blob: 885d4792abdfcb4592930668d6b1e735346e11fc [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-only
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28#include <linux/export.h>
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
32#include <linux/signal.h>
33#include <linux/completion.h>
34#include <linux/workqueue.h>
35#include <linux/slab.h>
36#include <linux/cpu.h>
37#include <linux/notifier.h>
38#include <linux/kthread.h>
39#include <linux/hardirq.h>
40#include <linux/mempolicy.h>
41#include <linux/freezer.h>
42#include <linux/debug_locks.h>
43#include <linux/lockdep.h>
44#include <linux/idr.h>
45#include <linux/jhash.h>
46#include <linux/hashtable.h>
47#include <linux/rculist.h>
48#include <linux/nodemask.h>
49#include <linux/moduleparam.h>
50#include <linux/uaccess.h>
51#include <linux/sched/isolation.h>
52#include <linux/nmi.h>
Olivier Deprez0e641232021-09-23 10:07:05 +020053#include <linux/kvm_para.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000054
55#include "workqueue_internal.h"
56
57enum {
58 /*
59 * worker_pool flags
60 *
61 * A bound pool is either associated or disassociated with its CPU.
62 * While associated (!DISASSOCIATED), all workers are bound to the
63 * CPU and none has %WORKER_UNBOUND set and concurrency management
64 * is in effect.
65 *
66 * While DISASSOCIATED, the cpu may be offline and all workers have
67 * %WORKER_UNBOUND set and concurrency management disabled, and may
68 * be executing on any CPU. The pool behaves as an unbound one.
69 *
70 * Note that DISASSOCIATED should be flipped only while holding
71 * wq_pool_attach_mutex to avoid changing binding state while
72 * worker_attach_to_pool() is in progress.
73 */
74 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
75 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
76
77 /* worker flags */
78 WORKER_DIE = 1 << 1, /* die die die */
79 WORKER_IDLE = 1 << 2, /* is idle */
80 WORKER_PREP = 1 << 3, /* preparing to run works */
81 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
82 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
83 WORKER_REBOUND = 1 << 8, /* worker was rebound */
84
85 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
86 WORKER_UNBOUND | WORKER_REBOUND,
87
88 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
89
90 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
91 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
92
93 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
94 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
95
96 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
97 /* call for help after 10ms
98 (min two ticks) */
99 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
100 CREATE_COOLDOWN = HZ, /* time to breath after fail */
101
102 /*
103 * Rescue workers are used only on emergencies and shared by
104 * all cpus. Give MIN_NICE.
105 */
106 RESCUER_NICE_LEVEL = MIN_NICE,
107 HIGHPRI_NICE_LEVEL = MIN_NICE,
108
109 WQ_NAME_LEN = 24,
110};
111
112/*
113 * Structure fields follow one of the following exclusion rules.
114 *
115 * I: Modifiable by initialization/destruction paths and read-only for
116 * everyone else.
117 *
118 * P: Preemption protected. Disabling preemption is enough and should
119 * only be modified and accessed from the local cpu.
120 *
121 * L: pool->lock protected. Access with pool->lock held.
122 *
123 * X: During normal operation, modification requires pool->lock and should
124 * be done only from local cpu. Either disabling preemption on local
125 * cpu or grabbing pool->lock is enough for read access. If
126 * POOL_DISASSOCIATED is set, it's identical to L.
127 *
128 * A: wq_pool_attach_mutex protected.
129 *
130 * PL: wq_pool_mutex protected.
131 *
David Brazdil0f672f62019-12-10 10:32:29 +0000132 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000133 *
134 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
135 *
136 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
David Brazdil0f672f62019-12-10 10:32:29 +0000137 * RCU for reads.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000138 *
139 * WQ: wq->mutex protected.
140 *
David Brazdil0f672f62019-12-10 10:32:29 +0000141 * WR: wq->mutex protected for writes. RCU protected for reads.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000142 *
143 * MD: wq_mayday_lock protected.
144 */
145
146/* struct worker is defined in workqueue_internal.h */
147
148struct worker_pool {
149 spinlock_t lock; /* the pool lock */
150 int cpu; /* I: the associated cpu */
151 int node; /* I: the associated node ID */
152 int id; /* I: pool ID */
153 unsigned int flags; /* X: flags */
154
155 unsigned long watchdog_ts; /* L: watchdog timestamp */
156
157 struct list_head worklist; /* L: list of pending works */
158
159 int nr_workers; /* L: total number of workers */
160 int nr_idle; /* L: currently idle workers */
161
162 struct list_head idle_list; /* X: list of idle workers */
163 struct timer_list idle_timer; /* L: worker idle timeout */
164 struct timer_list mayday_timer; /* L: SOS timer for workers */
165
166 /* a workers is either on busy_hash or idle_list, or the manager */
167 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
168 /* L: hash of busy workers */
169
170 struct worker *manager; /* L: purely informational */
171 struct list_head workers; /* A: attached workers */
172 struct completion *detach_completion; /* all workers detached */
173
174 struct ida worker_ida; /* worker IDs for task name */
175
176 struct workqueue_attrs *attrs; /* I: worker attributes */
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
179
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
186
187 /*
David Brazdil0f672f62019-12-10 10:32:29 +0000188 * Destruction of pool is RCU protected to allow dereferences
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
192} ____cacheline_aligned_in_smp;
193
194/*
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
199 */
200struct pool_workqueue {
201 struct worker_pool *pool; /* I: the associated pool */
202 struct workqueue_struct *wq; /* I: the owning workqueue */
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
205 int refcnt; /* L: reference count */
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
208 int nr_active; /* L: nr of active works */
209 int max_active; /* L: max active works */
210 struct list_head delayed_works; /* L: delayed works */
211 struct list_head pwqs_node; /* WR: node on wq->pwqs */
212 struct list_head mayday_node; /* MD: node on wq->maydays */
213
214 /*
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
David Brazdil0f672f62019-12-10 10:32:29 +0000217 * itself is also RCU protected so that the first pwq can be
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000218 * determined without grabbing wq->mutex.
219 */
220 struct work_struct unbound_release_work;
221 struct rcu_head rcu;
222} __aligned(1 << WORK_STRUCT_FLAG_BITS);
223
224/*
225 * Structure used to wait for workqueue flush.
226 */
227struct wq_flusher {
228 struct list_head list; /* WQ: list of flushers */
229 int flush_color; /* WQ: flush color waiting for */
230 struct completion done; /* flush completion */
231};
232
233struct wq_device;
234
235/*
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
238 */
239struct workqueue_struct {
240 struct list_head pwqs; /* WR: all pwqs of this wq */
241 struct list_head list; /* PR: list of all workqueues */
242
243 struct mutex mutex; /* protects this wq */
244 int work_color; /* WQ: current work color */
245 int flush_color; /* WQ: current flush color */
246 atomic_t nr_pwqs_to_flush; /* flush in progress */
247 struct wq_flusher *first_flusher; /* WQ: first flusher */
248 struct list_head flusher_queue; /* WQ: flush waiters */
249 struct list_head flusher_overflow; /* WQ: flush overflow list */
250
251 struct list_head maydays; /* MD: pwqs requesting rescue */
252 struct worker *rescuer; /* I: rescue worker */
253
254 int nr_drainers; /* WQ: drain in progress */
255 int saved_max_active; /* WQ: saved pwq max_active */
256
257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
259
260#ifdef CONFIG_SYSFS
261 struct wq_device *wq_dev; /* I: for sysfs interface */
262#endif
263#ifdef CONFIG_LOCKDEP
David Brazdil0f672f62019-12-10 10:32:29 +0000264 char *lock_name;
265 struct lock_class_key key;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000266 struct lockdep_map lockdep_map;
267#endif
268 char name[WQ_NAME_LEN]; /* I: workqueue name */
269
270 /*
David Brazdil0f672f62019-12-10 10:32:29 +0000271 * Destruction of workqueue_struct is RCU protected to allow walking
272 * the workqueues list without grabbing wq_pool_mutex.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000273 * This is used to dump all workqueues from sysrq.
274 */
275 struct rcu_head rcu;
276
277 /* hot fields used during command issue, aligned to cacheline */
278 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
279 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
280 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
281};
282
283static struct kmem_cache *pwq_cache;
284
285static cpumask_var_t *wq_numa_possible_cpumask;
286 /* possible CPUs of each node */
287
288static bool wq_disable_numa;
289module_param_named(disable_numa, wq_disable_numa, bool, 0444);
290
291/* see the comment above the definition of WQ_POWER_EFFICIENT */
292static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
293module_param_named(power_efficient, wq_power_efficient, bool, 0444);
294
295static bool wq_online; /* can kworkers be created yet? */
296
297static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
298
299/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
300static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
301
302static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
303static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
304static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
305static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
306
307static LIST_HEAD(workqueues); /* PR: list of all workqueues */
308static bool workqueue_freezing; /* PL: have wqs started freezing? */
309
310/* PL: allowable cpus for unbound wqs and work items */
311static cpumask_var_t wq_unbound_cpumask;
312
313/* CPU where unbound work was last round robin scheduled from this CPU */
314static DEFINE_PER_CPU(int, wq_rr_cpu_last);
315
316/*
317 * Local execution of unbound work items is no longer guaranteed. The
318 * following always forces round-robin CPU selection on unbound work items
319 * to uncover usages which depend on it.
320 */
321#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
322static bool wq_debug_force_rr_cpu = true;
323#else
324static bool wq_debug_force_rr_cpu = false;
325#endif
326module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
327
328/* the per-cpu worker pools */
329static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
330
331static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
332
333/* PL: hash of all unbound pools keyed by pool->attrs */
334static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
335
336/* I: attributes used when instantiating standard unbound pools on demand */
337static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
338
339/* I: attributes used when instantiating ordered pools on demand */
340static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
341
342struct workqueue_struct *system_wq __read_mostly;
343EXPORT_SYMBOL(system_wq);
344struct workqueue_struct *system_highpri_wq __read_mostly;
345EXPORT_SYMBOL_GPL(system_highpri_wq);
346struct workqueue_struct *system_long_wq __read_mostly;
347EXPORT_SYMBOL_GPL(system_long_wq);
348struct workqueue_struct *system_unbound_wq __read_mostly;
349EXPORT_SYMBOL_GPL(system_unbound_wq);
350struct workqueue_struct *system_freezable_wq __read_mostly;
351EXPORT_SYMBOL_GPL(system_freezable_wq);
352struct workqueue_struct *system_power_efficient_wq __read_mostly;
353EXPORT_SYMBOL_GPL(system_power_efficient_wq);
354struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
355EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
356
357static int worker_thread(void *__worker);
358static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
359
360#define CREATE_TRACE_POINTS
361#include <trace/events/workqueue.h>
362
363#define assert_rcu_or_pool_mutex() \
David Brazdil0f672f62019-12-10 10:32:29 +0000364 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000365 !lockdep_is_held(&wq_pool_mutex), \
David Brazdil0f672f62019-12-10 10:32:29 +0000366 "RCU or wq_pool_mutex should be held")
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000367
368#define assert_rcu_or_wq_mutex(wq) \
David Brazdil0f672f62019-12-10 10:32:29 +0000369 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000370 !lockdep_is_held(&wq->mutex), \
David Brazdil0f672f62019-12-10 10:32:29 +0000371 "RCU or wq->mutex should be held")
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000372
373#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
David Brazdil0f672f62019-12-10 10:32:29 +0000374 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000375 !lockdep_is_held(&wq->mutex) && \
376 !lockdep_is_held(&wq_pool_mutex), \
David Brazdil0f672f62019-12-10 10:32:29 +0000377 "RCU, wq->mutex or wq_pool_mutex should be held")
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000378
379#define for_each_cpu_worker_pool(pool, cpu) \
380 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
381 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
382 (pool)++)
383
384/**
385 * for_each_pool - iterate through all worker_pools in the system
386 * @pool: iteration cursor
387 * @pi: integer used for iteration
388 *
David Brazdil0f672f62019-12-10 10:32:29 +0000389 * This must be called either with wq_pool_mutex held or RCU read
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000390 * locked. If the pool needs to be used beyond the locking in effect, the
391 * caller is responsible for guaranteeing that the pool stays online.
392 *
393 * The if/else clause exists only for the lockdep assertion and can be
394 * ignored.
395 */
396#define for_each_pool(pool, pi) \
397 idr_for_each_entry(&worker_pool_idr, pool, pi) \
398 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
399 else
400
401/**
402 * for_each_pool_worker - iterate through all workers of a worker_pool
403 * @worker: iteration cursor
404 * @pool: worker_pool to iterate workers of
405 *
406 * This must be called with wq_pool_attach_mutex.
407 *
408 * The if/else clause exists only for the lockdep assertion and can be
409 * ignored.
410 */
411#define for_each_pool_worker(worker, pool) \
412 list_for_each_entry((worker), &(pool)->workers, node) \
413 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
414 else
415
416/**
417 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
418 * @pwq: iteration cursor
419 * @wq: the target workqueue
420 *
David Brazdil0f672f62019-12-10 10:32:29 +0000421 * This must be called either with wq->mutex held or RCU read locked.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000422 * If the pwq needs to be used beyond the locking in effect, the caller is
423 * responsible for guaranteeing that the pwq stays online.
424 *
425 * The if/else clause exists only for the lockdep assertion and can be
426 * ignored.
427 */
428#define for_each_pwq(pwq, wq) \
Olivier Deprez0e641232021-09-23 10:07:05 +0200429 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
430 lockdep_is_held(&wq->mutex)) \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000431 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
432 else
433
434#ifdef CONFIG_DEBUG_OBJECTS_WORK
435
436static struct debug_obj_descr work_debug_descr;
437
438static void *work_debug_hint(void *addr)
439{
440 return ((struct work_struct *) addr)->func;
441}
442
443static bool work_is_static_object(void *addr)
444{
445 struct work_struct *work = addr;
446
447 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
448}
449
450/*
451 * fixup_init is called when:
452 * - an active object is initialized
453 */
454static bool work_fixup_init(void *addr, enum debug_obj_state state)
455{
456 struct work_struct *work = addr;
457
458 switch (state) {
459 case ODEBUG_STATE_ACTIVE:
460 cancel_work_sync(work);
461 debug_object_init(work, &work_debug_descr);
462 return true;
463 default:
464 return false;
465 }
466}
467
468/*
469 * fixup_free is called when:
470 * - an active object is freed
471 */
472static bool work_fixup_free(void *addr, enum debug_obj_state state)
473{
474 struct work_struct *work = addr;
475
476 switch (state) {
477 case ODEBUG_STATE_ACTIVE:
478 cancel_work_sync(work);
479 debug_object_free(work, &work_debug_descr);
480 return true;
481 default:
482 return false;
483 }
484}
485
486static struct debug_obj_descr work_debug_descr = {
487 .name = "work_struct",
488 .debug_hint = work_debug_hint,
489 .is_static_object = work_is_static_object,
490 .fixup_init = work_fixup_init,
491 .fixup_free = work_fixup_free,
492};
493
494static inline void debug_work_activate(struct work_struct *work)
495{
496 debug_object_activate(work, &work_debug_descr);
497}
498
499static inline void debug_work_deactivate(struct work_struct *work)
500{
501 debug_object_deactivate(work, &work_debug_descr);
502}
503
504void __init_work(struct work_struct *work, int onstack)
505{
506 if (onstack)
507 debug_object_init_on_stack(work, &work_debug_descr);
508 else
509 debug_object_init(work, &work_debug_descr);
510}
511EXPORT_SYMBOL_GPL(__init_work);
512
513void destroy_work_on_stack(struct work_struct *work)
514{
515 debug_object_free(work, &work_debug_descr);
516}
517EXPORT_SYMBOL_GPL(destroy_work_on_stack);
518
519void destroy_delayed_work_on_stack(struct delayed_work *work)
520{
521 destroy_timer_on_stack(&work->timer);
522 debug_object_free(&work->work, &work_debug_descr);
523}
524EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
525
526#else
527static inline void debug_work_activate(struct work_struct *work) { }
528static inline void debug_work_deactivate(struct work_struct *work) { }
529#endif
530
531/**
532 * worker_pool_assign_id - allocate ID and assing it to @pool
533 * @pool: the pool pointer of interest
534 *
535 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
536 * successfully, -errno on failure.
537 */
538static int worker_pool_assign_id(struct worker_pool *pool)
539{
540 int ret;
541
542 lockdep_assert_held(&wq_pool_mutex);
543
544 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
545 GFP_KERNEL);
546 if (ret >= 0) {
547 pool->id = ret;
548 return 0;
549 }
550 return ret;
551}
552
553/**
554 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
555 * @wq: the target workqueue
556 * @node: the node ID
557 *
David Brazdil0f672f62019-12-10 10:32:29 +0000558 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000559 * read locked.
560 * If the pwq needs to be used beyond the locking in effect, the caller is
561 * responsible for guaranteeing that the pwq stays online.
562 *
563 * Return: The unbound pool_workqueue for @node.
564 */
565static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
566 int node)
567{
568 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
569
570 /*
571 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
572 * delayed item is pending. The plan is to keep CPU -> NODE
573 * mapping valid and stable across CPU on/offlines. Once that
574 * happens, this workaround can be removed.
575 */
576 if (unlikely(node == NUMA_NO_NODE))
577 return wq->dfl_pwq;
578
579 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
580}
581
582static unsigned int work_color_to_flags(int color)
583{
584 return color << WORK_STRUCT_COLOR_SHIFT;
585}
586
587static int get_work_color(struct work_struct *work)
588{
589 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
590 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
591}
592
593static int work_next_color(int color)
594{
595 return (color + 1) % WORK_NR_COLORS;
596}
597
598/*
599 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
600 * contain the pointer to the queued pwq. Once execution starts, the flag
601 * is cleared and the high bits contain OFFQ flags and pool ID.
602 *
603 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
604 * and clear_work_data() can be used to set the pwq, pool or clear
605 * work->data. These functions should only be called while the work is
606 * owned - ie. while the PENDING bit is set.
607 *
608 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
609 * corresponding to a work. Pool is available once the work has been
610 * queued anywhere after initialization until it is sync canceled. pwq is
611 * available only while the work item is queued.
612 *
613 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
614 * canceled. While being canceled, a work item may have its PENDING set
615 * but stay off timer and worklist for arbitrarily long and nobody should
616 * try to steal the PENDING bit.
617 */
618static inline void set_work_data(struct work_struct *work, unsigned long data,
619 unsigned long flags)
620{
621 WARN_ON_ONCE(!work_pending(work));
622 atomic_long_set(&work->data, data | flags | work_static(work));
623}
624
625static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
626 unsigned long extra_flags)
627{
628 set_work_data(work, (unsigned long)pwq,
629 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
630}
631
632static void set_work_pool_and_keep_pending(struct work_struct *work,
633 int pool_id)
634{
635 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
636 WORK_STRUCT_PENDING);
637}
638
639static void set_work_pool_and_clear_pending(struct work_struct *work,
640 int pool_id)
641{
642 /*
643 * The following wmb is paired with the implied mb in
644 * test_and_set_bit(PENDING) and ensures all updates to @work made
645 * here are visible to and precede any updates by the next PENDING
646 * owner.
647 */
648 smp_wmb();
649 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
650 /*
651 * The following mb guarantees that previous clear of a PENDING bit
652 * will not be reordered with any speculative LOADS or STORES from
653 * work->current_func, which is executed afterwards. This possible
David Brazdil0f672f62019-12-10 10:32:29 +0000654 * reordering can lead to a missed execution on attempt to queue
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000655 * the same @work. E.g. consider this case:
656 *
657 * CPU#0 CPU#1
658 * ---------------------------- --------------------------------
659 *
660 * 1 STORE event_indicated
661 * 2 queue_work_on() {
662 * 3 test_and_set_bit(PENDING)
663 * 4 } set_..._and_clear_pending() {
664 * 5 set_work_data() # clear bit
665 * 6 smp_mb()
666 * 7 work->current_func() {
667 * 8 LOAD event_indicated
668 * }
669 *
670 * Without an explicit full barrier speculative LOAD on line 8 can
671 * be executed before CPU#0 does STORE on line 1. If that happens,
672 * CPU#0 observes the PENDING bit is still set and new execution of
673 * a @work is not queued in a hope, that CPU#1 will eventually
674 * finish the queued @work. Meanwhile CPU#1 does not see
675 * event_indicated is set, because speculative LOAD was executed
676 * before actual STORE.
677 */
678 smp_mb();
679}
680
681static void clear_work_data(struct work_struct *work)
682{
683 smp_wmb(); /* see set_work_pool_and_clear_pending() */
684 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
685}
686
687static struct pool_workqueue *get_work_pwq(struct work_struct *work)
688{
689 unsigned long data = atomic_long_read(&work->data);
690
691 if (data & WORK_STRUCT_PWQ)
692 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
693 else
694 return NULL;
695}
696
697/**
698 * get_work_pool - return the worker_pool a given work was associated with
699 * @work: the work item of interest
700 *
701 * Pools are created and destroyed under wq_pool_mutex, and allows read
David Brazdil0f672f62019-12-10 10:32:29 +0000702 * access under RCU read lock. As such, this function should be
703 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000704 *
705 * All fields of the returned pool are accessible as long as the above
706 * mentioned locking is in effect. If the returned pool needs to be used
707 * beyond the critical section, the caller is responsible for ensuring the
708 * returned pool is and stays online.
709 *
710 * Return: The worker_pool @work was last associated with. %NULL if none.
711 */
712static struct worker_pool *get_work_pool(struct work_struct *work)
713{
714 unsigned long data = atomic_long_read(&work->data);
715 int pool_id;
716
717 assert_rcu_or_pool_mutex();
718
719 if (data & WORK_STRUCT_PWQ)
720 return ((struct pool_workqueue *)
721 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
722
723 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
724 if (pool_id == WORK_OFFQ_POOL_NONE)
725 return NULL;
726
727 return idr_find(&worker_pool_idr, pool_id);
728}
729
730/**
731 * get_work_pool_id - return the worker pool ID a given work is associated with
732 * @work: the work item of interest
733 *
734 * Return: The worker_pool ID @work was last associated with.
735 * %WORK_OFFQ_POOL_NONE if none.
736 */
737static int get_work_pool_id(struct work_struct *work)
738{
739 unsigned long data = atomic_long_read(&work->data);
740
741 if (data & WORK_STRUCT_PWQ)
742 return ((struct pool_workqueue *)
743 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
744
745 return data >> WORK_OFFQ_POOL_SHIFT;
746}
747
748static void mark_work_canceling(struct work_struct *work)
749{
750 unsigned long pool_id = get_work_pool_id(work);
751
752 pool_id <<= WORK_OFFQ_POOL_SHIFT;
753 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
754}
755
756static bool work_is_canceling(struct work_struct *work)
757{
758 unsigned long data = atomic_long_read(&work->data);
759
760 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
761}
762
763/*
764 * Policy functions. These define the policies on how the global worker
765 * pools are managed. Unless noted otherwise, these functions assume that
766 * they're being called with pool->lock held.
767 */
768
769static bool __need_more_worker(struct worker_pool *pool)
770{
771 return !atomic_read(&pool->nr_running);
772}
773
774/*
775 * Need to wake up a worker? Called from anything but currently
776 * running workers.
777 *
778 * Note that, because unbound workers never contribute to nr_running, this
779 * function will always return %true for unbound pools as long as the
780 * worklist isn't empty.
781 */
782static bool need_more_worker(struct worker_pool *pool)
783{
784 return !list_empty(&pool->worklist) && __need_more_worker(pool);
785}
786
787/* Can I start working? Called from busy but !running workers. */
788static bool may_start_working(struct worker_pool *pool)
789{
790 return pool->nr_idle;
791}
792
793/* Do I need to keep working? Called from currently running workers. */
794static bool keep_working(struct worker_pool *pool)
795{
796 return !list_empty(&pool->worklist) &&
797 atomic_read(&pool->nr_running) <= 1;
798}
799
800/* Do we need a new worker? Called from manager. */
801static bool need_to_create_worker(struct worker_pool *pool)
802{
803 return need_more_worker(pool) && !may_start_working(pool);
804}
805
806/* Do we have too many workers and should some go away? */
807static bool too_many_workers(struct worker_pool *pool)
808{
809 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
810 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
811 int nr_busy = pool->nr_workers - nr_idle;
812
813 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
814}
815
816/*
817 * Wake up functions.
818 */
819
820/* Return the first idle worker. Safe with preemption disabled */
821static struct worker *first_idle_worker(struct worker_pool *pool)
822{
823 if (unlikely(list_empty(&pool->idle_list)))
824 return NULL;
825
826 return list_first_entry(&pool->idle_list, struct worker, entry);
827}
828
829/**
830 * wake_up_worker - wake up an idle worker
831 * @pool: worker pool to wake worker from
832 *
833 * Wake up the first idle worker of @pool.
834 *
835 * CONTEXT:
836 * spin_lock_irq(pool->lock).
837 */
838static void wake_up_worker(struct worker_pool *pool)
839{
840 struct worker *worker = first_idle_worker(pool);
841
842 if (likely(worker))
843 wake_up_process(worker->task);
844}
845
846/**
David Brazdil0f672f62019-12-10 10:32:29 +0000847 * wq_worker_running - a worker is running again
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000848 * @task: task waking up
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000849 *
David Brazdil0f672f62019-12-10 10:32:29 +0000850 * This function is called when a worker returns from schedule()
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000851 */
David Brazdil0f672f62019-12-10 10:32:29 +0000852void wq_worker_running(struct task_struct *task)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000853{
854 struct worker *worker = kthread_data(task);
855
David Brazdil0f672f62019-12-10 10:32:29 +0000856 if (!worker->sleeping)
857 return;
858 if (!(worker->flags & WORKER_NOT_RUNNING))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000859 atomic_inc(&worker->pool->nr_running);
David Brazdil0f672f62019-12-10 10:32:29 +0000860 worker->sleeping = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000861}
862
863/**
864 * wq_worker_sleeping - a worker is going to sleep
865 * @task: task going to sleep
866 *
David Brazdil0f672f62019-12-10 10:32:29 +0000867 * This function is called from schedule() when a busy worker is
Olivier Deprez0e641232021-09-23 10:07:05 +0200868 * going to sleep. Preemption needs to be disabled to protect ->sleeping
869 * assignment.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000870 */
David Brazdil0f672f62019-12-10 10:32:29 +0000871void wq_worker_sleeping(struct task_struct *task)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000872{
David Brazdil0f672f62019-12-10 10:32:29 +0000873 struct worker *next, *worker = kthread_data(task);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000874 struct worker_pool *pool;
875
876 /*
877 * Rescuers, which may not have all the fields set up like normal
878 * workers, also reach here, let's not access anything before
879 * checking NOT_RUNNING.
880 */
881 if (worker->flags & WORKER_NOT_RUNNING)
David Brazdil0f672f62019-12-10 10:32:29 +0000882 return;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000883
884 pool = worker->pool;
885
Olivier Deprez0e641232021-09-23 10:07:05 +0200886 /* Return if preempted before wq_worker_running() was reached */
887 if (worker->sleeping)
David Brazdil0f672f62019-12-10 10:32:29 +0000888 return;
889
890 worker->sleeping = 1;
891 spin_lock_irq(&pool->lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000892
893 /*
894 * The counterpart of the following dec_and_test, implied mb,
895 * worklist not empty test sequence is in insert_work().
896 * Please read comment there.
897 *
898 * NOT_RUNNING is clear. This means that we're bound to and
899 * running on the local cpu w/ rq lock held and preemption
900 * disabled, which in turn means that none else could be
901 * manipulating idle_list, so dereferencing idle_list without pool
902 * lock is safe.
903 */
904 if (atomic_dec_and_test(&pool->nr_running) &&
David Brazdil0f672f62019-12-10 10:32:29 +0000905 !list_empty(&pool->worklist)) {
906 next = first_idle_worker(pool);
907 if (next)
908 wake_up_process(next->task);
909 }
910 spin_unlock_irq(&pool->lock);
911}
912
913/**
914 * wq_worker_last_func - retrieve worker's last work function
915 * @task: Task to retrieve last work function of.
916 *
917 * Determine the last function a worker executed. This is called from
918 * the scheduler to get a worker's last known identity.
919 *
920 * CONTEXT:
921 * spin_lock_irq(rq->lock)
922 *
923 * This function is called during schedule() when a kworker is going
924 * to sleep. It's used by psi to identify aggregation workers during
925 * dequeuing, to allow periodic aggregation to shut-off when that
926 * worker is the last task in the system or cgroup to go to sleep.
927 *
928 * As this function doesn't involve any workqueue-related locking, it
929 * only returns stable values when called from inside the scheduler's
930 * queuing and dequeuing paths, when @task, which must be a kworker,
931 * is guaranteed to not be processing any works.
932 *
933 * Return:
934 * The last work function %current executed as a worker, NULL if it
935 * hasn't executed any work yet.
936 */
937work_func_t wq_worker_last_func(struct task_struct *task)
938{
939 struct worker *worker = kthread_data(task);
940
941 return worker->last_func;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000942}
943
944/**
945 * worker_set_flags - set worker flags and adjust nr_running accordingly
946 * @worker: self
947 * @flags: flags to set
948 *
949 * Set @flags in @worker->flags and adjust nr_running accordingly.
950 *
951 * CONTEXT:
952 * spin_lock_irq(pool->lock)
953 */
954static inline void worker_set_flags(struct worker *worker, unsigned int flags)
955{
956 struct worker_pool *pool = worker->pool;
957
958 WARN_ON_ONCE(worker->task != current);
959
960 /* If transitioning into NOT_RUNNING, adjust nr_running. */
961 if ((flags & WORKER_NOT_RUNNING) &&
962 !(worker->flags & WORKER_NOT_RUNNING)) {
963 atomic_dec(&pool->nr_running);
964 }
965
966 worker->flags |= flags;
967}
968
969/**
970 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
971 * @worker: self
972 * @flags: flags to clear
973 *
974 * Clear @flags in @worker->flags and adjust nr_running accordingly.
975 *
976 * CONTEXT:
977 * spin_lock_irq(pool->lock)
978 */
979static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
980{
981 struct worker_pool *pool = worker->pool;
982 unsigned int oflags = worker->flags;
983
984 WARN_ON_ONCE(worker->task != current);
985
986 worker->flags &= ~flags;
987
988 /*
989 * If transitioning out of NOT_RUNNING, increment nr_running. Note
990 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
991 * of multiple flags, not a single flag.
992 */
993 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
994 if (!(worker->flags & WORKER_NOT_RUNNING))
995 atomic_inc(&pool->nr_running);
996}
997
998/**
999 * find_worker_executing_work - find worker which is executing a work
1000 * @pool: pool of interest
1001 * @work: work to find worker for
1002 *
1003 * Find a worker which is executing @work on @pool by searching
1004 * @pool->busy_hash which is keyed by the address of @work. For a worker
1005 * to match, its current execution should match the address of @work and
1006 * its work function. This is to avoid unwanted dependency between
1007 * unrelated work executions through a work item being recycled while still
1008 * being executed.
1009 *
1010 * This is a bit tricky. A work item may be freed once its execution
1011 * starts and nothing prevents the freed area from being recycled for
1012 * another work item. If the same work item address ends up being reused
1013 * before the original execution finishes, workqueue will identify the
1014 * recycled work item as currently executing and make it wait until the
1015 * current execution finishes, introducing an unwanted dependency.
1016 *
1017 * This function checks the work item address and work function to avoid
1018 * false positives. Note that this isn't complete as one may construct a
1019 * work function which can introduce dependency onto itself through a
1020 * recycled work item. Well, if somebody wants to shoot oneself in the
1021 * foot that badly, there's only so much we can do, and if such deadlock
1022 * actually occurs, it should be easy to locate the culprit work function.
1023 *
1024 * CONTEXT:
1025 * spin_lock_irq(pool->lock).
1026 *
1027 * Return:
1028 * Pointer to worker which is executing @work if found, %NULL
1029 * otherwise.
1030 */
1031static struct worker *find_worker_executing_work(struct worker_pool *pool,
1032 struct work_struct *work)
1033{
1034 struct worker *worker;
1035
1036 hash_for_each_possible(pool->busy_hash, worker, hentry,
1037 (unsigned long)work)
1038 if (worker->current_work == work &&
1039 worker->current_func == work->func)
1040 return worker;
1041
1042 return NULL;
1043}
1044
1045/**
1046 * move_linked_works - move linked works to a list
1047 * @work: start of series of works to be scheduled
1048 * @head: target list to append @work to
1049 * @nextp: out parameter for nested worklist walking
1050 *
1051 * Schedule linked works starting from @work to @head. Work series to
1052 * be scheduled starts at @work and includes any consecutive work with
1053 * WORK_STRUCT_LINKED set in its predecessor.
1054 *
1055 * If @nextp is not NULL, it's updated to point to the next work of
1056 * the last scheduled work. This allows move_linked_works() to be
1057 * nested inside outer list_for_each_entry_safe().
1058 *
1059 * CONTEXT:
1060 * spin_lock_irq(pool->lock).
1061 */
1062static void move_linked_works(struct work_struct *work, struct list_head *head,
1063 struct work_struct **nextp)
1064{
1065 struct work_struct *n;
1066
1067 /*
1068 * Linked worklist will always end before the end of the list,
1069 * use NULL for list head.
1070 */
1071 list_for_each_entry_safe_from(work, n, NULL, entry) {
1072 list_move_tail(&work->entry, head);
1073 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1074 break;
1075 }
1076
1077 /*
1078 * If we're already inside safe list traversal and have moved
1079 * multiple works to the scheduled queue, the next position
1080 * needs to be updated.
1081 */
1082 if (nextp)
1083 *nextp = n;
1084}
1085
1086/**
1087 * get_pwq - get an extra reference on the specified pool_workqueue
1088 * @pwq: pool_workqueue to get
1089 *
1090 * Obtain an extra reference on @pwq. The caller should guarantee that
1091 * @pwq has positive refcnt and be holding the matching pool->lock.
1092 */
1093static void get_pwq(struct pool_workqueue *pwq)
1094{
1095 lockdep_assert_held(&pwq->pool->lock);
1096 WARN_ON_ONCE(pwq->refcnt <= 0);
1097 pwq->refcnt++;
1098}
1099
1100/**
1101 * put_pwq - put a pool_workqueue reference
1102 * @pwq: pool_workqueue to put
1103 *
1104 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1105 * destruction. The caller should be holding the matching pool->lock.
1106 */
1107static void put_pwq(struct pool_workqueue *pwq)
1108{
1109 lockdep_assert_held(&pwq->pool->lock);
1110 if (likely(--pwq->refcnt))
1111 return;
1112 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1113 return;
1114 /*
1115 * @pwq can't be released under pool->lock, bounce to
1116 * pwq_unbound_release_workfn(). This never recurses on the same
1117 * pool->lock as this path is taken only for unbound workqueues and
1118 * the release work item is scheduled on a per-cpu workqueue. To
1119 * avoid lockdep warning, unbound pool->locks are given lockdep
1120 * subclass of 1 in get_unbound_pool().
1121 */
1122 schedule_work(&pwq->unbound_release_work);
1123}
1124
1125/**
1126 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1127 * @pwq: pool_workqueue to put (can be %NULL)
1128 *
1129 * put_pwq() with locking. This function also allows %NULL @pwq.
1130 */
1131static void put_pwq_unlocked(struct pool_workqueue *pwq)
1132{
1133 if (pwq) {
1134 /*
David Brazdil0f672f62019-12-10 10:32:29 +00001135 * As both pwqs and pools are RCU protected, the
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001136 * following lock operations are safe.
1137 */
1138 spin_lock_irq(&pwq->pool->lock);
1139 put_pwq(pwq);
1140 spin_unlock_irq(&pwq->pool->lock);
1141 }
1142}
1143
1144static void pwq_activate_delayed_work(struct work_struct *work)
1145{
1146 struct pool_workqueue *pwq = get_work_pwq(work);
1147
1148 trace_workqueue_activate_work(work);
1149 if (list_empty(&pwq->pool->worklist))
1150 pwq->pool->watchdog_ts = jiffies;
1151 move_linked_works(work, &pwq->pool->worklist, NULL);
1152 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1153 pwq->nr_active++;
1154}
1155
1156static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1157{
1158 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1159 struct work_struct, entry);
1160
1161 pwq_activate_delayed_work(work);
1162}
1163
1164/**
1165 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1166 * @pwq: pwq of interest
1167 * @color: color of work which left the queue
1168 *
1169 * A work either has completed or is removed from pending queue,
1170 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1171 *
1172 * CONTEXT:
1173 * spin_lock_irq(pool->lock).
1174 */
1175static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1176{
1177 /* uncolored work items don't participate in flushing or nr_active */
1178 if (color == WORK_NO_COLOR)
1179 goto out_put;
1180
1181 pwq->nr_in_flight[color]--;
1182
1183 pwq->nr_active--;
1184 if (!list_empty(&pwq->delayed_works)) {
1185 /* one down, submit a delayed one */
1186 if (pwq->nr_active < pwq->max_active)
1187 pwq_activate_first_delayed(pwq);
1188 }
1189
1190 /* is flush in progress and are we at the flushing tip? */
1191 if (likely(pwq->flush_color != color))
1192 goto out_put;
1193
1194 /* are there still in-flight works? */
1195 if (pwq->nr_in_flight[color])
1196 goto out_put;
1197
1198 /* this pwq is done, clear flush_color */
1199 pwq->flush_color = -1;
1200
1201 /*
1202 * If this was the last pwq, wake up the first flusher. It
1203 * will handle the rest.
1204 */
1205 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1206 complete(&pwq->wq->first_flusher->done);
1207out_put:
1208 put_pwq(pwq);
1209}
1210
1211/**
1212 * try_to_grab_pending - steal work item from worklist and disable irq
1213 * @work: work item to steal
1214 * @is_dwork: @work is a delayed_work
1215 * @flags: place to store irq state
1216 *
1217 * Try to grab PENDING bit of @work. This function can handle @work in any
1218 * stable state - idle, on timer or on worklist.
1219 *
1220 * Return:
1221 * 1 if @work was pending and we successfully stole PENDING
1222 * 0 if @work was idle and we claimed PENDING
1223 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1224 * -ENOENT if someone else is canceling @work, this state may persist
1225 * for arbitrarily long
1226 *
1227 * Note:
1228 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1229 * interrupted while holding PENDING and @work off queue, irq must be
1230 * disabled on entry. This, combined with delayed_work->timer being
1231 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1232 *
1233 * On successful return, >= 0, irq is disabled and the caller is
1234 * responsible for releasing it using local_irq_restore(*@flags).
1235 *
1236 * This function is safe to call from any context including IRQ handler.
1237 */
1238static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1239 unsigned long *flags)
1240{
1241 struct worker_pool *pool;
1242 struct pool_workqueue *pwq;
1243
1244 local_irq_save(*flags);
1245
1246 /* try to steal the timer if it exists */
1247 if (is_dwork) {
1248 struct delayed_work *dwork = to_delayed_work(work);
1249
1250 /*
1251 * dwork->timer is irqsafe. If del_timer() fails, it's
1252 * guaranteed that the timer is not queued anywhere and not
1253 * running on the local CPU.
1254 */
1255 if (likely(del_timer(&dwork->timer)))
1256 return 1;
1257 }
1258
1259 /* try to claim PENDING the normal way */
1260 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1261 return 0;
1262
David Brazdil0f672f62019-12-10 10:32:29 +00001263 rcu_read_lock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001264 /*
1265 * The queueing is in progress, or it is already queued. Try to
1266 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1267 */
1268 pool = get_work_pool(work);
1269 if (!pool)
1270 goto fail;
1271
1272 spin_lock(&pool->lock);
1273 /*
1274 * work->data is guaranteed to point to pwq only while the work
1275 * item is queued on pwq->wq, and both updating work->data to point
1276 * to pwq on queueing and to pool on dequeueing are done under
1277 * pwq->pool->lock. This in turn guarantees that, if work->data
1278 * points to pwq which is associated with a locked pool, the work
1279 * item is currently queued on that pool.
1280 */
1281 pwq = get_work_pwq(work);
1282 if (pwq && pwq->pool == pool) {
1283 debug_work_deactivate(work);
1284
1285 /*
1286 * A delayed work item cannot be grabbed directly because
1287 * it might have linked NO_COLOR work items which, if left
1288 * on the delayed_list, will confuse pwq->nr_active
1289 * management later on and cause stall. Make sure the work
1290 * item is activated before grabbing.
1291 */
1292 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1293 pwq_activate_delayed_work(work);
1294
1295 list_del_init(&work->entry);
1296 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1297
1298 /* work->data points to pwq iff queued, point to pool */
1299 set_work_pool_and_keep_pending(work, pool->id);
1300
1301 spin_unlock(&pool->lock);
David Brazdil0f672f62019-12-10 10:32:29 +00001302 rcu_read_unlock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001303 return 1;
1304 }
1305 spin_unlock(&pool->lock);
1306fail:
David Brazdil0f672f62019-12-10 10:32:29 +00001307 rcu_read_unlock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001308 local_irq_restore(*flags);
1309 if (work_is_canceling(work))
1310 return -ENOENT;
1311 cpu_relax();
1312 return -EAGAIN;
1313}
1314
1315/**
1316 * insert_work - insert a work into a pool
1317 * @pwq: pwq @work belongs to
1318 * @work: work to insert
1319 * @head: insertion point
1320 * @extra_flags: extra WORK_STRUCT_* flags to set
1321 *
1322 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1323 * work_struct flags.
1324 *
1325 * CONTEXT:
1326 * spin_lock_irq(pool->lock).
1327 */
1328static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1329 struct list_head *head, unsigned int extra_flags)
1330{
1331 struct worker_pool *pool = pwq->pool;
1332
1333 /* we own @work, set data and link */
1334 set_work_pwq(work, pwq, extra_flags);
1335 list_add_tail(&work->entry, head);
1336 get_pwq(pwq);
1337
1338 /*
1339 * Ensure either wq_worker_sleeping() sees the above
1340 * list_add_tail() or we see zero nr_running to avoid workers lying
1341 * around lazily while there are works to be processed.
1342 */
1343 smp_mb();
1344
1345 if (__need_more_worker(pool))
1346 wake_up_worker(pool);
1347}
1348
1349/*
1350 * Test whether @work is being queued from another work executing on the
1351 * same workqueue.
1352 */
1353static bool is_chained_work(struct workqueue_struct *wq)
1354{
1355 struct worker *worker;
1356
1357 worker = current_wq_worker();
1358 /*
David Brazdil0f672f62019-12-10 10:32:29 +00001359 * Return %true iff I'm a worker executing a work item on @wq. If
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001360 * I'm @worker, it's safe to dereference it without locking.
1361 */
1362 return worker && worker->current_pwq->wq == wq;
1363}
1364
1365/*
1366 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1367 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1368 * avoid perturbing sensitive tasks.
1369 */
1370static int wq_select_unbound_cpu(int cpu)
1371{
1372 static bool printed_dbg_warning;
1373 int new_cpu;
1374
1375 if (likely(!wq_debug_force_rr_cpu)) {
1376 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1377 return cpu;
1378 } else if (!printed_dbg_warning) {
1379 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1380 printed_dbg_warning = true;
1381 }
1382
1383 if (cpumask_empty(wq_unbound_cpumask))
1384 return cpu;
1385
1386 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1387 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1388 if (unlikely(new_cpu >= nr_cpu_ids)) {
1389 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1390 if (unlikely(new_cpu >= nr_cpu_ids))
1391 return cpu;
1392 }
1393 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1394
1395 return new_cpu;
1396}
1397
1398static void __queue_work(int cpu, struct workqueue_struct *wq,
1399 struct work_struct *work)
1400{
1401 struct pool_workqueue *pwq;
1402 struct worker_pool *last_pool;
1403 struct list_head *worklist;
1404 unsigned int work_flags;
1405 unsigned int req_cpu = cpu;
1406
1407 /*
1408 * While a work item is PENDING && off queue, a task trying to
1409 * steal the PENDING will busy-loop waiting for it to either get
1410 * queued or lose PENDING. Grabbing PENDING and queueing should
1411 * happen with IRQ disabled.
1412 */
1413 lockdep_assert_irqs_disabled();
1414
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001415
1416 /* if draining, only works from the same workqueue are allowed */
1417 if (unlikely(wq->flags & __WQ_DRAINING) &&
1418 WARN_ON_ONCE(!is_chained_work(wq)))
1419 return;
David Brazdil0f672f62019-12-10 10:32:29 +00001420 rcu_read_lock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001421retry:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001422 /* pwq which will be used unless @work is executing elsewhere */
Olivier Deprez0e641232021-09-23 10:07:05 +02001423 if (wq->flags & WQ_UNBOUND) {
1424 if (req_cpu == WORK_CPU_UNBOUND)
1425 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001426 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
Olivier Deprez0e641232021-09-23 10:07:05 +02001427 } else {
1428 if (req_cpu == WORK_CPU_UNBOUND)
1429 cpu = raw_smp_processor_id();
1430 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1431 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001432
1433 /*
1434 * If @work was previously on a different pool, it might still be
1435 * running there, in which case the work needs to be queued on that
1436 * pool to guarantee non-reentrancy.
1437 */
1438 last_pool = get_work_pool(work);
1439 if (last_pool && last_pool != pwq->pool) {
1440 struct worker *worker;
1441
1442 spin_lock(&last_pool->lock);
1443
1444 worker = find_worker_executing_work(last_pool, work);
1445
1446 if (worker && worker->current_pwq->wq == wq) {
1447 pwq = worker->current_pwq;
1448 } else {
1449 /* meh... not running there, queue here */
1450 spin_unlock(&last_pool->lock);
1451 spin_lock(&pwq->pool->lock);
1452 }
1453 } else {
1454 spin_lock(&pwq->pool->lock);
1455 }
1456
1457 /*
1458 * pwq is determined and locked. For unbound pools, we could have
1459 * raced with pwq release and it could already be dead. If its
1460 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1461 * without another pwq replacing it in the numa_pwq_tbl or while
1462 * work items are executing on it, so the retrying is guaranteed to
1463 * make forward-progress.
1464 */
1465 if (unlikely(!pwq->refcnt)) {
1466 if (wq->flags & WQ_UNBOUND) {
1467 spin_unlock(&pwq->pool->lock);
1468 cpu_relax();
1469 goto retry;
1470 }
1471 /* oops */
1472 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1473 wq->name, cpu);
1474 }
1475
1476 /* pwq determined, queue */
1477 trace_workqueue_queue_work(req_cpu, pwq, work);
1478
David Brazdil0f672f62019-12-10 10:32:29 +00001479 if (WARN_ON(!list_empty(&work->entry)))
1480 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001481
1482 pwq->nr_in_flight[pwq->work_color]++;
1483 work_flags = work_color_to_flags(pwq->work_color);
1484
1485 if (likely(pwq->nr_active < pwq->max_active)) {
1486 trace_workqueue_activate_work(work);
1487 pwq->nr_active++;
1488 worklist = &pwq->pool->worklist;
1489 if (list_empty(worklist))
1490 pwq->pool->watchdog_ts = jiffies;
1491 } else {
1492 work_flags |= WORK_STRUCT_DELAYED;
1493 worklist = &pwq->delayed_works;
1494 }
1495
Olivier Deprez0e641232021-09-23 10:07:05 +02001496 debug_work_activate(work);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001497 insert_work(pwq, work, worklist, work_flags);
1498
David Brazdil0f672f62019-12-10 10:32:29 +00001499out:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001500 spin_unlock(&pwq->pool->lock);
David Brazdil0f672f62019-12-10 10:32:29 +00001501 rcu_read_unlock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001502}
1503
1504/**
1505 * queue_work_on - queue work on specific cpu
1506 * @cpu: CPU number to execute work on
1507 * @wq: workqueue to use
1508 * @work: work to queue
1509 *
1510 * We queue the work to a specific CPU, the caller must ensure it
1511 * can't go away.
1512 *
1513 * Return: %false if @work was already on a queue, %true otherwise.
1514 */
1515bool queue_work_on(int cpu, struct workqueue_struct *wq,
1516 struct work_struct *work)
1517{
1518 bool ret = false;
1519 unsigned long flags;
1520
1521 local_irq_save(flags);
1522
1523 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1524 __queue_work(cpu, wq, work);
1525 ret = true;
1526 }
1527
1528 local_irq_restore(flags);
1529 return ret;
1530}
1531EXPORT_SYMBOL(queue_work_on);
1532
David Brazdil0f672f62019-12-10 10:32:29 +00001533/**
1534 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1535 * @node: NUMA node ID that we want to select a CPU from
1536 *
1537 * This function will attempt to find a "random" cpu available on a given
1538 * node. If there are no CPUs available on the given node it will return
1539 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1540 * available CPU if we need to schedule this work.
1541 */
1542static int workqueue_select_cpu_near(int node)
1543{
1544 int cpu;
1545
1546 /* No point in doing this if NUMA isn't enabled for workqueues */
1547 if (!wq_numa_enabled)
1548 return WORK_CPU_UNBOUND;
1549
1550 /* Delay binding to CPU if node is not valid or online */
1551 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1552 return WORK_CPU_UNBOUND;
1553
1554 /* Use local node/cpu if we are already there */
1555 cpu = raw_smp_processor_id();
1556 if (node == cpu_to_node(cpu))
1557 return cpu;
1558
1559 /* Use "random" otherwise know as "first" online CPU of node */
1560 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1561
1562 /* If CPU is valid return that, otherwise just defer */
1563 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1564}
1565
1566/**
1567 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1568 * @node: NUMA node that we are targeting the work for
1569 * @wq: workqueue to use
1570 * @work: work to queue
1571 *
1572 * We queue the work to a "random" CPU within a given NUMA node. The basic
1573 * idea here is to provide a way to somehow associate work with a given
1574 * NUMA node.
1575 *
1576 * This function will only make a best effort attempt at getting this onto
1577 * the right NUMA node. If no node is requested or the requested node is
1578 * offline then we just fall back to standard queue_work behavior.
1579 *
1580 * Currently the "random" CPU ends up being the first available CPU in the
1581 * intersection of cpu_online_mask and the cpumask of the node, unless we
1582 * are running on the node. In that case we just use the current CPU.
1583 *
1584 * Return: %false if @work was already on a queue, %true otherwise.
1585 */
1586bool queue_work_node(int node, struct workqueue_struct *wq,
1587 struct work_struct *work)
1588{
1589 unsigned long flags;
1590 bool ret = false;
1591
1592 /*
1593 * This current implementation is specific to unbound workqueues.
1594 * Specifically we only return the first available CPU for a given
1595 * node instead of cycling through individual CPUs within the node.
1596 *
1597 * If this is used with a per-cpu workqueue then the logic in
1598 * workqueue_select_cpu_near would need to be updated to allow for
1599 * some round robin type logic.
1600 */
1601 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1602
1603 local_irq_save(flags);
1604
1605 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1606 int cpu = workqueue_select_cpu_near(node);
1607
1608 __queue_work(cpu, wq, work);
1609 ret = true;
1610 }
1611
1612 local_irq_restore(flags);
1613 return ret;
1614}
1615EXPORT_SYMBOL_GPL(queue_work_node);
1616
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001617void delayed_work_timer_fn(struct timer_list *t)
1618{
1619 struct delayed_work *dwork = from_timer(dwork, t, timer);
1620
1621 /* should have been called from irqsafe timer with irq already off */
1622 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1623}
1624EXPORT_SYMBOL(delayed_work_timer_fn);
1625
1626static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1627 struct delayed_work *dwork, unsigned long delay)
1628{
1629 struct timer_list *timer = &dwork->timer;
1630 struct work_struct *work = &dwork->work;
1631
1632 WARN_ON_ONCE(!wq);
1633 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1634 WARN_ON_ONCE(timer_pending(timer));
1635 WARN_ON_ONCE(!list_empty(&work->entry));
1636
1637 /*
1638 * If @delay is 0, queue @dwork->work immediately. This is for
1639 * both optimization and correctness. The earliest @timer can
1640 * expire is on the closest next tick and delayed_work users depend
1641 * on that there's no such delay when @delay is 0.
1642 */
1643 if (!delay) {
1644 __queue_work(cpu, wq, &dwork->work);
1645 return;
1646 }
1647
1648 dwork->wq = wq;
1649 dwork->cpu = cpu;
1650 timer->expires = jiffies + delay;
1651
1652 if (unlikely(cpu != WORK_CPU_UNBOUND))
1653 add_timer_on(timer, cpu);
1654 else
1655 add_timer(timer);
1656}
1657
1658/**
1659 * queue_delayed_work_on - queue work on specific CPU after delay
1660 * @cpu: CPU number to execute work on
1661 * @wq: workqueue to use
1662 * @dwork: work to queue
1663 * @delay: number of jiffies to wait before queueing
1664 *
1665 * Return: %false if @work was already on a queue, %true otherwise. If
1666 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1667 * execution.
1668 */
1669bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1670 struct delayed_work *dwork, unsigned long delay)
1671{
1672 struct work_struct *work = &dwork->work;
1673 bool ret = false;
1674 unsigned long flags;
1675
1676 /* read the comment in __queue_work() */
1677 local_irq_save(flags);
1678
1679 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1680 __queue_delayed_work(cpu, wq, dwork, delay);
1681 ret = true;
1682 }
1683
1684 local_irq_restore(flags);
1685 return ret;
1686}
1687EXPORT_SYMBOL(queue_delayed_work_on);
1688
1689/**
1690 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1691 * @cpu: CPU number to execute work on
1692 * @wq: workqueue to use
1693 * @dwork: work to queue
1694 * @delay: number of jiffies to wait before queueing
1695 *
1696 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1697 * modify @dwork's timer so that it expires after @delay. If @delay is
1698 * zero, @work is guaranteed to be scheduled immediately regardless of its
1699 * current state.
1700 *
1701 * Return: %false if @dwork was idle and queued, %true if @dwork was
1702 * pending and its timer was modified.
1703 *
1704 * This function is safe to call from any context including IRQ handler.
1705 * See try_to_grab_pending() for details.
1706 */
1707bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1708 struct delayed_work *dwork, unsigned long delay)
1709{
1710 unsigned long flags;
1711 int ret;
1712
1713 do {
1714 ret = try_to_grab_pending(&dwork->work, true, &flags);
1715 } while (unlikely(ret == -EAGAIN));
1716
1717 if (likely(ret >= 0)) {
1718 __queue_delayed_work(cpu, wq, dwork, delay);
1719 local_irq_restore(flags);
1720 }
1721
1722 /* -ENOENT from try_to_grab_pending() becomes %true */
1723 return ret;
1724}
1725EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1726
1727static void rcu_work_rcufn(struct rcu_head *rcu)
1728{
1729 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1730
1731 /* read the comment in __queue_work() */
1732 local_irq_disable();
1733 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1734 local_irq_enable();
1735}
1736
1737/**
1738 * queue_rcu_work - queue work after a RCU grace period
1739 * @wq: workqueue to use
1740 * @rwork: work to queue
1741 *
1742 * Return: %false if @rwork was already pending, %true otherwise. Note
1743 * that a full RCU grace period is guaranteed only after a %true return.
David Brazdil0f672f62019-12-10 10:32:29 +00001744 * While @rwork is guaranteed to be executed after a %false return, the
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001745 * execution may happen before a full RCU grace period has passed.
1746 */
1747bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1748{
1749 struct work_struct *work = &rwork->work;
1750
1751 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1752 rwork->wq = wq;
1753 call_rcu(&rwork->rcu, rcu_work_rcufn);
1754 return true;
1755 }
1756
1757 return false;
1758}
1759EXPORT_SYMBOL(queue_rcu_work);
1760
1761/**
1762 * worker_enter_idle - enter idle state
1763 * @worker: worker which is entering idle state
1764 *
1765 * @worker is entering idle state. Update stats and idle timer if
1766 * necessary.
1767 *
1768 * LOCKING:
1769 * spin_lock_irq(pool->lock).
1770 */
1771static void worker_enter_idle(struct worker *worker)
1772{
1773 struct worker_pool *pool = worker->pool;
1774
1775 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1776 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1777 (worker->hentry.next || worker->hentry.pprev)))
1778 return;
1779
1780 /* can't use worker_set_flags(), also called from create_worker() */
1781 worker->flags |= WORKER_IDLE;
1782 pool->nr_idle++;
1783 worker->last_active = jiffies;
1784
1785 /* idle_list is LIFO */
1786 list_add(&worker->entry, &pool->idle_list);
1787
1788 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1789 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1790
1791 /*
1792 * Sanity check nr_running. Because unbind_workers() releases
1793 * pool->lock between setting %WORKER_UNBOUND and zapping
1794 * nr_running, the warning may trigger spuriously. Check iff
1795 * unbind is not in progress.
1796 */
1797 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1798 pool->nr_workers == pool->nr_idle &&
1799 atomic_read(&pool->nr_running));
1800}
1801
1802/**
1803 * worker_leave_idle - leave idle state
1804 * @worker: worker which is leaving idle state
1805 *
1806 * @worker is leaving idle state. Update stats.
1807 *
1808 * LOCKING:
1809 * spin_lock_irq(pool->lock).
1810 */
1811static void worker_leave_idle(struct worker *worker)
1812{
1813 struct worker_pool *pool = worker->pool;
1814
1815 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1816 return;
1817 worker_clr_flags(worker, WORKER_IDLE);
1818 pool->nr_idle--;
1819 list_del_init(&worker->entry);
1820}
1821
1822static struct worker *alloc_worker(int node)
1823{
1824 struct worker *worker;
1825
1826 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1827 if (worker) {
1828 INIT_LIST_HEAD(&worker->entry);
1829 INIT_LIST_HEAD(&worker->scheduled);
1830 INIT_LIST_HEAD(&worker->node);
1831 /* on creation a worker is in !idle && prep state */
1832 worker->flags = WORKER_PREP;
1833 }
1834 return worker;
1835}
1836
1837/**
1838 * worker_attach_to_pool() - attach a worker to a pool
1839 * @worker: worker to be attached
1840 * @pool: the target pool
1841 *
1842 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1843 * cpu-binding of @worker are kept coordinated with the pool across
1844 * cpu-[un]hotplugs.
1845 */
1846static void worker_attach_to_pool(struct worker *worker,
1847 struct worker_pool *pool)
1848{
1849 mutex_lock(&wq_pool_attach_mutex);
1850
1851 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001852 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1853 * stable across this function. See the comments above the flag
1854 * definition for details.
1855 */
1856 if (pool->flags & POOL_DISASSOCIATED)
1857 worker->flags |= WORKER_UNBOUND;
1858
Olivier Deprez0e641232021-09-23 10:07:05 +02001859 if (worker->rescue_wq)
1860 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1861
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001862 list_add_tail(&worker->node, &pool->workers);
1863 worker->pool = pool;
1864
1865 mutex_unlock(&wq_pool_attach_mutex);
1866}
1867
1868/**
1869 * worker_detach_from_pool() - detach a worker from its pool
1870 * @worker: worker which is attached to its pool
1871 *
1872 * Undo the attaching which had been done in worker_attach_to_pool(). The
1873 * caller worker shouldn't access to the pool after detached except it has
1874 * other reference to the pool.
1875 */
1876static void worker_detach_from_pool(struct worker *worker)
1877{
1878 struct worker_pool *pool = worker->pool;
1879 struct completion *detach_completion = NULL;
1880
1881 mutex_lock(&wq_pool_attach_mutex);
1882
1883 list_del(&worker->node);
1884 worker->pool = NULL;
1885
1886 if (list_empty(&pool->workers))
1887 detach_completion = pool->detach_completion;
1888 mutex_unlock(&wq_pool_attach_mutex);
1889
1890 /* clear leftover flags without pool->lock after it is detached */
1891 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1892
1893 if (detach_completion)
1894 complete(detach_completion);
1895}
1896
1897/**
1898 * create_worker - create a new workqueue worker
1899 * @pool: pool the new worker will belong to
1900 *
1901 * Create and start a new worker which is attached to @pool.
1902 *
1903 * CONTEXT:
1904 * Might sleep. Does GFP_KERNEL allocations.
1905 *
1906 * Return:
1907 * Pointer to the newly created worker.
1908 */
1909static struct worker *create_worker(struct worker_pool *pool)
1910{
1911 struct worker *worker = NULL;
1912 int id = -1;
1913 char id_buf[16];
1914
1915 /* ID is needed to determine kthread name */
1916 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1917 if (id < 0)
1918 goto fail;
1919
1920 worker = alloc_worker(pool->node);
1921 if (!worker)
1922 goto fail;
1923
1924 worker->id = id;
1925
1926 if (pool->cpu >= 0)
1927 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1928 pool->attrs->nice < 0 ? "H" : "");
1929 else
1930 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1931
1932 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1933 "kworker/%s", id_buf);
1934 if (IS_ERR(worker->task))
1935 goto fail;
1936
1937 set_user_nice(worker->task, pool->attrs->nice);
1938 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1939
1940 /* successful, attach the worker to the pool */
1941 worker_attach_to_pool(worker, pool);
1942
1943 /* start the newly created worker */
1944 spin_lock_irq(&pool->lock);
1945 worker->pool->nr_workers++;
1946 worker_enter_idle(worker);
1947 wake_up_process(worker->task);
1948 spin_unlock_irq(&pool->lock);
1949
1950 return worker;
1951
1952fail:
1953 if (id >= 0)
1954 ida_simple_remove(&pool->worker_ida, id);
1955 kfree(worker);
1956 return NULL;
1957}
1958
1959/**
1960 * destroy_worker - destroy a workqueue worker
1961 * @worker: worker to be destroyed
1962 *
1963 * Destroy @worker and adjust @pool stats accordingly. The worker should
1964 * be idle.
1965 *
1966 * CONTEXT:
1967 * spin_lock_irq(pool->lock).
1968 */
1969static void destroy_worker(struct worker *worker)
1970{
1971 struct worker_pool *pool = worker->pool;
1972
1973 lockdep_assert_held(&pool->lock);
1974
1975 /* sanity check frenzy */
1976 if (WARN_ON(worker->current_work) ||
1977 WARN_ON(!list_empty(&worker->scheduled)) ||
1978 WARN_ON(!(worker->flags & WORKER_IDLE)))
1979 return;
1980
1981 pool->nr_workers--;
1982 pool->nr_idle--;
1983
1984 list_del_init(&worker->entry);
1985 worker->flags |= WORKER_DIE;
1986 wake_up_process(worker->task);
1987}
1988
1989static void idle_worker_timeout(struct timer_list *t)
1990{
1991 struct worker_pool *pool = from_timer(pool, t, idle_timer);
1992
1993 spin_lock_irq(&pool->lock);
1994
1995 while (too_many_workers(pool)) {
1996 struct worker *worker;
1997 unsigned long expires;
1998
1999 /* idle_list is kept in LIFO order, check the last one */
2000 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2001 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2002
2003 if (time_before(jiffies, expires)) {
2004 mod_timer(&pool->idle_timer, expires);
2005 break;
2006 }
2007
2008 destroy_worker(worker);
2009 }
2010
2011 spin_unlock_irq(&pool->lock);
2012}
2013
2014static void send_mayday(struct work_struct *work)
2015{
2016 struct pool_workqueue *pwq = get_work_pwq(work);
2017 struct workqueue_struct *wq = pwq->wq;
2018
2019 lockdep_assert_held(&wq_mayday_lock);
2020
2021 if (!wq->rescuer)
2022 return;
2023
2024 /* mayday mayday mayday */
2025 if (list_empty(&pwq->mayday_node)) {
2026 /*
2027 * If @pwq is for an unbound wq, its base ref may be put at
2028 * any time due to an attribute change. Pin @pwq until the
2029 * rescuer is done with it.
2030 */
2031 get_pwq(pwq);
2032 list_add_tail(&pwq->mayday_node, &wq->maydays);
2033 wake_up_process(wq->rescuer->task);
2034 }
2035}
2036
2037static void pool_mayday_timeout(struct timer_list *t)
2038{
2039 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2040 struct work_struct *work;
2041
2042 spin_lock_irq(&pool->lock);
2043 spin_lock(&wq_mayday_lock); /* for wq->maydays */
2044
2045 if (need_to_create_worker(pool)) {
2046 /*
2047 * We've been trying to create a new worker but
2048 * haven't been successful. We might be hitting an
2049 * allocation deadlock. Send distress signals to
2050 * rescuers.
2051 */
2052 list_for_each_entry(work, &pool->worklist, entry)
2053 send_mayday(work);
2054 }
2055
2056 spin_unlock(&wq_mayday_lock);
2057 spin_unlock_irq(&pool->lock);
2058
2059 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2060}
2061
2062/**
2063 * maybe_create_worker - create a new worker if necessary
2064 * @pool: pool to create a new worker for
2065 *
2066 * Create a new worker for @pool if necessary. @pool is guaranteed to
2067 * have at least one idle worker on return from this function. If
2068 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2069 * sent to all rescuers with works scheduled on @pool to resolve
2070 * possible allocation deadlock.
2071 *
2072 * On return, need_to_create_worker() is guaranteed to be %false and
2073 * may_start_working() %true.
2074 *
2075 * LOCKING:
2076 * spin_lock_irq(pool->lock) which may be released and regrabbed
2077 * multiple times. Does GFP_KERNEL allocations. Called only from
2078 * manager.
2079 */
2080static void maybe_create_worker(struct worker_pool *pool)
2081__releases(&pool->lock)
2082__acquires(&pool->lock)
2083{
2084restart:
2085 spin_unlock_irq(&pool->lock);
2086
2087 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2088 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2089
2090 while (true) {
2091 if (create_worker(pool) || !need_to_create_worker(pool))
2092 break;
2093
2094 schedule_timeout_interruptible(CREATE_COOLDOWN);
2095
2096 if (!need_to_create_worker(pool))
2097 break;
2098 }
2099
2100 del_timer_sync(&pool->mayday_timer);
2101 spin_lock_irq(&pool->lock);
2102 /*
2103 * This is necessary even after a new worker was just successfully
2104 * created as @pool->lock was dropped and the new worker might have
2105 * already become busy.
2106 */
2107 if (need_to_create_worker(pool))
2108 goto restart;
2109}
2110
2111/**
2112 * manage_workers - manage worker pool
2113 * @worker: self
2114 *
2115 * Assume the manager role and manage the worker pool @worker belongs
2116 * to. At any given time, there can be only zero or one manager per
2117 * pool. The exclusion is handled automatically by this function.
2118 *
2119 * The caller can safely start processing works on false return. On
2120 * true return, it's guaranteed that need_to_create_worker() is false
2121 * and may_start_working() is true.
2122 *
2123 * CONTEXT:
2124 * spin_lock_irq(pool->lock) which may be released and regrabbed
2125 * multiple times. Does GFP_KERNEL allocations.
2126 *
2127 * Return:
2128 * %false if the pool doesn't need management and the caller can safely
2129 * start processing works, %true if management function was performed and
2130 * the conditions that the caller verified before calling the function may
2131 * no longer be true.
2132 */
2133static bool manage_workers(struct worker *worker)
2134{
2135 struct worker_pool *pool = worker->pool;
2136
2137 if (pool->flags & POOL_MANAGER_ACTIVE)
2138 return false;
2139
2140 pool->flags |= POOL_MANAGER_ACTIVE;
2141 pool->manager = worker;
2142
2143 maybe_create_worker(pool);
2144
2145 pool->manager = NULL;
2146 pool->flags &= ~POOL_MANAGER_ACTIVE;
2147 wake_up(&wq_manager_wait);
2148 return true;
2149}
2150
2151/**
2152 * process_one_work - process single work
2153 * @worker: self
2154 * @work: work to process
2155 *
2156 * Process @work. This function contains all the logics necessary to
2157 * process a single work including synchronization against and
2158 * interaction with other workers on the same cpu, queueing and
2159 * flushing. As long as context requirement is met, any worker can
2160 * call this function to process a work.
2161 *
2162 * CONTEXT:
2163 * spin_lock_irq(pool->lock) which is released and regrabbed.
2164 */
2165static void process_one_work(struct worker *worker, struct work_struct *work)
2166__releases(&pool->lock)
2167__acquires(&pool->lock)
2168{
2169 struct pool_workqueue *pwq = get_work_pwq(work);
2170 struct worker_pool *pool = worker->pool;
2171 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2172 int work_color;
2173 struct worker *collision;
2174#ifdef CONFIG_LOCKDEP
2175 /*
2176 * It is permissible to free the struct work_struct from
2177 * inside the function that is called from it, this we need to
2178 * take into account for lockdep too. To avoid bogus "held
2179 * lock freed" warnings as well as problems when looking into
2180 * work->lockdep_map, make a copy and use that here.
2181 */
2182 struct lockdep_map lockdep_map;
2183
2184 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2185#endif
2186 /* ensure we're on the correct CPU */
2187 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2188 raw_smp_processor_id() != pool->cpu);
2189
2190 /*
2191 * A single work shouldn't be executed concurrently by
2192 * multiple workers on a single cpu. Check whether anyone is
2193 * already processing the work. If so, defer the work to the
2194 * currently executing one.
2195 */
2196 collision = find_worker_executing_work(pool, work);
2197 if (unlikely(collision)) {
2198 move_linked_works(work, &collision->scheduled, NULL);
2199 return;
2200 }
2201
2202 /* claim and dequeue */
2203 debug_work_deactivate(work);
2204 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2205 worker->current_work = work;
2206 worker->current_func = work->func;
2207 worker->current_pwq = pwq;
2208 work_color = get_work_color(work);
2209
2210 /*
2211 * Record wq name for cmdline and debug reporting, may get
2212 * overridden through set_worker_desc().
2213 */
2214 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2215
2216 list_del_init(&work->entry);
2217
2218 /*
2219 * CPU intensive works don't participate in concurrency management.
2220 * They're the scheduler's responsibility. This takes @worker out
2221 * of concurrency management and the next code block will chain
2222 * execution of the pending work items.
2223 */
2224 if (unlikely(cpu_intensive))
2225 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2226
2227 /*
2228 * Wake up another worker if necessary. The condition is always
2229 * false for normal per-cpu workers since nr_running would always
2230 * be >= 1 at this point. This is used to chain execution of the
2231 * pending work items for WORKER_NOT_RUNNING workers such as the
2232 * UNBOUND and CPU_INTENSIVE ones.
2233 */
2234 if (need_more_worker(pool))
2235 wake_up_worker(pool);
2236
2237 /*
2238 * Record the last pool and clear PENDING which should be the last
2239 * update to @work. Also, do this inside @pool->lock so that
2240 * PENDING and queued state changes happen together while IRQ is
2241 * disabled.
2242 */
2243 set_work_pool_and_clear_pending(work, pool->id);
2244
2245 spin_unlock_irq(&pool->lock);
2246
2247 lock_map_acquire(&pwq->wq->lockdep_map);
2248 lock_map_acquire(&lockdep_map);
2249 /*
2250 * Strictly speaking we should mark the invariant state without holding
2251 * any locks, that is, before these two lock_map_acquire()'s.
2252 *
2253 * However, that would result in:
2254 *
2255 * A(W1)
2256 * WFC(C)
2257 * A(W1)
2258 * C(C)
2259 *
2260 * Which would create W1->C->W1 dependencies, even though there is no
2261 * actual deadlock possible. There are two solutions, using a
2262 * read-recursive acquire on the work(queue) 'locks', but this will then
2263 * hit the lockdep limitation on recursive locks, or simply discard
2264 * these locks.
2265 *
2266 * AFAICT there is no possible deadlock scenario between the
2267 * flush_work() and complete() primitives (except for single-threaded
2268 * workqueues), so hiding them isn't a problem.
2269 */
2270 lockdep_invariant_state(true);
2271 trace_workqueue_execute_start(work);
2272 worker->current_func(work);
2273 /*
2274 * While we must be careful to not use "work" after this, the trace
2275 * point will only record its address.
2276 */
2277 trace_workqueue_execute_end(work);
2278 lock_map_release(&lockdep_map);
2279 lock_map_release(&pwq->wq->lockdep_map);
2280
2281 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2282 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
David Brazdil0f672f62019-12-10 10:32:29 +00002283 " last function: %ps\n",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002284 current->comm, preempt_count(), task_pid_nr(current),
2285 worker->current_func);
2286 debug_show_held_locks(current);
2287 dump_stack();
2288 }
2289
2290 /*
2291 * The following prevents a kworker from hogging CPU on !PREEMPT
2292 * kernels, where a requeueing work item waiting for something to
2293 * happen could deadlock with stop_machine as such work item could
2294 * indefinitely requeue itself while all other CPUs are trapped in
2295 * stop_machine. At the same time, report a quiescent RCU state so
2296 * the same condition doesn't freeze RCU.
2297 */
2298 cond_resched();
2299
2300 spin_lock_irq(&pool->lock);
2301
2302 /* clear cpu intensive status */
2303 if (unlikely(cpu_intensive))
2304 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2305
David Brazdil0f672f62019-12-10 10:32:29 +00002306 /* tag the worker for identification in schedule() */
2307 worker->last_func = worker->current_func;
2308
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002309 /* we're done with it, release */
2310 hash_del(&worker->hentry);
2311 worker->current_work = NULL;
2312 worker->current_func = NULL;
2313 worker->current_pwq = NULL;
2314 pwq_dec_nr_in_flight(pwq, work_color);
2315}
2316
2317/**
2318 * process_scheduled_works - process scheduled works
2319 * @worker: self
2320 *
2321 * Process all scheduled works. Please note that the scheduled list
2322 * may change while processing a work, so this function repeatedly
2323 * fetches a work from the top and executes it.
2324 *
2325 * CONTEXT:
2326 * spin_lock_irq(pool->lock) which may be released and regrabbed
2327 * multiple times.
2328 */
2329static void process_scheduled_works(struct worker *worker)
2330{
2331 while (!list_empty(&worker->scheduled)) {
2332 struct work_struct *work = list_first_entry(&worker->scheduled,
2333 struct work_struct, entry);
2334 process_one_work(worker, work);
2335 }
2336}
2337
2338static void set_pf_worker(bool val)
2339{
2340 mutex_lock(&wq_pool_attach_mutex);
2341 if (val)
2342 current->flags |= PF_WQ_WORKER;
2343 else
2344 current->flags &= ~PF_WQ_WORKER;
2345 mutex_unlock(&wq_pool_attach_mutex);
2346}
2347
2348/**
2349 * worker_thread - the worker thread function
2350 * @__worker: self
2351 *
2352 * The worker thread function. All workers belong to a worker_pool -
2353 * either a per-cpu one or dynamic unbound one. These workers process all
2354 * work items regardless of their specific target workqueue. The only
2355 * exception is work items which belong to workqueues with a rescuer which
2356 * will be explained in rescuer_thread().
2357 *
2358 * Return: 0
2359 */
2360static int worker_thread(void *__worker)
2361{
2362 struct worker *worker = __worker;
2363 struct worker_pool *pool = worker->pool;
2364
2365 /* tell the scheduler that this is a workqueue worker */
2366 set_pf_worker(true);
2367woke_up:
2368 spin_lock_irq(&pool->lock);
2369
2370 /* am I supposed to die? */
2371 if (unlikely(worker->flags & WORKER_DIE)) {
2372 spin_unlock_irq(&pool->lock);
2373 WARN_ON_ONCE(!list_empty(&worker->entry));
2374 set_pf_worker(false);
2375
2376 set_task_comm(worker->task, "kworker/dying");
2377 ida_simple_remove(&pool->worker_ida, worker->id);
2378 worker_detach_from_pool(worker);
2379 kfree(worker);
2380 return 0;
2381 }
2382
2383 worker_leave_idle(worker);
2384recheck:
2385 /* no more worker necessary? */
2386 if (!need_more_worker(pool))
2387 goto sleep;
2388
2389 /* do we need to manage? */
2390 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2391 goto recheck;
2392
2393 /*
2394 * ->scheduled list can only be filled while a worker is
2395 * preparing to process a work or actually processing it.
2396 * Make sure nobody diddled with it while I was sleeping.
2397 */
2398 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2399
2400 /*
2401 * Finish PREP stage. We're guaranteed to have at least one idle
2402 * worker or that someone else has already assumed the manager
2403 * role. This is where @worker starts participating in concurrency
2404 * management if applicable and concurrency management is restored
2405 * after being rebound. See rebind_workers() for details.
2406 */
2407 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2408
2409 do {
2410 struct work_struct *work =
2411 list_first_entry(&pool->worklist,
2412 struct work_struct, entry);
2413
2414 pool->watchdog_ts = jiffies;
2415
2416 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2417 /* optimization path, not strictly necessary */
2418 process_one_work(worker, work);
2419 if (unlikely(!list_empty(&worker->scheduled)))
2420 process_scheduled_works(worker);
2421 } else {
2422 move_linked_works(work, &worker->scheduled, NULL);
2423 process_scheduled_works(worker);
2424 }
2425 } while (keep_working(pool));
2426
2427 worker_set_flags(worker, WORKER_PREP);
2428sleep:
2429 /*
2430 * pool->lock is held and there's no work to process and no need to
2431 * manage, sleep. Workers are woken up only while holding
2432 * pool->lock or from local cpu, so setting the current state
2433 * before releasing pool->lock is enough to prevent losing any
2434 * event.
2435 */
2436 worker_enter_idle(worker);
2437 __set_current_state(TASK_IDLE);
2438 spin_unlock_irq(&pool->lock);
2439 schedule();
2440 goto woke_up;
2441}
2442
2443/**
2444 * rescuer_thread - the rescuer thread function
2445 * @__rescuer: self
2446 *
2447 * Workqueue rescuer thread function. There's one rescuer for each
2448 * workqueue which has WQ_MEM_RECLAIM set.
2449 *
2450 * Regular work processing on a pool may block trying to create a new
2451 * worker which uses GFP_KERNEL allocation which has slight chance of
2452 * developing into deadlock if some works currently on the same queue
2453 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2454 * the problem rescuer solves.
2455 *
2456 * When such condition is possible, the pool summons rescuers of all
2457 * workqueues which have works queued on the pool and let them process
2458 * those works so that forward progress can be guaranteed.
2459 *
2460 * This should happen rarely.
2461 *
2462 * Return: 0
2463 */
2464static int rescuer_thread(void *__rescuer)
2465{
2466 struct worker *rescuer = __rescuer;
2467 struct workqueue_struct *wq = rescuer->rescue_wq;
2468 struct list_head *scheduled = &rescuer->scheduled;
2469 bool should_stop;
2470
2471 set_user_nice(current, RESCUER_NICE_LEVEL);
2472
2473 /*
2474 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2475 * doesn't participate in concurrency management.
2476 */
2477 set_pf_worker(true);
2478repeat:
2479 set_current_state(TASK_IDLE);
2480
2481 /*
2482 * By the time the rescuer is requested to stop, the workqueue
2483 * shouldn't have any work pending, but @wq->maydays may still have
2484 * pwq(s) queued. This can happen by non-rescuer workers consuming
2485 * all the work items before the rescuer got to them. Go through
2486 * @wq->maydays processing before acting on should_stop so that the
2487 * list is always empty on exit.
2488 */
2489 should_stop = kthread_should_stop();
2490
2491 /* see whether any pwq is asking for help */
2492 spin_lock_irq(&wq_mayday_lock);
2493
2494 while (!list_empty(&wq->maydays)) {
2495 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2496 struct pool_workqueue, mayday_node);
2497 struct worker_pool *pool = pwq->pool;
2498 struct work_struct *work, *n;
2499 bool first = true;
2500
2501 __set_current_state(TASK_RUNNING);
2502 list_del_init(&pwq->mayday_node);
2503
2504 spin_unlock_irq(&wq_mayday_lock);
2505
2506 worker_attach_to_pool(rescuer, pool);
2507
2508 spin_lock_irq(&pool->lock);
2509
2510 /*
2511 * Slurp in all works issued via this workqueue and
2512 * process'em.
2513 */
2514 WARN_ON_ONCE(!list_empty(scheduled));
2515 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2516 if (get_work_pwq(work) == pwq) {
2517 if (first)
2518 pool->watchdog_ts = jiffies;
2519 move_linked_works(work, scheduled, &n);
2520 }
2521 first = false;
2522 }
2523
2524 if (!list_empty(scheduled)) {
2525 process_scheduled_works(rescuer);
2526
2527 /*
2528 * The above execution of rescued work items could
2529 * have created more to rescue through
2530 * pwq_activate_first_delayed() or chained
2531 * queueing. Let's put @pwq back on mayday list so
2532 * that such back-to-back work items, which may be
2533 * being used to relieve memory pressure, don't
2534 * incur MAYDAY_INTERVAL delay inbetween.
2535 */
2536 if (need_to_create_worker(pool)) {
2537 spin_lock(&wq_mayday_lock);
Olivier Deprez0e641232021-09-23 10:07:05 +02002538 /*
2539 * Queue iff we aren't racing destruction
2540 * and somebody else hasn't queued it already.
2541 */
2542 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2543 get_pwq(pwq);
2544 list_add_tail(&pwq->mayday_node, &wq->maydays);
2545 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002546 spin_unlock(&wq_mayday_lock);
2547 }
2548 }
2549
2550 /*
2551 * Put the reference grabbed by send_mayday(). @pool won't
2552 * go away while we're still attached to it.
2553 */
2554 put_pwq(pwq);
2555
2556 /*
2557 * Leave this pool. If need_more_worker() is %true, notify a
2558 * regular worker; otherwise, we end up with 0 concurrency
2559 * and stalling the execution.
2560 */
2561 if (need_more_worker(pool))
2562 wake_up_worker(pool);
2563
2564 spin_unlock_irq(&pool->lock);
2565
2566 worker_detach_from_pool(rescuer);
2567
2568 spin_lock_irq(&wq_mayday_lock);
2569 }
2570
2571 spin_unlock_irq(&wq_mayday_lock);
2572
2573 if (should_stop) {
2574 __set_current_state(TASK_RUNNING);
2575 set_pf_worker(false);
2576 return 0;
2577 }
2578
2579 /* rescuers should never participate in concurrency management */
2580 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2581 schedule();
2582 goto repeat;
2583}
2584
2585/**
2586 * check_flush_dependency - check for flush dependency sanity
2587 * @target_wq: workqueue being flushed
2588 * @target_work: work item being flushed (NULL for workqueue flushes)
2589 *
2590 * %current is trying to flush the whole @target_wq or @target_work on it.
2591 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2592 * reclaiming memory or running on a workqueue which doesn't have
2593 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2594 * a deadlock.
2595 */
2596static void check_flush_dependency(struct workqueue_struct *target_wq,
2597 struct work_struct *target_work)
2598{
2599 work_func_t target_func = target_work ? target_work->func : NULL;
2600 struct worker *worker;
2601
2602 if (target_wq->flags & WQ_MEM_RECLAIM)
2603 return;
2604
2605 worker = current_wq_worker();
2606
2607 WARN_ONCE(current->flags & PF_MEMALLOC,
David Brazdil0f672f62019-12-10 10:32:29 +00002608 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002609 current->pid, current->comm, target_wq->name, target_func);
2610 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2611 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
David Brazdil0f672f62019-12-10 10:32:29 +00002612 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002613 worker->current_pwq->wq->name, worker->current_func,
2614 target_wq->name, target_func);
2615}
2616
2617struct wq_barrier {
2618 struct work_struct work;
2619 struct completion done;
2620 struct task_struct *task; /* purely informational */
2621};
2622
2623static void wq_barrier_func(struct work_struct *work)
2624{
2625 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2626 complete(&barr->done);
2627}
2628
2629/**
2630 * insert_wq_barrier - insert a barrier work
2631 * @pwq: pwq to insert barrier into
2632 * @barr: wq_barrier to insert
2633 * @target: target work to attach @barr to
2634 * @worker: worker currently executing @target, NULL if @target is not executing
2635 *
2636 * @barr is linked to @target such that @barr is completed only after
2637 * @target finishes execution. Please note that the ordering
2638 * guarantee is observed only with respect to @target and on the local
2639 * cpu.
2640 *
2641 * Currently, a queued barrier can't be canceled. This is because
2642 * try_to_grab_pending() can't determine whether the work to be
2643 * grabbed is at the head of the queue and thus can't clear LINKED
2644 * flag of the previous work while there must be a valid next work
2645 * after a work with LINKED flag set.
2646 *
2647 * Note that when @worker is non-NULL, @target may be modified
2648 * underneath us, so we can't reliably determine pwq from @target.
2649 *
2650 * CONTEXT:
2651 * spin_lock_irq(pool->lock).
2652 */
2653static void insert_wq_barrier(struct pool_workqueue *pwq,
2654 struct wq_barrier *barr,
2655 struct work_struct *target, struct worker *worker)
2656{
2657 struct list_head *head;
2658 unsigned int linked = 0;
2659
2660 /*
2661 * debugobject calls are safe here even with pool->lock locked
2662 * as we know for sure that this will not trigger any of the
2663 * checks and call back into the fixup functions where we
2664 * might deadlock.
2665 */
2666 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2667 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2668
2669 init_completion_map(&barr->done, &target->lockdep_map);
2670
2671 barr->task = current;
2672
2673 /*
2674 * If @target is currently being executed, schedule the
2675 * barrier to the worker; otherwise, put it after @target.
2676 */
2677 if (worker)
2678 head = worker->scheduled.next;
2679 else {
2680 unsigned long *bits = work_data_bits(target);
2681
2682 head = target->entry.next;
2683 /* there can already be other linked works, inherit and set */
2684 linked = *bits & WORK_STRUCT_LINKED;
2685 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2686 }
2687
2688 debug_work_activate(&barr->work);
2689 insert_work(pwq, &barr->work, head,
2690 work_color_to_flags(WORK_NO_COLOR) | linked);
2691}
2692
2693/**
2694 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2695 * @wq: workqueue being flushed
2696 * @flush_color: new flush color, < 0 for no-op
2697 * @work_color: new work color, < 0 for no-op
2698 *
2699 * Prepare pwqs for workqueue flushing.
2700 *
2701 * If @flush_color is non-negative, flush_color on all pwqs should be
2702 * -1. If no pwq has in-flight commands at the specified color, all
2703 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2704 * has in flight commands, its pwq->flush_color is set to
2705 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2706 * wakeup logic is armed and %true is returned.
2707 *
2708 * The caller should have initialized @wq->first_flusher prior to
2709 * calling this function with non-negative @flush_color. If
2710 * @flush_color is negative, no flush color update is done and %false
2711 * is returned.
2712 *
2713 * If @work_color is non-negative, all pwqs should have the same
2714 * work_color which is previous to @work_color and all will be
2715 * advanced to @work_color.
2716 *
2717 * CONTEXT:
2718 * mutex_lock(wq->mutex).
2719 *
2720 * Return:
2721 * %true if @flush_color >= 0 and there's something to flush. %false
2722 * otherwise.
2723 */
2724static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2725 int flush_color, int work_color)
2726{
2727 bool wait = false;
2728 struct pool_workqueue *pwq;
2729
2730 if (flush_color >= 0) {
2731 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2732 atomic_set(&wq->nr_pwqs_to_flush, 1);
2733 }
2734
2735 for_each_pwq(pwq, wq) {
2736 struct worker_pool *pool = pwq->pool;
2737
2738 spin_lock_irq(&pool->lock);
2739
2740 if (flush_color >= 0) {
2741 WARN_ON_ONCE(pwq->flush_color != -1);
2742
2743 if (pwq->nr_in_flight[flush_color]) {
2744 pwq->flush_color = flush_color;
2745 atomic_inc(&wq->nr_pwqs_to_flush);
2746 wait = true;
2747 }
2748 }
2749
2750 if (work_color >= 0) {
2751 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2752 pwq->work_color = work_color;
2753 }
2754
2755 spin_unlock_irq(&pool->lock);
2756 }
2757
2758 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2759 complete(&wq->first_flusher->done);
2760
2761 return wait;
2762}
2763
2764/**
2765 * flush_workqueue - ensure that any scheduled work has run to completion.
2766 * @wq: workqueue to flush
2767 *
2768 * This function sleeps until all work items which were queued on entry
2769 * have finished execution, but it is not livelocked by new incoming ones.
2770 */
2771void flush_workqueue(struct workqueue_struct *wq)
2772{
2773 struct wq_flusher this_flusher = {
2774 .list = LIST_HEAD_INIT(this_flusher.list),
2775 .flush_color = -1,
2776 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2777 };
2778 int next_color;
2779
2780 if (WARN_ON(!wq_online))
2781 return;
2782
2783 lock_map_acquire(&wq->lockdep_map);
2784 lock_map_release(&wq->lockdep_map);
2785
2786 mutex_lock(&wq->mutex);
2787
2788 /*
2789 * Start-to-wait phase
2790 */
2791 next_color = work_next_color(wq->work_color);
2792
2793 if (next_color != wq->flush_color) {
2794 /*
2795 * Color space is not full. The current work_color
2796 * becomes our flush_color and work_color is advanced
2797 * by one.
2798 */
2799 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2800 this_flusher.flush_color = wq->work_color;
2801 wq->work_color = next_color;
2802
2803 if (!wq->first_flusher) {
2804 /* no flush in progress, become the first flusher */
2805 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2806
2807 wq->first_flusher = &this_flusher;
2808
2809 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2810 wq->work_color)) {
2811 /* nothing to flush, done */
2812 wq->flush_color = next_color;
2813 wq->first_flusher = NULL;
2814 goto out_unlock;
2815 }
2816 } else {
2817 /* wait in queue */
2818 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2819 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2820 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2821 }
2822 } else {
2823 /*
2824 * Oops, color space is full, wait on overflow queue.
2825 * The next flush completion will assign us
2826 * flush_color and transfer to flusher_queue.
2827 */
2828 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2829 }
2830
2831 check_flush_dependency(wq, NULL);
2832
2833 mutex_unlock(&wq->mutex);
2834
2835 wait_for_completion(&this_flusher.done);
2836
2837 /*
2838 * Wake-up-and-cascade phase
2839 *
2840 * First flushers are responsible for cascading flushes and
2841 * handling overflow. Non-first flushers can simply return.
2842 */
2843 if (wq->first_flusher != &this_flusher)
2844 return;
2845
2846 mutex_lock(&wq->mutex);
2847
2848 /* we might have raced, check again with mutex held */
2849 if (wq->first_flusher != &this_flusher)
2850 goto out_unlock;
2851
2852 wq->first_flusher = NULL;
2853
2854 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2855 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2856
2857 while (true) {
2858 struct wq_flusher *next, *tmp;
2859
2860 /* complete all the flushers sharing the current flush color */
2861 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2862 if (next->flush_color != wq->flush_color)
2863 break;
2864 list_del_init(&next->list);
2865 complete(&next->done);
2866 }
2867
2868 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2869 wq->flush_color != work_next_color(wq->work_color));
2870
2871 /* this flush_color is finished, advance by one */
2872 wq->flush_color = work_next_color(wq->flush_color);
2873
2874 /* one color has been freed, handle overflow queue */
2875 if (!list_empty(&wq->flusher_overflow)) {
2876 /*
2877 * Assign the same color to all overflowed
2878 * flushers, advance work_color and append to
2879 * flusher_queue. This is the start-to-wait
2880 * phase for these overflowed flushers.
2881 */
2882 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2883 tmp->flush_color = wq->work_color;
2884
2885 wq->work_color = work_next_color(wq->work_color);
2886
2887 list_splice_tail_init(&wq->flusher_overflow,
2888 &wq->flusher_queue);
2889 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2890 }
2891
2892 if (list_empty(&wq->flusher_queue)) {
2893 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2894 break;
2895 }
2896
2897 /*
2898 * Need to flush more colors. Make the next flusher
2899 * the new first flusher and arm pwqs.
2900 */
2901 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2902 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2903
2904 list_del_init(&next->list);
2905 wq->first_flusher = next;
2906
2907 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2908 break;
2909
2910 /*
2911 * Meh... this color is already done, clear first
2912 * flusher and repeat cascading.
2913 */
2914 wq->first_flusher = NULL;
2915 }
2916
2917out_unlock:
2918 mutex_unlock(&wq->mutex);
2919}
2920EXPORT_SYMBOL(flush_workqueue);
2921
2922/**
2923 * drain_workqueue - drain a workqueue
2924 * @wq: workqueue to drain
2925 *
2926 * Wait until the workqueue becomes empty. While draining is in progress,
2927 * only chain queueing is allowed. IOW, only currently pending or running
2928 * work items on @wq can queue further work items on it. @wq is flushed
2929 * repeatedly until it becomes empty. The number of flushing is determined
2930 * by the depth of chaining and should be relatively short. Whine if it
2931 * takes too long.
2932 */
2933void drain_workqueue(struct workqueue_struct *wq)
2934{
2935 unsigned int flush_cnt = 0;
2936 struct pool_workqueue *pwq;
2937
2938 /*
2939 * __queue_work() needs to test whether there are drainers, is much
2940 * hotter than drain_workqueue() and already looks at @wq->flags.
2941 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2942 */
2943 mutex_lock(&wq->mutex);
2944 if (!wq->nr_drainers++)
2945 wq->flags |= __WQ_DRAINING;
2946 mutex_unlock(&wq->mutex);
2947reflush:
2948 flush_workqueue(wq);
2949
2950 mutex_lock(&wq->mutex);
2951
2952 for_each_pwq(pwq, wq) {
2953 bool drained;
2954
2955 spin_lock_irq(&pwq->pool->lock);
2956 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2957 spin_unlock_irq(&pwq->pool->lock);
2958
2959 if (drained)
2960 continue;
2961
2962 if (++flush_cnt == 10 ||
2963 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2964 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2965 wq->name, flush_cnt);
2966
2967 mutex_unlock(&wq->mutex);
2968 goto reflush;
2969 }
2970
2971 if (!--wq->nr_drainers)
2972 wq->flags &= ~__WQ_DRAINING;
2973 mutex_unlock(&wq->mutex);
2974}
2975EXPORT_SYMBOL_GPL(drain_workqueue);
2976
2977static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2978 bool from_cancel)
2979{
2980 struct worker *worker = NULL;
2981 struct worker_pool *pool;
2982 struct pool_workqueue *pwq;
2983
2984 might_sleep();
2985
David Brazdil0f672f62019-12-10 10:32:29 +00002986 rcu_read_lock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002987 pool = get_work_pool(work);
2988 if (!pool) {
David Brazdil0f672f62019-12-10 10:32:29 +00002989 rcu_read_unlock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002990 return false;
2991 }
2992
David Brazdil0f672f62019-12-10 10:32:29 +00002993 spin_lock_irq(&pool->lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002994 /* see the comment in try_to_grab_pending() with the same code */
2995 pwq = get_work_pwq(work);
2996 if (pwq) {
2997 if (unlikely(pwq->pool != pool))
2998 goto already_gone;
2999 } else {
3000 worker = find_worker_executing_work(pool, work);
3001 if (!worker)
3002 goto already_gone;
3003 pwq = worker->current_pwq;
3004 }
3005
3006 check_flush_dependency(pwq->wq, work);
3007
3008 insert_wq_barrier(pwq, barr, work, worker);
3009 spin_unlock_irq(&pool->lock);
3010
3011 /*
3012 * Force a lock recursion deadlock when using flush_work() inside a
3013 * single-threaded or rescuer equipped workqueue.
3014 *
3015 * For single threaded workqueues the deadlock happens when the work
3016 * is after the work issuing the flush_work(). For rescuer equipped
3017 * workqueues the deadlock happens when the rescuer stalls, blocking
3018 * forward progress.
3019 */
3020 if (!from_cancel &&
3021 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3022 lock_map_acquire(&pwq->wq->lockdep_map);
3023 lock_map_release(&pwq->wq->lockdep_map);
3024 }
David Brazdil0f672f62019-12-10 10:32:29 +00003025 rcu_read_unlock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003026 return true;
3027already_gone:
3028 spin_unlock_irq(&pool->lock);
David Brazdil0f672f62019-12-10 10:32:29 +00003029 rcu_read_unlock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003030 return false;
3031}
3032
3033static bool __flush_work(struct work_struct *work, bool from_cancel)
3034{
3035 struct wq_barrier barr;
3036
3037 if (WARN_ON(!wq_online))
3038 return false;
3039
David Brazdil0f672f62019-12-10 10:32:29 +00003040 if (WARN_ON(!work->func))
3041 return false;
3042
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003043 if (!from_cancel) {
3044 lock_map_acquire(&work->lockdep_map);
3045 lock_map_release(&work->lockdep_map);
3046 }
3047
3048 if (start_flush_work(work, &barr, from_cancel)) {
3049 wait_for_completion(&barr.done);
3050 destroy_work_on_stack(&barr.work);
3051 return true;
3052 } else {
3053 return false;
3054 }
3055}
3056
3057/**
3058 * flush_work - wait for a work to finish executing the last queueing instance
3059 * @work: the work to flush
3060 *
3061 * Wait until @work has finished execution. @work is guaranteed to be idle
3062 * on return if it hasn't been requeued since flush started.
3063 *
3064 * Return:
3065 * %true if flush_work() waited for the work to finish execution,
3066 * %false if it was already idle.
3067 */
3068bool flush_work(struct work_struct *work)
3069{
3070 return __flush_work(work, false);
3071}
3072EXPORT_SYMBOL_GPL(flush_work);
3073
3074struct cwt_wait {
3075 wait_queue_entry_t wait;
3076 struct work_struct *work;
3077};
3078
3079static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3080{
3081 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3082
3083 if (cwait->work != key)
3084 return 0;
3085 return autoremove_wake_function(wait, mode, sync, key);
3086}
3087
3088static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3089{
3090 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3091 unsigned long flags;
3092 int ret;
3093
3094 do {
3095 ret = try_to_grab_pending(work, is_dwork, &flags);
3096 /*
3097 * If someone else is already canceling, wait for it to
3098 * finish. flush_work() doesn't work for PREEMPT_NONE
3099 * because we may get scheduled between @work's completion
3100 * and the other canceling task resuming and clearing
3101 * CANCELING - flush_work() will return false immediately
3102 * as @work is no longer busy, try_to_grab_pending() will
3103 * return -ENOENT as @work is still being canceled and the
3104 * other canceling task won't be able to clear CANCELING as
3105 * we're hogging the CPU.
3106 *
3107 * Let's wait for completion using a waitqueue. As this
3108 * may lead to the thundering herd problem, use a custom
3109 * wake function which matches @work along with exclusive
3110 * wait and wakeup.
3111 */
3112 if (unlikely(ret == -ENOENT)) {
3113 struct cwt_wait cwait;
3114
3115 init_wait(&cwait.wait);
3116 cwait.wait.func = cwt_wakefn;
3117 cwait.work = work;
3118
3119 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3120 TASK_UNINTERRUPTIBLE);
3121 if (work_is_canceling(work))
3122 schedule();
3123 finish_wait(&cancel_waitq, &cwait.wait);
3124 }
3125 } while (unlikely(ret < 0));
3126
3127 /* tell other tasks trying to grab @work to back off */
3128 mark_work_canceling(work);
3129 local_irq_restore(flags);
3130
3131 /*
3132 * This allows canceling during early boot. We know that @work
3133 * isn't executing.
3134 */
3135 if (wq_online)
3136 __flush_work(work, true);
3137
3138 clear_work_data(work);
3139
3140 /*
3141 * Paired with prepare_to_wait() above so that either
3142 * waitqueue_active() is visible here or !work_is_canceling() is
3143 * visible there.
3144 */
3145 smp_mb();
3146 if (waitqueue_active(&cancel_waitq))
3147 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3148
3149 return ret;
3150}
3151
3152/**
3153 * cancel_work_sync - cancel a work and wait for it to finish
3154 * @work: the work to cancel
3155 *
3156 * Cancel @work and wait for its execution to finish. This function
3157 * can be used even if the work re-queues itself or migrates to
3158 * another workqueue. On return from this function, @work is
3159 * guaranteed to be not pending or executing on any CPU.
3160 *
3161 * cancel_work_sync(&delayed_work->work) must not be used for
3162 * delayed_work's. Use cancel_delayed_work_sync() instead.
3163 *
3164 * The caller must ensure that the workqueue on which @work was last
3165 * queued can't be destroyed before this function returns.
3166 *
3167 * Return:
3168 * %true if @work was pending, %false otherwise.
3169 */
3170bool cancel_work_sync(struct work_struct *work)
3171{
3172 return __cancel_work_timer(work, false);
3173}
3174EXPORT_SYMBOL_GPL(cancel_work_sync);
3175
3176/**
3177 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3178 * @dwork: the delayed work to flush
3179 *
3180 * Delayed timer is cancelled and the pending work is queued for
3181 * immediate execution. Like flush_work(), this function only
3182 * considers the last queueing instance of @dwork.
3183 *
3184 * Return:
3185 * %true if flush_work() waited for the work to finish execution,
3186 * %false if it was already idle.
3187 */
3188bool flush_delayed_work(struct delayed_work *dwork)
3189{
3190 local_irq_disable();
3191 if (del_timer_sync(&dwork->timer))
3192 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3193 local_irq_enable();
3194 return flush_work(&dwork->work);
3195}
3196EXPORT_SYMBOL(flush_delayed_work);
3197
3198/**
3199 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3200 * @rwork: the rcu work to flush
3201 *
3202 * Return:
3203 * %true if flush_rcu_work() waited for the work to finish execution,
3204 * %false if it was already idle.
3205 */
3206bool flush_rcu_work(struct rcu_work *rwork)
3207{
3208 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3209 rcu_barrier();
3210 flush_work(&rwork->work);
3211 return true;
3212 } else {
3213 return flush_work(&rwork->work);
3214 }
3215}
3216EXPORT_SYMBOL(flush_rcu_work);
3217
3218static bool __cancel_work(struct work_struct *work, bool is_dwork)
3219{
3220 unsigned long flags;
3221 int ret;
3222
3223 do {
3224 ret = try_to_grab_pending(work, is_dwork, &flags);
3225 } while (unlikely(ret == -EAGAIN));
3226
3227 if (unlikely(ret < 0))
3228 return false;
3229
3230 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3231 local_irq_restore(flags);
3232 return ret;
3233}
3234
3235/**
3236 * cancel_delayed_work - cancel a delayed work
3237 * @dwork: delayed_work to cancel
3238 *
3239 * Kill off a pending delayed_work.
3240 *
3241 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3242 * pending.
3243 *
3244 * Note:
3245 * The work callback function may still be running on return, unless
3246 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3247 * use cancel_delayed_work_sync() to wait on it.
3248 *
3249 * This function is safe to call from any context including IRQ handler.
3250 */
3251bool cancel_delayed_work(struct delayed_work *dwork)
3252{
3253 return __cancel_work(&dwork->work, true);
3254}
3255EXPORT_SYMBOL(cancel_delayed_work);
3256
3257/**
3258 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3259 * @dwork: the delayed work cancel
3260 *
3261 * This is cancel_work_sync() for delayed works.
3262 *
3263 * Return:
3264 * %true if @dwork was pending, %false otherwise.
3265 */
3266bool cancel_delayed_work_sync(struct delayed_work *dwork)
3267{
3268 return __cancel_work_timer(&dwork->work, true);
3269}
3270EXPORT_SYMBOL(cancel_delayed_work_sync);
3271
3272/**
3273 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3274 * @func: the function to call
3275 *
3276 * schedule_on_each_cpu() executes @func on each online CPU using the
3277 * system workqueue and blocks until all CPUs have completed.
3278 * schedule_on_each_cpu() is very slow.
3279 *
3280 * Return:
3281 * 0 on success, -errno on failure.
3282 */
3283int schedule_on_each_cpu(work_func_t func)
3284{
3285 int cpu;
3286 struct work_struct __percpu *works;
3287
3288 works = alloc_percpu(struct work_struct);
3289 if (!works)
3290 return -ENOMEM;
3291
3292 get_online_cpus();
3293
3294 for_each_online_cpu(cpu) {
3295 struct work_struct *work = per_cpu_ptr(works, cpu);
3296
3297 INIT_WORK(work, func);
3298 schedule_work_on(cpu, work);
3299 }
3300
3301 for_each_online_cpu(cpu)
3302 flush_work(per_cpu_ptr(works, cpu));
3303
3304 put_online_cpus();
3305 free_percpu(works);
3306 return 0;
3307}
3308
3309/**
3310 * execute_in_process_context - reliably execute the routine with user context
3311 * @fn: the function to execute
3312 * @ew: guaranteed storage for the execute work structure (must
3313 * be available when the work executes)
3314 *
3315 * Executes the function immediately if process context is available,
3316 * otherwise schedules the function for delayed execution.
3317 *
3318 * Return: 0 - function was executed
3319 * 1 - function was scheduled for execution
3320 */
3321int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3322{
3323 if (!in_interrupt()) {
3324 fn(&ew->work);
3325 return 0;
3326 }
3327
3328 INIT_WORK(&ew->work, fn);
3329 schedule_work(&ew->work);
3330
3331 return 1;
3332}
3333EXPORT_SYMBOL_GPL(execute_in_process_context);
3334
3335/**
3336 * free_workqueue_attrs - free a workqueue_attrs
3337 * @attrs: workqueue_attrs to free
3338 *
3339 * Undo alloc_workqueue_attrs().
3340 */
3341void free_workqueue_attrs(struct workqueue_attrs *attrs)
3342{
3343 if (attrs) {
3344 free_cpumask_var(attrs->cpumask);
3345 kfree(attrs);
3346 }
3347}
3348
3349/**
3350 * alloc_workqueue_attrs - allocate a workqueue_attrs
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003351 *
3352 * Allocate a new workqueue_attrs, initialize with default settings and
3353 * return it.
3354 *
3355 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3356 */
David Brazdil0f672f62019-12-10 10:32:29 +00003357struct workqueue_attrs *alloc_workqueue_attrs(void)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003358{
3359 struct workqueue_attrs *attrs;
3360
David Brazdil0f672f62019-12-10 10:32:29 +00003361 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003362 if (!attrs)
3363 goto fail;
David Brazdil0f672f62019-12-10 10:32:29 +00003364 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003365 goto fail;
3366
3367 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3368 return attrs;
3369fail:
3370 free_workqueue_attrs(attrs);
3371 return NULL;
3372}
3373
3374static void copy_workqueue_attrs(struct workqueue_attrs *to,
3375 const struct workqueue_attrs *from)
3376{
3377 to->nice = from->nice;
3378 cpumask_copy(to->cpumask, from->cpumask);
3379 /*
3380 * Unlike hash and equality test, this function doesn't ignore
3381 * ->no_numa as it is used for both pool and wq attrs. Instead,
3382 * get_unbound_pool() explicitly clears ->no_numa after copying.
3383 */
3384 to->no_numa = from->no_numa;
3385}
3386
3387/* hash value of the content of @attr */
3388static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3389{
3390 u32 hash = 0;
3391
3392 hash = jhash_1word(attrs->nice, hash);
3393 hash = jhash(cpumask_bits(attrs->cpumask),
3394 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3395 return hash;
3396}
3397
3398/* content equality test */
3399static bool wqattrs_equal(const struct workqueue_attrs *a,
3400 const struct workqueue_attrs *b)
3401{
3402 if (a->nice != b->nice)
3403 return false;
3404 if (!cpumask_equal(a->cpumask, b->cpumask))
3405 return false;
3406 return true;
3407}
3408
3409/**
3410 * init_worker_pool - initialize a newly zalloc'd worker_pool
3411 * @pool: worker_pool to initialize
3412 *
3413 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3414 *
3415 * Return: 0 on success, -errno on failure. Even on failure, all fields
3416 * inside @pool proper are initialized and put_unbound_pool() can be called
3417 * on @pool safely to release it.
3418 */
3419static int init_worker_pool(struct worker_pool *pool)
3420{
3421 spin_lock_init(&pool->lock);
3422 pool->id = -1;
3423 pool->cpu = -1;
3424 pool->node = NUMA_NO_NODE;
3425 pool->flags |= POOL_DISASSOCIATED;
3426 pool->watchdog_ts = jiffies;
3427 INIT_LIST_HEAD(&pool->worklist);
3428 INIT_LIST_HEAD(&pool->idle_list);
3429 hash_init(pool->busy_hash);
3430
3431 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3432
3433 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3434
3435 INIT_LIST_HEAD(&pool->workers);
3436
3437 ida_init(&pool->worker_ida);
3438 INIT_HLIST_NODE(&pool->hash_node);
3439 pool->refcnt = 1;
3440
3441 /* shouldn't fail above this point */
David Brazdil0f672f62019-12-10 10:32:29 +00003442 pool->attrs = alloc_workqueue_attrs();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003443 if (!pool->attrs)
3444 return -ENOMEM;
3445 return 0;
3446}
3447
David Brazdil0f672f62019-12-10 10:32:29 +00003448#ifdef CONFIG_LOCKDEP
3449static void wq_init_lockdep(struct workqueue_struct *wq)
3450{
3451 char *lock_name;
3452
3453 lockdep_register_key(&wq->key);
3454 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3455 if (!lock_name)
3456 lock_name = wq->name;
3457
3458 wq->lock_name = lock_name;
3459 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3460}
3461
3462static void wq_unregister_lockdep(struct workqueue_struct *wq)
3463{
3464 lockdep_unregister_key(&wq->key);
3465}
3466
3467static void wq_free_lockdep(struct workqueue_struct *wq)
3468{
3469 if (wq->lock_name != wq->name)
3470 kfree(wq->lock_name);
3471}
3472#else
3473static void wq_init_lockdep(struct workqueue_struct *wq)
3474{
3475}
3476
3477static void wq_unregister_lockdep(struct workqueue_struct *wq)
3478{
3479}
3480
3481static void wq_free_lockdep(struct workqueue_struct *wq)
3482{
3483}
3484#endif
3485
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003486static void rcu_free_wq(struct rcu_head *rcu)
3487{
3488 struct workqueue_struct *wq =
3489 container_of(rcu, struct workqueue_struct, rcu);
3490
David Brazdil0f672f62019-12-10 10:32:29 +00003491 wq_free_lockdep(wq);
3492
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003493 if (!(wq->flags & WQ_UNBOUND))
3494 free_percpu(wq->cpu_pwqs);
3495 else
3496 free_workqueue_attrs(wq->unbound_attrs);
3497
3498 kfree(wq->rescuer);
3499 kfree(wq);
3500}
3501
3502static void rcu_free_pool(struct rcu_head *rcu)
3503{
3504 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3505
3506 ida_destroy(&pool->worker_ida);
3507 free_workqueue_attrs(pool->attrs);
3508 kfree(pool);
3509}
3510
3511/**
3512 * put_unbound_pool - put a worker_pool
3513 * @pool: worker_pool to put
3514 *
David Brazdil0f672f62019-12-10 10:32:29 +00003515 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003516 * safe manner. get_unbound_pool() calls this function on its failure path
3517 * and this function should be able to release pools which went through,
3518 * successfully or not, init_worker_pool().
3519 *
3520 * Should be called with wq_pool_mutex held.
3521 */
3522static void put_unbound_pool(struct worker_pool *pool)
3523{
3524 DECLARE_COMPLETION_ONSTACK(detach_completion);
3525 struct worker *worker;
3526
3527 lockdep_assert_held(&wq_pool_mutex);
3528
3529 if (--pool->refcnt)
3530 return;
3531
3532 /* sanity checks */
3533 if (WARN_ON(!(pool->cpu < 0)) ||
3534 WARN_ON(!list_empty(&pool->worklist)))
3535 return;
3536
3537 /* release id and unhash */
3538 if (pool->id >= 0)
3539 idr_remove(&worker_pool_idr, pool->id);
3540 hash_del(&pool->hash_node);
3541
3542 /*
3543 * Become the manager and destroy all workers. This prevents
3544 * @pool's workers from blocking on attach_mutex. We're the last
3545 * manager and @pool gets freed with the flag set.
3546 */
3547 spin_lock_irq(&pool->lock);
3548 wait_event_lock_irq(wq_manager_wait,
3549 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3550 pool->flags |= POOL_MANAGER_ACTIVE;
3551
3552 while ((worker = first_idle_worker(pool)))
3553 destroy_worker(worker);
3554 WARN_ON(pool->nr_workers || pool->nr_idle);
3555 spin_unlock_irq(&pool->lock);
3556
3557 mutex_lock(&wq_pool_attach_mutex);
3558 if (!list_empty(&pool->workers))
3559 pool->detach_completion = &detach_completion;
3560 mutex_unlock(&wq_pool_attach_mutex);
3561
3562 if (pool->detach_completion)
3563 wait_for_completion(pool->detach_completion);
3564
3565 /* shut down the timers */
3566 del_timer_sync(&pool->idle_timer);
3567 del_timer_sync(&pool->mayday_timer);
3568
David Brazdil0f672f62019-12-10 10:32:29 +00003569 /* RCU protected to allow dereferences from get_work_pool() */
3570 call_rcu(&pool->rcu, rcu_free_pool);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003571}
3572
3573/**
3574 * get_unbound_pool - get a worker_pool with the specified attributes
3575 * @attrs: the attributes of the worker_pool to get
3576 *
3577 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3578 * reference count and return it. If there already is a matching
3579 * worker_pool, it will be used; otherwise, this function attempts to
3580 * create a new one.
3581 *
3582 * Should be called with wq_pool_mutex held.
3583 *
3584 * Return: On success, a worker_pool with the same attributes as @attrs.
3585 * On failure, %NULL.
3586 */
3587static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3588{
3589 u32 hash = wqattrs_hash(attrs);
3590 struct worker_pool *pool;
3591 int node;
3592 int target_node = NUMA_NO_NODE;
3593
3594 lockdep_assert_held(&wq_pool_mutex);
3595
3596 /* do we already have a matching pool? */
3597 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3598 if (wqattrs_equal(pool->attrs, attrs)) {
3599 pool->refcnt++;
3600 return pool;
3601 }
3602 }
3603
3604 /* if cpumask is contained inside a NUMA node, we belong to that node */
3605 if (wq_numa_enabled) {
3606 for_each_node(node) {
3607 if (cpumask_subset(attrs->cpumask,
3608 wq_numa_possible_cpumask[node])) {
3609 target_node = node;
3610 break;
3611 }
3612 }
3613 }
3614
3615 /* nope, create a new one */
3616 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3617 if (!pool || init_worker_pool(pool) < 0)
3618 goto fail;
3619
3620 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3621 copy_workqueue_attrs(pool->attrs, attrs);
3622 pool->node = target_node;
3623
3624 /*
3625 * no_numa isn't a worker_pool attribute, always clear it. See
3626 * 'struct workqueue_attrs' comments for detail.
3627 */
3628 pool->attrs->no_numa = false;
3629
3630 if (worker_pool_assign_id(pool) < 0)
3631 goto fail;
3632
3633 /* create and start the initial worker */
3634 if (wq_online && !create_worker(pool))
3635 goto fail;
3636
3637 /* install */
3638 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3639
3640 return pool;
3641fail:
3642 if (pool)
3643 put_unbound_pool(pool);
3644 return NULL;
3645}
3646
3647static void rcu_free_pwq(struct rcu_head *rcu)
3648{
3649 kmem_cache_free(pwq_cache,
3650 container_of(rcu, struct pool_workqueue, rcu));
3651}
3652
3653/*
3654 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3655 * and needs to be destroyed.
3656 */
3657static void pwq_unbound_release_workfn(struct work_struct *work)
3658{
3659 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3660 unbound_release_work);
3661 struct workqueue_struct *wq = pwq->wq;
3662 struct worker_pool *pool = pwq->pool;
Olivier Deprez0e641232021-09-23 10:07:05 +02003663 bool is_last = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003664
Olivier Deprez0e641232021-09-23 10:07:05 +02003665 /*
3666 * when @pwq is not linked, it doesn't hold any reference to the
3667 * @wq, and @wq is invalid to access.
3668 */
3669 if (!list_empty(&pwq->pwqs_node)) {
3670 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3671 return;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003672
Olivier Deprez0e641232021-09-23 10:07:05 +02003673 mutex_lock(&wq->mutex);
3674 list_del_rcu(&pwq->pwqs_node);
3675 is_last = list_empty(&wq->pwqs);
3676 mutex_unlock(&wq->mutex);
3677 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003678
3679 mutex_lock(&wq_pool_mutex);
3680 put_unbound_pool(pool);
3681 mutex_unlock(&wq_pool_mutex);
3682
David Brazdil0f672f62019-12-10 10:32:29 +00003683 call_rcu(&pwq->rcu, rcu_free_pwq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003684
3685 /*
3686 * If we're the last pwq going away, @wq is already dead and no one
3687 * is gonna access it anymore. Schedule RCU free.
3688 */
David Brazdil0f672f62019-12-10 10:32:29 +00003689 if (is_last) {
3690 wq_unregister_lockdep(wq);
3691 call_rcu(&wq->rcu, rcu_free_wq);
3692 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003693}
3694
3695/**
3696 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3697 * @pwq: target pool_workqueue
3698 *
3699 * If @pwq isn't freezing, set @pwq->max_active to the associated
3700 * workqueue's saved_max_active and activate delayed work items
3701 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3702 */
3703static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3704{
3705 struct workqueue_struct *wq = pwq->wq;
3706 bool freezable = wq->flags & WQ_FREEZABLE;
3707 unsigned long flags;
3708
3709 /* for @wq->saved_max_active */
3710 lockdep_assert_held(&wq->mutex);
3711
3712 /* fast exit for non-freezable wqs */
3713 if (!freezable && pwq->max_active == wq->saved_max_active)
3714 return;
3715
3716 /* this function can be called during early boot w/ irq disabled */
3717 spin_lock_irqsave(&pwq->pool->lock, flags);
3718
3719 /*
3720 * During [un]freezing, the caller is responsible for ensuring that
3721 * this function is called at least once after @workqueue_freezing
3722 * is updated and visible.
3723 */
3724 if (!freezable || !workqueue_freezing) {
Olivier Deprez0e641232021-09-23 10:07:05 +02003725 bool kick = false;
3726
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003727 pwq->max_active = wq->saved_max_active;
3728
3729 while (!list_empty(&pwq->delayed_works) &&
Olivier Deprez0e641232021-09-23 10:07:05 +02003730 pwq->nr_active < pwq->max_active) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003731 pwq_activate_first_delayed(pwq);
Olivier Deprez0e641232021-09-23 10:07:05 +02003732 kick = true;
3733 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003734
3735 /*
3736 * Need to kick a worker after thawed or an unbound wq's
Olivier Deprez0e641232021-09-23 10:07:05 +02003737 * max_active is bumped. In realtime scenarios, always kicking a
3738 * worker will cause interference on the isolated cpu cores, so
3739 * let's kick iff work items were activated.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003740 */
Olivier Deprez0e641232021-09-23 10:07:05 +02003741 if (kick)
3742 wake_up_worker(pwq->pool);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003743 } else {
3744 pwq->max_active = 0;
3745 }
3746
3747 spin_unlock_irqrestore(&pwq->pool->lock, flags);
3748}
3749
3750/* initialize newly alloced @pwq which is associated with @wq and @pool */
3751static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3752 struct worker_pool *pool)
3753{
3754 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3755
3756 memset(pwq, 0, sizeof(*pwq));
3757
3758 pwq->pool = pool;
3759 pwq->wq = wq;
3760 pwq->flush_color = -1;
3761 pwq->refcnt = 1;
3762 INIT_LIST_HEAD(&pwq->delayed_works);
3763 INIT_LIST_HEAD(&pwq->pwqs_node);
3764 INIT_LIST_HEAD(&pwq->mayday_node);
3765 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3766}
3767
3768/* sync @pwq with the current state of its associated wq and link it */
3769static void link_pwq(struct pool_workqueue *pwq)
3770{
3771 struct workqueue_struct *wq = pwq->wq;
3772
3773 lockdep_assert_held(&wq->mutex);
3774
3775 /* may be called multiple times, ignore if already linked */
3776 if (!list_empty(&pwq->pwqs_node))
3777 return;
3778
3779 /* set the matching work_color */
3780 pwq->work_color = wq->work_color;
3781
3782 /* sync max_active to the current setting */
3783 pwq_adjust_max_active(pwq);
3784
3785 /* link in @pwq */
3786 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3787}
3788
3789/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3790static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3791 const struct workqueue_attrs *attrs)
3792{
3793 struct worker_pool *pool;
3794 struct pool_workqueue *pwq;
3795
3796 lockdep_assert_held(&wq_pool_mutex);
3797
3798 pool = get_unbound_pool(attrs);
3799 if (!pool)
3800 return NULL;
3801
3802 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3803 if (!pwq) {
3804 put_unbound_pool(pool);
3805 return NULL;
3806 }
3807
3808 init_pwq(pwq, wq, pool);
3809 return pwq;
3810}
3811
3812/**
3813 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3814 * @attrs: the wq_attrs of the default pwq of the target workqueue
3815 * @node: the target NUMA node
3816 * @cpu_going_down: if >= 0, the CPU to consider as offline
3817 * @cpumask: outarg, the resulting cpumask
3818 *
3819 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3820 * @cpu_going_down is >= 0, that cpu is considered offline during
3821 * calculation. The result is stored in @cpumask.
3822 *
3823 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3824 * enabled and @node has online CPUs requested by @attrs, the returned
3825 * cpumask is the intersection of the possible CPUs of @node and
3826 * @attrs->cpumask.
3827 *
3828 * The caller is responsible for ensuring that the cpumask of @node stays
3829 * stable.
3830 *
3831 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3832 * %false if equal.
3833 */
3834static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3835 int cpu_going_down, cpumask_t *cpumask)
3836{
3837 if (!wq_numa_enabled || attrs->no_numa)
3838 goto use_dfl;
3839
3840 /* does @node have any online CPUs @attrs wants? */
3841 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3842 if (cpu_going_down >= 0)
3843 cpumask_clear_cpu(cpu_going_down, cpumask);
3844
3845 if (cpumask_empty(cpumask))
3846 goto use_dfl;
3847
3848 /* yeap, return possible CPUs in @node that @attrs wants */
3849 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3850
3851 if (cpumask_empty(cpumask)) {
3852 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3853 "possible intersect\n");
3854 return false;
3855 }
3856
3857 return !cpumask_equal(cpumask, attrs->cpumask);
3858
3859use_dfl:
3860 cpumask_copy(cpumask, attrs->cpumask);
3861 return false;
3862}
3863
3864/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3865static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3866 int node,
3867 struct pool_workqueue *pwq)
3868{
3869 struct pool_workqueue *old_pwq;
3870
3871 lockdep_assert_held(&wq_pool_mutex);
3872 lockdep_assert_held(&wq->mutex);
3873
3874 /* link_pwq() can handle duplicate calls */
3875 link_pwq(pwq);
3876
3877 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3878 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3879 return old_pwq;
3880}
3881
3882/* context to store the prepared attrs & pwqs before applying */
3883struct apply_wqattrs_ctx {
3884 struct workqueue_struct *wq; /* target workqueue */
3885 struct workqueue_attrs *attrs; /* attrs to apply */
3886 struct list_head list; /* queued for batching commit */
3887 struct pool_workqueue *dfl_pwq;
3888 struct pool_workqueue *pwq_tbl[];
3889};
3890
3891/* free the resources after success or abort */
3892static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3893{
3894 if (ctx) {
3895 int node;
3896
3897 for_each_node(node)
3898 put_pwq_unlocked(ctx->pwq_tbl[node]);
3899 put_pwq_unlocked(ctx->dfl_pwq);
3900
3901 free_workqueue_attrs(ctx->attrs);
3902
3903 kfree(ctx);
3904 }
3905}
3906
3907/* allocate the attrs and pwqs for later installation */
3908static struct apply_wqattrs_ctx *
3909apply_wqattrs_prepare(struct workqueue_struct *wq,
3910 const struct workqueue_attrs *attrs)
3911{
3912 struct apply_wqattrs_ctx *ctx;
3913 struct workqueue_attrs *new_attrs, *tmp_attrs;
3914 int node;
3915
3916 lockdep_assert_held(&wq_pool_mutex);
3917
3918 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3919
David Brazdil0f672f62019-12-10 10:32:29 +00003920 new_attrs = alloc_workqueue_attrs();
3921 tmp_attrs = alloc_workqueue_attrs();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003922 if (!ctx || !new_attrs || !tmp_attrs)
3923 goto out_free;
3924
3925 /*
3926 * Calculate the attrs of the default pwq.
3927 * If the user configured cpumask doesn't overlap with the
3928 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3929 */
3930 copy_workqueue_attrs(new_attrs, attrs);
3931 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3932 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3933 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3934
3935 /*
3936 * We may create multiple pwqs with differing cpumasks. Make a
3937 * copy of @new_attrs which will be modified and used to obtain
3938 * pools.
3939 */
3940 copy_workqueue_attrs(tmp_attrs, new_attrs);
3941
3942 /*
3943 * If something goes wrong during CPU up/down, we'll fall back to
3944 * the default pwq covering whole @attrs->cpumask. Always create
3945 * it even if we don't use it immediately.
3946 */
3947 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3948 if (!ctx->dfl_pwq)
3949 goto out_free;
3950
3951 for_each_node(node) {
3952 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3953 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3954 if (!ctx->pwq_tbl[node])
3955 goto out_free;
3956 } else {
3957 ctx->dfl_pwq->refcnt++;
3958 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3959 }
3960 }
3961
3962 /* save the user configured attrs and sanitize it. */
3963 copy_workqueue_attrs(new_attrs, attrs);
3964 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3965 ctx->attrs = new_attrs;
3966
3967 ctx->wq = wq;
3968 free_workqueue_attrs(tmp_attrs);
3969 return ctx;
3970
3971out_free:
3972 free_workqueue_attrs(tmp_attrs);
3973 free_workqueue_attrs(new_attrs);
3974 apply_wqattrs_cleanup(ctx);
3975 return NULL;
3976}
3977
3978/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3979static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3980{
3981 int node;
3982
3983 /* all pwqs have been created successfully, let's install'em */
3984 mutex_lock(&ctx->wq->mutex);
3985
3986 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3987
3988 /* save the previous pwq and install the new one */
3989 for_each_node(node)
3990 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3991 ctx->pwq_tbl[node]);
3992
3993 /* @dfl_pwq might not have been used, ensure it's linked */
3994 link_pwq(ctx->dfl_pwq);
3995 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3996
3997 mutex_unlock(&ctx->wq->mutex);
3998}
3999
4000static void apply_wqattrs_lock(void)
4001{
4002 /* CPUs should stay stable across pwq creations and installations */
4003 get_online_cpus();
4004 mutex_lock(&wq_pool_mutex);
4005}
4006
4007static void apply_wqattrs_unlock(void)
4008{
4009 mutex_unlock(&wq_pool_mutex);
4010 put_online_cpus();
4011}
4012
4013static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4014 const struct workqueue_attrs *attrs)
4015{
4016 struct apply_wqattrs_ctx *ctx;
4017
4018 /* only unbound workqueues can change attributes */
4019 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4020 return -EINVAL;
4021
4022 /* creating multiple pwqs breaks ordering guarantee */
4023 if (!list_empty(&wq->pwqs)) {
4024 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4025 return -EINVAL;
4026
4027 wq->flags &= ~__WQ_ORDERED;
4028 }
4029
4030 ctx = apply_wqattrs_prepare(wq, attrs);
4031 if (!ctx)
4032 return -ENOMEM;
4033
4034 /* the ctx has been prepared successfully, let's commit it */
4035 apply_wqattrs_commit(ctx);
4036 apply_wqattrs_cleanup(ctx);
4037
4038 return 0;
4039}
4040
4041/**
4042 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4043 * @wq: the target workqueue
4044 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4045 *
4046 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4047 * machines, this function maps a separate pwq to each NUMA node with
4048 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4049 * NUMA node it was issued on. Older pwqs are released as in-flight work
4050 * items finish. Note that a work item which repeatedly requeues itself
4051 * back-to-back will stay on its current pwq.
4052 *
4053 * Performs GFP_KERNEL allocations.
4054 *
David Brazdil0f672f62019-12-10 10:32:29 +00004055 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4056 *
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004057 * Return: 0 on success and -errno on failure.
4058 */
4059int apply_workqueue_attrs(struct workqueue_struct *wq,
4060 const struct workqueue_attrs *attrs)
4061{
4062 int ret;
4063
David Brazdil0f672f62019-12-10 10:32:29 +00004064 lockdep_assert_cpus_held();
4065
4066 mutex_lock(&wq_pool_mutex);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004067 ret = apply_workqueue_attrs_locked(wq, attrs);
David Brazdil0f672f62019-12-10 10:32:29 +00004068 mutex_unlock(&wq_pool_mutex);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004069
4070 return ret;
4071}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004072
4073/**
4074 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4075 * @wq: the target workqueue
4076 * @cpu: the CPU coming up or going down
4077 * @online: whether @cpu is coming up or going down
4078 *
4079 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4080 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4081 * @wq accordingly.
4082 *
4083 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4084 * falls back to @wq->dfl_pwq which may not be optimal but is always
4085 * correct.
4086 *
4087 * Note that when the last allowed CPU of a NUMA node goes offline for a
4088 * workqueue with a cpumask spanning multiple nodes, the workers which were
4089 * already executing the work items for the workqueue will lose their CPU
4090 * affinity and may execute on any CPU. This is similar to how per-cpu
4091 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4092 * affinity, it's the user's responsibility to flush the work item from
4093 * CPU_DOWN_PREPARE.
4094 */
4095static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4096 bool online)
4097{
4098 int node = cpu_to_node(cpu);
4099 int cpu_off = online ? -1 : cpu;
4100 struct pool_workqueue *old_pwq = NULL, *pwq;
4101 struct workqueue_attrs *target_attrs;
4102 cpumask_t *cpumask;
4103
4104 lockdep_assert_held(&wq_pool_mutex);
4105
4106 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4107 wq->unbound_attrs->no_numa)
4108 return;
4109
4110 /*
4111 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4112 * Let's use a preallocated one. The following buf is protected by
4113 * CPU hotplug exclusion.
4114 */
4115 target_attrs = wq_update_unbound_numa_attrs_buf;
4116 cpumask = target_attrs->cpumask;
4117
4118 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4119 pwq = unbound_pwq_by_node(wq, node);
4120
4121 /*
4122 * Let's determine what needs to be done. If the target cpumask is
4123 * different from the default pwq's, we need to compare it to @pwq's
4124 * and create a new one if they don't match. If the target cpumask
4125 * equals the default pwq's, the default pwq should be used.
4126 */
4127 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4128 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4129 return;
4130 } else {
4131 goto use_dfl_pwq;
4132 }
4133
4134 /* create a new pwq */
4135 pwq = alloc_unbound_pwq(wq, target_attrs);
4136 if (!pwq) {
4137 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4138 wq->name);
4139 goto use_dfl_pwq;
4140 }
4141
4142 /* Install the new pwq. */
4143 mutex_lock(&wq->mutex);
4144 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4145 goto out_unlock;
4146
4147use_dfl_pwq:
4148 mutex_lock(&wq->mutex);
4149 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4150 get_pwq(wq->dfl_pwq);
4151 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4152 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4153out_unlock:
4154 mutex_unlock(&wq->mutex);
4155 put_pwq_unlocked(old_pwq);
4156}
4157
4158static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4159{
4160 bool highpri = wq->flags & WQ_HIGHPRI;
4161 int cpu, ret;
4162
4163 if (!(wq->flags & WQ_UNBOUND)) {
4164 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4165 if (!wq->cpu_pwqs)
4166 return -ENOMEM;
4167
4168 for_each_possible_cpu(cpu) {
4169 struct pool_workqueue *pwq =
4170 per_cpu_ptr(wq->cpu_pwqs, cpu);
4171 struct worker_pool *cpu_pools =
4172 per_cpu(cpu_worker_pools, cpu);
4173
4174 init_pwq(pwq, wq, &cpu_pools[highpri]);
4175
4176 mutex_lock(&wq->mutex);
4177 link_pwq(pwq);
4178 mutex_unlock(&wq->mutex);
4179 }
4180 return 0;
David Brazdil0f672f62019-12-10 10:32:29 +00004181 }
4182
4183 get_online_cpus();
4184 if (wq->flags & __WQ_ORDERED) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004185 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4186 /* there should only be single pwq for ordering guarantee */
4187 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4188 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4189 "ordering guarantee broken for workqueue %s\n", wq->name);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004190 } else {
David Brazdil0f672f62019-12-10 10:32:29 +00004191 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004192 }
David Brazdil0f672f62019-12-10 10:32:29 +00004193 put_online_cpus();
4194
4195 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004196}
4197
4198static int wq_clamp_max_active(int max_active, unsigned int flags,
4199 const char *name)
4200{
4201 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4202
4203 if (max_active < 1 || max_active > lim)
4204 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4205 max_active, name, 1, lim);
4206
4207 return clamp_val(max_active, 1, lim);
4208}
4209
4210/*
4211 * Workqueues which may be used during memory reclaim should have a rescuer
4212 * to guarantee forward progress.
4213 */
4214static int init_rescuer(struct workqueue_struct *wq)
4215{
4216 struct worker *rescuer;
4217 int ret;
4218
4219 if (!(wq->flags & WQ_MEM_RECLAIM))
4220 return 0;
4221
4222 rescuer = alloc_worker(NUMA_NO_NODE);
4223 if (!rescuer)
4224 return -ENOMEM;
4225
4226 rescuer->rescue_wq = wq;
4227 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4228 ret = PTR_ERR_OR_ZERO(rescuer->task);
4229 if (ret) {
4230 kfree(rescuer);
4231 return ret;
4232 }
4233
4234 wq->rescuer = rescuer;
4235 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4236 wake_up_process(rescuer->task);
4237
4238 return 0;
4239}
4240
David Brazdil0f672f62019-12-10 10:32:29 +00004241__printf(1, 4)
4242struct workqueue_struct *alloc_workqueue(const char *fmt,
4243 unsigned int flags,
4244 int max_active, ...)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004245{
4246 size_t tbl_size = 0;
4247 va_list args;
4248 struct workqueue_struct *wq;
4249 struct pool_workqueue *pwq;
4250
4251 /*
4252 * Unbound && max_active == 1 used to imply ordered, which is no
4253 * longer the case on NUMA machines due to per-node pools. While
4254 * alloc_ordered_workqueue() is the right way to create an ordered
4255 * workqueue, keep the previous behavior to avoid subtle breakages
4256 * on NUMA.
4257 */
4258 if ((flags & WQ_UNBOUND) && max_active == 1)
4259 flags |= __WQ_ORDERED;
4260
4261 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4262 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4263 flags |= WQ_UNBOUND;
4264
4265 /* allocate wq and format name */
4266 if (flags & WQ_UNBOUND)
4267 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4268
4269 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4270 if (!wq)
4271 return NULL;
4272
4273 if (flags & WQ_UNBOUND) {
David Brazdil0f672f62019-12-10 10:32:29 +00004274 wq->unbound_attrs = alloc_workqueue_attrs();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004275 if (!wq->unbound_attrs)
4276 goto err_free_wq;
4277 }
4278
David Brazdil0f672f62019-12-10 10:32:29 +00004279 va_start(args, max_active);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004280 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4281 va_end(args);
4282
4283 max_active = max_active ?: WQ_DFL_ACTIVE;
4284 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4285
4286 /* init wq */
4287 wq->flags = flags;
4288 wq->saved_max_active = max_active;
4289 mutex_init(&wq->mutex);
4290 atomic_set(&wq->nr_pwqs_to_flush, 0);
4291 INIT_LIST_HEAD(&wq->pwqs);
4292 INIT_LIST_HEAD(&wq->flusher_queue);
4293 INIT_LIST_HEAD(&wq->flusher_overflow);
4294 INIT_LIST_HEAD(&wq->maydays);
4295
David Brazdil0f672f62019-12-10 10:32:29 +00004296 wq_init_lockdep(wq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004297 INIT_LIST_HEAD(&wq->list);
4298
4299 if (alloc_and_link_pwqs(wq) < 0)
David Brazdil0f672f62019-12-10 10:32:29 +00004300 goto err_unreg_lockdep;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004301
4302 if (wq_online && init_rescuer(wq) < 0)
4303 goto err_destroy;
4304
4305 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4306 goto err_destroy;
4307
4308 /*
4309 * wq_pool_mutex protects global freeze state and workqueues list.
4310 * Grab it, adjust max_active and add the new @wq to workqueues
4311 * list.
4312 */
4313 mutex_lock(&wq_pool_mutex);
4314
4315 mutex_lock(&wq->mutex);
4316 for_each_pwq(pwq, wq)
4317 pwq_adjust_max_active(pwq);
4318 mutex_unlock(&wq->mutex);
4319
4320 list_add_tail_rcu(&wq->list, &workqueues);
4321
4322 mutex_unlock(&wq_pool_mutex);
4323
4324 return wq;
4325
David Brazdil0f672f62019-12-10 10:32:29 +00004326err_unreg_lockdep:
4327 wq_unregister_lockdep(wq);
4328 wq_free_lockdep(wq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004329err_free_wq:
4330 free_workqueue_attrs(wq->unbound_attrs);
4331 kfree(wq);
4332 return NULL;
4333err_destroy:
4334 destroy_workqueue(wq);
4335 return NULL;
4336}
David Brazdil0f672f62019-12-10 10:32:29 +00004337EXPORT_SYMBOL_GPL(alloc_workqueue);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004338
4339/**
4340 * destroy_workqueue - safely terminate a workqueue
4341 * @wq: target workqueue
4342 *
4343 * Safely destroy a workqueue. All work currently pending will be done first.
4344 */
4345void destroy_workqueue(struct workqueue_struct *wq)
4346{
4347 struct pool_workqueue *pwq;
4348 int node;
4349
Olivier Deprez0e641232021-09-23 10:07:05 +02004350 /*
4351 * Remove it from sysfs first so that sanity check failure doesn't
4352 * lead to sysfs name conflicts.
4353 */
4354 workqueue_sysfs_unregister(wq);
4355
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004356 /* drain it before proceeding with destruction */
4357 drain_workqueue(wq);
4358
Olivier Deprez0e641232021-09-23 10:07:05 +02004359 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4360 if (wq->rescuer) {
4361 struct worker *rescuer = wq->rescuer;
4362
4363 /* this prevents new queueing */
4364 spin_lock_irq(&wq_mayday_lock);
4365 wq->rescuer = NULL;
4366 spin_unlock_irq(&wq_mayday_lock);
4367
4368 /* rescuer will empty maydays list before exiting */
4369 kthread_stop(rescuer->task);
4370 kfree(rescuer);
4371 }
4372
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004373 /* sanity checks */
4374 mutex_lock(&wq->mutex);
4375 for_each_pwq(pwq, wq) {
4376 int i;
4377
4378 for (i = 0; i < WORK_NR_COLORS; i++) {
4379 if (WARN_ON(pwq->nr_in_flight[i])) {
4380 mutex_unlock(&wq->mutex);
4381 show_workqueue_state();
4382 return;
4383 }
4384 }
4385
4386 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4387 WARN_ON(pwq->nr_active) ||
4388 WARN_ON(!list_empty(&pwq->delayed_works))) {
4389 mutex_unlock(&wq->mutex);
4390 show_workqueue_state();
4391 return;
4392 }
4393 }
4394 mutex_unlock(&wq->mutex);
4395
4396 /*
4397 * wq list is used to freeze wq, remove from list after
4398 * flushing is complete in case freeze races us.
4399 */
4400 mutex_lock(&wq_pool_mutex);
4401 list_del_rcu(&wq->list);
4402 mutex_unlock(&wq_pool_mutex);
4403
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004404 if (!(wq->flags & WQ_UNBOUND)) {
David Brazdil0f672f62019-12-10 10:32:29 +00004405 wq_unregister_lockdep(wq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004406 /*
4407 * The base ref is never dropped on per-cpu pwqs. Directly
4408 * schedule RCU free.
4409 */
David Brazdil0f672f62019-12-10 10:32:29 +00004410 call_rcu(&wq->rcu, rcu_free_wq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004411 } else {
4412 /*
4413 * We're the sole accessor of @wq at this point. Directly
4414 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4415 * @wq will be freed when the last pwq is released.
4416 */
4417 for_each_node(node) {
4418 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4419 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4420 put_pwq_unlocked(pwq);
4421 }
4422
4423 /*
4424 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4425 * put. Don't access it afterwards.
4426 */
4427 pwq = wq->dfl_pwq;
4428 wq->dfl_pwq = NULL;
4429 put_pwq_unlocked(pwq);
4430 }
4431}
4432EXPORT_SYMBOL_GPL(destroy_workqueue);
4433
4434/**
4435 * workqueue_set_max_active - adjust max_active of a workqueue
4436 * @wq: target workqueue
4437 * @max_active: new max_active value.
4438 *
4439 * Set max_active of @wq to @max_active.
4440 *
4441 * CONTEXT:
4442 * Don't call from IRQ context.
4443 */
4444void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4445{
4446 struct pool_workqueue *pwq;
4447
4448 /* disallow meddling with max_active for ordered workqueues */
4449 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4450 return;
4451
4452 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4453
4454 mutex_lock(&wq->mutex);
4455
4456 wq->flags &= ~__WQ_ORDERED;
4457 wq->saved_max_active = max_active;
4458
4459 for_each_pwq(pwq, wq)
4460 pwq_adjust_max_active(pwq);
4461
4462 mutex_unlock(&wq->mutex);
4463}
4464EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4465
4466/**
4467 * current_work - retrieve %current task's work struct
4468 *
4469 * Determine if %current task is a workqueue worker and what it's working on.
4470 * Useful to find out the context that the %current task is running in.
4471 *
4472 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4473 */
4474struct work_struct *current_work(void)
4475{
4476 struct worker *worker = current_wq_worker();
4477
4478 return worker ? worker->current_work : NULL;
4479}
4480EXPORT_SYMBOL(current_work);
4481
4482/**
4483 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4484 *
4485 * Determine whether %current is a workqueue rescuer. Can be used from
4486 * work functions to determine whether it's being run off the rescuer task.
4487 *
4488 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4489 */
4490bool current_is_workqueue_rescuer(void)
4491{
4492 struct worker *worker = current_wq_worker();
4493
4494 return worker && worker->rescue_wq;
4495}
4496
4497/**
4498 * workqueue_congested - test whether a workqueue is congested
4499 * @cpu: CPU in question
4500 * @wq: target workqueue
4501 *
4502 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4503 * no synchronization around this function and the test result is
4504 * unreliable and only useful as advisory hints or for debugging.
4505 *
4506 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4507 * Note that both per-cpu and unbound workqueues may be associated with
4508 * multiple pool_workqueues which have separate congested states. A
4509 * workqueue being congested on one CPU doesn't mean the workqueue is also
4510 * contested on other CPUs / NUMA nodes.
4511 *
4512 * Return:
4513 * %true if congested, %false otherwise.
4514 */
4515bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4516{
4517 struct pool_workqueue *pwq;
4518 bool ret;
4519
David Brazdil0f672f62019-12-10 10:32:29 +00004520 rcu_read_lock();
4521 preempt_disable();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004522
4523 if (cpu == WORK_CPU_UNBOUND)
4524 cpu = smp_processor_id();
4525
4526 if (!(wq->flags & WQ_UNBOUND))
4527 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4528 else
4529 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4530
4531 ret = !list_empty(&pwq->delayed_works);
David Brazdil0f672f62019-12-10 10:32:29 +00004532 preempt_enable();
4533 rcu_read_unlock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004534
4535 return ret;
4536}
4537EXPORT_SYMBOL_GPL(workqueue_congested);
4538
4539/**
4540 * work_busy - test whether a work is currently pending or running
4541 * @work: the work to be tested
4542 *
4543 * Test whether @work is currently pending or running. There is no
4544 * synchronization around this function and the test result is
4545 * unreliable and only useful as advisory hints or for debugging.
4546 *
4547 * Return:
4548 * OR'd bitmask of WORK_BUSY_* bits.
4549 */
4550unsigned int work_busy(struct work_struct *work)
4551{
4552 struct worker_pool *pool;
4553 unsigned long flags;
4554 unsigned int ret = 0;
4555
4556 if (work_pending(work))
4557 ret |= WORK_BUSY_PENDING;
4558
David Brazdil0f672f62019-12-10 10:32:29 +00004559 rcu_read_lock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004560 pool = get_work_pool(work);
4561 if (pool) {
David Brazdil0f672f62019-12-10 10:32:29 +00004562 spin_lock_irqsave(&pool->lock, flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004563 if (find_worker_executing_work(pool, work))
4564 ret |= WORK_BUSY_RUNNING;
David Brazdil0f672f62019-12-10 10:32:29 +00004565 spin_unlock_irqrestore(&pool->lock, flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004566 }
David Brazdil0f672f62019-12-10 10:32:29 +00004567 rcu_read_unlock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004568
4569 return ret;
4570}
4571EXPORT_SYMBOL_GPL(work_busy);
4572
4573/**
4574 * set_worker_desc - set description for the current work item
4575 * @fmt: printf-style format string
4576 * @...: arguments for the format string
4577 *
4578 * This function can be called by a running work function to describe what
4579 * the work item is about. If the worker task gets dumped, this
4580 * information will be printed out together to help debugging. The
4581 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4582 */
4583void set_worker_desc(const char *fmt, ...)
4584{
4585 struct worker *worker = current_wq_worker();
4586 va_list args;
4587
4588 if (worker) {
4589 va_start(args, fmt);
4590 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4591 va_end(args);
4592 }
4593}
4594EXPORT_SYMBOL_GPL(set_worker_desc);
4595
4596/**
4597 * print_worker_info - print out worker information and description
4598 * @log_lvl: the log level to use when printing
4599 * @task: target task
4600 *
4601 * If @task is a worker and currently executing a work item, print out the
4602 * name of the workqueue being serviced and worker description set with
4603 * set_worker_desc() by the currently executing work item.
4604 *
4605 * This function can be safely called on any task as long as the
4606 * task_struct itself is accessible. While safe, this function isn't
4607 * synchronized and may print out mixups or garbages of limited length.
4608 */
4609void print_worker_info(const char *log_lvl, struct task_struct *task)
4610{
4611 work_func_t *fn = NULL;
4612 char name[WQ_NAME_LEN] = { };
4613 char desc[WORKER_DESC_LEN] = { };
4614 struct pool_workqueue *pwq = NULL;
4615 struct workqueue_struct *wq = NULL;
4616 struct worker *worker;
4617
4618 if (!(task->flags & PF_WQ_WORKER))
4619 return;
4620
4621 /*
4622 * This function is called without any synchronization and @task
4623 * could be in any state. Be careful with dereferences.
4624 */
4625 worker = kthread_probe_data(task);
4626
4627 /*
4628 * Carefully copy the associated workqueue's workfn, name and desc.
4629 * Keep the original last '\0' in case the original is garbage.
4630 */
4631 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4632 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4633 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4634 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4635 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4636
4637 if (fn || name[0] || desc[0]) {
David Brazdil0f672f62019-12-10 10:32:29 +00004638 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004639 if (strcmp(name, desc))
4640 pr_cont(" (%s)", desc);
4641 pr_cont("\n");
4642 }
4643}
4644
4645static void pr_cont_pool_info(struct worker_pool *pool)
4646{
4647 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4648 if (pool->node != NUMA_NO_NODE)
4649 pr_cont(" node=%d", pool->node);
4650 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4651}
4652
4653static void pr_cont_work(bool comma, struct work_struct *work)
4654{
4655 if (work->func == wq_barrier_func) {
4656 struct wq_barrier *barr;
4657
4658 barr = container_of(work, struct wq_barrier, work);
4659
4660 pr_cont("%s BAR(%d)", comma ? "," : "",
4661 task_pid_nr(barr->task));
4662 } else {
David Brazdil0f672f62019-12-10 10:32:29 +00004663 pr_cont("%s %ps", comma ? "," : "", work->func);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004664 }
4665}
4666
4667static void show_pwq(struct pool_workqueue *pwq)
4668{
4669 struct worker_pool *pool = pwq->pool;
4670 struct work_struct *work;
4671 struct worker *worker;
4672 bool has_in_flight = false, has_pending = false;
4673 int bkt;
4674
4675 pr_info(" pwq %d:", pool->id);
4676 pr_cont_pool_info(pool);
4677
Olivier Deprez0e641232021-09-23 10:07:05 +02004678 pr_cont(" active=%d/%d refcnt=%d%s\n",
4679 pwq->nr_active, pwq->max_active, pwq->refcnt,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004680 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4681
4682 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4683 if (worker->current_pwq == pwq) {
4684 has_in_flight = true;
4685 break;
4686 }
4687 }
4688 if (has_in_flight) {
4689 bool comma = false;
4690
4691 pr_info(" in-flight:");
4692 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4693 if (worker->current_pwq != pwq)
4694 continue;
4695
David Brazdil0f672f62019-12-10 10:32:29 +00004696 pr_cont("%s %d%s:%ps", comma ? "," : "",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004697 task_pid_nr(worker->task),
4698 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4699 worker->current_func);
4700 list_for_each_entry(work, &worker->scheduled, entry)
4701 pr_cont_work(false, work);
4702 comma = true;
4703 }
4704 pr_cont("\n");
4705 }
4706
4707 list_for_each_entry(work, &pool->worklist, entry) {
4708 if (get_work_pwq(work) == pwq) {
4709 has_pending = true;
4710 break;
4711 }
4712 }
4713 if (has_pending) {
4714 bool comma = false;
4715
4716 pr_info(" pending:");
4717 list_for_each_entry(work, &pool->worklist, entry) {
4718 if (get_work_pwq(work) != pwq)
4719 continue;
4720
4721 pr_cont_work(comma, work);
4722 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4723 }
4724 pr_cont("\n");
4725 }
4726
4727 if (!list_empty(&pwq->delayed_works)) {
4728 bool comma = false;
4729
4730 pr_info(" delayed:");
4731 list_for_each_entry(work, &pwq->delayed_works, entry) {
4732 pr_cont_work(comma, work);
4733 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4734 }
4735 pr_cont("\n");
4736 }
4737}
4738
4739/**
4740 * show_workqueue_state - dump workqueue state
4741 *
4742 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4743 * all busy workqueues and pools.
4744 */
4745void show_workqueue_state(void)
4746{
4747 struct workqueue_struct *wq;
4748 struct worker_pool *pool;
4749 unsigned long flags;
4750 int pi;
4751
David Brazdil0f672f62019-12-10 10:32:29 +00004752 rcu_read_lock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004753
4754 pr_info("Showing busy workqueues and worker pools:\n");
4755
4756 list_for_each_entry_rcu(wq, &workqueues, list) {
4757 struct pool_workqueue *pwq;
4758 bool idle = true;
4759
4760 for_each_pwq(pwq, wq) {
4761 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4762 idle = false;
4763 break;
4764 }
4765 }
4766 if (idle)
4767 continue;
4768
4769 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4770
4771 for_each_pwq(pwq, wq) {
4772 spin_lock_irqsave(&pwq->pool->lock, flags);
4773 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4774 show_pwq(pwq);
4775 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4776 /*
4777 * We could be printing a lot from atomic context, e.g.
4778 * sysrq-t -> show_workqueue_state(). Avoid triggering
4779 * hard lockup.
4780 */
4781 touch_nmi_watchdog();
4782 }
4783 }
4784
4785 for_each_pool(pool, pi) {
4786 struct worker *worker;
4787 bool first = true;
4788
4789 spin_lock_irqsave(&pool->lock, flags);
4790 if (pool->nr_workers == pool->nr_idle)
4791 goto next_pool;
4792
4793 pr_info("pool %d:", pool->id);
4794 pr_cont_pool_info(pool);
4795 pr_cont(" hung=%us workers=%d",
4796 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4797 pool->nr_workers);
4798 if (pool->manager)
4799 pr_cont(" manager: %d",
4800 task_pid_nr(pool->manager->task));
4801 list_for_each_entry(worker, &pool->idle_list, entry) {
4802 pr_cont(" %s%d", first ? "idle: " : "",
4803 task_pid_nr(worker->task));
4804 first = false;
4805 }
4806 pr_cont("\n");
4807 next_pool:
4808 spin_unlock_irqrestore(&pool->lock, flags);
4809 /*
4810 * We could be printing a lot from atomic context, e.g.
4811 * sysrq-t -> show_workqueue_state(). Avoid triggering
4812 * hard lockup.
4813 */
4814 touch_nmi_watchdog();
4815 }
4816
David Brazdil0f672f62019-12-10 10:32:29 +00004817 rcu_read_unlock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004818}
4819
4820/* used to show worker information through /proc/PID/{comm,stat,status} */
4821void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4822{
4823 int off;
4824
4825 /* always show the actual comm */
4826 off = strscpy(buf, task->comm, size);
4827 if (off < 0)
4828 return;
4829
4830 /* stabilize PF_WQ_WORKER and worker pool association */
4831 mutex_lock(&wq_pool_attach_mutex);
4832
4833 if (task->flags & PF_WQ_WORKER) {
4834 struct worker *worker = kthread_data(task);
4835 struct worker_pool *pool = worker->pool;
4836
4837 if (pool) {
4838 spin_lock_irq(&pool->lock);
4839 /*
4840 * ->desc tracks information (wq name or
4841 * set_worker_desc()) for the latest execution. If
4842 * current, prepend '+', otherwise '-'.
4843 */
4844 if (worker->desc[0] != '\0') {
4845 if (worker->current_work)
4846 scnprintf(buf + off, size - off, "+%s",
4847 worker->desc);
4848 else
4849 scnprintf(buf + off, size - off, "-%s",
4850 worker->desc);
4851 }
4852 spin_unlock_irq(&pool->lock);
4853 }
4854 }
4855
4856 mutex_unlock(&wq_pool_attach_mutex);
4857}
4858
4859#ifdef CONFIG_SMP
4860
4861/*
4862 * CPU hotplug.
4863 *
4864 * There are two challenges in supporting CPU hotplug. Firstly, there
4865 * are a lot of assumptions on strong associations among work, pwq and
4866 * pool which make migrating pending and scheduled works very
4867 * difficult to implement without impacting hot paths. Secondly,
4868 * worker pools serve mix of short, long and very long running works making
4869 * blocked draining impractical.
4870 *
4871 * This is solved by allowing the pools to be disassociated from the CPU
4872 * running as an unbound one and allowing it to be reattached later if the
4873 * cpu comes back online.
4874 */
4875
4876static void unbind_workers(int cpu)
4877{
4878 struct worker_pool *pool;
4879 struct worker *worker;
4880
4881 for_each_cpu_worker_pool(pool, cpu) {
4882 mutex_lock(&wq_pool_attach_mutex);
4883 spin_lock_irq(&pool->lock);
4884
4885 /*
4886 * We've blocked all attach/detach operations. Make all workers
4887 * unbound and set DISASSOCIATED. Before this, all workers
4888 * except for the ones which are still executing works from
4889 * before the last CPU down must be on the cpu. After
4890 * this, they may become diasporas.
4891 */
4892 for_each_pool_worker(worker, pool)
4893 worker->flags |= WORKER_UNBOUND;
4894
4895 pool->flags |= POOL_DISASSOCIATED;
4896
4897 spin_unlock_irq(&pool->lock);
4898 mutex_unlock(&wq_pool_attach_mutex);
4899
4900 /*
4901 * Call schedule() so that we cross rq->lock and thus can
4902 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4903 * This is necessary as scheduler callbacks may be invoked
4904 * from other cpus.
4905 */
4906 schedule();
4907
4908 /*
4909 * Sched callbacks are disabled now. Zap nr_running.
4910 * After this, nr_running stays zero and need_more_worker()
4911 * and keep_working() are always true as long as the
4912 * worklist is not empty. This pool now behaves as an
4913 * unbound (in terms of concurrency management) pool which
4914 * are served by workers tied to the pool.
4915 */
4916 atomic_set(&pool->nr_running, 0);
4917
4918 /*
4919 * With concurrency management just turned off, a busy
4920 * worker blocking could lead to lengthy stalls. Kick off
4921 * unbound chain execution of currently pending work items.
4922 */
4923 spin_lock_irq(&pool->lock);
4924 wake_up_worker(pool);
4925 spin_unlock_irq(&pool->lock);
4926 }
4927}
4928
4929/**
4930 * rebind_workers - rebind all workers of a pool to the associated CPU
4931 * @pool: pool of interest
4932 *
4933 * @pool->cpu is coming online. Rebind all workers to the CPU.
4934 */
4935static void rebind_workers(struct worker_pool *pool)
4936{
4937 struct worker *worker;
4938
4939 lockdep_assert_held(&wq_pool_attach_mutex);
4940
4941 /*
4942 * Restore CPU affinity of all workers. As all idle workers should
4943 * be on the run-queue of the associated CPU before any local
4944 * wake-ups for concurrency management happen, restore CPU affinity
4945 * of all workers first and then clear UNBOUND. As we're called
4946 * from CPU_ONLINE, the following shouldn't fail.
4947 */
4948 for_each_pool_worker(worker, pool)
4949 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4950 pool->attrs->cpumask) < 0);
4951
4952 spin_lock_irq(&pool->lock);
4953
4954 pool->flags &= ~POOL_DISASSOCIATED;
4955
4956 for_each_pool_worker(worker, pool) {
4957 unsigned int worker_flags = worker->flags;
4958
4959 /*
4960 * A bound idle worker should actually be on the runqueue
4961 * of the associated CPU for local wake-ups targeting it to
4962 * work. Kick all idle workers so that they migrate to the
4963 * associated CPU. Doing this in the same loop as
4964 * replacing UNBOUND with REBOUND is safe as no worker will
4965 * be bound before @pool->lock is released.
4966 */
4967 if (worker_flags & WORKER_IDLE)
4968 wake_up_process(worker->task);
4969
4970 /*
4971 * We want to clear UNBOUND but can't directly call
4972 * worker_clr_flags() or adjust nr_running. Atomically
4973 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4974 * @worker will clear REBOUND using worker_clr_flags() when
4975 * it initiates the next execution cycle thus restoring
4976 * concurrency management. Note that when or whether
4977 * @worker clears REBOUND doesn't affect correctness.
4978 *
4979 * WRITE_ONCE() is necessary because @worker->flags may be
4980 * tested without holding any lock in
David Brazdil0f672f62019-12-10 10:32:29 +00004981 * wq_worker_running(). Without it, NOT_RUNNING test may
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004982 * fail incorrectly leading to premature concurrency
4983 * management operations.
4984 */
4985 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4986 worker_flags |= WORKER_REBOUND;
4987 worker_flags &= ~WORKER_UNBOUND;
4988 WRITE_ONCE(worker->flags, worker_flags);
4989 }
4990
4991 spin_unlock_irq(&pool->lock);
4992}
4993
4994/**
4995 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4996 * @pool: unbound pool of interest
4997 * @cpu: the CPU which is coming up
4998 *
4999 * An unbound pool may end up with a cpumask which doesn't have any online
5000 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5001 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5002 * online CPU before, cpus_allowed of all its workers should be restored.
5003 */
5004static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5005{
5006 static cpumask_t cpumask;
5007 struct worker *worker;
5008
5009 lockdep_assert_held(&wq_pool_attach_mutex);
5010
5011 /* is @cpu allowed for @pool? */
5012 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5013 return;
5014
5015 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5016
5017 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5018 for_each_pool_worker(worker, pool)
5019 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5020}
5021
5022int workqueue_prepare_cpu(unsigned int cpu)
5023{
5024 struct worker_pool *pool;
5025
5026 for_each_cpu_worker_pool(pool, cpu) {
5027 if (pool->nr_workers)
5028 continue;
5029 if (!create_worker(pool))
5030 return -ENOMEM;
5031 }
5032 return 0;
5033}
5034
5035int workqueue_online_cpu(unsigned int cpu)
5036{
5037 struct worker_pool *pool;
5038 struct workqueue_struct *wq;
5039 int pi;
5040
5041 mutex_lock(&wq_pool_mutex);
5042
5043 for_each_pool(pool, pi) {
5044 mutex_lock(&wq_pool_attach_mutex);
5045
5046 if (pool->cpu == cpu)
5047 rebind_workers(pool);
5048 else if (pool->cpu < 0)
5049 restore_unbound_workers_cpumask(pool, cpu);
5050
5051 mutex_unlock(&wq_pool_attach_mutex);
5052 }
5053
5054 /* update NUMA affinity of unbound workqueues */
5055 list_for_each_entry(wq, &workqueues, list)
5056 wq_update_unbound_numa(wq, cpu, true);
5057
5058 mutex_unlock(&wq_pool_mutex);
5059 return 0;
5060}
5061
5062int workqueue_offline_cpu(unsigned int cpu)
5063{
5064 struct workqueue_struct *wq;
5065
5066 /* unbinding per-cpu workers should happen on the local CPU */
5067 if (WARN_ON(cpu != smp_processor_id()))
5068 return -1;
5069
5070 unbind_workers(cpu);
5071
5072 /* update NUMA affinity of unbound workqueues */
5073 mutex_lock(&wq_pool_mutex);
5074 list_for_each_entry(wq, &workqueues, list)
5075 wq_update_unbound_numa(wq, cpu, false);
5076 mutex_unlock(&wq_pool_mutex);
5077
5078 return 0;
5079}
5080
5081struct work_for_cpu {
5082 struct work_struct work;
5083 long (*fn)(void *);
5084 void *arg;
5085 long ret;
5086};
5087
5088static void work_for_cpu_fn(struct work_struct *work)
5089{
5090 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5091
5092 wfc->ret = wfc->fn(wfc->arg);
5093}
5094
5095/**
5096 * work_on_cpu - run a function in thread context on a particular cpu
5097 * @cpu: the cpu to run on
5098 * @fn: the function to run
5099 * @arg: the function arg
5100 *
5101 * It is up to the caller to ensure that the cpu doesn't go offline.
5102 * The caller must not hold any locks which would prevent @fn from completing.
5103 *
5104 * Return: The value @fn returns.
5105 */
5106long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5107{
5108 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5109
5110 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5111 schedule_work_on(cpu, &wfc.work);
5112 flush_work(&wfc.work);
5113 destroy_work_on_stack(&wfc.work);
5114 return wfc.ret;
5115}
5116EXPORT_SYMBOL_GPL(work_on_cpu);
5117
5118/**
5119 * work_on_cpu_safe - run a function in thread context on a particular cpu
5120 * @cpu: the cpu to run on
5121 * @fn: the function to run
5122 * @arg: the function argument
5123 *
5124 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5125 * any locks which would prevent @fn from completing.
5126 *
5127 * Return: The value @fn returns.
5128 */
5129long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5130{
5131 long ret = -ENODEV;
5132
5133 get_online_cpus();
5134 if (cpu_online(cpu))
5135 ret = work_on_cpu(cpu, fn, arg);
5136 put_online_cpus();
5137 return ret;
5138}
5139EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5140#endif /* CONFIG_SMP */
5141
5142#ifdef CONFIG_FREEZER
5143
5144/**
5145 * freeze_workqueues_begin - begin freezing workqueues
5146 *
5147 * Start freezing workqueues. After this function returns, all freezable
5148 * workqueues will queue new works to their delayed_works list instead of
5149 * pool->worklist.
5150 *
5151 * CONTEXT:
5152 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5153 */
5154void freeze_workqueues_begin(void)
5155{
5156 struct workqueue_struct *wq;
5157 struct pool_workqueue *pwq;
5158
5159 mutex_lock(&wq_pool_mutex);
5160
5161 WARN_ON_ONCE(workqueue_freezing);
5162 workqueue_freezing = true;
5163
5164 list_for_each_entry(wq, &workqueues, list) {
5165 mutex_lock(&wq->mutex);
5166 for_each_pwq(pwq, wq)
5167 pwq_adjust_max_active(pwq);
5168 mutex_unlock(&wq->mutex);
5169 }
5170
5171 mutex_unlock(&wq_pool_mutex);
5172}
5173
5174/**
5175 * freeze_workqueues_busy - are freezable workqueues still busy?
5176 *
5177 * Check whether freezing is complete. This function must be called
5178 * between freeze_workqueues_begin() and thaw_workqueues().
5179 *
5180 * CONTEXT:
5181 * Grabs and releases wq_pool_mutex.
5182 *
5183 * Return:
5184 * %true if some freezable workqueues are still busy. %false if freezing
5185 * is complete.
5186 */
5187bool freeze_workqueues_busy(void)
5188{
5189 bool busy = false;
5190 struct workqueue_struct *wq;
5191 struct pool_workqueue *pwq;
5192
5193 mutex_lock(&wq_pool_mutex);
5194
5195 WARN_ON_ONCE(!workqueue_freezing);
5196
5197 list_for_each_entry(wq, &workqueues, list) {
5198 if (!(wq->flags & WQ_FREEZABLE))
5199 continue;
5200 /*
5201 * nr_active is monotonically decreasing. It's safe
5202 * to peek without lock.
5203 */
David Brazdil0f672f62019-12-10 10:32:29 +00005204 rcu_read_lock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005205 for_each_pwq(pwq, wq) {
5206 WARN_ON_ONCE(pwq->nr_active < 0);
5207 if (pwq->nr_active) {
5208 busy = true;
David Brazdil0f672f62019-12-10 10:32:29 +00005209 rcu_read_unlock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005210 goto out_unlock;
5211 }
5212 }
David Brazdil0f672f62019-12-10 10:32:29 +00005213 rcu_read_unlock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005214 }
5215out_unlock:
5216 mutex_unlock(&wq_pool_mutex);
5217 return busy;
5218}
5219
5220/**
5221 * thaw_workqueues - thaw workqueues
5222 *
5223 * Thaw workqueues. Normal queueing is restored and all collected
5224 * frozen works are transferred to their respective pool worklists.
5225 *
5226 * CONTEXT:
5227 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5228 */
5229void thaw_workqueues(void)
5230{
5231 struct workqueue_struct *wq;
5232 struct pool_workqueue *pwq;
5233
5234 mutex_lock(&wq_pool_mutex);
5235
5236 if (!workqueue_freezing)
5237 goto out_unlock;
5238
5239 workqueue_freezing = false;
5240
5241 /* restore max_active and repopulate worklist */
5242 list_for_each_entry(wq, &workqueues, list) {
5243 mutex_lock(&wq->mutex);
5244 for_each_pwq(pwq, wq)
5245 pwq_adjust_max_active(pwq);
5246 mutex_unlock(&wq->mutex);
5247 }
5248
5249out_unlock:
5250 mutex_unlock(&wq_pool_mutex);
5251}
5252#endif /* CONFIG_FREEZER */
5253
5254static int workqueue_apply_unbound_cpumask(void)
5255{
5256 LIST_HEAD(ctxs);
5257 int ret = 0;
5258 struct workqueue_struct *wq;
5259 struct apply_wqattrs_ctx *ctx, *n;
5260
5261 lockdep_assert_held(&wq_pool_mutex);
5262
5263 list_for_each_entry(wq, &workqueues, list) {
5264 if (!(wq->flags & WQ_UNBOUND))
5265 continue;
5266 /* creating multiple pwqs breaks ordering guarantee */
5267 if (wq->flags & __WQ_ORDERED)
5268 continue;
5269
5270 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5271 if (!ctx) {
5272 ret = -ENOMEM;
5273 break;
5274 }
5275
5276 list_add_tail(&ctx->list, &ctxs);
5277 }
5278
5279 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5280 if (!ret)
5281 apply_wqattrs_commit(ctx);
5282 apply_wqattrs_cleanup(ctx);
5283 }
5284
5285 return ret;
5286}
5287
5288/**
5289 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5290 * @cpumask: the cpumask to set
5291 *
5292 * The low-level workqueues cpumask is a global cpumask that limits
5293 * the affinity of all unbound workqueues. This function check the @cpumask
5294 * and apply it to all unbound workqueues and updates all pwqs of them.
5295 *
5296 * Retun: 0 - Success
5297 * -EINVAL - Invalid @cpumask
5298 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5299 */
5300int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5301{
5302 int ret = -EINVAL;
5303 cpumask_var_t saved_cpumask;
5304
5305 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5306 return -ENOMEM;
5307
5308 /*
5309 * Not excluding isolated cpus on purpose.
5310 * If the user wishes to include them, we allow that.
5311 */
5312 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5313 if (!cpumask_empty(cpumask)) {
5314 apply_wqattrs_lock();
5315
5316 /* save the old wq_unbound_cpumask. */
5317 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5318
5319 /* update wq_unbound_cpumask at first and apply it to wqs. */
5320 cpumask_copy(wq_unbound_cpumask, cpumask);
5321 ret = workqueue_apply_unbound_cpumask();
5322
5323 /* restore the wq_unbound_cpumask when failed. */
5324 if (ret < 0)
5325 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5326
5327 apply_wqattrs_unlock();
5328 }
5329
5330 free_cpumask_var(saved_cpumask);
5331 return ret;
5332}
5333
5334#ifdef CONFIG_SYSFS
5335/*
5336 * Workqueues with WQ_SYSFS flag set is visible to userland via
5337 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5338 * following attributes.
5339 *
5340 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5341 * max_active RW int : maximum number of in-flight work items
5342 *
5343 * Unbound workqueues have the following extra attributes.
5344 *
5345 * pool_ids RO int : the associated pool IDs for each node
5346 * nice RW int : nice value of the workers
5347 * cpumask RW mask : bitmask of allowed CPUs for the workers
5348 * numa RW bool : whether enable NUMA affinity
5349 */
5350struct wq_device {
5351 struct workqueue_struct *wq;
5352 struct device dev;
5353};
5354
5355static struct workqueue_struct *dev_to_wq(struct device *dev)
5356{
5357 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5358
5359 return wq_dev->wq;
5360}
5361
5362static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5363 char *buf)
5364{
5365 struct workqueue_struct *wq = dev_to_wq(dev);
5366
5367 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5368}
5369static DEVICE_ATTR_RO(per_cpu);
5370
5371static ssize_t max_active_show(struct device *dev,
5372 struct device_attribute *attr, char *buf)
5373{
5374 struct workqueue_struct *wq = dev_to_wq(dev);
5375
5376 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5377}
5378
5379static ssize_t max_active_store(struct device *dev,
5380 struct device_attribute *attr, const char *buf,
5381 size_t count)
5382{
5383 struct workqueue_struct *wq = dev_to_wq(dev);
5384 int val;
5385
5386 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5387 return -EINVAL;
5388
5389 workqueue_set_max_active(wq, val);
5390 return count;
5391}
5392static DEVICE_ATTR_RW(max_active);
5393
5394static struct attribute *wq_sysfs_attrs[] = {
5395 &dev_attr_per_cpu.attr,
5396 &dev_attr_max_active.attr,
5397 NULL,
5398};
5399ATTRIBUTE_GROUPS(wq_sysfs);
5400
5401static ssize_t wq_pool_ids_show(struct device *dev,
5402 struct device_attribute *attr, char *buf)
5403{
5404 struct workqueue_struct *wq = dev_to_wq(dev);
5405 const char *delim = "";
5406 int node, written = 0;
5407
David Brazdil0f672f62019-12-10 10:32:29 +00005408 get_online_cpus();
5409 rcu_read_lock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005410 for_each_node(node) {
5411 written += scnprintf(buf + written, PAGE_SIZE - written,
5412 "%s%d:%d", delim, node,
5413 unbound_pwq_by_node(wq, node)->pool->id);
5414 delim = " ";
5415 }
5416 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
David Brazdil0f672f62019-12-10 10:32:29 +00005417 rcu_read_unlock();
5418 put_online_cpus();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005419
5420 return written;
5421}
5422
5423static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5424 char *buf)
5425{
5426 struct workqueue_struct *wq = dev_to_wq(dev);
5427 int written;
5428
5429 mutex_lock(&wq->mutex);
5430 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5431 mutex_unlock(&wq->mutex);
5432
5433 return written;
5434}
5435
5436/* prepare workqueue_attrs for sysfs store operations */
5437static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5438{
5439 struct workqueue_attrs *attrs;
5440
5441 lockdep_assert_held(&wq_pool_mutex);
5442
David Brazdil0f672f62019-12-10 10:32:29 +00005443 attrs = alloc_workqueue_attrs();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005444 if (!attrs)
5445 return NULL;
5446
5447 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5448 return attrs;
5449}
5450
5451static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5452 const char *buf, size_t count)
5453{
5454 struct workqueue_struct *wq = dev_to_wq(dev);
5455 struct workqueue_attrs *attrs;
5456 int ret = -ENOMEM;
5457
5458 apply_wqattrs_lock();
5459
5460 attrs = wq_sysfs_prep_attrs(wq);
5461 if (!attrs)
5462 goto out_unlock;
5463
5464 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5465 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5466 ret = apply_workqueue_attrs_locked(wq, attrs);
5467 else
5468 ret = -EINVAL;
5469
5470out_unlock:
5471 apply_wqattrs_unlock();
5472 free_workqueue_attrs(attrs);
5473 return ret ?: count;
5474}
5475
5476static ssize_t wq_cpumask_show(struct device *dev,
5477 struct device_attribute *attr, char *buf)
5478{
5479 struct workqueue_struct *wq = dev_to_wq(dev);
5480 int written;
5481
5482 mutex_lock(&wq->mutex);
5483 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5484 cpumask_pr_args(wq->unbound_attrs->cpumask));
5485 mutex_unlock(&wq->mutex);
5486 return written;
5487}
5488
5489static ssize_t wq_cpumask_store(struct device *dev,
5490 struct device_attribute *attr,
5491 const char *buf, size_t count)
5492{
5493 struct workqueue_struct *wq = dev_to_wq(dev);
5494 struct workqueue_attrs *attrs;
5495 int ret = -ENOMEM;
5496
5497 apply_wqattrs_lock();
5498
5499 attrs = wq_sysfs_prep_attrs(wq);
5500 if (!attrs)
5501 goto out_unlock;
5502
5503 ret = cpumask_parse(buf, attrs->cpumask);
5504 if (!ret)
5505 ret = apply_workqueue_attrs_locked(wq, attrs);
5506
5507out_unlock:
5508 apply_wqattrs_unlock();
5509 free_workqueue_attrs(attrs);
5510 return ret ?: count;
5511}
5512
5513static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5514 char *buf)
5515{
5516 struct workqueue_struct *wq = dev_to_wq(dev);
5517 int written;
5518
5519 mutex_lock(&wq->mutex);
5520 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5521 !wq->unbound_attrs->no_numa);
5522 mutex_unlock(&wq->mutex);
5523
5524 return written;
5525}
5526
5527static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5528 const char *buf, size_t count)
5529{
5530 struct workqueue_struct *wq = dev_to_wq(dev);
5531 struct workqueue_attrs *attrs;
5532 int v, ret = -ENOMEM;
5533
5534 apply_wqattrs_lock();
5535
5536 attrs = wq_sysfs_prep_attrs(wq);
5537 if (!attrs)
5538 goto out_unlock;
5539
5540 ret = -EINVAL;
5541 if (sscanf(buf, "%d", &v) == 1) {
5542 attrs->no_numa = !v;
5543 ret = apply_workqueue_attrs_locked(wq, attrs);
5544 }
5545
5546out_unlock:
5547 apply_wqattrs_unlock();
5548 free_workqueue_attrs(attrs);
5549 return ret ?: count;
5550}
5551
5552static struct device_attribute wq_sysfs_unbound_attrs[] = {
5553 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5554 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5555 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5556 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5557 __ATTR_NULL,
5558};
5559
5560static struct bus_type wq_subsys = {
5561 .name = "workqueue",
5562 .dev_groups = wq_sysfs_groups,
5563};
5564
5565static ssize_t wq_unbound_cpumask_show(struct device *dev,
5566 struct device_attribute *attr, char *buf)
5567{
5568 int written;
5569
5570 mutex_lock(&wq_pool_mutex);
5571 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5572 cpumask_pr_args(wq_unbound_cpumask));
5573 mutex_unlock(&wq_pool_mutex);
5574
5575 return written;
5576}
5577
5578static ssize_t wq_unbound_cpumask_store(struct device *dev,
5579 struct device_attribute *attr, const char *buf, size_t count)
5580{
5581 cpumask_var_t cpumask;
5582 int ret;
5583
5584 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5585 return -ENOMEM;
5586
5587 ret = cpumask_parse(buf, cpumask);
5588 if (!ret)
5589 ret = workqueue_set_unbound_cpumask(cpumask);
5590
5591 free_cpumask_var(cpumask);
5592 return ret ? ret : count;
5593}
5594
5595static struct device_attribute wq_sysfs_cpumask_attr =
5596 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5597 wq_unbound_cpumask_store);
5598
5599static int __init wq_sysfs_init(void)
5600{
5601 int err;
5602
5603 err = subsys_virtual_register(&wq_subsys, NULL);
5604 if (err)
5605 return err;
5606
5607 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5608}
5609core_initcall(wq_sysfs_init);
5610
5611static void wq_device_release(struct device *dev)
5612{
5613 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5614
5615 kfree(wq_dev);
5616}
5617
5618/**
5619 * workqueue_sysfs_register - make a workqueue visible in sysfs
5620 * @wq: the workqueue to register
5621 *
5622 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5623 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5624 * which is the preferred method.
5625 *
5626 * Workqueue user should use this function directly iff it wants to apply
5627 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5628 * apply_workqueue_attrs() may race against userland updating the
5629 * attributes.
5630 *
5631 * Return: 0 on success, -errno on failure.
5632 */
5633int workqueue_sysfs_register(struct workqueue_struct *wq)
5634{
5635 struct wq_device *wq_dev;
5636 int ret;
5637
5638 /*
5639 * Adjusting max_active or creating new pwqs by applying
5640 * attributes breaks ordering guarantee. Disallow exposing ordered
5641 * workqueues.
5642 */
5643 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5644 return -EINVAL;
5645
5646 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5647 if (!wq_dev)
5648 return -ENOMEM;
5649
5650 wq_dev->wq = wq;
5651 wq_dev->dev.bus = &wq_subsys;
5652 wq_dev->dev.release = wq_device_release;
5653 dev_set_name(&wq_dev->dev, "%s", wq->name);
5654
5655 /*
5656 * unbound_attrs are created separately. Suppress uevent until
5657 * everything is ready.
5658 */
5659 dev_set_uevent_suppress(&wq_dev->dev, true);
5660
5661 ret = device_register(&wq_dev->dev);
5662 if (ret) {
5663 put_device(&wq_dev->dev);
5664 wq->wq_dev = NULL;
5665 return ret;
5666 }
5667
5668 if (wq->flags & WQ_UNBOUND) {
5669 struct device_attribute *attr;
5670
5671 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5672 ret = device_create_file(&wq_dev->dev, attr);
5673 if (ret) {
5674 device_unregister(&wq_dev->dev);
5675 wq->wq_dev = NULL;
5676 return ret;
5677 }
5678 }
5679 }
5680
5681 dev_set_uevent_suppress(&wq_dev->dev, false);
5682 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5683 return 0;
5684}
5685
5686/**
5687 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5688 * @wq: the workqueue to unregister
5689 *
5690 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5691 */
5692static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5693{
5694 struct wq_device *wq_dev = wq->wq_dev;
5695
5696 if (!wq->wq_dev)
5697 return;
5698
5699 wq->wq_dev = NULL;
5700 device_unregister(&wq_dev->dev);
5701}
5702#else /* CONFIG_SYSFS */
5703static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5704#endif /* CONFIG_SYSFS */
5705
5706/*
5707 * Workqueue watchdog.
5708 *
5709 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5710 * flush dependency, a concurrency managed work item which stays RUNNING
5711 * indefinitely. Workqueue stalls can be very difficult to debug as the
5712 * usual warning mechanisms don't trigger and internal workqueue state is
5713 * largely opaque.
5714 *
5715 * Workqueue watchdog monitors all worker pools periodically and dumps
5716 * state if some pools failed to make forward progress for a while where
5717 * forward progress is defined as the first item on ->worklist changing.
5718 *
5719 * This mechanism is controlled through the kernel parameter
5720 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5721 * corresponding sysfs parameter file.
5722 */
5723#ifdef CONFIG_WQ_WATCHDOG
5724
5725static unsigned long wq_watchdog_thresh = 30;
5726static struct timer_list wq_watchdog_timer;
5727
5728static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5729static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5730
5731static void wq_watchdog_reset_touched(void)
5732{
5733 int cpu;
5734
5735 wq_watchdog_touched = jiffies;
5736 for_each_possible_cpu(cpu)
5737 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5738}
5739
5740static void wq_watchdog_timer_fn(struct timer_list *unused)
5741{
5742 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5743 bool lockup_detected = false;
Olivier Deprez0e641232021-09-23 10:07:05 +02005744 unsigned long now = jiffies;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005745 struct worker_pool *pool;
5746 int pi;
5747
5748 if (!thresh)
5749 return;
5750
5751 rcu_read_lock();
5752
5753 for_each_pool(pool, pi) {
5754 unsigned long pool_ts, touched, ts;
5755
5756 if (list_empty(&pool->worklist))
5757 continue;
5758
Olivier Deprez0e641232021-09-23 10:07:05 +02005759 /*
5760 * If a virtual machine is stopped by the host it can look to
5761 * the watchdog like a stall.
5762 */
5763 kvm_check_and_clear_guest_paused();
5764
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005765 /* get the latest of pool and touched timestamps */
5766 pool_ts = READ_ONCE(pool->watchdog_ts);
5767 touched = READ_ONCE(wq_watchdog_touched);
5768
5769 if (time_after(pool_ts, touched))
5770 ts = pool_ts;
5771 else
5772 ts = touched;
5773
5774 if (pool->cpu >= 0) {
5775 unsigned long cpu_touched =
5776 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5777 pool->cpu));
5778 if (time_after(cpu_touched, ts))
5779 ts = cpu_touched;
5780 }
5781
5782 /* did we stall? */
Olivier Deprez0e641232021-09-23 10:07:05 +02005783 if (time_after(now, ts + thresh)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005784 lockup_detected = true;
5785 pr_emerg("BUG: workqueue lockup - pool");
5786 pr_cont_pool_info(pool);
5787 pr_cont(" stuck for %us!\n",
Olivier Deprez0e641232021-09-23 10:07:05 +02005788 jiffies_to_msecs(now - pool_ts) / 1000);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005789 }
5790 }
5791
5792 rcu_read_unlock();
5793
5794 if (lockup_detected)
5795 show_workqueue_state();
5796
5797 wq_watchdog_reset_touched();
5798 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5799}
5800
5801notrace void wq_watchdog_touch(int cpu)
5802{
5803 if (cpu >= 0)
5804 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5805 else
5806 wq_watchdog_touched = jiffies;
5807}
5808
5809static void wq_watchdog_set_thresh(unsigned long thresh)
5810{
5811 wq_watchdog_thresh = 0;
5812 del_timer_sync(&wq_watchdog_timer);
5813
5814 if (thresh) {
5815 wq_watchdog_thresh = thresh;
5816 wq_watchdog_reset_touched();
5817 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5818 }
5819}
5820
5821static int wq_watchdog_param_set_thresh(const char *val,
5822 const struct kernel_param *kp)
5823{
5824 unsigned long thresh;
5825 int ret;
5826
5827 ret = kstrtoul(val, 0, &thresh);
5828 if (ret)
5829 return ret;
5830
5831 if (system_wq)
5832 wq_watchdog_set_thresh(thresh);
5833 else
5834 wq_watchdog_thresh = thresh;
5835
5836 return 0;
5837}
5838
5839static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5840 .set = wq_watchdog_param_set_thresh,
5841 .get = param_get_ulong,
5842};
5843
5844module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5845 0644);
5846
5847static void wq_watchdog_init(void)
5848{
5849 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5850 wq_watchdog_set_thresh(wq_watchdog_thresh);
5851}
5852
5853#else /* CONFIG_WQ_WATCHDOG */
5854
5855static inline void wq_watchdog_init(void) { }
5856
5857#endif /* CONFIG_WQ_WATCHDOG */
5858
5859static void __init wq_numa_init(void)
5860{
5861 cpumask_var_t *tbl;
5862 int node, cpu;
5863
5864 if (num_possible_nodes() <= 1)
5865 return;
5866
5867 if (wq_disable_numa) {
5868 pr_info("workqueue: NUMA affinity support disabled\n");
5869 return;
5870 }
5871
Olivier Deprez0e641232021-09-23 10:07:05 +02005872 for_each_possible_cpu(cpu) {
5873 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5874 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5875 return;
5876 }
5877 }
5878
David Brazdil0f672f62019-12-10 10:32:29 +00005879 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005880 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5881
5882 /*
5883 * We want masks of possible CPUs of each node which isn't readily
5884 * available. Build one from cpu_to_node() which should have been
5885 * fully initialized by now.
5886 */
5887 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5888 BUG_ON(!tbl);
5889
5890 for_each_node(node)
5891 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5892 node_online(node) ? node : NUMA_NO_NODE));
5893
5894 for_each_possible_cpu(cpu) {
5895 node = cpu_to_node(cpu);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005896 cpumask_set_cpu(cpu, tbl[node]);
5897 }
5898
5899 wq_numa_possible_cpumask = tbl;
5900 wq_numa_enabled = true;
5901}
5902
5903/**
5904 * workqueue_init_early - early init for workqueue subsystem
5905 *
5906 * This is the first half of two-staged workqueue subsystem initialization
5907 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5908 * idr are up. It sets up all the data structures and system workqueues
5909 * and allows early boot code to create workqueues and queue/cancel work
5910 * items. Actual work item execution starts only after kthreads can be
5911 * created and scheduled right before early initcalls.
5912 */
5913int __init workqueue_init_early(void)
5914{
5915 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5916 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5917 int i, cpu;
5918
5919 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5920
5921 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5922 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5923
5924 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5925
5926 /* initialize CPU pools */
5927 for_each_possible_cpu(cpu) {
5928 struct worker_pool *pool;
5929
5930 i = 0;
5931 for_each_cpu_worker_pool(pool, cpu) {
5932 BUG_ON(init_worker_pool(pool));
5933 pool->cpu = cpu;
5934 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5935 pool->attrs->nice = std_nice[i++];
5936 pool->node = cpu_to_node(cpu);
5937
5938 /* alloc pool ID */
5939 mutex_lock(&wq_pool_mutex);
5940 BUG_ON(worker_pool_assign_id(pool));
5941 mutex_unlock(&wq_pool_mutex);
5942 }
5943 }
5944
5945 /* create default unbound and ordered wq attrs */
5946 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5947 struct workqueue_attrs *attrs;
5948
David Brazdil0f672f62019-12-10 10:32:29 +00005949 BUG_ON(!(attrs = alloc_workqueue_attrs()));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005950 attrs->nice = std_nice[i];
5951 unbound_std_wq_attrs[i] = attrs;
5952
5953 /*
5954 * An ordered wq should have only one pwq as ordering is
5955 * guaranteed by max_active which is enforced by pwqs.
5956 * Turn off NUMA so that dfl_pwq is used for all nodes.
5957 */
David Brazdil0f672f62019-12-10 10:32:29 +00005958 BUG_ON(!(attrs = alloc_workqueue_attrs()));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005959 attrs->nice = std_nice[i];
5960 attrs->no_numa = true;
5961 ordered_wq_attrs[i] = attrs;
5962 }
5963
5964 system_wq = alloc_workqueue("events", 0, 0);
5965 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5966 system_long_wq = alloc_workqueue("events_long", 0, 0);
5967 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5968 WQ_UNBOUND_MAX_ACTIVE);
5969 system_freezable_wq = alloc_workqueue("events_freezable",
5970 WQ_FREEZABLE, 0);
5971 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5972 WQ_POWER_EFFICIENT, 0);
5973 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5974 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5975 0);
5976 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5977 !system_unbound_wq || !system_freezable_wq ||
5978 !system_power_efficient_wq ||
5979 !system_freezable_power_efficient_wq);
5980
5981 return 0;
5982}
5983
5984/**
5985 * workqueue_init - bring workqueue subsystem fully online
5986 *
5987 * This is the latter half of two-staged workqueue subsystem initialization
5988 * and invoked as soon as kthreads can be created and scheduled.
5989 * Workqueues have been created and work items queued on them, but there
5990 * are no kworkers executing the work items yet. Populate the worker pools
5991 * with the initial workers and enable future kworker creations.
5992 */
5993int __init workqueue_init(void)
5994{
5995 struct workqueue_struct *wq;
5996 struct worker_pool *pool;
5997 int cpu, bkt;
5998
5999 /*
6000 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6001 * CPU to node mapping may not be available that early on some
6002 * archs such as power and arm64. As per-cpu pools created
6003 * previously could be missing node hint and unbound pools NUMA
6004 * affinity, fix them up.
6005 *
6006 * Also, while iterating workqueues, create rescuers if requested.
6007 */
6008 wq_numa_init();
6009
6010 mutex_lock(&wq_pool_mutex);
6011
6012 for_each_possible_cpu(cpu) {
6013 for_each_cpu_worker_pool(pool, cpu) {
6014 pool->node = cpu_to_node(cpu);
6015 }
6016 }
6017
6018 list_for_each_entry(wq, &workqueues, list) {
6019 wq_update_unbound_numa(wq, smp_processor_id(), true);
6020 WARN(init_rescuer(wq),
6021 "workqueue: failed to create early rescuer for %s",
6022 wq->name);
6023 }
6024
6025 mutex_unlock(&wq_pool_mutex);
6026
6027 /* create the initial workers */
6028 for_each_online_cpu(cpu) {
6029 for_each_cpu_worker_pool(pool, cpu) {
6030 pool->flags &= ~POOL_DISASSOCIATED;
6031 BUG_ON(!create_worker(pool));
6032 }
6033 }
6034
6035 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6036 BUG_ON(!create_worker(pool));
6037
6038 wq_online = true;
6039 wq_watchdog_init();
6040
6041 return 0;
6042}