blob: c0fcfa2964686ef2c9dc0d64d2ef778f9102aa0f [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22/*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65#define pr_fmt(fmt) "TCP: " fmt
66
67#include <linux/mm.h>
68#include <linux/slab.h>
69#include <linux/module.h>
70#include <linux/sysctl.h>
71#include <linux/kernel.h>
72#include <linux/prefetch.h>
73#include <net/dst.h>
74#include <net/tcp.h>
75#include <net/inet_common.h>
76#include <linux/ipsec.h>
77#include <asm/unaligned.h>
78#include <linux/errqueue.h>
79#include <trace/events/tcp.h>
David Brazdil0f672f62019-12-10 10:32:29 +000080#include <linux/jump_label_ratelimit.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000081#include <net/busy_poll.h>
82
83int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
84
85#define FLAG_DATA 0x01 /* Incoming frame contained data. */
86#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
87#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
88#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
89#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
90#define FLAG_DATA_SACKED 0x20 /* New SACK. */
91#define FLAG_ECE 0x40 /* ECE in this ACK */
92#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
93#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
94#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
95#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
96#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
97#define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
98#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
99#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
100#define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
101#define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
102
103#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
106#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
107
108#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
109#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
110
111#define REXMIT_NONE 0 /* no loss recovery to do */
112#define REXMIT_LOST 1 /* retransmit packets marked lost */
113#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
114
115#if IS_ENABLED(CONFIG_TLS_DEVICE)
David Brazdil0f672f62019-12-10 10:32:29 +0000116static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000117
118void clean_acked_data_enable(struct inet_connection_sock *icsk,
119 void (*cad)(struct sock *sk, u32 ack_seq))
120{
121 icsk->icsk_clean_acked = cad;
David Brazdil0f672f62019-12-10 10:32:29 +0000122 static_branch_deferred_inc(&clean_acked_data_enabled);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000123}
124EXPORT_SYMBOL_GPL(clean_acked_data_enable);
125
126void clean_acked_data_disable(struct inet_connection_sock *icsk)
127{
David Brazdil0f672f62019-12-10 10:32:29 +0000128 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000129 icsk->icsk_clean_acked = NULL;
130}
131EXPORT_SYMBOL_GPL(clean_acked_data_disable);
David Brazdil0f672f62019-12-10 10:32:29 +0000132
133void clean_acked_data_flush(void)
134{
135 static_key_deferred_flush(&clean_acked_data_enabled);
136}
137EXPORT_SYMBOL_GPL(clean_acked_data_flush);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000138#endif
139
140static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
141 unsigned int len)
142{
143 static bool __once __read_mostly;
144
145 if (!__once) {
146 struct net_device *dev;
147
148 __once = true;
149
150 rcu_read_lock();
151 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
152 if (!dev || len >= dev->mtu)
153 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
154 dev ? dev->name : "Unknown driver");
155 rcu_read_unlock();
156 }
157}
158
159/* Adapt the MSS value used to make delayed ack decision to the
160 * real world.
161 */
162static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
163{
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 const unsigned int lss = icsk->icsk_ack.last_seg_size;
166 unsigned int len;
167
168 icsk->icsk_ack.last_seg_size = 0;
169
170 /* skb->len may jitter because of SACKs, even if peer
171 * sends good full-sized frames.
172 */
173 len = skb_shinfo(skb)->gso_size ? : skb->len;
174 if (len >= icsk->icsk_ack.rcv_mss) {
175 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
176 tcp_sk(sk)->advmss);
177 /* Account for possibly-removed options */
178 if (unlikely(len > icsk->icsk_ack.rcv_mss +
179 MAX_TCP_OPTION_SPACE))
180 tcp_gro_dev_warn(sk, skb, len);
181 } else {
182 /* Otherwise, we make more careful check taking into account,
183 * that SACKs block is variable.
184 *
185 * "len" is invariant segment length, including TCP header.
186 */
187 len += skb->data - skb_transport_header(skb);
188 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
189 /* If PSH is not set, packet should be
190 * full sized, provided peer TCP is not badly broken.
191 * This observation (if it is correct 8)) allows
192 * to handle super-low mtu links fairly.
193 */
194 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
195 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
196 /* Subtract also invariant (if peer is RFC compliant),
197 * tcp header plus fixed timestamp option length.
198 * Resulting "len" is MSS free of SACK jitter.
199 */
200 len -= tcp_sk(sk)->tcp_header_len;
201 icsk->icsk_ack.last_seg_size = len;
202 if (len == lss) {
203 icsk->icsk_ack.rcv_mss = len;
204 return;
205 }
206 }
207 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
208 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
209 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
210 }
211}
212
213static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
214{
215 struct inet_connection_sock *icsk = inet_csk(sk);
216 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
217
218 if (quickacks == 0)
219 quickacks = 2;
220 quickacks = min(quickacks, max_quickacks);
221 if (quickacks > icsk->icsk_ack.quick)
222 icsk->icsk_ack.quick = quickacks;
223}
224
225void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
226{
227 struct inet_connection_sock *icsk = inet_csk(sk);
228
229 tcp_incr_quickack(sk, max_quickacks);
David Brazdil0f672f62019-12-10 10:32:29 +0000230 inet_csk_exit_pingpong_mode(sk);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000231 icsk->icsk_ack.ato = TCP_ATO_MIN;
232}
233EXPORT_SYMBOL(tcp_enter_quickack_mode);
234
235/* Send ACKs quickly, if "quick" count is not exhausted
236 * and the session is not interactive.
237 */
238
239static bool tcp_in_quickack_mode(struct sock *sk)
240{
241 const struct inet_connection_sock *icsk = inet_csk(sk);
242 const struct dst_entry *dst = __sk_dst_get(sk);
243
244 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
David Brazdil0f672f62019-12-10 10:32:29 +0000245 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000246}
247
248static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
249{
250 if (tp->ecn_flags & TCP_ECN_OK)
251 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
252}
253
254static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
255{
256 if (tcp_hdr(skb)->cwr) {
257 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
258
259 /* If the sender is telling us it has entered CWR, then its
260 * cwnd may be very low (even just 1 packet), so we should ACK
261 * immediately.
262 */
Olivier Deprez0e641232021-09-23 10:07:05 +0200263 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
264 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000265 }
266}
267
268static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
269{
David Brazdil0f672f62019-12-10 10:32:29 +0000270 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000271}
272
273static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
274{
275 struct tcp_sock *tp = tcp_sk(sk);
276
277 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
278 case INET_ECN_NOT_ECT:
279 /* Funny extension: if ECT is not set on a segment,
280 * and we already seen ECT on a previous segment,
281 * it is probably a retransmit.
282 */
283 if (tp->ecn_flags & TCP_ECN_SEEN)
284 tcp_enter_quickack_mode(sk, 2);
285 break;
286 case INET_ECN_CE:
287 if (tcp_ca_needs_ecn(sk))
288 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
289
290 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
291 /* Better not delay acks, sender can have a very low cwnd */
292 tcp_enter_quickack_mode(sk, 2);
293 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
294 }
295 tp->ecn_flags |= TCP_ECN_SEEN;
296 break;
297 default:
298 if (tcp_ca_needs_ecn(sk))
299 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
300 tp->ecn_flags |= TCP_ECN_SEEN;
301 break;
302 }
303}
304
305static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
306{
307 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
308 __tcp_ecn_check_ce(sk, skb);
309}
310
311static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
312{
313 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
314 tp->ecn_flags &= ~TCP_ECN_OK;
315}
316
317static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
318{
319 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
320 tp->ecn_flags &= ~TCP_ECN_OK;
321}
322
323static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
324{
325 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
326 return true;
327 return false;
328}
329
330/* Buffer size and advertised window tuning.
331 *
332 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
333 */
334
335static void tcp_sndbuf_expand(struct sock *sk)
336{
337 const struct tcp_sock *tp = tcp_sk(sk);
338 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
339 int sndmem, per_mss;
340 u32 nr_segs;
341
342 /* Worst case is non GSO/TSO : each frame consumes one skb
343 * and skb->head is kmalloced using power of two area of memory
344 */
345 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
346 MAX_TCP_HEADER +
347 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
348
349 per_mss = roundup_pow_of_two(per_mss) +
350 SKB_DATA_ALIGN(sizeof(struct sk_buff));
351
352 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
353 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
354
355 /* Fast Recovery (RFC 5681 3.2) :
356 * Cubic needs 1.7 factor, rounded to 2 to include
357 * extra cushion (application might react slowly to EPOLLOUT)
358 */
359 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
360 sndmem *= nr_segs * per_mss;
361
362 if (sk->sk_sndbuf < sndmem)
David Brazdil0f672f62019-12-10 10:32:29 +0000363 WRITE_ONCE(sk->sk_sndbuf,
364 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000365}
366
367/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
368 *
369 * All tcp_full_space() is split to two parts: "network" buffer, allocated
370 * forward and advertised in receiver window (tp->rcv_wnd) and
371 * "application buffer", required to isolate scheduling/application
372 * latencies from network.
373 * window_clamp is maximal advertised window. It can be less than
374 * tcp_full_space(), in this case tcp_full_space() - window_clamp
375 * is reserved for "application" buffer. The less window_clamp is
376 * the smoother our behaviour from viewpoint of network, but the lower
377 * throughput and the higher sensitivity of the connection to losses. 8)
378 *
379 * rcv_ssthresh is more strict window_clamp used at "slow start"
380 * phase to predict further behaviour of this connection.
381 * It is used for two goals:
382 * - to enforce header prediction at sender, even when application
383 * requires some significant "application buffer". It is check #1.
384 * - to prevent pruning of receive queue because of misprediction
385 * of receiver window. Check #2.
386 *
387 * The scheme does not work when sender sends good segments opening
388 * window and then starts to feed us spaghetti. But it should work
389 * in common situations. Otherwise, we have to rely on queue collapsing.
390 */
391
392/* Slow part of check#2. */
393static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
394{
395 struct tcp_sock *tp = tcp_sk(sk);
396 /* Optimize this! */
397 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
398 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
399
400 while (tp->rcv_ssthresh <= window) {
401 if (truesize <= skb->len)
402 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
403
404 truesize >>= 1;
405 window >>= 1;
406 }
407 return 0;
408}
409
410static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
411{
412 struct tcp_sock *tp = tcp_sk(sk);
David Brazdil0f672f62019-12-10 10:32:29 +0000413 int room;
414
415 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000416
417 /* Check #1 */
David Brazdil0f672f62019-12-10 10:32:29 +0000418 if (room > 0 && !tcp_under_memory_pressure(sk)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000419 int incr;
420
421 /* Check #2. Increase window, if skb with such overhead
422 * will fit to rcvbuf in future.
423 */
424 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
425 incr = 2 * tp->advmss;
426 else
427 incr = __tcp_grow_window(sk, skb);
428
429 if (incr) {
430 incr = max_t(int, incr, 2 * skb->len);
David Brazdil0f672f62019-12-10 10:32:29 +0000431 tp->rcv_ssthresh += min(room, incr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000432 inet_csk(sk)->icsk_ack.quick |= 1;
433 }
434 }
435}
436
David Brazdil0f672f62019-12-10 10:32:29 +0000437/* 3. Try to fixup all. It is made immediately after connection enters
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000438 * established state.
439 */
440void tcp_init_buffer_space(struct sock *sk)
441{
442 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
443 struct tcp_sock *tp = tcp_sk(sk);
444 int maxwin;
445
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000446 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
447 tcp_sndbuf_expand(sk);
448
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000449 tcp_mstamp_refresh(tp);
450 tp->rcvq_space.time = tp->tcp_mstamp;
451 tp->rcvq_space.seq = tp->copied_seq;
452
453 maxwin = tcp_full_space(sk);
454
455 if (tp->window_clamp >= maxwin) {
456 tp->window_clamp = maxwin;
457
458 if (tcp_app_win && maxwin > 4 * tp->advmss)
459 tp->window_clamp = max(maxwin -
460 (maxwin >> tcp_app_win),
461 4 * tp->advmss);
462 }
463
464 /* Force reservation of one segment. */
465 if (tcp_app_win &&
466 tp->window_clamp > 2 * tp->advmss &&
467 tp->window_clamp + tp->advmss > maxwin)
468 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
469
470 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
471 tp->snd_cwnd_stamp = tcp_jiffies32;
Olivier Deprez0e641232021-09-23 10:07:05 +0200472 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
473 (u32)TCP_INIT_CWND * tp->advmss);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000474}
475
David Brazdil0f672f62019-12-10 10:32:29 +0000476/* 4. Recalculate window clamp after socket hit its memory bounds. */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000477static void tcp_clamp_window(struct sock *sk)
478{
479 struct tcp_sock *tp = tcp_sk(sk);
480 struct inet_connection_sock *icsk = inet_csk(sk);
481 struct net *net = sock_net(sk);
482
483 icsk->icsk_ack.quick = 0;
484
485 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
486 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
487 !tcp_under_memory_pressure(sk) &&
488 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
David Brazdil0f672f62019-12-10 10:32:29 +0000489 WRITE_ONCE(sk->sk_rcvbuf,
490 min(atomic_read(&sk->sk_rmem_alloc),
491 net->ipv4.sysctl_tcp_rmem[2]));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000492 }
493 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
494 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
495}
496
497/* Initialize RCV_MSS value.
498 * RCV_MSS is an our guess about MSS used by the peer.
499 * We haven't any direct information about the MSS.
500 * It's better to underestimate the RCV_MSS rather than overestimate.
501 * Overestimations make us ACKing less frequently than needed.
502 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
503 */
504void tcp_initialize_rcv_mss(struct sock *sk)
505{
506 const struct tcp_sock *tp = tcp_sk(sk);
507 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
508
509 hint = min(hint, tp->rcv_wnd / 2);
510 hint = min(hint, TCP_MSS_DEFAULT);
511 hint = max(hint, TCP_MIN_MSS);
512
513 inet_csk(sk)->icsk_ack.rcv_mss = hint;
514}
515EXPORT_SYMBOL(tcp_initialize_rcv_mss);
516
517/* Receiver "autotuning" code.
518 *
519 * The algorithm for RTT estimation w/o timestamps is based on
520 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
521 * <http://public.lanl.gov/radiant/pubs.html#DRS>
522 *
523 * More detail on this code can be found at
524 * <http://staff.psc.edu/jheffner/>,
525 * though this reference is out of date. A new paper
526 * is pending.
527 */
528static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
529{
530 u32 new_sample = tp->rcv_rtt_est.rtt_us;
531 long m = sample;
532
533 if (new_sample != 0) {
534 /* If we sample in larger samples in the non-timestamp
535 * case, we could grossly overestimate the RTT especially
536 * with chatty applications or bulk transfer apps which
537 * are stalled on filesystem I/O.
538 *
539 * Also, since we are only going for a minimum in the
540 * non-timestamp case, we do not smooth things out
541 * else with timestamps disabled convergence takes too
542 * long.
543 */
544 if (!win_dep) {
545 m -= (new_sample >> 3);
546 new_sample += m;
547 } else {
548 m <<= 3;
549 if (m < new_sample)
550 new_sample = m;
551 }
552 } else {
553 /* No previous measure. */
554 new_sample = m << 3;
555 }
556
557 tp->rcv_rtt_est.rtt_us = new_sample;
558}
559
560static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
561{
562 u32 delta_us;
563
564 if (tp->rcv_rtt_est.time == 0)
565 goto new_measure;
566 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
567 return;
568 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
569 if (!delta_us)
570 delta_us = 1;
571 tcp_rcv_rtt_update(tp, delta_us, 1);
572
573new_measure:
574 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
575 tp->rcv_rtt_est.time = tp->tcp_mstamp;
576}
577
578static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
579 const struct sk_buff *skb)
580{
581 struct tcp_sock *tp = tcp_sk(sk);
582
583 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
584 return;
585 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
586
587 if (TCP_SKB_CB(skb)->end_seq -
588 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
589 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
590 u32 delta_us;
591
David Brazdil0f672f62019-12-10 10:32:29 +0000592 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
593 if (!delta)
594 delta = 1;
595 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
596 tcp_rcv_rtt_update(tp, delta_us, 0);
597 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000598 }
599}
600
601/*
602 * This function should be called every time data is copied to user space.
603 * It calculates the appropriate TCP receive buffer space.
604 */
605void tcp_rcv_space_adjust(struct sock *sk)
606{
607 struct tcp_sock *tp = tcp_sk(sk);
608 u32 copied;
609 int time;
610
611 trace_tcp_rcv_space_adjust(sk);
612
613 tcp_mstamp_refresh(tp);
614 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
615 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
616 return;
617
618 /* Number of bytes copied to user in last RTT */
619 copied = tp->copied_seq - tp->rcvq_space.seq;
620 if (copied <= tp->rcvq_space.space)
621 goto new_measure;
622
623 /* A bit of theory :
624 * copied = bytes received in previous RTT, our base window
625 * To cope with packet losses, we need a 2x factor
626 * To cope with slow start, and sender growing its cwin by 100 %
627 * every RTT, we need a 4x factor, because the ACK we are sending
628 * now is for the next RTT, not the current one :
629 * <prev RTT . ><current RTT .. ><next RTT .... >
630 */
631
632 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
633 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
634 int rcvmem, rcvbuf;
635 u64 rcvwin, grow;
636
637 /* minimal window to cope with packet losses, assuming
638 * steady state. Add some cushion because of small variations.
639 */
640 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
641
642 /* Accommodate for sender rate increase (eg. slow start) */
643 grow = rcvwin * (copied - tp->rcvq_space.space);
644 do_div(grow, tp->rcvq_space.space);
645 rcvwin += (grow << 1);
646
647 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
648 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
649 rcvmem += 128;
650
651 do_div(rcvwin, tp->advmss);
652 rcvbuf = min_t(u64, rcvwin * rcvmem,
653 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
654 if (rcvbuf > sk->sk_rcvbuf) {
David Brazdil0f672f62019-12-10 10:32:29 +0000655 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000656
657 /* Make the window clamp follow along. */
658 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
659 }
660 }
661 tp->rcvq_space.space = copied;
662
663new_measure:
664 tp->rcvq_space.seq = tp->copied_seq;
665 tp->rcvq_space.time = tp->tcp_mstamp;
666}
667
668/* There is something which you must keep in mind when you analyze the
669 * behavior of the tp->ato delayed ack timeout interval. When a
670 * connection starts up, we want to ack as quickly as possible. The
671 * problem is that "good" TCP's do slow start at the beginning of data
672 * transmission. The means that until we send the first few ACK's the
673 * sender will sit on his end and only queue most of his data, because
674 * he can only send snd_cwnd unacked packets at any given time. For
675 * each ACK we send, he increments snd_cwnd and transmits more of his
676 * queue. -DaveM
677 */
678static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
679{
680 struct tcp_sock *tp = tcp_sk(sk);
681 struct inet_connection_sock *icsk = inet_csk(sk);
682 u32 now;
683
684 inet_csk_schedule_ack(sk);
685
686 tcp_measure_rcv_mss(sk, skb);
687
688 tcp_rcv_rtt_measure(tp);
689
690 now = tcp_jiffies32;
691
692 if (!icsk->icsk_ack.ato) {
693 /* The _first_ data packet received, initialize
694 * delayed ACK engine.
695 */
696 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
697 icsk->icsk_ack.ato = TCP_ATO_MIN;
698 } else {
699 int m = now - icsk->icsk_ack.lrcvtime;
700
701 if (m <= TCP_ATO_MIN / 2) {
702 /* The fastest case is the first. */
703 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
704 } else if (m < icsk->icsk_ack.ato) {
705 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
706 if (icsk->icsk_ack.ato > icsk->icsk_rto)
707 icsk->icsk_ack.ato = icsk->icsk_rto;
708 } else if (m > icsk->icsk_rto) {
709 /* Too long gap. Apparently sender failed to
710 * restart window, so that we send ACKs quickly.
711 */
712 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
713 sk_mem_reclaim(sk);
714 }
715 }
716 icsk->icsk_ack.lrcvtime = now;
717
718 tcp_ecn_check_ce(sk, skb);
719
720 if (skb->len >= 128)
721 tcp_grow_window(sk, skb);
722}
723
724/* Called to compute a smoothed rtt estimate. The data fed to this
725 * routine either comes from timestamps, or from segments that were
726 * known _not_ to have been retransmitted [see Karn/Partridge
727 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
728 * piece by Van Jacobson.
729 * NOTE: the next three routines used to be one big routine.
730 * To save cycles in the RFC 1323 implementation it was better to break
731 * it up into three procedures. -- erics
732 */
733static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
734{
735 struct tcp_sock *tp = tcp_sk(sk);
736 long m = mrtt_us; /* RTT */
737 u32 srtt = tp->srtt_us;
738
739 /* The following amusing code comes from Jacobson's
740 * article in SIGCOMM '88. Note that rtt and mdev
741 * are scaled versions of rtt and mean deviation.
742 * This is designed to be as fast as possible
743 * m stands for "measurement".
744 *
745 * On a 1990 paper the rto value is changed to:
746 * RTO = rtt + 4 * mdev
747 *
748 * Funny. This algorithm seems to be very broken.
749 * These formulae increase RTO, when it should be decreased, increase
750 * too slowly, when it should be increased quickly, decrease too quickly
751 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
752 * does not matter how to _calculate_ it. Seems, it was trap
753 * that VJ failed to avoid. 8)
754 */
755 if (srtt != 0) {
756 m -= (srtt >> 3); /* m is now error in rtt est */
757 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
758 if (m < 0) {
759 m = -m; /* m is now abs(error) */
760 m -= (tp->mdev_us >> 2); /* similar update on mdev */
761 /* This is similar to one of Eifel findings.
762 * Eifel blocks mdev updates when rtt decreases.
763 * This solution is a bit different: we use finer gain
764 * for mdev in this case (alpha*beta).
765 * Like Eifel it also prevents growth of rto,
766 * but also it limits too fast rto decreases,
767 * happening in pure Eifel.
768 */
769 if (m > 0)
770 m >>= 3;
771 } else {
772 m -= (tp->mdev_us >> 2); /* similar update on mdev */
773 }
774 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
775 if (tp->mdev_us > tp->mdev_max_us) {
776 tp->mdev_max_us = tp->mdev_us;
777 if (tp->mdev_max_us > tp->rttvar_us)
778 tp->rttvar_us = tp->mdev_max_us;
779 }
780 if (after(tp->snd_una, tp->rtt_seq)) {
781 if (tp->mdev_max_us < tp->rttvar_us)
782 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
783 tp->rtt_seq = tp->snd_nxt;
784 tp->mdev_max_us = tcp_rto_min_us(sk);
David Brazdil0f672f62019-12-10 10:32:29 +0000785
786 tcp_bpf_rtt(sk);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000787 }
788 } else {
789 /* no previous measure. */
790 srtt = m << 3; /* take the measured time to be rtt */
791 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
792 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
793 tp->mdev_max_us = tp->rttvar_us;
794 tp->rtt_seq = tp->snd_nxt;
David Brazdil0f672f62019-12-10 10:32:29 +0000795
796 tcp_bpf_rtt(sk);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000797 }
798 tp->srtt_us = max(1U, srtt);
799}
800
801static void tcp_update_pacing_rate(struct sock *sk)
802{
803 const struct tcp_sock *tp = tcp_sk(sk);
804 u64 rate;
805
806 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
807 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
808
809 /* current rate is (cwnd * mss) / srtt
810 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
811 * In Congestion Avoidance phase, set it to 120 % the current rate.
812 *
813 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
814 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
815 * end of slow start and should slow down.
816 */
817 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
818 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
819 else
820 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
821
822 rate *= max(tp->snd_cwnd, tp->packets_out);
823
824 if (likely(tp->srtt_us))
825 do_div(rate, tp->srtt_us);
826
827 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
828 * without any lock. We want to make sure compiler wont store
829 * intermediate values in this location.
830 */
831 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
832 sk->sk_max_pacing_rate));
833}
834
835/* Calculate rto without backoff. This is the second half of Van Jacobson's
836 * routine referred to above.
837 */
838static void tcp_set_rto(struct sock *sk)
839{
840 const struct tcp_sock *tp = tcp_sk(sk);
841 /* Old crap is replaced with new one. 8)
842 *
843 * More seriously:
844 * 1. If rtt variance happened to be less 50msec, it is hallucination.
845 * It cannot be less due to utterly erratic ACK generation made
846 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
847 * to do with delayed acks, because at cwnd>2 true delack timeout
848 * is invisible. Actually, Linux-2.4 also generates erratic
849 * ACKs in some circumstances.
850 */
851 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
852
853 /* 2. Fixups made earlier cannot be right.
854 * If we do not estimate RTO correctly without them,
855 * all the algo is pure shit and should be replaced
856 * with correct one. It is exactly, which we pretend to do.
857 */
858
859 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
860 * guarantees that rto is higher.
861 */
862 tcp_bound_rto(sk);
863}
864
865__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
866{
867 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
868
869 if (!cwnd)
870 cwnd = TCP_INIT_CWND;
871 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
872}
873
874/* Take a notice that peer is sending D-SACKs */
875static void tcp_dsack_seen(struct tcp_sock *tp)
876{
877 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
878 tp->rack.dsack_seen = 1;
879 tp->dsack_dups++;
880}
881
882/* It's reordering when higher sequence was delivered (i.e. sacked) before
883 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
884 * distance is approximated in full-mss packet distance ("reordering").
885 */
886static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
887 const int ts)
888{
889 struct tcp_sock *tp = tcp_sk(sk);
890 const u32 mss = tp->mss_cache;
891 u32 fack, metric;
892
893 fack = tcp_highest_sack_seq(tp);
894 if (!before(low_seq, fack))
895 return;
896
897 metric = fack - low_seq;
898 if ((metric > tp->reordering * mss) && mss) {
899#if FASTRETRANS_DEBUG > 1
900 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
901 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
902 tp->reordering,
903 0,
904 tp->sacked_out,
905 tp->undo_marker ? tp->undo_retrans : 0);
906#endif
907 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
908 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
909 }
910
911 /* This exciting event is worth to be remembered. 8) */
912 tp->reord_seen++;
913 NET_INC_STATS(sock_net(sk),
914 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
915}
916
917/* This must be called before lost_out is incremented */
918static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
919{
Olivier Deprez0e641232021-09-23 10:07:05 +0200920 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
921 (tp->retransmit_skb_hint &&
922 before(TCP_SKB_CB(skb)->seq,
923 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000924 tp->retransmit_skb_hint = skb;
925}
926
927/* Sum the number of packets on the wire we have marked as lost.
928 * There are two cases we care about here:
929 * a) Packet hasn't been marked lost (nor retransmitted),
930 * and this is the first loss.
931 * b) Packet has been marked both lost and retransmitted,
932 * and this means we think it was lost again.
933 */
934static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
935{
936 __u8 sacked = TCP_SKB_CB(skb)->sacked;
937
938 if (!(sacked & TCPCB_LOST) ||
939 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
940 tp->lost += tcp_skb_pcount(skb);
941}
942
943static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
944{
945 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
946 tcp_verify_retransmit_hint(tp, skb);
947
948 tp->lost_out += tcp_skb_pcount(skb);
949 tcp_sum_lost(tp, skb);
950 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
951 }
952}
953
954void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
955{
956 tcp_verify_retransmit_hint(tp, skb);
957
958 tcp_sum_lost(tp, skb);
959 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
960 tp->lost_out += tcp_skb_pcount(skb);
961 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
962 }
963}
964
965/* This procedure tags the retransmission queue when SACKs arrive.
966 *
967 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
968 * Packets in queue with these bits set are counted in variables
969 * sacked_out, retrans_out and lost_out, correspondingly.
970 *
971 * Valid combinations are:
972 * Tag InFlight Description
973 * 0 1 - orig segment is in flight.
974 * S 0 - nothing flies, orig reached receiver.
975 * L 0 - nothing flies, orig lost by net.
976 * R 2 - both orig and retransmit are in flight.
977 * L|R 1 - orig is lost, retransmit is in flight.
978 * S|R 1 - orig reached receiver, retrans is still in flight.
979 * (L|S|R is logically valid, it could occur when L|R is sacked,
980 * but it is equivalent to plain S and code short-curcuits it to S.
981 * L|S is logically invalid, it would mean -1 packet in flight 8))
982 *
983 * These 6 states form finite state machine, controlled by the following events:
984 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
985 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
986 * 3. Loss detection event of two flavors:
987 * A. Scoreboard estimator decided the packet is lost.
988 * A'. Reno "three dupacks" marks head of queue lost.
989 * B. SACK arrives sacking SND.NXT at the moment, when the
990 * segment was retransmitted.
991 * 4. D-SACK added new rule: D-SACK changes any tag to S.
992 *
993 * It is pleasant to note, that state diagram turns out to be commutative,
994 * so that we are allowed not to be bothered by order of our actions,
995 * when multiple events arrive simultaneously. (see the function below).
996 *
997 * Reordering detection.
998 * --------------------
999 * Reordering metric is maximal distance, which a packet can be displaced
1000 * in packet stream. With SACKs we can estimate it:
1001 *
1002 * 1. SACK fills old hole and the corresponding segment was not
1003 * ever retransmitted -> reordering. Alas, we cannot use it
1004 * when segment was retransmitted.
1005 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1006 * for retransmitted and already SACKed segment -> reordering..
1007 * Both of these heuristics are not used in Loss state, when we cannot
1008 * account for retransmits accurately.
1009 *
1010 * SACK block validation.
1011 * ----------------------
1012 *
1013 * SACK block range validation checks that the received SACK block fits to
1014 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1015 * Note that SND.UNA is not included to the range though being valid because
1016 * it means that the receiver is rather inconsistent with itself reporting
1017 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1018 * perfectly valid, however, in light of RFC2018 which explicitly states
1019 * that "SACK block MUST reflect the newest segment. Even if the newest
1020 * segment is going to be discarded ...", not that it looks very clever
1021 * in case of head skb. Due to potentional receiver driven attacks, we
1022 * choose to avoid immediate execution of a walk in write queue due to
1023 * reneging and defer head skb's loss recovery to standard loss recovery
1024 * procedure that will eventually trigger (nothing forbids us doing this).
1025 *
1026 * Implements also blockage to start_seq wrap-around. Problem lies in the
1027 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1028 * there's no guarantee that it will be before snd_nxt (n). The problem
1029 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1030 * wrap (s_w):
1031 *
1032 * <- outs wnd -> <- wrapzone ->
1033 * u e n u_w e_w s n_w
1034 * | | | | | | |
1035 * |<------------+------+----- TCP seqno space --------------+---------->|
1036 * ...-- <2^31 ->| |<--------...
1037 * ...---- >2^31 ------>| |<--------...
1038 *
1039 * Current code wouldn't be vulnerable but it's better still to discard such
1040 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1041 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1042 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1043 * equal to the ideal case (infinite seqno space without wrap caused issues).
1044 *
1045 * With D-SACK the lower bound is extended to cover sequence space below
1046 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1047 * again, D-SACK block must not to go across snd_una (for the same reason as
1048 * for the normal SACK blocks, explained above). But there all simplicity
1049 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1050 * fully below undo_marker they do not affect behavior in anyway and can
1051 * therefore be safely ignored. In rare cases (which are more or less
1052 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1053 * fragmentation and packet reordering past skb's retransmission. To consider
1054 * them correctly, the acceptable range must be extended even more though
1055 * the exact amount is rather hard to quantify. However, tp->max_window can
1056 * be used as an exaggerated estimate.
1057 */
1058static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1059 u32 start_seq, u32 end_seq)
1060{
1061 /* Too far in future, or reversed (interpretation is ambiguous) */
1062 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1063 return false;
1064
1065 /* Nasty start_seq wrap-around check (see comments above) */
1066 if (!before(start_seq, tp->snd_nxt))
1067 return false;
1068
1069 /* In outstanding window? ...This is valid exit for D-SACKs too.
1070 * start_seq == snd_una is non-sensical (see comments above)
1071 */
1072 if (after(start_seq, tp->snd_una))
1073 return true;
1074
1075 if (!is_dsack || !tp->undo_marker)
1076 return false;
1077
1078 /* ...Then it's D-SACK, and must reside below snd_una completely */
1079 if (after(end_seq, tp->snd_una))
1080 return false;
1081
1082 if (!before(start_seq, tp->undo_marker))
1083 return true;
1084
1085 /* Too old */
1086 if (!after(end_seq, tp->undo_marker))
1087 return false;
1088
1089 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1090 * start_seq < undo_marker and end_seq >= undo_marker.
1091 */
1092 return !before(start_seq, end_seq - tp->max_window);
1093}
1094
1095static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1096 struct tcp_sack_block_wire *sp, int num_sacks,
1097 u32 prior_snd_una)
1098{
1099 struct tcp_sock *tp = tcp_sk(sk);
1100 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1101 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1102 bool dup_sack = false;
1103
1104 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1105 dup_sack = true;
1106 tcp_dsack_seen(tp);
1107 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1108 } else if (num_sacks > 1) {
1109 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1110 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1111
1112 if (!after(end_seq_0, end_seq_1) &&
1113 !before(start_seq_0, start_seq_1)) {
1114 dup_sack = true;
1115 tcp_dsack_seen(tp);
1116 NET_INC_STATS(sock_net(sk),
1117 LINUX_MIB_TCPDSACKOFORECV);
1118 }
1119 }
1120
1121 /* D-SACK for already forgotten data... Do dumb counting. */
1122 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1123 !after(end_seq_0, prior_snd_una) &&
1124 after(end_seq_0, tp->undo_marker))
1125 tp->undo_retrans--;
1126
1127 return dup_sack;
1128}
1129
1130struct tcp_sacktag_state {
1131 u32 reord;
1132 /* Timestamps for earliest and latest never-retransmitted segment
1133 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1134 * but congestion control should still get an accurate delay signal.
1135 */
1136 u64 first_sackt;
1137 u64 last_sackt;
1138 struct rate_sample *rate;
1139 int flag;
1140 unsigned int mss_now;
1141};
1142
1143/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1144 * the incoming SACK may not exactly match but we can find smaller MSS
1145 * aligned portion of it that matches. Therefore we might need to fragment
1146 * which may fail and creates some hassle (caller must handle error case
1147 * returns).
1148 *
1149 * FIXME: this could be merged to shift decision code
1150 */
1151static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1152 u32 start_seq, u32 end_seq)
1153{
1154 int err;
1155 bool in_sack;
1156 unsigned int pkt_len;
1157 unsigned int mss;
1158
1159 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1160 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1161
1162 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1163 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1164 mss = tcp_skb_mss(skb);
1165 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1166
1167 if (!in_sack) {
1168 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1169 if (pkt_len < mss)
1170 pkt_len = mss;
1171 } else {
1172 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1173 if (pkt_len < mss)
1174 return -EINVAL;
1175 }
1176
1177 /* Round if necessary so that SACKs cover only full MSSes
1178 * and/or the remaining small portion (if present)
1179 */
1180 if (pkt_len > mss) {
1181 unsigned int new_len = (pkt_len / mss) * mss;
1182 if (!in_sack && new_len < pkt_len)
1183 new_len += mss;
1184 pkt_len = new_len;
1185 }
1186
1187 if (pkt_len >= skb->len && !in_sack)
1188 return 0;
1189
1190 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1191 pkt_len, mss, GFP_ATOMIC);
1192 if (err < 0)
1193 return err;
1194 }
1195
1196 return in_sack;
1197}
1198
1199/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1200static u8 tcp_sacktag_one(struct sock *sk,
1201 struct tcp_sacktag_state *state, u8 sacked,
1202 u32 start_seq, u32 end_seq,
1203 int dup_sack, int pcount,
1204 u64 xmit_time)
1205{
1206 struct tcp_sock *tp = tcp_sk(sk);
1207
1208 /* Account D-SACK for retransmitted packet. */
1209 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1210 if (tp->undo_marker && tp->undo_retrans > 0 &&
1211 after(end_seq, tp->undo_marker))
Olivier Deprez0e641232021-09-23 10:07:05 +02001212 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001213 if ((sacked & TCPCB_SACKED_ACKED) &&
1214 before(start_seq, state->reord))
1215 state->reord = start_seq;
1216 }
1217
1218 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1219 if (!after(end_seq, tp->snd_una))
1220 return sacked;
1221
1222 if (!(sacked & TCPCB_SACKED_ACKED)) {
1223 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1224
1225 if (sacked & TCPCB_SACKED_RETRANS) {
1226 /* If the segment is not tagged as lost,
1227 * we do not clear RETRANS, believing
1228 * that retransmission is still in flight.
1229 */
1230 if (sacked & TCPCB_LOST) {
1231 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1232 tp->lost_out -= pcount;
1233 tp->retrans_out -= pcount;
1234 }
1235 } else {
1236 if (!(sacked & TCPCB_RETRANS)) {
1237 /* New sack for not retransmitted frame,
1238 * which was in hole. It is reordering.
1239 */
1240 if (before(start_seq,
1241 tcp_highest_sack_seq(tp)) &&
1242 before(start_seq, state->reord))
1243 state->reord = start_seq;
1244
1245 if (!after(end_seq, tp->high_seq))
1246 state->flag |= FLAG_ORIG_SACK_ACKED;
1247 if (state->first_sackt == 0)
1248 state->first_sackt = xmit_time;
1249 state->last_sackt = xmit_time;
1250 }
1251
1252 if (sacked & TCPCB_LOST) {
1253 sacked &= ~TCPCB_LOST;
1254 tp->lost_out -= pcount;
1255 }
1256 }
1257
1258 sacked |= TCPCB_SACKED_ACKED;
1259 state->flag |= FLAG_DATA_SACKED;
1260 tp->sacked_out += pcount;
1261 tp->delivered += pcount; /* Out-of-order packets delivered */
1262
1263 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1264 if (tp->lost_skb_hint &&
1265 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1266 tp->lost_cnt_hint += pcount;
1267 }
1268
1269 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1270 * frames and clear it. undo_retrans is decreased above, L|R frames
1271 * are accounted above as well.
1272 */
1273 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1274 sacked &= ~TCPCB_SACKED_RETRANS;
1275 tp->retrans_out -= pcount;
1276 }
1277
1278 return sacked;
1279}
1280
1281/* Shift newly-SACKed bytes from this skb to the immediately previous
1282 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1283 */
1284static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1285 struct sk_buff *skb,
1286 struct tcp_sacktag_state *state,
1287 unsigned int pcount, int shifted, int mss,
1288 bool dup_sack)
1289{
1290 struct tcp_sock *tp = tcp_sk(sk);
1291 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1292 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1293
1294 BUG_ON(!pcount);
1295
1296 /* Adjust counters and hints for the newly sacked sequence
1297 * range but discard the return value since prev is already
1298 * marked. We must tag the range first because the seq
1299 * advancement below implicitly advances
1300 * tcp_highest_sack_seq() when skb is highest_sack.
1301 */
1302 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1303 start_seq, end_seq, dup_sack, pcount,
David Brazdil0f672f62019-12-10 10:32:29 +00001304 tcp_skb_timestamp_us(skb));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001305 tcp_rate_skb_delivered(sk, skb, state->rate);
1306
1307 if (skb == tp->lost_skb_hint)
1308 tp->lost_cnt_hint += pcount;
1309
1310 TCP_SKB_CB(prev)->end_seq += shifted;
1311 TCP_SKB_CB(skb)->seq += shifted;
1312
1313 tcp_skb_pcount_add(prev, pcount);
David Brazdil0f672f62019-12-10 10:32:29 +00001314 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001315 tcp_skb_pcount_add(skb, -pcount);
1316
1317 /* When we're adding to gso_segs == 1, gso_size will be zero,
1318 * in theory this shouldn't be necessary but as long as DSACK
1319 * code can come after this skb later on it's better to keep
1320 * setting gso_size to something.
1321 */
1322 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1323 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1324
1325 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1326 if (tcp_skb_pcount(skb) <= 1)
1327 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1328
1329 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1330 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1331
1332 if (skb->len > 0) {
1333 BUG_ON(!tcp_skb_pcount(skb));
1334 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1335 return false;
1336 }
1337
1338 /* Whole SKB was eaten :-) */
1339
1340 if (skb == tp->retransmit_skb_hint)
1341 tp->retransmit_skb_hint = prev;
1342 if (skb == tp->lost_skb_hint) {
1343 tp->lost_skb_hint = prev;
1344 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1345 }
1346
1347 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1348 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1349 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1350 TCP_SKB_CB(prev)->end_seq++;
1351
1352 if (skb == tcp_highest_sack(sk))
1353 tcp_advance_highest_sack(sk, skb);
1354
1355 tcp_skb_collapse_tstamp(prev, skb);
1356 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1357 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1358
1359 tcp_rtx_queue_unlink_and_free(skb, sk);
1360
1361 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1362
1363 return true;
1364}
1365
1366/* I wish gso_size would have a bit more sane initialization than
1367 * something-or-zero which complicates things
1368 */
1369static int tcp_skb_seglen(const struct sk_buff *skb)
1370{
1371 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1372}
1373
1374/* Shifting pages past head area doesn't work */
1375static int skb_can_shift(const struct sk_buff *skb)
1376{
1377 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1378}
1379
David Brazdil0f672f62019-12-10 10:32:29 +00001380int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1381 int pcount, int shiftlen)
1382{
1383 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1384 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1385 * to make sure not storing more than 65535 * 8 bytes per skb,
1386 * even if current MSS is bigger.
1387 */
1388 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1389 return 0;
1390 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1391 return 0;
1392 return skb_shift(to, from, shiftlen);
1393}
1394
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001395/* Try collapsing SACK blocks spanning across multiple skbs to a single
1396 * skb.
1397 */
1398static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1399 struct tcp_sacktag_state *state,
1400 u32 start_seq, u32 end_seq,
1401 bool dup_sack)
1402{
1403 struct tcp_sock *tp = tcp_sk(sk);
1404 struct sk_buff *prev;
1405 int mss;
1406 int pcount = 0;
1407 int len;
1408 int in_sack;
1409
1410 /* Normally R but no L won't result in plain S */
1411 if (!dup_sack &&
1412 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1413 goto fallback;
1414 if (!skb_can_shift(skb))
1415 goto fallback;
1416 /* This frame is about to be dropped (was ACKed). */
1417 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1418 goto fallback;
1419
1420 /* Can only happen with delayed DSACK + discard craziness */
1421 prev = skb_rb_prev(skb);
1422 if (!prev)
1423 goto fallback;
1424
1425 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1426 goto fallback;
1427
1428 if (!tcp_skb_can_collapse_to(prev))
1429 goto fallback;
1430
1431 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1432 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1433
1434 if (in_sack) {
1435 len = skb->len;
1436 pcount = tcp_skb_pcount(skb);
1437 mss = tcp_skb_seglen(skb);
1438
1439 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1440 * drop this restriction as unnecessary
1441 */
1442 if (mss != tcp_skb_seglen(prev))
1443 goto fallback;
1444 } else {
1445 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1446 goto noop;
1447 /* CHECKME: This is non-MSS split case only?, this will
1448 * cause skipped skbs due to advancing loop btw, original
1449 * has that feature too
1450 */
1451 if (tcp_skb_pcount(skb) <= 1)
1452 goto noop;
1453
1454 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1455 if (!in_sack) {
1456 /* TODO: head merge to next could be attempted here
1457 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1458 * though it might not be worth of the additional hassle
1459 *
1460 * ...we can probably just fallback to what was done
1461 * previously. We could try merging non-SACKed ones
1462 * as well but it probably isn't going to buy off
1463 * because later SACKs might again split them, and
1464 * it would make skb timestamp tracking considerably
1465 * harder problem.
1466 */
1467 goto fallback;
1468 }
1469
1470 len = end_seq - TCP_SKB_CB(skb)->seq;
1471 BUG_ON(len < 0);
1472 BUG_ON(len > skb->len);
1473
1474 /* MSS boundaries should be honoured or else pcount will
1475 * severely break even though it makes things bit trickier.
1476 * Optimize common case to avoid most of the divides
1477 */
1478 mss = tcp_skb_mss(skb);
1479
1480 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1481 * drop this restriction as unnecessary
1482 */
1483 if (mss != tcp_skb_seglen(prev))
1484 goto fallback;
1485
1486 if (len == mss) {
1487 pcount = 1;
1488 } else if (len < mss) {
1489 goto noop;
1490 } else {
1491 pcount = len / mss;
1492 len = pcount * mss;
1493 }
1494 }
1495
1496 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1497 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1498 goto fallback;
1499
David Brazdil0f672f62019-12-10 10:32:29 +00001500 if (!tcp_skb_shift(prev, skb, pcount, len))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001501 goto fallback;
1502 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1503 goto out;
1504
1505 /* Hole filled allows collapsing with the next as well, this is very
1506 * useful when hole on every nth skb pattern happens
1507 */
1508 skb = skb_rb_next(prev);
1509 if (!skb)
1510 goto out;
1511
1512 if (!skb_can_shift(skb) ||
1513 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1514 (mss != tcp_skb_seglen(skb)))
1515 goto out;
1516
1517 len = skb->len;
David Brazdil0f672f62019-12-10 10:32:29 +00001518 pcount = tcp_skb_pcount(skb);
1519 if (tcp_skb_shift(prev, skb, pcount, len))
1520 tcp_shifted_skb(sk, prev, skb, state, pcount,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001521 len, mss, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001522
1523out:
1524 return prev;
1525
1526noop:
1527 return skb;
1528
1529fallback:
1530 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1531 return NULL;
1532}
1533
1534static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1535 struct tcp_sack_block *next_dup,
1536 struct tcp_sacktag_state *state,
1537 u32 start_seq, u32 end_seq,
1538 bool dup_sack_in)
1539{
1540 struct tcp_sock *tp = tcp_sk(sk);
1541 struct sk_buff *tmp;
1542
1543 skb_rbtree_walk_from(skb) {
1544 int in_sack = 0;
1545 bool dup_sack = dup_sack_in;
1546
1547 /* queue is in-order => we can short-circuit the walk early */
1548 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1549 break;
1550
1551 if (next_dup &&
1552 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1553 in_sack = tcp_match_skb_to_sack(sk, skb,
1554 next_dup->start_seq,
1555 next_dup->end_seq);
1556 if (in_sack > 0)
1557 dup_sack = true;
1558 }
1559
1560 /* skb reference here is a bit tricky to get right, since
1561 * shifting can eat and free both this skb and the next,
1562 * so not even _safe variant of the loop is enough.
1563 */
1564 if (in_sack <= 0) {
1565 tmp = tcp_shift_skb_data(sk, skb, state,
1566 start_seq, end_seq, dup_sack);
1567 if (tmp) {
1568 if (tmp != skb) {
1569 skb = tmp;
1570 continue;
1571 }
1572
1573 in_sack = 0;
1574 } else {
1575 in_sack = tcp_match_skb_to_sack(sk, skb,
1576 start_seq,
1577 end_seq);
1578 }
1579 }
1580
1581 if (unlikely(in_sack < 0))
1582 break;
1583
1584 if (in_sack) {
1585 TCP_SKB_CB(skb)->sacked =
1586 tcp_sacktag_one(sk,
1587 state,
1588 TCP_SKB_CB(skb)->sacked,
1589 TCP_SKB_CB(skb)->seq,
1590 TCP_SKB_CB(skb)->end_seq,
1591 dup_sack,
1592 tcp_skb_pcount(skb),
David Brazdil0f672f62019-12-10 10:32:29 +00001593 tcp_skb_timestamp_us(skb));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001594 tcp_rate_skb_delivered(sk, skb, state->rate);
1595 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1596 list_del_init(&skb->tcp_tsorted_anchor);
1597
1598 if (!before(TCP_SKB_CB(skb)->seq,
1599 tcp_highest_sack_seq(tp)))
1600 tcp_advance_highest_sack(sk, skb);
1601 }
1602 }
1603 return skb;
1604}
1605
David Brazdil0f672f62019-12-10 10:32:29 +00001606static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001607{
1608 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1609 struct sk_buff *skb;
1610
1611 while (*p) {
1612 parent = *p;
1613 skb = rb_to_skb(parent);
1614 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1615 p = &parent->rb_left;
1616 continue;
1617 }
1618 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1619 p = &parent->rb_right;
1620 continue;
1621 }
1622 return skb;
1623 }
1624 return NULL;
1625}
1626
1627static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001628 u32 skip_to_seq)
1629{
1630 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1631 return skb;
1632
David Brazdil0f672f62019-12-10 10:32:29 +00001633 return tcp_sacktag_bsearch(sk, skip_to_seq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001634}
1635
1636static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1637 struct sock *sk,
1638 struct tcp_sack_block *next_dup,
1639 struct tcp_sacktag_state *state,
1640 u32 skip_to_seq)
1641{
1642 if (!next_dup)
1643 return skb;
1644
1645 if (before(next_dup->start_seq, skip_to_seq)) {
David Brazdil0f672f62019-12-10 10:32:29 +00001646 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001647 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1648 next_dup->start_seq, next_dup->end_seq,
1649 1);
1650 }
1651
1652 return skb;
1653}
1654
1655static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1656{
1657 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1658}
1659
1660static int
1661tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1662 u32 prior_snd_una, struct tcp_sacktag_state *state)
1663{
1664 struct tcp_sock *tp = tcp_sk(sk);
1665 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1666 TCP_SKB_CB(ack_skb)->sacked);
1667 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1668 struct tcp_sack_block sp[TCP_NUM_SACKS];
1669 struct tcp_sack_block *cache;
1670 struct sk_buff *skb;
1671 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1672 int used_sacks;
1673 bool found_dup_sack = false;
1674 int i, j;
1675 int first_sack_index;
1676
1677 state->flag = 0;
1678 state->reord = tp->snd_nxt;
1679
1680 if (!tp->sacked_out)
1681 tcp_highest_sack_reset(sk);
1682
1683 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1684 num_sacks, prior_snd_una);
1685 if (found_dup_sack) {
1686 state->flag |= FLAG_DSACKING_ACK;
1687 tp->delivered++; /* A spurious retransmission is delivered */
1688 }
1689
1690 /* Eliminate too old ACKs, but take into
1691 * account more or less fresh ones, they can
1692 * contain valid SACK info.
1693 */
1694 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1695 return 0;
1696
1697 if (!tp->packets_out)
1698 goto out;
1699
1700 used_sacks = 0;
1701 first_sack_index = 0;
1702 for (i = 0; i < num_sacks; i++) {
1703 bool dup_sack = !i && found_dup_sack;
1704
1705 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1706 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1707
1708 if (!tcp_is_sackblock_valid(tp, dup_sack,
1709 sp[used_sacks].start_seq,
1710 sp[used_sacks].end_seq)) {
1711 int mib_idx;
1712
1713 if (dup_sack) {
1714 if (!tp->undo_marker)
1715 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1716 else
1717 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1718 } else {
1719 /* Don't count olds caused by ACK reordering */
1720 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1721 !after(sp[used_sacks].end_seq, tp->snd_una))
1722 continue;
1723 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1724 }
1725
1726 NET_INC_STATS(sock_net(sk), mib_idx);
1727 if (i == 0)
1728 first_sack_index = -1;
1729 continue;
1730 }
1731
1732 /* Ignore very old stuff early */
Olivier Deprez0e641232021-09-23 10:07:05 +02001733 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1734 if (i == 0)
1735 first_sack_index = -1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001736 continue;
Olivier Deprez0e641232021-09-23 10:07:05 +02001737 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001738
1739 used_sacks++;
1740 }
1741
1742 /* order SACK blocks to allow in order walk of the retrans queue */
1743 for (i = used_sacks - 1; i > 0; i--) {
1744 for (j = 0; j < i; j++) {
1745 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1746 swap(sp[j], sp[j + 1]);
1747
1748 /* Track where the first SACK block goes to */
1749 if (j == first_sack_index)
1750 first_sack_index = j + 1;
1751 }
1752 }
1753 }
1754
1755 state->mss_now = tcp_current_mss(sk);
1756 skb = NULL;
1757 i = 0;
1758
1759 if (!tp->sacked_out) {
1760 /* It's already past, so skip checking against it */
1761 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1762 } else {
1763 cache = tp->recv_sack_cache;
1764 /* Skip empty blocks in at head of the cache */
1765 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1766 !cache->end_seq)
1767 cache++;
1768 }
1769
1770 while (i < used_sacks) {
1771 u32 start_seq = sp[i].start_seq;
1772 u32 end_seq = sp[i].end_seq;
1773 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1774 struct tcp_sack_block *next_dup = NULL;
1775
1776 if (found_dup_sack && ((i + 1) == first_sack_index))
1777 next_dup = &sp[i + 1];
1778
1779 /* Skip too early cached blocks */
1780 while (tcp_sack_cache_ok(tp, cache) &&
1781 !before(start_seq, cache->end_seq))
1782 cache++;
1783
1784 /* Can skip some work by looking recv_sack_cache? */
1785 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1786 after(end_seq, cache->start_seq)) {
1787
1788 /* Head todo? */
1789 if (before(start_seq, cache->start_seq)) {
David Brazdil0f672f62019-12-10 10:32:29 +00001790 skb = tcp_sacktag_skip(skb, sk, start_seq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001791 skb = tcp_sacktag_walk(skb, sk, next_dup,
1792 state,
1793 start_seq,
1794 cache->start_seq,
1795 dup_sack);
1796 }
1797
1798 /* Rest of the block already fully processed? */
1799 if (!after(end_seq, cache->end_seq))
1800 goto advance_sp;
1801
1802 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1803 state,
1804 cache->end_seq);
1805
1806 /* ...tail remains todo... */
1807 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1808 /* ...but better entrypoint exists! */
1809 skb = tcp_highest_sack(sk);
1810 if (!skb)
1811 break;
1812 cache++;
1813 goto walk;
1814 }
1815
David Brazdil0f672f62019-12-10 10:32:29 +00001816 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001817 /* Check overlap against next cached too (past this one already) */
1818 cache++;
1819 continue;
1820 }
1821
1822 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1823 skb = tcp_highest_sack(sk);
1824 if (!skb)
1825 break;
1826 }
David Brazdil0f672f62019-12-10 10:32:29 +00001827 skb = tcp_sacktag_skip(skb, sk, start_seq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001828
1829walk:
1830 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1831 start_seq, end_seq, dup_sack);
1832
1833advance_sp:
1834 i++;
1835 }
1836
1837 /* Clear the head of the cache sack blocks so we can skip it next time */
1838 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1839 tp->recv_sack_cache[i].start_seq = 0;
1840 tp->recv_sack_cache[i].end_seq = 0;
1841 }
1842 for (j = 0; j < used_sacks; j++)
1843 tp->recv_sack_cache[i++] = sp[j];
1844
1845 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1846 tcp_check_sack_reordering(sk, state->reord, 0);
1847
1848 tcp_verify_left_out(tp);
1849out:
1850
1851#if FASTRETRANS_DEBUG > 0
1852 WARN_ON((int)tp->sacked_out < 0);
1853 WARN_ON((int)tp->lost_out < 0);
1854 WARN_ON((int)tp->retrans_out < 0);
1855 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1856#endif
1857 return state->flag;
1858}
1859
1860/* Limits sacked_out so that sum with lost_out isn't ever larger than
1861 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1862 */
1863static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1864{
1865 u32 holes;
1866
1867 holes = max(tp->lost_out, 1U);
1868 holes = min(holes, tp->packets_out);
1869
1870 if ((tp->sacked_out + holes) > tp->packets_out) {
1871 tp->sacked_out = tp->packets_out - holes;
1872 return true;
1873 }
1874 return false;
1875}
1876
1877/* If we receive more dupacks than we expected counting segments
1878 * in assumption of absent reordering, interpret this as reordering.
1879 * The only another reason could be bug in receiver TCP.
1880 */
1881static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1882{
1883 struct tcp_sock *tp = tcp_sk(sk);
1884
1885 if (!tcp_limit_reno_sacked(tp))
1886 return;
1887
1888 tp->reordering = min_t(u32, tp->packets_out + addend,
1889 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1890 tp->reord_seen++;
1891 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1892}
1893
1894/* Emulate SACKs for SACKless connection: account for a new dupack. */
1895
David Brazdil0f672f62019-12-10 10:32:29 +00001896static void tcp_add_reno_sack(struct sock *sk, int num_dupack)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001897{
David Brazdil0f672f62019-12-10 10:32:29 +00001898 if (num_dupack) {
1899 struct tcp_sock *tp = tcp_sk(sk);
1900 u32 prior_sacked = tp->sacked_out;
1901 s32 delivered;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001902
David Brazdil0f672f62019-12-10 10:32:29 +00001903 tp->sacked_out += num_dupack;
1904 tcp_check_reno_reordering(sk, 0);
1905 delivered = tp->sacked_out - prior_sacked;
1906 if (delivered > 0)
1907 tp->delivered += delivered;
1908 tcp_verify_left_out(tp);
1909 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001910}
1911
1912/* Account for ACK, ACKing some data in Reno Recovery phase. */
1913
1914static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1915{
1916 struct tcp_sock *tp = tcp_sk(sk);
1917
1918 if (acked > 0) {
1919 /* One ACK acked hole. The rest eat duplicate ACKs. */
1920 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1921 if (acked - 1 >= tp->sacked_out)
1922 tp->sacked_out = 0;
1923 else
1924 tp->sacked_out -= acked - 1;
1925 }
1926 tcp_check_reno_reordering(sk, acked);
1927 tcp_verify_left_out(tp);
1928}
1929
1930static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1931{
1932 tp->sacked_out = 0;
1933}
1934
1935void tcp_clear_retrans(struct tcp_sock *tp)
1936{
1937 tp->retrans_out = 0;
1938 tp->lost_out = 0;
1939 tp->undo_marker = 0;
1940 tp->undo_retrans = -1;
1941 tp->sacked_out = 0;
1942}
1943
1944static inline void tcp_init_undo(struct tcp_sock *tp)
1945{
1946 tp->undo_marker = tp->snd_una;
1947 /* Retransmission still in flight may cause DSACKs later. */
1948 tp->undo_retrans = tp->retrans_out ? : -1;
1949}
1950
1951static bool tcp_is_rack(const struct sock *sk)
1952{
1953 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1954}
1955
1956/* If we detect SACK reneging, forget all SACK information
1957 * and reset tags completely, otherwise preserve SACKs. If receiver
1958 * dropped its ofo queue, we will know this due to reneging detection.
1959 */
1960static void tcp_timeout_mark_lost(struct sock *sk)
1961{
1962 struct tcp_sock *tp = tcp_sk(sk);
1963 struct sk_buff *skb, *head;
1964 bool is_reneg; /* is receiver reneging on SACKs? */
1965
1966 head = tcp_rtx_queue_head(sk);
1967 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1968 if (is_reneg) {
1969 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1970 tp->sacked_out = 0;
1971 /* Mark SACK reneging until we recover from this loss event. */
1972 tp->is_sack_reneg = 1;
1973 } else if (tcp_is_reno(tp)) {
1974 tcp_reset_reno_sack(tp);
1975 }
1976
1977 skb = head;
1978 skb_rbtree_walk_from(skb) {
1979 if (is_reneg)
1980 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1981 else if (tcp_is_rack(sk) && skb != head &&
1982 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1983 continue; /* Don't mark recently sent ones lost yet */
1984 tcp_mark_skb_lost(sk, skb);
1985 }
1986 tcp_verify_left_out(tp);
1987 tcp_clear_all_retrans_hints(tp);
1988}
1989
1990/* Enter Loss state. */
1991void tcp_enter_loss(struct sock *sk)
1992{
1993 const struct inet_connection_sock *icsk = inet_csk(sk);
1994 struct tcp_sock *tp = tcp_sk(sk);
1995 struct net *net = sock_net(sk);
1996 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1997
1998 tcp_timeout_mark_lost(sk);
1999
2000 /* Reduce ssthresh if it has not yet been made inside this window. */
2001 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2002 !after(tp->high_seq, tp->snd_una) ||
2003 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2004 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2005 tp->prior_cwnd = tp->snd_cwnd;
2006 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2007 tcp_ca_event(sk, CA_EVENT_LOSS);
2008 tcp_init_undo(tp);
2009 }
2010 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1;
2011 tp->snd_cwnd_cnt = 0;
2012 tp->snd_cwnd_stamp = tcp_jiffies32;
2013
2014 /* Timeout in disordered state after receiving substantial DUPACKs
2015 * suggests that the degree of reordering is over-estimated.
2016 */
2017 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2018 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2019 tp->reordering = min_t(unsigned int, tp->reordering,
2020 net->ipv4.sysctl_tcp_reordering);
2021 tcp_set_ca_state(sk, TCP_CA_Loss);
2022 tp->high_seq = tp->snd_nxt;
2023 tcp_ecn_queue_cwr(tp);
2024
2025 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2026 * loss recovery is underway except recurring timeout(s) on
2027 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2028 */
2029 tp->frto = net->ipv4.sysctl_tcp_frto &&
2030 (new_recovery || icsk->icsk_retransmits) &&
2031 !inet_csk(sk)->icsk_mtup.probe_size;
2032}
2033
2034/* If ACK arrived pointing to a remembered SACK, it means that our
2035 * remembered SACKs do not reflect real state of receiver i.e.
2036 * receiver _host_ is heavily congested (or buggy).
2037 *
2038 * To avoid big spurious retransmission bursts due to transient SACK
2039 * scoreboard oddities that look like reneging, we give the receiver a
2040 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2041 * restore sanity to the SACK scoreboard. If the apparent reneging
2042 * persists until this RTO then we'll clear the SACK scoreboard.
2043 */
2044static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2045{
2046 if (flag & FLAG_SACK_RENEGING) {
2047 struct tcp_sock *tp = tcp_sk(sk);
2048 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2049 msecs_to_jiffies(10));
2050
2051 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2052 delay, TCP_RTO_MAX);
2053 return true;
2054 }
2055 return false;
2056}
2057
2058/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2059 * counter when SACK is enabled (without SACK, sacked_out is used for
2060 * that purpose).
2061 *
2062 * With reordering, holes may still be in flight, so RFC3517 recovery
2063 * uses pure sacked_out (total number of SACKed segments) even though
2064 * it violates the RFC that uses duplicate ACKs, often these are equal
2065 * but when e.g. out-of-window ACKs or packet duplication occurs,
2066 * they differ. Since neither occurs due to loss, TCP should really
2067 * ignore them.
2068 */
2069static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2070{
2071 return tp->sacked_out + 1;
2072}
2073
2074/* Linux NewReno/SACK/ECN state machine.
2075 * --------------------------------------
2076 *
2077 * "Open" Normal state, no dubious events, fast path.
2078 * "Disorder" In all the respects it is "Open",
2079 * but requires a bit more attention. It is entered when
2080 * we see some SACKs or dupacks. It is split of "Open"
2081 * mainly to move some processing from fast path to slow one.
2082 * "CWR" CWND was reduced due to some Congestion Notification event.
2083 * It can be ECN, ICMP source quench, local device congestion.
2084 * "Recovery" CWND was reduced, we are fast-retransmitting.
2085 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2086 *
2087 * tcp_fastretrans_alert() is entered:
2088 * - each incoming ACK, if state is not "Open"
2089 * - when arrived ACK is unusual, namely:
2090 * * SACK
2091 * * Duplicate ACK.
2092 * * ECN ECE.
2093 *
2094 * Counting packets in flight is pretty simple.
2095 *
2096 * in_flight = packets_out - left_out + retrans_out
2097 *
2098 * packets_out is SND.NXT-SND.UNA counted in packets.
2099 *
2100 * retrans_out is number of retransmitted segments.
2101 *
2102 * left_out is number of segments left network, but not ACKed yet.
2103 *
2104 * left_out = sacked_out + lost_out
2105 *
2106 * sacked_out: Packets, which arrived to receiver out of order
2107 * and hence not ACKed. With SACKs this number is simply
2108 * amount of SACKed data. Even without SACKs
2109 * it is easy to give pretty reliable estimate of this number,
2110 * counting duplicate ACKs.
2111 *
2112 * lost_out: Packets lost by network. TCP has no explicit
2113 * "loss notification" feedback from network (for now).
2114 * It means that this number can be only _guessed_.
2115 * Actually, it is the heuristics to predict lossage that
2116 * distinguishes different algorithms.
2117 *
2118 * F.e. after RTO, when all the queue is considered as lost,
2119 * lost_out = packets_out and in_flight = retrans_out.
2120 *
2121 * Essentially, we have now a few algorithms detecting
2122 * lost packets.
2123 *
2124 * If the receiver supports SACK:
2125 *
2126 * RFC6675/3517: It is the conventional algorithm. A packet is
2127 * considered lost if the number of higher sequence packets
2128 * SACKed is greater than or equal the DUPACK thoreshold
2129 * (reordering). This is implemented in tcp_mark_head_lost and
2130 * tcp_update_scoreboard.
2131 *
2132 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2133 * (2017-) that checks timing instead of counting DUPACKs.
2134 * Essentially a packet is considered lost if it's not S/ACKed
2135 * after RTT + reordering_window, where both metrics are
2136 * dynamically measured and adjusted. This is implemented in
2137 * tcp_rack_mark_lost.
2138 *
2139 * If the receiver does not support SACK:
2140 *
2141 * NewReno (RFC6582): in Recovery we assume that one segment
2142 * is lost (classic Reno). While we are in Recovery and
2143 * a partial ACK arrives, we assume that one more packet
2144 * is lost (NewReno). This heuristics are the same in NewReno
2145 * and SACK.
2146 *
2147 * Really tricky (and requiring careful tuning) part of algorithm
2148 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2149 * The first determines the moment _when_ we should reduce CWND and,
2150 * hence, slow down forward transmission. In fact, it determines the moment
2151 * when we decide that hole is caused by loss, rather than by a reorder.
2152 *
2153 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2154 * holes, caused by lost packets.
2155 *
2156 * And the most logically complicated part of algorithm is undo
2157 * heuristics. We detect false retransmits due to both too early
2158 * fast retransmit (reordering) and underestimated RTO, analyzing
2159 * timestamps and D-SACKs. When we detect that some segments were
2160 * retransmitted by mistake and CWND reduction was wrong, we undo
2161 * window reduction and abort recovery phase. This logic is hidden
2162 * inside several functions named tcp_try_undo_<something>.
2163 */
2164
2165/* This function decides, when we should leave Disordered state
2166 * and enter Recovery phase, reducing congestion window.
2167 *
2168 * Main question: may we further continue forward transmission
2169 * with the same cwnd?
2170 */
2171static bool tcp_time_to_recover(struct sock *sk, int flag)
2172{
2173 struct tcp_sock *tp = tcp_sk(sk);
2174
2175 /* Trick#1: The loss is proven. */
2176 if (tp->lost_out)
2177 return true;
2178
2179 /* Not-A-Trick#2 : Classic rule... */
2180 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2181 return true;
2182
2183 return false;
2184}
2185
2186/* Detect loss in event "A" above by marking head of queue up as lost.
2187 * For non-SACK(Reno) senders, the first "packets" number of segments
2188 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2189 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2190 * the maximum SACKed segments to pass before reaching this limit.
2191 */
2192static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2193{
2194 struct tcp_sock *tp = tcp_sk(sk);
2195 struct sk_buff *skb;
2196 int cnt, oldcnt, lost;
2197 unsigned int mss;
2198 /* Use SACK to deduce losses of new sequences sent during recovery */
2199 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2200
2201 WARN_ON(packets > tp->packets_out);
2202 skb = tp->lost_skb_hint;
2203 if (skb) {
2204 /* Head already handled? */
2205 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2206 return;
2207 cnt = tp->lost_cnt_hint;
2208 } else {
2209 skb = tcp_rtx_queue_head(sk);
2210 cnt = 0;
2211 }
2212
2213 skb_rbtree_walk_from(skb) {
2214 /* TODO: do this better */
2215 /* this is not the most efficient way to do this... */
2216 tp->lost_skb_hint = skb;
2217 tp->lost_cnt_hint = cnt;
2218
2219 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2220 break;
2221
2222 oldcnt = cnt;
2223 if (tcp_is_reno(tp) ||
2224 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2225 cnt += tcp_skb_pcount(skb);
2226
2227 if (cnt > packets) {
2228 if (tcp_is_sack(tp) ||
2229 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2230 (oldcnt >= packets))
2231 break;
2232
2233 mss = tcp_skb_mss(skb);
2234 /* If needed, chop off the prefix to mark as lost. */
2235 lost = (packets - oldcnt) * mss;
2236 if (lost < skb->len &&
2237 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2238 lost, mss, GFP_ATOMIC) < 0)
2239 break;
2240 cnt = packets;
2241 }
2242
2243 tcp_skb_mark_lost(tp, skb);
2244
2245 if (mark_head)
2246 break;
2247 }
2248 tcp_verify_left_out(tp);
2249}
2250
2251/* Account newly detected lost packet(s) */
2252
2253static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2254{
2255 struct tcp_sock *tp = tcp_sk(sk);
2256
2257 if (tcp_is_sack(tp)) {
2258 int sacked_upto = tp->sacked_out - tp->reordering;
2259 if (sacked_upto >= 0)
2260 tcp_mark_head_lost(sk, sacked_upto, 0);
2261 else if (fast_rexmit)
2262 tcp_mark_head_lost(sk, 1, 1);
2263 }
2264}
2265
2266static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2267{
2268 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2269 before(tp->rx_opt.rcv_tsecr, when);
2270}
2271
2272/* skb is spurious retransmitted if the returned timestamp echo
2273 * reply is prior to the skb transmission time
2274 */
2275static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2276 const struct sk_buff *skb)
2277{
2278 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2279 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2280}
2281
2282/* Nothing was retransmitted or returned timestamp is less
2283 * than timestamp of the first retransmission.
2284 */
2285static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2286{
David Brazdil0f672f62019-12-10 10:32:29 +00002287 return tp->retrans_stamp &&
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002288 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2289}
2290
2291/* Undo procedures. */
2292
2293/* We can clear retrans_stamp when there are no retransmissions in the
2294 * window. It would seem that it is trivially available for us in
2295 * tp->retrans_out, however, that kind of assumptions doesn't consider
2296 * what will happen if errors occur when sending retransmission for the
2297 * second time. ...It could the that such segment has only
2298 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2299 * the head skb is enough except for some reneging corner cases that
2300 * are not worth the effort.
2301 *
2302 * Main reason for all this complexity is the fact that connection dying
2303 * time now depends on the validity of the retrans_stamp, in particular,
2304 * that successive retransmissions of a segment must not advance
2305 * retrans_stamp under any conditions.
2306 */
2307static bool tcp_any_retrans_done(const struct sock *sk)
2308{
2309 const struct tcp_sock *tp = tcp_sk(sk);
2310 struct sk_buff *skb;
2311
2312 if (tp->retrans_out)
2313 return true;
2314
2315 skb = tcp_rtx_queue_head(sk);
2316 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2317 return true;
2318
2319 return false;
2320}
2321
2322static void DBGUNDO(struct sock *sk, const char *msg)
2323{
2324#if FASTRETRANS_DEBUG > 1
2325 struct tcp_sock *tp = tcp_sk(sk);
2326 struct inet_sock *inet = inet_sk(sk);
2327
2328 if (sk->sk_family == AF_INET) {
2329 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2330 msg,
2331 &inet->inet_daddr, ntohs(inet->inet_dport),
2332 tp->snd_cwnd, tcp_left_out(tp),
2333 tp->snd_ssthresh, tp->prior_ssthresh,
2334 tp->packets_out);
2335 }
2336#if IS_ENABLED(CONFIG_IPV6)
2337 else if (sk->sk_family == AF_INET6) {
2338 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2339 msg,
2340 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2341 tp->snd_cwnd, tcp_left_out(tp),
2342 tp->snd_ssthresh, tp->prior_ssthresh,
2343 tp->packets_out);
2344 }
2345#endif
2346#endif
2347}
2348
2349static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2350{
2351 struct tcp_sock *tp = tcp_sk(sk);
2352
2353 if (unmark_loss) {
2354 struct sk_buff *skb;
2355
2356 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2357 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2358 }
2359 tp->lost_out = 0;
2360 tcp_clear_all_retrans_hints(tp);
2361 }
2362
2363 if (tp->prior_ssthresh) {
2364 const struct inet_connection_sock *icsk = inet_csk(sk);
2365
2366 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2367
2368 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2369 tp->snd_ssthresh = tp->prior_ssthresh;
2370 tcp_ecn_withdraw_cwr(tp);
2371 }
2372 }
2373 tp->snd_cwnd_stamp = tcp_jiffies32;
2374 tp->undo_marker = 0;
2375 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2376}
2377
2378static inline bool tcp_may_undo(const struct tcp_sock *tp)
2379{
2380 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2381}
2382
2383/* People celebrate: "We love our President!" */
2384static bool tcp_try_undo_recovery(struct sock *sk)
2385{
2386 struct tcp_sock *tp = tcp_sk(sk);
2387
2388 if (tcp_may_undo(tp)) {
2389 int mib_idx;
2390
2391 /* Happy end! We did not retransmit anything
2392 * or our original transmission succeeded.
2393 */
2394 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2395 tcp_undo_cwnd_reduction(sk, false);
2396 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2397 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2398 else
2399 mib_idx = LINUX_MIB_TCPFULLUNDO;
2400
2401 NET_INC_STATS(sock_net(sk), mib_idx);
2402 } else if (tp->rack.reo_wnd_persist) {
2403 tp->rack.reo_wnd_persist--;
2404 }
2405 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2406 /* Hold old state until something *above* high_seq
2407 * is ACKed. For Reno it is MUST to prevent false
2408 * fast retransmits (RFC2582). SACK TCP is safe. */
2409 if (!tcp_any_retrans_done(sk))
2410 tp->retrans_stamp = 0;
2411 return true;
2412 }
2413 tcp_set_ca_state(sk, TCP_CA_Open);
2414 tp->is_sack_reneg = 0;
2415 return false;
2416}
2417
2418/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2419static bool tcp_try_undo_dsack(struct sock *sk)
2420{
2421 struct tcp_sock *tp = tcp_sk(sk);
2422
2423 if (tp->undo_marker && !tp->undo_retrans) {
2424 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2425 tp->rack.reo_wnd_persist + 1);
2426 DBGUNDO(sk, "D-SACK");
2427 tcp_undo_cwnd_reduction(sk, false);
2428 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2429 return true;
2430 }
2431 return false;
2432}
2433
2434/* Undo during loss recovery after partial ACK or using F-RTO. */
2435static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2436{
2437 struct tcp_sock *tp = tcp_sk(sk);
2438
2439 if (frto_undo || tcp_may_undo(tp)) {
2440 tcp_undo_cwnd_reduction(sk, true);
2441
2442 DBGUNDO(sk, "partial loss");
2443 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2444 if (frto_undo)
2445 NET_INC_STATS(sock_net(sk),
2446 LINUX_MIB_TCPSPURIOUSRTOS);
2447 inet_csk(sk)->icsk_retransmits = 0;
2448 if (frto_undo || tcp_is_sack(tp)) {
2449 tcp_set_ca_state(sk, TCP_CA_Open);
2450 tp->is_sack_reneg = 0;
2451 }
2452 return true;
2453 }
2454 return false;
2455}
2456
2457/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2458 * It computes the number of packets to send (sndcnt) based on packets newly
2459 * delivered:
2460 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2461 * cwnd reductions across a full RTT.
2462 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2463 * But when the retransmits are acked without further losses, PRR
2464 * slow starts cwnd up to ssthresh to speed up the recovery.
2465 */
2466static void tcp_init_cwnd_reduction(struct sock *sk)
2467{
2468 struct tcp_sock *tp = tcp_sk(sk);
2469
2470 tp->high_seq = tp->snd_nxt;
2471 tp->tlp_high_seq = 0;
2472 tp->snd_cwnd_cnt = 0;
2473 tp->prior_cwnd = tp->snd_cwnd;
2474 tp->prr_delivered = 0;
2475 tp->prr_out = 0;
2476 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2477 tcp_ecn_queue_cwr(tp);
2478}
2479
2480void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2481{
2482 struct tcp_sock *tp = tcp_sk(sk);
2483 int sndcnt = 0;
2484 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2485
2486 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2487 return;
2488
2489 tp->prr_delivered += newly_acked_sacked;
2490 if (delta < 0) {
2491 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2492 tp->prior_cwnd - 1;
2493 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
David Brazdil0f672f62019-12-10 10:32:29 +00002494 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2495 FLAG_RETRANS_DATA_ACKED) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002496 sndcnt = min_t(int, delta,
2497 max_t(int, tp->prr_delivered - tp->prr_out,
2498 newly_acked_sacked) + 1);
2499 } else {
2500 sndcnt = min(delta, newly_acked_sacked);
2501 }
2502 /* Force a fast retransmit upon entering fast recovery */
2503 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2504 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2505}
2506
2507static inline void tcp_end_cwnd_reduction(struct sock *sk)
2508{
2509 struct tcp_sock *tp = tcp_sk(sk);
2510
2511 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2512 return;
2513
2514 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2515 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2516 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2517 tp->snd_cwnd = tp->snd_ssthresh;
2518 tp->snd_cwnd_stamp = tcp_jiffies32;
2519 }
2520 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2521}
2522
2523/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2524void tcp_enter_cwr(struct sock *sk)
2525{
2526 struct tcp_sock *tp = tcp_sk(sk);
2527
2528 tp->prior_ssthresh = 0;
2529 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2530 tp->undo_marker = 0;
2531 tcp_init_cwnd_reduction(sk);
2532 tcp_set_ca_state(sk, TCP_CA_CWR);
2533 }
2534}
2535EXPORT_SYMBOL(tcp_enter_cwr);
2536
2537static void tcp_try_keep_open(struct sock *sk)
2538{
2539 struct tcp_sock *tp = tcp_sk(sk);
2540 int state = TCP_CA_Open;
2541
2542 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2543 state = TCP_CA_Disorder;
2544
2545 if (inet_csk(sk)->icsk_ca_state != state) {
2546 tcp_set_ca_state(sk, state);
2547 tp->high_seq = tp->snd_nxt;
2548 }
2549}
2550
2551static void tcp_try_to_open(struct sock *sk, int flag)
2552{
2553 struct tcp_sock *tp = tcp_sk(sk);
2554
2555 tcp_verify_left_out(tp);
2556
2557 if (!tcp_any_retrans_done(sk))
2558 tp->retrans_stamp = 0;
2559
2560 if (flag & FLAG_ECE)
2561 tcp_enter_cwr(sk);
2562
2563 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2564 tcp_try_keep_open(sk);
2565 }
2566}
2567
2568static void tcp_mtup_probe_failed(struct sock *sk)
2569{
2570 struct inet_connection_sock *icsk = inet_csk(sk);
2571
2572 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2573 icsk->icsk_mtup.probe_size = 0;
2574 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2575}
2576
2577static void tcp_mtup_probe_success(struct sock *sk)
2578{
2579 struct tcp_sock *tp = tcp_sk(sk);
2580 struct inet_connection_sock *icsk = inet_csk(sk);
2581
2582 /* FIXME: breaks with very large cwnd */
2583 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2584 tp->snd_cwnd = tp->snd_cwnd *
2585 tcp_mss_to_mtu(sk, tp->mss_cache) /
2586 icsk->icsk_mtup.probe_size;
2587 tp->snd_cwnd_cnt = 0;
2588 tp->snd_cwnd_stamp = tcp_jiffies32;
2589 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2590
2591 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2592 icsk->icsk_mtup.probe_size = 0;
2593 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2594 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2595}
2596
2597/* Do a simple retransmit without using the backoff mechanisms in
2598 * tcp_timer. This is used for path mtu discovery.
2599 * The socket is already locked here.
2600 */
2601void tcp_simple_retransmit(struct sock *sk)
2602{
2603 const struct inet_connection_sock *icsk = inet_csk(sk);
2604 struct tcp_sock *tp = tcp_sk(sk);
2605 struct sk_buff *skb;
2606 unsigned int mss = tcp_current_mss(sk);
2607
2608 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2609 if (tcp_skb_seglen(skb) > mss &&
2610 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2611 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2612 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2613 tp->retrans_out -= tcp_skb_pcount(skb);
2614 }
2615 tcp_skb_mark_lost_uncond_verify(tp, skb);
2616 }
2617 }
2618
2619 tcp_clear_retrans_hints_partial(tp);
2620
2621 if (!tp->lost_out)
2622 return;
2623
2624 if (tcp_is_reno(tp))
2625 tcp_limit_reno_sacked(tp);
2626
2627 tcp_verify_left_out(tp);
2628
2629 /* Don't muck with the congestion window here.
2630 * Reason is that we do not increase amount of _data_
2631 * in network, but units changed and effective
2632 * cwnd/ssthresh really reduced now.
2633 */
2634 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2635 tp->high_seq = tp->snd_nxt;
2636 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2637 tp->prior_ssthresh = 0;
2638 tp->undo_marker = 0;
2639 tcp_set_ca_state(sk, TCP_CA_Loss);
2640 }
2641 tcp_xmit_retransmit_queue(sk);
2642}
2643EXPORT_SYMBOL(tcp_simple_retransmit);
2644
2645void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2646{
2647 struct tcp_sock *tp = tcp_sk(sk);
2648 int mib_idx;
2649
2650 if (tcp_is_reno(tp))
2651 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2652 else
2653 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2654
2655 NET_INC_STATS(sock_net(sk), mib_idx);
2656
2657 tp->prior_ssthresh = 0;
2658 tcp_init_undo(tp);
2659
2660 if (!tcp_in_cwnd_reduction(sk)) {
2661 if (!ece_ack)
2662 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2663 tcp_init_cwnd_reduction(sk);
2664 }
2665 tcp_set_ca_state(sk, TCP_CA_Recovery);
2666}
2667
2668/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2669 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2670 */
David Brazdil0f672f62019-12-10 10:32:29 +00002671static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002672 int *rexmit)
2673{
2674 struct tcp_sock *tp = tcp_sk(sk);
2675 bool recovered = !before(tp->snd_una, tp->high_seq);
2676
David Brazdil0f672f62019-12-10 10:32:29 +00002677 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002678 tcp_try_undo_loss(sk, false))
2679 return;
2680
2681 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2682 /* Step 3.b. A timeout is spurious if not all data are
2683 * lost, i.e., never-retransmitted data are (s)acked.
2684 */
2685 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2686 tcp_try_undo_loss(sk, true))
2687 return;
2688
2689 if (after(tp->snd_nxt, tp->high_seq)) {
David Brazdil0f672f62019-12-10 10:32:29 +00002690 if (flag & FLAG_DATA_SACKED || num_dupack)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002691 tp->frto = 0; /* Step 3.a. loss was real */
2692 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2693 tp->high_seq = tp->snd_nxt;
2694 /* Step 2.b. Try send new data (but deferred until cwnd
2695 * is updated in tcp_ack()). Otherwise fall back to
2696 * the conventional recovery.
2697 */
2698 if (!tcp_write_queue_empty(sk) &&
2699 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2700 *rexmit = REXMIT_NEW;
2701 return;
2702 }
2703 tp->frto = 0;
2704 }
2705 }
2706
2707 if (recovered) {
2708 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2709 tcp_try_undo_recovery(sk);
2710 return;
2711 }
2712 if (tcp_is_reno(tp)) {
2713 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2714 * delivered. Lower inflight to clock out (re)tranmissions.
2715 */
David Brazdil0f672f62019-12-10 10:32:29 +00002716 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2717 tcp_add_reno_sack(sk, num_dupack);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002718 else if (flag & FLAG_SND_UNA_ADVANCED)
2719 tcp_reset_reno_sack(tp);
2720 }
2721 *rexmit = REXMIT_LOST;
2722}
2723
2724/* Undo during fast recovery after partial ACK. */
2725static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2726{
2727 struct tcp_sock *tp = tcp_sk(sk);
2728
2729 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2730 /* Plain luck! Hole if filled with delayed
2731 * packet, rather than with a retransmit. Check reordering.
2732 */
2733 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2734
2735 /* We are getting evidence that the reordering degree is higher
2736 * than we realized. If there are no retransmits out then we
2737 * can undo. Otherwise we clock out new packets but do not
2738 * mark more packets lost or retransmit more.
2739 */
2740 if (tp->retrans_out)
2741 return true;
2742
2743 if (!tcp_any_retrans_done(sk))
2744 tp->retrans_stamp = 0;
2745
2746 DBGUNDO(sk, "partial recovery");
2747 tcp_undo_cwnd_reduction(sk, true);
2748 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2749 tcp_try_keep_open(sk);
2750 return true;
2751 }
2752 return false;
2753}
2754
2755static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2756{
2757 struct tcp_sock *tp = tcp_sk(sk);
2758
2759 if (tcp_rtx_queue_empty(sk))
2760 return;
2761
2762 if (unlikely(tcp_is_reno(tp))) {
2763 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2764 } else if (tcp_is_rack(sk)) {
2765 u32 prior_retrans = tp->retrans_out;
2766
Olivier Deprez0e641232021-09-23 10:07:05 +02002767 if (tcp_rack_mark_lost(sk))
2768 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002769 if (prior_retrans > tp->retrans_out)
2770 *ack_flag |= FLAG_LOST_RETRANS;
2771 }
2772}
2773
2774static bool tcp_force_fast_retransmit(struct sock *sk)
2775{
2776 struct tcp_sock *tp = tcp_sk(sk);
2777
2778 return after(tcp_highest_sack_seq(tp),
2779 tp->snd_una + tp->reordering * tp->mss_cache);
2780}
2781
2782/* Process an event, which can update packets-in-flight not trivially.
2783 * Main goal of this function is to calculate new estimate for left_out,
2784 * taking into account both packets sitting in receiver's buffer and
2785 * packets lost by network.
2786 *
2787 * Besides that it updates the congestion state when packet loss or ECN
2788 * is detected. But it does not reduce the cwnd, it is done by the
2789 * congestion control later.
2790 *
2791 * It does _not_ decide what to send, it is made in function
2792 * tcp_xmit_retransmit_queue().
2793 */
2794static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
David Brazdil0f672f62019-12-10 10:32:29 +00002795 int num_dupack, int *ack_flag, int *rexmit)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002796{
2797 struct inet_connection_sock *icsk = inet_csk(sk);
2798 struct tcp_sock *tp = tcp_sk(sk);
2799 int fast_rexmit = 0, flag = *ack_flag;
David Brazdil0f672f62019-12-10 10:32:29 +00002800 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2801 tcp_force_fast_retransmit(sk));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002802
2803 if (!tp->packets_out && tp->sacked_out)
2804 tp->sacked_out = 0;
2805
2806 /* Now state machine starts.
2807 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2808 if (flag & FLAG_ECE)
2809 tp->prior_ssthresh = 0;
2810
2811 /* B. In all the states check for reneging SACKs. */
2812 if (tcp_check_sack_reneging(sk, flag))
2813 return;
2814
2815 /* C. Check consistency of the current state. */
2816 tcp_verify_left_out(tp);
2817
2818 /* D. Check state exit conditions. State can be terminated
2819 * when high_seq is ACKed. */
2820 if (icsk->icsk_ca_state == TCP_CA_Open) {
2821 WARN_ON(tp->retrans_out != 0);
2822 tp->retrans_stamp = 0;
2823 } else if (!before(tp->snd_una, tp->high_seq)) {
2824 switch (icsk->icsk_ca_state) {
2825 case TCP_CA_CWR:
2826 /* CWR is to be held something *above* high_seq
2827 * is ACKed for CWR bit to reach receiver. */
2828 if (tp->snd_una != tp->high_seq) {
2829 tcp_end_cwnd_reduction(sk);
2830 tcp_set_ca_state(sk, TCP_CA_Open);
2831 }
2832 break;
2833
2834 case TCP_CA_Recovery:
2835 if (tcp_is_reno(tp))
2836 tcp_reset_reno_sack(tp);
2837 if (tcp_try_undo_recovery(sk))
2838 return;
2839 tcp_end_cwnd_reduction(sk);
2840 break;
2841 }
2842 }
2843
2844 /* E. Process state. */
2845 switch (icsk->icsk_ca_state) {
2846 case TCP_CA_Recovery:
2847 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
David Brazdil0f672f62019-12-10 10:32:29 +00002848 if (tcp_is_reno(tp))
2849 tcp_add_reno_sack(sk, num_dupack);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002850 } else {
2851 if (tcp_try_undo_partial(sk, prior_snd_una))
2852 return;
2853 /* Partial ACK arrived. Force fast retransmit. */
2854 do_lost = tcp_is_reno(tp) ||
2855 tcp_force_fast_retransmit(sk);
2856 }
2857 if (tcp_try_undo_dsack(sk)) {
2858 tcp_try_keep_open(sk);
2859 return;
2860 }
2861 tcp_identify_packet_loss(sk, ack_flag);
2862 break;
2863 case TCP_CA_Loss:
David Brazdil0f672f62019-12-10 10:32:29 +00002864 tcp_process_loss(sk, flag, num_dupack, rexmit);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002865 tcp_identify_packet_loss(sk, ack_flag);
2866 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2867 (*ack_flag & FLAG_LOST_RETRANS)))
2868 return;
2869 /* Change state if cwnd is undone or retransmits are lost */
2870 /* fall through */
2871 default:
2872 if (tcp_is_reno(tp)) {
2873 if (flag & FLAG_SND_UNA_ADVANCED)
2874 tcp_reset_reno_sack(tp);
David Brazdil0f672f62019-12-10 10:32:29 +00002875 tcp_add_reno_sack(sk, num_dupack);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002876 }
2877
2878 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2879 tcp_try_undo_dsack(sk);
2880
2881 tcp_identify_packet_loss(sk, ack_flag);
2882 if (!tcp_time_to_recover(sk, flag)) {
2883 tcp_try_to_open(sk, flag);
2884 return;
2885 }
2886
2887 /* MTU probe failure: don't reduce cwnd */
2888 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2889 icsk->icsk_mtup.probe_size &&
2890 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2891 tcp_mtup_probe_failed(sk);
2892 /* Restores the reduction we did in tcp_mtup_probe() */
2893 tp->snd_cwnd++;
2894 tcp_simple_retransmit(sk);
2895 return;
2896 }
2897
2898 /* Otherwise enter Recovery state */
2899 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2900 fast_rexmit = 1;
2901 }
2902
2903 if (!tcp_is_rack(sk) && do_lost)
2904 tcp_update_scoreboard(sk, fast_rexmit);
2905 *rexmit = REXMIT_LOST;
2906}
2907
2908static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2909{
2910 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2911 struct tcp_sock *tp = tcp_sk(sk);
2912
2913 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2914 /* If the remote keeps returning delayed ACKs, eventually
2915 * the min filter would pick it up and overestimate the
2916 * prop. delay when it expires. Skip suspected delayed ACKs.
2917 */
2918 return;
2919 }
2920 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2921 rtt_us ? : jiffies_to_usecs(1));
2922}
2923
2924static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2925 long seq_rtt_us, long sack_rtt_us,
2926 long ca_rtt_us, struct rate_sample *rs)
2927{
2928 const struct tcp_sock *tp = tcp_sk(sk);
2929
2930 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2931 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2932 * Karn's algorithm forbids taking RTT if some retransmitted data
2933 * is acked (RFC6298).
2934 */
2935 if (seq_rtt_us < 0)
2936 seq_rtt_us = sack_rtt_us;
2937
2938 /* RTTM Rule: A TSecr value received in a segment is used to
2939 * update the averaged RTT measurement only if the segment
2940 * acknowledges some new data, i.e., only if it advances the
2941 * left edge of the send window.
2942 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2943 */
2944 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2945 flag & FLAG_ACKED) {
2946 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002947
David Brazdil0f672f62019-12-10 10:32:29 +00002948 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
Olivier Deprez0e641232021-09-23 10:07:05 +02002949 if (!delta)
2950 delta = 1;
David Brazdil0f672f62019-12-10 10:32:29 +00002951 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2952 ca_rtt_us = seq_rtt_us;
2953 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002954 }
2955 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2956 if (seq_rtt_us < 0)
2957 return false;
2958
2959 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2960 * always taken together with ACK, SACK, or TS-opts. Any negative
2961 * values will be skipped with the seq_rtt_us < 0 check above.
2962 */
2963 tcp_update_rtt_min(sk, ca_rtt_us, flag);
2964 tcp_rtt_estimator(sk, seq_rtt_us);
2965 tcp_set_rto(sk);
2966
2967 /* RFC6298: only reset backoff on valid RTT measurement. */
2968 inet_csk(sk)->icsk_backoff = 0;
2969 return true;
2970}
2971
2972/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2973void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2974{
2975 struct rate_sample rs;
2976 long rtt_us = -1L;
2977
2978 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2979 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2980
2981 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2982}
2983
2984
2985static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2986{
2987 const struct inet_connection_sock *icsk = inet_csk(sk);
2988
2989 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2990 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2991}
2992
2993/* Restart timer after forward progress on connection.
2994 * RFC2988 recommends to restart timer to now+rto.
2995 */
2996void tcp_rearm_rto(struct sock *sk)
2997{
2998 const struct inet_connection_sock *icsk = inet_csk(sk);
2999 struct tcp_sock *tp = tcp_sk(sk);
3000
3001 /* If the retrans timer is currently being used by Fast Open
3002 * for SYN-ACK retrans purpose, stay put.
3003 */
David Brazdil0f672f62019-12-10 10:32:29 +00003004 if (rcu_access_pointer(tp->fastopen_rsk))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003005 return;
3006
3007 if (!tp->packets_out) {
3008 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3009 } else {
3010 u32 rto = inet_csk(sk)->icsk_rto;
3011 /* Offset the time elapsed after installing regular RTO */
3012 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3013 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3014 s64 delta_us = tcp_rto_delta_us(sk);
3015 /* delta_us may not be positive if the socket is locked
3016 * when the retrans timer fires and is rescheduled.
3017 */
3018 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3019 }
David Brazdil0f672f62019-12-10 10:32:29 +00003020 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3021 TCP_RTO_MAX, tcp_rtx_queue_head(sk));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003022 }
3023}
3024
3025/* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3026static void tcp_set_xmit_timer(struct sock *sk)
3027{
3028 if (!tcp_schedule_loss_probe(sk, true))
3029 tcp_rearm_rto(sk);
3030}
3031
3032/* If we get here, the whole TSO packet has not been acked. */
3033static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3034{
3035 struct tcp_sock *tp = tcp_sk(sk);
3036 u32 packets_acked;
3037
3038 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3039
3040 packets_acked = tcp_skb_pcount(skb);
3041 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3042 return 0;
3043 packets_acked -= tcp_skb_pcount(skb);
3044
3045 if (packets_acked) {
3046 BUG_ON(tcp_skb_pcount(skb) == 0);
3047 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3048 }
3049
3050 return packets_acked;
3051}
3052
3053static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3054 u32 prior_snd_una)
3055{
3056 const struct skb_shared_info *shinfo;
3057
3058 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3059 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3060 return;
3061
3062 shinfo = skb_shinfo(skb);
3063 if (!before(shinfo->tskey, prior_snd_una) &&
3064 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3065 tcp_skb_tsorted_save(skb) {
3066 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3067 } tcp_skb_tsorted_restore(skb);
3068 }
3069}
3070
3071/* Remove acknowledged frames from the retransmission queue. If our packet
3072 * is before the ack sequence we can discard it as it's confirmed to have
3073 * arrived at the other end.
3074 */
3075static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3076 u32 prior_snd_una,
3077 struct tcp_sacktag_state *sack)
3078{
3079 const struct inet_connection_sock *icsk = inet_csk(sk);
3080 u64 first_ackt, last_ackt;
3081 struct tcp_sock *tp = tcp_sk(sk);
3082 u32 prior_sacked = tp->sacked_out;
3083 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3084 struct sk_buff *skb, *next;
3085 bool fully_acked = true;
3086 long sack_rtt_us = -1L;
3087 long seq_rtt_us = -1L;
3088 long ca_rtt_us = -1L;
3089 u32 pkts_acked = 0;
3090 u32 last_in_flight = 0;
3091 bool rtt_update;
3092 int flag = 0;
3093
3094 first_ackt = 0;
3095
3096 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3097 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3098 const u32 start_seq = scb->seq;
3099 u8 sacked = scb->sacked;
3100 u32 acked_pcount;
3101
3102 tcp_ack_tstamp(sk, skb, prior_snd_una);
3103
3104 /* Determine how many packets and what bytes were acked, tso and else */
3105 if (after(scb->end_seq, tp->snd_una)) {
3106 if (tcp_skb_pcount(skb) == 1 ||
3107 !after(tp->snd_una, scb->seq))
3108 break;
3109
3110 acked_pcount = tcp_tso_acked(sk, skb);
3111 if (!acked_pcount)
3112 break;
3113 fully_acked = false;
3114 } else {
3115 acked_pcount = tcp_skb_pcount(skb);
3116 }
3117
3118 if (unlikely(sacked & TCPCB_RETRANS)) {
3119 if (sacked & TCPCB_SACKED_RETRANS)
3120 tp->retrans_out -= acked_pcount;
3121 flag |= FLAG_RETRANS_DATA_ACKED;
3122 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
David Brazdil0f672f62019-12-10 10:32:29 +00003123 last_ackt = tcp_skb_timestamp_us(skb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003124 WARN_ON_ONCE(last_ackt == 0);
3125 if (!first_ackt)
3126 first_ackt = last_ackt;
3127
3128 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3129 if (before(start_seq, reord))
3130 reord = start_seq;
3131 if (!after(scb->end_seq, tp->high_seq))
3132 flag |= FLAG_ORIG_SACK_ACKED;
3133 }
3134
3135 if (sacked & TCPCB_SACKED_ACKED) {
3136 tp->sacked_out -= acked_pcount;
3137 } else if (tcp_is_sack(tp)) {
3138 tp->delivered += acked_pcount;
3139 if (!tcp_skb_spurious_retrans(tp, skb))
3140 tcp_rack_advance(tp, sacked, scb->end_seq,
David Brazdil0f672f62019-12-10 10:32:29 +00003141 tcp_skb_timestamp_us(skb));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003142 }
3143 if (sacked & TCPCB_LOST)
3144 tp->lost_out -= acked_pcount;
3145
3146 tp->packets_out -= acked_pcount;
3147 pkts_acked += acked_pcount;
3148 tcp_rate_skb_delivered(sk, skb, sack->rate);
3149
3150 /* Initial outgoing SYN's get put onto the write_queue
3151 * just like anything else we transmit. It is not
3152 * true data, and if we misinform our callers that
3153 * this ACK acks real data, we will erroneously exit
3154 * connection startup slow start one packet too
3155 * quickly. This is severely frowned upon behavior.
3156 */
3157 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3158 flag |= FLAG_DATA_ACKED;
3159 } else {
3160 flag |= FLAG_SYN_ACKED;
3161 tp->retrans_stamp = 0;
3162 }
3163
3164 if (!fully_acked)
3165 break;
3166
3167 next = skb_rb_next(skb);
3168 if (unlikely(skb == tp->retransmit_skb_hint))
3169 tp->retransmit_skb_hint = NULL;
3170 if (unlikely(skb == tp->lost_skb_hint))
3171 tp->lost_skb_hint = NULL;
Olivier Deprez0e641232021-09-23 10:07:05 +02003172 tcp_highest_sack_replace(sk, skb, next);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003173 tcp_rtx_queue_unlink_and_free(skb, sk);
3174 }
3175
3176 if (!skb)
3177 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3178
3179 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3180 tp->snd_up = tp->snd_una;
3181
3182 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3183 flag |= FLAG_SACK_RENEGING;
3184
3185 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3186 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3187 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3188
3189 if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3190 last_in_flight && !prior_sacked && fully_acked &&
3191 sack->rate->prior_delivered + 1 == tp->delivered &&
3192 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3193 /* Conservatively mark a delayed ACK. It's typically
3194 * from a lone runt packet over the round trip to
3195 * a receiver w/o out-of-order or CE events.
3196 */
3197 flag |= FLAG_ACK_MAYBE_DELAYED;
3198 }
3199 }
3200 if (sack->first_sackt) {
3201 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3202 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3203 }
3204 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3205 ca_rtt_us, sack->rate);
3206
3207 if (flag & FLAG_ACKED) {
3208 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3209 if (unlikely(icsk->icsk_mtup.probe_size &&
3210 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3211 tcp_mtup_probe_success(sk);
3212 }
3213
3214 if (tcp_is_reno(tp)) {
3215 tcp_remove_reno_sacks(sk, pkts_acked);
3216
3217 /* If any of the cumulatively ACKed segments was
3218 * retransmitted, non-SACK case cannot confirm that
3219 * progress was due to original transmission due to
3220 * lack of TCPCB_SACKED_ACKED bits even if some of
3221 * the packets may have been never retransmitted.
3222 */
3223 if (flag & FLAG_RETRANS_DATA_ACKED)
3224 flag &= ~FLAG_ORIG_SACK_ACKED;
3225 } else {
3226 int delta;
3227
3228 /* Non-retransmitted hole got filled? That's reordering */
3229 if (before(reord, prior_fack))
3230 tcp_check_sack_reordering(sk, reord, 0);
3231
3232 delta = prior_sacked - tp->sacked_out;
3233 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3234 }
3235 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
David Brazdil0f672f62019-12-10 10:32:29 +00003236 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3237 tcp_skb_timestamp_us(skb))) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003238 /* Do not re-arm RTO if the sack RTT is measured from data sent
3239 * after when the head was last (re)transmitted. Otherwise the
3240 * timeout may continue to extend in loss recovery.
3241 */
3242 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3243 }
3244
3245 if (icsk->icsk_ca_ops->pkts_acked) {
3246 struct ack_sample sample = { .pkts_acked = pkts_acked,
3247 .rtt_us = sack->rate->rtt_us,
3248 .in_flight = last_in_flight };
3249
3250 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3251 }
3252
3253#if FASTRETRANS_DEBUG > 0
3254 WARN_ON((int)tp->sacked_out < 0);
3255 WARN_ON((int)tp->lost_out < 0);
3256 WARN_ON((int)tp->retrans_out < 0);
3257 if (!tp->packets_out && tcp_is_sack(tp)) {
3258 icsk = inet_csk(sk);
3259 if (tp->lost_out) {
3260 pr_debug("Leak l=%u %d\n",
3261 tp->lost_out, icsk->icsk_ca_state);
3262 tp->lost_out = 0;
3263 }
3264 if (tp->sacked_out) {
3265 pr_debug("Leak s=%u %d\n",
3266 tp->sacked_out, icsk->icsk_ca_state);
3267 tp->sacked_out = 0;
3268 }
3269 if (tp->retrans_out) {
3270 pr_debug("Leak r=%u %d\n",
3271 tp->retrans_out, icsk->icsk_ca_state);
3272 tp->retrans_out = 0;
3273 }
3274 }
3275#endif
3276 return flag;
3277}
3278
3279static void tcp_ack_probe(struct sock *sk)
3280{
3281 struct inet_connection_sock *icsk = inet_csk(sk);
3282 struct sk_buff *head = tcp_send_head(sk);
3283 const struct tcp_sock *tp = tcp_sk(sk);
3284
3285 /* Was it a usable window open? */
3286 if (!head)
3287 return;
3288 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3289 icsk->icsk_backoff = 0;
Olivier Deprez0e641232021-09-23 10:07:05 +02003290 icsk->icsk_probes_tstamp = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003291 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3292 /* Socket must be waked up by subsequent tcp_data_snd_check().
3293 * This function is not for random using!
3294 */
3295 } else {
3296 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3297
Olivier Deprez0e641232021-09-23 10:07:05 +02003298 when = tcp_clamp_probe0_to_user_timeout(sk, when);
David Brazdil0f672f62019-12-10 10:32:29 +00003299 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3300 when, TCP_RTO_MAX, NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003301 }
3302}
3303
3304static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3305{
3306 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3307 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3308}
3309
3310/* Decide wheather to run the increase function of congestion control. */
3311static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3312{
3313 /* If reordering is high then always grow cwnd whenever data is
3314 * delivered regardless of its ordering. Otherwise stay conservative
3315 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3316 * new SACK or ECE mark may first advance cwnd here and later reduce
3317 * cwnd in tcp_fastretrans_alert() based on more states.
3318 */
3319 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3320 return flag & FLAG_FORWARD_PROGRESS;
3321
3322 return flag & FLAG_DATA_ACKED;
3323}
3324
3325/* The "ultimate" congestion control function that aims to replace the rigid
3326 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3327 * It's called toward the end of processing an ACK with precise rate
3328 * information. All transmission or retransmission are delayed afterwards.
3329 */
3330static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3331 int flag, const struct rate_sample *rs)
3332{
3333 const struct inet_connection_sock *icsk = inet_csk(sk);
3334
3335 if (icsk->icsk_ca_ops->cong_control) {
3336 icsk->icsk_ca_ops->cong_control(sk, rs);
3337 return;
3338 }
3339
3340 if (tcp_in_cwnd_reduction(sk)) {
3341 /* Reduce cwnd if state mandates */
3342 tcp_cwnd_reduction(sk, acked_sacked, flag);
3343 } else if (tcp_may_raise_cwnd(sk, flag)) {
3344 /* Advance cwnd if state allows */
3345 tcp_cong_avoid(sk, ack, acked_sacked);
3346 }
3347 tcp_update_pacing_rate(sk);
3348}
3349
3350/* Check that window update is acceptable.
3351 * The function assumes that snd_una<=ack<=snd_next.
3352 */
3353static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3354 const u32 ack, const u32 ack_seq,
3355 const u32 nwin)
3356{
3357 return after(ack, tp->snd_una) ||
3358 after(ack_seq, tp->snd_wl1) ||
3359 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3360}
3361
3362/* If we update tp->snd_una, also update tp->bytes_acked */
3363static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3364{
3365 u32 delta = ack - tp->snd_una;
3366
3367 sock_owned_by_me((struct sock *)tp);
3368 tp->bytes_acked += delta;
3369 tp->snd_una = ack;
3370}
3371
3372/* If we update tp->rcv_nxt, also update tp->bytes_received */
3373static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3374{
3375 u32 delta = seq - tp->rcv_nxt;
3376
3377 sock_owned_by_me((struct sock *)tp);
3378 tp->bytes_received += delta;
David Brazdil0f672f62019-12-10 10:32:29 +00003379 WRITE_ONCE(tp->rcv_nxt, seq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003380}
3381
3382/* Update our send window.
3383 *
3384 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3385 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3386 */
3387static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3388 u32 ack_seq)
3389{
3390 struct tcp_sock *tp = tcp_sk(sk);
3391 int flag = 0;
3392 u32 nwin = ntohs(tcp_hdr(skb)->window);
3393
3394 if (likely(!tcp_hdr(skb)->syn))
3395 nwin <<= tp->rx_opt.snd_wscale;
3396
3397 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3398 flag |= FLAG_WIN_UPDATE;
3399 tcp_update_wl(tp, ack_seq);
3400
3401 if (tp->snd_wnd != nwin) {
3402 tp->snd_wnd = nwin;
3403
3404 /* Note, it is the only place, where
3405 * fast path is recovered for sending TCP.
3406 */
3407 tp->pred_flags = 0;
3408 tcp_fast_path_check(sk);
3409
3410 if (!tcp_write_queue_empty(sk))
3411 tcp_slow_start_after_idle_check(sk);
3412
3413 if (nwin > tp->max_window) {
3414 tp->max_window = nwin;
3415 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3416 }
3417 }
3418 }
3419
3420 tcp_snd_una_update(tp, ack);
3421
3422 return flag;
3423}
3424
3425static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3426 u32 *last_oow_ack_time)
3427{
3428 if (*last_oow_ack_time) {
3429 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3430
3431 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3432 NET_INC_STATS(net, mib_idx);
3433 return true; /* rate-limited: don't send yet! */
3434 }
3435 }
3436
3437 *last_oow_ack_time = tcp_jiffies32;
3438
3439 return false; /* not rate-limited: go ahead, send dupack now! */
3440}
3441
3442/* Return true if we're currently rate-limiting out-of-window ACKs and
3443 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3444 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3445 * attacks that send repeated SYNs or ACKs for the same connection. To
3446 * do this, we do not send a duplicate SYNACK or ACK if the remote
3447 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3448 */
3449bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3450 int mib_idx, u32 *last_oow_ack_time)
3451{
3452 /* Data packets without SYNs are not likely part of an ACK loop. */
3453 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3454 !tcp_hdr(skb)->syn)
3455 return false;
3456
3457 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3458}
3459
3460/* RFC 5961 7 [ACK Throttling] */
3461static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3462{
3463 /* unprotected vars, we dont care of overwrites */
3464 static u32 challenge_timestamp;
3465 static unsigned int challenge_count;
3466 struct tcp_sock *tp = tcp_sk(sk);
3467 struct net *net = sock_net(sk);
3468 u32 count, now;
3469
3470 /* First check our per-socket dupack rate limit. */
3471 if (__tcp_oow_rate_limited(net,
3472 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3473 &tp->last_oow_ack_time))
3474 return;
3475
3476 /* Then check host-wide RFC 5961 rate limit. */
3477 now = jiffies / HZ;
3478 if (now != challenge_timestamp) {
3479 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3480 u32 half = (ack_limit + 1) >> 1;
3481
3482 challenge_timestamp = now;
3483 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3484 }
3485 count = READ_ONCE(challenge_count);
3486 if (count > 0) {
3487 WRITE_ONCE(challenge_count, count - 1);
3488 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3489 tcp_send_ack(sk);
3490 }
3491}
3492
3493static void tcp_store_ts_recent(struct tcp_sock *tp)
3494{
3495 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3496 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3497}
3498
3499static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3500{
3501 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3502 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3503 * extra check below makes sure this can only happen
3504 * for pure ACK frames. -DaveM
3505 *
3506 * Not only, also it occurs for expired timestamps.
3507 */
3508
3509 if (tcp_paws_check(&tp->rx_opt, 0))
3510 tcp_store_ts_recent(tp);
3511 }
3512}
3513
Olivier Deprez0e641232021-09-23 10:07:05 +02003514/* This routine deals with acks during a TLP episode and ends an episode by
3515 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003516 */
3517static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3518{
3519 struct tcp_sock *tp = tcp_sk(sk);
3520
3521 if (before(ack, tp->tlp_high_seq))
3522 return;
3523
Olivier Deprez0e641232021-09-23 10:07:05 +02003524 if (!tp->tlp_retrans) {
3525 /* TLP of new data has been acknowledged */
3526 tp->tlp_high_seq = 0;
3527 } else if (flag & FLAG_DSACKING_ACK) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003528 /* This DSACK means original and TLP probe arrived; no loss */
3529 tp->tlp_high_seq = 0;
3530 } else if (after(ack, tp->tlp_high_seq)) {
3531 /* ACK advances: there was a loss, so reduce cwnd. Reset
3532 * tlp_high_seq in tcp_init_cwnd_reduction()
3533 */
3534 tcp_init_cwnd_reduction(sk);
3535 tcp_set_ca_state(sk, TCP_CA_CWR);
3536 tcp_end_cwnd_reduction(sk);
3537 tcp_try_keep_open(sk);
3538 NET_INC_STATS(sock_net(sk),
3539 LINUX_MIB_TCPLOSSPROBERECOVERY);
3540 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3541 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3542 /* Pure dupack: original and TLP probe arrived; no loss */
3543 tp->tlp_high_seq = 0;
3544 }
3545}
3546
3547static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3548{
3549 const struct inet_connection_sock *icsk = inet_csk(sk);
3550
3551 if (icsk->icsk_ca_ops->in_ack_event)
3552 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3553}
3554
3555/* Congestion control has updated the cwnd already. So if we're in
3556 * loss recovery then now we do any new sends (for FRTO) or
3557 * retransmits (for CA_Loss or CA_recovery) that make sense.
3558 */
3559static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3560{
3561 struct tcp_sock *tp = tcp_sk(sk);
3562
David Brazdil0f672f62019-12-10 10:32:29 +00003563 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003564 return;
3565
3566 if (unlikely(rexmit == 2)) {
3567 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3568 TCP_NAGLE_OFF);
3569 if (after(tp->snd_nxt, tp->high_seq))
3570 return;
3571 tp->frto = 0;
3572 }
3573 tcp_xmit_retransmit_queue(sk);
3574}
3575
3576/* Returns the number of packets newly acked or sacked by the current ACK */
3577static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3578{
3579 const struct net *net = sock_net(sk);
3580 struct tcp_sock *tp = tcp_sk(sk);
3581 u32 delivered;
3582
3583 delivered = tp->delivered - prior_delivered;
3584 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3585 if (flag & FLAG_ECE) {
3586 tp->delivered_ce += delivered;
3587 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3588 }
3589 return delivered;
3590}
3591
3592/* This routine deals with incoming acks, but not outgoing ones. */
3593static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3594{
3595 struct inet_connection_sock *icsk = inet_csk(sk);
3596 struct tcp_sock *tp = tcp_sk(sk);
3597 struct tcp_sacktag_state sack_state;
3598 struct rate_sample rs = { .prior_delivered = 0 };
3599 u32 prior_snd_una = tp->snd_una;
3600 bool is_sack_reneg = tp->is_sack_reneg;
3601 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3602 u32 ack = TCP_SKB_CB(skb)->ack_seq;
David Brazdil0f672f62019-12-10 10:32:29 +00003603 int num_dupack = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003604 int prior_packets = tp->packets_out;
3605 u32 delivered = tp->delivered;
3606 u32 lost = tp->lost;
3607 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3608 u32 prior_fack;
3609
3610 sack_state.first_sackt = 0;
3611 sack_state.rate = &rs;
3612
3613 /* We very likely will need to access rtx queue. */
3614 prefetch(sk->tcp_rtx_queue.rb_node);
3615
3616 /* If the ack is older than previous acks
3617 * then we can probably ignore it.
3618 */
3619 if (before(ack, prior_snd_una)) {
3620 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3621 if (before(ack, prior_snd_una - tp->max_window)) {
3622 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3623 tcp_send_challenge_ack(sk, skb);
3624 return -1;
3625 }
3626 goto old_ack;
3627 }
3628
3629 /* If the ack includes data we haven't sent yet, discard
3630 * this segment (RFC793 Section 3.9).
3631 */
3632 if (after(ack, tp->snd_nxt))
David Brazdil0f672f62019-12-10 10:32:29 +00003633 return -1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003634
3635 if (after(ack, prior_snd_una)) {
3636 flag |= FLAG_SND_UNA_ADVANCED;
3637 icsk->icsk_retransmits = 0;
3638
3639#if IS_ENABLED(CONFIG_TLS_DEVICE)
David Brazdil0f672f62019-12-10 10:32:29 +00003640 if (static_branch_unlikely(&clean_acked_data_enabled.key))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003641 if (icsk->icsk_clean_acked)
3642 icsk->icsk_clean_acked(sk, ack);
3643#endif
3644 }
3645
3646 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3647 rs.prior_in_flight = tcp_packets_in_flight(tp);
3648
3649 /* ts_recent update must be made after we are sure that the packet
3650 * is in window.
3651 */
3652 if (flag & FLAG_UPDATE_TS_RECENT)
3653 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3654
David Brazdil0f672f62019-12-10 10:32:29 +00003655 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3656 FLAG_SND_UNA_ADVANCED) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003657 /* Window is constant, pure forward advance.
3658 * No more checks are required.
3659 * Note, we use the fact that SND.UNA>=SND.WL2.
3660 */
3661 tcp_update_wl(tp, ack_seq);
3662 tcp_snd_una_update(tp, ack);
3663 flag |= FLAG_WIN_UPDATE;
3664
3665 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3666
3667 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3668 } else {
3669 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3670
3671 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3672 flag |= FLAG_DATA;
3673 else
3674 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3675
3676 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3677
3678 if (TCP_SKB_CB(skb)->sacked)
3679 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3680 &sack_state);
3681
3682 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3683 flag |= FLAG_ECE;
3684 ack_ev_flags |= CA_ACK_ECE;
3685 }
3686
3687 if (flag & FLAG_WIN_UPDATE)
3688 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3689
3690 tcp_in_ack_event(sk, ack_ev_flags);
3691 }
3692
Olivier Deprez0e641232021-09-23 10:07:05 +02003693 /* This is a deviation from RFC3168 since it states that:
3694 * "When the TCP data sender is ready to set the CWR bit after reducing
3695 * the congestion window, it SHOULD set the CWR bit only on the first
3696 * new data packet that it transmits."
3697 * We accept CWR on pure ACKs to be more robust
3698 * with widely-deployed TCP implementations that do this.
3699 */
3700 tcp_ecn_accept_cwr(sk, skb);
3701
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003702 /* We passed data and got it acked, remove any soft error
3703 * log. Something worked...
3704 */
3705 sk->sk_err_soft = 0;
3706 icsk->icsk_probes_out = 0;
3707 tp->rcv_tstamp = tcp_jiffies32;
3708 if (!prior_packets)
3709 goto no_queue;
3710
3711 /* See if we can take anything off of the retransmit queue. */
3712 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3713
3714 tcp_rack_update_reo_wnd(sk, &rs);
3715
3716 if (tp->tlp_high_seq)
3717 tcp_process_tlp_ack(sk, ack, flag);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003718
3719 if (tcp_ack_is_dubious(sk, flag)) {
David Brazdil0f672f62019-12-10 10:32:29 +00003720 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3721 num_dupack = 1;
3722 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3723 if (!(flag & FLAG_DATA))
3724 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3725 }
3726 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003727 &rexmit);
3728 }
3729
Olivier Deprez0e641232021-09-23 10:07:05 +02003730 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
3731 if (flag & FLAG_SET_XMIT_TIMER)
3732 tcp_set_xmit_timer(sk);
3733
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003734 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3735 sk_dst_confirm(sk);
3736
3737 delivered = tcp_newly_delivered(sk, delivered, flag);
3738 lost = tp->lost - lost; /* freshly marked lost */
3739 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3740 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3741 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3742 tcp_xmit_recovery(sk, rexmit);
3743 return 1;
3744
3745no_queue:
3746 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3747 if (flag & FLAG_DSACKING_ACK) {
David Brazdil0f672f62019-12-10 10:32:29 +00003748 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003749 &rexmit);
3750 tcp_newly_delivered(sk, delivered, flag);
3751 }
3752 /* If this ack opens up a zero window, clear backoff. It was
3753 * being used to time the probes, and is probably far higher than
3754 * it needs to be for normal retransmission.
3755 */
3756 tcp_ack_probe(sk);
3757
3758 if (tp->tlp_high_seq)
3759 tcp_process_tlp_ack(sk, ack, flag);
3760 return 1;
3761
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003762old_ack:
3763 /* If data was SACKed, tag it and see if we should send more data.
3764 * If data was DSACKed, see if we can undo a cwnd reduction.
3765 */
3766 if (TCP_SKB_CB(skb)->sacked) {
3767 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3768 &sack_state);
David Brazdil0f672f62019-12-10 10:32:29 +00003769 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003770 &rexmit);
3771 tcp_newly_delivered(sk, delivered, flag);
3772 tcp_xmit_recovery(sk, rexmit);
3773 }
3774
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003775 return 0;
3776}
3777
3778static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3779 bool syn, struct tcp_fastopen_cookie *foc,
3780 bool exp_opt)
3781{
3782 /* Valid only in SYN or SYN-ACK with an even length. */
3783 if (!foc || !syn || len < 0 || (len & 1))
3784 return;
3785
3786 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3787 len <= TCP_FASTOPEN_COOKIE_MAX)
3788 memcpy(foc->val, cookie, len);
3789 else if (len != 0)
3790 len = -1;
3791 foc->len = len;
3792 foc->exp = exp_opt;
3793}
3794
3795static void smc_parse_options(const struct tcphdr *th,
3796 struct tcp_options_received *opt_rx,
3797 const unsigned char *ptr,
3798 int opsize)
3799{
3800#if IS_ENABLED(CONFIG_SMC)
3801 if (static_branch_unlikely(&tcp_have_smc)) {
3802 if (th->syn && !(opsize & 1) &&
3803 opsize >= TCPOLEN_EXP_SMC_BASE &&
3804 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3805 opt_rx->smc_ok = 1;
3806 }
3807#endif
3808}
3809
David Brazdil0f672f62019-12-10 10:32:29 +00003810/* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3811 * value on success.
3812 */
3813static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3814{
3815 const unsigned char *ptr = (const unsigned char *)(th + 1);
3816 int length = (th->doff * 4) - sizeof(struct tcphdr);
3817 u16 mss = 0;
3818
3819 while (length > 0) {
3820 int opcode = *ptr++;
3821 int opsize;
3822
3823 switch (opcode) {
3824 case TCPOPT_EOL:
3825 return mss;
3826 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3827 length--;
3828 continue;
3829 default:
3830 if (length < 2)
3831 return mss;
3832 opsize = *ptr++;
3833 if (opsize < 2) /* "silly options" */
3834 return mss;
3835 if (opsize > length)
3836 return mss; /* fail on partial options */
3837 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3838 u16 in_mss = get_unaligned_be16(ptr);
3839
3840 if (in_mss) {
3841 if (user_mss && user_mss < in_mss)
3842 in_mss = user_mss;
3843 mss = in_mss;
3844 }
3845 }
3846 ptr += opsize - 2;
3847 length -= opsize;
3848 }
3849 }
3850 return mss;
3851}
3852
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003853/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3854 * But, this can also be called on packets in the established flow when
3855 * the fast version below fails.
3856 */
3857void tcp_parse_options(const struct net *net,
3858 const struct sk_buff *skb,
3859 struct tcp_options_received *opt_rx, int estab,
3860 struct tcp_fastopen_cookie *foc)
3861{
3862 const unsigned char *ptr;
3863 const struct tcphdr *th = tcp_hdr(skb);
3864 int length = (th->doff * 4) - sizeof(struct tcphdr);
3865
3866 ptr = (const unsigned char *)(th + 1);
3867 opt_rx->saw_tstamp = 0;
3868
3869 while (length > 0) {
3870 int opcode = *ptr++;
3871 int opsize;
3872
3873 switch (opcode) {
3874 case TCPOPT_EOL:
3875 return;
3876 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3877 length--;
3878 continue;
3879 default:
David Brazdil0f672f62019-12-10 10:32:29 +00003880 if (length < 2)
3881 return;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003882 opsize = *ptr++;
3883 if (opsize < 2) /* "silly options" */
3884 return;
3885 if (opsize > length)
3886 return; /* don't parse partial options */
3887 switch (opcode) {
3888 case TCPOPT_MSS:
3889 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3890 u16 in_mss = get_unaligned_be16(ptr);
3891 if (in_mss) {
3892 if (opt_rx->user_mss &&
3893 opt_rx->user_mss < in_mss)
3894 in_mss = opt_rx->user_mss;
3895 opt_rx->mss_clamp = in_mss;
3896 }
3897 }
3898 break;
3899 case TCPOPT_WINDOW:
3900 if (opsize == TCPOLEN_WINDOW && th->syn &&
3901 !estab && net->ipv4.sysctl_tcp_window_scaling) {
3902 __u8 snd_wscale = *(__u8 *)ptr;
3903 opt_rx->wscale_ok = 1;
3904 if (snd_wscale > TCP_MAX_WSCALE) {
3905 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3906 __func__,
3907 snd_wscale,
3908 TCP_MAX_WSCALE);
3909 snd_wscale = TCP_MAX_WSCALE;
3910 }
3911 opt_rx->snd_wscale = snd_wscale;
3912 }
3913 break;
3914 case TCPOPT_TIMESTAMP:
3915 if ((opsize == TCPOLEN_TIMESTAMP) &&
3916 ((estab && opt_rx->tstamp_ok) ||
3917 (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3918 opt_rx->saw_tstamp = 1;
3919 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3920 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3921 }
3922 break;
3923 case TCPOPT_SACK_PERM:
3924 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3925 !estab && net->ipv4.sysctl_tcp_sack) {
3926 opt_rx->sack_ok = TCP_SACK_SEEN;
3927 tcp_sack_reset(opt_rx);
3928 }
3929 break;
3930
3931 case TCPOPT_SACK:
3932 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3933 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3934 opt_rx->sack_ok) {
3935 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3936 }
3937 break;
3938#ifdef CONFIG_TCP_MD5SIG
3939 case TCPOPT_MD5SIG:
3940 /*
3941 * The MD5 Hash has already been
3942 * checked (see tcp_v{4,6}_do_rcv()).
3943 */
3944 break;
3945#endif
3946 case TCPOPT_FASTOPEN:
3947 tcp_parse_fastopen_option(
3948 opsize - TCPOLEN_FASTOPEN_BASE,
3949 ptr, th->syn, foc, false);
3950 break;
3951
3952 case TCPOPT_EXP:
3953 /* Fast Open option shares code 254 using a
3954 * 16 bits magic number.
3955 */
3956 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3957 get_unaligned_be16(ptr) ==
3958 TCPOPT_FASTOPEN_MAGIC)
3959 tcp_parse_fastopen_option(opsize -
3960 TCPOLEN_EXP_FASTOPEN_BASE,
3961 ptr + 2, th->syn, foc, true);
3962 else
3963 smc_parse_options(th, opt_rx, ptr,
3964 opsize);
3965 break;
3966
3967 }
3968 ptr += opsize-2;
3969 length -= opsize;
3970 }
3971 }
3972}
3973EXPORT_SYMBOL(tcp_parse_options);
3974
3975static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3976{
3977 const __be32 *ptr = (const __be32 *)(th + 1);
3978
3979 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3980 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3981 tp->rx_opt.saw_tstamp = 1;
3982 ++ptr;
3983 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3984 ++ptr;
3985 if (*ptr)
3986 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3987 else
3988 tp->rx_opt.rcv_tsecr = 0;
3989 return true;
3990 }
3991 return false;
3992}
3993
3994/* Fast parse options. This hopes to only see timestamps.
3995 * If it is wrong it falls back on tcp_parse_options().
3996 */
3997static bool tcp_fast_parse_options(const struct net *net,
3998 const struct sk_buff *skb,
3999 const struct tcphdr *th, struct tcp_sock *tp)
4000{
4001 /* In the spirit of fast parsing, compare doff directly to constant
4002 * values. Because equality is used, short doff can be ignored here.
4003 */
4004 if (th->doff == (sizeof(*th) / 4)) {
4005 tp->rx_opt.saw_tstamp = 0;
4006 return false;
4007 } else if (tp->rx_opt.tstamp_ok &&
4008 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4009 if (tcp_parse_aligned_timestamp(tp, th))
4010 return true;
4011 }
4012
4013 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4014 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4015 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4016
4017 return true;
4018}
4019
4020#ifdef CONFIG_TCP_MD5SIG
4021/*
4022 * Parse MD5 Signature option
4023 */
4024const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4025{
4026 int length = (th->doff << 2) - sizeof(*th);
4027 const u8 *ptr = (const u8 *)(th + 1);
4028
4029 /* If not enough data remaining, we can short cut */
4030 while (length >= TCPOLEN_MD5SIG) {
4031 int opcode = *ptr++;
4032 int opsize;
4033
4034 switch (opcode) {
4035 case TCPOPT_EOL:
4036 return NULL;
4037 case TCPOPT_NOP:
4038 length--;
4039 continue;
4040 default:
4041 opsize = *ptr++;
4042 if (opsize < 2 || opsize > length)
4043 return NULL;
4044 if (opcode == TCPOPT_MD5SIG)
4045 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4046 }
4047 ptr += opsize - 2;
4048 length -= opsize;
4049 }
4050 return NULL;
4051}
4052EXPORT_SYMBOL(tcp_parse_md5sig_option);
4053#endif
4054
4055/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4056 *
4057 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4058 * it can pass through stack. So, the following predicate verifies that
4059 * this segment is not used for anything but congestion avoidance or
4060 * fast retransmit. Moreover, we even are able to eliminate most of such
4061 * second order effects, if we apply some small "replay" window (~RTO)
4062 * to timestamp space.
4063 *
4064 * All these measures still do not guarantee that we reject wrapped ACKs
4065 * on networks with high bandwidth, when sequence space is recycled fastly,
4066 * but it guarantees that such events will be very rare and do not affect
4067 * connection seriously. This doesn't look nice, but alas, PAWS is really
4068 * buggy extension.
4069 *
4070 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4071 * states that events when retransmit arrives after original data are rare.
4072 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4073 * the biggest problem on large power networks even with minor reordering.
4074 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4075 * up to bandwidth of 18Gigabit/sec. 8) ]
4076 */
4077
4078static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4079{
4080 const struct tcp_sock *tp = tcp_sk(sk);
4081 const struct tcphdr *th = tcp_hdr(skb);
4082 u32 seq = TCP_SKB_CB(skb)->seq;
4083 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4084
4085 return (/* 1. Pure ACK with correct sequence number. */
4086 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4087
4088 /* 2. ... and duplicate ACK. */
4089 ack == tp->snd_una &&
4090
4091 /* 3. ... and does not update window. */
4092 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4093
4094 /* 4. ... and sits in replay window. */
4095 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4096}
4097
4098static inline bool tcp_paws_discard(const struct sock *sk,
4099 const struct sk_buff *skb)
4100{
4101 const struct tcp_sock *tp = tcp_sk(sk);
4102
4103 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4104 !tcp_disordered_ack(sk, skb);
4105}
4106
4107/* Check segment sequence number for validity.
4108 *
4109 * Segment controls are considered valid, if the segment
4110 * fits to the window after truncation to the window. Acceptability
4111 * of data (and SYN, FIN, of course) is checked separately.
4112 * See tcp_data_queue(), for example.
4113 *
4114 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4115 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4116 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4117 * (borrowed from freebsd)
4118 */
4119
4120static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4121{
4122 return !before(end_seq, tp->rcv_wup) &&
4123 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4124}
4125
4126/* When we get a reset we do this. */
4127void tcp_reset(struct sock *sk)
4128{
4129 trace_tcp_receive_reset(sk);
4130
4131 /* We want the right error as BSD sees it (and indeed as we do). */
4132 switch (sk->sk_state) {
4133 case TCP_SYN_SENT:
4134 sk->sk_err = ECONNREFUSED;
4135 break;
4136 case TCP_CLOSE_WAIT:
4137 sk->sk_err = EPIPE;
4138 break;
4139 case TCP_CLOSE:
4140 return;
4141 default:
4142 sk->sk_err = ECONNRESET;
4143 }
4144 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4145 smp_wmb();
4146
4147 tcp_write_queue_purge(sk);
4148 tcp_done(sk);
4149
4150 if (!sock_flag(sk, SOCK_DEAD))
4151 sk->sk_error_report(sk);
4152}
4153
4154/*
4155 * Process the FIN bit. This now behaves as it is supposed to work
4156 * and the FIN takes effect when it is validly part of sequence
4157 * space. Not before when we get holes.
4158 *
4159 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4160 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4161 * TIME-WAIT)
4162 *
4163 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4164 * close and we go into CLOSING (and later onto TIME-WAIT)
4165 *
4166 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4167 */
4168void tcp_fin(struct sock *sk)
4169{
4170 struct tcp_sock *tp = tcp_sk(sk);
4171
4172 inet_csk_schedule_ack(sk);
4173
4174 sk->sk_shutdown |= RCV_SHUTDOWN;
4175 sock_set_flag(sk, SOCK_DONE);
4176
4177 switch (sk->sk_state) {
4178 case TCP_SYN_RECV:
4179 case TCP_ESTABLISHED:
4180 /* Move to CLOSE_WAIT */
4181 tcp_set_state(sk, TCP_CLOSE_WAIT);
David Brazdil0f672f62019-12-10 10:32:29 +00004182 inet_csk_enter_pingpong_mode(sk);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004183 break;
4184
4185 case TCP_CLOSE_WAIT:
4186 case TCP_CLOSING:
4187 /* Received a retransmission of the FIN, do
4188 * nothing.
4189 */
4190 break;
4191 case TCP_LAST_ACK:
4192 /* RFC793: Remain in the LAST-ACK state. */
4193 break;
4194
4195 case TCP_FIN_WAIT1:
4196 /* This case occurs when a simultaneous close
4197 * happens, we must ack the received FIN and
4198 * enter the CLOSING state.
4199 */
4200 tcp_send_ack(sk);
4201 tcp_set_state(sk, TCP_CLOSING);
4202 break;
4203 case TCP_FIN_WAIT2:
4204 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4205 tcp_send_ack(sk);
4206 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4207 break;
4208 default:
4209 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4210 * cases we should never reach this piece of code.
4211 */
4212 pr_err("%s: Impossible, sk->sk_state=%d\n",
4213 __func__, sk->sk_state);
4214 break;
4215 }
4216
4217 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4218 * Probably, we should reset in this case. For now drop them.
4219 */
4220 skb_rbtree_purge(&tp->out_of_order_queue);
4221 if (tcp_is_sack(tp))
4222 tcp_sack_reset(&tp->rx_opt);
4223 sk_mem_reclaim(sk);
4224
4225 if (!sock_flag(sk, SOCK_DEAD)) {
4226 sk->sk_state_change(sk);
4227
4228 /* Do not send POLL_HUP for half duplex close. */
4229 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4230 sk->sk_state == TCP_CLOSE)
4231 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4232 else
4233 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4234 }
4235}
4236
4237static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4238 u32 end_seq)
4239{
4240 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4241 if (before(seq, sp->start_seq))
4242 sp->start_seq = seq;
4243 if (after(end_seq, sp->end_seq))
4244 sp->end_seq = end_seq;
4245 return true;
4246 }
4247 return false;
4248}
4249
4250static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4251{
4252 struct tcp_sock *tp = tcp_sk(sk);
4253
4254 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4255 int mib_idx;
4256
4257 if (before(seq, tp->rcv_nxt))
4258 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4259 else
4260 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4261
4262 NET_INC_STATS(sock_net(sk), mib_idx);
4263
4264 tp->rx_opt.dsack = 1;
4265 tp->duplicate_sack[0].start_seq = seq;
4266 tp->duplicate_sack[0].end_seq = end_seq;
4267 }
4268}
4269
4270static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4271{
4272 struct tcp_sock *tp = tcp_sk(sk);
4273
4274 if (!tp->rx_opt.dsack)
4275 tcp_dsack_set(sk, seq, end_seq);
4276 else
4277 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4278}
4279
David Brazdil0f672f62019-12-10 10:32:29 +00004280static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4281{
4282 /* When the ACK path fails or drops most ACKs, the sender would
4283 * timeout and spuriously retransmit the same segment repeatedly.
4284 * The receiver remembers and reflects via DSACKs. Leverage the
4285 * DSACK state and change the txhash to re-route speculatively.
4286 */
4287 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq)
4288 sk_rethink_txhash(sk);
4289}
4290
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004291static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4292{
4293 struct tcp_sock *tp = tcp_sk(sk);
4294
4295 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4296 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4297 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4298 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4299
4300 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4301 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4302
David Brazdil0f672f62019-12-10 10:32:29 +00004303 tcp_rcv_spurious_retrans(sk, skb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004304 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4305 end_seq = tp->rcv_nxt;
4306 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4307 }
4308 }
4309
4310 tcp_send_ack(sk);
4311}
4312
4313/* These routines update the SACK block as out-of-order packets arrive or
4314 * in-order packets close up the sequence space.
4315 */
4316static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4317{
4318 int this_sack;
4319 struct tcp_sack_block *sp = &tp->selective_acks[0];
4320 struct tcp_sack_block *swalk = sp + 1;
4321
4322 /* See if the recent change to the first SACK eats into
4323 * or hits the sequence space of other SACK blocks, if so coalesce.
4324 */
4325 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4326 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4327 int i;
4328
4329 /* Zap SWALK, by moving every further SACK up by one slot.
4330 * Decrease num_sacks.
4331 */
4332 tp->rx_opt.num_sacks--;
4333 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4334 sp[i] = sp[i + 1];
4335 continue;
4336 }
4337 this_sack++, swalk++;
4338 }
4339}
4340
4341static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4342{
4343 struct tcp_sock *tp = tcp_sk(sk);
4344 struct tcp_sack_block *sp = &tp->selective_acks[0];
4345 int cur_sacks = tp->rx_opt.num_sacks;
4346 int this_sack;
4347
4348 if (!cur_sacks)
4349 goto new_sack;
4350
4351 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4352 if (tcp_sack_extend(sp, seq, end_seq)) {
4353 /* Rotate this_sack to the first one. */
4354 for (; this_sack > 0; this_sack--, sp--)
4355 swap(*sp, *(sp - 1));
4356 if (cur_sacks > 1)
4357 tcp_sack_maybe_coalesce(tp);
4358 return;
4359 }
4360 }
4361
4362 /* Could not find an adjacent existing SACK, build a new one,
4363 * put it at the front, and shift everyone else down. We
4364 * always know there is at least one SACK present already here.
4365 *
4366 * If the sack array is full, forget about the last one.
4367 */
4368 if (this_sack >= TCP_NUM_SACKS) {
4369 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4370 tcp_send_ack(sk);
4371 this_sack--;
4372 tp->rx_opt.num_sacks--;
4373 sp--;
4374 }
4375 for (; this_sack > 0; this_sack--, sp--)
4376 *sp = *(sp - 1);
4377
4378new_sack:
4379 /* Build the new head SACK, and we're done. */
4380 sp->start_seq = seq;
4381 sp->end_seq = end_seq;
4382 tp->rx_opt.num_sacks++;
4383}
4384
4385/* RCV.NXT advances, some SACKs should be eaten. */
4386
4387static void tcp_sack_remove(struct tcp_sock *tp)
4388{
4389 struct tcp_sack_block *sp = &tp->selective_acks[0];
4390 int num_sacks = tp->rx_opt.num_sacks;
4391 int this_sack;
4392
4393 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4394 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4395 tp->rx_opt.num_sacks = 0;
4396 return;
4397 }
4398
4399 for (this_sack = 0; this_sack < num_sacks;) {
4400 /* Check if the start of the sack is covered by RCV.NXT. */
4401 if (!before(tp->rcv_nxt, sp->start_seq)) {
4402 int i;
4403
4404 /* RCV.NXT must cover all the block! */
4405 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4406
4407 /* Zap this SACK, by moving forward any other SACKS. */
4408 for (i = this_sack+1; i < num_sacks; i++)
4409 tp->selective_acks[i-1] = tp->selective_acks[i];
4410 num_sacks--;
4411 continue;
4412 }
4413 this_sack++;
4414 sp++;
4415 }
4416 tp->rx_opt.num_sacks = num_sacks;
4417}
4418
4419/**
4420 * tcp_try_coalesce - try to merge skb to prior one
4421 * @sk: socket
4422 * @dest: destination queue
4423 * @to: prior buffer
4424 * @from: buffer to add in queue
4425 * @fragstolen: pointer to boolean
4426 *
4427 * Before queueing skb @from after @to, try to merge them
4428 * to reduce overall memory use and queue lengths, if cost is small.
4429 * Packets in ofo or receive queues can stay a long time.
4430 * Better try to coalesce them right now to avoid future collapses.
4431 * Returns true if caller should free @from instead of queueing it
4432 */
4433static bool tcp_try_coalesce(struct sock *sk,
4434 struct sk_buff *to,
4435 struct sk_buff *from,
4436 bool *fragstolen)
4437{
4438 int delta;
4439
4440 *fragstolen = false;
4441
4442 /* Its possible this segment overlaps with prior segment in queue */
4443 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4444 return false;
4445
4446#ifdef CONFIG_TLS_DEVICE
4447 if (from->decrypted != to->decrypted)
4448 return false;
4449#endif
4450
4451 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4452 return false;
4453
4454 atomic_add(delta, &sk->sk_rmem_alloc);
4455 sk_mem_charge(sk, delta);
4456 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4457 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4458 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4459 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4460
4461 if (TCP_SKB_CB(from)->has_rxtstamp) {
4462 TCP_SKB_CB(to)->has_rxtstamp = true;
4463 to->tstamp = from->tstamp;
4464 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4465 }
4466
4467 return true;
4468}
4469
4470static bool tcp_ooo_try_coalesce(struct sock *sk,
4471 struct sk_buff *to,
4472 struct sk_buff *from,
4473 bool *fragstolen)
4474{
4475 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4476
4477 /* In case tcp_drop() is called later, update to->gso_segs */
4478 if (res) {
4479 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4480 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4481
4482 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4483 }
4484 return res;
4485}
4486
4487static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4488{
4489 sk_drops_add(sk, skb);
4490 __kfree_skb(skb);
4491}
4492
4493/* This one checks to see if we can put data from the
4494 * out_of_order queue into the receive_queue.
4495 */
4496static void tcp_ofo_queue(struct sock *sk)
4497{
4498 struct tcp_sock *tp = tcp_sk(sk);
4499 __u32 dsack_high = tp->rcv_nxt;
4500 bool fin, fragstolen, eaten;
4501 struct sk_buff *skb, *tail;
4502 struct rb_node *p;
4503
4504 p = rb_first(&tp->out_of_order_queue);
4505 while (p) {
4506 skb = rb_to_skb(p);
4507 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4508 break;
4509
4510 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4511 __u32 dsack = dsack_high;
4512 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4513 dsack_high = TCP_SKB_CB(skb)->end_seq;
4514 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4515 }
4516 p = rb_next(p);
4517 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4518
4519 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004520 tcp_drop(sk, skb);
4521 continue;
4522 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004523
4524 tail = skb_peek_tail(&sk->sk_receive_queue);
4525 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4526 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4527 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4528 if (!eaten)
4529 __skb_queue_tail(&sk->sk_receive_queue, skb);
4530 else
4531 kfree_skb_partial(skb, fragstolen);
4532
4533 if (unlikely(fin)) {
4534 tcp_fin(sk);
4535 /* tcp_fin() purges tp->out_of_order_queue,
4536 * so we must end this loop right now.
4537 */
4538 break;
4539 }
4540 }
4541}
4542
4543static bool tcp_prune_ofo_queue(struct sock *sk);
4544static int tcp_prune_queue(struct sock *sk);
4545
4546static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4547 unsigned int size)
4548{
4549 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4550 !sk_rmem_schedule(sk, skb, size)) {
4551
4552 if (tcp_prune_queue(sk) < 0)
4553 return -1;
4554
4555 while (!sk_rmem_schedule(sk, skb, size)) {
4556 if (!tcp_prune_ofo_queue(sk))
4557 return -1;
4558 }
4559 }
4560 return 0;
4561}
4562
4563static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4564{
4565 struct tcp_sock *tp = tcp_sk(sk);
4566 struct rb_node **p, *parent;
4567 struct sk_buff *skb1;
4568 u32 seq, end_seq;
4569 bool fragstolen;
4570
4571 tcp_ecn_check_ce(sk, skb);
4572
4573 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4574 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
Olivier Deprez0e641232021-09-23 10:07:05 +02004575 sk->sk_data_ready(sk);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004576 tcp_drop(sk, skb);
4577 return;
4578 }
4579
4580 /* Disable header prediction. */
4581 tp->pred_flags = 0;
4582 inet_csk_schedule_ack(sk);
4583
David Brazdil0f672f62019-12-10 10:32:29 +00004584 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004585 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4586 seq = TCP_SKB_CB(skb)->seq;
4587 end_seq = TCP_SKB_CB(skb)->end_seq;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004588
4589 p = &tp->out_of_order_queue.rb_node;
4590 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4591 /* Initial out of order segment, build 1 SACK. */
4592 if (tcp_is_sack(tp)) {
4593 tp->rx_opt.num_sacks = 1;
4594 tp->selective_acks[0].start_seq = seq;
4595 tp->selective_acks[0].end_seq = end_seq;
4596 }
4597 rb_link_node(&skb->rbnode, NULL, p);
4598 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4599 tp->ooo_last_skb = skb;
4600 goto end;
4601 }
4602
4603 /* In the typical case, we are adding an skb to the end of the list.
4604 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4605 */
4606 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4607 skb, &fragstolen)) {
4608coalesce_done:
Olivier Deprez0e641232021-09-23 10:07:05 +02004609 /* For non sack flows, do not grow window to force DUPACK
4610 * and trigger fast retransmit.
4611 */
4612 if (tcp_is_sack(tp))
4613 tcp_grow_window(sk, skb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004614 kfree_skb_partial(skb, fragstolen);
4615 skb = NULL;
4616 goto add_sack;
4617 }
4618 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4619 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4620 parent = &tp->ooo_last_skb->rbnode;
4621 p = &parent->rb_right;
4622 goto insert;
4623 }
4624
4625 /* Find place to insert this segment. Handle overlaps on the way. */
4626 parent = NULL;
4627 while (*p) {
4628 parent = *p;
4629 skb1 = rb_to_skb(parent);
4630 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4631 p = &parent->rb_left;
4632 continue;
4633 }
4634 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4635 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4636 /* All the bits are present. Drop. */
4637 NET_INC_STATS(sock_net(sk),
4638 LINUX_MIB_TCPOFOMERGE);
4639 tcp_drop(sk, skb);
4640 skb = NULL;
4641 tcp_dsack_set(sk, seq, end_seq);
4642 goto add_sack;
4643 }
4644 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4645 /* Partial overlap. */
4646 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4647 } else {
4648 /* skb's seq == skb1's seq and skb covers skb1.
4649 * Replace skb1 with skb.
4650 */
4651 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4652 &tp->out_of_order_queue);
4653 tcp_dsack_extend(sk,
4654 TCP_SKB_CB(skb1)->seq,
4655 TCP_SKB_CB(skb1)->end_seq);
4656 NET_INC_STATS(sock_net(sk),
4657 LINUX_MIB_TCPOFOMERGE);
4658 tcp_drop(sk, skb1);
4659 goto merge_right;
4660 }
4661 } else if (tcp_ooo_try_coalesce(sk, skb1,
4662 skb, &fragstolen)) {
4663 goto coalesce_done;
4664 }
4665 p = &parent->rb_right;
4666 }
4667insert:
4668 /* Insert segment into RB tree. */
4669 rb_link_node(&skb->rbnode, parent, p);
4670 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4671
4672merge_right:
4673 /* Remove other segments covered by skb. */
4674 while ((skb1 = skb_rb_next(skb)) != NULL) {
4675 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4676 break;
4677 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4678 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4679 end_seq);
4680 break;
4681 }
4682 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4683 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4684 TCP_SKB_CB(skb1)->end_seq);
4685 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4686 tcp_drop(sk, skb1);
4687 }
4688 /* If there is no skb after us, we are the last_skb ! */
4689 if (!skb1)
4690 tp->ooo_last_skb = skb;
4691
4692add_sack:
4693 if (tcp_is_sack(tp))
4694 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4695end:
4696 if (skb) {
Olivier Deprez0e641232021-09-23 10:07:05 +02004697 /* For non sack flows, do not grow window to force DUPACK
4698 * and trigger fast retransmit.
4699 */
4700 if (tcp_is_sack(tp))
4701 tcp_grow_window(sk, skb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004702 skb_condense(skb);
4703 skb_set_owner_r(skb, sk);
4704 }
4705}
4706
David Brazdil0f672f62019-12-10 10:32:29 +00004707static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4708 bool *fragstolen)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004709{
4710 int eaten;
4711 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4712
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004713 eaten = (tail &&
4714 tcp_try_coalesce(sk, tail,
4715 skb, fragstolen)) ? 1 : 0;
4716 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4717 if (!eaten) {
4718 __skb_queue_tail(&sk->sk_receive_queue, skb);
4719 skb_set_owner_r(skb, sk);
4720 }
4721 return eaten;
4722}
4723
4724int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4725{
4726 struct sk_buff *skb;
4727 int err = -ENOMEM;
4728 int data_len = 0;
4729 bool fragstolen;
4730
4731 if (size == 0)
4732 return 0;
4733
4734 if (size > PAGE_SIZE) {
4735 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4736
4737 data_len = npages << PAGE_SHIFT;
4738 size = data_len + (size & ~PAGE_MASK);
4739 }
4740 skb = alloc_skb_with_frags(size - data_len, data_len,
4741 PAGE_ALLOC_COSTLY_ORDER,
4742 &err, sk->sk_allocation);
4743 if (!skb)
4744 goto err;
4745
4746 skb_put(skb, size - data_len);
4747 skb->data_len = data_len;
4748 skb->len = size;
4749
4750 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4751 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4752 goto err_free;
4753 }
4754
4755 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4756 if (err)
4757 goto err_free;
4758
4759 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4760 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4761 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4762
David Brazdil0f672f62019-12-10 10:32:29 +00004763 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004764 WARN_ON_ONCE(fragstolen); /* should not happen */
4765 __kfree_skb(skb);
4766 }
4767 return size;
4768
4769err_free:
4770 kfree_skb(skb);
4771err:
4772 return err;
4773
4774}
4775
4776void tcp_data_ready(struct sock *sk)
4777{
4778 const struct tcp_sock *tp = tcp_sk(sk);
4779 int avail = tp->rcv_nxt - tp->copied_seq;
4780
Olivier Deprez0e641232021-09-23 10:07:05 +02004781 if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4782 !sock_flag(sk, SOCK_DONE) &&
4783 tcp_receive_window(tp) > inet_csk(sk)->icsk_ack.rcv_mss)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004784 return;
4785
4786 sk->sk_data_ready(sk);
4787}
4788
4789static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4790{
4791 struct tcp_sock *tp = tcp_sk(sk);
4792 bool fragstolen;
4793 int eaten;
4794
4795 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4796 __kfree_skb(skb);
4797 return;
4798 }
4799 skb_dst_drop(skb);
4800 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4801
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004802 tp->rx_opt.dsack = 0;
4803
4804 /* Queue data for delivery to the user.
4805 * Packets in sequence go to the receive queue.
4806 * Out of sequence packets to the out_of_order_queue.
4807 */
4808 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4809 if (tcp_receive_window(tp) == 0) {
4810 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4811 goto out_of_window;
4812 }
4813
4814 /* Ok. In sequence. In window. */
4815queue_and_out:
4816 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4817 sk_forced_mem_schedule(sk, skb->truesize);
4818 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4819 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
Olivier Deprez0e641232021-09-23 10:07:05 +02004820 sk->sk_data_ready(sk);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004821 goto drop;
4822 }
4823
David Brazdil0f672f62019-12-10 10:32:29 +00004824 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004825 if (skb->len)
4826 tcp_event_data_recv(sk, skb);
4827 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4828 tcp_fin(sk);
4829
4830 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4831 tcp_ofo_queue(sk);
4832
4833 /* RFC5681. 4.2. SHOULD send immediate ACK, when
4834 * gap in queue is filled.
4835 */
4836 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4837 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4838 }
4839
4840 if (tp->rx_opt.num_sacks)
4841 tcp_sack_remove(tp);
4842
4843 tcp_fast_path_check(sk);
4844
4845 if (eaten > 0)
4846 kfree_skb_partial(skb, fragstolen);
4847 if (!sock_flag(sk, SOCK_DEAD))
4848 tcp_data_ready(sk);
4849 return;
4850 }
4851
4852 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
David Brazdil0f672f62019-12-10 10:32:29 +00004853 tcp_rcv_spurious_retrans(sk, skb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004854 /* A retransmit, 2nd most common case. Force an immediate ack. */
4855 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4856 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4857
4858out_of_window:
4859 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4860 inet_csk_schedule_ack(sk);
4861drop:
4862 tcp_drop(sk, skb);
4863 return;
4864 }
4865
4866 /* Out of window. F.e. zero window probe. */
4867 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4868 goto out_of_window;
4869
4870 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4871 /* Partial packet, seq < rcv_next < end_seq */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004872 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4873
4874 /* If window is closed, drop tail of packet. But after
4875 * remembering D-SACK for its head made in previous line.
4876 */
4877 if (!tcp_receive_window(tp)) {
4878 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4879 goto out_of_window;
4880 }
4881 goto queue_and_out;
4882 }
4883
4884 tcp_data_queue_ofo(sk, skb);
4885}
4886
4887static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4888{
4889 if (list)
4890 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4891
4892 return skb_rb_next(skb);
4893}
4894
4895static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4896 struct sk_buff_head *list,
4897 struct rb_root *root)
4898{
4899 struct sk_buff *next = tcp_skb_next(skb, list);
4900
4901 if (list)
4902 __skb_unlink(skb, list);
4903 else
4904 rb_erase(&skb->rbnode, root);
4905
4906 __kfree_skb(skb);
4907 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4908
4909 return next;
4910}
4911
4912/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4913void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4914{
4915 struct rb_node **p = &root->rb_node;
4916 struct rb_node *parent = NULL;
4917 struct sk_buff *skb1;
4918
4919 while (*p) {
4920 parent = *p;
4921 skb1 = rb_to_skb(parent);
4922 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4923 p = &parent->rb_left;
4924 else
4925 p = &parent->rb_right;
4926 }
4927 rb_link_node(&skb->rbnode, parent, p);
4928 rb_insert_color(&skb->rbnode, root);
4929}
4930
4931/* Collapse contiguous sequence of skbs head..tail with
4932 * sequence numbers start..end.
4933 *
4934 * If tail is NULL, this means until the end of the queue.
4935 *
4936 * Segments with FIN/SYN are not collapsed (only because this
4937 * simplifies code)
4938 */
4939static void
4940tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4941 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4942{
4943 struct sk_buff *skb = head, *n;
4944 struct sk_buff_head tmp;
4945 bool end_of_skbs;
4946
4947 /* First, check that queue is collapsible and find
4948 * the point where collapsing can be useful.
4949 */
4950restart:
4951 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4952 n = tcp_skb_next(skb, list);
4953
4954 /* No new bits? It is possible on ofo queue. */
4955 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4956 skb = tcp_collapse_one(sk, skb, list, root);
4957 if (!skb)
4958 break;
4959 goto restart;
4960 }
4961
4962 /* The first skb to collapse is:
4963 * - not SYN/FIN and
4964 * - bloated or contains data before "start" or
4965 * overlaps to the next one.
4966 */
4967 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4968 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4969 before(TCP_SKB_CB(skb)->seq, start))) {
4970 end_of_skbs = false;
4971 break;
4972 }
4973
4974 if (n && n != tail &&
4975 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4976 end_of_skbs = false;
4977 break;
4978 }
4979
4980 /* Decided to skip this, advance start seq. */
4981 start = TCP_SKB_CB(skb)->end_seq;
4982 }
4983 if (end_of_skbs ||
4984 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4985 return;
4986
4987 __skb_queue_head_init(&tmp);
4988
4989 while (before(start, end)) {
4990 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4991 struct sk_buff *nskb;
4992
4993 nskb = alloc_skb(copy, GFP_ATOMIC);
4994 if (!nskb)
4995 break;
4996
4997 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4998#ifdef CONFIG_TLS_DEVICE
4999 nskb->decrypted = skb->decrypted;
5000#endif
5001 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5002 if (list)
5003 __skb_queue_before(list, skb, nskb);
5004 else
5005 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5006 skb_set_owner_r(nskb, sk);
5007
5008 /* Copy data, releasing collapsed skbs. */
5009 while (copy > 0) {
5010 int offset = start - TCP_SKB_CB(skb)->seq;
5011 int size = TCP_SKB_CB(skb)->end_seq - start;
5012
5013 BUG_ON(offset < 0);
5014 if (size > 0) {
5015 size = min(copy, size);
5016 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5017 BUG();
5018 TCP_SKB_CB(nskb)->end_seq += size;
5019 copy -= size;
5020 start += size;
5021 }
5022 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5023 skb = tcp_collapse_one(sk, skb, list, root);
5024 if (!skb ||
5025 skb == tail ||
5026 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5027 goto end;
5028#ifdef CONFIG_TLS_DEVICE
5029 if (skb->decrypted != nskb->decrypted)
5030 goto end;
5031#endif
5032 }
5033 }
5034 }
5035end:
5036 skb_queue_walk_safe(&tmp, skb, n)
5037 tcp_rbtree_insert(root, skb);
5038}
5039
5040/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5041 * and tcp_collapse() them until all the queue is collapsed.
5042 */
5043static void tcp_collapse_ofo_queue(struct sock *sk)
5044{
5045 struct tcp_sock *tp = tcp_sk(sk);
5046 u32 range_truesize, sum_tiny = 0;
5047 struct sk_buff *skb, *head;
5048 u32 start, end;
5049
5050 skb = skb_rb_first(&tp->out_of_order_queue);
5051new_range:
5052 if (!skb) {
5053 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5054 return;
5055 }
5056 start = TCP_SKB_CB(skb)->seq;
5057 end = TCP_SKB_CB(skb)->end_seq;
5058 range_truesize = skb->truesize;
5059
5060 for (head = skb;;) {
5061 skb = skb_rb_next(skb);
5062
5063 /* Range is terminated when we see a gap or when
5064 * we are at the queue end.
5065 */
5066 if (!skb ||
5067 after(TCP_SKB_CB(skb)->seq, end) ||
5068 before(TCP_SKB_CB(skb)->end_seq, start)) {
5069 /* Do not attempt collapsing tiny skbs */
5070 if (range_truesize != head->truesize ||
5071 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5072 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5073 head, skb, start, end);
5074 } else {
5075 sum_tiny += range_truesize;
5076 if (sum_tiny > sk->sk_rcvbuf >> 3)
5077 return;
5078 }
5079 goto new_range;
5080 }
5081
5082 range_truesize += skb->truesize;
5083 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5084 start = TCP_SKB_CB(skb)->seq;
5085 if (after(TCP_SKB_CB(skb)->end_seq, end))
5086 end = TCP_SKB_CB(skb)->end_seq;
5087 }
5088}
5089
5090/*
5091 * Clean the out-of-order queue to make room.
5092 * We drop high sequences packets to :
5093 * 1) Let a chance for holes to be filled.
5094 * 2) not add too big latencies if thousands of packets sit there.
5095 * (But if application shrinks SO_RCVBUF, we could still end up
5096 * freeing whole queue here)
5097 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5098 *
5099 * Return true if queue has shrunk.
5100 */
5101static bool tcp_prune_ofo_queue(struct sock *sk)
5102{
5103 struct tcp_sock *tp = tcp_sk(sk);
5104 struct rb_node *node, *prev;
5105 int goal;
5106
5107 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5108 return false;
5109
5110 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5111 goal = sk->sk_rcvbuf >> 3;
5112 node = &tp->ooo_last_skb->rbnode;
5113 do {
5114 prev = rb_prev(node);
5115 rb_erase(node, &tp->out_of_order_queue);
5116 goal -= rb_to_skb(node)->truesize;
5117 tcp_drop(sk, rb_to_skb(node));
5118 if (!prev || goal <= 0) {
5119 sk_mem_reclaim(sk);
5120 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5121 !tcp_under_memory_pressure(sk))
5122 break;
5123 goal = sk->sk_rcvbuf >> 3;
5124 }
5125 node = prev;
5126 } while (node);
5127 tp->ooo_last_skb = rb_to_skb(prev);
5128
5129 /* Reset SACK state. A conforming SACK implementation will
5130 * do the same at a timeout based retransmit. When a connection
5131 * is in a sad state like this, we care only about integrity
5132 * of the connection not performance.
5133 */
5134 if (tp->rx_opt.sack_ok)
5135 tcp_sack_reset(&tp->rx_opt);
5136 return true;
5137}
5138
5139/* Reduce allocated memory if we can, trying to get
5140 * the socket within its memory limits again.
5141 *
5142 * Return less than zero if we should start dropping frames
5143 * until the socket owning process reads some of the data
5144 * to stabilize the situation.
5145 */
5146static int tcp_prune_queue(struct sock *sk)
5147{
5148 struct tcp_sock *tp = tcp_sk(sk);
5149
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005150 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5151
5152 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5153 tcp_clamp_window(sk);
5154 else if (tcp_under_memory_pressure(sk))
5155 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5156
5157 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5158 return 0;
5159
5160 tcp_collapse_ofo_queue(sk);
5161 if (!skb_queue_empty(&sk->sk_receive_queue))
5162 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5163 skb_peek(&sk->sk_receive_queue),
5164 NULL,
5165 tp->copied_seq, tp->rcv_nxt);
5166 sk_mem_reclaim(sk);
5167
5168 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5169 return 0;
5170
5171 /* Collapsing did not help, destructive actions follow.
5172 * This must not ever occur. */
5173
5174 tcp_prune_ofo_queue(sk);
5175
5176 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5177 return 0;
5178
5179 /* If we are really being abused, tell the caller to silently
5180 * drop receive data on the floor. It will get retransmitted
5181 * and hopefully then we'll have sufficient space.
5182 */
5183 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5184
5185 /* Massive buffer overcommit. */
5186 tp->pred_flags = 0;
5187 return -1;
5188}
5189
5190static bool tcp_should_expand_sndbuf(const struct sock *sk)
5191{
5192 const struct tcp_sock *tp = tcp_sk(sk);
5193
5194 /* If the user specified a specific send buffer setting, do
5195 * not modify it.
5196 */
5197 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5198 return false;
5199
5200 /* If we are under global TCP memory pressure, do not expand. */
5201 if (tcp_under_memory_pressure(sk))
5202 return false;
5203
5204 /* If we are under soft global TCP memory pressure, do not expand. */
5205 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5206 return false;
5207
5208 /* If we filled the congestion window, do not expand. */
5209 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5210 return false;
5211
5212 return true;
5213}
5214
5215/* When incoming ACK allowed to free some skb from write_queue,
5216 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5217 * on the exit from tcp input handler.
5218 *
5219 * PROBLEM: sndbuf expansion does not work well with largesend.
5220 */
5221static void tcp_new_space(struct sock *sk)
5222{
5223 struct tcp_sock *tp = tcp_sk(sk);
5224
5225 if (tcp_should_expand_sndbuf(sk)) {
5226 tcp_sndbuf_expand(sk);
5227 tp->snd_cwnd_stamp = tcp_jiffies32;
5228 }
5229
5230 sk->sk_write_space(sk);
5231}
5232
5233static void tcp_check_space(struct sock *sk)
5234{
5235 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5236 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5237 /* pairs with tcp_poll() */
5238 smp_mb();
5239 if (sk->sk_socket &&
5240 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5241 tcp_new_space(sk);
5242 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5243 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5244 }
5245 }
5246}
5247
5248static inline void tcp_data_snd_check(struct sock *sk)
5249{
5250 tcp_push_pending_frames(sk);
5251 tcp_check_space(sk);
5252}
5253
5254/*
5255 * Check if sending an ack is needed.
5256 */
5257static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5258{
5259 struct tcp_sock *tp = tcp_sk(sk);
5260 unsigned long rtt, delay;
5261
5262 /* More than one full frame received... */
5263 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5264 /* ... and right edge of window advances far enough.
5265 * (tcp_recvmsg() will send ACK otherwise).
5266 * If application uses SO_RCVLOWAT, we want send ack now if
5267 * we have not received enough bytes to satisfy the condition.
5268 */
5269 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5270 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5271 /* We ACK each frame or... */
5272 tcp_in_quickack_mode(sk) ||
5273 /* Protocol state mandates a one-time immediate ACK */
5274 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5275send_now:
5276 tcp_send_ack(sk);
5277 return;
5278 }
5279
5280 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5281 tcp_send_delayed_ack(sk);
5282 return;
5283 }
5284
5285 if (!tcp_is_sack(tp) ||
5286 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5287 goto send_now;
5288
5289 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5290 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5291 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5292 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5293 tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5294 tp->compressed_ack = 0;
5295 }
5296
5297 if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5298 goto send_now;
5299
5300 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5301 return;
5302
5303 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5304
5305 rtt = tp->rcv_rtt_est.rtt_us;
5306 if (tp->srtt_us && tp->srtt_us < rtt)
5307 rtt = tp->srtt_us;
5308
5309 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5310 rtt * (NSEC_PER_USEC >> 3)/20);
5311 sock_hold(sk);
5312 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5313 HRTIMER_MODE_REL_PINNED_SOFT);
5314}
5315
5316static inline void tcp_ack_snd_check(struct sock *sk)
5317{
5318 if (!inet_csk_ack_scheduled(sk)) {
5319 /* We sent a data segment already. */
5320 return;
5321 }
5322 __tcp_ack_snd_check(sk, 1);
5323}
5324
5325/*
5326 * This routine is only called when we have urgent data
5327 * signaled. Its the 'slow' part of tcp_urg. It could be
5328 * moved inline now as tcp_urg is only called from one
5329 * place. We handle URGent data wrong. We have to - as
5330 * BSD still doesn't use the correction from RFC961.
5331 * For 1003.1g we should support a new option TCP_STDURG to permit
5332 * either form (or just set the sysctl tcp_stdurg).
5333 */
5334
5335static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5336{
5337 struct tcp_sock *tp = tcp_sk(sk);
5338 u32 ptr = ntohs(th->urg_ptr);
5339
5340 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5341 ptr--;
5342 ptr += ntohl(th->seq);
5343
5344 /* Ignore urgent data that we've already seen and read. */
5345 if (after(tp->copied_seq, ptr))
5346 return;
5347
5348 /* Do not replay urg ptr.
5349 *
5350 * NOTE: interesting situation not covered by specs.
5351 * Misbehaving sender may send urg ptr, pointing to segment,
5352 * which we already have in ofo queue. We are not able to fetch
5353 * such data and will stay in TCP_URG_NOTYET until will be eaten
5354 * by recvmsg(). Seems, we are not obliged to handle such wicked
5355 * situations. But it is worth to think about possibility of some
5356 * DoSes using some hypothetical application level deadlock.
5357 */
5358 if (before(ptr, tp->rcv_nxt))
5359 return;
5360
5361 /* Do we already have a newer (or duplicate) urgent pointer? */
5362 if (tp->urg_data && !after(ptr, tp->urg_seq))
5363 return;
5364
5365 /* Tell the world about our new urgent pointer. */
5366 sk_send_sigurg(sk);
5367
5368 /* We may be adding urgent data when the last byte read was
5369 * urgent. To do this requires some care. We cannot just ignore
5370 * tp->copied_seq since we would read the last urgent byte again
5371 * as data, nor can we alter copied_seq until this data arrives
5372 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5373 *
5374 * NOTE. Double Dutch. Rendering to plain English: author of comment
5375 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5376 * and expect that both A and B disappear from stream. This is _wrong_.
5377 * Though this happens in BSD with high probability, this is occasional.
5378 * Any application relying on this is buggy. Note also, that fix "works"
5379 * only in this artificial test. Insert some normal data between A and B and we will
5380 * decline of BSD again. Verdict: it is better to remove to trap
5381 * buggy users.
5382 */
5383 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5384 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5385 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5386 tp->copied_seq++;
5387 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5388 __skb_unlink(skb, &sk->sk_receive_queue);
5389 __kfree_skb(skb);
5390 }
5391 }
5392
5393 tp->urg_data = TCP_URG_NOTYET;
David Brazdil0f672f62019-12-10 10:32:29 +00005394 WRITE_ONCE(tp->urg_seq, ptr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005395
5396 /* Disable header prediction. */
5397 tp->pred_flags = 0;
5398}
5399
5400/* This is the 'fast' part of urgent handling. */
5401static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5402{
5403 struct tcp_sock *tp = tcp_sk(sk);
5404
5405 /* Check if we get a new urgent pointer - normally not. */
5406 if (th->urg)
5407 tcp_check_urg(sk, th);
5408
5409 /* Do we wait for any urgent data? - normally not... */
5410 if (tp->urg_data == TCP_URG_NOTYET) {
5411 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5412 th->syn;
5413
5414 /* Is the urgent pointer pointing into this packet? */
5415 if (ptr < skb->len) {
5416 u8 tmp;
5417 if (skb_copy_bits(skb, ptr, &tmp, 1))
5418 BUG();
5419 tp->urg_data = TCP_URG_VALID | tmp;
5420 if (!sock_flag(sk, SOCK_DEAD))
5421 sk->sk_data_ready(sk);
5422 }
5423 }
5424}
5425
5426/* Accept RST for rcv_nxt - 1 after a FIN.
5427 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5428 * FIN is sent followed by a RST packet. The RST is sent with the same
5429 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5430 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5431 * ACKs on the closed socket. In addition middleboxes can drop either the
5432 * challenge ACK or a subsequent RST.
5433 */
5434static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5435{
5436 struct tcp_sock *tp = tcp_sk(sk);
5437
5438 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5439 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5440 TCPF_CLOSING));
5441}
5442
5443/* Does PAWS and seqno based validation of an incoming segment, flags will
5444 * play significant role here.
5445 */
5446static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5447 const struct tcphdr *th, int syn_inerr)
5448{
5449 struct tcp_sock *tp = tcp_sk(sk);
5450 bool rst_seq_match = false;
5451
5452 /* RFC1323: H1. Apply PAWS check first. */
5453 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5454 tp->rx_opt.saw_tstamp &&
5455 tcp_paws_discard(sk, skb)) {
5456 if (!th->rst) {
5457 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5458 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5459 LINUX_MIB_TCPACKSKIPPEDPAWS,
5460 &tp->last_oow_ack_time))
5461 tcp_send_dupack(sk, skb);
5462 goto discard;
5463 }
5464 /* Reset is accepted even if it did not pass PAWS. */
5465 }
5466
5467 /* Step 1: check sequence number */
5468 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5469 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5470 * (RST) segments are validated by checking their SEQ-fields."
5471 * And page 69: "If an incoming segment is not acceptable,
5472 * an acknowledgment should be sent in reply (unless the RST
5473 * bit is set, if so drop the segment and return)".
5474 */
5475 if (!th->rst) {
5476 if (th->syn)
5477 goto syn_challenge;
5478 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5479 LINUX_MIB_TCPACKSKIPPEDSEQ,
5480 &tp->last_oow_ack_time))
5481 tcp_send_dupack(sk, skb);
5482 } else if (tcp_reset_check(sk, skb)) {
5483 tcp_reset(sk);
5484 }
5485 goto discard;
5486 }
5487
5488 /* Step 2: check RST bit */
5489 if (th->rst) {
5490 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5491 * FIN and SACK too if available):
5492 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5493 * the right-most SACK block,
5494 * then
5495 * RESET the connection
5496 * else
5497 * Send a challenge ACK
5498 */
5499 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5500 tcp_reset_check(sk, skb)) {
5501 rst_seq_match = true;
5502 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5503 struct tcp_sack_block *sp = &tp->selective_acks[0];
5504 int max_sack = sp[0].end_seq;
5505 int this_sack;
5506
5507 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5508 ++this_sack) {
5509 max_sack = after(sp[this_sack].end_seq,
5510 max_sack) ?
5511 sp[this_sack].end_seq : max_sack;
5512 }
5513
5514 if (TCP_SKB_CB(skb)->seq == max_sack)
5515 rst_seq_match = true;
5516 }
5517
5518 if (rst_seq_match)
5519 tcp_reset(sk);
5520 else {
5521 /* Disable TFO if RST is out-of-order
5522 * and no data has been received
5523 * for current active TFO socket
5524 */
5525 if (tp->syn_fastopen && !tp->data_segs_in &&
5526 sk->sk_state == TCP_ESTABLISHED)
5527 tcp_fastopen_active_disable(sk);
5528 tcp_send_challenge_ack(sk, skb);
5529 }
5530 goto discard;
5531 }
5532
5533 /* step 3: check security and precedence [ignored] */
5534
5535 /* step 4: Check for a SYN
5536 * RFC 5961 4.2 : Send a challenge ack
5537 */
5538 if (th->syn) {
5539syn_challenge:
5540 if (syn_inerr)
5541 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5542 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5543 tcp_send_challenge_ack(sk, skb);
5544 goto discard;
5545 }
5546
5547 return true;
5548
5549discard:
5550 tcp_drop(sk, skb);
5551 return false;
5552}
5553
5554/*
5555 * TCP receive function for the ESTABLISHED state.
5556 *
5557 * It is split into a fast path and a slow path. The fast path is
5558 * disabled when:
5559 * - A zero window was announced from us - zero window probing
5560 * is only handled properly in the slow path.
5561 * - Out of order segments arrived.
5562 * - Urgent data is expected.
5563 * - There is no buffer space left
5564 * - Unexpected TCP flags/window values/header lengths are received
5565 * (detected by checking the TCP header against pred_flags)
5566 * - Data is sent in both directions. Fast path only supports pure senders
5567 * or pure receivers (this means either the sequence number or the ack
5568 * value must stay constant)
5569 * - Unexpected TCP option.
5570 *
5571 * When these conditions are not satisfied it drops into a standard
5572 * receive procedure patterned after RFC793 to handle all cases.
5573 * The first three cases are guaranteed by proper pred_flags setting,
5574 * the rest is checked inline. Fast processing is turned on in
5575 * tcp_data_queue when everything is OK.
5576 */
5577void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5578{
5579 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5580 struct tcp_sock *tp = tcp_sk(sk);
5581 unsigned int len = skb->len;
5582
5583 /* TCP congestion window tracking */
5584 trace_tcp_probe(sk, skb);
5585
5586 tcp_mstamp_refresh(tp);
5587 if (unlikely(!sk->sk_rx_dst))
5588 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5589 /*
5590 * Header prediction.
5591 * The code loosely follows the one in the famous
5592 * "30 instruction TCP receive" Van Jacobson mail.
5593 *
5594 * Van's trick is to deposit buffers into socket queue
5595 * on a device interrupt, to call tcp_recv function
5596 * on the receive process context and checksum and copy
5597 * the buffer to user space. smart...
5598 *
5599 * Our current scheme is not silly either but we take the
5600 * extra cost of the net_bh soft interrupt processing...
5601 * We do checksum and copy also but from device to kernel.
5602 */
5603
5604 tp->rx_opt.saw_tstamp = 0;
5605
5606 /* pred_flags is 0xS?10 << 16 + snd_wnd
5607 * if header_prediction is to be made
5608 * 'S' will always be tp->tcp_header_len >> 2
5609 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5610 * turn it off (when there are holes in the receive
5611 * space for instance)
5612 * PSH flag is ignored.
5613 */
5614
5615 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5616 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5617 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5618 int tcp_header_len = tp->tcp_header_len;
5619
5620 /* Timestamp header prediction: tcp_header_len
5621 * is automatically equal to th->doff*4 due to pred_flags
5622 * match.
5623 */
5624
5625 /* Check timestamp */
5626 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5627 /* No? Slow path! */
5628 if (!tcp_parse_aligned_timestamp(tp, th))
5629 goto slow_path;
5630
5631 /* If PAWS failed, check it more carefully in slow path */
5632 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5633 goto slow_path;
5634
5635 /* DO NOT update ts_recent here, if checksum fails
5636 * and timestamp was corrupted part, it will result
5637 * in a hung connection since we will drop all
5638 * future packets due to the PAWS test.
5639 */
5640 }
5641
5642 if (len <= tcp_header_len) {
5643 /* Bulk data transfer: sender */
5644 if (len == tcp_header_len) {
5645 /* Predicted packet is in window by definition.
5646 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5647 * Hence, check seq<=rcv_wup reduces to:
5648 */
5649 if (tcp_header_len ==
5650 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5651 tp->rcv_nxt == tp->rcv_wup)
5652 tcp_store_ts_recent(tp);
5653
5654 /* We know that such packets are checksummed
5655 * on entry.
5656 */
5657 tcp_ack(sk, skb, 0);
5658 __kfree_skb(skb);
5659 tcp_data_snd_check(sk);
5660 /* When receiving pure ack in fast path, update
5661 * last ts ecr directly instead of calling
5662 * tcp_rcv_rtt_measure_ts()
5663 */
5664 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5665 return;
5666 } else { /* Header too small */
5667 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5668 goto discard;
5669 }
5670 } else {
5671 int eaten = 0;
5672 bool fragstolen = false;
5673
5674 if (tcp_checksum_complete(skb))
5675 goto csum_error;
5676
5677 if ((int)skb->truesize > sk->sk_forward_alloc)
5678 goto step5;
5679
5680 /* Predicted packet is in window by definition.
5681 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5682 * Hence, check seq<=rcv_wup reduces to:
5683 */
5684 if (tcp_header_len ==
5685 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5686 tp->rcv_nxt == tp->rcv_wup)
5687 tcp_store_ts_recent(tp);
5688
5689 tcp_rcv_rtt_measure_ts(sk, skb);
5690
5691 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5692
5693 /* Bulk data transfer: receiver */
David Brazdil0f672f62019-12-10 10:32:29 +00005694 __skb_pull(skb, tcp_header_len);
5695 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005696
5697 tcp_event_data_recv(sk, skb);
5698
5699 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5700 /* Well, only one small jumplet in fast path... */
5701 tcp_ack(sk, skb, FLAG_DATA);
5702 tcp_data_snd_check(sk);
5703 if (!inet_csk_ack_scheduled(sk))
5704 goto no_ack;
Olivier Deprez0e641232021-09-23 10:07:05 +02005705 } else {
5706 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005707 }
5708
5709 __tcp_ack_snd_check(sk, 0);
5710no_ack:
5711 if (eaten)
5712 kfree_skb_partial(skb, fragstolen);
5713 tcp_data_ready(sk);
5714 return;
5715 }
5716 }
5717
5718slow_path:
5719 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5720 goto csum_error;
5721
5722 if (!th->ack && !th->rst && !th->syn)
5723 goto discard;
5724
5725 /*
5726 * Standard slow path.
5727 */
5728
5729 if (!tcp_validate_incoming(sk, skb, th, 1))
5730 return;
5731
5732step5:
5733 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5734 goto discard;
5735
5736 tcp_rcv_rtt_measure_ts(sk, skb);
5737
5738 /* Process urgent data. */
5739 tcp_urg(sk, skb, th);
5740
5741 /* step 7: process the segment text */
5742 tcp_data_queue(sk, skb);
5743
5744 tcp_data_snd_check(sk);
5745 tcp_ack_snd_check(sk);
5746 return;
5747
5748csum_error:
5749 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5750 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5751
5752discard:
5753 tcp_drop(sk, skb);
5754}
5755EXPORT_SYMBOL(tcp_rcv_established);
5756
David Brazdil0f672f62019-12-10 10:32:29 +00005757void tcp_init_transfer(struct sock *sk, int bpf_op)
5758{
5759 struct inet_connection_sock *icsk = inet_csk(sk);
5760 struct tcp_sock *tp = tcp_sk(sk);
5761
5762 tcp_mtup_init(sk);
5763 icsk->icsk_af_ops->rebuild_header(sk);
5764 tcp_init_metrics(sk);
5765
5766 /* Initialize the congestion window to start the transfer.
5767 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5768 * retransmitted. In light of RFC6298 more aggressive 1sec
5769 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5770 * retransmission has occurred.
5771 */
5772 if (tp->total_retrans > 1 && tp->undo_marker)
5773 tp->snd_cwnd = 1;
5774 else
5775 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5776 tp->snd_cwnd_stamp = tcp_jiffies32;
5777
5778 tcp_call_bpf(sk, bpf_op, 0, NULL);
5779 tcp_init_congestion_control(sk);
5780 tcp_init_buffer_space(sk);
5781}
5782
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005783void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5784{
5785 struct tcp_sock *tp = tcp_sk(sk);
5786 struct inet_connection_sock *icsk = inet_csk(sk);
5787
5788 tcp_set_state(sk, TCP_ESTABLISHED);
5789 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5790
5791 if (skb) {
5792 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5793 security_inet_conn_established(sk, skb);
5794 sk_mark_napi_id(sk, skb);
5795 }
5796
5797 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5798
5799 /* Prevent spurious tcp_cwnd_restart() on first data
5800 * packet.
5801 */
5802 tp->lsndtime = tcp_jiffies32;
5803
5804 if (sock_flag(sk, SOCK_KEEPOPEN))
5805 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5806
5807 if (!tp->rx_opt.snd_wscale)
5808 __tcp_fast_path_on(tp, tp->snd_wnd);
5809 else
5810 tp->pred_flags = 0;
5811}
5812
5813static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5814 struct tcp_fastopen_cookie *cookie)
5815{
5816 struct tcp_sock *tp = tcp_sk(sk);
5817 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5818 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5819 bool syn_drop = false;
5820
5821 if (mss == tp->rx_opt.user_mss) {
5822 struct tcp_options_received opt;
5823
5824 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5825 tcp_clear_options(&opt);
5826 opt.user_mss = opt.mss_clamp = 0;
5827 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5828 mss = opt.mss_clamp;
5829 }
5830
5831 if (!tp->syn_fastopen) {
5832 /* Ignore an unsolicited cookie */
5833 cookie->len = -1;
5834 } else if (tp->total_retrans) {
5835 /* SYN timed out and the SYN-ACK neither has a cookie nor
5836 * acknowledges data. Presumably the remote received only
5837 * the retransmitted (regular) SYNs: either the original
5838 * SYN-data or the corresponding SYN-ACK was dropped.
5839 */
5840 syn_drop = (cookie->len < 0 && data);
5841 } else if (cookie->len < 0 && !tp->syn_data) {
5842 /* We requested a cookie but didn't get it. If we did not use
5843 * the (old) exp opt format then try so next time (try_exp=1).
5844 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5845 */
5846 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5847 }
5848
5849 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5850
5851 if (data) { /* Retransmit unacked data in SYN */
5852 skb_rbtree_walk_from(data) {
5853 if (__tcp_retransmit_skb(sk, data, 1))
5854 break;
5855 }
5856 tcp_rearm_rto(sk);
5857 NET_INC_STATS(sock_net(sk),
5858 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5859 return true;
5860 }
5861 tp->syn_data_acked = tp->syn_data;
5862 if (tp->syn_data_acked) {
5863 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5864 /* SYN-data is counted as two separate packets in tcp_ack() */
5865 if (tp->delivered > 1)
5866 --tp->delivered;
5867 }
5868
5869 tcp_fastopen_add_skb(sk, synack);
5870
5871 return false;
5872}
5873
5874static void smc_check_reset_syn(struct tcp_sock *tp)
5875{
5876#if IS_ENABLED(CONFIG_SMC)
5877 if (static_branch_unlikely(&tcp_have_smc)) {
5878 if (tp->syn_smc && !tp->rx_opt.smc_ok)
5879 tp->syn_smc = 0;
5880 }
5881#endif
5882}
5883
David Brazdil0f672f62019-12-10 10:32:29 +00005884static void tcp_try_undo_spurious_syn(struct sock *sk)
5885{
5886 struct tcp_sock *tp = tcp_sk(sk);
5887 u32 syn_stamp;
5888
5889 /* undo_marker is set when SYN or SYNACK times out. The timeout is
5890 * spurious if the ACK's timestamp option echo value matches the
5891 * original SYN timestamp.
5892 */
5893 syn_stamp = tp->retrans_stamp;
5894 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5895 syn_stamp == tp->rx_opt.rcv_tsecr)
5896 tp->undo_marker = 0;
5897}
5898
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005899static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5900 const struct tcphdr *th)
5901{
5902 struct inet_connection_sock *icsk = inet_csk(sk);
5903 struct tcp_sock *tp = tcp_sk(sk);
5904 struct tcp_fastopen_cookie foc = { .len = -1 };
5905 int saved_clamp = tp->rx_opt.mss_clamp;
5906 bool fastopen_fail;
5907
5908 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5909 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5910 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5911
5912 if (th->ack) {
5913 /* rfc793:
5914 * "If the state is SYN-SENT then
5915 * first check the ACK bit
5916 * If the ACK bit is set
5917 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5918 * a reset (unless the RST bit is set, if so drop
5919 * the segment and return)"
5920 */
5921 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5922 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5923 goto reset_and_undo;
5924
5925 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5926 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5927 tcp_time_stamp(tp))) {
5928 NET_INC_STATS(sock_net(sk),
5929 LINUX_MIB_PAWSACTIVEREJECTED);
5930 goto reset_and_undo;
5931 }
5932
5933 /* Now ACK is acceptable.
5934 *
5935 * "If the RST bit is set
5936 * If the ACK was acceptable then signal the user "error:
5937 * connection reset", drop the segment, enter CLOSED state,
5938 * delete TCB, and return."
5939 */
5940
5941 if (th->rst) {
5942 tcp_reset(sk);
5943 goto discard;
5944 }
5945
5946 /* rfc793:
5947 * "fifth, if neither of the SYN or RST bits is set then
5948 * drop the segment and return."
5949 *
5950 * See note below!
5951 * --ANK(990513)
5952 */
5953 if (!th->syn)
5954 goto discard_and_undo;
5955
5956 /* rfc793:
5957 * "If the SYN bit is on ...
5958 * are acceptable then ...
5959 * (our SYN has been ACKed), change the connection
5960 * state to ESTABLISHED..."
5961 */
5962
5963 tcp_ecn_rcv_synack(tp, th);
5964
5965 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
David Brazdil0f672f62019-12-10 10:32:29 +00005966 tcp_try_undo_spurious_syn(sk);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005967 tcp_ack(sk, skb, FLAG_SLOWPATH);
5968
5969 /* Ok.. it's good. Set up sequence numbers and
5970 * move to established.
5971 */
David Brazdil0f672f62019-12-10 10:32:29 +00005972 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005973 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5974
5975 /* RFC1323: The window in SYN & SYN/ACK segments is
5976 * never scaled.
5977 */
5978 tp->snd_wnd = ntohs(th->window);
5979
5980 if (!tp->rx_opt.wscale_ok) {
5981 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5982 tp->window_clamp = min(tp->window_clamp, 65535U);
5983 }
5984
5985 if (tp->rx_opt.saw_tstamp) {
5986 tp->rx_opt.tstamp_ok = 1;
5987 tp->tcp_header_len =
5988 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5989 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5990 tcp_store_ts_recent(tp);
5991 } else {
5992 tp->tcp_header_len = sizeof(struct tcphdr);
5993 }
5994
5995 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5996 tcp_initialize_rcv_mss(sk);
5997
5998 /* Remember, tcp_poll() does not lock socket!
5999 * Change state from SYN-SENT only after copied_seq
6000 * is initialized. */
David Brazdil0f672f62019-12-10 10:32:29 +00006001 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006002
6003 smc_check_reset_syn(tp);
6004
6005 smp_mb();
6006
6007 tcp_finish_connect(sk, skb);
6008
6009 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6010 tcp_rcv_fastopen_synack(sk, skb, &foc);
6011
6012 if (!sock_flag(sk, SOCK_DEAD)) {
6013 sk->sk_state_change(sk);
6014 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6015 }
6016 if (fastopen_fail)
6017 return -1;
6018 if (sk->sk_write_pending ||
6019 icsk->icsk_accept_queue.rskq_defer_accept ||
David Brazdil0f672f62019-12-10 10:32:29 +00006020 inet_csk_in_pingpong_mode(sk)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006021 /* Save one ACK. Data will be ready after
6022 * several ticks, if write_pending is set.
6023 *
6024 * It may be deleted, but with this feature tcpdumps
6025 * look so _wonderfully_ clever, that I was not able
6026 * to stand against the temptation 8) --ANK
6027 */
6028 inet_csk_schedule_ack(sk);
6029 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6030 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6031 TCP_DELACK_MAX, TCP_RTO_MAX);
6032
6033discard:
6034 tcp_drop(sk, skb);
6035 return 0;
6036 } else {
6037 tcp_send_ack(sk);
6038 }
6039 return -1;
6040 }
6041
6042 /* No ACK in the segment */
6043
6044 if (th->rst) {
6045 /* rfc793:
6046 * "If the RST bit is set
6047 *
6048 * Otherwise (no ACK) drop the segment and return."
6049 */
6050
6051 goto discard_and_undo;
6052 }
6053
6054 /* PAWS check. */
6055 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6056 tcp_paws_reject(&tp->rx_opt, 0))
6057 goto discard_and_undo;
6058
6059 if (th->syn) {
6060 /* We see SYN without ACK. It is attempt of
6061 * simultaneous connect with crossed SYNs.
6062 * Particularly, it can be connect to self.
6063 */
6064 tcp_set_state(sk, TCP_SYN_RECV);
6065
6066 if (tp->rx_opt.saw_tstamp) {
6067 tp->rx_opt.tstamp_ok = 1;
6068 tcp_store_ts_recent(tp);
6069 tp->tcp_header_len =
6070 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6071 } else {
6072 tp->tcp_header_len = sizeof(struct tcphdr);
6073 }
6074
David Brazdil0f672f62019-12-10 10:32:29 +00006075 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6076 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006077 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6078
6079 /* RFC1323: The window in SYN & SYN/ACK segments is
6080 * never scaled.
6081 */
6082 tp->snd_wnd = ntohs(th->window);
6083 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6084 tp->max_window = tp->snd_wnd;
6085
6086 tcp_ecn_rcv_syn(tp, th);
6087
6088 tcp_mtup_init(sk);
6089 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6090 tcp_initialize_rcv_mss(sk);
6091
6092 tcp_send_synack(sk);
6093#if 0
6094 /* Note, we could accept data and URG from this segment.
6095 * There are no obstacles to make this (except that we must
6096 * either change tcp_recvmsg() to prevent it from returning data
6097 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6098 *
6099 * However, if we ignore data in ACKless segments sometimes,
6100 * we have no reasons to accept it sometimes.
6101 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6102 * is not flawless. So, discard packet for sanity.
6103 * Uncomment this return to process the data.
6104 */
6105 return -1;
6106#else
6107 goto discard;
6108#endif
6109 }
6110 /* "fifth, if neither of the SYN or RST bits is set then
6111 * drop the segment and return."
6112 */
6113
6114discard_and_undo:
6115 tcp_clear_options(&tp->rx_opt);
6116 tp->rx_opt.mss_clamp = saved_clamp;
6117 goto discard;
6118
6119reset_and_undo:
6120 tcp_clear_options(&tp->rx_opt);
6121 tp->rx_opt.mss_clamp = saved_clamp;
6122 return 1;
6123}
6124
David Brazdil0f672f62019-12-10 10:32:29 +00006125static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6126{
6127 struct request_sock *req;
6128
Olivier Deprez0e641232021-09-23 10:07:05 +02006129 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6130 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6131 */
6132 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6133 tcp_try_undo_loss(sk, false);
David Brazdil0f672f62019-12-10 10:32:29 +00006134
6135 /* Reset rtx states to prevent spurious retransmits_timed_out() */
6136 tcp_sk(sk)->retrans_stamp = 0;
6137 inet_csk(sk)->icsk_retransmits = 0;
6138
6139 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6140 * we no longer need req so release it.
6141 */
6142 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6143 lockdep_sock_is_held(sk));
6144 reqsk_fastopen_remove(sk, req, false);
6145
6146 /* Re-arm the timer because data may have been sent out.
6147 * This is similar to the regular data transmission case
6148 * when new data has just been ack'ed.
6149 *
6150 * (TFO) - we could try to be more aggressive and
6151 * retransmitting any data sooner based on when they
6152 * are sent out.
6153 */
6154 tcp_rearm_rto(sk);
6155}
6156
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006157/*
6158 * This function implements the receiving procedure of RFC 793 for
6159 * all states except ESTABLISHED and TIME_WAIT.
6160 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6161 * address independent.
6162 */
6163
6164int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6165{
6166 struct tcp_sock *tp = tcp_sk(sk);
6167 struct inet_connection_sock *icsk = inet_csk(sk);
6168 const struct tcphdr *th = tcp_hdr(skb);
6169 struct request_sock *req;
6170 int queued = 0;
6171 bool acceptable;
6172
6173 switch (sk->sk_state) {
6174 case TCP_CLOSE:
6175 goto discard;
6176
6177 case TCP_LISTEN:
6178 if (th->ack)
6179 return 1;
6180
6181 if (th->rst)
6182 goto discard;
6183
6184 if (th->syn) {
6185 if (th->fin)
6186 goto discard;
6187 /* It is possible that we process SYN packets from backlog,
6188 * so we need to make sure to disable BH and RCU right there.
6189 */
6190 rcu_read_lock();
6191 local_bh_disable();
6192 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6193 local_bh_enable();
6194 rcu_read_unlock();
6195
6196 if (!acceptable)
6197 return 1;
6198 consume_skb(skb);
6199 return 0;
6200 }
6201 goto discard;
6202
6203 case TCP_SYN_SENT:
6204 tp->rx_opt.saw_tstamp = 0;
6205 tcp_mstamp_refresh(tp);
6206 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6207 if (queued >= 0)
6208 return queued;
6209
6210 /* Do step6 onward by hand. */
6211 tcp_urg(sk, skb, th);
6212 __kfree_skb(skb);
6213 tcp_data_snd_check(sk);
6214 return 0;
6215 }
6216
6217 tcp_mstamp_refresh(tp);
6218 tp->rx_opt.saw_tstamp = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00006219 req = rcu_dereference_protected(tp->fastopen_rsk,
6220 lockdep_sock_is_held(sk));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006221 if (req) {
6222 bool req_stolen;
6223
6224 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6225 sk->sk_state != TCP_FIN_WAIT1);
6226
6227 if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6228 goto discard;
6229 }
6230
6231 if (!th->ack && !th->rst && !th->syn)
6232 goto discard;
6233
6234 if (!tcp_validate_incoming(sk, skb, th, 0))
6235 return 0;
6236
6237 /* step 5: check the ACK field */
6238 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6239 FLAG_UPDATE_TS_RECENT |
6240 FLAG_NO_CHALLENGE_ACK) > 0;
6241
6242 if (!acceptable) {
6243 if (sk->sk_state == TCP_SYN_RECV)
6244 return 1; /* send one RST */
6245 tcp_send_challenge_ack(sk, skb);
6246 goto discard;
6247 }
6248 switch (sk->sk_state) {
6249 case TCP_SYN_RECV:
6250 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6251 if (!tp->srtt_us)
6252 tcp_synack_rtt_meas(sk, req);
6253
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006254 if (req) {
David Brazdil0f672f62019-12-10 10:32:29 +00006255 tcp_rcv_synrecv_state_fastopen(sk);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006256 } else {
David Brazdil0f672f62019-12-10 10:32:29 +00006257 tcp_try_undo_spurious_syn(sk);
6258 tp->retrans_stamp = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006259 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
David Brazdil0f672f62019-12-10 10:32:29 +00006260 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006261 }
6262 smp_mb();
6263 tcp_set_state(sk, TCP_ESTABLISHED);
6264 sk->sk_state_change(sk);
6265
6266 /* Note, that this wakeup is only for marginal crossed SYN case.
6267 * Passively open sockets are not waked up, because
6268 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6269 */
6270 if (sk->sk_socket)
6271 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6272
6273 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6274 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6275 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6276
6277 if (tp->rx_opt.tstamp_ok)
6278 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6279
6280 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6281 tcp_update_pacing_rate(sk);
6282
6283 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6284 tp->lsndtime = tcp_jiffies32;
6285
6286 tcp_initialize_rcv_mss(sk);
6287 tcp_fast_path_on(tp);
6288 break;
6289
6290 case TCP_FIN_WAIT1: {
6291 int tmo;
6292
David Brazdil0f672f62019-12-10 10:32:29 +00006293 if (req)
6294 tcp_rcv_synrecv_state_fastopen(sk);
6295
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006296 if (tp->snd_una != tp->write_seq)
6297 break;
6298
6299 tcp_set_state(sk, TCP_FIN_WAIT2);
6300 sk->sk_shutdown |= SEND_SHUTDOWN;
6301
6302 sk_dst_confirm(sk);
6303
6304 if (!sock_flag(sk, SOCK_DEAD)) {
6305 /* Wake up lingering close() */
6306 sk->sk_state_change(sk);
6307 break;
6308 }
6309
6310 if (tp->linger2 < 0) {
6311 tcp_done(sk);
6312 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6313 return 1;
6314 }
6315 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6316 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6317 /* Receive out of order FIN after close() */
6318 if (tp->syn_fastopen && th->fin)
6319 tcp_fastopen_active_disable(sk);
6320 tcp_done(sk);
6321 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6322 return 1;
6323 }
6324
6325 tmo = tcp_fin_time(sk);
6326 if (tmo > TCP_TIMEWAIT_LEN) {
6327 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6328 } else if (th->fin || sock_owned_by_user(sk)) {
6329 /* Bad case. We could lose such FIN otherwise.
6330 * It is not a big problem, but it looks confusing
6331 * and not so rare event. We still can lose it now,
6332 * if it spins in bh_lock_sock(), but it is really
6333 * marginal case.
6334 */
6335 inet_csk_reset_keepalive_timer(sk, tmo);
6336 } else {
6337 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6338 goto discard;
6339 }
6340 break;
6341 }
6342
6343 case TCP_CLOSING:
6344 if (tp->snd_una == tp->write_seq) {
6345 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6346 goto discard;
6347 }
6348 break;
6349
6350 case TCP_LAST_ACK:
6351 if (tp->snd_una == tp->write_seq) {
6352 tcp_update_metrics(sk);
6353 tcp_done(sk);
6354 goto discard;
6355 }
6356 break;
6357 }
6358
6359 /* step 6: check the URG bit */
6360 tcp_urg(sk, skb, th);
6361
6362 /* step 7: process the segment text */
6363 switch (sk->sk_state) {
6364 case TCP_CLOSE_WAIT:
6365 case TCP_CLOSING:
6366 case TCP_LAST_ACK:
6367 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6368 break;
6369 /* fall through */
6370 case TCP_FIN_WAIT1:
6371 case TCP_FIN_WAIT2:
6372 /* RFC 793 says to queue data in these states,
6373 * RFC 1122 says we MUST send a reset.
6374 * BSD 4.4 also does reset.
6375 */
6376 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6377 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6378 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6379 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6380 tcp_reset(sk);
6381 return 1;
6382 }
6383 }
6384 /* Fall through */
6385 case TCP_ESTABLISHED:
6386 tcp_data_queue(sk, skb);
6387 queued = 1;
6388 break;
6389 }
6390
6391 /* tcp_data could move socket to TIME-WAIT */
6392 if (sk->sk_state != TCP_CLOSE) {
6393 tcp_data_snd_check(sk);
6394 tcp_ack_snd_check(sk);
6395 }
6396
6397 if (!queued) {
6398discard:
6399 tcp_drop(sk, skb);
6400 }
6401 return 0;
6402}
6403EXPORT_SYMBOL(tcp_rcv_state_process);
6404
6405static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6406{
6407 struct inet_request_sock *ireq = inet_rsk(req);
6408
6409 if (family == AF_INET)
6410 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6411 &ireq->ir_rmt_addr, port);
6412#if IS_ENABLED(CONFIG_IPV6)
6413 else if (family == AF_INET6)
6414 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6415 &ireq->ir_v6_rmt_addr, port);
6416#endif
6417}
6418
6419/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6420 *
6421 * If we receive a SYN packet with these bits set, it means a
6422 * network is playing bad games with TOS bits. In order to
6423 * avoid possible false congestion notifications, we disable
6424 * TCP ECN negotiation.
6425 *
6426 * Exception: tcp_ca wants ECN. This is required for DCTCP
6427 * congestion control: Linux DCTCP asserts ECT on all packets,
6428 * including SYN, which is most optimal solution; however,
6429 * others, such as FreeBSD do not.
David Brazdil0f672f62019-12-10 10:32:29 +00006430 *
6431 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6432 * set, indicating the use of a future TCP extension (such as AccECN). See
6433 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6434 * extensions.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006435 */
6436static void tcp_ecn_create_request(struct request_sock *req,
6437 const struct sk_buff *skb,
6438 const struct sock *listen_sk,
6439 const struct dst_entry *dst)
6440{
6441 const struct tcphdr *th = tcp_hdr(skb);
6442 const struct net *net = sock_net(listen_sk);
6443 bool th_ecn = th->ece && th->cwr;
6444 bool ect, ecn_ok;
6445 u32 ecn_ok_dst;
6446
6447 if (!th_ecn)
6448 return;
6449
6450 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6451 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6452 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6453
David Brazdil0f672f62019-12-10 10:32:29 +00006454 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006455 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6456 tcp_bpf_ca_needs_ecn((struct sock *)req))
6457 inet_rsk(req)->ecn_ok = 1;
6458}
6459
6460static void tcp_openreq_init(struct request_sock *req,
6461 const struct tcp_options_received *rx_opt,
6462 struct sk_buff *skb, const struct sock *sk)
6463{
6464 struct inet_request_sock *ireq = inet_rsk(req);
6465
6466 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6467 req->cookie_ts = 0;
6468 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6469 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
David Brazdil0f672f62019-12-10 10:32:29 +00006470 tcp_rsk(req)->snt_synack = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006471 tcp_rsk(req)->last_oow_ack_time = 0;
6472 req->mss = rx_opt->mss_clamp;
6473 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6474 ireq->tstamp_ok = rx_opt->tstamp_ok;
6475 ireq->sack_ok = rx_opt->sack_ok;
6476 ireq->snd_wscale = rx_opt->snd_wscale;
6477 ireq->wscale_ok = rx_opt->wscale_ok;
6478 ireq->acked = 0;
6479 ireq->ecn_ok = 0;
6480 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6481 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6482 ireq->ir_mark = inet_request_mark(sk, skb);
6483#if IS_ENABLED(CONFIG_SMC)
6484 ireq->smc_ok = rx_opt->smc_ok;
6485#endif
6486}
6487
6488struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6489 struct sock *sk_listener,
6490 bool attach_listener)
6491{
6492 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6493 attach_listener);
6494
6495 if (req) {
6496 struct inet_request_sock *ireq = inet_rsk(req);
6497
6498 ireq->ireq_opt = NULL;
6499#if IS_ENABLED(CONFIG_IPV6)
6500 ireq->pktopts = NULL;
6501#endif
6502 atomic64_set(&ireq->ir_cookie, 0);
6503 ireq->ireq_state = TCP_NEW_SYN_RECV;
6504 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6505 ireq->ireq_family = sk_listener->sk_family;
6506 }
6507
6508 return req;
6509}
6510EXPORT_SYMBOL(inet_reqsk_alloc);
6511
6512/*
6513 * Return true if a syncookie should be sent
6514 */
David Brazdil0f672f62019-12-10 10:32:29 +00006515static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006516{
6517 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6518 const char *msg = "Dropping request";
6519 bool want_cookie = false;
6520 struct net *net = sock_net(sk);
6521
6522#ifdef CONFIG_SYN_COOKIES
6523 if (net->ipv4.sysctl_tcp_syncookies) {
6524 msg = "Sending cookies";
6525 want_cookie = true;
6526 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6527 } else
6528#endif
6529 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6530
6531 if (!queue->synflood_warned &&
6532 net->ipv4.sysctl_tcp_syncookies != 2 &&
6533 xchg(&queue->synflood_warned, 1) == 0)
6534 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
David Brazdil0f672f62019-12-10 10:32:29 +00006535 proto, sk->sk_num, msg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006536
6537 return want_cookie;
6538}
6539
6540static void tcp_reqsk_record_syn(const struct sock *sk,
6541 struct request_sock *req,
6542 const struct sk_buff *skb)
6543{
6544 if (tcp_sk(sk)->save_syn) {
6545 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6546 u32 *copy;
6547
6548 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6549 if (copy) {
6550 copy[0] = len;
6551 memcpy(&copy[1], skb_network_header(skb), len);
6552 req->saved_syn = copy;
6553 }
6554 }
6555}
6556
David Brazdil0f672f62019-12-10 10:32:29 +00006557/* If a SYN cookie is required and supported, returns a clamped MSS value to be
6558 * used for SYN cookie generation.
6559 */
6560u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6561 const struct tcp_request_sock_ops *af_ops,
6562 struct sock *sk, struct tcphdr *th)
6563{
6564 struct tcp_sock *tp = tcp_sk(sk);
6565 u16 mss;
6566
6567 if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6568 !inet_csk_reqsk_queue_is_full(sk))
6569 return 0;
6570
6571 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6572 return 0;
6573
6574 if (sk_acceptq_is_full(sk)) {
6575 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6576 return 0;
6577 }
6578
6579 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6580 if (!mss)
6581 mss = af_ops->mss_clamp;
6582
6583 return mss;
6584}
6585EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6586
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006587int tcp_conn_request(struct request_sock_ops *rsk_ops,
6588 const struct tcp_request_sock_ops *af_ops,
6589 struct sock *sk, struct sk_buff *skb)
6590{
6591 struct tcp_fastopen_cookie foc = { .len = -1 };
6592 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6593 struct tcp_options_received tmp_opt;
6594 struct tcp_sock *tp = tcp_sk(sk);
6595 struct net *net = sock_net(sk);
6596 struct sock *fastopen_sk = NULL;
6597 struct request_sock *req;
6598 bool want_cookie = false;
6599 struct dst_entry *dst;
6600 struct flowi fl;
6601
6602 /* TW buckets are converted to open requests without
6603 * limitations, they conserve resources and peer is
6604 * evidently real one.
6605 */
6606 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6607 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
David Brazdil0f672f62019-12-10 10:32:29 +00006608 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006609 if (!want_cookie)
6610 goto drop;
6611 }
6612
6613 if (sk_acceptq_is_full(sk)) {
6614 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6615 goto drop;
6616 }
6617
6618 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6619 if (!req)
6620 goto drop;
6621
6622 tcp_rsk(req)->af_specific = af_ops;
6623 tcp_rsk(req)->ts_off = 0;
6624
6625 tcp_clear_options(&tmp_opt);
6626 tmp_opt.mss_clamp = af_ops->mss_clamp;
6627 tmp_opt.user_mss = tp->rx_opt.user_mss;
6628 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6629 want_cookie ? NULL : &foc);
6630
6631 if (want_cookie && !tmp_opt.saw_tstamp)
6632 tcp_clear_options(&tmp_opt);
6633
6634 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6635 tmp_opt.smc_ok = 0;
6636
6637 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6638 tcp_openreq_init(req, &tmp_opt, skb, sk);
6639 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6640
6641 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6642 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6643
6644 af_ops->init_req(req, sk, skb);
6645
6646 if (security_inet_conn_request(sk, skb, req))
6647 goto drop_and_free;
6648
6649 if (tmp_opt.tstamp_ok)
6650 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6651
6652 dst = af_ops->route_req(sk, &fl, req);
6653 if (!dst)
6654 goto drop_and_free;
6655
6656 if (!want_cookie && !isn) {
6657 /* Kill the following clause, if you dislike this way. */
6658 if (!net->ipv4.sysctl_tcp_syncookies &&
6659 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6660 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6661 !tcp_peer_is_proven(req, dst)) {
6662 /* Without syncookies last quarter of
6663 * backlog is filled with destinations,
6664 * proven to be alive.
6665 * It means that we continue to communicate
6666 * to destinations, already remembered
6667 * to the moment of synflood.
6668 */
6669 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6670 rsk_ops->family);
6671 goto drop_and_release;
6672 }
6673
6674 isn = af_ops->init_seq(skb);
6675 }
6676
6677 tcp_ecn_create_request(req, skb, sk, dst);
6678
6679 if (want_cookie) {
6680 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6681 req->cookie_ts = tmp_opt.tstamp_ok;
6682 if (!tmp_opt.tstamp_ok)
6683 inet_rsk(req)->ecn_ok = 0;
6684 }
6685
6686 tcp_rsk(req)->snt_isn = isn;
6687 tcp_rsk(req)->txhash = net_tx_rndhash();
6688 tcp_openreq_init_rwin(req, sk, dst);
6689 sk_rx_queue_set(req_to_sk(req), skb);
6690 if (!want_cookie) {
6691 tcp_reqsk_record_syn(sk, req, skb);
6692 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6693 }
6694 if (fastopen_sk) {
6695 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6696 &foc, TCP_SYNACK_FASTOPEN);
6697 /* Add the child socket directly into the accept queue */
David Brazdil0f672f62019-12-10 10:32:29 +00006698 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6699 reqsk_fastopen_remove(fastopen_sk, req, false);
6700 bh_unlock_sock(fastopen_sk);
6701 sock_put(fastopen_sk);
6702 goto drop_and_free;
6703 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006704 sk->sk_data_ready(sk);
6705 bh_unlock_sock(fastopen_sk);
6706 sock_put(fastopen_sk);
6707 } else {
6708 tcp_rsk(req)->tfo_listener = false;
6709 if (!want_cookie)
6710 inet_csk_reqsk_queue_hash_add(sk, req,
6711 tcp_timeout_init((struct sock *)req));
6712 af_ops->send_synack(sk, dst, &fl, req, &foc,
6713 !want_cookie ? TCP_SYNACK_NORMAL :
6714 TCP_SYNACK_COOKIE);
6715 if (want_cookie) {
6716 reqsk_free(req);
6717 return 0;
6718 }
6719 }
6720 reqsk_put(req);
6721 return 0;
6722
6723drop_and_release:
6724 dst_release(dst);
6725drop_and_free:
David Brazdil0f672f62019-12-10 10:32:29 +00006726 __reqsk_free(req);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006727drop:
6728 tcp_listendrop(sk);
6729 return 0;
6730}
6731EXPORT_SYMBOL(tcp_conn_request);