blob: 87d9fad9d01d6e25e75370d134bb6c082633d558 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23#include "sched.h"
24
25#include <trace/events/sched.h>
26
27/*
28 * Targeted preemption latency for CPU-bound tasks:
29 *
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
34 *
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
37 *
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39 */
40unsigned int sysctl_sched_latency = 6000000ULL;
David Brazdil0f672f62019-12-10 10:32:29 +000041static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000042
43/*
44 * The initial- and re-scaling of tunables is configurable
45 *
46 * Options are:
47 *
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 *
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53 */
54enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55
56/*
57 * Minimal preemption granularity for CPU-bound tasks:
58 *
59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60 */
David Brazdil0f672f62019-12-10 10:32:29 +000061unsigned int sysctl_sched_min_granularity = 750000ULL;
62static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000063
64/*
65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66 */
67static unsigned int sched_nr_latency = 8;
68
69/*
70 * After fork, child runs first. If set to 0 (default) then
71 * parent will (try to) run first.
72 */
73unsigned int sysctl_sched_child_runs_first __read_mostly;
74
75/*
76 * SCHED_OTHER wake-up granularity.
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
81 *
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83 */
David Brazdil0f672f62019-12-10 10:32:29 +000084unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000086
87const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
88
89#ifdef CONFIG_SMP
90/*
91 * For asym packing, by default the lower numbered CPU has higher priority.
92 */
93int __weak arch_asym_cpu_priority(int cpu)
94{
95 return -cpu;
96}
David Brazdil0f672f62019-12-10 10:32:29 +000097
98/*
99 * The margin used when comparing utilization with CPU capacity.
100 *
101 * (default: ~20%)
102 */
103#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
104
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000105#endif
106
107#ifdef CONFIG_CFS_BANDWIDTH
108/*
109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110 * each time a cfs_rq requests quota.
111 *
112 * Note: in the case that the slice exceeds the runtime remaining (either due
113 * to consumption or the quota being specified to be smaller than the slice)
114 * we will always only issue the remaining available time.
115 *
116 * (default: 5 msec, units: microseconds)
117 */
118unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
119#endif
120
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000121static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122{
123 lw->weight += inc;
124 lw->inv_weight = 0;
125}
126
127static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128{
129 lw->weight -= dec;
130 lw->inv_weight = 0;
131}
132
133static inline void update_load_set(struct load_weight *lw, unsigned long w)
134{
135 lw->weight = w;
136 lw->inv_weight = 0;
137}
138
139/*
140 * Increase the granularity value when there are more CPUs,
141 * because with more CPUs the 'effective latency' as visible
142 * to users decreases. But the relationship is not linear,
143 * so pick a second-best guess by going with the log2 of the
144 * number of CPUs.
145 *
146 * This idea comes from the SD scheduler of Con Kolivas:
147 */
148static unsigned int get_update_sysctl_factor(void)
149{
150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 unsigned int factor;
152
153 switch (sysctl_sched_tunable_scaling) {
154 case SCHED_TUNABLESCALING_NONE:
155 factor = 1;
156 break;
157 case SCHED_TUNABLESCALING_LINEAR:
158 factor = cpus;
159 break;
160 case SCHED_TUNABLESCALING_LOG:
161 default:
162 factor = 1 + ilog2(cpus);
163 break;
164 }
165
166 return factor;
167}
168
169static void update_sysctl(void)
170{
171 unsigned int factor = get_update_sysctl_factor();
172
173#define SET_SYSCTL(name) \
174 (sysctl_##name = (factor) * normalized_sysctl_##name)
175 SET_SYSCTL(sched_min_granularity);
176 SET_SYSCTL(sched_latency);
177 SET_SYSCTL(sched_wakeup_granularity);
178#undef SET_SYSCTL
179}
180
181void sched_init_granularity(void)
182{
183 update_sysctl();
184}
185
186#define WMULT_CONST (~0U)
187#define WMULT_SHIFT 32
188
189static void __update_inv_weight(struct load_weight *lw)
190{
191 unsigned long w;
192
193 if (likely(lw->inv_weight))
194 return;
195
196 w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204}
205
206/*
207 * delta_exec * weight / lw.weight
208 * OR
209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210 *
211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214 *
215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
217 */
218static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219{
220 u64 fact = scale_load_down(weight);
221 int shift = WMULT_SHIFT;
222
223 __update_inv_weight(lw);
224
225 if (unlikely(fact >> 32)) {
226 while (fact >> 32) {
227 fact >>= 1;
228 shift--;
229 }
230 }
231
232 /* hint to use a 32x32->64 mul */
233 fact = (u64)(u32)fact * lw->inv_weight;
234
235 while (fact >> 32) {
236 fact >>= 1;
237 shift--;
238 }
239
240 return mul_u64_u32_shr(delta_exec, fact, shift);
241}
242
243
244const struct sched_class fair_sched_class;
245
246/**************************************************************
247 * CFS operations on generic schedulable entities:
248 */
249
250#ifdef CONFIG_FAIR_GROUP_SCHED
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000251static inline struct task_struct *task_of(struct sched_entity *se)
252{
253 SCHED_WARN_ON(!entity_is_task(se));
254 return container_of(se, struct task_struct, se);
255}
256
257/* Walk up scheduling entities hierarchy */
258#define for_each_sched_entity(se) \
259 for (; se; se = se->parent)
260
261static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
262{
263 return p->se.cfs_rq;
264}
265
266/* runqueue on which this entity is (to be) queued */
267static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268{
269 return se->cfs_rq;
270}
271
272/* runqueue "owned" by this group */
273static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
274{
275 return grp->my_q;
276}
277
David Brazdil0f672f62019-12-10 10:32:29 +0000278static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000279{
David Brazdil0f672f62019-12-10 10:32:29 +0000280 if (!path)
281 return;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000282
David Brazdil0f672f62019-12-10 10:32:29 +0000283 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
284 autogroup_path(cfs_rq->tg, path, len);
285 else if (cfs_rq && cfs_rq->tg->css.cgroup)
286 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
287 else
288 strlcpy(path, "(null)", len);
289}
290
291static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
292{
293 struct rq *rq = rq_of(cfs_rq);
294 int cpu = cpu_of(rq);
295
296 if (cfs_rq->on_list)
297 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
298
299 cfs_rq->on_list = 1;
300
301 /*
302 * Ensure we either appear before our parent (if already
303 * enqueued) or force our parent to appear after us when it is
304 * enqueued. The fact that we always enqueue bottom-up
305 * reduces this to two cases and a special case for the root
306 * cfs_rq. Furthermore, it also means that we will always reset
307 * tmp_alone_branch either when the branch is connected
308 * to a tree or when we reach the top of the tree
309 */
310 if (cfs_rq->tg->parent &&
311 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
312 /*
313 * If parent is already on the list, we add the child
314 * just before. Thanks to circular linked property of
315 * the list, this means to put the child at the tail
316 * of the list that starts by parent.
317 */
318 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
319 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
320 /*
321 * The branch is now connected to its tree so we can
322 * reset tmp_alone_branch to the beginning of the
323 * list.
324 */
325 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
326 return true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000327 }
David Brazdil0f672f62019-12-10 10:32:29 +0000328
329 if (!cfs_rq->tg->parent) {
330 /*
331 * cfs rq without parent should be put
332 * at the tail of the list.
333 */
334 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
335 &rq->leaf_cfs_rq_list);
336 /*
337 * We have reach the top of a tree so we can reset
338 * tmp_alone_branch to the beginning of the list.
339 */
340 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
341 return true;
342 }
343
344 /*
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the begin of the branch
348 * where we will add parent.
349 */
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
351 /*
352 * update tmp_alone_branch to points to the new begin
353 * of the branch
354 */
355 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
356 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000357}
358
359static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
360{
361 if (cfs_rq->on_list) {
David Brazdil0f672f62019-12-10 10:32:29 +0000362 struct rq *rq = rq_of(cfs_rq);
363
364 /*
365 * With cfs_rq being unthrottled/throttled during an enqueue,
366 * it can happen the tmp_alone_branch points the a leaf that
367 * we finally want to del. In this case, tmp_alone_branch moves
368 * to the prev element but it will point to rq->leaf_cfs_rq_list
369 * at the end of the enqueue.
370 */
371 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
372 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
373
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000374 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
375 cfs_rq->on_list = 0;
376 }
377}
378
David Brazdil0f672f62019-12-10 10:32:29 +0000379static inline void assert_list_leaf_cfs_rq(struct rq *rq)
380{
381 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
382}
383
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000384/* Iterate thr' all leaf cfs_rq's on a runqueue */
385#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
386 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
387 leaf_cfs_rq_list)
388
389/* Do the two (enqueued) entities belong to the same group ? */
390static inline struct cfs_rq *
391is_same_group(struct sched_entity *se, struct sched_entity *pse)
392{
393 if (se->cfs_rq == pse->cfs_rq)
394 return se->cfs_rq;
395
396 return NULL;
397}
398
399static inline struct sched_entity *parent_entity(struct sched_entity *se)
400{
401 return se->parent;
402}
403
404static void
405find_matching_se(struct sched_entity **se, struct sched_entity **pse)
406{
407 int se_depth, pse_depth;
408
409 /*
410 * preemption test can be made between sibling entities who are in the
411 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
412 * both tasks until we find their ancestors who are siblings of common
413 * parent.
414 */
415
416 /* First walk up until both entities are at same depth */
417 se_depth = (*se)->depth;
418 pse_depth = (*pse)->depth;
419
420 while (se_depth > pse_depth) {
421 se_depth--;
422 *se = parent_entity(*se);
423 }
424
425 while (pse_depth > se_depth) {
426 pse_depth--;
427 *pse = parent_entity(*pse);
428 }
429
430 while (!is_same_group(*se, *pse)) {
431 *se = parent_entity(*se);
432 *pse = parent_entity(*pse);
433 }
434}
435
436#else /* !CONFIG_FAIR_GROUP_SCHED */
437
438static inline struct task_struct *task_of(struct sched_entity *se)
439{
440 return container_of(se, struct task_struct, se);
441}
442
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000443#define for_each_sched_entity(se) \
444 for (; se; se = NULL)
445
446static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
447{
448 return &task_rq(p)->cfs;
449}
450
451static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
452{
453 struct task_struct *p = task_of(se);
454 struct rq *rq = task_rq(p);
455
456 return &rq->cfs;
457}
458
459/* runqueue "owned" by this group */
460static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
461{
462 return NULL;
463}
464
David Brazdil0f672f62019-12-10 10:32:29 +0000465static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000466{
David Brazdil0f672f62019-12-10 10:32:29 +0000467 if (path)
468 strlcpy(path, "(null)", len);
469}
470
471static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
472{
473 return true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000474}
475
476static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
477{
478}
479
David Brazdil0f672f62019-12-10 10:32:29 +0000480static inline void assert_list_leaf_cfs_rq(struct rq *rq)
481{
482}
483
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000484#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
485 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
486
487static inline struct sched_entity *parent_entity(struct sched_entity *se)
488{
489 return NULL;
490}
491
492static inline void
493find_matching_se(struct sched_entity **se, struct sched_entity **pse)
494{
495}
496
497#endif /* CONFIG_FAIR_GROUP_SCHED */
498
499static __always_inline
500void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
501
502/**************************************************************
503 * Scheduling class tree data structure manipulation methods:
504 */
505
506static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
507{
508 s64 delta = (s64)(vruntime - max_vruntime);
509 if (delta > 0)
510 max_vruntime = vruntime;
511
512 return max_vruntime;
513}
514
515static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
516{
517 s64 delta = (s64)(vruntime - min_vruntime);
518 if (delta < 0)
519 min_vruntime = vruntime;
520
521 return min_vruntime;
522}
523
524static inline int entity_before(struct sched_entity *a,
525 struct sched_entity *b)
526{
527 return (s64)(a->vruntime - b->vruntime) < 0;
528}
529
530static void update_min_vruntime(struct cfs_rq *cfs_rq)
531{
532 struct sched_entity *curr = cfs_rq->curr;
533 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
534
535 u64 vruntime = cfs_rq->min_vruntime;
536
537 if (curr) {
538 if (curr->on_rq)
539 vruntime = curr->vruntime;
540 else
541 curr = NULL;
542 }
543
544 if (leftmost) { /* non-empty tree */
545 struct sched_entity *se;
546 se = rb_entry(leftmost, struct sched_entity, run_node);
547
548 if (!curr)
549 vruntime = se->vruntime;
550 else
551 vruntime = min_vruntime(vruntime, se->vruntime);
552 }
553
554 /* ensure we never gain time by being placed backwards. */
555 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
556#ifndef CONFIG_64BIT
557 smp_wmb();
558 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
559#endif
560}
561
562/*
563 * Enqueue an entity into the rb-tree:
564 */
565static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
566{
567 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
568 struct rb_node *parent = NULL;
569 struct sched_entity *entry;
570 bool leftmost = true;
571
572 /*
573 * Find the right place in the rbtree:
574 */
575 while (*link) {
576 parent = *link;
577 entry = rb_entry(parent, struct sched_entity, run_node);
578 /*
579 * We dont care about collisions. Nodes with
580 * the same key stay together.
581 */
582 if (entity_before(se, entry)) {
583 link = &parent->rb_left;
584 } else {
585 link = &parent->rb_right;
586 leftmost = false;
587 }
588 }
589
590 rb_link_node(&se->run_node, parent, link);
591 rb_insert_color_cached(&se->run_node,
592 &cfs_rq->tasks_timeline, leftmost);
593}
594
595static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
596{
597 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
598}
599
600struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
601{
602 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
603
604 if (!left)
605 return NULL;
606
607 return rb_entry(left, struct sched_entity, run_node);
608}
609
610static struct sched_entity *__pick_next_entity(struct sched_entity *se)
611{
612 struct rb_node *next = rb_next(&se->run_node);
613
614 if (!next)
615 return NULL;
616
617 return rb_entry(next, struct sched_entity, run_node);
618}
619
620#ifdef CONFIG_SCHED_DEBUG
621struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
622{
623 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
624
625 if (!last)
626 return NULL;
627
628 return rb_entry(last, struct sched_entity, run_node);
629}
630
631/**************************************************************
632 * Scheduling class statistics methods:
633 */
634
635int sched_proc_update_handler(struct ctl_table *table, int write,
636 void __user *buffer, size_t *lenp,
637 loff_t *ppos)
638{
639 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
640 unsigned int factor = get_update_sysctl_factor();
641
642 if (ret || !write)
643 return ret;
644
645 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
646 sysctl_sched_min_granularity);
647
648#define WRT_SYSCTL(name) \
649 (normalized_sysctl_##name = sysctl_##name / (factor))
650 WRT_SYSCTL(sched_min_granularity);
651 WRT_SYSCTL(sched_latency);
652 WRT_SYSCTL(sched_wakeup_granularity);
653#undef WRT_SYSCTL
654
655 return 0;
656}
657#endif
658
659/*
660 * delta /= w
661 */
662static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
663{
664 if (unlikely(se->load.weight != NICE_0_LOAD))
665 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
666
667 return delta;
668}
669
670/*
671 * The idea is to set a period in which each task runs once.
672 *
673 * When there are too many tasks (sched_nr_latency) we have to stretch
674 * this period because otherwise the slices get too small.
675 *
676 * p = (nr <= nl) ? l : l*nr/nl
677 */
678static u64 __sched_period(unsigned long nr_running)
679{
680 if (unlikely(nr_running > sched_nr_latency))
681 return nr_running * sysctl_sched_min_granularity;
682 else
683 return sysctl_sched_latency;
684}
685
686/*
687 * We calculate the wall-time slice from the period by taking a part
688 * proportional to the weight.
689 *
690 * s = p*P[w/rw]
691 */
692static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
693{
694 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
695
696 for_each_sched_entity(se) {
697 struct load_weight *load;
698 struct load_weight lw;
699
700 cfs_rq = cfs_rq_of(se);
701 load = &cfs_rq->load;
702
703 if (unlikely(!se->on_rq)) {
704 lw = cfs_rq->load;
705
706 update_load_add(&lw, se->load.weight);
707 load = &lw;
708 }
709 slice = __calc_delta(slice, se->load.weight, load);
710 }
711 return slice;
712}
713
714/*
715 * We calculate the vruntime slice of a to-be-inserted task.
716 *
717 * vs = s/w
718 */
719static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
720{
721 return calc_delta_fair(sched_slice(cfs_rq, se), se);
722}
723
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000724#include "pelt.h"
David Brazdil0f672f62019-12-10 10:32:29 +0000725#ifdef CONFIG_SMP
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000726
727static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
728static unsigned long task_h_load(struct task_struct *p);
David Brazdil0f672f62019-12-10 10:32:29 +0000729static unsigned long capacity_of(int cpu);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000730
731/* Give new sched_entity start runnable values to heavy its load in infant time */
732void init_entity_runnable_average(struct sched_entity *se)
733{
734 struct sched_avg *sa = &se->avg;
735
736 memset(sa, 0, sizeof(*sa));
737
738 /*
David Brazdil0f672f62019-12-10 10:32:29 +0000739 * Tasks are initialized with full load to be seen as heavy tasks until
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000740 * they get a chance to stabilize to their real load level.
David Brazdil0f672f62019-12-10 10:32:29 +0000741 * Group entities are initialized with zero load to reflect the fact that
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000742 * nothing has been attached to the task group yet.
743 */
744 if (entity_is_task(se))
745 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
746
747 se->runnable_weight = se->load.weight;
748
749 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
750}
751
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000752static void attach_entity_cfs_rq(struct sched_entity *se);
753
754/*
755 * With new tasks being created, their initial util_avgs are extrapolated
756 * based on the cfs_rq's current util_avg:
757 *
758 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
759 *
760 * However, in many cases, the above util_avg does not give a desired
761 * value. Moreover, the sum of the util_avgs may be divergent, such
762 * as when the series is a harmonic series.
763 *
764 * To solve this problem, we also cap the util_avg of successive tasks to
765 * only 1/2 of the left utilization budget:
766 *
767 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
768 *
769 * where n denotes the nth task and cpu_scale the CPU capacity.
770 *
771 * For example, for a CPU with 1024 of capacity, a simplest series from
772 * the beginning would be like:
773 *
774 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
775 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
776 *
777 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
778 * if util_avg > util_avg_cap.
779 */
David Brazdil0f672f62019-12-10 10:32:29 +0000780void post_init_entity_util_avg(struct task_struct *p)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000781{
David Brazdil0f672f62019-12-10 10:32:29 +0000782 struct sched_entity *se = &p->se;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000783 struct cfs_rq *cfs_rq = cfs_rq_of(se);
784 struct sched_avg *sa = &se->avg;
David Brazdil0f672f62019-12-10 10:32:29 +0000785 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000786 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
787
788 if (cap > 0) {
789 if (cfs_rq->avg.util_avg != 0) {
790 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
791 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
792
793 if (sa->util_avg > cap)
794 sa->util_avg = cap;
795 } else {
796 sa->util_avg = cap;
797 }
798 }
799
David Brazdil0f672f62019-12-10 10:32:29 +0000800 if (p->sched_class != &fair_sched_class) {
801 /*
802 * For !fair tasks do:
803 *
804 update_cfs_rq_load_avg(now, cfs_rq);
805 attach_entity_load_avg(cfs_rq, se, 0);
806 switched_from_fair(rq, p);
807 *
808 * such that the next switched_to_fair() has the
809 * expected state.
810 */
811 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
812 return;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000813 }
814
815 attach_entity_cfs_rq(se);
816}
817
818#else /* !CONFIG_SMP */
819void init_entity_runnable_average(struct sched_entity *se)
820{
821}
David Brazdil0f672f62019-12-10 10:32:29 +0000822void post_init_entity_util_avg(struct task_struct *p)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000823{
824}
825static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
826{
827}
828#endif /* CONFIG_SMP */
829
830/*
831 * Update the current task's runtime statistics.
832 */
833static void update_curr(struct cfs_rq *cfs_rq)
834{
835 struct sched_entity *curr = cfs_rq->curr;
836 u64 now = rq_clock_task(rq_of(cfs_rq));
837 u64 delta_exec;
838
839 if (unlikely(!curr))
840 return;
841
842 delta_exec = now - curr->exec_start;
843 if (unlikely((s64)delta_exec <= 0))
844 return;
845
846 curr->exec_start = now;
847
848 schedstat_set(curr->statistics.exec_max,
849 max(delta_exec, curr->statistics.exec_max));
850
851 curr->sum_exec_runtime += delta_exec;
852 schedstat_add(cfs_rq->exec_clock, delta_exec);
853
854 curr->vruntime += calc_delta_fair(delta_exec, curr);
855 update_min_vruntime(cfs_rq);
856
857 if (entity_is_task(curr)) {
858 struct task_struct *curtask = task_of(curr);
859
860 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
861 cgroup_account_cputime(curtask, delta_exec);
862 account_group_exec_runtime(curtask, delta_exec);
863 }
864
865 account_cfs_rq_runtime(cfs_rq, delta_exec);
866}
867
868static void update_curr_fair(struct rq *rq)
869{
870 update_curr(cfs_rq_of(&rq->curr->se));
871}
872
873static inline void
874update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
875{
876 u64 wait_start, prev_wait_start;
877
878 if (!schedstat_enabled())
879 return;
880
881 wait_start = rq_clock(rq_of(cfs_rq));
882 prev_wait_start = schedstat_val(se->statistics.wait_start);
883
884 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
885 likely(wait_start > prev_wait_start))
886 wait_start -= prev_wait_start;
887
888 __schedstat_set(se->statistics.wait_start, wait_start);
889}
890
891static inline void
892update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
893{
894 struct task_struct *p;
895 u64 delta;
896
897 if (!schedstat_enabled())
898 return;
899
900 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
901
902 if (entity_is_task(se)) {
903 p = task_of(se);
904 if (task_on_rq_migrating(p)) {
905 /*
906 * Preserve migrating task's wait time so wait_start
907 * time stamp can be adjusted to accumulate wait time
908 * prior to migration.
909 */
910 __schedstat_set(se->statistics.wait_start, delta);
911 return;
912 }
913 trace_sched_stat_wait(p, delta);
914 }
915
916 __schedstat_set(se->statistics.wait_max,
917 max(schedstat_val(se->statistics.wait_max), delta));
918 __schedstat_inc(se->statistics.wait_count);
919 __schedstat_add(se->statistics.wait_sum, delta);
920 __schedstat_set(se->statistics.wait_start, 0);
921}
922
923static inline void
924update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
925{
926 struct task_struct *tsk = NULL;
927 u64 sleep_start, block_start;
928
929 if (!schedstat_enabled())
930 return;
931
932 sleep_start = schedstat_val(se->statistics.sleep_start);
933 block_start = schedstat_val(se->statistics.block_start);
934
935 if (entity_is_task(se))
936 tsk = task_of(se);
937
938 if (sleep_start) {
939 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
940
941 if ((s64)delta < 0)
942 delta = 0;
943
944 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
945 __schedstat_set(se->statistics.sleep_max, delta);
946
947 __schedstat_set(se->statistics.sleep_start, 0);
948 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
949
950 if (tsk) {
951 account_scheduler_latency(tsk, delta >> 10, 1);
952 trace_sched_stat_sleep(tsk, delta);
953 }
954 }
955 if (block_start) {
956 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
957
958 if ((s64)delta < 0)
959 delta = 0;
960
961 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
962 __schedstat_set(se->statistics.block_max, delta);
963
964 __schedstat_set(se->statistics.block_start, 0);
965 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
966
967 if (tsk) {
968 if (tsk->in_iowait) {
969 __schedstat_add(se->statistics.iowait_sum, delta);
970 __schedstat_inc(se->statistics.iowait_count);
971 trace_sched_stat_iowait(tsk, delta);
972 }
973
974 trace_sched_stat_blocked(tsk, delta);
975
976 /*
977 * Blocking time is in units of nanosecs, so shift by
978 * 20 to get a milliseconds-range estimation of the
979 * amount of time that the task spent sleeping:
980 */
981 if (unlikely(prof_on == SLEEP_PROFILING)) {
982 profile_hits(SLEEP_PROFILING,
983 (void *)get_wchan(tsk),
984 delta >> 20);
985 }
986 account_scheduler_latency(tsk, delta >> 10, 0);
987 }
988 }
989}
990
991/*
992 * Task is being enqueued - update stats:
993 */
994static inline void
995update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
996{
997 if (!schedstat_enabled())
998 return;
999
1000 /*
1001 * Are we enqueueing a waiting task? (for current tasks
1002 * a dequeue/enqueue event is a NOP)
1003 */
1004 if (se != cfs_rq->curr)
1005 update_stats_wait_start(cfs_rq, se);
1006
1007 if (flags & ENQUEUE_WAKEUP)
1008 update_stats_enqueue_sleeper(cfs_rq, se);
1009}
1010
1011static inline void
1012update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1013{
1014
1015 if (!schedstat_enabled())
1016 return;
1017
1018 /*
1019 * Mark the end of the wait period if dequeueing a
1020 * waiting task:
1021 */
1022 if (se != cfs_rq->curr)
1023 update_stats_wait_end(cfs_rq, se);
1024
1025 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1026 struct task_struct *tsk = task_of(se);
1027
1028 if (tsk->state & TASK_INTERRUPTIBLE)
1029 __schedstat_set(se->statistics.sleep_start,
1030 rq_clock(rq_of(cfs_rq)));
1031 if (tsk->state & TASK_UNINTERRUPTIBLE)
1032 __schedstat_set(se->statistics.block_start,
1033 rq_clock(rq_of(cfs_rq)));
1034 }
1035}
1036
1037/*
1038 * We are picking a new current task - update its stats:
1039 */
1040static inline void
1041update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1042{
1043 /*
1044 * We are starting a new run period:
1045 */
1046 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1047}
1048
1049/**************************************************
1050 * Scheduling class queueing methods:
1051 */
1052
1053#ifdef CONFIG_NUMA_BALANCING
1054/*
1055 * Approximate time to scan a full NUMA task in ms. The task scan period is
1056 * calculated based on the tasks virtual memory size and
1057 * numa_balancing_scan_size.
1058 */
1059unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1060unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1061
1062/* Portion of address space to scan in MB */
1063unsigned int sysctl_numa_balancing_scan_size = 256;
1064
1065/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1066unsigned int sysctl_numa_balancing_scan_delay = 1000;
1067
1068struct numa_group {
David Brazdil0f672f62019-12-10 10:32:29 +00001069 refcount_t refcount;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001070
1071 spinlock_t lock; /* nr_tasks, tasks */
1072 int nr_tasks;
1073 pid_t gid;
1074 int active_nodes;
1075
1076 struct rcu_head rcu;
1077 unsigned long total_faults;
1078 unsigned long max_faults_cpu;
1079 /*
1080 * Faults_cpu is used to decide whether memory should move
1081 * towards the CPU. As a consequence, these stats are weighted
1082 * more by CPU use than by memory faults.
1083 */
1084 unsigned long *faults_cpu;
1085 unsigned long faults[0];
1086};
1087
David Brazdil0f672f62019-12-10 10:32:29 +00001088/*
1089 * For functions that can be called in multiple contexts that permit reading
1090 * ->numa_group (see struct task_struct for locking rules).
1091 */
1092static struct numa_group *deref_task_numa_group(struct task_struct *p)
1093{
1094 return rcu_dereference_check(p->numa_group, p == current ||
1095 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1096}
1097
1098static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1099{
1100 return rcu_dereference_protected(p->numa_group, p == current);
1101}
1102
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001103static inline unsigned long group_faults_priv(struct numa_group *ng);
1104static inline unsigned long group_faults_shared(struct numa_group *ng);
1105
1106static unsigned int task_nr_scan_windows(struct task_struct *p)
1107{
1108 unsigned long rss = 0;
1109 unsigned long nr_scan_pages;
1110
1111 /*
1112 * Calculations based on RSS as non-present and empty pages are skipped
1113 * by the PTE scanner and NUMA hinting faults should be trapped based
1114 * on resident pages
1115 */
1116 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1117 rss = get_mm_rss(p->mm);
1118 if (!rss)
1119 rss = nr_scan_pages;
1120
1121 rss = round_up(rss, nr_scan_pages);
1122 return rss / nr_scan_pages;
1123}
1124
1125/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1126#define MAX_SCAN_WINDOW 2560
1127
1128static unsigned int task_scan_min(struct task_struct *p)
1129{
1130 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1131 unsigned int scan, floor;
1132 unsigned int windows = 1;
1133
1134 if (scan_size < MAX_SCAN_WINDOW)
1135 windows = MAX_SCAN_WINDOW / scan_size;
1136 floor = 1000 / windows;
1137
1138 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1139 return max_t(unsigned int, floor, scan);
1140}
1141
1142static unsigned int task_scan_start(struct task_struct *p)
1143{
1144 unsigned long smin = task_scan_min(p);
1145 unsigned long period = smin;
David Brazdil0f672f62019-12-10 10:32:29 +00001146 struct numa_group *ng;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001147
1148 /* Scale the maximum scan period with the amount of shared memory. */
David Brazdil0f672f62019-12-10 10:32:29 +00001149 rcu_read_lock();
1150 ng = rcu_dereference(p->numa_group);
1151 if (ng) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001152 unsigned long shared = group_faults_shared(ng);
1153 unsigned long private = group_faults_priv(ng);
1154
David Brazdil0f672f62019-12-10 10:32:29 +00001155 period *= refcount_read(&ng->refcount);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001156 period *= shared + 1;
1157 period /= private + shared + 1;
1158 }
David Brazdil0f672f62019-12-10 10:32:29 +00001159 rcu_read_unlock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001160
1161 return max(smin, period);
1162}
1163
1164static unsigned int task_scan_max(struct task_struct *p)
1165{
1166 unsigned long smin = task_scan_min(p);
1167 unsigned long smax;
David Brazdil0f672f62019-12-10 10:32:29 +00001168 struct numa_group *ng;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001169
1170 /* Watch for min being lower than max due to floor calculations */
1171 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1172
1173 /* Scale the maximum scan period with the amount of shared memory. */
David Brazdil0f672f62019-12-10 10:32:29 +00001174 ng = deref_curr_numa_group(p);
1175 if (ng) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001176 unsigned long shared = group_faults_shared(ng);
1177 unsigned long private = group_faults_priv(ng);
1178 unsigned long period = smax;
1179
David Brazdil0f672f62019-12-10 10:32:29 +00001180 period *= refcount_read(&ng->refcount);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001181 period *= shared + 1;
1182 period /= private + shared + 1;
1183
1184 smax = max(smax, period);
1185 }
1186
1187 return max(smin, smax);
1188}
1189
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001190static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1191{
David Brazdil0f672f62019-12-10 10:32:29 +00001192 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001193 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1194}
1195
1196static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1197{
David Brazdil0f672f62019-12-10 10:32:29 +00001198 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001199 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1200}
1201
1202/* Shared or private faults. */
1203#define NR_NUMA_HINT_FAULT_TYPES 2
1204
1205/* Memory and CPU locality */
1206#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1207
1208/* Averaged statistics, and temporary buffers. */
1209#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1210
1211pid_t task_numa_group_id(struct task_struct *p)
1212{
David Brazdil0f672f62019-12-10 10:32:29 +00001213 struct numa_group *ng;
1214 pid_t gid = 0;
1215
1216 rcu_read_lock();
1217 ng = rcu_dereference(p->numa_group);
1218 if (ng)
1219 gid = ng->gid;
1220 rcu_read_unlock();
1221
1222 return gid;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001223}
1224
1225/*
1226 * The averaged statistics, shared & private, memory & CPU,
1227 * occupy the first half of the array. The second half of the
1228 * array is for current counters, which are averaged into the
1229 * first set by task_numa_placement.
1230 */
1231static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1232{
1233 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1234}
1235
1236static inline unsigned long task_faults(struct task_struct *p, int nid)
1237{
1238 if (!p->numa_faults)
1239 return 0;
1240
1241 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1242 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1243}
1244
1245static inline unsigned long group_faults(struct task_struct *p, int nid)
1246{
David Brazdil0f672f62019-12-10 10:32:29 +00001247 struct numa_group *ng = deref_task_numa_group(p);
1248
1249 if (!ng)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001250 return 0;
1251
David Brazdil0f672f62019-12-10 10:32:29 +00001252 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1253 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001254}
1255
1256static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1257{
1258 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1259 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1260}
1261
1262static inline unsigned long group_faults_priv(struct numa_group *ng)
1263{
1264 unsigned long faults = 0;
1265 int node;
1266
1267 for_each_online_node(node) {
1268 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1269 }
1270
1271 return faults;
1272}
1273
1274static inline unsigned long group_faults_shared(struct numa_group *ng)
1275{
1276 unsigned long faults = 0;
1277 int node;
1278
1279 for_each_online_node(node) {
1280 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1281 }
1282
1283 return faults;
1284}
1285
1286/*
1287 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1288 * considered part of a numa group's pseudo-interleaving set. Migrations
1289 * between these nodes are slowed down, to allow things to settle down.
1290 */
1291#define ACTIVE_NODE_FRACTION 3
1292
1293static bool numa_is_active_node(int nid, struct numa_group *ng)
1294{
1295 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1296}
1297
1298/* Handle placement on systems where not all nodes are directly connected. */
1299static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1300 int maxdist, bool task)
1301{
1302 unsigned long score = 0;
1303 int node;
1304
1305 /*
1306 * All nodes are directly connected, and the same distance
1307 * from each other. No need for fancy placement algorithms.
1308 */
1309 if (sched_numa_topology_type == NUMA_DIRECT)
1310 return 0;
1311
1312 /*
1313 * This code is called for each node, introducing N^2 complexity,
1314 * which should be ok given the number of nodes rarely exceeds 8.
1315 */
1316 for_each_online_node(node) {
1317 unsigned long faults;
1318 int dist = node_distance(nid, node);
1319
1320 /*
1321 * The furthest away nodes in the system are not interesting
1322 * for placement; nid was already counted.
1323 */
1324 if (dist == sched_max_numa_distance || node == nid)
1325 continue;
1326
1327 /*
1328 * On systems with a backplane NUMA topology, compare groups
1329 * of nodes, and move tasks towards the group with the most
1330 * memory accesses. When comparing two nodes at distance
1331 * "hoplimit", only nodes closer by than "hoplimit" are part
1332 * of each group. Skip other nodes.
1333 */
1334 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1335 dist >= maxdist)
1336 continue;
1337
1338 /* Add up the faults from nearby nodes. */
1339 if (task)
1340 faults = task_faults(p, node);
1341 else
1342 faults = group_faults(p, node);
1343
1344 /*
1345 * On systems with a glueless mesh NUMA topology, there are
1346 * no fixed "groups of nodes". Instead, nodes that are not
1347 * directly connected bounce traffic through intermediate
1348 * nodes; a numa_group can occupy any set of nodes.
1349 * The further away a node is, the less the faults count.
1350 * This seems to result in good task placement.
1351 */
1352 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1353 faults *= (sched_max_numa_distance - dist);
1354 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1355 }
1356
1357 score += faults;
1358 }
1359
1360 return score;
1361}
1362
1363/*
1364 * These return the fraction of accesses done by a particular task, or
1365 * task group, on a particular numa node. The group weight is given a
1366 * larger multiplier, in order to group tasks together that are almost
1367 * evenly spread out between numa nodes.
1368 */
1369static inline unsigned long task_weight(struct task_struct *p, int nid,
1370 int dist)
1371{
1372 unsigned long faults, total_faults;
1373
1374 if (!p->numa_faults)
1375 return 0;
1376
1377 total_faults = p->total_numa_faults;
1378
1379 if (!total_faults)
1380 return 0;
1381
1382 faults = task_faults(p, nid);
1383 faults += score_nearby_nodes(p, nid, dist, true);
1384
1385 return 1000 * faults / total_faults;
1386}
1387
1388static inline unsigned long group_weight(struct task_struct *p, int nid,
1389 int dist)
1390{
David Brazdil0f672f62019-12-10 10:32:29 +00001391 struct numa_group *ng = deref_task_numa_group(p);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001392 unsigned long faults, total_faults;
1393
David Brazdil0f672f62019-12-10 10:32:29 +00001394 if (!ng)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001395 return 0;
1396
David Brazdil0f672f62019-12-10 10:32:29 +00001397 total_faults = ng->total_faults;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001398
1399 if (!total_faults)
1400 return 0;
1401
1402 faults = group_faults(p, nid);
1403 faults += score_nearby_nodes(p, nid, dist, false);
1404
1405 return 1000 * faults / total_faults;
1406}
1407
1408bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1409 int src_nid, int dst_cpu)
1410{
David Brazdil0f672f62019-12-10 10:32:29 +00001411 struct numa_group *ng = deref_curr_numa_group(p);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001412 int dst_nid = cpu_to_node(dst_cpu);
1413 int last_cpupid, this_cpupid;
1414
1415 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1416 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1417
1418 /*
1419 * Allow first faults or private faults to migrate immediately early in
1420 * the lifetime of a task. The magic number 4 is based on waiting for
1421 * two full passes of the "multi-stage node selection" test that is
1422 * executed below.
1423 */
David Brazdil0f672f62019-12-10 10:32:29 +00001424 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001425 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1426 return true;
1427
1428 /*
1429 * Multi-stage node selection is used in conjunction with a periodic
1430 * migration fault to build a temporal task<->page relation. By using
1431 * a two-stage filter we remove short/unlikely relations.
1432 *
1433 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1434 * a task's usage of a particular page (n_p) per total usage of this
1435 * page (n_t) (in a given time-span) to a probability.
1436 *
1437 * Our periodic faults will sample this probability and getting the
1438 * same result twice in a row, given these samples are fully
1439 * independent, is then given by P(n)^2, provided our sample period
1440 * is sufficiently short compared to the usage pattern.
1441 *
1442 * This quadric squishes small probabilities, making it less likely we
1443 * act on an unlikely task<->page relation.
1444 */
1445 if (!cpupid_pid_unset(last_cpupid) &&
1446 cpupid_to_nid(last_cpupid) != dst_nid)
1447 return false;
1448
1449 /* Always allow migrate on private faults */
1450 if (cpupid_match_pid(p, last_cpupid))
1451 return true;
1452
1453 /* A shared fault, but p->numa_group has not been set up yet. */
1454 if (!ng)
1455 return true;
1456
1457 /*
1458 * Destination node is much more heavily used than the source
1459 * node? Allow migration.
1460 */
1461 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1462 ACTIVE_NODE_FRACTION)
1463 return true;
1464
1465 /*
1466 * Distribute memory according to CPU & memory use on each node,
1467 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1468 *
1469 * faults_cpu(dst) 3 faults_cpu(src)
1470 * --------------- * - > ---------------
1471 * faults_mem(dst) 4 faults_mem(src)
1472 */
1473 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1474 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1475}
1476
David Brazdil0f672f62019-12-10 10:32:29 +00001477static unsigned long cpu_runnable_load(struct rq *rq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001478
1479/* Cached statistics for all CPUs within a node */
1480struct numa_stats {
1481 unsigned long load;
1482
1483 /* Total compute capacity of CPUs on a node */
1484 unsigned long compute_capacity;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001485};
1486
1487/*
1488 * XXX borrowed from update_sg_lb_stats
1489 */
1490static void update_numa_stats(struct numa_stats *ns, int nid)
1491{
David Brazdil0f672f62019-12-10 10:32:29 +00001492 int cpu;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001493
1494 memset(ns, 0, sizeof(*ns));
1495 for_each_cpu(cpu, cpumask_of_node(nid)) {
1496 struct rq *rq = cpu_rq(cpu);
1497
David Brazdil0f672f62019-12-10 10:32:29 +00001498 ns->load += cpu_runnable_load(rq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001499 ns->compute_capacity += capacity_of(cpu);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001500 }
1501
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001502}
1503
1504struct task_numa_env {
1505 struct task_struct *p;
1506
1507 int src_cpu, src_nid;
1508 int dst_cpu, dst_nid;
1509
1510 struct numa_stats src_stats, dst_stats;
1511
1512 int imbalance_pct;
1513 int dist;
1514
1515 struct task_struct *best_task;
1516 long best_imp;
1517 int best_cpu;
1518};
1519
1520static void task_numa_assign(struct task_numa_env *env,
1521 struct task_struct *p, long imp)
1522{
1523 struct rq *rq = cpu_rq(env->dst_cpu);
1524
1525 /* Bail out if run-queue part of active NUMA balance. */
1526 if (xchg(&rq->numa_migrate_on, 1))
1527 return;
1528
1529 /*
1530 * Clear previous best_cpu/rq numa-migrate flag, since task now
1531 * found a better CPU to move/swap.
1532 */
1533 if (env->best_cpu != -1) {
1534 rq = cpu_rq(env->best_cpu);
1535 WRITE_ONCE(rq->numa_migrate_on, 0);
1536 }
1537
1538 if (env->best_task)
1539 put_task_struct(env->best_task);
1540 if (p)
1541 get_task_struct(p);
1542
1543 env->best_task = p;
1544 env->best_imp = imp;
1545 env->best_cpu = env->dst_cpu;
1546}
1547
1548static bool load_too_imbalanced(long src_load, long dst_load,
1549 struct task_numa_env *env)
1550{
1551 long imb, old_imb;
1552 long orig_src_load, orig_dst_load;
1553 long src_capacity, dst_capacity;
1554
1555 /*
1556 * The load is corrected for the CPU capacity available on each node.
1557 *
1558 * src_load dst_load
1559 * ------------ vs ---------
1560 * src_capacity dst_capacity
1561 */
1562 src_capacity = env->src_stats.compute_capacity;
1563 dst_capacity = env->dst_stats.compute_capacity;
1564
1565 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1566
1567 orig_src_load = env->src_stats.load;
1568 orig_dst_load = env->dst_stats.load;
1569
1570 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1571
1572 /* Would this change make things worse? */
1573 return (imb > old_imb);
1574}
1575
1576/*
1577 * Maximum NUMA importance can be 1998 (2*999);
1578 * SMALLIMP @ 30 would be close to 1998/64.
1579 * Used to deter task migration.
1580 */
1581#define SMALLIMP 30
1582
1583/*
1584 * This checks if the overall compute and NUMA accesses of the system would
1585 * be improved if the source tasks was migrated to the target dst_cpu taking
1586 * into account that it might be best if task running on the dst_cpu should
1587 * be exchanged with the source task
1588 */
1589static void task_numa_compare(struct task_numa_env *env,
1590 long taskimp, long groupimp, bool maymove)
1591{
David Brazdil0f672f62019-12-10 10:32:29 +00001592 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001593 struct rq *dst_rq = cpu_rq(env->dst_cpu);
David Brazdil0f672f62019-12-10 10:32:29 +00001594 long imp = p_ng ? groupimp : taskimp;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001595 struct task_struct *cur;
1596 long src_load, dst_load;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001597 int dist = env->dist;
David Brazdil0f672f62019-12-10 10:32:29 +00001598 long moveimp = imp;
1599 long load;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001600
1601 if (READ_ONCE(dst_rq->numa_migrate_on))
1602 return;
1603
1604 rcu_read_lock();
David Brazdil0f672f62019-12-10 10:32:29 +00001605 cur = rcu_dereference(dst_rq->curr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001606 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1607 cur = NULL;
1608
1609 /*
1610 * Because we have preemption enabled we can get migrated around and
1611 * end try selecting ourselves (current == env->p) as a swap candidate.
1612 */
1613 if (cur == env->p)
1614 goto unlock;
1615
1616 if (!cur) {
1617 if (maymove && moveimp >= env->best_imp)
1618 goto assign;
1619 else
1620 goto unlock;
1621 }
1622
1623 /*
1624 * "imp" is the fault differential for the source task between the
1625 * source and destination node. Calculate the total differential for
1626 * the source task and potential destination task. The more negative
1627 * the value is, the more remote accesses that would be expected to
1628 * be incurred if the tasks were swapped.
1629 */
1630 /* Skip this swap candidate if cannot move to the source cpu */
David Brazdil0f672f62019-12-10 10:32:29 +00001631 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001632 goto unlock;
1633
1634 /*
1635 * If dst and source tasks are in the same NUMA group, or not
1636 * in any group then look only at task weights.
1637 */
David Brazdil0f672f62019-12-10 10:32:29 +00001638 cur_ng = rcu_dereference(cur->numa_group);
1639 if (cur_ng == p_ng) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001640 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1641 task_weight(cur, env->dst_nid, dist);
1642 /*
1643 * Add some hysteresis to prevent swapping the
1644 * tasks within a group over tiny differences.
1645 */
David Brazdil0f672f62019-12-10 10:32:29 +00001646 if (cur_ng)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001647 imp -= imp / 16;
1648 } else {
1649 /*
1650 * Compare the group weights. If a task is all by itself
1651 * (not part of a group), use the task weight instead.
1652 */
David Brazdil0f672f62019-12-10 10:32:29 +00001653 if (cur_ng && p_ng)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001654 imp += group_weight(cur, env->src_nid, dist) -
1655 group_weight(cur, env->dst_nid, dist);
1656 else
1657 imp += task_weight(cur, env->src_nid, dist) -
1658 task_weight(cur, env->dst_nid, dist);
1659 }
1660
1661 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1662 imp = moveimp;
1663 cur = NULL;
1664 goto assign;
1665 }
1666
1667 /*
1668 * If the NUMA importance is less than SMALLIMP,
1669 * task migration might only result in ping pong
1670 * of tasks and also hurt performance due to cache
1671 * misses.
1672 */
1673 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1674 goto unlock;
1675
1676 /*
1677 * In the overloaded case, try and keep the load balanced.
1678 */
1679 load = task_h_load(env->p) - task_h_load(cur);
1680 if (!load)
1681 goto assign;
1682
1683 dst_load = env->dst_stats.load + load;
1684 src_load = env->src_stats.load - load;
1685
1686 if (load_too_imbalanced(src_load, dst_load, env))
1687 goto unlock;
1688
1689assign:
1690 /*
1691 * One idle CPU per node is evaluated for a task numa move.
1692 * Call select_idle_sibling to maybe find a better one.
1693 */
1694 if (!cur) {
1695 /*
1696 * select_idle_siblings() uses an per-CPU cpumask that
1697 * can be used from IRQ context.
1698 */
1699 local_irq_disable();
1700 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1701 env->dst_cpu);
1702 local_irq_enable();
1703 }
1704
1705 task_numa_assign(env, cur, imp);
1706unlock:
1707 rcu_read_unlock();
1708}
1709
1710static void task_numa_find_cpu(struct task_numa_env *env,
1711 long taskimp, long groupimp)
1712{
1713 long src_load, dst_load, load;
1714 bool maymove = false;
1715 int cpu;
1716
1717 load = task_h_load(env->p);
1718 dst_load = env->dst_stats.load + load;
1719 src_load = env->src_stats.load - load;
1720
1721 /*
1722 * If the improvement from just moving env->p direction is better
1723 * than swapping tasks around, check if a move is possible.
1724 */
1725 maymove = !load_too_imbalanced(src_load, dst_load, env);
1726
1727 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1728 /* Skip this CPU if the source task cannot migrate */
David Brazdil0f672f62019-12-10 10:32:29 +00001729 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001730 continue;
1731
1732 env->dst_cpu = cpu;
1733 task_numa_compare(env, taskimp, groupimp, maymove);
1734 }
1735}
1736
1737static int task_numa_migrate(struct task_struct *p)
1738{
1739 struct task_numa_env env = {
1740 .p = p,
1741
1742 .src_cpu = task_cpu(p),
1743 .src_nid = task_node(p),
1744
1745 .imbalance_pct = 112,
1746
1747 .best_task = NULL,
1748 .best_imp = 0,
1749 .best_cpu = -1,
1750 };
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001751 unsigned long taskweight, groupweight;
David Brazdil0f672f62019-12-10 10:32:29 +00001752 struct sched_domain *sd;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001753 long taskimp, groupimp;
David Brazdil0f672f62019-12-10 10:32:29 +00001754 struct numa_group *ng;
1755 struct rq *best_rq;
1756 int nid, ret, dist;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001757
1758 /*
1759 * Pick the lowest SD_NUMA domain, as that would have the smallest
1760 * imbalance and would be the first to start moving tasks about.
1761 *
1762 * And we want to avoid any moving of tasks about, as that would create
1763 * random movement of tasks -- counter the numa conditions we're trying
1764 * to satisfy here.
1765 */
1766 rcu_read_lock();
1767 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1768 if (sd)
1769 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1770 rcu_read_unlock();
1771
1772 /*
1773 * Cpusets can break the scheduler domain tree into smaller
1774 * balance domains, some of which do not cross NUMA boundaries.
1775 * Tasks that are "trapped" in such domains cannot be migrated
1776 * elsewhere, so there is no point in (re)trying.
1777 */
1778 if (unlikely(!sd)) {
1779 sched_setnuma(p, task_node(p));
1780 return -EINVAL;
1781 }
1782
1783 env.dst_nid = p->numa_preferred_nid;
1784 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1785 taskweight = task_weight(p, env.src_nid, dist);
1786 groupweight = group_weight(p, env.src_nid, dist);
1787 update_numa_stats(&env.src_stats, env.src_nid);
1788 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1789 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1790 update_numa_stats(&env.dst_stats, env.dst_nid);
1791
1792 /* Try to find a spot on the preferred nid. */
1793 task_numa_find_cpu(&env, taskimp, groupimp);
1794
1795 /*
1796 * Look at other nodes in these cases:
1797 * - there is no space available on the preferred_nid
1798 * - the task is part of a numa_group that is interleaved across
1799 * multiple NUMA nodes; in order to better consolidate the group,
1800 * we need to check other locations.
1801 */
David Brazdil0f672f62019-12-10 10:32:29 +00001802 ng = deref_curr_numa_group(p);
1803 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001804 for_each_online_node(nid) {
1805 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1806 continue;
1807
1808 dist = node_distance(env.src_nid, env.dst_nid);
1809 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1810 dist != env.dist) {
1811 taskweight = task_weight(p, env.src_nid, dist);
1812 groupweight = group_weight(p, env.src_nid, dist);
1813 }
1814
1815 /* Only consider nodes where both task and groups benefit */
1816 taskimp = task_weight(p, nid, dist) - taskweight;
1817 groupimp = group_weight(p, nid, dist) - groupweight;
1818 if (taskimp < 0 && groupimp < 0)
1819 continue;
1820
1821 env.dist = dist;
1822 env.dst_nid = nid;
1823 update_numa_stats(&env.dst_stats, env.dst_nid);
1824 task_numa_find_cpu(&env, taskimp, groupimp);
1825 }
1826 }
1827
1828 /*
1829 * If the task is part of a workload that spans multiple NUMA nodes,
1830 * and is migrating into one of the workload's active nodes, remember
1831 * this node as the task's preferred numa node, so the workload can
1832 * settle down.
1833 * A task that migrated to a second choice node will be better off
1834 * trying for a better one later. Do not set the preferred node here.
1835 */
David Brazdil0f672f62019-12-10 10:32:29 +00001836 if (ng) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001837 if (env.best_cpu == -1)
1838 nid = env.src_nid;
1839 else
1840 nid = cpu_to_node(env.best_cpu);
1841
1842 if (nid != p->numa_preferred_nid)
1843 sched_setnuma(p, nid);
1844 }
1845
1846 /* No better CPU than the current one was found. */
1847 if (env.best_cpu == -1)
1848 return -EAGAIN;
1849
1850 best_rq = cpu_rq(env.best_cpu);
1851 if (env.best_task == NULL) {
1852 ret = migrate_task_to(p, env.best_cpu);
1853 WRITE_ONCE(best_rq->numa_migrate_on, 0);
1854 if (ret != 0)
1855 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1856 return ret;
1857 }
1858
1859 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1860 WRITE_ONCE(best_rq->numa_migrate_on, 0);
1861
1862 if (ret != 0)
1863 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1864 put_task_struct(env.best_task);
1865 return ret;
1866}
1867
1868/* Attempt to migrate a task to a CPU on the preferred node. */
1869static void numa_migrate_preferred(struct task_struct *p)
1870{
1871 unsigned long interval = HZ;
1872
1873 /* This task has no NUMA fault statistics yet */
David Brazdil0f672f62019-12-10 10:32:29 +00001874 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001875 return;
1876
1877 /* Periodically retry migrating the task to the preferred node */
1878 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1879 p->numa_migrate_retry = jiffies + interval;
1880
1881 /* Success if task is already running on preferred CPU */
1882 if (task_node(p) == p->numa_preferred_nid)
1883 return;
1884
1885 /* Otherwise, try migrate to a CPU on the preferred node */
1886 task_numa_migrate(p);
1887}
1888
1889/*
1890 * Find out how many nodes on the workload is actively running on. Do this by
1891 * tracking the nodes from which NUMA hinting faults are triggered. This can
1892 * be different from the set of nodes where the workload's memory is currently
1893 * located.
1894 */
1895static void numa_group_count_active_nodes(struct numa_group *numa_group)
1896{
1897 unsigned long faults, max_faults = 0;
1898 int nid, active_nodes = 0;
1899
1900 for_each_online_node(nid) {
1901 faults = group_faults_cpu(numa_group, nid);
1902 if (faults > max_faults)
1903 max_faults = faults;
1904 }
1905
1906 for_each_online_node(nid) {
1907 faults = group_faults_cpu(numa_group, nid);
1908 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1909 active_nodes++;
1910 }
1911
1912 numa_group->max_faults_cpu = max_faults;
1913 numa_group->active_nodes = active_nodes;
1914}
1915
1916/*
1917 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1918 * increments. The more local the fault statistics are, the higher the scan
1919 * period will be for the next scan window. If local/(local+remote) ratio is
1920 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1921 * the scan period will decrease. Aim for 70% local accesses.
1922 */
1923#define NUMA_PERIOD_SLOTS 10
1924#define NUMA_PERIOD_THRESHOLD 7
1925
1926/*
1927 * Increase the scan period (slow down scanning) if the majority of
1928 * our memory is already on our local node, or if the majority of
1929 * the page accesses are shared with other processes.
1930 * Otherwise, decrease the scan period.
1931 */
1932static void update_task_scan_period(struct task_struct *p,
1933 unsigned long shared, unsigned long private)
1934{
1935 unsigned int period_slot;
1936 int lr_ratio, ps_ratio;
1937 int diff;
1938
1939 unsigned long remote = p->numa_faults_locality[0];
1940 unsigned long local = p->numa_faults_locality[1];
1941
1942 /*
1943 * If there were no record hinting faults then either the task is
1944 * completely idle or all activity is areas that are not of interest
1945 * to automatic numa balancing. Related to that, if there were failed
1946 * migration then it implies we are migrating too quickly or the local
1947 * node is overloaded. In either case, scan slower
1948 */
1949 if (local + shared == 0 || p->numa_faults_locality[2]) {
1950 p->numa_scan_period = min(p->numa_scan_period_max,
1951 p->numa_scan_period << 1);
1952
1953 p->mm->numa_next_scan = jiffies +
1954 msecs_to_jiffies(p->numa_scan_period);
1955
1956 return;
1957 }
1958
1959 /*
1960 * Prepare to scale scan period relative to the current period.
1961 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1962 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1963 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1964 */
1965 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1966 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1967 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1968
1969 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1970 /*
1971 * Most memory accesses are local. There is no need to
1972 * do fast NUMA scanning, since memory is already local.
1973 */
1974 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1975 if (!slot)
1976 slot = 1;
1977 diff = slot * period_slot;
1978 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1979 /*
1980 * Most memory accesses are shared with other tasks.
1981 * There is no point in continuing fast NUMA scanning,
1982 * since other tasks may just move the memory elsewhere.
1983 */
1984 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1985 if (!slot)
1986 slot = 1;
1987 diff = slot * period_slot;
1988 } else {
1989 /*
1990 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1991 * yet they are not on the local NUMA node. Speed up
1992 * NUMA scanning to get the memory moved over.
1993 */
1994 int ratio = max(lr_ratio, ps_ratio);
1995 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1996 }
1997
1998 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1999 task_scan_min(p), task_scan_max(p));
2000 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2001}
2002
2003/*
2004 * Get the fraction of time the task has been running since the last
2005 * NUMA placement cycle. The scheduler keeps similar statistics, but
2006 * decays those on a 32ms period, which is orders of magnitude off
2007 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2008 * stats only if the task is so new there are no NUMA statistics yet.
2009 */
2010static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2011{
2012 u64 runtime, delta, now;
2013 /* Use the start of this time slice to avoid calculations. */
2014 now = p->se.exec_start;
2015 runtime = p->se.sum_exec_runtime;
2016
2017 if (p->last_task_numa_placement) {
2018 delta = runtime - p->last_sum_exec_runtime;
2019 *period = now - p->last_task_numa_placement;
David Brazdil0f672f62019-12-10 10:32:29 +00002020
2021 /* Avoid time going backwards, prevent potential divide error: */
2022 if (unlikely((s64)*period < 0))
2023 *period = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002024 } else {
2025 delta = p->se.avg.load_sum;
2026 *period = LOAD_AVG_MAX;
2027 }
2028
2029 p->last_sum_exec_runtime = runtime;
2030 p->last_task_numa_placement = now;
2031
2032 return delta;
2033}
2034
2035/*
2036 * Determine the preferred nid for a task in a numa_group. This needs to
2037 * be done in a way that produces consistent results with group_weight,
2038 * otherwise workloads might not converge.
2039 */
2040static int preferred_group_nid(struct task_struct *p, int nid)
2041{
2042 nodemask_t nodes;
2043 int dist;
2044
2045 /* Direct connections between all NUMA nodes. */
2046 if (sched_numa_topology_type == NUMA_DIRECT)
2047 return nid;
2048
2049 /*
2050 * On a system with glueless mesh NUMA topology, group_weight
2051 * scores nodes according to the number of NUMA hinting faults on
2052 * both the node itself, and on nearby nodes.
2053 */
2054 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2055 unsigned long score, max_score = 0;
2056 int node, max_node = nid;
2057
2058 dist = sched_max_numa_distance;
2059
2060 for_each_online_node(node) {
2061 score = group_weight(p, node, dist);
2062 if (score > max_score) {
2063 max_score = score;
2064 max_node = node;
2065 }
2066 }
2067 return max_node;
2068 }
2069
2070 /*
2071 * Finding the preferred nid in a system with NUMA backplane
2072 * interconnect topology is more involved. The goal is to locate
2073 * tasks from numa_groups near each other in the system, and
2074 * untangle workloads from different sides of the system. This requires
2075 * searching down the hierarchy of node groups, recursively searching
2076 * inside the highest scoring group of nodes. The nodemask tricks
2077 * keep the complexity of the search down.
2078 */
2079 nodes = node_online_map;
2080 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2081 unsigned long max_faults = 0;
2082 nodemask_t max_group = NODE_MASK_NONE;
2083 int a, b;
2084
2085 /* Are there nodes at this distance from each other? */
2086 if (!find_numa_distance(dist))
2087 continue;
2088
2089 for_each_node_mask(a, nodes) {
2090 unsigned long faults = 0;
2091 nodemask_t this_group;
2092 nodes_clear(this_group);
2093
2094 /* Sum group's NUMA faults; includes a==b case. */
2095 for_each_node_mask(b, nodes) {
2096 if (node_distance(a, b) < dist) {
2097 faults += group_faults(p, b);
2098 node_set(b, this_group);
2099 node_clear(b, nodes);
2100 }
2101 }
2102
2103 /* Remember the top group. */
2104 if (faults > max_faults) {
2105 max_faults = faults;
2106 max_group = this_group;
2107 /*
2108 * subtle: at the smallest distance there is
2109 * just one node left in each "group", the
2110 * winner is the preferred nid.
2111 */
2112 nid = a;
2113 }
2114 }
2115 /* Next round, evaluate the nodes within max_group. */
2116 if (!max_faults)
2117 break;
2118 nodes = max_group;
2119 }
2120 return nid;
2121}
2122
2123static void task_numa_placement(struct task_struct *p)
2124{
David Brazdil0f672f62019-12-10 10:32:29 +00002125 int seq, nid, max_nid = NUMA_NO_NODE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002126 unsigned long max_faults = 0;
2127 unsigned long fault_types[2] = { 0, 0 };
2128 unsigned long total_faults;
2129 u64 runtime, period;
2130 spinlock_t *group_lock = NULL;
David Brazdil0f672f62019-12-10 10:32:29 +00002131 struct numa_group *ng;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002132
2133 /*
2134 * The p->mm->numa_scan_seq field gets updated without
2135 * exclusive access. Use READ_ONCE() here to ensure
2136 * that the field is read in a single access:
2137 */
2138 seq = READ_ONCE(p->mm->numa_scan_seq);
2139 if (p->numa_scan_seq == seq)
2140 return;
2141 p->numa_scan_seq = seq;
2142 p->numa_scan_period_max = task_scan_max(p);
2143
2144 total_faults = p->numa_faults_locality[0] +
2145 p->numa_faults_locality[1];
2146 runtime = numa_get_avg_runtime(p, &period);
2147
2148 /* If the task is part of a group prevent parallel updates to group stats */
David Brazdil0f672f62019-12-10 10:32:29 +00002149 ng = deref_curr_numa_group(p);
2150 if (ng) {
2151 group_lock = &ng->lock;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002152 spin_lock_irq(group_lock);
2153 }
2154
2155 /* Find the node with the highest number of faults */
2156 for_each_online_node(nid) {
2157 /* Keep track of the offsets in numa_faults array */
2158 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2159 unsigned long faults = 0, group_faults = 0;
2160 int priv;
2161
2162 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2163 long diff, f_diff, f_weight;
2164
2165 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2166 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2167 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2168 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2169
2170 /* Decay existing window, copy faults since last scan */
2171 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2172 fault_types[priv] += p->numa_faults[membuf_idx];
2173 p->numa_faults[membuf_idx] = 0;
2174
2175 /*
2176 * Normalize the faults_from, so all tasks in a group
2177 * count according to CPU use, instead of by the raw
2178 * number of faults. Tasks with little runtime have
2179 * little over-all impact on throughput, and thus their
2180 * faults are less important.
2181 */
2182 f_weight = div64_u64(runtime << 16, period + 1);
2183 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2184 (total_faults + 1);
2185 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2186 p->numa_faults[cpubuf_idx] = 0;
2187
2188 p->numa_faults[mem_idx] += diff;
2189 p->numa_faults[cpu_idx] += f_diff;
2190 faults += p->numa_faults[mem_idx];
2191 p->total_numa_faults += diff;
David Brazdil0f672f62019-12-10 10:32:29 +00002192 if (ng) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002193 /*
2194 * safe because we can only change our own group
2195 *
2196 * mem_idx represents the offset for a given
2197 * nid and priv in a specific region because it
2198 * is at the beginning of the numa_faults array.
2199 */
David Brazdil0f672f62019-12-10 10:32:29 +00002200 ng->faults[mem_idx] += diff;
2201 ng->faults_cpu[mem_idx] += f_diff;
2202 ng->total_faults += diff;
2203 group_faults += ng->faults[mem_idx];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002204 }
2205 }
2206
David Brazdil0f672f62019-12-10 10:32:29 +00002207 if (!ng) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002208 if (faults > max_faults) {
2209 max_faults = faults;
2210 max_nid = nid;
2211 }
2212 } else if (group_faults > max_faults) {
2213 max_faults = group_faults;
2214 max_nid = nid;
2215 }
2216 }
2217
David Brazdil0f672f62019-12-10 10:32:29 +00002218 if (ng) {
2219 numa_group_count_active_nodes(ng);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002220 spin_unlock_irq(group_lock);
2221 max_nid = preferred_group_nid(p, max_nid);
2222 }
2223
2224 if (max_faults) {
2225 /* Set the new preferred node */
2226 if (max_nid != p->numa_preferred_nid)
2227 sched_setnuma(p, max_nid);
2228 }
2229
2230 update_task_scan_period(p, fault_types[0], fault_types[1]);
2231}
2232
2233static inline int get_numa_group(struct numa_group *grp)
2234{
David Brazdil0f672f62019-12-10 10:32:29 +00002235 return refcount_inc_not_zero(&grp->refcount);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002236}
2237
2238static inline void put_numa_group(struct numa_group *grp)
2239{
David Brazdil0f672f62019-12-10 10:32:29 +00002240 if (refcount_dec_and_test(&grp->refcount))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002241 kfree_rcu(grp, rcu);
2242}
2243
2244static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2245 int *priv)
2246{
2247 struct numa_group *grp, *my_grp;
2248 struct task_struct *tsk;
2249 bool join = false;
2250 int cpu = cpupid_to_cpu(cpupid);
2251 int i;
2252
David Brazdil0f672f62019-12-10 10:32:29 +00002253 if (unlikely(!deref_curr_numa_group(p))) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002254 unsigned int size = sizeof(struct numa_group) +
2255 4*nr_node_ids*sizeof(unsigned long);
2256
2257 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2258 if (!grp)
2259 return;
2260
David Brazdil0f672f62019-12-10 10:32:29 +00002261 refcount_set(&grp->refcount, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002262 grp->active_nodes = 1;
2263 grp->max_faults_cpu = 0;
2264 spin_lock_init(&grp->lock);
2265 grp->gid = p->pid;
2266 /* Second half of the array tracks nids where faults happen */
2267 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2268 nr_node_ids;
2269
2270 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2271 grp->faults[i] = p->numa_faults[i];
2272
2273 grp->total_faults = p->total_numa_faults;
2274
2275 grp->nr_tasks++;
2276 rcu_assign_pointer(p->numa_group, grp);
2277 }
2278
2279 rcu_read_lock();
2280 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2281
2282 if (!cpupid_match_pid(tsk, cpupid))
2283 goto no_join;
2284
2285 grp = rcu_dereference(tsk->numa_group);
2286 if (!grp)
2287 goto no_join;
2288
David Brazdil0f672f62019-12-10 10:32:29 +00002289 my_grp = deref_curr_numa_group(p);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002290 if (grp == my_grp)
2291 goto no_join;
2292
2293 /*
2294 * Only join the other group if its bigger; if we're the bigger group,
2295 * the other task will join us.
2296 */
2297 if (my_grp->nr_tasks > grp->nr_tasks)
2298 goto no_join;
2299
2300 /*
2301 * Tie-break on the grp address.
2302 */
2303 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2304 goto no_join;
2305
2306 /* Always join threads in the same process. */
2307 if (tsk->mm == current->mm)
2308 join = true;
2309
2310 /* Simple filter to avoid false positives due to PID collisions */
2311 if (flags & TNF_SHARED)
2312 join = true;
2313
2314 /* Update priv based on whether false sharing was detected */
2315 *priv = !join;
2316
2317 if (join && !get_numa_group(grp))
2318 goto no_join;
2319
2320 rcu_read_unlock();
2321
2322 if (!join)
2323 return;
2324
2325 BUG_ON(irqs_disabled());
2326 double_lock_irq(&my_grp->lock, &grp->lock);
2327
2328 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2329 my_grp->faults[i] -= p->numa_faults[i];
2330 grp->faults[i] += p->numa_faults[i];
2331 }
2332 my_grp->total_faults -= p->total_numa_faults;
2333 grp->total_faults += p->total_numa_faults;
2334
2335 my_grp->nr_tasks--;
2336 grp->nr_tasks++;
2337
2338 spin_unlock(&my_grp->lock);
2339 spin_unlock_irq(&grp->lock);
2340
2341 rcu_assign_pointer(p->numa_group, grp);
2342
2343 put_numa_group(my_grp);
2344 return;
2345
2346no_join:
2347 rcu_read_unlock();
2348 return;
2349}
2350
David Brazdil0f672f62019-12-10 10:32:29 +00002351/*
2352 * Get rid of NUMA staticstics associated with a task (either current or dead).
2353 * If @final is set, the task is dead and has reached refcount zero, so we can
2354 * safely free all relevant data structures. Otherwise, there might be
2355 * concurrent reads from places like load balancing and procfs, and we should
2356 * reset the data back to default state without freeing ->numa_faults.
2357 */
2358void task_numa_free(struct task_struct *p, bool final)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002359{
David Brazdil0f672f62019-12-10 10:32:29 +00002360 /* safe: p either is current or is being freed by current */
2361 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2362 unsigned long *numa_faults = p->numa_faults;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002363 unsigned long flags;
2364 int i;
2365
David Brazdil0f672f62019-12-10 10:32:29 +00002366 if (!numa_faults)
2367 return;
2368
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002369 if (grp) {
2370 spin_lock_irqsave(&grp->lock, flags);
2371 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2372 grp->faults[i] -= p->numa_faults[i];
2373 grp->total_faults -= p->total_numa_faults;
2374
2375 grp->nr_tasks--;
2376 spin_unlock_irqrestore(&grp->lock, flags);
2377 RCU_INIT_POINTER(p->numa_group, NULL);
2378 put_numa_group(grp);
2379 }
2380
David Brazdil0f672f62019-12-10 10:32:29 +00002381 if (final) {
2382 p->numa_faults = NULL;
2383 kfree(numa_faults);
2384 } else {
2385 p->total_numa_faults = 0;
2386 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2387 numa_faults[i] = 0;
2388 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002389}
2390
2391/*
2392 * Got a PROT_NONE fault for a page on @node.
2393 */
2394void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2395{
2396 struct task_struct *p = current;
2397 bool migrated = flags & TNF_MIGRATED;
2398 int cpu_node = task_node(current);
2399 int local = !!(flags & TNF_FAULT_LOCAL);
2400 struct numa_group *ng;
2401 int priv;
2402
2403 if (!static_branch_likely(&sched_numa_balancing))
2404 return;
2405
2406 /* for example, ksmd faulting in a user's mm */
2407 if (!p->mm)
2408 return;
2409
2410 /* Allocate buffer to track faults on a per-node basis */
2411 if (unlikely(!p->numa_faults)) {
2412 int size = sizeof(*p->numa_faults) *
2413 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2414
2415 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2416 if (!p->numa_faults)
2417 return;
2418
2419 p->total_numa_faults = 0;
2420 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2421 }
2422
2423 /*
2424 * First accesses are treated as private, otherwise consider accesses
2425 * to be private if the accessing pid has not changed
2426 */
2427 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2428 priv = 1;
2429 } else {
2430 priv = cpupid_match_pid(p, last_cpupid);
2431 if (!priv && !(flags & TNF_NO_GROUP))
2432 task_numa_group(p, last_cpupid, flags, &priv);
2433 }
2434
2435 /*
2436 * If a workload spans multiple NUMA nodes, a shared fault that
2437 * occurs wholly within the set of nodes that the workload is
2438 * actively using should be counted as local. This allows the
2439 * scan rate to slow down when a workload has settled down.
2440 */
David Brazdil0f672f62019-12-10 10:32:29 +00002441 ng = deref_curr_numa_group(p);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002442 if (!priv && !local && ng && ng->active_nodes > 1 &&
2443 numa_is_active_node(cpu_node, ng) &&
2444 numa_is_active_node(mem_node, ng))
2445 local = 1;
2446
2447 /*
David Brazdil0f672f62019-12-10 10:32:29 +00002448 * Retry to migrate task to preferred node periodically, in case it
2449 * previously failed, or the scheduler moved us.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002450 */
2451 if (time_after(jiffies, p->numa_migrate_retry)) {
2452 task_numa_placement(p);
2453 numa_migrate_preferred(p);
2454 }
2455
2456 if (migrated)
2457 p->numa_pages_migrated += pages;
2458 if (flags & TNF_MIGRATE_FAIL)
2459 p->numa_faults_locality[2] += pages;
2460
2461 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2462 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2463 p->numa_faults_locality[local] += pages;
2464}
2465
2466static void reset_ptenuma_scan(struct task_struct *p)
2467{
2468 /*
2469 * We only did a read acquisition of the mmap sem, so
2470 * p->mm->numa_scan_seq is written to without exclusive access
2471 * and the update is not guaranteed to be atomic. That's not
2472 * much of an issue though, since this is just used for
2473 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2474 * expensive, to avoid any form of compiler optimizations:
2475 */
2476 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2477 p->mm->numa_scan_offset = 0;
2478}
2479
2480/*
2481 * The expensive part of numa migration is done from task_work context.
2482 * Triggered from task_tick_numa().
2483 */
David Brazdil0f672f62019-12-10 10:32:29 +00002484static void task_numa_work(struct callback_head *work)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002485{
2486 unsigned long migrate, next_scan, now = jiffies;
2487 struct task_struct *p = current;
2488 struct mm_struct *mm = p->mm;
2489 u64 runtime = p->se.sum_exec_runtime;
2490 struct vm_area_struct *vma;
2491 unsigned long start, end;
2492 unsigned long nr_pte_updates = 0;
2493 long pages, virtpages;
2494
2495 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2496
David Brazdil0f672f62019-12-10 10:32:29 +00002497 work->next = work;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002498 /*
2499 * Who cares about NUMA placement when they're dying.
2500 *
2501 * NOTE: make sure not to dereference p->mm before this check,
2502 * exit_task_work() happens _after_ exit_mm() so we could be called
2503 * without p->mm even though we still had it when we enqueued this
2504 * work.
2505 */
2506 if (p->flags & PF_EXITING)
2507 return;
2508
2509 if (!mm->numa_next_scan) {
2510 mm->numa_next_scan = now +
2511 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2512 }
2513
2514 /*
2515 * Enforce maximal scan/migration frequency..
2516 */
2517 migrate = mm->numa_next_scan;
2518 if (time_before(now, migrate))
2519 return;
2520
2521 if (p->numa_scan_period == 0) {
2522 p->numa_scan_period_max = task_scan_max(p);
2523 p->numa_scan_period = task_scan_start(p);
2524 }
2525
2526 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2527 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2528 return;
2529
2530 /*
2531 * Delay this task enough that another task of this mm will likely win
2532 * the next time around.
2533 */
2534 p->node_stamp += 2 * TICK_NSEC;
2535
2536 start = mm->numa_scan_offset;
2537 pages = sysctl_numa_balancing_scan_size;
2538 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2539 virtpages = pages * 8; /* Scan up to this much virtual space */
2540 if (!pages)
2541 return;
2542
2543
2544 if (!down_read_trylock(&mm->mmap_sem))
2545 return;
2546 vma = find_vma(mm, start);
2547 if (!vma) {
2548 reset_ptenuma_scan(p);
2549 start = 0;
2550 vma = mm->mmap;
2551 }
2552 for (; vma; vma = vma->vm_next) {
2553 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2554 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2555 continue;
2556 }
2557
2558 /*
2559 * Shared library pages mapped by multiple processes are not
2560 * migrated as it is expected they are cache replicated. Avoid
2561 * hinting faults in read-only file-backed mappings or the vdso
2562 * as migrating the pages will be of marginal benefit.
2563 */
2564 if (!vma->vm_mm ||
2565 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2566 continue;
2567
2568 /*
2569 * Skip inaccessible VMAs to avoid any confusion between
2570 * PROT_NONE and NUMA hinting ptes
2571 */
2572 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2573 continue;
2574
2575 do {
2576 start = max(start, vma->vm_start);
2577 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2578 end = min(end, vma->vm_end);
2579 nr_pte_updates = change_prot_numa(vma, start, end);
2580
2581 /*
2582 * Try to scan sysctl_numa_balancing_size worth of
2583 * hpages that have at least one present PTE that
2584 * is not already pte-numa. If the VMA contains
2585 * areas that are unused or already full of prot_numa
2586 * PTEs, scan up to virtpages, to skip through those
2587 * areas faster.
2588 */
2589 if (nr_pte_updates)
2590 pages -= (end - start) >> PAGE_SHIFT;
2591 virtpages -= (end - start) >> PAGE_SHIFT;
2592
2593 start = end;
2594 if (pages <= 0 || virtpages <= 0)
2595 goto out;
2596
2597 cond_resched();
2598 } while (end != vma->vm_end);
2599 }
2600
2601out:
2602 /*
2603 * It is possible to reach the end of the VMA list but the last few
2604 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2605 * would find the !migratable VMA on the next scan but not reset the
2606 * scanner to the start so check it now.
2607 */
2608 if (vma)
2609 mm->numa_scan_offset = start;
2610 else
2611 reset_ptenuma_scan(p);
2612 up_read(&mm->mmap_sem);
2613
2614 /*
2615 * Make sure tasks use at least 32x as much time to run other code
2616 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2617 * Usually update_task_scan_period slows down scanning enough; on an
2618 * overloaded system we need to limit overhead on a per task basis.
2619 */
2620 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2621 u64 diff = p->se.sum_exec_runtime - runtime;
2622 p->node_stamp += 32 * diff;
2623 }
2624}
2625
David Brazdil0f672f62019-12-10 10:32:29 +00002626void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2627{
2628 int mm_users = 0;
2629 struct mm_struct *mm = p->mm;
2630
2631 if (mm) {
2632 mm_users = atomic_read(&mm->mm_users);
2633 if (mm_users == 1) {
2634 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2635 mm->numa_scan_seq = 0;
2636 }
2637 }
2638 p->node_stamp = 0;
2639 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2640 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2641 /* Protect against double add, see task_tick_numa and task_numa_work */
2642 p->numa_work.next = &p->numa_work;
2643 p->numa_faults = NULL;
2644 RCU_INIT_POINTER(p->numa_group, NULL);
2645 p->last_task_numa_placement = 0;
2646 p->last_sum_exec_runtime = 0;
2647
2648 init_task_work(&p->numa_work, task_numa_work);
2649
2650 /* New address space, reset the preferred nid */
2651 if (!(clone_flags & CLONE_VM)) {
2652 p->numa_preferred_nid = NUMA_NO_NODE;
2653 return;
2654 }
2655
2656 /*
2657 * New thread, keep existing numa_preferred_nid which should be copied
2658 * already by arch_dup_task_struct but stagger when scans start.
2659 */
2660 if (mm) {
2661 unsigned int delay;
2662
2663 delay = min_t(unsigned int, task_scan_max(current),
2664 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2665 delay += 2 * TICK_NSEC;
2666 p->node_stamp = delay;
2667 }
2668}
2669
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002670/*
2671 * Drive the periodic memory faults..
2672 */
David Brazdil0f672f62019-12-10 10:32:29 +00002673static void task_tick_numa(struct rq *rq, struct task_struct *curr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002674{
2675 struct callback_head *work = &curr->numa_work;
2676 u64 period, now;
2677
2678 /*
2679 * We don't care about NUMA placement if we don't have memory.
2680 */
Olivier Deprez0e641232021-09-23 10:07:05 +02002681 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002682 return;
2683
2684 /*
2685 * Using runtime rather than walltime has the dual advantage that
2686 * we (mostly) drive the selection from busy threads and that the
2687 * task needs to have done some actual work before we bother with
2688 * NUMA placement.
2689 */
2690 now = curr->se.sum_exec_runtime;
2691 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2692
2693 if (now > curr->node_stamp + period) {
2694 if (!curr->node_stamp)
2695 curr->numa_scan_period = task_scan_start(curr);
2696 curr->node_stamp += period;
2697
David Brazdil0f672f62019-12-10 10:32:29 +00002698 if (!time_before(jiffies, curr->mm->numa_next_scan))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002699 task_work_add(curr, work, true);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002700 }
2701}
2702
2703static void update_scan_period(struct task_struct *p, int new_cpu)
2704{
2705 int src_nid = cpu_to_node(task_cpu(p));
2706 int dst_nid = cpu_to_node(new_cpu);
2707
2708 if (!static_branch_likely(&sched_numa_balancing))
2709 return;
2710
2711 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2712 return;
2713
2714 if (src_nid == dst_nid)
2715 return;
2716
2717 /*
2718 * Allow resets if faults have been trapped before one scan
2719 * has completed. This is most likely due to a new task that
2720 * is pulled cross-node due to wakeups or load balancing.
2721 */
2722 if (p->numa_scan_seq) {
2723 /*
2724 * Avoid scan adjustments if moving to the preferred
2725 * node or if the task was not previously running on
2726 * the preferred node.
2727 */
2728 if (dst_nid == p->numa_preferred_nid ||
David Brazdil0f672f62019-12-10 10:32:29 +00002729 (p->numa_preferred_nid != NUMA_NO_NODE &&
2730 src_nid != p->numa_preferred_nid))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002731 return;
2732 }
2733
2734 p->numa_scan_period = task_scan_start(p);
2735}
2736
2737#else
2738static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2739{
2740}
2741
2742static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2743{
2744}
2745
2746static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2747{
2748}
2749
2750static inline void update_scan_period(struct task_struct *p, int new_cpu)
2751{
2752}
2753
2754#endif /* CONFIG_NUMA_BALANCING */
2755
2756static void
2757account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2758{
2759 update_load_add(&cfs_rq->load, se->load.weight);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002760#ifdef CONFIG_SMP
2761 if (entity_is_task(se)) {
2762 struct rq *rq = rq_of(cfs_rq);
2763
2764 account_numa_enqueue(rq, task_of(se));
2765 list_add(&se->group_node, &rq->cfs_tasks);
2766 }
2767#endif
2768 cfs_rq->nr_running++;
2769}
2770
2771static void
2772account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2773{
2774 update_load_sub(&cfs_rq->load, se->load.weight);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002775#ifdef CONFIG_SMP
2776 if (entity_is_task(se)) {
2777 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2778 list_del_init(&se->group_node);
2779 }
2780#endif
2781 cfs_rq->nr_running--;
2782}
2783
2784/*
2785 * Signed add and clamp on underflow.
2786 *
2787 * Explicitly do a load-store to ensure the intermediate value never hits
2788 * memory. This allows lockless observations without ever seeing the negative
2789 * values.
2790 */
2791#define add_positive(_ptr, _val) do { \
2792 typeof(_ptr) ptr = (_ptr); \
2793 typeof(_val) val = (_val); \
2794 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2795 \
2796 res = var + val; \
2797 \
2798 if (val < 0 && res > var) \
2799 res = 0; \
2800 \
2801 WRITE_ONCE(*ptr, res); \
2802} while (0)
2803
2804/*
2805 * Unsigned subtract and clamp on underflow.
2806 *
2807 * Explicitly do a load-store to ensure the intermediate value never hits
2808 * memory. This allows lockless observations without ever seeing the negative
2809 * values.
2810 */
2811#define sub_positive(_ptr, _val) do { \
2812 typeof(_ptr) ptr = (_ptr); \
2813 typeof(*ptr) val = (_val); \
2814 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2815 res = var - val; \
2816 if (res > var) \
2817 res = 0; \
2818 WRITE_ONCE(*ptr, res); \
2819} while (0)
2820
David Brazdil0f672f62019-12-10 10:32:29 +00002821/*
2822 * Remove and clamp on negative, from a local variable.
2823 *
2824 * A variant of sub_positive(), which does not use explicit load-store
2825 * and is thus optimized for local variable updates.
2826 */
2827#define lsub_positive(_ptr, _val) do { \
2828 typeof(_ptr) ptr = (_ptr); \
2829 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
2830} while (0)
2831
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002832#ifdef CONFIG_SMP
2833static inline void
2834enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2835{
2836 cfs_rq->runnable_weight += se->runnable_weight;
2837
2838 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2839 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2840}
2841
2842static inline void
2843dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2844{
2845 cfs_rq->runnable_weight -= se->runnable_weight;
2846
2847 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2848 sub_positive(&cfs_rq->avg.runnable_load_sum,
2849 se_runnable(se) * se->avg.runnable_load_sum);
2850}
2851
2852static inline void
2853enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2854{
2855 cfs_rq->avg.load_avg += se->avg.load_avg;
2856 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2857}
2858
2859static inline void
2860dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2861{
2862 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2863 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2864}
2865#else
2866static inline void
2867enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2868static inline void
2869dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2870static inline void
2871enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2872static inline void
2873dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2874#endif
2875
2876static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2877 unsigned long weight, unsigned long runnable)
2878{
2879 if (se->on_rq) {
2880 /* commit outstanding execution time */
2881 if (cfs_rq->curr == se)
2882 update_curr(cfs_rq);
2883 account_entity_dequeue(cfs_rq, se);
2884 dequeue_runnable_load_avg(cfs_rq, se);
2885 }
2886 dequeue_load_avg(cfs_rq, se);
2887
2888 se->runnable_weight = runnable;
2889 update_load_set(&se->load, weight);
2890
2891#ifdef CONFIG_SMP
2892 do {
2893 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2894
2895 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2896 se->avg.runnable_load_avg =
2897 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2898 } while (0);
2899#endif
2900
2901 enqueue_load_avg(cfs_rq, se);
2902 if (se->on_rq) {
2903 account_entity_enqueue(cfs_rq, se);
2904 enqueue_runnable_load_avg(cfs_rq, se);
2905 }
2906}
2907
2908void reweight_task(struct task_struct *p, int prio)
2909{
2910 struct sched_entity *se = &p->se;
2911 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2912 struct load_weight *load = &se->load;
2913 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2914
2915 reweight_entity(cfs_rq, se, weight, weight);
2916 load->inv_weight = sched_prio_to_wmult[prio];
2917}
2918
2919#ifdef CONFIG_FAIR_GROUP_SCHED
2920#ifdef CONFIG_SMP
2921/*
2922 * All this does is approximate the hierarchical proportion which includes that
2923 * global sum we all love to hate.
2924 *
2925 * That is, the weight of a group entity, is the proportional share of the
2926 * group weight based on the group runqueue weights. That is:
2927 *
2928 * tg->weight * grq->load.weight
2929 * ge->load.weight = ----------------------------- (1)
Olivier Deprez0e641232021-09-23 10:07:05 +02002930 * \Sum grq->load.weight
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002931 *
2932 * Now, because computing that sum is prohibitively expensive to compute (been
2933 * there, done that) we approximate it with this average stuff. The average
2934 * moves slower and therefore the approximation is cheaper and more stable.
2935 *
2936 * So instead of the above, we substitute:
2937 *
2938 * grq->load.weight -> grq->avg.load_avg (2)
2939 *
2940 * which yields the following:
2941 *
2942 * tg->weight * grq->avg.load_avg
2943 * ge->load.weight = ------------------------------ (3)
Olivier Deprez0e641232021-09-23 10:07:05 +02002944 * tg->load_avg
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002945 *
2946 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2947 *
2948 * That is shares_avg, and it is right (given the approximation (2)).
2949 *
2950 * The problem with it is that because the average is slow -- it was designed
2951 * to be exactly that of course -- this leads to transients in boundary
2952 * conditions. In specific, the case where the group was idle and we start the
2953 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2954 * yielding bad latency etc..
2955 *
2956 * Now, in that special case (1) reduces to:
2957 *
2958 * tg->weight * grq->load.weight
2959 * ge->load.weight = ----------------------------- = tg->weight (4)
Olivier Deprez0e641232021-09-23 10:07:05 +02002960 * grp->load.weight
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002961 *
2962 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2963 *
2964 * So what we do is modify our approximation (3) to approach (4) in the (near)
2965 * UP case, like:
2966 *
2967 * ge->load.weight =
2968 *
2969 * tg->weight * grq->load.weight
2970 * --------------------------------------------------- (5)
2971 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2972 *
2973 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2974 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2975 *
2976 *
2977 * tg->weight * grq->load.weight
2978 * ge->load.weight = ----------------------------- (6)
Olivier Deprez0e641232021-09-23 10:07:05 +02002979 * tg_load_avg'
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002980 *
2981 * Where:
2982 *
2983 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2984 * max(grq->load.weight, grq->avg.load_avg)
2985 *
2986 * And that is shares_weight and is icky. In the (near) UP case it approaches
2987 * (4) while in the normal case it approaches (3). It consistently
2988 * overestimates the ge->load.weight and therefore:
2989 *
2990 * \Sum ge->load.weight >= tg->weight
2991 *
2992 * hence icky!
2993 */
2994static long calc_group_shares(struct cfs_rq *cfs_rq)
2995{
2996 long tg_weight, tg_shares, load, shares;
2997 struct task_group *tg = cfs_rq->tg;
2998
2999 tg_shares = READ_ONCE(tg->shares);
3000
3001 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3002
3003 tg_weight = atomic_long_read(&tg->load_avg);
3004
3005 /* Ensure tg_weight >= load */
3006 tg_weight -= cfs_rq->tg_load_avg_contrib;
3007 tg_weight += load;
3008
3009 shares = (tg_shares * load);
3010 if (tg_weight)
3011 shares /= tg_weight;
3012
3013 /*
3014 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3015 * of a group with small tg->shares value. It is a floor value which is
3016 * assigned as a minimum load.weight to the sched_entity representing
3017 * the group on a CPU.
3018 *
3019 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3020 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3021 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3022 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3023 * instead of 0.
3024 */
3025 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3026}
3027
3028/*
3029 * This calculates the effective runnable weight for a group entity based on
3030 * the group entity weight calculated above.
3031 *
3032 * Because of the above approximation (2), our group entity weight is
3033 * an load_avg based ratio (3). This means that it includes blocked load and
3034 * does not represent the runnable weight.
3035 *
3036 * Approximate the group entity's runnable weight per ratio from the group
3037 * runqueue:
3038 *
3039 * grq->avg.runnable_load_avg
3040 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
3041 * grq->avg.load_avg
3042 *
3043 * However, analogous to above, since the avg numbers are slow, this leads to
3044 * transients in the from-idle case. Instead we use:
3045 *
3046 * ge->runnable_weight = ge->load.weight *
3047 *
3048 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
3049 * ----------------------------------------------------- (8)
3050 * max(grq->avg.load_avg, grq->load.weight)
3051 *
3052 * Where these max() serve both to use the 'instant' values to fix the slow
3053 * from-idle and avoid the /0 on to-idle, similar to (6).
3054 */
3055static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
3056{
3057 long runnable, load_avg;
3058
3059 load_avg = max(cfs_rq->avg.load_avg,
3060 scale_load_down(cfs_rq->load.weight));
3061
3062 runnable = max(cfs_rq->avg.runnable_load_avg,
3063 scale_load_down(cfs_rq->runnable_weight));
3064
3065 runnable *= shares;
3066 if (load_avg)
3067 runnable /= load_avg;
3068
3069 return clamp_t(long, runnable, MIN_SHARES, shares);
3070}
3071#endif /* CONFIG_SMP */
3072
3073static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3074
3075/*
3076 * Recomputes the group entity based on the current state of its group
3077 * runqueue.
3078 */
3079static void update_cfs_group(struct sched_entity *se)
3080{
3081 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3082 long shares, runnable;
3083
3084 if (!gcfs_rq)
3085 return;
3086
3087 if (throttled_hierarchy(gcfs_rq))
3088 return;
3089
3090#ifndef CONFIG_SMP
3091 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3092
3093 if (likely(se->load.weight == shares))
3094 return;
3095#else
3096 shares = calc_group_shares(gcfs_rq);
3097 runnable = calc_group_runnable(gcfs_rq, shares);
3098#endif
3099
3100 reweight_entity(cfs_rq_of(se), se, shares, runnable);
3101}
3102
3103#else /* CONFIG_FAIR_GROUP_SCHED */
3104static inline void update_cfs_group(struct sched_entity *se)
3105{
3106}
3107#endif /* CONFIG_FAIR_GROUP_SCHED */
3108
3109static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3110{
3111 struct rq *rq = rq_of(cfs_rq);
3112
3113 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3114 /*
3115 * There are a few boundary cases this might miss but it should
3116 * get called often enough that that should (hopefully) not be
3117 * a real problem.
3118 *
3119 * It will not get called when we go idle, because the idle
3120 * thread is a different class (!fair), nor will the utilization
3121 * number include things like RT tasks.
3122 *
3123 * As is, the util number is not freq-invariant (we'd have to
3124 * implement arch_scale_freq_capacity() for that).
3125 *
3126 * See cpu_util().
3127 */
3128 cpufreq_update_util(rq, flags);
3129 }
3130}
3131
3132#ifdef CONFIG_SMP
3133#ifdef CONFIG_FAIR_GROUP_SCHED
3134/**
3135 * update_tg_load_avg - update the tg's load avg
3136 * @cfs_rq: the cfs_rq whose avg changed
3137 * @force: update regardless of how small the difference
3138 *
3139 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3140 * However, because tg->load_avg is a global value there are performance
3141 * considerations.
3142 *
3143 * In order to avoid having to look at the other cfs_rq's, we use a
3144 * differential update where we store the last value we propagated. This in
3145 * turn allows skipping updates if the differential is 'small'.
3146 *
3147 * Updating tg's load_avg is necessary before update_cfs_share().
3148 */
3149static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3150{
3151 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3152
3153 /*
3154 * No need to update load_avg for root_task_group as it is not used.
3155 */
3156 if (cfs_rq->tg == &root_task_group)
3157 return;
3158
3159 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3160 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3161 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3162 }
3163}
3164
3165/*
3166 * Called within set_task_rq() right before setting a task's CPU. The
3167 * caller only guarantees p->pi_lock is held; no other assumptions,
3168 * including the state of rq->lock, should be made.
3169 */
3170void set_task_rq_fair(struct sched_entity *se,
3171 struct cfs_rq *prev, struct cfs_rq *next)
3172{
3173 u64 p_last_update_time;
3174 u64 n_last_update_time;
3175
3176 if (!sched_feat(ATTACH_AGE_LOAD))
3177 return;
3178
3179 /*
3180 * We are supposed to update the task to "current" time, then its up to
3181 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3182 * getting what current time is, so simply throw away the out-of-date
3183 * time. This will result in the wakee task is less decayed, but giving
3184 * the wakee more load sounds not bad.
3185 */
3186 if (!(se->avg.last_update_time && prev))
3187 return;
3188
3189#ifndef CONFIG_64BIT
3190 {
3191 u64 p_last_update_time_copy;
3192 u64 n_last_update_time_copy;
3193
3194 do {
3195 p_last_update_time_copy = prev->load_last_update_time_copy;
3196 n_last_update_time_copy = next->load_last_update_time_copy;
3197
3198 smp_rmb();
3199
3200 p_last_update_time = prev->avg.last_update_time;
3201 n_last_update_time = next->avg.last_update_time;
3202
3203 } while (p_last_update_time != p_last_update_time_copy ||
3204 n_last_update_time != n_last_update_time_copy);
3205 }
3206#else
3207 p_last_update_time = prev->avg.last_update_time;
3208 n_last_update_time = next->avg.last_update_time;
3209#endif
David Brazdil0f672f62019-12-10 10:32:29 +00003210 __update_load_avg_blocked_se(p_last_update_time, se);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003211 se->avg.last_update_time = n_last_update_time;
3212}
3213
3214
3215/*
3216 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3217 * propagate its contribution. The key to this propagation is the invariant
3218 * that for each group:
3219 *
3220 * ge->avg == grq->avg (1)
3221 *
3222 * _IFF_ we look at the pure running and runnable sums. Because they
3223 * represent the very same entity, just at different points in the hierarchy.
3224 *
3225 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3226 * sum over (but still wrong, because the group entity and group rq do not have
3227 * their PELT windows aligned).
3228 *
3229 * However, update_tg_cfs_runnable() is more complex. So we have:
3230 *
3231 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3232 *
3233 * And since, like util, the runnable part should be directly transferable,
3234 * the following would _appear_ to be the straight forward approach:
3235 *
3236 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3237 *
3238 * And per (1) we have:
3239 *
3240 * ge->avg.runnable_avg == grq->avg.runnable_avg
3241 *
3242 * Which gives:
3243 *
3244 * ge->load.weight * grq->avg.load_avg
3245 * ge->avg.load_avg = ----------------------------------- (4)
3246 * grq->load.weight
3247 *
3248 * Except that is wrong!
3249 *
3250 * Because while for entities historical weight is not important and we
3251 * really only care about our future and therefore can consider a pure
3252 * runnable sum, runqueues can NOT do this.
3253 *
3254 * We specifically want runqueues to have a load_avg that includes
3255 * historical weights. Those represent the blocked load, the load we expect
3256 * to (shortly) return to us. This only works by keeping the weights as
3257 * integral part of the sum. We therefore cannot decompose as per (3).
3258 *
3259 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3260 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3261 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3262 * runnable section of these tasks overlap (or not). If they were to perfectly
3263 * align the rq as a whole would be runnable 2/3 of the time. If however we
3264 * always have at least 1 runnable task, the rq as a whole is always runnable.
3265 *
3266 * So we'll have to approximate.. :/
3267 *
3268 * Given the constraint:
3269 *
3270 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3271 *
3272 * We can construct a rule that adds runnable to a rq by assuming minimal
3273 * overlap.
3274 *
3275 * On removal, we'll assume each task is equally runnable; which yields:
3276 *
3277 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3278 *
3279 * XXX: only do this for the part of runnable > running ?
3280 *
3281 */
3282
3283static inline void
3284update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3285{
3286 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3287
3288 /* Nothing to update */
3289 if (!delta)
3290 return;
3291
3292 /*
3293 * The relation between sum and avg is:
3294 *
3295 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3296 *
3297 * however, the PELT windows are not aligned between grq and gse.
3298 */
3299
3300 /* Set new sched_entity's utilization */
3301 se->avg.util_avg = gcfs_rq->avg.util_avg;
3302 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3303
3304 /* Update parent cfs_rq utilization */
3305 add_positive(&cfs_rq->avg.util_avg, delta);
3306 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3307}
3308
3309static inline void
3310update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3311{
3312 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3313 unsigned long runnable_load_avg, load_avg;
3314 u64 runnable_load_sum, load_sum = 0;
3315 s64 delta_sum;
3316
3317 if (!runnable_sum)
3318 return;
3319
3320 gcfs_rq->prop_runnable_sum = 0;
3321
3322 if (runnable_sum >= 0) {
3323 /*
3324 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3325 * the CPU is saturated running == runnable.
3326 */
3327 runnable_sum += se->avg.load_sum;
3328 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3329 } else {
3330 /*
3331 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3332 * assuming all tasks are equally runnable.
3333 */
3334 if (scale_load_down(gcfs_rq->load.weight)) {
3335 load_sum = div_s64(gcfs_rq->avg.load_sum,
3336 scale_load_down(gcfs_rq->load.weight));
3337 }
3338
3339 /* But make sure to not inflate se's runnable */
3340 runnable_sum = min(se->avg.load_sum, load_sum);
3341 }
3342
3343 /*
3344 * runnable_sum can't be lower than running_sum
David Brazdil0f672f62019-12-10 10:32:29 +00003345 * Rescale running sum to be in the same range as runnable sum
3346 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3347 * runnable_sum is in [0 : LOAD_AVG_MAX]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003348 */
David Brazdil0f672f62019-12-10 10:32:29 +00003349 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003350 runnable_sum = max(runnable_sum, running_sum);
3351
3352 load_sum = (s64)se_weight(se) * runnable_sum;
3353 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3354
3355 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3356 delta_avg = load_avg - se->avg.load_avg;
3357
3358 se->avg.load_sum = runnable_sum;
3359 se->avg.load_avg = load_avg;
3360 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3361 add_positive(&cfs_rq->avg.load_sum, delta_sum);
3362
3363 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3364 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3365 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3366 delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3367
3368 se->avg.runnable_load_sum = runnable_sum;
3369 se->avg.runnable_load_avg = runnable_load_avg;
3370
3371 if (se->on_rq) {
3372 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3373 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3374 }
3375}
3376
3377static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3378{
3379 cfs_rq->propagate = 1;
3380 cfs_rq->prop_runnable_sum += runnable_sum;
3381}
3382
3383/* Update task and its cfs_rq load average */
3384static inline int propagate_entity_load_avg(struct sched_entity *se)
3385{
3386 struct cfs_rq *cfs_rq, *gcfs_rq;
3387
3388 if (entity_is_task(se))
3389 return 0;
3390
3391 gcfs_rq = group_cfs_rq(se);
3392 if (!gcfs_rq->propagate)
3393 return 0;
3394
3395 gcfs_rq->propagate = 0;
3396
3397 cfs_rq = cfs_rq_of(se);
3398
3399 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3400
3401 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3402 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3403
David Brazdil0f672f62019-12-10 10:32:29 +00003404 trace_pelt_cfs_tp(cfs_rq);
3405 trace_pelt_se_tp(se);
3406
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003407 return 1;
3408}
3409
3410/*
3411 * Check if we need to update the load and the utilization of a blocked
3412 * group_entity:
3413 */
3414static inline bool skip_blocked_update(struct sched_entity *se)
3415{
3416 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3417
3418 /*
3419 * If sched_entity still have not zero load or utilization, we have to
3420 * decay it:
3421 */
3422 if (se->avg.load_avg || se->avg.util_avg)
3423 return false;
3424
3425 /*
3426 * If there is a pending propagation, we have to update the load and
3427 * the utilization of the sched_entity:
3428 */
3429 if (gcfs_rq->propagate)
3430 return false;
3431
3432 /*
3433 * Otherwise, the load and the utilization of the sched_entity is
3434 * already zero and there is no pending propagation, so it will be a
3435 * waste of time to try to decay it:
3436 */
3437 return true;
3438}
3439
3440#else /* CONFIG_FAIR_GROUP_SCHED */
3441
3442static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3443
3444static inline int propagate_entity_load_avg(struct sched_entity *se)
3445{
3446 return 0;
3447}
3448
3449static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3450
3451#endif /* CONFIG_FAIR_GROUP_SCHED */
3452
3453/**
3454 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
David Brazdil0f672f62019-12-10 10:32:29 +00003455 * @now: current time, as per cfs_rq_clock_pelt()
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003456 * @cfs_rq: cfs_rq to update
3457 *
3458 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3459 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3460 * post_init_entity_util_avg().
3461 *
3462 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3463 *
3464 * Returns true if the load decayed or we removed load.
3465 *
3466 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3467 * call update_tg_load_avg() when this function returns true.
3468 */
3469static inline int
3470update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3471{
3472 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3473 struct sched_avg *sa = &cfs_rq->avg;
3474 int decayed = 0;
3475
3476 if (cfs_rq->removed.nr) {
3477 unsigned long r;
3478 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3479
3480 raw_spin_lock(&cfs_rq->removed.lock);
3481 swap(cfs_rq->removed.util_avg, removed_util);
3482 swap(cfs_rq->removed.load_avg, removed_load);
3483 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3484 cfs_rq->removed.nr = 0;
3485 raw_spin_unlock(&cfs_rq->removed.lock);
3486
3487 r = removed_load;
3488 sub_positive(&sa->load_avg, r);
3489 sub_positive(&sa->load_sum, r * divider);
3490
3491 r = removed_util;
3492 sub_positive(&sa->util_avg, r);
3493 sub_positive(&sa->util_sum, r * divider);
3494
3495 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3496
3497 decayed = 1;
3498 }
3499
David Brazdil0f672f62019-12-10 10:32:29 +00003500 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003501
3502#ifndef CONFIG_64BIT
3503 smp_wmb();
3504 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3505#endif
3506
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003507 return decayed;
3508}
3509
3510/**
3511 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3512 * @cfs_rq: cfs_rq to attach to
3513 * @se: sched_entity to attach
3514 * @flags: migration hints
3515 *
3516 * Must call update_cfs_rq_load_avg() before this, since we rely on
3517 * cfs_rq->avg.last_update_time being current.
3518 */
3519static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3520{
3521 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3522
3523 /*
3524 * When we attach the @se to the @cfs_rq, we must align the decay
3525 * window because without that, really weird and wonderful things can
3526 * happen.
3527 *
3528 * XXX illustrate
3529 */
3530 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3531 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3532
3533 /*
3534 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3535 * period_contrib. This isn't strictly correct, but since we're
3536 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3537 * _sum a little.
3538 */
3539 se->avg.util_sum = se->avg.util_avg * divider;
3540
3541 se->avg.load_sum = divider;
3542 if (se_weight(se)) {
3543 se->avg.load_sum =
3544 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3545 }
3546
3547 se->avg.runnable_load_sum = se->avg.load_sum;
3548
3549 enqueue_load_avg(cfs_rq, se);
3550 cfs_rq->avg.util_avg += se->avg.util_avg;
3551 cfs_rq->avg.util_sum += se->avg.util_sum;
3552
3553 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3554
3555 cfs_rq_util_change(cfs_rq, flags);
David Brazdil0f672f62019-12-10 10:32:29 +00003556
3557 trace_pelt_cfs_tp(cfs_rq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003558}
3559
3560/**
3561 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3562 * @cfs_rq: cfs_rq to detach from
3563 * @se: sched_entity to detach
3564 *
3565 * Must call update_cfs_rq_load_avg() before this, since we rely on
3566 * cfs_rq->avg.last_update_time being current.
3567 */
3568static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3569{
3570 dequeue_load_avg(cfs_rq, se);
3571 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3572 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3573
3574 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3575
3576 cfs_rq_util_change(cfs_rq, 0);
David Brazdil0f672f62019-12-10 10:32:29 +00003577
3578 trace_pelt_cfs_tp(cfs_rq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003579}
3580
3581/*
3582 * Optional action to be done while updating the load average
3583 */
3584#define UPDATE_TG 0x1
3585#define SKIP_AGE_LOAD 0x2
3586#define DO_ATTACH 0x4
3587
3588/* Update task and its cfs_rq load average */
3589static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3590{
David Brazdil0f672f62019-12-10 10:32:29 +00003591 u64 now = cfs_rq_clock_pelt(cfs_rq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003592 int decayed;
3593
3594 /*
3595 * Track task load average for carrying it to new CPU after migrated, and
3596 * track group sched_entity load average for task_h_load calc in migration
3597 */
3598 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
David Brazdil0f672f62019-12-10 10:32:29 +00003599 __update_load_avg_se(now, cfs_rq, se);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003600
3601 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3602 decayed |= propagate_entity_load_avg(se);
3603
3604 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3605
3606 /*
3607 * DO_ATTACH means we're here from enqueue_entity().
3608 * !last_update_time means we've passed through
3609 * migrate_task_rq_fair() indicating we migrated.
3610 *
3611 * IOW we're enqueueing a task on a new CPU.
3612 */
3613 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3614 update_tg_load_avg(cfs_rq, 0);
3615
Olivier Deprez0e641232021-09-23 10:07:05 +02003616 } else if (decayed) {
3617 cfs_rq_util_change(cfs_rq, 0);
3618
3619 if (flags & UPDATE_TG)
3620 update_tg_load_avg(cfs_rq, 0);
3621 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003622}
3623
3624#ifndef CONFIG_64BIT
3625static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3626{
3627 u64 last_update_time_copy;
3628 u64 last_update_time;
3629
3630 do {
3631 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3632 smp_rmb();
3633 last_update_time = cfs_rq->avg.last_update_time;
3634 } while (last_update_time != last_update_time_copy);
3635
3636 return last_update_time;
3637}
3638#else
3639static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3640{
3641 return cfs_rq->avg.last_update_time;
3642}
3643#endif
3644
3645/*
3646 * Synchronize entity load avg of dequeued entity without locking
3647 * the previous rq.
3648 */
David Brazdil0f672f62019-12-10 10:32:29 +00003649static void sync_entity_load_avg(struct sched_entity *se)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003650{
3651 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3652 u64 last_update_time;
3653
3654 last_update_time = cfs_rq_last_update_time(cfs_rq);
David Brazdil0f672f62019-12-10 10:32:29 +00003655 __update_load_avg_blocked_se(last_update_time, se);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003656}
3657
3658/*
3659 * Task first catches up with cfs_rq, and then subtract
3660 * itself from the cfs_rq (task must be off the queue now).
3661 */
David Brazdil0f672f62019-12-10 10:32:29 +00003662static void remove_entity_load_avg(struct sched_entity *se)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003663{
3664 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3665 unsigned long flags;
3666
3667 /*
3668 * tasks cannot exit without having gone through wake_up_new_task() ->
3669 * post_init_entity_util_avg() which will have added things to the
3670 * cfs_rq, so we can remove unconditionally.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003671 */
3672
3673 sync_entity_load_avg(se);
3674
3675 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3676 ++cfs_rq->removed.nr;
3677 cfs_rq->removed.util_avg += se->avg.util_avg;
3678 cfs_rq->removed.load_avg += se->avg.load_avg;
3679 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
3680 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3681}
3682
3683static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3684{
3685 return cfs_rq->avg.runnable_load_avg;
3686}
3687
3688static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3689{
3690 return cfs_rq->avg.load_avg;
3691}
3692
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003693static inline unsigned long task_util(struct task_struct *p)
3694{
3695 return READ_ONCE(p->se.avg.util_avg);
3696}
3697
3698static inline unsigned long _task_util_est(struct task_struct *p)
3699{
3700 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3701
David Brazdil0f672f62019-12-10 10:32:29 +00003702 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003703}
3704
3705static inline unsigned long task_util_est(struct task_struct *p)
3706{
3707 return max(task_util(p), _task_util_est(p));
3708}
3709
3710static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3711 struct task_struct *p)
3712{
3713 unsigned int enqueued;
3714
3715 if (!sched_feat(UTIL_EST))
3716 return;
3717
3718 /* Update root cfs_rq's estimated utilization */
3719 enqueued = cfs_rq->avg.util_est.enqueued;
David Brazdil0f672f62019-12-10 10:32:29 +00003720 enqueued += _task_util_est(p);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003721 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3722}
3723
3724/*
3725 * Check if a (signed) value is within a specified (unsigned) margin,
3726 * based on the observation that:
3727 *
3728 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3729 *
3730 * NOTE: this only works when value + maring < INT_MAX.
3731 */
3732static inline bool within_margin(int value, int margin)
3733{
3734 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3735}
3736
3737static void
3738util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3739{
3740 long last_ewma_diff;
3741 struct util_est ue;
David Brazdil0f672f62019-12-10 10:32:29 +00003742 int cpu;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003743
3744 if (!sched_feat(UTIL_EST))
3745 return;
3746
3747 /* Update root cfs_rq's estimated utilization */
3748 ue.enqueued = cfs_rq->avg.util_est.enqueued;
David Brazdil0f672f62019-12-10 10:32:29 +00003749 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003750 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3751
3752 /*
3753 * Skip update of task's estimated utilization when the task has not
3754 * yet completed an activation, e.g. being migrated.
3755 */
3756 if (!task_sleep)
3757 return;
3758
3759 /*
3760 * If the PELT values haven't changed since enqueue time,
3761 * skip the util_est update.
3762 */
3763 ue = p->se.avg.util_est;
3764 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3765 return;
3766
3767 /*
3768 * Skip update of task's estimated utilization when its EWMA is
3769 * already ~1% close to its last activation value.
3770 */
3771 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3772 last_ewma_diff = ue.enqueued - ue.ewma;
3773 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3774 return;
3775
3776 /*
David Brazdil0f672f62019-12-10 10:32:29 +00003777 * To avoid overestimation of actual task utilization, skip updates if
3778 * we cannot grant there is idle time in this CPU.
3779 */
3780 cpu = cpu_of(rq_of(cfs_rq));
3781 if (task_util(p) > capacity_orig_of(cpu))
3782 return;
3783
3784 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003785 * Update Task's estimated utilization
3786 *
3787 * When *p completes an activation we can consolidate another sample
3788 * of the task size. This is done by storing the current PELT value
3789 * as ue.enqueued and by using this value to update the Exponential
3790 * Weighted Moving Average (EWMA):
3791 *
3792 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
3793 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
3794 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
3795 * = w * ( last_ewma_diff ) + ewma(t-1)
3796 * = w * (last_ewma_diff + ewma(t-1) / w)
3797 *
3798 * Where 'w' is the weight of new samples, which is configured to be
3799 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3800 */
3801 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3802 ue.ewma += last_ewma_diff;
3803 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3804 WRITE_ONCE(p->se.avg.util_est, ue);
3805}
3806
David Brazdil0f672f62019-12-10 10:32:29 +00003807static inline int task_fits_capacity(struct task_struct *p, long capacity)
3808{
3809 return fits_capacity(task_util_est(p), capacity);
3810}
3811
3812static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3813{
3814 if (!static_branch_unlikely(&sched_asym_cpucapacity))
3815 return;
3816
Olivier Deprez0e641232021-09-23 10:07:05 +02003817 if (!p || p->nr_cpus_allowed == 1) {
David Brazdil0f672f62019-12-10 10:32:29 +00003818 rq->misfit_task_load = 0;
3819 return;
3820 }
3821
3822 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3823 rq->misfit_task_load = 0;
3824 return;
3825 }
3826
Olivier Deprez0e641232021-09-23 10:07:05 +02003827 /*
3828 * Make sure that misfit_task_load will not be null even if
3829 * task_h_load() returns 0.
3830 */
3831 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
David Brazdil0f672f62019-12-10 10:32:29 +00003832}
3833
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003834#else /* CONFIG_SMP */
3835
3836#define UPDATE_TG 0x0
3837#define SKIP_AGE_LOAD 0x0
3838#define DO_ATTACH 0x0
3839
3840static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3841{
3842 cfs_rq_util_change(cfs_rq, 0);
3843}
3844
3845static inline void remove_entity_load_avg(struct sched_entity *se) {}
3846
3847static inline void
3848attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3849static inline void
3850detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3851
3852static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3853{
3854 return 0;
3855}
3856
3857static inline void
3858util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3859
3860static inline void
3861util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3862 bool task_sleep) {}
David Brazdil0f672f62019-12-10 10:32:29 +00003863static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003864
3865#endif /* CONFIG_SMP */
3866
3867static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3868{
3869#ifdef CONFIG_SCHED_DEBUG
3870 s64 d = se->vruntime - cfs_rq->min_vruntime;
3871
3872 if (d < 0)
3873 d = -d;
3874
3875 if (d > 3*sysctl_sched_latency)
3876 schedstat_inc(cfs_rq->nr_spread_over);
3877#endif
3878}
3879
3880static void
3881place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3882{
3883 u64 vruntime = cfs_rq->min_vruntime;
3884
3885 /*
3886 * The 'current' period is already promised to the current tasks,
3887 * however the extra weight of the new task will slow them down a
3888 * little, place the new task so that it fits in the slot that
3889 * stays open at the end.
3890 */
3891 if (initial && sched_feat(START_DEBIT))
3892 vruntime += sched_vslice(cfs_rq, se);
3893
3894 /* sleeps up to a single latency don't count. */
3895 if (!initial) {
3896 unsigned long thresh = sysctl_sched_latency;
3897
3898 /*
3899 * Halve their sleep time's effect, to allow
3900 * for a gentler effect of sleepers:
3901 */
3902 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3903 thresh >>= 1;
3904
3905 vruntime -= thresh;
3906 }
3907
3908 /* ensure we never gain time by being placed backwards. */
3909 se->vruntime = max_vruntime(se->vruntime, vruntime);
3910}
3911
3912static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3913
3914static inline void check_schedstat_required(void)
3915{
3916#ifdef CONFIG_SCHEDSTATS
3917 if (schedstat_enabled())
3918 return;
3919
3920 /* Force schedstat enabled if a dependent tracepoint is active */
3921 if (trace_sched_stat_wait_enabled() ||
3922 trace_sched_stat_sleep_enabled() ||
3923 trace_sched_stat_iowait_enabled() ||
3924 trace_sched_stat_blocked_enabled() ||
3925 trace_sched_stat_runtime_enabled()) {
3926 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3927 "stat_blocked and stat_runtime require the "
3928 "kernel parameter schedstats=enable or "
3929 "kernel.sched_schedstats=1\n");
3930 }
3931#endif
3932}
3933
Olivier Deprez0e641232021-09-23 10:07:05 +02003934static inline bool cfs_bandwidth_used(void);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003935
3936/*
3937 * MIGRATION
3938 *
3939 * dequeue
3940 * update_curr()
3941 * update_min_vruntime()
3942 * vruntime -= min_vruntime
3943 *
3944 * enqueue
3945 * update_curr()
3946 * update_min_vruntime()
3947 * vruntime += min_vruntime
3948 *
3949 * this way the vruntime transition between RQs is done when both
3950 * min_vruntime are up-to-date.
3951 *
3952 * WAKEUP (remote)
3953 *
3954 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3955 * vruntime -= min_vruntime
3956 *
3957 * enqueue
3958 * update_curr()
3959 * update_min_vruntime()
3960 * vruntime += min_vruntime
3961 *
3962 * this way we don't have the most up-to-date min_vruntime on the originating
3963 * CPU and an up-to-date min_vruntime on the destination CPU.
3964 */
3965
3966static void
3967enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3968{
3969 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3970 bool curr = cfs_rq->curr == se;
3971
3972 /*
3973 * If we're the current task, we must renormalise before calling
3974 * update_curr().
3975 */
3976 if (renorm && curr)
3977 se->vruntime += cfs_rq->min_vruntime;
3978
3979 update_curr(cfs_rq);
3980
3981 /*
3982 * Otherwise, renormalise after, such that we're placed at the current
3983 * moment in time, instead of some random moment in the past. Being
3984 * placed in the past could significantly boost this task to the
3985 * fairness detriment of existing tasks.
3986 */
3987 if (renorm && !curr)
3988 se->vruntime += cfs_rq->min_vruntime;
3989
3990 /*
3991 * When enqueuing a sched_entity, we must:
3992 * - Update loads to have both entity and cfs_rq synced with now.
3993 * - Add its load to cfs_rq->runnable_avg
3994 * - For group_entity, update its weight to reflect the new share of
3995 * its group cfs_rq
3996 * - Add its new weight to cfs_rq->load.weight
3997 */
3998 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3999 update_cfs_group(se);
4000 enqueue_runnable_load_avg(cfs_rq, se);
4001 account_entity_enqueue(cfs_rq, se);
4002
4003 if (flags & ENQUEUE_WAKEUP)
4004 place_entity(cfs_rq, se, 0);
4005
4006 check_schedstat_required();
4007 update_stats_enqueue(cfs_rq, se, flags);
4008 check_spread(cfs_rq, se);
4009 if (!curr)
4010 __enqueue_entity(cfs_rq, se);
4011 se->on_rq = 1;
4012
Olivier Deprez0e641232021-09-23 10:07:05 +02004013 /*
4014 * When bandwidth control is enabled, cfs might have been removed
4015 * because of a parent been throttled but cfs->nr_running > 1. Try to
4016 * add it unconditionnally.
4017 */
4018 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004019 list_add_leaf_cfs_rq(cfs_rq);
Olivier Deprez0e641232021-09-23 10:07:05 +02004020
4021 if (cfs_rq->nr_running == 1)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004022 check_enqueue_throttle(cfs_rq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004023}
4024
4025static void __clear_buddies_last(struct sched_entity *se)
4026{
4027 for_each_sched_entity(se) {
4028 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4029 if (cfs_rq->last != se)
4030 break;
4031
4032 cfs_rq->last = NULL;
4033 }
4034}
4035
4036static void __clear_buddies_next(struct sched_entity *se)
4037{
4038 for_each_sched_entity(se) {
4039 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4040 if (cfs_rq->next != se)
4041 break;
4042
4043 cfs_rq->next = NULL;
4044 }
4045}
4046
4047static void __clear_buddies_skip(struct sched_entity *se)
4048{
4049 for_each_sched_entity(se) {
4050 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4051 if (cfs_rq->skip != se)
4052 break;
4053
4054 cfs_rq->skip = NULL;
4055 }
4056}
4057
4058static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4059{
4060 if (cfs_rq->last == se)
4061 __clear_buddies_last(se);
4062
4063 if (cfs_rq->next == se)
4064 __clear_buddies_next(se);
4065
4066 if (cfs_rq->skip == se)
4067 __clear_buddies_skip(se);
4068}
4069
4070static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4071
4072static void
4073dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4074{
4075 /*
4076 * Update run-time statistics of the 'current'.
4077 */
4078 update_curr(cfs_rq);
4079
4080 /*
4081 * When dequeuing a sched_entity, we must:
4082 * - Update loads to have both entity and cfs_rq synced with now.
David Brazdil0f672f62019-12-10 10:32:29 +00004083 * - Subtract its load from the cfs_rq->runnable_avg.
4084 * - Subtract its previous weight from cfs_rq->load.weight.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004085 * - For group entity, update its weight to reflect the new share
4086 * of its group cfs_rq.
4087 */
4088 update_load_avg(cfs_rq, se, UPDATE_TG);
4089 dequeue_runnable_load_avg(cfs_rq, se);
4090
4091 update_stats_dequeue(cfs_rq, se, flags);
4092
4093 clear_buddies(cfs_rq, se);
4094
4095 if (se != cfs_rq->curr)
4096 __dequeue_entity(cfs_rq, se);
4097 se->on_rq = 0;
4098 account_entity_dequeue(cfs_rq, se);
4099
4100 /*
4101 * Normalize after update_curr(); which will also have moved
4102 * min_vruntime if @se is the one holding it back. But before doing
4103 * update_min_vruntime() again, which will discount @se's position and
4104 * can move min_vruntime forward still more.
4105 */
4106 if (!(flags & DEQUEUE_SLEEP))
4107 se->vruntime -= cfs_rq->min_vruntime;
4108
4109 /* return excess runtime on last dequeue */
4110 return_cfs_rq_runtime(cfs_rq);
4111
4112 update_cfs_group(se);
4113
4114 /*
4115 * Now advance min_vruntime if @se was the entity holding it back,
4116 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4117 * put back on, and if we advance min_vruntime, we'll be placed back
4118 * further than we started -- ie. we'll be penalized.
4119 */
4120 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4121 update_min_vruntime(cfs_rq);
4122}
4123
4124/*
4125 * Preempt the current task with a newly woken task if needed:
4126 */
4127static void
4128check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4129{
4130 unsigned long ideal_runtime, delta_exec;
4131 struct sched_entity *se;
4132 s64 delta;
4133
4134 ideal_runtime = sched_slice(cfs_rq, curr);
4135 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4136 if (delta_exec > ideal_runtime) {
4137 resched_curr(rq_of(cfs_rq));
4138 /*
4139 * The current task ran long enough, ensure it doesn't get
4140 * re-elected due to buddy favours.
4141 */
4142 clear_buddies(cfs_rq, curr);
4143 return;
4144 }
4145
4146 /*
4147 * Ensure that a task that missed wakeup preemption by a
4148 * narrow margin doesn't have to wait for a full slice.
4149 * This also mitigates buddy induced latencies under load.
4150 */
4151 if (delta_exec < sysctl_sched_min_granularity)
4152 return;
4153
4154 se = __pick_first_entity(cfs_rq);
4155 delta = curr->vruntime - se->vruntime;
4156
4157 if (delta < 0)
4158 return;
4159
4160 if (delta > ideal_runtime)
4161 resched_curr(rq_of(cfs_rq));
4162}
4163
4164static void
4165set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4166{
4167 /* 'current' is not kept within the tree. */
4168 if (se->on_rq) {
4169 /*
4170 * Any task has to be enqueued before it get to execute on
4171 * a CPU. So account for the time it spent waiting on the
4172 * runqueue.
4173 */
4174 update_stats_wait_end(cfs_rq, se);
4175 __dequeue_entity(cfs_rq, se);
4176 update_load_avg(cfs_rq, se, UPDATE_TG);
4177 }
4178
4179 update_stats_curr_start(cfs_rq, se);
4180 cfs_rq->curr = se;
4181
4182 /*
4183 * Track our maximum slice length, if the CPU's load is at
4184 * least twice that of our own weight (i.e. dont track it
4185 * when there are only lesser-weight tasks around):
4186 */
David Brazdil0f672f62019-12-10 10:32:29 +00004187 if (schedstat_enabled() &&
4188 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004189 schedstat_set(se->statistics.slice_max,
4190 max((u64)schedstat_val(se->statistics.slice_max),
4191 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4192 }
4193
4194 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4195}
4196
4197static int
4198wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4199
4200/*
4201 * Pick the next process, keeping these things in mind, in this order:
4202 * 1) keep things fair between processes/task groups
4203 * 2) pick the "next" process, since someone really wants that to run
4204 * 3) pick the "last" process, for cache locality
4205 * 4) do not run the "skip" process, if something else is available
4206 */
4207static struct sched_entity *
4208pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4209{
4210 struct sched_entity *left = __pick_first_entity(cfs_rq);
4211 struct sched_entity *se;
4212
4213 /*
4214 * If curr is set we have to see if its left of the leftmost entity
4215 * still in the tree, provided there was anything in the tree at all.
4216 */
4217 if (!left || (curr && entity_before(curr, left)))
4218 left = curr;
4219
4220 se = left; /* ideally we run the leftmost entity */
4221
4222 /*
4223 * Avoid running the skip buddy, if running something else can
4224 * be done without getting too unfair.
4225 */
4226 if (cfs_rq->skip == se) {
4227 struct sched_entity *second;
4228
4229 if (se == curr) {
4230 second = __pick_first_entity(cfs_rq);
4231 } else {
4232 second = __pick_next_entity(se);
4233 if (!second || (curr && entity_before(curr, second)))
4234 second = curr;
4235 }
4236
4237 if (second && wakeup_preempt_entity(second, left) < 1)
4238 se = second;
4239 }
4240
4241 /*
4242 * Prefer last buddy, try to return the CPU to a preempted task.
4243 */
4244 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4245 se = cfs_rq->last;
4246
4247 /*
4248 * Someone really wants this to run. If it's not unfair, run it.
4249 */
4250 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4251 se = cfs_rq->next;
4252
4253 clear_buddies(cfs_rq, se);
4254
4255 return se;
4256}
4257
4258static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4259
4260static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4261{
4262 /*
4263 * If still on the runqueue then deactivate_task()
4264 * was not called and update_curr() has to be done:
4265 */
4266 if (prev->on_rq)
4267 update_curr(cfs_rq);
4268
4269 /* throttle cfs_rqs exceeding runtime */
4270 check_cfs_rq_runtime(cfs_rq);
4271
4272 check_spread(cfs_rq, prev);
4273
4274 if (prev->on_rq) {
4275 update_stats_wait_start(cfs_rq, prev);
4276 /* Put 'current' back into the tree. */
4277 __enqueue_entity(cfs_rq, prev);
4278 /* in !on_rq case, update occurred at dequeue */
4279 update_load_avg(cfs_rq, prev, 0);
4280 }
4281 cfs_rq->curr = NULL;
4282}
4283
4284static void
4285entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4286{
4287 /*
4288 * Update run-time statistics of the 'current'.
4289 */
4290 update_curr(cfs_rq);
4291
4292 /*
4293 * Ensure that runnable average is periodically updated.
4294 */
4295 update_load_avg(cfs_rq, curr, UPDATE_TG);
4296 update_cfs_group(curr);
4297
4298#ifdef CONFIG_SCHED_HRTICK
4299 /*
4300 * queued ticks are scheduled to match the slice, so don't bother
4301 * validating it and just reschedule.
4302 */
4303 if (queued) {
4304 resched_curr(rq_of(cfs_rq));
4305 return;
4306 }
4307 /*
4308 * don't let the period tick interfere with the hrtick preemption
4309 */
4310 if (!sched_feat(DOUBLE_TICK) &&
4311 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4312 return;
4313#endif
4314
4315 if (cfs_rq->nr_running > 1)
4316 check_preempt_tick(cfs_rq, curr);
4317}
4318
4319
4320/**************************************************
4321 * CFS bandwidth control machinery
4322 */
4323
4324#ifdef CONFIG_CFS_BANDWIDTH
4325
David Brazdil0f672f62019-12-10 10:32:29 +00004326#ifdef CONFIG_JUMP_LABEL
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004327static struct static_key __cfs_bandwidth_used;
4328
4329static inline bool cfs_bandwidth_used(void)
4330{
4331 return static_key_false(&__cfs_bandwidth_used);
4332}
4333
4334void cfs_bandwidth_usage_inc(void)
4335{
4336 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4337}
4338
4339void cfs_bandwidth_usage_dec(void)
4340{
4341 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4342}
David Brazdil0f672f62019-12-10 10:32:29 +00004343#else /* CONFIG_JUMP_LABEL */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004344static bool cfs_bandwidth_used(void)
4345{
4346 return true;
4347}
4348
4349void cfs_bandwidth_usage_inc(void) {}
4350void cfs_bandwidth_usage_dec(void) {}
David Brazdil0f672f62019-12-10 10:32:29 +00004351#endif /* CONFIG_JUMP_LABEL */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004352
4353/*
4354 * default period for cfs group bandwidth.
4355 * default: 0.1s, units: nanoseconds
4356 */
4357static inline u64 default_cfs_period(void)
4358{
4359 return 100000000ULL;
4360}
4361
4362static inline u64 sched_cfs_bandwidth_slice(void)
4363{
4364 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4365}
4366
4367/*
David Brazdil0f672f62019-12-10 10:32:29 +00004368 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4369 * directly instead of rq->clock to avoid adding additional synchronization
4370 * around rq->lock.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004371 *
4372 * requires cfs_b->lock
4373 */
4374void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4375{
David Brazdil0f672f62019-12-10 10:32:29 +00004376 if (cfs_b->quota != RUNTIME_INF)
4377 cfs_b->runtime = cfs_b->quota;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004378}
4379
4380static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4381{
4382 return &tg->cfs_bandwidth;
4383}
4384
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004385/* returns 0 on failure to allocate runtime */
Olivier Deprez0e641232021-09-23 10:07:05 +02004386static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4387 struct cfs_rq *cfs_rq, u64 target_runtime)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004388{
Olivier Deprez0e641232021-09-23 10:07:05 +02004389 u64 min_amount, amount = 0;
4390
4391 lockdep_assert_held(&cfs_b->lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004392
4393 /* note: this is a positive sum as runtime_remaining <= 0 */
Olivier Deprez0e641232021-09-23 10:07:05 +02004394 min_amount = target_runtime - cfs_rq->runtime_remaining;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004395
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004396 if (cfs_b->quota == RUNTIME_INF)
4397 amount = min_amount;
4398 else {
4399 start_cfs_bandwidth(cfs_b);
4400
4401 if (cfs_b->runtime > 0) {
4402 amount = min(cfs_b->runtime, min_amount);
4403 cfs_b->runtime -= amount;
4404 cfs_b->idle = 0;
4405 }
4406 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004407
4408 cfs_rq->runtime_remaining += amount;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004409
4410 return cfs_rq->runtime_remaining > 0;
4411}
4412
Olivier Deprez0e641232021-09-23 10:07:05 +02004413/* returns 0 on failure to allocate runtime */
4414static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4415{
4416 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4417 int ret;
4418
4419 raw_spin_lock(&cfs_b->lock);
4420 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4421 raw_spin_unlock(&cfs_b->lock);
4422
4423 return ret;
4424}
4425
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004426static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4427{
4428 /* dock delta_exec before expiring quota (as it could span periods) */
4429 cfs_rq->runtime_remaining -= delta_exec;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004430
4431 if (likely(cfs_rq->runtime_remaining > 0))
4432 return;
4433
David Brazdil0f672f62019-12-10 10:32:29 +00004434 if (cfs_rq->throttled)
4435 return;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004436 /*
4437 * if we're unable to extend our runtime we resched so that the active
4438 * hierarchy can be throttled
4439 */
4440 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4441 resched_curr(rq_of(cfs_rq));
4442}
4443
4444static __always_inline
4445void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4446{
4447 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4448 return;
4449
4450 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4451}
4452
4453static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4454{
4455 return cfs_bandwidth_used() && cfs_rq->throttled;
4456}
4457
4458/* check whether cfs_rq, or any parent, is throttled */
4459static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4460{
4461 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4462}
4463
4464/*
4465 * Ensure that neither of the group entities corresponding to src_cpu or
4466 * dest_cpu are members of a throttled hierarchy when performing group
4467 * load-balance operations.
4468 */
4469static inline int throttled_lb_pair(struct task_group *tg,
4470 int src_cpu, int dest_cpu)
4471{
4472 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4473
4474 src_cfs_rq = tg->cfs_rq[src_cpu];
4475 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4476
4477 return throttled_hierarchy(src_cfs_rq) ||
4478 throttled_hierarchy(dest_cfs_rq);
4479}
4480
4481static int tg_unthrottle_up(struct task_group *tg, void *data)
4482{
4483 struct rq *rq = data;
4484 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4485
4486 cfs_rq->throttle_count--;
4487 if (!cfs_rq->throttle_count) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004488 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4489 cfs_rq->throttled_clock_task;
David Brazdil0f672f62019-12-10 10:32:29 +00004490
4491 /* Add cfs_rq with already running entity in the list */
4492 if (cfs_rq->nr_running >= 1)
4493 list_add_leaf_cfs_rq(cfs_rq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004494 }
4495
4496 return 0;
4497}
4498
4499static int tg_throttle_down(struct task_group *tg, void *data)
4500{
4501 struct rq *rq = data;
4502 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4503
4504 /* group is entering throttled state, stop time */
David Brazdil0f672f62019-12-10 10:32:29 +00004505 if (!cfs_rq->throttle_count) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004506 cfs_rq->throttled_clock_task = rq_clock_task(rq);
David Brazdil0f672f62019-12-10 10:32:29 +00004507 list_del_leaf_cfs_rq(cfs_rq);
4508 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004509 cfs_rq->throttle_count++;
4510
4511 return 0;
4512}
4513
Olivier Deprez0e641232021-09-23 10:07:05 +02004514static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004515{
4516 struct rq *rq = rq_of(cfs_rq);
4517 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4518 struct sched_entity *se;
David Brazdil0f672f62019-12-10 10:32:29 +00004519 long task_delta, idle_task_delta, dequeue = 1;
Olivier Deprez0e641232021-09-23 10:07:05 +02004520
4521 raw_spin_lock(&cfs_b->lock);
4522 /* This will start the period timer if necessary */
4523 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4524 /*
4525 * We have raced with bandwidth becoming available, and if we
4526 * actually throttled the timer might not unthrottle us for an
4527 * entire period. We additionally needed to make sure that any
4528 * subsequent check_cfs_rq_runtime calls agree not to throttle
4529 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4530 * for 1ns of runtime rather than just check cfs_b.
4531 */
4532 dequeue = 0;
4533 } else {
4534 list_add_tail_rcu(&cfs_rq->throttled_list,
4535 &cfs_b->throttled_cfs_rq);
4536 }
4537 raw_spin_unlock(&cfs_b->lock);
4538
4539 if (!dequeue)
4540 return false; /* Throttle no longer required. */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004541
4542 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4543
4544 /* freeze hierarchy runnable averages while throttled */
4545 rcu_read_lock();
4546 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4547 rcu_read_unlock();
4548
4549 task_delta = cfs_rq->h_nr_running;
David Brazdil0f672f62019-12-10 10:32:29 +00004550 idle_task_delta = cfs_rq->idle_h_nr_running;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004551 for_each_sched_entity(se) {
4552 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4553 /* throttled entity or throttle-on-deactivate */
4554 if (!se->on_rq)
4555 break;
4556
4557 if (dequeue)
4558 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4559 qcfs_rq->h_nr_running -= task_delta;
David Brazdil0f672f62019-12-10 10:32:29 +00004560 qcfs_rq->idle_h_nr_running -= idle_task_delta;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004561
4562 if (qcfs_rq->load.weight)
4563 dequeue = 0;
4564 }
4565
4566 if (!se)
4567 sub_nr_running(rq, task_delta);
4568
Olivier Deprez0e641232021-09-23 10:07:05 +02004569 /*
4570 * Note: distribution will already see us throttled via the
4571 * throttled-list. rq->lock protects completion.
4572 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004573 cfs_rq->throttled = 1;
4574 cfs_rq->throttled_clock = rq_clock(rq);
Olivier Deprez0e641232021-09-23 10:07:05 +02004575 return true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004576}
4577
4578void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4579{
4580 struct rq *rq = rq_of(cfs_rq);
4581 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4582 struct sched_entity *se;
David Brazdil0f672f62019-12-10 10:32:29 +00004583 long task_delta, idle_task_delta;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004584
4585 se = cfs_rq->tg->se[cpu_of(rq)];
4586
4587 cfs_rq->throttled = 0;
4588
4589 update_rq_clock(rq);
4590
4591 raw_spin_lock(&cfs_b->lock);
4592 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4593 list_del_rcu(&cfs_rq->throttled_list);
4594 raw_spin_unlock(&cfs_b->lock);
4595
4596 /* update hierarchical throttle state */
4597 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4598
4599 if (!cfs_rq->load.weight)
4600 return;
4601
4602 task_delta = cfs_rq->h_nr_running;
David Brazdil0f672f62019-12-10 10:32:29 +00004603 idle_task_delta = cfs_rq->idle_h_nr_running;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004604 for_each_sched_entity(se) {
4605 if (se->on_rq)
Olivier Deprez0e641232021-09-23 10:07:05 +02004606 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004607 cfs_rq = cfs_rq_of(se);
Olivier Deprez0e641232021-09-23 10:07:05 +02004608 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4609
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004610 cfs_rq->h_nr_running += task_delta;
David Brazdil0f672f62019-12-10 10:32:29 +00004611 cfs_rq->idle_h_nr_running += idle_task_delta;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004612
Olivier Deprez0e641232021-09-23 10:07:05 +02004613 /* end evaluation on encountering a throttled cfs_rq */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004614 if (cfs_rq_throttled(cfs_rq))
Olivier Deprez0e641232021-09-23 10:07:05 +02004615 goto unthrottle_throttle;
4616 }
4617
4618 for_each_sched_entity(se) {
4619 cfs_rq = cfs_rq_of(se);
4620
4621 cfs_rq->h_nr_running += task_delta;
4622 cfs_rq->idle_h_nr_running += idle_task_delta;
4623
4624
4625 /* end evaluation on encountering a throttled cfs_rq */
4626 if (cfs_rq_throttled(cfs_rq))
4627 goto unthrottle_throttle;
4628
4629 /*
4630 * One parent has been throttled and cfs_rq removed from the
4631 * list. Add it back to not break the leaf list.
4632 */
4633 if (throttled_hierarchy(cfs_rq))
4634 list_add_leaf_cfs_rq(cfs_rq);
4635 }
4636
4637 /* At this point se is NULL and we are at root level*/
4638 add_nr_running(rq, task_delta);
4639
4640unthrottle_throttle:
4641 /*
4642 * The cfs_rq_throttled() breaks in the above iteration can result in
4643 * incomplete leaf list maintenance, resulting in triggering the
4644 * assertion below.
4645 */
4646 for_each_sched_entity(se) {
4647 cfs_rq = cfs_rq_of(se);
4648
4649 if (list_add_leaf_cfs_rq(cfs_rq))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004650 break;
4651 }
4652
David Brazdil0f672f62019-12-10 10:32:29 +00004653 assert_list_leaf_cfs_rq(rq);
4654
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004655 /* Determine whether we need to wake up potentially idle CPU: */
4656 if (rq->curr == rq->idle && rq->cfs.nr_running)
4657 resched_curr(rq);
4658}
4659
David Brazdil0f672f62019-12-10 10:32:29 +00004660static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004661{
4662 struct cfs_rq *cfs_rq;
4663 u64 runtime;
4664 u64 starting_runtime = remaining;
4665
4666 rcu_read_lock();
4667 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4668 throttled_list) {
4669 struct rq *rq = rq_of(cfs_rq);
4670 struct rq_flags rf;
4671
David Brazdil0f672f62019-12-10 10:32:29 +00004672 rq_lock_irqsave(rq, &rf);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004673 if (!cfs_rq_throttled(cfs_rq))
4674 goto next;
4675
David Brazdil0f672f62019-12-10 10:32:29 +00004676 /* By the above check, this should never be true */
4677 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4678
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004679 runtime = -cfs_rq->runtime_remaining + 1;
4680 if (runtime > remaining)
4681 runtime = remaining;
4682 remaining -= runtime;
4683
4684 cfs_rq->runtime_remaining += runtime;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004685
4686 /* we check whether we're throttled above */
4687 if (cfs_rq->runtime_remaining > 0)
4688 unthrottle_cfs_rq(cfs_rq);
4689
4690next:
David Brazdil0f672f62019-12-10 10:32:29 +00004691 rq_unlock_irqrestore(rq, &rf);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004692
4693 if (!remaining)
4694 break;
4695 }
4696 rcu_read_unlock();
4697
4698 return starting_runtime - remaining;
4699}
4700
4701/*
4702 * Responsible for refilling a task_group's bandwidth and unthrottling its
4703 * cfs_rqs as appropriate. If there has been no activity within the last
4704 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4705 * used to track this state.
4706 */
David Brazdil0f672f62019-12-10 10:32:29 +00004707static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004708{
David Brazdil0f672f62019-12-10 10:32:29 +00004709 u64 runtime;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004710 int throttled;
4711
4712 /* no need to continue the timer with no bandwidth constraint */
4713 if (cfs_b->quota == RUNTIME_INF)
4714 goto out_deactivate;
4715
4716 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4717 cfs_b->nr_periods += overrun;
4718
4719 /*
4720 * idle depends on !throttled (for the case of a large deficit), and if
4721 * we're going inactive then everything else can be deferred
4722 */
4723 if (cfs_b->idle && !throttled)
4724 goto out_deactivate;
4725
4726 __refill_cfs_bandwidth_runtime(cfs_b);
4727
4728 if (!throttled) {
4729 /* mark as potentially idle for the upcoming period */
4730 cfs_b->idle = 1;
4731 return 0;
4732 }
4733
4734 /* account preceding periods in which throttling occurred */
4735 cfs_b->nr_throttled += overrun;
4736
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004737 /*
4738 * This check is repeated as we are holding onto the new bandwidth while
4739 * we unthrottle. This can potentially race with an unthrottled group
4740 * trying to acquire new bandwidth from the global pool. This can result
4741 * in us over-using our runtime if it is all used during this loop, but
4742 * only by limited amounts in that extreme case.
4743 */
4744 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4745 runtime = cfs_b->runtime;
4746 cfs_b->distribute_running = 1;
David Brazdil0f672f62019-12-10 10:32:29 +00004747 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004748 /* we can't nest cfs_b->lock while distributing bandwidth */
David Brazdil0f672f62019-12-10 10:32:29 +00004749 runtime = distribute_cfs_runtime(cfs_b, runtime);
4750 raw_spin_lock_irqsave(&cfs_b->lock, flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004751
4752 cfs_b->distribute_running = 0;
4753 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4754
David Brazdil0f672f62019-12-10 10:32:29 +00004755 lsub_positive(&cfs_b->runtime, runtime);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004756 }
4757
4758 /*
4759 * While we are ensured activity in the period following an
4760 * unthrottle, this also covers the case in which the new bandwidth is
4761 * insufficient to cover the existing bandwidth deficit. (Forcing the
4762 * timer to remain active while there are any throttled entities.)
4763 */
4764 cfs_b->idle = 0;
4765
4766 return 0;
4767
4768out_deactivate:
4769 return 1;
4770}
4771
4772/* a cfs_rq won't donate quota below this amount */
4773static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4774/* minimum remaining period time to redistribute slack quota */
4775static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4776/* how long we wait to gather additional slack before distributing */
4777static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4778
4779/*
4780 * Are we near the end of the current quota period?
4781 *
4782 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4783 * hrtimer base being cleared by hrtimer_start. In the case of
4784 * migrate_hrtimers, base is never cleared, so we are fine.
4785 */
4786static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4787{
4788 struct hrtimer *refresh_timer = &cfs_b->period_timer;
Olivier Deprez0e641232021-09-23 10:07:05 +02004789 s64 remaining;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004790
4791 /* if the call-back is running a quota refresh is already occurring */
4792 if (hrtimer_callback_running(refresh_timer))
4793 return 1;
4794
4795 /* is a quota refresh about to occur? */
4796 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
Olivier Deprez0e641232021-09-23 10:07:05 +02004797 if (remaining < (s64)min_expire)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004798 return 1;
4799
4800 return 0;
4801}
4802
4803static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4804{
4805 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4806
4807 /* if there's a quota refresh soon don't bother with slack */
4808 if (runtime_refresh_within(cfs_b, min_left))
4809 return;
4810
David Brazdil0f672f62019-12-10 10:32:29 +00004811 /* don't push forwards an existing deferred unthrottle */
4812 if (cfs_b->slack_started)
4813 return;
4814 cfs_b->slack_started = true;
4815
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004816 hrtimer_start(&cfs_b->slack_timer,
4817 ns_to_ktime(cfs_bandwidth_slack_period),
4818 HRTIMER_MODE_REL);
4819}
4820
4821/* we know any runtime found here is valid as update_curr() precedes return */
4822static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4823{
4824 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4825 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4826
4827 if (slack_runtime <= 0)
4828 return;
4829
4830 raw_spin_lock(&cfs_b->lock);
David Brazdil0f672f62019-12-10 10:32:29 +00004831 if (cfs_b->quota != RUNTIME_INF) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004832 cfs_b->runtime += slack_runtime;
4833
4834 /* we are under rq->lock, defer unthrottling using a timer */
4835 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4836 !list_empty(&cfs_b->throttled_cfs_rq))
4837 start_cfs_slack_bandwidth(cfs_b);
4838 }
4839 raw_spin_unlock(&cfs_b->lock);
4840
4841 /* even if it's not valid for return we don't want to try again */
4842 cfs_rq->runtime_remaining -= slack_runtime;
4843}
4844
4845static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4846{
4847 if (!cfs_bandwidth_used())
4848 return;
4849
4850 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4851 return;
4852
4853 __return_cfs_rq_runtime(cfs_rq);
4854}
4855
4856/*
4857 * This is done with a timer (instead of inline with bandwidth return) since
4858 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4859 */
4860static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4861{
4862 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
David Brazdil0f672f62019-12-10 10:32:29 +00004863 unsigned long flags;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004864
4865 /* confirm we're still not at a refresh boundary */
David Brazdil0f672f62019-12-10 10:32:29 +00004866 raw_spin_lock_irqsave(&cfs_b->lock, flags);
4867 cfs_b->slack_started = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004868 if (cfs_b->distribute_running) {
David Brazdil0f672f62019-12-10 10:32:29 +00004869 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004870 return;
4871 }
4872
4873 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
David Brazdil0f672f62019-12-10 10:32:29 +00004874 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004875 return;
4876 }
4877
4878 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4879 runtime = cfs_b->runtime;
4880
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004881 if (runtime)
4882 cfs_b->distribute_running = 1;
4883
David Brazdil0f672f62019-12-10 10:32:29 +00004884 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004885
4886 if (!runtime)
4887 return;
4888
David Brazdil0f672f62019-12-10 10:32:29 +00004889 runtime = distribute_cfs_runtime(cfs_b, runtime);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004890
David Brazdil0f672f62019-12-10 10:32:29 +00004891 raw_spin_lock_irqsave(&cfs_b->lock, flags);
4892 lsub_positive(&cfs_b->runtime, runtime);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004893 cfs_b->distribute_running = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00004894 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004895}
4896
4897/*
4898 * When a group wakes up we want to make sure that its quota is not already
4899 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4900 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4901 */
4902static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4903{
4904 if (!cfs_bandwidth_used())
4905 return;
4906
4907 /* an active group must be handled by the update_curr()->put() path */
4908 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4909 return;
4910
4911 /* ensure the group is not already throttled */
4912 if (cfs_rq_throttled(cfs_rq))
4913 return;
4914
4915 /* update runtime allocation */
4916 account_cfs_rq_runtime(cfs_rq, 0);
4917 if (cfs_rq->runtime_remaining <= 0)
4918 throttle_cfs_rq(cfs_rq);
4919}
4920
4921static void sync_throttle(struct task_group *tg, int cpu)
4922{
4923 struct cfs_rq *pcfs_rq, *cfs_rq;
4924
4925 if (!cfs_bandwidth_used())
4926 return;
4927
4928 if (!tg->parent)
4929 return;
4930
4931 cfs_rq = tg->cfs_rq[cpu];
4932 pcfs_rq = tg->parent->cfs_rq[cpu];
4933
4934 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4935 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4936}
4937
4938/* conditionally throttle active cfs_rq's from put_prev_entity() */
4939static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4940{
4941 if (!cfs_bandwidth_used())
4942 return false;
4943
4944 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4945 return false;
4946
4947 /*
4948 * it's possible for a throttled entity to be forced into a running
4949 * state (e.g. set_curr_task), in this case we're finished.
4950 */
4951 if (cfs_rq_throttled(cfs_rq))
4952 return true;
4953
Olivier Deprez0e641232021-09-23 10:07:05 +02004954 return throttle_cfs_rq(cfs_rq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004955}
4956
4957static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4958{
4959 struct cfs_bandwidth *cfs_b =
4960 container_of(timer, struct cfs_bandwidth, slack_timer);
4961
4962 do_sched_cfs_slack_timer(cfs_b);
4963
4964 return HRTIMER_NORESTART;
4965}
4966
David Brazdil0f672f62019-12-10 10:32:29 +00004967extern const u64 max_cfs_quota_period;
4968
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004969static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4970{
4971 struct cfs_bandwidth *cfs_b =
4972 container_of(timer, struct cfs_bandwidth, period_timer);
David Brazdil0f672f62019-12-10 10:32:29 +00004973 unsigned long flags;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004974 int overrun;
4975 int idle = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00004976 int count = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004977
David Brazdil0f672f62019-12-10 10:32:29 +00004978 raw_spin_lock_irqsave(&cfs_b->lock, flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004979 for (;;) {
4980 overrun = hrtimer_forward_now(timer, cfs_b->period);
4981 if (!overrun)
4982 break;
4983
Olivier Deprez0e641232021-09-23 10:07:05 +02004984 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
4985
David Brazdil0f672f62019-12-10 10:32:29 +00004986 if (++count > 3) {
4987 u64 new, old = ktime_to_ns(cfs_b->period);
4988
4989 /*
4990 * Grow period by a factor of 2 to avoid losing precision.
4991 * Precision loss in the quota/period ratio can cause __cfs_schedulable
4992 * to fail.
4993 */
4994 new = old * 2;
4995 if (new < max_cfs_quota_period) {
4996 cfs_b->period = ns_to_ktime(new);
4997 cfs_b->quota *= 2;
4998
4999 pr_warn_ratelimited(
5000 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5001 smp_processor_id(),
5002 div_u64(new, NSEC_PER_USEC),
5003 div_u64(cfs_b->quota, NSEC_PER_USEC));
5004 } else {
5005 pr_warn_ratelimited(
5006 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5007 smp_processor_id(),
5008 div_u64(old, NSEC_PER_USEC),
5009 div_u64(cfs_b->quota, NSEC_PER_USEC));
5010 }
5011
5012 /* reset count so we don't come right back in here */
5013 count = 0;
5014 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005015 }
5016 if (idle)
5017 cfs_b->period_active = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00005018 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005019
5020 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5021}
5022
5023void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5024{
5025 raw_spin_lock_init(&cfs_b->lock);
5026 cfs_b->runtime = 0;
5027 cfs_b->quota = RUNTIME_INF;
5028 cfs_b->period = ns_to_ktime(default_cfs_period());
5029
5030 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5031 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5032 cfs_b->period_timer.function = sched_cfs_period_timer;
5033 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5034 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5035 cfs_b->distribute_running = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00005036 cfs_b->slack_started = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005037}
5038
5039static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5040{
5041 cfs_rq->runtime_enabled = 0;
5042 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5043}
5044
5045void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5046{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005047 lockdep_assert_held(&cfs_b->lock);
5048
5049 if (cfs_b->period_active)
5050 return;
5051
5052 cfs_b->period_active = 1;
David Brazdil0f672f62019-12-10 10:32:29 +00005053 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005054 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5055}
5056
5057static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5058{
5059 /* init_cfs_bandwidth() was not called */
5060 if (!cfs_b->throttled_cfs_rq.next)
5061 return;
5062
5063 hrtimer_cancel(&cfs_b->period_timer);
5064 hrtimer_cancel(&cfs_b->slack_timer);
5065}
5066
5067/*
5068 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5069 *
5070 * The race is harmless, since modifying bandwidth settings of unhooked group
5071 * bits doesn't do much.
5072 */
5073
5074/* cpu online calback */
5075static void __maybe_unused update_runtime_enabled(struct rq *rq)
5076{
5077 struct task_group *tg;
5078
5079 lockdep_assert_held(&rq->lock);
5080
5081 rcu_read_lock();
5082 list_for_each_entry_rcu(tg, &task_groups, list) {
5083 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5084 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5085
5086 raw_spin_lock(&cfs_b->lock);
5087 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5088 raw_spin_unlock(&cfs_b->lock);
5089 }
5090 rcu_read_unlock();
5091}
5092
5093/* cpu offline callback */
5094static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5095{
5096 struct task_group *tg;
5097
5098 lockdep_assert_held(&rq->lock);
5099
5100 rcu_read_lock();
5101 list_for_each_entry_rcu(tg, &task_groups, list) {
5102 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5103
5104 if (!cfs_rq->runtime_enabled)
5105 continue;
5106
5107 /*
5108 * clock_task is not advancing so we just need to make sure
5109 * there's some valid quota amount
5110 */
5111 cfs_rq->runtime_remaining = 1;
5112 /*
5113 * Offline rq is schedulable till CPU is completely disabled
5114 * in take_cpu_down(), so we prevent new cfs throttling here.
5115 */
5116 cfs_rq->runtime_enabled = 0;
5117
5118 if (cfs_rq_throttled(cfs_rq))
5119 unthrottle_cfs_rq(cfs_rq);
5120 }
5121 rcu_read_unlock();
5122}
5123
5124#else /* CONFIG_CFS_BANDWIDTH */
David Brazdil0f672f62019-12-10 10:32:29 +00005125
5126static inline bool cfs_bandwidth_used(void)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005127{
David Brazdil0f672f62019-12-10 10:32:29 +00005128 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005129}
5130
5131static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5132static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5133static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5134static inline void sync_throttle(struct task_group *tg, int cpu) {}
5135static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5136
5137static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5138{
5139 return 0;
5140}
5141
5142static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5143{
5144 return 0;
5145}
5146
5147static inline int throttled_lb_pair(struct task_group *tg,
5148 int src_cpu, int dest_cpu)
5149{
5150 return 0;
5151}
5152
5153void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5154
5155#ifdef CONFIG_FAIR_GROUP_SCHED
5156static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5157#endif
5158
5159static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5160{
5161 return NULL;
5162}
5163static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5164static inline void update_runtime_enabled(struct rq *rq) {}
5165static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5166
5167#endif /* CONFIG_CFS_BANDWIDTH */
5168
5169/**************************************************
5170 * CFS operations on tasks:
5171 */
5172
5173#ifdef CONFIG_SCHED_HRTICK
5174static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5175{
5176 struct sched_entity *se = &p->se;
5177 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5178
5179 SCHED_WARN_ON(task_rq(p) != rq);
5180
5181 if (rq->cfs.h_nr_running > 1) {
5182 u64 slice = sched_slice(cfs_rq, se);
5183 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5184 s64 delta = slice - ran;
5185
5186 if (delta < 0) {
5187 if (rq->curr == p)
5188 resched_curr(rq);
5189 return;
5190 }
5191 hrtick_start(rq, delta);
5192 }
5193}
5194
5195/*
5196 * called from enqueue/dequeue and updates the hrtick when the
5197 * current task is from our class and nr_running is low enough
5198 * to matter.
5199 */
5200static void hrtick_update(struct rq *rq)
5201{
5202 struct task_struct *curr = rq->curr;
5203
5204 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5205 return;
5206
5207 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5208 hrtick_start_fair(rq, curr);
5209}
5210#else /* !CONFIG_SCHED_HRTICK */
5211static inline void
5212hrtick_start_fair(struct rq *rq, struct task_struct *p)
5213{
5214}
5215
5216static inline void hrtick_update(struct rq *rq)
5217{
5218}
5219#endif
5220
David Brazdil0f672f62019-12-10 10:32:29 +00005221#ifdef CONFIG_SMP
5222static inline unsigned long cpu_util(int cpu);
5223
5224static inline bool cpu_overutilized(int cpu)
5225{
5226 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5227}
5228
5229static inline void update_overutilized_status(struct rq *rq)
5230{
5231 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5232 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5233 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5234 }
5235}
5236#else
5237static inline void update_overutilized_status(struct rq *rq) { }
5238#endif
5239
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005240/*
5241 * The enqueue_task method is called before nr_running is
5242 * increased. Here we update the fair scheduling stats and
5243 * then put the task into the rbtree:
5244 */
5245static void
5246enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5247{
5248 struct cfs_rq *cfs_rq;
5249 struct sched_entity *se = &p->se;
David Brazdil0f672f62019-12-10 10:32:29 +00005250 int idle_h_nr_running = task_has_idle_policy(p);
Olivier Deprez0e641232021-09-23 10:07:05 +02005251 int task_new = !(flags & ENQUEUE_WAKEUP);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005252
5253 /*
5254 * The code below (indirectly) updates schedutil which looks at
5255 * the cfs_rq utilization to select a frequency.
5256 * Let's add the task's estimated utilization to the cfs_rq's
5257 * estimated utilization, before we update schedutil.
5258 */
5259 util_est_enqueue(&rq->cfs, p);
5260
5261 /*
5262 * If in_iowait is set, the code below may not trigger any cpufreq
5263 * utilization updates, so do it here explicitly with the IOWAIT flag
5264 * passed.
5265 */
5266 if (p->in_iowait)
5267 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5268
5269 for_each_sched_entity(se) {
5270 if (se->on_rq)
5271 break;
5272 cfs_rq = cfs_rq_of(se);
5273 enqueue_entity(cfs_rq, se, flags);
5274
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005275 cfs_rq->h_nr_running++;
David Brazdil0f672f62019-12-10 10:32:29 +00005276 cfs_rq->idle_h_nr_running += idle_h_nr_running;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005277
Olivier Deprez0e641232021-09-23 10:07:05 +02005278 /* end evaluation on encountering a throttled cfs_rq */
5279 if (cfs_rq_throttled(cfs_rq))
5280 goto enqueue_throttle;
5281
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005282 flags = ENQUEUE_WAKEUP;
5283 }
5284
5285 for_each_sched_entity(se) {
5286 cfs_rq = cfs_rq_of(se);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005287
5288 update_load_avg(cfs_rq, se, UPDATE_TG);
5289 update_cfs_group(se);
Olivier Deprez0e641232021-09-23 10:07:05 +02005290
5291 cfs_rq->h_nr_running++;
5292 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5293
5294 /* end evaluation on encountering a throttled cfs_rq */
5295 if (cfs_rq_throttled(cfs_rq))
5296 goto enqueue_throttle;
5297
5298 /*
5299 * One parent has been throttled and cfs_rq removed from the
5300 * list. Add it back to not break the leaf list.
5301 */
5302 if (throttled_hierarchy(cfs_rq))
5303 list_add_leaf_cfs_rq(cfs_rq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005304 }
5305
Olivier Deprez0e641232021-09-23 10:07:05 +02005306enqueue_throttle:
David Brazdil0f672f62019-12-10 10:32:29 +00005307 if (!se) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005308 add_nr_running(rq, 1);
David Brazdil0f672f62019-12-10 10:32:29 +00005309 /*
5310 * Since new tasks are assigned an initial util_avg equal to
5311 * half of the spare capacity of their CPU, tiny tasks have the
5312 * ability to cross the overutilized threshold, which will
5313 * result in the load balancer ruining all the task placement
5314 * done by EAS. As a way to mitigate that effect, do not account
5315 * for the first enqueue operation of new tasks during the
5316 * overutilized flag detection.
5317 *
5318 * A better way of solving this problem would be to wait for
5319 * the PELT signals of tasks to converge before taking them
5320 * into account, but that is not straightforward to implement,
5321 * and the following generally works well enough in practice.
5322 */
Olivier Deprez0e641232021-09-23 10:07:05 +02005323 if (!task_new)
David Brazdil0f672f62019-12-10 10:32:29 +00005324 update_overutilized_status(rq);
5325
5326 }
5327
5328 if (cfs_bandwidth_used()) {
5329 /*
5330 * When bandwidth control is enabled; the cfs_rq_throttled()
5331 * breaks in the above iteration can result in incomplete
5332 * leaf list maintenance, resulting in triggering the assertion
5333 * below.
5334 */
5335 for_each_sched_entity(se) {
5336 cfs_rq = cfs_rq_of(se);
5337
5338 if (list_add_leaf_cfs_rq(cfs_rq))
5339 break;
5340 }
5341 }
5342
5343 assert_list_leaf_cfs_rq(rq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005344
5345 hrtick_update(rq);
5346}
5347
5348static void set_next_buddy(struct sched_entity *se);
5349
5350/*
5351 * The dequeue_task method is called before nr_running is
5352 * decreased. We remove the task from the rbtree and
5353 * update the fair scheduling stats:
5354 */
5355static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5356{
5357 struct cfs_rq *cfs_rq;
5358 struct sched_entity *se = &p->se;
5359 int task_sleep = flags & DEQUEUE_SLEEP;
David Brazdil0f672f62019-12-10 10:32:29 +00005360 int idle_h_nr_running = task_has_idle_policy(p);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005361
5362 for_each_sched_entity(se) {
5363 cfs_rq = cfs_rq_of(se);
5364 dequeue_entity(cfs_rq, se, flags);
5365
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005366 cfs_rq->h_nr_running--;
David Brazdil0f672f62019-12-10 10:32:29 +00005367 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005368
Olivier Deprez0e641232021-09-23 10:07:05 +02005369 /* end evaluation on encountering a throttled cfs_rq */
5370 if (cfs_rq_throttled(cfs_rq))
5371 goto dequeue_throttle;
5372
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005373 /* Don't dequeue parent if it has other entities besides us */
5374 if (cfs_rq->load.weight) {
5375 /* Avoid re-evaluating load for this entity: */
5376 se = parent_entity(se);
5377 /*
5378 * Bias pick_next to pick a task from this cfs_rq, as
5379 * p is sleeping when it is within its sched_slice.
5380 */
5381 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5382 set_next_buddy(se);
5383 break;
5384 }
5385 flags |= DEQUEUE_SLEEP;
5386 }
5387
5388 for_each_sched_entity(se) {
5389 cfs_rq = cfs_rq_of(se);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005390
5391 update_load_avg(cfs_rq, se, UPDATE_TG);
5392 update_cfs_group(se);
Olivier Deprez0e641232021-09-23 10:07:05 +02005393
5394 cfs_rq->h_nr_running--;
5395 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5396
5397 /* end evaluation on encountering a throttled cfs_rq */
5398 if (cfs_rq_throttled(cfs_rq))
5399 goto dequeue_throttle;
5400
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005401 }
5402
Olivier Deprez0e641232021-09-23 10:07:05 +02005403dequeue_throttle:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005404 if (!se)
5405 sub_nr_running(rq, 1);
5406
5407 util_est_dequeue(&rq->cfs, p, task_sleep);
5408 hrtick_update(rq);
5409}
5410
5411#ifdef CONFIG_SMP
5412
5413/* Working cpumask for: load_balance, load_balance_newidle. */
5414DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5415DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5416
5417#ifdef CONFIG_NO_HZ_COMMON
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005418
5419static struct {
5420 cpumask_var_t idle_cpus_mask;
5421 atomic_t nr_cpus;
5422 int has_blocked; /* Idle CPUS has blocked load */
5423 unsigned long next_balance; /* in jiffy units */
5424 unsigned long next_blocked; /* Next update of blocked load in jiffies */
5425} nohz ____cacheline_aligned;
5426
5427#endif /* CONFIG_NO_HZ_COMMON */
5428
David Brazdil0f672f62019-12-10 10:32:29 +00005429/* CPU only has SCHED_IDLE tasks enqueued */
5430static int sched_idle_cpu(int cpu)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005431{
David Brazdil0f672f62019-12-10 10:32:29 +00005432 struct rq *rq = cpu_rq(cpu);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005433
David Brazdil0f672f62019-12-10 10:32:29 +00005434 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5435 rq->nr_running);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005436}
5437
David Brazdil0f672f62019-12-10 10:32:29 +00005438static unsigned long cpu_runnable_load(struct rq *rq)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005439{
5440 return cfs_rq_runnable_load_avg(&rq->cfs);
5441}
5442
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005443static unsigned long capacity_of(int cpu)
5444{
5445 return cpu_rq(cpu)->cpu_capacity;
5446}
5447
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005448static unsigned long cpu_avg_load_per_task(int cpu)
5449{
5450 struct rq *rq = cpu_rq(cpu);
5451 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
David Brazdil0f672f62019-12-10 10:32:29 +00005452 unsigned long load_avg = cpu_runnable_load(rq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005453
5454 if (nr_running)
5455 return load_avg / nr_running;
5456
5457 return 0;
5458}
5459
5460static void record_wakee(struct task_struct *p)
5461{
5462 /*
5463 * Only decay a single time; tasks that have less then 1 wakeup per
5464 * jiffy will not have built up many flips.
5465 */
5466 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5467 current->wakee_flips >>= 1;
5468 current->wakee_flip_decay_ts = jiffies;
5469 }
5470
5471 if (current->last_wakee != p) {
5472 current->last_wakee = p;
5473 current->wakee_flips++;
5474 }
5475}
5476
5477/*
5478 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5479 *
5480 * A waker of many should wake a different task than the one last awakened
5481 * at a frequency roughly N times higher than one of its wakees.
5482 *
5483 * In order to determine whether we should let the load spread vs consolidating
5484 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5485 * partner, and a factor of lls_size higher frequency in the other.
5486 *
5487 * With both conditions met, we can be relatively sure that the relationship is
5488 * non-monogamous, with partner count exceeding socket size.
5489 *
5490 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5491 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5492 * socket size.
5493 */
5494static int wake_wide(struct task_struct *p)
5495{
5496 unsigned int master = current->wakee_flips;
5497 unsigned int slave = p->wakee_flips;
5498 int factor = this_cpu_read(sd_llc_size);
5499
5500 if (master < slave)
5501 swap(master, slave);
5502 if (slave < factor || master < slave * factor)
5503 return 0;
5504 return 1;
5505}
5506
5507/*
5508 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5509 * soonest. For the purpose of speed we only consider the waking and previous
5510 * CPU.
5511 *
5512 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5513 * cache-affine and is (or will be) idle.
5514 *
5515 * wake_affine_weight() - considers the weight to reflect the average
5516 * scheduling latency of the CPUs. This seems to work
5517 * for the overloaded case.
5518 */
5519static int
5520wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5521{
5522 /*
5523 * If this_cpu is idle, it implies the wakeup is from interrupt
5524 * context. Only allow the move if cache is shared. Otherwise an
5525 * interrupt intensive workload could force all tasks onto one
5526 * node depending on the IO topology or IRQ affinity settings.
5527 *
5528 * If the prev_cpu is idle and cache affine then avoid a migration.
5529 * There is no guarantee that the cache hot data from an interrupt
5530 * is more important than cache hot data on the prev_cpu and from
5531 * a cpufreq perspective, it's better to have higher utilisation
5532 * on one CPU.
5533 */
5534 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5535 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5536
5537 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5538 return this_cpu;
5539
5540 return nr_cpumask_bits;
5541}
5542
5543static int
5544wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5545 int this_cpu, int prev_cpu, int sync)
5546{
5547 s64 this_eff_load, prev_eff_load;
5548 unsigned long task_load;
5549
David Brazdil0f672f62019-12-10 10:32:29 +00005550 this_eff_load = cpu_runnable_load(cpu_rq(this_cpu));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005551
5552 if (sync) {
5553 unsigned long current_load = task_h_load(current);
5554
5555 if (current_load > this_eff_load)
5556 return this_cpu;
5557
5558 this_eff_load -= current_load;
5559 }
5560
5561 task_load = task_h_load(p);
5562
5563 this_eff_load += task_load;
5564 if (sched_feat(WA_BIAS))
5565 this_eff_load *= 100;
5566 this_eff_load *= capacity_of(prev_cpu);
5567
David Brazdil0f672f62019-12-10 10:32:29 +00005568 prev_eff_load = cpu_runnable_load(cpu_rq(prev_cpu));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005569 prev_eff_load -= task_load;
5570 if (sched_feat(WA_BIAS))
5571 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5572 prev_eff_load *= capacity_of(this_cpu);
5573
5574 /*
5575 * If sync, adjust the weight of prev_eff_load such that if
5576 * prev_eff == this_eff that select_idle_sibling() will consider
5577 * stacking the wakee on top of the waker if no other CPU is
5578 * idle.
5579 */
5580 if (sync)
5581 prev_eff_load += 1;
5582
5583 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5584}
5585
5586static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5587 int this_cpu, int prev_cpu, int sync)
5588{
5589 int target = nr_cpumask_bits;
5590
5591 if (sched_feat(WA_IDLE))
5592 target = wake_affine_idle(this_cpu, prev_cpu, sync);
5593
5594 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5595 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5596
5597 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5598 if (target == nr_cpumask_bits)
5599 return prev_cpu;
5600
5601 schedstat_inc(sd->ttwu_move_affine);
5602 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5603 return target;
5604}
5605
5606static unsigned long cpu_util_without(int cpu, struct task_struct *p);
5607
5608static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
5609{
5610 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
5611}
5612
5613/*
5614 * find_idlest_group finds and returns the least busy CPU group within the
5615 * domain.
5616 *
5617 * Assumes p is allowed on at least one CPU in sd.
5618 */
5619static struct sched_group *
5620find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5621 int this_cpu, int sd_flag)
5622{
5623 struct sched_group *idlest = NULL, *group = sd->groups;
5624 struct sched_group *most_spare_sg = NULL;
5625 unsigned long min_runnable_load = ULONG_MAX;
5626 unsigned long this_runnable_load = ULONG_MAX;
5627 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5628 unsigned long most_spare = 0, this_spare = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005629 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5630 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5631 (sd->imbalance_pct-100) / 100;
5632
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005633 do {
5634 unsigned long load, avg_load, runnable_load;
5635 unsigned long spare_cap, max_spare_cap;
5636 int local_group;
5637 int i;
5638
5639 /* Skip over this group if it has no CPUs allowed */
5640 if (!cpumask_intersects(sched_group_span(group),
David Brazdil0f672f62019-12-10 10:32:29 +00005641 p->cpus_ptr))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005642 continue;
5643
5644 local_group = cpumask_test_cpu(this_cpu,
5645 sched_group_span(group));
5646
5647 /*
5648 * Tally up the load of all CPUs in the group and find
5649 * the group containing the CPU with most spare capacity.
5650 */
5651 avg_load = 0;
5652 runnable_load = 0;
5653 max_spare_cap = 0;
5654
5655 for_each_cpu(i, sched_group_span(group)) {
David Brazdil0f672f62019-12-10 10:32:29 +00005656 load = cpu_runnable_load(cpu_rq(i));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005657 runnable_load += load;
5658
5659 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5660
5661 spare_cap = capacity_spare_without(i, p);
5662
5663 if (spare_cap > max_spare_cap)
5664 max_spare_cap = spare_cap;
5665 }
5666
5667 /* Adjust by relative CPU capacity of the group */
5668 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5669 group->sgc->capacity;
5670 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5671 group->sgc->capacity;
5672
5673 if (local_group) {
5674 this_runnable_load = runnable_load;
5675 this_avg_load = avg_load;
5676 this_spare = max_spare_cap;
5677 } else {
5678 if (min_runnable_load > (runnable_load + imbalance)) {
5679 /*
5680 * The runnable load is significantly smaller
5681 * so we can pick this new CPU:
5682 */
5683 min_runnable_load = runnable_load;
5684 min_avg_load = avg_load;
5685 idlest = group;
5686 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5687 (100*min_avg_load > imbalance_scale*avg_load)) {
5688 /*
5689 * The runnable loads are close so take the
5690 * blocked load into account through avg_load:
5691 */
5692 min_avg_load = avg_load;
5693 idlest = group;
5694 }
5695
5696 if (most_spare < max_spare_cap) {
5697 most_spare = max_spare_cap;
5698 most_spare_sg = group;
5699 }
5700 }
5701 } while (group = group->next, group != sd->groups);
5702
5703 /*
5704 * The cross-over point between using spare capacity or least load
5705 * is too conservative for high utilization tasks on partially
5706 * utilized systems if we require spare_capacity > task_util(p),
5707 * so we allow for some task stuffing by using
5708 * spare_capacity > task_util(p)/2.
5709 *
5710 * Spare capacity can't be used for fork because the utilization has
5711 * not been set yet, we must first select a rq to compute the initial
5712 * utilization.
5713 */
5714 if (sd_flag & SD_BALANCE_FORK)
5715 goto skip_spare;
5716
5717 if (this_spare > task_util(p) / 2 &&
5718 imbalance_scale*this_spare > 100*most_spare)
5719 return NULL;
5720
5721 if (most_spare > task_util(p) / 2)
5722 return most_spare_sg;
5723
5724skip_spare:
5725 if (!idlest)
5726 return NULL;
5727
5728 /*
5729 * When comparing groups across NUMA domains, it's possible for the
5730 * local domain to be very lightly loaded relative to the remote
5731 * domains but "imbalance" skews the comparison making remote CPUs
5732 * look much more favourable. When considering cross-domain, add
5733 * imbalance to the runnable load on the remote node and consider
5734 * staying local.
5735 */
5736 if ((sd->flags & SD_NUMA) &&
5737 min_runnable_load + imbalance >= this_runnable_load)
5738 return NULL;
5739
5740 if (min_runnable_load > (this_runnable_load + imbalance))
5741 return NULL;
5742
5743 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5744 (100*this_avg_load < imbalance_scale*min_avg_load))
5745 return NULL;
5746
5747 return idlest;
5748}
5749
5750/*
5751 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5752 */
5753static int
5754find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5755{
5756 unsigned long load, min_load = ULONG_MAX;
5757 unsigned int min_exit_latency = UINT_MAX;
5758 u64 latest_idle_timestamp = 0;
5759 int least_loaded_cpu = this_cpu;
David Brazdil0f672f62019-12-10 10:32:29 +00005760 int shallowest_idle_cpu = -1, si_cpu = -1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005761 int i;
5762
5763 /* Check if we have any choice: */
5764 if (group->group_weight == 1)
5765 return cpumask_first(sched_group_span(group));
5766
5767 /* Traverse only the allowed CPUs */
David Brazdil0f672f62019-12-10 10:32:29 +00005768 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005769 if (available_idle_cpu(i)) {
5770 struct rq *rq = cpu_rq(i);
5771 struct cpuidle_state *idle = idle_get_state(rq);
5772 if (idle && idle->exit_latency < min_exit_latency) {
5773 /*
5774 * We give priority to a CPU whose idle state
5775 * has the smallest exit latency irrespective
5776 * of any idle timestamp.
5777 */
5778 min_exit_latency = idle->exit_latency;
5779 latest_idle_timestamp = rq->idle_stamp;
5780 shallowest_idle_cpu = i;
5781 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5782 rq->idle_stamp > latest_idle_timestamp) {
5783 /*
5784 * If equal or no active idle state, then
5785 * the most recently idled CPU might have
5786 * a warmer cache.
5787 */
5788 latest_idle_timestamp = rq->idle_stamp;
5789 shallowest_idle_cpu = i;
5790 }
David Brazdil0f672f62019-12-10 10:32:29 +00005791 } else if (shallowest_idle_cpu == -1 && si_cpu == -1) {
5792 if (sched_idle_cpu(i)) {
5793 si_cpu = i;
5794 continue;
5795 }
5796
5797 load = cpu_runnable_load(cpu_rq(i));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005798 if (load < min_load) {
5799 min_load = load;
5800 least_loaded_cpu = i;
5801 }
5802 }
5803 }
5804
David Brazdil0f672f62019-12-10 10:32:29 +00005805 if (shallowest_idle_cpu != -1)
5806 return shallowest_idle_cpu;
5807 if (si_cpu != -1)
5808 return si_cpu;
5809 return least_loaded_cpu;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005810}
5811
5812static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5813 int cpu, int prev_cpu, int sd_flag)
5814{
5815 int new_cpu = cpu;
5816
David Brazdil0f672f62019-12-10 10:32:29 +00005817 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005818 return prev_cpu;
5819
5820 /*
5821 * We need task's util for capacity_spare_without, sync it up to
5822 * prev_cpu's last_update_time.
5823 */
5824 if (!(sd_flag & SD_BALANCE_FORK))
5825 sync_entity_load_avg(&p->se);
5826
5827 while (sd) {
5828 struct sched_group *group;
5829 struct sched_domain *tmp;
5830 int weight;
5831
5832 if (!(sd->flags & sd_flag)) {
5833 sd = sd->child;
5834 continue;
5835 }
5836
5837 group = find_idlest_group(sd, p, cpu, sd_flag);
5838 if (!group) {
5839 sd = sd->child;
5840 continue;
5841 }
5842
5843 new_cpu = find_idlest_group_cpu(group, p, cpu);
5844 if (new_cpu == cpu) {
5845 /* Now try balancing at a lower domain level of 'cpu': */
5846 sd = sd->child;
5847 continue;
5848 }
5849
5850 /* Now try balancing at a lower domain level of 'new_cpu': */
5851 cpu = new_cpu;
5852 weight = sd->span_weight;
5853 sd = NULL;
5854 for_each_domain(cpu, tmp) {
5855 if (weight <= tmp->span_weight)
5856 break;
5857 if (tmp->flags & sd_flag)
5858 sd = tmp;
5859 }
5860 }
5861
5862 return new_cpu;
5863}
5864
5865#ifdef CONFIG_SCHED_SMT
5866DEFINE_STATIC_KEY_FALSE(sched_smt_present);
David Brazdil0f672f62019-12-10 10:32:29 +00005867EXPORT_SYMBOL_GPL(sched_smt_present);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005868
5869static inline void set_idle_cores(int cpu, int val)
5870{
5871 struct sched_domain_shared *sds;
5872
5873 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5874 if (sds)
5875 WRITE_ONCE(sds->has_idle_cores, val);
5876}
5877
5878static inline bool test_idle_cores(int cpu, bool def)
5879{
5880 struct sched_domain_shared *sds;
5881
5882 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5883 if (sds)
5884 return READ_ONCE(sds->has_idle_cores);
5885
5886 return def;
5887}
5888
5889/*
5890 * Scans the local SMT mask to see if the entire core is idle, and records this
5891 * information in sd_llc_shared->has_idle_cores.
5892 *
5893 * Since SMT siblings share all cache levels, inspecting this limited remote
5894 * state should be fairly cheap.
5895 */
5896void __update_idle_core(struct rq *rq)
5897{
5898 int core = cpu_of(rq);
5899 int cpu;
5900
5901 rcu_read_lock();
5902 if (test_idle_cores(core, true))
5903 goto unlock;
5904
5905 for_each_cpu(cpu, cpu_smt_mask(core)) {
5906 if (cpu == core)
5907 continue;
5908
5909 if (!available_idle_cpu(cpu))
5910 goto unlock;
5911 }
5912
5913 set_idle_cores(core, 1);
5914unlock:
5915 rcu_read_unlock();
5916}
5917
5918/*
5919 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5920 * there are no idle cores left in the system; tracked through
5921 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5922 */
5923static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5924{
5925 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5926 int core, cpu;
5927
5928 if (!static_branch_likely(&sched_smt_present))
5929 return -1;
5930
5931 if (!test_idle_cores(target, false))
5932 return -1;
5933
David Brazdil0f672f62019-12-10 10:32:29 +00005934 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005935
5936 for_each_cpu_wrap(core, cpus, target) {
5937 bool idle = true;
5938
5939 for_each_cpu(cpu, cpu_smt_mask(core)) {
David Brazdil0f672f62019-12-10 10:32:29 +00005940 __cpumask_clear_cpu(cpu, cpus);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005941 if (!available_idle_cpu(cpu))
5942 idle = false;
5943 }
5944
5945 if (idle)
5946 return core;
5947 }
5948
5949 /*
5950 * Failed to find an idle core; stop looking for one.
5951 */
5952 set_idle_cores(target, 0);
5953
5954 return -1;
5955}
5956
5957/*
5958 * Scan the local SMT mask for idle CPUs.
5959 */
Olivier Deprez0e641232021-09-23 10:07:05 +02005960static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005961{
David Brazdil0f672f62019-12-10 10:32:29 +00005962 int cpu, si_cpu = -1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005963
5964 if (!static_branch_likely(&sched_smt_present))
5965 return -1;
5966
5967 for_each_cpu(cpu, cpu_smt_mask(target)) {
Olivier Deprez0e641232021-09-23 10:07:05 +02005968 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
5969 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005970 continue;
5971 if (available_idle_cpu(cpu))
5972 return cpu;
David Brazdil0f672f62019-12-10 10:32:29 +00005973 if (si_cpu == -1 && sched_idle_cpu(cpu))
5974 si_cpu = cpu;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005975 }
5976
David Brazdil0f672f62019-12-10 10:32:29 +00005977 return si_cpu;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005978}
5979
5980#else /* CONFIG_SCHED_SMT */
5981
5982static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5983{
5984 return -1;
5985}
5986
Olivier Deprez0e641232021-09-23 10:07:05 +02005987static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005988{
5989 return -1;
5990}
5991
5992#endif /* CONFIG_SCHED_SMT */
5993
5994/*
5995 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5996 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5997 * average idle time for this rq (as found in rq->avg_idle).
5998 */
5999static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6000{
Olivier Deprez0e641232021-09-23 10:07:05 +02006001 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006002 struct sched_domain *this_sd;
6003 u64 avg_cost, avg_idle;
6004 u64 time, cost;
6005 s64 delta;
David Brazdil0f672f62019-12-10 10:32:29 +00006006 int this = smp_processor_id();
6007 int cpu, nr = INT_MAX, si_cpu = -1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006008
6009 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6010 if (!this_sd)
6011 return -1;
6012
6013 /*
6014 * Due to large variance we need a large fuzz factor; hackbench in
6015 * particularly is sensitive here.
6016 */
6017 avg_idle = this_rq()->avg_idle / 512;
6018 avg_cost = this_sd->avg_scan_cost + 1;
6019
6020 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6021 return -1;
6022
6023 if (sched_feat(SIS_PROP)) {
6024 u64 span_avg = sd->span_weight * avg_idle;
6025 if (span_avg > 4*avg_cost)
6026 nr = div_u64(span_avg, avg_cost);
6027 else
6028 nr = 4;
6029 }
6030
David Brazdil0f672f62019-12-10 10:32:29 +00006031 time = cpu_clock(this);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006032
Olivier Deprez0e641232021-09-23 10:07:05 +02006033 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6034
6035 for_each_cpu_wrap(cpu, cpus, target) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006036 if (!--nr)
David Brazdil0f672f62019-12-10 10:32:29 +00006037 return si_cpu;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006038 if (available_idle_cpu(cpu))
6039 break;
David Brazdil0f672f62019-12-10 10:32:29 +00006040 if (si_cpu == -1 && sched_idle_cpu(cpu))
6041 si_cpu = cpu;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006042 }
6043
David Brazdil0f672f62019-12-10 10:32:29 +00006044 time = cpu_clock(this) - time;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006045 cost = this_sd->avg_scan_cost;
6046 delta = (s64)(time - cost) / 8;
6047 this_sd->avg_scan_cost += delta;
6048
6049 return cpu;
6050}
6051
6052/*
6053 * Try and locate an idle core/thread in the LLC cache domain.
6054 */
6055static int select_idle_sibling(struct task_struct *p, int prev, int target)
6056{
6057 struct sched_domain *sd;
6058 int i, recent_used_cpu;
6059
David Brazdil0f672f62019-12-10 10:32:29 +00006060 if (available_idle_cpu(target) || sched_idle_cpu(target))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006061 return target;
6062
6063 /*
6064 * If the previous CPU is cache affine and idle, don't be stupid:
6065 */
David Brazdil0f672f62019-12-10 10:32:29 +00006066 if (prev != target && cpus_share_cache(prev, target) &&
6067 (available_idle_cpu(prev) || sched_idle_cpu(prev)))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006068 return prev;
6069
6070 /* Check a recently used CPU as a potential idle candidate: */
6071 recent_used_cpu = p->recent_used_cpu;
6072 if (recent_used_cpu != prev &&
6073 recent_used_cpu != target &&
6074 cpus_share_cache(recent_used_cpu, target) &&
David Brazdil0f672f62019-12-10 10:32:29 +00006075 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6076 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006077 /*
6078 * Replace recent_used_cpu with prev as it is a potential
6079 * candidate for the next wake:
6080 */
6081 p->recent_used_cpu = prev;
6082 return recent_used_cpu;
6083 }
6084
6085 sd = rcu_dereference(per_cpu(sd_llc, target));
6086 if (!sd)
6087 return target;
6088
6089 i = select_idle_core(p, sd, target);
6090 if ((unsigned)i < nr_cpumask_bits)
6091 return i;
6092
6093 i = select_idle_cpu(p, sd, target);
6094 if ((unsigned)i < nr_cpumask_bits)
6095 return i;
6096
Olivier Deprez0e641232021-09-23 10:07:05 +02006097 i = select_idle_smt(p, sd, target);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006098 if ((unsigned)i < nr_cpumask_bits)
6099 return i;
6100
6101 return target;
6102}
6103
6104/**
6105 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6106 * @cpu: the CPU to get the utilization of
6107 *
6108 * The unit of the return value must be the one of capacity so we can compare
6109 * the utilization with the capacity of the CPU that is available for CFS task
6110 * (ie cpu_capacity).
6111 *
6112 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6113 * recent utilization of currently non-runnable tasks on a CPU. It represents
6114 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6115 * capacity_orig is the cpu_capacity available at the highest frequency
6116 * (arch_scale_freq_capacity()).
6117 * The utilization of a CPU converges towards a sum equal to or less than the
6118 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6119 * the running time on this CPU scaled by capacity_curr.
6120 *
6121 * The estimated utilization of a CPU is defined to be the maximum between its
6122 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6123 * currently RUNNABLE on that CPU.
6124 * This allows to properly represent the expected utilization of a CPU which
6125 * has just got a big task running since a long sleep period. At the same time
6126 * however it preserves the benefits of the "blocked utilization" in
6127 * describing the potential for other tasks waking up on the same CPU.
6128 *
6129 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6130 * higher than capacity_orig because of unfortunate rounding in
6131 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6132 * the average stabilizes with the new running time. We need to check that the
6133 * utilization stays within the range of [0..capacity_orig] and cap it if
6134 * necessary. Without utilization capping, a group could be seen as overloaded
6135 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6136 * available capacity. We allow utilization to overshoot capacity_curr (but not
6137 * capacity_orig) as it useful for predicting the capacity required after task
6138 * migrations (scheduler-driven DVFS).
6139 *
6140 * Return: the (estimated) utilization for the specified CPU
6141 */
6142static inline unsigned long cpu_util(int cpu)
6143{
6144 struct cfs_rq *cfs_rq;
6145 unsigned int util;
6146
6147 cfs_rq = &cpu_rq(cpu)->cfs;
6148 util = READ_ONCE(cfs_rq->avg.util_avg);
6149
6150 if (sched_feat(UTIL_EST))
6151 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6152
6153 return min_t(unsigned long, util, capacity_orig_of(cpu));
6154}
6155
6156/*
6157 * cpu_util_without: compute cpu utilization without any contributions from *p
6158 * @cpu: the CPU which utilization is requested
6159 * @p: the task which utilization should be discounted
6160 *
6161 * The utilization of a CPU is defined by the utilization of tasks currently
6162 * enqueued on that CPU as well as tasks which are currently sleeping after an
6163 * execution on that CPU.
6164 *
6165 * This method returns the utilization of the specified CPU by discounting the
6166 * utilization of the specified task, whenever the task is currently
6167 * contributing to the CPU utilization.
6168 */
6169static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6170{
6171 struct cfs_rq *cfs_rq;
6172 unsigned int util;
6173
6174 /* Task has no contribution or is new */
6175 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6176 return cpu_util(cpu);
6177
6178 cfs_rq = &cpu_rq(cpu)->cfs;
6179 util = READ_ONCE(cfs_rq->avg.util_avg);
6180
6181 /* Discount task's util from CPU's util */
David Brazdil0f672f62019-12-10 10:32:29 +00006182 lsub_positive(&util, task_util(p));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006183
6184 /*
6185 * Covered cases:
6186 *
6187 * a) if *p is the only task sleeping on this CPU, then:
6188 * cpu_util (== task_util) > util_est (== 0)
6189 * and thus we return:
6190 * cpu_util_without = (cpu_util - task_util) = 0
6191 *
6192 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6193 * IDLE, then:
6194 * cpu_util >= task_util
6195 * cpu_util > util_est (== 0)
6196 * and thus we discount *p's blocked utilization to return:
6197 * cpu_util_without = (cpu_util - task_util) >= 0
6198 *
6199 * c) if other tasks are RUNNABLE on that CPU and
6200 * util_est > cpu_util
6201 * then we use util_est since it returns a more restrictive
6202 * estimation of the spare capacity on that CPU, by just
6203 * considering the expected utilization of tasks already
6204 * runnable on that CPU.
6205 *
6206 * Cases a) and b) are covered by the above code, while case c) is
6207 * covered by the following code when estimated utilization is
6208 * enabled.
6209 */
6210 if (sched_feat(UTIL_EST)) {
6211 unsigned int estimated =
6212 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6213
6214 /*
6215 * Despite the following checks we still have a small window
6216 * for a possible race, when an execl's select_task_rq_fair()
6217 * races with LB's detach_task():
6218 *
6219 * detach_task()
6220 * p->on_rq = TASK_ON_RQ_MIGRATING;
6221 * ---------------------------------- A
6222 * deactivate_task() \
6223 * dequeue_task() + RaceTime
6224 * util_est_dequeue() /
6225 * ---------------------------------- B
6226 *
6227 * The additional check on "current == p" it's required to
6228 * properly fix the execl regression and it helps in further
6229 * reducing the chances for the above race.
6230 */
David Brazdil0f672f62019-12-10 10:32:29 +00006231 if (unlikely(task_on_rq_queued(p) || current == p))
6232 lsub_positive(&estimated, _task_util_est(p));
6233
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006234 util = max(util, estimated);
6235 }
6236
6237 /*
6238 * Utilization (estimated) can exceed the CPU capacity, thus let's
6239 * clamp to the maximum CPU capacity to ensure consistency with
6240 * the cpu_util call.
6241 */
6242 return min_t(unsigned long, util, capacity_orig_of(cpu));
6243}
6244
6245/*
6246 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6247 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6248 *
6249 * In that case WAKE_AFFINE doesn't make sense and we'll let
6250 * BALANCE_WAKE sort things out.
6251 */
6252static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6253{
6254 long min_cap, max_cap;
6255
David Brazdil0f672f62019-12-10 10:32:29 +00006256 if (!static_branch_unlikely(&sched_asym_cpucapacity))
6257 return 0;
6258
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006259 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6260 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6261
6262 /* Minimum capacity is close to max, no need to abort wake_affine */
6263 if (max_cap - min_cap < max_cap >> 3)
6264 return 0;
6265
6266 /* Bring task utilization in sync with prev_cpu */
6267 sync_entity_load_avg(&p->se);
6268
David Brazdil0f672f62019-12-10 10:32:29 +00006269 return !task_fits_capacity(p, min_cap);
6270}
6271
6272/*
6273 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6274 * to @dst_cpu.
6275 */
6276static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6277{
6278 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6279 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6280
6281 /*
6282 * If @p migrates from @cpu to another, remove its contribution. Or,
6283 * if @p migrates from another CPU to @cpu, add its contribution. In
6284 * the other cases, @cpu is not impacted by the migration, so the
6285 * util_avg should already be correct.
6286 */
6287 if (task_cpu(p) == cpu && dst_cpu != cpu)
6288 sub_positive(&util, task_util(p));
6289 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6290 util += task_util(p);
6291
6292 if (sched_feat(UTIL_EST)) {
6293 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6294
6295 /*
6296 * During wake-up, the task isn't enqueued yet and doesn't
6297 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6298 * so just add it (if needed) to "simulate" what will be
6299 * cpu_util() after the task has been enqueued.
6300 */
6301 if (dst_cpu == cpu)
6302 util_est += _task_util_est(p);
6303
6304 util = max(util, util_est);
6305 }
6306
6307 return min(util, capacity_orig_of(cpu));
6308}
6309
6310/*
6311 * compute_energy(): Estimates the energy that @pd would consume if @p was
6312 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6313 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6314 * to compute what would be the energy if we decided to actually migrate that
6315 * task.
6316 */
6317static long
6318compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6319{
6320 struct cpumask *pd_mask = perf_domain_span(pd);
6321 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6322 unsigned long max_util = 0, sum_util = 0;
6323 int cpu;
6324
6325 /*
6326 * The capacity state of CPUs of the current rd can be driven by CPUs
6327 * of another rd if they belong to the same pd. So, account for the
6328 * utilization of these CPUs too by masking pd with cpu_online_mask
6329 * instead of the rd span.
6330 *
6331 * If an entire pd is outside of the current rd, it will not appear in
6332 * its pd list and will not be accounted by compute_energy().
6333 */
6334 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6335 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6336 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6337
6338 /*
6339 * Busy time computation: utilization clamping is not
6340 * required since the ratio (sum_util / cpu_capacity)
6341 * is already enough to scale the EM reported power
6342 * consumption at the (eventually clamped) cpu_capacity.
6343 */
6344 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6345 ENERGY_UTIL, NULL);
6346
6347 /*
6348 * Performance domain frequency: utilization clamping
6349 * must be considered since it affects the selection
6350 * of the performance domain frequency.
6351 * NOTE: in case RT tasks are running, by default the
6352 * FREQUENCY_UTIL's utilization can be max OPP.
6353 */
6354 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6355 FREQUENCY_UTIL, tsk);
6356 max_util = max(max_util, cpu_util);
6357 }
6358
6359 return em_pd_energy(pd->em_pd, max_util, sum_util);
6360}
6361
6362/*
6363 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6364 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6365 * spare capacity in each performance domain and uses it as a potential
6366 * candidate to execute the task. Then, it uses the Energy Model to figure
6367 * out which of the CPU candidates is the most energy-efficient.
6368 *
6369 * The rationale for this heuristic is as follows. In a performance domain,
6370 * all the most energy efficient CPU candidates (according to the Energy
6371 * Model) are those for which we'll request a low frequency. When there are
6372 * several CPUs for which the frequency request will be the same, we don't
6373 * have enough data to break the tie between them, because the Energy Model
6374 * only includes active power costs. With this model, if we assume that
6375 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6376 * the maximum spare capacity in a performance domain is guaranteed to be among
6377 * the best candidates of the performance domain.
6378 *
6379 * In practice, it could be preferable from an energy standpoint to pack
6380 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6381 * but that could also hurt our chances to go cluster idle, and we have no
6382 * ways to tell with the current Energy Model if this is actually a good
6383 * idea or not. So, find_energy_efficient_cpu() basically favors
6384 * cluster-packing, and spreading inside a cluster. That should at least be
6385 * a good thing for latency, and this is consistent with the idea that most
6386 * of the energy savings of EAS come from the asymmetry of the system, and
6387 * not so much from breaking the tie between identical CPUs. That's also the
6388 * reason why EAS is enabled in the topology code only for systems where
6389 * SD_ASYM_CPUCAPACITY is set.
6390 *
6391 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6392 * they don't have any useful utilization data yet and it's not possible to
6393 * forecast their impact on energy consumption. Consequently, they will be
6394 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6395 * to be energy-inefficient in some use-cases. The alternative would be to
6396 * bias new tasks towards specific types of CPUs first, or to try to infer
6397 * their util_avg from the parent task, but those heuristics could hurt
6398 * other use-cases too. So, until someone finds a better way to solve this,
6399 * let's keep things simple by re-using the existing slow path.
6400 */
6401static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6402{
6403 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6404 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6405 unsigned long cpu_cap, util, base_energy = 0;
6406 int cpu, best_energy_cpu = prev_cpu;
6407 struct sched_domain *sd;
6408 struct perf_domain *pd;
6409
6410 rcu_read_lock();
6411 pd = rcu_dereference(rd->pd);
6412 if (!pd || READ_ONCE(rd->overutilized))
6413 goto fail;
6414
6415 /*
6416 * Energy-aware wake-up happens on the lowest sched_domain starting
6417 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6418 */
6419 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6420 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6421 sd = sd->parent;
6422 if (!sd)
6423 goto fail;
6424
6425 sync_entity_load_avg(&p->se);
6426 if (!task_util_est(p))
6427 goto unlock;
6428
6429 for (; pd; pd = pd->next) {
6430 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6431 unsigned long base_energy_pd;
6432 int max_spare_cap_cpu = -1;
6433
6434 /* Compute the 'base' energy of the pd, without @p */
6435 base_energy_pd = compute_energy(p, -1, pd);
6436 base_energy += base_energy_pd;
6437
6438 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6439 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6440 continue;
6441
6442 /* Skip CPUs that will be overutilized. */
6443 util = cpu_util_next(cpu, p, cpu);
6444 cpu_cap = capacity_of(cpu);
6445 if (!fits_capacity(util, cpu_cap))
6446 continue;
6447
6448 /* Always use prev_cpu as a candidate. */
6449 if (cpu == prev_cpu) {
6450 prev_delta = compute_energy(p, prev_cpu, pd);
6451 prev_delta -= base_energy_pd;
6452 best_delta = min(best_delta, prev_delta);
6453 }
6454
6455 /*
6456 * Find the CPU with the maximum spare capacity in
6457 * the performance domain
6458 */
6459 spare_cap = cpu_cap - util;
6460 if (spare_cap > max_spare_cap) {
6461 max_spare_cap = spare_cap;
6462 max_spare_cap_cpu = cpu;
6463 }
6464 }
6465
6466 /* Evaluate the energy impact of using this CPU. */
6467 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
6468 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6469 cur_delta -= base_energy_pd;
6470 if (cur_delta < best_delta) {
6471 best_delta = cur_delta;
6472 best_energy_cpu = max_spare_cap_cpu;
6473 }
6474 }
6475 }
6476unlock:
6477 rcu_read_unlock();
6478
6479 /*
6480 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6481 * least 6% of the energy used by prev_cpu.
6482 */
6483 if (prev_delta == ULONG_MAX)
6484 return best_energy_cpu;
6485
6486 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6487 return best_energy_cpu;
6488
6489 return prev_cpu;
6490
6491fail:
6492 rcu_read_unlock();
6493
6494 return -1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006495}
6496
6497/*
6498 * select_task_rq_fair: Select target runqueue for the waking task in domains
6499 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6500 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6501 *
6502 * Balances load by selecting the idlest CPU in the idlest group, or under
6503 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6504 *
6505 * Returns the target CPU number.
6506 *
6507 * preempt must be disabled.
6508 */
6509static int
6510select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6511{
6512 struct sched_domain *tmp, *sd = NULL;
6513 int cpu = smp_processor_id();
6514 int new_cpu = prev_cpu;
6515 int want_affine = 0;
6516 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6517
6518 if (sd_flag & SD_BALANCE_WAKE) {
6519 record_wakee(p);
David Brazdil0f672f62019-12-10 10:32:29 +00006520
6521 if (sched_energy_enabled()) {
6522 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6523 if (new_cpu >= 0)
6524 return new_cpu;
6525 new_cpu = prev_cpu;
6526 }
6527
6528 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
6529 cpumask_test_cpu(cpu, p->cpus_ptr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006530 }
6531
6532 rcu_read_lock();
6533 for_each_domain(cpu, tmp) {
6534 if (!(tmp->flags & SD_LOAD_BALANCE))
6535 break;
6536
6537 /*
6538 * If both 'cpu' and 'prev_cpu' are part of this domain,
6539 * cpu is a valid SD_WAKE_AFFINE target.
6540 */
6541 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6542 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6543 if (cpu != prev_cpu)
6544 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6545
6546 sd = NULL; /* Prefer wake_affine over balance flags */
6547 break;
6548 }
6549
6550 if (tmp->flags & sd_flag)
6551 sd = tmp;
6552 else if (!want_affine)
6553 break;
6554 }
6555
6556 if (unlikely(sd)) {
6557 /* Slow path */
6558 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6559 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6560 /* Fast path */
6561
6562 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6563
6564 if (want_affine)
6565 current->recent_used_cpu = cpu;
6566 }
6567 rcu_read_unlock();
6568
6569 return new_cpu;
6570}
6571
6572static void detach_entity_cfs_rq(struct sched_entity *se);
6573
6574/*
6575 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6576 * cfs_rq_of(p) references at time of call are still valid and identify the
6577 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6578 */
6579static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6580{
6581 /*
6582 * As blocked tasks retain absolute vruntime the migration needs to
6583 * deal with this by subtracting the old and adding the new
6584 * min_vruntime -- the latter is done by enqueue_entity() when placing
6585 * the task on the new runqueue.
6586 */
6587 if (p->state == TASK_WAKING) {
6588 struct sched_entity *se = &p->se;
6589 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6590 u64 min_vruntime;
6591
6592#ifndef CONFIG_64BIT
6593 u64 min_vruntime_copy;
6594
6595 do {
6596 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6597 smp_rmb();
6598 min_vruntime = cfs_rq->min_vruntime;
6599 } while (min_vruntime != min_vruntime_copy);
6600#else
6601 min_vruntime = cfs_rq->min_vruntime;
6602#endif
6603
6604 se->vruntime -= min_vruntime;
6605 }
6606
6607 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6608 /*
6609 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6610 * rq->lock and can modify state directly.
6611 */
6612 lockdep_assert_held(&task_rq(p)->lock);
6613 detach_entity_cfs_rq(&p->se);
6614
6615 } else {
6616 /*
6617 * We are supposed to update the task to "current" time, then
6618 * its up to date and ready to go to new CPU/cfs_rq. But we
6619 * have difficulty in getting what current time is, so simply
6620 * throw away the out-of-date time. This will result in the
6621 * wakee task is less decayed, but giving the wakee more load
6622 * sounds not bad.
6623 */
6624 remove_entity_load_avg(&p->se);
6625 }
6626
6627 /* Tell new CPU we are migrated */
6628 p->se.avg.last_update_time = 0;
6629
6630 /* We have migrated, no longer consider this task hot */
6631 p->se.exec_start = 0;
6632
6633 update_scan_period(p, new_cpu);
6634}
6635
6636static void task_dead_fair(struct task_struct *p)
6637{
6638 remove_entity_load_avg(&p->se);
6639}
David Brazdil0f672f62019-12-10 10:32:29 +00006640
6641static int
6642balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6643{
6644 if (rq->nr_running)
6645 return 1;
6646
6647 return newidle_balance(rq, rf) != 0;
6648}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006649#endif /* CONFIG_SMP */
6650
6651static unsigned long wakeup_gran(struct sched_entity *se)
6652{
6653 unsigned long gran = sysctl_sched_wakeup_granularity;
6654
6655 /*
6656 * Since its curr running now, convert the gran from real-time
6657 * to virtual-time in his units.
6658 *
6659 * By using 'se' instead of 'curr' we penalize light tasks, so
6660 * they get preempted easier. That is, if 'se' < 'curr' then
6661 * the resulting gran will be larger, therefore penalizing the
6662 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6663 * be smaller, again penalizing the lighter task.
6664 *
6665 * This is especially important for buddies when the leftmost
6666 * task is higher priority than the buddy.
6667 */
6668 return calc_delta_fair(gran, se);
6669}
6670
6671/*
6672 * Should 'se' preempt 'curr'.
6673 *
6674 * |s1
6675 * |s2
6676 * |s3
6677 * g
6678 * |<--->|c
6679 *
6680 * w(c, s1) = -1
6681 * w(c, s2) = 0
6682 * w(c, s3) = 1
6683 *
6684 */
6685static int
6686wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6687{
6688 s64 gran, vdiff = curr->vruntime - se->vruntime;
6689
6690 if (vdiff <= 0)
6691 return -1;
6692
6693 gran = wakeup_gran(se);
6694 if (vdiff > gran)
6695 return 1;
6696
6697 return 0;
6698}
6699
6700static void set_last_buddy(struct sched_entity *se)
6701{
David Brazdil0f672f62019-12-10 10:32:29 +00006702 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006703 return;
6704
6705 for_each_sched_entity(se) {
6706 if (SCHED_WARN_ON(!se->on_rq))
6707 return;
6708 cfs_rq_of(se)->last = se;
6709 }
6710}
6711
6712static void set_next_buddy(struct sched_entity *se)
6713{
David Brazdil0f672f62019-12-10 10:32:29 +00006714 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006715 return;
6716
6717 for_each_sched_entity(se) {
6718 if (SCHED_WARN_ON(!se->on_rq))
6719 return;
6720 cfs_rq_of(se)->next = se;
6721 }
6722}
6723
6724static void set_skip_buddy(struct sched_entity *se)
6725{
6726 for_each_sched_entity(se)
6727 cfs_rq_of(se)->skip = se;
6728}
6729
6730/*
6731 * Preempt the current task with a newly woken task if needed:
6732 */
6733static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6734{
6735 struct task_struct *curr = rq->curr;
6736 struct sched_entity *se = &curr->se, *pse = &p->se;
6737 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6738 int scale = cfs_rq->nr_running >= sched_nr_latency;
6739 int next_buddy_marked = 0;
6740
6741 if (unlikely(se == pse))
6742 return;
6743
6744 /*
6745 * This is possible from callers such as attach_tasks(), in which we
6746 * unconditionally check_prempt_curr() after an enqueue (which may have
6747 * lead to a throttle). This both saves work and prevents false
6748 * next-buddy nomination below.
6749 */
6750 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6751 return;
6752
6753 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6754 set_next_buddy(pse);
6755 next_buddy_marked = 1;
6756 }
6757
6758 /*
6759 * We can come here with TIF_NEED_RESCHED already set from new task
6760 * wake up path.
6761 *
6762 * Note: this also catches the edge-case of curr being in a throttled
6763 * group (e.g. via set_curr_task), since update_curr() (in the
6764 * enqueue of curr) will have resulted in resched being set. This
6765 * prevents us from potentially nominating it as a false LAST_BUDDY
6766 * below.
6767 */
6768 if (test_tsk_need_resched(curr))
6769 return;
6770
6771 /* Idle tasks are by definition preempted by non-idle tasks. */
David Brazdil0f672f62019-12-10 10:32:29 +00006772 if (unlikely(task_has_idle_policy(curr)) &&
6773 likely(!task_has_idle_policy(p)))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006774 goto preempt;
6775
6776 /*
6777 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6778 * is driven by the tick):
6779 */
6780 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6781 return;
6782
6783 find_matching_se(&se, &pse);
6784 update_curr(cfs_rq_of(se));
6785 BUG_ON(!pse);
6786 if (wakeup_preempt_entity(se, pse) == 1) {
6787 /*
6788 * Bias pick_next to pick the sched entity that is
6789 * triggering this preemption.
6790 */
6791 if (!next_buddy_marked)
6792 set_next_buddy(pse);
6793 goto preempt;
6794 }
6795
6796 return;
6797
6798preempt:
6799 resched_curr(rq);
6800 /*
6801 * Only set the backward buddy when the current task is still
6802 * on the rq. This can happen when a wakeup gets interleaved
6803 * with schedule on the ->pre_schedule() or idle_balance()
6804 * point, either of which can * drop the rq lock.
6805 *
6806 * Also, during early boot the idle thread is in the fair class,
6807 * for obvious reasons its a bad idea to schedule back to it.
6808 */
6809 if (unlikely(!se->on_rq || curr == rq->idle))
6810 return;
6811
6812 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6813 set_last_buddy(se);
6814}
6815
6816static struct task_struct *
6817pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6818{
6819 struct cfs_rq *cfs_rq = &rq->cfs;
6820 struct sched_entity *se;
6821 struct task_struct *p;
6822 int new_tasks;
6823
6824again:
David Brazdil0f672f62019-12-10 10:32:29 +00006825 if (!sched_fair_runnable(rq))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006826 goto idle;
6827
6828#ifdef CONFIG_FAIR_GROUP_SCHED
David Brazdil0f672f62019-12-10 10:32:29 +00006829 if (!prev || prev->sched_class != &fair_sched_class)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006830 goto simple;
6831
6832 /*
6833 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6834 * likely that a next task is from the same cgroup as the current.
6835 *
6836 * Therefore attempt to avoid putting and setting the entire cgroup
6837 * hierarchy, only change the part that actually changes.
6838 */
6839
6840 do {
6841 struct sched_entity *curr = cfs_rq->curr;
6842
6843 /*
6844 * Since we got here without doing put_prev_entity() we also
6845 * have to consider cfs_rq->curr. If it is still a runnable
6846 * entity, update_curr() will update its vruntime, otherwise
6847 * forget we've ever seen it.
6848 */
6849 if (curr) {
6850 if (curr->on_rq)
6851 update_curr(cfs_rq);
6852 else
6853 curr = NULL;
6854
6855 /*
6856 * This call to check_cfs_rq_runtime() will do the
6857 * throttle and dequeue its entity in the parent(s).
6858 * Therefore the nr_running test will indeed
6859 * be correct.
6860 */
6861 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6862 cfs_rq = &rq->cfs;
6863
6864 if (!cfs_rq->nr_running)
6865 goto idle;
6866
6867 goto simple;
6868 }
6869 }
6870
6871 se = pick_next_entity(cfs_rq, curr);
6872 cfs_rq = group_cfs_rq(se);
6873 } while (cfs_rq);
6874
6875 p = task_of(se);
6876
6877 /*
6878 * Since we haven't yet done put_prev_entity and if the selected task
6879 * is a different task than we started out with, try and touch the
6880 * least amount of cfs_rqs.
6881 */
6882 if (prev != p) {
6883 struct sched_entity *pse = &prev->se;
6884
6885 while (!(cfs_rq = is_same_group(se, pse))) {
6886 int se_depth = se->depth;
6887 int pse_depth = pse->depth;
6888
6889 if (se_depth <= pse_depth) {
6890 put_prev_entity(cfs_rq_of(pse), pse);
6891 pse = parent_entity(pse);
6892 }
6893 if (se_depth >= pse_depth) {
6894 set_next_entity(cfs_rq_of(se), se);
6895 se = parent_entity(se);
6896 }
6897 }
6898
6899 put_prev_entity(cfs_rq, pse);
6900 set_next_entity(cfs_rq, se);
6901 }
6902
6903 goto done;
6904simple:
6905#endif
David Brazdil0f672f62019-12-10 10:32:29 +00006906 if (prev)
6907 put_prev_task(rq, prev);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006908
6909 do {
6910 se = pick_next_entity(cfs_rq, NULL);
6911 set_next_entity(cfs_rq, se);
6912 cfs_rq = group_cfs_rq(se);
6913 } while (cfs_rq);
6914
6915 p = task_of(se);
6916
6917done: __maybe_unused;
6918#ifdef CONFIG_SMP
6919 /*
6920 * Move the next running task to the front of
6921 * the list, so our cfs_tasks list becomes MRU
6922 * one.
6923 */
6924 list_move(&p->se.group_node, &rq->cfs_tasks);
6925#endif
6926
6927 if (hrtick_enabled(rq))
6928 hrtick_start_fair(rq, p);
6929
David Brazdil0f672f62019-12-10 10:32:29 +00006930 update_misfit_status(p, rq);
6931
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006932 return p;
6933
6934idle:
David Brazdil0f672f62019-12-10 10:32:29 +00006935 if (!rf)
6936 return NULL;
6937
6938 new_tasks = newidle_balance(rq, rf);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006939
6940 /*
David Brazdil0f672f62019-12-10 10:32:29 +00006941 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006942 * possible for any higher priority task to appear. In that case we
6943 * must re-start the pick_next_entity() loop.
6944 */
6945 if (new_tasks < 0)
6946 return RETRY_TASK;
6947
6948 if (new_tasks > 0)
6949 goto again;
6950
David Brazdil0f672f62019-12-10 10:32:29 +00006951 /*
6952 * rq is about to be idle, check if we need to update the
6953 * lost_idle_time of clock_pelt
6954 */
6955 update_idle_rq_clock_pelt(rq);
6956
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006957 return NULL;
6958}
6959
6960/*
6961 * Account for a descheduled task:
6962 */
6963static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6964{
6965 struct sched_entity *se = &prev->se;
6966 struct cfs_rq *cfs_rq;
6967
6968 for_each_sched_entity(se) {
6969 cfs_rq = cfs_rq_of(se);
6970 put_prev_entity(cfs_rq, se);
6971 }
6972}
6973
6974/*
6975 * sched_yield() is very simple
6976 *
6977 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6978 */
6979static void yield_task_fair(struct rq *rq)
6980{
6981 struct task_struct *curr = rq->curr;
6982 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6983 struct sched_entity *se = &curr->se;
6984
6985 /*
6986 * Are we the only task in the tree?
6987 */
6988 if (unlikely(rq->nr_running == 1))
6989 return;
6990
6991 clear_buddies(cfs_rq, se);
6992
6993 if (curr->policy != SCHED_BATCH) {
6994 update_rq_clock(rq);
6995 /*
6996 * Update run-time statistics of the 'current'.
6997 */
6998 update_curr(cfs_rq);
6999 /*
7000 * Tell update_rq_clock() that we've just updated,
7001 * so we don't do microscopic update in schedule()
7002 * and double the fastpath cost.
7003 */
7004 rq_clock_skip_update(rq);
7005 }
7006
7007 set_skip_buddy(se);
7008}
7009
7010static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
7011{
7012 struct sched_entity *se = &p->se;
7013
7014 /* throttled hierarchies are not runnable */
7015 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7016 return false;
7017
7018 /* Tell the scheduler that we'd really like pse to run next. */
7019 set_next_buddy(se);
7020
7021 yield_task_fair(rq);
7022
7023 return true;
7024}
7025
7026#ifdef CONFIG_SMP
7027/**************************************************
7028 * Fair scheduling class load-balancing methods.
7029 *
7030 * BASICS
7031 *
7032 * The purpose of load-balancing is to achieve the same basic fairness the
7033 * per-CPU scheduler provides, namely provide a proportional amount of compute
7034 * time to each task. This is expressed in the following equation:
7035 *
7036 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7037 *
7038 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7039 * W_i,0 is defined as:
7040 *
7041 * W_i,0 = \Sum_j w_i,j (2)
7042 *
7043 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7044 * is derived from the nice value as per sched_prio_to_weight[].
7045 *
7046 * The weight average is an exponential decay average of the instantaneous
7047 * weight:
7048 *
7049 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7050 *
7051 * C_i is the compute capacity of CPU i, typically it is the
7052 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7053 * can also include other factors [XXX].
7054 *
7055 * To achieve this balance we define a measure of imbalance which follows
7056 * directly from (1):
7057 *
7058 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7059 *
7060 * We them move tasks around to minimize the imbalance. In the continuous
7061 * function space it is obvious this converges, in the discrete case we get
7062 * a few fun cases generally called infeasible weight scenarios.
7063 *
7064 * [XXX expand on:
7065 * - infeasible weights;
7066 * - local vs global optima in the discrete case. ]
7067 *
7068 *
7069 * SCHED DOMAINS
7070 *
7071 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7072 * for all i,j solution, we create a tree of CPUs that follows the hardware
7073 * topology where each level pairs two lower groups (or better). This results
7074 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7075 * tree to only the first of the previous level and we decrease the frequency
7076 * of load-balance at each level inv. proportional to the number of CPUs in
7077 * the groups.
7078 *
7079 * This yields:
7080 *
7081 * log_2 n 1 n
7082 * \Sum { --- * --- * 2^i } = O(n) (5)
7083 * i = 0 2^i 2^i
7084 * `- size of each group
7085 * | | `- number of CPUs doing load-balance
7086 * | `- freq
7087 * `- sum over all levels
7088 *
7089 * Coupled with a limit on how many tasks we can migrate every balance pass,
7090 * this makes (5) the runtime complexity of the balancer.
7091 *
7092 * An important property here is that each CPU is still (indirectly) connected
7093 * to every other CPU in at most O(log n) steps:
7094 *
7095 * The adjacency matrix of the resulting graph is given by:
7096 *
7097 * log_2 n
7098 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7099 * k = 0
7100 *
7101 * And you'll find that:
7102 *
7103 * A^(log_2 n)_i,j != 0 for all i,j (7)
7104 *
7105 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7106 * The task movement gives a factor of O(m), giving a convergence complexity
7107 * of:
7108 *
7109 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7110 *
7111 *
7112 * WORK CONSERVING
7113 *
7114 * In order to avoid CPUs going idle while there's still work to do, new idle
7115 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7116 * tree itself instead of relying on other CPUs to bring it work.
7117 *
7118 * This adds some complexity to both (5) and (8) but it reduces the total idle
7119 * time.
7120 *
7121 * [XXX more?]
7122 *
7123 *
7124 * CGROUPS
7125 *
7126 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7127 *
7128 * s_k,i
7129 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7130 * S_k
7131 *
7132 * Where
7133 *
7134 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7135 *
7136 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7137 *
7138 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7139 * property.
7140 *
7141 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7142 * rewrite all of this once again.]
7143 */
7144
7145static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7146
7147enum fbq_type { regular, remote, all };
7148
David Brazdil0f672f62019-12-10 10:32:29 +00007149enum group_type {
7150 group_other = 0,
7151 group_misfit_task,
7152 group_imbalanced,
7153 group_overloaded,
7154};
7155
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007156#define LBF_ALL_PINNED 0x01
7157#define LBF_NEED_BREAK 0x02
7158#define LBF_DST_PINNED 0x04
7159#define LBF_SOME_PINNED 0x08
7160#define LBF_NOHZ_STATS 0x10
7161#define LBF_NOHZ_AGAIN 0x20
7162
7163struct lb_env {
7164 struct sched_domain *sd;
7165
7166 struct rq *src_rq;
7167 int src_cpu;
7168
7169 int dst_cpu;
7170 struct rq *dst_rq;
7171
7172 struct cpumask *dst_grpmask;
7173 int new_dst_cpu;
7174 enum cpu_idle_type idle;
7175 long imbalance;
7176 /* The set of CPUs under consideration for load-balancing */
7177 struct cpumask *cpus;
7178
7179 unsigned int flags;
7180
7181 unsigned int loop;
7182 unsigned int loop_break;
7183 unsigned int loop_max;
7184
7185 enum fbq_type fbq_type;
David Brazdil0f672f62019-12-10 10:32:29 +00007186 enum group_type src_grp_type;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007187 struct list_head tasks;
7188};
7189
7190/*
7191 * Is this task likely cache-hot:
7192 */
7193static int task_hot(struct task_struct *p, struct lb_env *env)
7194{
7195 s64 delta;
7196
7197 lockdep_assert_held(&env->src_rq->lock);
7198
7199 if (p->sched_class != &fair_sched_class)
7200 return 0;
7201
David Brazdil0f672f62019-12-10 10:32:29 +00007202 if (unlikely(task_has_idle_policy(p)))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007203 return 0;
7204
7205 /*
7206 * Buddy candidates are cache hot:
7207 */
7208 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7209 (&p->se == cfs_rq_of(&p->se)->next ||
7210 &p->se == cfs_rq_of(&p->se)->last))
7211 return 1;
7212
7213 if (sysctl_sched_migration_cost == -1)
7214 return 1;
7215 if (sysctl_sched_migration_cost == 0)
7216 return 0;
7217
7218 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7219
7220 return delta < (s64)sysctl_sched_migration_cost;
7221}
7222
7223#ifdef CONFIG_NUMA_BALANCING
7224/*
7225 * Returns 1, if task migration degrades locality
7226 * Returns 0, if task migration improves locality i.e migration preferred.
7227 * Returns -1, if task migration is not affected by locality.
7228 */
7229static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7230{
7231 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7232 unsigned long src_weight, dst_weight;
7233 int src_nid, dst_nid, dist;
7234
7235 if (!static_branch_likely(&sched_numa_balancing))
7236 return -1;
7237
7238 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7239 return -1;
7240
7241 src_nid = cpu_to_node(env->src_cpu);
7242 dst_nid = cpu_to_node(env->dst_cpu);
7243
7244 if (src_nid == dst_nid)
7245 return -1;
7246
7247 /* Migrating away from the preferred node is always bad. */
7248 if (src_nid == p->numa_preferred_nid) {
7249 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7250 return 1;
7251 else
7252 return -1;
7253 }
7254
7255 /* Encourage migration to the preferred node. */
7256 if (dst_nid == p->numa_preferred_nid)
7257 return 0;
7258
7259 /* Leaving a core idle is often worse than degrading locality. */
7260 if (env->idle == CPU_IDLE)
7261 return -1;
7262
7263 dist = node_distance(src_nid, dst_nid);
7264 if (numa_group) {
7265 src_weight = group_weight(p, src_nid, dist);
7266 dst_weight = group_weight(p, dst_nid, dist);
7267 } else {
7268 src_weight = task_weight(p, src_nid, dist);
7269 dst_weight = task_weight(p, dst_nid, dist);
7270 }
7271
7272 return dst_weight < src_weight;
7273}
7274
7275#else
7276static inline int migrate_degrades_locality(struct task_struct *p,
7277 struct lb_env *env)
7278{
7279 return -1;
7280}
7281#endif
7282
7283/*
7284 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7285 */
7286static
7287int can_migrate_task(struct task_struct *p, struct lb_env *env)
7288{
7289 int tsk_cache_hot;
7290
7291 lockdep_assert_held(&env->src_rq->lock);
7292
7293 /*
7294 * We do not migrate tasks that are:
7295 * 1) throttled_lb_pair, or
David Brazdil0f672f62019-12-10 10:32:29 +00007296 * 2) cannot be migrated to this CPU due to cpus_ptr, or
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007297 * 3) running (obviously), or
7298 * 4) are cache-hot on their current CPU.
7299 */
7300 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7301 return 0;
7302
Olivier Deprez0e641232021-09-23 10:07:05 +02007303 /* Disregard pcpu kthreads; they are where they need to be. */
7304 if (kthread_is_per_cpu(p))
7305 return 0;
7306
David Brazdil0f672f62019-12-10 10:32:29 +00007307 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007308 int cpu;
7309
7310 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7311
7312 env->flags |= LBF_SOME_PINNED;
7313
7314 /*
7315 * Remember if this task can be migrated to any other CPU in
7316 * our sched_group. We may want to revisit it if we couldn't
7317 * meet load balance goals by pulling other tasks on src_cpu.
7318 *
7319 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7320 * already computed one in current iteration.
7321 */
7322 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7323 return 0;
7324
7325 /* Prevent to re-select dst_cpu via env's CPUs: */
7326 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
David Brazdil0f672f62019-12-10 10:32:29 +00007327 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007328 env->flags |= LBF_DST_PINNED;
7329 env->new_dst_cpu = cpu;
7330 break;
7331 }
7332 }
7333
7334 return 0;
7335 }
7336
7337 /* Record that we found atleast one task that could run on dst_cpu */
7338 env->flags &= ~LBF_ALL_PINNED;
7339
7340 if (task_running(env->src_rq, p)) {
7341 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7342 return 0;
7343 }
7344
7345 /*
7346 * Aggressive migration if:
7347 * 1) destination numa is preferred
7348 * 2) task is cache cold, or
7349 * 3) too many balance attempts have failed.
7350 */
7351 tsk_cache_hot = migrate_degrades_locality(p, env);
7352 if (tsk_cache_hot == -1)
7353 tsk_cache_hot = task_hot(p, env);
7354
7355 if (tsk_cache_hot <= 0 ||
7356 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7357 if (tsk_cache_hot == 1) {
7358 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7359 schedstat_inc(p->se.statistics.nr_forced_migrations);
7360 }
7361 return 1;
7362 }
7363
7364 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7365 return 0;
7366}
7367
7368/*
7369 * detach_task() -- detach the task for the migration specified in env
7370 */
7371static void detach_task(struct task_struct *p, struct lb_env *env)
7372{
7373 lockdep_assert_held(&env->src_rq->lock);
7374
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007375 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7376 set_task_cpu(p, env->dst_cpu);
7377}
7378
7379/*
7380 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7381 * part of active balancing operations within "domain".
7382 *
7383 * Returns a task if successful and NULL otherwise.
7384 */
7385static struct task_struct *detach_one_task(struct lb_env *env)
7386{
7387 struct task_struct *p;
7388
7389 lockdep_assert_held(&env->src_rq->lock);
7390
7391 list_for_each_entry_reverse(p,
7392 &env->src_rq->cfs_tasks, se.group_node) {
7393 if (!can_migrate_task(p, env))
7394 continue;
7395
7396 detach_task(p, env);
7397
7398 /*
7399 * Right now, this is only the second place where
7400 * lb_gained[env->idle] is updated (other is detach_tasks)
7401 * so we can safely collect stats here rather than
7402 * inside detach_tasks().
7403 */
7404 schedstat_inc(env->sd->lb_gained[env->idle]);
7405 return p;
7406 }
7407 return NULL;
7408}
7409
7410static const unsigned int sched_nr_migrate_break = 32;
7411
7412/*
David Brazdil0f672f62019-12-10 10:32:29 +00007413 * detach_tasks() -- tries to detach up to imbalance runnable load from
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007414 * busiest_rq, as part of a balancing operation within domain "sd".
7415 *
7416 * Returns number of detached tasks if successful and 0 otherwise.
7417 */
7418static int detach_tasks(struct lb_env *env)
7419{
7420 struct list_head *tasks = &env->src_rq->cfs_tasks;
7421 struct task_struct *p;
7422 unsigned long load;
7423 int detached = 0;
7424
7425 lockdep_assert_held(&env->src_rq->lock);
7426
7427 if (env->imbalance <= 0)
7428 return 0;
7429
7430 while (!list_empty(tasks)) {
7431 /*
7432 * We don't want to steal all, otherwise we may be treated likewise,
7433 * which could at worst lead to a livelock crash.
7434 */
7435 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7436 break;
7437
7438 p = list_last_entry(tasks, struct task_struct, se.group_node);
7439
7440 env->loop++;
7441 /* We've more or less seen every task there is, call it quits */
7442 if (env->loop > env->loop_max)
7443 break;
7444
7445 /* take a breather every nr_migrate tasks */
7446 if (env->loop > env->loop_break) {
7447 env->loop_break += sched_nr_migrate_break;
7448 env->flags |= LBF_NEED_BREAK;
7449 break;
7450 }
7451
7452 if (!can_migrate_task(p, env))
7453 goto next;
7454
Olivier Deprez0e641232021-09-23 10:07:05 +02007455 /*
7456 * Depending of the number of CPUs and tasks and the
7457 * cgroup hierarchy, task_h_load() can return a null
7458 * value. Make sure that env->imbalance decreases
7459 * otherwise detach_tasks() will stop only after
7460 * detaching up to loop_max tasks.
7461 */
7462 load = max_t(unsigned long, task_h_load(p), 1);
7463
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007464
7465 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7466 goto next;
7467
7468 if ((load / 2) > env->imbalance)
7469 goto next;
7470
7471 detach_task(p, env);
7472 list_add(&p->se.group_node, &env->tasks);
7473
7474 detached++;
7475 env->imbalance -= load;
7476
David Brazdil0f672f62019-12-10 10:32:29 +00007477#ifdef CONFIG_PREEMPTION
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007478 /*
7479 * NEWIDLE balancing is a source of latency, so preemptible
7480 * kernels will stop after the first task is detached to minimize
7481 * the critical section.
7482 */
7483 if (env->idle == CPU_NEWLY_IDLE)
7484 break;
7485#endif
7486
7487 /*
7488 * We only want to steal up to the prescribed amount of
David Brazdil0f672f62019-12-10 10:32:29 +00007489 * runnable load.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007490 */
7491 if (env->imbalance <= 0)
7492 break;
7493
7494 continue;
7495next:
7496 list_move(&p->se.group_node, tasks);
7497 }
7498
7499 /*
7500 * Right now, this is one of only two places we collect this stat
7501 * so we can safely collect detach_one_task() stats here rather
7502 * than inside detach_one_task().
7503 */
7504 schedstat_add(env->sd->lb_gained[env->idle], detached);
7505
7506 return detached;
7507}
7508
7509/*
7510 * attach_task() -- attach the task detached by detach_task() to its new rq.
7511 */
7512static void attach_task(struct rq *rq, struct task_struct *p)
7513{
7514 lockdep_assert_held(&rq->lock);
7515
7516 BUG_ON(task_rq(p) != rq);
7517 activate_task(rq, p, ENQUEUE_NOCLOCK);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007518 check_preempt_curr(rq, p, 0);
7519}
7520
7521/*
7522 * attach_one_task() -- attaches the task returned from detach_one_task() to
7523 * its new rq.
7524 */
7525static void attach_one_task(struct rq *rq, struct task_struct *p)
7526{
7527 struct rq_flags rf;
7528
7529 rq_lock(rq, &rf);
7530 update_rq_clock(rq);
7531 attach_task(rq, p);
7532 rq_unlock(rq, &rf);
7533}
7534
7535/*
7536 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7537 * new rq.
7538 */
7539static void attach_tasks(struct lb_env *env)
7540{
7541 struct list_head *tasks = &env->tasks;
7542 struct task_struct *p;
7543 struct rq_flags rf;
7544
7545 rq_lock(env->dst_rq, &rf);
7546 update_rq_clock(env->dst_rq);
7547
7548 while (!list_empty(tasks)) {
7549 p = list_first_entry(tasks, struct task_struct, se.group_node);
7550 list_del_init(&p->se.group_node);
7551
7552 attach_task(env->dst_rq, p);
7553 }
7554
7555 rq_unlock(env->dst_rq, &rf);
7556}
7557
David Brazdil0f672f62019-12-10 10:32:29 +00007558#ifdef CONFIG_NO_HZ_COMMON
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007559static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7560{
7561 if (cfs_rq->avg.load_avg)
7562 return true;
7563
7564 if (cfs_rq->avg.util_avg)
7565 return true;
7566
7567 return false;
7568}
7569
7570static inline bool others_have_blocked(struct rq *rq)
7571{
7572 if (READ_ONCE(rq->avg_rt.util_avg))
7573 return true;
7574
7575 if (READ_ONCE(rq->avg_dl.util_avg))
7576 return true;
7577
7578#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7579 if (READ_ONCE(rq->avg_irq.util_avg))
7580 return true;
7581#endif
7582
7583 return false;
7584}
7585
David Brazdil0f672f62019-12-10 10:32:29 +00007586static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7587{
7588 rq->last_blocked_load_update_tick = jiffies;
7589
7590 if (!has_blocked)
7591 rq->has_blocked_load = 0;
7592}
7593#else
7594static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7595static inline bool others_have_blocked(struct rq *rq) { return false; }
7596static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7597#endif
7598
Olivier Deprez0e641232021-09-23 10:07:05 +02007599static bool __update_blocked_others(struct rq *rq, bool *done)
7600{
7601 const struct sched_class *curr_class;
7602 u64 now = rq_clock_pelt(rq);
7603 bool decayed;
7604
7605 /*
7606 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7607 * DL and IRQ signals have been updated before updating CFS.
7608 */
7609 curr_class = rq->curr->sched_class;
7610
7611 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7612 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
7613 update_irq_load_avg(rq, 0);
7614
7615 if (others_have_blocked(rq))
7616 *done = false;
7617
7618 return decayed;
7619}
7620
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007621#ifdef CONFIG_FAIR_GROUP_SCHED
7622
7623static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7624{
7625 if (cfs_rq->load.weight)
7626 return false;
7627
7628 if (cfs_rq->avg.load_sum)
7629 return false;
7630
7631 if (cfs_rq->avg.util_sum)
7632 return false;
7633
7634 if (cfs_rq->avg.runnable_load_sum)
7635 return false;
7636
7637 return true;
7638}
7639
Olivier Deprez0e641232021-09-23 10:07:05 +02007640static bool __update_blocked_fair(struct rq *rq, bool *done)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007641{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007642 struct cfs_rq *cfs_rq, *pos;
Olivier Deprez0e641232021-09-23 10:07:05 +02007643 bool decayed = false;
7644 int cpu = cpu_of(rq);
David Brazdil0f672f62019-12-10 10:32:29 +00007645
7646 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007647 * Iterates the task_group tree in a bottom up fashion, see
7648 * list_add_leaf_cfs_rq() for details.
7649 */
7650 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7651 struct sched_entity *se;
7652
Olivier Deprez0e641232021-09-23 10:07:05 +02007653 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007654 update_tg_load_avg(cfs_rq, 0);
7655
Olivier Deprez0e641232021-09-23 10:07:05 +02007656 if (cfs_rq == &rq->cfs)
7657 decayed = true;
7658 }
7659
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007660 /* Propagate pending load changes to the parent, if any: */
7661 se = cfs_rq->tg->se[cpu];
7662 if (se && !skip_blocked_update(se))
Olivier Deprez0e641232021-09-23 10:07:05 +02007663 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007664
7665 /*
7666 * There can be a lot of idle CPU cgroups. Don't let fully
7667 * decayed cfs_rqs linger on the list.
7668 */
7669 if (cfs_rq_is_decayed(cfs_rq))
7670 list_del_leaf_cfs_rq(cfs_rq);
7671
7672 /* Don't need periodic decay once load/util_avg are null */
7673 if (cfs_rq_has_blocked(cfs_rq))
Olivier Deprez0e641232021-09-23 10:07:05 +02007674 *done = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007675 }
7676
Olivier Deprez0e641232021-09-23 10:07:05 +02007677 return decayed;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007678}
7679
7680/*
7681 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7682 * This needs to be done in a top-down fashion because the load of a child
7683 * group is a fraction of its parents load.
7684 */
7685static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7686{
7687 struct rq *rq = rq_of(cfs_rq);
7688 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7689 unsigned long now = jiffies;
7690 unsigned long load;
7691
7692 if (cfs_rq->last_h_load_update == now)
7693 return;
7694
David Brazdil0f672f62019-12-10 10:32:29 +00007695 WRITE_ONCE(cfs_rq->h_load_next, NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007696 for_each_sched_entity(se) {
7697 cfs_rq = cfs_rq_of(se);
David Brazdil0f672f62019-12-10 10:32:29 +00007698 WRITE_ONCE(cfs_rq->h_load_next, se);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007699 if (cfs_rq->last_h_load_update == now)
7700 break;
7701 }
7702
7703 if (!se) {
7704 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7705 cfs_rq->last_h_load_update = now;
7706 }
7707
David Brazdil0f672f62019-12-10 10:32:29 +00007708 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007709 load = cfs_rq->h_load;
7710 load = div64_ul(load * se->avg.load_avg,
7711 cfs_rq_load_avg(cfs_rq) + 1);
7712 cfs_rq = group_cfs_rq(se);
7713 cfs_rq->h_load = load;
7714 cfs_rq->last_h_load_update = now;
7715 }
7716}
7717
7718static unsigned long task_h_load(struct task_struct *p)
7719{
7720 struct cfs_rq *cfs_rq = task_cfs_rq(p);
7721
7722 update_cfs_rq_h_load(cfs_rq);
7723 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7724 cfs_rq_load_avg(cfs_rq) + 1);
7725}
7726#else
Olivier Deprez0e641232021-09-23 10:07:05 +02007727static bool __update_blocked_fair(struct rq *rq, bool *done)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007728{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007729 struct cfs_rq *cfs_rq = &rq->cfs;
Olivier Deprez0e641232021-09-23 10:07:05 +02007730 bool decayed;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007731
Olivier Deprez0e641232021-09-23 10:07:05 +02007732 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7733 if (cfs_rq_has_blocked(cfs_rq))
7734 *done = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007735
Olivier Deprez0e641232021-09-23 10:07:05 +02007736 return decayed;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007737}
7738
7739static unsigned long task_h_load(struct task_struct *p)
7740{
7741 return p->se.avg.load_avg;
7742}
7743#endif
7744
Olivier Deprez0e641232021-09-23 10:07:05 +02007745static void update_blocked_averages(int cpu)
7746{
7747 bool decayed = false, done = true;
7748 struct rq *rq = cpu_rq(cpu);
7749 struct rq_flags rf;
7750
7751 rq_lock_irqsave(rq, &rf);
7752 update_rq_clock(rq);
7753
7754 decayed |= __update_blocked_others(rq, &done);
7755 decayed |= __update_blocked_fair(rq, &done);
7756
7757 update_blocked_load_status(rq, !done);
7758 if (decayed)
7759 cpufreq_update_util(rq, 0);
7760 rq_unlock_irqrestore(rq, &rf);
7761}
7762
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007763/********** Helpers for find_busiest_group ************************/
7764
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007765/*
7766 * sg_lb_stats - stats of a sched_group required for load_balancing
7767 */
7768struct sg_lb_stats {
7769 unsigned long avg_load; /*Avg load across the CPUs of the group */
7770 unsigned long group_load; /* Total load over the CPUs of the group */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007771 unsigned long load_per_task;
7772 unsigned long group_capacity;
7773 unsigned long group_util; /* Total utilization of the group */
7774 unsigned int sum_nr_running; /* Nr tasks running in the group */
7775 unsigned int idle_cpus;
7776 unsigned int group_weight;
7777 enum group_type group_type;
7778 int group_no_capacity;
David Brazdil0f672f62019-12-10 10:32:29 +00007779 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007780#ifdef CONFIG_NUMA_BALANCING
7781 unsigned int nr_numa_running;
7782 unsigned int nr_preferred_running;
7783#endif
7784};
7785
7786/*
7787 * sd_lb_stats - Structure to store the statistics of a sched_domain
7788 * during load balancing.
7789 */
7790struct sd_lb_stats {
7791 struct sched_group *busiest; /* Busiest group in this sd */
7792 struct sched_group *local; /* Local group in this sd */
7793 unsigned long total_running;
7794 unsigned long total_load; /* Total load of all groups in sd */
7795 unsigned long total_capacity; /* Total capacity of all groups in sd */
7796 unsigned long avg_load; /* Average load across all groups in sd */
7797
7798 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7799 struct sg_lb_stats local_stat; /* Statistics of the local group */
7800};
7801
7802static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7803{
7804 /*
7805 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7806 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7807 * We must however clear busiest_stat::avg_load because
7808 * update_sd_pick_busiest() reads this before assignment.
7809 */
7810 *sds = (struct sd_lb_stats){
7811 .busiest = NULL,
7812 .local = NULL,
7813 .total_running = 0UL,
7814 .total_load = 0UL,
7815 .total_capacity = 0UL,
7816 .busiest_stat = {
7817 .avg_load = 0UL,
7818 .sum_nr_running = 0,
7819 .group_type = group_other,
7820 },
7821 };
7822}
7823
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007824static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7825{
7826 struct rq *rq = cpu_rq(cpu);
David Brazdil0f672f62019-12-10 10:32:29 +00007827 unsigned long max = arch_scale_cpu_capacity(cpu);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007828 unsigned long used, free;
7829 unsigned long irq;
7830
7831 irq = cpu_util_irq(rq);
7832
7833 if (unlikely(irq >= max))
7834 return 1;
7835
7836 used = READ_ONCE(rq->avg_rt.util_avg);
7837 used += READ_ONCE(rq->avg_dl.util_avg);
7838
7839 if (unlikely(used >= max))
7840 return 1;
7841
7842 free = max - used;
7843
7844 return scale_irq_capacity(free, irq, max);
7845}
7846
7847static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7848{
7849 unsigned long capacity = scale_rt_capacity(sd, cpu);
7850 struct sched_group *sdg = sd->groups;
7851
David Brazdil0f672f62019-12-10 10:32:29 +00007852 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007853
7854 if (!capacity)
7855 capacity = 1;
7856
7857 cpu_rq(cpu)->cpu_capacity = capacity;
7858 sdg->sgc->capacity = capacity;
7859 sdg->sgc->min_capacity = capacity;
David Brazdil0f672f62019-12-10 10:32:29 +00007860 sdg->sgc->max_capacity = capacity;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007861}
7862
7863void update_group_capacity(struct sched_domain *sd, int cpu)
7864{
7865 struct sched_domain *child = sd->child;
7866 struct sched_group *group, *sdg = sd->groups;
David Brazdil0f672f62019-12-10 10:32:29 +00007867 unsigned long capacity, min_capacity, max_capacity;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007868 unsigned long interval;
7869
7870 interval = msecs_to_jiffies(sd->balance_interval);
7871 interval = clamp(interval, 1UL, max_load_balance_interval);
7872 sdg->sgc->next_update = jiffies + interval;
7873
7874 if (!child) {
7875 update_cpu_capacity(sd, cpu);
7876 return;
7877 }
7878
7879 capacity = 0;
7880 min_capacity = ULONG_MAX;
David Brazdil0f672f62019-12-10 10:32:29 +00007881 max_capacity = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007882
7883 if (child->flags & SD_OVERLAP) {
7884 /*
7885 * SD_OVERLAP domains cannot assume that child groups
7886 * span the current group.
7887 */
7888
7889 for_each_cpu(cpu, sched_group_span(sdg)) {
7890 struct sched_group_capacity *sgc;
7891 struct rq *rq = cpu_rq(cpu);
7892
7893 /*
7894 * build_sched_domains() -> init_sched_groups_capacity()
7895 * gets here before we've attached the domains to the
7896 * runqueues.
7897 *
7898 * Use capacity_of(), which is set irrespective of domains
7899 * in update_cpu_capacity().
7900 *
7901 * This avoids capacity from being 0 and
7902 * causing divide-by-zero issues on boot.
7903 */
7904 if (unlikely(!rq->sd)) {
7905 capacity += capacity_of(cpu);
7906 } else {
7907 sgc = rq->sd->groups->sgc;
7908 capacity += sgc->capacity;
7909 }
7910
7911 min_capacity = min(capacity, min_capacity);
David Brazdil0f672f62019-12-10 10:32:29 +00007912 max_capacity = max(capacity, max_capacity);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007913 }
7914 } else {
7915 /*
7916 * !SD_OVERLAP domains can assume that child groups
7917 * span the current group.
7918 */
7919
7920 group = child->groups;
7921 do {
7922 struct sched_group_capacity *sgc = group->sgc;
7923
7924 capacity += sgc->capacity;
7925 min_capacity = min(sgc->min_capacity, min_capacity);
David Brazdil0f672f62019-12-10 10:32:29 +00007926 max_capacity = max(sgc->max_capacity, max_capacity);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007927 group = group->next;
7928 } while (group != child->groups);
7929 }
7930
7931 sdg->sgc->capacity = capacity;
7932 sdg->sgc->min_capacity = min_capacity;
David Brazdil0f672f62019-12-10 10:32:29 +00007933 sdg->sgc->max_capacity = max_capacity;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007934}
7935
7936/*
7937 * Check whether the capacity of the rq has been noticeably reduced by side
7938 * activity. The imbalance_pct is used for the threshold.
7939 * Return true is the capacity is reduced
7940 */
7941static inline int
7942check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7943{
7944 return ((rq->cpu_capacity * sd->imbalance_pct) <
7945 (rq->cpu_capacity_orig * 100));
7946}
7947
7948/*
David Brazdil0f672f62019-12-10 10:32:29 +00007949 * Check whether a rq has a misfit task and if it looks like we can actually
7950 * help that task: we can migrate the task to a CPU of higher capacity, or
7951 * the task's current CPU is heavily pressured.
7952 */
7953static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
7954{
7955 return rq->misfit_task_load &&
7956 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
7957 check_cpu_capacity(rq, sd));
7958}
7959
7960/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007961 * Group imbalance indicates (and tries to solve) the problem where balancing
David Brazdil0f672f62019-12-10 10:32:29 +00007962 * groups is inadequate due to ->cpus_ptr constraints.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007963 *
7964 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7965 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7966 * Something like:
7967 *
7968 * { 0 1 2 3 } { 4 5 6 7 }
7969 * * * * *
7970 *
7971 * If we were to balance group-wise we'd place two tasks in the first group and
7972 * two tasks in the second group. Clearly this is undesired as it will overload
7973 * cpu 3 and leave one of the CPUs in the second group unused.
7974 *
7975 * The current solution to this issue is detecting the skew in the first group
7976 * by noticing the lower domain failed to reach balance and had difficulty
7977 * moving tasks due to affinity constraints.
7978 *
7979 * When this is so detected; this group becomes a candidate for busiest; see
7980 * update_sd_pick_busiest(). And calculate_imbalance() and
7981 * find_busiest_group() avoid some of the usual balance conditions to allow it
7982 * to create an effective group imbalance.
7983 *
7984 * This is a somewhat tricky proposition since the next run might not find the
7985 * group imbalance and decide the groups need to be balanced again. A most
7986 * subtle and fragile situation.
7987 */
7988
7989static inline int sg_imbalanced(struct sched_group *group)
7990{
7991 return group->sgc->imbalance;
7992}
7993
7994/*
7995 * group_has_capacity returns true if the group has spare capacity that could
7996 * be used by some tasks.
7997 * We consider that a group has spare capacity if the * number of task is
7998 * smaller than the number of CPUs or if the utilization is lower than the
7999 * available capacity for CFS tasks.
8000 * For the latter, we use a threshold to stabilize the state, to take into
8001 * account the variance of the tasks' load and to return true if the available
8002 * capacity in meaningful for the load balancer.
8003 * As an example, an available capacity of 1% can appear but it doesn't make
8004 * any benefit for the load balance.
8005 */
8006static inline bool
8007group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
8008{
8009 if (sgs->sum_nr_running < sgs->group_weight)
8010 return true;
8011
8012 if ((sgs->group_capacity * 100) >
8013 (sgs->group_util * env->sd->imbalance_pct))
8014 return true;
8015
8016 return false;
8017}
8018
8019/*
8020 * group_is_overloaded returns true if the group has more tasks than it can
8021 * handle.
8022 * group_is_overloaded is not equals to !group_has_capacity because a group
8023 * with the exact right number of tasks, has no more spare capacity but is not
8024 * overloaded so both group_has_capacity and group_is_overloaded return
8025 * false.
8026 */
8027static inline bool
8028group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
8029{
8030 if (sgs->sum_nr_running <= sgs->group_weight)
8031 return false;
8032
8033 if ((sgs->group_capacity * 100) <
8034 (sgs->group_util * env->sd->imbalance_pct))
8035 return true;
8036
8037 return false;
8038}
8039
8040/*
David Brazdil0f672f62019-12-10 10:32:29 +00008041 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008042 * per-CPU capacity than sched_group ref.
8043 */
8044static inline bool
David Brazdil0f672f62019-12-10 10:32:29 +00008045group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008046{
David Brazdil0f672f62019-12-10 10:32:29 +00008047 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
8048}
8049
8050/*
8051 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8052 * per-CPU capacity_orig than sched_group ref.
8053 */
8054static inline bool
8055group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8056{
8057 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008058}
8059
8060static inline enum
8061group_type group_classify(struct sched_group *group,
8062 struct sg_lb_stats *sgs)
8063{
8064 if (sgs->group_no_capacity)
8065 return group_overloaded;
8066
8067 if (sg_imbalanced(group))
8068 return group_imbalanced;
8069
David Brazdil0f672f62019-12-10 10:32:29 +00008070 if (sgs->group_misfit_task_load)
8071 return group_misfit_task;
8072
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008073 return group_other;
8074}
8075
8076static bool update_nohz_stats(struct rq *rq, bool force)
8077{
8078#ifdef CONFIG_NO_HZ_COMMON
8079 unsigned int cpu = rq->cpu;
8080
8081 if (!rq->has_blocked_load)
8082 return false;
8083
8084 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8085 return false;
8086
8087 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8088 return true;
8089
8090 update_blocked_averages(cpu);
8091
8092 return rq->has_blocked_load;
8093#else
8094 return false;
8095#endif
8096}
8097
8098/**
8099 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8100 * @env: The load balancing environment.
8101 * @group: sched_group whose statistics are to be updated.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008102 * @sgs: variable to hold the statistics for this group.
David Brazdil0f672f62019-12-10 10:32:29 +00008103 * @sg_status: Holds flag indicating the status of the sched_group
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008104 */
8105static inline void update_sg_lb_stats(struct lb_env *env,
David Brazdil0f672f62019-12-10 10:32:29 +00008106 struct sched_group *group,
8107 struct sg_lb_stats *sgs,
8108 int *sg_status)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008109{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008110 int i, nr_running;
8111
8112 memset(sgs, 0, sizeof(*sgs));
8113
8114 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8115 struct rq *rq = cpu_rq(i);
8116
8117 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8118 env->flags |= LBF_NOHZ_AGAIN;
8119
David Brazdil0f672f62019-12-10 10:32:29 +00008120 sgs->group_load += cpu_runnable_load(rq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008121 sgs->group_util += cpu_util(i);
8122 sgs->sum_nr_running += rq->cfs.h_nr_running;
8123
8124 nr_running = rq->nr_running;
8125 if (nr_running > 1)
David Brazdil0f672f62019-12-10 10:32:29 +00008126 *sg_status |= SG_OVERLOAD;
8127
8128 if (cpu_overutilized(i))
8129 *sg_status |= SG_OVERUTILIZED;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008130
8131#ifdef CONFIG_NUMA_BALANCING
8132 sgs->nr_numa_running += rq->nr_numa_running;
8133 sgs->nr_preferred_running += rq->nr_preferred_running;
8134#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008135 /*
8136 * No need to call idle_cpu() if nr_running is not 0
8137 */
8138 if (!nr_running && idle_cpu(i))
8139 sgs->idle_cpus++;
David Brazdil0f672f62019-12-10 10:32:29 +00008140
8141 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8142 sgs->group_misfit_task_load < rq->misfit_task_load) {
8143 sgs->group_misfit_task_load = rq->misfit_task_load;
8144 *sg_status |= SG_OVERLOAD;
8145 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008146 }
8147
8148 /* Adjust by relative CPU capacity of the group */
8149 sgs->group_capacity = group->sgc->capacity;
8150 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
8151
8152 if (sgs->sum_nr_running)
David Brazdil0f672f62019-12-10 10:32:29 +00008153 sgs->load_per_task = sgs->group_load / sgs->sum_nr_running;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008154
8155 sgs->group_weight = group->group_weight;
8156
8157 sgs->group_no_capacity = group_is_overloaded(env, sgs);
8158 sgs->group_type = group_classify(group, sgs);
8159}
8160
8161/**
8162 * update_sd_pick_busiest - return 1 on busiest group
8163 * @env: The load balancing environment.
8164 * @sds: sched_domain statistics
8165 * @sg: sched_group candidate to be checked for being the busiest
8166 * @sgs: sched_group statistics
8167 *
8168 * Determine if @sg is a busier group than the previously selected
8169 * busiest group.
8170 *
8171 * Return: %true if @sg is a busier group than the previously selected
8172 * busiest group. %false otherwise.
8173 */
8174static bool update_sd_pick_busiest(struct lb_env *env,
8175 struct sd_lb_stats *sds,
8176 struct sched_group *sg,
8177 struct sg_lb_stats *sgs)
8178{
8179 struct sg_lb_stats *busiest = &sds->busiest_stat;
8180
David Brazdil0f672f62019-12-10 10:32:29 +00008181 /*
8182 * Don't try to pull misfit tasks we can't help.
8183 * We can use max_capacity here as reduction in capacity on some
8184 * CPUs in the group should either be possible to resolve
8185 * internally or be covered by avg_load imbalance (eventually).
8186 */
8187 if (sgs->group_type == group_misfit_task &&
8188 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8189 !group_has_capacity(env, &sds->local_stat)))
8190 return false;
8191
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008192 if (sgs->group_type > busiest->group_type)
8193 return true;
8194
8195 if (sgs->group_type < busiest->group_type)
8196 return false;
8197
8198 if (sgs->avg_load <= busiest->avg_load)
8199 return false;
8200
8201 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8202 goto asym_packing;
8203
8204 /*
8205 * Candidate sg has no more than one task per CPU and
8206 * has higher per-CPU capacity. Migrating tasks to less
8207 * capable CPUs may harm throughput. Maximize throughput,
8208 * power/energy consequences are not considered.
8209 */
8210 if (sgs->sum_nr_running <= sgs->group_weight &&
David Brazdil0f672f62019-12-10 10:32:29 +00008211 group_smaller_min_cpu_capacity(sds->local, sg))
8212 return false;
8213
8214 /*
8215 * If we have more than one misfit sg go with the biggest misfit.
8216 */
8217 if (sgs->group_type == group_misfit_task &&
8218 sgs->group_misfit_task_load < busiest->group_misfit_task_load)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008219 return false;
8220
8221asym_packing:
8222 /* This is the busiest node in its class. */
8223 if (!(env->sd->flags & SD_ASYM_PACKING))
8224 return true;
8225
8226 /* No ASYM_PACKING if target CPU is already busy */
8227 if (env->idle == CPU_NOT_IDLE)
8228 return true;
8229 /*
8230 * ASYM_PACKING needs to move all the work to the highest
8231 * prority CPUs in the group, therefore mark all groups
8232 * of lower priority than ourself as busy.
8233 */
8234 if (sgs->sum_nr_running &&
8235 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
8236 if (!sds->busiest)
8237 return true;
8238
8239 /* Prefer to move from lowest priority CPU's work */
8240 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8241 sg->asym_prefer_cpu))
8242 return true;
8243 }
8244
8245 return false;
8246}
8247
8248#ifdef CONFIG_NUMA_BALANCING
8249static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8250{
8251 if (sgs->sum_nr_running > sgs->nr_numa_running)
8252 return regular;
8253 if (sgs->sum_nr_running > sgs->nr_preferred_running)
8254 return remote;
8255 return all;
8256}
8257
8258static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8259{
8260 if (rq->nr_running > rq->nr_numa_running)
8261 return regular;
8262 if (rq->nr_running > rq->nr_preferred_running)
8263 return remote;
8264 return all;
8265}
8266#else
8267static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8268{
8269 return all;
8270}
8271
8272static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8273{
8274 return regular;
8275}
8276#endif /* CONFIG_NUMA_BALANCING */
8277
8278/**
8279 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8280 * @env: The load balancing environment.
8281 * @sds: variable to hold the statistics for this sched_domain.
8282 */
8283static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8284{
8285 struct sched_domain *child = env->sd->child;
8286 struct sched_group *sg = env->sd->groups;
8287 struct sg_lb_stats *local = &sds->local_stat;
8288 struct sg_lb_stats tmp_sgs;
David Brazdil0f672f62019-12-10 10:32:29 +00008289 bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8290 int sg_status = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008291
8292#ifdef CONFIG_NO_HZ_COMMON
8293 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8294 env->flags |= LBF_NOHZ_STATS;
8295#endif
8296
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008297 do {
8298 struct sg_lb_stats *sgs = &tmp_sgs;
8299 int local_group;
8300
8301 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8302 if (local_group) {
8303 sds->local = sg;
8304 sgs = local;
8305
8306 if (env->idle != CPU_NEWLY_IDLE ||
8307 time_after_eq(jiffies, sg->sgc->next_update))
8308 update_group_capacity(env->sd, env->dst_cpu);
8309 }
8310
David Brazdil0f672f62019-12-10 10:32:29 +00008311 update_sg_lb_stats(env, sg, sgs, &sg_status);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008312
8313 if (local_group)
8314 goto next_group;
8315
8316 /*
8317 * In case the child domain prefers tasks go to siblings
8318 * first, lower the sg capacity so that we'll try
8319 * and move all the excess tasks away. We lower the capacity
8320 * of a group only if the local group has the capacity to fit
8321 * these excess tasks. The extra check prevents the case where
8322 * you always pull from the heaviest group when it is already
8323 * under-utilized (possible with a large weight task outweighs
8324 * the tasks on the system).
8325 */
8326 if (prefer_sibling && sds->local &&
8327 group_has_capacity(env, local) &&
8328 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8329 sgs->group_no_capacity = 1;
8330 sgs->group_type = group_classify(sg, sgs);
8331 }
8332
8333 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8334 sds->busiest = sg;
8335 sds->busiest_stat = *sgs;
8336 }
8337
8338next_group:
8339 /* Now, start updating sd_lb_stats */
8340 sds->total_running += sgs->sum_nr_running;
8341 sds->total_load += sgs->group_load;
8342 sds->total_capacity += sgs->group_capacity;
8343
8344 sg = sg->next;
8345 } while (sg != env->sd->groups);
8346
8347#ifdef CONFIG_NO_HZ_COMMON
8348 if ((env->flags & LBF_NOHZ_AGAIN) &&
8349 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8350
8351 WRITE_ONCE(nohz.next_blocked,
8352 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8353 }
8354#endif
8355
8356 if (env->sd->flags & SD_NUMA)
8357 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8358
8359 if (!env->sd->parent) {
David Brazdil0f672f62019-12-10 10:32:29 +00008360 struct root_domain *rd = env->dst_rq->rd;
8361
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008362 /* update overload indicator if we are at root domain */
David Brazdil0f672f62019-12-10 10:32:29 +00008363 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8364
8365 /* Update over-utilization (tipping point, U >= 0) indicator */
8366 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8367 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
8368 } else if (sg_status & SG_OVERUTILIZED) {
8369 struct root_domain *rd = env->dst_rq->rd;
8370
8371 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8372 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008373 }
8374}
8375
8376/**
8377 * check_asym_packing - Check to see if the group is packed into the
8378 * sched domain.
8379 *
8380 * This is primarily intended to used at the sibling level. Some
8381 * cores like POWER7 prefer to use lower numbered SMT threads. In the
8382 * case of POWER7, it can move to lower SMT modes only when higher
8383 * threads are idle. When in lower SMT modes, the threads will
8384 * perform better since they share less core resources. Hence when we
8385 * have idle threads, we want them to be the higher ones.
8386 *
8387 * This packing function is run on idle threads. It checks to see if
8388 * the busiest CPU in this domain (core in the P7 case) has a higher
8389 * CPU number than the packing function is being run on. Here we are
8390 * assuming lower CPU number will be equivalent to lower a SMT thread
8391 * number.
8392 *
8393 * Return: 1 when packing is required and a task should be moved to
8394 * this CPU. The amount of the imbalance is returned in env->imbalance.
8395 *
8396 * @env: The load balancing environment.
8397 * @sds: Statistics of the sched_domain which is to be packed
8398 */
8399static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8400{
8401 int busiest_cpu;
8402
8403 if (!(env->sd->flags & SD_ASYM_PACKING))
8404 return 0;
8405
8406 if (env->idle == CPU_NOT_IDLE)
8407 return 0;
8408
8409 if (!sds->busiest)
8410 return 0;
8411
8412 busiest_cpu = sds->busiest->asym_prefer_cpu;
8413 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8414 return 0;
8415
David Brazdil0f672f62019-12-10 10:32:29 +00008416 env->imbalance = sds->busiest_stat.group_load;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008417
8418 return 1;
8419}
8420
8421/**
8422 * fix_small_imbalance - Calculate the minor imbalance that exists
8423 * amongst the groups of a sched_domain, during
8424 * load balancing.
8425 * @env: The load balancing environment.
8426 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8427 */
8428static inline
8429void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8430{
8431 unsigned long tmp, capa_now = 0, capa_move = 0;
8432 unsigned int imbn = 2;
8433 unsigned long scaled_busy_load_per_task;
8434 struct sg_lb_stats *local, *busiest;
8435
8436 local = &sds->local_stat;
8437 busiest = &sds->busiest_stat;
8438
8439 if (!local->sum_nr_running)
8440 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8441 else if (busiest->load_per_task > local->load_per_task)
8442 imbn = 1;
8443
8444 scaled_busy_load_per_task =
8445 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8446 busiest->group_capacity;
8447
8448 if (busiest->avg_load + scaled_busy_load_per_task >=
8449 local->avg_load + (scaled_busy_load_per_task * imbn)) {
8450 env->imbalance = busiest->load_per_task;
8451 return;
8452 }
8453
8454 /*
8455 * OK, we don't have enough imbalance to justify moving tasks,
8456 * however we may be able to increase total CPU capacity used by
8457 * moving them.
8458 */
8459
8460 capa_now += busiest->group_capacity *
8461 min(busiest->load_per_task, busiest->avg_load);
8462 capa_now += local->group_capacity *
8463 min(local->load_per_task, local->avg_load);
8464 capa_now /= SCHED_CAPACITY_SCALE;
8465
8466 /* Amount of load we'd subtract */
8467 if (busiest->avg_load > scaled_busy_load_per_task) {
8468 capa_move += busiest->group_capacity *
8469 min(busiest->load_per_task,
8470 busiest->avg_load - scaled_busy_load_per_task);
8471 }
8472
8473 /* Amount of load we'd add */
8474 if (busiest->avg_load * busiest->group_capacity <
8475 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8476 tmp = (busiest->avg_load * busiest->group_capacity) /
8477 local->group_capacity;
8478 } else {
8479 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8480 local->group_capacity;
8481 }
8482 capa_move += local->group_capacity *
8483 min(local->load_per_task, local->avg_load + tmp);
8484 capa_move /= SCHED_CAPACITY_SCALE;
8485
8486 /* Move if we gain throughput */
8487 if (capa_move > capa_now)
8488 env->imbalance = busiest->load_per_task;
8489}
8490
8491/**
8492 * calculate_imbalance - Calculate the amount of imbalance present within the
8493 * groups of a given sched_domain during load balance.
8494 * @env: load balance environment
8495 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8496 */
8497static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8498{
8499 unsigned long max_pull, load_above_capacity = ~0UL;
8500 struct sg_lb_stats *local, *busiest;
8501
8502 local = &sds->local_stat;
8503 busiest = &sds->busiest_stat;
8504
8505 if (busiest->group_type == group_imbalanced) {
8506 /*
8507 * In the group_imb case we cannot rely on group-wide averages
8508 * to ensure CPU-load equilibrium, look at wider averages. XXX
8509 */
8510 busiest->load_per_task =
8511 min(busiest->load_per_task, sds->avg_load);
8512 }
8513
8514 /*
8515 * Avg load of busiest sg can be less and avg load of local sg can
8516 * be greater than avg load across all sgs of sd because avg load
8517 * factors in sg capacity and sgs with smaller group_type are
8518 * skipped when updating the busiest sg:
8519 */
David Brazdil0f672f62019-12-10 10:32:29 +00008520 if (busiest->group_type != group_misfit_task &&
8521 (busiest->avg_load <= sds->avg_load ||
8522 local->avg_load >= sds->avg_load)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008523 env->imbalance = 0;
8524 return fix_small_imbalance(env, sds);
8525 }
8526
8527 /*
8528 * If there aren't any idle CPUs, avoid creating some.
8529 */
8530 if (busiest->group_type == group_overloaded &&
8531 local->group_type == group_overloaded) {
8532 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8533 if (load_above_capacity > busiest->group_capacity) {
8534 load_above_capacity -= busiest->group_capacity;
8535 load_above_capacity *= scale_load_down(NICE_0_LOAD);
8536 load_above_capacity /= busiest->group_capacity;
8537 } else
8538 load_above_capacity = ~0UL;
8539 }
8540
8541 /*
8542 * We're trying to get all the CPUs to the average_load, so we don't
8543 * want to push ourselves above the average load, nor do we wish to
8544 * reduce the max loaded CPU below the average load. At the same time,
8545 * we also don't want to reduce the group load below the group
8546 * capacity. Thus we look for the minimum possible imbalance.
8547 */
8548 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8549
8550 /* How much load to actually move to equalise the imbalance */
8551 env->imbalance = min(
8552 max_pull * busiest->group_capacity,
8553 (sds->avg_load - local->avg_load) * local->group_capacity
8554 ) / SCHED_CAPACITY_SCALE;
8555
David Brazdil0f672f62019-12-10 10:32:29 +00008556 /* Boost imbalance to allow misfit task to be balanced. */
8557 if (busiest->group_type == group_misfit_task) {
8558 env->imbalance = max_t(long, env->imbalance,
8559 busiest->group_misfit_task_load);
8560 }
8561
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008562 /*
8563 * if *imbalance is less than the average load per runnable task
8564 * there is no guarantee that any tasks will be moved so we'll have
8565 * a think about bumping its value to force at least one task to be
8566 * moved
8567 */
8568 if (env->imbalance < busiest->load_per_task)
8569 return fix_small_imbalance(env, sds);
8570}
8571
8572/******* find_busiest_group() helpers end here *********************/
8573
8574/**
8575 * find_busiest_group - Returns the busiest group within the sched_domain
8576 * if there is an imbalance.
8577 *
David Brazdil0f672f62019-12-10 10:32:29 +00008578 * Also calculates the amount of runnable load which should be moved
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008579 * to restore balance.
8580 *
8581 * @env: The load balancing environment.
8582 *
8583 * Return: - The busiest group if imbalance exists.
8584 */
8585static struct sched_group *find_busiest_group(struct lb_env *env)
8586{
8587 struct sg_lb_stats *local, *busiest;
8588 struct sd_lb_stats sds;
8589
8590 init_sd_lb_stats(&sds);
8591
8592 /*
8593 * Compute the various statistics relavent for load balancing at
8594 * this level.
8595 */
8596 update_sd_lb_stats(env, &sds);
David Brazdil0f672f62019-12-10 10:32:29 +00008597
8598 if (sched_energy_enabled()) {
8599 struct root_domain *rd = env->dst_rq->rd;
8600
8601 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8602 goto out_balanced;
8603 }
8604
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008605 local = &sds.local_stat;
8606 busiest = &sds.busiest_stat;
8607
8608 /* ASYM feature bypasses nice load balance check */
8609 if (check_asym_packing(env, &sds))
8610 return sds.busiest;
8611
8612 /* There is no busy sibling group to pull tasks from */
8613 if (!sds.busiest || busiest->sum_nr_running == 0)
8614 goto out_balanced;
8615
8616 /* XXX broken for overlapping NUMA groups */
8617 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8618 / sds.total_capacity;
8619
8620 /*
8621 * If the busiest group is imbalanced the below checks don't
8622 * work because they assume all things are equal, which typically
David Brazdil0f672f62019-12-10 10:32:29 +00008623 * isn't true due to cpus_ptr constraints and the like.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008624 */
8625 if (busiest->group_type == group_imbalanced)
8626 goto force_balance;
8627
8628 /*
8629 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8630 * capacities from resulting in underutilization due to avg_load.
8631 */
8632 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8633 busiest->group_no_capacity)
8634 goto force_balance;
8635
David Brazdil0f672f62019-12-10 10:32:29 +00008636 /* Misfit tasks should be dealt with regardless of the avg load */
8637 if (busiest->group_type == group_misfit_task)
8638 goto force_balance;
8639
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008640 /*
8641 * If the local group is busier than the selected busiest group
8642 * don't try and pull any tasks.
8643 */
8644 if (local->avg_load >= busiest->avg_load)
8645 goto out_balanced;
8646
8647 /*
8648 * Don't pull any tasks if this group is already above the domain
8649 * average load.
8650 */
8651 if (local->avg_load >= sds.avg_load)
8652 goto out_balanced;
8653
8654 if (env->idle == CPU_IDLE) {
8655 /*
8656 * This CPU is idle. If the busiest group is not overloaded
8657 * and there is no imbalance between this and busiest group
8658 * wrt idle CPUs, it is balanced. The imbalance becomes
8659 * significant if the diff is greater than 1 otherwise we
8660 * might end up to just move the imbalance on another group
8661 */
8662 if ((busiest->group_type != group_overloaded) &&
8663 (local->idle_cpus <= (busiest->idle_cpus + 1)))
8664 goto out_balanced;
8665 } else {
8666 /*
8667 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8668 * imbalance_pct to be conservative.
8669 */
8670 if (100 * busiest->avg_load <=
8671 env->sd->imbalance_pct * local->avg_load)
8672 goto out_balanced;
8673 }
8674
8675force_balance:
8676 /* Looks like there is an imbalance. Compute it */
David Brazdil0f672f62019-12-10 10:32:29 +00008677 env->src_grp_type = busiest->group_type;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008678 calculate_imbalance(env, &sds);
8679 return env->imbalance ? sds.busiest : NULL;
8680
8681out_balanced:
8682 env->imbalance = 0;
8683 return NULL;
8684}
8685
8686/*
8687 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8688 */
8689static struct rq *find_busiest_queue(struct lb_env *env,
8690 struct sched_group *group)
8691{
8692 struct rq *busiest = NULL, *rq;
8693 unsigned long busiest_load = 0, busiest_capacity = 1;
8694 int i;
8695
8696 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
David Brazdil0f672f62019-12-10 10:32:29 +00008697 unsigned long capacity, load;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008698 enum fbq_type rt;
8699
8700 rq = cpu_rq(i);
8701 rt = fbq_classify_rq(rq);
8702
8703 /*
8704 * We classify groups/runqueues into three groups:
8705 * - regular: there are !numa tasks
8706 * - remote: there are numa tasks that run on the 'wrong' node
8707 * - all: there is no distinction
8708 *
8709 * In order to avoid migrating ideally placed numa tasks,
8710 * ignore those when there's better options.
8711 *
8712 * If we ignore the actual busiest queue to migrate another
8713 * task, the next balance pass can still reduce the busiest
8714 * queue by moving tasks around inside the node.
8715 *
8716 * If we cannot move enough load due to this classification
8717 * the next pass will adjust the group classification and
8718 * allow migration of more tasks.
8719 *
8720 * Both cases only affect the total convergence complexity.
8721 */
8722 if (rt > env->fbq_type)
8723 continue;
8724
David Brazdil0f672f62019-12-10 10:32:29 +00008725 /*
8726 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8727 * seek the "biggest" misfit task.
8728 */
8729 if (env->src_grp_type == group_misfit_task) {
8730 if (rq->misfit_task_load > busiest_load) {
8731 busiest_load = rq->misfit_task_load;
8732 busiest = rq;
8733 }
8734
8735 continue;
8736 }
8737
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008738 capacity = capacity_of(i);
8739
David Brazdil0f672f62019-12-10 10:32:29 +00008740 /*
8741 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8742 * eventually lead to active_balancing high->low capacity.
8743 * Higher per-CPU capacity is considered better than balancing
8744 * average load.
8745 */
8746 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8747 capacity_of(env->dst_cpu) < capacity &&
8748 rq->nr_running == 1)
8749 continue;
8750
8751 load = cpu_runnable_load(rq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008752
8753 /*
David Brazdil0f672f62019-12-10 10:32:29 +00008754 * When comparing with imbalance, use cpu_runnable_load()
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008755 * which is not scaled with the CPU capacity.
8756 */
8757
David Brazdil0f672f62019-12-10 10:32:29 +00008758 if (rq->nr_running == 1 && load > env->imbalance &&
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008759 !check_cpu_capacity(rq, env->sd))
8760 continue;
8761
8762 /*
8763 * For the load comparisons with the other CPU's, consider
David Brazdil0f672f62019-12-10 10:32:29 +00008764 * the cpu_runnable_load() scaled with the CPU capacity, so
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008765 * that the load can be moved away from the CPU that is
8766 * potentially running at a lower capacity.
8767 *
David Brazdil0f672f62019-12-10 10:32:29 +00008768 * Thus we're looking for max(load_i / capacity_i), crosswise
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008769 * multiplication to rid ourselves of the division works out
David Brazdil0f672f62019-12-10 10:32:29 +00008770 * to: load_i * capacity_j > load_j * capacity_i; where j is
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008771 * our previous maximum.
8772 */
David Brazdil0f672f62019-12-10 10:32:29 +00008773 if (load * busiest_capacity > busiest_load * capacity) {
8774 busiest_load = load;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008775 busiest_capacity = capacity;
8776 busiest = rq;
8777 }
8778 }
8779
8780 return busiest;
8781}
8782
8783/*
8784 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8785 * so long as it is large enough.
8786 */
8787#define MAX_PINNED_INTERVAL 512
8788
David Brazdil0f672f62019-12-10 10:32:29 +00008789static inline bool
8790asym_active_balance(struct lb_env *env)
8791{
8792 /*
8793 * ASYM_PACKING needs to force migrate tasks from busy but
8794 * lower priority CPUs in order to pack all tasks in the
8795 * highest priority CPUs.
8796 */
8797 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
8798 sched_asym_prefer(env->dst_cpu, env->src_cpu);
8799}
8800
8801static inline bool
8802voluntary_active_balance(struct lb_env *env)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008803{
8804 struct sched_domain *sd = env->sd;
8805
David Brazdil0f672f62019-12-10 10:32:29 +00008806 if (asym_active_balance(env))
8807 return 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008808
8809 /*
8810 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8811 * It's worth migrating the task if the src_cpu's capacity is reduced
8812 * because of other sched_class or IRQs if more capacity stays
8813 * available on dst_cpu.
8814 */
8815 if ((env->idle != CPU_NOT_IDLE) &&
8816 (env->src_rq->cfs.h_nr_running == 1)) {
8817 if ((check_cpu_capacity(env->src_rq, sd)) &&
8818 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8819 return 1;
8820 }
8821
David Brazdil0f672f62019-12-10 10:32:29 +00008822 if (env->src_grp_type == group_misfit_task)
8823 return 1;
8824
8825 return 0;
8826}
8827
8828static int need_active_balance(struct lb_env *env)
8829{
8830 struct sched_domain *sd = env->sd;
8831
8832 if (voluntary_active_balance(env))
8833 return 1;
8834
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008835 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8836}
8837
8838static int active_load_balance_cpu_stop(void *data);
8839
8840static int should_we_balance(struct lb_env *env)
8841{
8842 struct sched_group *sg = env->sd->groups;
8843 int cpu, balance_cpu = -1;
8844
8845 /*
8846 * Ensure the balancing environment is consistent; can happen
8847 * when the softirq triggers 'during' hotplug.
8848 */
8849 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8850 return 0;
8851
8852 /*
8853 * In the newly idle case, we will allow all the CPUs
8854 * to do the newly idle load balance.
8855 */
8856 if (env->idle == CPU_NEWLY_IDLE)
8857 return 1;
8858
8859 /* Try to find first idle CPU */
8860 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8861 if (!idle_cpu(cpu))
8862 continue;
8863
8864 balance_cpu = cpu;
8865 break;
8866 }
8867
8868 if (balance_cpu == -1)
8869 balance_cpu = group_balance_cpu(sg);
8870
8871 /*
8872 * First idle CPU or the first CPU(busiest) in this sched group
8873 * is eligible for doing load balancing at this and above domains.
8874 */
8875 return balance_cpu == env->dst_cpu;
8876}
8877
8878/*
8879 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8880 * tasks if there is an imbalance.
8881 */
8882static int load_balance(int this_cpu, struct rq *this_rq,
8883 struct sched_domain *sd, enum cpu_idle_type idle,
8884 int *continue_balancing)
8885{
8886 int ld_moved, cur_ld_moved, active_balance = 0;
8887 struct sched_domain *sd_parent = sd->parent;
8888 struct sched_group *group;
8889 struct rq *busiest;
8890 struct rq_flags rf;
8891 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8892
8893 struct lb_env env = {
8894 .sd = sd,
8895 .dst_cpu = this_cpu,
8896 .dst_rq = this_rq,
8897 .dst_grpmask = sched_group_span(sd->groups),
8898 .idle = idle,
8899 .loop_break = sched_nr_migrate_break,
8900 .cpus = cpus,
8901 .fbq_type = all,
8902 .tasks = LIST_HEAD_INIT(env.tasks),
8903 };
8904
8905 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8906
8907 schedstat_inc(sd->lb_count[idle]);
8908
8909redo:
8910 if (!should_we_balance(&env)) {
8911 *continue_balancing = 0;
8912 goto out_balanced;
8913 }
8914
8915 group = find_busiest_group(&env);
8916 if (!group) {
8917 schedstat_inc(sd->lb_nobusyg[idle]);
8918 goto out_balanced;
8919 }
8920
8921 busiest = find_busiest_queue(&env, group);
8922 if (!busiest) {
8923 schedstat_inc(sd->lb_nobusyq[idle]);
8924 goto out_balanced;
8925 }
8926
8927 BUG_ON(busiest == env.dst_rq);
8928
8929 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8930
8931 env.src_cpu = busiest->cpu;
8932 env.src_rq = busiest;
8933
8934 ld_moved = 0;
8935 if (busiest->nr_running > 1) {
8936 /*
8937 * Attempt to move tasks. If find_busiest_group has found
8938 * an imbalance but busiest->nr_running <= 1, the group is
8939 * still unbalanced. ld_moved simply stays zero, so it is
8940 * correctly treated as an imbalance.
8941 */
8942 env.flags |= LBF_ALL_PINNED;
8943 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8944
8945more_balance:
8946 rq_lock_irqsave(busiest, &rf);
8947 update_rq_clock(busiest);
8948
8949 /*
8950 * cur_ld_moved - load moved in current iteration
8951 * ld_moved - cumulative load moved across iterations
8952 */
8953 cur_ld_moved = detach_tasks(&env);
8954
8955 /*
8956 * We've detached some tasks from busiest_rq. Every
8957 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8958 * unlock busiest->lock, and we are able to be sure
8959 * that nobody can manipulate the tasks in parallel.
8960 * See task_rq_lock() family for the details.
8961 */
8962
8963 rq_unlock(busiest, &rf);
8964
8965 if (cur_ld_moved) {
8966 attach_tasks(&env);
8967 ld_moved += cur_ld_moved;
8968 }
8969
8970 local_irq_restore(rf.flags);
8971
8972 if (env.flags & LBF_NEED_BREAK) {
8973 env.flags &= ~LBF_NEED_BREAK;
8974 goto more_balance;
8975 }
8976
8977 /*
8978 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8979 * us and move them to an alternate dst_cpu in our sched_group
8980 * where they can run. The upper limit on how many times we
8981 * iterate on same src_cpu is dependent on number of CPUs in our
8982 * sched_group.
8983 *
8984 * This changes load balance semantics a bit on who can move
8985 * load to a given_cpu. In addition to the given_cpu itself
8986 * (or a ilb_cpu acting on its behalf where given_cpu is
8987 * nohz-idle), we now have balance_cpu in a position to move
8988 * load to given_cpu. In rare situations, this may cause
8989 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8990 * _independently_ and at _same_ time to move some load to
8991 * given_cpu) causing exceess load to be moved to given_cpu.
8992 * This however should not happen so much in practice and
8993 * moreover subsequent load balance cycles should correct the
8994 * excess load moved.
8995 */
8996 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8997
8998 /* Prevent to re-select dst_cpu via env's CPUs */
David Brazdil0f672f62019-12-10 10:32:29 +00008999 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009000
9001 env.dst_rq = cpu_rq(env.new_dst_cpu);
9002 env.dst_cpu = env.new_dst_cpu;
9003 env.flags &= ~LBF_DST_PINNED;
9004 env.loop = 0;
9005 env.loop_break = sched_nr_migrate_break;
9006
9007 /*
9008 * Go back to "more_balance" rather than "redo" since we
9009 * need to continue with same src_cpu.
9010 */
9011 goto more_balance;
9012 }
9013
9014 /*
9015 * We failed to reach balance because of affinity.
9016 */
9017 if (sd_parent) {
9018 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9019
9020 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9021 *group_imbalance = 1;
9022 }
9023
9024 /* All tasks on this runqueue were pinned by CPU affinity */
9025 if (unlikely(env.flags & LBF_ALL_PINNED)) {
David Brazdil0f672f62019-12-10 10:32:29 +00009026 __cpumask_clear_cpu(cpu_of(busiest), cpus);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009027 /*
9028 * Attempting to continue load balancing at the current
9029 * sched_domain level only makes sense if there are
9030 * active CPUs remaining as possible busiest CPUs to
9031 * pull load from which are not contained within the
9032 * destination group that is receiving any migrated
9033 * load.
9034 */
9035 if (!cpumask_subset(cpus, env.dst_grpmask)) {
9036 env.loop = 0;
9037 env.loop_break = sched_nr_migrate_break;
9038 goto redo;
9039 }
9040 goto out_all_pinned;
9041 }
9042 }
9043
9044 if (!ld_moved) {
9045 schedstat_inc(sd->lb_failed[idle]);
9046 /*
9047 * Increment the failure counter only on periodic balance.
9048 * We do not want newidle balance, which can be very
9049 * frequent, pollute the failure counter causing
9050 * excessive cache_hot migrations and active balances.
9051 */
9052 if (idle != CPU_NEWLY_IDLE)
9053 sd->nr_balance_failed++;
9054
9055 if (need_active_balance(&env)) {
9056 unsigned long flags;
9057
9058 raw_spin_lock_irqsave(&busiest->lock, flags);
9059
9060 /*
9061 * Don't kick the active_load_balance_cpu_stop,
9062 * if the curr task on busiest CPU can't be
9063 * moved to this_cpu:
9064 */
David Brazdil0f672f62019-12-10 10:32:29 +00009065 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009066 raw_spin_unlock_irqrestore(&busiest->lock,
9067 flags);
9068 env.flags |= LBF_ALL_PINNED;
9069 goto out_one_pinned;
9070 }
9071
9072 /*
9073 * ->active_balance synchronizes accesses to
9074 * ->active_balance_work. Once set, it's cleared
9075 * only after active load balance is finished.
9076 */
9077 if (!busiest->active_balance) {
9078 busiest->active_balance = 1;
9079 busiest->push_cpu = this_cpu;
9080 active_balance = 1;
9081 }
9082 raw_spin_unlock_irqrestore(&busiest->lock, flags);
9083
9084 if (active_balance) {
9085 stop_one_cpu_nowait(cpu_of(busiest),
9086 active_load_balance_cpu_stop, busiest,
9087 &busiest->active_balance_work);
9088 }
9089
9090 /* We've kicked active balancing, force task migration. */
9091 sd->nr_balance_failed = sd->cache_nice_tries+1;
9092 }
9093 } else
9094 sd->nr_balance_failed = 0;
9095
David Brazdil0f672f62019-12-10 10:32:29 +00009096 if (likely(!active_balance) || voluntary_active_balance(&env)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009097 /* We were unbalanced, so reset the balancing interval */
9098 sd->balance_interval = sd->min_interval;
9099 } else {
9100 /*
9101 * If we've begun active balancing, start to back off. This
9102 * case may not be covered by the all_pinned logic if there
9103 * is only 1 task on the busy runqueue (because we don't call
9104 * detach_tasks).
9105 */
9106 if (sd->balance_interval < sd->max_interval)
9107 sd->balance_interval *= 2;
9108 }
9109
9110 goto out;
9111
9112out_balanced:
9113 /*
9114 * We reach balance although we may have faced some affinity
David Brazdil0f672f62019-12-10 10:32:29 +00009115 * constraints. Clear the imbalance flag only if other tasks got
9116 * a chance to move and fix the imbalance.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009117 */
David Brazdil0f672f62019-12-10 10:32:29 +00009118 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009119 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9120
9121 if (*group_imbalance)
9122 *group_imbalance = 0;
9123 }
9124
9125out_all_pinned:
9126 /*
9127 * We reach balance because all tasks are pinned at this level so
9128 * we can't migrate them. Let the imbalance flag set so parent level
9129 * can try to migrate them.
9130 */
9131 schedstat_inc(sd->lb_balanced[idle]);
9132
9133 sd->nr_balance_failed = 0;
9134
9135out_one_pinned:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009136 ld_moved = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00009137
9138 /*
9139 * newidle_balance() disregards balance intervals, so we could
9140 * repeatedly reach this code, which would lead to balance_interval
9141 * skyrocketting in a short amount of time. Skip the balance_interval
9142 * increase logic to avoid that.
9143 */
9144 if (env.idle == CPU_NEWLY_IDLE)
9145 goto out;
9146
9147 /* tune up the balancing interval */
9148 if ((env.flags & LBF_ALL_PINNED &&
9149 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9150 sd->balance_interval < sd->max_interval)
9151 sd->balance_interval *= 2;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009152out:
9153 return ld_moved;
9154}
9155
9156static inline unsigned long
9157get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9158{
9159 unsigned long interval = sd->balance_interval;
9160
9161 if (cpu_busy)
9162 interval *= sd->busy_factor;
9163
9164 /* scale ms to jiffies */
9165 interval = msecs_to_jiffies(interval);
9166 interval = clamp(interval, 1UL, max_load_balance_interval);
9167
9168 return interval;
9169}
9170
9171static inline void
9172update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9173{
9174 unsigned long interval, next;
9175
9176 /* used by idle balance, so cpu_busy = 0 */
9177 interval = get_sd_balance_interval(sd, 0);
9178 next = sd->last_balance + interval;
9179
9180 if (time_after(*next_balance, next))
9181 *next_balance = next;
9182}
9183
9184/*
9185 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9186 * running tasks off the busiest CPU onto idle CPUs. It requires at
9187 * least 1 task to be running on each physical CPU where possible, and
9188 * avoids physical / logical imbalances.
9189 */
9190static int active_load_balance_cpu_stop(void *data)
9191{
9192 struct rq *busiest_rq = data;
9193 int busiest_cpu = cpu_of(busiest_rq);
9194 int target_cpu = busiest_rq->push_cpu;
9195 struct rq *target_rq = cpu_rq(target_cpu);
9196 struct sched_domain *sd;
9197 struct task_struct *p = NULL;
9198 struct rq_flags rf;
9199
9200 rq_lock_irq(busiest_rq, &rf);
9201 /*
9202 * Between queueing the stop-work and running it is a hole in which
9203 * CPUs can become inactive. We should not move tasks from or to
9204 * inactive CPUs.
9205 */
9206 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9207 goto out_unlock;
9208
9209 /* Make sure the requested CPU hasn't gone down in the meantime: */
9210 if (unlikely(busiest_cpu != smp_processor_id() ||
9211 !busiest_rq->active_balance))
9212 goto out_unlock;
9213
9214 /* Is there any task to move? */
9215 if (busiest_rq->nr_running <= 1)
9216 goto out_unlock;
9217
9218 /*
9219 * This condition is "impossible", if it occurs
9220 * we need to fix it. Originally reported by
9221 * Bjorn Helgaas on a 128-CPU setup.
9222 */
9223 BUG_ON(busiest_rq == target_rq);
9224
9225 /* Search for an sd spanning us and the target CPU. */
9226 rcu_read_lock();
9227 for_each_domain(target_cpu, sd) {
9228 if ((sd->flags & SD_LOAD_BALANCE) &&
9229 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9230 break;
9231 }
9232
9233 if (likely(sd)) {
9234 struct lb_env env = {
9235 .sd = sd,
9236 .dst_cpu = target_cpu,
9237 .dst_rq = target_rq,
9238 .src_cpu = busiest_rq->cpu,
9239 .src_rq = busiest_rq,
9240 .idle = CPU_IDLE,
9241 /*
9242 * can_migrate_task() doesn't need to compute new_dst_cpu
9243 * for active balancing. Since we have CPU_IDLE, but no
9244 * @dst_grpmask we need to make that test go away with lying
9245 * about DST_PINNED.
9246 */
9247 .flags = LBF_DST_PINNED,
9248 };
9249
9250 schedstat_inc(sd->alb_count);
9251 update_rq_clock(busiest_rq);
9252
9253 p = detach_one_task(&env);
9254 if (p) {
9255 schedstat_inc(sd->alb_pushed);
9256 /* Active balancing done, reset the failure counter. */
9257 sd->nr_balance_failed = 0;
9258 } else {
9259 schedstat_inc(sd->alb_failed);
9260 }
9261 }
9262 rcu_read_unlock();
9263out_unlock:
9264 busiest_rq->active_balance = 0;
9265 rq_unlock(busiest_rq, &rf);
9266
9267 if (p)
9268 attach_one_task(target_rq, p);
9269
9270 local_irq_enable();
9271
9272 return 0;
9273}
9274
9275static DEFINE_SPINLOCK(balancing);
9276
9277/*
9278 * Scale the max load_balance interval with the number of CPUs in the system.
9279 * This trades load-balance latency on larger machines for less cross talk.
9280 */
9281void update_max_interval(void)
9282{
9283 max_load_balance_interval = HZ*num_online_cpus()/10;
9284}
9285
9286/*
9287 * It checks each scheduling domain to see if it is due to be balanced,
9288 * and initiates a balancing operation if so.
9289 *
9290 * Balancing parameters are set up in init_sched_domains.
9291 */
9292static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9293{
9294 int continue_balancing = 1;
9295 int cpu = rq->cpu;
9296 unsigned long interval;
9297 struct sched_domain *sd;
9298 /* Earliest time when we have to do rebalance again */
9299 unsigned long next_balance = jiffies + 60*HZ;
9300 int update_next_balance = 0;
9301 int need_serialize, need_decay = 0;
9302 u64 max_cost = 0;
9303
9304 rcu_read_lock();
9305 for_each_domain(cpu, sd) {
9306 /*
9307 * Decay the newidle max times here because this is a regular
9308 * visit to all the domains. Decay ~1% per second.
9309 */
9310 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9311 sd->max_newidle_lb_cost =
9312 (sd->max_newidle_lb_cost * 253) / 256;
9313 sd->next_decay_max_lb_cost = jiffies + HZ;
9314 need_decay = 1;
9315 }
9316 max_cost += sd->max_newidle_lb_cost;
9317
9318 if (!(sd->flags & SD_LOAD_BALANCE))
9319 continue;
9320
9321 /*
9322 * Stop the load balance at this level. There is another
9323 * CPU in our sched group which is doing load balancing more
9324 * actively.
9325 */
9326 if (!continue_balancing) {
9327 if (need_decay)
9328 continue;
9329 break;
9330 }
9331
9332 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9333
9334 need_serialize = sd->flags & SD_SERIALIZE;
9335 if (need_serialize) {
9336 if (!spin_trylock(&balancing))
9337 goto out;
9338 }
9339
9340 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9341 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9342 /*
9343 * The LBF_DST_PINNED logic could have changed
9344 * env->dst_cpu, so we can't know our idle
9345 * state even if we migrated tasks. Update it.
9346 */
9347 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9348 }
9349 sd->last_balance = jiffies;
9350 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9351 }
9352 if (need_serialize)
9353 spin_unlock(&balancing);
9354out:
9355 if (time_after(next_balance, sd->last_balance + interval)) {
9356 next_balance = sd->last_balance + interval;
9357 update_next_balance = 1;
9358 }
9359 }
9360 if (need_decay) {
9361 /*
9362 * Ensure the rq-wide value also decays but keep it at a
9363 * reasonable floor to avoid funnies with rq->avg_idle.
9364 */
9365 rq->max_idle_balance_cost =
9366 max((u64)sysctl_sched_migration_cost, max_cost);
9367 }
9368 rcu_read_unlock();
9369
9370 /*
9371 * next_balance will be updated only when there is a need.
9372 * When the cpu is attached to null domain for ex, it will not be
9373 * updated.
9374 */
9375 if (likely(update_next_balance)) {
9376 rq->next_balance = next_balance;
9377
9378#ifdef CONFIG_NO_HZ_COMMON
9379 /*
9380 * If this CPU has been elected to perform the nohz idle
9381 * balance. Other idle CPUs have already rebalanced with
9382 * nohz_idle_balance() and nohz.next_balance has been
9383 * updated accordingly. This CPU is now running the idle load
9384 * balance for itself and we need to update the
9385 * nohz.next_balance accordingly.
9386 */
9387 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9388 nohz.next_balance = rq->next_balance;
9389#endif
9390 }
9391}
9392
9393static inline int on_null_domain(struct rq *rq)
9394{
9395 return unlikely(!rcu_dereference_sched(rq->sd));
9396}
9397
9398#ifdef CONFIG_NO_HZ_COMMON
9399/*
9400 * idle load balancing details
9401 * - When one of the busy CPUs notice that there may be an idle rebalancing
9402 * needed, they will kick the idle load balancer, which then does idle
9403 * load balancing for all the idle CPUs.
David Brazdil0f672f62019-12-10 10:32:29 +00009404 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9405 * anywhere yet.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009406 */
9407
9408static inline int find_new_ilb(void)
9409{
David Brazdil0f672f62019-12-10 10:32:29 +00009410 int ilb;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009411
David Brazdil0f672f62019-12-10 10:32:29 +00009412 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
9413 housekeeping_cpumask(HK_FLAG_MISC)) {
9414 if (idle_cpu(ilb))
9415 return ilb;
9416 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009417
9418 return nr_cpu_ids;
9419}
9420
9421/*
David Brazdil0f672f62019-12-10 10:32:29 +00009422 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
9423 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009424 */
9425static void kick_ilb(unsigned int flags)
9426{
9427 int ilb_cpu;
9428
Olivier Deprez0e641232021-09-23 10:07:05 +02009429 /*
9430 * Increase nohz.next_balance only when if full ilb is triggered but
9431 * not if we only update stats.
9432 */
9433 if (flags & NOHZ_BALANCE_KICK)
9434 nohz.next_balance = jiffies+1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009435
9436 ilb_cpu = find_new_ilb();
9437
9438 if (ilb_cpu >= nr_cpu_ids)
9439 return;
9440
9441 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9442 if (flags & NOHZ_KICK_MASK)
9443 return;
9444
9445 /*
9446 * Use smp_send_reschedule() instead of resched_cpu().
9447 * This way we generate a sched IPI on the target CPU which
9448 * is idle. And the softirq performing nohz idle load balance
9449 * will be run before returning from the IPI.
9450 */
9451 smp_send_reschedule(ilb_cpu);
9452}
9453
9454/*
David Brazdil0f672f62019-12-10 10:32:29 +00009455 * Current decision point for kicking the idle load balancer in the presence
9456 * of idle CPUs in the system.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009457 */
9458static void nohz_balancer_kick(struct rq *rq)
9459{
9460 unsigned long now = jiffies;
9461 struct sched_domain_shared *sds;
9462 struct sched_domain *sd;
9463 int nr_busy, i, cpu = rq->cpu;
9464 unsigned int flags = 0;
9465
9466 if (unlikely(rq->idle_balance))
9467 return;
9468
9469 /*
9470 * We may be recently in ticked or tickless idle mode. At the first
9471 * busy tick after returning from idle, we will update the busy stats.
9472 */
9473 nohz_balance_exit_idle(rq);
9474
9475 /*
9476 * None are in tickless mode and hence no need for NOHZ idle load
9477 * balancing.
9478 */
9479 if (likely(!atomic_read(&nohz.nr_cpus)))
9480 return;
9481
9482 if (READ_ONCE(nohz.has_blocked) &&
9483 time_after(now, READ_ONCE(nohz.next_blocked)))
9484 flags = NOHZ_STATS_KICK;
9485
9486 if (time_before(now, nohz.next_balance))
9487 goto out;
9488
9489 if (rq->nr_running >= 2) {
9490 flags = NOHZ_KICK_MASK;
9491 goto out;
9492 }
9493
9494 rcu_read_lock();
David Brazdil0f672f62019-12-10 10:32:29 +00009495
9496 sd = rcu_dereference(rq->sd);
9497 if (sd) {
9498 /*
9499 * If there's a CFS task and the current CPU has reduced
9500 * capacity; kick the ILB to see if there's a better CPU to run
9501 * on.
9502 */
9503 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
9504 flags = NOHZ_KICK_MASK;
9505 goto unlock;
9506 }
9507 }
9508
9509 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
9510 if (sd) {
9511 /*
9512 * When ASYM_PACKING; see if there's a more preferred CPU
9513 * currently idle; in which case, kick the ILB to move tasks
9514 * around.
9515 */
9516 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
9517 if (sched_asym_prefer(i, cpu)) {
9518 flags = NOHZ_KICK_MASK;
9519 goto unlock;
9520 }
9521 }
9522 }
9523
9524 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
9525 if (sd) {
9526 /*
9527 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
9528 * to run the misfit task on.
9529 */
9530 if (check_misfit_status(rq, sd)) {
9531 flags = NOHZ_KICK_MASK;
9532 goto unlock;
9533 }
9534
9535 /*
9536 * For asymmetric systems, we do not want to nicely balance
9537 * cache use, instead we want to embrace asymmetry and only
9538 * ensure tasks have enough CPU capacity.
9539 *
9540 * Skip the LLC logic because it's not relevant in that case.
9541 */
9542 goto unlock;
9543 }
9544
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009545 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9546 if (sds) {
9547 /*
David Brazdil0f672f62019-12-10 10:32:29 +00009548 * If there is an imbalance between LLC domains (IOW we could
9549 * increase the overall cache use), we need some less-loaded LLC
9550 * domain to pull some load. Likewise, we may need to spread
9551 * load within the current LLC domain (e.g. packed SMT cores but
9552 * other CPUs are idle). We can't really know from here how busy
9553 * the others are - so just get a nohz balance going if it looks
9554 * like this LLC domain has tasks we could move.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009555 */
9556 nr_busy = atomic_read(&sds->nr_busy_cpus);
9557 if (nr_busy > 1) {
9558 flags = NOHZ_KICK_MASK;
9559 goto unlock;
9560 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009561 }
9562unlock:
9563 rcu_read_unlock();
9564out:
9565 if (flags)
9566 kick_ilb(flags);
9567}
9568
9569static void set_cpu_sd_state_busy(int cpu)
9570{
9571 struct sched_domain *sd;
9572
9573 rcu_read_lock();
9574 sd = rcu_dereference(per_cpu(sd_llc, cpu));
9575
9576 if (!sd || !sd->nohz_idle)
9577 goto unlock;
9578 sd->nohz_idle = 0;
9579
9580 atomic_inc(&sd->shared->nr_busy_cpus);
9581unlock:
9582 rcu_read_unlock();
9583}
9584
9585void nohz_balance_exit_idle(struct rq *rq)
9586{
9587 SCHED_WARN_ON(rq != this_rq());
9588
9589 if (likely(!rq->nohz_tick_stopped))
9590 return;
9591
9592 rq->nohz_tick_stopped = 0;
9593 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9594 atomic_dec(&nohz.nr_cpus);
9595
9596 set_cpu_sd_state_busy(rq->cpu);
9597}
9598
9599static void set_cpu_sd_state_idle(int cpu)
9600{
9601 struct sched_domain *sd;
9602
9603 rcu_read_lock();
9604 sd = rcu_dereference(per_cpu(sd_llc, cpu));
9605
9606 if (!sd || sd->nohz_idle)
9607 goto unlock;
9608 sd->nohz_idle = 1;
9609
9610 atomic_dec(&sd->shared->nr_busy_cpus);
9611unlock:
9612 rcu_read_unlock();
9613}
9614
9615/*
9616 * This routine will record that the CPU is going idle with tick stopped.
9617 * This info will be used in performing idle load balancing in the future.
9618 */
9619void nohz_balance_enter_idle(int cpu)
9620{
9621 struct rq *rq = cpu_rq(cpu);
9622
9623 SCHED_WARN_ON(cpu != smp_processor_id());
9624
9625 /* If this CPU is going down, then nothing needs to be done: */
9626 if (!cpu_active(cpu))
9627 return;
9628
9629 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
9630 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9631 return;
9632
9633 /*
9634 * Can be set safely without rq->lock held
9635 * If a clear happens, it will have evaluated last additions because
9636 * rq->lock is held during the check and the clear
9637 */
9638 rq->has_blocked_load = 1;
9639
9640 /*
9641 * The tick is still stopped but load could have been added in the
9642 * meantime. We set the nohz.has_blocked flag to trig a check of the
9643 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9644 * of nohz.has_blocked can only happen after checking the new load
9645 */
9646 if (rq->nohz_tick_stopped)
9647 goto out;
9648
9649 /* If we're a completely isolated CPU, we don't play: */
9650 if (on_null_domain(rq))
9651 return;
9652
9653 rq->nohz_tick_stopped = 1;
9654
9655 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9656 atomic_inc(&nohz.nr_cpus);
9657
9658 /*
9659 * Ensures that if nohz_idle_balance() fails to observe our
9660 * @idle_cpus_mask store, it must observe the @has_blocked
9661 * store.
9662 */
9663 smp_mb__after_atomic();
9664
9665 set_cpu_sd_state_idle(cpu);
9666
9667out:
9668 /*
9669 * Each time a cpu enter idle, we assume that it has blocked load and
9670 * enable the periodic update of the load of idle cpus
9671 */
9672 WRITE_ONCE(nohz.has_blocked, 1);
9673}
9674
9675/*
9676 * Internal function that runs load balance for all idle cpus. The load balance
9677 * can be a simple update of blocked load or a complete load balance with
9678 * tasks movement depending of flags.
9679 * The function returns false if the loop has stopped before running
9680 * through all idle CPUs.
9681 */
9682static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9683 enum cpu_idle_type idle)
9684{
9685 /* Earliest time when we have to do rebalance again */
9686 unsigned long now = jiffies;
9687 unsigned long next_balance = now + 60*HZ;
9688 bool has_blocked_load = false;
9689 int update_next_balance = 0;
9690 int this_cpu = this_rq->cpu;
9691 int balance_cpu;
9692 int ret = false;
9693 struct rq *rq;
9694
9695 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9696
9697 /*
9698 * We assume there will be no idle load after this update and clear
9699 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9700 * set the has_blocked flag and trig another update of idle load.
9701 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9702 * setting the flag, we are sure to not clear the state and not
9703 * check the load of an idle cpu.
9704 */
9705 WRITE_ONCE(nohz.has_blocked, 0);
9706
9707 /*
9708 * Ensures that if we miss the CPU, we must see the has_blocked
9709 * store from nohz_balance_enter_idle().
9710 */
9711 smp_mb();
9712
9713 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9714 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9715 continue;
9716
9717 /*
9718 * If this CPU gets work to do, stop the load balancing
9719 * work being done for other CPUs. Next load
9720 * balancing owner will pick it up.
9721 */
9722 if (need_resched()) {
9723 has_blocked_load = true;
9724 goto abort;
9725 }
9726
9727 rq = cpu_rq(balance_cpu);
9728
9729 has_blocked_load |= update_nohz_stats(rq, true);
9730
9731 /*
9732 * If time for next balance is due,
9733 * do the balance.
9734 */
9735 if (time_after_eq(jiffies, rq->next_balance)) {
9736 struct rq_flags rf;
9737
9738 rq_lock_irqsave(rq, &rf);
9739 update_rq_clock(rq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009740 rq_unlock_irqrestore(rq, &rf);
9741
9742 if (flags & NOHZ_BALANCE_KICK)
9743 rebalance_domains(rq, CPU_IDLE);
9744 }
9745
9746 if (time_after(next_balance, rq->next_balance)) {
9747 next_balance = rq->next_balance;
9748 update_next_balance = 1;
9749 }
9750 }
9751
Olivier Deprez0e641232021-09-23 10:07:05 +02009752 /*
9753 * next_balance will be updated only when there is a need.
9754 * When the CPU is attached to null domain for ex, it will not be
9755 * updated.
9756 */
9757 if (likely(update_next_balance))
9758 nohz.next_balance = next_balance;
9759
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009760 /* Newly idle CPU doesn't need an update */
9761 if (idle != CPU_NEWLY_IDLE) {
9762 update_blocked_averages(this_cpu);
9763 has_blocked_load |= this_rq->has_blocked_load;
9764 }
9765
9766 if (flags & NOHZ_BALANCE_KICK)
9767 rebalance_domains(this_rq, CPU_IDLE);
9768
9769 WRITE_ONCE(nohz.next_blocked,
9770 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9771
9772 /* The full idle balance loop has been done */
9773 ret = true;
9774
9775abort:
9776 /* There is still blocked load, enable periodic update */
9777 if (has_blocked_load)
9778 WRITE_ONCE(nohz.has_blocked, 1);
9779
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009780 return ret;
9781}
9782
9783/*
9784 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9785 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9786 */
9787static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9788{
9789 int this_cpu = this_rq->cpu;
9790 unsigned int flags;
9791
9792 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9793 return false;
9794
9795 if (idle != CPU_IDLE) {
9796 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9797 return false;
9798 }
9799
David Brazdil0f672f62019-12-10 10:32:29 +00009800 /* could be _relaxed() */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009801 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9802 if (!(flags & NOHZ_KICK_MASK))
9803 return false;
9804
9805 _nohz_idle_balance(this_rq, flags, idle);
9806
9807 return true;
9808}
9809
9810static void nohz_newidle_balance(struct rq *this_rq)
9811{
9812 int this_cpu = this_rq->cpu;
9813
9814 /*
9815 * This CPU doesn't want to be disturbed by scheduler
9816 * housekeeping
9817 */
9818 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9819 return;
9820
9821 /* Will wake up very soon. No time for doing anything else*/
9822 if (this_rq->avg_idle < sysctl_sched_migration_cost)
9823 return;
9824
9825 /* Don't need to update blocked load of idle CPUs*/
9826 if (!READ_ONCE(nohz.has_blocked) ||
9827 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9828 return;
9829
9830 raw_spin_unlock(&this_rq->lock);
9831 /*
9832 * This CPU is going to be idle and blocked load of idle CPUs
9833 * need to be updated. Run the ilb locally as it is a good
9834 * candidate for ilb instead of waking up another idle CPU.
9835 * Kick an normal ilb if we failed to do the update.
9836 */
9837 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9838 kick_ilb(NOHZ_STATS_KICK);
9839 raw_spin_lock(&this_rq->lock);
9840}
9841
9842#else /* !CONFIG_NO_HZ_COMMON */
9843static inline void nohz_balancer_kick(struct rq *rq) { }
9844
9845static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9846{
9847 return false;
9848}
9849
9850static inline void nohz_newidle_balance(struct rq *this_rq) { }
9851#endif /* CONFIG_NO_HZ_COMMON */
9852
9853/*
9854 * idle_balance is called by schedule() if this_cpu is about to become
9855 * idle. Attempts to pull tasks from other CPUs.
9856 */
David Brazdil0f672f62019-12-10 10:32:29 +00009857int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009858{
9859 unsigned long next_balance = jiffies + HZ;
9860 int this_cpu = this_rq->cpu;
9861 struct sched_domain *sd;
9862 int pulled_task = 0;
9863 u64 curr_cost = 0;
9864
David Brazdil0f672f62019-12-10 10:32:29 +00009865 update_misfit_status(NULL, this_rq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009866 /*
9867 * We must set idle_stamp _before_ calling idle_balance(), such that we
9868 * measure the duration of idle_balance() as idle time.
9869 */
9870 this_rq->idle_stamp = rq_clock(this_rq);
9871
9872 /*
9873 * Do not pull tasks towards !active CPUs...
9874 */
9875 if (!cpu_active(this_cpu))
9876 return 0;
9877
9878 /*
9879 * This is OK, because current is on_cpu, which avoids it being picked
9880 * for load-balance and preemption/IRQs are still disabled avoiding
9881 * further scheduler activity on it and we're being very careful to
9882 * re-start the picking loop.
9883 */
9884 rq_unpin_lock(this_rq, rf);
9885
9886 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
David Brazdil0f672f62019-12-10 10:32:29 +00009887 !READ_ONCE(this_rq->rd->overload)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009888
9889 rcu_read_lock();
9890 sd = rcu_dereference_check_sched_domain(this_rq->sd);
9891 if (sd)
9892 update_next_balance(sd, &next_balance);
9893 rcu_read_unlock();
9894
9895 nohz_newidle_balance(this_rq);
9896
9897 goto out;
9898 }
9899
9900 raw_spin_unlock(&this_rq->lock);
9901
9902 update_blocked_averages(this_cpu);
9903 rcu_read_lock();
9904 for_each_domain(this_cpu, sd) {
9905 int continue_balancing = 1;
9906 u64 t0, domain_cost;
9907
9908 if (!(sd->flags & SD_LOAD_BALANCE))
9909 continue;
9910
9911 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9912 update_next_balance(sd, &next_balance);
9913 break;
9914 }
9915
9916 if (sd->flags & SD_BALANCE_NEWIDLE) {
9917 t0 = sched_clock_cpu(this_cpu);
9918
9919 pulled_task = load_balance(this_cpu, this_rq,
9920 sd, CPU_NEWLY_IDLE,
9921 &continue_balancing);
9922
9923 domain_cost = sched_clock_cpu(this_cpu) - t0;
9924 if (domain_cost > sd->max_newidle_lb_cost)
9925 sd->max_newidle_lb_cost = domain_cost;
9926
9927 curr_cost += domain_cost;
9928 }
9929
9930 update_next_balance(sd, &next_balance);
9931
9932 /*
9933 * Stop searching for tasks to pull if there are
9934 * now runnable tasks on this rq.
9935 */
9936 if (pulled_task || this_rq->nr_running > 0)
9937 break;
9938 }
9939 rcu_read_unlock();
9940
9941 raw_spin_lock(&this_rq->lock);
9942
9943 if (curr_cost > this_rq->max_idle_balance_cost)
9944 this_rq->max_idle_balance_cost = curr_cost;
9945
9946out:
9947 /*
9948 * While browsing the domains, we released the rq lock, a task could
9949 * have been enqueued in the meantime. Since we're not going idle,
9950 * pretend we pulled a task.
9951 */
9952 if (this_rq->cfs.h_nr_running && !pulled_task)
9953 pulled_task = 1;
9954
9955 /* Move the next balance forward */
9956 if (time_after(this_rq->next_balance, next_balance))
9957 this_rq->next_balance = next_balance;
9958
9959 /* Is there a task of a high priority class? */
9960 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9961 pulled_task = -1;
9962
9963 if (pulled_task)
9964 this_rq->idle_stamp = 0;
9965
9966 rq_repin_lock(this_rq, rf);
9967
9968 return pulled_task;
9969}
9970
9971/*
9972 * run_rebalance_domains is triggered when needed from the scheduler tick.
9973 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9974 */
9975static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9976{
9977 struct rq *this_rq = this_rq();
9978 enum cpu_idle_type idle = this_rq->idle_balance ?
9979 CPU_IDLE : CPU_NOT_IDLE;
9980
9981 /*
9982 * If this CPU has a pending nohz_balance_kick, then do the
9983 * balancing on behalf of the other idle CPUs whose ticks are
9984 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9985 * give the idle CPUs a chance to load balance. Else we may
9986 * load balance only within the local sched_domain hierarchy
9987 * and abort nohz_idle_balance altogether if we pull some load.
9988 */
9989 if (nohz_idle_balance(this_rq, idle))
9990 return;
9991
9992 /* normal load balance */
9993 update_blocked_averages(this_rq->cpu);
9994 rebalance_domains(this_rq, idle);
9995}
9996
9997/*
9998 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9999 */
10000void trigger_load_balance(struct rq *rq)
10001{
10002 /* Don't need to rebalance while attached to NULL domain */
10003 if (unlikely(on_null_domain(rq)))
10004 return;
10005
10006 if (time_after_eq(jiffies, rq->next_balance))
10007 raise_softirq(SCHED_SOFTIRQ);
10008
10009 nohz_balancer_kick(rq);
10010}
10011
10012static void rq_online_fair(struct rq *rq)
10013{
10014 update_sysctl();
10015
10016 update_runtime_enabled(rq);
10017}
10018
10019static void rq_offline_fair(struct rq *rq)
10020{
10021 update_sysctl();
10022
10023 /* Ensure any throttled groups are reachable by pick_next_task */
10024 unthrottle_offline_cfs_rqs(rq);
10025}
10026
10027#endif /* CONFIG_SMP */
10028
10029/*
10030 * scheduler tick hitting a task of our scheduling class.
10031 *
10032 * NOTE: This function can be called remotely by the tick offload that
10033 * goes along full dynticks. Therefore no local assumption can be made
10034 * and everything must be accessed through the @rq and @curr passed in
10035 * parameters.
10036 */
10037static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10038{
10039 struct cfs_rq *cfs_rq;
10040 struct sched_entity *se = &curr->se;
10041
10042 for_each_sched_entity(se) {
10043 cfs_rq = cfs_rq_of(se);
10044 entity_tick(cfs_rq, se, queued);
10045 }
10046
10047 if (static_branch_unlikely(&sched_numa_balancing))
10048 task_tick_numa(rq, curr);
David Brazdil0f672f62019-12-10 10:32:29 +000010049
10050 update_misfit_status(curr, rq);
10051 update_overutilized_status(task_rq(curr));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010052}
10053
10054/*
10055 * called on fork with the child task as argument from the parent's context
10056 * - child not yet on the tasklist
10057 * - preemption disabled
10058 */
10059static void task_fork_fair(struct task_struct *p)
10060{
10061 struct cfs_rq *cfs_rq;
10062 struct sched_entity *se = &p->se, *curr;
10063 struct rq *rq = this_rq();
10064 struct rq_flags rf;
10065
10066 rq_lock(rq, &rf);
10067 update_rq_clock(rq);
10068
10069 cfs_rq = task_cfs_rq(current);
10070 curr = cfs_rq->curr;
10071 if (curr) {
10072 update_curr(cfs_rq);
10073 se->vruntime = curr->vruntime;
10074 }
10075 place_entity(cfs_rq, se, 1);
10076
10077 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10078 /*
10079 * Upon rescheduling, sched_class::put_prev_task() will place
10080 * 'current' within the tree based on its new key value.
10081 */
10082 swap(curr->vruntime, se->vruntime);
10083 resched_curr(rq);
10084 }
10085
10086 se->vruntime -= cfs_rq->min_vruntime;
10087 rq_unlock(rq, &rf);
10088}
10089
10090/*
10091 * Priority of the task has changed. Check to see if we preempt
10092 * the current task.
10093 */
10094static void
10095prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10096{
10097 if (!task_on_rq_queued(p))
10098 return;
10099
10100 /*
10101 * Reschedule if we are currently running on this runqueue and
10102 * our priority decreased, or if we are not currently running on
10103 * this runqueue and our priority is higher than the current's
10104 */
10105 if (rq->curr == p) {
10106 if (p->prio > oldprio)
10107 resched_curr(rq);
10108 } else
10109 check_preempt_curr(rq, p, 0);
10110}
10111
10112static inline bool vruntime_normalized(struct task_struct *p)
10113{
10114 struct sched_entity *se = &p->se;
10115
10116 /*
10117 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10118 * the dequeue_entity(.flags=0) will already have normalized the
10119 * vruntime.
10120 */
10121 if (p->on_rq)
10122 return true;
10123
10124 /*
10125 * When !on_rq, vruntime of the task has usually NOT been normalized.
10126 * But there are some cases where it has already been normalized:
10127 *
10128 * - A forked child which is waiting for being woken up by
10129 * wake_up_new_task().
10130 * - A task which has been woken up by try_to_wake_up() and
10131 * waiting for actually being woken up by sched_ttwu_pending().
10132 */
10133 if (!se->sum_exec_runtime ||
10134 (p->state == TASK_WAKING && p->sched_remote_wakeup))
10135 return true;
10136
10137 return false;
10138}
10139
10140#ifdef CONFIG_FAIR_GROUP_SCHED
10141/*
10142 * Propagate the changes of the sched_entity across the tg tree to make it
10143 * visible to the root
10144 */
10145static void propagate_entity_cfs_rq(struct sched_entity *se)
10146{
10147 struct cfs_rq *cfs_rq;
10148
Olivier Deprez0e641232021-09-23 10:07:05 +020010149 list_add_leaf_cfs_rq(cfs_rq_of(se));
10150
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010151 /* Start to propagate at parent */
10152 se = se->parent;
10153
10154 for_each_sched_entity(se) {
10155 cfs_rq = cfs_rq_of(se);
10156
Olivier Deprez0e641232021-09-23 10:07:05 +020010157 if (!cfs_rq_throttled(cfs_rq)){
10158 update_load_avg(cfs_rq, se, UPDATE_TG);
10159 list_add_leaf_cfs_rq(cfs_rq);
10160 continue;
10161 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010162
Olivier Deprez0e641232021-09-23 10:07:05 +020010163 if (list_add_leaf_cfs_rq(cfs_rq))
10164 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010165 }
10166}
10167#else
10168static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10169#endif
10170
10171static void detach_entity_cfs_rq(struct sched_entity *se)
10172{
10173 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10174
10175 /* Catch up with the cfs_rq and remove our load when we leave */
10176 update_load_avg(cfs_rq, se, 0);
10177 detach_entity_load_avg(cfs_rq, se);
10178 update_tg_load_avg(cfs_rq, false);
10179 propagate_entity_cfs_rq(se);
10180}
10181
10182static void attach_entity_cfs_rq(struct sched_entity *se)
10183{
10184 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10185
10186#ifdef CONFIG_FAIR_GROUP_SCHED
10187 /*
10188 * Since the real-depth could have been changed (only FAIR
10189 * class maintain depth value), reset depth properly.
10190 */
10191 se->depth = se->parent ? se->parent->depth + 1 : 0;
10192#endif
10193
10194 /* Synchronize entity with its cfs_rq */
10195 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10196 attach_entity_load_avg(cfs_rq, se, 0);
10197 update_tg_load_avg(cfs_rq, false);
10198 propagate_entity_cfs_rq(se);
10199}
10200
10201static void detach_task_cfs_rq(struct task_struct *p)
10202{
10203 struct sched_entity *se = &p->se;
10204 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10205
10206 if (!vruntime_normalized(p)) {
10207 /*
10208 * Fix up our vruntime so that the current sleep doesn't
10209 * cause 'unlimited' sleep bonus.
10210 */
10211 place_entity(cfs_rq, se, 0);
10212 se->vruntime -= cfs_rq->min_vruntime;
10213 }
10214
10215 detach_entity_cfs_rq(se);
10216}
10217
10218static void attach_task_cfs_rq(struct task_struct *p)
10219{
10220 struct sched_entity *se = &p->se;
10221 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10222
10223 attach_entity_cfs_rq(se);
10224
10225 if (!vruntime_normalized(p))
10226 se->vruntime += cfs_rq->min_vruntime;
10227}
10228
10229static void switched_from_fair(struct rq *rq, struct task_struct *p)
10230{
10231 detach_task_cfs_rq(p);
10232}
10233
10234static void switched_to_fair(struct rq *rq, struct task_struct *p)
10235{
10236 attach_task_cfs_rq(p);
10237
10238 if (task_on_rq_queued(p)) {
10239 /*
10240 * We were most likely switched from sched_rt, so
10241 * kick off the schedule if running, otherwise just see
10242 * if we can still preempt the current task.
10243 */
10244 if (rq->curr == p)
10245 resched_curr(rq);
10246 else
10247 check_preempt_curr(rq, p, 0);
10248 }
10249}
10250
10251/* Account for a task changing its policy or group.
10252 *
10253 * This routine is mostly called to set cfs_rq->curr field when a task
10254 * migrates between groups/classes.
10255 */
Olivier Deprez0e641232021-09-23 10:07:05 +020010256static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010257{
David Brazdil0f672f62019-12-10 10:32:29 +000010258 struct sched_entity *se = &p->se;
10259
10260#ifdef CONFIG_SMP
10261 if (task_on_rq_queued(p)) {
10262 /*
10263 * Move the next running task to the front of the list, so our
10264 * cfs_tasks list becomes MRU one.
10265 */
10266 list_move(&se->group_node, &rq->cfs_tasks);
10267 }
10268#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010269
10270 for_each_sched_entity(se) {
10271 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10272
10273 set_next_entity(cfs_rq, se);
10274 /* ensure bandwidth has been allocated on our new cfs_rq */
10275 account_cfs_rq_runtime(cfs_rq, 0);
10276 }
10277}
10278
10279void init_cfs_rq(struct cfs_rq *cfs_rq)
10280{
10281 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10282 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10283#ifndef CONFIG_64BIT
10284 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10285#endif
10286#ifdef CONFIG_SMP
10287 raw_spin_lock_init(&cfs_rq->removed.lock);
10288#endif
10289}
10290
10291#ifdef CONFIG_FAIR_GROUP_SCHED
10292static void task_set_group_fair(struct task_struct *p)
10293{
10294 struct sched_entity *se = &p->se;
10295
10296 set_task_rq(p, task_cpu(p));
10297 se->depth = se->parent ? se->parent->depth + 1 : 0;
10298}
10299
10300static void task_move_group_fair(struct task_struct *p)
10301{
10302 detach_task_cfs_rq(p);
10303 set_task_rq(p, task_cpu(p));
10304
10305#ifdef CONFIG_SMP
10306 /* Tell se's cfs_rq has been changed -- migrated */
10307 p->se.avg.last_update_time = 0;
10308#endif
10309 attach_task_cfs_rq(p);
10310}
10311
10312static void task_change_group_fair(struct task_struct *p, int type)
10313{
10314 switch (type) {
10315 case TASK_SET_GROUP:
10316 task_set_group_fair(p);
10317 break;
10318
10319 case TASK_MOVE_GROUP:
10320 task_move_group_fair(p);
10321 break;
10322 }
10323}
10324
10325void free_fair_sched_group(struct task_group *tg)
10326{
10327 int i;
10328
10329 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10330
10331 for_each_possible_cpu(i) {
10332 if (tg->cfs_rq)
10333 kfree(tg->cfs_rq[i]);
10334 if (tg->se)
10335 kfree(tg->se[i]);
10336 }
10337
10338 kfree(tg->cfs_rq);
10339 kfree(tg->se);
10340}
10341
10342int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10343{
10344 struct sched_entity *se;
10345 struct cfs_rq *cfs_rq;
10346 int i;
10347
10348 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10349 if (!tg->cfs_rq)
10350 goto err;
10351 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10352 if (!tg->se)
10353 goto err;
10354
10355 tg->shares = NICE_0_LOAD;
10356
10357 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10358
10359 for_each_possible_cpu(i) {
10360 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10361 GFP_KERNEL, cpu_to_node(i));
10362 if (!cfs_rq)
10363 goto err;
10364
10365 se = kzalloc_node(sizeof(struct sched_entity),
10366 GFP_KERNEL, cpu_to_node(i));
10367 if (!se)
10368 goto err_free_rq;
10369
10370 init_cfs_rq(cfs_rq);
10371 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10372 init_entity_runnable_average(se);
10373 }
10374
10375 return 1;
10376
10377err_free_rq:
10378 kfree(cfs_rq);
10379err:
10380 return 0;
10381}
10382
10383void online_fair_sched_group(struct task_group *tg)
10384{
10385 struct sched_entity *se;
David Brazdil0f672f62019-12-10 10:32:29 +000010386 struct rq_flags rf;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010387 struct rq *rq;
10388 int i;
10389
10390 for_each_possible_cpu(i) {
10391 rq = cpu_rq(i);
10392 se = tg->se[i];
David Brazdil0f672f62019-12-10 10:32:29 +000010393 rq_lock_irq(rq, &rf);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010394 update_rq_clock(rq);
10395 attach_entity_cfs_rq(se);
10396 sync_throttle(tg, i);
David Brazdil0f672f62019-12-10 10:32:29 +000010397 rq_unlock_irq(rq, &rf);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010398 }
10399}
10400
10401void unregister_fair_sched_group(struct task_group *tg)
10402{
10403 unsigned long flags;
10404 struct rq *rq;
10405 int cpu;
10406
10407 for_each_possible_cpu(cpu) {
10408 if (tg->se[cpu])
10409 remove_entity_load_avg(tg->se[cpu]);
10410
10411 /*
10412 * Only empty task groups can be destroyed; so we can speculatively
10413 * check on_list without danger of it being re-added.
10414 */
10415 if (!tg->cfs_rq[cpu]->on_list)
10416 continue;
10417
10418 rq = cpu_rq(cpu);
10419
10420 raw_spin_lock_irqsave(&rq->lock, flags);
10421 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10422 raw_spin_unlock_irqrestore(&rq->lock, flags);
10423 }
10424}
10425
10426void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10427 struct sched_entity *se, int cpu,
10428 struct sched_entity *parent)
10429{
10430 struct rq *rq = cpu_rq(cpu);
10431
10432 cfs_rq->tg = tg;
10433 cfs_rq->rq = rq;
10434 init_cfs_rq_runtime(cfs_rq);
10435
10436 tg->cfs_rq[cpu] = cfs_rq;
10437 tg->se[cpu] = se;
10438
10439 /* se could be NULL for root_task_group */
10440 if (!se)
10441 return;
10442
10443 if (!parent) {
10444 se->cfs_rq = &rq->cfs;
10445 se->depth = 0;
10446 } else {
10447 se->cfs_rq = parent->my_q;
10448 se->depth = parent->depth + 1;
10449 }
10450
10451 se->my_q = cfs_rq;
10452 /* guarantee group entities always have weight */
10453 update_load_set(&se->load, NICE_0_LOAD);
10454 se->parent = parent;
10455}
10456
10457static DEFINE_MUTEX(shares_mutex);
10458
10459int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10460{
10461 int i;
10462
10463 /*
10464 * We can't change the weight of the root cgroup.
10465 */
10466 if (!tg->se[0])
10467 return -EINVAL;
10468
10469 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10470
10471 mutex_lock(&shares_mutex);
10472 if (tg->shares == shares)
10473 goto done;
10474
10475 tg->shares = shares;
10476 for_each_possible_cpu(i) {
10477 struct rq *rq = cpu_rq(i);
10478 struct sched_entity *se = tg->se[i];
10479 struct rq_flags rf;
10480
10481 /* Propagate contribution to hierarchy */
10482 rq_lock_irqsave(rq, &rf);
10483 update_rq_clock(rq);
10484 for_each_sched_entity(se) {
10485 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10486 update_cfs_group(se);
10487 }
10488 rq_unlock_irqrestore(rq, &rf);
10489 }
10490
10491done:
10492 mutex_unlock(&shares_mutex);
10493 return 0;
10494}
10495#else /* CONFIG_FAIR_GROUP_SCHED */
10496
10497void free_fair_sched_group(struct task_group *tg) { }
10498
10499int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10500{
10501 return 1;
10502}
10503
10504void online_fair_sched_group(struct task_group *tg) { }
10505
10506void unregister_fair_sched_group(struct task_group *tg) { }
10507
10508#endif /* CONFIG_FAIR_GROUP_SCHED */
10509
10510
10511static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10512{
10513 struct sched_entity *se = &task->se;
10514 unsigned int rr_interval = 0;
10515
10516 /*
10517 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10518 * idle runqueue:
10519 */
10520 if (rq->cfs.load.weight)
10521 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10522
10523 return rr_interval;
10524}
10525
10526/*
10527 * All the scheduling class methods:
10528 */
10529const struct sched_class fair_sched_class = {
10530 .next = &idle_sched_class,
10531 .enqueue_task = enqueue_task_fair,
10532 .dequeue_task = dequeue_task_fair,
10533 .yield_task = yield_task_fair,
10534 .yield_to_task = yield_to_task_fair,
10535
10536 .check_preempt_curr = check_preempt_wakeup,
10537
10538 .pick_next_task = pick_next_task_fair,
10539 .put_prev_task = put_prev_task_fair,
David Brazdil0f672f62019-12-10 10:32:29 +000010540 .set_next_task = set_next_task_fair,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010541
10542#ifdef CONFIG_SMP
David Brazdil0f672f62019-12-10 10:32:29 +000010543 .balance = balance_fair,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010544 .select_task_rq = select_task_rq_fair,
10545 .migrate_task_rq = migrate_task_rq_fair,
10546
10547 .rq_online = rq_online_fair,
10548 .rq_offline = rq_offline_fair,
10549
10550 .task_dead = task_dead_fair,
10551 .set_cpus_allowed = set_cpus_allowed_common,
10552#endif
10553
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010554 .task_tick = task_tick_fair,
10555 .task_fork = task_fork_fair,
10556
10557 .prio_changed = prio_changed_fair,
10558 .switched_from = switched_from_fair,
10559 .switched_to = switched_to_fair,
10560
10561 .get_rr_interval = get_rr_interval_fair,
10562
10563 .update_curr = update_curr_fair,
10564
10565#ifdef CONFIG_FAIR_GROUP_SCHED
10566 .task_change_group = task_change_group_fair,
10567#endif
David Brazdil0f672f62019-12-10 10:32:29 +000010568
10569#ifdef CONFIG_UCLAMP_TASK
10570 .uclamp_enabled = 1,
10571#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010572};
10573
10574#ifdef CONFIG_SCHED_DEBUG
10575void print_cfs_stats(struct seq_file *m, int cpu)
10576{
10577 struct cfs_rq *cfs_rq, *pos;
10578
10579 rcu_read_lock();
10580 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10581 print_cfs_rq(m, cpu, cfs_rq);
10582 rcu_read_unlock();
10583}
10584
10585#ifdef CONFIG_NUMA_BALANCING
10586void show_numa_stats(struct task_struct *p, struct seq_file *m)
10587{
10588 int node;
10589 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
David Brazdil0f672f62019-12-10 10:32:29 +000010590 struct numa_group *ng;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010591
David Brazdil0f672f62019-12-10 10:32:29 +000010592 rcu_read_lock();
10593 ng = rcu_dereference(p->numa_group);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010594 for_each_online_node(node) {
10595 if (p->numa_faults) {
10596 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10597 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10598 }
David Brazdil0f672f62019-12-10 10:32:29 +000010599 if (ng) {
10600 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
10601 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010602 }
10603 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10604 }
David Brazdil0f672f62019-12-10 10:32:29 +000010605 rcu_read_unlock();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010606}
10607#endif /* CONFIG_NUMA_BALANCING */
10608#endif /* CONFIG_SCHED_DEBUG */
10609
10610__init void init_sched_fair_class(void)
10611{
10612#ifdef CONFIG_SMP
10613 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10614
10615#ifdef CONFIG_NO_HZ_COMMON
10616 nohz.next_balance = jiffies;
10617 nohz.next_blocked = jiffies;
10618 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10619#endif
10620#endif /* SMP */
10621
10622}
David Brazdil0f672f62019-12-10 10:32:29 +000010623
10624/*
10625 * Helper functions to facilitate extracting info from tracepoints.
10626 */
10627
10628const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
10629{
10630#ifdef CONFIG_SMP
10631 return cfs_rq ? &cfs_rq->avg : NULL;
10632#else
10633 return NULL;
10634#endif
10635}
10636EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
10637
10638char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
10639{
10640 if (!cfs_rq) {
10641 if (str)
10642 strlcpy(str, "(null)", len);
10643 else
10644 return NULL;
10645 }
10646
10647 cfs_rq_tg_path(cfs_rq, str, len);
10648 return str;
10649}
10650EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
10651
10652int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
10653{
10654 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
10655}
10656EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
10657
10658const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
10659{
10660#ifdef CONFIG_SMP
10661 return rq ? &rq->avg_rt : NULL;
10662#else
10663 return NULL;
10664#endif
10665}
10666EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
10667
10668const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
10669{
10670#ifdef CONFIG_SMP
10671 return rq ? &rq->avg_dl : NULL;
10672#else
10673 return NULL;
10674#endif
10675}
10676EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
10677
10678const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
10679{
10680#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
10681 return rq ? &rq->avg_irq : NULL;
10682#else
10683 return NULL;
10684#endif
10685}
10686EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
10687
10688int sched_trace_rq_cpu(struct rq *rq)
10689{
10690 return rq ? cpu_of(rq) : -1;
10691}
10692EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
10693
10694const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
10695{
10696#ifdef CONFIG_SMP
10697 return rd ? rd->span : NULL;
10698#else
10699 return NULL;
10700#endif
10701}
10702EXPORT_SYMBOL_GPL(sched_trace_rd_span);