blob: 1b4d2206d53a108ad89ba4265d1b5263d9a0fb48 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-only
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * #!-checking implemented by tytso.
10 */
11/*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26#include <linux/slab.h>
27#include <linux/file.h>
28#include <linux/fdtable.h>
29#include <linux/mm.h>
30#include <linux/vmacache.h>
31#include <linux/stat.h>
32#include <linux/fcntl.h>
33#include <linux/swap.h>
34#include <linux/string.h>
35#include <linux/init.h>
36#include <linux/sched/mm.h>
37#include <linux/sched/coredump.h>
38#include <linux/sched/signal.h>
39#include <linux/sched/numa_balancing.h>
40#include <linux/sched/task.h>
41#include <linux/pagemap.h>
42#include <linux/perf_event.h>
43#include <linux/highmem.h>
44#include <linux/spinlock.h>
45#include <linux/key.h>
46#include <linux/personality.h>
47#include <linux/binfmts.h>
48#include <linux/utsname.h>
49#include <linux/pid_namespace.h>
50#include <linux/module.h>
51#include <linux/namei.h>
52#include <linux/mount.h>
53#include <linux/security.h>
54#include <linux/syscalls.h>
55#include <linux/tsacct_kern.h>
56#include <linux/cn_proc.h>
57#include <linux/audit.h>
58#include <linux/tracehook.h>
59#include <linux/kmod.h>
60#include <linux/fsnotify.h>
61#include <linux/fs_struct.h>
62#include <linux/pipe_fs_i.h>
63#include <linux/oom.h>
64#include <linux/compat.h>
65#include <linux/vmalloc.h>
66
67#include <linux/uaccess.h>
68#include <asm/mmu_context.h>
69#include <asm/tlb.h>
70
71#include <trace/events/task.h>
72#include "internal.h"
73
74#include <trace/events/sched.h>
75
76int suid_dumpable = 0;
77
78static LIST_HEAD(formats);
79static DEFINE_RWLOCK(binfmt_lock);
80
81void __register_binfmt(struct linux_binfmt * fmt, int insert)
82{
83 BUG_ON(!fmt);
84 if (WARN_ON(!fmt->load_binary))
85 return;
86 write_lock(&binfmt_lock);
87 insert ? list_add(&fmt->lh, &formats) :
88 list_add_tail(&fmt->lh, &formats);
89 write_unlock(&binfmt_lock);
90}
91
92EXPORT_SYMBOL(__register_binfmt);
93
94void unregister_binfmt(struct linux_binfmt * fmt)
95{
96 write_lock(&binfmt_lock);
97 list_del(&fmt->lh);
98 write_unlock(&binfmt_lock);
99}
100
101EXPORT_SYMBOL(unregister_binfmt);
102
103static inline void put_binfmt(struct linux_binfmt * fmt)
104{
105 module_put(fmt->module);
106}
107
108bool path_noexec(const struct path *path)
109{
110 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
111 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
112}
113
114#ifdef CONFIG_USELIB
115/*
116 * Note that a shared library must be both readable and executable due to
117 * security reasons.
118 *
119 * Also note that we take the address to load from from the file itself.
120 */
121SYSCALL_DEFINE1(uselib, const char __user *, library)
122{
123 struct linux_binfmt *fmt;
124 struct file *file;
125 struct filename *tmp = getname(library);
126 int error = PTR_ERR(tmp);
127 static const struct open_flags uselib_flags = {
128 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
129 .acc_mode = MAY_READ | MAY_EXEC,
130 .intent = LOOKUP_OPEN,
131 .lookup_flags = LOOKUP_FOLLOW,
132 };
133
134 if (IS_ERR(tmp))
135 goto out;
136
137 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
138 putname(tmp);
139 error = PTR_ERR(file);
140 if (IS_ERR(file))
141 goto out;
142
143 error = -EINVAL;
144 if (!S_ISREG(file_inode(file)->i_mode))
145 goto exit;
146
147 error = -EACCES;
148 if (path_noexec(&file->f_path))
149 goto exit;
150
151 fsnotify_open(file);
152
153 error = -ENOEXEC;
154
155 read_lock(&binfmt_lock);
156 list_for_each_entry(fmt, &formats, lh) {
157 if (!fmt->load_shlib)
158 continue;
159 if (!try_module_get(fmt->module))
160 continue;
161 read_unlock(&binfmt_lock);
162 error = fmt->load_shlib(file);
163 read_lock(&binfmt_lock);
164 put_binfmt(fmt);
165 if (error != -ENOEXEC)
166 break;
167 }
168 read_unlock(&binfmt_lock);
169exit:
170 fput(file);
171out:
172 return error;
173}
174#endif /* #ifdef CONFIG_USELIB */
175
176#ifdef CONFIG_MMU
177/*
178 * The nascent bprm->mm is not visible until exec_mmap() but it can
179 * use a lot of memory, account these pages in current->mm temporary
180 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
181 * change the counter back via acct_arg_size(0).
182 */
183static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
184{
185 struct mm_struct *mm = current->mm;
186 long diff = (long)(pages - bprm->vma_pages);
187
188 if (!mm || !diff)
189 return;
190
191 bprm->vma_pages = pages;
192 add_mm_counter(mm, MM_ANONPAGES, diff);
193}
194
195static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
196 int write)
197{
198 struct page *page;
199 int ret;
200 unsigned int gup_flags = FOLL_FORCE;
201
202#ifdef CONFIG_STACK_GROWSUP
203 if (write) {
204 ret = expand_downwards(bprm->vma, pos);
205 if (ret < 0)
206 return NULL;
207 }
208#endif
209
210 if (write)
211 gup_flags |= FOLL_WRITE;
212
213 /*
214 * We are doing an exec(). 'current' is the process
215 * doing the exec and bprm->mm is the new process's mm.
216 */
217 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
218 &page, NULL, NULL);
219 if (ret <= 0)
220 return NULL;
221
David Brazdil0f672f62019-12-10 10:32:29 +0000222 if (write)
223 acct_arg_size(bprm, vma_pages(bprm->vma));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000224
225 return page;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000226}
227
228static void put_arg_page(struct page *page)
229{
230 put_page(page);
231}
232
233static void free_arg_pages(struct linux_binprm *bprm)
234{
235}
236
237static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
238 struct page *page)
239{
240 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
241}
242
243static int __bprm_mm_init(struct linux_binprm *bprm)
244{
245 int err;
246 struct vm_area_struct *vma = NULL;
247 struct mm_struct *mm = bprm->mm;
248
249 bprm->vma = vma = vm_area_alloc(mm);
250 if (!vma)
251 return -ENOMEM;
252 vma_set_anonymous(vma);
253
254 if (down_write_killable(&mm->mmap_sem)) {
255 err = -EINTR;
256 goto err_free;
257 }
258
259 /*
260 * Place the stack at the largest stack address the architecture
261 * supports. Later, we'll move this to an appropriate place. We don't
262 * use STACK_TOP because that can depend on attributes which aren't
263 * configured yet.
264 */
265 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
266 vma->vm_end = STACK_TOP_MAX;
267 vma->vm_start = vma->vm_end - PAGE_SIZE;
268 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
269 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
270
271 err = insert_vm_struct(mm, vma);
272 if (err)
273 goto err;
274
275 mm->stack_vm = mm->total_vm = 1;
276 arch_bprm_mm_init(mm, vma);
277 up_write(&mm->mmap_sem);
278 bprm->p = vma->vm_end - sizeof(void *);
279 return 0;
280err:
281 up_write(&mm->mmap_sem);
282err_free:
283 bprm->vma = NULL;
284 vm_area_free(vma);
285 return err;
286}
287
288static bool valid_arg_len(struct linux_binprm *bprm, long len)
289{
290 return len <= MAX_ARG_STRLEN;
291}
292
293#else
294
295static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
296{
297}
298
299static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
300 int write)
301{
302 struct page *page;
303
304 page = bprm->page[pos / PAGE_SIZE];
305 if (!page && write) {
306 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
307 if (!page)
308 return NULL;
309 bprm->page[pos / PAGE_SIZE] = page;
310 }
311
312 return page;
313}
314
315static void put_arg_page(struct page *page)
316{
317}
318
319static void free_arg_page(struct linux_binprm *bprm, int i)
320{
321 if (bprm->page[i]) {
322 __free_page(bprm->page[i]);
323 bprm->page[i] = NULL;
324 }
325}
326
327static void free_arg_pages(struct linux_binprm *bprm)
328{
329 int i;
330
331 for (i = 0; i < MAX_ARG_PAGES; i++)
332 free_arg_page(bprm, i);
333}
334
335static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
336 struct page *page)
337{
338}
339
340static int __bprm_mm_init(struct linux_binprm *bprm)
341{
342 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
343 return 0;
344}
345
346static bool valid_arg_len(struct linux_binprm *bprm, long len)
347{
348 return len <= bprm->p;
349}
350
351#endif /* CONFIG_MMU */
352
353/*
354 * Create a new mm_struct and populate it with a temporary stack
355 * vm_area_struct. We don't have enough context at this point to set the stack
356 * flags, permissions, and offset, so we use temporary values. We'll update
357 * them later in setup_arg_pages().
358 */
359static int bprm_mm_init(struct linux_binprm *bprm)
360{
361 int err;
362 struct mm_struct *mm = NULL;
363
364 bprm->mm = mm = mm_alloc();
365 err = -ENOMEM;
366 if (!mm)
367 goto err;
368
369 /* Save current stack limit for all calculations made during exec. */
370 task_lock(current->group_leader);
371 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
372 task_unlock(current->group_leader);
373
374 err = __bprm_mm_init(bprm);
375 if (err)
376 goto err;
377
378 return 0;
379
380err:
381 if (mm) {
382 bprm->mm = NULL;
383 mmdrop(mm);
384 }
385
386 return err;
387}
388
389struct user_arg_ptr {
390#ifdef CONFIG_COMPAT
391 bool is_compat;
392#endif
393 union {
394 const char __user *const __user *native;
395#ifdef CONFIG_COMPAT
396 const compat_uptr_t __user *compat;
397#endif
398 } ptr;
399};
400
401static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
402{
403 const char __user *native;
404
405#ifdef CONFIG_COMPAT
406 if (unlikely(argv.is_compat)) {
407 compat_uptr_t compat;
408
409 if (get_user(compat, argv.ptr.compat + nr))
410 return ERR_PTR(-EFAULT);
411
412 return compat_ptr(compat);
413 }
414#endif
415
416 if (get_user(native, argv.ptr.native + nr))
417 return ERR_PTR(-EFAULT);
418
419 return native;
420}
421
422/*
423 * count() counts the number of strings in array ARGV.
424 */
425static int count(struct user_arg_ptr argv, int max)
426{
427 int i = 0;
428
429 if (argv.ptr.native != NULL) {
430 for (;;) {
431 const char __user *p = get_user_arg_ptr(argv, i);
432
433 if (!p)
434 break;
435
436 if (IS_ERR(p))
437 return -EFAULT;
438
439 if (i >= max)
440 return -E2BIG;
441 ++i;
442
443 if (fatal_signal_pending(current))
444 return -ERESTARTNOHAND;
445 cond_resched();
446 }
447 }
448 return i;
449}
450
David Brazdil0f672f62019-12-10 10:32:29 +0000451static int prepare_arg_pages(struct linux_binprm *bprm,
452 struct user_arg_ptr argv, struct user_arg_ptr envp)
453{
454 unsigned long limit, ptr_size;
455
456 bprm->argc = count(argv, MAX_ARG_STRINGS);
457 if (bprm->argc < 0)
458 return bprm->argc;
459
460 bprm->envc = count(envp, MAX_ARG_STRINGS);
461 if (bprm->envc < 0)
462 return bprm->envc;
463
464 /*
465 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
466 * (whichever is smaller) for the argv+env strings.
467 * This ensures that:
468 * - the remaining binfmt code will not run out of stack space,
469 * - the program will have a reasonable amount of stack left
470 * to work from.
471 */
472 limit = _STK_LIM / 4 * 3;
473 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
474 /*
475 * We've historically supported up to 32 pages (ARG_MAX)
476 * of argument strings even with small stacks
477 */
478 limit = max_t(unsigned long, limit, ARG_MAX);
479 /*
480 * We must account for the size of all the argv and envp pointers to
481 * the argv and envp strings, since they will also take up space in
482 * the stack. They aren't stored until much later when we can't
483 * signal to the parent that the child has run out of stack space.
484 * Instead, calculate it here so it's possible to fail gracefully.
485 */
486 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
487 if (limit <= ptr_size)
488 return -E2BIG;
489 limit -= ptr_size;
490
491 bprm->argmin = bprm->p - limit;
492 return 0;
493}
494
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000495/*
496 * 'copy_strings()' copies argument/environment strings from the old
497 * processes's memory to the new process's stack. The call to get_user_pages()
498 * ensures the destination page is created and not swapped out.
499 */
500static int copy_strings(int argc, struct user_arg_ptr argv,
501 struct linux_binprm *bprm)
502{
503 struct page *kmapped_page = NULL;
504 char *kaddr = NULL;
505 unsigned long kpos = 0;
506 int ret;
507
508 while (argc-- > 0) {
509 const char __user *str;
510 int len;
511 unsigned long pos;
512
513 ret = -EFAULT;
514 str = get_user_arg_ptr(argv, argc);
515 if (IS_ERR(str))
516 goto out;
517
518 len = strnlen_user(str, MAX_ARG_STRLEN);
519 if (!len)
520 goto out;
521
522 ret = -E2BIG;
523 if (!valid_arg_len(bprm, len))
524 goto out;
525
526 /* We're going to work our way backwords. */
527 pos = bprm->p;
528 str += len;
529 bprm->p -= len;
David Brazdil0f672f62019-12-10 10:32:29 +0000530#ifdef CONFIG_MMU
531 if (bprm->p < bprm->argmin)
532 goto out;
533#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000534
535 while (len > 0) {
536 int offset, bytes_to_copy;
537
538 if (fatal_signal_pending(current)) {
539 ret = -ERESTARTNOHAND;
540 goto out;
541 }
542 cond_resched();
543
544 offset = pos % PAGE_SIZE;
545 if (offset == 0)
546 offset = PAGE_SIZE;
547
548 bytes_to_copy = offset;
549 if (bytes_to_copy > len)
550 bytes_to_copy = len;
551
552 offset -= bytes_to_copy;
553 pos -= bytes_to_copy;
554 str -= bytes_to_copy;
555 len -= bytes_to_copy;
556
557 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
558 struct page *page;
559
560 page = get_arg_page(bprm, pos, 1);
561 if (!page) {
562 ret = -E2BIG;
563 goto out;
564 }
565
566 if (kmapped_page) {
567 flush_kernel_dcache_page(kmapped_page);
568 kunmap(kmapped_page);
569 put_arg_page(kmapped_page);
570 }
571 kmapped_page = page;
572 kaddr = kmap(kmapped_page);
573 kpos = pos & PAGE_MASK;
574 flush_arg_page(bprm, kpos, kmapped_page);
575 }
576 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
577 ret = -EFAULT;
578 goto out;
579 }
580 }
581 }
582 ret = 0;
583out:
584 if (kmapped_page) {
585 flush_kernel_dcache_page(kmapped_page);
586 kunmap(kmapped_page);
587 put_arg_page(kmapped_page);
588 }
589 return ret;
590}
591
592/*
593 * Like copy_strings, but get argv and its values from kernel memory.
594 */
595int copy_strings_kernel(int argc, const char *const *__argv,
596 struct linux_binprm *bprm)
597{
598 int r;
599 mm_segment_t oldfs = get_fs();
600 struct user_arg_ptr argv = {
601 .ptr.native = (const char __user *const __user *)__argv,
602 };
603
604 set_fs(KERNEL_DS);
605 r = copy_strings(argc, argv, bprm);
606 set_fs(oldfs);
607
608 return r;
609}
610EXPORT_SYMBOL(copy_strings_kernel);
611
612#ifdef CONFIG_MMU
613
614/*
615 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
616 * the binfmt code determines where the new stack should reside, we shift it to
617 * its final location. The process proceeds as follows:
618 *
619 * 1) Use shift to calculate the new vma endpoints.
620 * 2) Extend vma to cover both the old and new ranges. This ensures the
621 * arguments passed to subsequent functions are consistent.
622 * 3) Move vma's page tables to the new range.
623 * 4) Free up any cleared pgd range.
624 * 5) Shrink the vma to cover only the new range.
625 */
626static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
627{
628 struct mm_struct *mm = vma->vm_mm;
629 unsigned long old_start = vma->vm_start;
630 unsigned long old_end = vma->vm_end;
631 unsigned long length = old_end - old_start;
632 unsigned long new_start = old_start - shift;
633 unsigned long new_end = old_end - shift;
634 struct mmu_gather tlb;
635
636 BUG_ON(new_start > new_end);
637
638 /*
639 * ensure there are no vmas between where we want to go
640 * and where we are
641 */
642 if (vma != find_vma(mm, new_start))
643 return -EFAULT;
644
645 /*
646 * cover the whole range: [new_start, old_end)
647 */
648 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
649 return -ENOMEM;
650
651 /*
652 * move the page tables downwards, on failure we rely on
653 * process cleanup to remove whatever mess we made.
654 */
655 if (length != move_page_tables(vma, old_start,
656 vma, new_start, length, false))
657 return -ENOMEM;
658
659 lru_add_drain();
660 tlb_gather_mmu(&tlb, mm, old_start, old_end);
661 if (new_end > old_start) {
662 /*
663 * when the old and new regions overlap clear from new_end.
664 */
665 free_pgd_range(&tlb, new_end, old_end, new_end,
666 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
667 } else {
668 /*
669 * otherwise, clean from old_start; this is done to not touch
670 * the address space in [new_end, old_start) some architectures
671 * have constraints on va-space that make this illegal (IA64) -
672 * for the others its just a little faster.
673 */
674 free_pgd_range(&tlb, old_start, old_end, new_end,
675 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
676 }
677 tlb_finish_mmu(&tlb, old_start, old_end);
678
679 /*
680 * Shrink the vma to just the new range. Always succeeds.
681 */
682 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
683
684 return 0;
685}
686
687/*
688 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
689 * the stack is optionally relocated, and some extra space is added.
690 */
691int setup_arg_pages(struct linux_binprm *bprm,
692 unsigned long stack_top,
693 int executable_stack)
694{
695 unsigned long ret;
696 unsigned long stack_shift;
697 struct mm_struct *mm = current->mm;
698 struct vm_area_struct *vma = bprm->vma;
699 struct vm_area_struct *prev = NULL;
700 unsigned long vm_flags;
701 unsigned long stack_base;
702 unsigned long stack_size;
703 unsigned long stack_expand;
704 unsigned long rlim_stack;
705
706#ifdef CONFIG_STACK_GROWSUP
707 /* Limit stack size */
708 stack_base = bprm->rlim_stack.rlim_max;
709 if (stack_base > STACK_SIZE_MAX)
710 stack_base = STACK_SIZE_MAX;
711
712 /* Add space for stack randomization. */
713 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
714
715 /* Make sure we didn't let the argument array grow too large. */
716 if (vma->vm_end - vma->vm_start > stack_base)
717 return -ENOMEM;
718
719 stack_base = PAGE_ALIGN(stack_top - stack_base);
720
721 stack_shift = vma->vm_start - stack_base;
722 mm->arg_start = bprm->p - stack_shift;
723 bprm->p = vma->vm_end - stack_shift;
724#else
725 stack_top = arch_align_stack(stack_top);
726 stack_top = PAGE_ALIGN(stack_top);
727
728 if (unlikely(stack_top < mmap_min_addr) ||
729 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
730 return -ENOMEM;
731
732 stack_shift = vma->vm_end - stack_top;
733
734 bprm->p -= stack_shift;
735 mm->arg_start = bprm->p;
736#endif
737
738 if (bprm->loader)
739 bprm->loader -= stack_shift;
740 bprm->exec -= stack_shift;
741
742 if (down_write_killable(&mm->mmap_sem))
743 return -EINTR;
744
745 vm_flags = VM_STACK_FLAGS;
746
747 /*
748 * Adjust stack execute permissions; explicitly enable for
749 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
750 * (arch default) otherwise.
751 */
752 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
753 vm_flags |= VM_EXEC;
754 else if (executable_stack == EXSTACK_DISABLE_X)
755 vm_flags &= ~VM_EXEC;
756 vm_flags |= mm->def_flags;
757 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
758
759 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
760 vm_flags);
761 if (ret)
762 goto out_unlock;
763 BUG_ON(prev != vma);
764
765 /* Move stack pages down in memory. */
766 if (stack_shift) {
767 ret = shift_arg_pages(vma, stack_shift);
768 if (ret)
769 goto out_unlock;
770 }
771
772 /* mprotect_fixup is overkill to remove the temporary stack flags */
773 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
774
775 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
776 stack_size = vma->vm_end - vma->vm_start;
777 /*
778 * Align this down to a page boundary as expand_stack
779 * will align it up.
780 */
781 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
782#ifdef CONFIG_STACK_GROWSUP
783 if (stack_size + stack_expand > rlim_stack)
784 stack_base = vma->vm_start + rlim_stack;
785 else
786 stack_base = vma->vm_end + stack_expand;
787#else
788 if (stack_size + stack_expand > rlim_stack)
789 stack_base = vma->vm_end - rlim_stack;
790 else
791 stack_base = vma->vm_start - stack_expand;
792#endif
793 current->mm->start_stack = bprm->p;
794 ret = expand_stack(vma, stack_base);
795 if (ret)
796 ret = -EFAULT;
797
798out_unlock:
799 up_write(&mm->mmap_sem);
800 return ret;
801}
802EXPORT_SYMBOL(setup_arg_pages);
803
804#else
805
806/*
807 * Transfer the program arguments and environment from the holding pages
808 * onto the stack. The provided stack pointer is adjusted accordingly.
809 */
810int transfer_args_to_stack(struct linux_binprm *bprm,
811 unsigned long *sp_location)
812{
813 unsigned long index, stop, sp;
814 int ret = 0;
815
816 stop = bprm->p >> PAGE_SHIFT;
817 sp = *sp_location;
818
819 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
820 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
821 char *src = kmap(bprm->page[index]) + offset;
822 sp -= PAGE_SIZE - offset;
823 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
824 ret = -EFAULT;
825 kunmap(bprm->page[index]);
826 if (ret)
827 goto out;
828 }
829
830 *sp_location = sp;
831
832out:
833 return ret;
834}
835EXPORT_SYMBOL(transfer_args_to_stack);
836
837#endif /* CONFIG_MMU */
838
839static struct file *do_open_execat(int fd, struct filename *name, int flags)
840{
841 struct file *file;
842 int err;
843 struct open_flags open_exec_flags = {
844 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
845 .acc_mode = MAY_EXEC,
846 .intent = LOOKUP_OPEN,
847 .lookup_flags = LOOKUP_FOLLOW,
848 };
849
850 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
851 return ERR_PTR(-EINVAL);
852 if (flags & AT_SYMLINK_NOFOLLOW)
853 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
854 if (flags & AT_EMPTY_PATH)
855 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
856
857 file = do_filp_open(fd, name, &open_exec_flags);
858 if (IS_ERR(file))
859 goto out;
860
861 err = -EACCES;
862 if (!S_ISREG(file_inode(file)->i_mode))
863 goto exit;
864
865 if (path_noexec(&file->f_path))
866 goto exit;
867
868 err = deny_write_access(file);
869 if (err)
870 goto exit;
871
872 if (name->name[0] != '\0')
873 fsnotify_open(file);
874
875out:
876 return file;
877
878exit:
879 fput(file);
880 return ERR_PTR(err);
881}
882
883struct file *open_exec(const char *name)
884{
885 struct filename *filename = getname_kernel(name);
886 struct file *f = ERR_CAST(filename);
887
888 if (!IS_ERR(filename)) {
889 f = do_open_execat(AT_FDCWD, filename, 0);
890 putname(filename);
891 }
892 return f;
893}
894EXPORT_SYMBOL(open_exec);
895
896int kernel_read_file(struct file *file, void **buf, loff_t *size,
897 loff_t max_size, enum kernel_read_file_id id)
898{
899 loff_t i_size, pos;
900 ssize_t bytes = 0;
901 int ret;
902
903 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
904 return -EINVAL;
905
906 ret = deny_write_access(file);
907 if (ret)
908 return ret;
909
910 ret = security_kernel_read_file(file, id);
911 if (ret)
912 goto out;
913
914 i_size = i_size_read(file_inode(file));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000915 if (i_size <= 0) {
916 ret = -EINVAL;
917 goto out;
918 }
David Brazdil0f672f62019-12-10 10:32:29 +0000919 if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
920 ret = -EFBIG;
921 goto out;
922 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000923
924 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
925 *buf = vmalloc(i_size);
926 if (!*buf) {
927 ret = -ENOMEM;
928 goto out;
929 }
930
931 pos = 0;
932 while (pos < i_size) {
933 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
934 if (bytes < 0) {
935 ret = bytes;
David Brazdil0f672f62019-12-10 10:32:29 +0000936 goto out_free;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000937 }
938
939 if (bytes == 0)
940 break;
941 }
942
943 if (pos != i_size) {
944 ret = -EIO;
945 goto out_free;
946 }
947
948 ret = security_kernel_post_read_file(file, *buf, i_size, id);
949 if (!ret)
950 *size = pos;
951
952out_free:
953 if (ret < 0) {
954 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
955 vfree(*buf);
956 *buf = NULL;
957 }
958 }
959
960out:
961 allow_write_access(file);
962 return ret;
963}
964EXPORT_SYMBOL_GPL(kernel_read_file);
965
966int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
967 loff_t max_size, enum kernel_read_file_id id)
968{
969 struct file *file;
970 int ret;
971
972 if (!path || !*path)
973 return -EINVAL;
974
975 file = filp_open(path, O_RDONLY, 0);
976 if (IS_ERR(file))
977 return PTR_ERR(file);
978
979 ret = kernel_read_file(file, buf, size, max_size, id);
980 fput(file);
981 return ret;
982}
983EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
984
985int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
986 enum kernel_read_file_id id)
987{
988 struct fd f = fdget(fd);
989 int ret = -EBADF;
990
991 if (!f.file)
992 goto out;
993
994 ret = kernel_read_file(f.file, buf, size, max_size, id);
995out:
996 fdput(f);
997 return ret;
998}
999EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1000
1001ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1002{
1003 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1004 if (res > 0)
1005 flush_icache_range(addr, addr + len);
1006 return res;
1007}
1008EXPORT_SYMBOL(read_code);
1009
Olivier Deprez0e641232021-09-23 10:07:05 +02001010/*
1011 * Maps the mm_struct mm into the current task struct.
1012 * On success, this function returns with exec_update_lock
1013 * held for writing.
1014 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001015static int exec_mmap(struct mm_struct *mm)
1016{
1017 struct task_struct *tsk;
1018 struct mm_struct *old_mm, *active_mm;
Olivier Deprez0e641232021-09-23 10:07:05 +02001019 int ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001020
1021 /* Notify parent that we're no longer interested in the old VM */
1022 tsk = current;
1023 old_mm = current->mm;
David Brazdil0f672f62019-12-10 10:32:29 +00001024 exec_mm_release(tsk, old_mm);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001025
Olivier Deprez0e641232021-09-23 10:07:05 +02001026 ret = down_write_killable(&tsk->signal->exec_update_lock);
1027 if (ret)
1028 return ret;
1029
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001030 if (old_mm) {
1031 sync_mm_rss(old_mm);
1032 /*
1033 * Make sure that if there is a core dump in progress
1034 * for the old mm, we get out and die instead of going
1035 * through with the exec. We must hold mmap_sem around
1036 * checking core_state and changing tsk->mm.
1037 */
1038 down_read(&old_mm->mmap_sem);
1039 if (unlikely(old_mm->core_state)) {
1040 up_read(&old_mm->mmap_sem);
Olivier Deprez0e641232021-09-23 10:07:05 +02001041 up_write(&tsk->signal->exec_update_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001042 return -EINTR;
1043 }
1044 }
Olivier Deprez0e641232021-09-23 10:07:05 +02001045
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001046 task_lock(tsk);
David Brazdil0f672f62019-12-10 10:32:29 +00001047 membarrier_exec_mmap(mm);
Olivier Deprez0e641232021-09-23 10:07:05 +02001048
1049 local_irq_disable();
1050 active_mm = tsk->active_mm;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001051 tsk->active_mm = mm;
Olivier Deprez0e641232021-09-23 10:07:05 +02001052 tsk->mm = mm;
1053 /*
1054 * This prevents preemption while active_mm is being loaded and
1055 * it and mm are being updated, which could cause problems for
1056 * lazy tlb mm refcounting when these are updated by context
1057 * switches. Not all architectures can handle irqs off over
1058 * activate_mm yet.
1059 */
1060 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1061 local_irq_enable();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001062 activate_mm(active_mm, mm);
Olivier Deprez0e641232021-09-23 10:07:05 +02001063 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1064 local_irq_enable();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001065 tsk->mm->vmacache_seqnum = 0;
1066 vmacache_flush(tsk);
1067 task_unlock(tsk);
1068 if (old_mm) {
1069 up_read(&old_mm->mmap_sem);
1070 BUG_ON(active_mm != old_mm);
1071 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1072 mm_update_next_owner(old_mm);
1073 mmput(old_mm);
1074 return 0;
1075 }
1076 mmdrop(active_mm);
1077 return 0;
1078}
1079
1080/*
1081 * This function makes sure the current process has its own signal table,
1082 * so that flush_signal_handlers can later reset the handlers without
1083 * disturbing other processes. (Other processes might share the signal
1084 * table via the CLONE_SIGHAND option to clone().)
1085 */
1086static int de_thread(struct task_struct *tsk)
1087{
1088 struct signal_struct *sig = tsk->signal;
1089 struct sighand_struct *oldsighand = tsk->sighand;
1090 spinlock_t *lock = &oldsighand->siglock;
1091
1092 if (thread_group_empty(tsk))
1093 goto no_thread_group;
1094
1095 /*
1096 * Kill all other threads in the thread group.
1097 */
1098 spin_lock_irq(lock);
1099 if (signal_group_exit(sig)) {
1100 /*
1101 * Another group action in progress, just
1102 * return so that the signal is processed.
1103 */
1104 spin_unlock_irq(lock);
1105 return -EAGAIN;
1106 }
1107
1108 sig->group_exit_task = tsk;
1109 sig->notify_count = zap_other_threads(tsk);
1110 if (!thread_group_leader(tsk))
1111 sig->notify_count--;
1112
1113 while (sig->notify_count) {
1114 __set_current_state(TASK_KILLABLE);
1115 spin_unlock_irq(lock);
1116 schedule();
David Brazdil0f672f62019-12-10 10:32:29 +00001117 if (__fatal_signal_pending(tsk))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001118 goto killed;
1119 spin_lock_irq(lock);
1120 }
1121 spin_unlock_irq(lock);
1122
1123 /*
1124 * At this point all other threads have exited, all we have to
1125 * do is to wait for the thread group leader to become inactive,
1126 * and to assume its PID:
1127 */
1128 if (!thread_group_leader(tsk)) {
1129 struct task_struct *leader = tsk->group_leader;
1130
1131 for (;;) {
1132 cgroup_threadgroup_change_begin(tsk);
1133 write_lock_irq(&tasklist_lock);
1134 /*
1135 * Do this under tasklist_lock to ensure that
1136 * exit_notify() can't miss ->group_exit_task
1137 */
1138 sig->notify_count = -1;
1139 if (likely(leader->exit_state))
1140 break;
1141 __set_current_state(TASK_KILLABLE);
1142 write_unlock_irq(&tasklist_lock);
1143 cgroup_threadgroup_change_end(tsk);
1144 schedule();
David Brazdil0f672f62019-12-10 10:32:29 +00001145 if (__fatal_signal_pending(tsk))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001146 goto killed;
1147 }
1148
1149 /*
1150 * The only record we have of the real-time age of a
1151 * process, regardless of execs it's done, is start_time.
1152 * All the past CPU time is accumulated in signal_struct
1153 * from sister threads now dead. But in this non-leader
1154 * exec, nothing survives from the original leader thread,
1155 * whose birth marks the true age of this process now.
1156 * When we take on its identity by switching to its PID, we
1157 * also take its birthdate (always earlier than our own).
1158 */
1159 tsk->start_time = leader->start_time;
1160 tsk->real_start_time = leader->real_start_time;
1161
1162 BUG_ON(!same_thread_group(leader, tsk));
1163 BUG_ON(has_group_leader_pid(tsk));
1164 /*
1165 * An exec() starts a new thread group with the
1166 * TGID of the previous thread group. Rehash the
1167 * two threads with a switched PID, and release
1168 * the former thread group leader:
1169 */
1170
1171 /* Become a process group leader with the old leader's pid.
1172 * The old leader becomes a thread of the this thread group.
1173 * Note: The old leader also uses this pid until release_task
1174 * is called. Odd but simple and correct.
1175 */
1176 tsk->pid = leader->pid;
1177 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1178 transfer_pid(leader, tsk, PIDTYPE_TGID);
1179 transfer_pid(leader, tsk, PIDTYPE_PGID);
1180 transfer_pid(leader, tsk, PIDTYPE_SID);
1181
1182 list_replace_rcu(&leader->tasks, &tsk->tasks);
1183 list_replace_init(&leader->sibling, &tsk->sibling);
1184
1185 tsk->group_leader = tsk;
1186 leader->group_leader = tsk;
1187
1188 tsk->exit_signal = SIGCHLD;
1189 leader->exit_signal = -1;
1190
1191 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1192 leader->exit_state = EXIT_DEAD;
1193
1194 /*
1195 * We are going to release_task()->ptrace_unlink() silently,
1196 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1197 * the tracer wont't block again waiting for this thread.
1198 */
1199 if (unlikely(leader->ptrace))
1200 __wake_up_parent(leader, leader->parent);
1201 write_unlock_irq(&tasklist_lock);
1202 cgroup_threadgroup_change_end(tsk);
1203
1204 release_task(leader);
1205 }
1206
1207 sig->group_exit_task = NULL;
1208 sig->notify_count = 0;
1209
1210no_thread_group:
1211 /* we have changed execution domain */
1212 tsk->exit_signal = SIGCHLD;
1213
1214#ifdef CONFIG_POSIX_TIMERS
1215 exit_itimers(sig);
1216 flush_itimer_signals();
1217#endif
1218
David Brazdil0f672f62019-12-10 10:32:29 +00001219 if (refcount_read(&oldsighand->count) != 1) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001220 struct sighand_struct *newsighand;
1221 /*
1222 * This ->sighand is shared with the CLONE_SIGHAND
1223 * but not CLONE_THREAD task, switch to the new one.
1224 */
1225 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1226 if (!newsighand)
1227 return -ENOMEM;
1228
David Brazdil0f672f62019-12-10 10:32:29 +00001229 refcount_set(&newsighand->count, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001230 memcpy(newsighand->action, oldsighand->action,
1231 sizeof(newsighand->action));
1232
1233 write_lock_irq(&tasklist_lock);
1234 spin_lock(&oldsighand->siglock);
1235 rcu_assign_pointer(tsk->sighand, newsighand);
1236 spin_unlock(&oldsighand->siglock);
1237 write_unlock_irq(&tasklist_lock);
1238
1239 __cleanup_sighand(oldsighand);
1240 }
1241
1242 BUG_ON(!thread_group_leader(tsk));
1243 return 0;
1244
1245killed:
1246 /* protects against exit_notify() and __exit_signal() */
1247 read_lock(&tasklist_lock);
1248 sig->group_exit_task = NULL;
1249 sig->notify_count = 0;
1250 read_unlock(&tasklist_lock);
1251 return -EAGAIN;
1252}
1253
1254char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1255{
1256 task_lock(tsk);
1257 strncpy(buf, tsk->comm, buf_size);
1258 task_unlock(tsk);
1259 return buf;
1260}
1261EXPORT_SYMBOL_GPL(__get_task_comm);
1262
1263/*
1264 * These functions flushes out all traces of the currently running executable
1265 * so that a new one can be started
1266 */
1267
1268void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1269{
1270 task_lock(tsk);
1271 trace_task_rename(tsk, buf);
1272 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1273 task_unlock(tsk);
1274 perf_event_comm(tsk, exec);
1275}
1276
1277/*
1278 * Calling this is the point of no return. None of the failures will be
1279 * seen by userspace since either the process is already taking a fatal
1280 * signal (via de_thread() or coredump), or will have SEGV raised
1281 * (after exec_mmap()) by search_binary_handlers (see below).
1282 */
1283int flush_old_exec(struct linux_binprm * bprm)
1284{
1285 int retval;
1286
1287 /*
1288 * Make sure we have a private signal table and that
1289 * we are unassociated from the previous thread group.
1290 */
1291 retval = de_thread(current);
1292 if (retval)
1293 goto out;
1294
1295 /*
1296 * Must be called _before_ exec_mmap() as bprm->mm is
1297 * not visibile until then. This also enables the update
1298 * to be lockless.
1299 */
1300 set_mm_exe_file(bprm->mm, bprm->file);
1301
Olivier Deprez0e641232021-09-23 10:07:05 +02001302 would_dump(bprm, bprm->file);
1303
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001304 /*
1305 * Release all of the old mmap stuff
1306 */
1307 acct_arg_size(bprm, 0);
1308 retval = exec_mmap(bprm->mm);
1309 if (retval)
1310 goto out;
1311
1312 /*
Olivier Deprez0e641232021-09-23 10:07:05 +02001313 * After setting bprm->called_exec_mmap (to mark that current is
1314 * using the prepared mm now), we have nothing left of the original
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001315 * process. If anything from here on returns an error, the check
1316 * in search_binary_handler() will SEGV current.
1317 */
Olivier Deprez0e641232021-09-23 10:07:05 +02001318 bprm->called_exec_mmap = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001319 bprm->mm = NULL;
1320
1321 set_fs(USER_DS);
1322 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1323 PF_NOFREEZE | PF_NO_SETAFFINITY);
1324 flush_thread();
1325 current->personality &= ~bprm->per_clear;
1326
1327 /*
1328 * We have to apply CLOEXEC before we change whether the process is
1329 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1330 * trying to access the should-be-closed file descriptors of a process
1331 * undergoing exec(2).
1332 */
1333 do_close_on_exec(current->files);
1334 return 0;
1335
1336out:
1337 return retval;
1338}
1339EXPORT_SYMBOL(flush_old_exec);
1340
1341void would_dump(struct linux_binprm *bprm, struct file *file)
1342{
1343 struct inode *inode = file_inode(file);
1344 if (inode_permission(inode, MAY_READ) < 0) {
1345 struct user_namespace *old, *user_ns;
1346 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1347
1348 /* Ensure mm->user_ns contains the executable */
1349 user_ns = old = bprm->mm->user_ns;
1350 while ((user_ns != &init_user_ns) &&
1351 !privileged_wrt_inode_uidgid(user_ns, inode))
1352 user_ns = user_ns->parent;
1353
1354 if (old != user_ns) {
1355 bprm->mm->user_ns = get_user_ns(user_ns);
1356 put_user_ns(old);
1357 }
1358 }
1359}
1360EXPORT_SYMBOL(would_dump);
1361
1362void setup_new_exec(struct linux_binprm * bprm)
1363{
1364 /*
1365 * Once here, prepare_binrpm() will not be called any more, so
1366 * the final state of setuid/setgid/fscaps can be merged into the
1367 * secureexec flag.
1368 */
1369 bprm->secureexec |= bprm->cap_elevated;
1370
1371 if (bprm->secureexec) {
1372 /* Make sure parent cannot signal privileged process. */
1373 current->pdeath_signal = 0;
1374
1375 /*
1376 * For secureexec, reset the stack limit to sane default to
1377 * avoid bad behavior from the prior rlimits. This has to
1378 * happen before arch_pick_mmap_layout(), which examines
1379 * RLIMIT_STACK, but after the point of no return to avoid
1380 * needing to clean up the change on failure.
1381 */
1382 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1383 bprm->rlim_stack.rlim_cur = _STK_LIM;
1384 }
1385
1386 arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1387
1388 current->sas_ss_sp = current->sas_ss_size = 0;
1389
1390 /*
1391 * Figure out dumpability. Note that this checking only of current
1392 * is wrong, but userspace depends on it. This should be testing
1393 * bprm->secureexec instead.
1394 */
1395 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1396 !(uid_eq(current_euid(), current_uid()) &&
1397 gid_eq(current_egid(), current_gid())))
1398 set_dumpable(current->mm, suid_dumpable);
1399 else
1400 set_dumpable(current->mm, SUID_DUMP_USER);
1401
1402 arch_setup_new_exec();
1403 perf_event_exec();
1404 __set_task_comm(current, kbasename(bprm->filename), true);
1405
1406 /* Set the new mm task size. We have to do that late because it may
1407 * depend on TIF_32BIT which is only updated in flush_thread() on
1408 * some architectures like powerpc
1409 */
1410 current->mm->task_size = TASK_SIZE;
1411
1412 /* An exec changes our domain. We are no longer part of the thread
1413 group */
Olivier Deprez0e641232021-09-23 10:07:05 +02001414 WRITE_ONCE(current->self_exec_id, current->self_exec_id + 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001415 flush_signal_handlers(current, 0);
1416}
1417EXPORT_SYMBOL(setup_new_exec);
1418
1419/* Runs immediately before start_thread() takes over. */
1420void finalize_exec(struct linux_binprm *bprm)
1421{
1422 /* Store any stack rlimit changes before starting thread. */
1423 task_lock(current->group_leader);
1424 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1425 task_unlock(current->group_leader);
1426}
1427EXPORT_SYMBOL(finalize_exec);
1428
1429/*
1430 * Prepare credentials and lock ->cred_guard_mutex.
1431 * install_exec_creds() commits the new creds and drops the lock.
1432 * Or, if exec fails before, free_bprm() should release ->cred and
1433 * and unlock.
1434 */
David Brazdil0f672f62019-12-10 10:32:29 +00001435static int prepare_bprm_creds(struct linux_binprm *bprm)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001436{
1437 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1438 return -ERESTARTNOINTR;
1439
1440 bprm->cred = prepare_exec_creds();
1441 if (likely(bprm->cred))
1442 return 0;
1443
1444 mutex_unlock(&current->signal->cred_guard_mutex);
1445 return -ENOMEM;
1446}
1447
1448static void free_bprm(struct linux_binprm *bprm)
1449{
1450 free_arg_pages(bprm);
1451 if (bprm->cred) {
Olivier Deprez0e641232021-09-23 10:07:05 +02001452 if (bprm->called_exec_mmap)
1453 up_write(&current->signal->exec_update_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001454 mutex_unlock(&current->signal->cred_guard_mutex);
1455 abort_creds(bprm->cred);
1456 }
1457 if (bprm->file) {
1458 allow_write_access(bprm->file);
1459 fput(bprm->file);
1460 }
1461 /* If a binfmt changed the interp, free it. */
1462 if (bprm->interp != bprm->filename)
1463 kfree(bprm->interp);
1464 kfree(bprm);
1465}
1466
1467int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1468{
1469 /* If a binfmt changed the interp, free it first. */
1470 if (bprm->interp != bprm->filename)
1471 kfree(bprm->interp);
1472 bprm->interp = kstrdup(interp, GFP_KERNEL);
1473 if (!bprm->interp)
1474 return -ENOMEM;
1475 return 0;
1476}
1477EXPORT_SYMBOL(bprm_change_interp);
1478
1479/*
1480 * install the new credentials for this executable
1481 */
1482void install_exec_creds(struct linux_binprm *bprm)
1483{
1484 security_bprm_committing_creds(bprm);
1485
1486 commit_creds(bprm->cred);
1487 bprm->cred = NULL;
1488
1489 /*
1490 * Disable monitoring for regular users
1491 * when executing setuid binaries. Must
1492 * wait until new credentials are committed
1493 * by commit_creds() above
1494 */
1495 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1496 perf_event_exit_task(current);
1497 /*
1498 * cred_guard_mutex must be held at least to this point to prevent
1499 * ptrace_attach() from altering our determination of the task's
1500 * credentials; any time after this it may be unlocked.
1501 */
1502 security_bprm_committed_creds(bprm);
Olivier Deprez0e641232021-09-23 10:07:05 +02001503 up_write(&current->signal->exec_update_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001504 mutex_unlock(&current->signal->cred_guard_mutex);
1505}
1506EXPORT_SYMBOL(install_exec_creds);
1507
1508/*
1509 * determine how safe it is to execute the proposed program
1510 * - the caller must hold ->cred_guard_mutex to protect against
1511 * PTRACE_ATTACH or seccomp thread-sync
1512 */
1513static void check_unsafe_exec(struct linux_binprm *bprm)
1514{
1515 struct task_struct *p = current, *t;
1516 unsigned n_fs;
1517
1518 if (p->ptrace)
1519 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1520
1521 /*
1522 * This isn't strictly necessary, but it makes it harder for LSMs to
1523 * mess up.
1524 */
1525 if (task_no_new_privs(current))
1526 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1527
1528 t = p;
1529 n_fs = 1;
1530 spin_lock(&p->fs->lock);
1531 rcu_read_lock();
1532 while_each_thread(p, t) {
1533 if (t->fs == p->fs)
1534 n_fs++;
1535 }
1536 rcu_read_unlock();
1537
1538 if (p->fs->users > n_fs)
1539 bprm->unsafe |= LSM_UNSAFE_SHARE;
1540 else
1541 p->fs->in_exec = 1;
1542 spin_unlock(&p->fs->lock);
1543}
1544
1545static void bprm_fill_uid(struct linux_binprm *bprm)
1546{
1547 struct inode *inode;
1548 unsigned int mode;
1549 kuid_t uid;
1550 kgid_t gid;
1551
1552 /*
1553 * Since this can be called multiple times (via prepare_binprm),
1554 * we must clear any previous work done when setting set[ug]id
1555 * bits from any earlier bprm->file uses (for example when run
1556 * first for a setuid script then again for its interpreter).
1557 */
1558 bprm->cred->euid = current_euid();
1559 bprm->cred->egid = current_egid();
1560
1561 if (!mnt_may_suid(bprm->file->f_path.mnt))
1562 return;
1563
1564 if (task_no_new_privs(current))
1565 return;
1566
1567 inode = bprm->file->f_path.dentry->d_inode;
1568 mode = READ_ONCE(inode->i_mode);
1569 if (!(mode & (S_ISUID|S_ISGID)))
1570 return;
1571
1572 /* Be careful if suid/sgid is set */
1573 inode_lock(inode);
1574
1575 /* reload atomically mode/uid/gid now that lock held */
1576 mode = inode->i_mode;
1577 uid = inode->i_uid;
1578 gid = inode->i_gid;
1579 inode_unlock(inode);
1580
1581 /* We ignore suid/sgid if there are no mappings for them in the ns */
1582 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1583 !kgid_has_mapping(bprm->cred->user_ns, gid))
1584 return;
1585
1586 if (mode & S_ISUID) {
1587 bprm->per_clear |= PER_CLEAR_ON_SETID;
1588 bprm->cred->euid = uid;
1589 }
1590
1591 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1592 bprm->per_clear |= PER_CLEAR_ON_SETID;
1593 bprm->cred->egid = gid;
1594 }
1595}
1596
1597/*
1598 * Fill the binprm structure from the inode.
David Brazdil0f672f62019-12-10 10:32:29 +00001599 * Check permissions, then read the first BINPRM_BUF_SIZE bytes
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001600 *
1601 * This may be called multiple times for binary chains (scripts for example).
1602 */
1603int prepare_binprm(struct linux_binprm *bprm)
1604{
1605 int retval;
1606 loff_t pos = 0;
1607
1608 bprm_fill_uid(bprm);
1609
1610 /* fill in binprm security blob */
1611 retval = security_bprm_set_creds(bprm);
1612 if (retval)
1613 return retval;
1614 bprm->called_set_creds = 1;
1615
1616 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1617 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1618}
1619
1620EXPORT_SYMBOL(prepare_binprm);
1621
1622/*
1623 * Arguments are '\0' separated strings found at the location bprm->p
1624 * points to; chop off the first by relocating brpm->p to right after
1625 * the first '\0' encountered.
1626 */
1627int remove_arg_zero(struct linux_binprm *bprm)
1628{
1629 int ret = 0;
1630 unsigned long offset;
1631 char *kaddr;
1632 struct page *page;
1633
1634 if (!bprm->argc)
1635 return 0;
1636
1637 do {
1638 offset = bprm->p & ~PAGE_MASK;
1639 page = get_arg_page(bprm, bprm->p, 0);
1640 if (!page) {
1641 ret = -EFAULT;
1642 goto out;
1643 }
1644 kaddr = kmap_atomic(page);
1645
1646 for (; offset < PAGE_SIZE && kaddr[offset];
1647 offset++, bprm->p++)
1648 ;
1649
1650 kunmap_atomic(kaddr);
1651 put_arg_page(page);
1652 } while (offset == PAGE_SIZE);
1653
1654 bprm->p++;
1655 bprm->argc--;
1656 ret = 0;
1657
1658out:
1659 return ret;
1660}
1661EXPORT_SYMBOL(remove_arg_zero);
1662
1663#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1664/*
1665 * cycle the list of binary formats handler, until one recognizes the image
1666 */
1667int search_binary_handler(struct linux_binprm *bprm)
1668{
1669 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1670 struct linux_binfmt *fmt;
1671 int retval;
1672
1673 /* This allows 4 levels of binfmt rewrites before failing hard. */
1674 if (bprm->recursion_depth > 5)
1675 return -ELOOP;
1676
1677 retval = security_bprm_check(bprm);
1678 if (retval)
1679 return retval;
1680
1681 retval = -ENOENT;
1682 retry:
1683 read_lock(&binfmt_lock);
1684 list_for_each_entry(fmt, &formats, lh) {
1685 if (!try_module_get(fmt->module))
1686 continue;
1687 read_unlock(&binfmt_lock);
David Brazdil0f672f62019-12-10 10:32:29 +00001688
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001689 bprm->recursion_depth++;
1690 retval = fmt->load_binary(bprm);
David Brazdil0f672f62019-12-10 10:32:29 +00001691 bprm->recursion_depth--;
1692
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001693 read_lock(&binfmt_lock);
1694 put_binfmt(fmt);
Olivier Deprez0e641232021-09-23 10:07:05 +02001695 if (retval < 0 && bprm->called_exec_mmap) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001696 /* we got to flush_old_exec() and failed after it */
1697 read_unlock(&binfmt_lock);
David Brazdil0f672f62019-12-10 10:32:29 +00001698 force_sigsegv(SIGSEGV);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001699 return retval;
1700 }
1701 if (retval != -ENOEXEC || !bprm->file) {
1702 read_unlock(&binfmt_lock);
1703 return retval;
1704 }
1705 }
1706 read_unlock(&binfmt_lock);
1707
1708 if (need_retry) {
1709 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1710 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1711 return retval;
1712 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1713 return retval;
1714 need_retry = false;
1715 goto retry;
1716 }
1717
1718 return retval;
1719}
1720EXPORT_SYMBOL(search_binary_handler);
1721
1722static int exec_binprm(struct linux_binprm *bprm)
1723{
1724 pid_t old_pid, old_vpid;
1725 int ret;
1726
1727 /* Need to fetch pid before load_binary changes it */
1728 old_pid = current->pid;
1729 rcu_read_lock();
1730 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1731 rcu_read_unlock();
1732
1733 ret = search_binary_handler(bprm);
1734 if (ret >= 0) {
1735 audit_bprm(bprm);
1736 trace_sched_process_exec(current, old_pid, bprm);
1737 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1738 proc_exec_connector(current);
1739 }
1740
1741 return ret;
1742}
1743
1744/*
1745 * sys_execve() executes a new program.
1746 */
1747static int __do_execve_file(int fd, struct filename *filename,
1748 struct user_arg_ptr argv,
1749 struct user_arg_ptr envp,
1750 int flags, struct file *file)
1751{
1752 char *pathbuf = NULL;
1753 struct linux_binprm *bprm;
1754 struct files_struct *displaced;
1755 int retval;
1756
1757 if (IS_ERR(filename))
1758 return PTR_ERR(filename);
1759
1760 /*
1761 * We move the actual failure in case of RLIMIT_NPROC excess from
1762 * set*uid() to execve() because too many poorly written programs
1763 * don't check setuid() return code. Here we additionally recheck
1764 * whether NPROC limit is still exceeded.
1765 */
1766 if ((current->flags & PF_NPROC_EXCEEDED) &&
1767 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1768 retval = -EAGAIN;
1769 goto out_ret;
1770 }
1771
1772 /* We're below the limit (still or again), so we don't want to make
1773 * further execve() calls fail. */
1774 current->flags &= ~PF_NPROC_EXCEEDED;
1775
1776 retval = unshare_files(&displaced);
1777 if (retval)
1778 goto out_ret;
1779
1780 retval = -ENOMEM;
1781 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1782 if (!bprm)
1783 goto out_files;
1784
1785 retval = prepare_bprm_creds(bprm);
1786 if (retval)
1787 goto out_free;
1788
1789 check_unsafe_exec(bprm);
1790 current->in_execve = 1;
1791
1792 if (!file)
1793 file = do_open_execat(fd, filename, flags);
1794 retval = PTR_ERR(file);
1795 if (IS_ERR(file))
1796 goto out_unmark;
1797
1798 sched_exec();
1799
1800 bprm->file = file;
1801 if (!filename) {
1802 bprm->filename = "none";
1803 } else if (fd == AT_FDCWD || filename->name[0] == '/') {
1804 bprm->filename = filename->name;
1805 } else {
1806 if (filename->name[0] == '\0')
1807 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1808 else
1809 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1810 fd, filename->name);
1811 if (!pathbuf) {
1812 retval = -ENOMEM;
1813 goto out_unmark;
1814 }
1815 /*
1816 * Record that a name derived from an O_CLOEXEC fd will be
1817 * inaccessible after exec. Relies on having exclusive access to
1818 * current->files (due to unshare_files above).
1819 */
1820 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1821 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1822 bprm->filename = pathbuf;
1823 }
1824 bprm->interp = bprm->filename;
1825
1826 retval = bprm_mm_init(bprm);
1827 if (retval)
1828 goto out_unmark;
1829
David Brazdil0f672f62019-12-10 10:32:29 +00001830 retval = prepare_arg_pages(bprm, argv, envp);
1831 if (retval < 0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001832 goto out;
1833
1834 retval = prepare_binprm(bprm);
1835 if (retval < 0)
1836 goto out;
1837
1838 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1839 if (retval < 0)
1840 goto out;
1841
1842 bprm->exec = bprm->p;
1843 retval = copy_strings(bprm->envc, envp, bprm);
1844 if (retval < 0)
1845 goto out;
1846
1847 retval = copy_strings(bprm->argc, argv, bprm);
1848 if (retval < 0)
1849 goto out;
1850
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001851 retval = exec_binprm(bprm);
1852 if (retval < 0)
1853 goto out;
1854
1855 /* execve succeeded */
1856 current->fs->in_exec = 0;
1857 current->in_execve = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001858 rseq_execve(current);
1859 acct_update_integrals(current);
David Brazdil0f672f62019-12-10 10:32:29 +00001860 task_numa_free(current, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001861 free_bprm(bprm);
1862 kfree(pathbuf);
1863 if (filename)
1864 putname(filename);
1865 if (displaced)
1866 put_files_struct(displaced);
1867 return retval;
1868
1869out:
1870 if (bprm->mm) {
1871 acct_arg_size(bprm, 0);
1872 mmput(bprm->mm);
1873 }
1874
1875out_unmark:
1876 current->fs->in_exec = 0;
1877 current->in_execve = 0;
1878
1879out_free:
1880 free_bprm(bprm);
1881 kfree(pathbuf);
1882
1883out_files:
1884 if (displaced)
1885 reset_files_struct(displaced);
1886out_ret:
1887 if (filename)
1888 putname(filename);
1889 return retval;
1890}
1891
1892static int do_execveat_common(int fd, struct filename *filename,
1893 struct user_arg_ptr argv,
1894 struct user_arg_ptr envp,
1895 int flags)
1896{
1897 return __do_execve_file(fd, filename, argv, envp, flags, NULL);
1898}
1899
1900int do_execve_file(struct file *file, void *__argv, void *__envp)
1901{
1902 struct user_arg_ptr argv = { .ptr.native = __argv };
1903 struct user_arg_ptr envp = { .ptr.native = __envp };
1904
1905 return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
1906}
1907
1908int do_execve(struct filename *filename,
1909 const char __user *const __user *__argv,
1910 const char __user *const __user *__envp)
1911{
1912 struct user_arg_ptr argv = { .ptr.native = __argv };
1913 struct user_arg_ptr envp = { .ptr.native = __envp };
1914 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1915}
1916
1917int do_execveat(int fd, struct filename *filename,
1918 const char __user *const __user *__argv,
1919 const char __user *const __user *__envp,
1920 int flags)
1921{
1922 struct user_arg_ptr argv = { .ptr.native = __argv };
1923 struct user_arg_ptr envp = { .ptr.native = __envp };
1924
1925 return do_execveat_common(fd, filename, argv, envp, flags);
1926}
1927
1928#ifdef CONFIG_COMPAT
1929static int compat_do_execve(struct filename *filename,
1930 const compat_uptr_t __user *__argv,
1931 const compat_uptr_t __user *__envp)
1932{
1933 struct user_arg_ptr argv = {
1934 .is_compat = true,
1935 .ptr.compat = __argv,
1936 };
1937 struct user_arg_ptr envp = {
1938 .is_compat = true,
1939 .ptr.compat = __envp,
1940 };
1941 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1942}
1943
1944static int compat_do_execveat(int fd, struct filename *filename,
1945 const compat_uptr_t __user *__argv,
1946 const compat_uptr_t __user *__envp,
1947 int flags)
1948{
1949 struct user_arg_ptr argv = {
1950 .is_compat = true,
1951 .ptr.compat = __argv,
1952 };
1953 struct user_arg_ptr envp = {
1954 .is_compat = true,
1955 .ptr.compat = __envp,
1956 };
1957 return do_execveat_common(fd, filename, argv, envp, flags);
1958}
1959#endif
1960
1961void set_binfmt(struct linux_binfmt *new)
1962{
1963 struct mm_struct *mm = current->mm;
1964
1965 if (mm->binfmt)
1966 module_put(mm->binfmt->module);
1967
1968 mm->binfmt = new;
1969 if (new)
1970 __module_get(new->module);
1971}
1972EXPORT_SYMBOL(set_binfmt);
1973
1974/*
1975 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1976 */
1977void set_dumpable(struct mm_struct *mm, int value)
1978{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001979 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1980 return;
1981
David Brazdil0f672f62019-12-10 10:32:29 +00001982 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001983}
1984
1985SYSCALL_DEFINE3(execve,
1986 const char __user *, filename,
1987 const char __user *const __user *, argv,
1988 const char __user *const __user *, envp)
1989{
1990 return do_execve(getname(filename), argv, envp);
1991}
1992
1993SYSCALL_DEFINE5(execveat,
1994 int, fd, const char __user *, filename,
1995 const char __user *const __user *, argv,
1996 const char __user *const __user *, envp,
1997 int, flags)
1998{
1999 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2000
2001 return do_execveat(fd,
2002 getname_flags(filename, lookup_flags, NULL),
2003 argv, envp, flags);
2004}
2005
2006#ifdef CONFIG_COMPAT
2007COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2008 const compat_uptr_t __user *, argv,
2009 const compat_uptr_t __user *, envp)
2010{
2011 return compat_do_execve(getname(filename), argv, envp);
2012}
2013
2014COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2015 const char __user *, filename,
2016 const compat_uptr_t __user *, argv,
2017 const compat_uptr_t __user *, envp,
2018 int, flags)
2019{
2020 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2021
2022 return compat_do_execveat(fd,
2023 getname_flags(filename, lookup_flags, NULL),
2024 argv, envp, flags);
2025}
2026#endif