blob: badfa8f153599dedd8841f80f8a5fb75456a1e97 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
37#include <linux/mempolicy.h>
38#include <linux/mm.h>
39#include <linux/memory.h>
40#include <linux/export.h>
41#include <linux/mount.h>
David Brazdil0f672f62019-12-10 10:32:29 +000042#include <linux/fs_context.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000043#include <linux/namei.h>
44#include <linux/pagemap.h>
45#include <linux/proc_fs.h>
46#include <linux/rcupdate.h>
47#include <linux/sched.h>
David Brazdil0f672f62019-12-10 10:32:29 +000048#include <linux/sched/deadline.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000049#include <linux/sched/mm.h>
50#include <linux/sched/task.h>
51#include <linux/seq_file.h>
52#include <linux/security.h>
53#include <linux/slab.h>
54#include <linux/spinlock.h>
55#include <linux/stat.h>
56#include <linux/string.h>
57#include <linux/time.h>
58#include <linux/time64.h>
59#include <linux/backing-dev.h>
60#include <linux/sort.h>
61#include <linux/oom.h>
62#include <linux/sched/isolation.h>
63#include <linux/uaccess.h>
64#include <linux/atomic.h>
65#include <linux/mutex.h>
66#include <linux/cgroup.h>
67#include <linux/wait.h>
68
69DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
70DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
71
72/* See "Frequency meter" comments, below. */
73
74struct fmeter {
75 int cnt; /* unprocessed events count */
76 int val; /* most recent output value */
77 time64_t time; /* clock (secs) when val computed */
78 spinlock_t lock; /* guards read or write of above */
79};
80
81struct cpuset {
82 struct cgroup_subsys_state css;
83
84 unsigned long flags; /* "unsigned long" so bitops work */
85
86 /*
87 * On default hierarchy:
88 *
89 * The user-configured masks can only be changed by writing to
90 * cpuset.cpus and cpuset.mems, and won't be limited by the
91 * parent masks.
92 *
93 * The effective masks is the real masks that apply to the tasks
94 * in the cpuset. They may be changed if the configured masks are
95 * changed or hotplug happens.
96 *
97 * effective_mask == configured_mask & parent's effective_mask,
98 * and if it ends up empty, it will inherit the parent's mask.
99 *
100 *
101 * On legacy hierachy:
102 *
103 * The user-configured masks are always the same with effective masks.
104 */
105
106 /* user-configured CPUs and Memory Nodes allow to tasks */
107 cpumask_var_t cpus_allowed;
108 nodemask_t mems_allowed;
109
110 /* effective CPUs and Memory Nodes allow to tasks */
111 cpumask_var_t effective_cpus;
112 nodemask_t effective_mems;
113
114 /*
David Brazdil0f672f62019-12-10 10:32:29 +0000115 * CPUs allocated to child sub-partitions (default hierarchy only)
116 * - CPUs granted by the parent = effective_cpus U subparts_cpus
117 * - effective_cpus and subparts_cpus are mutually exclusive.
118 *
119 * effective_cpus contains only onlined CPUs, but subparts_cpus
120 * may have offlined ones.
121 */
122 cpumask_var_t subparts_cpus;
123
124 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000125 * This is old Memory Nodes tasks took on.
126 *
127 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
128 * - A new cpuset's old_mems_allowed is initialized when some
129 * task is moved into it.
130 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
131 * cpuset.mems_allowed and have tasks' nodemask updated, and
132 * then old_mems_allowed is updated to mems_allowed.
133 */
134 nodemask_t old_mems_allowed;
135
136 struct fmeter fmeter; /* memory_pressure filter */
137
138 /*
139 * Tasks are being attached to this cpuset. Used to prevent
140 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
141 */
142 int attach_in_progress;
143
144 /* partition number for rebuild_sched_domains() */
145 int pn;
146
147 /* for custom sched domain */
148 int relax_domain_level;
David Brazdil0f672f62019-12-10 10:32:29 +0000149
150 /* number of CPUs in subparts_cpus */
151 int nr_subparts_cpus;
152
153 /* partition root state */
154 int partition_root_state;
155
156 /*
157 * Default hierarchy only:
158 * use_parent_ecpus - set if using parent's effective_cpus
159 * child_ecpus_count - # of children with use_parent_ecpus set
160 */
161 int use_parent_ecpus;
162 int child_ecpus_count;
163};
164
165/*
166 * Partition root states:
167 *
168 * 0 - not a partition root
169 *
170 * 1 - partition root
171 *
172 * -1 - invalid partition root
173 * None of the cpus in cpus_allowed can be put into the parent's
174 * subparts_cpus. In this case, the cpuset is not a real partition
175 * root anymore. However, the CPU_EXCLUSIVE bit will still be set
176 * and the cpuset can be restored back to a partition root if the
177 * parent cpuset can give more CPUs back to this child cpuset.
178 */
179#define PRS_DISABLED 0
180#define PRS_ENABLED 1
181#define PRS_ERROR -1
182
183/*
184 * Temporary cpumasks for working with partitions that are passed among
185 * functions to avoid memory allocation in inner functions.
186 */
187struct tmpmasks {
188 cpumask_var_t addmask, delmask; /* For partition root */
189 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000190};
191
192static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
193{
194 return css ? container_of(css, struct cpuset, css) : NULL;
195}
196
197/* Retrieve the cpuset for a task */
198static inline struct cpuset *task_cs(struct task_struct *task)
199{
200 return css_cs(task_css(task, cpuset_cgrp_id));
201}
202
203static inline struct cpuset *parent_cs(struct cpuset *cs)
204{
205 return css_cs(cs->css.parent);
206}
207
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000208/* bits in struct cpuset flags field */
209typedef enum {
210 CS_ONLINE,
211 CS_CPU_EXCLUSIVE,
212 CS_MEM_EXCLUSIVE,
213 CS_MEM_HARDWALL,
214 CS_MEMORY_MIGRATE,
215 CS_SCHED_LOAD_BALANCE,
216 CS_SPREAD_PAGE,
217 CS_SPREAD_SLAB,
218} cpuset_flagbits_t;
219
220/* convenient tests for these bits */
221static inline bool is_cpuset_online(struct cpuset *cs)
222{
223 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
224}
225
226static inline int is_cpu_exclusive(const struct cpuset *cs)
227{
228 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
229}
230
231static inline int is_mem_exclusive(const struct cpuset *cs)
232{
233 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
234}
235
236static inline int is_mem_hardwall(const struct cpuset *cs)
237{
238 return test_bit(CS_MEM_HARDWALL, &cs->flags);
239}
240
241static inline int is_sched_load_balance(const struct cpuset *cs)
242{
243 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
244}
245
246static inline int is_memory_migrate(const struct cpuset *cs)
247{
248 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
249}
250
251static inline int is_spread_page(const struct cpuset *cs)
252{
253 return test_bit(CS_SPREAD_PAGE, &cs->flags);
254}
255
256static inline int is_spread_slab(const struct cpuset *cs)
257{
258 return test_bit(CS_SPREAD_SLAB, &cs->flags);
259}
260
David Brazdil0f672f62019-12-10 10:32:29 +0000261static inline int is_partition_root(const struct cpuset *cs)
262{
263 return cs->partition_root_state > 0;
264}
265
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000266static struct cpuset top_cpuset = {
267 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
268 (1 << CS_MEM_EXCLUSIVE)),
David Brazdil0f672f62019-12-10 10:32:29 +0000269 .partition_root_state = PRS_ENABLED,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000270};
271
272/**
273 * cpuset_for_each_child - traverse online children of a cpuset
274 * @child_cs: loop cursor pointing to the current child
275 * @pos_css: used for iteration
276 * @parent_cs: target cpuset to walk children of
277 *
278 * Walk @child_cs through the online children of @parent_cs. Must be used
279 * with RCU read locked.
280 */
281#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
282 css_for_each_child((pos_css), &(parent_cs)->css) \
283 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
284
285/**
286 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
287 * @des_cs: loop cursor pointing to the current descendant
288 * @pos_css: used for iteration
289 * @root_cs: target cpuset to walk ancestor of
290 *
291 * Walk @des_cs through the online descendants of @root_cs. Must be used
292 * with RCU read locked. The caller may modify @pos_css by calling
293 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
294 * iteration and the first node to be visited.
295 */
296#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
297 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
298 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
299
300/*
301 * There are two global locks guarding cpuset structures - cpuset_mutex and
302 * callback_lock. We also require taking task_lock() when dereferencing a
303 * task's cpuset pointer. See "The task_lock() exception", at the end of this
304 * comment.
305 *
306 * A task must hold both locks to modify cpusets. If a task holds
307 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
308 * is the only task able to also acquire callback_lock and be able to
309 * modify cpusets. It can perform various checks on the cpuset structure
310 * first, knowing nothing will change. It can also allocate memory while
311 * just holding cpuset_mutex. While it is performing these checks, various
312 * callback routines can briefly acquire callback_lock to query cpusets.
313 * Once it is ready to make the changes, it takes callback_lock, blocking
314 * everyone else.
315 *
316 * Calls to the kernel memory allocator can not be made while holding
317 * callback_lock, as that would risk double tripping on callback_lock
318 * from one of the callbacks into the cpuset code from within
319 * __alloc_pages().
320 *
321 * If a task is only holding callback_lock, then it has read-only
322 * access to cpusets.
323 *
324 * Now, the task_struct fields mems_allowed and mempolicy may be changed
325 * by other task, we use alloc_lock in the task_struct fields to protect
326 * them.
327 *
328 * The cpuset_common_file_read() handlers only hold callback_lock across
329 * small pieces of code, such as when reading out possibly multi-word
330 * cpumasks and nodemasks.
331 *
332 * Accessing a task's cpuset should be done in accordance with the
333 * guidelines for accessing subsystem state in kernel/cgroup.c
334 */
335
David Brazdil0f672f62019-12-10 10:32:29 +0000336DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
337
338void cpuset_read_lock(void)
339{
340 percpu_down_read(&cpuset_rwsem);
341}
342
343void cpuset_read_unlock(void)
344{
345 percpu_up_read(&cpuset_rwsem);
346}
347
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000348static DEFINE_SPINLOCK(callback_lock);
349
350static struct workqueue_struct *cpuset_migrate_mm_wq;
351
352/*
353 * CPU / memory hotplug is handled asynchronously.
354 */
355static void cpuset_hotplug_workfn(struct work_struct *work);
356static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
357
358static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
359
360/*
361 * Cgroup v2 behavior is used when on default hierarchy or the
362 * cgroup_v2_mode flag is set.
363 */
364static inline bool is_in_v2_mode(void)
365{
366 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
367 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
368}
369
370/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000371 * Return in pmask the portion of a cpusets's cpus_allowed that
372 * are online. If none are online, walk up the cpuset hierarchy
373 * until we find one that does have some online cpus.
374 *
375 * One way or another, we guarantee to return some non-empty subset
376 * of cpu_online_mask.
377 *
378 * Call with callback_lock or cpuset_mutex held.
379 */
380static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
381{
382 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
383 cs = parent_cs(cs);
384 if (unlikely(!cs)) {
385 /*
386 * The top cpuset doesn't have any online cpu as a
387 * consequence of a race between cpuset_hotplug_work
388 * and cpu hotplug notifier. But we know the top
389 * cpuset's effective_cpus is on its way to to be
390 * identical to cpu_online_mask.
391 */
392 cpumask_copy(pmask, cpu_online_mask);
393 return;
394 }
395 }
396 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
397}
398
399/*
400 * Return in *pmask the portion of a cpusets's mems_allowed that
401 * are online, with memory. If none are online with memory, walk
402 * up the cpuset hierarchy until we find one that does have some
403 * online mems. The top cpuset always has some mems online.
404 *
405 * One way or another, we guarantee to return some non-empty subset
406 * of node_states[N_MEMORY].
407 *
408 * Call with callback_lock or cpuset_mutex held.
409 */
410static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
411{
412 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
413 cs = parent_cs(cs);
414 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
415}
416
417/*
418 * update task's spread flag if cpuset's page/slab spread flag is set
419 *
420 * Call with callback_lock or cpuset_mutex held.
421 */
422static void cpuset_update_task_spread_flag(struct cpuset *cs,
423 struct task_struct *tsk)
424{
425 if (is_spread_page(cs))
426 task_set_spread_page(tsk);
427 else
428 task_clear_spread_page(tsk);
429
430 if (is_spread_slab(cs))
431 task_set_spread_slab(tsk);
432 else
433 task_clear_spread_slab(tsk);
434}
435
436/*
437 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
438 *
439 * One cpuset is a subset of another if all its allowed CPUs and
440 * Memory Nodes are a subset of the other, and its exclusive flags
441 * are only set if the other's are set. Call holding cpuset_mutex.
442 */
443
444static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
445{
446 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
447 nodes_subset(p->mems_allowed, q->mems_allowed) &&
448 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
449 is_mem_exclusive(p) <= is_mem_exclusive(q);
450}
451
452/**
David Brazdil0f672f62019-12-10 10:32:29 +0000453 * alloc_cpumasks - allocate three cpumasks for cpuset
454 * @cs: the cpuset that have cpumasks to be allocated.
455 * @tmp: the tmpmasks structure pointer
456 * Return: 0 if successful, -ENOMEM otherwise.
457 *
458 * Only one of the two input arguments should be non-NULL.
459 */
460static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
461{
462 cpumask_var_t *pmask1, *pmask2, *pmask3;
463
464 if (cs) {
465 pmask1 = &cs->cpus_allowed;
466 pmask2 = &cs->effective_cpus;
467 pmask3 = &cs->subparts_cpus;
468 } else {
469 pmask1 = &tmp->new_cpus;
470 pmask2 = &tmp->addmask;
471 pmask3 = &tmp->delmask;
472 }
473
474 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
475 return -ENOMEM;
476
477 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
478 goto free_one;
479
480 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
481 goto free_two;
482
483 return 0;
484
485free_two:
486 free_cpumask_var(*pmask2);
487free_one:
488 free_cpumask_var(*pmask1);
489 return -ENOMEM;
490}
491
492/**
493 * free_cpumasks - free cpumasks in a tmpmasks structure
494 * @cs: the cpuset that have cpumasks to be free.
495 * @tmp: the tmpmasks structure pointer
496 */
497static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
498{
499 if (cs) {
500 free_cpumask_var(cs->cpus_allowed);
501 free_cpumask_var(cs->effective_cpus);
502 free_cpumask_var(cs->subparts_cpus);
503 }
504 if (tmp) {
505 free_cpumask_var(tmp->new_cpus);
506 free_cpumask_var(tmp->addmask);
507 free_cpumask_var(tmp->delmask);
508 }
509}
510
511/**
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000512 * alloc_trial_cpuset - allocate a trial cpuset
513 * @cs: the cpuset that the trial cpuset duplicates
514 */
515static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
516{
517 struct cpuset *trial;
518
519 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
520 if (!trial)
521 return NULL;
522
David Brazdil0f672f62019-12-10 10:32:29 +0000523 if (alloc_cpumasks(trial, NULL)) {
524 kfree(trial);
525 return NULL;
526 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000527
528 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
529 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
530 return trial;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000531}
532
533/**
David Brazdil0f672f62019-12-10 10:32:29 +0000534 * free_cpuset - free the cpuset
535 * @cs: the cpuset to be freed
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000536 */
David Brazdil0f672f62019-12-10 10:32:29 +0000537static inline void free_cpuset(struct cpuset *cs)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000538{
David Brazdil0f672f62019-12-10 10:32:29 +0000539 free_cpumasks(cs, NULL);
540 kfree(cs);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000541}
542
543/*
544 * validate_change() - Used to validate that any proposed cpuset change
545 * follows the structural rules for cpusets.
546 *
547 * If we replaced the flag and mask values of the current cpuset
548 * (cur) with those values in the trial cpuset (trial), would
549 * our various subset and exclusive rules still be valid? Presumes
550 * cpuset_mutex held.
551 *
552 * 'cur' is the address of an actual, in-use cpuset. Operations
553 * such as list traversal that depend on the actual address of the
554 * cpuset in the list must use cur below, not trial.
555 *
556 * 'trial' is the address of bulk structure copy of cur, with
557 * perhaps one or more of the fields cpus_allowed, mems_allowed,
558 * or flags changed to new, trial values.
559 *
560 * Return 0 if valid, -errno if not.
561 */
562
563static int validate_change(struct cpuset *cur, struct cpuset *trial)
564{
565 struct cgroup_subsys_state *css;
566 struct cpuset *c, *par;
567 int ret;
568
569 rcu_read_lock();
570
571 /* Each of our child cpusets must be a subset of us */
572 ret = -EBUSY;
573 cpuset_for_each_child(c, css, cur)
574 if (!is_cpuset_subset(c, trial))
575 goto out;
576
577 /* Remaining checks don't apply to root cpuset */
578 ret = 0;
579 if (cur == &top_cpuset)
580 goto out;
581
582 par = parent_cs(cur);
583
584 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
585 ret = -EACCES;
586 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
587 goto out;
588
589 /*
590 * If either I or some sibling (!= me) is exclusive, we can't
591 * overlap
592 */
593 ret = -EINVAL;
594 cpuset_for_each_child(c, css, par) {
595 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
596 c != cur &&
597 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
598 goto out;
599 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
600 c != cur &&
601 nodes_intersects(trial->mems_allowed, c->mems_allowed))
602 goto out;
603 }
604
605 /*
606 * Cpusets with tasks - existing or newly being attached - can't
607 * be changed to have empty cpus_allowed or mems_allowed.
608 */
609 ret = -ENOSPC;
610 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
611 if (!cpumask_empty(cur->cpus_allowed) &&
612 cpumask_empty(trial->cpus_allowed))
613 goto out;
614 if (!nodes_empty(cur->mems_allowed) &&
615 nodes_empty(trial->mems_allowed))
616 goto out;
617 }
618
619 /*
620 * We can't shrink if we won't have enough room for SCHED_DEADLINE
621 * tasks.
622 */
623 ret = -EBUSY;
624 if (is_cpu_exclusive(cur) &&
625 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
626 trial->cpus_allowed))
627 goto out;
628
629 ret = 0;
630out:
631 rcu_read_unlock();
632 return ret;
633}
634
635#ifdef CONFIG_SMP
636/*
637 * Helper routine for generate_sched_domains().
638 * Do cpusets a, b have overlapping effective cpus_allowed masks?
639 */
640static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
641{
642 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
643}
644
645static void
646update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
647{
648 if (dattr->relax_domain_level < c->relax_domain_level)
649 dattr->relax_domain_level = c->relax_domain_level;
650 return;
651}
652
653static void update_domain_attr_tree(struct sched_domain_attr *dattr,
654 struct cpuset *root_cs)
655{
656 struct cpuset *cp;
657 struct cgroup_subsys_state *pos_css;
658
659 rcu_read_lock();
660 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
661 /* skip the whole subtree if @cp doesn't have any CPU */
662 if (cpumask_empty(cp->cpus_allowed)) {
663 pos_css = css_rightmost_descendant(pos_css);
664 continue;
665 }
666
667 if (is_sched_load_balance(cp))
668 update_domain_attr(dattr, cp);
669 }
670 rcu_read_unlock();
671}
672
673/* Must be called with cpuset_mutex held. */
674static inline int nr_cpusets(void)
675{
676 /* jump label reference count + the top-level cpuset */
677 return static_key_count(&cpusets_enabled_key.key) + 1;
678}
679
680/*
681 * generate_sched_domains()
682 *
683 * This function builds a partial partition of the systems CPUs
684 * A 'partial partition' is a set of non-overlapping subsets whose
685 * union is a subset of that set.
686 * The output of this function needs to be passed to kernel/sched/core.c
687 * partition_sched_domains() routine, which will rebuild the scheduler's
688 * load balancing domains (sched domains) as specified by that partial
689 * partition.
690 *
David Brazdil0f672f62019-12-10 10:32:29 +0000691 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000692 * for a background explanation of this.
693 *
694 * Does not return errors, on the theory that the callers of this
695 * routine would rather not worry about failures to rebuild sched
696 * domains when operating in the severe memory shortage situations
697 * that could cause allocation failures below.
698 *
699 * Must be called with cpuset_mutex held.
700 *
701 * The three key local variables below are:
David Brazdil0f672f62019-12-10 10:32:29 +0000702 * cp - cpuset pointer, used (together with pos_css) to perform a
703 * top-down scan of all cpusets. For our purposes, rebuilding
704 * the schedulers sched domains, we can ignore !is_sched_load_
705 * balance cpusets.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000706 * csa - (for CpuSet Array) Array of pointers to all the cpusets
707 * that need to be load balanced, for convenient iterative
708 * access by the subsequent code that finds the best partition,
709 * i.e the set of domains (subsets) of CPUs such that the
710 * cpus_allowed of every cpuset marked is_sched_load_balance
711 * is a subset of one of these domains, while there are as
712 * many such domains as possible, each as small as possible.
713 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
714 * the kernel/sched/core.c routine partition_sched_domains() in a
715 * convenient format, that can be easily compared to the prior
716 * value to determine what partition elements (sched domains)
717 * were changed (added or removed.)
718 *
719 * Finding the best partition (set of domains):
720 * The triple nested loops below over i, j, k scan over the
721 * load balanced cpusets (using the array of cpuset pointers in
722 * csa[]) looking for pairs of cpusets that have overlapping
723 * cpus_allowed, but which don't have the same 'pn' partition
724 * number and gives them in the same partition number. It keeps
725 * looping on the 'restart' label until it can no longer find
726 * any such pairs.
727 *
728 * The union of the cpus_allowed masks from the set of
729 * all cpusets having the same 'pn' value then form the one
730 * element of the partition (one sched domain) to be passed to
731 * partition_sched_domains().
732 */
733static int generate_sched_domains(cpumask_var_t **domains,
734 struct sched_domain_attr **attributes)
735{
David Brazdil0f672f62019-12-10 10:32:29 +0000736 struct cpuset *cp; /* top-down scan of cpusets */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000737 struct cpuset **csa; /* array of all cpuset ptrs */
738 int csn; /* how many cpuset ptrs in csa so far */
739 int i, j, k; /* indices for partition finding loops */
740 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
741 struct sched_domain_attr *dattr; /* attributes for custom domains */
742 int ndoms = 0; /* number of sched domains in result */
743 int nslot; /* next empty doms[] struct cpumask slot */
744 struct cgroup_subsys_state *pos_css;
David Brazdil0f672f62019-12-10 10:32:29 +0000745 bool root_load_balance = is_sched_load_balance(&top_cpuset);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000746
747 doms = NULL;
748 dattr = NULL;
749 csa = NULL;
750
751 /* Special case for the 99% of systems with one, full, sched domain */
David Brazdil0f672f62019-12-10 10:32:29 +0000752 if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000753 ndoms = 1;
754 doms = alloc_sched_domains(ndoms);
755 if (!doms)
756 goto done;
757
758 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
759 if (dattr) {
760 *dattr = SD_ATTR_INIT;
761 update_domain_attr_tree(dattr, &top_cpuset);
762 }
763 cpumask_and(doms[0], top_cpuset.effective_cpus,
764 housekeeping_cpumask(HK_FLAG_DOMAIN));
765
766 goto done;
767 }
768
769 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
770 if (!csa)
771 goto done;
772 csn = 0;
773
774 rcu_read_lock();
David Brazdil0f672f62019-12-10 10:32:29 +0000775 if (root_load_balance)
776 csa[csn++] = &top_cpuset;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000777 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
778 if (cp == &top_cpuset)
779 continue;
780 /*
781 * Continue traversing beyond @cp iff @cp has some CPUs and
782 * isn't load balancing. The former is obvious. The
783 * latter: All child cpusets contain a subset of the
784 * parent's cpus, so just skip them, and then we call
785 * update_domain_attr_tree() to calc relax_domain_level of
786 * the corresponding sched domain.
David Brazdil0f672f62019-12-10 10:32:29 +0000787 *
788 * If root is load-balancing, we can skip @cp if it
789 * is a subset of the root's effective_cpus.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000790 */
791 if (!cpumask_empty(cp->cpus_allowed) &&
792 !(is_sched_load_balance(cp) &&
793 cpumask_intersects(cp->cpus_allowed,
794 housekeeping_cpumask(HK_FLAG_DOMAIN))))
795 continue;
796
David Brazdil0f672f62019-12-10 10:32:29 +0000797 if (root_load_balance &&
798 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
799 continue;
800
801 if (is_sched_load_balance(cp) &&
802 !cpumask_empty(cp->effective_cpus))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000803 csa[csn++] = cp;
804
David Brazdil0f672f62019-12-10 10:32:29 +0000805 /* skip @cp's subtree if not a partition root */
806 if (!is_partition_root(cp))
807 pos_css = css_rightmost_descendant(pos_css);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000808 }
809 rcu_read_unlock();
810
811 for (i = 0; i < csn; i++)
812 csa[i]->pn = i;
813 ndoms = csn;
814
815restart:
816 /* Find the best partition (set of sched domains) */
817 for (i = 0; i < csn; i++) {
818 struct cpuset *a = csa[i];
819 int apn = a->pn;
820
821 for (j = 0; j < csn; j++) {
822 struct cpuset *b = csa[j];
823 int bpn = b->pn;
824
825 if (apn != bpn && cpusets_overlap(a, b)) {
826 for (k = 0; k < csn; k++) {
827 struct cpuset *c = csa[k];
828
829 if (c->pn == bpn)
830 c->pn = apn;
831 }
832 ndoms--; /* one less element */
833 goto restart;
834 }
835 }
836 }
837
838 /*
839 * Now we know how many domains to create.
840 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
841 */
842 doms = alloc_sched_domains(ndoms);
843 if (!doms)
844 goto done;
845
846 /*
847 * The rest of the code, including the scheduler, can deal with
848 * dattr==NULL case. No need to abort if alloc fails.
849 */
850 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
851 GFP_KERNEL);
852
853 for (nslot = 0, i = 0; i < csn; i++) {
854 struct cpuset *a = csa[i];
855 struct cpumask *dp;
856 int apn = a->pn;
857
858 if (apn < 0) {
859 /* Skip completed partitions */
860 continue;
861 }
862
863 dp = doms[nslot];
864
865 if (nslot == ndoms) {
866 static int warnings = 10;
867 if (warnings) {
868 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
869 nslot, ndoms, csn, i, apn);
870 warnings--;
871 }
872 continue;
873 }
874
875 cpumask_clear(dp);
876 if (dattr)
877 *(dattr + nslot) = SD_ATTR_INIT;
878 for (j = i; j < csn; j++) {
879 struct cpuset *b = csa[j];
880
881 if (apn == b->pn) {
882 cpumask_or(dp, dp, b->effective_cpus);
883 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
884 if (dattr)
885 update_domain_attr_tree(dattr + nslot, b);
886
887 /* Done with this partition */
888 b->pn = -1;
889 }
890 }
891 nslot++;
892 }
893 BUG_ON(nslot != ndoms);
894
895done:
896 kfree(csa);
897
898 /*
899 * Fallback to the default domain if kmalloc() failed.
900 * See comments in partition_sched_domains().
901 */
902 if (doms == NULL)
903 ndoms = 1;
904
905 *domains = doms;
906 *attributes = dattr;
907 return ndoms;
908}
909
David Brazdil0f672f62019-12-10 10:32:29 +0000910static void update_tasks_root_domain(struct cpuset *cs)
911{
912 struct css_task_iter it;
913 struct task_struct *task;
914
915 css_task_iter_start(&cs->css, 0, &it);
916
917 while ((task = css_task_iter_next(&it)))
918 dl_add_task_root_domain(task);
919
920 css_task_iter_end(&it);
921}
922
923static void rebuild_root_domains(void)
924{
925 struct cpuset *cs = NULL;
926 struct cgroup_subsys_state *pos_css;
927
928 percpu_rwsem_assert_held(&cpuset_rwsem);
929 lockdep_assert_cpus_held();
930 lockdep_assert_held(&sched_domains_mutex);
931
932 cgroup_enable_task_cg_lists();
933
934 rcu_read_lock();
935
936 /*
937 * Clear default root domain DL accounting, it will be computed again
938 * if a task belongs to it.
939 */
940 dl_clear_root_domain(&def_root_domain);
941
942 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
943
944 if (cpumask_empty(cs->effective_cpus)) {
945 pos_css = css_rightmost_descendant(pos_css);
946 continue;
947 }
948
949 css_get(&cs->css);
950
951 rcu_read_unlock();
952
953 update_tasks_root_domain(cs);
954
955 rcu_read_lock();
956 css_put(&cs->css);
957 }
958 rcu_read_unlock();
959}
960
961static void
962partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
963 struct sched_domain_attr *dattr_new)
964{
965 mutex_lock(&sched_domains_mutex);
966 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
967 rebuild_root_domains();
968 mutex_unlock(&sched_domains_mutex);
969}
970
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000971/*
972 * Rebuild scheduler domains.
973 *
974 * If the flag 'sched_load_balance' of any cpuset with non-empty
975 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
976 * which has that flag enabled, or if any cpuset with a non-empty
977 * 'cpus' is removed, then call this routine to rebuild the
978 * scheduler's dynamic sched domains.
979 *
980 * Call with cpuset_mutex held. Takes get_online_cpus().
981 */
982static void rebuild_sched_domains_locked(void)
983{
Olivier Deprez0e641232021-09-23 10:07:05 +0200984 struct cgroup_subsys_state *pos_css;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000985 struct sched_domain_attr *attr;
986 cpumask_var_t *doms;
Olivier Deprez0e641232021-09-23 10:07:05 +0200987 struct cpuset *cs;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000988 int ndoms;
989
David Brazdil0f672f62019-12-10 10:32:29 +0000990 lockdep_assert_cpus_held();
991 percpu_rwsem_assert_held(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000992
993 /*
Olivier Deprez0e641232021-09-23 10:07:05 +0200994 * If we have raced with CPU hotplug, return early to avoid
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000995 * passing doms with offlined cpu to partition_sched_domains().
Olivier Deprez0e641232021-09-23 10:07:05 +0200996 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
997 *
998 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
999 * should be the same as the active CPUs, so checking only top_cpuset
1000 * is enough to detect racing CPU offlines.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001001 */
David Brazdil0f672f62019-12-10 10:32:29 +00001002 if (!top_cpuset.nr_subparts_cpus &&
1003 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1004 return;
1005
Olivier Deprez0e641232021-09-23 10:07:05 +02001006 /*
1007 * With subpartition CPUs, however, the effective CPUs of a partition
1008 * root should be only a subset of the active CPUs. Since a CPU in any
1009 * partition root could be offlined, all must be checked.
1010 */
1011 if (top_cpuset.nr_subparts_cpus) {
1012 rcu_read_lock();
1013 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1014 if (!is_partition_root(cs)) {
1015 pos_css = css_rightmost_descendant(pos_css);
1016 continue;
1017 }
1018 if (!cpumask_subset(cs->effective_cpus,
1019 cpu_active_mask)) {
1020 rcu_read_unlock();
1021 return;
1022 }
1023 }
1024 rcu_read_unlock();
1025 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001026
1027 /* Generate domain masks and attrs */
1028 ndoms = generate_sched_domains(&doms, &attr);
1029
1030 /* Have scheduler rebuild the domains */
David Brazdil0f672f62019-12-10 10:32:29 +00001031 partition_and_rebuild_sched_domains(ndoms, doms, attr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001032}
1033#else /* !CONFIG_SMP */
1034static void rebuild_sched_domains_locked(void)
1035{
1036}
1037#endif /* CONFIG_SMP */
1038
1039void rebuild_sched_domains(void)
1040{
David Brazdil0f672f62019-12-10 10:32:29 +00001041 get_online_cpus();
1042 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001043 rebuild_sched_domains_locked();
David Brazdil0f672f62019-12-10 10:32:29 +00001044 percpu_up_write(&cpuset_rwsem);
1045 put_online_cpus();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001046}
1047
1048/**
1049 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1050 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1051 *
1052 * Iterate through each task of @cs updating its cpus_allowed to the
1053 * effective cpuset's. As this function is called with cpuset_mutex held,
1054 * cpuset membership stays stable.
1055 */
1056static void update_tasks_cpumask(struct cpuset *cs)
1057{
1058 struct css_task_iter it;
1059 struct task_struct *task;
1060
1061 css_task_iter_start(&cs->css, 0, &it);
1062 while ((task = css_task_iter_next(&it)))
1063 set_cpus_allowed_ptr(task, cs->effective_cpus);
1064 css_task_iter_end(&it);
1065}
1066
David Brazdil0f672f62019-12-10 10:32:29 +00001067/**
1068 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1069 * @new_cpus: the temp variable for the new effective_cpus mask
1070 * @cs: the cpuset the need to recompute the new effective_cpus mask
1071 * @parent: the parent cpuset
1072 *
1073 * If the parent has subpartition CPUs, include them in the list of
1074 * allowable CPUs in computing the new effective_cpus mask. Since offlined
1075 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1076 * to mask those out.
1077 */
1078static void compute_effective_cpumask(struct cpumask *new_cpus,
1079 struct cpuset *cs, struct cpuset *parent)
1080{
1081 if (parent->nr_subparts_cpus) {
1082 cpumask_or(new_cpus, parent->effective_cpus,
1083 parent->subparts_cpus);
1084 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1085 cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1086 } else {
1087 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1088 }
1089}
1090
1091/*
1092 * Commands for update_parent_subparts_cpumask
1093 */
1094enum subparts_cmd {
1095 partcmd_enable, /* Enable partition root */
1096 partcmd_disable, /* Disable partition root */
1097 partcmd_update, /* Update parent's subparts_cpus */
1098};
1099
1100/**
1101 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1102 * @cpuset: The cpuset that requests change in partition root state
1103 * @cmd: Partition root state change command
1104 * @newmask: Optional new cpumask for partcmd_update
1105 * @tmp: Temporary addmask and delmask
1106 * Return: 0, 1 or an error code
1107 *
1108 * For partcmd_enable, the cpuset is being transformed from a non-partition
1109 * root to a partition root. The cpus_allowed mask of the given cpuset will
1110 * be put into parent's subparts_cpus and taken away from parent's
1111 * effective_cpus. The function will return 0 if all the CPUs listed in
1112 * cpus_allowed can be granted or an error code will be returned.
1113 *
1114 * For partcmd_disable, the cpuset is being transofrmed from a partition
1115 * root back to a non-partition root. any CPUs in cpus_allowed that are in
1116 * parent's subparts_cpus will be taken away from that cpumask and put back
1117 * into parent's effective_cpus. 0 should always be returned.
1118 *
1119 * For partcmd_update, if the optional newmask is specified, the cpu
1120 * list is to be changed from cpus_allowed to newmask. Otherwise,
1121 * cpus_allowed is assumed to remain the same. The cpuset should either
1122 * be a partition root or an invalid partition root. The partition root
1123 * state may change if newmask is NULL and none of the requested CPUs can
1124 * be granted by the parent. The function will return 1 if changes to
1125 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1126 * Error code should only be returned when newmask is non-NULL.
1127 *
1128 * The partcmd_enable and partcmd_disable commands are used by
1129 * update_prstate(). The partcmd_update command is used by
1130 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1131 * newmask set.
1132 *
1133 * The checking is more strict when enabling partition root than the
1134 * other two commands.
1135 *
1136 * Because of the implicit cpu exclusive nature of a partition root,
1137 * cpumask changes that violates the cpu exclusivity rule will not be
1138 * permitted when checked by validate_change(). The validate_change()
1139 * function will also prevent any changes to the cpu list if it is not
1140 * a superset of children's cpu lists.
1141 */
1142static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1143 struct cpumask *newmask,
1144 struct tmpmasks *tmp)
1145{
1146 struct cpuset *parent = parent_cs(cpuset);
1147 int adding; /* Moving cpus from effective_cpus to subparts_cpus */
1148 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */
1149 bool part_error = false; /* Partition error? */
1150
1151 percpu_rwsem_assert_held(&cpuset_rwsem);
1152
1153 /*
1154 * The parent must be a partition root.
1155 * The new cpumask, if present, or the current cpus_allowed must
1156 * not be empty.
1157 */
1158 if (!is_partition_root(parent) ||
1159 (newmask && cpumask_empty(newmask)) ||
1160 (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1161 return -EINVAL;
1162
1163 /*
1164 * Enabling/disabling partition root is not allowed if there are
1165 * online children.
1166 */
1167 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1168 return -EBUSY;
1169
1170 /*
1171 * Enabling partition root is not allowed if not all the CPUs
1172 * can be granted from parent's effective_cpus or at least one
1173 * CPU will be left after that.
1174 */
1175 if ((cmd == partcmd_enable) &&
1176 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1177 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1178 return -EINVAL;
1179
1180 /*
1181 * A cpumask update cannot make parent's effective_cpus become empty.
1182 */
1183 adding = deleting = false;
1184 if (cmd == partcmd_enable) {
1185 cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1186 adding = true;
1187 } else if (cmd == partcmd_disable) {
1188 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1189 parent->subparts_cpus);
1190 } else if (newmask) {
1191 /*
1192 * partcmd_update with newmask:
1193 *
1194 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1195 * addmask = newmask & parent->effective_cpus
1196 * & ~parent->subparts_cpus
1197 */
1198 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1199 deleting = cpumask_and(tmp->delmask, tmp->delmask,
1200 parent->subparts_cpus);
1201
1202 cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1203 adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1204 parent->subparts_cpus);
1205 /*
1206 * Return error if the new effective_cpus could become empty.
1207 */
1208 if (adding &&
1209 cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1210 if (!deleting)
1211 return -EINVAL;
1212 /*
1213 * As some of the CPUs in subparts_cpus might have
1214 * been offlined, we need to compute the real delmask
1215 * to confirm that.
1216 */
1217 if (!cpumask_and(tmp->addmask, tmp->delmask,
1218 cpu_active_mask))
1219 return -EINVAL;
1220 cpumask_copy(tmp->addmask, parent->effective_cpus);
1221 }
1222 } else {
1223 /*
1224 * partcmd_update w/o newmask:
1225 *
1226 * addmask = cpus_allowed & parent->effectiveb_cpus
1227 *
1228 * Note that parent's subparts_cpus may have been
1229 * pre-shrunk in case there is a change in the cpu list.
1230 * So no deletion is needed.
1231 */
1232 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1233 parent->effective_cpus);
1234 part_error = cpumask_equal(tmp->addmask,
1235 parent->effective_cpus);
1236 }
1237
1238 if (cmd == partcmd_update) {
1239 int prev_prs = cpuset->partition_root_state;
1240
1241 /*
1242 * Check for possible transition between PRS_ENABLED
1243 * and PRS_ERROR.
1244 */
1245 switch (cpuset->partition_root_state) {
1246 case PRS_ENABLED:
1247 if (part_error)
1248 cpuset->partition_root_state = PRS_ERROR;
1249 break;
1250 case PRS_ERROR:
1251 if (!part_error)
1252 cpuset->partition_root_state = PRS_ENABLED;
1253 break;
1254 }
1255 /*
1256 * Set part_error if previously in invalid state.
1257 */
1258 part_error = (prev_prs == PRS_ERROR);
1259 }
1260
1261 if (!part_error && (cpuset->partition_root_state == PRS_ERROR))
1262 return 0; /* Nothing need to be done */
1263
1264 if (cpuset->partition_root_state == PRS_ERROR) {
1265 /*
1266 * Remove all its cpus from parent's subparts_cpus.
1267 */
1268 adding = false;
1269 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1270 parent->subparts_cpus);
1271 }
1272
1273 if (!adding && !deleting)
1274 return 0;
1275
1276 /*
1277 * Change the parent's subparts_cpus.
1278 * Newly added CPUs will be removed from effective_cpus and
1279 * newly deleted ones will be added back to effective_cpus.
1280 */
1281 spin_lock_irq(&callback_lock);
1282 if (adding) {
1283 cpumask_or(parent->subparts_cpus,
1284 parent->subparts_cpus, tmp->addmask);
1285 cpumask_andnot(parent->effective_cpus,
1286 parent->effective_cpus, tmp->addmask);
1287 }
1288 if (deleting) {
1289 cpumask_andnot(parent->subparts_cpus,
1290 parent->subparts_cpus, tmp->delmask);
1291 /*
1292 * Some of the CPUs in subparts_cpus might have been offlined.
1293 */
1294 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1295 cpumask_or(parent->effective_cpus,
1296 parent->effective_cpus, tmp->delmask);
1297 }
1298
1299 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1300 spin_unlock_irq(&callback_lock);
1301
1302 return cmd == partcmd_update;
1303}
1304
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001305/*
1306 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
David Brazdil0f672f62019-12-10 10:32:29 +00001307 * @cs: the cpuset to consider
1308 * @tmp: temp variables for calculating effective_cpus & partition setup
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001309 *
1310 * When congifured cpumask is changed, the effective cpumasks of this cpuset
1311 * and all its descendants need to be updated.
1312 *
1313 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1314 *
1315 * Called with cpuset_mutex held
1316 */
David Brazdil0f672f62019-12-10 10:32:29 +00001317static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001318{
1319 struct cpuset *cp;
1320 struct cgroup_subsys_state *pos_css;
1321 bool need_rebuild_sched_domains = false;
1322
1323 rcu_read_lock();
1324 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1325 struct cpuset *parent = parent_cs(cp);
1326
David Brazdil0f672f62019-12-10 10:32:29 +00001327 compute_effective_cpumask(tmp->new_cpus, cp, parent);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001328
1329 /*
1330 * If it becomes empty, inherit the effective mask of the
1331 * parent, which is guaranteed to have some CPUs.
1332 */
David Brazdil0f672f62019-12-10 10:32:29 +00001333 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1334 cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1335 if (!cp->use_parent_ecpus) {
1336 cp->use_parent_ecpus = true;
1337 parent->child_ecpus_count++;
1338 }
1339 } else if (cp->use_parent_ecpus) {
1340 cp->use_parent_ecpus = false;
1341 WARN_ON_ONCE(!parent->child_ecpus_count);
1342 parent->child_ecpus_count--;
1343 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001344
David Brazdil0f672f62019-12-10 10:32:29 +00001345 /*
1346 * Skip the whole subtree if the cpumask remains the same
1347 * and has no partition root state.
1348 */
1349 if (!cp->partition_root_state &&
1350 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001351 pos_css = css_rightmost_descendant(pos_css);
1352 continue;
1353 }
1354
David Brazdil0f672f62019-12-10 10:32:29 +00001355 /*
1356 * update_parent_subparts_cpumask() should have been called
1357 * for cs already in update_cpumask(). We should also call
1358 * update_tasks_cpumask() again for tasks in the parent
1359 * cpuset if the parent's subparts_cpus changes.
1360 */
1361 if ((cp != cs) && cp->partition_root_state) {
1362 switch (parent->partition_root_state) {
1363 case PRS_DISABLED:
1364 /*
1365 * If parent is not a partition root or an
1366 * invalid partition root, clear the state
1367 * state and the CS_CPU_EXCLUSIVE flag.
1368 */
1369 WARN_ON_ONCE(cp->partition_root_state
1370 != PRS_ERROR);
1371 cp->partition_root_state = 0;
1372
1373 /*
1374 * clear_bit() is an atomic operation and
1375 * readers aren't interested in the state
1376 * of CS_CPU_EXCLUSIVE anyway. So we can
1377 * just update the flag without holding
1378 * the callback_lock.
1379 */
1380 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1381 break;
1382
1383 case PRS_ENABLED:
1384 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1385 update_tasks_cpumask(parent);
1386 break;
1387
1388 case PRS_ERROR:
1389 /*
1390 * When parent is invalid, it has to be too.
1391 */
1392 cp->partition_root_state = PRS_ERROR;
1393 if (cp->nr_subparts_cpus) {
1394 cp->nr_subparts_cpus = 0;
1395 cpumask_clear(cp->subparts_cpus);
1396 }
1397 break;
1398 }
1399 }
1400
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001401 if (!css_tryget_online(&cp->css))
1402 continue;
1403 rcu_read_unlock();
1404
1405 spin_lock_irq(&callback_lock);
David Brazdil0f672f62019-12-10 10:32:29 +00001406
1407 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1408 if (cp->nr_subparts_cpus &&
1409 (cp->partition_root_state != PRS_ENABLED)) {
1410 cp->nr_subparts_cpus = 0;
1411 cpumask_clear(cp->subparts_cpus);
1412 } else if (cp->nr_subparts_cpus) {
1413 /*
1414 * Make sure that effective_cpus & subparts_cpus
1415 * are mutually exclusive.
1416 *
1417 * In the unlikely event that effective_cpus
1418 * becomes empty. we clear cp->nr_subparts_cpus and
1419 * let its child partition roots to compete for
1420 * CPUs again.
1421 */
1422 cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1423 cp->subparts_cpus);
1424 if (cpumask_empty(cp->effective_cpus)) {
1425 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1426 cpumask_clear(cp->subparts_cpus);
1427 cp->nr_subparts_cpus = 0;
1428 } else if (!cpumask_subset(cp->subparts_cpus,
1429 tmp->new_cpus)) {
1430 cpumask_andnot(cp->subparts_cpus,
1431 cp->subparts_cpus, tmp->new_cpus);
1432 cp->nr_subparts_cpus
1433 = cpumask_weight(cp->subparts_cpus);
1434 }
1435 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001436 spin_unlock_irq(&callback_lock);
1437
1438 WARN_ON(!is_in_v2_mode() &&
1439 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1440
1441 update_tasks_cpumask(cp);
1442
1443 /*
David Brazdil0f672f62019-12-10 10:32:29 +00001444 * On legacy hierarchy, if the effective cpumask of any non-
1445 * empty cpuset is changed, we need to rebuild sched domains.
1446 * On default hierarchy, the cpuset needs to be a partition
1447 * root as well.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001448 */
1449 if (!cpumask_empty(cp->cpus_allowed) &&
David Brazdil0f672f62019-12-10 10:32:29 +00001450 is_sched_load_balance(cp) &&
1451 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1452 is_partition_root(cp)))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001453 need_rebuild_sched_domains = true;
1454
1455 rcu_read_lock();
1456 css_put(&cp->css);
1457 }
1458 rcu_read_unlock();
1459
1460 if (need_rebuild_sched_domains)
1461 rebuild_sched_domains_locked();
1462}
1463
1464/**
David Brazdil0f672f62019-12-10 10:32:29 +00001465 * update_sibling_cpumasks - Update siblings cpumasks
1466 * @parent: Parent cpuset
1467 * @cs: Current cpuset
1468 * @tmp: Temp variables
1469 */
1470static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1471 struct tmpmasks *tmp)
1472{
1473 struct cpuset *sibling;
1474 struct cgroup_subsys_state *pos_css;
1475
1476 /*
1477 * Check all its siblings and call update_cpumasks_hier()
1478 * if their use_parent_ecpus flag is set in order for them
1479 * to use the right effective_cpus value.
1480 */
1481 rcu_read_lock();
1482 cpuset_for_each_child(sibling, pos_css, parent) {
1483 if (sibling == cs)
1484 continue;
1485 if (!sibling->use_parent_ecpus)
1486 continue;
1487
1488 update_cpumasks_hier(sibling, tmp);
1489 }
1490 rcu_read_unlock();
1491}
1492
1493/**
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001494 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1495 * @cs: the cpuset to consider
1496 * @trialcs: trial cpuset
1497 * @buf: buffer of cpu numbers written to this cpuset
1498 */
1499static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1500 const char *buf)
1501{
1502 int retval;
David Brazdil0f672f62019-12-10 10:32:29 +00001503 struct tmpmasks tmp;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001504
1505 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1506 if (cs == &top_cpuset)
1507 return -EACCES;
1508
1509 /*
1510 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1511 * Since cpulist_parse() fails on an empty mask, we special case
1512 * that parsing. The validate_change() call ensures that cpusets
1513 * with tasks have cpus.
1514 */
1515 if (!*buf) {
1516 cpumask_clear(trialcs->cpus_allowed);
1517 } else {
1518 retval = cpulist_parse(buf, trialcs->cpus_allowed);
1519 if (retval < 0)
1520 return retval;
1521
1522 if (!cpumask_subset(trialcs->cpus_allowed,
1523 top_cpuset.cpus_allowed))
1524 return -EINVAL;
1525 }
1526
1527 /* Nothing to do if the cpus didn't change */
1528 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1529 return 0;
1530
1531 retval = validate_change(cs, trialcs);
1532 if (retval < 0)
1533 return retval;
1534
David Brazdil0f672f62019-12-10 10:32:29 +00001535#ifdef CONFIG_CPUMASK_OFFSTACK
1536 /*
1537 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1538 * to allocated cpumasks.
1539 */
1540 tmp.addmask = trialcs->subparts_cpus;
1541 tmp.delmask = trialcs->effective_cpus;
1542 tmp.new_cpus = trialcs->cpus_allowed;
1543#endif
1544
1545 if (cs->partition_root_state) {
1546 /* Cpumask of a partition root cannot be empty */
1547 if (cpumask_empty(trialcs->cpus_allowed))
1548 return -EINVAL;
1549 if (update_parent_subparts_cpumask(cs, partcmd_update,
1550 trialcs->cpus_allowed, &tmp) < 0)
1551 return -EINVAL;
1552 }
1553
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001554 spin_lock_irq(&callback_lock);
1555 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
David Brazdil0f672f62019-12-10 10:32:29 +00001556
1557 /*
1558 * Make sure that subparts_cpus is a subset of cpus_allowed.
1559 */
1560 if (cs->nr_subparts_cpus) {
1561 cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus,
1562 cs->cpus_allowed);
1563 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1564 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001565 spin_unlock_irq(&callback_lock);
1566
David Brazdil0f672f62019-12-10 10:32:29 +00001567 update_cpumasks_hier(cs, &tmp);
1568
1569 if (cs->partition_root_state) {
1570 struct cpuset *parent = parent_cs(cs);
1571
1572 /*
1573 * For partition root, update the cpumasks of sibling
1574 * cpusets if they use parent's effective_cpus.
1575 */
1576 if (parent->child_ecpus_count)
1577 update_sibling_cpumasks(parent, cs, &tmp);
1578 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001579 return 0;
1580}
1581
1582/*
1583 * Migrate memory region from one set of nodes to another. This is
1584 * performed asynchronously as it can be called from process migration path
1585 * holding locks involved in process management. All mm migrations are
1586 * performed in the queued order and can be waited for by flushing
1587 * cpuset_migrate_mm_wq.
1588 */
1589
1590struct cpuset_migrate_mm_work {
1591 struct work_struct work;
1592 struct mm_struct *mm;
1593 nodemask_t from;
1594 nodemask_t to;
1595};
1596
1597static void cpuset_migrate_mm_workfn(struct work_struct *work)
1598{
1599 struct cpuset_migrate_mm_work *mwork =
1600 container_of(work, struct cpuset_migrate_mm_work, work);
1601
1602 /* on a wq worker, no need to worry about %current's mems_allowed */
1603 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1604 mmput(mwork->mm);
1605 kfree(mwork);
1606}
1607
1608static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1609 const nodemask_t *to)
1610{
1611 struct cpuset_migrate_mm_work *mwork;
1612
1613 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1614 if (mwork) {
1615 mwork->mm = mm;
1616 mwork->from = *from;
1617 mwork->to = *to;
1618 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1619 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1620 } else {
1621 mmput(mm);
1622 }
1623}
1624
1625static void cpuset_post_attach(void)
1626{
1627 flush_workqueue(cpuset_migrate_mm_wq);
1628}
1629
1630/*
1631 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1632 * @tsk: the task to change
1633 * @newmems: new nodes that the task will be set
1634 *
1635 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1636 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1637 * parallel, it might temporarily see an empty intersection, which results in
1638 * a seqlock check and retry before OOM or allocation failure.
1639 */
1640static void cpuset_change_task_nodemask(struct task_struct *tsk,
1641 nodemask_t *newmems)
1642{
1643 task_lock(tsk);
1644
1645 local_irq_disable();
1646 write_seqcount_begin(&tsk->mems_allowed_seq);
1647
1648 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1649 mpol_rebind_task(tsk, newmems);
1650 tsk->mems_allowed = *newmems;
1651
1652 write_seqcount_end(&tsk->mems_allowed_seq);
1653 local_irq_enable();
1654
1655 task_unlock(tsk);
1656}
1657
1658static void *cpuset_being_rebound;
1659
1660/**
1661 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1662 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1663 *
1664 * Iterate through each task of @cs updating its mems_allowed to the
1665 * effective cpuset's. As this function is called with cpuset_mutex held,
1666 * cpuset membership stays stable.
1667 */
1668static void update_tasks_nodemask(struct cpuset *cs)
1669{
1670 static nodemask_t newmems; /* protected by cpuset_mutex */
1671 struct css_task_iter it;
1672 struct task_struct *task;
1673
1674 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1675
1676 guarantee_online_mems(cs, &newmems);
1677
1678 /*
1679 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1680 * take while holding tasklist_lock. Forks can happen - the
1681 * mpol_dup() cpuset_being_rebound check will catch such forks,
1682 * and rebind their vma mempolicies too. Because we still hold
1683 * the global cpuset_mutex, we know that no other rebind effort
1684 * will be contending for the global variable cpuset_being_rebound.
1685 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1686 * is idempotent. Also migrate pages in each mm to new nodes.
1687 */
1688 css_task_iter_start(&cs->css, 0, &it);
1689 while ((task = css_task_iter_next(&it))) {
1690 struct mm_struct *mm;
1691 bool migrate;
1692
1693 cpuset_change_task_nodemask(task, &newmems);
1694
1695 mm = get_task_mm(task);
1696 if (!mm)
1697 continue;
1698
1699 migrate = is_memory_migrate(cs);
1700
1701 mpol_rebind_mm(mm, &cs->mems_allowed);
1702 if (migrate)
1703 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1704 else
1705 mmput(mm);
1706 }
1707 css_task_iter_end(&it);
1708
1709 /*
1710 * All the tasks' nodemasks have been updated, update
1711 * cs->old_mems_allowed.
1712 */
1713 cs->old_mems_allowed = newmems;
1714
1715 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1716 cpuset_being_rebound = NULL;
1717}
1718
1719/*
1720 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1721 * @cs: the cpuset to consider
1722 * @new_mems: a temp variable for calculating new effective_mems
1723 *
1724 * When configured nodemask is changed, the effective nodemasks of this cpuset
1725 * and all its descendants need to be updated.
1726 *
1727 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1728 *
1729 * Called with cpuset_mutex held
1730 */
1731static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1732{
1733 struct cpuset *cp;
1734 struct cgroup_subsys_state *pos_css;
1735
1736 rcu_read_lock();
1737 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1738 struct cpuset *parent = parent_cs(cp);
1739
1740 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1741
1742 /*
1743 * If it becomes empty, inherit the effective mask of the
1744 * parent, which is guaranteed to have some MEMs.
1745 */
1746 if (is_in_v2_mode() && nodes_empty(*new_mems))
1747 *new_mems = parent->effective_mems;
1748
1749 /* Skip the whole subtree if the nodemask remains the same. */
1750 if (nodes_equal(*new_mems, cp->effective_mems)) {
1751 pos_css = css_rightmost_descendant(pos_css);
1752 continue;
1753 }
1754
1755 if (!css_tryget_online(&cp->css))
1756 continue;
1757 rcu_read_unlock();
1758
1759 spin_lock_irq(&callback_lock);
1760 cp->effective_mems = *new_mems;
1761 spin_unlock_irq(&callback_lock);
1762
1763 WARN_ON(!is_in_v2_mode() &&
1764 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1765
1766 update_tasks_nodemask(cp);
1767
1768 rcu_read_lock();
1769 css_put(&cp->css);
1770 }
1771 rcu_read_unlock();
1772}
1773
1774/*
1775 * Handle user request to change the 'mems' memory placement
1776 * of a cpuset. Needs to validate the request, update the
1777 * cpusets mems_allowed, and for each task in the cpuset,
1778 * update mems_allowed and rebind task's mempolicy and any vma
1779 * mempolicies and if the cpuset is marked 'memory_migrate',
1780 * migrate the tasks pages to the new memory.
1781 *
1782 * Call with cpuset_mutex held. May take callback_lock during call.
1783 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1784 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1785 * their mempolicies to the cpusets new mems_allowed.
1786 */
1787static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1788 const char *buf)
1789{
1790 int retval;
1791
1792 /*
1793 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1794 * it's read-only
1795 */
1796 if (cs == &top_cpuset) {
1797 retval = -EACCES;
1798 goto done;
1799 }
1800
1801 /*
1802 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1803 * Since nodelist_parse() fails on an empty mask, we special case
1804 * that parsing. The validate_change() call ensures that cpusets
1805 * with tasks have memory.
1806 */
1807 if (!*buf) {
1808 nodes_clear(trialcs->mems_allowed);
1809 } else {
1810 retval = nodelist_parse(buf, trialcs->mems_allowed);
1811 if (retval < 0)
1812 goto done;
1813
1814 if (!nodes_subset(trialcs->mems_allowed,
1815 top_cpuset.mems_allowed)) {
1816 retval = -EINVAL;
1817 goto done;
1818 }
1819 }
1820
1821 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1822 retval = 0; /* Too easy - nothing to do */
1823 goto done;
1824 }
1825 retval = validate_change(cs, trialcs);
1826 if (retval < 0)
1827 goto done;
1828
1829 spin_lock_irq(&callback_lock);
1830 cs->mems_allowed = trialcs->mems_allowed;
1831 spin_unlock_irq(&callback_lock);
1832
1833 /* use trialcs->mems_allowed as a temp variable */
1834 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1835done:
1836 return retval;
1837}
1838
1839bool current_cpuset_is_being_rebound(void)
1840{
1841 bool ret;
1842
1843 rcu_read_lock();
1844 ret = task_cs(current) == cpuset_being_rebound;
1845 rcu_read_unlock();
1846
1847 return ret;
1848}
1849
1850static int update_relax_domain_level(struct cpuset *cs, s64 val)
1851{
1852#ifdef CONFIG_SMP
1853 if (val < -1 || val >= sched_domain_level_max)
1854 return -EINVAL;
1855#endif
1856
1857 if (val != cs->relax_domain_level) {
1858 cs->relax_domain_level = val;
1859 if (!cpumask_empty(cs->cpus_allowed) &&
1860 is_sched_load_balance(cs))
1861 rebuild_sched_domains_locked();
1862 }
1863
1864 return 0;
1865}
1866
1867/**
1868 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1869 * @cs: the cpuset in which each task's spread flags needs to be changed
1870 *
1871 * Iterate through each task of @cs updating its spread flags. As this
1872 * function is called with cpuset_mutex held, cpuset membership stays
1873 * stable.
1874 */
1875static void update_tasks_flags(struct cpuset *cs)
1876{
1877 struct css_task_iter it;
1878 struct task_struct *task;
1879
1880 css_task_iter_start(&cs->css, 0, &it);
1881 while ((task = css_task_iter_next(&it)))
1882 cpuset_update_task_spread_flag(cs, task);
1883 css_task_iter_end(&it);
1884}
1885
1886/*
1887 * update_flag - read a 0 or a 1 in a file and update associated flag
1888 * bit: the bit to update (see cpuset_flagbits_t)
1889 * cs: the cpuset to update
1890 * turning_on: whether the flag is being set or cleared
1891 *
1892 * Call with cpuset_mutex held.
1893 */
1894
1895static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1896 int turning_on)
1897{
1898 struct cpuset *trialcs;
1899 int balance_flag_changed;
1900 int spread_flag_changed;
1901 int err;
1902
1903 trialcs = alloc_trial_cpuset(cs);
1904 if (!trialcs)
1905 return -ENOMEM;
1906
1907 if (turning_on)
1908 set_bit(bit, &trialcs->flags);
1909 else
1910 clear_bit(bit, &trialcs->flags);
1911
1912 err = validate_change(cs, trialcs);
1913 if (err < 0)
1914 goto out;
1915
1916 balance_flag_changed = (is_sched_load_balance(cs) !=
1917 is_sched_load_balance(trialcs));
1918
1919 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1920 || (is_spread_page(cs) != is_spread_page(trialcs)));
1921
1922 spin_lock_irq(&callback_lock);
1923 cs->flags = trialcs->flags;
1924 spin_unlock_irq(&callback_lock);
1925
1926 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1927 rebuild_sched_domains_locked();
1928
1929 if (spread_flag_changed)
1930 update_tasks_flags(cs);
1931out:
David Brazdil0f672f62019-12-10 10:32:29 +00001932 free_cpuset(trialcs);
1933 return err;
1934}
1935
1936/*
1937 * update_prstate - update partititon_root_state
1938 * cs: the cpuset to update
1939 * val: 0 - disabled, 1 - enabled
1940 *
1941 * Call with cpuset_mutex held.
1942 */
1943static int update_prstate(struct cpuset *cs, int val)
1944{
1945 int err;
1946 struct cpuset *parent = parent_cs(cs);
1947 struct tmpmasks tmp;
1948
1949 if ((val != 0) && (val != 1))
1950 return -EINVAL;
1951 if (val == cs->partition_root_state)
1952 return 0;
1953
1954 /*
1955 * Cannot force a partial or invalid partition root to a full
1956 * partition root.
1957 */
1958 if (val && cs->partition_root_state)
1959 return -EINVAL;
1960
1961 if (alloc_cpumasks(NULL, &tmp))
1962 return -ENOMEM;
1963
1964 err = -EINVAL;
1965 if (!cs->partition_root_state) {
1966 /*
1967 * Turning on partition root requires setting the
1968 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1969 * cannot be NULL.
1970 */
1971 if (cpumask_empty(cs->cpus_allowed))
1972 goto out;
1973
1974 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
1975 if (err)
1976 goto out;
1977
1978 err = update_parent_subparts_cpumask(cs, partcmd_enable,
1979 NULL, &tmp);
1980 if (err) {
1981 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1982 goto out;
1983 }
1984 cs->partition_root_state = PRS_ENABLED;
1985 } else {
1986 /*
1987 * Turning off partition root will clear the
1988 * CS_CPU_EXCLUSIVE bit.
1989 */
1990 if (cs->partition_root_state == PRS_ERROR) {
1991 cs->partition_root_state = 0;
1992 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1993 err = 0;
1994 goto out;
1995 }
1996
1997 err = update_parent_subparts_cpumask(cs, partcmd_disable,
1998 NULL, &tmp);
1999 if (err)
2000 goto out;
2001
2002 cs->partition_root_state = 0;
2003
2004 /* Turning off CS_CPU_EXCLUSIVE will not return error */
2005 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2006 }
2007
2008 /*
2009 * Update cpumask of parent's tasks except when it is the top
2010 * cpuset as some system daemons cannot be mapped to other CPUs.
2011 */
2012 if (parent != &top_cpuset)
2013 update_tasks_cpumask(parent);
2014
2015 if (parent->child_ecpus_count)
2016 update_sibling_cpumasks(parent, cs, &tmp);
2017
2018 rebuild_sched_domains_locked();
2019out:
2020 free_cpumasks(NULL, &tmp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002021 return err;
2022}
2023
2024/*
2025 * Frequency meter - How fast is some event occurring?
2026 *
2027 * These routines manage a digitally filtered, constant time based,
2028 * event frequency meter. There are four routines:
2029 * fmeter_init() - initialize a frequency meter.
2030 * fmeter_markevent() - called each time the event happens.
2031 * fmeter_getrate() - returns the recent rate of such events.
2032 * fmeter_update() - internal routine used to update fmeter.
2033 *
2034 * A common data structure is passed to each of these routines,
2035 * which is used to keep track of the state required to manage the
2036 * frequency meter and its digital filter.
2037 *
2038 * The filter works on the number of events marked per unit time.
2039 * The filter is single-pole low-pass recursive (IIR). The time unit
2040 * is 1 second. Arithmetic is done using 32-bit integers scaled to
2041 * simulate 3 decimal digits of precision (multiplied by 1000).
2042 *
2043 * With an FM_COEF of 933, and a time base of 1 second, the filter
2044 * has a half-life of 10 seconds, meaning that if the events quit
2045 * happening, then the rate returned from the fmeter_getrate()
2046 * will be cut in half each 10 seconds, until it converges to zero.
2047 *
2048 * It is not worth doing a real infinitely recursive filter. If more
2049 * than FM_MAXTICKS ticks have elapsed since the last filter event,
2050 * just compute FM_MAXTICKS ticks worth, by which point the level
2051 * will be stable.
2052 *
2053 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2054 * arithmetic overflow in the fmeter_update() routine.
2055 *
2056 * Given the simple 32 bit integer arithmetic used, this meter works
2057 * best for reporting rates between one per millisecond (msec) and
2058 * one per 32 (approx) seconds. At constant rates faster than one
2059 * per msec it maxes out at values just under 1,000,000. At constant
2060 * rates between one per msec, and one per second it will stabilize
2061 * to a value N*1000, where N is the rate of events per second.
2062 * At constant rates between one per second and one per 32 seconds,
2063 * it will be choppy, moving up on the seconds that have an event,
2064 * and then decaying until the next event. At rates slower than
2065 * about one in 32 seconds, it decays all the way back to zero between
2066 * each event.
2067 */
2068
2069#define FM_COEF 933 /* coefficient for half-life of 10 secs */
2070#define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
2071#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
2072#define FM_SCALE 1000 /* faux fixed point scale */
2073
2074/* Initialize a frequency meter */
2075static void fmeter_init(struct fmeter *fmp)
2076{
2077 fmp->cnt = 0;
2078 fmp->val = 0;
2079 fmp->time = 0;
2080 spin_lock_init(&fmp->lock);
2081}
2082
2083/* Internal meter update - process cnt events and update value */
2084static void fmeter_update(struct fmeter *fmp)
2085{
2086 time64_t now;
2087 u32 ticks;
2088
2089 now = ktime_get_seconds();
2090 ticks = now - fmp->time;
2091
2092 if (ticks == 0)
2093 return;
2094
2095 ticks = min(FM_MAXTICKS, ticks);
2096 while (ticks-- > 0)
2097 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2098 fmp->time = now;
2099
2100 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2101 fmp->cnt = 0;
2102}
2103
2104/* Process any previous ticks, then bump cnt by one (times scale). */
2105static void fmeter_markevent(struct fmeter *fmp)
2106{
2107 spin_lock(&fmp->lock);
2108 fmeter_update(fmp);
2109 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2110 spin_unlock(&fmp->lock);
2111}
2112
2113/* Process any previous ticks, then return current value. */
2114static int fmeter_getrate(struct fmeter *fmp)
2115{
2116 int val;
2117
2118 spin_lock(&fmp->lock);
2119 fmeter_update(fmp);
2120 val = fmp->val;
2121 spin_unlock(&fmp->lock);
2122 return val;
2123}
2124
2125static struct cpuset *cpuset_attach_old_cs;
2126
2127/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2128static int cpuset_can_attach(struct cgroup_taskset *tset)
2129{
2130 struct cgroup_subsys_state *css;
2131 struct cpuset *cs;
2132 struct task_struct *task;
2133 int ret;
2134
2135 /* used later by cpuset_attach() */
2136 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2137 cs = css_cs(css);
2138
David Brazdil0f672f62019-12-10 10:32:29 +00002139 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002140
2141 /* allow moving tasks into an empty cpuset if on default hierarchy */
2142 ret = -ENOSPC;
2143 if (!is_in_v2_mode() &&
2144 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2145 goto out_unlock;
2146
2147 cgroup_taskset_for_each(task, css, tset) {
2148 ret = task_can_attach(task, cs->cpus_allowed);
2149 if (ret)
2150 goto out_unlock;
2151 ret = security_task_setscheduler(task);
2152 if (ret)
2153 goto out_unlock;
2154 }
2155
2156 /*
2157 * Mark attach is in progress. This makes validate_change() fail
2158 * changes which zero cpus/mems_allowed.
2159 */
2160 cs->attach_in_progress++;
2161 ret = 0;
2162out_unlock:
David Brazdil0f672f62019-12-10 10:32:29 +00002163 percpu_up_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002164 return ret;
2165}
2166
2167static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2168{
2169 struct cgroup_subsys_state *css;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002170
2171 cgroup_taskset_first(tset, &css);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002172
David Brazdil0f672f62019-12-10 10:32:29 +00002173 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002174 css_cs(css)->attach_in_progress--;
David Brazdil0f672f62019-12-10 10:32:29 +00002175 percpu_up_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002176}
2177
2178/*
2179 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
2180 * but we can't allocate it dynamically there. Define it global and
2181 * allocate from cpuset_init().
2182 */
2183static cpumask_var_t cpus_attach;
2184
2185static void cpuset_attach(struct cgroup_taskset *tset)
2186{
2187 /* static buf protected by cpuset_mutex */
2188 static nodemask_t cpuset_attach_nodemask_to;
2189 struct task_struct *task;
2190 struct task_struct *leader;
2191 struct cgroup_subsys_state *css;
2192 struct cpuset *cs;
2193 struct cpuset *oldcs = cpuset_attach_old_cs;
2194
2195 cgroup_taskset_first(tset, &css);
2196 cs = css_cs(css);
2197
David Brazdil0f672f62019-12-10 10:32:29 +00002198 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002199
2200 /* prepare for attach */
2201 if (cs == &top_cpuset)
2202 cpumask_copy(cpus_attach, cpu_possible_mask);
2203 else
2204 guarantee_online_cpus(cs, cpus_attach);
2205
2206 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2207
2208 cgroup_taskset_for_each(task, css, tset) {
2209 /*
2210 * can_attach beforehand should guarantee that this doesn't
2211 * fail. TODO: have a better way to handle failure here
2212 */
2213 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2214
2215 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2216 cpuset_update_task_spread_flag(cs, task);
2217 }
2218
2219 /*
2220 * Change mm for all threadgroup leaders. This is expensive and may
2221 * sleep and should be moved outside migration path proper.
2222 */
2223 cpuset_attach_nodemask_to = cs->effective_mems;
2224 cgroup_taskset_for_each_leader(leader, css, tset) {
2225 struct mm_struct *mm = get_task_mm(leader);
2226
2227 if (mm) {
2228 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2229
2230 /*
2231 * old_mems_allowed is the same with mems_allowed
2232 * here, except if this task is being moved
2233 * automatically due to hotplug. In that case
2234 * @mems_allowed has been updated and is empty, so
2235 * @old_mems_allowed is the right nodesets that we
2236 * migrate mm from.
2237 */
2238 if (is_memory_migrate(cs))
2239 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2240 &cpuset_attach_nodemask_to);
2241 else
2242 mmput(mm);
2243 }
2244 }
2245
2246 cs->old_mems_allowed = cpuset_attach_nodemask_to;
2247
2248 cs->attach_in_progress--;
2249 if (!cs->attach_in_progress)
2250 wake_up(&cpuset_attach_wq);
2251
David Brazdil0f672f62019-12-10 10:32:29 +00002252 percpu_up_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002253}
2254
2255/* The various types of files and directories in a cpuset file system */
2256
2257typedef enum {
2258 FILE_MEMORY_MIGRATE,
2259 FILE_CPULIST,
2260 FILE_MEMLIST,
2261 FILE_EFFECTIVE_CPULIST,
2262 FILE_EFFECTIVE_MEMLIST,
David Brazdil0f672f62019-12-10 10:32:29 +00002263 FILE_SUBPARTS_CPULIST,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002264 FILE_CPU_EXCLUSIVE,
2265 FILE_MEM_EXCLUSIVE,
2266 FILE_MEM_HARDWALL,
2267 FILE_SCHED_LOAD_BALANCE,
David Brazdil0f672f62019-12-10 10:32:29 +00002268 FILE_PARTITION_ROOT,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002269 FILE_SCHED_RELAX_DOMAIN_LEVEL,
2270 FILE_MEMORY_PRESSURE_ENABLED,
2271 FILE_MEMORY_PRESSURE,
2272 FILE_SPREAD_PAGE,
2273 FILE_SPREAD_SLAB,
2274} cpuset_filetype_t;
2275
2276static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2277 u64 val)
2278{
2279 struct cpuset *cs = css_cs(css);
2280 cpuset_filetype_t type = cft->private;
2281 int retval = 0;
2282
David Brazdil0f672f62019-12-10 10:32:29 +00002283 get_online_cpus();
2284 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002285 if (!is_cpuset_online(cs)) {
2286 retval = -ENODEV;
2287 goto out_unlock;
2288 }
2289
2290 switch (type) {
2291 case FILE_CPU_EXCLUSIVE:
2292 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2293 break;
2294 case FILE_MEM_EXCLUSIVE:
2295 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2296 break;
2297 case FILE_MEM_HARDWALL:
2298 retval = update_flag(CS_MEM_HARDWALL, cs, val);
2299 break;
2300 case FILE_SCHED_LOAD_BALANCE:
2301 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2302 break;
2303 case FILE_MEMORY_MIGRATE:
2304 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2305 break;
2306 case FILE_MEMORY_PRESSURE_ENABLED:
2307 cpuset_memory_pressure_enabled = !!val;
2308 break;
2309 case FILE_SPREAD_PAGE:
2310 retval = update_flag(CS_SPREAD_PAGE, cs, val);
2311 break;
2312 case FILE_SPREAD_SLAB:
2313 retval = update_flag(CS_SPREAD_SLAB, cs, val);
2314 break;
2315 default:
2316 retval = -EINVAL;
2317 break;
2318 }
2319out_unlock:
David Brazdil0f672f62019-12-10 10:32:29 +00002320 percpu_up_write(&cpuset_rwsem);
2321 put_online_cpus();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002322 return retval;
2323}
2324
2325static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2326 s64 val)
2327{
2328 struct cpuset *cs = css_cs(css);
2329 cpuset_filetype_t type = cft->private;
2330 int retval = -ENODEV;
2331
David Brazdil0f672f62019-12-10 10:32:29 +00002332 get_online_cpus();
2333 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002334 if (!is_cpuset_online(cs))
2335 goto out_unlock;
2336
2337 switch (type) {
2338 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2339 retval = update_relax_domain_level(cs, val);
2340 break;
2341 default:
2342 retval = -EINVAL;
2343 break;
2344 }
2345out_unlock:
David Brazdil0f672f62019-12-10 10:32:29 +00002346 percpu_up_write(&cpuset_rwsem);
2347 put_online_cpus();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002348 return retval;
2349}
2350
2351/*
2352 * Common handling for a write to a "cpus" or "mems" file.
2353 */
2354static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2355 char *buf, size_t nbytes, loff_t off)
2356{
2357 struct cpuset *cs = css_cs(of_css(of));
2358 struct cpuset *trialcs;
2359 int retval = -ENODEV;
2360
2361 buf = strstrip(buf);
2362
2363 /*
2364 * CPU or memory hotunplug may leave @cs w/o any execution
2365 * resources, in which case the hotplug code asynchronously updates
2366 * configuration and transfers all tasks to the nearest ancestor
2367 * which can execute.
2368 *
2369 * As writes to "cpus" or "mems" may restore @cs's execution
2370 * resources, wait for the previously scheduled operations before
2371 * proceeding, so that we don't end up keep removing tasks added
2372 * after execution capability is restored.
2373 *
2374 * cpuset_hotplug_work calls back into cgroup core via
2375 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2376 * operation like this one can lead to a deadlock through kernfs
2377 * active_ref protection. Let's break the protection. Losing the
2378 * protection is okay as we check whether @cs is online after
2379 * grabbing cpuset_mutex anyway. This only happens on the legacy
2380 * hierarchies.
2381 */
2382 css_get(&cs->css);
2383 kernfs_break_active_protection(of->kn);
2384 flush_work(&cpuset_hotplug_work);
2385
David Brazdil0f672f62019-12-10 10:32:29 +00002386 get_online_cpus();
2387 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002388 if (!is_cpuset_online(cs))
2389 goto out_unlock;
2390
2391 trialcs = alloc_trial_cpuset(cs);
2392 if (!trialcs) {
2393 retval = -ENOMEM;
2394 goto out_unlock;
2395 }
2396
2397 switch (of_cft(of)->private) {
2398 case FILE_CPULIST:
2399 retval = update_cpumask(cs, trialcs, buf);
2400 break;
2401 case FILE_MEMLIST:
2402 retval = update_nodemask(cs, trialcs, buf);
2403 break;
2404 default:
2405 retval = -EINVAL;
2406 break;
2407 }
2408
David Brazdil0f672f62019-12-10 10:32:29 +00002409 free_cpuset(trialcs);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002410out_unlock:
David Brazdil0f672f62019-12-10 10:32:29 +00002411 percpu_up_write(&cpuset_rwsem);
2412 put_online_cpus();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002413 kernfs_unbreak_active_protection(of->kn);
2414 css_put(&cs->css);
2415 flush_workqueue(cpuset_migrate_mm_wq);
2416 return retval ?: nbytes;
2417}
2418
2419/*
2420 * These ascii lists should be read in a single call, by using a user
2421 * buffer large enough to hold the entire map. If read in smaller
2422 * chunks, there is no guarantee of atomicity. Since the display format
2423 * used, list of ranges of sequential numbers, is variable length,
2424 * and since these maps can change value dynamically, one could read
2425 * gibberish by doing partial reads while a list was changing.
2426 */
2427static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2428{
2429 struct cpuset *cs = css_cs(seq_css(sf));
2430 cpuset_filetype_t type = seq_cft(sf)->private;
2431 int ret = 0;
2432
2433 spin_lock_irq(&callback_lock);
2434
2435 switch (type) {
2436 case FILE_CPULIST:
2437 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2438 break;
2439 case FILE_MEMLIST:
2440 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2441 break;
2442 case FILE_EFFECTIVE_CPULIST:
2443 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2444 break;
2445 case FILE_EFFECTIVE_MEMLIST:
2446 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2447 break;
David Brazdil0f672f62019-12-10 10:32:29 +00002448 case FILE_SUBPARTS_CPULIST:
2449 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2450 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002451 default:
2452 ret = -EINVAL;
2453 }
2454
2455 spin_unlock_irq(&callback_lock);
2456 return ret;
2457}
2458
2459static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2460{
2461 struct cpuset *cs = css_cs(css);
2462 cpuset_filetype_t type = cft->private;
2463 switch (type) {
2464 case FILE_CPU_EXCLUSIVE:
2465 return is_cpu_exclusive(cs);
2466 case FILE_MEM_EXCLUSIVE:
2467 return is_mem_exclusive(cs);
2468 case FILE_MEM_HARDWALL:
2469 return is_mem_hardwall(cs);
2470 case FILE_SCHED_LOAD_BALANCE:
2471 return is_sched_load_balance(cs);
2472 case FILE_MEMORY_MIGRATE:
2473 return is_memory_migrate(cs);
2474 case FILE_MEMORY_PRESSURE_ENABLED:
2475 return cpuset_memory_pressure_enabled;
2476 case FILE_MEMORY_PRESSURE:
2477 return fmeter_getrate(&cs->fmeter);
2478 case FILE_SPREAD_PAGE:
2479 return is_spread_page(cs);
2480 case FILE_SPREAD_SLAB:
2481 return is_spread_slab(cs);
2482 default:
2483 BUG();
2484 }
2485
2486 /* Unreachable but makes gcc happy */
2487 return 0;
2488}
2489
2490static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2491{
2492 struct cpuset *cs = css_cs(css);
2493 cpuset_filetype_t type = cft->private;
2494 switch (type) {
2495 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2496 return cs->relax_domain_level;
2497 default:
2498 BUG();
2499 }
2500
2501 /* Unrechable but makes gcc happy */
2502 return 0;
2503}
2504
David Brazdil0f672f62019-12-10 10:32:29 +00002505static int sched_partition_show(struct seq_file *seq, void *v)
2506{
2507 struct cpuset *cs = css_cs(seq_css(seq));
2508
2509 switch (cs->partition_root_state) {
2510 case PRS_ENABLED:
2511 seq_puts(seq, "root\n");
2512 break;
2513 case PRS_DISABLED:
2514 seq_puts(seq, "member\n");
2515 break;
2516 case PRS_ERROR:
2517 seq_puts(seq, "root invalid\n");
2518 break;
2519 }
2520 return 0;
2521}
2522
2523static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2524 size_t nbytes, loff_t off)
2525{
2526 struct cpuset *cs = css_cs(of_css(of));
2527 int val;
2528 int retval = -ENODEV;
2529
2530 buf = strstrip(buf);
2531
2532 /*
2533 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2534 */
2535 if (!strcmp(buf, "root"))
2536 val = PRS_ENABLED;
2537 else if (!strcmp(buf, "member"))
2538 val = PRS_DISABLED;
2539 else
2540 return -EINVAL;
2541
2542 css_get(&cs->css);
2543 get_online_cpus();
2544 percpu_down_write(&cpuset_rwsem);
2545 if (!is_cpuset_online(cs))
2546 goto out_unlock;
2547
2548 retval = update_prstate(cs, val);
2549out_unlock:
2550 percpu_up_write(&cpuset_rwsem);
2551 put_online_cpus();
2552 css_put(&cs->css);
2553 return retval ?: nbytes;
2554}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002555
2556/*
2557 * for the common functions, 'private' gives the type of file
2558 */
2559
David Brazdil0f672f62019-12-10 10:32:29 +00002560static struct cftype legacy_files[] = {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002561 {
2562 .name = "cpus",
2563 .seq_show = cpuset_common_seq_show,
2564 .write = cpuset_write_resmask,
2565 .max_write_len = (100U + 6 * NR_CPUS),
2566 .private = FILE_CPULIST,
2567 },
2568
2569 {
2570 .name = "mems",
2571 .seq_show = cpuset_common_seq_show,
2572 .write = cpuset_write_resmask,
2573 .max_write_len = (100U + 6 * MAX_NUMNODES),
2574 .private = FILE_MEMLIST,
2575 },
2576
2577 {
2578 .name = "effective_cpus",
2579 .seq_show = cpuset_common_seq_show,
2580 .private = FILE_EFFECTIVE_CPULIST,
2581 },
2582
2583 {
2584 .name = "effective_mems",
2585 .seq_show = cpuset_common_seq_show,
2586 .private = FILE_EFFECTIVE_MEMLIST,
2587 },
2588
2589 {
2590 .name = "cpu_exclusive",
2591 .read_u64 = cpuset_read_u64,
2592 .write_u64 = cpuset_write_u64,
2593 .private = FILE_CPU_EXCLUSIVE,
2594 },
2595
2596 {
2597 .name = "mem_exclusive",
2598 .read_u64 = cpuset_read_u64,
2599 .write_u64 = cpuset_write_u64,
2600 .private = FILE_MEM_EXCLUSIVE,
2601 },
2602
2603 {
2604 .name = "mem_hardwall",
2605 .read_u64 = cpuset_read_u64,
2606 .write_u64 = cpuset_write_u64,
2607 .private = FILE_MEM_HARDWALL,
2608 },
2609
2610 {
2611 .name = "sched_load_balance",
2612 .read_u64 = cpuset_read_u64,
2613 .write_u64 = cpuset_write_u64,
2614 .private = FILE_SCHED_LOAD_BALANCE,
2615 },
2616
2617 {
2618 .name = "sched_relax_domain_level",
2619 .read_s64 = cpuset_read_s64,
2620 .write_s64 = cpuset_write_s64,
2621 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2622 },
2623
2624 {
2625 .name = "memory_migrate",
2626 .read_u64 = cpuset_read_u64,
2627 .write_u64 = cpuset_write_u64,
2628 .private = FILE_MEMORY_MIGRATE,
2629 },
2630
2631 {
2632 .name = "memory_pressure",
2633 .read_u64 = cpuset_read_u64,
2634 .private = FILE_MEMORY_PRESSURE,
2635 },
2636
2637 {
2638 .name = "memory_spread_page",
2639 .read_u64 = cpuset_read_u64,
2640 .write_u64 = cpuset_write_u64,
2641 .private = FILE_SPREAD_PAGE,
2642 },
2643
2644 {
2645 .name = "memory_spread_slab",
2646 .read_u64 = cpuset_read_u64,
2647 .write_u64 = cpuset_write_u64,
2648 .private = FILE_SPREAD_SLAB,
2649 },
2650
2651 {
2652 .name = "memory_pressure_enabled",
2653 .flags = CFTYPE_ONLY_ON_ROOT,
2654 .read_u64 = cpuset_read_u64,
2655 .write_u64 = cpuset_write_u64,
2656 .private = FILE_MEMORY_PRESSURE_ENABLED,
2657 },
2658
2659 { } /* terminate */
2660};
2661
2662/*
David Brazdil0f672f62019-12-10 10:32:29 +00002663 * This is currently a minimal set for the default hierarchy. It can be
2664 * expanded later on by migrating more features and control files from v1.
2665 */
2666static struct cftype dfl_files[] = {
2667 {
2668 .name = "cpus",
2669 .seq_show = cpuset_common_seq_show,
2670 .write = cpuset_write_resmask,
2671 .max_write_len = (100U + 6 * NR_CPUS),
2672 .private = FILE_CPULIST,
2673 .flags = CFTYPE_NOT_ON_ROOT,
2674 },
2675
2676 {
2677 .name = "mems",
2678 .seq_show = cpuset_common_seq_show,
2679 .write = cpuset_write_resmask,
2680 .max_write_len = (100U + 6 * MAX_NUMNODES),
2681 .private = FILE_MEMLIST,
2682 .flags = CFTYPE_NOT_ON_ROOT,
2683 },
2684
2685 {
2686 .name = "cpus.effective",
2687 .seq_show = cpuset_common_seq_show,
2688 .private = FILE_EFFECTIVE_CPULIST,
2689 },
2690
2691 {
2692 .name = "mems.effective",
2693 .seq_show = cpuset_common_seq_show,
2694 .private = FILE_EFFECTIVE_MEMLIST,
2695 },
2696
2697 {
2698 .name = "cpus.partition",
2699 .seq_show = sched_partition_show,
2700 .write = sched_partition_write,
2701 .private = FILE_PARTITION_ROOT,
2702 .flags = CFTYPE_NOT_ON_ROOT,
2703 },
2704
2705 {
2706 .name = "cpus.subpartitions",
2707 .seq_show = cpuset_common_seq_show,
2708 .private = FILE_SUBPARTS_CPULIST,
2709 .flags = CFTYPE_DEBUG,
2710 },
2711
2712 { } /* terminate */
2713};
2714
2715
2716/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002717 * cpuset_css_alloc - allocate a cpuset css
2718 * cgrp: control group that the new cpuset will be part of
2719 */
2720
2721static struct cgroup_subsys_state *
2722cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2723{
2724 struct cpuset *cs;
2725
2726 if (!parent_css)
2727 return &top_cpuset.css;
2728
2729 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2730 if (!cs)
2731 return ERR_PTR(-ENOMEM);
David Brazdil0f672f62019-12-10 10:32:29 +00002732
2733 if (alloc_cpumasks(cs, NULL)) {
2734 kfree(cs);
2735 return ERR_PTR(-ENOMEM);
2736 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002737
2738 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002739 nodes_clear(cs->mems_allowed);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002740 nodes_clear(cs->effective_mems);
2741 fmeter_init(&cs->fmeter);
2742 cs->relax_domain_level = -1;
2743
2744 return &cs->css;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002745}
2746
2747static int cpuset_css_online(struct cgroup_subsys_state *css)
2748{
2749 struct cpuset *cs = css_cs(css);
2750 struct cpuset *parent = parent_cs(cs);
2751 struct cpuset *tmp_cs;
2752 struct cgroup_subsys_state *pos_css;
2753
2754 if (!parent)
2755 return 0;
2756
David Brazdil0f672f62019-12-10 10:32:29 +00002757 get_online_cpus();
2758 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002759
2760 set_bit(CS_ONLINE, &cs->flags);
2761 if (is_spread_page(parent))
2762 set_bit(CS_SPREAD_PAGE, &cs->flags);
2763 if (is_spread_slab(parent))
2764 set_bit(CS_SPREAD_SLAB, &cs->flags);
2765
2766 cpuset_inc();
2767
2768 spin_lock_irq(&callback_lock);
2769 if (is_in_v2_mode()) {
2770 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2771 cs->effective_mems = parent->effective_mems;
David Brazdil0f672f62019-12-10 10:32:29 +00002772 cs->use_parent_ecpus = true;
2773 parent->child_ecpus_count++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002774 }
2775 spin_unlock_irq(&callback_lock);
2776
2777 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2778 goto out_unlock;
2779
2780 /*
2781 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2782 * set. This flag handling is implemented in cgroup core for
2783 * histrical reasons - the flag may be specified during mount.
2784 *
2785 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2786 * refuse to clone the configuration - thereby refusing the task to
2787 * be entered, and as a result refusing the sys_unshare() or
2788 * clone() which initiated it. If this becomes a problem for some
2789 * users who wish to allow that scenario, then this could be
2790 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2791 * (and likewise for mems) to the new cgroup.
2792 */
2793 rcu_read_lock();
2794 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2795 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2796 rcu_read_unlock();
2797 goto out_unlock;
2798 }
2799 }
2800 rcu_read_unlock();
2801
2802 spin_lock_irq(&callback_lock);
2803 cs->mems_allowed = parent->mems_allowed;
2804 cs->effective_mems = parent->mems_allowed;
2805 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2806 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2807 spin_unlock_irq(&callback_lock);
2808out_unlock:
David Brazdil0f672f62019-12-10 10:32:29 +00002809 percpu_up_write(&cpuset_rwsem);
2810 put_online_cpus();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002811 return 0;
2812}
2813
2814/*
2815 * If the cpuset being removed has its flag 'sched_load_balance'
2816 * enabled, then simulate turning sched_load_balance off, which
David Brazdil0f672f62019-12-10 10:32:29 +00002817 * will call rebuild_sched_domains_locked(). That is not needed
2818 * in the default hierarchy where only changes in partition
2819 * will cause repartitioning.
2820 *
2821 * If the cpuset has the 'sched.partition' flag enabled, simulate
2822 * turning 'sched.partition" off.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002823 */
2824
2825static void cpuset_css_offline(struct cgroup_subsys_state *css)
2826{
2827 struct cpuset *cs = css_cs(css);
2828
David Brazdil0f672f62019-12-10 10:32:29 +00002829 get_online_cpus();
2830 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002831
David Brazdil0f672f62019-12-10 10:32:29 +00002832 if (is_partition_root(cs))
2833 update_prstate(cs, 0);
2834
2835 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2836 is_sched_load_balance(cs))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002837 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2838
David Brazdil0f672f62019-12-10 10:32:29 +00002839 if (cs->use_parent_ecpus) {
2840 struct cpuset *parent = parent_cs(cs);
2841
2842 cs->use_parent_ecpus = false;
2843 parent->child_ecpus_count--;
2844 }
2845
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002846 cpuset_dec();
2847 clear_bit(CS_ONLINE, &cs->flags);
2848
David Brazdil0f672f62019-12-10 10:32:29 +00002849 percpu_up_write(&cpuset_rwsem);
2850 put_online_cpus();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002851}
2852
2853static void cpuset_css_free(struct cgroup_subsys_state *css)
2854{
2855 struct cpuset *cs = css_cs(css);
2856
David Brazdil0f672f62019-12-10 10:32:29 +00002857 free_cpuset(cs);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002858}
2859
2860static void cpuset_bind(struct cgroup_subsys_state *root_css)
2861{
David Brazdil0f672f62019-12-10 10:32:29 +00002862 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002863 spin_lock_irq(&callback_lock);
2864
2865 if (is_in_v2_mode()) {
2866 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2867 top_cpuset.mems_allowed = node_possible_map;
2868 } else {
2869 cpumask_copy(top_cpuset.cpus_allowed,
2870 top_cpuset.effective_cpus);
2871 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2872 }
2873
2874 spin_unlock_irq(&callback_lock);
David Brazdil0f672f62019-12-10 10:32:29 +00002875 percpu_up_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002876}
2877
2878/*
2879 * Make sure the new task conform to the current state of its parent,
2880 * which could have been changed by cpuset just after it inherits the
2881 * state from the parent and before it sits on the cgroup's task list.
2882 */
2883static void cpuset_fork(struct task_struct *task)
2884{
2885 if (task_css_is_root(task, cpuset_cgrp_id))
2886 return;
2887
David Brazdil0f672f62019-12-10 10:32:29 +00002888 set_cpus_allowed_ptr(task, current->cpus_ptr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002889 task->mems_allowed = current->mems_allowed;
2890}
2891
2892struct cgroup_subsys cpuset_cgrp_subsys = {
2893 .css_alloc = cpuset_css_alloc,
2894 .css_online = cpuset_css_online,
2895 .css_offline = cpuset_css_offline,
2896 .css_free = cpuset_css_free,
2897 .can_attach = cpuset_can_attach,
2898 .cancel_attach = cpuset_cancel_attach,
2899 .attach = cpuset_attach,
2900 .post_attach = cpuset_post_attach,
2901 .bind = cpuset_bind,
2902 .fork = cpuset_fork,
David Brazdil0f672f62019-12-10 10:32:29 +00002903 .legacy_cftypes = legacy_files,
2904 .dfl_cftypes = dfl_files,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002905 .early_init = true,
David Brazdil0f672f62019-12-10 10:32:29 +00002906 .threaded = true,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002907};
2908
2909/**
2910 * cpuset_init - initialize cpusets at system boot
2911 *
David Brazdil0f672f62019-12-10 10:32:29 +00002912 * Description: Initialize top_cpuset
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002913 **/
2914
2915int __init cpuset_init(void)
2916{
David Brazdil0f672f62019-12-10 10:32:29 +00002917 BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002918
2919 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2920 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
David Brazdil0f672f62019-12-10 10:32:29 +00002921 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002922
2923 cpumask_setall(top_cpuset.cpus_allowed);
2924 nodes_setall(top_cpuset.mems_allowed);
2925 cpumask_setall(top_cpuset.effective_cpus);
2926 nodes_setall(top_cpuset.effective_mems);
2927
2928 fmeter_init(&top_cpuset.fmeter);
2929 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2930 top_cpuset.relax_domain_level = -1;
2931
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002932 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2933
2934 return 0;
2935}
2936
2937/*
2938 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2939 * or memory nodes, we need to walk over the cpuset hierarchy,
2940 * removing that CPU or node from all cpusets. If this removes the
2941 * last CPU or node from a cpuset, then move the tasks in the empty
2942 * cpuset to its next-highest non-empty parent.
2943 */
2944static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2945{
2946 struct cpuset *parent;
2947
2948 /*
2949 * Find its next-highest non-empty parent, (top cpuset
2950 * has online cpus, so can't be empty).
2951 */
2952 parent = parent_cs(cs);
2953 while (cpumask_empty(parent->cpus_allowed) ||
2954 nodes_empty(parent->mems_allowed))
2955 parent = parent_cs(parent);
2956
2957 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2958 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2959 pr_cont_cgroup_name(cs->css.cgroup);
2960 pr_cont("\n");
2961 }
2962}
2963
2964static void
2965hotplug_update_tasks_legacy(struct cpuset *cs,
2966 struct cpumask *new_cpus, nodemask_t *new_mems,
2967 bool cpus_updated, bool mems_updated)
2968{
2969 bool is_empty;
2970
2971 spin_lock_irq(&callback_lock);
2972 cpumask_copy(cs->cpus_allowed, new_cpus);
2973 cpumask_copy(cs->effective_cpus, new_cpus);
2974 cs->mems_allowed = *new_mems;
2975 cs->effective_mems = *new_mems;
2976 spin_unlock_irq(&callback_lock);
2977
2978 /*
2979 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2980 * as the tasks will be migratecd to an ancestor.
2981 */
2982 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2983 update_tasks_cpumask(cs);
2984 if (mems_updated && !nodes_empty(cs->mems_allowed))
2985 update_tasks_nodemask(cs);
2986
2987 is_empty = cpumask_empty(cs->cpus_allowed) ||
2988 nodes_empty(cs->mems_allowed);
2989
David Brazdil0f672f62019-12-10 10:32:29 +00002990 percpu_up_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002991
2992 /*
2993 * Move tasks to the nearest ancestor with execution resources,
2994 * This is full cgroup operation which will also call back into
2995 * cpuset. Should be done outside any lock.
2996 */
2997 if (is_empty)
2998 remove_tasks_in_empty_cpuset(cs);
2999
David Brazdil0f672f62019-12-10 10:32:29 +00003000 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003001}
3002
3003static void
3004hotplug_update_tasks(struct cpuset *cs,
3005 struct cpumask *new_cpus, nodemask_t *new_mems,
3006 bool cpus_updated, bool mems_updated)
3007{
3008 if (cpumask_empty(new_cpus))
3009 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3010 if (nodes_empty(*new_mems))
3011 *new_mems = parent_cs(cs)->effective_mems;
3012
3013 spin_lock_irq(&callback_lock);
3014 cpumask_copy(cs->effective_cpus, new_cpus);
3015 cs->effective_mems = *new_mems;
3016 spin_unlock_irq(&callback_lock);
3017
3018 if (cpus_updated)
3019 update_tasks_cpumask(cs);
3020 if (mems_updated)
3021 update_tasks_nodemask(cs);
3022}
3023
David Brazdil0f672f62019-12-10 10:32:29 +00003024static bool force_rebuild;
3025
3026void cpuset_force_rebuild(void)
3027{
3028 force_rebuild = true;
3029}
3030
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003031/**
3032 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3033 * @cs: cpuset in interest
David Brazdil0f672f62019-12-10 10:32:29 +00003034 * @tmp: the tmpmasks structure pointer
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003035 *
3036 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3037 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
3038 * all its tasks are moved to the nearest ancestor with both resources.
3039 */
David Brazdil0f672f62019-12-10 10:32:29 +00003040static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003041{
3042 static cpumask_t new_cpus;
3043 static nodemask_t new_mems;
3044 bool cpus_updated;
3045 bool mems_updated;
David Brazdil0f672f62019-12-10 10:32:29 +00003046 struct cpuset *parent;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003047retry:
3048 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3049
David Brazdil0f672f62019-12-10 10:32:29 +00003050 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003051
3052 /*
3053 * We have raced with task attaching. We wait until attaching
3054 * is finished, so we won't attach a task to an empty cpuset.
3055 */
3056 if (cs->attach_in_progress) {
David Brazdil0f672f62019-12-10 10:32:29 +00003057 percpu_up_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003058 goto retry;
3059 }
3060
David Brazdil0f672f62019-12-10 10:32:29 +00003061 parent = parent_cs(cs);
3062 compute_effective_cpumask(&new_cpus, cs, parent);
3063 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003064
David Brazdil0f672f62019-12-10 10:32:29 +00003065 if (cs->nr_subparts_cpus)
3066 /*
3067 * Make sure that CPUs allocated to child partitions
3068 * do not show up in effective_cpus.
3069 */
3070 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3071
3072 if (!tmp || !cs->partition_root_state)
3073 goto update_tasks;
3074
3075 /*
3076 * In the unlikely event that a partition root has empty
3077 * effective_cpus or its parent becomes erroneous, we have to
3078 * transition it to the erroneous state.
3079 */
3080 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3081 (parent->partition_root_state == PRS_ERROR))) {
3082 if (cs->nr_subparts_cpus) {
3083 cs->nr_subparts_cpus = 0;
3084 cpumask_clear(cs->subparts_cpus);
3085 compute_effective_cpumask(&new_cpus, cs, parent);
3086 }
3087
3088 /*
3089 * If the effective_cpus is empty because the child
3090 * partitions take away all the CPUs, we can keep
3091 * the current partition and let the child partitions
3092 * fight for available CPUs.
3093 */
3094 if ((parent->partition_root_state == PRS_ERROR) ||
3095 cpumask_empty(&new_cpus)) {
3096 update_parent_subparts_cpumask(cs, partcmd_disable,
3097 NULL, tmp);
3098 cs->partition_root_state = PRS_ERROR;
3099 }
3100 cpuset_force_rebuild();
3101 }
3102
3103 /*
3104 * On the other hand, an erroneous partition root may be transitioned
3105 * back to a regular one or a partition root with no CPU allocated
3106 * from the parent may change to erroneous.
3107 */
3108 if (is_partition_root(parent) &&
3109 ((cs->partition_root_state == PRS_ERROR) ||
3110 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3111 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3112 cpuset_force_rebuild();
3113
3114update_tasks:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003115 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3116 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3117
3118 if (is_in_v2_mode())
3119 hotplug_update_tasks(cs, &new_cpus, &new_mems,
3120 cpus_updated, mems_updated);
3121 else
3122 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3123 cpus_updated, mems_updated);
3124
David Brazdil0f672f62019-12-10 10:32:29 +00003125 percpu_up_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003126}
3127
3128/**
3129 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3130 *
3131 * This function is called after either CPU or memory configuration has
3132 * changed and updates cpuset accordingly. The top_cpuset is always
3133 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3134 * order to make cpusets transparent (of no affect) on systems that are
3135 * actively using CPU hotplug but making no active use of cpusets.
3136 *
3137 * Non-root cpusets are only affected by offlining. If any CPUs or memory
3138 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3139 * all descendants.
3140 *
3141 * Note that CPU offlining during suspend is ignored. We don't modify
3142 * cpusets across suspend/resume cycles at all.
3143 */
3144static void cpuset_hotplug_workfn(struct work_struct *work)
3145{
3146 static cpumask_t new_cpus;
3147 static nodemask_t new_mems;
3148 bool cpus_updated, mems_updated;
3149 bool on_dfl = is_in_v2_mode();
David Brazdil0f672f62019-12-10 10:32:29 +00003150 struct tmpmasks tmp, *ptmp = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003151
David Brazdil0f672f62019-12-10 10:32:29 +00003152 if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3153 ptmp = &tmp;
3154
3155 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003156
3157 /* fetch the available cpus/mems and find out which changed how */
3158 cpumask_copy(&new_cpus, cpu_active_mask);
3159 new_mems = node_states[N_MEMORY];
3160
David Brazdil0f672f62019-12-10 10:32:29 +00003161 /*
3162 * If subparts_cpus is populated, it is likely that the check below
3163 * will produce a false positive on cpus_updated when the cpu list
3164 * isn't changed. It is extra work, but it is better to be safe.
3165 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003166 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3167 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3168
Olivier Deprez0e641232021-09-23 10:07:05 +02003169 /*
3170 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3171 * we assumed that cpus are updated.
3172 */
3173 if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3174 cpus_updated = true;
3175
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003176 /* synchronize cpus_allowed to cpu_active_mask */
3177 if (cpus_updated) {
3178 spin_lock_irq(&callback_lock);
3179 if (!on_dfl)
3180 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
David Brazdil0f672f62019-12-10 10:32:29 +00003181 /*
3182 * Make sure that CPUs allocated to child partitions
3183 * do not show up in effective_cpus. If no CPU is left,
3184 * we clear the subparts_cpus & let the child partitions
3185 * fight for the CPUs again.
3186 */
3187 if (top_cpuset.nr_subparts_cpus) {
3188 if (cpumask_subset(&new_cpus,
3189 top_cpuset.subparts_cpus)) {
3190 top_cpuset.nr_subparts_cpus = 0;
3191 cpumask_clear(top_cpuset.subparts_cpus);
3192 } else {
3193 cpumask_andnot(&new_cpus, &new_cpus,
3194 top_cpuset.subparts_cpus);
3195 }
3196 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003197 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3198 spin_unlock_irq(&callback_lock);
3199 /* we don't mess with cpumasks of tasks in top_cpuset */
3200 }
3201
3202 /* synchronize mems_allowed to N_MEMORY */
3203 if (mems_updated) {
3204 spin_lock_irq(&callback_lock);
3205 if (!on_dfl)
3206 top_cpuset.mems_allowed = new_mems;
3207 top_cpuset.effective_mems = new_mems;
3208 spin_unlock_irq(&callback_lock);
3209 update_tasks_nodemask(&top_cpuset);
3210 }
3211
David Brazdil0f672f62019-12-10 10:32:29 +00003212 percpu_up_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003213
3214 /* if cpus or mems changed, we need to propagate to descendants */
3215 if (cpus_updated || mems_updated) {
3216 struct cpuset *cs;
3217 struct cgroup_subsys_state *pos_css;
3218
3219 rcu_read_lock();
3220 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3221 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3222 continue;
3223 rcu_read_unlock();
3224
David Brazdil0f672f62019-12-10 10:32:29 +00003225 cpuset_hotplug_update_tasks(cs, ptmp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003226
3227 rcu_read_lock();
3228 css_put(&cs->css);
3229 }
3230 rcu_read_unlock();
3231 }
3232
3233 /* rebuild sched domains if cpus_allowed has changed */
3234 if (cpus_updated || force_rebuild) {
3235 force_rebuild = false;
3236 rebuild_sched_domains();
3237 }
David Brazdil0f672f62019-12-10 10:32:29 +00003238
3239 free_cpumasks(NULL, ptmp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003240}
3241
3242void cpuset_update_active_cpus(void)
3243{
3244 /*
3245 * We're inside cpu hotplug critical region which usually nests
3246 * inside cgroup synchronization. Bounce actual hotplug processing
3247 * to a work item to avoid reverse locking order.
3248 */
3249 schedule_work(&cpuset_hotplug_work);
3250}
3251
3252void cpuset_wait_for_hotplug(void)
3253{
3254 flush_work(&cpuset_hotplug_work);
3255}
3256
3257/*
3258 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3259 * Call this routine anytime after node_states[N_MEMORY] changes.
3260 * See cpuset_update_active_cpus() for CPU hotplug handling.
3261 */
3262static int cpuset_track_online_nodes(struct notifier_block *self,
3263 unsigned long action, void *arg)
3264{
3265 schedule_work(&cpuset_hotplug_work);
3266 return NOTIFY_OK;
3267}
3268
3269static struct notifier_block cpuset_track_online_nodes_nb = {
3270 .notifier_call = cpuset_track_online_nodes,
3271 .priority = 10, /* ??! */
3272};
3273
3274/**
3275 * cpuset_init_smp - initialize cpus_allowed
3276 *
3277 * Description: Finish top cpuset after cpu, node maps are initialized
3278 */
3279void __init cpuset_init_smp(void)
3280{
3281 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
3282 top_cpuset.mems_allowed = node_states[N_MEMORY];
3283 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3284
3285 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3286 top_cpuset.effective_mems = node_states[N_MEMORY];
3287
3288 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3289
3290 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3291 BUG_ON(!cpuset_migrate_mm_wq);
3292}
3293
3294/**
3295 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3296 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3297 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3298 *
3299 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3300 * attached to the specified @tsk. Guaranteed to return some non-empty
3301 * subset of cpu_online_mask, even if this means going outside the
3302 * tasks cpuset.
3303 **/
3304
3305void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3306{
3307 unsigned long flags;
3308
3309 spin_lock_irqsave(&callback_lock, flags);
3310 rcu_read_lock();
3311 guarantee_online_cpus(task_cs(tsk), pmask);
3312 rcu_read_unlock();
3313 spin_unlock_irqrestore(&callback_lock, flags);
3314}
3315
David Brazdil0f672f62019-12-10 10:32:29 +00003316/**
3317 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3318 * @tsk: pointer to task_struct with which the scheduler is struggling
3319 *
3320 * Description: In the case that the scheduler cannot find an allowed cpu in
3321 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3322 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3323 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3324 * This is the absolute last resort for the scheduler and it is only used if
3325 * _every_ other avenue has been traveled.
3326 **/
3327
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003328void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3329{
3330 rcu_read_lock();
David Brazdil0f672f62019-12-10 10:32:29 +00003331 do_set_cpus_allowed(tsk, is_in_v2_mode() ?
3332 task_cs(tsk)->cpus_allowed : cpu_possible_mask);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003333 rcu_read_unlock();
3334
3335 /*
3336 * We own tsk->cpus_allowed, nobody can change it under us.
3337 *
3338 * But we used cs && cs->cpus_allowed lockless and thus can
3339 * race with cgroup_attach_task() or update_cpumask() and get
3340 * the wrong tsk->cpus_allowed. However, both cases imply the
3341 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3342 * which takes task_rq_lock().
3343 *
3344 * If we are called after it dropped the lock we must see all
3345 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3346 * set any mask even if it is not right from task_cs() pov,
3347 * the pending set_cpus_allowed_ptr() will fix things.
3348 *
3349 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3350 * if required.
3351 */
3352}
3353
3354void __init cpuset_init_current_mems_allowed(void)
3355{
3356 nodes_setall(current->mems_allowed);
3357}
3358
3359/**
3360 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3361 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3362 *
3363 * Description: Returns the nodemask_t mems_allowed of the cpuset
3364 * attached to the specified @tsk. Guaranteed to return some non-empty
3365 * subset of node_states[N_MEMORY], even if this means going outside the
3366 * tasks cpuset.
3367 **/
3368
3369nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3370{
3371 nodemask_t mask;
3372 unsigned long flags;
3373
3374 spin_lock_irqsave(&callback_lock, flags);
3375 rcu_read_lock();
3376 guarantee_online_mems(task_cs(tsk), &mask);
3377 rcu_read_unlock();
3378 spin_unlock_irqrestore(&callback_lock, flags);
3379
3380 return mask;
3381}
3382
3383/**
3384 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3385 * @nodemask: the nodemask to be checked
3386 *
3387 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3388 */
3389int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3390{
3391 return nodes_intersects(*nodemask, current->mems_allowed);
3392}
3393
3394/*
3395 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3396 * mem_hardwall ancestor to the specified cpuset. Call holding
3397 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
3398 * (an unusual configuration), then returns the root cpuset.
3399 */
3400static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3401{
3402 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3403 cs = parent_cs(cs);
3404 return cs;
3405}
3406
3407/**
3408 * cpuset_node_allowed - Can we allocate on a memory node?
3409 * @node: is this an allowed node?
3410 * @gfp_mask: memory allocation flags
3411 *
3412 * If we're in interrupt, yes, we can always allocate. If @node is set in
3413 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
3414 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3415 * yes. If current has access to memory reserves as an oom victim, yes.
3416 * Otherwise, no.
3417 *
3418 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3419 * and do not allow allocations outside the current tasks cpuset
3420 * unless the task has been OOM killed.
3421 * GFP_KERNEL allocations are not so marked, so can escape to the
3422 * nearest enclosing hardwalled ancestor cpuset.
3423 *
3424 * Scanning up parent cpusets requires callback_lock. The
3425 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3426 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3427 * current tasks mems_allowed came up empty on the first pass over
3428 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
3429 * cpuset are short of memory, might require taking the callback_lock.
3430 *
3431 * The first call here from mm/page_alloc:get_page_from_freelist()
3432 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3433 * so no allocation on a node outside the cpuset is allowed (unless
3434 * in interrupt, of course).
3435 *
3436 * The second pass through get_page_from_freelist() doesn't even call
3437 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
3438 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3439 * in alloc_flags. That logic and the checks below have the combined
3440 * affect that:
3441 * in_interrupt - any node ok (current task context irrelevant)
3442 * GFP_ATOMIC - any node ok
3443 * tsk_is_oom_victim - any node ok
3444 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
3445 * GFP_USER - only nodes in current tasks mems allowed ok.
3446 */
3447bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3448{
3449 struct cpuset *cs; /* current cpuset ancestors */
3450 int allowed; /* is allocation in zone z allowed? */
3451 unsigned long flags;
3452
3453 if (in_interrupt())
3454 return true;
3455 if (node_isset(node, current->mems_allowed))
3456 return true;
3457 /*
3458 * Allow tasks that have access to memory reserves because they have
3459 * been OOM killed to get memory anywhere.
3460 */
3461 if (unlikely(tsk_is_oom_victim(current)))
3462 return true;
3463 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
3464 return false;
3465
3466 if (current->flags & PF_EXITING) /* Let dying task have memory */
3467 return true;
3468
3469 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3470 spin_lock_irqsave(&callback_lock, flags);
3471
3472 rcu_read_lock();
3473 cs = nearest_hardwall_ancestor(task_cs(current));
3474 allowed = node_isset(node, cs->mems_allowed);
3475 rcu_read_unlock();
3476
3477 spin_unlock_irqrestore(&callback_lock, flags);
3478 return allowed;
3479}
3480
3481/**
3482 * cpuset_mem_spread_node() - On which node to begin search for a file page
3483 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3484 *
3485 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3486 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3487 * and if the memory allocation used cpuset_mem_spread_node()
3488 * to determine on which node to start looking, as it will for
3489 * certain page cache or slab cache pages such as used for file
3490 * system buffers and inode caches, then instead of starting on the
3491 * local node to look for a free page, rather spread the starting
3492 * node around the tasks mems_allowed nodes.
3493 *
3494 * We don't have to worry about the returned node being offline
3495 * because "it can't happen", and even if it did, it would be ok.
3496 *
3497 * The routines calling guarantee_online_mems() are careful to
3498 * only set nodes in task->mems_allowed that are online. So it
3499 * should not be possible for the following code to return an
3500 * offline node. But if it did, that would be ok, as this routine
3501 * is not returning the node where the allocation must be, only
3502 * the node where the search should start. The zonelist passed to
3503 * __alloc_pages() will include all nodes. If the slab allocator
3504 * is passed an offline node, it will fall back to the local node.
3505 * See kmem_cache_alloc_node().
3506 */
3507
3508static int cpuset_spread_node(int *rotor)
3509{
3510 return *rotor = next_node_in(*rotor, current->mems_allowed);
3511}
3512
3513int cpuset_mem_spread_node(void)
3514{
3515 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3516 current->cpuset_mem_spread_rotor =
3517 node_random(&current->mems_allowed);
3518
3519 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3520}
3521
3522int cpuset_slab_spread_node(void)
3523{
3524 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3525 current->cpuset_slab_spread_rotor =
3526 node_random(&current->mems_allowed);
3527
3528 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3529}
3530
3531EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3532
3533/**
3534 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3535 * @tsk1: pointer to task_struct of some task.
3536 * @tsk2: pointer to task_struct of some other task.
3537 *
3538 * Description: Return true if @tsk1's mems_allowed intersects the
3539 * mems_allowed of @tsk2. Used by the OOM killer to determine if
3540 * one of the task's memory usage might impact the memory available
3541 * to the other.
3542 **/
3543
3544int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3545 const struct task_struct *tsk2)
3546{
3547 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3548}
3549
3550/**
3551 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3552 *
3553 * Description: Prints current's name, cpuset name, and cached copy of its
3554 * mems_allowed to the kernel log.
3555 */
3556void cpuset_print_current_mems_allowed(void)
3557{
3558 struct cgroup *cgrp;
3559
3560 rcu_read_lock();
3561
3562 cgrp = task_cs(current)->css.cgroup;
David Brazdil0f672f62019-12-10 10:32:29 +00003563 pr_cont(",cpuset=");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003564 pr_cont_cgroup_name(cgrp);
David Brazdil0f672f62019-12-10 10:32:29 +00003565 pr_cont(",mems_allowed=%*pbl",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003566 nodemask_pr_args(&current->mems_allowed));
3567
3568 rcu_read_unlock();
3569}
3570
3571/*
3572 * Collection of memory_pressure is suppressed unless
3573 * this flag is enabled by writing "1" to the special
3574 * cpuset file 'memory_pressure_enabled' in the root cpuset.
3575 */
3576
3577int cpuset_memory_pressure_enabled __read_mostly;
3578
3579/**
3580 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3581 *
3582 * Keep a running average of the rate of synchronous (direct)
3583 * page reclaim efforts initiated by tasks in each cpuset.
3584 *
3585 * This represents the rate at which some task in the cpuset
3586 * ran low on memory on all nodes it was allowed to use, and
3587 * had to enter the kernels page reclaim code in an effort to
3588 * create more free memory by tossing clean pages or swapping
3589 * or writing dirty pages.
3590 *
3591 * Display to user space in the per-cpuset read-only file
3592 * "memory_pressure". Value displayed is an integer
3593 * representing the recent rate of entry into the synchronous
3594 * (direct) page reclaim by any task attached to the cpuset.
3595 **/
3596
3597void __cpuset_memory_pressure_bump(void)
3598{
3599 rcu_read_lock();
3600 fmeter_markevent(&task_cs(current)->fmeter);
3601 rcu_read_unlock();
3602}
3603
3604#ifdef CONFIG_PROC_PID_CPUSET
3605/*
3606 * proc_cpuset_show()
3607 * - Print tasks cpuset path into seq_file.
3608 * - Used for /proc/<pid>/cpuset.
3609 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3610 * doesn't really matter if tsk->cpuset changes after we read it,
3611 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
3612 * anyway.
3613 */
3614int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3615 struct pid *pid, struct task_struct *tsk)
3616{
3617 char *buf;
3618 struct cgroup_subsys_state *css;
3619 int retval;
3620
3621 retval = -ENOMEM;
3622 buf = kmalloc(PATH_MAX, GFP_KERNEL);
3623 if (!buf)
3624 goto out;
3625
3626 css = task_get_css(tsk, cpuset_cgrp_id);
3627 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3628 current->nsproxy->cgroup_ns);
3629 css_put(css);
3630 if (retval >= PATH_MAX)
3631 retval = -ENAMETOOLONG;
3632 if (retval < 0)
3633 goto out_free;
3634 seq_puts(m, buf);
3635 seq_putc(m, '\n');
3636 retval = 0;
3637out_free:
3638 kfree(buf);
3639out:
3640 return retval;
3641}
3642#endif /* CONFIG_PROC_PID_CPUSET */
3643
3644/* Display task mems_allowed in /proc/<pid>/status file. */
3645void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3646{
3647 seq_printf(m, "Mems_allowed:\t%*pb\n",
3648 nodemask_pr_args(&task->mems_allowed));
3649 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3650 nodemask_pr_args(&task->mems_allowed));
3651}