, Inc. |
| 8 | */ |
| 9 | |
| 10 | #include "bcache.h" |
| 11 | #include "btree.h" |
| 12 | #include "debug.h" |
| 13 | #include "request.h" |
| 14 | #include "writeback.h" |
| 15 | |
| 16 | #include <linux/module.h> |
| 17 | #include <linux/hash.h> |
| 18 | #include <linux/random.h> |
| 19 | #include <linux/backing-dev.h> |
| 20 | |
| 21 | #include <trace/events/bcache.h> |
| 22 | |
| 23 | #define CUTOFF_CACHE_ADD 95 |
| 24 | #define CUTOFF_CACHE_READA 90 |
| 25 | |
| 26 | struct kmem_cache *bch_search_cache; |
| 27 | |
| 28 | static void bch_data_insert_start(struct closure *cl); |
| 29 | |
| 30 | static unsigned int cache_mode(struct cached_dev *dc) |
| 31 | { |
| 32 | return BDEV_CACHE_MODE(&dc->sb); |
| 33 | } |
| 34 | |
| 35 | static bool verify(struct cached_dev *dc) |
| 36 | { |
| 37 | return dc->verify; |
| 38 | } |
| 39 | |
| 40 | static void bio_csum(struct bio *bio, struct bkey *k) |
| 41 | { |
| 42 | struct bio_vec bv; |
| 43 | struct bvec_iter iter; |
| 44 | uint64_t csum = 0; |
| 45 | |
| 46 | bio_for_each_segment(bv, bio, iter) { |
| 47 | void *d = kmap(bv.bv_page) + bv.bv_offset; |
| 48 | |
| 49 | csum = bch_crc64_update(csum, d, bv.bv_len); |
| 50 | kunmap(bv.bv_page); |
| 51 | } |
| 52 | |
| 53 | k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1); |
| 54 | } |
| 55 | |
| 56 | /* Insert data into cache */ |
| 57 | |
| 58 | static void bch_data_insert_keys(struct closure *cl) |
| 59 | { |
| 60 | struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); |
| 61 | atomic_t *journal_ref = NULL; |
| 62 | struct bkey *replace_key = op->replace ? &op->replace_key : NULL; |
| 63 | int ret; |
| 64 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 65 | if (!op->replace) |
| 66 | journal_ref = bch_journal(op->c, &op->insert_keys, |
| 67 | op->flush_journal ? cl : NULL); |
| 68 | |
| 69 | ret = bch_btree_insert(op->c, &op->insert_keys, |
| 70 | journal_ref, replace_key); |
| 71 | if (ret == -ESRCH) { |
| 72 | op->replace_collision = true; |
| 73 | } else if (ret) { |
| 74 | op->status = BLK_STS_RESOURCE; |
| 75 | op->insert_data_done = true; |
| 76 | } |
| 77 | |
| 78 | if (journal_ref) |
| 79 | atomic_dec_bug(journal_ref); |
| 80 | |
| 81 | if (!op->insert_data_done) { |
| 82 | continue_at(cl, bch_data_insert_start, op->wq); |
| 83 | return; |
| 84 | } |
| 85 | |
| 86 | bch_keylist_free(&op->insert_keys); |
| 87 | closure_return(cl); |
| 88 | } |
| 89 | |
| 90 | static int bch_keylist_realloc(struct keylist *l, unsigned int u64s, |
| 91 | struct cache_set *c) |
| 92 | { |
| 93 | size_t oldsize = bch_keylist_nkeys(l); |
| 94 | size_t newsize = oldsize + u64s; |
| 95 | |
| 96 | /* |
| 97 | * The journalling code doesn't handle the case where the keys to insert |
| 98 | * is bigger than an empty write: If we just return -ENOMEM here, |
| 99 | * bch_data_insert_keys() will insert the keys created so far |
| 100 | * and finish the rest when the keylist is empty. |
| 101 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 102 | if (newsize * sizeof(uint64_t) > block_bytes(c->cache) - sizeof(struct jset)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 103 | return -ENOMEM; |
| 104 | |
| 105 | return __bch_keylist_realloc(l, u64s); |
| 106 | } |
| 107 | |
| 108 | static void bch_data_invalidate(struct closure *cl) |
| 109 | { |
| 110 | struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); |
| 111 | struct bio *bio = op->bio; |
| 112 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 113 | pr_debug("invalidating %i sectors from %llu\n", |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 114 | bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector); |
| 115 | |
| 116 | while (bio_sectors(bio)) { |
| 117 | unsigned int sectors = min(bio_sectors(bio), |
| 118 | 1U << (KEY_SIZE_BITS - 1)); |
| 119 | |
| 120 | if (bch_keylist_realloc(&op->insert_keys, 2, op->c)) |
| 121 | goto out; |
| 122 | |
| 123 | bio->bi_iter.bi_sector += sectors; |
| 124 | bio->bi_iter.bi_size -= sectors << 9; |
| 125 | |
| 126 | bch_keylist_add(&op->insert_keys, |
| 127 | &KEY(op->inode, |
| 128 | bio->bi_iter.bi_sector, |
| 129 | sectors)); |
| 130 | } |
| 131 | |
| 132 | op->insert_data_done = true; |
| 133 | /* get in bch_data_insert() */ |
| 134 | bio_put(bio); |
| 135 | out: |
| 136 | continue_at(cl, bch_data_insert_keys, op->wq); |
| 137 | } |
| 138 | |
| 139 | static void bch_data_insert_error(struct closure *cl) |
| 140 | { |
| 141 | struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); |
| 142 | |
| 143 | /* |
| 144 | * Our data write just errored, which means we've got a bunch of keys to |
| 145 | * insert that point to data that wasn't successfully written. |
| 146 | * |
| 147 | * We don't have to insert those keys but we still have to invalidate |
| 148 | * that region of the cache - so, if we just strip off all the pointers |
| 149 | * from the keys we'll accomplish just that. |
| 150 | */ |
| 151 | |
| 152 | struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys; |
| 153 | |
| 154 | while (src != op->insert_keys.top) { |
| 155 | struct bkey *n = bkey_next(src); |
| 156 | |
| 157 | SET_KEY_PTRS(src, 0); |
| 158 | memmove(dst, src, bkey_bytes(src)); |
| 159 | |
| 160 | dst = bkey_next(dst); |
| 161 | src = n; |
| 162 | } |
| 163 | |
| 164 | op->insert_keys.top = dst; |
| 165 | |
| 166 | bch_data_insert_keys(cl); |
| 167 | } |
| 168 | |
| 169 | static void bch_data_insert_endio(struct bio *bio) |
| 170 | { |
| 171 | struct closure *cl = bio->bi_private; |
| 172 | struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); |
| 173 | |
| 174 | if (bio->bi_status) { |
| 175 | /* TODO: We could try to recover from this. */ |
| 176 | if (op->writeback) |
| 177 | op->status = bio->bi_status; |
| 178 | else if (!op->replace) |
| 179 | set_closure_fn(cl, bch_data_insert_error, op->wq); |
| 180 | else |
| 181 | set_closure_fn(cl, NULL, NULL); |
| 182 | } |
| 183 | |
| 184 | bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache"); |
| 185 | } |
| 186 | |
| 187 | static void bch_data_insert_start(struct closure *cl) |
| 188 | { |
| 189 | struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); |
| 190 | struct bio *bio = op->bio, *n; |
| 191 | |
| 192 | if (op->bypass) |
| 193 | return bch_data_invalidate(cl); |
| 194 | |
| 195 | if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) |
| 196 | wake_up_gc(op->c); |
| 197 | |
| 198 | /* |
| 199 | * Journal writes are marked REQ_PREFLUSH; if the original write was a |
| 200 | * flush, it'll wait on the journal write. |
| 201 | */ |
| 202 | bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA); |
| 203 | |
| 204 | do { |
| 205 | unsigned int i; |
| 206 | struct bkey *k; |
| 207 | struct bio_set *split = &op->c->bio_split; |
| 208 | |
| 209 | /* 1 for the device pointer and 1 for the chksum */ |
| 210 | if (bch_keylist_realloc(&op->insert_keys, |
| 211 | 3 + (op->csum ? 1 : 0), |
| 212 | op->c)) { |
| 213 | continue_at(cl, bch_data_insert_keys, op->wq); |
| 214 | return; |
| 215 | } |
| 216 | |
| 217 | k = op->insert_keys.top; |
| 218 | bkey_init(k); |
| 219 | SET_KEY_INODE(k, op->inode); |
| 220 | SET_KEY_OFFSET(k, bio->bi_iter.bi_sector); |
| 221 | |
| 222 | if (!bch_alloc_sectors(op->c, k, bio_sectors(bio), |
| 223 | op->write_point, op->write_prio, |
| 224 | op->writeback)) |
| 225 | goto err; |
| 226 | |
| 227 | n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split); |
| 228 | |
| 229 | n->bi_end_io = bch_data_insert_endio; |
| 230 | n->bi_private = cl; |
| 231 | |
| 232 | if (op->writeback) { |
| 233 | SET_KEY_DIRTY(k, true); |
| 234 | |
| 235 | for (i = 0; i < KEY_PTRS(k); i++) |
| 236 | SET_GC_MARK(PTR_BUCKET(op->c, k, i), |
| 237 | GC_MARK_DIRTY); |
| 238 | } |
| 239 | |
| 240 | SET_KEY_CSUM(k, op->csum); |
| 241 | if (KEY_CSUM(k)) |
| 242 | bio_csum(n, k); |
| 243 | |
| 244 | trace_bcache_cache_insert(k); |
| 245 | bch_keylist_push(&op->insert_keys); |
| 246 | |
| 247 | bio_set_op_attrs(n, REQ_OP_WRITE, 0); |
| 248 | bch_submit_bbio(n, op->c, k, 0); |
| 249 | } while (n != bio); |
| 250 | |
| 251 | op->insert_data_done = true; |
| 252 | continue_at(cl, bch_data_insert_keys, op->wq); |
| 253 | return; |
| 254 | err: |
| 255 | /* bch_alloc_sectors() blocks if s->writeback = true */ |
| 256 | BUG_ON(op->writeback); |
| 257 | |
| 258 | /* |
| 259 | * But if it's not a writeback write we'd rather just bail out if |
| 260 | * there aren't any buckets ready to write to - it might take awhile and |
| 261 | * we might be starving btree writes for gc or something. |
| 262 | */ |
| 263 | |
| 264 | if (!op->replace) { |
| 265 | /* |
| 266 | * Writethrough write: We can't complete the write until we've |
| 267 | * updated the index. But we don't want to delay the write while |
| 268 | * we wait for buckets to be freed up, so just invalidate the |
| 269 | * rest of the write. |
| 270 | */ |
| 271 | op->bypass = true; |
| 272 | return bch_data_invalidate(cl); |
| 273 | } else { |
| 274 | /* |
| 275 | * From a cache miss, we can just insert the keys for the data |
| 276 | * we have written or bail out if we didn't do anything. |
| 277 | */ |
| 278 | op->insert_data_done = true; |
| 279 | bio_put(bio); |
| 280 | |
| 281 | if (!bch_keylist_empty(&op->insert_keys)) |
| 282 | continue_at(cl, bch_data_insert_keys, op->wq); |
| 283 | else |
| 284 | closure_return(cl); |
| 285 | } |
| 286 | } |
| 287 | |
| 288 | /** |
| 289 | * bch_data_insert - stick some data in the cache |
| 290 | * @cl: closure pointer. |
| 291 | * |
| 292 | * This is the starting point for any data to end up in a cache device; it could |
| 293 | * be from a normal write, or a writeback write, or a write to a flash only |
| 294 | * volume - it's also used by the moving garbage collector to compact data in |
| 295 | * mostly empty buckets. |
| 296 | * |
| 297 | * It first writes the data to the cache, creating a list of keys to be inserted |
| 298 | * (if the data had to be fragmented there will be multiple keys); after the |
| 299 | * data is written it calls bch_journal, and after the keys have been added to |
| 300 | * the next journal write they're inserted into the btree. |
| 301 | * |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 302 | * It inserts the data in op->bio; bi_sector is used for the key offset, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 303 | * and op->inode is used for the key inode. |
| 304 | * |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 305 | * If op->bypass is true, instead of inserting the data it invalidates the |
| 306 | * region of the cache represented by op->bio and op->inode. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 307 | */ |
| 308 | void bch_data_insert(struct closure *cl) |
| 309 | { |
| 310 | struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); |
| 311 | |
| 312 | trace_bcache_write(op->c, op->inode, op->bio, |
| 313 | op->writeback, op->bypass); |
| 314 | |
| 315 | bch_keylist_init(&op->insert_keys); |
| 316 | bio_get(op->bio); |
| 317 | bch_data_insert_start(cl); |
| 318 | } |
| 319 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 320 | /* |
| 321 | * Congested? Return 0 (not congested) or the limit (in sectors) |
| 322 | * beyond which we should bypass the cache due to congestion. |
| 323 | */ |
| 324 | unsigned int bch_get_congested(const struct cache_set *c) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 325 | { |
| 326 | int i; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 327 | |
| 328 | if (!c->congested_read_threshold_us && |
| 329 | !c->congested_write_threshold_us) |
| 330 | return 0; |
| 331 | |
| 332 | i = (local_clock_us() - c->congested_last_us) / 1024; |
| 333 | if (i < 0) |
| 334 | return 0; |
| 335 | |
| 336 | i += atomic_read(&c->congested); |
| 337 | if (i >= 0) |
| 338 | return 0; |
| 339 | |
| 340 | i += CONGESTED_MAX; |
| 341 | |
| 342 | if (i > 0) |
| 343 | i = fract_exp_two(i, 6); |
| 344 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 345 | i -= hweight32(get_random_u32()); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 346 | |
| 347 | return i > 0 ? i : 1; |
| 348 | } |
| 349 | |
| 350 | static void add_sequential(struct task_struct *t) |
| 351 | { |
| 352 | ewma_add(t->sequential_io_avg, |
| 353 | t->sequential_io, 8, 0); |
| 354 | |
| 355 | t->sequential_io = 0; |
| 356 | } |
| 357 | |
| 358 | static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k) |
| 359 | { |
| 360 | return &dc->io_hash[hash_64(k, RECENT_IO_BITS)]; |
| 361 | } |
| 362 | |
| 363 | static bool check_should_bypass(struct cached_dev *dc, struct bio *bio) |
| 364 | { |
| 365 | struct cache_set *c = dc->disk.c; |
| 366 | unsigned int mode = cache_mode(dc); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 367 | unsigned int sectors, congested; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 368 | struct task_struct *task = current; |
| 369 | struct io *i; |
| 370 | |
| 371 | if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || |
| 372 | c->gc_stats.in_use > CUTOFF_CACHE_ADD || |
| 373 | (bio_op(bio) == REQ_OP_DISCARD)) |
| 374 | goto skip; |
| 375 | |
| 376 | if (mode == CACHE_MODE_NONE || |
| 377 | (mode == CACHE_MODE_WRITEAROUND && |
| 378 | op_is_write(bio_op(bio)))) |
| 379 | goto skip; |
| 380 | |
| 381 | /* |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 382 | * If the bio is for read-ahead or background IO, bypass it or |
| 383 | * not depends on the following situations, |
| 384 | * - If the IO is for meta data, always cache it and no bypass |
| 385 | * - If the IO is not meta data, check dc->cache_reada_policy, |
| 386 | * BCH_CACHE_READA_ALL: cache it and not bypass |
| 387 | * BCH_CACHE_READA_META_ONLY: not cache it and bypass |
| 388 | * That is, read-ahead request for metadata always get cached |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 389 | * (eg, for gfs2 or xfs). |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 390 | */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 391 | if ((bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND))) { |
| 392 | if (!(bio->bi_opf & (REQ_META|REQ_PRIO)) && |
| 393 | (dc->cache_readahead_policy != BCH_CACHE_READA_ALL)) |
| 394 | goto skip; |
| 395 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 396 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 397 | if (bio->bi_iter.bi_sector & (c->cache->sb.block_size - 1) || |
| 398 | bio_sectors(bio) & (c->cache->sb.block_size - 1)) { |
| 399 | pr_debug("skipping unaligned io\n"); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 400 | goto skip; |
| 401 | } |
| 402 | |
| 403 | if (bypass_torture_test(dc)) { |
| 404 | if ((get_random_int() & 3) == 3) |
| 405 | goto skip; |
| 406 | else |
| 407 | goto rescale; |
| 408 | } |
| 409 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 410 | congested = bch_get_congested(c); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 411 | if (!congested && !dc->sequential_cutoff) |
| 412 | goto rescale; |
| 413 | |
| 414 | spin_lock(&dc->io_lock); |
| 415 | |
| 416 | hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash) |
| 417 | if (i->last == bio->bi_iter.bi_sector && |
| 418 | time_before(jiffies, i->jiffies)) |
| 419 | goto found; |
| 420 | |
| 421 | i = list_first_entry(&dc->io_lru, struct io, lru); |
| 422 | |
| 423 | add_sequential(task); |
| 424 | i->sequential = 0; |
| 425 | found: |
| 426 | if (i->sequential + bio->bi_iter.bi_size > i->sequential) |
| 427 | i->sequential += bio->bi_iter.bi_size; |
| 428 | |
| 429 | i->last = bio_end_sector(bio); |
| 430 | i->jiffies = jiffies + msecs_to_jiffies(5000); |
| 431 | task->sequential_io = i->sequential; |
| 432 | |
| 433 | hlist_del(&i->hash); |
| 434 | hlist_add_head(&i->hash, iohash(dc, i->last)); |
| 435 | list_move_tail(&i->lru, &dc->io_lru); |
| 436 | |
| 437 | spin_unlock(&dc->io_lock); |
| 438 | |
| 439 | sectors = max(task->sequential_io, |
| 440 | task->sequential_io_avg) >> 9; |
| 441 | |
| 442 | if (dc->sequential_cutoff && |
| 443 | sectors >= dc->sequential_cutoff >> 9) { |
| 444 | trace_bcache_bypass_sequential(bio); |
| 445 | goto skip; |
| 446 | } |
| 447 | |
| 448 | if (congested && sectors >= congested) { |
| 449 | trace_bcache_bypass_congested(bio); |
| 450 | goto skip; |
| 451 | } |
| 452 | |
| 453 | rescale: |
| 454 | bch_rescale_priorities(c, bio_sectors(bio)); |
| 455 | return false; |
| 456 | skip: |
| 457 | bch_mark_sectors_bypassed(c, dc, bio_sectors(bio)); |
| 458 | return true; |
| 459 | } |
| 460 | |
| 461 | /* Cache lookup */ |
| 462 | |
| 463 | struct search { |
| 464 | /* Stack frame for bio_complete */ |
| 465 | struct closure cl; |
| 466 | |
| 467 | struct bbio bio; |
| 468 | struct bio *orig_bio; |
| 469 | struct bio *cache_miss; |
| 470 | struct bcache_device *d; |
| 471 | |
| 472 | unsigned int insert_bio_sectors; |
| 473 | unsigned int recoverable:1; |
| 474 | unsigned int write:1; |
| 475 | unsigned int read_dirty_data:1; |
| 476 | unsigned int cache_missed:1; |
| 477 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 478 | struct hd_struct *part; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 479 | unsigned long start_time; |
| 480 | |
| 481 | struct btree_op op; |
| 482 | struct data_insert_op iop; |
| 483 | }; |
| 484 | |
| 485 | static void bch_cache_read_endio(struct bio *bio) |
| 486 | { |
| 487 | struct bbio *b = container_of(bio, struct bbio, bio); |
| 488 | struct closure *cl = bio->bi_private; |
| 489 | struct search *s = container_of(cl, struct search, cl); |
| 490 | |
| 491 | /* |
| 492 | * If the bucket was reused while our bio was in flight, we might have |
| 493 | * read the wrong data. Set s->error but not error so it doesn't get |
| 494 | * counted against the cache device, but we'll still reread the data |
| 495 | * from the backing device. |
| 496 | */ |
| 497 | |
| 498 | if (bio->bi_status) |
| 499 | s->iop.status = bio->bi_status; |
| 500 | else if (!KEY_DIRTY(&b->key) && |
| 501 | ptr_stale(s->iop.c, &b->key, 0)) { |
| 502 | atomic_long_inc(&s->iop.c->cache_read_races); |
| 503 | s->iop.status = BLK_STS_IOERR; |
| 504 | } |
| 505 | |
| 506 | bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache"); |
| 507 | } |
| 508 | |
| 509 | /* |
| 510 | * Read from a single key, handling the initial cache miss if the key starts in |
| 511 | * the middle of the bio |
| 512 | */ |
| 513 | static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k) |
| 514 | { |
| 515 | struct search *s = container_of(op, struct search, op); |
| 516 | struct bio *n, *bio = &s->bio.bio; |
| 517 | struct bkey *bio_key; |
| 518 | unsigned int ptr; |
| 519 | |
| 520 | if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0) |
| 521 | return MAP_CONTINUE; |
| 522 | |
| 523 | if (KEY_INODE(k) != s->iop.inode || |
| 524 | KEY_START(k) > bio->bi_iter.bi_sector) { |
| 525 | unsigned int bio_sectors = bio_sectors(bio); |
| 526 | unsigned int sectors = KEY_INODE(k) == s->iop.inode |
| 527 | ? min_t(uint64_t, INT_MAX, |
| 528 | KEY_START(k) - bio->bi_iter.bi_sector) |
| 529 | : INT_MAX; |
| 530 | int ret = s->d->cache_miss(b, s, bio, sectors); |
| 531 | |
| 532 | if (ret != MAP_CONTINUE) |
| 533 | return ret; |
| 534 | |
| 535 | /* if this was a complete miss we shouldn't get here */ |
| 536 | BUG_ON(bio_sectors <= sectors); |
| 537 | } |
| 538 | |
| 539 | if (!KEY_SIZE(k)) |
| 540 | return MAP_CONTINUE; |
| 541 | |
| 542 | /* XXX: figure out best pointer - for multiple cache devices */ |
| 543 | ptr = 0; |
| 544 | |
| 545 | PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO; |
| 546 | |
| 547 | if (KEY_DIRTY(k)) |
| 548 | s->read_dirty_data = true; |
| 549 | |
| 550 | n = bio_next_split(bio, min_t(uint64_t, INT_MAX, |
| 551 | KEY_OFFSET(k) - bio->bi_iter.bi_sector), |
| 552 | GFP_NOIO, &s->d->bio_split); |
| 553 | |
| 554 | bio_key = &container_of(n, struct bbio, bio)->key; |
| 555 | bch_bkey_copy_single_ptr(bio_key, k, ptr); |
| 556 | |
| 557 | bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key); |
| 558 | bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key); |
| 559 | |
| 560 | n->bi_end_io = bch_cache_read_endio; |
| 561 | n->bi_private = &s->cl; |
| 562 | |
| 563 | /* |
| 564 | * The bucket we're reading from might be reused while our bio |
| 565 | * is in flight, and we could then end up reading the wrong |
| 566 | * data. |
| 567 | * |
| 568 | * We guard against this by checking (in cache_read_endio()) if |
| 569 | * the pointer is stale again; if so, we treat it as an error |
| 570 | * and reread from the backing device (but we don't pass that |
| 571 | * error up anywhere). |
| 572 | */ |
| 573 | |
| 574 | __bch_submit_bbio(n, b->c); |
| 575 | return n == bio ? MAP_DONE : MAP_CONTINUE; |
| 576 | } |
| 577 | |
| 578 | static void cache_lookup(struct closure *cl) |
| 579 | { |
| 580 | struct search *s = container_of(cl, struct search, iop.cl); |
| 581 | struct bio *bio = &s->bio.bio; |
| 582 | struct cached_dev *dc; |
| 583 | int ret; |
| 584 | |
| 585 | bch_btree_op_init(&s->op, -1); |
| 586 | |
| 587 | ret = bch_btree_map_keys(&s->op, s->iop.c, |
| 588 | &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0), |
| 589 | cache_lookup_fn, MAP_END_KEY); |
| 590 | if (ret == -EAGAIN) { |
| 591 | continue_at(cl, cache_lookup, bcache_wq); |
| 592 | return; |
| 593 | } |
| 594 | |
| 595 | /* |
| 596 | * We might meet err when searching the btree, If that happens, we will |
| 597 | * get negative ret, in this scenario we should not recover data from |
| 598 | * backing device (when cache device is dirty) because we don't know |
| 599 | * whether bkeys the read request covered are all clean. |
| 600 | * |
| 601 | * And after that happened, s->iop.status is still its initial value |
| 602 | * before we submit s->bio.bio |
| 603 | */ |
| 604 | if (ret < 0) { |
| 605 | BUG_ON(ret == -EINTR); |
| 606 | if (s->d && s->d->c && |
| 607 | !UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) { |
| 608 | dc = container_of(s->d, struct cached_dev, disk); |
| 609 | if (dc && atomic_read(&dc->has_dirty)) |
| 610 | s->recoverable = false; |
| 611 | } |
| 612 | if (!s->iop.status) |
| 613 | s->iop.status = BLK_STS_IOERR; |
| 614 | } |
| 615 | |
| 616 | closure_return(cl); |
| 617 | } |
| 618 | |
| 619 | /* Common code for the make_request functions */ |
| 620 | |
| 621 | static void request_endio(struct bio *bio) |
| 622 | { |
| 623 | struct closure *cl = bio->bi_private; |
| 624 | |
| 625 | if (bio->bi_status) { |
| 626 | struct search *s = container_of(cl, struct search, cl); |
| 627 | |
| 628 | s->iop.status = bio->bi_status; |
| 629 | /* Only cache read errors are recoverable */ |
| 630 | s->recoverable = false; |
| 631 | } |
| 632 | |
| 633 | bio_put(bio); |
| 634 | closure_put(cl); |
| 635 | } |
| 636 | |
| 637 | static void backing_request_endio(struct bio *bio) |
| 638 | { |
| 639 | struct closure *cl = bio->bi_private; |
| 640 | |
| 641 | if (bio->bi_status) { |
| 642 | struct search *s = container_of(cl, struct search, cl); |
| 643 | struct cached_dev *dc = container_of(s->d, |
| 644 | struct cached_dev, disk); |
| 645 | /* |
| 646 | * If a bio has REQ_PREFLUSH for writeback mode, it is |
| 647 | * speically assembled in cached_dev_write() for a non-zero |
| 648 | * write request which has REQ_PREFLUSH. we don't set |
| 649 | * s->iop.status by this failure, the status will be decided |
| 650 | * by result of bch_data_insert() operation. |
| 651 | */ |
| 652 | if (unlikely(s->iop.writeback && |
| 653 | bio->bi_opf & REQ_PREFLUSH)) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 654 | pr_err("Can't flush %s: returned bi_status %i\n", |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 655 | dc->backing_dev_name, bio->bi_status); |
| 656 | } else { |
| 657 | /* set to orig_bio->bi_status in bio_complete() */ |
| 658 | s->iop.status = bio->bi_status; |
| 659 | } |
| 660 | s->recoverable = false; |
| 661 | /* should count I/O error for backing device here */ |
| 662 | bch_count_backing_io_errors(dc, bio); |
| 663 | } |
| 664 | |
| 665 | bio_put(bio); |
| 666 | closure_put(cl); |
| 667 | } |
| 668 | |
| 669 | static void bio_complete(struct search *s) |
| 670 | { |
| 671 | if (s->orig_bio) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 672 | /* Count on bcache device */ |
| 673 | part_end_io_acct(s->part, s->orig_bio, s->start_time); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 674 | |
| 675 | trace_bcache_request_end(s->d, s->orig_bio); |
| 676 | s->orig_bio->bi_status = s->iop.status; |
| 677 | bio_endio(s->orig_bio); |
| 678 | s->orig_bio = NULL; |
| 679 | } |
| 680 | } |
| 681 | |
| 682 | static void do_bio_hook(struct search *s, |
| 683 | struct bio *orig_bio, |
| 684 | bio_end_io_t *end_io_fn) |
| 685 | { |
| 686 | struct bio *bio = &s->bio.bio; |
| 687 | |
| 688 | bio_init(bio, NULL, 0); |
| 689 | __bio_clone_fast(bio, orig_bio); |
| 690 | /* |
| 691 | * bi_end_io can be set separately somewhere else, e.g. the |
| 692 | * variants in, |
| 693 | * - cache_bio->bi_end_io from cached_dev_cache_miss() |
| 694 | * - n->bi_end_io from cache_lookup_fn() |
| 695 | */ |
| 696 | bio->bi_end_io = end_io_fn; |
| 697 | bio->bi_private = &s->cl; |
| 698 | |
| 699 | bio_cnt_set(bio, 3); |
| 700 | } |
| 701 | |
| 702 | static void search_free(struct closure *cl) |
| 703 | { |
| 704 | struct search *s = container_of(cl, struct search, cl); |
| 705 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 706 | atomic_dec(&s->iop.c->search_inflight); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 707 | |
| 708 | if (s->iop.bio) |
| 709 | bio_put(s->iop.bio); |
| 710 | |
| 711 | bio_complete(s); |
| 712 | closure_debug_destroy(cl); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 713 | mempool_free(s, &s->iop.c->search); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 714 | } |
| 715 | |
| 716 | static inline struct search *search_alloc(struct bio *bio, |
| 717 | struct bcache_device *d) |
| 718 | { |
| 719 | struct search *s; |
| 720 | |
| 721 | s = mempool_alloc(&d->c->search, GFP_NOIO); |
| 722 | |
| 723 | closure_init(&s->cl, NULL); |
| 724 | do_bio_hook(s, bio, request_endio); |
| 725 | atomic_inc(&d->c->search_inflight); |
| 726 | |
| 727 | s->orig_bio = bio; |
| 728 | s->cache_miss = NULL; |
| 729 | s->cache_missed = 0; |
| 730 | s->d = d; |
| 731 | s->recoverable = 1; |
| 732 | s->write = op_is_write(bio_op(bio)); |
| 733 | s->read_dirty_data = 0; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 734 | /* Count on the bcache device */ |
| 735 | s->start_time = part_start_io_acct(d->disk, &s->part, bio); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 736 | s->iop.c = d->c; |
| 737 | s->iop.bio = NULL; |
| 738 | s->iop.inode = d->id; |
| 739 | s->iop.write_point = hash_long((unsigned long) current, 16); |
| 740 | s->iop.write_prio = 0; |
| 741 | s->iop.status = 0; |
| 742 | s->iop.flags = 0; |
| 743 | s->iop.flush_journal = op_is_flush(bio->bi_opf); |
| 744 | s->iop.wq = bcache_wq; |
| 745 | |
| 746 | return s; |
| 747 | } |
| 748 | |
| 749 | /* Cached devices */ |
| 750 | |
| 751 | static void cached_dev_bio_complete(struct closure *cl) |
| 752 | { |
| 753 | struct search *s = container_of(cl, struct search, cl); |
| 754 | struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); |
| 755 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 756 | cached_dev_put(dc); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 757 | search_free(cl); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 758 | } |
| 759 | |
| 760 | /* Process reads */ |
| 761 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 762 | static void cached_dev_read_error_done(struct closure *cl) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 763 | { |
| 764 | struct search *s = container_of(cl, struct search, cl); |
| 765 | |
| 766 | if (s->iop.replace_collision) |
| 767 | bch_mark_cache_miss_collision(s->iop.c, s->d); |
| 768 | |
| 769 | if (s->iop.bio) |
| 770 | bio_free_pages(s->iop.bio); |
| 771 | |
| 772 | cached_dev_bio_complete(cl); |
| 773 | } |
| 774 | |
| 775 | static void cached_dev_read_error(struct closure *cl) |
| 776 | { |
| 777 | struct search *s = container_of(cl, struct search, cl); |
| 778 | struct bio *bio = &s->bio.bio; |
| 779 | |
| 780 | /* |
| 781 | * If read request hit dirty data (s->read_dirty_data is true), |
| 782 | * then recovery a failed read request from cached device may |
| 783 | * get a stale data back. So read failure recovery is only |
| 784 | * permitted when read request hit clean data in cache device, |
| 785 | * or when cache read race happened. |
| 786 | */ |
| 787 | if (s->recoverable && !s->read_dirty_data) { |
| 788 | /* Retry from the backing device: */ |
| 789 | trace_bcache_read_retry(s->orig_bio); |
| 790 | |
| 791 | s->iop.status = 0; |
| 792 | do_bio_hook(s, s->orig_bio, backing_request_endio); |
| 793 | |
| 794 | /* XXX: invalidate cache */ |
| 795 | |
| 796 | /* I/O request sent to backing device */ |
| 797 | closure_bio_submit(s->iop.c, bio, cl); |
| 798 | } |
| 799 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 800 | continue_at(cl, cached_dev_read_error_done, NULL); |
| 801 | } |
| 802 | |
| 803 | static void cached_dev_cache_miss_done(struct closure *cl) |
| 804 | { |
| 805 | struct search *s = container_of(cl, struct search, cl); |
| 806 | struct bcache_device *d = s->d; |
| 807 | |
| 808 | if (s->iop.replace_collision) |
| 809 | bch_mark_cache_miss_collision(s->iop.c, s->d); |
| 810 | |
| 811 | if (s->iop.bio) |
| 812 | bio_free_pages(s->iop.bio); |
| 813 | |
| 814 | cached_dev_bio_complete(cl); |
| 815 | closure_put(&d->cl); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 816 | } |
| 817 | |
| 818 | static void cached_dev_read_done(struct closure *cl) |
| 819 | { |
| 820 | struct search *s = container_of(cl, struct search, cl); |
| 821 | struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); |
| 822 | |
| 823 | /* |
| 824 | * We had a cache miss; cache_bio now contains data ready to be inserted |
| 825 | * into the cache. |
| 826 | * |
| 827 | * First, we copy the data we just read from cache_bio's bounce buffers |
| 828 | * to the buffers the original bio pointed to: |
| 829 | */ |
| 830 | |
| 831 | if (s->iop.bio) { |
| 832 | bio_reset(s->iop.bio); |
| 833 | s->iop.bio->bi_iter.bi_sector = |
| 834 | s->cache_miss->bi_iter.bi_sector; |
| 835 | bio_copy_dev(s->iop.bio, s->cache_miss); |
| 836 | s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9; |
| 837 | bch_bio_map(s->iop.bio, NULL); |
| 838 | |
| 839 | bio_copy_data(s->cache_miss, s->iop.bio); |
| 840 | |
| 841 | bio_put(s->cache_miss); |
| 842 | s->cache_miss = NULL; |
| 843 | } |
| 844 | |
| 845 | if (verify(dc) && s->recoverable && !s->read_dirty_data) |
| 846 | bch_data_verify(dc, s->orig_bio); |
| 847 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 848 | closure_get(&dc->disk.cl); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 849 | bio_complete(s); |
| 850 | |
| 851 | if (s->iop.bio && |
| 852 | !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) { |
| 853 | BUG_ON(!s->iop.replace); |
| 854 | closure_call(&s->iop.cl, bch_data_insert, NULL, cl); |
| 855 | } |
| 856 | |
| 857 | continue_at(cl, cached_dev_cache_miss_done, NULL); |
| 858 | } |
| 859 | |
| 860 | static void cached_dev_read_done_bh(struct closure *cl) |
| 861 | { |
| 862 | struct search *s = container_of(cl, struct search, cl); |
| 863 | struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); |
| 864 | |
| 865 | bch_mark_cache_accounting(s->iop.c, s->d, |
| 866 | !s->cache_missed, s->iop.bypass); |
| 867 | trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass); |
| 868 | |
| 869 | if (s->iop.status) |
| 870 | continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq); |
| 871 | else if (s->iop.bio || verify(dc)) |
| 872 | continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq); |
| 873 | else |
| 874 | continue_at_nobarrier(cl, cached_dev_bio_complete, NULL); |
| 875 | } |
| 876 | |
| 877 | static int cached_dev_cache_miss(struct btree *b, struct search *s, |
| 878 | struct bio *bio, unsigned int sectors) |
| 879 | { |
| 880 | int ret = MAP_CONTINUE; |
| 881 | unsigned int reada = 0; |
| 882 | struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); |
| 883 | struct bio *miss, *cache_bio; |
| 884 | |
| 885 | s->cache_missed = 1; |
| 886 | |
| 887 | if (s->cache_miss || s->iop.bypass) { |
| 888 | miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split); |
| 889 | ret = miss == bio ? MAP_DONE : MAP_CONTINUE; |
| 890 | goto out_submit; |
| 891 | } |
| 892 | |
| 893 | if (!(bio->bi_opf & REQ_RAHEAD) && |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 894 | !(bio->bi_opf & (REQ_META|REQ_PRIO)) && |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 895 | s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA) |
| 896 | reada = min_t(sector_t, dc->readahead >> 9, |
| 897 | get_capacity(bio->bi_disk) - bio_end_sector(bio)); |
| 898 | |
| 899 | s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada); |
| 900 | |
| 901 | s->iop.replace_key = KEY(s->iop.inode, |
| 902 | bio->bi_iter.bi_sector + s->insert_bio_sectors, |
| 903 | s->insert_bio_sectors); |
| 904 | |
| 905 | ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key); |
| 906 | if (ret) |
| 907 | return ret; |
| 908 | |
| 909 | s->iop.replace = true; |
| 910 | |
| 911 | miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split); |
| 912 | |
| 913 | /* btree_search_recurse()'s btree iterator is no good anymore */ |
| 914 | ret = miss == bio ? MAP_DONE : -EINTR; |
| 915 | |
| 916 | cache_bio = bio_alloc_bioset(GFP_NOWAIT, |
| 917 | DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS), |
| 918 | &dc->disk.bio_split); |
| 919 | if (!cache_bio) |
| 920 | goto out_submit; |
| 921 | |
| 922 | cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector; |
| 923 | bio_copy_dev(cache_bio, miss); |
| 924 | cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9; |
| 925 | |
| 926 | cache_bio->bi_end_io = backing_request_endio; |
| 927 | cache_bio->bi_private = &s->cl; |
| 928 | |
| 929 | bch_bio_map(cache_bio, NULL); |
| 930 | if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO)) |
| 931 | goto out_put; |
| 932 | |
| 933 | if (reada) |
| 934 | bch_mark_cache_readahead(s->iop.c, s->d); |
| 935 | |
| 936 | s->cache_miss = miss; |
| 937 | s->iop.bio = cache_bio; |
| 938 | bio_get(cache_bio); |
| 939 | /* I/O request sent to backing device */ |
| 940 | closure_bio_submit(s->iop.c, cache_bio, &s->cl); |
| 941 | |
| 942 | return ret; |
| 943 | out_put: |
| 944 | bio_put(cache_bio); |
| 945 | out_submit: |
| 946 | miss->bi_end_io = backing_request_endio; |
| 947 | miss->bi_private = &s->cl; |
| 948 | /* I/O request sent to backing device */ |
| 949 | closure_bio_submit(s->iop.c, miss, &s->cl); |
| 950 | return ret; |
| 951 | } |
| 952 | |
| 953 | static void cached_dev_read(struct cached_dev *dc, struct search *s) |
| 954 | { |
| 955 | struct closure *cl = &s->cl; |
| 956 | |
| 957 | closure_call(&s->iop.cl, cache_lookup, NULL, cl); |
| 958 | continue_at(cl, cached_dev_read_done_bh, NULL); |
| 959 | } |
| 960 | |
| 961 | /* Process writes */ |
| 962 | |
| 963 | static void cached_dev_write_complete(struct closure *cl) |
| 964 | { |
| 965 | struct search *s = container_of(cl, struct search, cl); |
| 966 | struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); |
| 967 | |
| 968 | up_read_non_owner(&dc->writeback_lock); |
| 969 | cached_dev_bio_complete(cl); |
| 970 | } |
| 971 | |
| 972 | static void cached_dev_write(struct cached_dev *dc, struct search *s) |
| 973 | { |
| 974 | struct closure *cl = &s->cl; |
| 975 | struct bio *bio = &s->bio.bio; |
| 976 | struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0); |
| 977 | struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0); |
| 978 | |
| 979 | bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end); |
| 980 | |
| 981 | down_read_non_owner(&dc->writeback_lock); |
| 982 | if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) { |
| 983 | /* |
| 984 | * We overlap with some dirty data undergoing background |
| 985 | * writeback, force this write to writeback |
| 986 | */ |
| 987 | s->iop.bypass = false; |
| 988 | s->iop.writeback = true; |
| 989 | } |
| 990 | |
| 991 | /* |
| 992 | * Discards aren't _required_ to do anything, so skipping if |
| 993 | * check_overlapping returned true is ok |
| 994 | * |
| 995 | * But check_overlapping drops dirty keys for which io hasn't started, |
| 996 | * so we still want to call it. |
| 997 | */ |
| 998 | if (bio_op(bio) == REQ_OP_DISCARD) |
| 999 | s->iop.bypass = true; |
| 1000 | |
| 1001 | if (should_writeback(dc, s->orig_bio, |
| 1002 | cache_mode(dc), |
| 1003 | s->iop.bypass)) { |
| 1004 | s->iop.bypass = false; |
| 1005 | s->iop.writeback = true; |
| 1006 | } |
| 1007 | |
| 1008 | if (s->iop.bypass) { |
| 1009 | s->iop.bio = s->orig_bio; |
| 1010 | bio_get(s->iop.bio); |
| 1011 | |
| 1012 | if (bio_op(bio) == REQ_OP_DISCARD && |
| 1013 | !blk_queue_discard(bdev_get_queue(dc->bdev))) |
| 1014 | goto insert_data; |
| 1015 | |
| 1016 | /* I/O request sent to backing device */ |
| 1017 | bio->bi_end_io = backing_request_endio; |
| 1018 | closure_bio_submit(s->iop.c, bio, cl); |
| 1019 | |
| 1020 | } else if (s->iop.writeback) { |
| 1021 | bch_writeback_add(dc); |
| 1022 | s->iop.bio = bio; |
| 1023 | |
| 1024 | if (bio->bi_opf & REQ_PREFLUSH) { |
| 1025 | /* |
| 1026 | * Also need to send a flush to the backing |
| 1027 | * device. |
| 1028 | */ |
| 1029 | struct bio *flush; |
| 1030 | |
| 1031 | flush = bio_alloc_bioset(GFP_NOIO, 0, |
| 1032 | &dc->disk.bio_split); |
| 1033 | if (!flush) { |
| 1034 | s->iop.status = BLK_STS_RESOURCE; |
| 1035 | goto insert_data; |
| 1036 | } |
| 1037 | bio_copy_dev(flush, bio); |
| 1038 | flush->bi_end_io = backing_request_endio; |
| 1039 | flush->bi_private = cl; |
| 1040 | flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; |
| 1041 | /* I/O request sent to backing device */ |
| 1042 | closure_bio_submit(s->iop.c, flush, cl); |
| 1043 | } |
| 1044 | } else { |
| 1045 | s->iop.bio = bio_clone_fast(bio, GFP_NOIO, &dc->disk.bio_split); |
| 1046 | /* I/O request sent to backing device */ |
| 1047 | bio->bi_end_io = backing_request_endio; |
| 1048 | closure_bio_submit(s->iop.c, bio, cl); |
| 1049 | } |
| 1050 | |
| 1051 | insert_data: |
| 1052 | closure_call(&s->iop.cl, bch_data_insert, NULL, cl); |
| 1053 | continue_at(cl, cached_dev_write_complete, NULL); |
| 1054 | } |
| 1055 | |
| 1056 | static void cached_dev_nodata(struct closure *cl) |
| 1057 | { |
| 1058 | struct search *s = container_of(cl, struct search, cl); |
| 1059 | struct bio *bio = &s->bio.bio; |
| 1060 | |
| 1061 | if (s->iop.flush_journal) |
| 1062 | bch_journal_meta(s->iop.c, cl); |
| 1063 | |
| 1064 | /* If it's a flush, we send the flush to the backing device too */ |
| 1065 | bio->bi_end_io = backing_request_endio; |
| 1066 | closure_bio_submit(s->iop.c, bio, cl); |
| 1067 | |
| 1068 | continue_at(cl, cached_dev_bio_complete, NULL); |
| 1069 | } |
| 1070 | |
| 1071 | struct detached_dev_io_private { |
| 1072 | struct bcache_device *d; |
| 1073 | unsigned long start_time; |
| 1074 | bio_end_io_t *bi_end_io; |
| 1075 | void *bi_private; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1076 | struct hd_struct *part; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1077 | }; |
| 1078 | |
| 1079 | static void detached_dev_end_io(struct bio *bio) |
| 1080 | { |
| 1081 | struct detached_dev_io_private *ddip; |
| 1082 | |
| 1083 | ddip = bio->bi_private; |
| 1084 | bio->bi_end_io = ddip->bi_end_io; |
| 1085 | bio->bi_private = ddip->bi_private; |
| 1086 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1087 | /* Count on the bcache device */ |
| 1088 | part_end_io_acct(ddip->part, bio, ddip->start_time); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1089 | |
| 1090 | if (bio->bi_status) { |
| 1091 | struct cached_dev *dc = container_of(ddip->d, |
| 1092 | struct cached_dev, disk); |
| 1093 | /* should count I/O error for backing device here */ |
| 1094 | bch_count_backing_io_errors(dc, bio); |
| 1095 | } |
| 1096 | |
| 1097 | kfree(ddip); |
| 1098 | bio->bi_end_io(bio); |
| 1099 | } |
| 1100 | |
| 1101 | static void detached_dev_do_request(struct bcache_device *d, struct bio *bio) |
| 1102 | { |
| 1103 | struct detached_dev_io_private *ddip; |
| 1104 | struct cached_dev *dc = container_of(d, struct cached_dev, disk); |
| 1105 | |
| 1106 | /* |
| 1107 | * no need to call closure_get(&dc->disk.cl), |
| 1108 | * because upper layer had already opened bcache device, |
| 1109 | * which would call closure_get(&dc->disk.cl) |
| 1110 | */ |
| 1111 | ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO); |
| 1112 | ddip->d = d; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1113 | /* Count on the bcache device */ |
| 1114 | ddip->start_time = part_start_io_acct(d->disk, &ddip->part, bio); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1115 | ddip->bi_end_io = bio->bi_end_io; |
| 1116 | ddip->bi_private = bio->bi_private; |
| 1117 | bio->bi_end_io = detached_dev_end_io; |
| 1118 | bio->bi_private = ddip; |
| 1119 | |
| 1120 | if ((bio_op(bio) == REQ_OP_DISCARD) && |
| 1121 | !blk_queue_discard(bdev_get_queue(dc->bdev))) |
| 1122 | bio->bi_end_io(bio); |
| 1123 | else |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1124 | submit_bio_noacct(bio); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1125 | } |
| 1126 | |
| 1127 | static void quit_max_writeback_rate(struct cache_set *c, |
| 1128 | struct cached_dev *this_dc) |
| 1129 | { |
| 1130 | int i; |
| 1131 | struct bcache_device *d; |
| 1132 | struct cached_dev *dc; |
| 1133 | |
| 1134 | /* |
| 1135 | * mutex bch_register_lock may compete with other parallel requesters, |
| 1136 | * or attach/detach operations on other backing device. Waiting to |
| 1137 | * the mutex lock may increase I/O request latency for seconds or more. |
| 1138 | * To avoid such situation, if mutext_trylock() failed, only writeback |
| 1139 | * rate of current cached device is set to 1, and __update_write_back() |
| 1140 | * will decide writeback rate of other cached devices (remember now |
| 1141 | * c->idle_counter is 0 already). |
| 1142 | */ |
| 1143 | if (mutex_trylock(&bch_register_lock)) { |
| 1144 | for (i = 0; i < c->devices_max_used; i++) { |
| 1145 | if (!c->devices[i]) |
| 1146 | continue; |
| 1147 | |
| 1148 | if (UUID_FLASH_ONLY(&c->uuids[i])) |
| 1149 | continue; |
| 1150 | |
| 1151 | d = c->devices[i]; |
| 1152 | dc = container_of(d, struct cached_dev, disk); |
| 1153 | /* |
| 1154 | * set writeback rate to default minimum value, |
| 1155 | * then let update_writeback_rate() to decide the |
| 1156 | * upcoming rate. |
| 1157 | */ |
| 1158 | atomic_long_set(&dc->writeback_rate.rate, 1); |
| 1159 | } |
| 1160 | mutex_unlock(&bch_register_lock); |
| 1161 | } else |
| 1162 | atomic_long_set(&this_dc->writeback_rate.rate, 1); |
| 1163 | } |
| 1164 | |
| 1165 | /* Cached devices - read & write stuff */ |
| 1166 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1167 | blk_qc_t cached_dev_submit_bio(struct bio *bio) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1168 | { |
| 1169 | struct search *s; |
| 1170 | struct bcache_device *d = bio->bi_disk->private_data; |
| 1171 | struct cached_dev *dc = container_of(d, struct cached_dev, disk); |
| 1172 | int rw = bio_data_dir(bio); |
| 1173 | |
| 1174 | if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) || |
| 1175 | dc->io_disable)) { |
| 1176 | bio->bi_status = BLK_STS_IOERR; |
| 1177 | bio_endio(bio); |
| 1178 | return BLK_QC_T_NONE; |
| 1179 | } |
| 1180 | |
| 1181 | if (likely(d->c)) { |
| 1182 | if (atomic_read(&d->c->idle_counter)) |
| 1183 | atomic_set(&d->c->idle_counter, 0); |
| 1184 | /* |
| 1185 | * If at_max_writeback_rate of cache set is true and new I/O |
| 1186 | * comes, quit max writeback rate of all cached devices |
| 1187 | * attached to this cache set, and set at_max_writeback_rate |
| 1188 | * to false. |
| 1189 | */ |
| 1190 | if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) { |
| 1191 | atomic_set(&d->c->at_max_writeback_rate, 0); |
| 1192 | quit_max_writeback_rate(d->c, dc); |
| 1193 | } |
| 1194 | } |
| 1195 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1196 | bio_set_dev(bio, dc->bdev); |
| 1197 | bio->bi_iter.bi_sector += dc->sb.data_offset; |
| 1198 | |
| 1199 | if (cached_dev_get(dc)) { |
| 1200 | s = search_alloc(bio, d); |
| 1201 | trace_bcache_request_start(s->d, bio); |
| 1202 | |
| 1203 | if (!bio->bi_iter.bi_size) { |
| 1204 | /* |
| 1205 | * can't call bch_journal_meta from under |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1206 | * submit_bio_noacct |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1207 | */ |
| 1208 | continue_at_nobarrier(&s->cl, |
| 1209 | cached_dev_nodata, |
| 1210 | bcache_wq); |
| 1211 | } else { |
| 1212 | s->iop.bypass = check_should_bypass(dc, bio); |
| 1213 | |
| 1214 | if (rw) |
| 1215 | cached_dev_write(dc, s); |
| 1216 | else |
| 1217 | cached_dev_read(dc, s); |
| 1218 | } |
| 1219 | } else |
| 1220 | /* I/O request sent to backing device */ |
| 1221 | detached_dev_do_request(d, bio); |
| 1222 | |
| 1223 | return BLK_QC_T_NONE; |
| 1224 | } |
| 1225 | |
| 1226 | static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode, |
| 1227 | unsigned int cmd, unsigned long arg) |
| 1228 | { |
| 1229 | struct cached_dev *dc = container_of(d, struct cached_dev, disk); |
| 1230 | |
| 1231 | if (dc->io_disable) |
| 1232 | return -EIO; |
| 1233 | |
| 1234 | return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg); |
| 1235 | } |
| 1236 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1237 | void bch_cached_dev_request_init(struct cached_dev *dc) |
| 1238 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1239 | dc->disk.cache_miss = cached_dev_cache_miss; |
| 1240 | dc->disk.ioctl = cached_dev_ioctl; |
| 1241 | } |
| 1242 | |
| 1243 | /* Flash backed devices */ |
| 1244 | |
| 1245 | static int flash_dev_cache_miss(struct btree *b, struct search *s, |
| 1246 | struct bio *bio, unsigned int sectors) |
| 1247 | { |
| 1248 | unsigned int bytes = min(sectors, bio_sectors(bio)) << 9; |
| 1249 | |
| 1250 | swap(bio->bi_iter.bi_size, bytes); |
| 1251 | zero_fill_bio(bio); |
| 1252 | swap(bio->bi_iter.bi_size, bytes); |
| 1253 | |
| 1254 | bio_advance(bio, bytes); |
| 1255 | |
| 1256 | if (!bio->bi_iter.bi_size) |
| 1257 | return MAP_DONE; |
| 1258 | |
| 1259 | return MAP_CONTINUE; |
| 1260 | } |
| 1261 | |
| 1262 | static void flash_dev_nodata(struct closure *cl) |
| 1263 | { |
| 1264 | struct search *s = container_of(cl, struct search, cl); |
| 1265 | |
| 1266 | if (s->iop.flush_journal) |
| 1267 | bch_journal_meta(s->iop.c, cl); |
| 1268 | |
| 1269 | continue_at(cl, search_free, NULL); |
| 1270 | } |
| 1271 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1272 | blk_qc_t flash_dev_submit_bio(struct bio *bio) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1273 | { |
| 1274 | struct search *s; |
| 1275 | struct closure *cl; |
| 1276 | struct bcache_device *d = bio->bi_disk->private_data; |
| 1277 | |
| 1278 | if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) { |
| 1279 | bio->bi_status = BLK_STS_IOERR; |
| 1280 | bio_endio(bio); |
| 1281 | return BLK_QC_T_NONE; |
| 1282 | } |
| 1283 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1284 | s = search_alloc(bio, d); |
| 1285 | cl = &s->cl; |
| 1286 | bio = &s->bio.bio; |
| 1287 | |
| 1288 | trace_bcache_request_start(s->d, bio); |
| 1289 | |
| 1290 | if (!bio->bi_iter.bi_size) { |
| 1291 | /* |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 1292 | * can't call bch_journal_meta from under submit_bio_noacct |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1293 | */ |
| 1294 | continue_at_nobarrier(&s->cl, |
| 1295 | flash_dev_nodata, |
| 1296 | bcache_wq); |
| 1297 | return BLK_QC_T_NONE; |
| 1298 | } else if (bio_data_dir(bio)) { |
| 1299 | bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, |
| 1300 | &KEY(d->id, bio->bi_iter.bi_sector, 0), |
| 1301 | &KEY(d->id, bio_end_sector(bio), 0)); |
| 1302 | |
| 1303 | s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0; |
| 1304 | s->iop.writeback = true; |
| 1305 | s->iop.bio = bio; |
| 1306 | |
| 1307 | closure_call(&s->iop.cl, bch_data_insert, NULL, cl); |
| 1308 | } else { |
| 1309 | closure_call(&s->iop.cl, cache_lookup, NULL, cl); |
| 1310 | } |
| 1311 | |
| 1312 | continue_at(cl, search_free, NULL); |
| 1313 | return BLK_QC_T_NONE; |
| 1314 | } |
| 1315 | |
| 1316 | static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode, |
| 1317 | unsigned int cmd, unsigned long arg) |
| 1318 | { |
| 1319 | return -ENOTTY; |
| 1320 | } |
| 1321 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1322 | void bch_flash_dev_request_init(struct bcache_device *d) |
| 1323 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1324 | d->cache_miss = flash_dev_cache_miss; |
| 1325 | d->ioctl = flash_dev_ioctl; |
| 1326 | } |
| 1327 | |
| 1328 | void bch_request_exit(void) |
| 1329 | { |
| 1330 | kmem_cache_destroy(bch_search_cache); |
| 1331 | } |
| 1332 | |
| 1333 | int __init bch_request_init(void) |
| 1334 | { |
| 1335 | bch_search_cache = KMEM_CACHE(search, 0); |
| 1336 | if (!bch_search_cache) |
| 1337 | return -ENOMEM; |
| 1338 | |
| 1339 | return 0; |
| 1340 | } |