David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1 | /* SPDX-License-Identifier: GPL-2.0+ */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
| 3 | * Read-Copy Update mechanism for mutual exclusion (tree-based version) |
| 4 | * Internal non-public definitions that provide either classic |
| 5 | * or preemptible semantics. |
| 6 | * |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 7 | * Copyright Red Hat, 2009 |
| 8 | * Copyright IBM Corporation, 2009 |
| 9 | * |
| 10 | * Author: Ingo Molnar <mingo@elte.hu> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 11 | * Paul E. McKenney <paulmck@linux.ibm.com> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 12 | */ |
| 13 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 14 | #include "../locking/rtmutex_common.h" |
| 15 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 16 | #ifdef CONFIG_RCU_NOCB_CPU |
| 17 | static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ |
| 18 | static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ |
| 19 | #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ |
| 20 | |
| 21 | /* |
| 22 | * Check the RCU kernel configuration parameters and print informative |
| 23 | * messages about anything out of the ordinary. |
| 24 | */ |
| 25 | static void __init rcu_bootup_announce_oddness(void) |
| 26 | { |
| 27 | if (IS_ENABLED(CONFIG_RCU_TRACE)) |
| 28 | pr_info("\tRCU event tracing is enabled.\n"); |
| 29 | if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || |
| 30 | (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) |
| 31 | pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n", |
| 32 | RCU_FANOUT); |
| 33 | if (rcu_fanout_exact) |
| 34 | pr_info("\tHierarchical RCU autobalancing is disabled.\n"); |
| 35 | if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) |
| 36 | pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); |
| 37 | if (IS_ENABLED(CONFIG_PROVE_RCU)) |
| 38 | pr_info("\tRCU lockdep checking is enabled.\n"); |
| 39 | if (RCU_NUM_LVLS >= 4) |
| 40 | pr_info("\tFour(or more)-level hierarchy is enabled.\n"); |
| 41 | if (RCU_FANOUT_LEAF != 16) |
| 42 | pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", |
| 43 | RCU_FANOUT_LEAF); |
| 44 | if (rcu_fanout_leaf != RCU_FANOUT_LEAF) |
| 45 | pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", |
| 46 | rcu_fanout_leaf); |
| 47 | if (nr_cpu_ids != NR_CPUS) |
| 48 | pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids); |
| 49 | #ifdef CONFIG_RCU_BOOST |
| 50 | pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", |
| 51 | kthread_prio, CONFIG_RCU_BOOST_DELAY); |
| 52 | #endif |
| 53 | if (blimit != DEFAULT_RCU_BLIMIT) |
| 54 | pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); |
| 55 | if (qhimark != DEFAULT_RCU_QHIMARK) |
| 56 | pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); |
| 57 | if (qlowmark != DEFAULT_RCU_QLOMARK) |
| 58 | pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); |
| 59 | if (jiffies_till_first_fqs != ULONG_MAX) |
| 60 | pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); |
| 61 | if (jiffies_till_next_fqs != ULONG_MAX) |
| 62 | pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 63 | if (jiffies_till_sched_qs != ULONG_MAX) |
| 64 | pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 65 | if (rcu_kick_kthreads) |
| 66 | pr_info("\tKick kthreads if too-long grace period.\n"); |
| 67 | if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) |
| 68 | pr_info("\tRCU callback double-/use-after-free debug enabled.\n"); |
| 69 | if (gp_preinit_delay) |
| 70 | pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); |
| 71 | if (gp_init_delay) |
| 72 | pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); |
| 73 | if (gp_cleanup_delay) |
| 74 | pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 75 | if (!use_softirq) |
| 76 | pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n"); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 77 | if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) |
| 78 | pr_info("\tRCU debug extended QS entry/exit.\n"); |
| 79 | rcupdate_announce_bootup_oddness(); |
| 80 | } |
| 81 | |
| 82 | #ifdef CONFIG_PREEMPT_RCU |
| 83 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 84 | static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 85 | static void rcu_read_unlock_special(struct task_struct *t); |
| 86 | |
| 87 | /* |
| 88 | * Tell them what RCU they are running. |
| 89 | */ |
| 90 | static void __init rcu_bootup_announce(void) |
| 91 | { |
| 92 | pr_info("Preemptible hierarchical RCU implementation.\n"); |
| 93 | rcu_bootup_announce_oddness(); |
| 94 | } |
| 95 | |
| 96 | /* Flags for rcu_preempt_ctxt_queue() decision table. */ |
| 97 | #define RCU_GP_TASKS 0x8 |
| 98 | #define RCU_EXP_TASKS 0x4 |
| 99 | #define RCU_GP_BLKD 0x2 |
| 100 | #define RCU_EXP_BLKD 0x1 |
| 101 | |
| 102 | /* |
| 103 | * Queues a task preempted within an RCU-preempt read-side critical |
| 104 | * section into the appropriate location within the ->blkd_tasks list, |
| 105 | * depending on the states of any ongoing normal and expedited grace |
| 106 | * periods. The ->gp_tasks pointer indicates which element the normal |
| 107 | * grace period is waiting on (NULL if none), and the ->exp_tasks pointer |
| 108 | * indicates which element the expedited grace period is waiting on (again, |
| 109 | * NULL if none). If a grace period is waiting on a given element in the |
| 110 | * ->blkd_tasks list, it also waits on all subsequent elements. Thus, |
| 111 | * adding a task to the tail of the list blocks any grace period that is |
| 112 | * already waiting on one of the elements. In contrast, adding a task |
| 113 | * to the head of the list won't block any grace period that is already |
| 114 | * waiting on one of the elements. |
| 115 | * |
| 116 | * This queuing is imprecise, and can sometimes make an ongoing grace |
| 117 | * period wait for a task that is not strictly speaking blocking it. |
| 118 | * Given the choice, we needlessly block a normal grace period rather than |
| 119 | * blocking an expedited grace period. |
| 120 | * |
| 121 | * Note that an endless sequence of expedited grace periods still cannot |
| 122 | * indefinitely postpone a normal grace period. Eventually, all of the |
| 123 | * fixed number of preempted tasks blocking the normal grace period that are |
| 124 | * not also blocking the expedited grace period will resume and complete |
| 125 | * their RCU read-side critical sections. At that point, the ->gp_tasks |
| 126 | * pointer will equal the ->exp_tasks pointer, at which point the end of |
| 127 | * the corresponding expedited grace period will also be the end of the |
| 128 | * normal grace period. |
| 129 | */ |
| 130 | static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) |
| 131 | __releases(rnp->lock) /* But leaves rrupts disabled. */ |
| 132 | { |
| 133 | int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + |
| 134 | (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + |
| 135 | (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + |
| 136 | (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); |
| 137 | struct task_struct *t = current; |
| 138 | |
| 139 | raw_lockdep_assert_held_rcu_node(rnp); |
| 140 | WARN_ON_ONCE(rdp->mynode != rnp); |
| 141 | WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); |
| 142 | /* RCU better not be waiting on newly onlined CPUs! */ |
| 143 | WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask & |
| 144 | rdp->grpmask); |
| 145 | |
| 146 | /* |
| 147 | * Decide where to queue the newly blocked task. In theory, |
| 148 | * this could be an if-statement. In practice, when I tried |
| 149 | * that, it was quite messy. |
| 150 | */ |
| 151 | switch (blkd_state) { |
| 152 | case 0: |
| 153 | case RCU_EXP_TASKS: |
| 154 | case RCU_EXP_TASKS + RCU_GP_BLKD: |
| 155 | case RCU_GP_TASKS: |
| 156 | case RCU_GP_TASKS + RCU_EXP_TASKS: |
| 157 | |
| 158 | /* |
| 159 | * Blocking neither GP, or first task blocking the normal |
| 160 | * GP but not blocking the already-waiting expedited GP. |
| 161 | * Queue at the head of the list to avoid unnecessarily |
| 162 | * blocking the already-waiting GPs. |
| 163 | */ |
| 164 | list_add(&t->rcu_node_entry, &rnp->blkd_tasks); |
| 165 | break; |
| 166 | |
| 167 | case RCU_EXP_BLKD: |
| 168 | case RCU_GP_BLKD: |
| 169 | case RCU_GP_BLKD + RCU_EXP_BLKD: |
| 170 | case RCU_GP_TASKS + RCU_EXP_BLKD: |
| 171 | case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: |
| 172 | case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: |
| 173 | |
| 174 | /* |
| 175 | * First task arriving that blocks either GP, or first task |
| 176 | * arriving that blocks the expedited GP (with the normal |
| 177 | * GP already waiting), or a task arriving that blocks |
| 178 | * both GPs with both GPs already waiting. Queue at the |
| 179 | * tail of the list to avoid any GP waiting on any of the |
| 180 | * already queued tasks that are not blocking it. |
| 181 | */ |
| 182 | list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); |
| 183 | break; |
| 184 | |
| 185 | case RCU_EXP_TASKS + RCU_EXP_BLKD: |
| 186 | case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: |
| 187 | case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: |
| 188 | |
| 189 | /* |
| 190 | * Second or subsequent task blocking the expedited GP. |
| 191 | * The task either does not block the normal GP, or is the |
| 192 | * first task blocking the normal GP. Queue just after |
| 193 | * the first task blocking the expedited GP. |
| 194 | */ |
| 195 | list_add(&t->rcu_node_entry, rnp->exp_tasks); |
| 196 | break; |
| 197 | |
| 198 | case RCU_GP_TASKS + RCU_GP_BLKD: |
| 199 | case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: |
| 200 | |
| 201 | /* |
| 202 | * Second or subsequent task blocking the normal GP. |
| 203 | * The task does not block the expedited GP. Queue just |
| 204 | * after the first task blocking the normal GP. |
| 205 | */ |
| 206 | list_add(&t->rcu_node_entry, rnp->gp_tasks); |
| 207 | break; |
| 208 | |
| 209 | default: |
| 210 | |
| 211 | /* Yet another exercise in excessive paranoia. */ |
| 212 | WARN_ON_ONCE(1); |
| 213 | break; |
| 214 | } |
| 215 | |
| 216 | /* |
| 217 | * We have now queued the task. If it was the first one to |
| 218 | * block either grace period, update the ->gp_tasks and/or |
| 219 | * ->exp_tasks pointers, respectively, to reference the newly |
| 220 | * blocked tasks. |
| 221 | */ |
| 222 | if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) { |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 223 | WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 224 | WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq); |
| 225 | } |
| 226 | if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) |
| 227 | rnp->exp_tasks = &t->rcu_node_entry; |
| 228 | WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) != |
| 229 | !(rnp->qsmask & rdp->grpmask)); |
| 230 | WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) != |
| 231 | !(rnp->expmask & rdp->grpmask)); |
| 232 | raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ |
| 233 | |
| 234 | /* |
| 235 | * Report the quiescent state for the expedited GP. This expedited |
| 236 | * GP should not be able to end until we report, so there should be |
| 237 | * no need to check for a subsequent expedited GP. (Though we are |
| 238 | * still in a quiescent state in any case.) |
| 239 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 240 | if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs) |
| 241 | rcu_report_exp_rdp(rdp); |
| 242 | else |
| 243 | WARN_ON_ONCE(rdp->exp_deferred_qs); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 244 | } |
| 245 | |
| 246 | /* |
| 247 | * Record a preemptible-RCU quiescent state for the specified CPU. |
| 248 | * Note that this does not necessarily mean that the task currently running |
| 249 | * on the CPU is in a quiescent state: Instead, it means that the current |
| 250 | * grace period need not wait on any RCU read-side critical section that |
| 251 | * starts later on this CPU. It also means that if the current task is |
| 252 | * in an RCU read-side critical section, it has already added itself to |
| 253 | * some leaf rcu_node structure's ->blkd_tasks list. In addition to the |
| 254 | * current task, there might be any number of other tasks blocked while |
| 255 | * in an RCU read-side critical section. |
| 256 | * |
| 257 | * Callers to this function must disable preemption. |
| 258 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 259 | static void rcu_qs(void) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 260 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 261 | RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n"); |
| 262 | if (__this_cpu_read(rcu_data.cpu_no_qs.s)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 263 | trace_rcu_grace_period(TPS("rcu_preempt"), |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 264 | __this_cpu_read(rcu_data.gp_seq), |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 265 | TPS("cpuqs")); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 266 | __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); |
| 267 | barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */ |
| 268 | WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 269 | } |
| 270 | } |
| 271 | |
| 272 | /* |
| 273 | * We have entered the scheduler, and the current task might soon be |
| 274 | * context-switched away from. If this task is in an RCU read-side |
| 275 | * critical section, we will no longer be able to rely on the CPU to |
| 276 | * record that fact, so we enqueue the task on the blkd_tasks list. |
| 277 | * The task will dequeue itself when it exits the outermost enclosing |
| 278 | * RCU read-side critical section. Therefore, the current grace period |
| 279 | * cannot be permitted to complete until the blkd_tasks list entries |
| 280 | * predating the current grace period drain, in other words, until |
| 281 | * rnp->gp_tasks becomes NULL. |
| 282 | * |
| 283 | * Caller must disable interrupts. |
| 284 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 285 | void rcu_note_context_switch(bool preempt) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 286 | { |
| 287 | struct task_struct *t = current; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 288 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 289 | struct rcu_node *rnp; |
| 290 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 291 | trace_rcu_utilization(TPS("Start context switch")); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 292 | lockdep_assert_irqs_disabled(); |
| 293 | WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0); |
| 294 | if (t->rcu_read_lock_nesting > 0 && |
| 295 | !t->rcu_read_unlock_special.b.blocked) { |
| 296 | |
| 297 | /* Possibly blocking in an RCU read-side critical section. */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 298 | rnp = rdp->mynode; |
| 299 | raw_spin_lock_rcu_node(rnp); |
| 300 | t->rcu_read_unlock_special.b.blocked = true; |
| 301 | t->rcu_blocked_node = rnp; |
| 302 | |
| 303 | /* |
| 304 | * Verify the CPU's sanity, trace the preemption, and |
| 305 | * then queue the task as required based on the states |
| 306 | * of any ongoing and expedited grace periods. |
| 307 | */ |
| 308 | WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); |
| 309 | WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 310 | trace_rcu_preempt_task(rcu_state.name, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 311 | t->pid, |
| 312 | (rnp->qsmask & rdp->grpmask) |
| 313 | ? rnp->gp_seq |
| 314 | : rcu_seq_snap(&rnp->gp_seq)); |
| 315 | rcu_preempt_ctxt_queue(rnp, rdp); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 316 | } else { |
| 317 | rcu_preempt_deferred_qs(t); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 318 | } |
| 319 | |
| 320 | /* |
| 321 | * Either we were not in an RCU read-side critical section to |
| 322 | * begin with, or we have now recorded that critical section |
| 323 | * globally. Either way, we can now note a quiescent state |
| 324 | * for this CPU. Again, if we were in an RCU read-side critical |
| 325 | * section, and if that critical section was blocking the current |
| 326 | * grace period, then the fact that the task has been enqueued |
| 327 | * means that we continue to block the current grace period. |
| 328 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 329 | rcu_qs(); |
| 330 | if (rdp->exp_deferred_qs) |
| 331 | rcu_report_exp_rdp(rdp); |
| 332 | trace_rcu_utilization(TPS("End context switch")); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 333 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 334 | EXPORT_SYMBOL_GPL(rcu_note_context_switch); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 335 | |
| 336 | /* |
| 337 | * Check for preempted RCU readers blocking the current grace period |
| 338 | * for the specified rcu_node structure. If the caller needs a reliable |
| 339 | * answer, it must hold the rcu_node's ->lock. |
| 340 | */ |
| 341 | static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) |
| 342 | { |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 343 | return READ_ONCE(rnp->gp_tasks) != NULL; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 344 | } |
| 345 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 346 | /* Bias and limit values for ->rcu_read_lock_nesting. */ |
| 347 | #define RCU_NEST_BIAS INT_MAX |
| 348 | #define RCU_NEST_NMAX (-INT_MAX / 2) |
| 349 | #define RCU_NEST_PMAX (INT_MAX / 2) |
| 350 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 351 | /* |
| 352 | * Preemptible RCU implementation for rcu_read_lock(). |
| 353 | * Just increment ->rcu_read_lock_nesting, shared state will be updated |
| 354 | * if we block. |
| 355 | */ |
| 356 | void __rcu_read_lock(void) |
| 357 | { |
| 358 | current->rcu_read_lock_nesting++; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 359 | if (IS_ENABLED(CONFIG_PROVE_LOCKING)) |
| 360 | WARN_ON_ONCE(current->rcu_read_lock_nesting > RCU_NEST_PMAX); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 361 | barrier(); /* critical section after entry code. */ |
| 362 | } |
| 363 | EXPORT_SYMBOL_GPL(__rcu_read_lock); |
| 364 | |
| 365 | /* |
| 366 | * Preemptible RCU implementation for rcu_read_unlock(). |
| 367 | * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost |
| 368 | * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then |
| 369 | * invoke rcu_read_unlock_special() to clean up after a context switch |
| 370 | * in an RCU read-side critical section and other special cases. |
| 371 | */ |
| 372 | void __rcu_read_unlock(void) |
| 373 | { |
| 374 | struct task_struct *t = current; |
| 375 | |
| 376 | if (t->rcu_read_lock_nesting != 1) { |
| 377 | --t->rcu_read_lock_nesting; |
| 378 | } else { |
| 379 | barrier(); /* critical section before exit code. */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 380 | t->rcu_read_lock_nesting = -RCU_NEST_BIAS; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 381 | barrier(); /* assign before ->rcu_read_unlock_special load */ |
| 382 | if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) |
| 383 | rcu_read_unlock_special(t); |
| 384 | barrier(); /* ->rcu_read_unlock_special load before assign */ |
| 385 | t->rcu_read_lock_nesting = 0; |
| 386 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 387 | if (IS_ENABLED(CONFIG_PROVE_LOCKING)) { |
| 388 | int rrln = t->rcu_read_lock_nesting; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 389 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 390 | WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 391 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 392 | } |
| 393 | EXPORT_SYMBOL_GPL(__rcu_read_unlock); |
| 394 | |
| 395 | /* |
| 396 | * Advance a ->blkd_tasks-list pointer to the next entry, instead |
| 397 | * returning NULL if at the end of the list. |
| 398 | */ |
| 399 | static struct list_head *rcu_next_node_entry(struct task_struct *t, |
| 400 | struct rcu_node *rnp) |
| 401 | { |
| 402 | struct list_head *np; |
| 403 | |
| 404 | np = t->rcu_node_entry.next; |
| 405 | if (np == &rnp->blkd_tasks) |
| 406 | np = NULL; |
| 407 | return np; |
| 408 | } |
| 409 | |
| 410 | /* |
| 411 | * Return true if the specified rcu_node structure has tasks that were |
| 412 | * preempted within an RCU read-side critical section. |
| 413 | */ |
| 414 | static bool rcu_preempt_has_tasks(struct rcu_node *rnp) |
| 415 | { |
| 416 | return !list_empty(&rnp->blkd_tasks); |
| 417 | } |
| 418 | |
| 419 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 420 | * Report deferred quiescent states. The deferral time can |
| 421 | * be quite short, for example, in the case of the call from |
| 422 | * rcu_read_unlock_special(). |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 423 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 424 | static void |
| 425 | rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 426 | { |
| 427 | bool empty_exp; |
| 428 | bool empty_norm; |
| 429 | bool empty_exp_now; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 430 | struct list_head *np; |
| 431 | bool drop_boost_mutex = false; |
| 432 | struct rcu_data *rdp; |
| 433 | struct rcu_node *rnp; |
| 434 | union rcu_special special; |
| 435 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 436 | /* |
| 437 | * If RCU core is waiting for this CPU to exit its critical section, |
| 438 | * report the fact that it has exited. Because irqs are disabled, |
| 439 | * t->rcu_read_unlock_special cannot change. |
| 440 | */ |
| 441 | special = t->rcu_read_unlock_special; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 442 | rdp = this_cpu_ptr(&rcu_data); |
| 443 | if (!special.s && !rdp->exp_deferred_qs) { |
| 444 | local_irq_restore(flags); |
| 445 | return; |
| 446 | } |
| 447 | t->rcu_read_unlock_special.b.deferred_qs = false; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 448 | if (special.b.need_qs) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 449 | rcu_qs(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 450 | t->rcu_read_unlock_special.b.need_qs = false; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 451 | if (!t->rcu_read_unlock_special.s && !rdp->exp_deferred_qs) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 452 | local_irq_restore(flags); |
| 453 | return; |
| 454 | } |
| 455 | } |
| 456 | |
| 457 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 458 | * Respond to a request by an expedited grace period for a |
| 459 | * quiescent state from this CPU. Note that requests from |
| 460 | * tasks are handled when removing the task from the |
| 461 | * blocked-tasks list below. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 462 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 463 | if (rdp->exp_deferred_qs) { |
| 464 | rcu_report_exp_rdp(rdp); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 465 | if (!t->rcu_read_unlock_special.s) { |
| 466 | local_irq_restore(flags); |
| 467 | return; |
| 468 | } |
| 469 | } |
| 470 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 471 | /* Clean up if blocked during RCU read-side critical section. */ |
| 472 | if (special.b.blocked) { |
| 473 | t->rcu_read_unlock_special.b.blocked = false; |
| 474 | |
| 475 | /* |
| 476 | * Remove this task from the list it blocked on. The task |
| 477 | * now remains queued on the rcu_node corresponding to the |
| 478 | * CPU it first blocked on, so there is no longer any need |
| 479 | * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. |
| 480 | */ |
| 481 | rnp = t->rcu_blocked_node; |
| 482 | raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ |
| 483 | WARN_ON_ONCE(rnp != t->rcu_blocked_node); |
| 484 | WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); |
| 485 | empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); |
| 486 | WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq && |
| 487 | (!empty_norm || rnp->qsmask)); |
| 488 | empty_exp = sync_rcu_preempt_exp_done(rnp); |
| 489 | smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ |
| 490 | np = rcu_next_node_entry(t, rnp); |
| 491 | list_del_init(&t->rcu_node_entry); |
| 492 | t->rcu_blocked_node = NULL; |
| 493 | trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), |
| 494 | rnp->gp_seq, t->pid); |
| 495 | if (&t->rcu_node_entry == rnp->gp_tasks) |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 496 | WRITE_ONCE(rnp->gp_tasks, np); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 497 | if (&t->rcu_node_entry == rnp->exp_tasks) |
| 498 | rnp->exp_tasks = np; |
| 499 | if (IS_ENABLED(CONFIG_RCU_BOOST)) { |
| 500 | /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ |
| 501 | drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; |
| 502 | if (&t->rcu_node_entry == rnp->boost_tasks) |
| 503 | rnp->boost_tasks = np; |
| 504 | } |
| 505 | |
| 506 | /* |
| 507 | * If this was the last task on the current list, and if |
| 508 | * we aren't waiting on any CPUs, report the quiescent state. |
| 509 | * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, |
| 510 | * so we must take a snapshot of the expedited state. |
| 511 | */ |
| 512 | empty_exp_now = sync_rcu_preempt_exp_done(rnp); |
| 513 | if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { |
| 514 | trace_rcu_quiescent_state_report(TPS("preempt_rcu"), |
| 515 | rnp->gp_seq, |
| 516 | 0, rnp->qsmask, |
| 517 | rnp->level, |
| 518 | rnp->grplo, |
| 519 | rnp->grphi, |
| 520 | !!rnp->gp_tasks); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 521 | rcu_report_unblock_qs_rnp(rnp, flags); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 522 | } else { |
| 523 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 524 | } |
| 525 | |
| 526 | /* Unboost if we were boosted. */ |
| 527 | if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) |
| 528 | rt_mutex_futex_unlock(&rnp->boost_mtx); |
| 529 | |
| 530 | /* |
| 531 | * If this was the last task on the expedited lists, |
| 532 | * then we need to report up the rcu_node hierarchy. |
| 533 | */ |
| 534 | if (!empty_exp && empty_exp_now) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 535 | rcu_report_exp_rnp(rnp, true); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 536 | } else { |
| 537 | local_irq_restore(flags); |
| 538 | } |
| 539 | } |
| 540 | |
| 541 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 542 | * Is a deferred quiescent-state pending, and are we also not in |
| 543 | * an RCU read-side critical section? It is the caller's responsibility |
| 544 | * to ensure it is otherwise safe to report any deferred quiescent |
| 545 | * states. The reason for this is that it is safe to report a |
| 546 | * quiescent state during context switch even though preemption |
| 547 | * is disabled. This function cannot be expected to understand these |
| 548 | * nuances, so the caller must handle them. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 549 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 550 | static bool rcu_preempt_need_deferred_qs(struct task_struct *t) |
| 551 | { |
| 552 | return (__this_cpu_read(rcu_data.exp_deferred_qs) || |
| 553 | READ_ONCE(t->rcu_read_unlock_special.s)) && |
| 554 | t->rcu_read_lock_nesting <= 0; |
| 555 | } |
| 556 | |
| 557 | /* |
| 558 | * Report a deferred quiescent state if needed and safe to do so. |
| 559 | * As with rcu_preempt_need_deferred_qs(), "safe" involves only |
| 560 | * not being in an RCU read-side critical section. The caller must |
| 561 | * evaluate safety in terms of interrupt, softirq, and preemption |
| 562 | * disabling. |
| 563 | */ |
| 564 | static void rcu_preempt_deferred_qs(struct task_struct *t) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 565 | { |
| 566 | unsigned long flags; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 567 | bool couldrecurse = t->rcu_read_lock_nesting >= 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 568 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 569 | if (!rcu_preempt_need_deferred_qs(t)) |
| 570 | return; |
| 571 | if (couldrecurse) |
| 572 | t->rcu_read_lock_nesting -= RCU_NEST_BIAS; |
| 573 | local_irq_save(flags); |
| 574 | rcu_preempt_deferred_qs_irqrestore(t, flags); |
| 575 | if (couldrecurse) |
| 576 | t->rcu_read_lock_nesting += RCU_NEST_BIAS; |
| 577 | } |
| 578 | |
| 579 | /* |
| 580 | * Minimal handler to give the scheduler a chance to re-evaluate. |
| 581 | */ |
| 582 | static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp) |
| 583 | { |
| 584 | struct rcu_data *rdp; |
| 585 | |
| 586 | rdp = container_of(iwp, struct rcu_data, defer_qs_iw); |
| 587 | rdp->defer_qs_iw_pending = false; |
| 588 | } |
| 589 | |
| 590 | /* |
| 591 | * Handle special cases during rcu_read_unlock(), such as needing to |
| 592 | * notify RCU core processing or task having blocked during the RCU |
| 593 | * read-side critical section. |
| 594 | */ |
| 595 | static void rcu_read_unlock_special(struct task_struct *t) |
| 596 | { |
| 597 | unsigned long flags; |
| 598 | bool preempt_bh_were_disabled = |
| 599 | !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)); |
| 600 | bool irqs_were_disabled; |
| 601 | |
| 602 | /* NMI handlers cannot block and cannot safely manipulate state. */ |
| 603 | if (in_nmi()) |
| 604 | return; |
| 605 | |
| 606 | local_irq_save(flags); |
| 607 | irqs_were_disabled = irqs_disabled_flags(flags); |
| 608 | if (preempt_bh_were_disabled || irqs_were_disabled) { |
| 609 | bool exp; |
| 610 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
| 611 | struct rcu_node *rnp = rdp->mynode; |
| 612 | |
| 613 | t->rcu_read_unlock_special.b.exp_hint = false; |
| 614 | exp = (t->rcu_blocked_node && t->rcu_blocked_node->exp_tasks) || |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 615 | (rdp->grpmask & READ_ONCE(rnp->expmask)) || |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 616 | tick_nohz_full_cpu(rdp->cpu); |
| 617 | // Need to defer quiescent state until everything is enabled. |
| 618 | if (irqs_were_disabled && use_softirq && |
| 619 | (in_interrupt() || |
| 620 | (exp && !t->rcu_read_unlock_special.b.deferred_qs))) { |
| 621 | // Using softirq, safe to awaken, and we get |
| 622 | // no help from enabling irqs, unlike bh/preempt. |
| 623 | raise_softirq_irqoff(RCU_SOFTIRQ); |
| 624 | } else { |
| 625 | // Enabling BH or preempt does reschedule, so... |
| 626 | // Also if no expediting or NO_HZ_FULL, slow is OK. |
| 627 | set_tsk_need_resched(current); |
| 628 | set_preempt_need_resched(); |
| 629 | if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled && |
| 630 | !rdp->defer_qs_iw_pending && exp) { |
| 631 | // Get scheduler to re-evaluate and call hooks. |
| 632 | // If !IRQ_WORK, FQS scan will eventually IPI. |
| 633 | init_irq_work(&rdp->defer_qs_iw, |
| 634 | rcu_preempt_deferred_qs_handler); |
| 635 | rdp->defer_qs_iw_pending = true; |
| 636 | irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu); |
| 637 | } |
| 638 | } |
| 639 | t->rcu_read_unlock_special.b.deferred_qs = true; |
| 640 | local_irq_restore(flags); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 641 | return; |
| 642 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 643 | WRITE_ONCE(t->rcu_read_unlock_special.b.exp_hint, false); |
| 644 | rcu_preempt_deferred_qs_irqrestore(t, flags); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 645 | } |
| 646 | |
| 647 | /* |
| 648 | * Check that the list of blocked tasks for the newly completed grace |
| 649 | * period is in fact empty. It is a serious bug to complete a grace |
| 650 | * period that still has RCU readers blocked! This function must be |
| 651 | * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock |
| 652 | * must be held by the caller. |
| 653 | * |
| 654 | * Also, if there are blocked tasks on the list, they automatically |
| 655 | * block the newly created grace period, so set up ->gp_tasks accordingly. |
| 656 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 657 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 658 | { |
| 659 | struct task_struct *t; |
| 660 | |
| 661 | RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); |
| 662 | if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 663 | dump_blkd_tasks(rnp, 10); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 664 | if (rcu_preempt_has_tasks(rnp) && |
| 665 | (rnp->qsmaskinit || rnp->wait_blkd_tasks)) { |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 666 | WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 667 | t = container_of(rnp->gp_tasks, struct task_struct, |
| 668 | rcu_node_entry); |
| 669 | trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"), |
| 670 | rnp->gp_seq, t->pid); |
| 671 | } |
| 672 | WARN_ON_ONCE(rnp->qsmask); |
| 673 | } |
| 674 | |
| 675 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 676 | * Check for a quiescent state from the current CPU, including voluntary |
| 677 | * context switches for Tasks RCU. When a task blocks, the task is |
| 678 | * recorded in the corresponding CPU's rcu_node structure, which is checked |
| 679 | * elsewhere, hence this function need only check for quiescent states |
| 680 | * related to the current CPU, not to those related to tasks. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 681 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 682 | static void rcu_flavor_sched_clock_irq(int user) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 683 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 684 | struct task_struct *t = current; |
| 685 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 686 | if (user || rcu_is_cpu_rrupt_from_idle()) { |
| 687 | rcu_note_voluntary_context_switch(current); |
| 688 | } |
| 689 | if (t->rcu_read_lock_nesting > 0 || |
| 690 | (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) { |
| 691 | /* No QS, force context switch if deferred. */ |
| 692 | if (rcu_preempt_need_deferred_qs(t)) { |
| 693 | set_tsk_need_resched(t); |
| 694 | set_preempt_need_resched(); |
| 695 | } |
| 696 | } else if (rcu_preempt_need_deferred_qs(t)) { |
| 697 | rcu_preempt_deferred_qs(t); /* Report deferred QS. */ |
| 698 | return; |
| 699 | } else if (!t->rcu_read_lock_nesting) { |
| 700 | rcu_qs(); /* Report immediate QS. */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 701 | return; |
| 702 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 703 | |
| 704 | /* If GP is oldish, ask for help from rcu_read_unlock_special(). */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 705 | if (t->rcu_read_lock_nesting > 0 && |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 706 | __this_cpu_read(rcu_data.core_needs_qs) && |
| 707 | __this_cpu_read(rcu_data.cpu_no_qs.b.norm) && |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 708 | !t->rcu_read_unlock_special.b.need_qs && |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 709 | time_after(jiffies, rcu_state.gp_start + HZ)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 710 | t->rcu_read_unlock_special.b.need_qs = true; |
| 711 | } |
| 712 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 713 | /* |
| 714 | * Check for a task exiting while in a preemptible-RCU read-side |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 715 | * critical section, clean up if so. No need to issue warnings, as |
| 716 | * debug_check_no_locks_held() already does this if lockdep is enabled. |
| 717 | * Besides, if this function does anything other than just immediately |
| 718 | * return, there was a bug of some sort. Spewing warnings from this |
| 719 | * function is like as not to simply obscure important prior warnings. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 720 | */ |
| 721 | void exit_rcu(void) |
| 722 | { |
| 723 | struct task_struct *t = current; |
| 724 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 725 | if (unlikely(!list_empty(¤t->rcu_node_entry))) { |
| 726 | t->rcu_read_lock_nesting = 1; |
| 727 | barrier(); |
| 728 | WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true); |
| 729 | } else if (unlikely(t->rcu_read_lock_nesting)) { |
| 730 | t->rcu_read_lock_nesting = 1; |
| 731 | } else { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 732 | return; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 733 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 734 | __rcu_read_unlock(); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 735 | rcu_preempt_deferred_qs(current); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 736 | } |
| 737 | |
| 738 | /* |
| 739 | * Dump the blocked-tasks state, but limit the list dump to the |
| 740 | * specified number of elements. |
| 741 | */ |
| 742 | static void |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 743 | dump_blkd_tasks(struct rcu_node *rnp, int ncheck) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 744 | { |
| 745 | int cpu; |
| 746 | int i; |
| 747 | struct list_head *lhp; |
| 748 | bool onl; |
| 749 | struct rcu_data *rdp; |
| 750 | struct rcu_node *rnp1; |
| 751 | |
| 752 | raw_lockdep_assert_held_rcu_node(rnp); |
| 753 | pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", |
| 754 | __func__, rnp->grplo, rnp->grphi, rnp->level, |
| 755 | (long)rnp->gp_seq, (long)rnp->completedqs); |
| 756 | for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) |
| 757 | pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n", |
| 758 | __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext); |
| 759 | pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n", |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 760 | __func__, READ_ONCE(rnp->gp_tasks), rnp->boost_tasks, |
| 761 | rnp->exp_tasks); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 762 | pr_info("%s: ->blkd_tasks", __func__); |
| 763 | i = 0; |
| 764 | list_for_each(lhp, &rnp->blkd_tasks) { |
| 765 | pr_cont(" %p", lhp); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 766 | if (++i >= ncheck) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 767 | break; |
| 768 | } |
| 769 | pr_cont("\n"); |
| 770 | for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 771 | rdp = per_cpu_ptr(&rcu_data, cpu); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 772 | onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); |
| 773 | pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n", |
| 774 | cpu, ".o"[onl], |
| 775 | (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, |
| 776 | (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); |
| 777 | } |
| 778 | } |
| 779 | |
| 780 | #else /* #ifdef CONFIG_PREEMPT_RCU */ |
| 781 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 782 | /* |
| 783 | * Tell them what RCU they are running. |
| 784 | */ |
| 785 | static void __init rcu_bootup_announce(void) |
| 786 | { |
| 787 | pr_info("Hierarchical RCU implementation.\n"); |
| 788 | rcu_bootup_announce_oddness(); |
| 789 | } |
| 790 | |
| 791 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 792 | * Note a quiescent state for PREEMPT=n. Because we do not need to know |
| 793 | * how many quiescent states passed, just if there was at least one since |
| 794 | * the start of the grace period, this just sets a flag. The caller must |
| 795 | * have disabled preemption. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 796 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 797 | static void rcu_qs(void) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 798 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 799 | RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!"); |
| 800 | if (!__this_cpu_read(rcu_data.cpu_no_qs.s)) |
| 801 | return; |
| 802 | trace_rcu_grace_period(TPS("rcu_sched"), |
| 803 | __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs")); |
| 804 | __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); |
| 805 | if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp)) |
| 806 | return; |
| 807 | __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false); |
| 808 | rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 809 | } |
| 810 | |
| 811 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 812 | * Register an urgently needed quiescent state. If there is an |
| 813 | * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight |
| 814 | * dyntick-idle quiescent state visible to other CPUs, which will in |
| 815 | * some cases serve for expedited as well as normal grace periods. |
| 816 | * Either way, register a lightweight quiescent state. |
| 817 | */ |
| 818 | void rcu_all_qs(void) |
| 819 | { |
| 820 | unsigned long flags; |
| 821 | |
| 822 | if (!raw_cpu_read(rcu_data.rcu_urgent_qs)) |
| 823 | return; |
| 824 | preempt_disable(); |
| 825 | /* Load rcu_urgent_qs before other flags. */ |
| 826 | if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { |
| 827 | preempt_enable(); |
| 828 | return; |
| 829 | } |
| 830 | this_cpu_write(rcu_data.rcu_urgent_qs, false); |
| 831 | if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) { |
| 832 | local_irq_save(flags); |
| 833 | rcu_momentary_dyntick_idle(); |
| 834 | local_irq_restore(flags); |
| 835 | } |
| 836 | rcu_qs(); |
| 837 | preempt_enable(); |
| 838 | } |
| 839 | EXPORT_SYMBOL_GPL(rcu_all_qs); |
| 840 | |
| 841 | /* |
| 842 | * Note a PREEMPT=n context switch. The caller must have disabled interrupts. |
| 843 | */ |
| 844 | void rcu_note_context_switch(bool preempt) |
| 845 | { |
| 846 | trace_rcu_utilization(TPS("Start context switch")); |
| 847 | rcu_qs(); |
| 848 | /* Load rcu_urgent_qs before other flags. */ |
| 849 | if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) |
| 850 | goto out; |
| 851 | this_cpu_write(rcu_data.rcu_urgent_qs, false); |
| 852 | if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) |
| 853 | rcu_momentary_dyntick_idle(); |
| 854 | if (!preempt) |
| 855 | rcu_tasks_qs(current); |
| 856 | out: |
| 857 | trace_rcu_utilization(TPS("End context switch")); |
| 858 | } |
| 859 | EXPORT_SYMBOL_GPL(rcu_note_context_switch); |
| 860 | |
| 861 | /* |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 862 | * Because preemptible RCU does not exist, there are never any preempted |
| 863 | * RCU readers. |
| 864 | */ |
| 865 | static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) |
| 866 | { |
| 867 | return 0; |
| 868 | } |
| 869 | |
| 870 | /* |
| 871 | * Because there is no preemptible RCU, there can be no readers blocked. |
| 872 | */ |
| 873 | static bool rcu_preempt_has_tasks(struct rcu_node *rnp) |
| 874 | { |
| 875 | return false; |
| 876 | } |
| 877 | |
| 878 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 879 | * Because there is no preemptible RCU, there can be no deferred quiescent |
| 880 | * states. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 881 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 882 | static bool rcu_preempt_need_deferred_qs(struct task_struct *t) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 883 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 884 | return false; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 885 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 886 | static void rcu_preempt_deferred_qs(struct task_struct *t) { } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 887 | |
| 888 | /* |
| 889 | * Because there is no preemptible RCU, there can be no readers blocked, |
| 890 | * so there is no need to check for blocked tasks. So check only for |
| 891 | * bogus qsmask values. |
| 892 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 893 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 894 | { |
| 895 | WARN_ON_ONCE(rnp->qsmask); |
| 896 | } |
| 897 | |
| 898 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 899 | * Check to see if this CPU is in a non-context-switch quiescent state, |
| 900 | * namely user mode and idle loop. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 901 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 902 | static void rcu_flavor_sched_clock_irq(int user) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 903 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 904 | if (user || rcu_is_cpu_rrupt_from_idle()) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 905 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 906 | /* |
| 907 | * Get here if this CPU took its interrupt from user |
| 908 | * mode or from the idle loop, and if this is not a |
| 909 | * nested interrupt. In this case, the CPU is in |
| 910 | * a quiescent state, so note it. |
| 911 | * |
| 912 | * No memory barrier is required here because rcu_qs() |
| 913 | * references only CPU-local variables that other CPUs |
| 914 | * neither access nor modify, at least not while the |
| 915 | * corresponding CPU is online. |
| 916 | */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 917 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 918 | rcu_qs(); |
| 919 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 920 | } |
| 921 | |
| 922 | /* |
| 923 | * Because preemptible RCU does not exist, tasks cannot possibly exit |
| 924 | * while in preemptible RCU read-side critical sections. |
| 925 | */ |
| 926 | void exit_rcu(void) |
| 927 | { |
| 928 | } |
| 929 | |
| 930 | /* |
| 931 | * Dump the guaranteed-empty blocked-tasks state. Trust but verify. |
| 932 | */ |
| 933 | static void |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 934 | dump_blkd_tasks(struct rcu_node *rnp, int ncheck) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 935 | { |
| 936 | WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks)); |
| 937 | } |
| 938 | |
| 939 | #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ |
| 940 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 941 | /* |
| 942 | * If boosting, set rcuc kthreads to realtime priority. |
| 943 | */ |
| 944 | static void rcu_cpu_kthread_setup(unsigned int cpu) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 945 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 946 | #ifdef CONFIG_RCU_BOOST |
| 947 | struct sched_param sp; |
| 948 | |
| 949 | sp.sched_priority = kthread_prio; |
| 950 | sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); |
| 951 | #endif /* #ifdef CONFIG_RCU_BOOST */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 952 | } |
| 953 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 954 | #ifdef CONFIG_RCU_BOOST |
| 955 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 956 | /* |
| 957 | * Carry out RCU priority boosting on the task indicated by ->exp_tasks |
| 958 | * or ->boost_tasks, advancing the pointer to the next task in the |
| 959 | * ->blkd_tasks list. |
| 960 | * |
| 961 | * Note that irqs must be enabled: boosting the task can block. |
| 962 | * Returns 1 if there are more tasks needing to be boosted. |
| 963 | */ |
| 964 | static int rcu_boost(struct rcu_node *rnp) |
| 965 | { |
| 966 | unsigned long flags; |
| 967 | struct task_struct *t; |
| 968 | struct list_head *tb; |
| 969 | |
| 970 | if (READ_ONCE(rnp->exp_tasks) == NULL && |
| 971 | READ_ONCE(rnp->boost_tasks) == NULL) |
| 972 | return 0; /* Nothing left to boost. */ |
| 973 | |
| 974 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 975 | |
| 976 | /* |
| 977 | * Recheck under the lock: all tasks in need of boosting |
| 978 | * might exit their RCU read-side critical sections on their own. |
| 979 | */ |
| 980 | if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { |
| 981 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 982 | return 0; |
| 983 | } |
| 984 | |
| 985 | /* |
| 986 | * Preferentially boost tasks blocking expedited grace periods. |
| 987 | * This cannot starve the normal grace periods because a second |
| 988 | * expedited grace period must boost all blocked tasks, including |
| 989 | * those blocking the pre-existing normal grace period. |
| 990 | */ |
| 991 | if (rnp->exp_tasks != NULL) |
| 992 | tb = rnp->exp_tasks; |
| 993 | else |
| 994 | tb = rnp->boost_tasks; |
| 995 | |
| 996 | /* |
| 997 | * We boost task t by manufacturing an rt_mutex that appears to |
| 998 | * be held by task t. We leave a pointer to that rt_mutex where |
| 999 | * task t can find it, and task t will release the mutex when it |
| 1000 | * exits its outermost RCU read-side critical section. Then |
| 1001 | * simply acquiring this artificial rt_mutex will boost task |
| 1002 | * t's priority. (Thanks to tglx for suggesting this approach!) |
| 1003 | * |
| 1004 | * Note that task t must acquire rnp->lock to remove itself from |
| 1005 | * the ->blkd_tasks list, which it will do from exit() if from |
| 1006 | * nowhere else. We therefore are guaranteed that task t will |
| 1007 | * stay around at least until we drop rnp->lock. Note that |
| 1008 | * rnp->lock also resolves races between our priority boosting |
| 1009 | * and task t's exiting its outermost RCU read-side critical |
| 1010 | * section. |
| 1011 | */ |
| 1012 | t = container_of(tb, struct task_struct, rcu_node_entry); |
| 1013 | rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); |
| 1014 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 1015 | /* Lock only for side effect: boosts task t's priority. */ |
| 1016 | rt_mutex_lock(&rnp->boost_mtx); |
| 1017 | rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ |
| 1018 | |
| 1019 | return READ_ONCE(rnp->exp_tasks) != NULL || |
| 1020 | READ_ONCE(rnp->boost_tasks) != NULL; |
| 1021 | } |
| 1022 | |
| 1023 | /* |
| 1024 | * Priority-boosting kthread, one per leaf rcu_node. |
| 1025 | */ |
| 1026 | static int rcu_boost_kthread(void *arg) |
| 1027 | { |
| 1028 | struct rcu_node *rnp = (struct rcu_node *)arg; |
| 1029 | int spincnt = 0; |
| 1030 | int more2boost; |
| 1031 | |
| 1032 | trace_rcu_utilization(TPS("Start boost kthread@init")); |
| 1033 | for (;;) { |
| 1034 | rnp->boost_kthread_status = RCU_KTHREAD_WAITING; |
| 1035 | trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); |
| 1036 | rcu_wait(rnp->boost_tasks || rnp->exp_tasks); |
| 1037 | trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); |
| 1038 | rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; |
| 1039 | more2boost = rcu_boost(rnp); |
| 1040 | if (more2boost) |
| 1041 | spincnt++; |
| 1042 | else |
| 1043 | spincnt = 0; |
| 1044 | if (spincnt > 10) { |
| 1045 | rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; |
| 1046 | trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); |
| 1047 | schedule_timeout_interruptible(2); |
| 1048 | trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); |
| 1049 | spincnt = 0; |
| 1050 | } |
| 1051 | } |
| 1052 | /* NOTREACHED */ |
| 1053 | trace_rcu_utilization(TPS("End boost kthread@notreached")); |
| 1054 | return 0; |
| 1055 | } |
| 1056 | |
| 1057 | /* |
| 1058 | * Check to see if it is time to start boosting RCU readers that are |
| 1059 | * blocking the current grace period, and, if so, tell the per-rcu_node |
| 1060 | * kthread to start boosting them. If there is an expedited grace |
| 1061 | * period in progress, it is always time to boost. |
| 1062 | * |
| 1063 | * The caller must hold rnp->lock, which this function releases. |
| 1064 | * The ->boost_kthread_task is immortal, so we don't need to worry |
| 1065 | * about it going away. |
| 1066 | */ |
| 1067 | static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) |
| 1068 | __releases(rnp->lock) |
| 1069 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1070 | raw_lockdep_assert_held_rcu_node(rnp); |
| 1071 | if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { |
| 1072 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 1073 | return; |
| 1074 | } |
| 1075 | if (rnp->exp_tasks != NULL || |
| 1076 | (rnp->gp_tasks != NULL && |
| 1077 | rnp->boost_tasks == NULL && |
| 1078 | rnp->qsmask == 0 && |
| 1079 | ULONG_CMP_GE(jiffies, rnp->boost_time))) { |
| 1080 | if (rnp->exp_tasks == NULL) |
| 1081 | rnp->boost_tasks = rnp->gp_tasks; |
| 1082 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1083 | rcu_wake_cond(rnp->boost_kthread_task, |
| 1084 | rnp->boost_kthread_status); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1085 | } else { |
| 1086 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 1087 | } |
| 1088 | } |
| 1089 | |
| 1090 | /* |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1091 | * Is the current CPU running the RCU-callbacks kthread? |
| 1092 | * Caller must have preemption disabled. |
| 1093 | */ |
| 1094 | static bool rcu_is_callbacks_kthread(void) |
| 1095 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1096 | return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1097 | } |
| 1098 | |
| 1099 | #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) |
| 1100 | |
| 1101 | /* |
| 1102 | * Do priority-boost accounting for the start of a new grace period. |
| 1103 | */ |
| 1104 | static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) |
| 1105 | { |
| 1106 | rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; |
| 1107 | } |
| 1108 | |
| 1109 | /* |
| 1110 | * Create an RCU-boost kthread for the specified node if one does not |
| 1111 | * already exist. We only create this kthread for preemptible RCU. |
| 1112 | * Returns zero if all is well, a negated errno otherwise. |
| 1113 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1114 | static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1115 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1116 | int rnp_index = rnp - rcu_get_root(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1117 | unsigned long flags; |
| 1118 | struct sched_param sp; |
| 1119 | struct task_struct *t; |
| 1120 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1121 | if (!IS_ENABLED(CONFIG_PREEMPT_RCU)) |
| 1122 | return; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1123 | |
| 1124 | if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1125 | return; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1126 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1127 | rcu_state.boost = 1; |
| 1128 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1129 | if (rnp->boost_kthread_task != NULL) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1130 | return; |
| 1131 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1132 | t = kthread_create(rcu_boost_kthread, (void *)rnp, |
| 1133 | "rcub/%d", rnp_index); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1134 | if (WARN_ON_ONCE(IS_ERR(t))) |
| 1135 | return; |
| 1136 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1137 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
| 1138 | rnp->boost_kthread_task = t; |
| 1139 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 1140 | sp.sched_priority = kthread_prio; |
| 1141 | sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); |
| 1142 | wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1143 | } |
| 1144 | |
| 1145 | /* |
| 1146 | * Set the per-rcu_node kthread's affinity to cover all CPUs that are |
| 1147 | * served by the rcu_node in question. The CPU hotplug lock is still |
| 1148 | * held, so the value of rnp->qsmaskinit will be stable. |
| 1149 | * |
| 1150 | * We don't include outgoingcpu in the affinity set, use -1 if there is |
| 1151 | * no outgoing CPU. If there are no CPUs left in the affinity set, |
| 1152 | * this function allows the kthread to execute on any CPU. |
| 1153 | */ |
| 1154 | static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) |
| 1155 | { |
| 1156 | struct task_struct *t = rnp->boost_kthread_task; |
| 1157 | unsigned long mask = rcu_rnp_online_cpus(rnp); |
| 1158 | cpumask_var_t cm; |
| 1159 | int cpu; |
| 1160 | |
| 1161 | if (!t) |
| 1162 | return; |
| 1163 | if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) |
| 1164 | return; |
| 1165 | for_each_leaf_node_possible_cpu(rnp, cpu) |
| 1166 | if ((mask & leaf_node_cpu_bit(rnp, cpu)) && |
| 1167 | cpu != outgoingcpu) |
| 1168 | cpumask_set_cpu(cpu, cm); |
| 1169 | if (cpumask_weight(cm) == 0) |
| 1170 | cpumask_setall(cm); |
| 1171 | set_cpus_allowed_ptr(t, cm); |
| 1172 | free_cpumask_var(cm); |
| 1173 | } |
| 1174 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1175 | /* |
| 1176 | * Spawn boost kthreads -- called as soon as the scheduler is running. |
| 1177 | */ |
| 1178 | static void __init rcu_spawn_boost_kthreads(void) |
| 1179 | { |
| 1180 | struct rcu_node *rnp; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1181 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1182 | rcu_for_each_leaf_node(rnp) |
| 1183 | rcu_spawn_one_boost_kthread(rnp); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1184 | } |
| 1185 | |
| 1186 | static void rcu_prepare_kthreads(int cpu) |
| 1187 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1188 | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1189 | struct rcu_node *rnp = rdp->mynode; |
| 1190 | |
| 1191 | /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ |
| 1192 | if (rcu_scheduler_fully_active) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1193 | rcu_spawn_one_boost_kthread(rnp); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1194 | } |
| 1195 | |
| 1196 | #else /* #ifdef CONFIG_RCU_BOOST */ |
| 1197 | |
| 1198 | static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) |
| 1199 | __releases(rnp->lock) |
| 1200 | { |
| 1201 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
| 1202 | } |
| 1203 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1204 | static bool rcu_is_callbacks_kthread(void) |
| 1205 | { |
| 1206 | return false; |
| 1207 | } |
| 1208 | |
| 1209 | static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) |
| 1210 | { |
| 1211 | } |
| 1212 | |
| 1213 | static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) |
| 1214 | { |
| 1215 | } |
| 1216 | |
| 1217 | static void __init rcu_spawn_boost_kthreads(void) |
| 1218 | { |
| 1219 | } |
| 1220 | |
| 1221 | static void rcu_prepare_kthreads(int cpu) |
| 1222 | { |
| 1223 | } |
| 1224 | |
| 1225 | #endif /* #else #ifdef CONFIG_RCU_BOOST */ |
| 1226 | |
| 1227 | #if !defined(CONFIG_RCU_FAST_NO_HZ) |
| 1228 | |
| 1229 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1230 | * Check to see if any future non-offloaded RCU-related work will need |
| 1231 | * to be done by the current CPU, even if none need be done immediately, |
| 1232 | * returning 1 if so. This function is part of the RCU implementation; |
| 1233 | * it is -not- an exported member of the RCU API. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1234 | * |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1235 | * Because we not have RCU_FAST_NO_HZ, just check whether or not this |
| 1236 | * CPU has RCU callbacks queued. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1237 | */ |
| 1238 | int rcu_needs_cpu(u64 basemono, u64 *nextevt) |
| 1239 | { |
| 1240 | *nextevt = KTIME_MAX; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1241 | return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && |
| 1242 | !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1243 | } |
| 1244 | |
| 1245 | /* |
| 1246 | * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up |
| 1247 | * after it. |
| 1248 | */ |
| 1249 | static void rcu_cleanup_after_idle(void) |
| 1250 | { |
| 1251 | } |
| 1252 | |
| 1253 | /* |
| 1254 | * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, |
| 1255 | * is nothing. |
| 1256 | */ |
| 1257 | static void rcu_prepare_for_idle(void) |
| 1258 | { |
| 1259 | } |
| 1260 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1261 | #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ |
| 1262 | |
| 1263 | /* |
| 1264 | * This code is invoked when a CPU goes idle, at which point we want |
| 1265 | * to have the CPU do everything required for RCU so that it can enter |
| 1266 | * the energy-efficient dyntick-idle mode. This is handled by a |
| 1267 | * state machine implemented by rcu_prepare_for_idle() below. |
| 1268 | * |
| 1269 | * The following three proprocessor symbols control this state machine: |
| 1270 | * |
| 1271 | * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted |
| 1272 | * to sleep in dyntick-idle mode with RCU callbacks pending. This |
| 1273 | * is sized to be roughly one RCU grace period. Those energy-efficiency |
| 1274 | * benchmarkers who might otherwise be tempted to set this to a large |
| 1275 | * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your |
| 1276 | * system. And if you are -that- concerned about energy efficiency, |
| 1277 | * just power the system down and be done with it! |
| 1278 | * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is |
| 1279 | * permitted to sleep in dyntick-idle mode with only lazy RCU |
| 1280 | * callbacks pending. Setting this too high can OOM your system. |
| 1281 | * |
| 1282 | * The values below work well in practice. If future workloads require |
| 1283 | * adjustment, they can be converted into kernel config parameters, though |
| 1284 | * making the state machine smarter might be a better option. |
| 1285 | */ |
| 1286 | #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ |
| 1287 | #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */ |
| 1288 | |
| 1289 | static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; |
| 1290 | module_param(rcu_idle_gp_delay, int, 0644); |
| 1291 | static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY; |
| 1292 | module_param(rcu_idle_lazy_gp_delay, int, 0644); |
| 1293 | |
| 1294 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1295 | * Try to advance callbacks on the current CPU, but only if it has been |
| 1296 | * awhile since the last time we did so. Afterwards, if there are any |
| 1297 | * callbacks ready for immediate invocation, return true. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1298 | */ |
| 1299 | static bool __maybe_unused rcu_try_advance_all_cbs(void) |
| 1300 | { |
| 1301 | bool cbs_ready = false; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1302 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1303 | struct rcu_node *rnp; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1304 | |
| 1305 | /* Exit early if we advanced recently. */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1306 | if (jiffies == rdp->last_advance_all) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1307 | return false; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1308 | rdp->last_advance_all = jiffies; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1309 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1310 | rnp = rdp->mynode; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1311 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1312 | /* |
| 1313 | * Don't bother checking unless a grace period has |
| 1314 | * completed since we last checked and there are |
| 1315 | * callbacks not yet ready to invoke. |
| 1316 | */ |
| 1317 | if ((rcu_seq_completed_gp(rdp->gp_seq, |
| 1318 | rcu_seq_current(&rnp->gp_seq)) || |
| 1319 | unlikely(READ_ONCE(rdp->gpwrap))) && |
| 1320 | rcu_segcblist_pend_cbs(&rdp->cblist)) |
| 1321 | note_gp_changes(rdp); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1322 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1323 | if (rcu_segcblist_ready_cbs(&rdp->cblist)) |
| 1324 | cbs_ready = true; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1325 | return cbs_ready; |
| 1326 | } |
| 1327 | |
| 1328 | /* |
| 1329 | * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready |
| 1330 | * to invoke. If the CPU has callbacks, try to advance them. Tell the |
| 1331 | * caller to set the timeout based on whether or not there are non-lazy |
| 1332 | * callbacks. |
| 1333 | * |
| 1334 | * The caller must have disabled interrupts. |
| 1335 | */ |
| 1336 | int rcu_needs_cpu(u64 basemono, u64 *nextevt) |
| 1337 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1338 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1339 | unsigned long dj; |
| 1340 | |
| 1341 | lockdep_assert_irqs_disabled(); |
| 1342 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1343 | /* If no non-offloaded callbacks, RCU doesn't need the CPU. */ |
| 1344 | if (rcu_segcblist_empty(&rdp->cblist) || |
| 1345 | rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1346 | *nextevt = KTIME_MAX; |
| 1347 | return 0; |
| 1348 | } |
| 1349 | |
| 1350 | /* Attempt to advance callbacks. */ |
| 1351 | if (rcu_try_advance_all_cbs()) { |
| 1352 | /* Some ready to invoke, so initiate later invocation. */ |
| 1353 | invoke_rcu_core(); |
| 1354 | return 1; |
| 1355 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1356 | rdp->last_accelerate = jiffies; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1357 | |
| 1358 | /* Request timer delay depending on laziness, and round. */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1359 | rdp->all_lazy = !rcu_segcblist_n_nonlazy_cbs(&rdp->cblist); |
| 1360 | if (rdp->all_lazy) { |
| 1361 | dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies; |
| 1362 | } else { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1363 | dj = round_up(rcu_idle_gp_delay + jiffies, |
| 1364 | rcu_idle_gp_delay) - jiffies; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1365 | } |
| 1366 | *nextevt = basemono + dj * TICK_NSEC; |
| 1367 | return 0; |
| 1368 | } |
| 1369 | |
| 1370 | /* |
| 1371 | * Prepare a CPU for idle from an RCU perspective. The first major task |
| 1372 | * is to sense whether nohz mode has been enabled or disabled via sysfs. |
| 1373 | * The second major task is to check to see if a non-lazy callback has |
| 1374 | * arrived at a CPU that previously had only lazy callbacks. The third |
| 1375 | * major task is to accelerate (that is, assign grace-period numbers to) |
| 1376 | * any recently arrived callbacks. |
| 1377 | * |
| 1378 | * The caller must have disabled interrupts. |
| 1379 | */ |
| 1380 | static void rcu_prepare_for_idle(void) |
| 1381 | { |
| 1382 | bool needwake; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1383 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1384 | struct rcu_node *rnp; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1385 | int tne; |
| 1386 | |
| 1387 | lockdep_assert_irqs_disabled(); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1388 | if (rcu_segcblist_is_offloaded(&rdp->cblist)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1389 | return; |
| 1390 | |
| 1391 | /* Handle nohz enablement switches conservatively. */ |
| 1392 | tne = READ_ONCE(tick_nohz_active); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1393 | if (tne != rdp->tick_nohz_enabled_snap) { |
| 1394 | if (!rcu_segcblist_empty(&rdp->cblist)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1395 | invoke_rcu_core(); /* force nohz to see update. */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1396 | rdp->tick_nohz_enabled_snap = tne; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1397 | return; |
| 1398 | } |
| 1399 | if (!tne) |
| 1400 | return; |
| 1401 | |
| 1402 | /* |
| 1403 | * If a non-lazy callback arrived at a CPU having only lazy |
| 1404 | * callbacks, invoke RCU core for the side-effect of recalculating |
| 1405 | * idle duration on re-entry to idle. |
| 1406 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1407 | if (rdp->all_lazy && rcu_segcblist_n_nonlazy_cbs(&rdp->cblist)) { |
| 1408 | rdp->all_lazy = false; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1409 | invoke_rcu_core(); |
| 1410 | return; |
| 1411 | } |
| 1412 | |
| 1413 | /* |
| 1414 | * If we have not yet accelerated this jiffy, accelerate all |
| 1415 | * callbacks on this CPU. |
| 1416 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1417 | if (rdp->last_accelerate == jiffies) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1418 | return; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1419 | rdp->last_accelerate = jiffies; |
| 1420 | if (rcu_segcblist_pend_cbs(&rdp->cblist)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1421 | rnp = rdp->mynode; |
| 1422 | raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1423 | needwake = rcu_accelerate_cbs(rnp, rdp); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1424 | raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ |
| 1425 | if (needwake) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1426 | rcu_gp_kthread_wake(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1427 | } |
| 1428 | } |
| 1429 | |
| 1430 | /* |
| 1431 | * Clean up for exit from idle. Attempt to advance callbacks based on |
| 1432 | * any grace periods that elapsed while the CPU was idle, and if any |
| 1433 | * callbacks are now ready to invoke, initiate invocation. |
| 1434 | */ |
| 1435 | static void rcu_cleanup_after_idle(void) |
| 1436 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1437 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
| 1438 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1439 | lockdep_assert_irqs_disabled(); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1440 | if (rcu_segcblist_is_offloaded(&rdp->cblist)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1441 | return; |
| 1442 | if (rcu_try_advance_all_cbs()) |
| 1443 | invoke_rcu_core(); |
| 1444 | } |
| 1445 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1446 | #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ |
| 1447 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1448 | #ifdef CONFIG_RCU_NOCB_CPU |
| 1449 | |
| 1450 | /* |
| 1451 | * Offload callback processing from the boot-time-specified set of CPUs |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1452 | * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads |
| 1453 | * created that pull the callbacks from the corresponding CPU, wait for |
| 1454 | * a grace period to elapse, and invoke the callbacks. These kthreads |
| 1455 | * are organized into GP kthreads, which manage incoming callbacks, wait for |
| 1456 | * grace periods, and awaken CB kthreads, and the CB kthreads, which only |
| 1457 | * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs |
| 1458 | * do a wake_up() on their GP kthread when they insert a callback into any |
| 1459 | * empty list, unless the rcu_nocb_poll boot parameter has been specified, |
| 1460 | * in which case each kthread actively polls its CPU. (Which isn't so great |
| 1461 | * for energy efficiency, but which does reduce RCU's overhead on that CPU.) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1462 | * |
| 1463 | * This is intended to be used in conjunction with Frederic Weisbecker's |
| 1464 | * adaptive-idle work, which would seriously reduce OS jitter on CPUs |
| 1465 | * running CPU-bound user-mode computations. |
| 1466 | * |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1467 | * Offloading of callbacks can also be used as an energy-efficiency |
| 1468 | * measure because CPUs with no RCU callbacks queued are more aggressive |
| 1469 | * about entering dyntick-idle mode. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1470 | */ |
| 1471 | |
| 1472 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1473 | /* |
| 1474 | * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. |
| 1475 | * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a |
| 1476 | * comma-separated list of CPUs and/or CPU ranges. If an invalid list is |
| 1477 | * given, a warning is emitted and all CPUs are offloaded. |
| 1478 | */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1479 | static int __init rcu_nocb_setup(char *str) |
| 1480 | { |
| 1481 | alloc_bootmem_cpumask_var(&rcu_nocb_mask); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1482 | if (!strcasecmp(str, "all")) |
| 1483 | cpumask_setall(rcu_nocb_mask); |
| 1484 | else |
| 1485 | if (cpulist_parse(str, rcu_nocb_mask)) { |
| 1486 | pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n"); |
| 1487 | cpumask_setall(rcu_nocb_mask); |
| 1488 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1489 | return 1; |
| 1490 | } |
| 1491 | __setup("rcu_nocbs=", rcu_nocb_setup); |
| 1492 | |
| 1493 | static int __init parse_rcu_nocb_poll(char *arg) |
| 1494 | { |
| 1495 | rcu_nocb_poll = true; |
| 1496 | return 0; |
| 1497 | } |
| 1498 | early_param("rcu_nocb_poll", parse_rcu_nocb_poll); |
| 1499 | |
| 1500 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1501 | * Don't bother bypassing ->cblist if the call_rcu() rate is low. |
| 1502 | * After all, the main point of bypassing is to avoid lock contention |
| 1503 | * on ->nocb_lock, which only can happen at high call_rcu() rates. |
| 1504 | */ |
| 1505 | int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ; |
| 1506 | module_param(nocb_nobypass_lim_per_jiffy, int, 0); |
| 1507 | |
| 1508 | /* |
| 1509 | * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the |
| 1510 | * lock isn't immediately available, increment ->nocb_lock_contended to |
| 1511 | * flag the contention. |
| 1512 | */ |
| 1513 | static void rcu_nocb_bypass_lock(struct rcu_data *rdp) |
| 1514 | { |
| 1515 | lockdep_assert_irqs_disabled(); |
| 1516 | if (raw_spin_trylock(&rdp->nocb_bypass_lock)) |
| 1517 | return; |
| 1518 | atomic_inc(&rdp->nocb_lock_contended); |
| 1519 | WARN_ON_ONCE(smp_processor_id() != rdp->cpu); |
| 1520 | smp_mb__after_atomic(); /* atomic_inc() before lock. */ |
| 1521 | raw_spin_lock(&rdp->nocb_bypass_lock); |
| 1522 | smp_mb__before_atomic(); /* atomic_dec() after lock. */ |
| 1523 | atomic_dec(&rdp->nocb_lock_contended); |
| 1524 | } |
| 1525 | |
| 1526 | /* |
| 1527 | * Spinwait until the specified rcu_data structure's ->nocb_lock is |
| 1528 | * not contended. Please note that this is extremely special-purpose, |
| 1529 | * relying on the fact that at most two kthreads and one CPU contend for |
| 1530 | * this lock, and also that the two kthreads are guaranteed to have frequent |
| 1531 | * grace-period-duration time intervals between successive acquisitions |
| 1532 | * of the lock. This allows us to use an extremely simple throttling |
| 1533 | * mechanism, and further to apply it only to the CPU doing floods of |
| 1534 | * call_rcu() invocations. Don't try this at home! |
| 1535 | */ |
| 1536 | static void rcu_nocb_wait_contended(struct rcu_data *rdp) |
| 1537 | { |
| 1538 | WARN_ON_ONCE(smp_processor_id() != rdp->cpu); |
| 1539 | while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended))) |
| 1540 | cpu_relax(); |
| 1541 | } |
| 1542 | |
| 1543 | /* |
| 1544 | * Conditionally acquire the specified rcu_data structure's |
| 1545 | * ->nocb_bypass_lock. |
| 1546 | */ |
| 1547 | static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp) |
| 1548 | { |
| 1549 | lockdep_assert_irqs_disabled(); |
| 1550 | return raw_spin_trylock(&rdp->nocb_bypass_lock); |
| 1551 | } |
| 1552 | |
| 1553 | /* |
| 1554 | * Release the specified rcu_data structure's ->nocb_bypass_lock. |
| 1555 | */ |
| 1556 | static void rcu_nocb_bypass_unlock(struct rcu_data *rdp) |
| 1557 | { |
| 1558 | lockdep_assert_irqs_disabled(); |
| 1559 | raw_spin_unlock(&rdp->nocb_bypass_lock); |
| 1560 | } |
| 1561 | |
| 1562 | /* |
| 1563 | * Acquire the specified rcu_data structure's ->nocb_lock, but only |
| 1564 | * if it corresponds to a no-CBs CPU. |
| 1565 | */ |
| 1566 | static void rcu_nocb_lock(struct rcu_data *rdp) |
| 1567 | { |
| 1568 | lockdep_assert_irqs_disabled(); |
| 1569 | if (!rcu_segcblist_is_offloaded(&rdp->cblist)) |
| 1570 | return; |
| 1571 | raw_spin_lock(&rdp->nocb_lock); |
| 1572 | } |
| 1573 | |
| 1574 | /* |
| 1575 | * Release the specified rcu_data structure's ->nocb_lock, but only |
| 1576 | * if it corresponds to a no-CBs CPU. |
| 1577 | */ |
| 1578 | static void rcu_nocb_unlock(struct rcu_data *rdp) |
| 1579 | { |
| 1580 | if (rcu_segcblist_is_offloaded(&rdp->cblist)) { |
| 1581 | lockdep_assert_irqs_disabled(); |
| 1582 | raw_spin_unlock(&rdp->nocb_lock); |
| 1583 | } |
| 1584 | } |
| 1585 | |
| 1586 | /* |
| 1587 | * Release the specified rcu_data structure's ->nocb_lock and restore |
| 1588 | * interrupts, but only if it corresponds to a no-CBs CPU. |
| 1589 | */ |
| 1590 | static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, |
| 1591 | unsigned long flags) |
| 1592 | { |
| 1593 | if (rcu_segcblist_is_offloaded(&rdp->cblist)) { |
| 1594 | lockdep_assert_irqs_disabled(); |
| 1595 | raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); |
| 1596 | } else { |
| 1597 | local_irq_restore(flags); |
| 1598 | } |
| 1599 | } |
| 1600 | |
| 1601 | /* Lockdep check that ->cblist may be safely accessed. */ |
| 1602 | static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) |
| 1603 | { |
| 1604 | lockdep_assert_irqs_disabled(); |
| 1605 | if (rcu_segcblist_is_offloaded(&rdp->cblist) && |
| 1606 | cpu_online(rdp->cpu)) |
| 1607 | lockdep_assert_held(&rdp->nocb_lock); |
| 1608 | } |
| 1609 | |
| 1610 | /* |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1611 | * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended |
| 1612 | * grace period. |
| 1613 | */ |
| 1614 | static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) |
| 1615 | { |
| 1616 | swake_up_all(sq); |
| 1617 | } |
| 1618 | |
| 1619 | static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) |
| 1620 | { |
| 1621 | return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1]; |
| 1622 | } |
| 1623 | |
| 1624 | static void rcu_init_one_nocb(struct rcu_node *rnp) |
| 1625 | { |
| 1626 | init_swait_queue_head(&rnp->nocb_gp_wq[0]); |
| 1627 | init_swait_queue_head(&rnp->nocb_gp_wq[1]); |
| 1628 | } |
| 1629 | |
| 1630 | /* Is the specified CPU a no-CBs CPU? */ |
| 1631 | bool rcu_is_nocb_cpu(int cpu) |
| 1632 | { |
| 1633 | if (cpumask_available(rcu_nocb_mask)) |
| 1634 | return cpumask_test_cpu(cpu, rcu_nocb_mask); |
| 1635 | return false; |
| 1636 | } |
| 1637 | |
| 1638 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1639 | * Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1640 | * and this function releases it. |
| 1641 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1642 | static void wake_nocb_gp(struct rcu_data *rdp, bool force, |
| 1643 | unsigned long flags) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1644 | __releases(rdp->nocb_lock) |
| 1645 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1646 | bool needwake = false; |
| 1647 | struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1648 | |
| 1649 | lockdep_assert_held(&rdp->nocb_lock); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1650 | if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) { |
| 1651 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, |
| 1652 | TPS("AlreadyAwake")); |
| 1653 | rcu_nocb_unlock_irqrestore(rdp, flags); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1654 | return; |
| 1655 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1656 | del_timer(&rdp->nocb_timer); |
| 1657 | rcu_nocb_unlock_irqrestore(rdp, flags); |
| 1658 | raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); |
| 1659 | if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) { |
| 1660 | WRITE_ONCE(rdp_gp->nocb_gp_sleep, false); |
| 1661 | needwake = true; |
| 1662 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake")); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1663 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1664 | raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); |
| 1665 | if (needwake) |
| 1666 | wake_up_process(rdp_gp->nocb_gp_kthread); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1667 | } |
| 1668 | |
| 1669 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1670 | * Arrange to wake the GP kthread for this NOCB group at some future |
| 1671 | * time when it is safe to do so. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1672 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1673 | static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype, |
| 1674 | const char *reason) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1675 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1676 | if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) |
| 1677 | mod_timer(&rdp->nocb_timer, jiffies + 1); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1678 | if (rdp->nocb_defer_wakeup < waketype) |
| 1679 | WRITE_ONCE(rdp->nocb_defer_wakeup, waketype); |
| 1680 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1681 | } |
| 1682 | |
| 1683 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1684 | * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. |
| 1685 | * However, if there is a callback to be enqueued and if ->nocb_bypass |
| 1686 | * proves to be initially empty, just return false because the no-CB GP |
| 1687 | * kthread may need to be awakened in this case. |
| 1688 | * |
| 1689 | * Note that this function always returns true if rhp is NULL. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1690 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1691 | static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, |
| 1692 | unsigned long j) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1693 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1694 | struct rcu_cblist rcl; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1695 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1696 | WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist)); |
| 1697 | rcu_lockdep_assert_cblist_protected(rdp); |
| 1698 | lockdep_assert_held(&rdp->nocb_bypass_lock); |
| 1699 | if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) { |
| 1700 | raw_spin_unlock(&rdp->nocb_bypass_lock); |
| 1701 | return false; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1702 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1703 | /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */ |
| 1704 | if (rhp) |
| 1705 | rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ |
| 1706 | rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp); |
| 1707 | rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl); |
| 1708 | WRITE_ONCE(rdp->nocb_bypass_first, j); |
| 1709 | rcu_nocb_bypass_unlock(rdp); |
| 1710 | return true; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1711 | } |
| 1712 | |
| 1713 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1714 | * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. |
| 1715 | * However, if there is a callback to be enqueued and if ->nocb_bypass |
| 1716 | * proves to be initially empty, just return false because the no-CB GP |
| 1717 | * kthread may need to be awakened in this case. |
| 1718 | * |
| 1719 | * Note that this function always returns true if rhp is NULL. |
| 1720 | */ |
| 1721 | static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, |
| 1722 | unsigned long j) |
| 1723 | { |
| 1724 | if (!rcu_segcblist_is_offloaded(&rdp->cblist)) |
| 1725 | return true; |
| 1726 | rcu_lockdep_assert_cblist_protected(rdp); |
| 1727 | rcu_nocb_bypass_lock(rdp); |
| 1728 | return rcu_nocb_do_flush_bypass(rdp, rhp, j); |
| 1729 | } |
| 1730 | |
| 1731 | /* |
| 1732 | * If the ->nocb_bypass_lock is immediately available, flush the |
| 1733 | * ->nocb_bypass queue into ->cblist. |
| 1734 | */ |
| 1735 | static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j) |
| 1736 | { |
| 1737 | rcu_lockdep_assert_cblist_protected(rdp); |
| 1738 | if (!rcu_segcblist_is_offloaded(&rdp->cblist) || |
| 1739 | !rcu_nocb_bypass_trylock(rdp)) |
| 1740 | return; |
| 1741 | WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j)); |
| 1742 | } |
| 1743 | |
| 1744 | /* |
| 1745 | * See whether it is appropriate to use the ->nocb_bypass list in order |
| 1746 | * to control contention on ->nocb_lock. A limited number of direct |
| 1747 | * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass |
| 1748 | * is non-empty, further callbacks must be placed into ->nocb_bypass, |
| 1749 | * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch |
| 1750 | * back to direct use of ->cblist. However, ->nocb_bypass should not be |
| 1751 | * used if ->cblist is empty, because otherwise callbacks can be stranded |
| 1752 | * on ->nocb_bypass because we cannot count on the current CPU ever again |
| 1753 | * invoking call_rcu(). The general rule is that if ->nocb_bypass is |
| 1754 | * non-empty, the corresponding no-CBs grace-period kthread must not be |
| 1755 | * in an indefinite sleep state. |
| 1756 | * |
| 1757 | * Finally, it is not permitted to use the bypass during early boot, |
| 1758 | * as doing so would confuse the auto-initialization code. Besides |
| 1759 | * which, there is no point in worrying about lock contention while |
| 1760 | * there is only one CPU in operation. |
| 1761 | */ |
| 1762 | static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, |
| 1763 | bool *was_alldone, unsigned long flags) |
| 1764 | { |
| 1765 | unsigned long c; |
| 1766 | unsigned long cur_gp_seq; |
| 1767 | unsigned long j = jiffies; |
| 1768 | long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); |
| 1769 | |
| 1770 | if (!rcu_segcblist_is_offloaded(&rdp->cblist)) { |
| 1771 | *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); |
| 1772 | return false; /* Not offloaded, no bypassing. */ |
| 1773 | } |
| 1774 | lockdep_assert_irqs_disabled(); |
| 1775 | |
| 1776 | // Don't use ->nocb_bypass during early boot. |
| 1777 | if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) { |
| 1778 | rcu_nocb_lock(rdp); |
| 1779 | WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); |
| 1780 | *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); |
| 1781 | return false; |
| 1782 | } |
| 1783 | |
| 1784 | // If we have advanced to a new jiffy, reset counts to allow |
| 1785 | // moving back from ->nocb_bypass to ->cblist. |
| 1786 | if (j == rdp->nocb_nobypass_last) { |
| 1787 | c = rdp->nocb_nobypass_count + 1; |
| 1788 | } else { |
| 1789 | WRITE_ONCE(rdp->nocb_nobypass_last, j); |
| 1790 | c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy; |
| 1791 | if (ULONG_CMP_LT(rdp->nocb_nobypass_count, |
| 1792 | nocb_nobypass_lim_per_jiffy)) |
| 1793 | c = 0; |
| 1794 | else if (c > nocb_nobypass_lim_per_jiffy) |
| 1795 | c = nocb_nobypass_lim_per_jiffy; |
| 1796 | } |
| 1797 | WRITE_ONCE(rdp->nocb_nobypass_count, c); |
| 1798 | |
| 1799 | // If there hasn't yet been all that many ->cblist enqueues |
| 1800 | // this jiffy, tell the caller to enqueue onto ->cblist. But flush |
| 1801 | // ->nocb_bypass first. |
| 1802 | if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) { |
| 1803 | rcu_nocb_lock(rdp); |
| 1804 | *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); |
| 1805 | if (*was_alldone) |
| 1806 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, |
| 1807 | TPS("FirstQ")); |
| 1808 | WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j)); |
| 1809 | WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); |
| 1810 | return false; // Caller must enqueue the callback. |
| 1811 | } |
| 1812 | |
| 1813 | // If ->nocb_bypass has been used too long or is too full, |
| 1814 | // flush ->nocb_bypass to ->cblist. |
| 1815 | if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) || |
| 1816 | ncbs >= qhimark) { |
| 1817 | rcu_nocb_lock(rdp); |
| 1818 | if (!rcu_nocb_flush_bypass(rdp, rhp, j)) { |
| 1819 | *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); |
| 1820 | if (*was_alldone) |
| 1821 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, |
| 1822 | TPS("FirstQ")); |
| 1823 | WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); |
| 1824 | return false; // Caller must enqueue the callback. |
| 1825 | } |
| 1826 | if (j != rdp->nocb_gp_adv_time && |
| 1827 | rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && |
| 1828 | rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { |
| 1829 | rcu_advance_cbs_nowake(rdp->mynode, rdp); |
| 1830 | rdp->nocb_gp_adv_time = j; |
| 1831 | } |
| 1832 | rcu_nocb_unlock_irqrestore(rdp, flags); |
| 1833 | return true; // Callback already enqueued. |
| 1834 | } |
| 1835 | |
| 1836 | // We need to use the bypass. |
| 1837 | rcu_nocb_wait_contended(rdp); |
| 1838 | rcu_nocb_bypass_lock(rdp); |
| 1839 | ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); |
| 1840 | rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ |
| 1841 | rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); |
| 1842 | if (!ncbs) { |
| 1843 | WRITE_ONCE(rdp->nocb_bypass_first, j); |
| 1844 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ")); |
| 1845 | } |
| 1846 | rcu_nocb_bypass_unlock(rdp); |
| 1847 | smp_mb(); /* Order enqueue before wake. */ |
| 1848 | if (ncbs) { |
| 1849 | local_irq_restore(flags); |
| 1850 | } else { |
| 1851 | // No-CBs GP kthread might be indefinitely asleep, if so, wake. |
| 1852 | rcu_nocb_lock(rdp); // Rare during call_rcu() flood. |
| 1853 | if (!rcu_segcblist_pend_cbs(&rdp->cblist)) { |
| 1854 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, |
| 1855 | TPS("FirstBQwake")); |
| 1856 | __call_rcu_nocb_wake(rdp, true, flags); |
| 1857 | } else { |
| 1858 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, |
| 1859 | TPS("FirstBQnoWake")); |
| 1860 | rcu_nocb_unlock_irqrestore(rdp, flags); |
| 1861 | } |
| 1862 | } |
| 1863 | return true; // Callback already enqueued. |
| 1864 | } |
| 1865 | |
| 1866 | /* |
| 1867 | * Awaken the no-CBs grace-period kthead if needed, either due to it |
| 1868 | * legitimately being asleep or due to overload conditions. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1869 | * |
| 1870 | * If warranted, also wake up the kthread servicing this CPUs queues. |
| 1871 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1872 | static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone, |
| 1873 | unsigned long flags) |
| 1874 | __releases(rdp->nocb_lock) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1875 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1876 | unsigned long cur_gp_seq; |
| 1877 | unsigned long j; |
| 1878 | long len; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1879 | struct task_struct *t; |
| 1880 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1881 | // If we are being polled or there is no kthread, just leave. |
| 1882 | t = READ_ONCE(rdp->nocb_gp_kthread); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1883 | if (rcu_nocb_poll || !t) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1884 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1885 | TPS("WakeNotPoll")); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1886 | rcu_nocb_unlock_irqrestore(rdp, flags); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1887 | return; |
| 1888 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1889 | // Need to actually to a wakeup. |
| 1890 | len = rcu_segcblist_n_cbs(&rdp->cblist); |
| 1891 | if (was_alldone) { |
| 1892 | rdp->qlen_last_fqs_check = len; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1893 | if (!irqs_disabled_flags(flags)) { |
| 1894 | /* ... if queue was empty ... */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1895 | wake_nocb_gp(rdp, false, flags); |
| 1896 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1897 | TPS("WakeEmpty")); |
| 1898 | } else { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1899 | wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE, |
| 1900 | TPS("WakeEmptyIsDeferred")); |
| 1901 | rcu_nocb_unlock_irqrestore(rdp, flags); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1902 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1903 | } else if (len > rdp->qlen_last_fqs_check + qhimark) { |
| 1904 | /* ... or if many callbacks queued. */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1905 | rdp->qlen_last_fqs_check = len; |
| 1906 | j = jiffies; |
| 1907 | if (j != rdp->nocb_gp_adv_time && |
| 1908 | rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && |
| 1909 | rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { |
| 1910 | rcu_advance_cbs_nowake(rdp->mynode, rdp); |
| 1911 | rdp->nocb_gp_adv_time = j; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1912 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1913 | smp_mb(); /* Enqueue before timer_pending(). */ |
| 1914 | if ((rdp->nocb_cb_sleep || |
| 1915 | !rcu_segcblist_ready_cbs(&rdp->cblist)) && |
| 1916 | !timer_pending(&rdp->nocb_bypass_timer)) |
| 1917 | wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE, |
| 1918 | TPS("WakeOvfIsDeferred")); |
| 1919 | rcu_nocb_unlock_irqrestore(rdp, flags); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1920 | } else { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1921 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); |
| 1922 | rcu_nocb_unlock_irqrestore(rdp, flags); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1923 | } |
| 1924 | return; |
| 1925 | } |
| 1926 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1927 | /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */ |
| 1928 | static void do_nocb_bypass_wakeup_timer(struct timer_list *t) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1929 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1930 | unsigned long flags; |
| 1931 | struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1932 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1933 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer")); |
| 1934 | rcu_nocb_lock_irqsave(rdp, flags); |
| 1935 | smp_mb__after_spinlock(); /* Timer expire before wakeup. */ |
| 1936 | __call_rcu_nocb_wake(rdp, true, flags); |
| 1937 | } |
| 1938 | |
| 1939 | /* |
| 1940 | * No-CBs GP kthreads come here to wait for additional callbacks to show up |
| 1941 | * or for grace periods to end. |
| 1942 | */ |
| 1943 | static void nocb_gp_wait(struct rcu_data *my_rdp) |
| 1944 | { |
| 1945 | bool bypass = false; |
| 1946 | long bypass_ncbs; |
| 1947 | int __maybe_unused cpu = my_rdp->cpu; |
| 1948 | unsigned long cur_gp_seq; |
| 1949 | unsigned long flags; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1950 | bool gotcbs = false; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1951 | unsigned long j = jiffies; |
| 1952 | bool needwait_gp = false; // This prevents actual uninitialized use. |
| 1953 | bool needwake; |
| 1954 | bool needwake_gp; |
| 1955 | struct rcu_data *rdp; |
| 1956 | struct rcu_node *rnp; |
| 1957 | unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1958 | |
| 1959 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1960 | * Each pass through the following loop checks for CBs and for the |
| 1961 | * nearest grace period (if any) to wait for next. The CB kthreads |
| 1962 | * and the global grace-period kthread are awakened if needed. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1963 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1964 | for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) { |
| 1965 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check")); |
| 1966 | rcu_nocb_lock_irqsave(rdp, flags); |
| 1967 | bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); |
| 1968 | if (bypass_ncbs && |
| 1969 | (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) || |
| 1970 | bypass_ncbs > 2 * qhimark)) { |
| 1971 | // Bypass full or old, so flush it. |
| 1972 | (void)rcu_nocb_try_flush_bypass(rdp, j); |
| 1973 | bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); |
| 1974 | } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) { |
| 1975 | rcu_nocb_unlock_irqrestore(rdp, flags); |
| 1976 | continue; /* No callbacks here, try next. */ |
| 1977 | } |
| 1978 | if (bypass_ncbs) { |
| 1979 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, |
| 1980 | TPS("Bypass")); |
| 1981 | bypass = true; |
| 1982 | } |
| 1983 | rnp = rdp->mynode; |
| 1984 | if (bypass) { // Avoid race with first bypass CB. |
| 1985 | WRITE_ONCE(my_rdp->nocb_defer_wakeup, |
| 1986 | RCU_NOCB_WAKE_NOT); |
| 1987 | del_timer(&my_rdp->nocb_timer); |
| 1988 | } |
| 1989 | // Advance callbacks if helpful and low contention. |
| 1990 | needwake_gp = false; |
| 1991 | if (!rcu_segcblist_restempty(&rdp->cblist, |
| 1992 | RCU_NEXT_READY_TAIL) || |
| 1993 | (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && |
| 1994 | rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) { |
| 1995 | raw_spin_lock_rcu_node(rnp); /* irqs disabled. */ |
| 1996 | needwake_gp = rcu_advance_cbs(rnp, rdp); |
| 1997 | raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */ |
| 1998 | } |
| 1999 | // Need to wait on some grace period? |
| 2000 | WARN_ON_ONCE(!rcu_segcblist_restempty(&rdp->cblist, |
| 2001 | RCU_NEXT_READY_TAIL)); |
| 2002 | if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) { |
| 2003 | if (!needwait_gp || |
| 2004 | ULONG_CMP_LT(cur_gp_seq, wait_gp_seq)) |
| 2005 | wait_gp_seq = cur_gp_seq; |
| 2006 | needwait_gp = true; |
| 2007 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, |
| 2008 | TPS("NeedWaitGP")); |
| 2009 | } |
| 2010 | if (rcu_segcblist_ready_cbs(&rdp->cblist)) { |
| 2011 | needwake = rdp->nocb_cb_sleep; |
| 2012 | WRITE_ONCE(rdp->nocb_cb_sleep, false); |
| 2013 | smp_mb(); /* CB invocation -after- GP end. */ |
| 2014 | } else { |
| 2015 | needwake = false; |
| 2016 | } |
| 2017 | rcu_nocb_unlock_irqrestore(rdp, flags); |
| 2018 | if (needwake) { |
| 2019 | swake_up_one(&rdp->nocb_cb_wq); |
| 2020 | gotcbs = true; |
| 2021 | } |
| 2022 | if (needwake_gp) |
| 2023 | rcu_gp_kthread_wake(); |
| 2024 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2025 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2026 | my_rdp->nocb_gp_bypass = bypass; |
| 2027 | my_rdp->nocb_gp_gp = needwait_gp; |
| 2028 | my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0; |
| 2029 | if (bypass && !rcu_nocb_poll) { |
| 2030 | // At least one child with non-empty ->nocb_bypass, so set |
| 2031 | // timer in order to avoid stranding its callbacks. |
| 2032 | raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); |
| 2033 | mod_timer(&my_rdp->nocb_bypass_timer, j + 2); |
| 2034 | raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); |
| 2035 | } |
| 2036 | if (rcu_nocb_poll) { |
| 2037 | /* Polling, so trace if first poll in the series. */ |
| 2038 | if (gotcbs) |
| 2039 | trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll")); |
| 2040 | schedule_timeout_interruptible(1); |
| 2041 | } else if (!needwait_gp) { |
| 2042 | /* Wait for callbacks to appear. */ |
| 2043 | trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep")); |
| 2044 | swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq, |
| 2045 | !READ_ONCE(my_rdp->nocb_gp_sleep)); |
| 2046 | trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep")); |
| 2047 | } else { |
| 2048 | rnp = my_rdp->mynode; |
| 2049 | trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait")); |
| 2050 | swait_event_interruptible_exclusive( |
| 2051 | rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1], |
| 2052 | rcu_seq_done(&rnp->gp_seq, wait_gp_seq) || |
| 2053 | !READ_ONCE(my_rdp->nocb_gp_sleep)); |
| 2054 | trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait")); |
| 2055 | } |
| 2056 | if (!rcu_nocb_poll) { |
| 2057 | raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); |
| 2058 | if (bypass) |
| 2059 | del_timer(&my_rdp->nocb_bypass_timer); |
| 2060 | WRITE_ONCE(my_rdp->nocb_gp_sleep, true); |
| 2061 | raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); |
| 2062 | } |
| 2063 | my_rdp->nocb_gp_seq = -1; |
| 2064 | WARN_ON(signal_pending(current)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2065 | } |
| 2066 | |
| 2067 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2068 | * No-CBs grace-period-wait kthread. There is one of these per group |
| 2069 | * of CPUs, but only once at least one CPU in that group has come online |
| 2070 | * at least once since boot. This kthread checks for newly posted |
| 2071 | * callbacks from any of the CPUs it is responsible for, waits for a |
| 2072 | * grace period, then awakens all of the rcu_nocb_cb_kthread() instances |
| 2073 | * that then have callback-invocation work to do. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2074 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2075 | static int rcu_nocb_gp_kthread(void *arg) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2076 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2077 | struct rcu_data *rdp = arg; |
| 2078 | |
| 2079 | for (;;) { |
| 2080 | WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1); |
| 2081 | nocb_gp_wait(rdp); |
| 2082 | cond_resched_tasks_rcu_qs(); |
| 2083 | } |
| 2084 | return 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2085 | } |
| 2086 | |
| 2087 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2088 | * Invoke any ready callbacks from the corresponding no-CBs CPU, |
| 2089 | * then, if there are no more, wait for more to appear. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2090 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2091 | static void nocb_cb_wait(struct rcu_data *rdp) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2092 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2093 | unsigned long cur_gp_seq; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2094 | unsigned long flags; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2095 | bool needwake_gp = false; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2096 | struct rcu_node *rnp = rdp->mynode; |
| 2097 | |
| 2098 | local_irq_save(flags); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2099 | rcu_momentary_dyntick_idle(); |
| 2100 | local_irq_restore(flags); |
| 2101 | local_bh_disable(); |
| 2102 | rcu_do_batch(rdp); |
| 2103 | local_bh_enable(); |
| 2104 | lockdep_assert_irqs_enabled(); |
| 2105 | rcu_nocb_lock_irqsave(rdp, flags); |
| 2106 | if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && |
| 2107 | rcu_seq_done(&rnp->gp_seq, cur_gp_seq) && |
| 2108 | raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */ |
| 2109 | needwake_gp = rcu_advance_cbs(rdp->mynode, rdp); |
| 2110 | raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ |
| 2111 | } |
| 2112 | if (rcu_segcblist_ready_cbs(&rdp->cblist)) { |
| 2113 | rcu_nocb_unlock_irqrestore(rdp, flags); |
| 2114 | if (needwake_gp) |
| 2115 | rcu_gp_kthread_wake(); |
| 2116 | return; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2117 | } |
| 2118 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2119 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep")); |
| 2120 | WRITE_ONCE(rdp->nocb_cb_sleep, true); |
| 2121 | rcu_nocb_unlock_irqrestore(rdp, flags); |
| 2122 | if (needwake_gp) |
| 2123 | rcu_gp_kthread_wake(); |
| 2124 | swait_event_interruptible_exclusive(rdp->nocb_cb_wq, |
| 2125 | !READ_ONCE(rdp->nocb_cb_sleep)); |
| 2126 | if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */ |
| 2127 | /* ^^^ Ensure CB invocation follows _sleep test. */ |
| 2128 | return; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2129 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2130 | WARN_ON(signal_pending(current)); |
| 2131 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty")); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2132 | } |
| 2133 | |
| 2134 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2135 | * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke |
| 2136 | * nocb_cb_wait() to do the dirty work. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2137 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2138 | static int rcu_nocb_cb_kthread(void *arg) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2139 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2140 | struct rcu_data *rdp = arg; |
| 2141 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2142 | // Each pass through this loop does one callback batch, and, |
| 2143 | // if there are no more ready callbacks, waits for them. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2144 | for (;;) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2145 | nocb_cb_wait(rdp); |
| 2146 | cond_resched_tasks_rcu_qs(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2147 | } |
| 2148 | return 0; |
| 2149 | } |
| 2150 | |
| 2151 | /* Is a deferred wakeup of rcu_nocb_kthread() required? */ |
| 2152 | static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) |
| 2153 | { |
| 2154 | return READ_ONCE(rdp->nocb_defer_wakeup); |
| 2155 | } |
| 2156 | |
| 2157 | /* Do a deferred wakeup of rcu_nocb_kthread(). */ |
| 2158 | static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp) |
| 2159 | { |
| 2160 | unsigned long flags; |
| 2161 | int ndw; |
| 2162 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2163 | rcu_nocb_lock_irqsave(rdp, flags); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2164 | if (!rcu_nocb_need_deferred_wakeup(rdp)) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2165 | rcu_nocb_unlock_irqrestore(rdp, flags); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2166 | return; |
| 2167 | } |
| 2168 | ndw = READ_ONCE(rdp->nocb_defer_wakeup); |
| 2169 | WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2170 | wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); |
| 2171 | trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake")); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2172 | } |
| 2173 | |
| 2174 | /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ |
| 2175 | static void do_nocb_deferred_wakeup_timer(struct timer_list *t) |
| 2176 | { |
| 2177 | struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); |
| 2178 | |
| 2179 | do_nocb_deferred_wakeup_common(rdp); |
| 2180 | } |
| 2181 | |
| 2182 | /* |
| 2183 | * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. |
| 2184 | * This means we do an inexact common-case check. Note that if |
| 2185 | * we miss, ->nocb_timer will eventually clean things up. |
| 2186 | */ |
| 2187 | static void do_nocb_deferred_wakeup(struct rcu_data *rdp) |
| 2188 | { |
| 2189 | if (rcu_nocb_need_deferred_wakeup(rdp)) |
| 2190 | do_nocb_deferred_wakeup_common(rdp); |
| 2191 | } |
| 2192 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 2193 | void rcu_nocb_flush_deferred_wakeup(void) |
| 2194 | { |
| 2195 | do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data)); |
| 2196 | } |
| 2197 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2198 | void __init rcu_init_nohz(void) |
| 2199 | { |
| 2200 | int cpu; |
| 2201 | bool need_rcu_nocb_mask = false; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2202 | struct rcu_data *rdp; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2203 | |
| 2204 | #if defined(CONFIG_NO_HZ_FULL) |
| 2205 | if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) |
| 2206 | need_rcu_nocb_mask = true; |
| 2207 | #endif /* #if defined(CONFIG_NO_HZ_FULL) */ |
| 2208 | |
| 2209 | if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) { |
| 2210 | if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { |
| 2211 | pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); |
| 2212 | return; |
| 2213 | } |
| 2214 | } |
| 2215 | if (!cpumask_available(rcu_nocb_mask)) |
| 2216 | return; |
| 2217 | |
| 2218 | #if defined(CONFIG_NO_HZ_FULL) |
| 2219 | if (tick_nohz_full_running) |
| 2220 | cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); |
| 2221 | #endif /* #if defined(CONFIG_NO_HZ_FULL) */ |
| 2222 | |
| 2223 | if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { |
| 2224 | pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n"); |
| 2225 | cpumask_and(rcu_nocb_mask, cpu_possible_mask, |
| 2226 | rcu_nocb_mask); |
| 2227 | } |
| 2228 | if (cpumask_empty(rcu_nocb_mask)) |
| 2229 | pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); |
| 2230 | else |
| 2231 | pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", |
| 2232 | cpumask_pr_args(rcu_nocb_mask)); |
| 2233 | if (rcu_nocb_poll) |
| 2234 | pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); |
| 2235 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2236 | for_each_cpu(cpu, rcu_nocb_mask) { |
| 2237 | rdp = per_cpu_ptr(&rcu_data, cpu); |
| 2238 | if (rcu_segcblist_empty(&rdp->cblist)) |
| 2239 | rcu_segcblist_init(&rdp->cblist); |
| 2240 | rcu_segcblist_offload(&rdp->cblist); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2241 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2242 | rcu_organize_nocb_kthreads(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2243 | } |
| 2244 | |
| 2245 | /* Initialize per-rcu_data variables for no-CBs CPUs. */ |
| 2246 | static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) |
| 2247 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2248 | init_swait_queue_head(&rdp->nocb_cb_wq); |
| 2249 | init_swait_queue_head(&rdp->nocb_gp_wq); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2250 | raw_spin_lock_init(&rdp->nocb_lock); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2251 | raw_spin_lock_init(&rdp->nocb_bypass_lock); |
| 2252 | raw_spin_lock_init(&rdp->nocb_gp_lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2253 | timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2254 | timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0); |
| 2255 | rcu_cblist_init(&rdp->nocb_bypass); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2256 | } |
| 2257 | |
| 2258 | /* |
| 2259 | * If the specified CPU is a no-CBs CPU that does not already have its |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2260 | * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread |
| 2261 | * for this CPU's group has not yet been created, spawn it as well. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2262 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2263 | static void rcu_spawn_one_nocb_kthread(int cpu) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2264 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2265 | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); |
| 2266 | struct rcu_data *rdp_gp; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2267 | struct task_struct *t; |
| 2268 | |
| 2269 | /* |
| 2270 | * If this isn't a no-CBs CPU or if it already has an rcuo kthread, |
| 2271 | * then nothing to do. |
| 2272 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2273 | if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2274 | return; |
| 2275 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2276 | /* If we didn't spawn the GP kthread first, reorganize! */ |
| 2277 | rdp_gp = rdp->nocb_gp_rdp; |
| 2278 | if (!rdp_gp->nocb_gp_kthread) { |
| 2279 | t = kthread_run(rcu_nocb_gp_kthread, rdp_gp, |
| 2280 | "rcuog/%d", rdp_gp->cpu); |
| 2281 | if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) |
| 2282 | return; |
| 2283 | WRITE_ONCE(rdp_gp->nocb_gp_kthread, t); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2284 | } |
| 2285 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2286 | /* Spawn the kthread for this CPU. */ |
| 2287 | t = kthread_run(rcu_nocb_cb_kthread, rdp, |
| 2288 | "rcuo%c/%d", rcu_state.abbr, cpu); |
| 2289 | if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__)) |
| 2290 | return; |
| 2291 | WRITE_ONCE(rdp->nocb_cb_kthread, t); |
| 2292 | WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2293 | } |
| 2294 | |
| 2295 | /* |
| 2296 | * If the specified CPU is a no-CBs CPU that does not already have its |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2297 | * rcuo kthread, spawn it. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2298 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2299 | static void rcu_spawn_cpu_nocb_kthread(int cpu) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2300 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2301 | if (rcu_scheduler_fully_active) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2302 | rcu_spawn_one_nocb_kthread(cpu); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2303 | } |
| 2304 | |
| 2305 | /* |
| 2306 | * Once the scheduler is running, spawn rcuo kthreads for all online |
| 2307 | * no-CBs CPUs. This assumes that the early_initcall()s happen before |
| 2308 | * non-boot CPUs come online -- if this changes, we will need to add |
| 2309 | * some mutual exclusion. |
| 2310 | */ |
| 2311 | static void __init rcu_spawn_nocb_kthreads(void) |
| 2312 | { |
| 2313 | int cpu; |
| 2314 | |
| 2315 | for_each_online_cpu(cpu) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2316 | rcu_spawn_cpu_nocb_kthread(cpu); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2317 | } |
| 2318 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2319 | /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */ |
| 2320 | static int rcu_nocb_gp_stride = -1; |
| 2321 | module_param(rcu_nocb_gp_stride, int, 0444); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2322 | |
| 2323 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2324 | * Initialize GP-CB relationships for all no-CBs CPU. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2325 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2326 | static void __init rcu_organize_nocb_kthreads(void) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2327 | { |
| 2328 | int cpu; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2329 | bool firsttime = true; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 2330 | bool gotnocbs = false; |
| 2331 | bool gotnocbscbs = true; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2332 | int ls = rcu_nocb_gp_stride; |
| 2333 | int nl = 0; /* Next GP kthread. */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2334 | struct rcu_data *rdp; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2335 | struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2336 | struct rcu_data *rdp_prev = NULL; |
| 2337 | |
| 2338 | if (!cpumask_available(rcu_nocb_mask)) |
| 2339 | return; |
| 2340 | if (ls == -1) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2341 | ls = nr_cpu_ids / int_sqrt(nr_cpu_ids); |
| 2342 | rcu_nocb_gp_stride = ls; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2343 | } |
| 2344 | |
| 2345 | /* |
| 2346 | * Each pass through this loop sets up one rcu_data structure. |
| 2347 | * Should the corresponding CPU come online in the future, then |
| 2348 | * we will spawn the needed set of rcu_nocb_kthread() kthreads. |
| 2349 | */ |
| 2350 | for_each_cpu(cpu, rcu_nocb_mask) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2351 | rdp = per_cpu_ptr(&rcu_data, cpu); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2352 | if (rdp->cpu >= nl) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2353 | /* New GP kthread, set up for CBs & next GP. */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 2354 | gotnocbs = true; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2355 | nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2356 | rdp->nocb_gp_rdp = rdp; |
| 2357 | rdp_gp = rdp; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 2358 | if (dump_tree) { |
| 2359 | if (!firsttime) |
| 2360 | pr_cont("%s\n", gotnocbscbs |
| 2361 | ? "" : " (self only)"); |
| 2362 | gotnocbscbs = false; |
| 2363 | firsttime = false; |
| 2364 | pr_alert("%s: No-CB GP kthread CPU %d:", |
| 2365 | __func__, cpu); |
| 2366 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2367 | } else { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2368 | /* Another CB kthread, link to previous GP kthread. */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 2369 | gotnocbscbs = true; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2370 | rdp->nocb_gp_rdp = rdp_gp; |
| 2371 | rdp_prev->nocb_next_cb_rdp = rdp; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 2372 | if (dump_tree) |
| 2373 | pr_cont(" %d", cpu); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2374 | } |
| 2375 | rdp_prev = rdp; |
| 2376 | } |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 2377 | if (gotnocbs && dump_tree) |
| 2378 | pr_cont("%s\n", gotnocbscbs ? "" : " (self only)"); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2379 | } |
| 2380 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2381 | /* |
| 2382 | * Bind the current task to the offloaded CPUs. If there are no offloaded |
| 2383 | * CPUs, leave the task unbound. Splat if the bind attempt fails. |
| 2384 | */ |
| 2385 | void rcu_bind_current_to_nocb(void) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2386 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2387 | if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask)) |
| 2388 | WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask)); |
| 2389 | } |
| 2390 | EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2391 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2392 | /* |
| 2393 | * Dump out nocb grace-period kthread state for the specified rcu_data |
| 2394 | * structure. |
| 2395 | */ |
| 2396 | static void show_rcu_nocb_gp_state(struct rcu_data *rdp) |
| 2397 | { |
| 2398 | struct rcu_node *rnp = rdp->mynode; |
| 2399 | |
| 2400 | pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n", |
| 2401 | rdp->cpu, |
| 2402 | "kK"[!!rdp->nocb_gp_kthread], |
| 2403 | "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)], |
| 2404 | "dD"[!!rdp->nocb_defer_wakeup], |
| 2405 | "tT"[timer_pending(&rdp->nocb_timer)], |
| 2406 | "bB"[timer_pending(&rdp->nocb_bypass_timer)], |
| 2407 | "sS"[!!rdp->nocb_gp_sleep], |
| 2408 | ".W"[swait_active(&rdp->nocb_gp_wq)], |
| 2409 | ".W"[swait_active(&rnp->nocb_gp_wq[0])], |
| 2410 | ".W"[swait_active(&rnp->nocb_gp_wq[1])], |
| 2411 | ".B"[!!rdp->nocb_gp_bypass], |
| 2412 | ".G"[!!rdp->nocb_gp_gp], |
| 2413 | (long)rdp->nocb_gp_seq, |
| 2414 | rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops)); |
| 2415 | } |
| 2416 | |
| 2417 | /* Dump out nocb kthread state for the specified rcu_data structure. */ |
| 2418 | static void show_rcu_nocb_state(struct rcu_data *rdp) |
| 2419 | { |
| 2420 | struct rcu_segcblist *rsclp = &rdp->cblist; |
| 2421 | bool waslocked; |
| 2422 | bool wastimer; |
| 2423 | bool wassleep; |
| 2424 | |
| 2425 | if (rdp->nocb_gp_rdp == rdp) |
| 2426 | show_rcu_nocb_gp_state(rdp); |
| 2427 | |
| 2428 | pr_info(" CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n", |
| 2429 | rdp->cpu, rdp->nocb_gp_rdp->cpu, |
| 2430 | "kK"[!!rdp->nocb_cb_kthread], |
| 2431 | "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)], |
| 2432 | "cC"[!!atomic_read(&rdp->nocb_lock_contended)], |
| 2433 | "lL"[raw_spin_is_locked(&rdp->nocb_lock)], |
| 2434 | "sS"[!!rdp->nocb_cb_sleep], |
| 2435 | ".W"[swait_active(&rdp->nocb_cb_wq)], |
| 2436 | jiffies - rdp->nocb_bypass_first, |
| 2437 | jiffies - rdp->nocb_nobypass_last, |
| 2438 | rdp->nocb_nobypass_count, |
| 2439 | ".D"[rcu_segcblist_ready_cbs(rsclp)], |
| 2440 | ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)], |
| 2441 | ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)], |
| 2442 | ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)], |
| 2443 | ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)], |
| 2444 | rcu_segcblist_n_cbs(&rdp->cblist)); |
| 2445 | |
| 2446 | /* It is OK for GP kthreads to have GP state. */ |
| 2447 | if (rdp->nocb_gp_rdp == rdp) |
| 2448 | return; |
| 2449 | |
| 2450 | waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock); |
| 2451 | wastimer = timer_pending(&rdp->nocb_timer); |
| 2452 | wassleep = swait_active(&rdp->nocb_gp_wq); |
| 2453 | if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep && |
| 2454 | !waslocked && !wastimer && !wassleep) |
| 2455 | return; /* Nothing untowards. */ |
| 2456 | |
| 2457 | pr_info(" !!! %c%c%c%c %c\n", |
| 2458 | "lL"[waslocked], |
| 2459 | "dD"[!!rdp->nocb_defer_wakeup], |
| 2460 | "tT"[wastimer], |
| 2461 | "sS"[!!rdp->nocb_gp_sleep], |
| 2462 | ".W"[wassleep]); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2463 | } |
| 2464 | |
| 2465 | #else /* #ifdef CONFIG_RCU_NOCB_CPU */ |
| 2466 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2467 | /* No ->nocb_lock to acquire. */ |
| 2468 | static void rcu_nocb_lock(struct rcu_data *rdp) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2469 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2470 | } |
| 2471 | |
| 2472 | /* No ->nocb_lock to release. */ |
| 2473 | static void rcu_nocb_unlock(struct rcu_data *rdp) |
| 2474 | { |
| 2475 | } |
| 2476 | |
| 2477 | /* No ->nocb_lock to release. */ |
| 2478 | static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, |
| 2479 | unsigned long flags) |
| 2480 | { |
| 2481 | local_irq_restore(flags); |
| 2482 | } |
| 2483 | |
| 2484 | /* Lockdep check that ->cblist may be safely accessed. */ |
| 2485 | static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) |
| 2486 | { |
| 2487 | lockdep_assert_irqs_disabled(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2488 | } |
| 2489 | |
| 2490 | static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) |
| 2491 | { |
| 2492 | } |
| 2493 | |
| 2494 | static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) |
| 2495 | { |
| 2496 | return NULL; |
| 2497 | } |
| 2498 | |
| 2499 | static void rcu_init_one_nocb(struct rcu_node *rnp) |
| 2500 | { |
| 2501 | } |
| 2502 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2503 | static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, |
| 2504 | unsigned long j) |
| 2505 | { |
| 2506 | return true; |
| 2507 | } |
| 2508 | |
| 2509 | static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, |
| 2510 | bool *was_alldone, unsigned long flags) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2511 | { |
| 2512 | return false; |
| 2513 | } |
| 2514 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2515 | static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty, |
| 2516 | unsigned long flags) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2517 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2518 | WARN_ON_ONCE(1); /* Should be dead code! */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2519 | } |
| 2520 | |
| 2521 | static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) |
| 2522 | { |
| 2523 | } |
| 2524 | |
| 2525 | static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) |
| 2526 | { |
| 2527 | return false; |
| 2528 | } |
| 2529 | |
| 2530 | static void do_nocb_deferred_wakeup(struct rcu_data *rdp) |
| 2531 | { |
| 2532 | } |
| 2533 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2534 | static void rcu_spawn_cpu_nocb_kthread(int cpu) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2535 | { |
| 2536 | } |
| 2537 | |
| 2538 | static void __init rcu_spawn_nocb_kthreads(void) |
| 2539 | { |
| 2540 | } |
| 2541 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2542 | static void show_rcu_nocb_state(struct rcu_data *rdp) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2543 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2544 | } |
| 2545 | |
| 2546 | #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ |
| 2547 | |
| 2548 | /* |
| 2549 | * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the |
| 2550 | * grace-period kthread will do force_quiescent_state() processing? |
| 2551 | * The idea is to avoid waking up RCU core processing on such a |
| 2552 | * CPU unless the grace period has extended for too long. |
| 2553 | * |
| 2554 | * This code relies on the fact that all NO_HZ_FULL CPUs are also |
| 2555 | * CONFIG_RCU_NOCB_CPU CPUs. |
| 2556 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2557 | static bool rcu_nohz_full_cpu(void) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2558 | { |
| 2559 | #ifdef CONFIG_NO_HZ_FULL |
| 2560 | if (tick_nohz_full_cpu(smp_processor_id()) && |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2561 | (!rcu_gp_in_progress() || |
| 2562 | ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ))) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2563 | return true; |
| 2564 | #endif /* #ifdef CONFIG_NO_HZ_FULL */ |
| 2565 | return false; |
| 2566 | } |
| 2567 | |
| 2568 | /* |
| 2569 | * Bind the RCU grace-period kthreads to the housekeeping CPU. |
| 2570 | */ |
| 2571 | static void rcu_bind_gp_kthread(void) |
| 2572 | { |
| 2573 | if (!tick_nohz_full_enabled()) |
| 2574 | return; |
| 2575 | housekeeping_affine(current, HK_FLAG_RCU); |
| 2576 | } |
| 2577 | |
| 2578 | /* Record the current task on dyntick-idle entry. */ |
| 2579 | static void rcu_dynticks_task_enter(void) |
| 2580 | { |
| 2581 | #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) |
| 2582 | WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); |
| 2583 | #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ |
| 2584 | } |
| 2585 | |
| 2586 | /* Record no current task on dyntick-idle exit. */ |
| 2587 | static void rcu_dynticks_task_exit(void) |
| 2588 | { |
| 2589 | #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) |
| 2590 | WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); |
| 2591 | #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ |
| 2592 | } |