blob: 904d8285c226962ae7beff6a60b31b70a48a5603 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2016 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_defer.h"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000014#include "xfs_inode.h"
15#include "xfs_trans.h"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000016#include "xfs_bmap.h"
17#include "xfs_bmap_util.h"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000018#include "xfs_trace.h"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000019#include "xfs_icache.h"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000020#include "xfs_btree.h"
21#include "xfs_refcount_btree.h"
22#include "xfs_refcount.h"
23#include "xfs_bmap_btree.h"
24#include "xfs_trans_space.h"
25#include "xfs_bit.h"
26#include "xfs_alloc.h"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000027#include "xfs_quota.h"
28#include "xfs_reflink.h"
29#include "xfs_iomap.h"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000030#include "xfs_sb.h"
31#include "xfs_ag_resv.h"
32
33/*
34 * Copy on Write of Shared Blocks
35 *
36 * XFS must preserve "the usual" file semantics even when two files share
37 * the same physical blocks. This means that a write to one file must not
38 * alter the blocks in a different file; the way that we'll do that is
39 * through the use of a copy-on-write mechanism. At a high level, that
40 * means that when we want to write to a shared block, we allocate a new
41 * block, write the data to the new block, and if that succeeds we map the
42 * new block into the file.
43 *
44 * XFS provides a "delayed allocation" mechanism that defers the allocation
45 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
46 * possible. This reduces fragmentation by enabling the filesystem to ask
47 * for bigger chunks less often, which is exactly what we want for CoW.
48 *
49 * The delalloc mechanism begins when the kernel wants to make a block
50 * writable (write_begin or page_mkwrite). If the offset is not mapped, we
51 * create a delalloc mapping, which is a regular in-core extent, but without
52 * a real startblock. (For delalloc mappings, the startblock encodes both
53 * a flag that this is a delalloc mapping, and a worst-case estimate of how
54 * many blocks might be required to put the mapping into the BMBT.) delalloc
55 * mappings are a reservation against the free space in the filesystem;
56 * adjacent mappings can also be combined into fewer larger mappings.
57 *
58 * As an optimization, the CoW extent size hint (cowextsz) creates
59 * outsized aligned delalloc reservations in the hope of landing out of
60 * order nearby CoW writes in a single extent on disk, thereby reducing
61 * fragmentation and improving future performance.
62 *
63 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
64 * C: ------DDDDDDD--------- (CoW fork)
65 *
66 * When dirty pages are being written out (typically in writepage), the
67 * delalloc reservations are converted into unwritten mappings by
68 * allocating blocks and replacing the delalloc mapping with real ones.
69 * A delalloc mapping can be replaced by several unwritten ones if the
70 * free space is fragmented.
71 *
72 * D: --RRRRRRSSSRRRRRRRR---
73 * C: ------UUUUUUU---------
74 *
75 * We want to adapt the delalloc mechanism for copy-on-write, since the
76 * write paths are similar. The first two steps (creating the reservation
77 * and allocating the blocks) are exactly the same as delalloc except that
78 * the mappings must be stored in a separate CoW fork because we do not want
79 * to disturb the mapping in the data fork until we're sure that the write
80 * succeeded. IO completion in this case is the process of removing the old
81 * mapping from the data fork and moving the new mapping from the CoW fork to
82 * the data fork. This will be discussed shortly.
83 *
84 * For now, unaligned directio writes will be bounced back to the page cache.
85 * Block-aligned directio writes will use the same mechanism as buffered
86 * writes.
87 *
88 * Just prior to submitting the actual disk write requests, we convert
89 * the extents representing the range of the file actually being written
90 * (as opposed to extra pieces created for the cowextsize hint) to real
91 * extents. This will become important in the next step:
92 *
93 * D: --RRRRRRSSSRRRRRRRR---
94 * C: ------UUrrUUU---------
95 *
96 * CoW remapping must be done after the data block write completes,
97 * because we don't want to destroy the old data fork map until we're sure
98 * the new block has been written. Since the new mappings are kept in a
99 * separate fork, we can simply iterate these mappings to find the ones
100 * that cover the file blocks that we just CoW'd. For each extent, simply
101 * unmap the corresponding range in the data fork, map the new range into
102 * the data fork, and remove the extent from the CoW fork. Because of
103 * the presence of the cowextsize hint, however, we must be careful
104 * only to remap the blocks that we've actually written out -- we must
105 * never remap delalloc reservations nor CoW staging blocks that have
106 * yet to be written. This corresponds exactly to the real extents in
107 * the CoW fork:
108 *
109 * D: --RRRRRRrrSRRRRRRRR---
110 * C: ------UU--UUU---------
111 *
112 * Since the remapping operation can be applied to an arbitrary file
113 * range, we record the need for the remap step as a flag in the ioend
114 * instead of declaring a new IO type. This is required for direct io
115 * because we only have ioend for the whole dio, and we have to be able to
116 * remember the presence of unwritten blocks and CoW blocks with a single
117 * ioend structure. Better yet, the more ground we can cover with one
118 * ioend, the better.
119 */
120
121/*
122 * Given an AG extent, find the lowest-numbered run of shared blocks
123 * within that range and return the range in fbno/flen. If
124 * find_end_of_shared is true, return the longest contiguous extent of
125 * shared blocks. If there are no shared extents, fbno and flen will
126 * be set to NULLAGBLOCK and 0, respectively.
127 */
128int
129xfs_reflink_find_shared(
130 struct xfs_mount *mp,
131 struct xfs_trans *tp,
132 xfs_agnumber_t agno,
133 xfs_agblock_t agbno,
134 xfs_extlen_t aglen,
135 xfs_agblock_t *fbno,
136 xfs_extlen_t *flen,
137 bool find_end_of_shared)
138{
139 struct xfs_buf *agbp;
140 struct xfs_btree_cur *cur;
141 int error;
142
143 error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
144 if (error)
145 return error;
146 if (!agbp)
147 return -ENOMEM;
148
149 cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno);
150
151 error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
152 find_end_of_shared);
153
154 xfs_btree_del_cursor(cur, error);
155
156 xfs_trans_brelse(tp, agbp);
157 return error;
158}
159
160/*
161 * Trim the mapping to the next block where there's a change in the
162 * shared/unshared status. More specifically, this means that we
163 * find the lowest-numbered extent of shared blocks that coincides with
164 * the given block mapping. If the shared extent overlaps the start of
165 * the mapping, trim the mapping to the end of the shared extent. If
166 * the shared region intersects the mapping, trim the mapping to the
167 * start of the shared extent. If there are no shared regions that
168 * overlap, just return the original extent.
169 */
170int
171xfs_reflink_trim_around_shared(
172 struct xfs_inode *ip,
173 struct xfs_bmbt_irec *irec,
David Brazdil0f672f62019-12-10 10:32:29 +0000174 bool *shared)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000175{
176 xfs_agnumber_t agno;
177 xfs_agblock_t agbno;
178 xfs_extlen_t aglen;
179 xfs_agblock_t fbno;
180 xfs_extlen_t flen;
181 int error = 0;
182
183 /* Holes, unwritten, and delalloc extents cannot be shared */
David Brazdil0f672f62019-12-10 10:32:29 +0000184 if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000185 *shared = false;
186 return 0;
187 }
188
189 trace_xfs_reflink_trim_around_shared(ip, irec);
190
191 agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
192 agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
193 aglen = irec->br_blockcount;
194
195 error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
196 aglen, &fbno, &flen, true);
197 if (error)
198 return error;
199
David Brazdil0f672f62019-12-10 10:32:29 +0000200 *shared = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000201 if (fbno == NULLAGBLOCK) {
202 /* No shared blocks at all. */
203 return 0;
204 } else if (fbno == agbno) {
205 /*
206 * The start of this extent is shared. Truncate the
207 * mapping at the end of the shared region so that a
208 * subsequent iteration starts at the start of the
209 * unshared region.
210 */
211 irec->br_blockcount = flen;
212 *shared = true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000213 return 0;
214 } else {
215 /*
216 * There's a shared extent midway through this extent.
217 * Truncate the mapping at the start of the shared
218 * extent so that a subsequent iteration starts at the
219 * start of the shared region.
220 */
221 irec->br_blockcount = fbno - agbno;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000222 return 0;
223 }
224}
225
David Brazdil0f672f62019-12-10 10:32:29 +0000226bool
227xfs_inode_need_cow(
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000228 struct xfs_inode *ip,
229 struct xfs_bmbt_irec *imap,
230 bool *shared)
231{
David Brazdil0f672f62019-12-10 10:32:29 +0000232 /* We can't update any real extents in always COW mode. */
233 if (xfs_is_always_cow_inode(ip) &&
234 !isnullstartblock(imap->br_startblock)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000235 *shared = true;
236 return 0;
237 }
238
239 /* Trim the mapping to the nearest shared extent boundary. */
David Brazdil0f672f62019-12-10 10:32:29 +0000240 return xfs_reflink_trim_around_shared(ip, imap, shared);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000241}
242
David Brazdil0f672f62019-12-10 10:32:29 +0000243static int
244xfs_reflink_convert_cow_locked(
245 struct xfs_inode *ip,
246 xfs_fileoff_t offset_fsb,
247 xfs_filblks_t count_fsb)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000248{
David Brazdil0f672f62019-12-10 10:32:29 +0000249 struct xfs_iext_cursor icur;
250 struct xfs_bmbt_irec got;
251 struct xfs_btree_cur *dummy_cur = NULL;
252 int dummy_logflags;
253 int error = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000254
David Brazdil0f672f62019-12-10 10:32:29 +0000255 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000256 return 0;
257
David Brazdil0f672f62019-12-10 10:32:29 +0000258 do {
259 if (got.br_startoff >= offset_fsb + count_fsb)
260 break;
261 if (got.br_state == XFS_EXT_NORM)
262 continue;
263 if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
264 return -EIO;
265
266 xfs_trim_extent(&got, offset_fsb, count_fsb);
267 if (!got.br_blockcount)
268 continue;
269
270 got.br_state = XFS_EXT_NORM;
271 error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
272 XFS_COW_FORK, &icur, &dummy_cur, &got,
273 &dummy_logflags);
274 if (error)
275 return error;
276 } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
277
278 return error;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000279}
280
281/* Convert all of the unwritten CoW extents in a file's range to real ones. */
282int
283xfs_reflink_convert_cow(
284 struct xfs_inode *ip,
285 xfs_off_t offset,
286 xfs_off_t count)
287{
288 struct xfs_mount *mp = ip->i_mount;
289 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
290 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
291 xfs_filblks_t count_fsb = end_fsb - offset_fsb;
David Brazdil0f672f62019-12-10 10:32:29 +0000292 int error;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000293
294 ASSERT(count != 0);
295
296 xfs_ilock(ip, XFS_ILOCK_EXCL);
David Brazdil0f672f62019-12-10 10:32:29 +0000297 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000298 xfs_iunlock(ip, XFS_ILOCK_EXCL);
299 return error;
300}
301
302/*
303 * Find the extent that maps the given range in the COW fork. Even if the extent
304 * is not shared we might have a preallocation for it in the COW fork. If so we
305 * use it that rather than trigger a new allocation.
306 */
307static int
308xfs_find_trim_cow_extent(
309 struct xfs_inode *ip,
310 struct xfs_bmbt_irec *imap,
311 bool *shared,
312 bool *found)
313{
314 xfs_fileoff_t offset_fsb = imap->br_startoff;
315 xfs_filblks_t count_fsb = imap->br_blockcount;
316 struct xfs_iext_cursor icur;
317 struct xfs_bmbt_irec got;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000318
319 *found = false;
320
321 /*
322 * If we don't find an overlapping extent, trim the range we need to
323 * allocate to fit the hole we found.
324 */
David Brazdil0f672f62019-12-10 10:32:29 +0000325 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
326 got.br_startoff = offset_fsb + count_fsb;
327 if (got.br_startoff > offset_fsb) {
328 xfs_trim_extent(imap, imap->br_startoff,
329 got.br_startoff - imap->br_startoff);
330 return xfs_inode_need_cow(ip, imap, shared);
331 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000332
333 *shared = true;
334 if (isnullstartblock(got.br_startblock)) {
335 xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
336 return 0;
337 }
338
339 /* real extent found - no need to allocate */
340 xfs_trim_extent(&got, offset_fsb, count_fsb);
341 *imap = got;
342 *found = true;
343 return 0;
344}
345
346/* Allocate all CoW reservations covering a range of blocks in a file. */
347int
348xfs_reflink_allocate_cow(
349 struct xfs_inode *ip,
350 struct xfs_bmbt_irec *imap,
351 bool *shared,
David Brazdil0f672f62019-12-10 10:32:29 +0000352 uint *lockmode,
353 bool convert_now)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000354{
355 struct xfs_mount *mp = ip->i_mount;
356 xfs_fileoff_t offset_fsb = imap->br_startoff;
357 xfs_filblks_t count_fsb = imap->br_blockcount;
358 struct xfs_trans *tp;
359 int nimaps, error = 0;
360 bool found;
361 xfs_filblks_t resaligned;
362 xfs_extlen_t resblks = 0;
363
364 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
David Brazdil0f672f62019-12-10 10:32:29 +0000365 if (!ip->i_cowfp) {
366 ASSERT(!xfs_is_reflink_inode(ip));
367 xfs_ifork_init_cow(ip);
368 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000369
370 error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
371 if (error || !*shared)
372 return error;
373 if (found)
374 goto convert;
375
376 resaligned = xfs_aligned_fsb_count(imap->br_startoff,
377 imap->br_blockcount, xfs_get_cowextsz_hint(ip));
378 resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
379
380 xfs_iunlock(ip, *lockmode);
381 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
382 *lockmode = XFS_ILOCK_EXCL;
383 xfs_ilock(ip, *lockmode);
384
385 if (error)
386 return error;
387
388 error = xfs_qm_dqattach_locked(ip, false);
389 if (error)
390 goto out_trans_cancel;
391
392 /*
393 * Check for an overlapping extent again now that we dropped the ilock.
394 */
395 error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
396 if (error || !*shared)
397 goto out_trans_cancel;
398 if (found) {
399 xfs_trans_cancel(tp);
400 goto convert;
401 }
402
403 error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
404 XFS_QMOPT_RES_REGBLKS);
405 if (error)
406 goto out_trans_cancel;
407
408 xfs_trans_ijoin(tp, ip, 0);
409
410 /* Allocate the entire reservation as unwritten blocks. */
411 nimaps = 1;
412 error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
413 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC,
414 resblks, imap, &nimaps);
415 if (error)
416 goto out_unreserve;
417
418 xfs_inode_set_cowblocks_tag(ip);
419 error = xfs_trans_commit(tp);
420 if (error)
421 return error;
422
423 /*
424 * Allocation succeeded but the requested range was not even partially
425 * satisfied? Bail out!
426 */
427 if (nimaps == 0)
428 return -ENOSPC;
429convert:
David Brazdil0f672f62019-12-10 10:32:29 +0000430 xfs_trim_extent(imap, offset_fsb, count_fsb);
431 /*
432 * COW fork extents are supposed to remain unwritten until we're ready
433 * to initiate a disk write. For direct I/O we are going to write the
434 * data and need the conversion, but for buffered writes we're done.
435 */
436 if (!convert_now || imap->br_state == XFS_EXT_NORM)
437 return 0;
438 trace_xfs_reflink_convert_cow(ip, imap);
439 return xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000440
441out_unreserve:
442 xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
443 XFS_QMOPT_RES_REGBLKS);
444out_trans_cancel:
445 xfs_trans_cancel(tp);
446 return error;
447}
448
449/*
450 * Cancel CoW reservations for some block range of an inode.
451 *
452 * If cancel_real is true this function cancels all COW fork extents for the
453 * inode; if cancel_real is false, real extents are not cleared.
454 *
455 * Caller must have already joined the inode to the current transaction. The
456 * inode will be joined to the transaction returned to the caller.
457 */
458int
459xfs_reflink_cancel_cow_blocks(
460 struct xfs_inode *ip,
461 struct xfs_trans **tpp,
462 xfs_fileoff_t offset_fsb,
463 xfs_fileoff_t end_fsb,
464 bool cancel_real)
465{
466 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
467 struct xfs_bmbt_irec got, del;
468 struct xfs_iext_cursor icur;
469 int error = 0;
470
471 if (!xfs_inode_has_cow_data(ip))
472 return 0;
473 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
474 return 0;
475
476 /* Walk backwards until we're out of the I/O range... */
477 while (got.br_startoff + got.br_blockcount > offset_fsb) {
478 del = got;
479 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
480
481 /* Extent delete may have bumped ext forward */
482 if (!del.br_blockcount) {
483 xfs_iext_prev(ifp, &icur);
484 goto next_extent;
485 }
486
487 trace_xfs_reflink_cancel_cow(ip, &del);
488
489 if (isnullstartblock(del.br_startblock)) {
490 error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
491 &icur, &got, &del);
492 if (error)
493 break;
494 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
495 ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
496
497 /* Free the CoW orphan record. */
David Brazdil0f672f62019-12-10 10:32:29 +0000498 xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
499 del.br_blockcount);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000500
501 xfs_bmap_add_free(*tpp, del.br_startblock,
502 del.br_blockcount, NULL);
503
504 /* Roll the transaction */
505 error = xfs_defer_finish(tpp);
506 if (error)
507 break;
508
509 /* Remove the mapping from the CoW fork. */
510 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
511
512 /* Remove the quota reservation */
513 error = xfs_trans_reserve_quota_nblks(NULL, ip,
514 -(long)del.br_blockcount, 0,
515 XFS_QMOPT_RES_REGBLKS);
516 if (error)
517 break;
518 } else {
519 /* Didn't do anything, push cursor back. */
520 xfs_iext_prev(ifp, &icur);
521 }
522next_extent:
523 if (!xfs_iext_get_extent(ifp, &icur, &got))
524 break;
525 }
526
527 /* clear tag if cow fork is emptied */
528 if (!ifp->if_bytes)
529 xfs_inode_clear_cowblocks_tag(ip);
530 return error;
531}
532
533/*
534 * Cancel CoW reservations for some byte range of an inode.
535 *
536 * If cancel_real is true this function cancels all COW fork extents for the
537 * inode; if cancel_real is false, real extents are not cleared.
538 */
539int
540xfs_reflink_cancel_cow_range(
541 struct xfs_inode *ip,
542 xfs_off_t offset,
543 xfs_off_t count,
544 bool cancel_real)
545{
546 struct xfs_trans *tp;
547 xfs_fileoff_t offset_fsb;
548 xfs_fileoff_t end_fsb;
549 int error;
550
551 trace_xfs_reflink_cancel_cow_range(ip, offset, count);
David Brazdil0f672f62019-12-10 10:32:29 +0000552 ASSERT(ip->i_cowfp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000553
554 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
555 if (count == NULLFILEOFF)
556 end_fsb = NULLFILEOFF;
557 else
558 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
559
560 /* Start a rolling transaction to remove the mappings */
561 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
David Brazdil0f672f62019-12-10 10:32:29 +0000562 0, 0, 0, &tp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000563 if (error)
564 goto out;
565
566 xfs_ilock(ip, XFS_ILOCK_EXCL);
567 xfs_trans_ijoin(tp, ip, 0);
568
569 /* Scrape out the old CoW reservations */
570 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
571 cancel_real);
572 if (error)
573 goto out_cancel;
574
575 error = xfs_trans_commit(tp);
576
577 xfs_iunlock(ip, XFS_ILOCK_EXCL);
578 return error;
579
580out_cancel:
581 xfs_trans_cancel(tp);
582 xfs_iunlock(ip, XFS_ILOCK_EXCL);
583out:
584 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
585 return error;
586}
587
588/*
David Brazdil0f672f62019-12-10 10:32:29 +0000589 * Remap part of the CoW fork into the data fork.
590 *
591 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
592 * into the data fork; this function will remap what it can (at the end of the
593 * range) and update @end_fsb appropriately. Each remap gets its own
594 * transaction because we can end up merging and splitting bmbt blocks for
595 * every remap operation and we'd like to keep the block reservation
596 * requirements as low as possible.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000597 */
David Brazdil0f672f62019-12-10 10:32:29 +0000598STATIC int
599xfs_reflink_end_cow_extent(
600 struct xfs_inode *ip,
601 xfs_fileoff_t offset_fsb,
602 xfs_fileoff_t *end_fsb)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000603{
David Brazdil0f672f62019-12-10 10:32:29 +0000604 struct xfs_bmbt_irec got, del;
605 struct xfs_iext_cursor icur;
606 struct xfs_mount *mp = ip->i_mount;
607 struct xfs_trans *tp;
608 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
609 xfs_filblks_t rlen;
610 unsigned int resblks;
611 int error;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000612
613 /* No COW extents? That's easy! */
David Brazdil0f672f62019-12-10 10:32:29 +0000614 if (ifp->if_bytes == 0) {
615 *end_fsb = offset_fsb;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000616 return 0;
David Brazdil0f672f62019-12-10 10:32:29 +0000617 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000618
David Brazdil0f672f62019-12-10 10:32:29 +0000619 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
620 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
621 XFS_TRANS_RESERVE, &tp);
622 if (error)
623 return error;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000624
625 /*
David Brazdil0f672f62019-12-10 10:32:29 +0000626 * Lock the inode. We have to ijoin without automatic unlock because
627 * the lead transaction is the refcountbt record deletion; the data
628 * fork update follows as a deferred log item.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000629 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000630 xfs_ilock(ip, XFS_ILOCK_EXCL);
631 xfs_trans_ijoin(tp, ip, 0);
632
633 /*
634 * In case of racing, overlapping AIO writes no COW extents might be
635 * left by the time I/O completes for the loser of the race. In that
636 * case we are done.
637 */
David Brazdil0f672f62019-12-10 10:32:29 +0000638 if (!xfs_iext_lookup_extent_before(ip, ifp, end_fsb, &icur, &got) ||
639 got.br_startoff + got.br_blockcount <= offset_fsb) {
640 *end_fsb = offset_fsb;
641 goto out_cancel;
642 }
643
644 /*
645 * Structure copy @got into @del, then trim @del to the range that we
646 * were asked to remap. We preserve @got for the eventual CoW fork
647 * deletion; from now on @del represents the mapping that we're
648 * actually remapping.
649 */
650 del = got;
651 xfs_trim_extent(&del, offset_fsb, *end_fsb - offset_fsb);
652
653 ASSERT(del.br_blockcount > 0);
654
655 /*
656 * Only remap real extents that contain data. With AIO, speculative
657 * preallocations can leak into the range we are called upon, and we
658 * need to skip them.
659 */
660 if (!xfs_bmap_is_real_extent(&got)) {
661 *end_fsb = del.br_startoff;
662 goto out_cancel;
663 }
664
665 /* Unmap the old blocks in the data fork. */
666 rlen = del.br_blockcount;
667 error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
668 if (error)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000669 goto out_cancel;
670
David Brazdil0f672f62019-12-10 10:32:29 +0000671 /* Trim the extent to whatever got unmapped. */
672 xfs_trim_extent(&del, del.br_startoff + rlen, del.br_blockcount - rlen);
673 trace_xfs_reflink_cow_remap(ip, &del);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000674
David Brazdil0f672f62019-12-10 10:32:29 +0000675 /* Free the CoW orphan record. */
676 xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000677
David Brazdil0f672f62019-12-10 10:32:29 +0000678 /* Map the new blocks into the data fork. */
679 xfs_bmap_map_extent(tp, ip, &del);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000680
David Brazdil0f672f62019-12-10 10:32:29 +0000681 /* Charge this new data fork mapping to the on-disk quota. */
682 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
683 (long)del.br_blockcount);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000684
David Brazdil0f672f62019-12-10 10:32:29 +0000685 /* Remove the mapping from the CoW fork. */
686 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000687
688 error = xfs_trans_commit(tp);
689 xfs_iunlock(ip, XFS_ILOCK_EXCL);
690 if (error)
David Brazdil0f672f62019-12-10 10:32:29 +0000691 return error;
692
693 /* Update the caller about how much progress we made. */
694 *end_fsb = del.br_startoff;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000695 return 0;
696
697out_cancel:
698 xfs_trans_cancel(tp);
699 xfs_iunlock(ip, XFS_ILOCK_EXCL);
David Brazdil0f672f62019-12-10 10:32:29 +0000700 return error;
701}
702
703/*
704 * Remap parts of a file's data fork after a successful CoW.
705 */
706int
707xfs_reflink_end_cow(
708 struct xfs_inode *ip,
709 xfs_off_t offset,
710 xfs_off_t count)
711{
712 xfs_fileoff_t offset_fsb;
713 xfs_fileoff_t end_fsb;
714 int error = 0;
715
716 trace_xfs_reflink_end_cow(ip, offset, count);
717
718 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
719 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
720
721 /*
722 * Walk backwards until we're out of the I/O range. The loop function
723 * repeatedly cycles the ILOCK to allocate one transaction per remapped
724 * extent.
725 *
726 * If we're being called by writeback then the the pages will still
727 * have PageWriteback set, which prevents races with reflink remapping
728 * and truncate. Reflink remapping prevents races with writeback by
729 * taking the iolock and mmaplock before flushing the pages and
730 * remapping, which means there won't be any further writeback or page
731 * cache dirtying until the reflink completes.
732 *
733 * We should never have two threads issuing writeback for the same file
734 * region. There are also have post-eof checks in the writeback
735 * preparation code so that we don't bother writing out pages that are
736 * about to be truncated.
737 *
738 * If we're being called as part of directio write completion, the dio
739 * count is still elevated, which reflink and truncate will wait for.
740 * Reflink remapping takes the iolock and mmaplock and waits for
741 * pending dio to finish, which should prevent any directio until the
742 * remap completes. Multiple concurrent directio writes to the same
743 * region are handled by end_cow processing only occurring for the
744 * threads which succeed; the outcome of multiple overlapping direct
745 * writes is not well defined anyway.
746 *
747 * It's possible that a buffered write and a direct write could collide
748 * here (the buffered write stumbles in after the dio flushes and
749 * invalidates the page cache and immediately queues writeback), but we
750 * have never supported this 100%. If either disk write succeeds the
751 * blocks will be remapped.
752 */
753 while (end_fsb > offset_fsb && !error)
754 error = xfs_reflink_end_cow_extent(ip, offset_fsb, &end_fsb);
755
756 if (error)
757 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000758 return error;
759}
760
761/*
762 * Free leftover CoW reservations that didn't get cleaned out.
763 */
764int
765xfs_reflink_recover_cow(
766 struct xfs_mount *mp)
767{
768 xfs_agnumber_t agno;
769 int error = 0;
770
771 if (!xfs_sb_version_hasreflink(&mp->m_sb))
772 return 0;
773
774 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
775 error = xfs_refcount_recover_cow_leftovers(mp, agno);
776 if (error)
777 break;
778 }
779
780 return error;
781}
782
783/*
784 * Reflinking (Block) Ranges of Two Files Together
785 *
786 * First, ensure that the reflink flag is set on both inodes. The flag is an
787 * optimization to avoid unnecessary refcount btree lookups in the write path.
788 *
789 * Now we can iteratively remap the range of extents (and holes) in src to the
790 * corresponding ranges in dest. Let drange and srange denote the ranges of
791 * logical blocks in dest and src touched by the reflink operation.
792 *
793 * While the length of drange is greater than zero,
794 * - Read src's bmbt at the start of srange ("imap")
795 * - If imap doesn't exist, make imap appear to start at the end of srange
796 * with zero length.
797 * - If imap starts before srange, advance imap to start at srange.
798 * - If imap goes beyond srange, truncate imap to end at the end of srange.
799 * - Punch (imap start - srange start + imap len) blocks from dest at
800 * offset (drange start).
801 * - If imap points to a real range of pblks,
802 * > Increase the refcount of the imap's pblks
803 * > Map imap's pblks into dest at the offset
804 * (drange start + imap start - srange start)
805 * - Advance drange and srange by (imap start - srange start + imap len)
806 *
807 * Finally, if the reflink made dest longer, update both the in-core and
808 * on-disk file sizes.
809 *
810 * ASCII Art Demonstration:
811 *
812 * Let's say we want to reflink this source file:
813 *
814 * ----SSSSSSS-SSSSS----SSSSSS (src file)
815 * <-------------------->
816 *
817 * into this destination file:
818 *
819 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
820 * <-------------------->
821 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
822 * Observe that the range has different logical offsets in either file.
823 *
824 * Consider that the first extent in the source file doesn't line up with our
825 * reflink range. Unmapping and remapping are separate operations, so we can
826 * unmap more blocks from the destination file than we remap.
827 *
828 * ----SSSSSSS-SSSSS----SSSSSS
829 * <------->
830 * --DDDDD---------DDDDD--DDD
831 * <------->
832 *
833 * Now remap the source extent into the destination file:
834 *
835 * ----SSSSSSS-SSSSS----SSSSSS
836 * <------->
837 * --DDDDD--SSSSSSSDDDDD--DDD
838 * <------->
839 *
840 * Do likewise with the second hole and extent in our range. Holes in the
841 * unmap range don't affect our operation.
842 *
843 * ----SSSSSSS-SSSSS----SSSSSS
844 * <---->
845 * --DDDDD--SSSSSSS-SSSSS-DDD
846 * <---->
847 *
848 * Finally, unmap and remap part of the third extent. This will increase the
849 * size of the destination file.
850 *
851 * ----SSSSSSS-SSSSS----SSSSSS
852 * <----->
853 * --DDDDD--SSSSSSS-SSSSS----SSS
854 * <----->
855 *
856 * Once we update the destination file's i_size, we're done.
857 */
858
859/*
860 * Ensure the reflink bit is set in both inodes.
861 */
862STATIC int
863xfs_reflink_set_inode_flag(
864 struct xfs_inode *src,
865 struct xfs_inode *dest)
866{
867 struct xfs_mount *mp = src->i_mount;
868 int error;
869 struct xfs_trans *tp;
870
871 if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
872 return 0;
873
874 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
875 if (error)
876 goto out_error;
877
878 /* Lock both files against IO */
879 if (src->i_ino == dest->i_ino)
880 xfs_ilock(src, XFS_ILOCK_EXCL);
881 else
882 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
883
884 if (!xfs_is_reflink_inode(src)) {
885 trace_xfs_reflink_set_inode_flag(src);
886 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
887 src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
888 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
889 xfs_ifork_init_cow(src);
890 } else
891 xfs_iunlock(src, XFS_ILOCK_EXCL);
892
893 if (src->i_ino == dest->i_ino)
894 goto commit_flags;
895
896 if (!xfs_is_reflink_inode(dest)) {
897 trace_xfs_reflink_set_inode_flag(dest);
898 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
899 dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
900 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
901 xfs_ifork_init_cow(dest);
902 } else
903 xfs_iunlock(dest, XFS_ILOCK_EXCL);
904
905commit_flags:
906 error = xfs_trans_commit(tp);
907 if (error)
908 goto out_error;
909 return error;
910
911out_error:
912 trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
913 return error;
914}
915
916/*
917 * Update destination inode size & cowextsize hint, if necessary.
918 */
David Brazdil0f672f62019-12-10 10:32:29 +0000919int
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000920xfs_reflink_update_dest(
921 struct xfs_inode *dest,
922 xfs_off_t newlen,
923 xfs_extlen_t cowextsize,
David Brazdil0f672f62019-12-10 10:32:29 +0000924 unsigned int remap_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000925{
926 struct xfs_mount *mp = dest->i_mount;
927 struct xfs_trans *tp;
928 int error;
929
David Brazdil0f672f62019-12-10 10:32:29 +0000930 if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000931 return 0;
932
933 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
934 if (error)
935 goto out_error;
936
937 xfs_ilock(dest, XFS_ILOCK_EXCL);
938 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
939
940 if (newlen > i_size_read(VFS_I(dest))) {
941 trace_xfs_reflink_update_inode_size(dest, newlen);
942 i_size_write(VFS_I(dest), newlen);
943 dest->i_d.di_size = newlen;
944 }
945
946 if (cowextsize) {
947 dest->i_d.di_cowextsize = cowextsize;
948 dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
949 }
950
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000951 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
952
953 error = xfs_trans_commit(tp);
954 if (error)
955 goto out_error;
956 return error;
957
958out_error:
959 trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
960 return error;
961}
962
963/*
964 * Do we have enough reserve in this AG to handle a reflink? The refcount
965 * btree already reserved all the space it needs, but the rmap btree can grow
966 * infinitely, so we won't allow more reflinks when the AG is down to the
967 * btree reserves.
968 */
969static int
970xfs_reflink_ag_has_free_space(
971 struct xfs_mount *mp,
972 xfs_agnumber_t agno)
973{
974 struct xfs_perag *pag;
975 int error = 0;
976
977 if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
978 return 0;
979
980 pag = xfs_perag_get(mp, agno);
981 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
982 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
983 error = -ENOSPC;
984 xfs_perag_put(pag);
985 return error;
986}
987
988/*
989 * Unmap a range of blocks from a file, then map other blocks into the hole.
990 * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
991 * The extent irec is mapped into dest at irec->br_startoff.
992 */
993STATIC int
994xfs_reflink_remap_extent(
995 struct xfs_inode *ip,
996 struct xfs_bmbt_irec *irec,
997 xfs_fileoff_t destoff,
998 xfs_off_t new_isize)
999{
1000 struct xfs_mount *mp = ip->i_mount;
1001 bool real_extent = xfs_bmap_is_real_extent(irec);
1002 struct xfs_trans *tp;
1003 unsigned int resblks;
1004 struct xfs_bmbt_irec uirec;
1005 xfs_filblks_t rlen;
1006 xfs_filblks_t unmap_len;
1007 xfs_off_t newlen;
Olivier Deprez0e641232021-09-23 10:07:05 +02001008 int64_t qres;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001009 int error;
1010
1011 unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
1012 trace_xfs_reflink_punch_range(ip, destoff, unmap_len);
1013
1014 /* No reflinking if we're low on space */
1015 if (real_extent) {
1016 error = xfs_reflink_ag_has_free_space(mp,
1017 XFS_FSB_TO_AGNO(mp, irec->br_startblock));
1018 if (error)
1019 goto out;
1020 }
1021
1022 /* Start a rolling transaction to switch the mappings */
1023 resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
1024 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1025 if (error)
1026 goto out;
1027
1028 xfs_ilock(ip, XFS_ILOCK_EXCL);
1029 xfs_trans_ijoin(tp, ip, 0);
1030
Olivier Deprez0e641232021-09-23 10:07:05 +02001031 /*
1032 * Reserve quota for this operation. We don't know if the first unmap
1033 * in the dest file will cause a bmap btree split, so we always reserve
1034 * at least enough blocks for that split. If the extent being mapped
1035 * in is written, we need to reserve quota for that too.
1036 */
1037 qres = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
1038 if (real_extent)
1039 qres += irec->br_blockcount;
1040 error = xfs_trans_reserve_quota_nblks(tp, ip, qres, 0,
1041 XFS_QMOPT_RES_REGBLKS);
1042 if (error)
1043 goto out_cancel;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001044
1045 trace_xfs_reflink_remap(ip, irec->br_startoff,
1046 irec->br_blockcount, irec->br_startblock);
1047
1048 /* Unmap the old blocks in the data fork. */
1049 rlen = unmap_len;
1050 while (rlen) {
1051 ASSERT(tp->t_firstblock == NULLFSBLOCK);
1052 error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1);
1053 if (error)
1054 goto out_cancel;
1055
1056 /*
1057 * Trim the extent to whatever got unmapped.
1058 * Remember, bunmapi works backwards.
1059 */
1060 uirec.br_startblock = irec->br_startblock + rlen;
1061 uirec.br_startoff = irec->br_startoff + rlen;
1062 uirec.br_blockcount = unmap_len - rlen;
Olivier Deprez0e641232021-09-23 10:07:05 +02001063 uirec.br_state = irec->br_state;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001064 unmap_len = rlen;
1065
1066 /* If this isn't a real mapping, we're done. */
1067 if (!real_extent || uirec.br_blockcount == 0)
1068 goto next_extent;
1069
1070 trace_xfs_reflink_remap(ip, uirec.br_startoff,
1071 uirec.br_blockcount, uirec.br_startblock);
1072
1073 /* Update the refcount tree */
David Brazdil0f672f62019-12-10 10:32:29 +00001074 xfs_refcount_increase_extent(tp, &uirec);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001075
1076 /* Map the new blocks into the data fork. */
David Brazdil0f672f62019-12-10 10:32:29 +00001077 xfs_bmap_map_extent(tp, ip, &uirec);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001078
1079 /* Update quota accounting. */
1080 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
1081 uirec.br_blockcount);
1082
1083 /* Update dest isize if needed. */
1084 newlen = XFS_FSB_TO_B(mp,
1085 uirec.br_startoff + uirec.br_blockcount);
1086 newlen = min_t(xfs_off_t, newlen, new_isize);
1087 if (newlen > i_size_read(VFS_I(ip))) {
1088 trace_xfs_reflink_update_inode_size(ip, newlen);
1089 i_size_write(VFS_I(ip), newlen);
1090 ip->i_d.di_size = newlen;
1091 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1092 }
1093
1094next_extent:
1095 /* Process all the deferred stuff. */
1096 error = xfs_defer_finish(&tp);
1097 if (error)
1098 goto out_cancel;
1099 }
1100
1101 error = xfs_trans_commit(tp);
1102 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1103 if (error)
1104 goto out;
1105 return 0;
1106
1107out_cancel:
1108 xfs_trans_cancel(tp);
1109 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1110out:
1111 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1112 return error;
1113}
1114
1115/*
1116 * Iteratively remap one file's extents (and holes) to another's.
1117 */
David Brazdil0f672f62019-12-10 10:32:29 +00001118int
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001119xfs_reflink_remap_blocks(
1120 struct xfs_inode *src,
David Brazdil0f672f62019-12-10 10:32:29 +00001121 loff_t pos_in,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001122 struct xfs_inode *dest,
David Brazdil0f672f62019-12-10 10:32:29 +00001123 loff_t pos_out,
1124 loff_t remap_len,
1125 loff_t *remapped)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001126{
1127 struct xfs_bmbt_irec imap;
David Brazdil0f672f62019-12-10 10:32:29 +00001128 xfs_fileoff_t srcoff;
1129 xfs_fileoff_t destoff;
1130 xfs_filblks_t len;
1131 xfs_filblks_t range_len;
1132 xfs_filblks_t remapped_len = 0;
1133 xfs_off_t new_isize = pos_out + remap_len;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001134 int nimaps;
1135 int error = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00001136
1137 destoff = XFS_B_TO_FSBT(src->i_mount, pos_out);
1138 srcoff = XFS_B_TO_FSBT(src->i_mount, pos_in);
1139 len = XFS_B_TO_FSB(src->i_mount, remap_len);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001140
1141 /* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
1142 while (len) {
1143 uint lock_mode;
1144
1145 trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
1146 dest, destoff);
1147
1148 /* Read extent from the source file */
1149 nimaps = 1;
1150 lock_mode = xfs_ilock_data_map_shared(src);
1151 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1152 xfs_iunlock(src, lock_mode);
1153 if (error)
David Brazdil0f672f62019-12-10 10:32:29 +00001154 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001155 ASSERT(nimaps == 1);
1156
David Brazdil0f672f62019-12-10 10:32:29 +00001157 trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_DATA_FORK,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001158 &imap);
1159
1160 /* Translate imap into the destination file. */
1161 range_len = imap.br_startoff + imap.br_blockcount - srcoff;
1162 imap.br_startoff += destoff - srcoff;
1163
1164 /* Clear dest from destoff to the end of imap and map it in. */
1165 error = xfs_reflink_remap_extent(dest, &imap, destoff,
1166 new_isize);
1167 if (error)
David Brazdil0f672f62019-12-10 10:32:29 +00001168 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001169
1170 if (fatal_signal_pending(current)) {
1171 error = -EINTR;
David Brazdil0f672f62019-12-10 10:32:29 +00001172 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001173 }
1174
1175 /* Advance drange/srange */
1176 srcoff += range_len;
1177 destoff += range_len;
1178 len -= range_len;
David Brazdil0f672f62019-12-10 10:32:29 +00001179 remapped_len += range_len;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001180 }
1181
David Brazdil0f672f62019-12-10 10:32:29 +00001182 if (error)
1183 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1184 *remapped = min_t(loff_t, remap_len,
1185 XFS_FSB_TO_B(src->i_mount, remapped_len));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001186 return error;
1187}
1188
1189/*
David Brazdil0f672f62019-12-10 10:32:29 +00001190 * Grab the exclusive iolock for a data copy from src to dest, making sure to
1191 * abide vfs locking order (lowest pointer value goes first) and breaking the
1192 * layout leases before proceeding. The loop is needed because we cannot call
1193 * the blocking break_layout() with the iolocks held, and therefore have to
1194 * back out both locks.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001195 */
1196static int
1197xfs_iolock_two_inodes_and_break_layout(
1198 struct inode *src,
1199 struct inode *dest)
1200{
1201 int error;
1202
David Brazdil0f672f62019-12-10 10:32:29 +00001203 if (src > dest)
1204 swap(src, dest);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001205
David Brazdil0f672f62019-12-10 10:32:29 +00001206retry:
1207 /* Wait to break both inodes' layouts before we start locking. */
1208 error = break_layout(src, true);
1209 if (error)
1210 return error;
1211 if (src != dest) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001212 error = break_layout(dest, true);
1213 if (error)
1214 return error;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001215 }
David Brazdil0f672f62019-12-10 10:32:29 +00001216
1217 /* Lock one inode and make sure nobody got in and leased it. */
1218 inode_lock(src);
1219 error = break_layout(src, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001220 if (error) {
David Brazdil0f672f62019-12-10 10:32:29 +00001221 inode_unlock(src);
1222 if (error == -EWOULDBLOCK)
1223 goto retry;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001224 return error;
1225 }
David Brazdil0f672f62019-12-10 10:32:29 +00001226
1227 if (src == dest)
1228 return 0;
1229
1230 /* Lock the other inode and make sure nobody got in and leased it. */
1231 inode_lock_nested(dest, I_MUTEX_NONDIR2);
1232 error = break_layout(dest, false);
1233 if (error) {
1234 inode_unlock(src);
1235 inode_unlock(dest);
1236 if (error == -EWOULDBLOCK)
1237 goto retry;
1238 return error;
1239 }
1240
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001241 return 0;
1242}
1243
1244/* Unlock both inodes after they've been prepped for a range clone. */
David Brazdil0f672f62019-12-10 10:32:29 +00001245void
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001246xfs_reflink_remap_unlock(
1247 struct file *file_in,
1248 struct file *file_out)
1249{
1250 struct inode *inode_in = file_inode(file_in);
1251 struct xfs_inode *src = XFS_I(inode_in);
1252 struct inode *inode_out = file_inode(file_out);
1253 struct xfs_inode *dest = XFS_I(inode_out);
1254 bool same_inode = (inode_in == inode_out);
1255
1256 xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
1257 if (!same_inode)
David Brazdil0f672f62019-12-10 10:32:29 +00001258 xfs_iunlock(src, XFS_MMAPLOCK_EXCL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001259 inode_unlock(inode_out);
1260 if (!same_inode)
David Brazdil0f672f62019-12-10 10:32:29 +00001261 inode_unlock(inode_in);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001262}
1263
1264/*
1265 * If we're reflinking to a point past the destination file's EOF, we must
1266 * zero any speculative post-EOF preallocations that sit between the old EOF
1267 * and the destination file offset.
1268 */
1269static int
1270xfs_reflink_zero_posteof(
1271 struct xfs_inode *ip,
1272 loff_t pos)
1273{
1274 loff_t isize = i_size_read(VFS_I(ip));
1275
1276 if (pos <= isize)
1277 return 0;
1278
1279 trace_xfs_zero_eof(ip, isize, pos - isize);
1280 return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
1281 &xfs_iomap_ops);
1282}
1283
1284/*
1285 * Prepare two files for range cloning. Upon a successful return both inodes
1286 * will have the iolock and mmaplock held, the page cache of the out file will
1287 * be truncated, and any leases on the out file will have been broken. This
1288 * function borrows heavily from xfs_file_aio_write_checks.
1289 *
1290 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1291 * checked that the bytes beyond EOF physically match. Hence we cannot use the
1292 * EOF block in the source dedupe range because it's not a complete block match,
1293 * hence can introduce a corruption into the file that has it's block replaced.
1294 *
1295 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1296 * "block aligned" for the purposes of cloning entire files. However, if the
1297 * source file range includes the EOF block and it lands within the existing EOF
1298 * of the destination file, then we can expose stale data from beyond the source
1299 * file EOF in the destination file.
1300 *
1301 * XFS doesn't support partial block sharing, so in both cases we have check
1302 * these cases ourselves. For dedupe, we can simply round the length to dedupe
1303 * down to the previous whole block and ignore the partial EOF block. While this
1304 * means we can't dedupe the last block of a file, this is an acceptible
1305 * tradeoff for simplicity on implementation.
1306 *
1307 * For cloning, we want to share the partial EOF block if it is also the new EOF
1308 * block of the destination file. If the partial EOF block lies inside the
1309 * existing destination EOF, then we have to abort the clone to avoid exposing
1310 * stale data in the destination file. Hence we reject these clone attempts with
1311 * -EINVAL in this case.
1312 */
David Brazdil0f672f62019-12-10 10:32:29 +00001313int
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001314xfs_reflink_remap_prep(
1315 struct file *file_in,
1316 loff_t pos_in,
1317 struct file *file_out,
1318 loff_t pos_out,
David Brazdil0f672f62019-12-10 10:32:29 +00001319 loff_t *len,
1320 unsigned int remap_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001321{
1322 struct inode *inode_in = file_inode(file_in);
1323 struct xfs_inode *src = XFS_I(inode_in);
1324 struct inode *inode_out = file_inode(file_out);
1325 struct xfs_inode *dest = XFS_I(inode_out);
1326 bool same_inode = (inode_in == inode_out);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001327 ssize_t ret;
1328
1329 /* Lock both files against IO */
1330 ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out);
1331 if (ret)
1332 return ret;
1333 if (same_inode)
1334 xfs_ilock(src, XFS_MMAPLOCK_EXCL);
1335 else
David Brazdil0f672f62019-12-10 10:32:29 +00001336 xfs_lock_two_inodes(src, XFS_MMAPLOCK_EXCL, dest,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001337 XFS_MMAPLOCK_EXCL);
1338
1339 /* Check file eligibility and prepare for block sharing. */
1340 ret = -EINVAL;
1341 /* Don't reflink realtime inodes */
1342 if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1343 goto out_unlock;
1344
1345 /* Don't share DAX file data for now. */
1346 if (IS_DAX(inode_in) || IS_DAX(inode_out))
1347 goto out_unlock;
1348
David Brazdil0f672f62019-12-10 10:32:29 +00001349 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1350 len, remap_flags);
1351 if (ret < 0 || *len == 0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001352 goto out_unlock;
1353
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001354 /* Attach dquots to dest inode before changing block map */
1355 ret = xfs_qm_dqattach(dest);
1356 if (ret)
1357 goto out_unlock;
1358
1359 /*
1360 * Zero existing post-eof speculative preallocations in the destination
1361 * file.
1362 */
1363 ret = xfs_reflink_zero_posteof(dest, pos_out);
1364 if (ret)
1365 goto out_unlock;
1366
1367 /* Set flags and remap blocks. */
1368 ret = xfs_reflink_set_inode_flag(src, dest);
1369 if (ret)
1370 goto out_unlock;
1371
David Brazdil0f672f62019-12-10 10:32:29 +00001372 /*
1373 * If pos_out > EOF, we may have dirtied blocks between EOF and
1374 * pos_out. In that case, we need to extend the flush and unmap to cover
1375 * from EOF to the end of the copy length.
1376 */
1377 if (pos_out > XFS_ISIZE(dest)) {
1378 loff_t flen = *len + (pos_out - XFS_ISIZE(dest));
1379 ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1380 } else {
1381 ret = xfs_flush_unmap_range(dest, pos_out, *len);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001382 }
David Brazdil0f672f62019-12-10 10:32:29 +00001383 if (ret)
1384 goto out_unlock;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001385
1386 return 1;
1387out_unlock:
1388 xfs_reflink_remap_unlock(file_in, file_out);
1389 return ret;
1390}
1391
1392/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001393 * The user wants to preemptively CoW all shared blocks in this file,
1394 * which enables us to turn off the reflink flag. Iterate all
1395 * extents which are not prealloc/delalloc to see which ranges are
1396 * mentioned in the refcount tree, then read those blocks into the
1397 * pagecache, dirty them, fsync them back out, and then we can update
1398 * the inode flag. What happens if we run out of memory? :)
1399 */
1400STATIC int
1401xfs_reflink_dirty_extents(
1402 struct xfs_inode *ip,
1403 xfs_fileoff_t fbno,
1404 xfs_filblks_t end,
1405 xfs_off_t isize)
1406{
1407 struct xfs_mount *mp = ip->i_mount;
1408 xfs_agnumber_t agno;
1409 xfs_agblock_t agbno;
1410 xfs_extlen_t aglen;
1411 xfs_agblock_t rbno;
1412 xfs_extlen_t rlen;
1413 xfs_off_t fpos;
1414 xfs_off_t flen;
1415 struct xfs_bmbt_irec map[2];
1416 int nmaps;
1417 int error = 0;
1418
1419 while (end - fbno > 0) {
1420 nmaps = 1;
1421 /*
1422 * Look for extents in the file. Skip holes, delalloc, or
1423 * unwritten extents; they can't be reflinked.
1424 */
1425 error = xfs_bmapi_read(ip, fbno, end - fbno, map, &nmaps, 0);
1426 if (error)
1427 goto out;
1428 if (nmaps == 0)
1429 break;
1430 if (!xfs_bmap_is_real_extent(&map[0]))
1431 goto next;
1432
1433 map[1] = map[0];
1434 while (map[1].br_blockcount) {
1435 agno = XFS_FSB_TO_AGNO(mp, map[1].br_startblock);
1436 agbno = XFS_FSB_TO_AGBNO(mp, map[1].br_startblock);
1437 aglen = map[1].br_blockcount;
1438
1439 error = xfs_reflink_find_shared(mp, NULL, agno, agbno,
1440 aglen, &rbno, &rlen, true);
1441 if (error)
1442 goto out;
1443 if (rbno == NULLAGBLOCK)
1444 break;
1445
1446 /* Dirty the pages */
1447 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1448 fpos = XFS_FSB_TO_B(mp, map[1].br_startoff +
1449 (rbno - agbno));
1450 flen = XFS_FSB_TO_B(mp, rlen);
1451 if (fpos + flen > isize)
1452 flen = isize - fpos;
1453 error = iomap_file_dirty(VFS_I(ip), fpos, flen,
1454 &xfs_iomap_ops);
1455 xfs_ilock(ip, XFS_ILOCK_EXCL);
1456 if (error)
1457 goto out;
1458
1459 map[1].br_blockcount -= (rbno - agbno + rlen);
1460 map[1].br_startoff += (rbno - agbno + rlen);
1461 map[1].br_startblock += (rbno - agbno + rlen);
1462 }
1463
1464next:
1465 fbno = map[0].br_startoff + map[0].br_blockcount;
1466 }
1467out:
1468 return error;
1469}
1470
1471/* Does this inode need the reflink flag? */
1472int
1473xfs_reflink_inode_has_shared_extents(
1474 struct xfs_trans *tp,
1475 struct xfs_inode *ip,
1476 bool *has_shared)
1477{
1478 struct xfs_bmbt_irec got;
1479 struct xfs_mount *mp = ip->i_mount;
1480 struct xfs_ifork *ifp;
1481 xfs_agnumber_t agno;
1482 xfs_agblock_t agbno;
1483 xfs_extlen_t aglen;
1484 xfs_agblock_t rbno;
1485 xfs_extlen_t rlen;
1486 struct xfs_iext_cursor icur;
1487 bool found;
1488 int error;
1489
1490 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1491 if (!(ifp->if_flags & XFS_IFEXTENTS)) {
1492 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1493 if (error)
1494 return error;
1495 }
1496
1497 *has_shared = false;
1498 found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1499 while (found) {
1500 if (isnullstartblock(got.br_startblock) ||
1501 got.br_state != XFS_EXT_NORM)
1502 goto next;
1503 agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1504 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1505 aglen = got.br_blockcount;
1506
1507 error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1508 &rbno, &rlen, false);
1509 if (error)
1510 return error;
1511 /* Is there still a shared block here? */
1512 if (rbno != NULLAGBLOCK) {
1513 *has_shared = true;
1514 return 0;
1515 }
1516next:
1517 found = xfs_iext_next_extent(ifp, &icur, &got);
1518 }
1519
1520 return 0;
1521}
1522
1523/*
1524 * Clear the inode reflink flag if there are no shared extents.
1525 *
1526 * The caller is responsible for joining the inode to the transaction passed in.
1527 * The inode will be joined to the transaction that is returned to the caller.
1528 */
1529int
1530xfs_reflink_clear_inode_flag(
1531 struct xfs_inode *ip,
1532 struct xfs_trans **tpp)
1533{
1534 bool needs_flag;
1535 int error = 0;
1536
1537 ASSERT(xfs_is_reflink_inode(ip));
1538
1539 error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1540 if (error || needs_flag)
1541 return error;
1542
1543 /*
1544 * We didn't find any shared blocks so turn off the reflink flag.
1545 * First, get rid of any leftover CoW mappings.
1546 */
1547 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true);
1548 if (error)
1549 return error;
1550
1551 /* Clear the inode flag. */
1552 trace_xfs_reflink_unset_inode_flag(ip);
1553 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1554 xfs_inode_clear_cowblocks_tag(ip);
1555 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1556
1557 return error;
1558}
1559
1560/*
1561 * Clear the inode reflink flag if there are no shared extents and the size
1562 * hasn't changed.
1563 */
1564STATIC int
1565xfs_reflink_try_clear_inode_flag(
1566 struct xfs_inode *ip)
1567{
1568 struct xfs_mount *mp = ip->i_mount;
1569 struct xfs_trans *tp;
1570 int error = 0;
1571
1572 /* Start a rolling transaction to remove the mappings */
1573 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1574 if (error)
1575 return error;
1576
1577 xfs_ilock(ip, XFS_ILOCK_EXCL);
1578 xfs_trans_ijoin(tp, ip, 0);
1579
1580 error = xfs_reflink_clear_inode_flag(ip, &tp);
1581 if (error)
1582 goto cancel;
1583
1584 error = xfs_trans_commit(tp);
1585 if (error)
1586 goto out;
1587
1588 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1589 return 0;
1590cancel:
1591 xfs_trans_cancel(tp);
1592out:
1593 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1594 return error;
1595}
1596
1597/*
1598 * Pre-COW all shared blocks within a given byte range of a file and turn off
1599 * the reflink flag if we unshare all of the file's blocks.
1600 */
1601int
1602xfs_reflink_unshare(
1603 struct xfs_inode *ip,
1604 xfs_off_t offset,
1605 xfs_off_t len)
1606{
1607 struct xfs_mount *mp = ip->i_mount;
1608 xfs_fileoff_t fbno;
1609 xfs_filblks_t end;
1610 xfs_off_t isize;
1611 int error;
1612
1613 if (!xfs_is_reflink_inode(ip))
1614 return 0;
1615
1616 trace_xfs_reflink_unshare(ip, offset, len);
1617
1618 inode_dio_wait(VFS_I(ip));
1619
1620 /* Try to CoW the selected ranges */
1621 xfs_ilock(ip, XFS_ILOCK_EXCL);
1622 fbno = XFS_B_TO_FSBT(mp, offset);
1623 isize = i_size_read(VFS_I(ip));
1624 end = XFS_B_TO_FSB(mp, offset + len);
1625 error = xfs_reflink_dirty_extents(ip, fbno, end, isize);
1626 if (error)
1627 goto out_unlock;
1628 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1629
1630 /* Wait for the IO to finish */
1631 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1632 if (error)
1633 goto out;
1634
1635 /* Turn off the reflink flag if possible. */
1636 error = xfs_reflink_try_clear_inode_flag(ip);
1637 if (error)
1638 goto out;
1639
1640 return 0;
1641
1642out_unlock:
1643 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1644out:
1645 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1646 return error;
1647}