blob: 46dc16e01fe204154513ddf196f03d04fd5f638a [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-or-later
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/**
3 * inode.c - NTFS kernel inode handling.
4 *
5 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006 */
7
8#include <linux/buffer_head.h>
9#include <linux/fs.h>
10#include <linux/mm.h>
11#include <linux/mount.h>
12#include <linux/mutex.h>
13#include <linux/pagemap.h>
14#include <linux/quotaops.h>
15#include <linux/slab.h>
16#include <linux/log2.h>
17
18#include "aops.h"
19#include "attrib.h"
20#include "bitmap.h"
21#include "dir.h"
22#include "debug.h"
23#include "inode.h"
24#include "lcnalloc.h"
25#include "malloc.h"
26#include "mft.h"
27#include "time.h"
28#include "ntfs.h"
29
30/**
31 * ntfs_test_inode - compare two (possibly fake) inodes for equality
32 * @vi: vfs inode which to test
33 * @na: ntfs attribute which is being tested with
34 *
35 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
36 * inode @vi for equality with the ntfs attribute @na.
37 *
38 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
39 * @na->name and @na->name_len are then ignored.
40 *
41 * Return 1 if the attributes match and 0 if not.
42 *
43 * NOTE: This function runs with the inode_hash_lock spin lock held so it is not
44 * allowed to sleep.
45 */
46int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
47{
48 ntfs_inode *ni;
49
50 if (vi->i_ino != na->mft_no)
51 return 0;
52 ni = NTFS_I(vi);
53 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
54 if (likely(!NInoAttr(ni))) {
55 /* If not looking for a normal inode this is a mismatch. */
56 if (unlikely(na->type != AT_UNUSED))
57 return 0;
58 } else {
59 /* A fake inode describing an attribute. */
60 if (ni->type != na->type)
61 return 0;
62 if (ni->name_len != na->name_len)
63 return 0;
64 if (na->name_len && memcmp(ni->name, na->name,
65 na->name_len * sizeof(ntfschar)))
66 return 0;
67 }
68 /* Match! */
69 return 1;
70}
71
72/**
73 * ntfs_init_locked_inode - initialize an inode
74 * @vi: vfs inode to initialize
75 * @na: ntfs attribute which to initialize @vi to
76 *
77 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
78 * order to enable ntfs_test_inode() to do its work.
79 *
80 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
81 * In that case, @na->name and @na->name_len should be set to NULL and 0,
82 * respectively. Although that is not strictly necessary as
83 * ntfs_read_locked_inode() will fill them in later.
84 *
85 * Return 0 on success and -errno on error.
86 *
87 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
88 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
89 */
90static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
91{
92 ntfs_inode *ni = NTFS_I(vi);
93
94 vi->i_ino = na->mft_no;
95
96 ni->type = na->type;
97 if (na->type == AT_INDEX_ALLOCATION)
98 NInoSetMstProtected(ni);
99
100 ni->name = na->name;
101 ni->name_len = na->name_len;
102
103 /* If initializing a normal inode, we are done. */
104 if (likely(na->type == AT_UNUSED)) {
105 BUG_ON(na->name);
106 BUG_ON(na->name_len);
107 return 0;
108 }
109
110 /* It is a fake inode. */
111 NInoSetAttr(ni);
112
113 /*
114 * We have I30 global constant as an optimization as it is the name
115 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
116 * allocation but that is ok. And most attributes are unnamed anyway,
117 * thus the fraction of named attributes with name != I30 is actually
118 * absolutely tiny.
119 */
120 if (na->name_len && na->name != I30) {
121 unsigned int i;
122
123 BUG_ON(!na->name);
124 i = na->name_len * sizeof(ntfschar);
125 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
126 if (!ni->name)
127 return -ENOMEM;
128 memcpy(ni->name, na->name, i);
129 ni->name[na->name_len] = 0;
130 }
131 return 0;
132}
133
134typedef int (*set_t)(struct inode *, void *);
135static int ntfs_read_locked_inode(struct inode *vi);
136static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
137static int ntfs_read_locked_index_inode(struct inode *base_vi,
138 struct inode *vi);
139
140/**
141 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
142 * @sb: super block of mounted volume
143 * @mft_no: mft record number / inode number to obtain
144 *
145 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
146 * file or directory).
147 *
148 * If the inode is in the cache, it is just returned with an increased
149 * reference count. Otherwise, a new struct inode is allocated and initialized,
150 * and finally ntfs_read_locked_inode() is called to read in the inode and
151 * fill in the remainder of the inode structure.
152 *
153 * Return the struct inode on success. Check the return value with IS_ERR() and
154 * if true, the function failed and the error code is obtained from PTR_ERR().
155 */
156struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
157{
158 struct inode *vi;
159 int err;
160 ntfs_attr na;
161
162 na.mft_no = mft_no;
163 na.type = AT_UNUSED;
164 na.name = NULL;
165 na.name_len = 0;
166
167 vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
168 (set_t)ntfs_init_locked_inode, &na);
169 if (unlikely(!vi))
170 return ERR_PTR(-ENOMEM);
171
172 err = 0;
173
174 /* If this is a freshly allocated inode, need to read it now. */
175 if (vi->i_state & I_NEW) {
176 err = ntfs_read_locked_inode(vi);
177 unlock_new_inode(vi);
178 }
179 /*
180 * There is no point in keeping bad inodes around if the failure was
181 * due to ENOMEM. We want to be able to retry again later.
182 */
183 if (unlikely(err == -ENOMEM)) {
184 iput(vi);
185 vi = ERR_PTR(err);
186 }
187 return vi;
188}
189
190/**
191 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
192 * @base_vi: vfs base inode containing the attribute
193 * @type: attribute type
194 * @name: Unicode name of the attribute (NULL if unnamed)
195 * @name_len: length of @name in Unicode characters (0 if unnamed)
196 *
197 * Obtain the (fake) struct inode corresponding to the attribute specified by
198 * @type, @name, and @name_len, which is present in the base mft record
199 * specified by the vfs inode @base_vi.
200 *
201 * If the attribute inode is in the cache, it is just returned with an
202 * increased reference count. Otherwise, a new struct inode is allocated and
203 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
204 * attribute and fill in the inode structure.
205 *
206 * Note, for index allocation attributes, you need to use ntfs_index_iget()
207 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
208 *
209 * Return the struct inode of the attribute inode on success. Check the return
210 * value with IS_ERR() and if true, the function failed and the error code is
211 * obtained from PTR_ERR().
212 */
213struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
214 ntfschar *name, u32 name_len)
215{
216 struct inode *vi;
217 int err;
218 ntfs_attr na;
219
220 /* Make sure no one calls ntfs_attr_iget() for indices. */
221 BUG_ON(type == AT_INDEX_ALLOCATION);
222
223 na.mft_no = base_vi->i_ino;
224 na.type = type;
225 na.name = name;
226 na.name_len = name_len;
227
228 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
229 (set_t)ntfs_init_locked_inode, &na);
230 if (unlikely(!vi))
231 return ERR_PTR(-ENOMEM);
232
233 err = 0;
234
235 /* If this is a freshly allocated inode, need to read it now. */
236 if (vi->i_state & I_NEW) {
237 err = ntfs_read_locked_attr_inode(base_vi, vi);
238 unlock_new_inode(vi);
239 }
240 /*
241 * There is no point in keeping bad attribute inodes around. This also
242 * simplifies things in that we never need to check for bad attribute
243 * inodes elsewhere.
244 */
245 if (unlikely(err)) {
246 iput(vi);
247 vi = ERR_PTR(err);
248 }
249 return vi;
250}
251
252/**
253 * ntfs_index_iget - obtain a struct inode corresponding to an index
254 * @base_vi: vfs base inode containing the index related attributes
255 * @name: Unicode name of the index
256 * @name_len: length of @name in Unicode characters
257 *
258 * Obtain the (fake) struct inode corresponding to the index specified by @name
259 * and @name_len, which is present in the base mft record specified by the vfs
260 * inode @base_vi.
261 *
262 * If the index inode is in the cache, it is just returned with an increased
263 * reference count. Otherwise, a new struct inode is allocated and
264 * initialized, and finally ntfs_read_locked_index_inode() is called to read
265 * the index related attributes and fill in the inode structure.
266 *
267 * Return the struct inode of the index inode on success. Check the return
268 * value with IS_ERR() and if true, the function failed and the error code is
269 * obtained from PTR_ERR().
270 */
271struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
272 u32 name_len)
273{
274 struct inode *vi;
275 int err;
276 ntfs_attr na;
277
278 na.mft_no = base_vi->i_ino;
279 na.type = AT_INDEX_ALLOCATION;
280 na.name = name;
281 na.name_len = name_len;
282
283 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
284 (set_t)ntfs_init_locked_inode, &na);
285 if (unlikely(!vi))
286 return ERR_PTR(-ENOMEM);
287
288 err = 0;
289
290 /* If this is a freshly allocated inode, need to read it now. */
291 if (vi->i_state & I_NEW) {
292 err = ntfs_read_locked_index_inode(base_vi, vi);
293 unlock_new_inode(vi);
294 }
295 /*
296 * There is no point in keeping bad index inodes around. This also
297 * simplifies things in that we never need to check for bad index
298 * inodes elsewhere.
299 */
300 if (unlikely(err)) {
301 iput(vi);
302 vi = ERR_PTR(err);
303 }
304 return vi;
305}
306
307struct inode *ntfs_alloc_big_inode(struct super_block *sb)
308{
309 ntfs_inode *ni;
310
311 ntfs_debug("Entering.");
312 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
313 if (likely(ni != NULL)) {
314 ni->state = 0;
315 return VFS_I(ni);
316 }
317 ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
318 return NULL;
319}
320
David Brazdil0f672f62019-12-10 10:32:29 +0000321void ntfs_free_big_inode(struct inode *inode)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000322{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000323 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
324}
325
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000326static inline ntfs_inode *ntfs_alloc_extent_inode(void)
327{
328 ntfs_inode *ni;
329
330 ntfs_debug("Entering.");
331 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
332 if (likely(ni != NULL)) {
333 ni->state = 0;
334 return ni;
335 }
336 ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
337 return NULL;
338}
339
340static void ntfs_destroy_extent_inode(ntfs_inode *ni)
341{
342 ntfs_debug("Entering.");
343 BUG_ON(ni->page);
344 if (!atomic_dec_and_test(&ni->count))
345 BUG();
346 kmem_cache_free(ntfs_inode_cache, ni);
347}
348
349/*
350 * The attribute runlist lock has separate locking rules from the
351 * normal runlist lock, so split the two lock-classes:
352 */
353static struct lock_class_key attr_list_rl_lock_class;
354
355/**
356 * __ntfs_init_inode - initialize ntfs specific part of an inode
357 * @sb: super block of mounted volume
358 * @ni: freshly allocated ntfs inode which to initialize
359 *
360 * Initialize an ntfs inode to defaults.
361 *
362 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
363 * untouched. Make sure to initialize them elsewhere.
364 *
365 * Return zero on success and -ENOMEM on error.
366 */
367void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
368{
369 ntfs_debug("Entering.");
370 rwlock_init(&ni->size_lock);
371 ni->initialized_size = ni->allocated_size = 0;
372 ni->seq_no = 0;
373 atomic_set(&ni->count, 1);
374 ni->vol = NTFS_SB(sb);
375 ntfs_init_runlist(&ni->runlist);
376 mutex_init(&ni->mrec_lock);
377 ni->page = NULL;
378 ni->page_ofs = 0;
379 ni->attr_list_size = 0;
380 ni->attr_list = NULL;
381 ntfs_init_runlist(&ni->attr_list_rl);
382 lockdep_set_class(&ni->attr_list_rl.lock,
383 &attr_list_rl_lock_class);
384 ni->itype.index.block_size = 0;
385 ni->itype.index.vcn_size = 0;
386 ni->itype.index.collation_rule = 0;
387 ni->itype.index.block_size_bits = 0;
388 ni->itype.index.vcn_size_bits = 0;
389 mutex_init(&ni->extent_lock);
390 ni->nr_extents = 0;
391 ni->ext.base_ntfs_ino = NULL;
392}
393
394/*
395 * Extent inodes get MFT-mapped in a nested way, while the base inode
396 * is still mapped. Teach this nesting to the lock validator by creating
397 * a separate class for nested inode's mrec_lock's:
398 */
399static struct lock_class_key extent_inode_mrec_lock_key;
400
401inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
402 unsigned long mft_no)
403{
404 ntfs_inode *ni = ntfs_alloc_extent_inode();
405
406 ntfs_debug("Entering.");
407 if (likely(ni != NULL)) {
408 __ntfs_init_inode(sb, ni);
409 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
410 ni->mft_no = mft_no;
411 ni->type = AT_UNUSED;
412 ni->name = NULL;
413 ni->name_len = 0;
414 }
415 return ni;
416}
417
418/**
419 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
420 * @ctx: initialized attribute search context
421 *
422 * Search all file name attributes in the inode described by the attribute
423 * search context @ctx and check if any of the names are in the $Extend system
424 * directory.
425 *
426 * Return values:
427 * 1: file is in $Extend directory
428 * 0: file is not in $Extend directory
429 * -errno: failed to determine if the file is in the $Extend directory
430 */
431static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
432{
433 int nr_links, err;
434
435 /* Restart search. */
436 ntfs_attr_reinit_search_ctx(ctx);
437
438 /* Get number of hard links. */
439 nr_links = le16_to_cpu(ctx->mrec->link_count);
440
441 /* Loop through all hard links. */
442 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
443 ctx))) {
444 FILE_NAME_ATTR *file_name_attr;
445 ATTR_RECORD *attr = ctx->attr;
446 u8 *p, *p2;
447
448 nr_links--;
449 /*
450 * Maximum sanity checking as we are called on an inode that
451 * we suspect might be corrupt.
452 */
453 p = (u8*)attr + le32_to_cpu(attr->length);
454 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
455 le32_to_cpu(ctx->mrec->bytes_in_use)) {
456err_corrupt_attr:
457 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
458 "attribute. You should run chkdsk.");
459 return -EIO;
460 }
461 if (attr->non_resident) {
462 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
463 "name. You should run chkdsk.");
464 return -EIO;
465 }
466 if (attr->flags) {
467 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
468 "invalid flags. You should run "
469 "chkdsk.");
470 return -EIO;
471 }
472 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
473 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
474 "name. You should run chkdsk.");
475 return -EIO;
476 }
477 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
478 le16_to_cpu(attr->data.resident.value_offset));
Olivier Deprez0e641232021-09-23 10:07:05 +0200479 p2 = (u8 *)file_name_attr + le32_to_cpu(attr->data.resident.value_length);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000480 if (p2 < (u8*)attr || p2 > p)
481 goto err_corrupt_attr;
482 /* This attribute is ok, but is it in the $Extend directory? */
483 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
484 return 1; /* YES, it's an extended system file. */
485 }
486 if (unlikely(err != -ENOENT))
487 return err;
488 if (unlikely(nr_links)) {
489 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
490 "doesn't match number of name attributes. You "
491 "should run chkdsk.");
492 return -EIO;
493 }
494 return 0; /* NO, it is not an extended system file. */
495}
496
497/**
498 * ntfs_read_locked_inode - read an inode from its device
499 * @vi: inode to read
500 *
501 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
502 * described by @vi into memory from the device.
503 *
504 * The only fields in @vi that we need to/can look at when the function is
505 * called are i_sb, pointing to the mounted device's super block, and i_ino,
506 * the number of the inode to load.
507 *
508 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
509 * for reading and sets up the necessary @vi fields as well as initializing
510 * the ntfs inode.
511 *
512 * Q: What locks are held when the function is called?
513 * A: i_state has I_NEW set, hence the inode is locked, also
514 * i_count is set to 1, so it is not going to go away
515 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
516 * is allowed to write to them. We should of course be honouring them but
517 * we need to do that using the IS_* macros defined in include/linux/fs.h.
518 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
519 *
520 * Return 0 on success and -errno on error. In the error case, the inode will
521 * have had make_bad_inode() executed on it.
522 */
523static int ntfs_read_locked_inode(struct inode *vi)
524{
525 ntfs_volume *vol = NTFS_SB(vi->i_sb);
526 ntfs_inode *ni;
527 struct inode *bvi;
528 MFT_RECORD *m;
529 ATTR_RECORD *a;
530 STANDARD_INFORMATION *si;
531 ntfs_attr_search_ctx *ctx;
532 int err = 0;
533
534 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
535
536 /* Setup the generic vfs inode parts now. */
537 vi->i_uid = vol->uid;
538 vi->i_gid = vol->gid;
539 vi->i_mode = 0;
540
541 /*
542 * Initialize the ntfs specific part of @vi special casing
543 * FILE_MFT which we need to do at mount time.
544 */
545 if (vi->i_ino != FILE_MFT)
546 ntfs_init_big_inode(vi);
547 ni = NTFS_I(vi);
548
549 m = map_mft_record(ni);
550 if (IS_ERR(m)) {
551 err = PTR_ERR(m);
552 goto err_out;
553 }
554 ctx = ntfs_attr_get_search_ctx(ni, m);
555 if (!ctx) {
556 err = -ENOMEM;
557 goto unm_err_out;
558 }
559
560 if (!(m->flags & MFT_RECORD_IN_USE)) {
561 ntfs_error(vi->i_sb, "Inode is not in use!");
562 goto unm_err_out;
563 }
564 if (m->base_mft_record) {
565 ntfs_error(vi->i_sb, "Inode is an extent inode!");
566 goto unm_err_out;
567 }
568
569 /* Transfer information from mft record into vfs and ntfs inodes. */
570 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
571
572 /*
573 * FIXME: Keep in mind that link_count is two for files which have both
574 * a long file name and a short file name as separate entries, so if
575 * we are hiding short file names this will be too high. Either we need
576 * to account for the short file names by subtracting them or we need
577 * to make sure we delete files even though i_nlink is not zero which
578 * might be tricky due to vfs interactions. Need to think about this
579 * some more when implementing the unlink command.
580 */
581 set_nlink(vi, le16_to_cpu(m->link_count));
582 /*
583 * FIXME: Reparse points can have the directory bit set even though
584 * they would be S_IFLNK. Need to deal with this further below when we
585 * implement reparse points / symbolic links but it will do for now.
586 * Also if not a directory, it could be something else, rather than
587 * a regular file. But again, will do for now.
588 */
589 /* Everyone gets all permissions. */
590 vi->i_mode |= S_IRWXUGO;
591 /* If read-only, no one gets write permissions. */
592 if (IS_RDONLY(vi))
593 vi->i_mode &= ~S_IWUGO;
594 if (m->flags & MFT_RECORD_IS_DIRECTORY) {
595 vi->i_mode |= S_IFDIR;
596 /*
597 * Apply the directory permissions mask set in the mount
598 * options.
599 */
600 vi->i_mode &= ~vol->dmask;
601 /* Things break without this kludge! */
602 if (vi->i_nlink > 1)
603 set_nlink(vi, 1);
604 } else {
605 vi->i_mode |= S_IFREG;
606 /* Apply the file permissions mask set in the mount options. */
607 vi->i_mode &= ~vol->fmask;
608 }
609 /*
610 * Find the standard information attribute in the mft record. At this
611 * stage we haven't setup the attribute list stuff yet, so this could
612 * in fact fail if the standard information is in an extent record, but
613 * I don't think this actually ever happens.
614 */
615 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
616 ctx);
617 if (unlikely(err)) {
618 if (err == -ENOENT) {
619 /*
620 * TODO: We should be performing a hot fix here (if the
621 * recover mount option is set) by creating a new
622 * attribute.
623 */
624 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
625 "is missing.");
626 }
627 goto unm_err_out;
628 }
629 a = ctx->attr;
630 /* Get the standard information attribute value. */
Olivier Deprez0e641232021-09-23 10:07:05 +0200631 if ((u8 *)a + le16_to_cpu(a->data.resident.value_offset)
632 + le32_to_cpu(a->data.resident.value_length) >
633 (u8 *)ctx->mrec + vol->mft_record_size) {
634 ntfs_error(vi->i_sb, "Corrupt standard information attribute in inode.");
635 goto unm_err_out;
636 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000637 si = (STANDARD_INFORMATION*)((u8*)a +
638 le16_to_cpu(a->data.resident.value_offset));
639
640 /* Transfer information from the standard information into vi. */
641 /*
642 * Note: The i_?times do not quite map perfectly onto the NTFS times,
643 * but they are close enough, and in the end it doesn't really matter
644 * that much...
645 */
646 /*
647 * mtime is the last change of the data within the file. Not changed
648 * when only metadata is changed, e.g. a rename doesn't affect mtime.
649 */
650 vi->i_mtime = ntfs2utc(si->last_data_change_time);
651 /*
652 * ctime is the last change of the metadata of the file. This obviously
653 * always changes, when mtime is changed. ctime can be changed on its
654 * own, mtime is then not changed, e.g. when a file is renamed.
655 */
656 vi->i_ctime = ntfs2utc(si->last_mft_change_time);
657 /*
658 * Last access to the data within the file. Not changed during a rename
659 * for example but changed whenever the file is written to.
660 */
661 vi->i_atime = ntfs2utc(si->last_access_time);
662
663 /* Find the attribute list attribute if present. */
664 ntfs_attr_reinit_search_ctx(ctx);
665 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
666 if (err) {
667 if (unlikely(err != -ENOENT)) {
668 ntfs_error(vi->i_sb, "Failed to lookup attribute list "
669 "attribute.");
670 goto unm_err_out;
671 }
672 } else /* if (!err) */ {
673 if (vi->i_ino == FILE_MFT)
674 goto skip_attr_list_load;
675 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
676 NInoSetAttrList(ni);
677 a = ctx->attr;
678 if (a->flags & ATTR_COMPRESSION_MASK) {
679 ntfs_error(vi->i_sb, "Attribute list attribute is "
680 "compressed.");
681 goto unm_err_out;
682 }
683 if (a->flags & ATTR_IS_ENCRYPTED ||
684 a->flags & ATTR_IS_SPARSE) {
685 if (a->non_resident) {
686 ntfs_error(vi->i_sb, "Non-resident attribute "
687 "list attribute is encrypted/"
688 "sparse.");
689 goto unm_err_out;
690 }
691 ntfs_warning(vi->i_sb, "Resident attribute list "
692 "attribute in inode 0x%lx is marked "
693 "encrypted/sparse which is not true. "
694 "However, Windows allows this and "
695 "chkdsk does not detect or correct it "
696 "so we will just ignore the invalid "
697 "flags and pretend they are not set.",
698 vi->i_ino);
699 }
700 /* Now allocate memory for the attribute list. */
701 ni->attr_list_size = (u32)ntfs_attr_size(a);
702 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
703 if (!ni->attr_list) {
704 ntfs_error(vi->i_sb, "Not enough memory to allocate "
705 "buffer for attribute list.");
706 err = -ENOMEM;
707 goto unm_err_out;
708 }
709 if (a->non_resident) {
710 NInoSetAttrListNonResident(ni);
711 if (a->data.non_resident.lowest_vcn) {
712 ntfs_error(vi->i_sb, "Attribute list has non "
713 "zero lowest_vcn.");
714 goto unm_err_out;
715 }
716 /*
717 * Setup the runlist. No need for locking as we have
718 * exclusive access to the inode at this time.
719 */
720 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
721 a, NULL);
722 if (IS_ERR(ni->attr_list_rl.rl)) {
723 err = PTR_ERR(ni->attr_list_rl.rl);
724 ni->attr_list_rl.rl = NULL;
725 ntfs_error(vi->i_sb, "Mapping pairs "
726 "decompression failed.");
727 goto unm_err_out;
728 }
729 /* Now load the attribute list. */
730 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
731 ni->attr_list, ni->attr_list_size,
732 sle64_to_cpu(a->data.non_resident.
733 initialized_size)))) {
734 ntfs_error(vi->i_sb, "Failed to load "
735 "attribute list attribute.");
736 goto unm_err_out;
737 }
738 } else /* if (!a->non_resident) */ {
739 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
740 + le32_to_cpu(
741 a->data.resident.value_length) >
742 (u8*)ctx->mrec + vol->mft_record_size) {
743 ntfs_error(vi->i_sb, "Corrupt attribute list "
744 "in inode.");
745 goto unm_err_out;
746 }
747 /* Now copy the attribute list. */
748 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
749 a->data.resident.value_offset),
750 le32_to_cpu(
751 a->data.resident.value_length));
752 }
753 }
754skip_attr_list_load:
755 /*
756 * If an attribute list is present we now have the attribute list value
757 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
758 */
759 if (S_ISDIR(vi->i_mode)) {
760 loff_t bvi_size;
761 ntfs_inode *bni;
762 INDEX_ROOT *ir;
763 u8 *ir_end, *index_end;
764
765 /* It is a directory, find index root attribute. */
766 ntfs_attr_reinit_search_ctx(ctx);
767 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
768 0, NULL, 0, ctx);
769 if (unlikely(err)) {
770 if (err == -ENOENT) {
771 // FIXME: File is corrupt! Hot-fix with empty
772 // index root attribute if recovery option is
773 // set.
774 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
775 "is missing.");
776 }
777 goto unm_err_out;
778 }
779 a = ctx->attr;
780 /* Set up the state. */
781 if (unlikely(a->non_resident)) {
782 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
783 "resident.");
784 goto unm_err_out;
785 }
786 /* Ensure the attribute name is placed before the value. */
787 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
788 le16_to_cpu(a->data.resident.value_offset)))) {
789 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
790 "placed after the attribute value.");
791 goto unm_err_out;
792 }
793 /*
794 * Compressed/encrypted index root just means that the newly
795 * created files in that directory should be created compressed/
796 * encrypted. However index root cannot be both compressed and
797 * encrypted.
798 */
799 if (a->flags & ATTR_COMPRESSION_MASK)
800 NInoSetCompressed(ni);
801 if (a->flags & ATTR_IS_ENCRYPTED) {
802 if (a->flags & ATTR_COMPRESSION_MASK) {
803 ntfs_error(vi->i_sb, "Found encrypted and "
804 "compressed attribute.");
805 goto unm_err_out;
806 }
807 NInoSetEncrypted(ni);
808 }
809 if (a->flags & ATTR_IS_SPARSE)
810 NInoSetSparse(ni);
811 ir = (INDEX_ROOT*)((u8*)a +
812 le16_to_cpu(a->data.resident.value_offset));
813 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
814 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
815 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
816 "corrupt.");
817 goto unm_err_out;
818 }
819 index_end = (u8*)&ir->index +
820 le32_to_cpu(ir->index.index_length);
821 if (index_end > ir_end) {
822 ntfs_error(vi->i_sb, "Directory index is corrupt.");
823 goto unm_err_out;
824 }
825 if (ir->type != AT_FILE_NAME) {
826 ntfs_error(vi->i_sb, "Indexed attribute is not "
827 "$FILE_NAME.");
828 goto unm_err_out;
829 }
830 if (ir->collation_rule != COLLATION_FILE_NAME) {
831 ntfs_error(vi->i_sb, "Index collation rule is not "
832 "COLLATION_FILE_NAME.");
833 goto unm_err_out;
834 }
835 ni->itype.index.collation_rule = ir->collation_rule;
836 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
837 if (ni->itype.index.block_size &
838 (ni->itype.index.block_size - 1)) {
839 ntfs_error(vi->i_sb, "Index block size (%u) is not a "
840 "power of two.",
841 ni->itype.index.block_size);
842 goto unm_err_out;
843 }
844 if (ni->itype.index.block_size > PAGE_SIZE) {
845 ntfs_error(vi->i_sb, "Index block size (%u) > "
846 "PAGE_SIZE (%ld) is not "
847 "supported. Sorry.",
848 ni->itype.index.block_size,
849 PAGE_SIZE);
850 err = -EOPNOTSUPP;
851 goto unm_err_out;
852 }
853 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
854 ntfs_error(vi->i_sb, "Index block size (%u) < "
855 "NTFS_BLOCK_SIZE (%i) is not "
856 "supported. Sorry.",
857 ni->itype.index.block_size,
858 NTFS_BLOCK_SIZE);
859 err = -EOPNOTSUPP;
860 goto unm_err_out;
861 }
862 ni->itype.index.block_size_bits =
863 ffs(ni->itype.index.block_size) - 1;
864 /* Determine the size of a vcn in the directory index. */
865 if (vol->cluster_size <= ni->itype.index.block_size) {
866 ni->itype.index.vcn_size = vol->cluster_size;
867 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
868 } else {
869 ni->itype.index.vcn_size = vol->sector_size;
870 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
871 }
872
873 /* Setup the index allocation attribute, even if not present. */
874 NInoSetMstProtected(ni);
875 ni->type = AT_INDEX_ALLOCATION;
876 ni->name = I30;
877 ni->name_len = 4;
878
879 if (!(ir->index.flags & LARGE_INDEX)) {
880 /* No index allocation. */
881 vi->i_size = ni->initialized_size =
882 ni->allocated_size = 0;
883 /* We are done with the mft record, so we release it. */
884 ntfs_attr_put_search_ctx(ctx);
885 unmap_mft_record(ni);
886 m = NULL;
887 ctx = NULL;
888 goto skip_large_dir_stuff;
889 } /* LARGE_INDEX: Index allocation present. Setup state. */
890 NInoSetIndexAllocPresent(ni);
891 /* Find index allocation attribute. */
892 ntfs_attr_reinit_search_ctx(ctx);
893 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
894 CASE_SENSITIVE, 0, NULL, 0, ctx);
895 if (unlikely(err)) {
896 if (err == -ENOENT)
897 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
898 "attribute is not present but "
899 "$INDEX_ROOT indicated it is.");
900 else
901 ntfs_error(vi->i_sb, "Failed to lookup "
902 "$INDEX_ALLOCATION "
903 "attribute.");
904 goto unm_err_out;
905 }
906 a = ctx->attr;
907 if (!a->non_resident) {
908 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
909 "is resident.");
910 goto unm_err_out;
911 }
912 /*
913 * Ensure the attribute name is placed before the mapping pairs
914 * array.
915 */
916 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
917 le16_to_cpu(
918 a->data.non_resident.mapping_pairs_offset)))) {
919 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
920 "is placed after the mapping pairs "
921 "array.");
922 goto unm_err_out;
923 }
924 if (a->flags & ATTR_IS_ENCRYPTED) {
925 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
926 "is encrypted.");
927 goto unm_err_out;
928 }
929 if (a->flags & ATTR_IS_SPARSE) {
930 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
931 "is sparse.");
932 goto unm_err_out;
933 }
934 if (a->flags & ATTR_COMPRESSION_MASK) {
935 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
936 "is compressed.");
937 goto unm_err_out;
938 }
939 if (a->data.non_resident.lowest_vcn) {
940 ntfs_error(vi->i_sb, "First extent of "
941 "$INDEX_ALLOCATION attribute has non "
942 "zero lowest_vcn.");
943 goto unm_err_out;
944 }
945 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
946 ni->initialized_size = sle64_to_cpu(
947 a->data.non_resident.initialized_size);
948 ni->allocated_size = sle64_to_cpu(
949 a->data.non_resident.allocated_size);
950 /*
951 * We are done with the mft record, so we release it. Otherwise
952 * we would deadlock in ntfs_attr_iget().
953 */
954 ntfs_attr_put_search_ctx(ctx);
955 unmap_mft_record(ni);
956 m = NULL;
957 ctx = NULL;
958 /* Get the index bitmap attribute inode. */
959 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
960 if (IS_ERR(bvi)) {
961 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
962 err = PTR_ERR(bvi);
963 goto unm_err_out;
964 }
965 bni = NTFS_I(bvi);
966 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
967 NInoSparse(bni)) {
968 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
969 "and/or encrypted and/or sparse.");
970 goto iput_unm_err_out;
971 }
972 /* Consistency check bitmap size vs. index allocation size. */
973 bvi_size = i_size_read(bvi);
974 if ((bvi_size << 3) < (vi->i_size >>
975 ni->itype.index.block_size_bits)) {
976 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
977 "for index allocation (0x%llx).",
978 bvi_size << 3, vi->i_size);
979 goto iput_unm_err_out;
980 }
981 /* No longer need the bitmap attribute inode. */
982 iput(bvi);
983skip_large_dir_stuff:
984 /* Setup the operations for this inode. */
985 vi->i_op = &ntfs_dir_inode_ops;
986 vi->i_fop = &ntfs_dir_ops;
987 vi->i_mapping->a_ops = &ntfs_mst_aops;
988 } else {
989 /* It is a file. */
990 ntfs_attr_reinit_search_ctx(ctx);
991
992 /* Setup the data attribute, even if not present. */
993 ni->type = AT_DATA;
994 ni->name = NULL;
995 ni->name_len = 0;
996
997 /* Find first extent of the unnamed data attribute. */
998 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
999 if (unlikely(err)) {
1000 vi->i_size = ni->initialized_size =
1001 ni->allocated_size = 0;
1002 if (err != -ENOENT) {
1003 ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1004 "attribute.");
1005 goto unm_err_out;
1006 }
1007 /*
1008 * FILE_Secure does not have an unnamed $DATA
1009 * attribute, so we special case it here.
1010 */
1011 if (vi->i_ino == FILE_Secure)
1012 goto no_data_attr_special_case;
1013 /*
1014 * Most if not all the system files in the $Extend
1015 * system directory do not have unnamed data
1016 * attributes so we need to check if the parent
1017 * directory of the file is FILE_Extend and if it is
1018 * ignore this error. To do this we need to get the
1019 * name of this inode from the mft record as the name
1020 * contains the back reference to the parent directory.
1021 */
1022 if (ntfs_is_extended_system_file(ctx) > 0)
1023 goto no_data_attr_special_case;
1024 // FIXME: File is corrupt! Hot-fix with empty data
1025 // attribute if recovery option is set.
1026 ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1027 goto unm_err_out;
1028 }
1029 a = ctx->attr;
1030 /* Setup the state. */
1031 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1032 if (a->flags & ATTR_COMPRESSION_MASK) {
1033 NInoSetCompressed(ni);
1034 if (vol->cluster_size > 4096) {
1035 ntfs_error(vi->i_sb, "Found "
1036 "compressed data but "
1037 "compression is "
1038 "disabled due to "
1039 "cluster size (%i) > "
1040 "4kiB.",
1041 vol->cluster_size);
1042 goto unm_err_out;
1043 }
1044 if ((a->flags & ATTR_COMPRESSION_MASK)
1045 != ATTR_IS_COMPRESSED) {
1046 ntfs_error(vi->i_sb, "Found unknown "
1047 "compression method "
1048 "or corrupt file.");
1049 goto unm_err_out;
1050 }
1051 }
1052 if (a->flags & ATTR_IS_SPARSE)
1053 NInoSetSparse(ni);
1054 }
1055 if (a->flags & ATTR_IS_ENCRYPTED) {
1056 if (NInoCompressed(ni)) {
1057 ntfs_error(vi->i_sb, "Found encrypted and "
1058 "compressed data.");
1059 goto unm_err_out;
1060 }
1061 NInoSetEncrypted(ni);
1062 }
1063 if (a->non_resident) {
1064 NInoSetNonResident(ni);
1065 if (NInoCompressed(ni) || NInoSparse(ni)) {
1066 if (NInoCompressed(ni) && a->data.non_resident.
1067 compression_unit != 4) {
1068 ntfs_error(vi->i_sb, "Found "
1069 "non-standard "
1070 "compression unit (%u "
1071 "instead of 4). "
1072 "Cannot handle this.",
1073 a->data.non_resident.
1074 compression_unit);
1075 err = -EOPNOTSUPP;
1076 goto unm_err_out;
1077 }
1078 if (a->data.non_resident.compression_unit) {
1079 ni->itype.compressed.block_size = 1U <<
1080 (a->data.non_resident.
1081 compression_unit +
1082 vol->cluster_size_bits);
1083 ni->itype.compressed.block_size_bits =
1084 ffs(ni->itype.
1085 compressed.
1086 block_size) - 1;
1087 ni->itype.compressed.block_clusters =
1088 1U << a->data.
1089 non_resident.
1090 compression_unit;
1091 } else {
1092 ni->itype.compressed.block_size = 0;
1093 ni->itype.compressed.block_size_bits =
1094 0;
1095 ni->itype.compressed.block_clusters =
1096 0;
1097 }
1098 ni->itype.compressed.size = sle64_to_cpu(
1099 a->data.non_resident.
1100 compressed_size);
1101 }
1102 if (a->data.non_resident.lowest_vcn) {
1103 ntfs_error(vi->i_sb, "First extent of $DATA "
1104 "attribute has non zero "
1105 "lowest_vcn.");
1106 goto unm_err_out;
1107 }
1108 vi->i_size = sle64_to_cpu(
1109 a->data.non_resident.data_size);
1110 ni->initialized_size = sle64_to_cpu(
1111 a->data.non_resident.initialized_size);
1112 ni->allocated_size = sle64_to_cpu(
1113 a->data.non_resident.allocated_size);
1114 } else { /* Resident attribute. */
1115 vi->i_size = ni->initialized_size = le32_to_cpu(
1116 a->data.resident.value_length);
1117 ni->allocated_size = le32_to_cpu(a->length) -
1118 le16_to_cpu(
1119 a->data.resident.value_offset);
1120 if (vi->i_size > ni->allocated_size) {
1121 ntfs_error(vi->i_sb, "Resident data attribute "
1122 "is corrupt (size exceeds "
1123 "allocation).");
1124 goto unm_err_out;
1125 }
1126 }
1127no_data_attr_special_case:
1128 /* We are done with the mft record, so we release it. */
1129 ntfs_attr_put_search_ctx(ctx);
1130 unmap_mft_record(ni);
1131 m = NULL;
1132 ctx = NULL;
1133 /* Setup the operations for this inode. */
1134 vi->i_op = &ntfs_file_inode_ops;
1135 vi->i_fop = &ntfs_file_ops;
1136 vi->i_mapping->a_ops = &ntfs_normal_aops;
1137 if (NInoMstProtected(ni))
1138 vi->i_mapping->a_ops = &ntfs_mst_aops;
1139 else if (NInoCompressed(ni))
1140 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1141 }
1142 /*
1143 * The number of 512-byte blocks used on disk (for stat). This is in so
1144 * far inaccurate as it doesn't account for any named streams or other
1145 * special non-resident attributes, but that is how Windows works, too,
1146 * so we are at least consistent with Windows, if not entirely
1147 * consistent with the Linux Way. Doing it the Linux Way would cause a
1148 * significant slowdown as it would involve iterating over all
1149 * attributes in the mft record and adding the allocated/compressed
1150 * sizes of all non-resident attributes present to give us the Linux
1151 * correct size that should go into i_blocks (after division by 512).
1152 */
1153 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1154 vi->i_blocks = ni->itype.compressed.size >> 9;
1155 else
1156 vi->i_blocks = ni->allocated_size >> 9;
1157 ntfs_debug("Done.");
1158 return 0;
1159iput_unm_err_out:
1160 iput(bvi);
1161unm_err_out:
1162 if (!err)
1163 err = -EIO;
1164 if (ctx)
1165 ntfs_attr_put_search_ctx(ctx);
1166 if (m)
1167 unmap_mft_record(ni);
1168err_out:
1169 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt "
1170 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino);
1171 make_bad_inode(vi);
1172 if (err != -EOPNOTSUPP && err != -ENOMEM)
1173 NVolSetErrors(vol);
1174 return err;
1175}
1176
1177/**
1178 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1179 * @base_vi: base inode
1180 * @vi: attribute inode to read
1181 *
1182 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1183 * attribute inode described by @vi into memory from the base mft record
1184 * described by @base_ni.
1185 *
1186 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1187 * reading and looks up the attribute described by @vi before setting up the
1188 * necessary fields in @vi as well as initializing the ntfs inode.
1189 *
1190 * Q: What locks are held when the function is called?
1191 * A: i_state has I_NEW set, hence the inode is locked, also
1192 * i_count is set to 1, so it is not going to go away
1193 *
1194 * Return 0 on success and -errno on error. In the error case, the inode will
1195 * have had make_bad_inode() executed on it.
1196 *
1197 * Note this cannot be called for AT_INDEX_ALLOCATION.
1198 */
1199static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1200{
1201 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1202 ntfs_inode *ni, *base_ni;
1203 MFT_RECORD *m;
1204 ATTR_RECORD *a;
1205 ntfs_attr_search_ctx *ctx;
1206 int err = 0;
1207
1208 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1209
1210 ntfs_init_big_inode(vi);
1211
1212 ni = NTFS_I(vi);
1213 base_ni = NTFS_I(base_vi);
1214
1215 /* Just mirror the values from the base inode. */
1216 vi->i_uid = base_vi->i_uid;
1217 vi->i_gid = base_vi->i_gid;
1218 set_nlink(vi, base_vi->i_nlink);
1219 vi->i_mtime = base_vi->i_mtime;
1220 vi->i_ctime = base_vi->i_ctime;
1221 vi->i_atime = base_vi->i_atime;
1222 vi->i_generation = ni->seq_no = base_ni->seq_no;
1223
1224 /* Set inode type to zero but preserve permissions. */
1225 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1226
1227 m = map_mft_record(base_ni);
1228 if (IS_ERR(m)) {
1229 err = PTR_ERR(m);
1230 goto err_out;
1231 }
1232 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1233 if (!ctx) {
1234 err = -ENOMEM;
1235 goto unm_err_out;
1236 }
1237 /* Find the attribute. */
1238 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1239 CASE_SENSITIVE, 0, NULL, 0, ctx);
1240 if (unlikely(err))
1241 goto unm_err_out;
1242 a = ctx->attr;
1243 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1244 if (a->flags & ATTR_COMPRESSION_MASK) {
1245 NInoSetCompressed(ni);
1246 if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1247 ni->name_len)) {
1248 ntfs_error(vi->i_sb, "Found compressed "
1249 "non-data or named data "
1250 "attribute. Please report "
1251 "you saw this message to "
1252 "linux-ntfs-dev@lists."
1253 "sourceforge.net");
1254 goto unm_err_out;
1255 }
1256 if (vol->cluster_size > 4096) {
1257 ntfs_error(vi->i_sb, "Found compressed "
1258 "attribute but compression is "
1259 "disabled due to cluster size "
1260 "(%i) > 4kiB.",
1261 vol->cluster_size);
1262 goto unm_err_out;
1263 }
1264 if ((a->flags & ATTR_COMPRESSION_MASK) !=
1265 ATTR_IS_COMPRESSED) {
1266 ntfs_error(vi->i_sb, "Found unknown "
1267 "compression method.");
1268 goto unm_err_out;
1269 }
1270 }
1271 /*
1272 * The compressed/sparse flag set in an index root just means
1273 * to compress all files.
1274 */
1275 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1276 ntfs_error(vi->i_sb, "Found mst protected attribute "
1277 "but the attribute is %s. Please "
1278 "report you saw this message to "
1279 "linux-ntfs-dev@lists.sourceforge.net",
1280 NInoCompressed(ni) ? "compressed" :
1281 "sparse");
1282 goto unm_err_out;
1283 }
1284 if (a->flags & ATTR_IS_SPARSE)
1285 NInoSetSparse(ni);
1286 }
1287 if (a->flags & ATTR_IS_ENCRYPTED) {
1288 if (NInoCompressed(ni)) {
1289 ntfs_error(vi->i_sb, "Found encrypted and compressed "
1290 "data.");
1291 goto unm_err_out;
1292 }
1293 /*
1294 * The encryption flag set in an index root just means to
1295 * encrypt all files.
1296 */
1297 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1298 ntfs_error(vi->i_sb, "Found mst protected attribute "
1299 "but the attribute is encrypted. "
1300 "Please report you saw this message "
1301 "to linux-ntfs-dev@lists.sourceforge."
1302 "net");
1303 goto unm_err_out;
1304 }
1305 if (ni->type != AT_DATA) {
1306 ntfs_error(vi->i_sb, "Found encrypted non-data "
1307 "attribute.");
1308 goto unm_err_out;
1309 }
1310 NInoSetEncrypted(ni);
1311 }
1312 if (!a->non_resident) {
1313 /* Ensure the attribute name is placed before the value. */
1314 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1315 le16_to_cpu(a->data.resident.value_offset)))) {
1316 ntfs_error(vol->sb, "Attribute name is placed after "
1317 "the attribute value.");
1318 goto unm_err_out;
1319 }
1320 if (NInoMstProtected(ni)) {
1321 ntfs_error(vi->i_sb, "Found mst protected attribute "
1322 "but the attribute is resident. "
1323 "Please report you saw this message to "
1324 "linux-ntfs-dev@lists.sourceforge.net");
1325 goto unm_err_out;
1326 }
1327 vi->i_size = ni->initialized_size = le32_to_cpu(
1328 a->data.resident.value_length);
1329 ni->allocated_size = le32_to_cpu(a->length) -
1330 le16_to_cpu(a->data.resident.value_offset);
1331 if (vi->i_size > ni->allocated_size) {
1332 ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1333 "(size exceeds allocation).");
1334 goto unm_err_out;
1335 }
1336 } else {
1337 NInoSetNonResident(ni);
1338 /*
1339 * Ensure the attribute name is placed before the mapping pairs
1340 * array.
1341 */
1342 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1343 le16_to_cpu(
1344 a->data.non_resident.mapping_pairs_offset)))) {
1345 ntfs_error(vol->sb, "Attribute name is placed after "
1346 "the mapping pairs array.");
1347 goto unm_err_out;
1348 }
1349 if (NInoCompressed(ni) || NInoSparse(ni)) {
1350 if (NInoCompressed(ni) && a->data.non_resident.
1351 compression_unit != 4) {
1352 ntfs_error(vi->i_sb, "Found non-standard "
1353 "compression unit (%u instead "
1354 "of 4). Cannot handle this.",
1355 a->data.non_resident.
1356 compression_unit);
1357 err = -EOPNOTSUPP;
1358 goto unm_err_out;
1359 }
1360 if (a->data.non_resident.compression_unit) {
1361 ni->itype.compressed.block_size = 1U <<
1362 (a->data.non_resident.
1363 compression_unit +
1364 vol->cluster_size_bits);
1365 ni->itype.compressed.block_size_bits =
1366 ffs(ni->itype.compressed.
1367 block_size) - 1;
1368 ni->itype.compressed.block_clusters = 1U <<
1369 a->data.non_resident.
1370 compression_unit;
1371 } else {
1372 ni->itype.compressed.block_size = 0;
1373 ni->itype.compressed.block_size_bits = 0;
1374 ni->itype.compressed.block_clusters = 0;
1375 }
1376 ni->itype.compressed.size = sle64_to_cpu(
1377 a->data.non_resident.compressed_size);
1378 }
1379 if (a->data.non_resident.lowest_vcn) {
1380 ntfs_error(vi->i_sb, "First extent of attribute has "
1381 "non-zero lowest_vcn.");
1382 goto unm_err_out;
1383 }
1384 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1385 ni->initialized_size = sle64_to_cpu(
1386 a->data.non_resident.initialized_size);
1387 ni->allocated_size = sle64_to_cpu(
1388 a->data.non_resident.allocated_size);
1389 }
1390 vi->i_mapping->a_ops = &ntfs_normal_aops;
1391 if (NInoMstProtected(ni))
1392 vi->i_mapping->a_ops = &ntfs_mst_aops;
1393 else if (NInoCompressed(ni))
1394 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1395 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1396 vi->i_blocks = ni->itype.compressed.size >> 9;
1397 else
1398 vi->i_blocks = ni->allocated_size >> 9;
1399 /*
1400 * Make sure the base inode does not go away and attach it to the
1401 * attribute inode.
1402 */
1403 igrab(base_vi);
1404 ni->ext.base_ntfs_ino = base_ni;
1405 ni->nr_extents = -1;
1406
1407 ntfs_attr_put_search_ctx(ctx);
1408 unmap_mft_record(base_ni);
1409
1410 ntfs_debug("Done.");
1411 return 0;
1412
1413unm_err_out:
1414 if (!err)
1415 err = -EIO;
1416 if (ctx)
1417 ntfs_attr_put_search_ctx(ctx);
1418 unmap_mft_record(base_ni);
1419err_out:
1420 ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1421 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1422 "Marking corrupt inode and base inode 0x%lx as bad. "
1423 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1424 base_vi->i_ino);
1425 make_bad_inode(vi);
1426 if (err != -ENOMEM)
1427 NVolSetErrors(vol);
1428 return err;
1429}
1430
1431/**
1432 * ntfs_read_locked_index_inode - read an index inode from its base inode
1433 * @base_vi: base inode
1434 * @vi: index inode to read
1435 *
1436 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1437 * index inode described by @vi into memory from the base mft record described
1438 * by @base_ni.
1439 *
1440 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1441 * reading and looks up the attributes relating to the index described by @vi
1442 * before setting up the necessary fields in @vi as well as initializing the
1443 * ntfs inode.
1444 *
1445 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1446 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1447 * are setup like directory inodes since directories are a special case of
1448 * indices ao they need to be treated in much the same way. Most importantly,
1449 * for small indices the index allocation attribute might not actually exist.
1450 * However, the index root attribute always exists but this does not need to
1451 * have an inode associated with it and this is why we define a new inode type
1452 * index. Also, like for directories, we need to have an attribute inode for
1453 * the bitmap attribute corresponding to the index allocation attribute and we
1454 * can store this in the appropriate field of the inode, just like we do for
1455 * normal directory inodes.
1456 *
1457 * Q: What locks are held when the function is called?
1458 * A: i_state has I_NEW set, hence the inode is locked, also
1459 * i_count is set to 1, so it is not going to go away
1460 *
1461 * Return 0 on success and -errno on error. In the error case, the inode will
1462 * have had make_bad_inode() executed on it.
1463 */
1464static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1465{
1466 loff_t bvi_size;
1467 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1468 ntfs_inode *ni, *base_ni, *bni;
1469 struct inode *bvi;
1470 MFT_RECORD *m;
1471 ATTR_RECORD *a;
1472 ntfs_attr_search_ctx *ctx;
1473 INDEX_ROOT *ir;
1474 u8 *ir_end, *index_end;
1475 int err = 0;
1476
1477 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1478 ntfs_init_big_inode(vi);
1479 ni = NTFS_I(vi);
1480 base_ni = NTFS_I(base_vi);
1481 /* Just mirror the values from the base inode. */
1482 vi->i_uid = base_vi->i_uid;
1483 vi->i_gid = base_vi->i_gid;
1484 set_nlink(vi, base_vi->i_nlink);
1485 vi->i_mtime = base_vi->i_mtime;
1486 vi->i_ctime = base_vi->i_ctime;
1487 vi->i_atime = base_vi->i_atime;
1488 vi->i_generation = ni->seq_no = base_ni->seq_no;
1489 /* Set inode type to zero but preserve permissions. */
1490 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1491 /* Map the mft record for the base inode. */
1492 m = map_mft_record(base_ni);
1493 if (IS_ERR(m)) {
1494 err = PTR_ERR(m);
1495 goto err_out;
1496 }
1497 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1498 if (!ctx) {
1499 err = -ENOMEM;
1500 goto unm_err_out;
1501 }
1502 /* Find the index root attribute. */
1503 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1504 CASE_SENSITIVE, 0, NULL, 0, ctx);
1505 if (unlikely(err)) {
1506 if (err == -ENOENT)
1507 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1508 "missing.");
1509 goto unm_err_out;
1510 }
1511 a = ctx->attr;
1512 /* Set up the state. */
1513 if (unlikely(a->non_resident)) {
1514 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1515 goto unm_err_out;
1516 }
1517 /* Ensure the attribute name is placed before the value. */
1518 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1519 le16_to_cpu(a->data.resident.value_offset)))) {
1520 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1521 "after the attribute value.");
1522 goto unm_err_out;
1523 }
1524 /*
1525 * Compressed/encrypted/sparse index root is not allowed, except for
1526 * directories of course but those are not dealt with here.
1527 */
1528 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1529 ATTR_IS_SPARSE)) {
1530 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1531 "root attribute.");
1532 goto unm_err_out;
1533 }
1534 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1535 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1536 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1537 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1538 goto unm_err_out;
1539 }
1540 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1541 if (index_end > ir_end) {
1542 ntfs_error(vi->i_sb, "Index is corrupt.");
1543 goto unm_err_out;
1544 }
1545 if (ir->type) {
1546 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1547 le32_to_cpu(ir->type));
1548 goto unm_err_out;
1549 }
1550 ni->itype.index.collation_rule = ir->collation_rule;
1551 ntfs_debug("Index collation rule is 0x%x.",
1552 le32_to_cpu(ir->collation_rule));
1553 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1554 if (!is_power_of_2(ni->itype.index.block_size)) {
1555 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1556 "two.", ni->itype.index.block_size);
1557 goto unm_err_out;
1558 }
1559 if (ni->itype.index.block_size > PAGE_SIZE) {
1560 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE "
1561 "(%ld) is not supported. Sorry.",
1562 ni->itype.index.block_size, PAGE_SIZE);
1563 err = -EOPNOTSUPP;
1564 goto unm_err_out;
1565 }
1566 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1567 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1568 "(%i) is not supported. Sorry.",
1569 ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1570 err = -EOPNOTSUPP;
1571 goto unm_err_out;
1572 }
1573 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1574 /* Determine the size of a vcn in the index. */
1575 if (vol->cluster_size <= ni->itype.index.block_size) {
1576 ni->itype.index.vcn_size = vol->cluster_size;
1577 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1578 } else {
1579 ni->itype.index.vcn_size = vol->sector_size;
1580 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1581 }
1582 /* Check for presence of index allocation attribute. */
1583 if (!(ir->index.flags & LARGE_INDEX)) {
1584 /* No index allocation. */
1585 vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1586 /* We are done with the mft record, so we release it. */
1587 ntfs_attr_put_search_ctx(ctx);
1588 unmap_mft_record(base_ni);
1589 m = NULL;
1590 ctx = NULL;
1591 goto skip_large_index_stuff;
1592 } /* LARGE_INDEX: Index allocation present. Setup state. */
1593 NInoSetIndexAllocPresent(ni);
1594 /* Find index allocation attribute. */
1595 ntfs_attr_reinit_search_ctx(ctx);
1596 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1597 CASE_SENSITIVE, 0, NULL, 0, ctx);
1598 if (unlikely(err)) {
1599 if (err == -ENOENT)
1600 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1601 "not present but $INDEX_ROOT "
1602 "indicated it is.");
1603 else
1604 ntfs_error(vi->i_sb, "Failed to lookup "
1605 "$INDEX_ALLOCATION attribute.");
1606 goto unm_err_out;
1607 }
1608 a = ctx->attr;
1609 if (!a->non_resident) {
1610 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1611 "resident.");
1612 goto unm_err_out;
1613 }
1614 /*
1615 * Ensure the attribute name is placed before the mapping pairs array.
1616 */
1617 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1618 le16_to_cpu(
1619 a->data.non_resident.mapping_pairs_offset)))) {
1620 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1621 "placed after the mapping pairs array.");
1622 goto unm_err_out;
1623 }
1624 if (a->flags & ATTR_IS_ENCRYPTED) {
1625 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1626 "encrypted.");
1627 goto unm_err_out;
1628 }
1629 if (a->flags & ATTR_IS_SPARSE) {
1630 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1631 goto unm_err_out;
1632 }
1633 if (a->flags & ATTR_COMPRESSION_MASK) {
1634 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1635 "compressed.");
1636 goto unm_err_out;
1637 }
1638 if (a->data.non_resident.lowest_vcn) {
1639 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1640 "attribute has non zero lowest_vcn.");
1641 goto unm_err_out;
1642 }
1643 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1644 ni->initialized_size = sle64_to_cpu(
1645 a->data.non_resident.initialized_size);
1646 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1647 /*
1648 * We are done with the mft record, so we release it. Otherwise
1649 * we would deadlock in ntfs_attr_iget().
1650 */
1651 ntfs_attr_put_search_ctx(ctx);
1652 unmap_mft_record(base_ni);
1653 m = NULL;
1654 ctx = NULL;
1655 /* Get the index bitmap attribute inode. */
1656 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1657 if (IS_ERR(bvi)) {
1658 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1659 err = PTR_ERR(bvi);
1660 goto unm_err_out;
1661 }
1662 bni = NTFS_I(bvi);
1663 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1664 NInoSparse(bni)) {
1665 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1666 "encrypted and/or sparse.");
1667 goto iput_unm_err_out;
1668 }
1669 /* Consistency check bitmap size vs. index allocation size. */
1670 bvi_size = i_size_read(bvi);
1671 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1672 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1673 "index allocation (0x%llx).", bvi_size << 3,
1674 vi->i_size);
1675 goto iput_unm_err_out;
1676 }
1677 iput(bvi);
1678skip_large_index_stuff:
1679 /* Setup the operations for this index inode. */
1680 vi->i_mapping->a_ops = &ntfs_mst_aops;
1681 vi->i_blocks = ni->allocated_size >> 9;
1682 /*
1683 * Make sure the base inode doesn't go away and attach it to the
1684 * index inode.
1685 */
1686 igrab(base_vi);
1687 ni->ext.base_ntfs_ino = base_ni;
1688 ni->nr_extents = -1;
1689
1690 ntfs_debug("Done.");
1691 return 0;
1692iput_unm_err_out:
1693 iput(bvi);
1694unm_err_out:
1695 if (!err)
1696 err = -EIO;
1697 if (ctx)
1698 ntfs_attr_put_search_ctx(ctx);
1699 if (m)
1700 unmap_mft_record(base_ni);
1701err_out:
1702 ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1703 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1704 ni->name_len);
1705 make_bad_inode(vi);
1706 if (err != -EOPNOTSUPP && err != -ENOMEM)
1707 NVolSetErrors(vol);
1708 return err;
1709}
1710
1711/*
1712 * The MFT inode has special locking, so teach the lock validator
1713 * about this by splitting off the locking rules of the MFT from
1714 * the locking rules of other inodes. The MFT inode can never be
1715 * accessed from the VFS side (or even internally), only by the
1716 * map_mft functions.
1717 */
1718static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1719
1720/**
1721 * ntfs_read_inode_mount - special read_inode for mount time use only
1722 * @vi: inode to read
1723 *
1724 * Read inode FILE_MFT at mount time, only called with super_block lock
1725 * held from within the read_super() code path.
1726 *
1727 * This function exists because when it is called the page cache for $MFT/$DATA
1728 * is not initialized and hence we cannot get at the contents of mft records
1729 * by calling map_mft_record*().
1730 *
1731 * Further it needs to cope with the circular references problem, i.e. cannot
1732 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1733 * we do not know where the other extent mft records are yet and again, because
1734 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1735 * attribute list is actually present in $MFT inode.
1736 *
1737 * We solve these problems by starting with the $DATA attribute before anything
1738 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1739 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1740 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1741 * sufficient information for the next step to complete.
1742 *
1743 * This should work but there are two possible pit falls (see inline comments
1744 * below), but only time will tell if they are real pits or just smoke...
1745 */
1746int ntfs_read_inode_mount(struct inode *vi)
1747{
1748 VCN next_vcn, last_vcn, highest_vcn;
1749 s64 block;
1750 struct super_block *sb = vi->i_sb;
1751 ntfs_volume *vol = NTFS_SB(sb);
1752 struct buffer_head *bh;
1753 ntfs_inode *ni;
1754 MFT_RECORD *m = NULL;
1755 ATTR_RECORD *a;
1756 ntfs_attr_search_ctx *ctx;
1757 unsigned int i, nr_blocks;
1758 int err;
1759
1760 ntfs_debug("Entering.");
1761
1762 /* Initialize the ntfs specific part of @vi. */
1763 ntfs_init_big_inode(vi);
1764
1765 ni = NTFS_I(vi);
1766
1767 /* Setup the data attribute. It is special as it is mst protected. */
1768 NInoSetNonResident(ni);
1769 NInoSetMstProtected(ni);
1770 NInoSetSparseDisabled(ni);
1771 ni->type = AT_DATA;
1772 ni->name = NULL;
1773 ni->name_len = 0;
1774 /*
1775 * This sets up our little cheat allowing us to reuse the async read io
1776 * completion handler for directories.
1777 */
1778 ni->itype.index.block_size = vol->mft_record_size;
1779 ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1780
1781 /* Very important! Needed to be able to call map_mft_record*(). */
1782 vol->mft_ino = vi;
1783
1784 /* Allocate enough memory to read the first mft record. */
1785 if (vol->mft_record_size > 64 * 1024) {
1786 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1787 vol->mft_record_size);
1788 goto err_out;
1789 }
1790 i = vol->mft_record_size;
1791 if (i < sb->s_blocksize)
1792 i = sb->s_blocksize;
1793 m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1794 if (!m) {
1795 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1796 goto err_out;
1797 }
1798
1799 /* Determine the first block of the $MFT/$DATA attribute. */
1800 block = vol->mft_lcn << vol->cluster_size_bits >>
1801 sb->s_blocksize_bits;
1802 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1803 if (!nr_blocks)
1804 nr_blocks = 1;
1805
1806 /* Load $MFT/$DATA's first mft record. */
1807 for (i = 0; i < nr_blocks; i++) {
1808 bh = sb_bread(sb, block++);
1809 if (!bh) {
1810 ntfs_error(sb, "Device read failed.");
1811 goto err_out;
1812 }
1813 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1814 sb->s_blocksize);
1815 brelse(bh);
1816 }
1817
Olivier Deprez0e641232021-09-23 10:07:05 +02001818 if (le32_to_cpu(m->bytes_allocated) != vol->mft_record_size) {
1819 ntfs_error(sb, "Incorrect mft record size %u in superblock, should be %u.",
1820 le32_to_cpu(m->bytes_allocated), vol->mft_record_size);
1821 goto err_out;
1822 }
1823
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001824 /* Apply the mst fixups. */
1825 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1826 /* FIXME: Try to use the $MFTMirr now. */
1827 ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1828 goto err_out;
1829 }
1830
1831 /* Need this to sanity check attribute list references to $MFT. */
1832 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1833
1834 /* Provides readpage() for map_mft_record(). */
1835 vi->i_mapping->a_ops = &ntfs_mst_aops;
1836
1837 ctx = ntfs_attr_get_search_ctx(ni, m);
1838 if (!ctx) {
1839 err = -ENOMEM;
1840 goto err_out;
1841 }
1842
1843 /* Find the attribute list attribute if present. */
1844 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1845 if (err) {
1846 if (unlikely(err != -ENOENT)) {
1847 ntfs_error(sb, "Failed to lookup attribute list "
1848 "attribute. You should run chkdsk.");
1849 goto put_err_out;
1850 }
1851 } else /* if (!err) */ {
1852 ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1853 u8 *al_end;
1854 static const char *es = " Not allowed. $MFT is corrupt. "
1855 "You should run chkdsk.";
1856
1857 ntfs_debug("Attribute list attribute found in $MFT.");
1858 NInoSetAttrList(ni);
1859 a = ctx->attr;
1860 if (a->flags & ATTR_COMPRESSION_MASK) {
1861 ntfs_error(sb, "Attribute list attribute is "
1862 "compressed.%s", es);
1863 goto put_err_out;
1864 }
1865 if (a->flags & ATTR_IS_ENCRYPTED ||
1866 a->flags & ATTR_IS_SPARSE) {
1867 if (a->non_resident) {
1868 ntfs_error(sb, "Non-resident attribute list "
1869 "attribute is encrypted/"
1870 "sparse.%s", es);
1871 goto put_err_out;
1872 }
1873 ntfs_warning(sb, "Resident attribute list attribute "
1874 "in $MFT system file is marked "
1875 "encrypted/sparse which is not true. "
1876 "However, Windows allows this and "
1877 "chkdsk does not detect or correct it "
1878 "so we will just ignore the invalid "
1879 "flags and pretend they are not set.");
1880 }
1881 /* Now allocate memory for the attribute list. */
1882 ni->attr_list_size = (u32)ntfs_attr_size(a);
1883 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1884 if (!ni->attr_list) {
1885 ntfs_error(sb, "Not enough memory to allocate buffer "
1886 "for attribute list.");
1887 goto put_err_out;
1888 }
1889 if (a->non_resident) {
1890 NInoSetAttrListNonResident(ni);
1891 if (a->data.non_resident.lowest_vcn) {
1892 ntfs_error(sb, "Attribute list has non zero "
1893 "lowest_vcn. $MFT is corrupt. "
1894 "You should run chkdsk.");
1895 goto put_err_out;
1896 }
1897 /* Setup the runlist. */
1898 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1899 a, NULL);
1900 if (IS_ERR(ni->attr_list_rl.rl)) {
1901 err = PTR_ERR(ni->attr_list_rl.rl);
1902 ni->attr_list_rl.rl = NULL;
1903 ntfs_error(sb, "Mapping pairs decompression "
1904 "failed with error code %i.",
1905 -err);
1906 goto put_err_out;
1907 }
1908 /* Now load the attribute list. */
1909 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1910 ni->attr_list, ni->attr_list_size,
1911 sle64_to_cpu(a->data.
1912 non_resident.initialized_size)))) {
1913 ntfs_error(sb, "Failed to load attribute list "
1914 "attribute with error code %i.",
1915 -err);
1916 goto put_err_out;
1917 }
1918 } else /* if (!ctx.attr->non_resident) */ {
1919 if ((u8*)a + le16_to_cpu(
1920 a->data.resident.value_offset) +
1921 le32_to_cpu(
1922 a->data.resident.value_length) >
1923 (u8*)ctx->mrec + vol->mft_record_size) {
1924 ntfs_error(sb, "Corrupt attribute list "
1925 "attribute.");
1926 goto put_err_out;
1927 }
1928 /* Now copy the attribute list. */
1929 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1930 a->data.resident.value_offset),
1931 le32_to_cpu(
1932 a->data.resident.value_length));
1933 }
1934 /* The attribute list is now setup in memory. */
1935 /*
1936 * FIXME: I don't know if this case is actually possible.
1937 * According to logic it is not possible but I have seen too
1938 * many weird things in MS software to rely on logic... Thus we
1939 * perform a manual search and make sure the first $MFT/$DATA
1940 * extent is in the base inode. If it is not we abort with an
1941 * error and if we ever see a report of this error we will need
1942 * to do some magic in order to have the necessary mft record
1943 * loaded and in the right place in the page cache. But
1944 * hopefully logic will prevail and this never happens...
1945 */
1946 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1947 al_end = (u8*)al_entry + ni->attr_list_size;
1948 for (;; al_entry = next_al_entry) {
1949 /* Out of bounds check. */
1950 if ((u8*)al_entry < ni->attr_list ||
1951 (u8*)al_entry > al_end)
1952 goto em_put_err_out;
1953 /* Catch the end of the attribute list. */
1954 if ((u8*)al_entry == al_end)
1955 goto em_put_err_out;
1956 if (!al_entry->length)
1957 goto em_put_err_out;
1958 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1959 le16_to_cpu(al_entry->length) > al_end)
1960 goto em_put_err_out;
1961 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1962 le16_to_cpu(al_entry->length));
1963 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1964 goto em_put_err_out;
1965 if (AT_DATA != al_entry->type)
1966 continue;
1967 /* We want an unnamed attribute. */
1968 if (al_entry->name_length)
1969 goto em_put_err_out;
1970 /* Want the first entry, i.e. lowest_vcn == 0. */
1971 if (al_entry->lowest_vcn)
1972 goto em_put_err_out;
1973 /* First entry has to be in the base mft record. */
1974 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1975 /* MFT references do not match, logic fails. */
1976 ntfs_error(sb, "BUG: The first $DATA extent "
1977 "of $MFT is not in the base "
1978 "mft record. Please report "
1979 "you saw this message to "
1980 "linux-ntfs-dev@lists."
1981 "sourceforge.net");
1982 goto put_err_out;
1983 } else {
1984 /* Sequence numbers must match. */
1985 if (MSEQNO_LE(al_entry->mft_reference) !=
1986 ni->seq_no)
1987 goto em_put_err_out;
1988 /* Got it. All is ok. We can stop now. */
1989 break;
1990 }
1991 }
1992 }
1993
1994 ntfs_attr_reinit_search_ctx(ctx);
1995
1996 /* Now load all attribute extents. */
1997 a = NULL;
1998 next_vcn = last_vcn = highest_vcn = 0;
1999 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
2000 ctx))) {
2001 runlist_element *nrl;
2002
2003 /* Cache the current attribute. */
2004 a = ctx->attr;
2005 /* $MFT must be non-resident. */
2006 if (!a->non_resident) {
2007 ntfs_error(sb, "$MFT must be non-resident but a "
2008 "resident extent was found. $MFT is "
2009 "corrupt. Run chkdsk.");
2010 goto put_err_out;
2011 }
2012 /* $MFT must be uncompressed and unencrypted. */
2013 if (a->flags & ATTR_COMPRESSION_MASK ||
2014 a->flags & ATTR_IS_ENCRYPTED ||
2015 a->flags & ATTR_IS_SPARSE) {
2016 ntfs_error(sb, "$MFT must be uncompressed, "
2017 "non-sparse, and unencrypted but a "
2018 "compressed/sparse/encrypted extent "
2019 "was found. $MFT is corrupt. Run "
2020 "chkdsk.");
2021 goto put_err_out;
2022 }
2023 /*
2024 * Decompress the mapping pairs array of this extent and merge
2025 * the result into the existing runlist. No need for locking
2026 * as we have exclusive access to the inode at this time and we
2027 * are a mount in progress task, too.
2028 */
2029 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2030 if (IS_ERR(nrl)) {
2031 ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2032 "failed with error code %ld. $MFT is "
2033 "corrupt.", PTR_ERR(nrl));
2034 goto put_err_out;
2035 }
2036 ni->runlist.rl = nrl;
2037
2038 /* Are we in the first extent? */
2039 if (!next_vcn) {
2040 if (a->data.non_resident.lowest_vcn) {
2041 ntfs_error(sb, "First extent of $DATA "
2042 "attribute has non zero "
2043 "lowest_vcn. $MFT is corrupt. "
2044 "You should run chkdsk.");
2045 goto put_err_out;
2046 }
2047 /* Get the last vcn in the $DATA attribute. */
2048 last_vcn = sle64_to_cpu(
2049 a->data.non_resident.allocated_size)
2050 >> vol->cluster_size_bits;
2051 /* Fill in the inode size. */
2052 vi->i_size = sle64_to_cpu(
2053 a->data.non_resident.data_size);
2054 ni->initialized_size = sle64_to_cpu(
2055 a->data.non_resident.initialized_size);
2056 ni->allocated_size = sle64_to_cpu(
2057 a->data.non_resident.allocated_size);
2058 /*
2059 * Verify the number of mft records does not exceed
2060 * 2^32 - 1.
2061 */
2062 if ((vi->i_size >> vol->mft_record_size_bits) >=
2063 (1ULL << 32)) {
2064 ntfs_error(sb, "$MFT is too big! Aborting.");
2065 goto put_err_out;
2066 }
2067 /*
2068 * We have got the first extent of the runlist for
2069 * $MFT which means it is now relatively safe to call
2070 * the normal ntfs_read_inode() function.
2071 * Complete reading the inode, this will actually
2072 * re-read the mft record for $MFT, this time entering
2073 * it into the page cache with which we complete the
2074 * kick start of the volume. It should be safe to do
2075 * this now as the first extent of $MFT/$DATA is
2076 * already known and we would hope that we don't need
2077 * further extents in order to find the other
2078 * attributes belonging to $MFT. Only time will tell if
2079 * this is really the case. If not we will have to play
2080 * magic at this point, possibly duplicating a lot of
2081 * ntfs_read_inode() at this point. We will need to
2082 * ensure we do enough of its work to be able to call
2083 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2084 * hope this never happens...
2085 */
2086 ntfs_read_locked_inode(vi);
2087 if (is_bad_inode(vi)) {
2088 ntfs_error(sb, "ntfs_read_inode() of $MFT "
2089 "failed. BUG or corrupt $MFT. "
2090 "Run chkdsk and if no errors "
2091 "are found, please report you "
2092 "saw this message to "
2093 "linux-ntfs-dev@lists."
2094 "sourceforge.net");
2095 ntfs_attr_put_search_ctx(ctx);
2096 /* Revert to the safe super operations. */
2097 ntfs_free(m);
2098 return -1;
2099 }
2100 /*
2101 * Re-initialize some specifics about $MFT's inode as
2102 * ntfs_read_inode() will have set up the default ones.
2103 */
2104 /* Set uid and gid to root. */
2105 vi->i_uid = GLOBAL_ROOT_UID;
2106 vi->i_gid = GLOBAL_ROOT_GID;
2107 /* Regular file. No access for anyone. */
2108 vi->i_mode = S_IFREG;
2109 /* No VFS initiated operations allowed for $MFT. */
2110 vi->i_op = &ntfs_empty_inode_ops;
2111 vi->i_fop = &ntfs_empty_file_ops;
2112 }
2113
2114 /* Get the lowest vcn for the next extent. */
2115 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2116 next_vcn = highest_vcn + 1;
2117
2118 /* Only one extent or error, which we catch below. */
2119 if (next_vcn <= 0)
2120 break;
2121
2122 /* Avoid endless loops due to corruption. */
2123 if (next_vcn < sle64_to_cpu(
2124 a->data.non_resident.lowest_vcn)) {
2125 ntfs_error(sb, "$MFT has corrupt attribute list "
2126 "attribute. Run chkdsk.");
2127 goto put_err_out;
2128 }
2129 }
2130 if (err != -ENOENT) {
2131 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2132 "$MFT is corrupt. Run chkdsk.");
2133 goto put_err_out;
2134 }
2135 if (!a) {
2136 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2137 "corrupt. Run chkdsk.");
2138 goto put_err_out;
2139 }
2140 if (highest_vcn && highest_vcn != last_vcn - 1) {
2141 ntfs_error(sb, "Failed to load the complete runlist for "
2142 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2143 "Run chkdsk.");
2144 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2145 (unsigned long long)highest_vcn,
2146 (unsigned long long)last_vcn - 1);
2147 goto put_err_out;
2148 }
2149 ntfs_attr_put_search_ctx(ctx);
2150 ntfs_debug("Done.");
2151 ntfs_free(m);
2152
2153 /*
2154 * Split the locking rules of the MFT inode from the
2155 * locking rules of other inodes:
2156 */
2157 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2158 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2159
2160 return 0;
2161
2162em_put_err_out:
2163 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2164 "attribute list. $MFT is corrupt. Run chkdsk.");
2165put_err_out:
2166 ntfs_attr_put_search_ctx(ctx);
2167err_out:
2168 ntfs_error(sb, "Failed. Marking inode as bad.");
2169 make_bad_inode(vi);
2170 ntfs_free(m);
2171 return -1;
2172}
2173
2174static void __ntfs_clear_inode(ntfs_inode *ni)
2175{
2176 /* Free all alocated memory. */
2177 down_write(&ni->runlist.lock);
2178 if (ni->runlist.rl) {
2179 ntfs_free(ni->runlist.rl);
2180 ni->runlist.rl = NULL;
2181 }
2182 up_write(&ni->runlist.lock);
2183
2184 if (ni->attr_list) {
2185 ntfs_free(ni->attr_list);
2186 ni->attr_list = NULL;
2187 }
2188
2189 down_write(&ni->attr_list_rl.lock);
2190 if (ni->attr_list_rl.rl) {
2191 ntfs_free(ni->attr_list_rl.rl);
2192 ni->attr_list_rl.rl = NULL;
2193 }
2194 up_write(&ni->attr_list_rl.lock);
2195
2196 if (ni->name_len && ni->name != I30) {
2197 /* Catch bugs... */
2198 BUG_ON(!ni->name);
2199 kfree(ni->name);
2200 }
2201}
2202
2203void ntfs_clear_extent_inode(ntfs_inode *ni)
2204{
2205 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2206
2207 BUG_ON(NInoAttr(ni));
2208 BUG_ON(ni->nr_extents != -1);
2209
2210#ifdef NTFS_RW
2211 if (NInoDirty(ni)) {
2212 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2213 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! "
2214 "Losing data! This is a BUG!!!");
2215 // FIXME: Do something!!!
2216 }
2217#endif /* NTFS_RW */
2218
2219 __ntfs_clear_inode(ni);
2220
2221 /* Bye, bye... */
2222 ntfs_destroy_extent_inode(ni);
2223}
2224
2225/**
2226 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2227 * @vi: vfs inode pending annihilation
2228 *
2229 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2230 * is called, which deallocates all memory belonging to the NTFS specific part
2231 * of the inode and returns.
2232 *
2233 * If the MFT record is dirty, we commit it before doing anything else.
2234 */
2235void ntfs_evict_big_inode(struct inode *vi)
2236{
2237 ntfs_inode *ni = NTFS_I(vi);
2238
2239 truncate_inode_pages_final(&vi->i_data);
2240 clear_inode(vi);
2241
2242#ifdef NTFS_RW
2243 if (NInoDirty(ni)) {
2244 bool was_bad = (is_bad_inode(vi));
2245
2246 /* Committing the inode also commits all extent inodes. */
2247 ntfs_commit_inode(vi);
2248
2249 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2250 ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2251 "0x%lx. Losing data!", vi->i_ino);
2252 // FIXME: Do something!!!
2253 }
2254 }
2255#endif /* NTFS_RW */
2256
2257 /* No need to lock at this stage as no one else has a reference. */
2258 if (ni->nr_extents > 0) {
2259 int i;
2260
2261 for (i = 0; i < ni->nr_extents; i++)
2262 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2263 kfree(ni->ext.extent_ntfs_inos);
2264 }
2265
2266 __ntfs_clear_inode(ni);
2267
2268 if (NInoAttr(ni)) {
2269 /* Release the base inode if we are holding it. */
2270 if (ni->nr_extents == -1) {
2271 iput(VFS_I(ni->ext.base_ntfs_ino));
2272 ni->nr_extents = 0;
2273 ni->ext.base_ntfs_ino = NULL;
2274 }
2275 }
David Brazdil0f672f62019-12-10 10:32:29 +00002276 BUG_ON(ni->page);
2277 if (!atomic_dec_and_test(&ni->count))
2278 BUG();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002279 return;
2280}
2281
2282/**
2283 * ntfs_show_options - show mount options in /proc/mounts
2284 * @sf: seq_file in which to write our mount options
2285 * @root: root of the mounted tree whose mount options to display
2286 *
2287 * Called by the VFS once for each mounted ntfs volume when someone reads
2288 * /proc/mounts in order to display the NTFS specific mount options of each
2289 * mount. The mount options of fs specified by @root are written to the seq file
2290 * @sf and success is returned.
2291 */
2292int ntfs_show_options(struct seq_file *sf, struct dentry *root)
2293{
2294 ntfs_volume *vol = NTFS_SB(root->d_sb);
2295 int i;
2296
2297 seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
2298 seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
2299 if (vol->fmask == vol->dmask)
2300 seq_printf(sf, ",umask=0%o", vol->fmask);
2301 else {
2302 seq_printf(sf, ",fmask=0%o", vol->fmask);
2303 seq_printf(sf, ",dmask=0%o", vol->dmask);
2304 }
2305 seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2306 if (NVolCaseSensitive(vol))
2307 seq_printf(sf, ",case_sensitive");
2308 if (NVolShowSystemFiles(vol))
2309 seq_printf(sf, ",show_sys_files");
2310 if (!NVolSparseEnabled(vol))
2311 seq_printf(sf, ",disable_sparse");
2312 for (i = 0; on_errors_arr[i].val; i++) {
2313 if (on_errors_arr[i].val & vol->on_errors)
2314 seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2315 }
2316 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2317 return 0;
2318}
2319
2320#ifdef NTFS_RW
2321
2322static const char *es = " Leaving inconsistent metadata. Unmount and run "
2323 "chkdsk.";
2324
2325/**
2326 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2327 * @vi: inode for which the i_size was changed
2328 *
2329 * We only support i_size changes for normal files at present, i.e. not
2330 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2331 * below.
2332 *
2333 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2334 * that the change is allowed.
2335 *
2336 * This implies for us that @vi is a file inode rather than a directory, index,
2337 * or attribute inode as well as that @vi is a base inode.
2338 *
2339 * Returns 0 on success or -errno on error.
2340 *
2341 * Called with ->i_mutex held.
2342 */
2343int ntfs_truncate(struct inode *vi)
2344{
2345 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2346 VCN highest_vcn;
2347 unsigned long flags;
2348 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2349 ntfs_volume *vol = ni->vol;
2350 ntfs_attr_search_ctx *ctx;
2351 MFT_RECORD *m;
2352 ATTR_RECORD *a;
2353 const char *te = " Leaving file length out of sync with i_size.";
2354 int err, mp_size, size_change, alloc_change;
2355 u32 attr_len;
2356
2357 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2358 BUG_ON(NInoAttr(ni));
2359 BUG_ON(S_ISDIR(vi->i_mode));
2360 BUG_ON(NInoMstProtected(ni));
2361 BUG_ON(ni->nr_extents < 0);
2362retry_truncate:
2363 /*
2364 * Lock the runlist for writing and map the mft record to ensure it is
2365 * safe to mess with the attribute runlist and sizes.
2366 */
2367 down_write(&ni->runlist.lock);
2368 if (!NInoAttr(ni))
2369 base_ni = ni;
2370 else
2371 base_ni = ni->ext.base_ntfs_ino;
2372 m = map_mft_record(base_ni);
2373 if (IS_ERR(m)) {
2374 err = PTR_ERR(m);
2375 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2376 "(error code %d).%s", vi->i_ino, err, te);
2377 ctx = NULL;
2378 m = NULL;
2379 goto old_bad_out;
2380 }
2381 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2382 if (unlikely(!ctx)) {
2383 ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2384 "inode 0x%lx (not enough memory).%s",
2385 vi->i_ino, te);
2386 err = -ENOMEM;
2387 goto old_bad_out;
2388 }
2389 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2390 CASE_SENSITIVE, 0, NULL, 0, ctx);
2391 if (unlikely(err)) {
2392 if (err == -ENOENT) {
2393 ntfs_error(vi->i_sb, "Open attribute is missing from "
2394 "mft record. Inode 0x%lx is corrupt. "
2395 "Run chkdsk.%s", vi->i_ino, te);
2396 err = -EIO;
2397 } else
2398 ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2399 "inode 0x%lx (error code %d).%s",
2400 vi->i_ino, err, te);
2401 goto old_bad_out;
2402 }
2403 m = ctx->mrec;
2404 a = ctx->attr;
2405 /*
2406 * The i_size of the vfs inode is the new size for the attribute value.
2407 */
2408 new_size = i_size_read(vi);
2409 /* The current size of the attribute value is the old size. */
2410 old_size = ntfs_attr_size(a);
2411 /* Calculate the new allocated size. */
2412 if (NInoNonResident(ni))
2413 new_alloc_size = (new_size + vol->cluster_size - 1) &
2414 ~(s64)vol->cluster_size_mask;
2415 else
2416 new_alloc_size = (new_size + 7) & ~7;
2417 /* The current allocated size is the old allocated size. */
2418 read_lock_irqsave(&ni->size_lock, flags);
2419 old_alloc_size = ni->allocated_size;
2420 read_unlock_irqrestore(&ni->size_lock, flags);
2421 /*
2422 * The change in the file size. This will be 0 if no change, >0 if the
2423 * size is growing, and <0 if the size is shrinking.
2424 */
2425 size_change = -1;
2426 if (new_size - old_size >= 0) {
2427 size_change = 1;
2428 if (new_size == old_size)
2429 size_change = 0;
2430 }
2431 /* As above for the allocated size. */
2432 alloc_change = -1;
2433 if (new_alloc_size - old_alloc_size >= 0) {
2434 alloc_change = 1;
2435 if (new_alloc_size == old_alloc_size)
2436 alloc_change = 0;
2437 }
2438 /*
2439 * If neither the size nor the allocation are being changed there is
2440 * nothing to do.
2441 */
2442 if (!size_change && !alloc_change)
2443 goto unm_done;
2444 /* If the size is changing, check if new size is allowed in $AttrDef. */
2445 if (size_change) {
2446 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2447 if (unlikely(err)) {
2448 if (err == -ERANGE) {
2449 ntfs_error(vol->sb, "Truncate would cause the "
2450 "inode 0x%lx to %simum size "
2451 "for its attribute type "
2452 "(0x%x). Aborting truncate.",
2453 vi->i_ino,
2454 new_size > old_size ? "exceed "
2455 "the max" : "go under the min",
2456 le32_to_cpu(ni->type));
2457 err = -EFBIG;
2458 } else {
2459 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2460 "attribute type 0x%x. "
2461 "Aborting truncate.",
2462 vi->i_ino,
2463 le32_to_cpu(ni->type));
2464 err = -EIO;
2465 }
2466 /* Reset the vfs inode size to the old size. */
2467 i_size_write(vi, old_size);
2468 goto err_out;
2469 }
2470 }
2471 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2472 ntfs_warning(vi->i_sb, "Changes in inode size are not "
2473 "supported yet for %s files, ignoring.",
2474 NInoCompressed(ni) ? "compressed" :
2475 "encrypted");
2476 err = -EOPNOTSUPP;
2477 goto bad_out;
2478 }
2479 if (a->non_resident)
2480 goto do_non_resident_truncate;
2481 BUG_ON(NInoNonResident(ni));
2482 /* Resize the attribute record to best fit the new attribute size. */
2483 if (new_size < vol->mft_record_size &&
2484 !ntfs_resident_attr_value_resize(m, a, new_size)) {
2485 /* The resize succeeded! */
2486 flush_dcache_mft_record_page(ctx->ntfs_ino);
2487 mark_mft_record_dirty(ctx->ntfs_ino);
2488 write_lock_irqsave(&ni->size_lock, flags);
2489 /* Update the sizes in the ntfs inode and all is done. */
2490 ni->allocated_size = le32_to_cpu(a->length) -
2491 le16_to_cpu(a->data.resident.value_offset);
2492 /*
2493 * Note ntfs_resident_attr_value_resize() has already done any
2494 * necessary data clearing in the attribute record. When the
2495 * file is being shrunk vmtruncate() will already have cleared
2496 * the top part of the last partial page, i.e. since this is
2497 * the resident case this is the page with index 0. However,
2498 * when the file is being expanded, the page cache page data
2499 * between the old data_size, i.e. old_size, and the new_size
2500 * has not been zeroed. Fortunately, we do not need to zero it
2501 * either since on one hand it will either already be zero due
2502 * to both readpage and writepage clearing partial page data
2503 * beyond i_size in which case there is nothing to do or in the
2504 * case of the file being mmap()ped at the same time, POSIX
2505 * specifies that the behaviour is unspecified thus we do not
2506 * have to do anything. This means that in our implementation
2507 * in the rare case that the file is mmap()ped and a write
2508 * occurred into the mmap()ped region just beyond the file size
2509 * and writepage has not yet been called to write out the page
2510 * (which would clear the area beyond the file size) and we now
2511 * extend the file size to incorporate this dirty region
2512 * outside the file size, a write of the page would result in
2513 * this data being written to disk instead of being cleared.
2514 * Given both POSIX and the Linux mmap(2) man page specify that
2515 * this corner case is undefined, we choose to leave it like
2516 * that as this is much simpler for us as we cannot lock the
2517 * relevant page now since we are holding too many ntfs locks
2518 * which would result in a lock reversal deadlock.
2519 */
2520 ni->initialized_size = new_size;
2521 write_unlock_irqrestore(&ni->size_lock, flags);
2522 goto unm_done;
2523 }
2524 /* If the above resize failed, this must be an attribute extension. */
2525 BUG_ON(size_change < 0);
2526 /*
2527 * We have to drop all the locks so we can call
2528 * ntfs_attr_make_non_resident(). This could be optimised by try-
2529 * locking the first page cache page and only if that fails dropping
2530 * the locks, locking the page, and redoing all the locking and
2531 * lookups. While this would be a huge optimisation, it is not worth
2532 * it as this is definitely a slow code path as it only ever can happen
2533 * once for any given file.
2534 */
2535 ntfs_attr_put_search_ctx(ctx);
2536 unmap_mft_record(base_ni);
2537 up_write(&ni->runlist.lock);
2538 /*
2539 * Not enough space in the mft record, try to make the attribute
2540 * non-resident and if successful restart the truncation process.
2541 */
2542 err = ntfs_attr_make_non_resident(ni, old_size);
2543 if (likely(!err))
2544 goto retry_truncate;
2545 /*
2546 * Could not make non-resident. If this is due to this not being
2547 * permitted for this attribute type or there not being enough space,
2548 * try to make other attributes non-resident. Otherwise fail.
2549 */
2550 if (unlikely(err != -EPERM && err != -ENOSPC)) {
2551 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2552 "type 0x%x, because the conversion from "
2553 "resident to non-resident attribute failed "
2554 "with error code %i.", vi->i_ino,
2555 (unsigned)le32_to_cpu(ni->type), err);
2556 if (err != -ENOMEM)
2557 err = -EIO;
2558 goto conv_err_out;
2559 }
2560 /* TODO: Not implemented from here, abort. */
2561 if (err == -ENOSPC)
2562 ntfs_error(vol->sb, "Not enough space in the mft record/on "
2563 "disk for the non-resident attribute value. "
2564 "This case is not implemented yet.");
2565 else /* if (err == -EPERM) */
2566 ntfs_error(vol->sb, "This attribute type may not be "
2567 "non-resident. This case is not implemented "
2568 "yet.");
2569 err = -EOPNOTSUPP;
2570 goto conv_err_out;
2571#if 0
2572 // TODO: Attempt to make other attributes non-resident.
2573 if (!err)
2574 goto do_resident_extend;
2575 /*
2576 * Both the attribute list attribute and the standard information
2577 * attribute must remain in the base inode. Thus, if this is one of
2578 * these attributes, we have to try to move other attributes out into
2579 * extent mft records instead.
2580 */
2581 if (ni->type == AT_ATTRIBUTE_LIST ||
2582 ni->type == AT_STANDARD_INFORMATION) {
2583 // TODO: Attempt to move other attributes into extent mft
2584 // records.
2585 err = -EOPNOTSUPP;
2586 if (!err)
2587 goto do_resident_extend;
2588 goto err_out;
2589 }
2590 // TODO: Attempt to move this attribute to an extent mft record, but
2591 // only if it is not already the only attribute in an mft record in
2592 // which case there would be nothing to gain.
2593 err = -EOPNOTSUPP;
2594 if (!err)
2595 goto do_resident_extend;
2596 /* There is nothing we can do to make enough space. )-: */
2597 goto err_out;
2598#endif
2599do_non_resident_truncate:
2600 BUG_ON(!NInoNonResident(ni));
2601 if (alloc_change < 0) {
2602 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2603 if (highest_vcn > 0 &&
2604 old_alloc_size >> vol->cluster_size_bits >
2605 highest_vcn + 1) {
2606 /*
2607 * This attribute has multiple extents. Not yet
2608 * supported.
2609 */
2610 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2611 "attribute type 0x%x, because the "
2612 "attribute is highly fragmented (it "
2613 "consists of multiple extents) and "
2614 "this case is not implemented yet.",
2615 vi->i_ino,
2616 (unsigned)le32_to_cpu(ni->type));
2617 err = -EOPNOTSUPP;
2618 goto bad_out;
2619 }
2620 }
2621 /*
2622 * If the size is shrinking, need to reduce the initialized_size and
2623 * the data_size before reducing the allocation.
2624 */
2625 if (size_change < 0) {
2626 /*
2627 * Make the valid size smaller (i_size is already up-to-date).
2628 */
2629 write_lock_irqsave(&ni->size_lock, flags);
2630 if (new_size < ni->initialized_size) {
2631 ni->initialized_size = new_size;
2632 a->data.non_resident.initialized_size =
2633 cpu_to_sle64(new_size);
2634 }
2635 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2636 write_unlock_irqrestore(&ni->size_lock, flags);
2637 flush_dcache_mft_record_page(ctx->ntfs_ino);
2638 mark_mft_record_dirty(ctx->ntfs_ino);
2639 /* If the allocated size is not changing, we are done. */
2640 if (!alloc_change)
2641 goto unm_done;
2642 /*
2643 * If the size is shrinking it makes no sense for the
2644 * allocation to be growing.
2645 */
2646 BUG_ON(alloc_change > 0);
2647 } else /* if (size_change >= 0) */ {
2648 /*
2649 * The file size is growing or staying the same but the
2650 * allocation can be shrinking, growing or staying the same.
2651 */
2652 if (alloc_change > 0) {
2653 /*
2654 * We need to extend the allocation and possibly update
2655 * the data size. If we are updating the data size,
2656 * since we are not touching the initialized_size we do
2657 * not need to worry about the actual data on disk.
2658 * And as far as the page cache is concerned, there
2659 * will be no pages beyond the old data size and any
2660 * partial region in the last page between the old and
2661 * new data size (or the end of the page if the new
2662 * data size is outside the page) does not need to be
2663 * modified as explained above for the resident
2664 * attribute truncate case. To do this, we simply drop
2665 * the locks we hold and leave all the work to our
2666 * friendly helper ntfs_attr_extend_allocation().
2667 */
2668 ntfs_attr_put_search_ctx(ctx);
2669 unmap_mft_record(base_ni);
2670 up_write(&ni->runlist.lock);
2671 err = ntfs_attr_extend_allocation(ni, new_size,
2672 size_change > 0 ? new_size : -1, -1);
2673 /*
2674 * ntfs_attr_extend_allocation() will have done error
2675 * output already.
2676 */
2677 goto done;
2678 }
2679 if (!alloc_change)
2680 goto alloc_done;
2681 }
2682 /* alloc_change < 0 */
2683 /* Free the clusters. */
2684 nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2685 vol->cluster_size_bits, -1, ctx);
2686 m = ctx->mrec;
2687 a = ctx->attr;
2688 if (unlikely(nr_freed < 0)) {
2689 ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2690 "%lli). Unmount and run chkdsk to recover "
2691 "the lost cluster(s).", (long long)nr_freed);
2692 NVolSetErrors(vol);
2693 nr_freed = 0;
2694 }
2695 /* Truncate the runlist. */
2696 err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2697 new_alloc_size >> vol->cluster_size_bits);
2698 /*
2699 * If the runlist truncation failed and/or the search context is no
2700 * longer valid, we cannot resize the attribute record or build the
2701 * mapping pairs array thus we mark the inode bad so that no access to
2702 * the freed clusters can happen.
2703 */
2704 if (unlikely(err || IS_ERR(m))) {
2705 ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2706 IS_ERR(m) ?
2707 "restore attribute search context" :
2708 "truncate attribute runlist",
2709 IS_ERR(m) ? PTR_ERR(m) : err, es);
2710 err = -EIO;
2711 goto bad_out;
2712 }
2713 /* Get the size for the shrunk mapping pairs array for the runlist. */
2714 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2715 if (unlikely(mp_size <= 0)) {
2716 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2717 "attribute type 0x%x, because determining the "
2718 "size for the mapping pairs failed with error "
2719 "code %i.%s", vi->i_ino,
2720 (unsigned)le32_to_cpu(ni->type), mp_size, es);
2721 err = -EIO;
2722 goto bad_out;
2723 }
2724 /*
2725 * Shrink the attribute record for the new mapping pairs array. Note,
2726 * this cannot fail since we are making the attribute smaller thus by
2727 * definition there is enough space to do so.
2728 */
2729 attr_len = le32_to_cpu(a->length);
2730 err = ntfs_attr_record_resize(m, a, mp_size +
2731 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2732 BUG_ON(err);
2733 /*
2734 * Generate the mapping pairs array directly into the attribute record.
2735 */
2736 err = ntfs_mapping_pairs_build(vol, (u8*)a +
2737 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2738 mp_size, ni->runlist.rl, 0, -1, NULL);
2739 if (unlikely(err)) {
2740 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2741 "attribute type 0x%x, because building the "
2742 "mapping pairs failed with error code %i.%s",
2743 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2744 err, es);
2745 err = -EIO;
2746 goto bad_out;
2747 }
2748 /* Update the allocated/compressed size as well as the highest vcn. */
2749 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2750 vol->cluster_size_bits) - 1);
2751 write_lock_irqsave(&ni->size_lock, flags);
2752 ni->allocated_size = new_alloc_size;
2753 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2754 if (NInoSparse(ni) || NInoCompressed(ni)) {
2755 if (nr_freed) {
2756 ni->itype.compressed.size -= nr_freed <<
2757 vol->cluster_size_bits;
2758 BUG_ON(ni->itype.compressed.size < 0);
2759 a->data.non_resident.compressed_size = cpu_to_sle64(
2760 ni->itype.compressed.size);
2761 vi->i_blocks = ni->itype.compressed.size >> 9;
2762 }
2763 } else
2764 vi->i_blocks = new_alloc_size >> 9;
2765 write_unlock_irqrestore(&ni->size_lock, flags);
2766 /*
2767 * We have shrunk the allocation. If this is a shrinking truncate we
2768 * have already dealt with the initialized_size and the data_size above
2769 * and we are done. If the truncate is only changing the allocation
2770 * and not the data_size, we are also done. If this is an extending
2771 * truncate, need to extend the data_size now which is ensured by the
2772 * fact that @size_change is positive.
2773 */
2774alloc_done:
2775 /*
2776 * If the size is growing, need to update it now. If it is shrinking,
2777 * we have already updated it above (before the allocation change).
2778 */
2779 if (size_change > 0)
2780 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2781 /* Ensure the modified mft record is written out. */
2782 flush_dcache_mft_record_page(ctx->ntfs_ino);
2783 mark_mft_record_dirty(ctx->ntfs_ino);
2784unm_done:
2785 ntfs_attr_put_search_ctx(ctx);
2786 unmap_mft_record(base_ni);
2787 up_write(&ni->runlist.lock);
2788done:
2789 /* Update the mtime and ctime on the base inode. */
2790 /* normally ->truncate shouldn't update ctime or mtime,
2791 * but ntfs did before so it got a copy & paste version
2792 * of file_update_time. one day someone should fix this
2793 * for real.
2794 */
2795 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2796 struct timespec64 now = current_time(VFS_I(base_ni));
2797 int sync_it = 0;
2798
2799 if (!timespec64_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2800 !timespec64_equal(&VFS_I(base_ni)->i_ctime, &now))
2801 sync_it = 1;
2802 VFS_I(base_ni)->i_mtime = now;
2803 VFS_I(base_ni)->i_ctime = now;
2804
2805 if (sync_it)
2806 mark_inode_dirty_sync(VFS_I(base_ni));
2807 }
2808
2809 if (likely(!err)) {
2810 NInoClearTruncateFailed(ni);
2811 ntfs_debug("Done.");
2812 }
2813 return err;
2814old_bad_out:
2815 old_size = -1;
2816bad_out:
2817 if (err != -ENOMEM && err != -EOPNOTSUPP)
2818 NVolSetErrors(vol);
2819 if (err != -EOPNOTSUPP)
2820 NInoSetTruncateFailed(ni);
2821 else if (old_size >= 0)
2822 i_size_write(vi, old_size);
2823err_out:
2824 if (ctx)
2825 ntfs_attr_put_search_ctx(ctx);
2826 if (m)
2827 unmap_mft_record(base_ni);
2828 up_write(&ni->runlist.lock);
2829out:
2830 ntfs_debug("Failed. Returning error code %i.", err);
2831 return err;
2832conv_err_out:
2833 if (err != -ENOMEM && err != -EOPNOTSUPP)
2834 NVolSetErrors(vol);
2835 if (err != -EOPNOTSUPP)
2836 NInoSetTruncateFailed(ni);
2837 else
2838 i_size_write(vi, old_size);
2839 goto out;
2840}
2841
2842/**
2843 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2844 * @vi: inode for which the i_size was changed
2845 *
2846 * Wrapper for ntfs_truncate() that has no return value.
2847 *
2848 * See ntfs_truncate() description above for details.
2849 */
2850#ifdef NTFS_RW
2851void ntfs_truncate_vfs(struct inode *vi) {
2852 ntfs_truncate(vi);
2853}
2854#endif
2855
2856/**
2857 * ntfs_setattr - called from notify_change() when an attribute is being changed
2858 * @dentry: dentry whose attributes to change
2859 * @attr: structure describing the attributes and the changes
2860 *
2861 * We have to trap VFS attempts to truncate the file described by @dentry as
2862 * soon as possible, because we do not implement changes in i_size yet. So we
2863 * abort all i_size changes here.
2864 *
2865 * We also abort all changes of user, group, and mode as we do not implement
2866 * the NTFS ACLs yet.
2867 *
2868 * Called with ->i_mutex held.
2869 */
2870int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2871{
2872 struct inode *vi = d_inode(dentry);
2873 int err;
2874 unsigned int ia_valid = attr->ia_valid;
2875
2876 err = setattr_prepare(dentry, attr);
2877 if (err)
2878 goto out;
2879 /* We do not support NTFS ACLs yet. */
2880 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2881 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2882 "supported yet, ignoring.");
2883 err = -EOPNOTSUPP;
2884 goto out;
2885 }
2886 if (ia_valid & ATTR_SIZE) {
2887 if (attr->ia_size != i_size_read(vi)) {
2888 ntfs_inode *ni = NTFS_I(vi);
2889 /*
2890 * FIXME: For now we do not support resizing of
2891 * compressed or encrypted files yet.
2892 */
2893 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2894 ntfs_warning(vi->i_sb, "Changes in inode size "
2895 "are not supported yet for "
2896 "%s files, ignoring.",
2897 NInoCompressed(ni) ?
2898 "compressed" : "encrypted");
2899 err = -EOPNOTSUPP;
2900 } else {
2901 truncate_setsize(vi, attr->ia_size);
2902 ntfs_truncate_vfs(vi);
2903 }
2904 if (err || ia_valid == ATTR_SIZE)
2905 goto out;
2906 } else {
2907 /*
2908 * We skipped the truncate but must still update
2909 * timestamps.
2910 */
2911 ia_valid |= ATTR_MTIME | ATTR_CTIME;
2912 }
2913 }
Olivier Deprez0e641232021-09-23 10:07:05 +02002914 if (ia_valid & ATTR_ATIME)
2915 vi->i_atime = attr->ia_atime;
2916 if (ia_valid & ATTR_MTIME)
2917 vi->i_mtime = attr->ia_mtime;
2918 if (ia_valid & ATTR_CTIME)
2919 vi->i_ctime = attr->ia_ctime;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002920 mark_inode_dirty(vi);
2921out:
2922 return err;
2923}
2924
2925/**
2926 * ntfs_write_inode - write out a dirty inode
2927 * @vi: inode to write out
2928 * @sync: if true, write out synchronously
2929 *
2930 * Write out a dirty inode to disk including any extent inodes if present.
2931 *
2932 * If @sync is true, commit the inode to disk and wait for io completion. This
2933 * is done using write_mft_record().
2934 *
2935 * If @sync is false, just schedule the write to happen but do not wait for i/o
2936 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2937 * marking the page (and in this case mft record) dirty but we do not implement
2938 * this yet as write_mft_record() largely ignores the @sync parameter and
2939 * always performs synchronous writes.
2940 *
2941 * Return 0 on success and -errno on error.
2942 */
2943int __ntfs_write_inode(struct inode *vi, int sync)
2944{
2945 sle64 nt;
2946 ntfs_inode *ni = NTFS_I(vi);
2947 ntfs_attr_search_ctx *ctx;
2948 MFT_RECORD *m;
2949 STANDARD_INFORMATION *si;
2950 int err = 0;
2951 bool modified = false;
2952
2953 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2954 vi->i_ino);
2955 /*
2956 * Dirty attribute inodes are written via their real inodes so just
2957 * clean them here. Access time updates are taken care off when the
2958 * real inode is written.
2959 */
2960 if (NInoAttr(ni)) {
2961 NInoClearDirty(ni);
2962 ntfs_debug("Done.");
2963 return 0;
2964 }
2965 /* Map, pin, and lock the mft record belonging to the inode. */
2966 m = map_mft_record(ni);
2967 if (IS_ERR(m)) {
2968 err = PTR_ERR(m);
2969 goto err_out;
2970 }
2971 /* Update the access times in the standard information attribute. */
2972 ctx = ntfs_attr_get_search_ctx(ni, m);
2973 if (unlikely(!ctx)) {
2974 err = -ENOMEM;
2975 goto unm_err_out;
2976 }
2977 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
2978 CASE_SENSITIVE, 0, NULL, 0, ctx);
2979 if (unlikely(err)) {
2980 ntfs_attr_put_search_ctx(ctx);
2981 goto unm_err_out;
2982 }
2983 si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
2984 le16_to_cpu(ctx->attr->data.resident.value_offset));
2985 /* Update the access times if they have changed. */
2986 nt = utc2ntfs(vi->i_mtime);
2987 if (si->last_data_change_time != nt) {
2988 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
2989 "new = 0x%llx", vi->i_ino, (long long)
2990 sle64_to_cpu(si->last_data_change_time),
2991 (long long)sle64_to_cpu(nt));
2992 si->last_data_change_time = nt;
2993 modified = true;
2994 }
2995 nt = utc2ntfs(vi->i_ctime);
2996 if (si->last_mft_change_time != nt) {
2997 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
2998 "new = 0x%llx", vi->i_ino, (long long)
2999 sle64_to_cpu(si->last_mft_change_time),
3000 (long long)sle64_to_cpu(nt));
3001 si->last_mft_change_time = nt;
3002 modified = true;
3003 }
3004 nt = utc2ntfs(vi->i_atime);
3005 if (si->last_access_time != nt) {
3006 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3007 "new = 0x%llx", vi->i_ino,
3008 (long long)sle64_to_cpu(si->last_access_time),
3009 (long long)sle64_to_cpu(nt));
3010 si->last_access_time = nt;
3011 modified = true;
3012 }
3013 /*
3014 * If we just modified the standard information attribute we need to
3015 * mark the mft record it is in dirty. We do this manually so that
3016 * mark_inode_dirty() is not called which would redirty the inode and
3017 * hence result in an infinite loop of trying to write the inode.
3018 * There is no need to mark the base inode nor the base mft record
3019 * dirty, since we are going to write this mft record below in any case
3020 * and the base mft record may actually not have been modified so it
3021 * might not need to be written out.
3022 * NOTE: It is not a problem when the inode for $MFT itself is being
3023 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3024 * on the $MFT inode and hence ntfs_write_inode() will not be
3025 * re-invoked because of it which in turn is ok since the dirtied mft
3026 * record will be cleaned and written out to disk below, i.e. before
3027 * this function returns.
3028 */
3029 if (modified) {
3030 flush_dcache_mft_record_page(ctx->ntfs_ino);
3031 if (!NInoTestSetDirty(ctx->ntfs_ino))
3032 mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3033 ctx->ntfs_ino->page_ofs);
3034 }
3035 ntfs_attr_put_search_ctx(ctx);
3036 /* Now the access times are updated, write the base mft record. */
3037 if (NInoDirty(ni))
3038 err = write_mft_record(ni, m, sync);
3039 /* Write all attached extent mft records. */
3040 mutex_lock(&ni->extent_lock);
3041 if (ni->nr_extents > 0) {
3042 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3043 int i;
3044
3045 ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3046 for (i = 0; i < ni->nr_extents; i++) {
3047 ntfs_inode *tni = extent_nis[i];
3048
3049 if (NInoDirty(tni)) {
3050 MFT_RECORD *tm = map_mft_record(tni);
3051 int ret;
3052
3053 if (IS_ERR(tm)) {
3054 if (!err || err == -ENOMEM)
3055 err = PTR_ERR(tm);
3056 continue;
3057 }
3058 ret = write_mft_record(tni, tm, sync);
3059 unmap_mft_record(tni);
3060 if (unlikely(ret)) {
3061 if (!err || err == -ENOMEM)
3062 err = ret;
3063 }
3064 }
3065 }
3066 }
3067 mutex_unlock(&ni->extent_lock);
3068 unmap_mft_record(ni);
3069 if (unlikely(err))
3070 goto err_out;
3071 ntfs_debug("Done.");
3072 return 0;
3073unm_err_out:
3074 unmap_mft_record(ni);
3075err_out:
3076 if (err == -ENOMEM) {
3077 ntfs_warning(vi->i_sb, "Not enough memory to write inode. "
3078 "Marking the inode dirty again, so the VFS "
3079 "retries later.");
3080 mark_inode_dirty(vi);
3081 } else {
3082 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err);
3083 NVolSetErrors(ni->vol);
3084 }
3085 return err;
3086}
3087
3088#endif /* NTFS_RW */