blob: 4bb7c6a364c813bb14548405b833c8062e8065a3 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-only
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
44#include <linux/sched/mm.h>
45#include <linux/sched/coredump.h>
46#include <linux/sched/numa_balancing.h>
47#include <linux/sched/task.h>
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
53#include <linux/memremap.h>
54#include <linux/ksm.h>
55#include <linux/rmap.h>
56#include <linux/export.h>
57#include <linux/delayacct.h>
58#include <linux/init.h>
59#include <linux/pfn_t.h>
60#include <linux/writeback.h>
61#include <linux/memcontrol.h>
62#include <linux/mmu_notifier.h>
63#include <linux/swapops.h>
64#include <linux/elf.h>
65#include <linux/gfp.h>
66#include <linux/migrate.h>
67#include <linux/string.h>
68#include <linux/dma-debug.h>
69#include <linux/debugfs.h>
70#include <linux/userfaultfd_k.h>
71#include <linux/dax.h>
72#include <linux/oom.h>
David Brazdil0f672f62019-12-10 10:32:29 +000073#include <linux/numa.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000074
75#include <asm/io.h>
76#include <asm/mmu_context.h>
77#include <asm/pgalloc.h>
78#include <linux/uaccess.h>
79#include <asm/tlb.h>
80#include <asm/tlbflush.h>
81#include <asm/pgtable.h>
82
83#include "internal.h"
84
85#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
86#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87#endif
88
89#ifndef CONFIG_NEED_MULTIPLE_NODES
90/* use the per-pgdat data instead for discontigmem - mbligh */
91unsigned long max_mapnr;
92EXPORT_SYMBOL(max_mapnr);
93
94struct page *mem_map;
95EXPORT_SYMBOL(mem_map);
96#endif
97
98/*
99 * A number of key systems in x86 including ioremap() rely on the assumption
100 * that high_memory defines the upper bound on direct map memory, then end
101 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103 * and ZONE_HIGHMEM.
104 */
105void *high_memory;
106EXPORT_SYMBOL(high_memory);
107
108/*
109 * Randomize the address space (stacks, mmaps, brk, etc.).
110 *
111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112 * as ancient (libc5 based) binaries can segfault. )
113 */
114int randomize_va_space __read_mostly =
115#ifdef CONFIG_COMPAT_BRK
116 1;
117#else
118 2;
119#endif
120
Olivier Deprez0e641232021-09-23 10:07:05 +0200121#ifndef arch_faults_on_old_pte
122static inline bool arch_faults_on_old_pte(void)
123{
124 /*
125 * Those arches which don't have hw access flag feature need to
126 * implement their own helper. By default, "true" means pagefault
127 * will be hit on old pte.
128 */
129 return true;
130}
131#endif
132
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000133static int __init disable_randmaps(char *s)
134{
135 randomize_va_space = 0;
136 return 1;
137}
138__setup("norandmaps", disable_randmaps);
139
140unsigned long zero_pfn __read_mostly;
141EXPORT_SYMBOL(zero_pfn);
142
143unsigned long highest_memmap_pfn __read_mostly;
144
145/*
146 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
147 */
148static int __init init_zero_pfn(void)
149{
150 zero_pfn = page_to_pfn(ZERO_PAGE(0));
151 return 0;
152}
Olivier Deprez0e641232021-09-23 10:07:05 +0200153early_initcall(init_zero_pfn);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000154
155
156#if defined(SPLIT_RSS_COUNTING)
157
158void sync_mm_rss(struct mm_struct *mm)
159{
160 int i;
161
162 for (i = 0; i < NR_MM_COUNTERS; i++) {
163 if (current->rss_stat.count[i]) {
164 add_mm_counter(mm, i, current->rss_stat.count[i]);
165 current->rss_stat.count[i] = 0;
166 }
167 }
168 current->rss_stat.events = 0;
169}
170
171static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
172{
173 struct task_struct *task = current;
174
175 if (likely(task->mm == mm))
176 task->rss_stat.count[member] += val;
177 else
178 add_mm_counter(mm, member, val);
179}
180#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
181#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
182
183/* sync counter once per 64 page faults */
184#define TASK_RSS_EVENTS_THRESH (64)
185static void check_sync_rss_stat(struct task_struct *task)
186{
187 if (unlikely(task != current))
188 return;
189 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
190 sync_mm_rss(task->mm);
191}
192#else /* SPLIT_RSS_COUNTING */
193
194#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
195#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
196
197static void check_sync_rss_stat(struct task_struct *task)
198{
199}
200
201#endif /* SPLIT_RSS_COUNTING */
202
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000203/*
204 * Note: this doesn't free the actual pages themselves. That
205 * has been handled earlier when unmapping all the memory regions.
206 */
207static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
208 unsigned long addr)
209{
210 pgtable_t token = pmd_pgtable(*pmd);
211 pmd_clear(pmd);
212 pte_free_tlb(tlb, token, addr);
213 mm_dec_nr_ptes(tlb->mm);
214}
215
216static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
217 unsigned long addr, unsigned long end,
218 unsigned long floor, unsigned long ceiling)
219{
220 pmd_t *pmd;
221 unsigned long next;
222 unsigned long start;
223
224 start = addr;
225 pmd = pmd_offset(pud, addr);
226 do {
227 next = pmd_addr_end(addr, end);
228 if (pmd_none_or_clear_bad(pmd))
229 continue;
230 free_pte_range(tlb, pmd, addr);
231 } while (pmd++, addr = next, addr != end);
232
233 start &= PUD_MASK;
234 if (start < floor)
235 return;
236 if (ceiling) {
237 ceiling &= PUD_MASK;
238 if (!ceiling)
239 return;
240 }
241 if (end - 1 > ceiling - 1)
242 return;
243
244 pmd = pmd_offset(pud, start);
245 pud_clear(pud);
246 pmd_free_tlb(tlb, pmd, start);
247 mm_dec_nr_pmds(tlb->mm);
248}
249
250static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
251 unsigned long addr, unsigned long end,
252 unsigned long floor, unsigned long ceiling)
253{
254 pud_t *pud;
255 unsigned long next;
256 unsigned long start;
257
258 start = addr;
259 pud = pud_offset(p4d, addr);
260 do {
261 next = pud_addr_end(addr, end);
262 if (pud_none_or_clear_bad(pud))
263 continue;
264 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
265 } while (pud++, addr = next, addr != end);
266
267 start &= P4D_MASK;
268 if (start < floor)
269 return;
270 if (ceiling) {
271 ceiling &= P4D_MASK;
272 if (!ceiling)
273 return;
274 }
275 if (end - 1 > ceiling - 1)
276 return;
277
278 pud = pud_offset(p4d, start);
279 p4d_clear(p4d);
280 pud_free_tlb(tlb, pud, start);
281 mm_dec_nr_puds(tlb->mm);
282}
283
284static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
285 unsigned long addr, unsigned long end,
286 unsigned long floor, unsigned long ceiling)
287{
288 p4d_t *p4d;
289 unsigned long next;
290 unsigned long start;
291
292 start = addr;
293 p4d = p4d_offset(pgd, addr);
294 do {
295 next = p4d_addr_end(addr, end);
296 if (p4d_none_or_clear_bad(p4d))
297 continue;
298 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
299 } while (p4d++, addr = next, addr != end);
300
301 start &= PGDIR_MASK;
302 if (start < floor)
303 return;
304 if (ceiling) {
305 ceiling &= PGDIR_MASK;
306 if (!ceiling)
307 return;
308 }
309 if (end - 1 > ceiling - 1)
310 return;
311
312 p4d = p4d_offset(pgd, start);
313 pgd_clear(pgd);
314 p4d_free_tlb(tlb, p4d, start);
315}
316
317/*
318 * This function frees user-level page tables of a process.
319 */
320void free_pgd_range(struct mmu_gather *tlb,
321 unsigned long addr, unsigned long end,
322 unsigned long floor, unsigned long ceiling)
323{
324 pgd_t *pgd;
325 unsigned long next;
326
327 /*
328 * The next few lines have given us lots of grief...
329 *
330 * Why are we testing PMD* at this top level? Because often
331 * there will be no work to do at all, and we'd prefer not to
332 * go all the way down to the bottom just to discover that.
333 *
334 * Why all these "- 1"s? Because 0 represents both the bottom
335 * of the address space and the top of it (using -1 for the
336 * top wouldn't help much: the masks would do the wrong thing).
337 * The rule is that addr 0 and floor 0 refer to the bottom of
338 * the address space, but end 0 and ceiling 0 refer to the top
339 * Comparisons need to use "end - 1" and "ceiling - 1" (though
340 * that end 0 case should be mythical).
341 *
342 * Wherever addr is brought up or ceiling brought down, we must
343 * be careful to reject "the opposite 0" before it confuses the
344 * subsequent tests. But what about where end is brought down
345 * by PMD_SIZE below? no, end can't go down to 0 there.
346 *
347 * Whereas we round start (addr) and ceiling down, by different
348 * masks at different levels, in order to test whether a table
349 * now has no other vmas using it, so can be freed, we don't
350 * bother to round floor or end up - the tests don't need that.
351 */
352
353 addr &= PMD_MASK;
354 if (addr < floor) {
355 addr += PMD_SIZE;
356 if (!addr)
357 return;
358 }
359 if (ceiling) {
360 ceiling &= PMD_MASK;
361 if (!ceiling)
362 return;
363 }
364 if (end - 1 > ceiling - 1)
365 end -= PMD_SIZE;
366 if (addr > end - 1)
367 return;
368 /*
369 * We add page table cache pages with PAGE_SIZE,
370 * (see pte_free_tlb()), flush the tlb if we need
371 */
David Brazdil0f672f62019-12-10 10:32:29 +0000372 tlb_change_page_size(tlb, PAGE_SIZE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000373 pgd = pgd_offset(tlb->mm, addr);
374 do {
375 next = pgd_addr_end(addr, end);
376 if (pgd_none_or_clear_bad(pgd))
377 continue;
378 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
379 } while (pgd++, addr = next, addr != end);
380}
381
382void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
383 unsigned long floor, unsigned long ceiling)
384{
385 while (vma) {
386 struct vm_area_struct *next = vma->vm_next;
387 unsigned long addr = vma->vm_start;
388
389 /*
390 * Hide vma from rmap and truncate_pagecache before freeing
391 * pgtables
392 */
393 unlink_anon_vmas(vma);
394 unlink_file_vma(vma);
395
396 if (is_vm_hugetlb_page(vma)) {
397 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
398 floor, next ? next->vm_start : ceiling);
399 } else {
400 /*
401 * Optimization: gather nearby vmas into one call down
402 */
403 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
404 && !is_vm_hugetlb_page(next)) {
405 vma = next;
406 next = vma->vm_next;
407 unlink_anon_vmas(vma);
408 unlink_file_vma(vma);
409 }
410 free_pgd_range(tlb, addr, vma->vm_end,
411 floor, next ? next->vm_start : ceiling);
412 }
413 vma = next;
414 }
415}
416
David Brazdil0f672f62019-12-10 10:32:29 +0000417int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000418{
419 spinlock_t *ptl;
David Brazdil0f672f62019-12-10 10:32:29 +0000420 pgtable_t new = pte_alloc_one(mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000421 if (!new)
422 return -ENOMEM;
423
424 /*
425 * Ensure all pte setup (eg. pte page lock and page clearing) are
426 * visible before the pte is made visible to other CPUs by being
427 * put into page tables.
428 *
429 * The other side of the story is the pointer chasing in the page
430 * table walking code (when walking the page table without locking;
431 * ie. most of the time). Fortunately, these data accesses consist
432 * of a chain of data-dependent loads, meaning most CPUs (alpha
433 * being the notable exception) will already guarantee loads are
434 * seen in-order. See the alpha page table accessors for the
435 * smp_read_barrier_depends() barriers in page table walking code.
436 */
437 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
438
439 ptl = pmd_lock(mm, pmd);
440 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
441 mm_inc_nr_ptes(mm);
442 pmd_populate(mm, pmd, new);
443 new = NULL;
444 }
445 spin_unlock(ptl);
446 if (new)
447 pte_free(mm, new);
448 return 0;
449}
450
David Brazdil0f672f62019-12-10 10:32:29 +0000451int __pte_alloc_kernel(pmd_t *pmd)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000452{
David Brazdil0f672f62019-12-10 10:32:29 +0000453 pte_t *new = pte_alloc_one_kernel(&init_mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000454 if (!new)
455 return -ENOMEM;
456
457 smp_wmb(); /* See comment in __pte_alloc */
458
459 spin_lock(&init_mm.page_table_lock);
460 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
461 pmd_populate_kernel(&init_mm, pmd, new);
462 new = NULL;
463 }
464 spin_unlock(&init_mm.page_table_lock);
465 if (new)
466 pte_free_kernel(&init_mm, new);
467 return 0;
468}
469
470static inline void init_rss_vec(int *rss)
471{
472 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
473}
474
475static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
476{
477 int i;
478
479 if (current->mm == mm)
480 sync_mm_rss(mm);
481 for (i = 0; i < NR_MM_COUNTERS; i++)
482 if (rss[i])
483 add_mm_counter(mm, i, rss[i]);
484}
485
486/*
487 * This function is called to print an error when a bad pte
488 * is found. For example, we might have a PFN-mapped pte in
489 * a region that doesn't allow it.
490 *
491 * The calling function must still handle the error.
492 */
493static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
494 pte_t pte, struct page *page)
495{
496 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
497 p4d_t *p4d = p4d_offset(pgd, addr);
498 pud_t *pud = pud_offset(p4d, addr);
499 pmd_t *pmd = pmd_offset(pud, addr);
500 struct address_space *mapping;
501 pgoff_t index;
502 static unsigned long resume;
503 static unsigned long nr_shown;
504 static unsigned long nr_unshown;
505
506 /*
507 * Allow a burst of 60 reports, then keep quiet for that minute;
508 * or allow a steady drip of one report per second.
509 */
510 if (nr_shown == 60) {
511 if (time_before(jiffies, resume)) {
512 nr_unshown++;
513 return;
514 }
515 if (nr_unshown) {
516 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
517 nr_unshown);
518 nr_unshown = 0;
519 }
520 nr_shown = 0;
521 }
522 if (nr_shown++ == 0)
523 resume = jiffies + 60 * HZ;
524
525 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
526 index = linear_page_index(vma, addr);
527
528 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
529 current->comm,
530 (long long)pte_val(pte), (long long)pmd_val(*pmd));
531 if (page)
532 dump_page(page, "bad pte");
David Brazdil0f672f62019-12-10 10:32:29 +0000533 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000534 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
David Brazdil0f672f62019-12-10 10:32:29 +0000535 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000536 vma->vm_file,
537 vma->vm_ops ? vma->vm_ops->fault : NULL,
538 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
539 mapping ? mapping->a_ops->readpage : NULL);
540 dump_stack();
541 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
542}
543
544/*
545 * vm_normal_page -- This function gets the "struct page" associated with a pte.
546 *
547 * "Special" mappings do not wish to be associated with a "struct page" (either
548 * it doesn't exist, or it exists but they don't want to touch it). In this
549 * case, NULL is returned here. "Normal" mappings do have a struct page.
550 *
551 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
552 * pte bit, in which case this function is trivial. Secondly, an architecture
553 * may not have a spare pte bit, which requires a more complicated scheme,
554 * described below.
555 *
556 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
557 * special mapping (even if there are underlying and valid "struct pages").
558 * COWed pages of a VM_PFNMAP are always normal.
559 *
560 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
561 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
562 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
563 * mapping will always honor the rule
564 *
565 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
566 *
567 * And for normal mappings this is false.
568 *
569 * This restricts such mappings to be a linear translation from virtual address
570 * to pfn. To get around this restriction, we allow arbitrary mappings so long
571 * as the vma is not a COW mapping; in that case, we know that all ptes are
572 * special (because none can have been COWed).
573 *
574 *
575 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
576 *
577 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
578 * page" backing, however the difference is that _all_ pages with a struct
579 * page (that is, those where pfn_valid is true) are refcounted and considered
580 * normal pages by the VM. The disadvantage is that pages are refcounted
581 * (which can be slower and simply not an option for some PFNMAP users). The
582 * advantage is that we don't have to follow the strict linearity rule of
583 * PFNMAP mappings in order to support COWable mappings.
584 *
585 */
David Brazdil0f672f62019-12-10 10:32:29 +0000586struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
587 pte_t pte)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000588{
589 unsigned long pfn = pte_pfn(pte);
590
591 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
592 if (likely(!pte_special(pte)))
593 goto check_pfn;
594 if (vma->vm_ops && vma->vm_ops->find_special_page)
595 return vma->vm_ops->find_special_page(vma, addr);
596 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
597 return NULL;
598 if (is_zero_pfn(pfn))
599 return NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000600 if (pte_devmap(pte))
601 return NULL;
602
603 print_bad_pte(vma, addr, pte, NULL);
604 return NULL;
605 }
606
607 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
608
609 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
610 if (vma->vm_flags & VM_MIXEDMAP) {
611 if (!pfn_valid(pfn))
612 return NULL;
613 goto out;
614 } else {
615 unsigned long off;
616 off = (addr - vma->vm_start) >> PAGE_SHIFT;
617 if (pfn == vma->vm_pgoff + off)
618 return NULL;
619 if (!is_cow_mapping(vma->vm_flags))
620 return NULL;
621 }
622 }
623
624 if (is_zero_pfn(pfn))
625 return NULL;
626
627check_pfn:
628 if (unlikely(pfn > highest_memmap_pfn)) {
629 print_bad_pte(vma, addr, pte, NULL);
630 return NULL;
631 }
632
633 /*
634 * NOTE! We still have PageReserved() pages in the page tables.
635 * eg. VDSO mappings can cause them to exist.
636 */
637out:
638 return pfn_to_page(pfn);
639}
640
641#ifdef CONFIG_TRANSPARENT_HUGEPAGE
642struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
643 pmd_t pmd)
644{
645 unsigned long pfn = pmd_pfn(pmd);
646
647 /*
648 * There is no pmd_special() but there may be special pmds, e.g.
649 * in a direct-access (dax) mapping, so let's just replicate the
650 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
651 */
652 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
653 if (vma->vm_flags & VM_MIXEDMAP) {
654 if (!pfn_valid(pfn))
655 return NULL;
656 goto out;
657 } else {
658 unsigned long off;
659 off = (addr - vma->vm_start) >> PAGE_SHIFT;
660 if (pfn == vma->vm_pgoff + off)
661 return NULL;
662 if (!is_cow_mapping(vma->vm_flags))
663 return NULL;
664 }
665 }
666
667 if (pmd_devmap(pmd))
668 return NULL;
669 if (is_zero_pfn(pfn))
670 return NULL;
671 if (unlikely(pfn > highest_memmap_pfn))
672 return NULL;
673
674 /*
675 * NOTE! We still have PageReserved() pages in the page tables.
676 * eg. VDSO mappings can cause them to exist.
677 */
678out:
679 return pfn_to_page(pfn);
680}
681#endif
682
683/*
684 * copy one vm_area from one task to the other. Assumes the page tables
685 * already present in the new task to be cleared in the whole range
686 * covered by this vma.
687 */
688
689static inline unsigned long
690copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
691 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
692 unsigned long addr, int *rss)
693{
694 unsigned long vm_flags = vma->vm_flags;
695 pte_t pte = *src_pte;
696 struct page *page;
697
698 /* pte contains position in swap or file, so copy. */
699 if (unlikely(!pte_present(pte))) {
700 swp_entry_t entry = pte_to_swp_entry(pte);
701
702 if (likely(!non_swap_entry(entry))) {
703 if (swap_duplicate(entry) < 0)
704 return entry.val;
705
706 /* make sure dst_mm is on swapoff's mmlist. */
707 if (unlikely(list_empty(&dst_mm->mmlist))) {
708 spin_lock(&mmlist_lock);
709 if (list_empty(&dst_mm->mmlist))
710 list_add(&dst_mm->mmlist,
711 &src_mm->mmlist);
712 spin_unlock(&mmlist_lock);
713 }
714 rss[MM_SWAPENTS]++;
715 } else if (is_migration_entry(entry)) {
716 page = migration_entry_to_page(entry);
717
718 rss[mm_counter(page)]++;
719
720 if (is_write_migration_entry(entry) &&
721 is_cow_mapping(vm_flags)) {
722 /*
723 * COW mappings require pages in both
724 * parent and child to be set to read.
725 */
726 make_migration_entry_read(&entry);
727 pte = swp_entry_to_pte(entry);
728 if (pte_swp_soft_dirty(*src_pte))
729 pte = pte_swp_mksoft_dirty(pte);
730 set_pte_at(src_mm, addr, src_pte, pte);
731 }
732 } else if (is_device_private_entry(entry)) {
733 page = device_private_entry_to_page(entry);
734
735 /*
736 * Update rss count even for unaddressable pages, as
737 * they should treated just like normal pages in this
738 * respect.
739 *
740 * We will likely want to have some new rss counters
741 * for unaddressable pages, at some point. But for now
742 * keep things as they are.
743 */
744 get_page(page);
745 rss[mm_counter(page)]++;
746 page_dup_rmap(page, false);
747
748 /*
749 * We do not preserve soft-dirty information, because so
750 * far, checkpoint/restore is the only feature that
751 * requires that. And checkpoint/restore does not work
752 * when a device driver is involved (you cannot easily
753 * save and restore device driver state).
754 */
755 if (is_write_device_private_entry(entry) &&
756 is_cow_mapping(vm_flags)) {
757 make_device_private_entry_read(&entry);
758 pte = swp_entry_to_pte(entry);
759 set_pte_at(src_mm, addr, src_pte, pte);
760 }
761 }
762 goto out_set_pte;
763 }
764
765 /*
766 * If it's a COW mapping, write protect it both
767 * in the parent and the child
768 */
769 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
770 ptep_set_wrprotect(src_mm, addr, src_pte);
771 pte = pte_wrprotect(pte);
772 }
773
774 /*
775 * If it's a shared mapping, mark it clean in
776 * the child
777 */
778 if (vm_flags & VM_SHARED)
779 pte = pte_mkclean(pte);
780 pte = pte_mkold(pte);
781
782 page = vm_normal_page(vma, addr, pte);
783 if (page) {
784 get_page(page);
785 page_dup_rmap(page, false);
786 rss[mm_counter(page)]++;
787 } else if (pte_devmap(pte)) {
788 page = pte_page(pte);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000789 }
790
791out_set_pte:
792 set_pte_at(dst_mm, addr, dst_pte, pte);
793 return 0;
794}
795
796static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
797 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
798 unsigned long addr, unsigned long end)
799{
800 pte_t *orig_src_pte, *orig_dst_pte;
801 pte_t *src_pte, *dst_pte;
802 spinlock_t *src_ptl, *dst_ptl;
803 int progress = 0;
804 int rss[NR_MM_COUNTERS];
805 swp_entry_t entry = (swp_entry_t){0};
806
807again:
808 init_rss_vec(rss);
809
810 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
811 if (!dst_pte)
812 return -ENOMEM;
813 src_pte = pte_offset_map(src_pmd, addr);
814 src_ptl = pte_lockptr(src_mm, src_pmd);
815 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
816 orig_src_pte = src_pte;
817 orig_dst_pte = dst_pte;
818 arch_enter_lazy_mmu_mode();
819
820 do {
821 /*
822 * We are holding two locks at this point - either of them
823 * could generate latencies in another task on another CPU.
824 */
825 if (progress >= 32) {
826 progress = 0;
827 if (need_resched() ||
828 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
829 break;
830 }
831 if (pte_none(*src_pte)) {
832 progress++;
833 continue;
834 }
835 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
836 vma, addr, rss);
837 if (entry.val)
838 break;
839 progress += 8;
840 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
841
842 arch_leave_lazy_mmu_mode();
843 spin_unlock(src_ptl);
844 pte_unmap(orig_src_pte);
845 add_mm_rss_vec(dst_mm, rss);
846 pte_unmap_unlock(orig_dst_pte, dst_ptl);
847 cond_resched();
848
849 if (entry.val) {
850 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
851 return -ENOMEM;
852 progress = 0;
853 }
854 if (addr != end)
855 goto again;
856 return 0;
857}
858
859static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
860 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
861 unsigned long addr, unsigned long end)
862{
863 pmd_t *src_pmd, *dst_pmd;
864 unsigned long next;
865
866 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
867 if (!dst_pmd)
868 return -ENOMEM;
869 src_pmd = pmd_offset(src_pud, addr);
870 do {
871 next = pmd_addr_end(addr, end);
872 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
873 || pmd_devmap(*src_pmd)) {
874 int err;
875 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
876 err = copy_huge_pmd(dst_mm, src_mm,
877 dst_pmd, src_pmd, addr, vma);
878 if (err == -ENOMEM)
879 return -ENOMEM;
880 if (!err)
881 continue;
882 /* fall through */
883 }
884 if (pmd_none_or_clear_bad(src_pmd))
885 continue;
886 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
887 vma, addr, next))
888 return -ENOMEM;
889 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
890 return 0;
891}
892
893static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
894 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
895 unsigned long addr, unsigned long end)
896{
897 pud_t *src_pud, *dst_pud;
898 unsigned long next;
899
900 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
901 if (!dst_pud)
902 return -ENOMEM;
903 src_pud = pud_offset(src_p4d, addr);
904 do {
905 next = pud_addr_end(addr, end);
906 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
907 int err;
908
909 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
910 err = copy_huge_pud(dst_mm, src_mm,
911 dst_pud, src_pud, addr, vma);
912 if (err == -ENOMEM)
913 return -ENOMEM;
914 if (!err)
915 continue;
916 /* fall through */
917 }
918 if (pud_none_or_clear_bad(src_pud))
919 continue;
920 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
921 vma, addr, next))
922 return -ENOMEM;
923 } while (dst_pud++, src_pud++, addr = next, addr != end);
924 return 0;
925}
926
927static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
928 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
929 unsigned long addr, unsigned long end)
930{
931 p4d_t *src_p4d, *dst_p4d;
932 unsigned long next;
933
934 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
935 if (!dst_p4d)
936 return -ENOMEM;
937 src_p4d = p4d_offset(src_pgd, addr);
938 do {
939 next = p4d_addr_end(addr, end);
940 if (p4d_none_or_clear_bad(src_p4d))
941 continue;
942 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
943 vma, addr, next))
944 return -ENOMEM;
945 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
946 return 0;
947}
948
949int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
950 struct vm_area_struct *vma)
951{
952 pgd_t *src_pgd, *dst_pgd;
953 unsigned long next;
954 unsigned long addr = vma->vm_start;
955 unsigned long end = vma->vm_end;
David Brazdil0f672f62019-12-10 10:32:29 +0000956 struct mmu_notifier_range range;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000957 bool is_cow;
958 int ret;
959
960 /*
961 * Don't copy ptes where a page fault will fill them correctly.
962 * Fork becomes much lighter when there are big shared or private
963 * readonly mappings. The tradeoff is that copy_page_range is more
964 * efficient than faulting.
965 */
966 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
967 !vma->anon_vma)
968 return 0;
969
970 if (is_vm_hugetlb_page(vma))
971 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
972
973 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
974 /*
975 * We do not free on error cases below as remove_vma
976 * gets called on error from higher level routine
977 */
978 ret = track_pfn_copy(vma);
979 if (ret)
980 return ret;
981 }
982
983 /*
984 * We need to invalidate the secondary MMU mappings only when
985 * there could be a permission downgrade on the ptes of the
986 * parent mm. And a permission downgrade will only happen if
987 * is_cow_mapping() returns true.
988 */
989 is_cow = is_cow_mapping(vma->vm_flags);
David Brazdil0f672f62019-12-10 10:32:29 +0000990
991 if (is_cow) {
992 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
993 0, vma, src_mm, addr, end);
994 mmu_notifier_invalidate_range_start(&range);
995 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000996
997 ret = 0;
998 dst_pgd = pgd_offset(dst_mm, addr);
999 src_pgd = pgd_offset(src_mm, addr);
1000 do {
1001 next = pgd_addr_end(addr, end);
1002 if (pgd_none_or_clear_bad(src_pgd))
1003 continue;
1004 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1005 vma, addr, next))) {
1006 ret = -ENOMEM;
1007 break;
1008 }
1009 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1010
1011 if (is_cow)
David Brazdil0f672f62019-12-10 10:32:29 +00001012 mmu_notifier_invalidate_range_end(&range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001013 return ret;
1014}
1015
1016static unsigned long zap_pte_range(struct mmu_gather *tlb,
1017 struct vm_area_struct *vma, pmd_t *pmd,
1018 unsigned long addr, unsigned long end,
1019 struct zap_details *details)
1020{
1021 struct mm_struct *mm = tlb->mm;
1022 int force_flush = 0;
1023 int rss[NR_MM_COUNTERS];
1024 spinlock_t *ptl;
1025 pte_t *start_pte;
1026 pte_t *pte;
1027 swp_entry_t entry;
1028
David Brazdil0f672f62019-12-10 10:32:29 +00001029 tlb_change_page_size(tlb, PAGE_SIZE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001030again:
1031 init_rss_vec(rss);
1032 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1033 pte = start_pte;
1034 flush_tlb_batched_pending(mm);
1035 arch_enter_lazy_mmu_mode();
1036 do {
1037 pte_t ptent = *pte;
1038 if (pte_none(ptent))
1039 continue;
1040
David Brazdil0f672f62019-12-10 10:32:29 +00001041 if (need_resched())
1042 break;
1043
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001044 if (pte_present(ptent)) {
1045 struct page *page;
1046
David Brazdil0f672f62019-12-10 10:32:29 +00001047 page = vm_normal_page(vma, addr, ptent);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001048 if (unlikely(details) && page) {
1049 /*
1050 * unmap_shared_mapping_pages() wants to
1051 * invalidate cache without truncating:
1052 * unmap shared but keep private pages.
1053 */
1054 if (details->check_mapping &&
1055 details->check_mapping != page_rmapping(page))
1056 continue;
1057 }
1058 ptent = ptep_get_and_clear_full(mm, addr, pte,
1059 tlb->fullmm);
1060 tlb_remove_tlb_entry(tlb, pte, addr);
1061 if (unlikely(!page))
1062 continue;
1063
1064 if (!PageAnon(page)) {
1065 if (pte_dirty(ptent)) {
1066 force_flush = 1;
1067 set_page_dirty(page);
1068 }
1069 if (pte_young(ptent) &&
1070 likely(!(vma->vm_flags & VM_SEQ_READ)))
1071 mark_page_accessed(page);
1072 }
1073 rss[mm_counter(page)]--;
1074 page_remove_rmap(page, false);
1075 if (unlikely(page_mapcount(page) < 0))
1076 print_bad_pte(vma, addr, ptent, page);
1077 if (unlikely(__tlb_remove_page(tlb, page))) {
1078 force_flush = 1;
1079 addr += PAGE_SIZE;
1080 break;
1081 }
1082 continue;
1083 }
1084
1085 entry = pte_to_swp_entry(ptent);
1086 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1087 struct page *page = device_private_entry_to_page(entry);
1088
1089 if (unlikely(details && details->check_mapping)) {
1090 /*
1091 * unmap_shared_mapping_pages() wants to
1092 * invalidate cache without truncating:
1093 * unmap shared but keep private pages.
1094 */
1095 if (details->check_mapping !=
1096 page_rmapping(page))
1097 continue;
1098 }
1099
1100 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1101 rss[mm_counter(page)]--;
1102 page_remove_rmap(page, false);
1103 put_page(page);
1104 continue;
1105 }
1106
1107 /* If details->check_mapping, we leave swap entries. */
1108 if (unlikely(details))
1109 continue;
1110
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001111 if (!non_swap_entry(entry))
1112 rss[MM_SWAPENTS]--;
1113 else if (is_migration_entry(entry)) {
1114 struct page *page;
1115
1116 page = migration_entry_to_page(entry);
1117 rss[mm_counter(page)]--;
1118 }
1119 if (unlikely(!free_swap_and_cache(entry)))
1120 print_bad_pte(vma, addr, ptent, NULL);
1121 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1122 } while (pte++, addr += PAGE_SIZE, addr != end);
1123
1124 add_mm_rss_vec(mm, rss);
1125 arch_leave_lazy_mmu_mode();
1126
1127 /* Do the actual TLB flush before dropping ptl */
1128 if (force_flush)
1129 tlb_flush_mmu_tlbonly(tlb);
1130 pte_unmap_unlock(start_pte, ptl);
1131
1132 /*
1133 * If we forced a TLB flush (either due to running out of
1134 * batch buffers or because we needed to flush dirty TLB
1135 * entries before releasing the ptl), free the batched
1136 * memory too. Restart if we didn't do everything.
1137 */
1138 if (force_flush) {
1139 force_flush = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00001140 tlb_flush_mmu(tlb);
1141 }
1142
1143 if (addr != end) {
1144 cond_resched();
1145 goto again;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001146 }
1147
1148 return addr;
1149}
1150
1151static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1152 struct vm_area_struct *vma, pud_t *pud,
1153 unsigned long addr, unsigned long end,
1154 struct zap_details *details)
1155{
1156 pmd_t *pmd;
1157 unsigned long next;
1158
1159 pmd = pmd_offset(pud, addr);
1160 do {
1161 next = pmd_addr_end(addr, end);
1162 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1163 if (next - addr != HPAGE_PMD_SIZE)
1164 __split_huge_pmd(vma, pmd, addr, false, NULL);
1165 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1166 goto next;
1167 /* fall through */
Olivier Deprez0e641232021-09-23 10:07:05 +02001168 } else if (details && details->single_page &&
1169 PageTransCompound(details->single_page) &&
1170 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1171 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1172 /*
1173 * Take and drop THP pmd lock so that we cannot return
1174 * prematurely, while zap_huge_pmd() has cleared *pmd,
1175 * but not yet decremented compound_mapcount().
1176 */
1177 spin_unlock(ptl);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001178 }
Olivier Deprez0e641232021-09-23 10:07:05 +02001179
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001180 /*
1181 * Here there can be other concurrent MADV_DONTNEED or
1182 * trans huge page faults running, and if the pmd is
1183 * none or trans huge it can change under us. This is
1184 * because MADV_DONTNEED holds the mmap_sem in read
1185 * mode.
1186 */
1187 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1188 goto next;
1189 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1190next:
1191 cond_resched();
1192 } while (pmd++, addr = next, addr != end);
1193
1194 return addr;
1195}
1196
1197static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1198 struct vm_area_struct *vma, p4d_t *p4d,
1199 unsigned long addr, unsigned long end,
1200 struct zap_details *details)
1201{
1202 pud_t *pud;
1203 unsigned long next;
1204
1205 pud = pud_offset(p4d, addr);
1206 do {
1207 next = pud_addr_end(addr, end);
1208 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1209 if (next - addr != HPAGE_PUD_SIZE) {
1210 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1211 split_huge_pud(vma, pud, addr);
1212 } else if (zap_huge_pud(tlb, vma, pud, addr))
1213 goto next;
1214 /* fall through */
1215 }
1216 if (pud_none_or_clear_bad(pud))
1217 continue;
1218 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1219next:
1220 cond_resched();
1221 } while (pud++, addr = next, addr != end);
1222
1223 return addr;
1224}
1225
1226static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1227 struct vm_area_struct *vma, pgd_t *pgd,
1228 unsigned long addr, unsigned long end,
1229 struct zap_details *details)
1230{
1231 p4d_t *p4d;
1232 unsigned long next;
1233
1234 p4d = p4d_offset(pgd, addr);
1235 do {
1236 next = p4d_addr_end(addr, end);
1237 if (p4d_none_or_clear_bad(p4d))
1238 continue;
1239 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1240 } while (p4d++, addr = next, addr != end);
1241
1242 return addr;
1243}
1244
1245void unmap_page_range(struct mmu_gather *tlb,
1246 struct vm_area_struct *vma,
1247 unsigned long addr, unsigned long end,
1248 struct zap_details *details)
1249{
1250 pgd_t *pgd;
1251 unsigned long next;
1252
1253 BUG_ON(addr >= end);
1254 tlb_start_vma(tlb, vma);
1255 pgd = pgd_offset(vma->vm_mm, addr);
1256 do {
1257 next = pgd_addr_end(addr, end);
1258 if (pgd_none_or_clear_bad(pgd))
1259 continue;
1260 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1261 } while (pgd++, addr = next, addr != end);
1262 tlb_end_vma(tlb, vma);
1263}
1264
1265
1266static void unmap_single_vma(struct mmu_gather *tlb,
1267 struct vm_area_struct *vma, unsigned long start_addr,
1268 unsigned long end_addr,
1269 struct zap_details *details)
1270{
1271 unsigned long start = max(vma->vm_start, start_addr);
1272 unsigned long end;
1273
1274 if (start >= vma->vm_end)
1275 return;
1276 end = min(vma->vm_end, end_addr);
1277 if (end <= vma->vm_start)
1278 return;
1279
1280 if (vma->vm_file)
1281 uprobe_munmap(vma, start, end);
1282
1283 if (unlikely(vma->vm_flags & VM_PFNMAP))
1284 untrack_pfn(vma, 0, 0);
1285
1286 if (start != end) {
1287 if (unlikely(is_vm_hugetlb_page(vma))) {
1288 /*
1289 * It is undesirable to test vma->vm_file as it
1290 * should be non-null for valid hugetlb area.
1291 * However, vm_file will be NULL in the error
1292 * cleanup path of mmap_region. When
1293 * hugetlbfs ->mmap method fails,
1294 * mmap_region() nullifies vma->vm_file
1295 * before calling this function to clean up.
1296 * Since no pte has actually been setup, it is
1297 * safe to do nothing in this case.
1298 */
1299 if (vma->vm_file) {
1300 i_mmap_lock_write(vma->vm_file->f_mapping);
1301 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1302 i_mmap_unlock_write(vma->vm_file->f_mapping);
1303 }
1304 } else
1305 unmap_page_range(tlb, vma, start, end, details);
1306 }
1307}
1308
1309/**
1310 * unmap_vmas - unmap a range of memory covered by a list of vma's
1311 * @tlb: address of the caller's struct mmu_gather
1312 * @vma: the starting vma
1313 * @start_addr: virtual address at which to start unmapping
1314 * @end_addr: virtual address at which to end unmapping
1315 *
1316 * Unmap all pages in the vma list.
1317 *
1318 * Only addresses between `start' and `end' will be unmapped.
1319 *
1320 * The VMA list must be sorted in ascending virtual address order.
1321 *
1322 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1323 * range after unmap_vmas() returns. So the only responsibility here is to
1324 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1325 * drops the lock and schedules.
1326 */
1327void unmap_vmas(struct mmu_gather *tlb,
1328 struct vm_area_struct *vma, unsigned long start_addr,
1329 unsigned long end_addr)
1330{
David Brazdil0f672f62019-12-10 10:32:29 +00001331 struct mmu_notifier_range range;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001332
David Brazdil0f672f62019-12-10 10:32:29 +00001333 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1334 start_addr, end_addr);
1335 mmu_notifier_invalidate_range_start(&range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001336 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1337 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
David Brazdil0f672f62019-12-10 10:32:29 +00001338 mmu_notifier_invalidate_range_end(&range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001339}
1340
1341/**
1342 * zap_page_range - remove user pages in a given range
1343 * @vma: vm_area_struct holding the applicable pages
1344 * @start: starting address of pages to zap
1345 * @size: number of bytes to zap
1346 *
1347 * Caller must protect the VMA list
1348 */
1349void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1350 unsigned long size)
1351{
David Brazdil0f672f62019-12-10 10:32:29 +00001352 struct mmu_notifier_range range;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001353 struct mmu_gather tlb;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001354
1355 lru_add_drain();
David Brazdil0f672f62019-12-10 10:32:29 +00001356 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1357 start, start + size);
1358 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1359 update_hiwater_rss(vma->vm_mm);
1360 mmu_notifier_invalidate_range_start(&range);
1361 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1362 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1363 mmu_notifier_invalidate_range_end(&range);
1364 tlb_finish_mmu(&tlb, start, range.end);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001365}
1366
1367/**
1368 * zap_page_range_single - remove user pages in a given range
1369 * @vma: vm_area_struct holding the applicable pages
1370 * @address: starting address of pages to zap
1371 * @size: number of bytes to zap
1372 * @details: details of shared cache invalidation
1373 *
1374 * The range must fit into one VMA.
1375 */
1376static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1377 unsigned long size, struct zap_details *details)
1378{
David Brazdil0f672f62019-12-10 10:32:29 +00001379 struct mmu_notifier_range range;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001380 struct mmu_gather tlb;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001381
1382 lru_add_drain();
David Brazdil0f672f62019-12-10 10:32:29 +00001383 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1384 address, address + size);
1385 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1386 update_hiwater_rss(vma->vm_mm);
1387 mmu_notifier_invalidate_range_start(&range);
1388 unmap_single_vma(&tlb, vma, address, range.end, details);
1389 mmu_notifier_invalidate_range_end(&range);
1390 tlb_finish_mmu(&tlb, address, range.end);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001391}
1392
1393/**
1394 * zap_vma_ptes - remove ptes mapping the vma
1395 * @vma: vm_area_struct holding ptes to be zapped
1396 * @address: starting address of pages to zap
1397 * @size: number of bytes to zap
1398 *
1399 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1400 *
1401 * The entire address range must be fully contained within the vma.
1402 *
1403 */
1404void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1405 unsigned long size)
1406{
1407 if (address < vma->vm_start || address + size > vma->vm_end ||
1408 !(vma->vm_flags & VM_PFNMAP))
1409 return;
1410
1411 zap_page_range_single(vma, address, size, NULL);
1412}
1413EXPORT_SYMBOL_GPL(zap_vma_ptes);
1414
1415pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1416 spinlock_t **ptl)
1417{
1418 pgd_t *pgd;
1419 p4d_t *p4d;
1420 pud_t *pud;
1421 pmd_t *pmd;
1422
1423 pgd = pgd_offset(mm, addr);
1424 p4d = p4d_alloc(mm, pgd, addr);
1425 if (!p4d)
1426 return NULL;
1427 pud = pud_alloc(mm, p4d, addr);
1428 if (!pud)
1429 return NULL;
1430 pmd = pmd_alloc(mm, pud, addr);
1431 if (!pmd)
1432 return NULL;
1433
1434 VM_BUG_ON(pmd_trans_huge(*pmd));
1435 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1436}
1437
1438/*
1439 * This is the old fallback for page remapping.
1440 *
1441 * For historical reasons, it only allows reserved pages. Only
1442 * old drivers should use this, and they needed to mark their
1443 * pages reserved for the old functions anyway.
1444 */
1445static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1446 struct page *page, pgprot_t prot)
1447{
1448 struct mm_struct *mm = vma->vm_mm;
1449 int retval;
1450 pte_t *pte;
1451 spinlock_t *ptl;
1452
1453 retval = -EINVAL;
David Brazdil0f672f62019-12-10 10:32:29 +00001454 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001455 goto out;
1456 retval = -ENOMEM;
1457 flush_dcache_page(page);
1458 pte = get_locked_pte(mm, addr, &ptl);
1459 if (!pte)
1460 goto out;
1461 retval = -EBUSY;
1462 if (!pte_none(*pte))
1463 goto out_unlock;
1464
1465 /* Ok, finally just insert the thing.. */
1466 get_page(page);
1467 inc_mm_counter_fast(mm, mm_counter_file(page));
1468 page_add_file_rmap(page, false);
1469 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1470
1471 retval = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001472out_unlock:
1473 pte_unmap_unlock(pte, ptl);
1474out:
1475 return retval;
1476}
1477
1478/**
1479 * vm_insert_page - insert single page into user vma
1480 * @vma: user vma to map to
1481 * @addr: target user address of this page
1482 * @page: source kernel page
1483 *
1484 * This allows drivers to insert individual pages they've allocated
1485 * into a user vma.
1486 *
1487 * The page has to be a nice clean _individual_ kernel allocation.
1488 * If you allocate a compound page, you need to have marked it as
1489 * such (__GFP_COMP), or manually just split the page up yourself
1490 * (see split_page()).
1491 *
1492 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1493 * took an arbitrary page protection parameter. This doesn't allow
1494 * that. Your vma protection will have to be set up correctly, which
1495 * means that if you want a shared writable mapping, you'd better
1496 * ask for a shared writable mapping!
1497 *
1498 * The page does not need to be reserved.
1499 *
1500 * Usually this function is called from f_op->mmap() handler
1501 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1502 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1503 * function from other places, for example from page-fault handler.
David Brazdil0f672f62019-12-10 10:32:29 +00001504 *
1505 * Return: %0 on success, negative error code otherwise.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001506 */
1507int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1508 struct page *page)
1509{
1510 if (addr < vma->vm_start || addr >= vma->vm_end)
1511 return -EFAULT;
1512 if (!page_count(page))
1513 return -EINVAL;
1514 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1515 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1516 BUG_ON(vma->vm_flags & VM_PFNMAP);
1517 vma->vm_flags |= VM_MIXEDMAP;
1518 }
1519 return insert_page(vma, addr, page, vma->vm_page_prot);
1520}
1521EXPORT_SYMBOL(vm_insert_page);
1522
David Brazdil0f672f62019-12-10 10:32:29 +00001523/*
1524 * __vm_map_pages - maps range of kernel pages into user vma
1525 * @vma: user vma to map to
1526 * @pages: pointer to array of source kernel pages
1527 * @num: number of pages in page array
1528 * @offset: user's requested vm_pgoff
1529 *
1530 * This allows drivers to map range of kernel pages into a user vma.
1531 *
1532 * Return: 0 on success and error code otherwise.
1533 */
1534static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1535 unsigned long num, unsigned long offset)
1536{
1537 unsigned long count = vma_pages(vma);
1538 unsigned long uaddr = vma->vm_start;
1539 int ret, i;
1540
1541 /* Fail if the user requested offset is beyond the end of the object */
1542 if (offset >= num)
1543 return -ENXIO;
1544
1545 /* Fail if the user requested size exceeds available object size */
1546 if (count > num - offset)
1547 return -ENXIO;
1548
1549 for (i = 0; i < count; i++) {
1550 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1551 if (ret < 0)
1552 return ret;
1553 uaddr += PAGE_SIZE;
1554 }
1555
1556 return 0;
1557}
1558
1559/**
1560 * vm_map_pages - maps range of kernel pages starts with non zero offset
1561 * @vma: user vma to map to
1562 * @pages: pointer to array of source kernel pages
1563 * @num: number of pages in page array
1564 *
1565 * Maps an object consisting of @num pages, catering for the user's
1566 * requested vm_pgoff
1567 *
1568 * If we fail to insert any page into the vma, the function will return
1569 * immediately leaving any previously inserted pages present. Callers
1570 * from the mmap handler may immediately return the error as their caller
1571 * will destroy the vma, removing any successfully inserted pages. Other
1572 * callers should make their own arrangements for calling unmap_region().
1573 *
1574 * Context: Process context. Called by mmap handlers.
1575 * Return: 0 on success and error code otherwise.
1576 */
1577int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1578 unsigned long num)
1579{
1580 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1581}
1582EXPORT_SYMBOL(vm_map_pages);
1583
1584/**
1585 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1586 * @vma: user vma to map to
1587 * @pages: pointer to array of source kernel pages
1588 * @num: number of pages in page array
1589 *
1590 * Similar to vm_map_pages(), except that it explicitly sets the offset
1591 * to 0. This function is intended for the drivers that did not consider
1592 * vm_pgoff.
1593 *
1594 * Context: Process context. Called by mmap handlers.
1595 * Return: 0 on success and error code otherwise.
1596 */
1597int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1598 unsigned long num)
1599{
1600 return __vm_map_pages(vma, pages, num, 0);
1601}
1602EXPORT_SYMBOL(vm_map_pages_zero);
1603
1604static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001605 pfn_t pfn, pgprot_t prot, bool mkwrite)
1606{
1607 struct mm_struct *mm = vma->vm_mm;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001608 pte_t *pte, entry;
1609 spinlock_t *ptl;
1610
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001611 pte = get_locked_pte(mm, addr, &ptl);
1612 if (!pte)
David Brazdil0f672f62019-12-10 10:32:29 +00001613 return VM_FAULT_OOM;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001614 if (!pte_none(*pte)) {
1615 if (mkwrite) {
1616 /*
1617 * For read faults on private mappings the PFN passed
1618 * in may not match the PFN we have mapped if the
1619 * mapped PFN is a writeable COW page. In the mkwrite
1620 * case we are creating a writable PTE for a shared
David Brazdil0f672f62019-12-10 10:32:29 +00001621 * mapping and we expect the PFNs to match. If they
1622 * don't match, we are likely racing with block
1623 * allocation and mapping invalidation so just skip the
1624 * update.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001625 */
David Brazdil0f672f62019-12-10 10:32:29 +00001626 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1627 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001628 goto out_unlock;
David Brazdil0f672f62019-12-10 10:32:29 +00001629 }
1630 entry = pte_mkyoung(*pte);
1631 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1632 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1633 update_mmu_cache(vma, addr, pte);
1634 }
1635 goto out_unlock;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001636 }
1637
1638 /* Ok, finally just insert the thing.. */
1639 if (pfn_t_devmap(pfn))
1640 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1641 else
1642 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1643
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001644 if (mkwrite) {
1645 entry = pte_mkyoung(entry);
1646 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1647 }
1648
1649 set_pte_at(mm, addr, pte, entry);
1650 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1651
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001652out_unlock:
1653 pte_unmap_unlock(pte, ptl);
David Brazdil0f672f62019-12-10 10:32:29 +00001654 return VM_FAULT_NOPAGE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001655}
1656
1657/**
David Brazdil0f672f62019-12-10 10:32:29 +00001658 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001659 * @vma: user vma to map to
1660 * @addr: target user address of this page
1661 * @pfn: source kernel pfn
1662 * @pgprot: pgprot flags for the inserted page
1663 *
David Brazdil0f672f62019-12-10 10:32:29 +00001664 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001665 * to override pgprot on a per-page basis.
1666 *
1667 * This only makes sense for IO mappings, and it makes no sense for
David Brazdil0f672f62019-12-10 10:32:29 +00001668 * COW mappings. In general, using multiple vmas is preferable;
1669 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001670 * impractical.
David Brazdil0f672f62019-12-10 10:32:29 +00001671 *
1672 * Context: Process context. May allocate using %GFP_KERNEL.
1673 * Return: vm_fault_t value.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001674 */
David Brazdil0f672f62019-12-10 10:32:29 +00001675vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001676 unsigned long pfn, pgprot_t pgprot)
1677{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001678 /*
1679 * Technically, architectures with pte_special can avoid all these
1680 * restrictions (same for remap_pfn_range). However we would like
1681 * consistency in testing and feature parity among all, so we should
1682 * try to keep these invariants in place for everybody.
1683 */
1684 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1685 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1686 (VM_PFNMAP|VM_MIXEDMAP));
1687 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1688 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1689
1690 if (addr < vma->vm_start || addr >= vma->vm_end)
David Brazdil0f672f62019-12-10 10:32:29 +00001691 return VM_FAULT_SIGBUS;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001692
1693 if (!pfn_modify_allowed(pfn, pgprot))
David Brazdil0f672f62019-12-10 10:32:29 +00001694 return VM_FAULT_SIGBUS;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001695
1696 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1697
David Brazdil0f672f62019-12-10 10:32:29 +00001698 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001699 false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001700}
David Brazdil0f672f62019-12-10 10:32:29 +00001701EXPORT_SYMBOL(vmf_insert_pfn_prot);
1702
1703/**
1704 * vmf_insert_pfn - insert single pfn into user vma
1705 * @vma: user vma to map to
1706 * @addr: target user address of this page
1707 * @pfn: source kernel pfn
1708 *
1709 * Similar to vm_insert_page, this allows drivers to insert individual pages
1710 * they've allocated into a user vma. Same comments apply.
1711 *
1712 * This function should only be called from a vm_ops->fault handler, and
1713 * in that case the handler should return the result of this function.
1714 *
1715 * vma cannot be a COW mapping.
1716 *
1717 * As this is called only for pages that do not currently exist, we
1718 * do not need to flush old virtual caches or the TLB.
1719 *
1720 * Context: Process context. May allocate using %GFP_KERNEL.
1721 * Return: vm_fault_t value.
1722 */
1723vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1724 unsigned long pfn)
1725{
1726 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1727}
1728EXPORT_SYMBOL(vmf_insert_pfn);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001729
1730static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1731{
1732 /* these checks mirror the abort conditions in vm_normal_page */
1733 if (vma->vm_flags & VM_MIXEDMAP)
1734 return true;
1735 if (pfn_t_devmap(pfn))
1736 return true;
1737 if (pfn_t_special(pfn))
1738 return true;
1739 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1740 return true;
1741 return false;
1742}
1743
David Brazdil0f672f62019-12-10 10:32:29 +00001744static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1745 unsigned long addr, pfn_t pfn, bool mkwrite)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001746{
1747 pgprot_t pgprot = vma->vm_page_prot;
David Brazdil0f672f62019-12-10 10:32:29 +00001748 int err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001749
1750 BUG_ON(!vm_mixed_ok(vma, pfn));
1751
1752 if (addr < vma->vm_start || addr >= vma->vm_end)
David Brazdil0f672f62019-12-10 10:32:29 +00001753 return VM_FAULT_SIGBUS;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001754
1755 track_pfn_insert(vma, &pgprot, pfn);
1756
1757 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
David Brazdil0f672f62019-12-10 10:32:29 +00001758 return VM_FAULT_SIGBUS;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001759
1760 /*
1761 * If we don't have pte special, then we have to use the pfn_valid()
1762 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1763 * refcount the page if pfn_valid is true (hence insert_page rather
1764 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1765 * without pte special, it would there be refcounted as a normal page.
1766 */
1767 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1768 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1769 struct page *page;
1770
1771 /*
1772 * At this point we are committed to insert_page()
1773 * regardless of whether the caller specified flags that
1774 * result in pfn_t_has_page() == false.
1775 */
1776 page = pfn_to_page(pfn_t_to_pfn(pfn));
David Brazdil0f672f62019-12-10 10:32:29 +00001777 err = insert_page(vma, addr, page, pgprot);
1778 } else {
1779 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001780 }
David Brazdil0f672f62019-12-10 10:32:29 +00001781
1782 if (err == -ENOMEM)
1783 return VM_FAULT_OOM;
1784 if (err < 0 && err != -EBUSY)
1785 return VM_FAULT_SIGBUS;
1786
1787 return VM_FAULT_NOPAGE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001788}
1789
David Brazdil0f672f62019-12-10 10:32:29 +00001790vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1791 pfn_t pfn)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001792{
1793 return __vm_insert_mixed(vma, addr, pfn, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001794}
David Brazdil0f672f62019-12-10 10:32:29 +00001795EXPORT_SYMBOL(vmf_insert_mixed);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001796
1797/*
1798 * If the insertion of PTE failed because someone else already added a
1799 * different entry in the mean time, we treat that as success as we assume
1800 * the same entry was actually inserted.
1801 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001802vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1803 unsigned long addr, pfn_t pfn)
1804{
David Brazdil0f672f62019-12-10 10:32:29 +00001805 return __vm_insert_mixed(vma, addr, pfn, true);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001806}
1807EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1808
1809/*
1810 * maps a range of physical memory into the requested pages. the old
1811 * mappings are removed. any references to nonexistent pages results
1812 * in null mappings (currently treated as "copy-on-access")
1813 */
1814static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1815 unsigned long addr, unsigned long end,
1816 unsigned long pfn, pgprot_t prot)
1817{
Olivier Deprez0e641232021-09-23 10:07:05 +02001818 pte_t *pte, *mapped_pte;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001819 spinlock_t *ptl;
1820 int err = 0;
1821
Olivier Deprez0e641232021-09-23 10:07:05 +02001822 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001823 if (!pte)
1824 return -ENOMEM;
1825 arch_enter_lazy_mmu_mode();
1826 do {
1827 BUG_ON(!pte_none(*pte));
1828 if (!pfn_modify_allowed(pfn, prot)) {
1829 err = -EACCES;
1830 break;
1831 }
1832 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1833 pfn++;
1834 } while (pte++, addr += PAGE_SIZE, addr != end);
1835 arch_leave_lazy_mmu_mode();
Olivier Deprez0e641232021-09-23 10:07:05 +02001836 pte_unmap_unlock(mapped_pte, ptl);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001837 return err;
1838}
1839
1840static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1841 unsigned long addr, unsigned long end,
1842 unsigned long pfn, pgprot_t prot)
1843{
1844 pmd_t *pmd;
1845 unsigned long next;
1846 int err;
1847
1848 pfn -= addr >> PAGE_SHIFT;
1849 pmd = pmd_alloc(mm, pud, addr);
1850 if (!pmd)
1851 return -ENOMEM;
1852 VM_BUG_ON(pmd_trans_huge(*pmd));
1853 do {
1854 next = pmd_addr_end(addr, end);
1855 err = remap_pte_range(mm, pmd, addr, next,
1856 pfn + (addr >> PAGE_SHIFT), prot);
1857 if (err)
1858 return err;
1859 } while (pmd++, addr = next, addr != end);
1860 return 0;
1861}
1862
1863static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1864 unsigned long addr, unsigned long end,
1865 unsigned long pfn, pgprot_t prot)
1866{
1867 pud_t *pud;
1868 unsigned long next;
1869 int err;
1870
1871 pfn -= addr >> PAGE_SHIFT;
1872 pud = pud_alloc(mm, p4d, addr);
1873 if (!pud)
1874 return -ENOMEM;
1875 do {
1876 next = pud_addr_end(addr, end);
1877 err = remap_pmd_range(mm, pud, addr, next,
1878 pfn + (addr >> PAGE_SHIFT), prot);
1879 if (err)
1880 return err;
1881 } while (pud++, addr = next, addr != end);
1882 return 0;
1883}
1884
1885static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1886 unsigned long addr, unsigned long end,
1887 unsigned long pfn, pgprot_t prot)
1888{
1889 p4d_t *p4d;
1890 unsigned long next;
1891 int err;
1892
1893 pfn -= addr >> PAGE_SHIFT;
1894 p4d = p4d_alloc(mm, pgd, addr);
1895 if (!p4d)
1896 return -ENOMEM;
1897 do {
1898 next = p4d_addr_end(addr, end);
1899 err = remap_pud_range(mm, p4d, addr, next,
1900 pfn + (addr >> PAGE_SHIFT), prot);
1901 if (err)
1902 return err;
1903 } while (p4d++, addr = next, addr != end);
1904 return 0;
1905}
1906
1907/**
1908 * remap_pfn_range - remap kernel memory to userspace
1909 * @vma: user vma to map to
1910 * @addr: target user address to start at
1911 * @pfn: physical address of kernel memory
1912 * @size: size of map area
1913 * @prot: page protection flags for this mapping
1914 *
David Brazdil0f672f62019-12-10 10:32:29 +00001915 * Note: this is only safe if the mm semaphore is held when called.
1916 *
1917 * Return: %0 on success, negative error code otherwise.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001918 */
1919int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1920 unsigned long pfn, unsigned long size, pgprot_t prot)
1921{
1922 pgd_t *pgd;
1923 unsigned long next;
1924 unsigned long end = addr + PAGE_ALIGN(size);
1925 struct mm_struct *mm = vma->vm_mm;
1926 unsigned long remap_pfn = pfn;
1927 int err;
1928
1929 /*
1930 * Physically remapped pages are special. Tell the
1931 * rest of the world about it:
1932 * VM_IO tells people not to look at these pages
1933 * (accesses can have side effects).
1934 * VM_PFNMAP tells the core MM that the base pages are just
1935 * raw PFN mappings, and do not have a "struct page" associated
1936 * with them.
1937 * VM_DONTEXPAND
1938 * Disable vma merging and expanding with mremap().
1939 * VM_DONTDUMP
1940 * Omit vma from core dump, even when VM_IO turned off.
1941 *
1942 * There's a horrible special case to handle copy-on-write
1943 * behaviour that some programs depend on. We mark the "original"
1944 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1945 * See vm_normal_page() for details.
1946 */
1947 if (is_cow_mapping(vma->vm_flags)) {
1948 if (addr != vma->vm_start || end != vma->vm_end)
1949 return -EINVAL;
1950 vma->vm_pgoff = pfn;
1951 }
1952
1953 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1954 if (err)
1955 return -EINVAL;
1956
1957 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1958
1959 BUG_ON(addr >= end);
1960 pfn -= addr >> PAGE_SHIFT;
1961 pgd = pgd_offset(mm, addr);
1962 flush_cache_range(vma, addr, end);
1963 do {
1964 next = pgd_addr_end(addr, end);
1965 err = remap_p4d_range(mm, pgd, addr, next,
1966 pfn + (addr >> PAGE_SHIFT), prot);
1967 if (err)
1968 break;
1969 } while (pgd++, addr = next, addr != end);
1970
1971 if (err)
1972 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1973
1974 return err;
1975}
1976EXPORT_SYMBOL(remap_pfn_range);
1977
1978/**
1979 * vm_iomap_memory - remap memory to userspace
1980 * @vma: user vma to map to
1981 * @start: start of area
1982 * @len: size of area
1983 *
1984 * This is a simplified io_remap_pfn_range() for common driver use. The
1985 * driver just needs to give us the physical memory range to be mapped,
1986 * we'll figure out the rest from the vma information.
1987 *
1988 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1989 * whatever write-combining details or similar.
David Brazdil0f672f62019-12-10 10:32:29 +00001990 *
1991 * Return: %0 on success, negative error code otherwise.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001992 */
1993int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1994{
1995 unsigned long vm_len, pfn, pages;
1996
1997 /* Check that the physical memory area passed in looks valid */
1998 if (start + len < start)
1999 return -EINVAL;
2000 /*
2001 * You *really* shouldn't map things that aren't page-aligned,
2002 * but we've historically allowed it because IO memory might
2003 * just have smaller alignment.
2004 */
2005 len += start & ~PAGE_MASK;
2006 pfn = start >> PAGE_SHIFT;
2007 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2008 if (pfn + pages < pfn)
2009 return -EINVAL;
2010
2011 /* We start the mapping 'vm_pgoff' pages into the area */
2012 if (vma->vm_pgoff > pages)
2013 return -EINVAL;
2014 pfn += vma->vm_pgoff;
2015 pages -= vma->vm_pgoff;
2016
2017 /* Can we fit all of the mapping? */
2018 vm_len = vma->vm_end - vma->vm_start;
2019 if (vm_len >> PAGE_SHIFT > pages)
2020 return -EINVAL;
2021
2022 /* Ok, let it rip */
2023 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2024}
2025EXPORT_SYMBOL(vm_iomap_memory);
2026
2027static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2028 unsigned long addr, unsigned long end,
2029 pte_fn_t fn, void *data)
2030{
2031 pte_t *pte;
2032 int err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002033 spinlock_t *uninitialized_var(ptl);
2034
2035 pte = (mm == &init_mm) ?
2036 pte_alloc_kernel(pmd, addr) :
2037 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2038 if (!pte)
2039 return -ENOMEM;
2040
2041 BUG_ON(pmd_huge(*pmd));
2042
2043 arch_enter_lazy_mmu_mode();
2044
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002045 do {
David Brazdil0f672f62019-12-10 10:32:29 +00002046 err = fn(pte++, addr, data);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002047 if (err)
2048 break;
2049 } while (addr += PAGE_SIZE, addr != end);
2050
2051 arch_leave_lazy_mmu_mode();
2052
2053 if (mm != &init_mm)
2054 pte_unmap_unlock(pte-1, ptl);
2055 return err;
2056}
2057
2058static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2059 unsigned long addr, unsigned long end,
2060 pte_fn_t fn, void *data)
2061{
2062 pmd_t *pmd;
2063 unsigned long next;
2064 int err;
2065
2066 BUG_ON(pud_huge(*pud));
2067
2068 pmd = pmd_alloc(mm, pud, addr);
2069 if (!pmd)
2070 return -ENOMEM;
2071 do {
2072 next = pmd_addr_end(addr, end);
2073 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2074 if (err)
2075 break;
2076 } while (pmd++, addr = next, addr != end);
2077 return err;
2078}
2079
2080static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2081 unsigned long addr, unsigned long end,
2082 pte_fn_t fn, void *data)
2083{
2084 pud_t *pud;
2085 unsigned long next;
2086 int err;
2087
2088 pud = pud_alloc(mm, p4d, addr);
2089 if (!pud)
2090 return -ENOMEM;
2091 do {
2092 next = pud_addr_end(addr, end);
2093 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2094 if (err)
2095 break;
2096 } while (pud++, addr = next, addr != end);
2097 return err;
2098}
2099
2100static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2101 unsigned long addr, unsigned long end,
2102 pte_fn_t fn, void *data)
2103{
2104 p4d_t *p4d;
2105 unsigned long next;
2106 int err;
2107
2108 p4d = p4d_alloc(mm, pgd, addr);
2109 if (!p4d)
2110 return -ENOMEM;
2111 do {
2112 next = p4d_addr_end(addr, end);
2113 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2114 if (err)
2115 break;
2116 } while (p4d++, addr = next, addr != end);
2117 return err;
2118}
2119
2120/*
2121 * Scan a region of virtual memory, filling in page tables as necessary
2122 * and calling a provided function on each leaf page table.
2123 */
2124int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2125 unsigned long size, pte_fn_t fn, void *data)
2126{
2127 pgd_t *pgd;
2128 unsigned long next;
2129 unsigned long end = addr + size;
2130 int err;
2131
2132 if (WARN_ON(addr >= end))
2133 return -EINVAL;
2134
2135 pgd = pgd_offset(mm, addr);
2136 do {
2137 next = pgd_addr_end(addr, end);
2138 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2139 if (err)
2140 break;
2141 } while (pgd++, addr = next, addr != end);
2142
2143 return err;
2144}
2145EXPORT_SYMBOL_GPL(apply_to_page_range);
2146
2147/*
2148 * handle_pte_fault chooses page fault handler according to an entry which was
2149 * read non-atomically. Before making any commitment, on those architectures
2150 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2151 * parts, do_swap_page must check under lock before unmapping the pte and
2152 * proceeding (but do_wp_page is only called after already making such a check;
2153 * and do_anonymous_page can safely check later on).
2154 */
2155static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2156 pte_t *page_table, pte_t orig_pte)
2157{
2158 int same = 1;
2159#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2160 if (sizeof(pte_t) > sizeof(unsigned long)) {
2161 spinlock_t *ptl = pte_lockptr(mm, pmd);
2162 spin_lock(ptl);
2163 same = pte_same(*page_table, orig_pte);
2164 spin_unlock(ptl);
2165 }
2166#endif
2167 pte_unmap(page_table);
2168 return same;
2169}
2170
Olivier Deprez0e641232021-09-23 10:07:05 +02002171static inline bool cow_user_page(struct page *dst, struct page *src,
2172 struct vm_fault *vmf)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002173{
Olivier Deprez0e641232021-09-23 10:07:05 +02002174 bool ret;
2175 void *kaddr;
2176 void __user *uaddr;
2177 bool locked = false;
2178 struct vm_area_struct *vma = vmf->vma;
2179 struct mm_struct *mm = vma->vm_mm;
2180 unsigned long addr = vmf->address;
2181
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002182 debug_dma_assert_idle(src);
2183
Olivier Deprez0e641232021-09-23 10:07:05 +02002184 if (likely(src)) {
2185 copy_user_highpage(dst, src, addr, vma);
2186 return true;
2187 }
2188
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002189 /*
2190 * If the source page was a PFN mapping, we don't have
2191 * a "struct page" for it. We do a best-effort copy by
2192 * just copying from the original user address. If that
2193 * fails, we just zero-fill it. Live with it.
2194 */
Olivier Deprez0e641232021-09-23 10:07:05 +02002195 kaddr = kmap_atomic(dst);
2196 uaddr = (void __user *)(addr & PAGE_MASK);
2197
2198 /*
2199 * On architectures with software "accessed" bits, we would
2200 * take a double page fault, so mark it accessed here.
2201 */
2202 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2203 pte_t entry;
2204
2205 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2206 locked = true;
2207 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2208 /*
2209 * Other thread has already handled the fault
2210 * and we don't need to do anything. If it's
2211 * not the case, the fault will be triggered
2212 * again on the same address.
2213 */
2214 ret = false;
2215 goto pte_unlock;
2216 }
2217
2218 entry = pte_mkyoung(vmf->orig_pte);
2219 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2220 update_mmu_cache(vma, addr, vmf->pte);
2221 }
2222
2223 /*
2224 * This really shouldn't fail, because the page is there
2225 * in the page tables. But it might just be unreadable,
2226 * in which case we just give up and fill the result with
2227 * zeroes.
2228 */
2229 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2230 if (locked)
2231 goto warn;
2232
2233 /* Re-validate under PTL if the page is still mapped */
2234 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2235 locked = true;
2236 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2237 /* The PTE changed under us. Retry page fault. */
2238 ret = false;
2239 goto pte_unlock;
2240 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002241
2242 /*
Olivier Deprez0e641232021-09-23 10:07:05 +02002243 * The same page can be mapped back since last copy attampt.
2244 * Try to copy again under PTL.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002245 */
Olivier Deprez0e641232021-09-23 10:07:05 +02002246 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2247 /*
2248 * Give a warn in case there can be some obscure
2249 * use-case
2250 */
2251warn:
2252 WARN_ON_ONCE(1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002253 clear_page(kaddr);
Olivier Deprez0e641232021-09-23 10:07:05 +02002254 }
2255 }
2256
2257 ret = true;
2258
2259pte_unlock:
2260 if (locked)
2261 pte_unmap_unlock(vmf->pte, vmf->ptl);
2262 kunmap_atomic(kaddr);
2263 flush_dcache_page(dst);
2264
2265 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002266}
2267
2268static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2269{
2270 struct file *vm_file = vma->vm_file;
2271
2272 if (vm_file)
2273 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2274
2275 /*
2276 * Special mappings (e.g. VDSO) do not have any file so fake
2277 * a default GFP_KERNEL for them.
2278 */
2279 return GFP_KERNEL;
2280}
2281
2282/*
2283 * Notify the address space that the page is about to become writable so that
2284 * it can prohibit this or wait for the page to get into an appropriate state.
2285 *
2286 * We do this without the lock held, so that it can sleep if it needs to.
2287 */
2288static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2289{
2290 vm_fault_t ret;
2291 struct page *page = vmf->page;
2292 unsigned int old_flags = vmf->flags;
2293
2294 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2295
David Brazdil0f672f62019-12-10 10:32:29 +00002296 if (vmf->vma->vm_file &&
2297 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2298 return VM_FAULT_SIGBUS;
2299
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002300 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2301 /* Restore original flags so that caller is not surprised */
2302 vmf->flags = old_flags;
2303 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2304 return ret;
2305 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2306 lock_page(page);
2307 if (!page->mapping) {
2308 unlock_page(page);
2309 return 0; /* retry */
2310 }
2311 ret |= VM_FAULT_LOCKED;
2312 } else
2313 VM_BUG_ON_PAGE(!PageLocked(page), page);
2314 return ret;
2315}
2316
2317/*
2318 * Handle dirtying of a page in shared file mapping on a write fault.
2319 *
2320 * The function expects the page to be locked and unlocks it.
2321 */
Olivier Deprez0e641232021-09-23 10:07:05 +02002322static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002323{
Olivier Deprez0e641232021-09-23 10:07:05 +02002324 struct vm_area_struct *vma = vmf->vma;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002325 struct address_space *mapping;
Olivier Deprez0e641232021-09-23 10:07:05 +02002326 struct page *page = vmf->page;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002327 bool dirtied;
2328 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2329
2330 dirtied = set_page_dirty(page);
2331 VM_BUG_ON_PAGE(PageAnon(page), page);
2332 /*
2333 * Take a local copy of the address_space - page.mapping may be zeroed
2334 * by truncate after unlock_page(). The address_space itself remains
2335 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2336 * release semantics to prevent the compiler from undoing this copying.
2337 */
2338 mapping = page_rmapping(page);
2339 unlock_page(page);
2340
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002341 if (!page_mkwrite)
2342 file_update_time(vma->vm_file);
Olivier Deprez0e641232021-09-23 10:07:05 +02002343
2344 /*
2345 * Throttle page dirtying rate down to writeback speed.
2346 *
2347 * mapping may be NULL here because some device drivers do not
2348 * set page.mapping but still dirty their pages
2349 *
2350 * Drop the mmap_sem before waiting on IO, if we can. The file
2351 * is pinning the mapping, as per above.
2352 */
2353 if ((dirtied || page_mkwrite) && mapping) {
2354 struct file *fpin;
2355
2356 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2357 balance_dirty_pages_ratelimited(mapping);
2358 if (fpin) {
2359 fput(fpin);
2360 return VM_FAULT_RETRY;
2361 }
2362 }
2363
2364 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002365}
2366
2367/*
2368 * Handle write page faults for pages that can be reused in the current vma
2369 *
2370 * This can happen either due to the mapping being with the VM_SHARED flag,
2371 * or due to us being the last reference standing to the page. In either
2372 * case, all we need to do here is to mark the page as writable and update
2373 * any related book-keeping.
2374 */
2375static inline void wp_page_reuse(struct vm_fault *vmf)
2376 __releases(vmf->ptl)
2377{
2378 struct vm_area_struct *vma = vmf->vma;
2379 struct page *page = vmf->page;
2380 pte_t entry;
2381 /*
2382 * Clear the pages cpupid information as the existing
2383 * information potentially belongs to a now completely
2384 * unrelated process.
2385 */
2386 if (page)
2387 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2388
2389 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2390 entry = pte_mkyoung(vmf->orig_pte);
2391 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2392 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2393 update_mmu_cache(vma, vmf->address, vmf->pte);
2394 pte_unmap_unlock(vmf->pte, vmf->ptl);
2395}
2396
2397/*
2398 * Handle the case of a page which we actually need to copy to a new page.
2399 *
2400 * Called with mmap_sem locked and the old page referenced, but
2401 * without the ptl held.
2402 *
2403 * High level logic flow:
2404 *
2405 * - Allocate a page, copy the content of the old page to the new one.
2406 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2407 * - Take the PTL. If the pte changed, bail out and release the allocated page
2408 * - If the pte is still the way we remember it, update the page table and all
2409 * relevant references. This includes dropping the reference the page-table
2410 * held to the old page, as well as updating the rmap.
2411 * - In any case, unlock the PTL and drop the reference we took to the old page.
2412 */
2413static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2414{
2415 struct vm_area_struct *vma = vmf->vma;
2416 struct mm_struct *mm = vma->vm_mm;
2417 struct page *old_page = vmf->page;
2418 struct page *new_page = NULL;
2419 pte_t entry;
2420 int page_copied = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002421 struct mem_cgroup *memcg;
David Brazdil0f672f62019-12-10 10:32:29 +00002422 struct mmu_notifier_range range;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002423
2424 if (unlikely(anon_vma_prepare(vma)))
2425 goto oom;
2426
2427 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2428 new_page = alloc_zeroed_user_highpage_movable(vma,
2429 vmf->address);
2430 if (!new_page)
2431 goto oom;
2432 } else {
2433 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2434 vmf->address);
2435 if (!new_page)
2436 goto oom;
Olivier Deprez0e641232021-09-23 10:07:05 +02002437
2438 if (!cow_user_page(new_page, old_page, vmf)) {
2439 /*
2440 * COW failed, if the fault was solved by other,
2441 * it's fine. If not, userspace would re-fault on
2442 * the same address and we will handle the fault
2443 * from the second attempt.
2444 */
2445 put_page(new_page);
2446 if (old_page)
2447 put_page(old_page);
2448 return 0;
2449 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002450 }
2451
2452 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2453 goto oom_free_new;
2454
2455 __SetPageUptodate(new_page);
2456
David Brazdil0f672f62019-12-10 10:32:29 +00002457 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2458 vmf->address & PAGE_MASK,
2459 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2460 mmu_notifier_invalidate_range_start(&range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002461
2462 /*
2463 * Re-check the pte - we dropped the lock
2464 */
2465 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2466 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2467 if (old_page) {
2468 if (!PageAnon(old_page)) {
2469 dec_mm_counter_fast(mm,
2470 mm_counter_file(old_page));
2471 inc_mm_counter_fast(mm, MM_ANONPAGES);
2472 }
2473 } else {
2474 inc_mm_counter_fast(mm, MM_ANONPAGES);
2475 }
2476 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2477 entry = mk_pte(new_page, vma->vm_page_prot);
2478 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2479 /*
2480 * Clear the pte entry and flush it first, before updating the
2481 * pte with the new entry. This will avoid a race condition
2482 * seen in the presence of one thread doing SMC and another
2483 * thread doing COW.
2484 */
2485 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2486 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2487 mem_cgroup_commit_charge(new_page, memcg, false, false);
2488 lru_cache_add_active_or_unevictable(new_page, vma);
2489 /*
2490 * We call the notify macro here because, when using secondary
2491 * mmu page tables (such as kvm shadow page tables), we want the
2492 * new page to be mapped directly into the secondary page table.
2493 */
2494 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2495 update_mmu_cache(vma, vmf->address, vmf->pte);
2496 if (old_page) {
2497 /*
2498 * Only after switching the pte to the new page may
2499 * we remove the mapcount here. Otherwise another
2500 * process may come and find the rmap count decremented
2501 * before the pte is switched to the new page, and
2502 * "reuse" the old page writing into it while our pte
2503 * here still points into it and can be read by other
2504 * threads.
2505 *
2506 * The critical issue is to order this
2507 * page_remove_rmap with the ptp_clear_flush above.
2508 * Those stores are ordered by (if nothing else,)
2509 * the barrier present in the atomic_add_negative
2510 * in page_remove_rmap.
2511 *
2512 * Then the TLB flush in ptep_clear_flush ensures that
2513 * no process can access the old page before the
2514 * decremented mapcount is visible. And the old page
2515 * cannot be reused until after the decremented
2516 * mapcount is visible. So transitively, TLBs to
2517 * old page will be flushed before it can be reused.
2518 */
2519 page_remove_rmap(old_page, false);
2520 }
2521
2522 /* Free the old page.. */
2523 new_page = old_page;
2524 page_copied = 1;
2525 } else {
2526 mem_cgroup_cancel_charge(new_page, memcg, false);
2527 }
2528
2529 if (new_page)
2530 put_page(new_page);
2531
2532 pte_unmap_unlock(vmf->pte, vmf->ptl);
2533 /*
2534 * No need to double call mmu_notifier->invalidate_range() callback as
2535 * the above ptep_clear_flush_notify() did already call it.
2536 */
David Brazdil0f672f62019-12-10 10:32:29 +00002537 mmu_notifier_invalidate_range_only_end(&range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002538 if (old_page) {
2539 /*
2540 * Don't let another task, with possibly unlocked vma,
2541 * keep the mlocked page.
2542 */
2543 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2544 lock_page(old_page); /* LRU manipulation */
2545 if (PageMlocked(old_page))
2546 munlock_vma_page(old_page);
2547 unlock_page(old_page);
2548 }
2549 put_page(old_page);
2550 }
2551 return page_copied ? VM_FAULT_WRITE : 0;
2552oom_free_new:
2553 put_page(new_page);
2554oom:
2555 if (old_page)
2556 put_page(old_page);
2557 return VM_FAULT_OOM;
2558}
2559
2560/**
2561 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2562 * writeable once the page is prepared
2563 *
2564 * @vmf: structure describing the fault
2565 *
2566 * This function handles all that is needed to finish a write page fault in a
2567 * shared mapping due to PTE being read-only once the mapped page is prepared.
David Brazdil0f672f62019-12-10 10:32:29 +00002568 * It handles locking of PTE and modifying it.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002569 *
2570 * The function expects the page to be locked or other protection against
2571 * concurrent faults / writeback (such as DAX radix tree locks).
David Brazdil0f672f62019-12-10 10:32:29 +00002572 *
2573 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2574 * we acquired PTE lock.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002575 */
2576vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2577{
2578 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2579 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2580 &vmf->ptl);
2581 /*
2582 * We might have raced with another page fault while we released the
2583 * pte_offset_map_lock.
2584 */
2585 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2586 pte_unmap_unlock(vmf->pte, vmf->ptl);
2587 return VM_FAULT_NOPAGE;
2588 }
2589 wp_page_reuse(vmf);
2590 return 0;
2591}
2592
2593/*
2594 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2595 * mapping
2596 */
2597static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2598{
2599 struct vm_area_struct *vma = vmf->vma;
2600
2601 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2602 vm_fault_t ret;
2603
2604 pte_unmap_unlock(vmf->pte, vmf->ptl);
2605 vmf->flags |= FAULT_FLAG_MKWRITE;
2606 ret = vma->vm_ops->pfn_mkwrite(vmf);
2607 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2608 return ret;
2609 return finish_mkwrite_fault(vmf);
2610 }
2611 wp_page_reuse(vmf);
2612 return VM_FAULT_WRITE;
2613}
2614
2615static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2616 __releases(vmf->ptl)
2617{
2618 struct vm_area_struct *vma = vmf->vma;
Olivier Deprez0e641232021-09-23 10:07:05 +02002619 vm_fault_t ret = VM_FAULT_WRITE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002620
2621 get_page(vmf->page);
2622
2623 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2624 vm_fault_t tmp;
2625
2626 pte_unmap_unlock(vmf->pte, vmf->ptl);
2627 tmp = do_page_mkwrite(vmf);
2628 if (unlikely(!tmp || (tmp &
2629 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2630 put_page(vmf->page);
2631 return tmp;
2632 }
2633 tmp = finish_mkwrite_fault(vmf);
2634 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2635 unlock_page(vmf->page);
2636 put_page(vmf->page);
2637 return tmp;
2638 }
2639 } else {
2640 wp_page_reuse(vmf);
2641 lock_page(vmf->page);
2642 }
Olivier Deprez0e641232021-09-23 10:07:05 +02002643 ret |= fault_dirty_shared_page(vmf);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002644 put_page(vmf->page);
2645
Olivier Deprez0e641232021-09-23 10:07:05 +02002646 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002647}
2648
2649/*
2650 * This routine handles present pages, when users try to write
2651 * to a shared page. It is done by copying the page to a new address
2652 * and decrementing the shared-page counter for the old page.
2653 *
2654 * Note that this routine assumes that the protection checks have been
2655 * done by the caller (the low-level page fault routine in most cases).
2656 * Thus we can safely just mark it writable once we've done any necessary
2657 * COW.
2658 *
2659 * We also mark the page dirty at this point even though the page will
2660 * change only once the write actually happens. This avoids a few races,
2661 * and potentially makes it more efficient.
2662 *
2663 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2664 * but allow concurrent faults), with pte both mapped and locked.
2665 * We return with mmap_sem still held, but pte unmapped and unlocked.
2666 */
2667static vm_fault_t do_wp_page(struct vm_fault *vmf)
2668 __releases(vmf->ptl)
2669{
2670 struct vm_area_struct *vma = vmf->vma;
2671
2672 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2673 if (!vmf->page) {
2674 /*
2675 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2676 * VM_PFNMAP VMA.
2677 *
2678 * We should not cow pages in a shared writeable mapping.
2679 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2680 */
2681 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2682 (VM_WRITE|VM_SHARED))
2683 return wp_pfn_shared(vmf);
2684
2685 pte_unmap_unlock(vmf->pte, vmf->ptl);
2686 return wp_page_copy(vmf);
2687 }
2688
2689 /*
2690 * Take out anonymous pages first, anonymous shared vmas are
2691 * not dirty accountable.
2692 */
David Brazdil0f672f62019-12-10 10:32:29 +00002693 if (PageAnon(vmf->page)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002694 int total_map_swapcount;
David Brazdil0f672f62019-12-10 10:32:29 +00002695 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2696 page_count(vmf->page) != 1))
2697 goto copy;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002698 if (!trylock_page(vmf->page)) {
2699 get_page(vmf->page);
2700 pte_unmap_unlock(vmf->pte, vmf->ptl);
2701 lock_page(vmf->page);
2702 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2703 vmf->address, &vmf->ptl);
2704 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2705 unlock_page(vmf->page);
2706 pte_unmap_unlock(vmf->pte, vmf->ptl);
2707 put_page(vmf->page);
2708 return 0;
2709 }
2710 put_page(vmf->page);
2711 }
David Brazdil0f672f62019-12-10 10:32:29 +00002712 if (PageKsm(vmf->page)) {
2713 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2714 vmf->address);
2715 unlock_page(vmf->page);
2716 if (!reused)
2717 goto copy;
2718 wp_page_reuse(vmf);
2719 return VM_FAULT_WRITE;
2720 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002721 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2722 if (total_map_swapcount == 1) {
2723 /*
2724 * The page is all ours. Move it to
2725 * our anon_vma so the rmap code will
2726 * not search our parent or siblings.
2727 * Protected against the rmap code by
2728 * the page lock.
2729 */
2730 page_move_anon_rmap(vmf->page, vma);
2731 }
2732 unlock_page(vmf->page);
2733 wp_page_reuse(vmf);
2734 return VM_FAULT_WRITE;
2735 }
2736 unlock_page(vmf->page);
2737 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2738 (VM_WRITE|VM_SHARED))) {
2739 return wp_page_shared(vmf);
2740 }
David Brazdil0f672f62019-12-10 10:32:29 +00002741copy:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002742 /*
2743 * Ok, we need to copy. Oh, well..
2744 */
2745 get_page(vmf->page);
2746
2747 pte_unmap_unlock(vmf->pte, vmf->ptl);
2748 return wp_page_copy(vmf);
2749}
2750
2751static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2752 unsigned long start_addr, unsigned long end_addr,
2753 struct zap_details *details)
2754{
2755 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2756}
2757
2758static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2759 struct zap_details *details)
2760{
2761 struct vm_area_struct *vma;
2762 pgoff_t vba, vea, zba, zea;
2763
2764 vma_interval_tree_foreach(vma, root,
2765 details->first_index, details->last_index) {
2766
2767 vba = vma->vm_pgoff;
2768 vea = vba + vma_pages(vma) - 1;
2769 zba = details->first_index;
2770 if (zba < vba)
2771 zba = vba;
2772 zea = details->last_index;
2773 if (zea > vea)
2774 zea = vea;
2775
2776 unmap_mapping_range_vma(vma,
2777 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2778 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2779 details);
2780 }
2781}
2782
2783/**
Olivier Deprez0e641232021-09-23 10:07:05 +02002784 * unmap_mapping_page() - Unmap single page from processes.
2785 * @page: The locked page to be unmapped.
2786 *
2787 * Unmap this page from any userspace process which still has it mmaped.
2788 * Typically, for efficiency, the range of nearby pages has already been
2789 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
2790 * truncation or invalidation holds the lock on a page, it may find that
2791 * the page has been remapped again: and then uses unmap_mapping_page()
2792 * to unmap it finally.
2793 */
2794void unmap_mapping_page(struct page *page)
2795{
2796 struct address_space *mapping = page->mapping;
2797 struct zap_details details = { };
2798
2799 VM_BUG_ON(!PageLocked(page));
2800 VM_BUG_ON(PageTail(page));
2801
2802 details.check_mapping = mapping;
2803 details.first_index = page->index;
2804 details.last_index = page->index + hpage_nr_pages(page) - 1;
2805 details.single_page = page;
2806
2807 i_mmap_lock_write(mapping);
2808 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2809 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2810 i_mmap_unlock_write(mapping);
2811}
2812
2813/**
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002814 * unmap_mapping_pages() - Unmap pages from processes.
2815 * @mapping: The address space containing pages to be unmapped.
2816 * @start: Index of first page to be unmapped.
2817 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2818 * @even_cows: Whether to unmap even private COWed pages.
2819 *
2820 * Unmap the pages in this address space from any userspace process which
2821 * has them mmaped. Generally, you want to remove COWed pages as well when
2822 * a file is being truncated, but not when invalidating pages from the page
2823 * cache.
2824 */
2825void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2826 pgoff_t nr, bool even_cows)
2827{
2828 struct zap_details details = { };
2829
2830 details.check_mapping = even_cows ? NULL : mapping;
2831 details.first_index = start;
2832 details.last_index = start + nr - 1;
2833 if (details.last_index < details.first_index)
2834 details.last_index = ULONG_MAX;
2835
2836 i_mmap_lock_write(mapping);
2837 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2838 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2839 i_mmap_unlock_write(mapping);
2840}
2841
2842/**
2843 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2844 * address_space corresponding to the specified byte range in the underlying
2845 * file.
2846 *
2847 * @mapping: the address space containing mmaps to be unmapped.
2848 * @holebegin: byte in first page to unmap, relative to the start of
2849 * the underlying file. This will be rounded down to a PAGE_SIZE
2850 * boundary. Note that this is different from truncate_pagecache(), which
2851 * must keep the partial page. In contrast, we must get rid of
2852 * partial pages.
2853 * @holelen: size of prospective hole in bytes. This will be rounded
2854 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2855 * end of the file.
2856 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2857 * but 0 when invalidating pagecache, don't throw away private data.
2858 */
2859void unmap_mapping_range(struct address_space *mapping,
2860 loff_t const holebegin, loff_t const holelen, int even_cows)
2861{
2862 pgoff_t hba = holebegin >> PAGE_SHIFT;
2863 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2864
2865 /* Check for overflow. */
2866 if (sizeof(holelen) > sizeof(hlen)) {
2867 long long holeend =
2868 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2869 if (holeend & ~(long long)ULONG_MAX)
2870 hlen = ULONG_MAX - hba + 1;
2871 }
2872
2873 unmap_mapping_pages(mapping, hba, hlen, even_cows);
2874}
2875EXPORT_SYMBOL(unmap_mapping_range);
2876
2877/*
2878 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2879 * but allow concurrent faults), and pte mapped but not yet locked.
2880 * We return with pte unmapped and unlocked.
2881 *
2882 * We return with the mmap_sem locked or unlocked in the same cases
2883 * as does filemap_fault().
2884 */
2885vm_fault_t do_swap_page(struct vm_fault *vmf)
2886{
2887 struct vm_area_struct *vma = vmf->vma;
2888 struct page *page = NULL, *swapcache;
2889 struct mem_cgroup *memcg;
2890 swp_entry_t entry;
2891 pte_t pte;
2892 int locked;
2893 int exclusive = 0;
2894 vm_fault_t ret = 0;
2895
2896 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2897 goto out;
2898
2899 entry = pte_to_swp_entry(vmf->orig_pte);
2900 if (unlikely(non_swap_entry(entry))) {
2901 if (is_migration_entry(entry)) {
2902 migration_entry_wait(vma->vm_mm, vmf->pmd,
2903 vmf->address);
2904 } else if (is_device_private_entry(entry)) {
David Brazdil0f672f62019-12-10 10:32:29 +00002905 vmf->page = device_private_entry_to_page(entry);
2906 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002907 } else if (is_hwpoison_entry(entry)) {
2908 ret = VM_FAULT_HWPOISON;
2909 } else {
2910 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2911 ret = VM_FAULT_SIGBUS;
2912 }
2913 goto out;
2914 }
2915
2916
2917 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2918 page = lookup_swap_cache(entry, vma, vmf->address);
2919 swapcache = page;
2920
2921 if (!page) {
2922 struct swap_info_struct *si = swp_swap_info(entry);
2923
2924 if (si->flags & SWP_SYNCHRONOUS_IO &&
David Brazdil0f672f62019-12-10 10:32:29 +00002925 __swap_count(entry) == 1) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002926 /* skip swapcache */
2927 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2928 vmf->address);
2929 if (page) {
2930 __SetPageLocked(page);
2931 __SetPageSwapBacked(page);
2932 set_page_private(page, entry.val);
2933 lru_cache_add_anon(page);
2934 swap_readpage(page, true);
2935 }
2936 } else {
2937 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2938 vmf);
2939 swapcache = page;
2940 }
2941
2942 if (!page) {
2943 /*
2944 * Back out if somebody else faulted in this pte
2945 * while we released the pte lock.
2946 */
2947 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2948 vmf->address, &vmf->ptl);
2949 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2950 ret = VM_FAULT_OOM;
2951 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2952 goto unlock;
2953 }
2954
2955 /* Had to read the page from swap area: Major fault */
2956 ret = VM_FAULT_MAJOR;
2957 count_vm_event(PGMAJFAULT);
2958 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2959 } else if (PageHWPoison(page)) {
2960 /*
2961 * hwpoisoned dirty swapcache pages are kept for killing
2962 * owner processes (which may be unknown at hwpoison time)
2963 */
2964 ret = VM_FAULT_HWPOISON;
2965 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2966 goto out_release;
2967 }
2968
2969 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2970
2971 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2972 if (!locked) {
2973 ret |= VM_FAULT_RETRY;
2974 goto out_release;
2975 }
2976
2977 /*
2978 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2979 * release the swapcache from under us. The page pin, and pte_same
2980 * test below, are not enough to exclude that. Even if it is still
2981 * swapcache, we need to check that the page's swap has not changed.
2982 */
2983 if (unlikely((!PageSwapCache(page) ||
2984 page_private(page) != entry.val)) && swapcache)
2985 goto out_page;
2986
2987 page = ksm_might_need_to_copy(page, vma, vmf->address);
2988 if (unlikely(!page)) {
2989 ret = VM_FAULT_OOM;
2990 page = swapcache;
2991 goto out_page;
2992 }
2993
2994 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2995 &memcg, false)) {
2996 ret = VM_FAULT_OOM;
2997 goto out_page;
2998 }
2999
3000 /*
3001 * Back out if somebody else already faulted in this pte.
3002 */
3003 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3004 &vmf->ptl);
3005 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3006 goto out_nomap;
3007
3008 if (unlikely(!PageUptodate(page))) {
3009 ret = VM_FAULT_SIGBUS;
3010 goto out_nomap;
3011 }
3012
3013 /*
3014 * The page isn't present yet, go ahead with the fault.
3015 *
3016 * Be careful about the sequence of operations here.
3017 * To get its accounting right, reuse_swap_page() must be called
3018 * while the page is counted on swap but not yet in mapcount i.e.
3019 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3020 * must be called after the swap_free(), or it will never succeed.
3021 */
3022
3023 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3024 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3025 pte = mk_pte(page, vma->vm_page_prot);
3026 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3027 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3028 vmf->flags &= ~FAULT_FLAG_WRITE;
3029 ret |= VM_FAULT_WRITE;
3030 exclusive = RMAP_EXCLUSIVE;
3031 }
3032 flush_icache_page(vma, page);
3033 if (pte_swp_soft_dirty(vmf->orig_pte))
3034 pte = pte_mksoft_dirty(pte);
3035 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3036 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3037 vmf->orig_pte = pte;
3038
3039 /* ksm created a completely new copy */
3040 if (unlikely(page != swapcache && swapcache)) {
3041 page_add_new_anon_rmap(page, vma, vmf->address, false);
3042 mem_cgroup_commit_charge(page, memcg, false, false);
3043 lru_cache_add_active_or_unevictable(page, vma);
3044 } else {
3045 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3046 mem_cgroup_commit_charge(page, memcg, true, false);
3047 activate_page(page);
3048 }
3049
3050 swap_free(entry);
3051 if (mem_cgroup_swap_full(page) ||
3052 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3053 try_to_free_swap(page);
3054 unlock_page(page);
3055 if (page != swapcache && swapcache) {
3056 /*
3057 * Hold the lock to avoid the swap entry to be reused
3058 * until we take the PT lock for the pte_same() check
3059 * (to avoid false positives from pte_same). For
3060 * further safety release the lock after the swap_free
3061 * so that the swap count won't change under a
3062 * parallel locked swapcache.
3063 */
3064 unlock_page(swapcache);
3065 put_page(swapcache);
3066 }
3067
3068 if (vmf->flags & FAULT_FLAG_WRITE) {
3069 ret |= do_wp_page(vmf);
3070 if (ret & VM_FAULT_ERROR)
3071 ret &= VM_FAULT_ERROR;
3072 goto out;
3073 }
3074
3075 /* No need to invalidate - it was non-present before */
3076 update_mmu_cache(vma, vmf->address, vmf->pte);
3077unlock:
3078 pte_unmap_unlock(vmf->pte, vmf->ptl);
3079out:
3080 return ret;
3081out_nomap:
3082 mem_cgroup_cancel_charge(page, memcg, false);
3083 pte_unmap_unlock(vmf->pte, vmf->ptl);
3084out_page:
3085 unlock_page(page);
3086out_release:
3087 put_page(page);
3088 if (page != swapcache && swapcache) {
3089 unlock_page(swapcache);
3090 put_page(swapcache);
3091 }
3092 return ret;
3093}
3094
3095/*
3096 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3097 * but allow concurrent faults), and pte mapped but not yet locked.
3098 * We return with mmap_sem still held, but pte unmapped and unlocked.
3099 */
3100static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3101{
3102 struct vm_area_struct *vma = vmf->vma;
3103 struct mem_cgroup *memcg;
3104 struct page *page;
3105 vm_fault_t ret = 0;
3106 pte_t entry;
3107
3108 /* File mapping without ->vm_ops ? */
3109 if (vma->vm_flags & VM_SHARED)
3110 return VM_FAULT_SIGBUS;
3111
3112 /*
3113 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3114 * pte_offset_map() on pmds where a huge pmd might be created
3115 * from a different thread.
3116 *
3117 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3118 * parallel threads are excluded by other means.
3119 *
3120 * Here we only have down_read(mmap_sem).
3121 */
David Brazdil0f672f62019-12-10 10:32:29 +00003122 if (pte_alloc(vma->vm_mm, vmf->pmd))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003123 return VM_FAULT_OOM;
3124
3125 /* See the comment in pte_alloc_one_map() */
3126 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3127 return 0;
3128
3129 /* Use the zero-page for reads */
3130 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3131 !mm_forbids_zeropage(vma->vm_mm)) {
3132 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3133 vma->vm_page_prot));
3134 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3135 vmf->address, &vmf->ptl);
3136 if (!pte_none(*vmf->pte))
3137 goto unlock;
3138 ret = check_stable_address_space(vma->vm_mm);
3139 if (ret)
3140 goto unlock;
3141 /* Deliver the page fault to userland, check inside PT lock */
3142 if (userfaultfd_missing(vma)) {
3143 pte_unmap_unlock(vmf->pte, vmf->ptl);
3144 return handle_userfault(vmf, VM_UFFD_MISSING);
3145 }
3146 goto setpte;
3147 }
3148
3149 /* Allocate our own private page. */
3150 if (unlikely(anon_vma_prepare(vma)))
3151 goto oom;
3152 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3153 if (!page)
3154 goto oom;
3155
3156 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3157 false))
3158 goto oom_free_page;
3159
3160 /*
3161 * The memory barrier inside __SetPageUptodate makes sure that
3162 * preceeding stores to the page contents become visible before
3163 * the set_pte_at() write.
3164 */
3165 __SetPageUptodate(page);
3166
3167 entry = mk_pte(page, vma->vm_page_prot);
3168 if (vma->vm_flags & VM_WRITE)
3169 entry = pte_mkwrite(pte_mkdirty(entry));
3170
3171 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3172 &vmf->ptl);
3173 if (!pte_none(*vmf->pte))
3174 goto release;
3175
3176 ret = check_stable_address_space(vma->vm_mm);
3177 if (ret)
3178 goto release;
3179
3180 /* Deliver the page fault to userland, check inside PT lock */
3181 if (userfaultfd_missing(vma)) {
3182 pte_unmap_unlock(vmf->pte, vmf->ptl);
3183 mem_cgroup_cancel_charge(page, memcg, false);
3184 put_page(page);
3185 return handle_userfault(vmf, VM_UFFD_MISSING);
3186 }
3187
3188 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3189 page_add_new_anon_rmap(page, vma, vmf->address, false);
3190 mem_cgroup_commit_charge(page, memcg, false, false);
3191 lru_cache_add_active_or_unevictable(page, vma);
3192setpte:
3193 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3194
3195 /* No need to invalidate - it was non-present before */
3196 update_mmu_cache(vma, vmf->address, vmf->pte);
3197unlock:
3198 pte_unmap_unlock(vmf->pte, vmf->ptl);
3199 return ret;
3200release:
3201 mem_cgroup_cancel_charge(page, memcg, false);
3202 put_page(page);
3203 goto unlock;
3204oom_free_page:
3205 put_page(page);
3206oom:
3207 return VM_FAULT_OOM;
3208}
3209
3210/*
3211 * The mmap_sem must have been held on entry, and may have been
3212 * released depending on flags and vma->vm_ops->fault() return value.
3213 * See filemap_fault() and __lock_page_retry().
3214 */
3215static vm_fault_t __do_fault(struct vm_fault *vmf)
3216{
3217 struct vm_area_struct *vma = vmf->vma;
3218 vm_fault_t ret;
3219
David Brazdil0f672f62019-12-10 10:32:29 +00003220 /*
3221 * Preallocate pte before we take page_lock because this might lead to
3222 * deadlocks for memcg reclaim which waits for pages under writeback:
3223 * lock_page(A)
3224 * SetPageWriteback(A)
3225 * unlock_page(A)
3226 * lock_page(B)
3227 * lock_page(B)
3228 * pte_alloc_pne
3229 * shrink_page_list
3230 * wait_on_page_writeback(A)
3231 * SetPageWriteback(B)
3232 * unlock_page(B)
3233 * # flush A, B to clear the writeback
3234 */
3235 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3236 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3237 if (!vmf->prealloc_pte)
3238 return VM_FAULT_OOM;
3239 smp_wmb(); /* See comment in __pte_alloc() */
3240 }
3241
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003242 ret = vma->vm_ops->fault(vmf);
3243 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3244 VM_FAULT_DONE_COW)))
3245 return ret;
3246
3247 if (unlikely(PageHWPoison(vmf->page))) {
3248 if (ret & VM_FAULT_LOCKED)
3249 unlock_page(vmf->page);
3250 put_page(vmf->page);
3251 vmf->page = NULL;
3252 return VM_FAULT_HWPOISON;
3253 }
3254
3255 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3256 lock_page(vmf->page);
3257 else
3258 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3259
3260 return ret;
3261}
3262
3263/*
3264 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3265 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3266 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3267 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3268 */
3269static int pmd_devmap_trans_unstable(pmd_t *pmd)
3270{
3271 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3272}
3273
3274static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3275{
3276 struct vm_area_struct *vma = vmf->vma;
3277
3278 if (!pmd_none(*vmf->pmd))
3279 goto map_pte;
3280 if (vmf->prealloc_pte) {
3281 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3282 if (unlikely(!pmd_none(*vmf->pmd))) {
3283 spin_unlock(vmf->ptl);
3284 goto map_pte;
3285 }
3286
3287 mm_inc_nr_ptes(vma->vm_mm);
3288 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3289 spin_unlock(vmf->ptl);
3290 vmf->prealloc_pte = NULL;
David Brazdil0f672f62019-12-10 10:32:29 +00003291 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003292 return VM_FAULT_OOM;
3293 }
3294map_pte:
3295 /*
3296 * If a huge pmd materialized under us just retry later. Use
3297 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3298 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3299 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3300 * running immediately after a huge pmd fault in a different thread of
3301 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3302 * All we have to ensure is that it is a regular pmd that we can walk
3303 * with pte_offset_map() and we can do that through an atomic read in
3304 * C, which is what pmd_trans_unstable() provides.
3305 */
3306 if (pmd_devmap_trans_unstable(vmf->pmd))
3307 return VM_FAULT_NOPAGE;
3308
3309 /*
3310 * At this point we know that our vmf->pmd points to a page of ptes
3311 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3312 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3313 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3314 * be valid and we will re-check to make sure the vmf->pte isn't
3315 * pte_none() under vmf->ptl protection when we return to
3316 * alloc_set_pte().
3317 */
3318 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3319 &vmf->ptl);
3320 return 0;
3321}
3322
3323#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003324static void deposit_prealloc_pte(struct vm_fault *vmf)
3325{
3326 struct vm_area_struct *vma = vmf->vma;
3327
3328 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3329 /*
3330 * We are going to consume the prealloc table,
3331 * count that as nr_ptes.
3332 */
3333 mm_inc_nr_ptes(vma->vm_mm);
3334 vmf->prealloc_pte = NULL;
3335}
3336
3337static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3338{
3339 struct vm_area_struct *vma = vmf->vma;
3340 bool write = vmf->flags & FAULT_FLAG_WRITE;
3341 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3342 pmd_t entry;
3343 int i;
3344 vm_fault_t ret;
3345
3346 if (!transhuge_vma_suitable(vma, haddr))
3347 return VM_FAULT_FALLBACK;
3348
3349 ret = VM_FAULT_FALLBACK;
3350 page = compound_head(page);
3351
3352 /*
3353 * Archs like ppc64 need additonal space to store information
3354 * related to pte entry. Use the preallocated table for that.
3355 */
3356 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
David Brazdil0f672f62019-12-10 10:32:29 +00003357 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003358 if (!vmf->prealloc_pte)
3359 return VM_FAULT_OOM;
3360 smp_wmb(); /* See comment in __pte_alloc() */
3361 }
3362
3363 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3364 if (unlikely(!pmd_none(*vmf->pmd)))
3365 goto out;
3366
3367 for (i = 0; i < HPAGE_PMD_NR; i++)
3368 flush_icache_page(vma, page + i);
3369
3370 entry = mk_huge_pmd(page, vma->vm_page_prot);
3371 if (write)
3372 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3373
3374 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3375 page_add_file_rmap(page, true);
3376 /*
3377 * deposit and withdraw with pmd lock held
3378 */
3379 if (arch_needs_pgtable_deposit())
3380 deposit_prealloc_pte(vmf);
3381
3382 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3383
3384 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3385
3386 /* fault is handled */
3387 ret = 0;
3388 count_vm_event(THP_FILE_MAPPED);
3389out:
3390 spin_unlock(vmf->ptl);
3391 return ret;
3392}
3393#else
3394static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3395{
3396 BUILD_BUG();
3397 return 0;
3398}
3399#endif
3400
3401/**
3402 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3403 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3404 *
3405 * @vmf: fault environment
3406 * @memcg: memcg to charge page (only for private mappings)
3407 * @page: page to map
3408 *
3409 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3410 * return.
3411 *
3412 * Target users are page handler itself and implementations of
3413 * vm_ops->map_pages.
David Brazdil0f672f62019-12-10 10:32:29 +00003414 *
3415 * Return: %0 on success, %VM_FAULT_ code in case of error.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003416 */
3417vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3418 struct page *page)
3419{
3420 struct vm_area_struct *vma = vmf->vma;
3421 bool write = vmf->flags & FAULT_FLAG_WRITE;
3422 pte_t entry;
3423 vm_fault_t ret;
3424
3425 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3426 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3427 /* THP on COW? */
3428 VM_BUG_ON_PAGE(memcg, page);
3429
3430 ret = do_set_pmd(vmf, page);
3431 if (ret != VM_FAULT_FALLBACK)
3432 return ret;
3433 }
3434
3435 if (!vmf->pte) {
3436 ret = pte_alloc_one_map(vmf);
3437 if (ret)
3438 return ret;
3439 }
3440
3441 /* Re-check under ptl */
3442 if (unlikely(!pte_none(*vmf->pte)))
3443 return VM_FAULT_NOPAGE;
3444
3445 flush_icache_page(vma, page);
3446 entry = mk_pte(page, vma->vm_page_prot);
3447 if (write)
3448 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3449 /* copy-on-write page */
3450 if (write && !(vma->vm_flags & VM_SHARED)) {
3451 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3452 page_add_new_anon_rmap(page, vma, vmf->address, false);
3453 mem_cgroup_commit_charge(page, memcg, false, false);
3454 lru_cache_add_active_or_unevictable(page, vma);
3455 } else {
3456 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3457 page_add_file_rmap(page, false);
3458 }
3459 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3460
3461 /* no need to invalidate: a not-present page won't be cached */
3462 update_mmu_cache(vma, vmf->address, vmf->pte);
3463
3464 return 0;
3465}
3466
3467
3468/**
3469 * finish_fault - finish page fault once we have prepared the page to fault
3470 *
3471 * @vmf: structure describing the fault
3472 *
3473 * This function handles all that is needed to finish a page fault once the
3474 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3475 * given page, adds reverse page mapping, handles memcg charges and LRU
David Brazdil0f672f62019-12-10 10:32:29 +00003476 * addition.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003477 *
3478 * The function expects the page to be locked and on success it consumes a
3479 * reference of a page being mapped (for the PTE which maps it).
David Brazdil0f672f62019-12-10 10:32:29 +00003480 *
3481 * Return: %0 on success, %VM_FAULT_ code in case of error.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003482 */
3483vm_fault_t finish_fault(struct vm_fault *vmf)
3484{
3485 struct page *page;
3486 vm_fault_t ret = 0;
3487
3488 /* Did we COW the page? */
3489 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3490 !(vmf->vma->vm_flags & VM_SHARED))
3491 page = vmf->cow_page;
3492 else
3493 page = vmf->page;
3494
3495 /*
3496 * check even for read faults because we might have lost our CoWed
3497 * page
3498 */
3499 if (!(vmf->vma->vm_flags & VM_SHARED))
3500 ret = check_stable_address_space(vmf->vma->vm_mm);
3501 if (!ret)
3502 ret = alloc_set_pte(vmf, vmf->memcg, page);
3503 if (vmf->pte)
3504 pte_unmap_unlock(vmf->pte, vmf->ptl);
3505 return ret;
3506}
3507
3508static unsigned long fault_around_bytes __read_mostly =
3509 rounddown_pow_of_two(65536);
3510
3511#ifdef CONFIG_DEBUG_FS
3512static int fault_around_bytes_get(void *data, u64 *val)
3513{
3514 *val = fault_around_bytes;
3515 return 0;
3516}
3517
3518/*
3519 * fault_around_bytes must be rounded down to the nearest page order as it's
3520 * what do_fault_around() expects to see.
3521 */
3522static int fault_around_bytes_set(void *data, u64 val)
3523{
3524 if (val / PAGE_SIZE > PTRS_PER_PTE)
3525 return -EINVAL;
3526 if (val > PAGE_SIZE)
3527 fault_around_bytes = rounddown_pow_of_two(val);
3528 else
3529 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3530 return 0;
3531}
3532DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3533 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3534
3535static int __init fault_around_debugfs(void)
3536{
David Brazdil0f672f62019-12-10 10:32:29 +00003537 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3538 &fault_around_bytes_fops);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003539 return 0;
3540}
3541late_initcall(fault_around_debugfs);
3542#endif
3543
3544/*
3545 * do_fault_around() tries to map few pages around the fault address. The hope
3546 * is that the pages will be needed soon and this will lower the number of
3547 * faults to handle.
3548 *
3549 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3550 * not ready to be mapped: not up-to-date, locked, etc.
3551 *
3552 * This function is called with the page table lock taken. In the split ptlock
3553 * case the page table lock only protects only those entries which belong to
3554 * the page table corresponding to the fault address.
3555 *
3556 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3557 * only once.
3558 *
3559 * fault_around_bytes defines how many bytes we'll try to map.
3560 * do_fault_around() expects it to be set to a power of two less than or equal
3561 * to PTRS_PER_PTE.
3562 *
3563 * The virtual address of the area that we map is naturally aligned to
3564 * fault_around_bytes rounded down to the machine page size
3565 * (and therefore to page order). This way it's easier to guarantee
3566 * that we don't cross page table boundaries.
3567 */
3568static vm_fault_t do_fault_around(struct vm_fault *vmf)
3569{
3570 unsigned long address = vmf->address, nr_pages, mask;
3571 pgoff_t start_pgoff = vmf->pgoff;
3572 pgoff_t end_pgoff;
3573 int off;
3574 vm_fault_t ret = 0;
3575
3576 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3577 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3578
3579 vmf->address = max(address & mask, vmf->vma->vm_start);
3580 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3581 start_pgoff -= off;
3582
3583 /*
3584 * end_pgoff is either the end of the page table, the end of
3585 * the vma or nr_pages from start_pgoff, depending what is nearest.
3586 */
3587 end_pgoff = start_pgoff -
3588 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3589 PTRS_PER_PTE - 1;
3590 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3591 start_pgoff + nr_pages - 1);
3592
3593 if (pmd_none(*vmf->pmd)) {
David Brazdil0f672f62019-12-10 10:32:29 +00003594 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003595 if (!vmf->prealloc_pte)
3596 goto out;
3597 smp_wmb(); /* See comment in __pte_alloc() */
3598 }
3599
3600 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3601
3602 /* Huge page is mapped? Page fault is solved */
3603 if (pmd_trans_huge(*vmf->pmd)) {
3604 ret = VM_FAULT_NOPAGE;
3605 goto out;
3606 }
3607
3608 /* ->map_pages() haven't done anything useful. Cold page cache? */
3609 if (!vmf->pte)
3610 goto out;
3611
3612 /* check if the page fault is solved */
3613 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3614 if (!pte_none(*vmf->pte))
3615 ret = VM_FAULT_NOPAGE;
3616 pte_unmap_unlock(vmf->pte, vmf->ptl);
3617out:
3618 vmf->address = address;
3619 vmf->pte = NULL;
3620 return ret;
3621}
3622
3623static vm_fault_t do_read_fault(struct vm_fault *vmf)
3624{
3625 struct vm_area_struct *vma = vmf->vma;
3626 vm_fault_t ret = 0;
3627
3628 /*
3629 * Let's call ->map_pages() first and use ->fault() as fallback
3630 * if page by the offset is not ready to be mapped (cold cache or
3631 * something).
3632 */
3633 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3634 ret = do_fault_around(vmf);
3635 if (ret)
3636 return ret;
3637 }
3638
3639 ret = __do_fault(vmf);
3640 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3641 return ret;
3642
3643 ret |= finish_fault(vmf);
3644 unlock_page(vmf->page);
3645 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3646 put_page(vmf->page);
3647 return ret;
3648}
3649
3650static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3651{
3652 struct vm_area_struct *vma = vmf->vma;
3653 vm_fault_t ret;
3654
3655 if (unlikely(anon_vma_prepare(vma)))
3656 return VM_FAULT_OOM;
3657
3658 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3659 if (!vmf->cow_page)
3660 return VM_FAULT_OOM;
3661
3662 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3663 &vmf->memcg, false)) {
3664 put_page(vmf->cow_page);
3665 return VM_FAULT_OOM;
3666 }
3667
3668 ret = __do_fault(vmf);
3669 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3670 goto uncharge_out;
3671 if (ret & VM_FAULT_DONE_COW)
3672 return ret;
3673
3674 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3675 __SetPageUptodate(vmf->cow_page);
3676
3677 ret |= finish_fault(vmf);
3678 unlock_page(vmf->page);
3679 put_page(vmf->page);
3680 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3681 goto uncharge_out;
3682 return ret;
3683uncharge_out:
3684 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3685 put_page(vmf->cow_page);
3686 return ret;
3687}
3688
3689static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3690{
3691 struct vm_area_struct *vma = vmf->vma;
3692 vm_fault_t ret, tmp;
3693
3694 ret = __do_fault(vmf);
3695 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3696 return ret;
3697
3698 /*
3699 * Check if the backing address space wants to know that the page is
3700 * about to become writable
3701 */
3702 if (vma->vm_ops->page_mkwrite) {
3703 unlock_page(vmf->page);
3704 tmp = do_page_mkwrite(vmf);
3705 if (unlikely(!tmp ||
3706 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3707 put_page(vmf->page);
3708 return tmp;
3709 }
3710 }
3711
3712 ret |= finish_fault(vmf);
3713 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3714 VM_FAULT_RETRY))) {
3715 unlock_page(vmf->page);
3716 put_page(vmf->page);
3717 return ret;
3718 }
3719
Olivier Deprez0e641232021-09-23 10:07:05 +02003720 ret |= fault_dirty_shared_page(vmf);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003721 return ret;
3722}
3723
3724/*
3725 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3726 * but allow concurrent faults).
3727 * The mmap_sem may have been released depending on flags and our
3728 * return value. See filemap_fault() and __lock_page_or_retry().
David Brazdil0f672f62019-12-10 10:32:29 +00003729 * If mmap_sem is released, vma may become invalid (for example
3730 * by other thread calling munmap()).
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003731 */
3732static vm_fault_t do_fault(struct vm_fault *vmf)
3733{
3734 struct vm_area_struct *vma = vmf->vma;
David Brazdil0f672f62019-12-10 10:32:29 +00003735 struct mm_struct *vm_mm = vma->vm_mm;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003736 vm_fault_t ret;
3737
3738 /*
3739 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3740 */
3741 if (!vma->vm_ops->fault) {
3742 /*
3743 * If we find a migration pmd entry or a none pmd entry, which
3744 * should never happen, return SIGBUS
3745 */
3746 if (unlikely(!pmd_present(*vmf->pmd)))
3747 ret = VM_FAULT_SIGBUS;
3748 else {
3749 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3750 vmf->pmd,
3751 vmf->address,
3752 &vmf->ptl);
3753 /*
3754 * Make sure this is not a temporary clearing of pte
3755 * by holding ptl and checking again. A R/M/W update
3756 * of pte involves: take ptl, clearing the pte so that
3757 * we don't have concurrent modification by hardware
3758 * followed by an update.
3759 */
3760 if (unlikely(pte_none(*vmf->pte)))
3761 ret = VM_FAULT_SIGBUS;
3762 else
3763 ret = VM_FAULT_NOPAGE;
3764
3765 pte_unmap_unlock(vmf->pte, vmf->ptl);
3766 }
3767 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3768 ret = do_read_fault(vmf);
3769 else if (!(vma->vm_flags & VM_SHARED))
3770 ret = do_cow_fault(vmf);
3771 else
3772 ret = do_shared_fault(vmf);
3773
3774 /* preallocated pagetable is unused: free it */
3775 if (vmf->prealloc_pte) {
David Brazdil0f672f62019-12-10 10:32:29 +00003776 pte_free(vm_mm, vmf->prealloc_pte);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003777 vmf->prealloc_pte = NULL;
3778 }
3779 return ret;
3780}
3781
3782static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3783 unsigned long addr, int page_nid,
3784 int *flags)
3785{
3786 get_page(page);
3787
3788 count_vm_numa_event(NUMA_HINT_FAULTS);
3789 if (page_nid == numa_node_id()) {
3790 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3791 *flags |= TNF_FAULT_LOCAL;
3792 }
3793
3794 return mpol_misplaced(page, vma, addr);
3795}
3796
3797static vm_fault_t do_numa_page(struct vm_fault *vmf)
3798{
3799 struct vm_area_struct *vma = vmf->vma;
3800 struct page *page = NULL;
David Brazdil0f672f62019-12-10 10:32:29 +00003801 int page_nid = NUMA_NO_NODE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003802 int last_cpupid;
3803 int target_nid;
3804 bool migrated = false;
David Brazdil0f672f62019-12-10 10:32:29 +00003805 pte_t pte, old_pte;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003806 bool was_writable = pte_savedwrite(vmf->orig_pte);
3807 int flags = 0;
3808
3809 /*
3810 * The "pte" at this point cannot be used safely without
3811 * validation through pte_unmap_same(). It's of NUMA type but
3812 * the pfn may be screwed if the read is non atomic.
3813 */
3814 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3815 spin_lock(vmf->ptl);
3816 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3817 pte_unmap_unlock(vmf->pte, vmf->ptl);
3818 goto out;
3819 }
3820
3821 /*
3822 * Make it present again, Depending on how arch implementes non
3823 * accessible ptes, some can allow access by kernel mode.
3824 */
David Brazdil0f672f62019-12-10 10:32:29 +00003825 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3826 pte = pte_modify(old_pte, vma->vm_page_prot);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003827 pte = pte_mkyoung(pte);
3828 if (was_writable)
3829 pte = pte_mkwrite(pte);
David Brazdil0f672f62019-12-10 10:32:29 +00003830 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003831 update_mmu_cache(vma, vmf->address, vmf->pte);
3832
3833 page = vm_normal_page(vma, vmf->address, pte);
3834 if (!page) {
3835 pte_unmap_unlock(vmf->pte, vmf->ptl);
3836 return 0;
3837 }
3838
3839 /* TODO: handle PTE-mapped THP */
3840 if (PageCompound(page)) {
3841 pte_unmap_unlock(vmf->pte, vmf->ptl);
3842 return 0;
3843 }
3844
3845 /*
3846 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3847 * much anyway since they can be in shared cache state. This misses
3848 * the case where a mapping is writable but the process never writes
3849 * to it but pte_write gets cleared during protection updates and
3850 * pte_dirty has unpredictable behaviour between PTE scan updates,
3851 * background writeback, dirty balancing and application behaviour.
3852 */
3853 if (!pte_write(pte))
3854 flags |= TNF_NO_GROUP;
3855
3856 /*
3857 * Flag if the page is shared between multiple address spaces. This
3858 * is later used when determining whether to group tasks together
3859 */
3860 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3861 flags |= TNF_SHARED;
3862
3863 last_cpupid = page_cpupid_last(page);
3864 page_nid = page_to_nid(page);
3865 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3866 &flags);
3867 pte_unmap_unlock(vmf->pte, vmf->ptl);
David Brazdil0f672f62019-12-10 10:32:29 +00003868 if (target_nid == NUMA_NO_NODE) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003869 put_page(page);
3870 goto out;
3871 }
3872
3873 /* Migrate to the requested node */
3874 migrated = migrate_misplaced_page(page, vma, target_nid);
3875 if (migrated) {
3876 page_nid = target_nid;
3877 flags |= TNF_MIGRATED;
3878 } else
3879 flags |= TNF_MIGRATE_FAIL;
3880
3881out:
David Brazdil0f672f62019-12-10 10:32:29 +00003882 if (page_nid != NUMA_NO_NODE)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003883 task_numa_fault(last_cpupid, page_nid, 1, flags);
3884 return 0;
3885}
3886
3887static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3888{
3889 if (vma_is_anonymous(vmf->vma))
3890 return do_huge_pmd_anonymous_page(vmf);
3891 if (vmf->vma->vm_ops->huge_fault)
3892 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3893 return VM_FAULT_FALLBACK;
3894}
3895
3896/* `inline' is required to avoid gcc 4.1.2 build error */
3897static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3898{
3899 if (vma_is_anonymous(vmf->vma))
3900 return do_huge_pmd_wp_page(vmf, orig_pmd);
3901 if (vmf->vma->vm_ops->huge_fault)
3902 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3903
3904 /* COW handled on pte level: split pmd */
3905 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3906 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3907
3908 return VM_FAULT_FALLBACK;
3909}
3910
3911static inline bool vma_is_accessible(struct vm_area_struct *vma)
3912{
3913 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3914}
3915
3916static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3917{
3918#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3919 /* No support for anonymous transparent PUD pages yet */
3920 if (vma_is_anonymous(vmf->vma))
3921 return VM_FAULT_FALLBACK;
3922 if (vmf->vma->vm_ops->huge_fault)
3923 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3924#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3925 return VM_FAULT_FALLBACK;
3926}
3927
3928static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3929{
3930#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3931 /* No support for anonymous transparent PUD pages yet */
3932 if (vma_is_anonymous(vmf->vma))
3933 return VM_FAULT_FALLBACK;
3934 if (vmf->vma->vm_ops->huge_fault)
3935 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3936#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3937 return VM_FAULT_FALLBACK;
3938}
3939
3940/*
3941 * These routines also need to handle stuff like marking pages dirty
3942 * and/or accessed for architectures that don't do it in hardware (most
3943 * RISC architectures). The early dirtying is also good on the i386.
3944 *
3945 * There is also a hook called "update_mmu_cache()" that architectures
3946 * with external mmu caches can use to update those (ie the Sparc or
3947 * PowerPC hashed page tables that act as extended TLBs).
3948 *
3949 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3950 * concurrent faults).
3951 *
3952 * The mmap_sem may have been released depending on flags and our return value.
3953 * See filemap_fault() and __lock_page_or_retry().
3954 */
3955static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3956{
3957 pte_t entry;
3958
3959 if (unlikely(pmd_none(*vmf->pmd))) {
3960 /*
3961 * Leave __pte_alloc() until later: because vm_ops->fault may
3962 * want to allocate huge page, and if we expose page table
3963 * for an instant, it will be difficult to retract from
3964 * concurrent faults and from rmap lookups.
3965 */
3966 vmf->pte = NULL;
3967 } else {
3968 /* See comment in pte_alloc_one_map() */
3969 if (pmd_devmap_trans_unstable(vmf->pmd))
3970 return 0;
3971 /*
3972 * A regular pmd is established and it can't morph into a huge
3973 * pmd from under us anymore at this point because we hold the
3974 * mmap_sem read mode and khugepaged takes it in write mode.
3975 * So now it's safe to run pte_offset_map().
3976 */
3977 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3978 vmf->orig_pte = *vmf->pte;
3979
3980 /*
3981 * some architectures can have larger ptes than wordsize,
3982 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3983 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3984 * accesses. The code below just needs a consistent view
3985 * for the ifs and we later double check anyway with the
3986 * ptl lock held. So here a barrier will do.
3987 */
3988 barrier();
3989 if (pte_none(vmf->orig_pte)) {
3990 pte_unmap(vmf->pte);
3991 vmf->pte = NULL;
3992 }
3993 }
3994
3995 if (!vmf->pte) {
3996 if (vma_is_anonymous(vmf->vma))
3997 return do_anonymous_page(vmf);
3998 else
3999 return do_fault(vmf);
4000 }
4001
4002 if (!pte_present(vmf->orig_pte))
4003 return do_swap_page(vmf);
4004
4005 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4006 return do_numa_page(vmf);
4007
4008 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4009 spin_lock(vmf->ptl);
4010 entry = vmf->orig_pte;
4011 if (unlikely(!pte_same(*vmf->pte, entry)))
4012 goto unlock;
4013 if (vmf->flags & FAULT_FLAG_WRITE) {
4014 if (!pte_write(entry))
4015 return do_wp_page(vmf);
4016 entry = pte_mkdirty(entry);
4017 }
4018 entry = pte_mkyoung(entry);
4019 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4020 vmf->flags & FAULT_FLAG_WRITE)) {
4021 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4022 } else {
4023 /*
4024 * This is needed only for protection faults but the arch code
4025 * is not yet telling us if this is a protection fault or not.
4026 * This still avoids useless tlb flushes for .text page faults
4027 * with threads.
4028 */
4029 if (vmf->flags & FAULT_FLAG_WRITE)
4030 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4031 }
4032unlock:
4033 pte_unmap_unlock(vmf->pte, vmf->ptl);
4034 return 0;
4035}
4036
4037/*
4038 * By the time we get here, we already hold the mm semaphore
4039 *
4040 * The mmap_sem may have been released depending on flags and our
4041 * return value. See filemap_fault() and __lock_page_or_retry().
4042 */
4043static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4044 unsigned long address, unsigned int flags)
4045{
4046 struct vm_fault vmf = {
4047 .vma = vma,
4048 .address = address & PAGE_MASK,
4049 .flags = flags,
4050 .pgoff = linear_page_index(vma, address),
4051 .gfp_mask = __get_fault_gfp_mask(vma),
4052 };
4053 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4054 struct mm_struct *mm = vma->vm_mm;
4055 pgd_t *pgd;
4056 p4d_t *p4d;
4057 vm_fault_t ret;
4058
4059 pgd = pgd_offset(mm, address);
4060 p4d = p4d_alloc(mm, pgd, address);
4061 if (!p4d)
4062 return VM_FAULT_OOM;
4063
4064 vmf.pud = pud_alloc(mm, p4d, address);
4065 if (!vmf.pud)
4066 return VM_FAULT_OOM;
David Brazdil0f672f62019-12-10 10:32:29 +00004067 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004068 ret = create_huge_pud(&vmf);
4069 if (!(ret & VM_FAULT_FALLBACK))
4070 return ret;
4071 } else {
4072 pud_t orig_pud = *vmf.pud;
4073
4074 barrier();
4075 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4076
4077 /* NUMA case for anonymous PUDs would go here */
4078
4079 if (dirty && !pud_write(orig_pud)) {
4080 ret = wp_huge_pud(&vmf, orig_pud);
4081 if (!(ret & VM_FAULT_FALLBACK))
4082 return ret;
4083 } else {
4084 huge_pud_set_accessed(&vmf, orig_pud);
4085 return 0;
4086 }
4087 }
4088 }
4089
4090 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4091 if (!vmf.pmd)
4092 return VM_FAULT_OOM;
David Brazdil0f672f62019-12-10 10:32:29 +00004093 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004094 ret = create_huge_pmd(&vmf);
4095 if (!(ret & VM_FAULT_FALLBACK))
4096 return ret;
4097 } else {
4098 pmd_t orig_pmd = *vmf.pmd;
4099
4100 barrier();
4101 if (unlikely(is_swap_pmd(orig_pmd))) {
4102 VM_BUG_ON(thp_migration_supported() &&
4103 !is_pmd_migration_entry(orig_pmd));
4104 if (is_pmd_migration_entry(orig_pmd))
4105 pmd_migration_entry_wait(mm, vmf.pmd);
4106 return 0;
4107 }
4108 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4109 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4110 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4111
4112 if (dirty && !pmd_write(orig_pmd)) {
4113 ret = wp_huge_pmd(&vmf, orig_pmd);
4114 if (!(ret & VM_FAULT_FALLBACK))
4115 return ret;
4116 } else {
4117 huge_pmd_set_accessed(&vmf, orig_pmd);
4118 return 0;
4119 }
4120 }
4121 }
4122
4123 return handle_pte_fault(&vmf);
4124}
4125
4126/*
4127 * By the time we get here, we already hold the mm semaphore
4128 *
4129 * The mmap_sem may have been released depending on flags and our
4130 * return value. See filemap_fault() and __lock_page_or_retry().
4131 */
4132vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4133 unsigned int flags)
4134{
4135 vm_fault_t ret;
4136
4137 __set_current_state(TASK_RUNNING);
4138
4139 count_vm_event(PGFAULT);
4140 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4141
4142 /* do counter updates before entering really critical section. */
4143 check_sync_rss_stat(current);
4144
4145 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4146 flags & FAULT_FLAG_INSTRUCTION,
4147 flags & FAULT_FLAG_REMOTE))
4148 return VM_FAULT_SIGSEGV;
4149
4150 /*
4151 * Enable the memcg OOM handling for faults triggered in user
4152 * space. Kernel faults are handled more gracefully.
4153 */
4154 if (flags & FAULT_FLAG_USER)
4155 mem_cgroup_enter_user_fault();
4156
4157 if (unlikely(is_vm_hugetlb_page(vma)))
4158 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4159 else
4160 ret = __handle_mm_fault(vma, address, flags);
4161
4162 if (flags & FAULT_FLAG_USER) {
4163 mem_cgroup_exit_user_fault();
4164 /*
4165 * The task may have entered a memcg OOM situation but
4166 * if the allocation error was handled gracefully (no
4167 * VM_FAULT_OOM), there is no need to kill anything.
4168 * Just clean up the OOM state peacefully.
4169 */
4170 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4171 mem_cgroup_oom_synchronize(false);
4172 }
4173
4174 return ret;
4175}
4176EXPORT_SYMBOL_GPL(handle_mm_fault);
4177
4178#ifndef __PAGETABLE_P4D_FOLDED
4179/*
4180 * Allocate p4d page table.
4181 * We've already handled the fast-path in-line.
4182 */
4183int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4184{
4185 p4d_t *new = p4d_alloc_one(mm, address);
4186 if (!new)
4187 return -ENOMEM;
4188
4189 smp_wmb(); /* See comment in __pte_alloc */
4190
4191 spin_lock(&mm->page_table_lock);
4192 if (pgd_present(*pgd)) /* Another has populated it */
4193 p4d_free(mm, new);
4194 else
4195 pgd_populate(mm, pgd, new);
4196 spin_unlock(&mm->page_table_lock);
4197 return 0;
4198}
4199#endif /* __PAGETABLE_P4D_FOLDED */
4200
4201#ifndef __PAGETABLE_PUD_FOLDED
4202/*
4203 * Allocate page upper directory.
4204 * We've already handled the fast-path in-line.
4205 */
4206int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4207{
4208 pud_t *new = pud_alloc_one(mm, address);
4209 if (!new)
4210 return -ENOMEM;
4211
4212 smp_wmb(); /* See comment in __pte_alloc */
4213
4214 spin_lock(&mm->page_table_lock);
4215#ifndef __ARCH_HAS_5LEVEL_HACK
4216 if (!p4d_present(*p4d)) {
4217 mm_inc_nr_puds(mm);
4218 p4d_populate(mm, p4d, new);
4219 } else /* Another has populated it */
4220 pud_free(mm, new);
4221#else
4222 if (!pgd_present(*p4d)) {
4223 mm_inc_nr_puds(mm);
4224 pgd_populate(mm, p4d, new);
4225 } else /* Another has populated it */
4226 pud_free(mm, new);
4227#endif /* __ARCH_HAS_5LEVEL_HACK */
4228 spin_unlock(&mm->page_table_lock);
4229 return 0;
4230}
4231#endif /* __PAGETABLE_PUD_FOLDED */
4232
4233#ifndef __PAGETABLE_PMD_FOLDED
4234/*
4235 * Allocate page middle directory.
4236 * We've already handled the fast-path in-line.
4237 */
4238int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4239{
4240 spinlock_t *ptl;
4241 pmd_t *new = pmd_alloc_one(mm, address);
4242 if (!new)
4243 return -ENOMEM;
4244
4245 smp_wmb(); /* See comment in __pte_alloc */
4246
4247 ptl = pud_lock(mm, pud);
4248#ifndef __ARCH_HAS_4LEVEL_HACK
4249 if (!pud_present(*pud)) {
4250 mm_inc_nr_pmds(mm);
4251 pud_populate(mm, pud, new);
4252 } else /* Another has populated it */
4253 pmd_free(mm, new);
4254#else
4255 if (!pgd_present(*pud)) {
4256 mm_inc_nr_pmds(mm);
4257 pgd_populate(mm, pud, new);
4258 } else /* Another has populated it */
4259 pmd_free(mm, new);
4260#endif /* __ARCH_HAS_4LEVEL_HACK */
4261 spin_unlock(ptl);
4262 return 0;
4263}
4264#endif /* __PAGETABLE_PMD_FOLDED */
4265
Olivier Deprez0e641232021-09-23 10:07:05 +02004266int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4267 struct mmu_notifier_range *range, pte_t **ptepp,
4268 pmd_t **pmdpp, spinlock_t **ptlp)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004269{
4270 pgd_t *pgd;
4271 p4d_t *p4d;
4272 pud_t *pud;
4273 pmd_t *pmd;
4274 pte_t *ptep;
4275
4276 pgd = pgd_offset(mm, address);
4277 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4278 goto out;
4279
4280 p4d = p4d_offset(pgd, address);
4281 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4282 goto out;
4283
4284 pud = pud_offset(p4d, address);
4285 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4286 goto out;
4287
4288 pmd = pmd_offset(pud, address);
4289 VM_BUG_ON(pmd_trans_huge(*pmd));
4290
4291 if (pmd_huge(*pmd)) {
4292 if (!pmdpp)
4293 goto out;
4294
David Brazdil0f672f62019-12-10 10:32:29 +00004295 if (range) {
4296 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4297 NULL, mm, address & PMD_MASK,
4298 (address & PMD_MASK) + PMD_SIZE);
4299 mmu_notifier_invalidate_range_start(range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004300 }
4301 *ptlp = pmd_lock(mm, pmd);
4302 if (pmd_huge(*pmd)) {
4303 *pmdpp = pmd;
4304 return 0;
4305 }
4306 spin_unlock(*ptlp);
David Brazdil0f672f62019-12-10 10:32:29 +00004307 if (range)
4308 mmu_notifier_invalidate_range_end(range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004309 }
4310
4311 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4312 goto out;
4313
David Brazdil0f672f62019-12-10 10:32:29 +00004314 if (range) {
4315 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4316 address & PAGE_MASK,
4317 (address & PAGE_MASK) + PAGE_SIZE);
4318 mmu_notifier_invalidate_range_start(range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004319 }
4320 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4321 if (!pte_present(*ptep))
4322 goto unlock;
4323 *ptepp = ptep;
4324 return 0;
4325unlock:
4326 pte_unmap_unlock(ptep, *ptlp);
David Brazdil0f672f62019-12-10 10:32:29 +00004327 if (range)
4328 mmu_notifier_invalidate_range_end(range);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004329out:
4330 return -EINVAL;
4331}
4332
Olivier Deprez0e641232021-09-23 10:07:05 +02004333/**
4334 * follow_pte - look up PTE at a user virtual address
4335 * @mm: the mm_struct of the target address space
4336 * @address: user virtual address
4337 * @ptepp: location to store found PTE
4338 * @ptlp: location to store the lock for the PTE
4339 *
4340 * On a successful return, the pointer to the PTE is stored in @ptepp;
4341 * the corresponding lock is taken and its location is stored in @ptlp.
4342 * The contents of the PTE are only stable until @ptlp is released;
4343 * any further use, if any, must be protected against invalidation
4344 * with MMU notifiers.
4345 *
4346 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4347 * should be taken for read.
4348 *
4349 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4350 * it is not a good general-purpose API.
4351 *
4352 * Return: zero on success, -ve otherwise.
4353 */
4354int follow_pte(struct mm_struct *mm, unsigned long address,
4355 pte_t **ptepp, spinlock_t **ptlp)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004356{
Olivier Deprez0e641232021-09-23 10:07:05 +02004357 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004358}
Olivier Deprez0e641232021-09-23 10:07:05 +02004359EXPORT_SYMBOL_GPL(follow_pte);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004360
4361/**
4362 * follow_pfn - look up PFN at a user virtual address
4363 * @vma: memory mapping
4364 * @address: user virtual address
4365 * @pfn: location to store found PFN
4366 *
4367 * Only IO mappings and raw PFN mappings are allowed.
4368 *
Olivier Deprez0e641232021-09-23 10:07:05 +02004369 * This function does not allow the caller to read the permissions
4370 * of the PTE. Do not use it.
4371 *
David Brazdil0f672f62019-12-10 10:32:29 +00004372 * Return: zero and the pfn at @pfn on success, -ve otherwise.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004373 */
4374int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4375 unsigned long *pfn)
4376{
4377 int ret = -EINVAL;
4378 spinlock_t *ptl;
4379 pte_t *ptep;
4380
4381 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4382 return ret;
4383
4384 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4385 if (ret)
4386 return ret;
4387 *pfn = pte_pfn(*ptep);
4388 pte_unmap_unlock(ptep, ptl);
4389 return 0;
4390}
4391EXPORT_SYMBOL(follow_pfn);
4392
4393#ifdef CONFIG_HAVE_IOREMAP_PROT
4394int follow_phys(struct vm_area_struct *vma,
4395 unsigned long address, unsigned int flags,
4396 unsigned long *prot, resource_size_t *phys)
4397{
4398 int ret = -EINVAL;
4399 pte_t *ptep, pte;
4400 spinlock_t *ptl;
4401
4402 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4403 goto out;
4404
4405 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4406 goto out;
4407 pte = *ptep;
4408
4409 if ((flags & FOLL_WRITE) && !pte_write(pte))
4410 goto unlock;
4411
4412 *prot = pgprot_val(pte_pgprot(pte));
4413 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4414
4415 ret = 0;
4416unlock:
4417 pte_unmap_unlock(ptep, ptl);
4418out:
4419 return ret;
4420}
4421
4422int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4423 void *buf, int len, int write)
4424{
4425 resource_size_t phys_addr;
4426 unsigned long prot = 0;
4427 void __iomem *maddr;
4428 int offset = addr & (PAGE_SIZE-1);
4429
4430 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4431 return -EINVAL;
4432
4433 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4434 if (!maddr)
4435 return -ENOMEM;
4436
4437 if (write)
4438 memcpy_toio(maddr + offset, buf, len);
4439 else
4440 memcpy_fromio(buf, maddr + offset, len);
4441 iounmap(maddr);
4442
4443 return len;
4444}
4445EXPORT_SYMBOL_GPL(generic_access_phys);
4446#endif
4447
4448/*
4449 * Access another process' address space as given in mm. If non-NULL, use the
4450 * given task for page fault accounting.
4451 */
4452int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4453 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4454{
4455 struct vm_area_struct *vma;
4456 void *old_buf = buf;
4457 int write = gup_flags & FOLL_WRITE;
4458
David Brazdil0f672f62019-12-10 10:32:29 +00004459 if (down_read_killable(&mm->mmap_sem))
4460 return 0;
4461
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004462 /* ignore errors, just check how much was successfully transferred */
4463 while (len) {
4464 int bytes, ret, offset;
4465 void *maddr;
4466 struct page *page = NULL;
4467
4468 ret = get_user_pages_remote(tsk, mm, addr, 1,
4469 gup_flags, &page, &vma, NULL);
4470 if (ret <= 0) {
4471#ifndef CONFIG_HAVE_IOREMAP_PROT
4472 break;
4473#else
4474 /*
4475 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4476 * we can access using slightly different code.
4477 */
4478 vma = find_vma(mm, addr);
4479 if (!vma || vma->vm_start > addr)
4480 break;
4481 if (vma->vm_ops && vma->vm_ops->access)
4482 ret = vma->vm_ops->access(vma, addr, buf,
4483 len, write);
4484 if (ret <= 0)
4485 break;
4486 bytes = ret;
4487#endif
4488 } else {
4489 bytes = len;
4490 offset = addr & (PAGE_SIZE-1);
4491 if (bytes > PAGE_SIZE-offset)
4492 bytes = PAGE_SIZE-offset;
4493
4494 maddr = kmap(page);
4495 if (write) {
4496 copy_to_user_page(vma, page, addr,
4497 maddr + offset, buf, bytes);
4498 set_page_dirty_lock(page);
4499 } else {
4500 copy_from_user_page(vma, page, addr,
4501 buf, maddr + offset, bytes);
4502 }
4503 kunmap(page);
4504 put_page(page);
4505 }
4506 len -= bytes;
4507 buf += bytes;
4508 addr += bytes;
4509 }
4510 up_read(&mm->mmap_sem);
4511
4512 return buf - old_buf;
4513}
4514
4515/**
4516 * access_remote_vm - access another process' address space
4517 * @mm: the mm_struct of the target address space
4518 * @addr: start address to access
4519 * @buf: source or destination buffer
4520 * @len: number of bytes to transfer
4521 * @gup_flags: flags modifying lookup behaviour
4522 *
4523 * The caller must hold a reference on @mm.
David Brazdil0f672f62019-12-10 10:32:29 +00004524 *
4525 * Return: number of bytes copied from source to destination.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004526 */
4527int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4528 void *buf, int len, unsigned int gup_flags)
4529{
4530 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4531}
4532
4533/*
4534 * Access another process' address space.
4535 * Source/target buffer must be kernel space,
4536 * Do not walk the page table directly, use get_user_pages
4537 */
4538int access_process_vm(struct task_struct *tsk, unsigned long addr,
4539 void *buf, int len, unsigned int gup_flags)
4540{
4541 struct mm_struct *mm;
4542 int ret;
4543
4544 mm = get_task_mm(tsk);
4545 if (!mm)
4546 return 0;
4547
4548 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4549
4550 mmput(mm);
4551
4552 return ret;
4553}
4554EXPORT_SYMBOL_GPL(access_process_vm);
4555
4556/*
4557 * Print the name of a VMA.
4558 */
4559void print_vma_addr(char *prefix, unsigned long ip)
4560{
4561 struct mm_struct *mm = current->mm;
4562 struct vm_area_struct *vma;
4563
4564 /*
4565 * we might be running from an atomic context so we cannot sleep
4566 */
4567 if (!down_read_trylock(&mm->mmap_sem))
4568 return;
4569
4570 vma = find_vma(mm, ip);
4571 if (vma && vma->vm_file) {
4572 struct file *f = vma->vm_file;
4573 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4574 if (buf) {
4575 char *p;
4576
4577 p = file_path(f, buf, PAGE_SIZE);
4578 if (IS_ERR(p))
4579 p = "?";
4580 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4581 vma->vm_start,
4582 vma->vm_end - vma->vm_start);
4583 free_page((unsigned long)buf);
4584 }
4585 }
4586 up_read(&mm->mmap_sem);
4587}
4588
4589#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4590void __might_fault(const char *file, int line)
4591{
4592 /*
4593 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4594 * holding the mmap_sem, this is safe because kernel memory doesn't
4595 * get paged out, therefore we'll never actually fault, and the
4596 * below annotations will generate false positives.
4597 */
4598 if (uaccess_kernel())
4599 return;
4600 if (pagefault_disabled())
4601 return;
4602 __might_sleep(file, line, 0);
4603#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4604 if (current->mm)
4605 might_lock_read(&current->mm->mmap_sem);
4606#endif
4607}
4608EXPORT_SYMBOL(__might_fault);
4609#endif
4610
4611#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4612/*
4613 * Process all subpages of the specified huge page with the specified
4614 * operation. The target subpage will be processed last to keep its
4615 * cache lines hot.
4616 */
4617static inline void process_huge_page(
4618 unsigned long addr_hint, unsigned int pages_per_huge_page,
4619 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4620 void *arg)
4621{
4622 int i, n, base, l;
4623 unsigned long addr = addr_hint &
4624 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4625
4626 /* Process target subpage last to keep its cache lines hot */
4627 might_sleep();
4628 n = (addr_hint - addr) / PAGE_SIZE;
4629 if (2 * n <= pages_per_huge_page) {
4630 /* If target subpage in first half of huge page */
4631 base = 0;
4632 l = n;
4633 /* Process subpages at the end of huge page */
4634 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4635 cond_resched();
4636 process_subpage(addr + i * PAGE_SIZE, i, arg);
4637 }
4638 } else {
4639 /* If target subpage in second half of huge page */
4640 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4641 l = pages_per_huge_page - n;
4642 /* Process subpages at the begin of huge page */
4643 for (i = 0; i < base; i++) {
4644 cond_resched();
4645 process_subpage(addr + i * PAGE_SIZE, i, arg);
4646 }
4647 }
4648 /*
4649 * Process remaining subpages in left-right-left-right pattern
4650 * towards the target subpage
4651 */
4652 for (i = 0; i < l; i++) {
4653 int left_idx = base + i;
4654 int right_idx = base + 2 * l - 1 - i;
4655
4656 cond_resched();
4657 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4658 cond_resched();
4659 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4660 }
4661}
4662
4663static void clear_gigantic_page(struct page *page,
4664 unsigned long addr,
4665 unsigned int pages_per_huge_page)
4666{
4667 int i;
4668 struct page *p = page;
4669
4670 might_sleep();
4671 for (i = 0; i < pages_per_huge_page;
4672 i++, p = mem_map_next(p, page, i)) {
4673 cond_resched();
4674 clear_user_highpage(p, addr + i * PAGE_SIZE);
4675 }
4676}
4677
4678static void clear_subpage(unsigned long addr, int idx, void *arg)
4679{
4680 struct page *page = arg;
4681
4682 clear_user_highpage(page + idx, addr);
4683}
4684
4685void clear_huge_page(struct page *page,
4686 unsigned long addr_hint, unsigned int pages_per_huge_page)
4687{
4688 unsigned long addr = addr_hint &
4689 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4690
4691 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4692 clear_gigantic_page(page, addr, pages_per_huge_page);
4693 return;
4694 }
4695
4696 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4697}
4698
4699static void copy_user_gigantic_page(struct page *dst, struct page *src,
4700 unsigned long addr,
4701 struct vm_area_struct *vma,
4702 unsigned int pages_per_huge_page)
4703{
4704 int i;
4705 struct page *dst_base = dst;
4706 struct page *src_base = src;
4707
4708 for (i = 0; i < pages_per_huge_page; ) {
4709 cond_resched();
4710 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4711
4712 i++;
4713 dst = mem_map_next(dst, dst_base, i);
4714 src = mem_map_next(src, src_base, i);
4715 }
4716}
4717
4718struct copy_subpage_arg {
4719 struct page *dst;
4720 struct page *src;
4721 struct vm_area_struct *vma;
4722};
4723
4724static void copy_subpage(unsigned long addr, int idx, void *arg)
4725{
4726 struct copy_subpage_arg *copy_arg = arg;
4727
4728 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4729 addr, copy_arg->vma);
4730}
4731
4732void copy_user_huge_page(struct page *dst, struct page *src,
4733 unsigned long addr_hint, struct vm_area_struct *vma,
4734 unsigned int pages_per_huge_page)
4735{
4736 unsigned long addr = addr_hint &
4737 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4738 struct copy_subpage_arg arg = {
4739 .dst = dst,
4740 .src = src,
4741 .vma = vma,
4742 };
4743
4744 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4745 copy_user_gigantic_page(dst, src, addr, vma,
4746 pages_per_huge_page);
4747 return;
4748 }
4749
4750 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4751}
4752
4753long copy_huge_page_from_user(struct page *dst_page,
4754 const void __user *usr_src,
4755 unsigned int pages_per_huge_page,
4756 bool allow_pagefault)
4757{
4758 void *src = (void *)usr_src;
4759 void *page_kaddr;
4760 unsigned long i, rc = 0;
4761 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
Olivier Deprez0e641232021-09-23 10:07:05 +02004762 struct page *subpage = dst_page;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004763
Olivier Deprez0e641232021-09-23 10:07:05 +02004764 for (i = 0; i < pages_per_huge_page;
4765 i++, subpage = mem_map_next(subpage, dst_page, i)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004766 if (allow_pagefault)
Olivier Deprez0e641232021-09-23 10:07:05 +02004767 page_kaddr = kmap(subpage);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004768 else
Olivier Deprez0e641232021-09-23 10:07:05 +02004769 page_kaddr = kmap_atomic(subpage);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004770 rc = copy_from_user(page_kaddr,
4771 (const void __user *)(src + i * PAGE_SIZE),
4772 PAGE_SIZE);
4773 if (allow_pagefault)
Olivier Deprez0e641232021-09-23 10:07:05 +02004774 kunmap(subpage);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004775 else
4776 kunmap_atomic(page_kaddr);
4777
4778 ret_val -= (PAGE_SIZE - rc);
4779 if (rc)
4780 break;
4781
4782 cond_resched();
4783 }
4784 return ret_val;
4785}
4786#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4787
4788#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4789
4790static struct kmem_cache *page_ptl_cachep;
4791
4792void __init ptlock_cache_init(void)
4793{
4794 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4795 SLAB_PANIC, NULL);
4796}
4797
4798bool ptlock_alloc(struct page *page)
4799{
4800 spinlock_t *ptl;
4801
4802 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4803 if (!ptl)
4804 return false;
4805 page->ptl = ptl;
4806 return true;
4807}
4808
4809void ptlock_free(struct page *page)
4810{
4811 kmem_cache_free(page_ptl_cachep, page->ptl);
4812}
4813#endif