blob: 0f3b57a73670b601c59e79619cb3ac4139b747fb [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
David Brazdil0f672f62019-12-10 10:32:29 +00008 * Copyright (C) 2018 - 2019 Intel Corporation
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24/**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50#include <linux/kernel.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/list.h>
54#include <linux/ctype.h>
55#include <linux/nl80211.h>
56#include <linux/platform_device.h>
57#include <linux/verification.h>
58#include <linux/moduleparam.h>
59#include <linux/firmware.h>
60#include <net/cfg80211.h>
61#include "core.h"
62#include "reg.h"
63#include "rdev-ops.h"
64#include "nl80211.h"
65
66/*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70#define REG_ENFORCE_GRACE_MS 60000
71
72/**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87};
88
89static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96};
97
98/*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105/* To trigger userspace events and load firmware */
106static struct platform_device *reg_pdev;
107
108/*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116/*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121static int reg_num_devs_support_basehint;
122
123/*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128static bool reg_is_indoor;
129static spinlock_t reg_indoor_lock;
130
131/* Used to track the userspace process controlling the indoor setting */
132static u32 reg_is_indoor_portid;
133
David Brazdil0f672f62019-12-10 10:32:29 +0000134static void restore_regulatory_settings(bool reset_user, bool cached);
135static void print_regdomain(const struct ieee80211_regdomain *rd);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000136
137static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138{
139 return rcu_dereference_rtnl(cfg80211_regdomain);
140}
141
142const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
143{
144 return rcu_dereference_rtnl(wiphy->regd);
145}
146
147static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
148{
149 switch (dfs_region) {
150 case NL80211_DFS_UNSET:
151 return "unset";
152 case NL80211_DFS_FCC:
153 return "FCC";
154 case NL80211_DFS_ETSI:
155 return "ETSI";
156 case NL80211_DFS_JP:
157 return "JP";
158 }
159 return "Unknown";
160}
161
162enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
163{
164 const struct ieee80211_regdomain *regd = NULL;
165 const struct ieee80211_regdomain *wiphy_regd = NULL;
166
167 regd = get_cfg80211_regdom();
168 if (!wiphy)
169 goto out;
170
171 wiphy_regd = get_wiphy_regdom(wiphy);
172 if (!wiphy_regd)
173 goto out;
174
175 if (wiphy_regd->dfs_region == regd->dfs_region)
176 goto out;
177
178 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
179 dev_name(&wiphy->dev),
180 reg_dfs_region_str(wiphy_regd->dfs_region),
181 reg_dfs_region_str(regd->dfs_region));
182
183out:
184 return regd->dfs_region;
185}
186
187static void rcu_free_regdom(const struct ieee80211_regdomain *r)
188{
189 if (!r)
190 return;
191 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
192}
193
194static struct regulatory_request *get_last_request(void)
195{
196 return rcu_dereference_rtnl(last_request);
197}
198
199/* Used to queue up regulatory hints */
200static LIST_HEAD(reg_requests_list);
201static spinlock_t reg_requests_lock;
202
203/* Used to queue up beacon hints for review */
204static LIST_HEAD(reg_pending_beacons);
205static spinlock_t reg_pending_beacons_lock;
206
207/* Used to keep track of processed beacon hints */
208static LIST_HEAD(reg_beacon_list);
209
210struct reg_beacon {
211 struct list_head list;
212 struct ieee80211_channel chan;
213};
214
215static void reg_check_chans_work(struct work_struct *work);
216static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
217
218static void reg_todo(struct work_struct *work);
219static DECLARE_WORK(reg_work, reg_todo);
220
221/* We keep a static world regulatory domain in case of the absence of CRDA */
222static const struct ieee80211_regdomain world_regdom = {
223 .n_reg_rules = 8,
224 .alpha2 = "00",
225 .reg_rules = {
226 /* IEEE 802.11b/g, channels 1..11 */
227 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
228 /* IEEE 802.11b/g, channels 12..13. */
229 REG_RULE(2467-10, 2472+10, 20, 6, 20,
230 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
231 /* IEEE 802.11 channel 14 - Only JP enables
232 * this and for 802.11b only */
233 REG_RULE(2484-10, 2484+10, 20, 6, 20,
234 NL80211_RRF_NO_IR |
235 NL80211_RRF_NO_OFDM),
236 /* IEEE 802.11a, channel 36..48 */
237 REG_RULE(5180-10, 5240+10, 80, 6, 20,
238 NL80211_RRF_NO_IR |
239 NL80211_RRF_AUTO_BW),
240
241 /* IEEE 802.11a, channel 52..64 - DFS required */
242 REG_RULE(5260-10, 5320+10, 80, 6, 20,
243 NL80211_RRF_NO_IR |
244 NL80211_RRF_AUTO_BW |
245 NL80211_RRF_DFS),
246
247 /* IEEE 802.11a, channel 100..144 - DFS required */
248 REG_RULE(5500-10, 5720+10, 160, 6, 20,
249 NL80211_RRF_NO_IR |
250 NL80211_RRF_DFS),
251
252 /* IEEE 802.11a, channel 149..165 */
253 REG_RULE(5745-10, 5825+10, 80, 6, 20,
254 NL80211_RRF_NO_IR),
255
256 /* IEEE 802.11ad (60GHz), channels 1..3 */
257 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
258 }
259};
260
261/* protected by RTNL */
262static const struct ieee80211_regdomain *cfg80211_world_regdom =
263 &world_regdom;
264
265static char *ieee80211_regdom = "00";
266static char user_alpha2[2];
David Brazdil0f672f62019-12-10 10:32:29 +0000267static const struct ieee80211_regdomain *cfg80211_user_regdom;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000268
269module_param(ieee80211_regdom, charp, 0444);
270MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
271
272static void reg_free_request(struct regulatory_request *request)
273{
274 if (request == &core_request_world)
275 return;
276
277 if (request != get_last_request())
278 kfree(request);
279}
280
281static void reg_free_last_request(void)
282{
283 struct regulatory_request *lr = get_last_request();
284
285 if (lr != &core_request_world && lr)
286 kfree_rcu(lr, rcu_head);
287}
288
289static void reg_update_last_request(struct regulatory_request *request)
290{
291 struct regulatory_request *lr;
292
293 lr = get_last_request();
294 if (lr == request)
295 return;
296
297 reg_free_last_request();
298 rcu_assign_pointer(last_request, request);
299}
300
301static void reset_regdomains(bool full_reset,
302 const struct ieee80211_regdomain *new_regdom)
303{
304 const struct ieee80211_regdomain *r;
305
306 ASSERT_RTNL();
307
308 r = get_cfg80211_regdom();
309
310 /* avoid freeing static information or freeing something twice */
311 if (r == cfg80211_world_regdom)
312 r = NULL;
313 if (cfg80211_world_regdom == &world_regdom)
314 cfg80211_world_regdom = NULL;
315 if (r == &world_regdom)
316 r = NULL;
317
318 rcu_free_regdom(r);
319 rcu_free_regdom(cfg80211_world_regdom);
320
321 cfg80211_world_regdom = &world_regdom;
322 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
323
324 if (!full_reset)
325 return;
326
327 reg_update_last_request(&core_request_world);
328}
329
330/*
331 * Dynamic world regulatory domain requested by the wireless
332 * core upon initialization
333 */
334static void update_world_regdomain(const struct ieee80211_regdomain *rd)
335{
336 struct regulatory_request *lr;
337
338 lr = get_last_request();
339
340 WARN_ON(!lr);
341
342 reset_regdomains(false, rd);
343
344 cfg80211_world_regdom = rd;
345}
346
347bool is_world_regdom(const char *alpha2)
348{
349 if (!alpha2)
350 return false;
351 return alpha2[0] == '0' && alpha2[1] == '0';
352}
353
354static bool is_alpha2_set(const char *alpha2)
355{
356 if (!alpha2)
357 return false;
358 return alpha2[0] && alpha2[1];
359}
360
361static bool is_unknown_alpha2(const char *alpha2)
362{
363 if (!alpha2)
364 return false;
365 /*
366 * Special case where regulatory domain was built by driver
367 * but a specific alpha2 cannot be determined
368 */
369 return alpha2[0] == '9' && alpha2[1] == '9';
370}
371
372static bool is_intersected_alpha2(const char *alpha2)
373{
374 if (!alpha2)
375 return false;
376 /*
377 * Special case where regulatory domain is the
378 * result of an intersection between two regulatory domain
379 * structures
380 */
381 return alpha2[0] == '9' && alpha2[1] == '8';
382}
383
384static bool is_an_alpha2(const char *alpha2)
385{
386 if (!alpha2)
387 return false;
388 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
389}
390
391static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
392{
393 if (!alpha2_x || !alpha2_y)
394 return false;
395 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
396}
397
398static bool regdom_changes(const char *alpha2)
399{
400 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
401
402 if (!r)
403 return true;
404 return !alpha2_equal(r->alpha2, alpha2);
405}
406
407/*
408 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
409 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
410 * has ever been issued.
411 */
412static bool is_user_regdom_saved(void)
413{
414 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
415 return false;
416
417 /* This would indicate a mistake on the design */
418 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
419 "Unexpected user alpha2: %c%c\n",
420 user_alpha2[0], user_alpha2[1]))
421 return false;
422
423 return true;
424}
425
426static const struct ieee80211_regdomain *
427reg_copy_regd(const struct ieee80211_regdomain *src_regd)
428{
429 struct ieee80211_regdomain *regd;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000430 unsigned int i;
431
David Brazdil0f672f62019-12-10 10:32:29 +0000432 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
433 GFP_KERNEL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000434 if (!regd)
435 return ERR_PTR(-ENOMEM);
436
437 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
438
439 for (i = 0; i < src_regd->n_reg_rules; i++)
440 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
441 sizeof(struct ieee80211_reg_rule));
442
443 return regd;
444}
445
David Brazdil0f672f62019-12-10 10:32:29 +0000446static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
447{
448 ASSERT_RTNL();
449
450 if (!IS_ERR(cfg80211_user_regdom))
451 kfree(cfg80211_user_regdom);
452 cfg80211_user_regdom = reg_copy_regd(rd);
453}
454
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000455struct reg_regdb_apply_request {
456 struct list_head list;
457 const struct ieee80211_regdomain *regdom;
458};
459
460static LIST_HEAD(reg_regdb_apply_list);
461static DEFINE_MUTEX(reg_regdb_apply_mutex);
462
463static void reg_regdb_apply(struct work_struct *work)
464{
465 struct reg_regdb_apply_request *request;
466
467 rtnl_lock();
468
469 mutex_lock(&reg_regdb_apply_mutex);
470 while (!list_empty(&reg_regdb_apply_list)) {
471 request = list_first_entry(&reg_regdb_apply_list,
472 struct reg_regdb_apply_request,
473 list);
474 list_del(&request->list);
475
476 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
477 kfree(request);
478 }
479 mutex_unlock(&reg_regdb_apply_mutex);
480
481 rtnl_unlock();
482}
483
484static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
485
486static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
487{
488 struct reg_regdb_apply_request *request;
489
490 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
491 if (!request) {
492 kfree(regdom);
493 return -ENOMEM;
494 }
495
496 request->regdom = regdom;
497
498 mutex_lock(&reg_regdb_apply_mutex);
499 list_add_tail(&request->list, &reg_regdb_apply_list);
500 mutex_unlock(&reg_regdb_apply_mutex);
501
502 schedule_work(&reg_regdb_work);
503 return 0;
504}
505
506#ifdef CONFIG_CFG80211_CRDA_SUPPORT
507/* Max number of consecutive attempts to communicate with CRDA */
508#define REG_MAX_CRDA_TIMEOUTS 10
509
510static u32 reg_crda_timeouts;
511
512static void crda_timeout_work(struct work_struct *work);
513static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
514
515static void crda_timeout_work(struct work_struct *work)
516{
517 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
518 rtnl_lock();
519 reg_crda_timeouts++;
David Brazdil0f672f62019-12-10 10:32:29 +0000520 restore_regulatory_settings(true, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000521 rtnl_unlock();
522}
523
524static void cancel_crda_timeout(void)
525{
526 cancel_delayed_work(&crda_timeout);
527}
528
529static void cancel_crda_timeout_sync(void)
530{
531 cancel_delayed_work_sync(&crda_timeout);
532}
533
534static void reset_crda_timeouts(void)
535{
536 reg_crda_timeouts = 0;
537}
538
539/*
540 * This lets us keep regulatory code which is updated on a regulatory
541 * basis in userspace.
542 */
543static int call_crda(const char *alpha2)
544{
545 char country[12];
546 char *env[] = { country, NULL };
547 int ret;
548
549 snprintf(country, sizeof(country), "COUNTRY=%c%c",
550 alpha2[0], alpha2[1]);
551
552 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
553 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
554 return -EINVAL;
555 }
556
557 if (!is_world_regdom((char *) alpha2))
558 pr_debug("Calling CRDA for country: %c%c\n",
559 alpha2[0], alpha2[1]);
560 else
561 pr_debug("Calling CRDA to update world regulatory domain\n");
562
563 ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
564 if (ret)
565 return ret;
566
567 queue_delayed_work(system_power_efficient_wq,
568 &crda_timeout, msecs_to_jiffies(3142));
569 return 0;
570}
571#else
572static inline void cancel_crda_timeout(void) {}
573static inline void cancel_crda_timeout_sync(void) {}
574static inline void reset_crda_timeouts(void) {}
575static inline int call_crda(const char *alpha2)
576{
577 return -ENODATA;
578}
579#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
580
581/* code to directly load a firmware database through request_firmware */
582static const struct fwdb_header *regdb;
583
584struct fwdb_country {
585 u8 alpha2[2];
586 __be16 coll_ptr;
587 /* this struct cannot be extended */
588} __packed __aligned(4);
589
590struct fwdb_collection {
591 u8 len;
592 u8 n_rules;
593 u8 dfs_region;
594 /* no optional data yet */
595 /* aligned to 2, then followed by __be16 array of rule pointers */
596} __packed __aligned(4);
597
598enum fwdb_flags {
599 FWDB_FLAG_NO_OFDM = BIT(0),
600 FWDB_FLAG_NO_OUTDOOR = BIT(1),
601 FWDB_FLAG_DFS = BIT(2),
602 FWDB_FLAG_NO_IR = BIT(3),
603 FWDB_FLAG_AUTO_BW = BIT(4),
604};
605
606struct fwdb_wmm_ac {
607 u8 ecw;
608 u8 aifsn;
609 __be16 cot;
610} __packed;
611
612struct fwdb_wmm_rule {
613 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
614 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
615} __packed;
616
617struct fwdb_rule {
618 u8 len;
619 u8 flags;
620 __be16 max_eirp;
621 __be32 start, end, max_bw;
622 /* start of optional data */
623 __be16 cac_timeout;
624 __be16 wmm_ptr;
625} __packed __aligned(4);
626
627#define FWDB_MAGIC 0x52474442
628#define FWDB_VERSION 20
629
630struct fwdb_header {
631 __be32 magic;
632 __be32 version;
633 struct fwdb_country country[];
634} __packed __aligned(4);
635
636static int ecw2cw(int ecw)
637{
638 return (1 << ecw) - 1;
639}
640
641static bool valid_wmm(struct fwdb_wmm_rule *rule)
642{
643 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
644 int i;
645
646 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
647 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
648 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
649 u8 aifsn = ac[i].aifsn;
650
651 if (cw_min >= cw_max)
652 return false;
653
654 if (aifsn < 1)
655 return false;
656 }
657
658 return true;
659}
660
661static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
662{
663 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
664
665 if ((u8 *)rule + sizeof(rule->len) > data + size)
666 return false;
667
668 /* mandatory fields */
669 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
670 return false;
671 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
672 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
673 struct fwdb_wmm_rule *wmm;
674
675 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
676 return false;
677
678 wmm = (void *)(data + wmm_ptr);
679
680 if (!valid_wmm(wmm))
681 return false;
682 }
683 return true;
684}
685
686static bool valid_country(const u8 *data, unsigned int size,
687 const struct fwdb_country *country)
688{
689 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
690 struct fwdb_collection *coll = (void *)(data + ptr);
691 __be16 *rules_ptr;
692 unsigned int i;
693
694 /* make sure we can read len/n_rules */
695 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
696 return false;
697
698 /* make sure base struct and all rules fit */
699 if ((u8 *)coll + ALIGN(coll->len, 2) +
700 (coll->n_rules * 2) > data + size)
701 return false;
702
703 /* mandatory fields must exist */
704 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
705 return false;
706
707 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
708
709 for (i = 0; i < coll->n_rules; i++) {
710 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
711
712 if (!valid_rule(data, size, rule_ptr))
713 return false;
714 }
715
716 return true;
717}
718
719#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
720static struct key *builtin_regdb_keys;
721
722static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
723{
724 const u8 *end = p + buflen;
725 size_t plen;
726 key_ref_t key;
727
728 while (p < end) {
729 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
730 * than 256 bytes in size.
731 */
732 if (end - p < 4)
733 goto dodgy_cert;
734 if (p[0] != 0x30 &&
735 p[1] != 0x82)
736 goto dodgy_cert;
737 plen = (p[2] << 8) | p[3];
738 plen += 4;
739 if (plen > end - p)
740 goto dodgy_cert;
741
742 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
743 "asymmetric", NULL, p, plen,
744 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
745 KEY_USR_VIEW | KEY_USR_READ),
746 KEY_ALLOC_NOT_IN_QUOTA |
747 KEY_ALLOC_BUILT_IN |
748 KEY_ALLOC_BYPASS_RESTRICTION);
749 if (IS_ERR(key)) {
750 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
751 PTR_ERR(key));
752 } else {
753 pr_notice("Loaded X.509 cert '%s'\n",
754 key_ref_to_ptr(key)->description);
755 key_ref_put(key);
756 }
757 p += plen;
758 }
759
760 return;
761
762dodgy_cert:
763 pr_err("Problem parsing in-kernel X.509 certificate list\n");
764}
765
766static int __init load_builtin_regdb_keys(void)
767{
768 builtin_regdb_keys =
769 keyring_alloc(".builtin_regdb_keys",
770 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
771 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
772 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
773 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
774 if (IS_ERR(builtin_regdb_keys))
775 return PTR_ERR(builtin_regdb_keys);
776
777 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
778
779#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
780 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
781#endif
782#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
783 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
784 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
785#endif
786
787 return 0;
788}
789
790static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
791{
792 const struct firmware *sig;
793 bool result;
794
795 if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
796 return false;
797
798 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
799 builtin_regdb_keys,
800 VERIFYING_UNSPECIFIED_SIGNATURE,
801 NULL, NULL) == 0;
802
803 release_firmware(sig);
804
805 return result;
806}
807
808static void free_regdb_keyring(void)
809{
810 key_put(builtin_regdb_keys);
811}
812#else
813static int load_builtin_regdb_keys(void)
814{
815 return 0;
816}
817
818static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
819{
820 return true;
821}
822
823static void free_regdb_keyring(void)
824{
825}
826#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
827
828static bool valid_regdb(const u8 *data, unsigned int size)
829{
830 const struct fwdb_header *hdr = (void *)data;
831 const struct fwdb_country *country;
832
833 if (size < sizeof(*hdr))
834 return false;
835
836 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
837 return false;
838
839 if (hdr->version != cpu_to_be32(FWDB_VERSION))
840 return false;
841
842 if (!regdb_has_valid_signature(data, size))
843 return false;
844
845 country = &hdr->country[0];
846 while ((u8 *)(country + 1) <= data + size) {
847 if (!country->coll_ptr)
848 break;
849 if (!valid_country(data, size, country))
850 return false;
851 country++;
852 }
853
854 return true;
855}
856
David Brazdil0f672f62019-12-10 10:32:29 +0000857static void set_wmm_rule(const struct fwdb_header *db,
858 const struct fwdb_country *country,
859 const struct fwdb_rule *rule,
860 struct ieee80211_reg_rule *rrule)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000861{
David Brazdil0f672f62019-12-10 10:32:29 +0000862 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
863 struct fwdb_wmm_rule *wmm;
864 unsigned int i, wmm_ptr;
865
866 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
867 wmm = (void *)((u8 *)db + wmm_ptr);
868
869 if (!valid_wmm(wmm)) {
870 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
871 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
872 country->alpha2[0], country->alpha2[1]);
873 return;
874 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000875
876 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
David Brazdil0f672f62019-12-10 10:32:29 +0000877 wmm_rule->client[i].cw_min =
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000878 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
David Brazdil0f672f62019-12-10 10:32:29 +0000879 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
880 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
881 wmm_rule->client[i].cot =
882 1000 * be16_to_cpu(wmm->client[i].cot);
883 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
884 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
885 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
886 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000887 }
888
889 rrule->has_wmm = true;
890}
891
892static int __regdb_query_wmm(const struct fwdb_header *db,
893 const struct fwdb_country *country, int freq,
David Brazdil0f672f62019-12-10 10:32:29 +0000894 struct ieee80211_reg_rule *rrule)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000895{
896 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
897 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
898 int i;
899
900 for (i = 0; i < coll->n_rules; i++) {
901 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
902 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
David Brazdil0f672f62019-12-10 10:32:29 +0000903 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000904
David Brazdil0f672f62019-12-10 10:32:29 +0000905 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000906 continue;
907
David Brazdil0f672f62019-12-10 10:32:29 +0000908 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
909 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
910 set_wmm_rule(db, country, rule, rrule);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000911 return 0;
912 }
913 }
914
915 return -ENODATA;
916}
917
918int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
919{
920 const struct fwdb_header *hdr = regdb;
921 const struct fwdb_country *country;
922
923 if (!regdb)
924 return -ENODATA;
925
926 if (IS_ERR(regdb))
927 return PTR_ERR(regdb);
928
929 country = &hdr->country[0];
930 while (country->coll_ptr) {
931 if (alpha2_equal(alpha2, country->alpha2))
932 return __regdb_query_wmm(regdb, country, freq, rule);
933
934 country++;
935 }
936
937 return -ENODATA;
938}
939EXPORT_SYMBOL(reg_query_regdb_wmm);
940
941static int regdb_query_country(const struct fwdb_header *db,
942 const struct fwdb_country *country)
943{
944 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
945 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
946 struct ieee80211_regdomain *regdom;
David Brazdil0f672f62019-12-10 10:32:29 +0000947 unsigned int i;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000948
David Brazdil0f672f62019-12-10 10:32:29 +0000949 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
950 GFP_KERNEL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000951 if (!regdom)
952 return -ENOMEM;
953
954 regdom->n_reg_rules = coll->n_rules;
955 regdom->alpha2[0] = country->alpha2[0];
956 regdom->alpha2[1] = country->alpha2[1];
957 regdom->dfs_region = coll->dfs_region;
958
959 for (i = 0; i < regdom->n_reg_rules; i++) {
960 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
961 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
962 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
963 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
964
965 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
966 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
967 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
968
969 rrule->power_rule.max_antenna_gain = 0;
970 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
971
972 rrule->flags = 0;
973 if (rule->flags & FWDB_FLAG_NO_OFDM)
974 rrule->flags |= NL80211_RRF_NO_OFDM;
975 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
976 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
977 if (rule->flags & FWDB_FLAG_DFS)
978 rrule->flags |= NL80211_RRF_DFS;
979 if (rule->flags & FWDB_FLAG_NO_IR)
980 rrule->flags |= NL80211_RRF_NO_IR;
981 if (rule->flags & FWDB_FLAG_AUTO_BW)
982 rrule->flags |= NL80211_RRF_AUTO_BW;
983
984 rrule->dfs_cac_ms = 0;
985
986 /* handle optional data */
987 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
988 rrule->dfs_cac_ms =
989 1000 * be16_to_cpu(rule->cac_timeout);
David Brazdil0f672f62019-12-10 10:32:29 +0000990 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
991 set_wmm_rule(db, country, rule, rrule);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000992 }
993
994 return reg_schedule_apply(regdom);
995}
996
997static int query_regdb(const char *alpha2)
998{
999 const struct fwdb_header *hdr = regdb;
1000 const struct fwdb_country *country;
1001
1002 ASSERT_RTNL();
1003
1004 if (IS_ERR(regdb))
1005 return PTR_ERR(regdb);
1006
1007 country = &hdr->country[0];
1008 while (country->coll_ptr) {
1009 if (alpha2_equal(alpha2, country->alpha2))
1010 return regdb_query_country(regdb, country);
1011 country++;
1012 }
1013
1014 return -ENODATA;
1015}
1016
1017static void regdb_fw_cb(const struct firmware *fw, void *context)
1018{
1019 int set_error = 0;
1020 bool restore = true;
1021 void *db;
1022
1023 if (!fw) {
1024 pr_info("failed to load regulatory.db\n");
1025 set_error = -ENODATA;
1026 } else if (!valid_regdb(fw->data, fw->size)) {
1027 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1028 set_error = -EINVAL;
1029 }
1030
1031 rtnl_lock();
David Brazdil0f672f62019-12-10 10:32:29 +00001032 if (regdb && !IS_ERR(regdb)) {
1033 /* negative case - a bug
1034 * positive case - can happen due to race in case of multiple cb's in
1035 * queue, due to usage of asynchronous callback
1036 *
1037 * Either case, just restore and free new db.
1038 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001039 } else if (set_error) {
1040 regdb = ERR_PTR(set_error);
1041 } else if (fw) {
1042 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1043 if (db) {
1044 regdb = db;
1045 restore = context && query_regdb(context);
1046 } else {
1047 restore = true;
1048 }
1049 }
1050
1051 if (restore)
David Brazdil0f672f62019-12-10 10:32:29 +00001052 restore_regulatory_settings(true, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001053
1054 rtnl_unlock();
1055
1056 kfree(context);
1057
1058 release_firmware(fw);
1059}
1060
1061static int query_regdb_file(const char *alpha2)
1062{
1063 ASSERT_RTNL();
1064
1065 if (regdb)
1066 return query_regdb(alpha2);
1067
1068 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1069 if (!alpha2)
1070 return -ENOMEM;
1071
1072 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1073 &reg_pdev->dev, GFP_KERNEL,
1074 (void *)alpha2, regdb_fw_cb);
1075}
1076
1077int reg_reload_regdb(void)
1078{
1079 const struct firmware *fw;
1080 void *db;
1081 int err;
1082
1083 err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1084 if (err)
1085 return err;
1086
1087 if (!valid_regdb(fw->data, fw->size)) {
1088 err = -ENODATA;
1089 goto out;
1090 }
1091
1092 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1093 if (!db) {
1094 err = -ENOMEM;
1095 goto out;
1096 }
1097
1098 rtnl_lock();
1099 if (!IS_ERR_OR_NULL(regdb))
1100 kfree(regdb);
1101 regdb = db;
1102 rtnl_unlock();
1103
1104 out:
1105 release_firmware(fw);
1106 return err;
1107}
1108
1109static bool reg_query_database(struct regulatory_request *request)
1110{
1111 if (query_regdb_file(request->alpha2) == 0)
1112 return true;
1113
1114 if (call_crda(request->alpha2) == 0)
1115 return true;
1116
1117 return false;
1118}
1119
1120bool reg_is_valid_request(const char *alpha2)
1121{
1122 struct regulatory_request *lr = get_last_request();
1123
1124 if (!lr || lr->processed)
1125 return false;
1126
1127 return alpha2_equal(lr->alpha2, alpha2);
1128}
1129
1130static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1131{
1132 struct regulatory_request *lr = get_last_request();
1133
1134 /*
1135 * Follow the driver's regulatory domain, if present, unless a country
1136 * IE has been processed or a user wants to help complaince further
1137 */
1138 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1139 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1140 wiphy->regd)
1141 return get_wiphy_regdom(wiphy);
1142
1143 return get_cfg80211_regdom();
1144}
1145
1146static unsigned int
1147reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1148 const struct ieee80211_reg_rule *rule)
1149{
1150 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1151 const struct ieee80211_freq_range *freq_range_tmp;
1152 const struct ieee80211_reg_rule *tmp;
1153 u32 start_freq, end_freq, idx, no;
1154
1155 for (idx = 0; idx < rd->n_reg_rules; idx++)
1156 if (rule == &rd->reg_rules[idx])
1157 break;
1158
1159 if (idx == rd->n_reg_rules)
1160 return 0;
1161
1162 /* get start_freq */
1163 no = idx;
1164
1165 while (no) {
1166 tmp = &rd->reg_rules[--no];
1167 freq_range_tmp = &tmp->freq_range;
1168
1169 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1170 break;
1171
1172 freq_range = freq_range_tmp;
1173 }
1174
1175 start_freq = freq_range->start_freq_khz;
1176
1177 /* get end_freq */
1178 freq_range = &rule->freq_range;
1179 no = idx;
1180
1181 while (no < rd->n_reg_rules - 1) {
1182 tmp = &rd->reg_rules[++no];
1183 freq_range_tmp = &tmp->freq_range;
1184
1185 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1186 break;
1187
1188 freq_range = freq_range_tmp;
1189 }
1190
1191 end_freq = freq_range->end_freq_khz;
1192
1193 return end_freq - start_freq;
1194}
1195
1196unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1197 const struct ieee80211_reg_rule *rule)
1198{
1199 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1200
1201 if (rule->flags & NL80211_RRF_NO_160MHZ)
1202 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1203 if (rule->flags & NL80211_RRF_NO_80MHZ)
1204 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1205
1206 /*
1207 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1208 * are not allowed.
1209 */
1210 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1211 rule->flags & NL80211_RRF_NO_HT40PLUS)
1212 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1213
1214 return bw;
1215}
1216
1217/* Sanity check on a regulatory rule */
1218static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1219{
1220 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1221 u32 freq_diff;
1222
1223 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1224 return false;
1225
1226 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1227 return false;
1228
1229 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1230
1231 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1232 freq_range->max_bandwidth_khz > freq_diff)
1233 return false;
1234
1235 return true;
1236}
1237
1238static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1239{
1240 const struct ieee80211_reg_rule *reg_rule = NULL;
1241 unsigned int i;
1242
1243 if (!rd->n_reg_rules)
1244 return false;
1245
1246 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1247 return false;
1248
1249 for (i = 0; i < rd->n_reg_rules; i++) {
1250 reg_rule = &rd->reg_rules[i];
1251 if (!is_valid_reg_rule(reg_rule))
1252 return false;
1253 }
1254
1255 return true;
1256}
1257
1258/**
1259 * freq_in_rule_band - tells us if a frequency is in a frequency band
1260 * @freq_range: frequency rule we want to query
1261 * @freq_khz: frequency we are inquiring about
1262 *
1263 * This lets us know if a specific frequency rule is or is not relevant to
1264 * a specific frequency's band. Bands are device specific and artificial
1265 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1266 * however it is safe for now to assume that a frequency rule should not be
1267 * part of a frequency's band if the start freq or end freq are off by more
David Brazdil0f672f62019-12-10 10:32:29 +00001268 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001269 * 60 GHz band.
1270 * This resolution can be lowered and should be considered as we add
1271 * regulatory rule support for other "bands".
1272 **/
1273static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1274 u32 freq_khz)
1275{
1276#define ONE_GHZ_IN_KHZ 1000000
1277 /*
1278 * From 802.11ad: directional multi-gigabit (DMG):
1279 * Pertaining to operation in a frequency band containing a channel
1280 * with the Channel starting frequency above 45 GHz.
1281 */
1282 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
David Brazdil0f672f62019-12-10 10:32:29 +00001283 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001284 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1285 return true;
1286 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1287 return true;
1288 return false;
1289#undef ONE_GHZ_IN_KHZ
1290}
1291
1292/*
1293 * Later on we can perhaps use the more restrictive DFS
1294 * region but we don't have information for that yet so
1295 * for now simply disallow conflicts.
1296 */
1297static enum nl80211_dfs_regions
1298reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1299 const enum nl80211_dfs_regions dfs_region2)
1300{
1301 if (dfs_region1 != dfs_region2)
1302 return NL80211_DFS_UNSET;
1303 return dfs_region1;
1304}
1305
David Brazdil0f672f62019-12-10 10:32:29 +00001306static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1307 const struct ieee80211_wmm_ac *wmm_ac2,
1308 struct ieee80211_wmm_ac *intersect)
1309{
1310 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1311 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1312 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1313 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1314}
1315
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001316/*
1317 * Helper for regdom_intersect(), this does the real
1318 * mathematical intersection fun
1319 */
1320static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1321 const struct ieee80211_regdomain *rd2,
1322 const struct ieee80211_reg_rule *rule1,
1323 const struct ieee80211_reg_rule *rule2,
1324 struct ieee80211_reg_rule *intersected_rule)
1325{
1326 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1327 struct ieee80211_freq_range *freq_range;
1328 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1329 struct ieee80211_power_rule *power_rule;
David Brazdil0f672f62019-12-10 10:32:29 +00001330 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1331 struct ieee80211_wmm_rule *wmm_rule;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001332 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1333
1334 freq_range1 = &rule1->freq_range;
1335 freq_range2 = &rule2->freq_range;
1336 freq_range = &intersected_rule->freq_range;
1337
1338 power_rule1 = &rule1->power_rule;
1339 power_rule2 = &rule2->power_rule;
1340 power_rule = &intersected_rule->power_rule;
1341
David Brazdil0f672f62019-12-10 10:32:29 +00001342 wmm_rule1 = &rule1->wmm_rule;
1343 wmm_rule2 = &rule2->wmm_rule;
1344 wmm_rule = &intersected_rule->wmm_rule;
1345
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001346 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1347 freq_range2->start_freq_khz);
1348 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1349 freq_range2->end_freq_khz);
1350
1351 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1352 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1353
1354 if (rule1->flags & NL80211_RRF_AUTO_BW)
1355 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1356 if (rule2->flags & NL80211_RRF_AUTO_BW)
1357 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1358
1359 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1360
1361 intersected_rule->flags = rule1->flags | rule2->flags;
1362
1363 /*
1364 * In case NL80211_RRF_AUTO_BW requested for both rules
1365 * set AUTO_BW in intersected rule also. Next we will
1366 * calculate BW correctly in handle_channel function.
1367 * In other case remove AUTO_BW flag while we calculate
1368 * maximum bandwidth correctly and auto calculation is
1369 * not required.
1370 */
1371 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1372 (rule2->flags & NL80211_RRF_AUTO_BW))
1373 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1374 else
1375 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1376
1377 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1378 if (freq_range->max_bandwidth_khz > freq_diff)
1379 freq_range->max_bandwidth_khz = freq_diff;
1380
1381 power_rule->max_eirp = min(power_rule1->max_eirp,
1382 power_rule2->max_eirp);
1383 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1384 power_rule2->max_antenna_gain);
1385
1386 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1387 rule2->dfs_cac_ms);
1388
David Brazdil0f672f62019-12-10 10:32:29 +00001389 if (rule1->has_wmm && rule2->has_wmm) {
1390 u8 ac;
1391
1392 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1393 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1394 &wmm_rule2->client[ac],
1395 &wmm_rule->client[ac]);
1396 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1397 &wmm_rule2->ap[ac],
1398 &wmm_rule->ap[ac]);
1399 }
1400
1401 intersected_rule->has_wmm = true;
1402 } else if (rule1->has_wmm) {
1403 *wmm_rule = *wmm_rule1;
1404 intersected_rule->has_wmm = true;
1405 } else if (rule2->has_wmm) {
1406 *wmm_rule = *wmm_rule2;
1407 intersected_rule->has_wmm = true;
1408 } else {
1409 intersected_rule->has_wmm = false;
1410 }
1411
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001412 if (!is_valid_reg_rule(intersected_rule))
1413 return -EINVAL;
1414
1415 return 0;
1416}
1417
1418/* check whether old rule contains new rule */
1419static bool rule_contains(struct ieee80211_reg_rule *r1,
1420 struct ieee80211_reg_rule *r2)
1421{
1422 /* for simplicity, currently consider only same flags */
1423 if (r1->flags != r2->flags)
1424 return false;
1425
1426 /* verify r1 is more restrictive */
1427 if ((r1->power_rule.max_antenna_gain >
1428 r2->power_rule.max_antenna_gain) ||
1429 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1430 return false;
1431
1432 /* make sure r2's range is contained within r1 */
1433 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1434 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1435 return false;
1436
1437 /* and finally verify that r1.max_bw >= r2.max_bw */
1438 if (r1->freq_range.max_bandwidth_khz <
1439 r2->freq_range.max_bandwidth_khz)
1440 return false;
1441
1442 return true;
1443}
1444
1445/* add or extend current rules. do nothing if rule is already contained */
1446static void add_rule(struct ieee80211_reg_rule *rule,
1447 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1448{
1449 struct ieee80211_reg_rule *tmp_rule;
1450 int i;
1451
1452 for (i = 0; i < *n_rules; i++) {
1453 tmp_rule = &reg_rules[i];
1454 /* rule is already contained - do nothing */
1455 if (rule_contains(tmp_rule, rule))
1456 return;
1457
1458 /* extend rule if possible */
1459 if (rule_contains(rule, tmp_rule)) {
1460 memcpy(tmp_rule, rule, sizeof(*rule));
1461 return;
1462 }
1463 }
1464
1465 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1466 (*n_rules)++;
1467}
1468
1469/**
1470 * regdom_intersect - do the intersection between two regulatory domains
1471 * @rd1: first regulatory domain
1472 * @rd2: second regulatory domain
1473 *
1474 * Use this function to get the intersection between two regulatory domains.
1475 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1476 * as no one single alpha2 can represent this regulatory domain.
1477 *
1478 * Returns a pointer to the regulatory domain structure which will hold the
1479 * resulting intersection of rules between rd1 and rd2. We will
1480 * kzalloc() this structure for you.
1481 */
1482static struct ieee80211_regdomain *
1483regdom_intersect(const struct ieee80211_regdomain *rd1,
1484 const struct ieee80211_regdomain *rd2)
1485{
David Brazdil0f672f62019-12-10 10:32:29 +00001486 int r;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001487 unsigned int x, y;
1488 unsigned int num_rules = 0;
1489 const struct ieee80211_reg_rule *rule1, *rule2;
1490 struct ieee80211_reg_rule intersected_rule;
1491 struct ieee80211_regdomain *rd;
1492
1493 if (!rd1 || !rd2)
1494 return NULL;
1495
1496 /*
1497 * First we get a count of the rules we'll need, then we actually
1498 * build them. This is to so we can malloc() and free() a
1499 * regdomain once. The reason we use reg_rules_intersect() here
1500 * is it will return -EINVAL if the rule computed makes no sense.
1501 * All rules that do check out OK are valid.
1502 */
1503
1504 for (x = 0; x < rd1->n_reg_rules; x++) {
1505 rule1 = &rd1->reg_rules[x];
1506 for (y = 0; y < rd2->n_reg_rules; y++) {
1507 rule2 = &rd2->reg_rules[y];
1508 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1509 &intersected_rule))
1510 num_rules++;
1511 }
1512 }
1513
1514 if (!num_rules)
1515 return NULL;
1516
David Brazdil0f672f62019-12-10 10:32:29 +00001517 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001518 if (!rd)
1519 return NULL;
1520
1521 for (x = 0; x < rd1->n_reg_rules; x++) {
1522 rule1 = &rd1->reg_rules[x];
1523 for (y = 0; y < rd2->n_reg_rules; y++) {
1524 rule2 = &rd2->reg_rules[y];
1525 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1526 &intersected_rule);
1527 /*
1528 * No need to memset here the intersected rule here as
1529 * we're not using the stack anymore
1530 */
1531 if (r)
1532 continue;
1533
1534 add_rule(&intersected_rule, rd->reg_rules,
1535 &rd->n_reg_rules);
1536 }
1537 }
1538
1539 rd->alpha2[0] = '9';
1540 rd->alpha2[1] = '8';
1541 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1542 rd2->dfs_region);
1543
1544 return rd;
1545}
1546
1547/*
1548 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1549 * want to just have the channel structure use these
1550 */
1551static u32 map_regdom_flags(u32 rd_flags)
1552{
1553 u32 channel_flags = 0;
1554 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1555 channel_flags |= IEEE80211_CHAN_NO_IR;
1556 if (rd_flags & NL80211_RRF_DFS)
1557 channel_flags |= IEEE80211_CHAN_RADAR;
1558 if (rd_flags & NL80211_RRF_NO_OFDM)
1559 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1560 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1561 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1562 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1563 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1564 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1565 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1566 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1567 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1568 if (rd_flags & NL80211_RRF_NO_80MHZ)
1569 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1570 if (rd_flags & NL80211_RRF_NO_160MHZ)
1571 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1572 return channel_flags;
1573}
1574
1575static const struct ieee80211_reg_rule *
1576freq_reg_info_regd(u32 center_freq,
1577 const struct ieee80211_regdomain *regd, u32 bw)
1578{
1579 int i;
1580 bool band_rule_found = false;
1581 bool bw_fits = false;
1582
1583 if (!regd)
1584 return ERR_PTR(-EINVAL);
1585
1586 for (i = 0; i < regd->n_reg_rules; i++) {
1587 const struct ieee80211_reg_rule *rr;
1588 const struct ieee80211_freq_range *fr = NULL;
1589
1590 rr = &regd->reg_rules[i];
1591 fr = &rr->freq_range;
1592
1593 /*
1594 * We only need to know if one frequency rule was
1595 * was in center_freq's band, that's enough, so lets
1596 * not overwrite it once found
1597 */
1598 if (!band_rule_found)
1599 band_rule_found = freq_in_rule_band(fr, center_freq);
1600
1601 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1602
1603 if (band_rule_found && bw_fits)
1604 return rr;
1605 }
1606
1607 if (!band_rule_found)
1608 return ERR_PTR(-ERANGE);
1609
1610 return ERR_PTR(-EINVAL);
1611}
1612
1613static const struct ieee80211_reg_rule *
1614__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1615{
1616 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1617 const struct ieee80211_reg_rule *reg_rule = NULL;
1618 u32 bw;
1619
1620 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1621 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1622 if (!IS_ERR(reg_rule))
1623 return reg_rule;
1624 }
1625
1626 return reg_rule;
1627}
1628
1629const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1630 u32 center_freq)
1631{
1632 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1633}
1634EXPORT_SYMBOL(freq_reg_info);
1635
1636const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1637{
1638 switch (initiator) {
1639 case NL80211_REGDOM_SET_BY_CORE:
1640 return "core";
1641 case NL80211_REGDOM_SET_BY_USER:
1642 return "user";
1643 case NL80211_REGDOM_SET_BY_DRIVER:
1644 return "driver";
1645 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1646 return "country element";
1647 default:
1648 WARN_ON(1);
1649 return "bug";
1650 }
1651}
1652EXPORT_SYMBOL(reg_initiator_name);
1653
1654static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1655 const struct ieee80211_reg_rule *reg_rule,
1656 const struct ieee80211_channel *chan)
1657{
1658 const struct ieee80211_freq_range *freq_range = NULL;
1659 u32 max_bandwidth_khz, bw_flags = 0;
1660
1661 freq_range = &reg_rule->freq_range;
1662
1663 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1664 /* Check if auto calculation requested */
1665 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1666 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1667
1668 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1669 if (!cfg80211_does_bw_fit_range(freq_range,
1670 MHZ_TO_KHZ(chan->center_freq),
1671 MHZ_TO_KHZ(10)))
1672 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1673 if (!cfg80211_does_bw_fit_range(freq_range,
1674 MHZ_TO_KHZ(chan->center_freq),
1675 MHZ_TO_KHZ(20)))
1676 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1677
1678 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1679 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1680 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1681 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1682 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1683 bw_flags |= IEEE80211_CHAN_NO_HT40;
1684 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1685 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1686 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1687 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1688 return bw_flags;
1689}
1690
1691/*
1692 * Note that right now we assume the desired channel bandwidth
1693 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1694 * per channel, the primary and the extension channel).
1695 */
1696static void handle_channel(struct wiphy *wiphy,
1697 enum nl80211_reg_initiator initiator,
1698 struct ieee80211_channel *chan)
1699{
1700 u32 flags, bw_flags = 0;
1701 const struct ieee80211_reg_rule *reg_rule = NULL;
1702 const struct ieee80211_power_rule *power_rule = NULL;
1703 struct wiphy *request_wiphy = NULL;
1704 struct regulatory_request *lr = get_last_request();
1705 const struct ieee80211_regdomain *regd;
1706
1707 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1708
1709 flags = chan->orig_flags;
1710
1711 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1712 if (IS_ERR(reg_rule)) {
1713 /*
1714 * We will disable all channels that do not match our
1715 * received regulatory rule unless the hint is coming
1716 * from a Country IE and the Country IE had no information
1717 * about a band. The IEEE 802.11 spec allows for an AP
1718 * to send only a subset of the regulatory rules allowed,
1719 * so an AP in the US that only supports 2.4 GHz may only send
1720 * a country IE with information for the 2.4 GHz band
1721 * while 5 GHz is still supported.
1722 */
1723 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1724 PTR_ERR(reg_rule) == -ERANGE)
1725 return;
1726
1727 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1728 request_wiphy && request_wiphy == wiphy &&
1729 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1730 pr_debug("Disabling freq %d MHz for good\n",
1731 chan->center_freq);
1732 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1733 chan->flags = chan->orig_flags;
1734 } else {
1735 pr_debug("Disabling freq %d MHz\n",
1736 chan->center_freq);
1737 chan->flags |= IEEE80211_CHAN_DISABLED;
1738 }
1739 return;
1740 }
1741
1742 regd = reg_get_regdomain(wiphy);
1743
1744 power_rule = &reg_rule->power_rule;
1745 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1746
1747 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1748 request_wiphy && request_wiphy == wiphy &&
1749 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1750 /*
1751 * This guarantees the driver's requested regulatory domain
1752 * will always be used as a base for further regulatory
1753 * settings
1754 */
1755 chan->flags = chan->orig_flags =
1756 map_regdom_flags(reg_rule->flags) | bw_flags;
1757 chan->max_antenna_gain = chan->orig_mag =
1758 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1759 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1760 (int) MBM_TO_DBM(power_rule->max_eirp);
1761
1762 if (chan->flags & IEEE80211_CHAN_RADAR) {
1763 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1764 if (reg_rule->dfs_cac_ms)
1765 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1766 }
1767
1768 return;
1769 }
1770
1771 chan->dfs_state = NL80211_DFS_USABLE;
1772 chan->dfs_state_entered = jiffies;
1773
1774 chan->beacon_found = false;
1775 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1776 chan->max_antenna_gain =
1777 min_t(int, chan->orig_mag,
1778 MBI_TO_DBI(power_rule->max_antenna_gain));
1779 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1780
1781 if (chan->flags & IEEE80211_CHAN_RADAR) {
1782 if (reg_rule->dfs_cac_ms)
1783 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1784 else
1785 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1786 }
1787
1788 if (chan->orig_mpwr) {
1789 /*
1790 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1791 * will always follow the passed country IE power settings.
1792 */
1793 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1794 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1795 chan->max_power = chan->max_reg_power;
1796 else
1797 chan->max_power = min(chan->orig_mpwr,
1798 chan->max_reg_power);
1799 } else
1800 chan->max_power = chan->max_reg_power;
1801}
1802
1803static void handle_band(struct wiphy *wiphy,
1804 enum nl80211_reg_initiator initiator,
1805 struct ieee80211_supported_band *sband)
1806{
1807 unsigned int i;
1808
1809 if (!sband)
1810 return;
1811
1812 for (i = 0; i < sband->n_channels; i++)
1813 handle_channel(wiphy, initiator, &sband->channels[i]);
1814}
1815
1816static bool reg_request_cell_base(struct regulatory_request *request)
1817{
1818 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1819 return false;
1820 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1821}
1822
1823bool reg_last_request_cell_base(void)
1824{
1825 return reg_request_cell_base(get_last_request());
1826}
1827
1828#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1829/* Core specific check */
1830static enum reg_request_treatment
1831reg_ignore_cell_hint(struct regulatory_request *pending_request)
1832{
1833 struct regulatory_request *lr = get_last_request();
1834
1835 if (!reg_num_devs_support_basehint)
1836 return REG_REQ_IGNORE;
1837
1838 if (reg_request_cell_base(lr) &&
1839 !regdom_changes(pending_request->alpha2))
1840 return REG_REQ_ALREADY_SET;
1841
1842 return REG_REQ_OK;
1843}
1844
1845/* Device specific check */
1846static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1847{
1848 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1849}
1850#else
1851static enum reg_request_treatment
1852reg_ignore_cell_hint(struct regulatory_request *pending_request)
1853{
1854 return REG_REQ_IGNORE;
1855}
1856
1857static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1858{
1859 return true;
1860}
1861#endif
1862
1863static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1864{
1865 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1866 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1867 return true;
1868 return false;
1869}
1870
1871static bool ignore_reg_update(struct wiphy *wiphy,
1872 enum nl80211_reg_initiator initiator)
1873{
1874 struct regulatory_request *lr = get_last_request();
1875
1876 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1877 return true;
1878
1879 if (!lr) {
1880 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1881 reg_initiator_name(initiator));
1882 return true;
1883 }
1884
1885 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1886 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1887 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1888 reg_initiator_name(initiator));
1889 return true;
1890 }
1891
1892 /*
1893 * wiphy->regd will be set once the device has its own
1894 * desired regulatory domain set
1895 */
1896 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1897 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1898 !is_world_regdom(lr->alpha2)) {
1899 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1900 reg_initiator_name(initiator));
1901 return true;
1902 }
1903
1904 if (reg_request_cell_base(lr))
1905 return reg_dev_ignore_cell_hint(wiphy);
1906
1907 return false;
1908}
1909
1910static bool reg_is_world_roaming(struct wiphy *wiphy)
1911{
1912 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1913 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1914 struct regulatory_request *lr = get_last_request();
1915
1916 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1917 return true;
1918
1919 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1920 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1921 return true;
1922
1923 return false;
1924}
1925
1926static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1927 struct reg_beacon *reg_beacon)
1928{
1929 struct ieee80211_supported_band *sband;
1930 struct ieee80211_channel *chan;
1931 bool channel_changed = false;
1932 struct ieee80211_channel chan_before;
1933
1934 sband = wiphy->bands[reg_beacon->chan.band];
1935 chan = &sband->channels[chan_idx];
1936
1937 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1938 return;
1939
1940 if (chan->beacon_found)
1941 return;
1942
1943 chan->beacon_found = true;
1944
1945 if (!reg_is_world_roaming(wiphy))
1946 return;
1947
1948 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1949 return;
1950
1951 chan_before = *chan;
1952
1953 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1954 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1955 channel_changed = true;
1956 }
1957
1958 if (channel_changed)
1959 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1960}
1961
1962/*
1963 * Called when a scan on a wiphy finds a beacon on
1964 * new channel
1965 */
1966static void wiphy_update_new_beacon(struct wiphy *wiphy,
1967 struct reg_beacon *reg_beacon)
1968{
1969 unsigned int i;
1970 struct ieee80211_supported_band *sband;
1971
1972 if (!wiphy->bands[reg_beacon->chan.band])
1973 return;
1974
1975 sband = wiphy->bands[reg_beacon->chan.band];
1976
1977 for (i = 0; i < sband->n_channels; i++)
1978 handle_reg_beacon(wiphy, i, reg_beacon);
1979}
1980
1981/*
1982 * Called upon reg changes or a new wiphy is added
1983 */
1984static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1985{
1986 unsigned int i;
1987 struct ieee80211_supported_band *sband;
1988 struct reg_beacon *reg_beacon;
1989
1990 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1991 if (!wiphy->bands[reg_beacon->chan.band])
1992 continue;
1993 sband = wiphy->bands[reg_beacon->chan.band];
1994 for (i = 0; i < sband->n_channels; i++)
1995 handle_reg_beacon(wiphy, i, reg_beacon);
1996 }
1997}
1998
1999/* Reap the advantages of previously found beacons */
2000static void reg_process_beacons(struct wiphy *wiphy)
2001{
2002 /*
2003 * Means we are just firing up cfg80211, so no beacons would
2004 * have been processed yet.
2005 */
2006 if (!last_request)
2007 return;
2008 wiphy_update_beacon_reg(wiphy);
2009}
2010
2011static bool is_ht40_allowed(struct ieee80211_channel *chan)
2012{
2013 if (!chan)
2014 return false;
2015 if (chan->flags & IEEE80211_CHAN_DISABLED)
2016 return false;
2017 /* This would happen when regulatory rules disallow HT40 completely */
2018 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2019 return false;
2020 return true;
2021}
2022
2023static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2024 struct ieee80211_channel *channel)
2025{
2026 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2027 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2028 const struct ieee80211_regdomain *regd;
2029 unsigned int i;
2030 u32 flags;
2031
2032 if (!is_ht40_allowed(channel)) {
2033 channel->flags |= IEEE80211_CHAN_NO_HT40;
2034 return;
2035 }
2036
2037 /*
2038 * We need to ensure the extension channels exist to
2039 * be able to use HT40- or HT40+, this finds them (or not)
2040 */
2041 for (i = 0; i < sband->n_channels; i++) {
2042 struct ieee80211_channel *c = &sband->channels[i];
2043
2044 if (c->center_freq == (channel->center_freq - 20))
2045 channel_before = c;
2046 if (c->center_freq == (channel->center_freq + 20))
2047 channel_after = c;
2048 }
2049
2050 flags = 0;
2051 regd = get_wiphy_regdom(wiphy);
2052 if (regd) {
2053 const struct ieee80211_reg_rule *reg_rule =
2054 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2055 regd, MHZ_TO_KHZ(20));
2056
2057 if (!IS_ERR(reg_rule))
2058 flags = reg_rule->flags;
2059 }
2060
2061 /*
2062 * Please note that this assumes target bandwidth is 20 MHz,
2063 * if that ever changes we also need to change the below logic
2064 * to include that as well.
2065 */
2066 if (!is_ht40_allowed(channel_before) ||
2067 flags & NL80211_RRF_NO_HT40MINUS)
2068 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2069 else
2070 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2071
2072 if (!is_ht40_allowed(channel_after) ||
2073 flags & NL80211_RRF_NO_HT40PLUS)
2074 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2075 else
2076 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2077}
2078
2079static void reg_process_ht_flags_band(struct wiphy *wiphy,
2080 struct ieee80211_supported_band *sband)
2081{
2082 unsigned int i;
2083
2084 if (!sband)
2085 return;
2086
2087 for (i = 0; i < sband->n_channels; i++)
2088 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2089}
2090
2091static void reg_process_ht_flags(struct wiphy *wiphy)
2092{
2093 enum nl80211_band band;
2094
2095 if (!wiphy)
2096 return;
2097
2098 for (band = 0; band < NUM_NL80211_BANDS; band++)
2099 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2100}
2101
2102static void reg_call_notifier(struct wiphy *wiphy,
2103 struct regulatory_request *request)
2104{
2105 if (wiphy->reg_notifier)
2106 wiphy->reg_notifier(wiphy, request);
2107}
2108
2109static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2110{
David Brazdil0f672f62019-12-10 10:32:29 +00002111 struct cfg80211_chan_def chandef = {};
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002112 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2113 enum nl80211_iftype iftype;
2114
2115 wdev_lock(wdev);
2116 iftype = wdev->iftype;
2117
2118 /* make sure the interface is active */
2119 if (!wdev->netdev || !netif_running(wdev->netdev))
2120 goto wdev_inactive_unlock;
2121
2122 switch (iftype) {
2123 case NL80211_IFTYPE_AP:
2124 case NL80211_IFTYPE_P2P_GO:
2125 if (!wdev->beacon_interval)
2126 goto wdev_inactive_unlock;
2127 chandef = wdev->chandef;
2128 break;
2129 case NL80211_IFTYPE_ADHOC:
2130 if (!wdev->ssid_len)
2131 goto wdev_inactive_unlock;
2132 chandef = wdev->chandef;
2133 break;
2134 case NL80211_IFTYPE_STATION:
2135 case NL80211_IFTYPE_P2P_CLIENT:
2136 if (!wdev->current_bss ||
2137 !wdev->current_bss->pub.channel)
2138 goto wdev_inactive_unlock;
2139
2140 if (!rdev->ops->get_channel ||
2141 rdev_get_channel(rdev, wdev, &chandef))
2142 cfg80211_chandef_create(&chandef,
2143 wdev->current_bss->pub.channel,
2144 NL80211_CHAN_NO_HT);
2145 break;
2146 case NL80211_IFTYPE_MONITOR:
2147 case NL80211_IFTYPE_AP_VLAN:
2148 case NL80211_IFTYPE_P2P_DEVICE:
2149 /* no enforcement required */
2150 break;
2151 default:
2152 /* others not implemented for now */
2153 WARN_ON(1);
2154 break;
2155 }
2156
2157 wdev_unlock(wdev);
2158
2159 switch (iftype) {
2160 case NL80211_IFTYPE_AP:
2161 case NL80211_IFTYPE_P2P_GO:
2162 case NL80211_IFTYPE_ADHOC:
2163 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2164 case NL80211_IFTYPE_STATION:
2165 case NL80211_IFTYPE_P2P_CLIENT:
2166 return cfg80211_chandef_usable(wiphy, &chandef,
2167 IEEE80211_CHAN_DISABLED);
2168 default:
2169 break;
2170 }
2171
2172 return true;
2173
2174wdev_inactive_unlock:
2175 wdev_unlock(wdev);
2176 return true;
2177}
2178
2179static void reg_leave_invalid_chans(struct wiphy *wiphy)
2180{
2181 struct wireless_dev *wdev;
2182 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2183
2184 ASSERT_RTNL();
2185
2186 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2187 if (!reg_wdev_chan_valid(wiphy, wdev))
2188 cfg80211_leave(rdev, wdev);
2189}
2190
2191static void reg_check_chans_work(struct work_struct *work)
2192{
2193 struct cfg80211_registered_device *rdev;
2194
2195 pr_debug("Verifying active interfaces after reg change\n");
2196 rtnl_lock();
2197
2198 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2199 if (!(rdev->wiphy.regulatory_flags &
2200 REGULATORY_IGNORE_STALE_KICKOFF))
2201 reg_leave_invalid_chans(&rdev->wiphy);
2202
2203 rtnl_unlock();
2204}
2205
2206static void reg_check_channels(void)
2207{
2208 /*
2209 * Give usermode a chance to do something nicer (move to another
2210 * channel, orderly disconnection), before forcing a disconnection.
2211 */
2212 mod_delayed_work(system_power_efficient_wq,
2213 &reg_check_chans,
2214 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2215}
2216
2217static void wiphy_update_regulatory(struct wiphy *wiphy,
2218 enum nl80211_reg_initiator initiator)
2219{
2220 enum nl80211_band band;
2221 struct regulatory_request *lr = get_last_request();
2222
2223 if (ignore_reg_update(wiphy, initiator)) {
2224 /*
2225 * Regulatory updates set by CORE are ignored for custom
2226 * regulatory cards. Let us notify the changes to the driver,
2227 * as some drivers used this to restore its orig_* reg domain.
2228 */
2229 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2230 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2231 !(wiphy->regulatory_flags &
2232 REGULATORY_WIPHY_SELF_MANAGED))
2233 reg_call_notifier(wiphy, lr);
2234 return;
2235 }
2236
2237 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2238
2239 for (band = 0; band < NUM_NL80211_BANDS; band++)
2240 handle_band(wiphy, initiator, wiphy->bands[band]);
2241
2242 reg_process_beacons(wiphy);
2243 reg_process_ht_flags(wiphy);
2244 reg_call_notifier(wiphy, lr);
2245}
2246
2247static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2248{
2249 struct cfg80211_registered_device *rdev;
2250 struct wiphy *wiphy;
2251
2252 ASSERT_RTNL();
2253
2254 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2255 wiphy = &rdev->wiphy;
2256 wiphy_update_regulatory(wiphy, initiator);
2257 }
2258
2259 reg_check_channels();
2260}
2261
2262static void handle_channel_custom(struct wiphy *wiphy,
2263 struct ieee80211_channel *chan,
Olivier Deprez0e641232021-09-23 10:07:05 +02002264 const struct ieee80211_regdomain *regd,
2265 u32 min_bw)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002266{
2267 u32 bw_flags = 0;
2268 const struct ieee80211_reg_rule *reg_rule = NULL;
2269 const struct ieee80211_power_rule *power_rule = NULL;
2270 u32 bw;
2271
Olivier Deprez0e641232021-09-23 10:07:05 +02002272 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002273 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2274 regd, bw);
2275 if (!IS_ERR(reg_rule))
2276 break;
2277 }
2278
Olivier Deprez0e641232021-09-23 10:07:05 +02002279 if (IS_ERR_OR_NULL(reg_rule)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002280 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2281 chan->center_freq);
2282 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2283 chan->flags |= IEEE80211_CHAN_DISABLED;
2284 } else {
2285 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2286 chan->flags = chan->orig_flags;
2287 }
2288 return;
2289 }
2290
2291 power_rule = &reg_rule->power_rule;
2292 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2293
2294 chan->dfs_state_entered = jiffies;
2295 chan->dfs_state = NL80211_DFS_USABLE;
2296
2297 chan->beacon_found = false;
2298
2299 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2300 chan->flags = chan->orig_flags | bw_flags |
2301 map_regdom_flags(reg_rule->flags);
2302 else
2303 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2304
2305 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2306 chan->max_reg_power = chan->max_power =
2307 (int) MBM_TO_DBM(power_rule->max_eirp);
2308
2309 if (chan->flags & IEEE80211_CHAN_RADAR) {
2310 if (reg_rule->dfs_cac_ms)
2311 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2312 else
2313 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2314 }
2315
2316 chan->max_power = chan->max_reg_power;
2317}
2318
2319static void handle_band_custom(struct wiphy *wiphy,
2320 struct ieee80211_supported_band *sband,
2321 const struct ieee80211_regdomain *regd)
2322{
2323 unsigned int i;
2324
2325 if (!sband)
2326 return;
2327
Olivier Deprez0e641232021-09-23 10:07:05 +02002328 /*
2329 * We currently assume that you always want at least 20 MHz,
2330 * otherwise channel 12 might get enabled if this rule is
2331 * compatible to US, which permits 2402 - 2472 MHz.
2332 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002333 for (i = 0; i < sband->n_channels; i++)
Olivier Deprez0e641232021-09-23 10:07:05 +02002334 handle_channel_custom(wiphy, &sband->channels[i], regd,
2335 MHZ_TO_KHZ(20));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002336}
2337
2338/* Used by drivers prior to wiphy registration */
2339void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2340 const struct ieee80211_regdomain *regd)
2341{
2342 enum nl80211_band band;
2343 unsigned int bands_set = 0;
2344
2345 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2346 "wiphy should have REGULATORY_CUSTOM_REG\n");
2347 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2348
2349 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2350 if (!wiphy->bands[band])
2351 continue;
2352 handle_band_custom(wiphy, wiphy->bands[band], regd);
2353 bands_set++;
2354 }
2355
2356 /*
2357 * no point in calling this if it won't have any effect
2358 * on your device's supported bands.
2359 */
2360 WARN_ON(!bands_set);
2361}
2362EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2363
2364static void reg_set_request_processed(void)
2365{
2366 bool need_more_processing = false;
2367 struct regulatory_request *lr = get_last_request();
2368
2369 lr->processed = true;
2370
2371 spin_lock(&reg_requests_lock);
2372 if (!list_empty(&reg_requests_list))
2373 need_more_processing = true;
2374 spin_unlock(&reg_requests_lock);
2375
2376 cancel_crda_timeout();
2377
2378 if (need_more_processing)
2379 schedule_work(&reg_work);
2380}
2381
2382/**
2383 * reg_process_hint_core - process core regulatory requests
2384 * @pending_request: a pending core regulatory request
2385 *
2386 * The wireless subsystem can use this function to process
2387 * a regulatory request issued by the regulatory core.
2388 */
2389static enum reg_request_treatment
2390reg_process_hint_core(struct regulatory_request *core_request)
2391{
2392 if (reg_query_database(core_request)) {
2393 core_request->intersect = false;
2394 core_request->processed = false;
2395 reg_update_last_request(core_request);
2396 return REG_REQ_OK;
2397 }
2398
2399 return REG_REQ_IGNORE;
2400}
2401
2402static enum reg_request_treatment
2403__reg_process_hint_user(struct regulatory_request *user_request)
2404{
2405 struct regulatory_request *lr = get_last_request();
2406
2407 if (reg_request_cell_base(user_request))
2408 return reg_ignore_cell_hint(user_request);
2409
2410 if (reg_request_cell_base(lr))
2411 return REG_REQ_IGNORE;
2412
2413 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2414 return REG_REQ_INTERSECT;
2415 /*
2416 * If the user knows better the user should set the regdom
2417 * to their country before the IE is picked up
2418 */
2419 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2420 lr->intersect)
2421 return REG_REQ_IGNORE;
2422 /*
2423 * Process user requests only after previous user/driver/core
2424 * requests have been processed
2425 */
2426 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2427 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2428 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2429 regdom_changes(lr->alpha2))
2430 return REG_REQ_IGNORE;
2431
2432 if (!regdom_changes(user_request->alpha2))
2433 return REG_REQ_ALREADY_SET;
2434
2435 return REG_REQ_OK;
2436}
2437
2438/**
2439 * reg_process_hint_user - process user regulatory requests
2440 * @user_request: a pending user regulatory request
2441 *
2442 * The wireless subsystem can use this function to process
2443 * a regulatory request initiated by userspace.
2444 */
2445static enum reg_request_treatment
2446reg_process_hint_user(struct regulatory_request *user_request)
2447{
2448 enum reg_request_treatment treatment;
2449
2450 treatment = __reg_process_hint_user(user_request);
2451 if (treatment == REG_REQ_IGNORE ||
2452 treatment == REG_REQ_ALREADY_SET)
2453 return REG_REQ_IGNORE;
2454
2455 user_request->intersect = treatment == REG_REQ_INTERSECT;
2456 user_request->processed = false;
2457
2458 if (reg_query_database(user_request)) {
2459 reg_update_last_request(user_request);
2460 user_alpha2[0] = user_request->alpha2[0];
2461 user_alpha2[1] = user_request->alpha2[1];
2462 return REG_REQ_OK;
2463 }
2464
2465 return REG_REQ_IGNORE;
2466}
2467
2468static enum reg_request_treatment
2469__reg_process_hint_driver(struct regulatory_request *driver_request)
2470{
2471 struct regulatory_request *lr = get_last_request();
2472
2473 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2474 if (regdom_changes(driver_request->alpha2))
2475 return REG_REQ_OK;
2476 return REG_REQ_ALREADY_SET;
2477 }
2478
2479 /*
2480 * This would happen if you unplug and plug your card
2481 * back in or if you add a new device for which the previously
2482 * loaded card also agrees on the regulatory domain.
2483 */
2484 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2485 !regdom_changes(driver_request->alpha2))
2486 return REG_REQ_ALREADY_SET;
2487
2488 return REG_REQ_INTERSECT;
2489}
2490
2491/**
2492 * reg_process_hint_driver - process driver regulatory requests
2493 * @driver_request: a pending driver regulatory request
2494 *
2495 * The wireless subsystem can use this function to process
2496 * a regulatory request issued by an 802.11 driver.
2497 *
2498 * Returns one of the different reg request treatment values.
2499 */
2500static enum reg_request_treatment
2501reg_process_hint_driver(struct wiphy *wiphy,
2502 struct regulatory_request *driver_request)
2503{
2504 const struct ieee80211_regdomain *regd, *tmp;
2505 enum reg_request_treatment treatment;
2506
2507 treatment = __reg_process_hint_driver(driver_request);
2508
2509 switch (treatment) {
2510 case REG_REQ_OK:
2511 break;
2512 case REG_REQ_IGNORE:
2513 return REG_REQ_IGNORE;
2514 case REG_REQ_INTERSECT:
2515 case REG_REQ_ALREADY_SET:
2516 regd = reg_copy_regd(get_cfg80211_regdom());
2517 if (IS_ERR(regd))
2518 return REG_REQ_IGNORE;
2519
2520 tmp = get_wiphy_regdom(wiphy);
2521 rcu_assign_pointer(wiphy->regd, regd);
2522 rcu_free_regdom(tmp);
2523 }
2524
2525
2526 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2527 driver_request->processed = false;
2528
2529 /*
2530 * Since CRDA will not be called in this case as we already
2531 * have applied the requested regulatory domain before we just
2532 * inform userspace we have processed the request
2533 */
2534 if (treatment == REG_REQ_ALREADY_SET) {
2535 nl80211_send_reg_change_event(driver_request);
2536 reg_update_last_request(driver_request);
2537 reg_set_request_processed();
2538 return REG_REQ_ALREADY_SET;
2539 }
2540
2541 if (reg_query_database(driver_request)) {
2542 reg_update_last_request(driver_request);
2543 return REG_REQ_OK;
2544 }
2545
2546 return REG_REQ_IGNORE;
2547}
2548
2549static enum reg_request_treatment
2550__reg_process_hint_country_ie(struct wiphy *wiphy,
2551 struct regulatory_request *country_ie_request)
2552{
2553 struct wiphy *last_wiphy = NULL;
2554 struct regulatory_request *lr = get_last_request();
2555
2556 if (reg_request_cell_base(lr)) {
2557 /* Trust a Cell base station over the AP's country IE */
2558 if (regdom_changes(country_ie_request->alpha2))
2559 return REG_REQ_IGNORE;
2560 return REG_REQ_ALREADY_SET;
2561 } else {
2562 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2563 return REG_REQ_IGNORE;
2564 }
2565
2566 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2567 return -EINVAL;
2568
2569 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2570 return REG_REQ_OK;
2571
2572 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2573
2574 if (last_wiphy != wiphy) {
2575 /*
2576 * Two cards with two APs claiming different
2577 * Country IE alpha2s. We could
2578 * intersect them, but that seems unlikely
2579 * to be correct. Reject second one for now.
2580 */
2581 if (regdom_changes(country_ie_request->alpha2))
2582 return REG_REQ_IGNORE;
2583 return REG_REQ_ALREADY_SET;
2584 }
2585
2586 if (regdom_changes(country_ie_request->alpha2))
2587 return REG_REQ_OK;
2588 return REG_REQ_ALREADY_SET;
2589}
2590
2591/**
2592 * reg_process_hint_country_ie - process regulatory requests from country IEs
2593 * @country_ie_request: a regulatory request from a country IE
2594 *
2595 * The wireless subsystem can use this function to process
2596 * a regulatory request issued by a country Information Element.
2597 *
2598 * Returns one of the different reg request treatment values.
2599 */
2600static enum reg_request_treatment
2601reg_process_hint_country_ie(struct wiphy *wiphy,
2602 struct regulatory_request *country_ie_request)
2603{
2604 enum reg_request_treatment treatment;
2605
2606 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2607
2608 switch (treatment) {
2609 case REG_REQ_OK:
2610 break;
2611 case REG_REQ_IGNORE:
2612 return REG_REQ_IGNORE;
2613 case REG_REQ_ALREADY_SET:
2614 reg_free_request(country_ie_request);
2615 return REG_REQ_ALREADY_SET;
2616 case REG_REQ_INTERSECT:
2617 /*
2618 * This doesn't happen yet, not sure we
2619 * ever want to support it for this case.
2620 */
2621 WARN_ONCE(1, "Unexpected intersection for country elements");
2622 return REG_REQ_IGNORE;
2623 }
2624
2625 country_ie_request->intersect = false;
2626 country_ie_request->processed = false;
2627
2628 if (reg_query_database(country_ie_request)) {
2629 reg_update_last_request(country_ie_request);
2630 return REG_REQ_OK;
2631 }
2632
2633 return REG_REQ_IGNORE;
2634}
2635
2636bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2637{
2638 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2639 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2640 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2641 bool dfs_domain_same;
2642
2643 rcu_read_lock();
2644
2645 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2646 wiphy1_regd = rcu_dereference(wiphy1->regd);
2647 if (!wiphy1_regd)
2648 wiphy1_regd = cfg80211_regd;
2649
2650 wiphy2_regd = rcu_dereference(wiphy2->regd);
2651 if (!wiphy2_regd)
2652 wiphy2_regd = cfg80211_regd;
2653
2654 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2655
2656 rcu_read_unlock();
2657
2658 return dfs_domain_same;
2659}
2660
2661static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2662 struct ieee80211_channel *src_chan)
2663{
2664 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2665 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2666 return;
2667
2668 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2669 src_chan->flags & IEEE80211_CHAN_DISABLED)
2670 return;
2671
2672 if (src_chan->center_freq == dst_chan->center_freq &&
2673 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2674 dst_chan->dfs_state = src_chan->dfs_state;
2675 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2676 }
2677}
2678
2679static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2680 struct wiphy *src_wiphy)
2681{
2682 struct ieee80211_supported_band *src_sband, *dst_sband;
2683 struct ieee80211_channel *src_chan, *dst_chan;
2684 int i, j, band;
2685
2686 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2687 return;
2688
2689 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2690 dst_sband = dst_wiphy->bands[band];
2691 src_sband = src_wiphy->bands[band];
2692 if (!dst_sband || !src_sband)
2693 continue;
2694
2695 for (i = 0; i < dst_sband->n_channels; i++) {
2696 dst_chan = &dst_sband->channels[i];
2697 for (j = 0; j < src_sband->n_channels; j++) {
2698 src_chan = &src_sband->channels[j];
2699 reg_copy_dfs_chan_state(dst_chan, src_chan);
2700 }
2701 }
2702 }
2703}
2704
2705static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2706{
2707 struct cfg80211_registered_device *rdev;
2708
2709 ASSERT_RTNL();
2710
2711 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2712 if (wiphy == &rdev->wiphy)
2713 continue;
2714 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2715 }
2716}
2717
2718/* This processes *all* regulatory hints */
2719static void reg_process_hint(struct regulatory_request *reg_request)
2720{
2721 struct wiphy *wiphy = NULL;
2722 enum reg_request_treatment treatment;
2723 enum nl80211_reg_initiator initiator = reg_request->initiator;
2724
2725 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2726 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2727
2728 switch (initiator) {
2729 case NL80211_REGDOM_SET_BY_CORE:
2730 treatment = reg_process_hint_core(reg_request);
2731 break;
2732 case NL80211_REGDOM_SET_BY_USER:
2733 treatment = reg_process_hint_user(reg_request);
2734 break;
2735 case NL80211_REGDOM_SET_BY_DRIVER:
2736 if (!wiphy)
2737 goto out_free;
2738 treatment = reg_process_hint_driver(wiphy, reg_request);
2739 break;
2740 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2741 if (!wiphy)
2742 goto out_free;
2743 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2744 break;
2745 default:
2746 WARN(1, "invalid initiator %d\n", initiator);
2747 goto out_free;
2748 }
2749
2750 if (treatment == REG_REQ_IGNORE)
2751 goto out_free;
2752
2753 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2754 "unexpected treatment value %d\n", treatment);
2755
2756 /* This is required so that the orig_* parameters are saved.
2757 * NOTE: treatment must be set for any case that reaches here!
2758 */
2759 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2760 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2761 wiphy_update_regulatory(wiphy, initiator);
2762 wiphy_all_share_dfs_chan_state(wiphy);
2763 reg_check_channels();
2764 }
2765
2766 return;
2767
2768out_free:
2769 reg_free_request(reg_request);
2770}
2771
2772static void notify_self_managed_wiphys(struct regulatory_request *request)
2773{
2774 struct cfg80211_registered_device *rdev;
2775 struct wiphy *wiphy;
2776
2777 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2778 wiphy = &rdev->wiphy;
2779 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
David Brazdil0f672f62019-12-10 10:32:29 +00002780 request->initiator == NL80211_REGDOM_SET_BY_USER)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002781 reg_call_notifier(wiphy, request);
2782 }
2783}
2784
2785/*
2786 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2787 * Regulatory hints come on a first come first serve basis and we
2788 * must process each one atomically.
2789 */
2790static void reg_process_pending_hints(void)
2791{
2792 struct regulatory_request *reg_request, *lr;
2793
2794 lr = get_last_request();
2795
2796 /* When last_request->processed becomes true this will be rescheduled */
2797 if (lr && !lr->processed) {
David Brazdil0f672f62019-12-10 10:32:29 +00002798 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002799 return;
2800 }
2801
2802 spin_lock(&reg_requests_lock);
2803
2804 if (list_empty(&reg_requests_list)) {
2805 spin_unlock(&reg_requests_lock);
2806 return;
2807 }
2808
2809 reg_request = list_first_entry(&reg_requests_list,
2810 struct regulatory_request,
2811 list);
2812 list_del_init(&reg_request->list);
2813
2814 spin_unlock(&reg_requests_lock);
2815
2816 notify_self_managed_wiphys(reg_request);
2817
2818 reg_process_hint(reg_request);
2819
2820 lr = get_last_request();
2821
2822 spin_lock(&reg_requests_lock);
2823 if (!list_empty(&reg_requests_list) && lr && lr->processed)
2824 schedule_work(&reg_work);
2825 spin_unlock(&reg_requests_lock);
2826}
2827
2828/* Processes beacon hints -- this has nothing to do with country IEs */
2829static void reg_process_pending_beacon_hints(void)
2830{
2831 struct cfg80211_registered_device *rdev;
2832 struct reg_beacon *pending_beacon, *tmp;
2833
2834 /* This goes through the _pending_ beacon list */
2835 spin_lock_bh(&reg_pending_beacons_lock);
2836
2837 list_for_each_entry_safe(pending_beacon, tmp,
2838 &reg_pending_beacons, list) {
2839 list_del_init(&pending_beacon->list);
2840
2841 /* Applies the beacon hint to current wiphys */
2842 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2843 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2844
2845 /* Remembers the beacon hint for new wiphys or reg changes */
2846 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2847 }
2848
2849 spin_unlock_bh(&reg_pending_beacons_lock);
2850}
2851
2852static void reg_process_self_managed_hints(void)
2853{
2854 struct cfg80211_registered_device *rdev;
2855 struct wiphy *wiphy;
2856 const struct ieee80211_regdomain *tmp;
2857 const struct ieee80211_regdomain *regd;
2858 enum nl80211_band band;
2859 struct regulatory_request request = {};
2860
2861 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2862 wiphy = &rdev->wiphy;
2863
2864 spin_lock(&reg_requests_lock);
2865 regd = rdev->requested_regd;
2866 rdev->requested_regd = NULL;
2867 spin_unlock(&reg_requests_lock);
2868
2869 if (regd == NULL)
2870 continue;
2871
2872 tmp = get_wiphy_regdom(wiphy);
2873 rcu_assign_pointer(wiphy->regd, regd);
2874 rcu_free_regdom(tmp);
2875
2876 for (band = 0; band < NUM_NL80211_BANDS; band++)
2877 handle_band_custom(wiphy, wiphy->bands[band], regd);
2878
2879 reg_process_ht_flags(wiphy);
2880
2881 request.wiphy_idx = get_wiphy_idx(wiphy);
2882 request.alpha2[0] = regd->alpha2[0];
2883 request.alpha2[1] = regd->alpha2[1];
2884 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2885
2886 nl80211_send_wiphy_reg_change_event(&request);
2887 }
2888
2889 reg_check_channels();
2890}
2891
2892static void reg_todo(struct work_struct *work)
2893{
2894 rtnl_lock();
2895 reg_process_pending_hints();
2896 reg_process_pending_beacon_hints();
2897 reg_process_self_managed_hints();
2898 rtnl_unlock();
2899}
2900
2901static void queue_regulatory_request(struct regulatory_request *request)
2902{
2903 request->alpha2[0] = toupper(request->alpha2[0]);
2904 request->alpha2[1] = toupper(request->alpha2[1]);
2905
2906 spin_lock(&reg_requests_lock);
2907 list_add_tail(&request->list, &reg_requests_list);
2908 spin_unlock(&reg_requests_lock);
2909
2910 schedule_work(&reg_work);
2911}
2912
2913/*
2914 * Core regulatory hint -- happens during cfg80211_init()
2915 * and when we restore regulatory settings.
2916 */
2917static int regulatory_hint_core(const char *alpha2)
2918{
2919 struct regulatory_request *request;
2920
2921 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2922 if (!request)
2923 return -ENOMEM;
2924
2925 request->alpha2[0] = alpha2[0];
2926 request->alpha2[1] = alpha2[1];
2927 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2928 request->wiphy_idx = WIPHY_IDX_INVALID;
2929
2930 queue_regulatory_request(request);
2931
2932 return 0;
2933}
2934
2935/* User hints */
2936int regulatory_hint_user(const char *alpha2,
2937 enum nl80211_user_reg_hint_type user_reg_hint_type)
2938{
2939 struct regulatory_request *request;
2940
2941 if (WARN_ON(!alpha2))
2942 return -EINVAL;
2943
Olivier Deprez0e641232021-09-23 10:07:05 +02002944 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
2945 return -EINVAL;
2946
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002947 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2948 if (!request)
2949 return -ENOMEM;
2950
2951 request->wiphy_idx = WIPHY_IDX_INVALID;
2952 request->alpha2[0] = alpha2[0];
2953 request->alpha2[1] = alpha2[1];
2954 request->initiator = NL80211_REGDOM_SET_BY_USER;
2955 request->user_reg_hint_type = user_reg_hint_type;
2956
2957 /* Allow calling CRDA again */
2958 reset_crda_timeouts();
2959
2960 queue_regulatory_request(request);
2961
2962 return 0;
2963}
2964
2965int regulatory_hint_indoor(bool is_indoor, u32 portid)
2966{
2967 spin_lock(&reg_indoor_lock);
2968
2969 /* It is possible that more than one user space process is trying to
2970 * configure the indoor setting. To handle such cases, clear the indoor
2971 * setting in case that some process does not think that the device
2972 * is operating in an indoor environment. In addition, if a user space
2973 * process indicates that it is controlling the indoor setting, save its
2974 * portid, i.e., make it the owner.
2975 */
2976 reg_is_indoor = is_indoor;
2977 if (reg_is_indoor) {
2978 if (!reg_is_indoor_portid)
2979 reg_is_indoor_portid = portid;
2980 } else {
2981 reg_is_indoor_portid = 0;
2982 }
2983
2984 spin_unlock(&reg_indoor_lock);
2985
2986 if (!is_indoor)
2987 reg_check_channels();
2988
2989 return 0;
2990}
2991
2992void regulatory_netlink_notify(u32 portid)
2993{
2994 spin_lock(&reg_indoor_lock);
2995
2996 if (reg_is_indoor_portid != portid) {
2997 spin_unlock(&reg_indoor_lock);
2998 return;
2999 }
3000
3001 reg_is_indoor = false;
3002 reg_is_indoor_portid = 0;
3003
3004 spin_unlock(&reg_indoor_lock);
3005
3006 reg_check_channels();
3007}
3008
3009/* Driver hints */
3010int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3011{
3012 struct regulatory_request *request;
3013
3014 if (WARN_ON(!alpha2 || !wiphy))
3015 return -EINVAL;
3016
3017 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3018
3019 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3020 if (!request)
3021 return -ENOMEM;
3022
3023 request->wiphy_idx = get_wiphy_idx(wiphy);
3024
3025 request->alpha2[0] = alpha2[0];
3026 request->alpha2[1] = alpha2[1];
3027 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3028
3029 /* Allow calling CRDA again */
3030 reset_crda_timeouts();
3031
3032 queue_regulatory_request(request);
3033
3034 return 0;
3035}
3036EXPORT_SYMBOL(regulatory_hint);
3037
3038void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3039 const u8 *country_ie, u8 country_ie_len)
3040{
3041 char alpha2[2];
3042 enum environment_cap env = ENVIRON_ANY;
3043 struct regulatory_request *request = NULL, *lr;
3044
3045 /* IE len must be evenly divisible by 2 */
3046 if (country_ie_len & 0x01)
3047 return;
3048
3049 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3050 return;
3051
3052 request = kzalloc(sizeof(*request), GFP_KERNEL);
3053 if (!request)
3054 return;
3055
3056 alpha2[0] = country_ie[0];
3057 alpha2[1] = country_ie[1];
3058
3059 if (country_ie[2] == 'I')
3060 env = ENVIRON_INDOOR;
3061 else if (country_ie[2] == 'O')
3062 env = ENVIRON_OUTDOOR;
3063
3064 rcu_read_lock();
3065 lr = get_last_request();
3066
3067 if (unlikely(!lr))
3068 goto out;
3069
3070 /*
3071 * We will run this only upon a successful connection on cfg80211.
3072 * We leave conflict resolution to the workqueue, where can hold
3073 * the RTNL.
3074 */
3075 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3076 lr->wiphy_idx != WIPHY_IDX_INVALID)
3077 goto out;
3078
3079 request->wiphy_idx = get_wiphy_idx(wiphy);
3080 request->alpha2[0] = alpha2[0];
3081 request->alpha2[1] = alpha2[1];
3082 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3083 request->country_ie_env = env;
3084
3085 /* Allow calling CRDA again */
3086 reset_crda_timeouts();
3087
3088 queue_regulatory_request(request);
3089 request = NULL;
3090out:
3091 kfree(request);
3092 rcu_read_unlock();
3093}
3094
3095static void restore_alpha2(char *alpha2, bool reset_user)
3096{
3097 /* indicates there is no alpha2 to consider for restoration */
3098 alpha2[0] = '9';
3099 alpha2[1] = '7';
3100
3101 /* The user setting has precedence over the module parameter */
3102 if (is_user_regdom_saved()) {
3103 /* Unless we're asked to ignore it and reset it */
3104 if (reset_user) {
3105 pr_debug("Restoring regulatory settings including user preference\n");
3106 user_alpha2[0] = '9';
3107 user_alpha2[1] = '7';
3108
3109 /*
3110 * If we're ignoring user settings, we still need to
3111 * check the module parameter to ensure we put things
3112 * back as they were for a full restore.
3113 */
3114 if (!is_world_regdom(ieee80211_regdom)) {
3115 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3116 ieee80211_regdom[0], ieee80211_regdom[1]);
3117 alpha2[0] = ieee80211_regdom[0];
3118 alpha2[1] = ieee80211_regdom[1];
3119 }
3120 } else {
3121 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3122 user_alpha2[0], user_alpha2[1]);
3123 alpha2[0] = user_alpha2[0];
3124 alpha2[1] = user_alpha2[1];
3125 }
3126 } else if (!is_world_regdom(ieee80211_regdom)) {
3127 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3128 ieee80211_regdom[0], ieee80211_regdom[1]);
3129 alpha2[0] = ieee80211_regdom[0];
3130 alpha2[1] = ieee80211_regdom[1];
3131 } else
3132 pr_debug("Restoring regulatory settings\n");
3133}
3134
3135static void restore_custom_reg_settings(struct wiphy *wiphy)
3136{
3137 struct ieee80211_supported_band *sband;
3138 enum nl80211_band band;
3139 struct ieee80211_channel *chan;
3140 int i;
3141
3142 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3143 sband = wiphy->bands[band];
3144 if (!sband)
3145 continue;
3146 for (i = 0; i < sband->n_channels; i++) {
3147 chan = &sband->channels[i];
3148 chan->flags = chan->orig_flags;
3149 chan->max_antenna_gain = chan->orig_mag;
3150 chan->max_power = chan->orig_mpwr;
3151 chan->beacon_found = false;
3152 }
3153 }
3154}
3155
3156/*
3157 * Restoring regulatory settings involves ingoring any
3158 * possibly stale country IE information and user regulatory
3159 * settings if so desired, this includes any beacon hints
3160 * learned as we could have traveled outside to another country
3161 * after disconnection. To restore regulatory settings we do
3162 * exactly what we did at bootup:
3163 *
3164 * - send a core regulatory hint
3165 * - send a user regulatory hint if applicable
3166 *
3167 * Device drivers that send a regulatory hint for a specific country
3168 * keep their own regulatory domain on wiphy->regd so that does does
3169 * not need to be remembered.
3170 */
David Brazdil0f672f62019-12-10 10:32:29 +00003171static void restore_regulatory_settings(bool reset_user, bool cached)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003172{
3173 char alpha2[2];
3174 char world_alpha2[2];
3175 struct reg_beacon *reg_beacon, *btmp;
3176 LIST_HEAD(tmp_reg_req_list);
3177 struct cfg80211_registered_device *rdev;
3178
3179 ASSERT_RTNL();
3180
3181 /*
3182 * Clear the indoor setting in case that it is not controlled by user
3183 * space, as otherwise there is no guarantee that the device is still
3184 * operating in an indoor environment.
3185 */
3186 spin_lock(&reg_indoor_lock);
3187 if (reg_is_indoor && !reg_is_indoor_portid) {
3188 reg_is_indoor = false;
3189 reg_check_channels();
3190 }
3191 spin_unlock(&reg_indoor_lock);
3192
3193 reset_regdomains(true, &world_regdom);
3194 restore_alpha2(alpha2, reset_user);
3195
3196 /*
3197 * If there's any pending requests we simply
3198 * stash them to a temporary pending queue and
3199 * add then after we've restored regulatory
3200 * settings.
3201 */
3202 spin_lock(&reg_requests_lock);
3203 list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3204 spin_unlock(&reg_requests_lock);
3205
3206 /* Clear beacon hints */
3207 spin_lock_bh(&reg_pending_beacons_lock);
3208 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3209 list_del(&reg_beacon->list);
3210 kfree(reg_beacon);
3211 }
3212 spin_unlock_bh(&reg_pending_beacons_lock);
3213
3214 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3215 list_del(&reg_beacon->list);
3216 kfree(reg_beacon);
3217 }
3218
3219 /* First restore to the basic regulatory settings */
3220 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3221 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3222
3223 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3224 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3225 continue;
3226 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3227 restore_custom_reg_settings(&rdev->wiphy);
3228 }
3229
David Brazdil0f672f62019-12-10 10:32:29 +00003230 if (cached && (!is_an_alpha2(alpha2) ||
3231 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3232 reset_regdomains(false, cfg80211_world_regdom);
3233 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3234 print_regdomain(get_cfg80211_regdom());
3235 nl80211_send_reg_change_event(&core_request_world);
3236 reg_set_request_processed();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003237
David Brazdil0f672f62019-12-10 10:32:29 +00003238 if (is_an_alpha2(alpha2) &&
3239 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3240 struct regulatory_request *ureq;
3241
3242 spin_lock(&reg_requests_lock);
3243 ureq = list_last_entry(&reg_requests_list,
3244 struct regulatory_request,
3245 list);
3246 list_del(&ureq->list);
3247 spin_unlock(&reg_requests_lock);
3248
3249 notify_self_managed_wiphys(ureq);
3250 reg_update_last_request(ureq);
3251 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3252 REGD_SOURCE_CACHED);
3253 }
3254 } else {
3255 regulatory_hint_core(world_alpha2);
3256
3257 /*
3258 * This restores the ieee80211_regdom module parameter
3259 * preference or the last user requested regulatory
3260 * settings, user regulatory settings takes precedence.
3261 */
3262 if (is_an_alpha2(alpha2))
3263 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3264 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003265
3266 spin_lock(&reg_requests_lock);
3267 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3268 spin_unlock(&reg_requests_lock);
3269
3270 pr_debug("Kicking the queue\n");
3271
3272 schedule_work(&reg_work);
3273}
3274
David Brazdil0f672f62019-12-10 10:32:29 +00003275static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003276{
David Brazdil0f672f62019-12-10 10:32:29 +00003277 struct cfg80211_registered_device *rdev;
3278 struct wireless_dev *wdev;
3279
3280 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3281 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3282 wdev_lock(wdev);
3283 if (!(wdev->wiphy->regulatory_flags & flag)) {
3284 wdev_unlock(wdev);
3285 return false;
3286 }
3287 wdev_unlock(wdev);
3288 }
3289 }
3290
3291 return true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003292}
3293
David Brazdil0f672f62019-12-10 10:32:29 +00003294void regulatory_hint_disconnect(void)
3295{
3296 /* Restore of regulatory settings is not required when wiphy(s)
3297 * ignore IE from connected access point but clearance of beacon hints
3298 * is required when wiphy(s) supports beacon hints.
3299 */
3300 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3301 struct reg_beacon *reg_beacon, *btmp;
3302
3303 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3304 return;
3305
3306 spin_lock_bh(&reg_pending_beacons_lock);
3307 list_for_each_entry_safe(reg_beacon, btmp,
3308 &reg_pending_beacons, list) {
3309 list_del(&reg_beacon->list);
3310 kfree(reg_beacon);
3311 }
3312 spin_unlock_bh(&reg_pending_beacons_lock);
3313
3314 list_for_each_entry_safe(reg_beacon, btmp,
3315 &reg_beacon_list, list) {
3316 list_del(&reg_beacon->list);
3317 kfree(reg_beacon);
3318 }
3319
3320 return;
3321 }
3322
3323 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3324 restore_regulatory_settings(false, true);
3325}
3326
3327static bool freq_is_chan_12_13_14(u32 freq)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003328{
3329 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3330 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3331 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3332 return true;
3333 return false;
3334}
3335
3336static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3337{
3338 struct reg_beacon *pending_beacon;
3339
3340 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3341 if (beacon_chan->center_freq ==
3342 pending_beacon->chan.center_freq)
3343 return true;
3344 return false;
3345}
3346
3347int regulatory_hint_found_beacon(struct wiphy *wiphy,
3348 struct ieee80211_channel *beacon_chan,
3349 gfp_t gfp)
3350{
3351 struct reg_beacon *reg_beacon;
3352 bool processing;
3353
3354 if (beacon_chan->beacon_found ||
3355 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3356 (beacon_chan->band == NL80211_BAND_2GHZ &&
3357 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3358 return 0;
3359
3360 spin_lock_bh(&reg_pending_beacons_lock);
3361 processing = pending_reg_beacon(beacon_chan);
3362 spin_unlock_bh(&reg_pending_beacons_lock);
3363
3364 if (processing)
3365 return 0;
3366
3367 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3368 if (!reg_beacon)
3369 return -ENOMEM;
3370
3371 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3372 beacon_chan->center_freq,
3373 ieee80211_frequency_to_channel(beacon_chan->center_freq),
3374 wiphy_name(wiphy));
3375
3376 memcpy(&reg_beacon->chan, beacon_chan,
3377 sizeof(struct ieee80211_channel));
3378
3379 /*
3380 * Since we can be called from BH or and non-BH context
3381 * we must use spin_lock_bh()
3382 */
3383 spin_lock_bh(&reg_pending_beacons_lock);
3384 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3385 spin_unlock_bh(&reg_pending_beacons_lock);
3386
3387 schedule_work(&reg_work);
3388
3389 return 0;
3390}
3391
3392static void print_rd_rules(const struct ieee80211_regdomain *rd)
3393{
3394 unsigned int i;
3395 const struct ieee80211_reg_rule *reg_rule = NULL;
3396 const struct ieee80211_freq_range *freq_range = NULL;
3397 const struct ieee80211_power_rule *power_rule = NULL;
3398 char bw[32], cac_time[32];
3399
3400 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3401
3402 for (i = 0; i < rd->n_reg_rules; i++) {
3403 reg_rule = &rd->reg_rules[i];
3404 freq_range = &reg_rule->freq_range;
3405 power_rule = &reg_rule->power_rule;
3406
3407 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
Olivier Deprez0e641232021-09-23 10:07:05 +02003408 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003409 freq_range->max_bandwidth_khz,
3410 reg_get_max_bandwidth(rd, reg_rule));
3411 else
3412 snprintf(bw, sizeof(bw), "%d KHz",
3413 freq_range->max_bandwidth_khz);
3414
3415 if (reg_rule->flags & NL80211_RRF_DFS)
3416 scnprintf(cac_time, sizeof(cac_time), "%u s",
3417 reg_rule->dfs_cac_ms/1000);
3418 else
3419 scnprintf(cac_time, sizeof(cac_time), "N/A");
3420
3421
3422 /*
3423 * There may not be documentation for max antenna gain
3424 * in certain regions
3425 */
3426 if (power_rule->max_antenna_gain)
3427 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3428 freq_range->start_freq_khz,
3429 freq_range->end_freq_khz,
3430 bw,
3431 power_rule->max_antenna_gain,
3432 power_rule->max_eirp,
3433 cac_time);
3434 else
3435 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3436 freq_range->start_freq_khz,
3437 freq_range->end_freq_khz,
3438 bw,
3439 power_rule->max_eirp,
3440 cac_time);
3441 }
3442}
3443
3444bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3445{
3446 switch (dfs_region) {
3447 case NL80211_DFS_UNSET:
3448 case NL80211_DFS_FCC:
3449 case NL80211_DFS_ETSI:
3450 case NL80211_DFS_JP:
3451 return true;
3452 default:
3453 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3454 return false;
3455 }
3456}
3457
3458static void print_regdomain(const struct ieee80211_regdomain *rd)
3459{
3460 struct regulatory_request *lr = get_last_request();
3461
3462 if (is_intersected_alpha2(rd->alpha2)) {
3463 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3464 struct cfg80211_registered_device *rdev;
3465 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3466 if (rdev) {
3467 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3468 rdev->country_ie_alpha2[0],
3469 rdev->country_ie_alpha2[1]);
3470 } else
3471 pr_debug("Current regulatory domain intersected:\n");
3472 } else
3473 pr_debug("Current regulatory domain intersected:\n");
3474 } else if (is_world_regdom(rd->alpha2)) {
3475 pr_debug("World regulatory domain updated:\n");
3476 } else {
3477 if (is_unknown_alpha2(rd->alpha2))
3478 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3479 else {
3480 if (reg_request_cell_base(lr))
3481 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3482 rd->alpha2[0], rd->alpha2[1]);
3483 else
3484 pr_debug("Regulatory domain changed to country: %c%c\n",
3485 rd->alpha2[0], rd->alpha2[1]);
3486 }
3487 }
3488
3489 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3490 print_rd_rules(rd);
3491}
3492
3493static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3494{
3495 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3496 print_rd_rules(rd);
3497}
3498
3499static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3500{
3501 if (!is_world_regdom(rd->alpha2))
3502 return -EINVAL;
3503 update_world_regdomain(rd);
3504 return 0;
3505}
3506
3507static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3508 struct regulatory_request *user_request)
3509{
3510 const struct ieee80211_regdomain *intersected_rd = NULL;
3511
3512 if (!regdom_changes(rd->alpha2))
3513 return -EALREADY;
3514
3515 if (!is_valid_rd(rd)) {
3516 pr_err("Invalid regulatory domain detected: %c%c\n",
3517 rd->alpha2[0], rd->alpha2[1]);
3518 print_regdomain_info(rd);
3519 return -EINVAL;
3520 }
3521
3522 if (!user_request->intersect) {
3523 reset_regdomains(false, rd);
3524 return 0;
3525 }
3526
3527 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3528 if (!intersected_rd)
3529 return -EINVAL;
3530
3531 kfree(rd);
3532 rd = NULL;
3533 reset_regdomains(false, intersected_rd);
3534
3535 return 0;
3536}
3537
3538static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3539 struct regulatory_request *driver_request)
3540{
3541 const struct ieee80211_regdomain *regd;
3542 const struct ieee80211_regdomain *intersected_rd = NULL;
3543 const struct ieee80211_regdomain *tmp;
3544 struct wiphy *request_wiphy;
3545
3546 if (is_world_regdom(rd->alpha2))
3547 return -EINVAL;
3548
3549 if (!regdom_changes(rd->alpha2))
3550 return -EALREADY;
3551
3552 if (!is_valid_rd(rd)) {
3553 pr_err("Invalid regulatory domain detected: %c%c\n",
3554 rd->alpha2[0], rd->alpha2[1]);
3555 print_regdomain_info(rd);
3556 return -EINVAL;
3557 }
3558
3559 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3560 if (!request_wiphy)
3561 return -ENODEV;
3562
3563 if (!driver_request->intersect) {
3564 if (request_wiphy->regd)
3565 return -EALREADY;
3566
3567 regd = reg_copy_regd(rd);
3568 if (IS_ERR(regd))
3569 return PTR_ERR(regd);
3570
3571 rcu_assign_pointer(request_wiphy->regd, regd);
3572 reset_regdomains(false, rd);
3573 return 0;
3574 }
3575
3576 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3577 if (!intersected_rd)
3578 return -EINVAL;
3579
3580 /*
3581 * We can trash what CRDA provided now.
3582 * However if a driver requested this specific regulatory
3583 * domain we keep it for its private use
3584 */
3585 tmp = get_wiphy_regdom(request_wiphy);
3586 rcu_assign_pointer(request_wiphy->regd, rd);
3587 rcu_free_regdom(tmp);
3588
3589 rd = NULL;
3590
3591 reset_regdomains(false, intersected_rd);
3592
3593 return 0;
3594}
3595
3596static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3597 struct regulatory_request *country_ie_request)
3598{
3599 struct wiphy *request_wiphy;
3600
3601 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3602 !is_unknown_alpha2(rd->alpha2))
3603 return -EINVAL;
3604
3605 /*
3606 * Lets only bother proceeding on the same alpha2 if the current
3607 * rd is non static (it means CRDA was present and was used last)
3608 * and the pending request came in from a country IE
3609 */
3610
3611 if (!is_valid_rd(rd)) {
3612 pr_err("Invalid regulatory domain detected: %c%c\n",
3613 rd->alpha2[0], rd->alpha2[1]);
3614 print_regdomain_info(rd);
3615 return -EINVAL;
3616 }
3617
3618 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3619 if (!request_wiphy)
3620 return -ENODEV;
3621
3622 if (country_ie_request->intersect)
3623 return -EINVAL;
3624
3625 reset_regdomains(false, rd);
3626 return 0;
3627}
3628
3629/*
3630 * Use this call to set the current regulatory domain. Conflicts with
3631 * multiple drivers can be ironed out later. Caller must've already
3632 * kmalloc'd the rd structure.
3633 */
3634int set_regdom(const struct ieee80211_regdomain *rd,
3635 enum ieee80211_regd_source regd_src)
3636{
3637 struct regulatory_request *lr;
3638 bool user_reset = false;
3639 int r;
3640
David Brazdil0f672f62019-12-10 10:32:29 +00003641 if (IS_ERR_OR_NULL(rd))
3642 return -ENODATA;
3643
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003644 if (!reg_is_valid_request(rd->alpha2)) {
3645 kfree(rd);
3646 return -EINVAL;
3647 }
3648
3649 if (regd_src == REGD_SOURCE_CRDA)
3650 reset_crda_timeouts();
3651
3652 lr = get_last_request();
3653
3654 /* Note that this doesn't update the wiphys, this is done below */
3655 switch (lr->initiator) {
3656 case NL80211_REGDOM_SET_BY_CORE:
3657 r = reg_set_rd_core(rd);
3658 break;
3659 case NL80211_REGDOM_SET_BY_USER:
David Brazdil0f672f62019-12-10 10:32:29 +00003660 cfg80211_save_user_regdom(rd);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003661 r = reg_set_rd_user(rd, lr);
3662 user_reset = true;
3663 break;
3664 case NL80211_REGDOM_SET_BY_DRIVER:
3665 r = reg_set_rd_driver(rd, lr);
3666 break;
3667 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3668 r = reg_set_rd_country_ie(rd, lr);
3669 break;
3670 default:
3671 WARN(1, "invalid initiator %d\n", lr->initiator);
3672 kfree(rd);
3673 return -EINVAL;
3674 }
3675
3676 if (r) {
3677 switch (r) {
3678 case -EALREADY:
3679 reg_set_request_processed();
3680 break;
3681 default:
3682 /* Back to world regulatory in case of errors */
David Brazdil0f672f62019-12-10 10:32:29 +00003683 restore_regulatory_settings(user_reset, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003684 }
3685
3686 kfree(rd);
3687 return r;
3688 }
3689
3690 /* This would make this whole thing pointless */
3691 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3692 return -EINVAL;
3693
3694 /* update all wiphys now with the new established regulatory domain */
3695 update_all_wiphy_regulatory(lr->initiator);
3696
3697 print_regdomain(get_cfg80211_regdom());
3698
3699 nl80211_send_reg_change_event(lr);
3700
3701 reg_set_request_processed();
3702
3703 return 0;
3704}
3705
3706static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3707 struct ieee80211_regdomain *rd)
3708{
3709 const struct ieee80211_regdomain *regd;
3710 const struct ieee80211_regdomain *prev_regd;
3711 struct cfg80211_registered_device *rdev;
3712
3713 if (WARN_ON(!wiphy || !rd))
3714 return -EINVAL;
3715
3716 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3717 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3718 return -EPERM;
3719
3720 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3721 print_regdomain_info(rd);
3722 return -EINVAL;
3723 }
3724
3725 regd = reg_copy_regd(rd);
3726 if (IS_ERR(regd))
3727 return PTR_ERR(regd);
3728
3729 rdev = wiphy_to_rdev(wiphy);
3730
3731 spin_lock(&reg_requests_lock);
3732 prev_regd = rdev->requested_regd;
3733 rdev->requested_regd = regd;
3734 spin_unlock(&reg_requests_lock);
3735
3736 kfree(prev_regd);
3737 return 0;
3738}
3739
3740int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3741 struct ieee80211_regdomain *rd)
3742{
3743 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3744
3745 if (ret)
3746 return ret;
3747
3748 schedule_work(&reg_work);
3749 return 0;
3750}
3751EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3752
3753int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3754 struct ieee80211_regdomain *rd)
3755{
3756 int ret;
3757
3758 ASSERT_RTNL();
3759
3760 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3761 if (ret)
3762 return ret;
3763
3764 /* process the request immediately */
3765 reg_process_self_managed_hints();
3766 return 0;
3767}
3768EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3769
3770void wiphy_regulatory_register(struct wiphy *wiphy)
3771{
3772 struct regulatory_request *lr = get_last_request();
3773
3774 /* self-managed devices ignore beacon hints and country IE */
3775 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3776 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3777 REGULATORY_COUNTRY_IE_IGNORE;
3778
3779 /*
3780 * The last request may have been received before this
3781 * registration call. Call the driver notifier if
David Brazdil0f672f62019-12-10 10:32:29 +00003782 * initiator is USER.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003783 */
David Brazdil0f672f62019-12-10 10:32:29 +00003784 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003785 reg_call_notifier(wiphy, lr);
3786 }
3787
3788 if (!reg_dev_ignore_cell_hint(wiphy))
3789 reg_num_devs_support_basehint++;
3790
3791 wiphy_update_regulatory(wiphy, lr->initiator);
3792 wiphy_all_share_dfs_chan_state(wiphy);
3793}
3794
3795void wiphy_regulatory_deregister(struct wiphy *wiphy)
3796{
3797 struct wiphy *request_wiphy = NULL;
3798 struct regulatory_request *lr;
3799
3800 lr = get_last_request();
3801
3802 if (!reg_dev_ignore_cell_hint(wiphy))
3803 reg_num_devs_support_basehint--;
3804
3805 rcu_free_regdom(get_wiphy_regdom(wiphy));
3806 RCU_INIT_POINTER(wiphy->regd, NULL);
3807
3808 if (lr)
3809 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3810
3811 if (!request_wiphy || request_wiphy != wiphy)
3812 return;
3813
3814 lr->wiphy_idx = WIPHY_IDX_INVALID;
3815 lr->country_ie_env = ENVIRON_ANY;
3816}
3817
3818/*
David Brazdil0f672f62019-12-10 10:32:29 +00003819 * See FCC notices for UNII band definitions
3820 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
3821 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003822 */
3823int cfg80211_get_unii(int freq)
3824{
3825 /* UNII-1 */
3826 if (freq >= 5150 && freq <= 5250)
3827 return 0;
3828
3829 /* UNII-2A */
3830 if (freq > 5250 && freq <= 5350)
3831 return 1;
3832
3833 /* UNII-2B */
3834 if (freq > 5350 && freq <= 5470)
3835 return 2;
3836
3837 /* UNII-2C */
3838 if (freq > 5470 && freq <= 5725)
3839 return 3;
3840
3841 /* UNII-3 */
3842 if (freq > 5725 && freq <= 5825)
3843 return 4;
3844
David Brazdil0f672f62019-12-10 10:32:29 +00003845 /* UNII-5 */
3846 if (freq > 5925 && freq <= 6425)
3847 return 5;
3848
3849 /* UNII-6 */
3850 if (freq > 6425 && freq <= 6525)
3851 return 6;
3852
3853 /* UNII-7 */
3854 if (freq > 6525 && freq <= 6875)
3855 return 7;
3856
3857 /* UNII-8 */
3858 if (freq > 6875 && freq <= 7125)
3859 return 8;
3860
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003861 return -EINVAL;
3862}
3863
3864bool regulatory_indoor_allowed(void)
3865{
3866 return reg_is_indoor;
3867}
3868
3869bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3870{
3871 const struct ieee80211_regdomain *regd = NULL;
3872 const struct ieee80211_regdomain *wiphy_regd = NULL;
3873 bool pre_cac_allowed = false;
3874
3875 rcu_read_lock();
3876
3877 regd = rcu_dereference(cfg80211_regdomain);
3878 wiphy_regd = rcu_dereference(wiphy->regd);
3879 if (!wiphy_regd) {
3880 if (regd->dfs_region == NL80211_DFS_ETSI)
3881 pre_cac_allowed = true;
3882
3883 rcu_read_unlock();
3884
3885 return pre_cac_allowed;
3886 }
3887
3888 if (regd->dfs_region == wiphy_regd->dfs_region &&
3889 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3890 pre_cac_allowed = true;
3891
3892 rcu_read_unlock();
3893
3894 return pre_cac_allowed;
3895}
David Brazdil0f672f62019-12-10 10:32:29 +00003896EXPORT_SYMBOL(regulatory_pre_cac_allowed);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003897
Olivier Deprez0e641232021-09-23 10:07:05 +02003898static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
3899{
3900 struct wireless_dev *wdev;
3901 /* If we finished CAC or received radar, we should end any
3902 * CAC running on the same channels.
3903 * the check !cfg80211_chandef_dfs_usable contain 2 options:
3904 * either all channels are available - those the CAC_FINISHED
3905 * event has effected another wdev state, or there is a channel
3906 * in unavailable state in wdev chandef - those the RADAR_DETECTED
3907 * event has effected another wdev state.
3908 * In both cases we should end the CAC on the wdev.
3909 */
3910 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3911 if (wdev->cac_started &&
3912 !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
3913 rdev_end_cac(rdev, wdev->netdev);
3914 }
3915}
3916
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003917void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3918 struct cfg80211_chan_def *chandef,
3919 enum nl80211_dfs_state dfs_state,
3920 enum nl80211_radar_event event)
3921{
3922 struct cfg80211_registered_device *rdev;
3923
3924 ASSERT_RTNL();
3925
3926 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3927 return;
3928
3929 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3930 if (wiphy == &rdev->wiphy)
3931 continue;
3932
3933 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3934 continue;
3935
3936 if (!ieee80211_get_channel(&rdev->wiphy,
3937 chandef->chan->center_freq))
3938 continue;
3939
3940 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3941
3942 if (event == NL80211_RADAR_DETECTED ||
Olivier Deprez0e641232021-09-23 10:07:05 +02003943 event == NL80211_RADAR_CAC_FINISHED) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003944 cfg80211_sched_dfs_chan_update(rdev);
Olivier Deprez0e641232021-09-23 10:07:05 +02003945 cfg80211_check_and_end_cac(rdev);
3946 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003947
3948 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3949 }
3950}
3951
3952static int __init regulatory_init_db(void)
3953{
3954 int err;
3955
David Brazdil0f672f62019-12-10 10:32:29 +00003956 /*
3957 * It's possible that - due to other bugs/issues - cfg80211
3958 * never called regulatory_init() below, or that it failed;
3959 * in that case, don't try to do any further work here as
3960 * it's doomed to lead to crashes.
3961 */
3962 if (IS_ERR_OR_NULL(reg_pdev))
3963 return -EINVAL;
3964
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003965 err = load_builtin_regdb_keys();
3966 if (err)
3967 return err;
3968
3969 /* We always try to get an update for the static regdomain */
3970 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3971 if (err) {
3972 if (err == -ENOMEM) {
3973 platform_device_unregister(reg_pdev);
3974 return err;
3975 }
3976 /*
3977 * N.B. kobject_uevent_env() can fail mainly for when we're out
3978 * memory which is handled and propagated appropriately above
3979 * but it can also fail during a netlink_broadcast() or during
3980 * early boot for call_usermodehelper(). For now treat these
3981 * errors as non-fatal.
3982 */
3983 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3984 }
3985
3986 /*
3987 * Finally, if the user set the module parameter treat it
3988 * as a user hint.
3989 */
3990 if (!is_world_regdom(ieee80211_regdom))
3991 regulatory_hint_user(ieee80211_regdom,
3992 NL80211_USER_REG_HINT_USER);
3993
3994 return 0;
3995}
3996#ifndef MODULE
3997late_initcall(regulatory_init_db);
3998#endif
3999
4000int __init regulatory_init(void)
4001{
4002 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4003 if (IS_ERR(reg_pdev))
4004 return PTR_ERR(reg_pdev);
4005
4006 spin_lock_init(&reg_requests_lock);
4007 spin_lock_init(&reg_pending_beacons_lock);
4008 spin_lock_init(&reg_indoor_lock);
4009
4010 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4011
4012 user_alpha2[0] = '9';
4013 user_alpha2[1] = '7';
4014
4015#ifdef MODULE
4016 return regulatory_init_db();
4017#else
4018 return 0;
4019#endif
4020}
4021
4022void regulatory_exit(void)
4023{
4024 struct regulatory_request *reg_request, *tmp;
4025 struct reg_beacon *reg_beacon, *btmp;
4026
4027 cancel_work_sync(&reg_work);
4028 cancel_crda_timeout_sync();
4029 cancel_delayed_work_sync(&reg_check_chans);
4030
4031 /* Lock to suppress warnings */
4032 rtnl_lock();
4033 reset_regdomains(true, NULL);
4034 rtnl_unlock();
4035
4036 dev_set_uevent_suppress(&reg_pdev->dev, true);
4037
4038 platform_device_unregister(reg_pdev);
4039
4040 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4041 list_del(&reg_beacon->list);
4042 kfree(reg_beacon);
4043 }
4044
4045 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4046 list_del(&reg_beacon->list);
4047 kfree(reg_beacon);
4048 }
4049
4050 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4051 list_del(&reg_request->list);
4052 kfree(reg_request);
4053 }
4054
4055 if (!IS_ERR_OR_NULL(regdb))
4056 kfree(regdb);
David Brazdil0f672f62019-12-10 10:32:29 +00004057 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4058 kfree(cfg80211_user_regdom);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004059
4060 free_regdb_keyring();
4061}