blob: fc688af57c2315dec861a614b27e44104e03d63b [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 */
5
6#include <linux/bsearch.h>
7#include <linux/fs.h>
8#include <linux/file.h>
9#include <linux/sort.h>
10#include <linux/mount.h>
11#include <linux/xattr.h>
12#include <linux/posix_acl_xattr.h>
13#include <linux/radix-tree.h>
14#include <linux/vmalloc.h>
15#include <linux/string.h>
16#include <linux/compat.h>
17#include <linux/crc32c.h>
18
19#include "send.h"
20#include "backref.h"
21#include "locking.h"
22#include "disk-io.h"
23#include "btrfs_inode.h"
24#include "transaction.h"
25#include "compression.h"
Olivier Deprez0e641232021-09-23 10:07:05 +020026#include "xattr.h"
27
28/*
29 * Maximum number of references an extent can have in order for us to attempt to
30 * issue clone operations instead of write operations. This currently exists to
31 * avoid hitting limitations of the backreference walking code (taking a lot of
32 * time and using too much memory for extents with large number of references).
33 */
34#define SEND_MAX_EXTENT_REFS 64
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000035
36/*
37 * A fs_path is a helper to dynamically build path names with unknown size.
38 * It reallocates the internal buffer on demand.
39 * It allows fast adding of path elements on the right side (normal path) and
40 * fast adding to the left side (reversed path). A reversed path can also be
41 * unreversed if needed.
42 */
43struct fs_path {
44 union {
45 struct {
46 char *start;
47 char *end;
48
49 char *buf;
50 unsigned short buf_len:15;
51 unsigned short reversed:1;
52 char inline_buf[];
53 };
54 /*
55 * Average path length does not exceed 200 bytes, we'll have
56 * better packing in the slab and higher chance to satisfy
57 * a allocation later during send.
58 */
59 char pad[256];
60 };
61};
62#define FS_PATH_INLINE_SIZE \
63 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
64
65
66/* reused for each extent */
67struct clone_root {
68 struct btrfs_root *root;
69 u64 ino;
70 u64 offset;
71
72 u64 found_refs;
73};
74
75#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
76#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
77
78struct send_ctx {
79 struct file *send_filp;
80 loff_t send_off;
81 char *send_buf;
82 u32 send_size;
83 u32 send_max_size;
84 u64 total_send_size;
85 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
86 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
87
88 struct btrfs_root *send_root;
89 struct btrfs_root *parent_root;
90 struct clone_root *clone_roots;
91 int clone_roots_cnt;
92
93 /* current state of the compare_tree call */
94 struct btrfs_path *left_path;
95 struct btrfs_path *right_path;
96 struct btrfs_key *cmp_key;
97
98 /*
99 * infos of the currently processed inode. In case of deleted inodes,
100 * these are the values from the deleted inode.
101 */
102 u64 cur_ino;
103 u64 cur_inode_gen;
104 int cur_inode_new;
105 int cur_inode_new_gen;
106 int cur_inode_deleted;
107 u64 cur_inode_size;
108 u64 cur_inode_mode;
109 u64 cur_inode_rdev;
110 u64 cur_inode_last_extent;
111 u64 cur_inode_next_write_offset;
112 bool ignore_cur_inode;
113
114 u64 send_progress;
115
116 struct list_head new_refs;
117 struct list_head deleted_refs;
118
119 struct radix_tree_root name_cache;
120 struct list_head name_cache_list;
121 int name_cache_size;
122
123 struct file_ra_state ra;
124
125 char *read_buf;
126
127 /*
128 * We process inodes by their increasing order, so if before an
129 * incremental send we reverse the parent/child relationship of
130 * directories such that a directory with a lower inode number was
131 * the parent of a directory with a higher inode number, and the one
132 * becoming the new parent got renamed too, we can't rename/move the
133 * directory with lower inode number when we finish processing it - we
134 * must process the directory with higher inode number first, then
135 * rename/move it and then rename/move the directory with lower inode
136 * number. Example follows.
137 *
138 * Tree state when the first send was performed:
139 *
140 * .
141 * |-- a (ino 257)
142 * |-- b (ino 258)
143 * |
144 * |
145 * |-- c (ino 259)
146 * | |-- d (ino 260)
147 * |
148 * |-- c2 (ino 261)
149 *
150 * Tree state when the second (incremental) send is performed:
151 *
152 * .
153 * |-- a (ino 257)
154 * |-- b (ino 258)
155 * |-- c2 (ino 261)
156 * |-- d2 (ino 260)
157 * |-- cc (ino 259)
158 *
159 * The sequence of steps that lead to the second state was:
160 *
161 * mv /a/b/c/d /a/b/c2/d2
162 * mv /a/b/c /a/b/c2/d2/cc
163 *
164 * "c" has lower inode number, but we can't move it (2nd mv operation)
165 * before we move "d", which has higher inode number.
166 *
167 * So we just memorize which move/rename operations must be performed
168 * later when their respective parent is processed and moved/renamed.
169 */
170
171 /* Indexed by parent directory inode number. */
172 struct rb_root pending_dir_moves;
173
174 /*
175 * Reverse index, indexed by the inode number of a directory that
176 * is waiting for the move/rename of its immediate parent before its
177 * own move/rename can be performed.
178 */
179 struct rb_root waiting_dir_moves;
180
181 /*
182 * A directory that is going to be rm'ed might have a child directory
183 * which is in the pending directory moves index above. In this case,
184 * the directory can only be removed after the move/rename of its child
185 * is performed. Example:
186 *
187 * Parent snapshot:
188 *
189 * . (ino 256)
190 * |-- a/ (ino 257)
191 * |-- b/ (ino 258)
192 * |-- c/ (ino 259)
193 * | |-- x/ (ino 260)
194 * |
195 * |-- y/ (ino 261)
196 *
197 * Send snapshot:
198 *
199 * . (ino 256)
200 * |-- a/ (ino 257)
201 * |-- b/ (ino 258)
202 * |-- YY/ (ino 261)
203 * |-- x/ (ino 260)
204 *
205 * Sequence of steps that lead to the send snapshot:
206 * rm -f /a/b/c/foo.txt
207 * mv /a/b/y /a/b/YY
208 * mv /a/b/c/x /a/b/YY
209 * rmdir /a/b/c
210 *
211 * When the child is processed, its move/rename is delayed until its
212 * parent is processed (as explained above), but all other operations
213 * like update utimes, chown, chgrp, etc, are performed and the paths
214 * that it uses for those operations must use the orphanized name of
215 * its parent (the directory we're going to rm later), so we need to
216 * memorize that name.
217 *
218 * Indexed by the inode number of the directory to be deleted.
219 */
220 struct rb_root orphan_dirs;
221};
222
223struct pending_dir_move {
224 struct rb_node node;
225 struct list_head list;
226 u64 parent_ino;
227 u64 ino;
228 u64 gen;
229 struct list_head update_refs;
230};
231
232struct waiting_dir_move {
233 struct rb_node node;
234 u64 ino;
235 /*
236 * There might be some directory that could not be removed because it
237 * was waiting for this directory inode to be moved first. Therefore
238 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
239 */
240 u64 rmdir_ino;
Olivier Deprez0e641232021-09-23 10:07:05 +0200241 u64 rmdir_gen;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000242 bool orphanized;
243};
244
245struct orphan_dir_info {
246 struct rb_node node;
247 u64 ino;
248 u64 gen;
249 u64 last_dir_index_offset;
250};
251
252struct name_cache_entry {
253 struct list_head list;
254 /*
255 * radix_tree has only 32bit entries but we need to handle 64bit inums.
256 * We use the lower 32bit of the 64bit inum to store it in the tree. If
257 * more then one inum would fall into the same entry, we use radix_list
258 * to store the additional entries. radix_list is also used to store
259 * entries where two entries have the same inum but different
260 * generations.
261 */
262 struct list_head radix_list;
263 u64 ino;
264 u64 gen;
265 u64 parent_ino;
266 u64 parent_gen;
267 int ret;
268 int need_later_update;
269 int name_len;
270 char name[];
271};
272
David Brazdil0f672f62019-12-10 10:32:29 +0000273#define ADVANCE 1
274#define ADVANCE_ONLY_NEXT -1
275
276enum btrfs_compare_tree_result {
277 BTRFS_COMPARE_TREE_NEW,
278 BTRFS_COMPARE_TREE_DELETED,
279 BTRFS_COMPARE_TREE_CHANGED,
280 BTRFS_COMPARE_TREE_SAME,
281};
282typedef int (*btrfs_changed_cb_t)(struct btrfs_path *left_path,
283 struct btrfs_path *right_path,
284 struct btrfs_key *key,
285 enum btrfs_compare_tree_result result,
286 void *ctx);
287
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000288__cold
289static void inconsistent_snapshot_error(struct send_ctx *sctx,
290 enum btrfs_compare_tree_result result,
291 const char *what)
292{
293 const char *result_string;
294
295 switch (result) {
296 case BTRFS_COMPARE_TREE_NEW:
297 result_string = "new";
298 break;
299 case BTRFS_COMPARE_TREE_DELETED:
300 result_string = "deleted";
301 break;
302 case BTRFS_COMPARE_TREE_CHANGED:
303 result_string = "updated";
304 break;
305 case BTRFS_COMPARE_TREE_SAME:
306 ASSERT(0);
307 result_string = "unchanged";
308 break;
309 default:
310 ASSERT(0);
311 result_string = "unexpected";
312 }
313
314 btrfs_err(sctx->send_root->fs_info,
315 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
316 result_string, what, sctx->cmp_key->objectid,
317 sctx->send_root->root_key.objectid,
318 (sctx->parent_root ?
319 sctx->parent_root->root_key.objectid : 0));
320}
321
322static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
323
324static struct waiting_dir_move *
325get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
326
Olivier Deprez0e641232021-09-23 10:07:05 +0200327static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000328
329static int need_send_hole(struct send_ctx *sctx)
330{
331 return (sctx->parent_root && !sctx->cur_inode_new &&
332 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
333 S_ISREG(sctx->cur_inode_mode));
334}
335
336static void fs_path_reset(struct fs_path *p)
337{
338 if (p->reversed) {
339 p->start = p->buf + p->buf_len - 1;
340 p->end = p->start;
341 *p->start = 0;
342 } else {
343 p->start = p->buf;
344 p->end = p->start;
345 *p->start = 0;
346 }
347}
348
349static struct fs_path *fs_path_alloc(void)
350{
351 struct fs_path *p;
352
353 p = kmalloc(sizeof(*p), GFP_KERNEL);
354 if (!p)
355 return NULL;
356 p->reversed = 0;
357 p->buf = p->inline_buf;
358 p->buf_len = FS_PATH_INLINE_SIZE;
359 fs_path_reset(p);
360 return p;
361}
362
363static struct fs_path *fs_path_alloc_reversed(void)
364{
365 struct fs_path *p;
366
367 p = fs_path_alloc();
368 if (!p)
369 return NULL;
370 p->reversed = 1;
371 fs_path_reset(p);
372 return p;
373}
374
375static void fs_path_free(struct fs_path *p)
376{
377 if (!p)
378 return;
379 if (p->buf != p->inline_buf)
380 kfree(p->buf);
381 kfree(p);
382}
383
384static int fs_path_len(struct fs_path *p)
385{
386 return p->end - p->start;
387}
388
389static int fs_path_ensure_buf(struct fs_path *p, int len)
390{
391 char *tmp_buf;
392 int path_len;
393 int old_buf_len;
394
395 len++;
396
397 if (p->buf_len >= len)
398 return 0;
399
400 if (len > PATH_MAX) {
401 WARN_ON(1);
402 return -ENOMEM;
403 }
404
405 path_len = p->end - p->start;
406 old_buf_len = p->buf_len;
407
408 /*
409 * First time the inline_buf does not suffice
410 */
411 if (p->buf == p->inline_buf) {
412 tmp_buf = kmalloc(len, GFP_KERNEL);
413 if (tmp_buf)
414 memcpy(tmp_buf, p->buf, old_buf_len);
415 } else {
416 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
417 }
418 if (!tmp_buf)
419 return -ENOMEM;
420 p->buf = tmp_buf;
421 /*
422 * The real size of the buffer is bigger, this will let the fast path
423 * happen most of the time
424 */
425 p->buf_len = ksize(p->buf);
426
427 if (p->reversed) {
428 tmp_buf = p->buf + old_buf_len - path_len - 1;
429 p->end = p->buf + p->buf_len - 1;
430 p->start = p->end - path_len;
431 memmove(p->start, tmp_buf, path_len + 1);
432 } else {
433 p->start = p->buf;
434 p->end = p->start + path_len;
435 }
436 return 0;
437}
438
439static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
440 char **prepared)
441{
442 int ret;
443 int new_len;
444
445 new_len = p->end - p->start + name_len;
446 if (p->start != p->end)
447 new_len++;
448 ret = fs_path_ensure_buf(p, new_len);
449 if (ret < 0)
450 goto out;
451
452 if (p->reversed) {
453 if (p->start != p->end)
454 *--p->start = '/';
455 p->start -= name_len;
456 *prepared = p->start;
457 } else {
458 if (p->start != p->end)
459 *p->end++ = '/';
460 *prepared = p->end;
461 p->end += name_len;
462 *p->end = 0;
463 }
464
465out:
466 return ret;
467}
468
469static int fs_path_add(struct fs_path *p, const char *name, int name_len)
470{
471 int ret;
472 char *prepared;
473
474 ret = fs_path_prepare_for_add(p, name_len, &prepared);
475 if (ret < 0)
476 goto out;
477 memcpy(prepared, name, name_len);
478
479out:
480 return ret;
481}
482
483static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
484{
485 int ret;
486 char *prepared;
487
488 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
489 if (ret < 0)
490 goto out;
491 memcpy(prepared, p2->start, p2->end - p2->start);
492
493out:
494 return ret;
495}
496
497static int fs_path_add_from_extent_buffer(struct fs_path *p,
498 struct extent_buffer *eb,
499 unsigned long off, int len)
500{
501 int ret;
502 char *prepared;
503
504 ret = fs_path_prepare_for_add(p, len, &prepared);
505 if (ret < 0)
506 goto out;
507
508 read_extent_buffer(eb, prepared, off, len);
509
510out:
511 return ret;
512}
513
514static int fs_path_copy(struct fs_path *p, struct fs_path *from)
515{
516 int ret;
517
518 p->reversed = from->reversed;
519 fs_path_reset(p);
520
521 ret = fs_path_add_path(p, from);
522
523 return ret;
524}
525
526
527static void fs_path_unreverse(struct fs_path *p)
528{
529 char *tmp;
530 int len;
531
532 if (!p->reversed)
533 return;
534
535 tmp = p->start;
536 len = p->end - p->start;
537 p->start = p->buf;
538 p->end = p->start + len;
539 memmove(p->start, tmp, len + 1);
540 p->reversed = 0;
541}
542
543static struct btrfs_path *alloc_path_for_send(void)
544{
545 struct btrfs_path *path;
546
547 path = btrfs_alloc_path();
548 if (!path)
549 return NULL;
550 path->search_commit_root = 1;
551 path->skip_locking = 1;
552 path->need_commit_sem = 1;
553 return path;
554}
555
556static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
557{
558 int ret;
559 u32 pos = 0;
560
561 while (pos < len) {
562 ret = kernel_write(filp, buf + pos, len - pos, off);
563 /* TODO handle that correctly */
564 /*if (ret == -ERESTARTSYS) {
565 continue;
566 }*/
567 if (ret < 0)
568 return ret;
569 if (ret == 0) {
570 return -EIO;
571 }
572 pos += ret;
573 }
574
575 return 0;
576}
577
578static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
579{
580 struct btrfs_tlv_header *hdr;
581 int total_len = sizeof(*hdr) + len;
582 int left = sctx->send_max_size - sctx->send_size;
583
584 if (unlikely(left < total_len))
585 return -EOVERFLOW;
586
587 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
588 hdr->tlv_type = cpu_to_le16(attr);
589 hdr->tlv_len = cpu_to_le16(len);
590 memcpy(hdr + 1, data, len);
591 sctx->send_size += total_len;
592
593 return 0;
594}
595
596#define TLV_PUT_DEFINE_INT(bits) \
597 static int tlv_put_u##bits(struct send_ctx *sctx, \
598 u##bits attr, u##bits value) \
599 { \
600 __le##bits __tmp = cpu_to_le##bits(value); \
601 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
602 }
603
604TLV_PUT_DEFINE_INT(64)
605
606static int tlv_put_string(struct send_ctx *sctx, u16 attr,
607 const char *str, int len)
608{
609 if (len == -1)
610 len = strlen(str);
611 return tlv_put(sctx, attr, str, len);
612}
613
614static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
615 const u8 *uuid)
616{
617 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
618}
619
620static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
621 struct extent_buffer *eb,
622 struct btrfs_timespec *ts)
623{
624 struct btrfs_timespec bts;
625 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
626 return tlv_put(sctx, attr, &bts, sizeof(bts));
627}
628
629
630#define TLV_PUT(sctx, attrtype, data, attrlen) \
631 do { \
632 ret = tlv_put(sctx, attrtype, data, attrlen); \
633 if (ret < 0) \
634 goto tlv_put_failure; \
635 } while (0)
636
637#define TLV_PUT_INT(sctx, attrtype, bits, value) \
638 do { \
639 ret = tlv_put_u##bits(sctx, attrtype, value); \
640 if (ret < 0) \
641 goto tlv_put_failure; \
642 } while (0)
643
644#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
645#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
646#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
647#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
648#define TLV_PUT_STRING(sctx, attrtype, str, len) \
649 do { \
650 ret = tlv_put_string(sctx, attrtype, str, len); \
651 if (ret < 0) \
652 goto tlv_put_failure; \
653 } while (0)
654#define TLV_PUT_PATH(sctx, attrtype, p) \
655 do { \
656 ret = tlv_put_string(sctx, attrtype, p->start, \
657 p->end - p->start); \
658 if (ret < 0) \
659 goto tlv_put_failure; \
660 } while(0)
661#define TLV_PUT_UUID(sctx, attrtype, uuid) \
662 do { \
663 ret = tlv_put_uuid(sctx, attrtype, uuid); \
664 if (ret < 0) \
665 goto tlv_put_failure; \
666 } while (0)
667#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
668 do { \
669 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
670 if (ret < 0) \
671 goto tlv_put_failure; \
672 } while (0)
673
674static int send_header(struct send_ctx *sctx)
675{
676 struct btrfs_stream_header hdr;
677
678 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
679 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
680
681 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
682 &sctx->send_off);
683}
684
685/*
686 * For each command/item we want to send to userspace, we call this function.
687 */
688static int begin_cmd(struct send_ctx *sctx, int cmd)
689{
690 struct btrfs_cmd_header *hdr;
691
692 if (WARN_ON(!sctx->send_buf))
693 return -EINVAL;
694
695 BUG_ON(sctx->send_size);
696
697 sctx->send_size += sizeof(*hdr);
698 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
699 hdr->cmd = cpu_to_le16(cmd);
700
701 return 0;
702}
703
704static int send_cmd(struct send_ctx *sctx)
705{
706 int ret;
707 struct btrfs_cmd_header *hdr;
708 u32 crc;
709
710 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
711 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
712 hdr->crc = 0;
713
David Brazdil0f672f62019-12-10 10:32:29 +0000714 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000715 hdr->crc = cpu_to_le32(crc);
716
717 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
718 &sctx->send_off);
719
720 sctx->total_send_size += sctx->send_size;
721 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
722 sctx->send_size = 0;
723
724 return ret;
725}
726
727/*
728 * Sends a move instruction to user space
729 */
730static int send_rename(struct send_ctx *sctx,
731 struct fs_path *from, struct fs_path *to)
732{
733 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
734 int ret;
735
736 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
737
738 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
739 if (ret < 0)
740 goto out;
741
742 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
743 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
744
745 ret = send_cmd(sctx);
746
747tlv_put_failure:
748out:
749 return ret;
750}
751
752/*
753 * Sends a link instruction to user space
754 */
755static int send_link(struct send_ctx *sctx,
756 struct fs_path *path, struct fs_path *lnk)
757{
758 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
759 int ret;
760
761 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
762
763 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
764 if (ret < 0)
765 goto out;
766
767 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
768 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
769
770 ret = send_cmd(sctx);
771
772tlv_put_failure:
773out:
774 return ret;
775}
776
777/*
778 * Sends an unlink instruction to user space
779 */
780static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
781{
782 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
783 int ret;
784
785 btrfs_debug(fs_info, "send_unlink %s", path->start);
786
787 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
788 if (ret < 0)
789 goto out;
790
791 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
792
793 ret = send_cmd(sctx);
794
795tlv_put_failure:
796out:
797 return ret;
798}
799
800/*
801 * Sends a rmdir instruction to user space
802 */
803static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
804{
805 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
806 int ret;
807
808 btrfs_debug(fs_info, "send_rmdir %s", path->start);
809
810 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
811 if (ret < 0)
812 goto out;
813
814 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
815
816 ret = send_cmd(sctx);
817
818tlv_put_failure:
819out:
820 return ret;
821}
822
823/*
824 * Helper function to retrieve some fields from an inode item.
825 */
826static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
827 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
828 u64 *gid, u64 *rdev)
829{
830 int ret;
831 struct btrfs_inode_item *ii;
832 struct btrfs_key key;
833
834 key.objectid = ino;
835 key.type = BTRFS_INODE_ITEM_KEY;
836 key.offset = 0;
837 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
838 if (ret) {
839 if (ret > 0)
840 ret = -ENOENT;
841 return ret;
842 }
843
844 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
845 struct btrfs_inode_item);
846 if (size)
847 *size = btrfs_inode_size(path->nodes[0], ii);
848 if (gen)
849 *gen = btrfs_inode_generation(path->nodes[0], ii);
850 if (mode)
851 *mode = btrfs_inode_mode(path->nodes[0], ii);
852 if (uid)
853 *uid = btrfs_inode_uid(path->nodes[0], ii);
854 if (gid)
855 *gid = btrfs_inode_gid(path->nodes[0], ii);
856 if (rdev)
857 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
858
859 return ret;
860}
861
862static int get_inode_info(struct btrfs_root *root,
863 u64 ino, u64 *size, u64 *gen,
864 u64 *mode, u64 *uid, u64 *gid,
865 u64 *rdev)
866{
867 struct btrfs_path *path;
868 int ret;
869
870 path = alloc_path_for_send();
871 if (!path)
872 return -ENOMEM;
873 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
874 rdev);
875 btrfs_free_path(path);
876 return ret;
877}
878
879typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
880 struct fs_path *p,
881 void *ctx);
882
883/*
884 * Helper function to iterate the entries in ONE btrfs_inode_ref or
885 * btrfs_inode_extref.
886 * The iterate callback may return a non zero value to stop iteration. This can
887 * be a negative value for error codes or 1 to simply stop it.
888 *
889 * path must point to the INODE_REF or INODE_EXTREF when called.
890 */
891static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
892 struct btrfs_key *found_key, int resolve,
893 iterate_inode_ref_t iterate, void *ctx)
894{
895 struct extent_buffer *eb = path->nodes[0];
896 struct btrfs_item *item;
897 struct btrfs_inode_ref *iref;
898 struct btrfs_inode_extref *extref;
899 struct btrfs_path *tmp_path;
900 struct fs_path *p;
901 u32 cur = 0;
902 u32 total;
903 int slot = path->slots[0];
904 u32 name_len;
905 char *start;
906 int ret = 0;
907 int num = 0;
908 int index;
909 u64 dir;
910 unsigned long name_off;
911 unsigned long elem_size;
912 unsigned long ptr;
913
914 p = fs_path_alloc_reversed();
915 if (!p)
916 return -ENOMEM;
917
918 tmp_path = alloc_path_for_send();
919 if (!tmp_path) {
920 fs_path_free(p);
921 return -ENOMEM;
922 }
923
924
925 if (found_key->type == BTRFS_INODE_REF_KEY) {
926 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
927 struct btrfs_inode_ref);
928 item = btrfs_item_nr(slot);
929 total = btrfs_item_size(eb, item);
930 elem_size = sizeof(*iref);
931 } else {
932 ptr = btrfs_item_ptr_offset(eb, slot);
933 total = btrfs_item_size_nr(eb, slot);
934 elem_size = sizeof(*extref);
935 }
936
937 while (cur < total) {
938 fs_path_reset(p);
939
940 if (found_key->type == BTRFS_INODE_REF_KEY) {
941 iref = (struct btrfs_inode_ref *)(ptr + cur);
942 name_len = btrfs_inode_ref_name_len(eb, iref);
943 name_off = (unsigned long)(iref + 1);
944 index = btrfs_inode_ref_index(eb, iref);
945 dir = found_key->offset;
946 } else {
947 extref = (struct btrfs_inode_extref *)(ptr + cur);
948 name_len = btrfs_inode_extref_name_len(eb, extref);
949 name_off = (unsigned long)&extref->name;
950 index = btrfs_inode_extref_index(eb, extref);
951 dir = btrfs_inode_extref_parent(eb, extref);
952 }
953
954 if (resolve) {
955 start = btrfs_ref_to_path(root, tmp_path, name_len,
956 name_off, eb, dir,
957 p->buf, p->buf_len);
958 if (IS_ERR(start)) {
959 ret = PTR_ERR(start);
960 goto out;
961 }
962 if (start < p->buf) {
963 /* overflow , try again with larger buffer */
964 ret = fs_path_ensure_buf(p,
965 p->buf_len + p->buf - start);
966 if (ret < 0)
967 goto out;
968 start = btrfs_ref_to_path(root, tmp_path,
969 name_len, name_off,
970 eb, dir,
971 p->buf, p->buf_len);
972 if (IS_ERR(start)) {
973 ret = PTR_ERR(start);
974 goto out;
975 }
976 BUG_ON(start < p->buf);
977 }
978 p->start = start;
979 } else {
980 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
981 name_len);
982 if (ret < 0)
983 goto out;
984 }
985
986 cur += elem_size + name_len;
987 ret = iterate(num, dir, index, p, ctx);
988 if (ret)
989 goto out;
990 num++;
991 }
992
993out:
994 btrfs_free_path(tmp_path);
995 fs_path_free(p);
996 return ret;
997}
998
999typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1000 const char *name, int name_len,
1001 const char *data, int data_len,
1002 u8 type, void *ctx);
1003
1004/*
1005 * Helper function to iterate the entries in ONE btrfs_dir_item.
1006 * The iterate callback may return a non zero value to stop iteration. This can
1007 * be a negative value for error codes or 1 to simply stop it.
1008 *
1009 * path must point to the dir item when called.
1010 */
1011static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1012 iterate_dir_item_t iterate, void *ctx)
1013{
1014 int ret = 0;
1015 struct extent_buffer *eb;
1016 struct btrfs_item *item;
1017 struct btrfs_dir_item *di;
1018 struct btrfs_key di_key;
1019 char *buf = NULL;
1020 int buf_len;
1021 u32 name_len;
1022 u32 data_len;
1023 u32 cur;
1024 u32 len;
1025 u32 total;
1026 int slot;
1027 int num;
1028 u8 type;
1029
1030 /*
1031 * Start with a small buffer (1 page). If later we end up needing more
1032 * space, which can happen for xattrs on a fs with a leaf size greater
1033 * then the page size, attempt to increase the buffer. Typically xattr
1034 * values are small.
1035 */
1036 buf_len = PATH_MAX;
1037 buf = kmalloc(buf_len, GFP_KERNEL);
1038 if (!buf) {
1039 ret = -ENOMEM;
1040 goto out;
1041 }
1042
1043 eb = path->nodes[0];
1044 slot = path->slots[0];
1045 item = btrfs_item_nr(slot);
1046 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1047 cur = 0;
1048 len = 0;
1049 total = btrfs_item_size(eb, item);
1050
1051 num = 0;
1052 while (cur < total) {
1053 name_len = btrfs_dir_name_len(eb, di);
1054 data_len = btrfs_dir_data_len(eb, di);
1055 type = btrfs_dir_type(eb, di);
1056 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1057
1058 if (type == BTRFS_FT_XATTR) {
1059 if (name_len > XATTR_NAME_MAX) {
1060 ret = -ENAMETOOLONG;
1061 goto out;
1062 }
1063 if (name_len + data_len >
1064 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1065 ret = -E2BIG;
1066 goto out;
1067 }
1068 } else {
1069 /*
1070 * Path too long
1071 */
1072 if (name_len + data_len > PATH_MAX) {
1073 ret = -ENAMETOOLONG;
1074 goto out;
1075 }
1076 }
1077
1078 if (name_len + data_len > buf_len) {
1079 buf_len = name_len + data_len;
1080 if (is_vmalloc_addr(buf)) {
1081 vfree(buf);
1082 buf = NULL;
1083 } else {
1084 char *tmp = krealloc(buf, buf_len,
1085 GFP_KERNEL | __GFP_NOWARN);
1086
1087 if (!tmp)
1088 kfree(buf);
1089 buf = tmp;
1090 }
1091 if (!buf) {
1092 buf = kvmalloc(buf_len, GFP_KERNEL);
1093 if (!buf) {
1094 ret = -ENOMEM;
1095 goto out;
1096 }
1097 }
1098 }
1099
1100 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1101 name_len + data_len);
1102
1103 len = sizeof(*di) + name_len + data_len;
1104 di = (struct btrfs_dir_item *)((char *)di + len);
1105 cur += len;
1106
1107 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1108 data_len, type, ctx);
1109 if (ret < 0)
1110 goto out;
1111 if (ret) {
1112 ret = 0;
1113 goto out;
1114 }
1115
1116 num++;
1117 }
1118
1119out:
1120 kvfree(buf);
1121 return ret;
1122}
1123
1124static int __copy_first_ref(int num, u64 dir, int index,
1125 struct fs_path *p, void *ctx)
1126{
1127 int ret;
1128 struct fs_path *pt = ctx;
1129
1130 ret = fs_path_copy(pt, p);
1131 if (ret < 0)
1132 return ret;
1133
1134 /* we want the first only */
1135 return 1;
1136}
1137
1138/*
1139 * Retrieve the first path of an inode. If an inode has more then one
1140 * ref/hardlink, this is ignored.
1141 */
1142static int get_inode_path(struct btrfs_root *root,
1143 u64 ino, struct fs_path *path)
1144{
1145 int ret;
1146 struct btrfs_key key, found_key;
1147 struct btrfs_path *p;
1148
1149 p = alloc_path_for_send();
1150 if (!p)
1151 return -ENOMEM;
1152
1153 fs_path_reset(path);
1154
1155 key.objectid = ino;
1156 key.type = BTRFS_INODE_REF_KEY;
1157 key.offset = 0;
1158
1159 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1160 if (ret < 0)
1161 goto out;
1162 if (ret) {
1163 ret = 1;
1164 goto out;
1165 }
1166 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1167 if (found_key.objectid != ino ||
1168 (found_key.type != BTRFS_INODE_REF_KEY &&
1169 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1170 ret = -ENOENT;
1171 goto out;
1172 }
1173
1174 ret = iterate_inode_ref(root, p, &found_key, 1,
1175 __copy_first_ref, path);
1176 if (ret < 0)
1177 goto out;
1178 ret = 0;
1179
1180out:
1181 btrfs_free_path(p);
1182 return ret;
1183}
1184
1185struct backref_ctx {
1186 struct send_ctx *sctx;
1187
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001188 /* number of total found references */
1189 u64 found;
1190
1191 /*
1192 * used for clones found in send_root. clones found behind cur_objectid
1193 * and cur_offset are not considered as allowed clones.
1194 */
1195 u64 cur_objectid;
1196 u64 cur_offset;
1197
1198 /* may be truncated in case it's the last extent in a file */
1199 u64 extent_len;
1200
1201 /* data offset in the file extent item */
1202 u64 data_offset;
1203
1204 /* Just to check for bugs in backref resolving */
1205 int found_itself;
1206};
1207
1208static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1209{
1210 u64 root = (u64)(uintptr_t)key;
1211 struct clone_root *cr = (struct clone_root *)elt;
1212
David Brazdil0f672f62019-12-10 10:32:29 +00001213 if (root < cr->root->root_key.objectid)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001214 return -1;
David Brazdil0f672f62019-12-10 10:32:29 +00001215 if (root > cr->root->root_key.objectid)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001216 return 1;
1217 return 0;
1218}
1219
1220static int __clone_root_cmp_sort(const void *e1, const void *e2)
1221{
1222 struct clone_root *cr1 = (struct clone_root *)e1;
1223 struct clone_root *cr2 = (struct clone_root *)e2;
1224
David Brazdil0f672f62019-12-10 10:32:29 +00001225 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001226 return -1;
David Brazdil0f672f62019-12-10 10:32:29 +00001227 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001228 return 1;
1229 return 0;
1230}
1231
1232/*
1233 * Called for every backref that is found for the current extent.
1234 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1235 */
1236static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1237{
1238 struct backref_ctx *bctx = ctx_;
1239 struct clone_root *found;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001240
1241 /* First check if the root is in the list of accepted clone sources */
1242 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1243 bctx->sctx->clone_roots_cnt,
1244 sizeof(struct clone_root),
1245 __clone_root_cmp_bsearch);
1246 if (!found)
1247 return 0;
1248
1249 if (found->root == bctx->sctx->send_root &&
1250 ino == bctx->cur_objectid &&
1251 offset == bctx->cur_offset) {
1252 bctx->found_itself = 1;
1253 }
1254
1255 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001256 * Make sure we don't consider clones from send_root that are
1257 * behind the current inode/offset.
1258 */
1259 if (found->root == bctx->sctx->send_root) {
1260 /*
Olivier Deprez0e641232021-09-23 10:07:05 +02001261 * If the source inode was not yet processed we can't issue a
1262 * clone operation, as the source extent does not exist yet at
1263 * the destination of the stream.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001264 */
Olivier Deprez0e641232021-09-23 10:07:05 +02001265 if (ino > bctx->cur_objectid)
1266 return 0;
1267 /*
1268 * We clone from the inode currently being sent as long as the
1269 * source extent is already processed, otherwise we could try
1270 * to clone from an extent that does not exist yet at the
1271 * destination of the stream.
1272 */
1273 if (ino == bctx->cur_objectid &&
1274 offset + bctx->extent_len >
1275 bctx->sctx->cur_inode_next_write_offset)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001276 return 0;
1277 }
1278
1279 bctx->found++;
1280 found->found_refs++;
1281 if (ino < found->ino) {
1282 found->ino = ino;
1283 found->offset = offset;
1284 } else if (found->ino == ino) {
1285 /*
1286 * same extent found more then once in the same file.
1287 */
1288 if (found->offset > offset + bctx->extent_len)
1289 found->offset = offset;
1290 }
1291
1292 return 0;
1293}
1294
1295/*
1296 * Given an inode, offset and extent item, it finds a good clone for a clone
1297 * instruction. Returns -ENOENT when none could be found. The function makes
1298 * sure that the returned clone is usable at the point where sending is at the
1299 * moment. This means, that no clones are accepted which lie behind the current
1300 * inode+offset.
1301 *
1302 * path must point to the extent item when called.
1303 */
1304static int find_extent_clone(struct send_ctx *sctx,
1305 struct btrfs_path *path,
1306 u64 ino, u64 data_offset,
1307 u64 ino_size,
1308 struct clone_root **found)
1309{
1310 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1311 int ret;
1312 int extent_type;
1313 u64 logical;
1314 u64 disk_byte;
1315 u64 num_bytes;
1316 u64 extent_item_pos;
1317 u64 flags = 0;
1318 struct btrfs_file_extent_item *fi;
1319 struct extent_buffer *eb = path->nodes[0];
1320 struct backref_ctx *backref_ctx = NULL;
1321 struct clone_root *cur_clone_root;
1322 struct btrfs_key found_key;
1323 struct btrfs_path *tmp_path;
Olivier Deprez0e641232021-09-23 10:07:05 +02001324 struct btrfs_extent_item *ei;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001325 int compressed;
1326 u32 i;
1327
1328 tmp_path = alloc_path_for_send();
1329 if (!tmp_path)
1330 return -ENOMEM;
1331
1332 /* We only use this path under the commit sem */
1333 tmp_path->need_commit_sem = 0;
1334
1335 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1336 if (!backref_ctx) {
1337 ret = -ENOMEM;
1338 goto out;
1339 }
1340
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001341 if (data_offset >= ino_size) {
1342 /*
1343 * There may be extents that lie behind the file's size.
1344 * I at least had this in combination with snapshotting while
1345 * writing large files.
1346 */
1347 ret = 0;
1348 goto out;
1349 }
1350
1351 fi = btrfs_item_ptr(eb, path->slots[0],
1352 struct btrfs_file_extent_item);
1353 extent_type = btrfs_file_extent_type(eb, fi);
1354 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1355 ret = -ENOENT;
1356 goto out;
1357 }
1358 compressed = btrfs_file_extent_compression(eb, fi);
1359
1360 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1361 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1362 if (disk_byte == 0) {
1363 ret = -ENOENT;
1364 goto out;
1365 }
1366 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1367
1368 down_read(&fs_info->commit_root_sem);
1369 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1370 &found_key, &flags);
1371 up_read(&fs_info->commit_root_sem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001372
1373 if (ret < 0)
1374 goto out;
1375 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1376 ret = -EIO;
1377 goto out;
1378 }
1379
Olivier Deprez0e641232021-09-23 10:07:05 +02001380 ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1381 struct btrfs_extent_item);
1382 /*
1383 * Backreference walking (iterate_extent_inodes() below) is currently
1384 * too expensive when an extent has a large number of references, both
1385 * in time spent and used memory. So for now just fallback to write
1386 * operations instead of clone operations when an extent has more than
1387 * a certain amount of references.
1388 */
1389 if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1390 ret = -ENOENT;
1391 goto out;
1392 }
1393 btrfs_release_path(tmp_path);
1394
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001395 /*
1396 * Setup the clone roots.
1397 */
1398 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1399 cur_clone_root = sctx->clone_roots + i;
1400 cur_clone_root->ino = (u64)-1;
1401 cur_clone_root->offset = 0;
1402 cur_clone_root->found_refs = 0;
1403 }
1404
1405 backref_ctx->sctx = sctx;
1406 backref_ctx->found = 0;
1407 backref_ctx->cur_objectid = ino;
1408 backref_ctx->cur_offset = data_offset;
1409 backref_ctx->found_itself = 0;
1410 backref_ctx->extent_len = num_bytes;
1411 /*
1412 * For non-compressed extents iterate_extent_inodes() gives us extent
1413 * offsets that already take into account the data offset, but not for
1414 * compressed extents, since the offset is logical and not relative to
1415 * the physical extent locations. We must take this into account to
1416 * avoid sending clone offsets that go beyond the source file's size,
1417 * which would result in the clone ioctl failing with -EINVAL on the
1418 * receiving end.
1419 */
1420 if (compressed == BTRFS_COMPRESS_NONE)
1421 backref_ctx->data_offset = 0;
1422 else
1423 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1424
1425 /*
1426 * The last extent of a file may be too large due to page alignment.
1427 * We need to adjust extent_len in this case so that the checks in
1428 * __iterate_backrefs work.
1429 */
1430 if (data_offset + num_bytes >= ino_size)
1431 backref_ctx->extent_len = ino_size - data_offset;
1432
1433 /*
1434 * Now collect all backrefs.
1435 */
1436 if (compressed == BTRFS_COMPRESS_NONE)
1437 extent_item_pos = logical - found_key.objectid;
1438 else
1439 extent_item_pos = 0;
1440 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1441 extent_item_pos, 1, __iterate_backrefs,
1442 backref_ctx, false);
1443
1444 if (ret < 0)
1445 goto out;
1446
1447 if (!backref_ctx->found_itself) {
1448 /* found a bug in backref code? */
1449 ret = -EIO;
1450 btrfs_err(fs_info,
1451 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1452 ino, data_offset, disk_byte, found_key.objectid);
1453 goto out;
1454 }
1455
1456 btrfs_debug(fs_info,
1457 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1458 data_offset, ino, num_bytes, logical);
1459
1460 if (!backref_ctx->found)
1461 btrfs_debug(fs_info, "no clones found");
1462
1463 cur_clone_root = NULL;
1464 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1465 if (sctx->clone_roots[i].found_refs) {
1466 if (!cur_clone_root)
1467 cur_clone_root = sctx->clone_roots + i;
1468 else if (sctx->clone_roots[i].root == sctx->send_root)
1469 /* prefer clones from send_root over others */
1470 cur_clone_root = sctx->clone_roots + i;
1471 }
1472
1473 }
1474
1475 if (cur_clone_root) {
1476 *found = cur_clone_root;
1477 ret = 0;
1478 } else {
1479 ret = -ENOENT;
1480 }
1481
1482out:
1483 btrfs_free_path(tmp_path);
1484 kfree(backref_ctx);
1485 return ret;
1486}
1487
1488static int read_symlink(struct btrfs_root *root,
1489 u64 ino,
1490 struct fs_path *dest)
1491{
1492 int ret;
1493 struct btrfs_path *path;
1494 struct btrfs_key key;
1495 struct btrfs_file_extent_item *ei;
1496 u8 type;
1497 u8 compression;
1498 unsigned long off;
1499 int len;
1500
1501 path = alloc_path_for_send();
1502 if (!path)
1503 return -ENOMEM;
1504
1505 key.objectid = ino;
1506 key.type = BTRFS_EXTENT_DATA_KEY;
1507 key.offset = 0;
1508 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1509 if (ret < 0)
1510 goto out;
1511 if (ret) {
1512 /*
1513 * An empty symlink inode. Can happen in rare error paths when
1514 * creating a symlink (transaction committed before the inode
1515 * eviction handler removed the symlink inode items and a crash
1516 * happened in between or the subvol was snapshoted in between).
1517 * Print an informative message to dmesg/syslog so that the user
1518 * can delete the symlink.
1519 */
1520 btrfs_err(root->fs_info,
1521 "Found empty symlink inode %llu at root %llu",
1522 ino, root->root_key.objectid);
1523 ret = -EIO;
1524 goto out;
1525 }
1526
1527 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1528 struct btrfs_file_extent_item);
1529 type = btrfs_file_extent_type(path->nodes[0], ei);
1530 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1531 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1532 BUG_ON(compression);
1533
1534 off = btrfs_file_extent_inline_start(ei);
1535 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1536
1537 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1538
1539out:
1540 btrfs_free_path(path);
1541 return ret;
1542}
1543
1544/*
1545 * Helper function to generate a file name that is unique in the root of
1546 * send_root and parent_root. This is used to generate names for orphan inodes.
1547 */
1548static int gen_unique_name(struct send_ctx *sctx,
1549 u64 ino, u64 gen,
1550 struct fs_path *dest)
1551{
1552 int ret = 0;
1553 struct btrfs_path *path;
1554 struct btrfs_dir_item *di;
1555 char tmp[64];
1556 int len;
1557 u64 idx = 0;
1558
1559 path = alloc_path_for_send();
1560 if (!path)
1561 return -ENOMEM;
1562
1563 while (1) {
1564 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1565 ino, gen, idx);
1566 ASSERT(len < sizeof(tmp));
1567
1568 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1569 path, BTRFS_FIRST_FREE_OBJECTID,
1570 tmp, strlen(tmp), 0);
1571 btrfs_release_path(path);
1572 if (IS_ERR(di)) {
1573 ret = PTR_ERR(di);
1574 goto out;
1575 }
1576 if (di) {
1577 /* not unique, try again */
1578 idx++;
1579 continue;
1580 }
1581
1582 if (!sctx->parent_root) {
1583 /* unique */
1584 ret = 0;
1585 break;
1586 }
1587
1588 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1589 path, BTRFS_FIRST_FREE_OBJECTID,
1590 tmp, strlen(tmp), 0);
1591 btrfs_release_path(path);
1592 if (IS_ERR(di)) {
1593 ret = PTR_ERR(di);
1594 goto out;
1595 }
1596 if (di) {
1597 /* not unique, try again */
1598 idx++;
1599 continue;
1600 }
1601 /* unique */
1602 break;
1603 }
1604
1605 ret = fs_path_add(dest, tmp, strlen(tmp));
1606
1607out:
1608 btrfs_free_path(path);
1609 return ret;
1610}
1611
1612enum inode_state {
1613 inode_state_no_change,
1614 inode_state_will_create,
1615 inode_state_did_create,
1616 inode_state_will_delete,
1617 inode_state_did_delete,
1618};
1619
1620static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1621{
1622 int ret;
1623 int left_ret;
1624 int right_ret;
1625 u64 left_gen;
1626 u64 right_gen;
1627
1628 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1629 NULL, NULL);
1630 if (ret < 0 && ret != -ENOENT)
1631 goto out;
1632 left_ret = ret;
1633
1634 if (!sctx->parent_root) {
1635 right_ret = -ENOENT;
1636 } else {
1637 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1638 NULL, NULL, NULL, NULL);
1639 if (ret < 0 && ret != -ENOENT)
1640 goto out;
1641 right_ret = ret;
1642 }
1643
1644 if (!left_ret && !right_ret) {
1645 if (left_gen == gen && right_gen == gen) {
1646 ret = inode_state_no_change;
1647 } else if (left_gen == gen) {
1648 if (ino < sctx->send_progress)
1649 ret = inode_state_did_create;
1650 else
1651 ret = inode_state_will_create;
1652 } else if (right_gen == gen) {
1653 if (ino < sctx->send_progress)
1654 ret = inode_state_did_delete;
1655 else
1656 ret = inode_state_will_delete;
1657 } else {
1658 ret = -ENOENT;
1659 }
1660 } else if (!left_ret) {
1661 if (left_gen == gen) {
1662 if (ino < sctx->send_progress)
1663 ret = inode_state_did_create;
1664 else
1665 ret = inode_state_will_create;
1666 } else {
1667 ret = -ENOENT;
1668 }
1669 } else if (!right_ret) {
1670 if (right_gen == gen) {
1671 if (ino < sctx->send_progress)
1672 ret = inode_state_did_delete;
1673 else
1674 ret = inode_state_will_delete;
1675 } else {
1676 ret = -ENOENT;
1677 }
1678 } else {
1679 ret = -ENOENT;
1680 }
1681
1682out:
1683 return ret;
1684}
1685
1686static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1687{
1688 int ret;
1689
1690 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1691 return 1;
1692
1693 ret = get_cur_inode_state(sctx, ino, gen);
1694 if (ret < 0)
1695 goto out;
1696
1697 if (ret == inode_state_no_change ||
1698 ret == inode_state_did_create ||
1699 ret == inode_state_will_delete)
1700 ret = 1;
1701 else
1702 ret = 0;
1703
1704out:
1705 return ret;
1706}
1707
1708/*
1709 * Helper function to lookup a dir item in a dir.
1710 */
1711static int lookup_dir_item_inode(struct btrfs_root *root,
1712 u64 dir, const char *name, int name_len,
1713 u64 *found_inode,
1714 u8 *found_type)
1715{
1716 int ret = 0;
1717 struct btrfs_dir_item *di;
1718 struct btrfs_key key;
1719 struct btrfs_path *path;
1720
1721 path = alloc_path_for_send();
1722 if (!path)
1723 return -ENOMEM;
1724
1725 di = btrfs_lookup_dir_item(NULL, root, path,
1726 dir, name, name_len, 0);
David Brazdil0f672f62019-12-10 10:32:29 +00001727 if (IS_ERR_OR_NULL(di)) {
1728 ret = di ? PTR_ERR(di) : -ENOENT;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001729 goto out;
1730 }
1731 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1732 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1733 ret = -ENOENT;
1734 goto out;
1735 }
1736 *found_inode = key.objectid;
1737 *found_type = btrfs_dir_type(path->nodes[0], di);
1738
1739out:
1740 btrfs_free_path(path);
1741 return ret;
1742}
1743
1744/*
1745 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1746 * generation of the parent dir and the name of the dir entry.
1747 */
1748static int get_first_ref(struct btrfs_root *root, u64 ino,
1749 u64 *dir, u64 *dir_gen, struct fs_path *name)
1750{
1751 int ret;
1752 struct btrfs_key key;
1753 struct btrfs_key found_key;
1754 struct btrfs_path *path;
1755 int len;
1756 u64 parent_dir;
1757
1758 path = alloc_path_for_send();
1759 if (!path)
1760 return -ENOMEM;
1761
1762 key.objectid = ino;
1763 key.type = BTRFS_INODE_REF_KEY;
1764 key.offset = 0;
1765
1766 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1767 if (ret < 0)
1768 goto out;
1769 if (!ret)
1770 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1771 path->slots[0]);
1772 if (ret || found_key.objectid != ino ||
1773 (found_key.type != BTRFS_INODE_REF_KEY &&
1774 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1775 ret = -ENOENT;
1776 goto out;
1777 }
1778
1779 if (found_key.type == BTRFS_INODE_REF_KEY) {
1780 struct btrfs_inode_ref *iref;
1781 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1782 struct btrfs_inode_ref);
1783 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1784 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1785 (unsigned long)(iref + 1),
1786 len);
1787 parent_dir = found_key.offset;
1788 } else {
1789 struct btrfs_inode_extref *extref;
1790 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1791 struct btrfs_inode_extref);
1792 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1793 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1794 (unsigned long)&extref->name, len);
1795 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1796 }
1797 if (ret < 0)
1798 goto out;
1799 btrfs_release_path(path);
1800
1801 if (dir_gen) {
1802 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1803 NULL, NULL, NULL);
1804 if (ret < 0)
1805 goto out;
1806 }
1807
1808 *dir = parent_dir;
1809
1810out:
1811 btrfs_free_path(path);
1812 return ret;
1813}
1814
1815static int is_first_ref(struct btrfs_root *root,
1816 u64 ino, u64 dir,
1817 const char *name, int name_len)
1818{
1819 int ret;
1820 struct fs_path *tmp_name;
1821 u64 tmp_dir;
1822
1823 tmp_name = fs_path_alloc();
1824 if (!tmp_name)
1825 return -ENOMEM;
1826
1827 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1828 if (ret < 0)
1829 goto out;
1830
1831 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1832 ret = 0;
1833 goto out;
1834 }
1835
1836 ret = !memcmp(tmp_name->start, name, name_len);
1837
1838out:
1839 fs_path_free(tmp_name);
1840 return ret;
1841}
1842
1843/*
1844 * Used by process_recorded_refs to determine if a new ref would overwrite an
1845 * already existing ref. In case it detects an overwrite, it returns the
1846 * inode/gen in who_ino/who_gen.
1847 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1848 * to make sure later references to the overwritten inode are possible.
1849 * Orphanizing is however only required for the first ref of an inode.
1850 * process_recorded_refs does an additional is_first_ref check to see if
1851 * orphanizing is really required.
1852 */
1853static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1854 const char *name, int name_len,
1855 u64 *who_ino, u64 *who_gen, u64 *who_mode)
1856{
1857 int ret = 0;
1858 u64 gen;
1859 u64 other_inode = 0;
1860 u8 other_type = 0;
1861
1862 if (!sctx->parent_root)
1863 goto out;
1864
1865 ret = is_inode_existent(sctx, dir, dir_gen);
1866 if (ret <= 0)
1867 goto out;
1868
1869 /*
1870 * If we have a parent root we need to verify that the parent dir was
1871 * not deleted and then re-created, if it was then we have no overwrite
1872 * and we can just unlink this entry.
1873 */
1874 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1875 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1876 NULL, NULL, NULL);
1877 if (ret < 0 && ret != -ENOENT)
1878 goto out;
1879 if (ret) {
1880 ret = 0;
1881 goto out;
1882 }
1883 if (gen != dir_gen)
1884 goto out;
1885 }
1886
1887 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1888 &other_inode, &other_type);
1889 if (ret < 0 && ret != -ENOENT)
1890 goto out;
1891 if (ret) {
1892 ret = 0;
1893 goto out;
1894 }
1895
1896 /*
1897 * Check if the overwritten ref was already processed. If yes, the ref
1898 * was already unlinked/moved, so we can safely assume that we will not
1899 * overwrite anything at this point in time.
1900 */
1901 if (other_inode > sctx->send_progress ||
1902 is_waiting_for_move(sctx, other_inode)) {
1903 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1904 who_gen, who_mode, NULL, NULL, NULL);
1905 if (ret < 0)
1906 goto out;
1907
1908 ret = 1;
1909 *who_ino = other_inode;
1910 } else {
1911 ret = 0;
1912 }
1913
1914out:
1915 return ret;
1916}
1917
1918/*
1919 * Checks if the ref was overwritten by an already processed inode. This is
1920 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1921 * thus the orphan name needs be used.
1922 * process_recorded_refs also uses it to avoid unlinking of refs that were
1923 * overwritten.
1924 */
1925static int did_overwrite_ref(struct send_ctx *sctx,
1926 u64 dir, u64 dir_gen,
1927 u64 ino, u64 ino_gen,
1928 const char *name, int name_len)
1929{
1930 int ret = 0;
1931 u64 gen;
1932 u64 ow_inode;
1933 u8 other_type;
1934
1935 if (!sctx->parent_root)
1936 goto out;
1937
1938 ret = is_inode_existent(sctx, dir, dir_gen);
1939 if (ret <= 0)
1940 goto out;
1941
1942 if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1943 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1944 NULL, NULL, NULL);
1945 if (ret < 0 && ret != -ENOENT)
1946 goto out;
1947 if (ret) {
1948 ret = 0;
1949 goto out;
1950 }
1951 if (gen != dir_gen)
1952 goto out;
1953 }
1954
1955 /* check if the ref was overwritten by another ref */
1956 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1957 &ow_inode, &other_type);
1958 if (ret < 0 && ret != -ENOENT)
1959 goto out;
1960 if (ret) {
1961 /* was never and will never be overwritten */
1962 ret = 0;
1963 goto out;
1964 }
1965
1966 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1967 NULL, NULL);
1968 if (ret < 0)
1969 goto out;
1970
1971 if (ow_inode == ino && gen == ino_gen) {
1972 ret = 0;
1973 goto out;
1974 }
1975
1976 /*
1977 * We know that it is or will be overwritten. Check this now.
1978 * The current inode being processed might have been the one that caused
1979 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1980 * the current inode being processed.
1981 */
1982 if ((ow_inode < sctx->send_progress) ||
1983 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1984 gen == sctx->cur_inode_gen))
1985 ret = 1;
1986 else
1987 ret = 0;
1988
1989out:
1990 return ret;
1991}
1992
1993/*
1994 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1995 * that got overwritten. This is used by process_recorded_refs to determine
1996 * if it has to use the path as returned by get_cur_path or the orphan name.
1997 */
1998static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1999{
2000 int ret = 0;
2001 struct fs_path *name = NULL;
2002 u64 dir;
2003 u64 dir_gen;
2004
2005 if (!sctx->parent_root)
2006 goto out;
2007
2008 name = fs_path_alloc();
2009 if (!name)
2010 return -ENOMEM;
2011
2012 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2013 if (ret < 0)
2014 goto out;
2015
2016 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2017 name->start, fs_path_len(name));
2018
2019out:
2020 fs_path_free(name);
2021 return ret;
2022}
2023
2024/*
2025 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2026 * so we need to do some special handling in case we have clashes. This function
2027 * takes care of this with the help of name_cache_entry::radix_list.
2028 * In case of error, nce is kfreed.
2029 */
2030static int name_cache_insert(struct send_ctx *sctx,
2031 struct name_cache_entry *nce)
2032{
2033 int ret = 0;
2034 struct list_head *nce_head;
2035
2036 nce_head = radix_tree_lookup(&sctx->name_cache,
2037 (unsigned long)nce->ino);
2038 if (!nce_head) {
2039 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2040 if (!nce_head) {
2041 kfree(nce);
2042 return -ENOMEM;
2043 }
2044 INIT_LIST_HEAD(nce_head);
2045
2046 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2047 if (ret < 0) {
2048 kfree(nce_head);
2049 kfree(nce);
2050 return ret;
2051 }
2052 }
2053 list_add_tail(&nce->radix_list, nce_head);
2054 list_add_tail(&nce->list, &sctx->name_cache_list);
2055 sctx->name_cache_size++;
2056
2057 return ret;
2058}
2059
2060static void name_cache_delete(struct send_ctx *sctx,
2061 struct name_cache_entry *nce)
2062{
2063 struct list_head *nce_head;
2064
2065 nce_head = radix_tree_lookup(&sctx->name_cache,
2066 (unsigned long)nce->ino);
2067 if (!nce_head) {
2068 btrfs_err(sctx->send_root->fs_info,
2069 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2070 nce->ino, sctx->name_cache_size);
2071 }
2072
2073 list_del(&nce->radix_list);
2074 list_del(&nce->list);
2075 sctx->name_cache_size--;
2076
2077 /*
2078 * We may not get to the final release of nce_head if the lookup fails
2079 */
2080 if (nce_head && list_empty(nce_head)) {
2081 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2082 kfree(nce_head);
2083 }
2084}
2085
2086static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2087 u64 ino, u64 gen)
2088{
2089 struct list_head *nce_head;
2090 struct name_cache_entry *cur;
2091
2092 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2093 if (!nce_head)
2094 return NULL;
2095
2096 list_for_each_entry(cur, nce_head, radix_list) {
2097 if (cur->ino == ino && cur->gen == gen)
2098 return cur;
2099 }
2100 return NULL;
2101}
2102
2103/*
2104 * Removes the entry from the list and adds it back to the end. This marks the
2105 * entry as recently used so that name_cache_clean_unused does not remove it.
2106 */
2107static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2108{
2109 list_del(&nce->list);
2110 list_add_tail(&nce->list, &sctx->name_cache_list);
2111}
2112
2113/*
2114 * Remove some entries from the beginning of name_cache_list.
2115 */
2116static void name_cache_clean_unused(struct send_ctx *sctx)
2117{
2118 struct name_cache_entry *nce;
2119
2120 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2121 return;
2122
2123 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2124 nce = list_entry(sctx->name_cache_list.next,
2125 struct name_cache_entry, list);
2126 name_cache_delete(sctx, nce);
2127 kfree(nce);
2128 }
2129}
2130
2131static void name_cache_free(struct send_ctx *sctx)
2132{
2133 struct name_cache_entry *nce;
2134
2135 while (!list_empty(&sctx->name_cache_list)) {
2136 nce = list_entry(sctx->name_cache_list.next,
2137 struct name_cache_entry, list);
2138 name_cache_delete(sctx, nce);
2139 kfree(nce);
2140 }
2141}
2142
2143/*
2144 * Used by get_cur_path for each ref up to the root.
2145 * Returns 0 if it succeeded.
2146 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2147 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2148 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2149 * Returns <0 in case of error.
2150 */
2151static int __get_cur_name_and_parent(struct send_ctx *sctx,
2152 u64 ino, u64 gen,
2153 u64 *parent_ino,
2154 u64 *parent_gen,
2155 struct fs_path *dest)
2156{
2157 int ret;
2158 int nce_ret;
2159 struct name_cache_entry *nce = NULL;
2160
2161 /*
2162 * First check if we already did a call to this function with the same
2163 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2164 * return the cached result.
2165 */
2166 nce = name_cache_search(sctx, ino, gen);
2167 if (nce) {
2168 if (ino < sctx->send_progress && nce->need_later_update) {
2169 name_cache_delete(sctx, nce);
2170 kfree(nce);
2171 nce = NULL;
2172 } else {
2173 name_cache_used(sctx, nce);
2174 *parent_ino = nce->parent_ino;
2175 *parent_gen = nce->parent_gen;
2176 ret = fs_path_add(dest, nce->name, nce->name_len);
2177 if (ret < 0)
2178 goto out;
2179 ret = nce->ret;
2180 goto out;
2181 }
2182 }
2183
2184 /*
2185 * If the inode is not existent yet, add the orphan name and return 1.
2186 * This should only happen for the parent dir that we determine in
2187 * __record_new_ref
2188 */
2189 ret = is_inode_existent(sctx, ino, gen);
2190 if (ret < 0)
2191 goto out;
2192
2193 if (!ret) {
2194 ret = gen_unique_name(sctx, ino, gen, dest);
2195 if (ret < 0)
2196 goto out;
2197 ret = 1;
2198 goto out_cache;
2199 }
2200
2201 /*
2202 * Depending on whether the inode was already processed or not, use
2203 * send_root or parent_root for ref lookup.
2204 */
2205 if (ino < sctx->send_progress)
2206 ret = get_first_ref(sctx->send_root, ino,
2207 parent_ino, parent_gen, dest);
2208 else
2209 ret = get_first_ref(sctx->parent_root, ino,
2210 parent_ino, parent_gen, dest);
2211 if (ret < 0)
2212 goto out;
2213
2214 /*
2215 * Check if the ref was overwritten by an inode's ref that was processed
2216 * earlier. If yes, treat as orphan and return 1.
2217 */
2218 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2219 dest->start, dest->end - dest->start);
2220 if (ret < 0)
2221 goto out;
2222 if (ret) {
2223 fs_path_reset(dest);
2224 ret = gen_unique_name(sctx, ino, gen, dest);
2225 if (ret < 0)
2226 goto out;
2227 ret = 1;
2228 }
2229
2230out_cache:
2231 /*
2232 * Store the result of the lookup in the name cache.
2233 */
2234 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2235 if (!nce) {
2236 ret = -ENOMEM;
2237 goto out;
2238 }
2239
2240 nce->ino = ino;
2241 nce->gen = gen;
2242 nce->parent_ino = *parent_ino;
2243 nce->parent_gen = *parent_gen;
2244 nce->name_len = fs_path_len(dest);
2245 nce->ret = ret;
2246 strcpy(nce->name, dest->start);
2247
2248 if (ino < sctx->send_progress)
2249 nce->need_later_update = 0;
2250 else
2251 nce->need_later_update = 1;
2252
2253 nce_ret = name_cache_insert(sctx, nce);
2254 if (nce_ret < 0)
2255 ret = nce_ret;
2256 name_cache_clean_unused(sctx);
2257
2258out:
2259 return ret;
2260}
2261
2262/*
2263 * Magic happens here. This function returns the first ref to an inode as it
2264 * would look like while receiving the stream at this point in time.
2265 * We walk the path up to the root. For every inode in between, we check if it
2266 * was already processed/sent. If yes, we continue with the parent as found
2267 * in send_root. If not, we continue with the parent as found in parent_root.
2268 * If we encounter an inode that was deleted at this point in time, we use the
2269 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2270 * that were not created yet and overwritten inodes/refs.
2271 *
David Brazdil0f672f62019-12-10 10:32:29 +00002272 * When do we have orphan inodes:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002273 * 1. When an inode is freshly created and thus no valid refs are available yet
2274 * 2. When a directory lost all it's refs (deleted) but still has dir items
2275 * inside which were not processed yet (pending for move/delete). If anyone
2276 * tried to get the path to the dir items, it would get a path inside that
2277 * orphan directory.
2278 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2279 * of an unprocessed inode. If in that case the first ref would be
2280 * overwritten, the overwritten inode gets "orphanized". Later when we
2281 * process this overwritten inode, it is restored at a new place by moving
2282 * the orphan inode.
2283 *
2284 * sctx->send_progress tells this function at which point in time receiving
2285 * would be.
2286 */
2287static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2288 struct fs_path *dest)
2289{
2290 int ret = 0;
2291 struct fs_path *name = NULL;
2292 u64 parent_inode = 0;
2293 u64 parent_gen = 0;
2294 int stop = 0;
2295
2296 name = fs_path_alloc();
2297 if (!name) {
2298 ret = -ENOMEM;
2299 goto out;
2300 }
2301
2302 dest->reversed = 1;
2303 fs_path_reset(dest);
2304
2305 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2306 struct waiting_dir_move *wdm;
2307
2308 fs_path_reset(name);
2309
Olivier Deprez0e641232021-09-23 10:07:05 +02002310 if (is_waiting_for_rm(sctx, ino, gen)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002311 ret = gen_unique_name(sctx, ino, gen, name);
2312 if (ret < 0)
2313 goto out;
2314 ret = fs_path_add_path(dest, name);
2315 break;
2316 }
2317
2318 wdm = get_waiting_dir_move(sctx, ino);
2319 if (wdm && wdm->orphanized) {
2320 ret = gen_unique_name(sctx, ino, gen, name);
2321 stop = 1;
2322 } else if (wdm) {
2323 ret = get_first_ref(sctx->parent_root, ino,
2324 &parent_inode, &parent_gen, name);
2325 } else {
2326 ret = __get_cur_name_and_parent(sctx, ino, gen,
2327 &parent_inode,
2328 &parent_gen, name);
2329 if (ret)
2330 stop = 1;
2331 }
2332
2333 if (ret < 0)
2334 goto out;
2335
2336 ret = fs_path_add_path(dest, name);
2337 if (ret < 0)
2338 goto out;
2339
2340 ino = parent_inode;
2341 gen = parent_gen;
2342 }
2343
2344out:
2345 fs_path_free(name);
2346 if (!ret)
2347 fs_path_unreverse(dest);
2348 return ret;
2349}
2350
2351/*
2352 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2353 */
2354static int send_subvol_begin(struct send_ctx *sctx)
2355{
2356 int ret;
2357 struct btrfs_root *send_root = sctx->send_root;
2358 struct btrfs_root *parent_root = sctx->parent_root;
2359 struct btrfs_path *path;
2360 struct btrfs_key key;
2361 struct btrfs_root_ref *ref;
2362 struct extent_buffer *leaf;
2363 char *name = NULL;
2364 int namelen;
2365
2366 path = btrfs_alloc_path();
2367 if (!path)
2368 return -ENOMEM;
2369
2370 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2371 if (!name) {
2372 btrfs_free_path(path);
2373 return -ENOMEM;
2374 }
2375
David Brazdil0f672f62019-12-10 10:32:29 +00002376 key.objectid = send_root->root_key.objectid;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002377 key.type = BTRFS_ROOT_BACKREF_KEY;
2378 key.offset = 0;
2379
2380 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2381 &key, path, 1, 0);
2382 if (ret < 0)
2383 goto out;
2384 if (ret) {
2385 ret = -ENOENT;
2386 goto out;
2387 }
2388
2389 leaf = path->nodes[0];
2390 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2391 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
David Brazdil0f672f62019-12-10 10:32:29 +00002392 key.objectid != send_root->root_key.objectid) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002393 ret = -ENOENT;
2394 goto out;
2395 }
2396 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2397 namelen = btrfs_root_ref_name_len(leaf, ref);
2398 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2399 btrfs_release_path(path);
2400
2401 if (parent_root) {
2402 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2403 if (ret < 0)
2404 goto out;
2405 } else {
2406 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2407 if (ret < 0)
2408 goto out;
2409 }
2410
2411 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2412
2413 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2414 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2415 sctx->send_root->root_item.received_uuid);
2416 else
2417 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2418 sctx->send_root->root_item.uuid);
2419
2420 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2421 le64_to_cpu(sctx->send_root->root_item.ctransid));
2422 if (parent_root) {
2423 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2424 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2425 parent_root->root_item.received_uuid);
2426 else
2427 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2428 parent_root->root_item.uuid);
2429 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2430 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2431 }
2432
2433 ret = send_cmd(sctx);
2434
2435tlv_put_failure:
2436out:
2437 btrfs_free_path(path);
2438 kfree(name);
2439 return ret;
2440}
2441
2442static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2443{
2444 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2445 int ret = 0;
2446 struct fs_path *p;
2447
2448 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2449
2450 p = fs_path_alloc();
2451 if (!p)
2452 return -ENOMEM;
2453
2454 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2455 if (ret < 0)
2456 goto out;
2457
2458 ret = get_cur_path(sctx, ino, gen, p);
2459 if (ret < 0)
2460 goto out;
2461 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2462 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2463
2464 ret = send_cmd(sctx);
2465
2466tlv_put_failure:
2467out:
2468 fs_path_free(p);
2469 return ret;
2470}
2471
2472static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2473{
2474 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2475 int ret = 0;
2476 struct fs_path *p;
2477
2478 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2479
2480 p = fs_path_alloc();
2481 if (!p)
2482 return -ENOMEM;
2483
2484 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2485 if (ret < 0)
2486 goto out;
2487
2488 ret = get_cur_path(sctx, ino, gen, p);
2489 if (ret < 0)
2490 goto out;
2491 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2492 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2493
2494 ret = send_cmd(sctx);
2495
2496tlv_put_failure:
2497out:
2498 fs_path_free(p);
2499 return ret;
2500}
2501
2502static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2503{
2504 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2505 int ret = 0;
2506 struct fs_path *p;
2507
2508 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2509 ino, uid, gid);
2510
2511 p = fs_path_alloc();
2512 if (!p)
2513 return -ENOMEM;
2514
2515 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2516 if (ret < 0)
2517 goto out;
2518
2519 ret = get_cur_path(sctx, ino, gen, p);
2520 if (ret < 0)
2521 goto out;
2522 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2523 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2524 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2525
2526 ret = send_cmd(sctx);
2527
2528tlv_put_failure:
2529out:
2530 fs_path_free(p);
2531 return ret;
2532}
2533
2534static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2535{
2536 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2537 int ret = 0;
2538 struct fs_path *p = NULL;
2539 struct btrfs_inode_item *ii;
2540 struct btrfs_path *path = NULL;
2541 struct extent_buffer *eb;
2542 struct btrfs_key key;
2543 int slot;
2544
2545 btrfs_debug(fs_info, "send_utimes %llu", ino);
2546
2547 p = fs_path_alloc();
2548 if (!p)
2549 return -ENOMEM;
2550
2551 path = alloc_path_for_send();
2552 if (!path) {
2553 ret = -ENOMEM;
2554 goto out;
2555 }
2556
2557 key.objectid = ino;
2558 key.type = BTRFS_INODE_ITEM_KEY;
2559 key.offset = 0;
2560 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2561 if (ret > 0)
2562 ret = -ENOENT;
2563 if (ret < 0)
2564 goto out;
2565
2566 eb = path->nodes[0];
2567 slot = path->slots[0];
2568 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2569
2570 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2571 if (ret < 0)
2572 goto out;
2573
2574 ret = get_cur_path(sctx, ino, gen, p);
2575 if (ret < 0)
2576 goto out;
2577 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2578 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2579 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2580 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2581 /* TODO Add otime support when the otime patches get into upstream */
2582
2583 ret = send_cmd(sctx);
2584
2585tlv_put_failure:
2586out:
2587 fs_path_free(p);
2588 btrfs_free_path(path);
2589 return ret;
2590}
2591
2592/*
2593 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2594 * a valid path yet because we did not process the refs yet. So, the inode
2595 * is created as orphan.
2596 */
2597static int send_create_inode(struct send_ctx *sctx, u64 ino)
2598{
2599 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2600 int ret = 0;
2601 struct fs_path *p;
2602 int cmd;
2603 u64 gen;
2604 u64 mode;
2605 u64 rdev;
2606
2607 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2608
2609 p = fs_path_alloc();
2610 if (!p)
2611 return -ENOMEM;
2612
2613 if (ino != sctx->cur_ino) {
2614 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2615 NULL, NULL, &rdev);
2616 if (ret < 0)
2617 goto out;
2618 } else {
2619 gen = sctx->cur_inode_gen;
2620 mode = sctx->cur_inode_mode;
2621 rdev = sctx->cur_inode_rdev;
2622 }
2623
2624 if (S_ISREG(mode)) {
2625 cmd = BTRFS_SEND_C_MKFILE;
2626 } else if (S_ISDIR(mode)) {
2627 cmd = BTRFS_SEND_C_MKDIR;
2628 } else if (S_ISLNK(mode)) {
2629 cmd = BTRFS_SEND_C_SYMLINK;
2630 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2631 cmd = BTRFS_SEND_C_MKNOD;
2632 } else if (S_ISFIFO(mode)) {
2633 cmd = BTRFS_SEND_C_MKFIFO;
2634 } else if (S_ISSOCK(mode)) {
2635 cmd = BTRFS_SEND_C_MKSOCK;
2636 } else {
2637 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2638 (int)(mode & S_IFMT));
2639 ret = -EOPNOTSUPP;
2640 goto out;
2641 }
2642
2643 ret = begin_cmd(sctx, cmd);
2644 if (ret < 0)
2645 goto out;
2646
2647 ret = gen_unique_name(sctx, ino, gen, p);
2648 if (ret < 0)
2649 goto out;
2650
2651 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2652 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2653
2654 if (S_ISLNK(mode)) {
2655 fs_path_reset(p);
2656 ret = read_symlink(sctx->send_root, ino, p);
2657 if (ret < 0)
2658 goto out;
2659 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2660 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2661 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2662 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2663 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2664 }
2665
2666 ret = send_cmd(sctx);
2667 if (ret < 0)
2668 goto out;
2669
2670
2671tlv_put_failure:
2672out:
2673 fs_path_free(p);
2674 return ret;
2675}
2676
2677/*
2678 * We need some special handling for inodes that get processed before the parent
2679 * directory got created. See process_recorded_refs for details.
2680 * This function does the check if we already created the dir out of order.
2681 */
2682static int did_create_dir(struct send_ctx *sctx, u64 dir)
2683{
2684 int ret = 0;
2685 struct btrfs_path *path = NULL;
2686 struct btrfs_key key;
2687 struct btrfs_key found_key;
2688 struct btrfs_key di_key;
2689 struct extent_buffer *eb;
2690 struct btrfs_dir_item *di;
2691 int slot;
2692
2693 path = alloc_path_for_send();
2694 if (!path) {
2695 ret = -ENOMEM;
2696 goto out;
2697 }
2698
2699 key.objectid = dir;
2700 key.type = BTRFS_DIR_INDEX_KEY;
2701 key.offset = 0;
2702 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2703 if (ret < 0)
2704 goto out;
2705
2706 while (1) {
2707 eb = path->nodes[0];
2708 slot = path->slots[0];
2709 if (slot >= btrfs_header_nritems(eb)) {
2710 ret = btrfs_next_leaf(sctx->send_root, path);
2711 if (ret < 0) {
2712 goto out;
2713 } else if (ret > 0) {
2714 ret = 0;
2715 break;
2716 }
2717 continue;
2718 }
2719
2720 btrfs_item_key_to_cpu(eb, &found_key, slot);
2721 if (found_key.objectid != key.objectid ||
2722 found_key.type != key.type) {
2723 ret = 0;
2724 goto out;
2725 }
2726
2727 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2728 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2729
2730 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2731 di_key.objectid < sctx->send_progress) {
2732 ret = 1;
2733 goto out;
2734 }
2735
2736 path->slots[0]++;
2737 }
2738
2739out:
2740 btrfs_free_path(path);
2741 return ret;
2742}
2743
2744/*
2745 * Only creates the inode if it is:
2746 * 1. Not a directory
2747 * 2. Or a directory which was not created already due to out of order
2748 * directories. See did_create_dir and process_recorded_refs for details.
2749 */
2750static int send_create_inode_if_needed(struct send_ctx *sctx)
2751{
2752 int ret;
2753
2754 if (S_ISDIR(sctx->cur_inode_mode)) {
2755 ret = did_create_dir(sctx, sctx->cur_ino);
2756 if (ret < 0)
2757 goto out;
2758 if (ret) {
2759 ret = 0;
2760 goto out;
2761 }
2762 }
2763
2764 ret = send_create_inode(sctx, sctx->cur_ino);
2765 if (ret < 0)
2766 goto out;
2767
2768out:
2769 return ret;
2770}
2771
2772struct recorded_ref {
2773 struct list_head list;
2774 char *name;
2775 struct fs_path *full_path;
2776 u64 dir;
2777 u64 dir_gen;
2778 int name_len;
2779};
2780
2781static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2782{
2783 ref->full_path = path;
2784 ref->name = (char *)kbasename(ref->full_path->start);
2785 ref->name_len = ref->full_path->end - ref->name;
2786}
2787
2788/*
2789 * We need to process new refs before deleted refs, but compare_tree gives us
2790 * everything mixed. So we first record all refs and later process them.
2791 * This function is a helper to record one ref.
2792 */
2793static int __record_ref(struct list_head *head, u64 dir,
2794 u64 dir_gen, struct fs_path *path)
2795{
2796 struct recorded_ref *ref;
2797
2798 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2799 if (!ref)
2800 return -ENOMEM;
2801
2802 ref->dir = dir;
2803 ref->dir_gen = dir_gen;
2804 set_ref_path(ref, path);
2805 list_add_tail(&ref->list, head);
2806 return 0;
2807}
2808
2809static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2810{
2811 struct recorded_ref *new;
2812
2813 new = kmalloc(sizeof(*ref), GFP_KERNEL);
2814 if (!new)
2815 return -ENOMEM;
2816
2817 new->dir = ref->dir;
2818 new->dir_gen = ref->dir_gen;
2819 new->full_path = NULL;
2820 INIT_LIST_HEAD(&new->list);
2821 list_add_tail(&new->list, list);
2822 return 0;
2823}
2824
2825static void __free_recorded_refs(struct list_head *head)
2826{
2827 struct recorded_ref *cur;
2828
2829 while (!list_empty(head)) {
2830 cur = list_entry(head->next, struct recorded_ref, list);
2831 fs_path_free(cur->full_path);
2832 list_del(&cur->list);
2833 kfree(cur);
2834 }
2835}
2836
2837static void free_recorded_refs(struct send_ctx *sctx)
2838{
2839 __free_recorded_refs(&sctx->new_refs);
2840 __free_recorded_refs(&sctx->deleted_refs);
2841}
2842
2843/*
2844 * Renames/moves a file/dir to its orphan name. Used when the first
2845 * ref of an unprocessed inode gets overwritten and for all non empty
2846 * directories.
2847 */
2848static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2849 struct fs_path *path)
2850{
2851 int ret;
2852 struct fs_path *orphan;
2853
2854 orphan = fs_path_alloc();
2855 if (!orphan)
2856 return -ENOMEM;
2857
2858 ret = gen_unique_name(sctx, ino, gen, orphan);
2859 if (ret < 0)
2860 goto out;
2861
2862 ret = send_rename(sctx, path, orphan);
2863
2864out:
2865 fs_path_free(orphan);
2866 return ret;
2867}
2868
Olivier Deprez0e641232021-09-23 10:07:05 +02002869static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
2870 u64 dir_ino, u64 dir_gen)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002871{
2872 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2873 struct rb_node *parent = NULL;
2874 struct orphan_dir_info *entry, *odi;
2875
2876 while (*p) {
2877 parent = *p;
2878 entry = rb_entry(parent, struct orphan_dir_info, node);
Olivier Deprez0e641232021-09-23 10:07:05 +02002879 if (dir_ino < entry->ino)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002880 p = &(*p)->rb_left;
Olivier Deprez0e641232021-09-23 10:07:05 +02002881 else if (dir_ino > entry->ino)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002882 p = &(*p)->rb_right;
Olivier Deprez0e641232021-09-23 10:07:05 +02002883 else if (dir_gen < entry->gen)
2884 p = &(*p)->rb_left;
2885 else if (dir_gen > entry->gen)
2886 p = &(*p)->rb_right;
2887 else
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002888 return entry;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002889 }
2890
2891 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2892 if (!odi)
2893 return ERR_PTR(-ENOMEM);
2894 odi->ino = dir_ino;
Olivier Deprez0e641232021-09-23 10:07:05 +02002895 odi->gen = dir_gen;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002896 odi->last_dir_index_offset = 0;
2897
2898 rb_link_node(&odi->node, parent, p);
2899 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2900 return odi;
2901}
2902
Olivier Deprez0e641232021-09-23 10:07:05 +02002903static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
2904 u64 dir_ino, u64 gen)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002905{
2906 struct rb_node *n = sctx->orphan_dirs.rb_node;
2907 struct orphan_dir_info *entry;
2908
2909 while (n) {
2910 entry = rb_entry(n, struct orphan_dir_info, node);
2911 if (dir_ino < entry->ino)
2912 n = n->rb_left;
2913 else if (dir_ino > entry->ino)
2914 n = n->rb_right;
Olivier Deprez0e641232021-09-23 10:07:05 +02002915 else if (gen < entry->gen)
2916 n = n->rb_left;
2917 else if (gen > entry->gen)
2918 n = n->rb_right;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002919 else
2920 return entry;
2921 }
2922 return NULL;
2923}
2924
Olivier Deprez0e641232021-09-23 10:07:05 +02002925static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002926{
Olivier Deprez0e641232021-09-23 10:07:05 +02002927 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002928
2929 return odi != NULL;
2930}
2931
2932static void free_orphan_dir_info(struct send_ctx *sctx,
2933 struct orphan_dir_info *odi)
2934{
2935 if (!odi)
2936 return;
2937 rb_erase(&odi->node, &sctx->orphan_dirs);
2938 kfree(odi);
2939}
2940
2941/*
2942 * Returns 1 if a directory can be removed at this point in time.
2943 * We check this by iterating all dir items and checking if the inode behind
2944 * the dir item was already processed.
2945 */
2946static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2947 u64 send_progress)
2948{
2949 int ret = 0;
2950 struct btrfs_root *root = sctx->parent_root;
2951 struct btrfs_path *path;
2952 struct btrfs_key key;
2953 struct btrfs_key found_key;
2954 struct btrfs_key loc;
2955 struct btrfs_dir_item *di;
2956 struct orphan_dir_info *odi = NULL;
2957
2958 /*
2959 * Don't try to rmdir the top/root subvolume dir.
2960 */
2961 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2962 return 0;
2963
2964 path = alloc_path_for_send();
2965 if (!path)
2966 return -ENOMEM;
2967
2968 key.objectid = dir;
2969 key.type = BTRFS_DIR_INDEX_KEY;
2970 key.offset = 0;
2971
Olivier Deprez0e641232021-09-23 10:07:05 +02002972 odi = get_orphan_dir_info(sctx, dir, dir_gen);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002973 if (odi)
2974 key.offset = odi->last_dir_index_offset;
2975
2976 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2977 if (ret < 0)
2978 goto out;
2979
2980 while (1) {
2981 struct waiting_dir_move *dm;
2982
2983 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2984 ret = btrfs_next_leaf(root, path);
2985 if (ret < 0)
2986 goto out;
2987 else if (ret > 0)
2988 break;
2989 continue;
2990 }
2991 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2992 path->slots[0]);
2993 if (found_key.objectid != key.objectid ||
2994 found_key.type != key.type)
2995 break;
2996
2997 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2998 struct btrfs_dir_item);
2999 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3000
3001 dm = get_waiting_dir_move(sctx, loc.objectid);
3002 if (dm) {
Olivier Deprez0e641232021-09-23 10:07:05 +02003003 odi = add_orphan_dir_info(sctx, dir, dir_gen);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003004 if (IS_ERR(odi)) {
3005 ret = PTR_ERR(odi);
3006 goto out;
3007 }
3008 odi->gen = dir_gen;
3009 odi->last_dir_index_offset = found_key.offset;
3010 dm->rmdir_ino = dir;
Olivier Deprez0e641232021-09-23 10:07:05 +02003011 dm->rmdir_gen = dir_gen;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003012 ret = 0;
3013 goto out;
3014 }
3015
3016 if (loc.objectid > send_progress) {
Olivier Deprez0e641232021-09-23 10:07:05 +02003017 odi = add_orphan_dir_info(sctx, dir, dir_gen);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003018 if (IS_ERR(odi)) {
3019 ret = PTR_ERR(odi);
3020 goto out;
3021 }
3022 odi->gen = dir_gen;
3023 odi->last_dir_index_offset = found_key.offset;
3024 ret = 0;
3025 goto out;
3026 }
3027
3028 path->slots[0]++;
3029 }
3030 free_orphan_dir_info(sctx, odi);
3031
3032 ret = 1;
3033
3034out:
3035 btrfs_free_path(path);
3036 return ret;
3037}
3038
3039static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3040{
3041 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3042
3043 return entry != NULL;
3044}
3045
3046static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3047{
3048 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3049 struct rb_node *parent = NULL;
3050 struct waiting_dir_move *entry, *dm;
3051
3052 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3053 if (!dm)
3054 return -ENOMEM;
3055 dm->ino = ino;
3056 dm->rmdir_ino = 0;
Olivier Deprez0e641232021-09-23 10:07:05 +02003057 dm->rmdir_gen = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003058 dm->orphanized = orphanized;
3059
3060 while (*p) {
3061 parent = *p;
3062 entry = rb_entry(parent, struct waiting_dir_move, node);
3063 if (ino < entry->ino) {
3064 p = &(*p)->rb_left;
3065 } else if (ino > entry->ino) {
3066 p = &(*p)->rb_right;
3067 } else {
3068 kfree(dm);
3069 return -EEXIST;
3070 }
3071 }
3072
3073 rb_link_node(&dm->node, parent, p);
3074 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3075 return 0;
3076}
3077
3078static struct waiting_dir_move *
3079get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3080{
3081 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3082 struct waiting_dir_move *entry;
3083
3084 while (n) {
3085 entry = rb_entry(n, struct waiting_dir_move, node);
3086 if (ino < entry->ino)
3087 n = n->rb_left;
3088 else if (ino > entry->ino)
3089 n = n->rb_right;
3090 else
3091 return entry;
3092 }
3093 return NULL;
3094}
3095
3096static void free_waiting_dir_move(struct send_ctx *sctx,
3097 struct waiting_dir_move *dm)
3098{
3099 if (!dm)
3100 return;
3101 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3102 kfree(dm);
3103}
3104
3105static int add_pending_dir_move(struct send_ctx *sctx,
3106 u64 ino,
3107 u64 ino_gen,
3108 u64 parent_ino,
3109 struct list_head *new_refs,
3110 struct list_head *deleted_refs,
3111 const bool is_orphan)
3112{
3113 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3114 struct rb_node *parent = NULL;
3115 struct pending_dir_move *entry = NULL, *pm;
3116 struct recorded_ref *cur;
3117 int exists = 0;
3118 int ret;
3119
3120 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3121 if (!pm)
3122 return -ENOMEM;
3123 pm->parent_ino = parent_ino;
3124 pm->ino = ino;
3125 pm->gen = ino_gen;
3126 INIT_LIST_HEAD(&pm->list);
3127 INIT_LIST_HEAD(&pm->update_refs);
3128 RB_CLEAR_NODE(&pm->node);
3129
3130 while (*p) {
3131 parent = *p;
3132 entry = rb_entry(parent, struct pending_dir_move, node);
3133 if (parent_ino < entry->parent_ino) {
3134 p = &(*p)->rb_left;
3135 } else if (parent_ino > entry->parent_ino) {
3136 p = &(*p)->rb_right;
3137 } else {
3138 exists = 1;
3139 break;
3140 }
3141 }
3142
3143 list_for_each_entry(cur, deleted_refs, list) {
3144 ret = dup_ref(cur, &pm->update_refs);
3145 if (ret < 0)
3146 goto out;
3147 }
3148 list_for_each_entry(cur, new_refs, list) {
3149 ret = dup_ref(cur, &pm->update_refs);
3150 if (ret < 0)
3151 goto out;
3152 }
3153
3154 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3155 if (ret)
3156 goto out;
3157
3158 if (exists) {
3159 list_add_tail(&pm->list, &entry->list);
3160 } else {
3161 rb_link_node(&pm->node, parent, p);
3162 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3163 }
3164 ret = 0;
3165out:
3166 if (ret) {
3167 __free_recorded_refs(&pm->update_refs);
3168 kfree(pm);
3169 }
3170 return ret;
3171}
3172
3173static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3174 u64 parent_ino)
3175{
3176 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3177 struct pending_dir_move *entry;
3178
3179 while (n) {
3180 entry = rb_entry(n, struct pending_dir_move, node);
3181 if (parent_ino < entry->parent_ino)
3182 n = n->rb_left;
3183 else if (parent_ino > entry->parent_ino)
3184 n = n->rb_right;
3185 else
3186 return entry;
3187 }
3188 return NULL;
3189}
3190
3191static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3192 u64 ino, u64 gen, u64 *ancestor_ino)
3193{
3194 int ret = 0;
3195 u64 parent_inode = 0;
3196 u64 parent_gen = 0;
3197 u64 start_ino = ino;
3198
3199 *ancestor_ino = 0;
3200 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3201 fs_path_reset(name);
3202
Olivier Deprez0e641232021-09-23 10:07:05 +02003203 if (is_waiting_for_rm(sctx, ino, gen))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003204 break;
3205 if (is_waiting_for_move(sctx, ino)) {
3206 if (*ancestor_ino == 0)
3207 *ancestor_ino = ino;
3208 ret = get_first_ref(sctx->parent_root, ino,
3209 &parent_inode, &parent_gen, name);
3210 } else {
3211 ret = __get_cur_name_and_parent(sctx, ino, gen,
3212 &parent_inode,
3213 &parent_gen, name);
3214 if (ret > 0) {
3215 ret = 0;
3216 break;
3217 }
3218 }
3219 if (ret < 0)
3220 break;
3221 if (parent_inode == start_ino) {
3222 ret = 1;
3223 if (*ancestor_ino == 0)
3224 *ancestor_ino = ino;
3225 break;
3226 }
3227 ino = parent_inode;
3228 gen = parent_gen;
3229 }
3230 return ret;
3231}
3232
3233static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3234{
3235 struct fs_path *from_path = NULL;
3236 struct fs_path *to_path = NULL;
3237 struct fs_path *name = NULL;
3238 u64 orig_progress = sctx->send_progress;
3239 struct recorded_ref *cur;
3240 u64 parent_ino, parent_gen;
3241 struct waiting_dir_move *dm = NULL;
3242 u64 rmdir_ino = 0;
Olivier Deprez0e641232021-09-23 10:07:05 +02003243 u64 rmdir_gen;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003244 u64 ancestor;
3245 bool is_orphan;
3246 int ret;
3247
3248 name = fs_path_alloc();
3249 from_path = fs_path_alloc();
3250 if (!name || !from_path) {
3251 ret = -ENOMEM;
3252 goto out;
3253 }
3254
3255 dm = get_waiting_dir_move(sctx, pm->ino);
3256 ASSERT(dm);
3257 rmdir_ino = dm->rmdir_ino;
Olivier Deprez0e641232021-09-23 10:07:05 +02003258 rmdir_gen = dm->rmdir_gen;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003259 is_orphan = dm->orphanized;
3260 free_waiting_dir_move(sctx, dm);
3261
3262 if (is_orphan) {
3263 ret = gen_unique_name(sctx, pm->ino,
3264 pm->gen, from_path);
3265 } else {
3266 ret = get_first_ref(sctx->parent_root, pm->ino,
3267 &parent_ino, &parent_gen, name);
3268 if (ret < 0)
3269 goto out;
3270 ret = get_cur_path(sctx, parent_ino, parent_gen,
3271 from_path);
3272 if (ret < 0)
3273 goto out;
3274 ret = fs_path_add_path(from_path, name);
3275 }
3276 if (ret < 0)
3277 goto out;
3278
3279 sctx->send_progress = sctx->cur_ino + 1;
3280 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3281 if (ret < 0)
3282 goto out;
3283 if (ret) {
3284 LIST_HEAD(deleted_refs);
3285 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3286 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3287 &pm->update_refs, &deleted_refs,
3288 is_orphan);
3289 if (ret < 0)
3290 goto out;
3291 if (rmdir_ino) {
3292 dm = get_waiting_dir_move(sctx, pm->ino);
3293 ASSERT(dm);
3294 dm->rmdir_ino = rmdir_ino;
Olivier Deprez0e641232021-09-23 10:07:05 +02003295 dm->rmdir_gen = rmdir_gen;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003296 }
3297 goto out;
3298 }
3299 fs_path_reset(name);
3300 to_path = name;
3301 name = NULL;
3302 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3303 if (ret < 0)
3304 goto out;
3305
3306 ret = send_rename(sctx, from_path, to_path);
3307 if (ret < 0)
3308 goto out;
3309
3310 if (rmdir_ino) {
3311 struct orphan_dir_info *odi;
3312 u64 gen;
3313
Olivier Deprez0e641232021-09-23 10:07:05 +02003314 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003315 if (!odi) {
3316 /* already deleted */
3317 goto finish;
3318 }
3319 gen = odi->gen;
3320
3321 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3322 if (ret < 0)
3323 goto out;
3324 if (!ret)
3325 goto finish;
3326
3327 name = fs_path_alloc();
3328 if (!name) {
3329 ret = -ENOMEM;
3330 goto out;
3331 }
3332 ret = get_cur_path(sctx, rmdir_ino, gen, name);
3333 if (ret < 0)
3334 goto out;
3335 ret = send_rmdir(sctx, name);
3336 if (ret < 0)
3337 goto out;
3338 }
3339
3340finish:
3341 ret = send_utimes(sctx, pm->ino, pm->gen);
3342 if (ret < 0)
3343 goto out;
3344
3345 /*
3346 * After rename/move, need to update the utimes of both new parent(s)
3347 * and old parent(s).
3348 */
3349 list_for_each_entry(cur, &pm->update_refs, list) {
3350 /*
3351 * The parent inode might have been deleted in the send snapshot
3352 */
3353 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3354 NULL, NULL, NULL, NULL, NULL);
3355 if (ret == -ENOENT) {
3356 ret = 0;
3357 continue;
3358 }
3359 if (ret < 0)
3360 goto out;
3361
3362 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3363 if (ret < 0)
3364 goto out;
3365 }
3366
3367out:
3368 fs_path_free(name);
3369 fs_path_free(from_path);
3370 fs_path_free(to_path);
3371 sctx->send_progress = orig_progress;
3372
3373 return ret;
3374}
3375
3376static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3377{
3378 if (!list_empty(&m->list))
3379 list_del(&m->list);
3380 if (!RB_EMPTY_NODE(&m->node))
3381 rb_erase(&m->node, &sctx->pending_dir_moves);
3382 __free_recorded_refs(&m->update_refs);
3383 kfree(m);
3384}
3385
3386static void tail_append_pending_moves(struct send_ctx *sctx,
3387 struct pending_dir_move *moves,
3388 struct list_head *stack)
3389{
3390 if (list_empty(&moves->list)) {
3391 list_add_tail(&moves->list, stack);
3392 } else {
3393 LIST_HEAD(list);
3394 list_splice_init(&moves->list, &list);
3395 list_add_tail(&moves->list, stack);
3396 list_splice_tail(&list, stack);
3397 }
3398 if (!RB_EMPTY_NODE(&moves->node)) {
3399 rb_erase(&moves->node, &sctx->pending_dir_moves);
3400 RB_CLEAR_NODE(&moves->node);
3401 }
3402}
3403
3404static int apply_children_dir_moves(struct send_ctx *sctx)
3405{
3406 struct pending_dir_move *pm;
3407 struct list_head stack;
3408 u64 parent_ino = sctx->cur_ino;
3409 int ret = 0;
3410
3411 pm = get_pending_dir_moves(sctx, parent_ino);
3412 if (!pm)
3413 return 0;
3414
3415 INIT_LIST_HEAD(&stack);
3416 tail_append_pending_moves(sctx, pm, &stack);
3417
3418 while (!list_empty(&stack)) {
3419 pm = list_first_entry(&stack, struct pending_dir_move, list);
3420 parent_ino = pm->ino;
3421 ret = apply_dir_move(sctx, pm);
3422 free_pending_move(sctx, pm);
3423 if (ret)
3424 goto out;
3425 pm = get_pending_dir_moves(sctx, parent_ino);
3426 if (pm)
3427 tail_append_pending_moves(sctx, pm, &stack);
3428 }
3429 return 0;
3430
3431out:
3432 while (!list_empty(&stack)) {
3433 pm = list_first_entry(&stack, struct pending_dir_move, list);
3434 free_pending_move(sctx, pm);
3435 }
3436 return ret;
3437}
3438
3439/*
3440 * We might need to delay a directory rename even when no ancestor directory
3441 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3442 * renamed. This happens when we rename a directory to the old name (the name
3443 * in the parent root) of some other unrelated directory that got its rename
3444 * delayed due to some ancestor with higher number that got renamed.
3445 *
3446 * Example:
3447 *
3448 * Parent snapshot:
3449 * . (ino 256)
3450 * |---- a/ (ino 257)
3451 * | |---- file (ino 260)
3452 * |
3453 * |---- b/ (ino 258)
3454 * |---- c/ (ino 259)
3455 *
3456 * Send snapshot:
3457 * . (ino 256)
3458 * |---- a/ (ino 258)
3459 * |---- x/ (ino 259)
3460 * |---- y/ (ino 257)
3461 * |----- file (ino 260)
3462 *
3463 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3464 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3465 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3466 * must issue is:
3467 *
3468 * 1 - rename 259 from 'c' to 'x'
3469 * 2 - rename 257 from 'a' to 'x/y'
3470 * 3 - rename 258 from 'b' to 'a'
3471 *
3472 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3473 * be done right away and < 0 on error.
3474 */
3475static int wait_for_dest_dir_move(struct send_ctx *sctx,
3476 struct recorded_ref *parent_ref,
3477 const bool is_orphan)
3478{
3479 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3480 struct btrfs_path *path;
3481 struct btrfs_key key;
3482 struct btrfs_key di_key;
3483 struct btrfs_dir_item *di;
3484 u64 left_gen;
3485 u64 right_gen;
3486 int ret = 0;
3487 struct waiting_dir_move *wdm;
3488
3489 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3490 return 0;
3491
3492 path = alloc_path_for_send();
3493 if (!path)
3494 return -ENOMEM;
3495
3496 key.objectid = parent_ref->dir;
3497 key.type = BTRFS_DIR_ITEM_KEY;
3498 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3499
3500 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3501 if (ret < 0) {
3502 goto out;
3503 } else if (ret > 0) {
3504 ret = 0;
3505 goto out;
3506 }
3507
3508 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3509 parent_ref->name_len);
3510 if (!di) {
3511 ret = 0;
3512 goto out;
3513 }
3514 /*
3515 * di_key.objectid has the number of the inode that has a dentry in the
3516 * parent directory with the same name that sctx->cur_ino is being
3517 * renamed to. We need to check if that inode is in the send root as
3518 * well and if it is currently marked as an inode with a pending rename,
3519 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3520 * that it happens after that other inode is renamed.
3521 */
3522 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3523 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3524 ret = 0;
3525 goto out;
3526 }
3527
3528 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3529 &left_gen, NULL, NULL, NULL, NULL);
3530 if (ret < 0)
3531 goto out;
3532 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3533 &right_gen, NULL, NULL, NULL, NULL);
3534 if (ret < 0) {
3535 if (ret == -ENOENT)
3536 ret = 0;
3537 goto out;
3538 }
3539
3540 /* Different inode, no need to delay the rename of sctx->cur_ino */
3541 if (right_gen != left_gen) {
3542 ret = 0;
3543 goto out;
3544 }
3545
3546 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3547 if (wdm && !wdm->orphanized) {
3548 ret = add_pending_dir_move(sctx,
3549 sctx->cur_ino,
3550 sctx->cur_inode_gen,
3551 di_key.objectid,
3552 &sctx->new_refs,
3553 &sctx->deleted_refs,
3554 is_orphan);
3555 if (!ret)
3556 ret = 1;
3557 }
3558out:
3559 btrfs_free_path(path);
3560 return ret;
3561}
3562
3563/*
3564 * Check if inode ino2, or any of its ancestors, is inode ino1.
3565 * Return 1 if true, 0 if false and < 0 on error.
3566 */
3567static int check_ino_in_path(struct btrfs_root *root,
3568 const u64 ino1,
3569 const u64 ino1_gen,
3570 const u64 ino2,
3571 const u64 ino2_gen,
3572 struct fs_path *fs_path)
3573{
3574 u64 ino = ino2;
3575
3576 if (ino1 == ino2)
3577 return ino1_gen == ino2_gen;
3578
3579 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3580 u64 parent;
3581 u64 parent_gen;
3582 int ret;
3583
3584 fs_path_reset(fs_path);
3585 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3586 if (ret < 0)
3587 return ret;
3588 if (parent == ino1)
3589 return parent_gen == ino1_gen;
3590 ino = parent;
3591 }
3592 return 0;
3593}
3594
3595/*
3596 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3597 * possible path (in case ino2 is not a directory and has multiple hard links).
3598 * Return 1 if true, 0 if false and < 0 on error.
3599 */
3600static int is_ancestor(struct btrfs_root *root,
3601 const u64 ino1,
3602 const u64 ino1_gen,
3603 const u64 ino2,
3604 struct fs_path *fs_path)
3605{
3606 bool free_fs_path = false;
3607 int ret = 0;
3608 struct btrfs_path *path = NULL;
3609 struct btrfs_key key;
3610
3611 if (!fs_path) {
3612 fs_path = fs_path_alloc();
3613 if (!fs_path)
3614 return -ENOMEM;
3615 free_fs_path = true;
3616 }
3617
3618 path = alloc_path_for_send();
3619 if (!path) {
3620 ret = -ENOMEM;
3621 goto out;
3622 }
3623
3624 key.objectid = ino2;
3625 key.type = BTRFS_INODE_REF_KEY;
3626 key.offset = 0;
3627
3628 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3629 if (ret < 0)
3630 goto out;
3631
3632 while (true) {
3633 struct extent_buffer *leaf = path->nodes[0];
3634 int slot = path->slots[0];
3635 u32 cur_offset = 0;
3636 u32 item_size;
3637
3638 if (slot >= btrfs_header_nritems(leaf)) {
3639 ret = btrfs_next_leaf(root, path);
3640 if (ret < 0)
3641 goto out;
3642 if (ret > 0)
3643 break;
3644 continue;
3645 }
3646
3647 btrfs_item_key_to_cpu(leaf, &key, slot);
3648 if (key.objectid != ino2)
3649 break;
3650 if (key.type != BTRFS_INODE_REF_KEY &&
3651 key.type != BTRFS_INODE_EXTREF_KEY)
3652 break;
3653
3654 item_size = btrfs_item_size_nr(leaf, slot);
3655 while (cur_offset < item_size) {
3656 u64 parent;
3657 u64 parent_gen;
3658
3659 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3660 unsigned long ptr;
3661 struct btrfs_inode_extref *extref;
3662
3663 ptr = btrfs_item_ptr_offset(leaf, slot);
3664 extref = (struct btrfs_inode_extref *)
3665 (ptr + cur_offset);
3666 parent = btrfs_inode_extref_parent(leaf,
3667 extref);
3668 cur_offset += sizeof(*extref);
3669 cur_offset += btrfs_inode_extref_name_len(leaf,
3670 extref);
3671 } else {
3672 parent = key.offset;
3673 cur_offset = item_size;
3674 }
3675
3676 ret = get_inode_info(root, parent, NULL, &parent_gen,
3677 NULL, NULL, NULL, NULL);
3678 if (ret < 0)
3679 goto out;
3680 ret = check_ino_in_path(root, ino1, ino1_gen,
3681 parent, parent_gen, fs_path);
3682 if (ret)
3683 goto out;
3684 }
3685 path->slots[0]++;
3686 }
3687 ret = 0;
3688 out:
3689 btrfs_free_path(path);
3690 if (free_fs_path)
3691 fs_path_free(fs_path);
3692 return ret;
3693}
3694
3695static int wait_for_parent_move(struct send_ctx *sctx,
3696 struct recorded_ref *parent_ref,
3697 const bool is_orphan)
3698{
3699 int ret = 0;
3700 u64 ino = parent_ref->dir;
3701 u64 ino_gen = parent_ref->dir_gen;
3702 u64 parent_ino_before, parent_ino_after;
3703 struct fs_path *path_before = NULL;
3704 struct fs_path *path_after = NULL;
3705 int len1, len2;
3706
3707 path_after = fs_path_alloc();
3708 path_before = fs_path_alloc();
3709 if (!path_after || !path_before) {
3710 ret = -ENOMEM;
3711 goto out;
3712 }
3713
3714 /*
3715 * Our current directory inode may not yet be renamed/moved because some
3716 * ancestor (immediate or not) has to be renamed/moved first. So find if
3717 * such ancestor exists and make sure our own rename/move happens after
3718 * that ancestor is processed to avoid path build infinite loops (done
3719 * at get_cur_path()).
3720 */
3721 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3722 u64 parent_ino_after_gen;
3723
3724 if (is_waiting_for_move(sctx, ino)) {
3725 /*
3726 * If the current inode is an ancestor of ino in the
3727 * parent root, we need to delay the rename of the
3728 * current inode, otherwise don't delayed the rename
3729 * because we can end up with a circular dependency
3730 * of renames, resulting in some directories never
3731 * getting the respective rename operations issued in
3732 * the send stream or getting into infinite path build
3733 * loops.
3734 */
3735 ret = is_ancestor(sctx->parent_root,
3736 sctx->cur_ino, sctx->cur_inode_gen,
3737 ino, path_before);
3738 if (ret)
3739 break;
3740 }
3741
3742 fs_path_reset(path_before);
3743 fs_path_reset(path_after);
3744
3745 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3746 &parent_ino_after_gen, path_after);
3747 if (ret < 0)
3748 goto out;
3749 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3750 NULL, path_before);
3751 if (ret < 0 && ret != -ENOENT) {
3752 goto out;
3753 } else if (ret == -ENOENT) {
3754 ret = 0;
3755 break;
3756 }
3757
3758 len1 = fs_path_len(path_before);
3759 len2 = fs_path_len(path_after);
3760 if (ino > sctx->cur_ino &&
3761 (parent_ino_before != parent_ino_after || len1 != len2 ||
3762 memcmp(path_before->start, path_after->start, len1))) {
3763 u64 parent_ino_gen;
3764
3765 ret = get_inode_info(sctx->parent_root, ino, NULL,
3766 &parent_ino_gen, NULL, NULL, NULL,
3767 NULL);
3768 if (ret < 0)
3769 goto out;
3770 if (ino_gen == parent_ino_gen) {
3771 ret = 1;
3772 break;
3773 }
3774 }
3775 ino = parent_ino_after;
3776 ino_gen = parent_ino_after_gen;
3777 }
3778
3779out:
3780 fs_path_free(path_before);
3781 fs_path_free(path_after);
3782
3783 if (ret == 1) {
3784 ret = add_pending_dir_move(sctx,
3785 sctx->cur_ino,
3786 sctx->cur_inode_gen,
3787 ino,
3788 &sctx->new_refs,
3789 &sctx->deleted_refs,
3790 is_orphan);
3791 if (!ret)
3792 ret = 1;
3793 }
3794
3795 return ret;
3796}
3797
3798static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3799{
3800 int ret;
3801 struct fs_path *new_path;
3802
3803 /*
3804 * Our reference's name member points to its full_path member string, so
3805 * we use here a new path.
3806 */
3807 new_path = fs_path_alloc();
3808 if (!new_path)
3809 return -ENOMEM;
3810
3811 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3812 if (ret < 0) {
3813 fs_path_free(new_path);
3814 return ret;
3815 }
3816 ret = fs_path_add(new_path, ref->name, ref->name_len);
3817 if (ret < 0) {
3818 fs_path_free(new_path);
3819 return ret;
3820 }
3821
3822 fs_path_free(ref->full_path);
3823 set_ref_path(ref, new_path);
3824
3825 return 0;
3826}
3827
3828/*
Olivier Deprez0e641232021-09-23 10:07:05 +02003829 * When processing the new references for an inode we may orphanize an existing
3830 * directory inode because its old name conflicts with one of the new references
3831 * of the current inode. Later, when processing another new reference of our
3832 * inode, we might need to orphanize another inode, but the path we have in the
3833 * reference reflects the pre-orphanization name of the directory we previously
3834 * orphanized. For example:
3835 *
3836 * parent snapshot looks like:
3837 *
3838 * . (ino 256)
3839 * |----- f1 (ino 257)
3840 * |----- f2 (ino 258)
3841 * |----- d1/ (ino 259)
3842 * |----- d2/ (ino 260)
3843 *
3844 * send snapshot looks like:
3845 *
3846 * . (ino 256)
3847 * |----- d1 (ino 258)
3848 * |----- f2/ (ino 259)
3849 * |----- f2_link/ (ino 260)
3850 * | |----- f1 (ino 257)
3851 * |
3852 * |----- d2 (ino 258)
3853 *
3854 * When processing inode 257 we compute the name for inode 259 as "d1", and we
3855 * cache it in the name cache. Later when we start processing inode 258, when
3856 * collecting all its new references we set a full path of "d1/d2" for its new
3857 * reference with name "d2". When we start processing the new references we
3858 * start by processing the new reference with name "d1", and this results in
3859 * orphanizing inode 259, since its old reference causes a conflict. Then we
3860 * move on the next new reference, with name "d2", and we find out we must
3861 * orphanize inode 260, as its old reference conflicts with ours - but for the
3862 * orphanization we use a source path corresponding to the path we stored in the
3863 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
3864 * receiver fail since the path component "d1/" no longer exists, it was renamed
3865 * to "o259-6-0/" when processing the previous new reference. So in this case we
3866 * must recompute the path in the new reference and use it for the new
3867 * orphanization operation.
3868 */
3869static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3870{
3871 char *name;
3872 int ret;
3873
3874 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
3875 if (!name)
3876 return -ENOMEM;
3877
3878 fs_path_reset(ref->full_path);
3879 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
3880 if (ret < 0)
3881 goto out;
3882
3883 ret = fs_path_add(ref->full_path, name, ref->name_len);
3884 if (ret < 0)
3885 goto out;
3886
3887 /* Update the reference's base name pointer. */
3888 set_ref_path(ref, ref->full_path);
3889out:
3890 kfree(name);
3891 return ret;
3892}
3893
3894/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003895 * This does all the move/link/unlink/rmdir magic.
3896 */
3897static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3898{
3899 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3900 int ret = 0;
3901 struct recorded_ref *cur;
3902 struct recorded_ref *cur2;
3903 struct list_head check_dirs;
3904 struct fs_path *valid_path = NULL;
3905 u64 ow_inode = 0;
3906 u64 ow_gen;
3907 u64 ow_mode;
3908 int did_overwrite = 0;
3909 int is_orphan = 0;
3910 u64 last_dir_ino_rm = 0;
3911 bool can_rename = true;
3912 bool orphanized_dir = false;
3913 bool orphanized_ancestor = false;
3914
3915 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3916
3917 /*
3918 * This should never happen as the root dir always has the same ref
3919 * which is always '..'
3920 */
3921 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3922 INIT_LIST_HEAD(&check_dirs);
3923
3924 valid_path = fs_path_alloc();
3925 if (!valid_path) {
3926 ret = -ENOMEM;
3927 goto out;
3928 }
3929
3930 /*
3931 * First, check if the first ref of the current inode was overwritten
3932 * before. If yes, we know that the current inode was already orphanized
3933 * and thus use the orphan name. If not, we can use get_cur_path to
3934 * get the path of the first ref as it would like while receiving at
3935 * this point in time.
3936 * New inodes are always orphan at the beginning, so force to use the
3937 * orphan name in this case.
3938 * The first ref is stored in valid_path and will be updated if it
3939 * gets moved around.
3940 */
3941 if (!sctx->cur_inode_new) {
3942 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3943 sctx->cur_inode_gen);
3944 if (ret < 0)
3945 goto out;
3946 if (ret)
3947 did_overwrite = 1;
3948 }
3949 if (sctx->cur_inode_new || did_overwrite) {
3950 ret = gen_unique_name(sctx, sctx->cur_ino,
3951 sctx->cur_inode_gen, valid_path);
3952 if (ret < 0)
3953 goto out;
3954 is_orphan = 1;
3955 } else {
3956 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3957 valid_path);
3958 if (ret < 0)
3959 goto out;
3960 }
3961
Olivier Deprez0e641232021-09-23 10:07:05 +02003962 /*
3963 * Before doing any rename and link operations, do a first pass on the
3964 * new references to orphanize any unprocessed inodes that may have a
3965 * reference that conflicts with one of the new references of the current
3966 * inode. This needs to happen first because a new reference may conflict
3967 * with the old reference of a parent directory, so we must make sure
3968 * that the path used for link and rename commands don't use an
3969 * orphanized name when an ancestor was not yet orphanized.
3970 *
3971 * Example:
3972 *
3973 * Parent snapshot:
3974 *
3975 * . (ino 256)
3976 * |----- testdir/ (ino 259)
3977 * | |----- a (ino 257)
3978 * |
3979 * |----- b (ino 258)
3980 *
3981 * Send snapshot:
3982 *
3983 * . (ino 256)
3984 * |----- testdir_2/ (ino 259)
3985 * | |----- a (ino 260)
3986 * |
3987 * |----- testdir (ino 257)
3988 * |----- b (ino 257)
3989 * |----- b2 (ino 258)
3990 *
3991 * Processing the new reference for inode 257 with name "b" may happen
3992 * before processing the new reference with name "testdir". If so, we
3993 * must make sure that by the time we send a link command to create the
3994 * hard link "b", inode 259 was already orphanized, since the generated
3995 * path in "valid_path" already contains the orphanized name for 259.
3996 * We are processing inode 257, so only later when processing 259 we do
3997 * the rename operation to change its temporary (orphanized) name to
3998 * "testdir_2".
3999 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004000 list_for_each_entry(cur, &sctx->new_refs, list) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004001 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4002 if (ret < 0)
4003 goto out;
Olivier Deprez0e641232021-09-23 10:07:05 +02004004 if (ret == inode_state_will_create)
4005 continue;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004006
4007 /*
Olivier Deprez0e641232021-09-23 10:07:05 +02004008 * Check if this new ref would overwrite the first ref of another
4009 * unprocessed inode. If yes, orphanize the overwritten inode.
4010 * If we find an overwritten ref that is not the first ref,
4011 * simply unlink it.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004012 */
4013 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4014 cur->name, cur->name_len,
4015 &ow_inode, &ow_gen, &ow_mode);
4016 if (ret < 0)
4017 goto out;
4018 if (ret) {
4019 ret = is_first_ref(sctx->parent_root,
4020 ow_inode, cur->dir, cur->name,
4021 cur->name_len);
4022 if (ret < 0)
4023 goto out;
4024 if (ret) {
4025 struct name_cache_entry *nce;
4026 struct waiting_dir_move *wdm;
4027
Olivier Deprez0e641232021-09-23 10:07:05 +02004028 if (orphanized_dir) {
4029 ret = refresh_ref_path(sctx, cur);
4030 if (ret < 0)
4031 goto out;
4032 }
4033
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004034 ret = orphanize_inode(sctx, ow_inode, ow_gen,
4035 cur->full_path);
4036 if (ret < 0)
4037 goto out;
4038 if (S_ISDIR(ow_mode))
4039 orphanized_dir = true;
4040
4041 /*
4042 * If ow_inode has its rename operation delayed
4043 * make sure that its orphanized name is used in
4044 * the source path when performing its rename
4045 * operation.
4046 */
4047 if (is_waiting_for_move(sctx, ow_inode)) {
4048 wdm = get_waiting_dir_move(sctx,
4049 ow_inode);
4050 ASSERT(wdm);
4051 wdm->orphanized = true;
4052 }
4053
4054 /*
4055 * Make sure we clear our orphanized inode's
4056 * name from the name cache. This is because the
4057 * inode ow_inode might be an ancestor of some
4058 * other inode that will be orphanized as well
4059 * later and has an inode number greater than
4060 * sctx->send_progress. We need to prevent
4061 * future name lookups from using the old name
4062 * and get instead the orphan name.
4063 */
4064 nce = name_cache_search(sctx, ow_inode, ow_gen);
4065 if (nce) {
4066 name_cache_delete(sctx, nce);
4067 kfree(nce);
4068 }
4069
4070 /*
4071 * ow_inode might currently be an ancestor of
4072 * cur_ino, therefore compute valid_path (the
4073 * current path of cur_ino) again because it
4074 * might contain the pre-orphanization name of
4075 * ow_inode, which is no longer valid.
4076 */
4077 ret = is_ancestor(sctx->parent_root,
4078 ow_inode, ow_gen,
4079 sctx->cur_ino, NULL);
4080 if (ret > 0) {
4081 orphanized_ancestor = true;
4082 fs_path_reset(valid_path);
4083 ret = get_cur_path(sctx, sctx->cur_ino,
4084 sctx->cur_inode_gen,
4085 valid_path);
4086 }
4087 if (ret < 0)
4088 goto out;
4089 } else {
Olivier Deprez0e641232021-09-23 10:07:05 +02004090 /*
4091 * If we previously orphanized a directory that
4092 * collided with a new reference that we already
4093 * processed, recompute the current path because
4094 * that directory may be part of the path.
4095 */
4096 if (orphanized_dir) {
4097 ret = refresh_ref_path(sctx, cur);
4098 if (ret < 0)
4099 goto out;
4100 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004101 ret = send_unlink(sctx, cur->full_path);
4102 if (ret < 0)
4103 goto out;
4104 }
4105 }
4106
Olivier Deprez0e641232021-09-23 10:07:05 +02004107 }
4108
4109 list_for_each_entry(cur, &sctx->new_refs, list) {
4110 /*
4111 * We may have refs where the parent directory does not exist
4112 * yet. This happens if the parent directories inum is higher
4113 * than the current inum. To handle this case, we create the
4114 * parent directory out of order. But we need to check if this
4115 * did already happen before due to other refs in the same dir.
4116 */
4117 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4118 if (ret < 0)
4119 goto out;
4120 if (ret == inode_state_will_create) {
4121 ret = 0;
4122 /*
4123 * First check if any of the current inodes refs did
4124 * already create the dir.
4125 */
4126 list_for_each_entry(cur2, &sctx->new_refs, list) {
4127 if (cur == cur2)
4128 break;
4129 if (cur2->dir == cur->dir) {
4130 ret = 1;
4131 break;
4132 }
4133 }
4134
4135 /*
4136 * If that did not happen, check if a previous inode
4137 * did already create the dir.
4138 */
4139 if (!ret)
4140 ret = did_create_dir(sctx, cur->dir);
4141 if (ret < 0)
4142 goto out;
4143 if (!ret) {
4144 ret = send_create_inode(sctx, cur->dir);
4145 if (ret < 0)
4146 goto out;
4147 }
4148 }
4149
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004150 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4151 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4152 if (ret < 0)
4153 goto out;
4154 if (ret == 1) {
4155 can_rename = false;
4156 *pending_move = 1;
4157 }
4158 }
4159
4160 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4161 can_rename) {
4162 ret = wait_for_parent_move(sctx, cur, is_orphan);
4163 if (ret < 0)
4164 goto out;
4165 if (ret == 1) {
4166 can_rename = false;
4167 *pending_move = 1;
4168 }
4169 }
4170
4171 /*
4172 * link/move the ref to the new place. If we have an orphan
4173 * inode, move it and update valid_path. If not, link or move
4174 * it depending on the inode mode.
4175 */
4176 if (is_orphan && can_rename) {
4177 ret = send_rename(sctx, valid_path, cur->full_path);
4178 if (ret < 0)
4179 goto out;
4180 is_orphan = 0;
4181 ret = fs_path_copy(valid_path, cur->full_path);
4182 if (ret < 0)
4183 goto out;
4184 } else if (can_rename) {
4185 if (S_ISDIR(sctx->cur_inode_mode)) {
4186 /*
4187 * Dirs can't be linked, so move it. For moved
4188 * dirs, we always have one new and one deleted
4189 * ref. The deleted ref is ignored later.
4190 */
4191 ret = send_rename(sctx, valid_path,
4192 cur->full_path);
4193 if (!ret)
4194 ret = fs_path_copy(valid_path,
4195 cur->full_path);
4196 if (ret < 0)
4197 goto out;
4198 } else {
4199 /*
4200 * We might have previously orphanized an inode
4201 * which is an ancestor of our current inode,
4202 * so our reference's full path, which was
4203 * computed before any such orphanizations, must
4204 * be updated.
4205 */
4206 if (orphanized_dir) {
4207 ret = update_ref_path(sctx, cur);
4208 if (ret < 0)
4209 goto out;
4210 }
4211 ret = send_link(sctx, cur->full_path,
4212 valid_path);
4213 if (ret < 0)
4214 goto out;
4215 }
4216 }
4217 ret = dup_ref(cur, &check_dirs);
4218 if (ret < 0)
4219 goto out;
4220 }
4221
4222 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4223 /*
4224 * Check if we can already rmdir the directory. If not,
4225 * orphanize it. For every dir item inside that gets deleted
4226 * later, we do this check again and rmdir it then if possible.
4227 * See the use of check_dirs for more details.
4228 */
4229 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4230 sctx->cur_ino);
4231 if (ret < 0)
4232 goto out;
4233 if (ret) {
4234 ret = send_rmdir(sctx, valid_path);
4235 if (ret < 0)
4236 goto out;
4237 } else if (!is_orphan) {
4238 ret = orphanize_inode(sctx, sctx->cur_ino,
4239 sctx->cur_inode_gen, valid_path);
4240 if (ret < 0)
4241 goto out;
4242 is_orphan = 1;
4243 }
4244
4245 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4246 ret = dup_ref(cur, &check_dirs);
4247 if (ret < 0)
4248 goto out;
4249 }
4250 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4251 !list_empty(&sctx->deleted_refs)) {
4252 /*
4253 * We have a moved dir. Add the old parent to check_dirs
4254 */
4255 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4256 list);
4257 ret = dup_ref(cur, &check_dirs);
4258 if (ret < 0)
4259 goto out;
4260 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4261 /*
4262 * We have a non dir inode. Go through all deleted refs and
4263 * unlink them if they were not already overwritten by other
4264 * inodes.
4265 */
4266 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4267 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4268 sctx->cur_ino, sctx->cur_inode_gen,
4269 cur->name, cur->name_len);
4270 if (ret < 0)
4271 goto out;
4272 if (!ret) {
4273 /*
4274 * If we orphanized any ancestor before, we need
4275 * to recompute the full path for deleted names,
4276 * since any such path was computed before we
4277 * processed any references and orphanized any
4278 * ancestor inode.
4279 */
4280 if (orphanized_ancestor) {
4281 ret = update_ref_path(sctx, cur);
4282 if (ret < 0)
4283 goto out;
4284 }
4285 ret = send_unlink(sctx, cur->full_path);
4286 if (ret < 0)
4287 goto out;
4288 }
4289 ret = dup_ref(cur, &check_dirs);
4290 if (ret < 0)
4291 goto out;
4292 }
4293 /*
4294 * If the inode is still orphan, unlink the orphan. This may
4295 * happen when a previous inode did overwrite the first ref
4296 * of this inode and no new refs were added for the current
4297 * inode. Unlinking does not mean that the inode is deleted in
4298 * all cases. There may still be links to this inode in other
4299 * places.
4300 */
4301 if (is_orphan) {
4302 ret = send_unlink(sctx, valid_path);
4303 if (ret < 0)
4304 goto out;
4305 }
4306 }
4307
4308 /*
4309 * We did collect all parent dirs where cur_inode was once located. We
4310 * now go through all these dirs and check if they are pending for
4311 * deletion and if it's finally possible to perform the rmdir now.
4312 * We also update the inode stats of the parent dirs here.
4313 */
4314 list_for_each_entry(cur, &check_dirs, list) {
4315 /*
4316 * In case we had refs into dirs that were not processed yet,
4317 * we don't need to do the utime and rmdir logic for these dirs.
4318 * The dir will be processed later.
4319 */
4320 if (cur->dir > sctx->cur_ino)
4321 continue;
4322
4323 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4324 if (ret < 0)
4325 goto out;
4326
4327 if (ret == inode_state_did_create ||
4328 ret == inode_state_no_change) {
4329 /* TODO delayed utimes */
4330 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4331 if (ret < 0)
4332 goto out;
4333 } else if (ret == inode_state_did_delete &&
4334 cur->dir != last_dir_ino_rm) {
4335 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4336 sctx->cur_ino);
4337 if (ret < 0)
4338 goto out;
4339 if (ret) {
4340 ret = get_cur_path(sctx, cur->dir,
4341 cur->dir_gen, valid_path);
4342 if (ret < 0)
4343 goto out;
4344 ret = send_rmdir(sctx, valid_path);
4345 if (ret < 0)
4346 goto out;
4347 last_dir_ino_rm = cur->dir;
4348 }
4349 }
4350 }
4351
4352 ret = 0;
4353
4354out:
4355 __free_recorded_refs(&check_dirs);
4356 free_recorded_refs(sctx);
4357 fs_path_free(valid_path);
4358 return ret;
4359}
4360
4361static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4362 void *ctx, struct list_head *refs)
4363{
4364 int ret = 0;
4365 struct send_ctx *sctx = ctx;
4366 struct fs_path *p;
4367 u64 gen;
4368
4369 p = fs_path_alloc();
4370 if (!p)
4371 return -ENOMEM;
4372
4373 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4374 NULL, NULL);
4375 if (ret < 0)
4376 goto out;
4377
4378 ret = get_cur_path(sctx, dir, gen, p);
4379 if (ret < 0)
4380 goto out;
4381 ret = fs_path_add_path(p, name);
4382 if (ret < 0)
4383 goto out;
4384
4385 ret = __record_ref(refs, dir, gen, p);
4386
4387out:
4388 if (ret)
4389 fs_path_free(p);
4390 return ret;
4391}
4392
4393static int __record_new_ref(int num, u64 dir, int index,
4394 struct fs_path *name,
4395 void *ctx)
4396{
4397 struct send_ctx *sctx = ctx;
4398 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4399}
4400
4401
4402static int __record_deleted_ref(int num, u64 dir, int index,
4403 struct fs_path *name,
4404 void *ctx)
4405{
4406 struct send_ctx *sctx = ctx;
4407 return record_ref(sctx->parent_root, dir, name, ctx,
4408 &sctx->deleted_refs);
4409}
4410
4411static int record_new_ref(struct send_ctx *sctx)
4412{
4413 int ret;
4414
4415 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4416 sctx->cmp_key, 0, __record_new_ref, sctx);
4417 if (ret < 0)
4418 goto out;
4419 ret = 0;
4420
4421out:
4422 return ret;
4423}
4424
4425static int record_deleted_ref(struct send_ctx *sctx)
4426{
4427 int ret;
4428
4429 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4430 sctx->cmp_key, 0, __record_deleted_ref, sctx);
4431 if (ret < 0)
4432 goto out;
4433 ret = 0;
4434
4435out:
4436 return ret;
4437}
4438
4439struct find_ref_ctx {
4440 u64 dir;
4441 u64 dir_gen;
4442 struct btrfs_root *root;
4443 struct fs_path *name;
4444 int found_idx;
4445};
4446
4447static int __find_iref(int num, u64 dir, int index,
4448 struct fs_path *name,
4449 void *ctx_)
4450{
4451 struct find_ref_ctx *ctx = ctx_;
4452 u64 dir_gen;
4453 int ret;
4454
4455 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4456 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4457 /*
4458 * To avoid doing extra lookups we'll only do this if everything
4459 * else matches.
4460 */
4461 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4462 NULL, NULL, NULL);
4463 if (ret)
4464 return ret;
4465 if (dir_gen != ctx->dir_gen)
4466 return 0;
4467 ctx->found_idx = num;
4468 return 1;
4469 }
4470 return 0;
4471}
4472
4473static int find_iref(struct btrfs_root *root,
4474 struct btrfs_path *path,
4475 struct btrfs_key *key,
4476 u64 dir, u64 dir_gen, struct fs_path *name)
4477{
4478 int ret;
4479 struct find_ref_ctx ctx;
4480
4481 ctx.dir = dir;
4482 ctx.name = name;
4483 ctx.dir_gen = dir_gen;
4484 ctx.found_idx = -1;
4485 ctx.root = root;
4486
4487 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4488 if (ret < 0)
4489 return ret;
4490
4491 if (ctx.found_idx == -1)
4492 return -ENOENT;
4493
4494 return ctx.found_idx;
4495}
4496
4497static int __record_changed_new_ref(int num, u64 dir, int index,
4498 struct fs_path *name,
4499 void *ctx)
4500{
4501 u64 dir_gen;
4502 int ret;
4503 struct send_ctx *sctx = ctx;
4504
4505 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4506 NULL, NULL, NULL);
4507 if (ret)
4508 return ret;
4509
4510 ret = find_iref(sctx->parent_root, sctx->right_path,
4511 sctx->cmp_key, dir, dir_gen, name);
4512 if (ret == -ENOENT)
4513 ret = __record_new_ref(num, dir, index, name, sctx);
4514 else if (ret > 0)
4515 ret = 0;
4516
4517 return ret;
4518}
4519
4520static int __record_changed_deleted_ref(int num, u64 dir, int index,
4521 struct fs_path *name,
4522 void *ctx)
4523{
4524 u64 dir_gen;
4525 int ret;
4526 struct send_ctx *sctx = ctx;
4527
4528 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4529 NULL, NULL, NULL);
4530 if (ret)
4531 return ret;
4532
4533 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4534 dir, dir_gen, name);
4535 if (ret == -ENOENT)
4536 ret = __record_deleted_ref(num, dir, index, name, sctx);
4537 else if (ret > 0)
4538 ret = 0;
4539
4540 return ret;
4541}
4542
4543static int record_changed_ref(struct send_ctx *sctx)
4544{
4545 int ret = 0;
4546
4547 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4548 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4549 if (ret < 0)
4550 goto out;
4551 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4552 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4553 if (ret < 0)
4554 goto out;
4555 ret = 0;
4556
4557out:
4558 return ret;
4559}
4560
4561/*
4562 * Record and process all refs at once. Needed when an inode changes the
4563 * generation number, which means that it was deleted and recreated.
4564 */
4565static int process_all_refs(struct send_ctx *sctx,
4566 enum btrfs_compare_tree_result cmd)
4567{
4568 int ret;
4569 struct btrfs_root *root;
4570 struct btrfs_path *path;
4571 struct btrfs_key key;
4572 struct btrfs_key found_key;
4573 struct extent_buffer *eb;
4574 int slot;
4575 iterate_inode_ref_t cb;
4576 int pending_move = 0;
4577
4578 path = alloc_path_for_send();
4579 if (!path)
4580 return -ENOMEM;
4581
4582 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4583 root = sctx->send_root;
4584 cb = __record_new_ref;
4585 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4586 root = sctx->parent_root;
4587 cb = __record_deleted_ref;
4588 } else {
4589 btrfs_err(sctx->send_root->fs_info,
4590 "Wrong command %d in process_all_refs", cmd);
4591 ret = -EINVAL;
4592 goto out;
4593 }
4594
4595 key.objectid = sctx->cmp_key->objectid;
4596 key.type = BTRFS_INODE_REF_KEY;
4597 key.offset = 0;
4598 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4599 if (ret < 0)
4600 goto out;
4601
4602 while (1) {
4603 eb = path->nodes[0];
4604 slot = path->slots[0];
4605 if (slot >= btrfs_header_nritems(eb)) {
4606 ret = btrfs_next_leaf(root, path);
4607 if (ret < 0)
4608 goto out;
4609 else if (ret > 0)
4610 break;
4611 continue;
4612 }
4613
4614 btrfs_item_key_to_cpu(eb, &found_key, slot);
4615
4616 if (found_key.objectid != key.objectid ||
4617 (found_key.type != BTRFS_INODE_REF_KEY &&
4618 found_key.type != BTRFS_INODE_EXTREF_KEY))
4619 break;
4620
4621 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4622 if (ret < 0)
4623 goto out;
4624
4625 path->slots[0]++;
4626 }
4627 btrfs_release_path(path);
4628
4629 /*
4630 * We don't actually care about pending_move as we are simply
4631 * re-creating this inode and will be rename'ing it into place once we
4632 * rename the parent directory.
4633 */
4634 ret = process_recorded_refs(sctx, &pending_move);
4635out:
4636 btrfs_free_path(path);
4637 return ret;
4638}
4639
4640static int send_set_xattr(struct send_ctx *sctx,
4641 struct fs_path *path,
4642 const char *name, int name_len,
4643 const char *data, int data_len)
4644{
4645 int ret = 0;
4646
4647 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4648 if (ret < 0)
4649 goto out;
4650
4651 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4652 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4653 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4654
4655 ret = send_cmd(sctx);
4656
4657tlv_put_failure:
4658out:
4659 return ret;
4660}
4661
4662static int send_remove_xattr(struct send_ctx *sctx,
4663 struct fs_path *path,
4664 const char *name, int name_len)
4665{
4666 int ret = 0;
4667
4668 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4669 if (ret < 0)
4670 goto out;
4671
4672 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4673 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4674
4675 ret = send_cmd(sctx);
4676
4677tlv_put_failure:
4678out:
4679 return ret;
4680}
4681
4682static int __process_new_xattr(int num, struct btrfs_key *di_key,
4683 const char *name, int name_len,
4684 const char *data, int data_len,
4685 u8 type, void *ctx)
4686{
4687 int ret;
4688 struct send_ctx *sctx = ctx;
4689 struct fs_path *p;
4690 struct posix_acl_xattr_header dummy_acl;
4691
Olivier Deprez0e641232021-09-23 10:07:05 +02004692 /* Capabilities are emitted by finish_inode_if_needed */
4693 if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4694 return 0;
4695
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004696 p = fs_path_alloc();
4697 if (!p)
4698 return -ENOMEM;
4699
4700 /*
4701 * This hack is needed because empty acls are stored as zero byte
4702 * data in xattrs. Problem with that is, that receiving these zero byte
4703 * acls will fail later. To fix this, we send a dummy acl list that
4704 * only contains the version number and no entries.
4705 */
4706 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4707 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4708 if (data_len == 0) {
4709 dummy_acl.a_version =
4710 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4711 data = (char *)&dummy_acl;
4712 data_len = sizeof(dummy_acl);
4713 }
4714 }
4715
4716 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4717 if (ret < 0)
4718 goto out;
4719
4720 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4721
4722out:
4723 fs_path_free(p);
4724 return ret;
4725}
4726
4727static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4728 const char *name, int name_len,
4729 const char *data, int data_len,
4730 u8 type, void *ctx)
4731{
4732 int ret;
4733 struct send_ctx *sctx = ctx;
4734 struct fs_path *p;
4735
4736 p = fs_path_alloc();
4737 if (!p)
4738 return -ENOMEM;
4739
4740 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4741 if (ret < 0)
4742 goto out;
4743
4744 ret = send_remove_xattr(sctx, p, name, name_len);
4745
4746out:
4747 fs_path_free(p);
4748 return ret;
4749}
4750
4751static int process_new_xattr(struct send_ctx *sctx)
4752{
4753 int ret = 0;
4754
4755 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4756 __process_new_xattr, sctx);
4757
4758 return ret;
4759}
4760
4761static int process_deleted_xattr(struct send_ctx *sctx)
4762{
4763 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4764 __process_deleted_xattr, sctx);
4765}
4766
4767struct find_xattr_ctx {
4768 const char *name;
4769 int name_len;
4770 int found_idx;
4771 char *found_data;
4772 int found_data_len;
4773};
4774
4775static int __find_xattr(int num, struct btrfs_key *di_key,
4776 const char *name, int name_len,
4777 const char *data, int data_len,
4778 u8 type, void *vctx)
4779{
4780 struct find_xattr_ctx *ctx = vctx;
4781
4782 if (name_len == ctx->name_len &&
4783 strncmp(name, ctx->name, name_len) == 0) {
4784 ctx->found_idx = num;
4785 ctx->found_data_len = data_len;
4786 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4787 if (!ctx->found_data)
4788 return -ENOMEM;
4789 return 1;
4790 }
4791 return 0;
4792}
4793
4794static int find_xattr(struct btrfs_root *root,
4795 struct btrfs_path *path,
4796 struct btrfs_key *key,
4797 const char *name, int name_len,
4798 char **data, int *data_len)
4799{
4800 int ret;
4801 struct find_xattr_ctx ctx;
4802
4803 ctx.name = name;
4804 ctx.name_len = name_len;
4805 ctx.found_idx = -1;
4806 ctx.found_data = NULL;
4807 ctx.found_data_len = 0;
4808
4809 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4810 if (ret < 0)
4811 return ret;
4812
4813 if (ctx.found_idx == -1)
4814 return -ENOENT;
4815 if (data) {
4816 *data = ctx.found_data;
4817 *data_len = ctx.found_data_len;
4818 } else {
4819 kfree(ctx.found_data);
4820 }
4821 return ctx.found_idx;
4822}
4823
4824
4825static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4826 const char *name, int name_len,
4827 const char *data, int data_len,
4828 u8 type, void *ctx)
4829{
4830 int ret;
4831 struct send_ctx *sctx = ctx;
4832 char *found_data = NULL;
4833 int found_data_len = 0;
4834
4835 ret = find_xattr(sctx->parent_root, sctx->right_path,
4836 sctx->cmp_key, name, name_len, &found_data,
4837 &found_data_len);
4838 if (ret == -ENOENT) {
4839 ret = __process_new_xattr(num, di_key, name, name_len, data,
4840 data_len, type, ctx);
4841 } else if (ret >= 0) {
4842 if (data_len != found_data_len ||
4843 memcmp(data, found_data, data_len)) {
4844 ret = __process_new_xattr(num, di_key, name, name_len,
4845 data, data_len, type, ctx);
4846 } else {
4847 ret = 0;
4848 }
4849 }
4850
4851 kfree(found_data);
4852 return ret;
4853}
4854
4855static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4856 const char *name, int name_len,
4857 const char *data, int data_len,
4858 u8 type, void *ctx)
4859{
4860 int ret;
4861 struct send_ctx *sctx = ctx;
4862
4863 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4864 name, name_len, NULL, NULL);
4865 if (ret == -ENOENT)
4866 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4867 data_len, type, ctx);
4868 else if (ret >= 0)
4869 ret = 0;
4870
4871 return ret;
4872}
4873
4874static int process_changed_xattr(struct send_ctx *sctx)
4875{
4876 int ret = 0;
4877
4878 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4879 __process_changed_new_xattr, sctx);
4880 if (ret < 0)
4881 goto out;
4882 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4883 __process_changed_deleted_xattr, sctx);
4884
4885out:
4886 return ret;
4887}
4888
4889static int process_all_new_xattrs(struct send_ctx *sctx)
4890{
4891 int ret;
4892 struct btrfs_root *root;
4893 struct btrfs_path *path;
4894 struct btrfs_key key;
4895 struct btrfs_key found_key;
4896 struct extent_buffer *eb;
4897 int slot;
4898
4899 path = alloc_path_for_send();
4900 if (!path)
4901 return -ENOMEM;
4902
4903 root = sctx->send_root;
4904
4905 key.objectid = sctx->cmp_key->objectid;
4906 key.type = BTRFS_XATTR_ITEM_KEY;
4907 key.offset = 0;
4908 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4909 if (ret < 0)
4910 goto out;
4911
4912 while (1) {
4913 eb = path->nodes[0];
4914 slot = path->slots[0];
4915 if (slot >= btrfs_header_nritems(eb)) {
4916 ret = btrfs_next_leaf(root, path);
4917 if (ret < 0) {
4918 goto out;
4919 } else if (ret > 0) {
4920 ret = 0;
4921 break;
4922 }
4923 continue;
4924 }
4925
4926 btrfs_item_key_to_cpu(eb, &found_key, slot);
4927 if (found_key.objectid != key.objectid ||
4928 found_key.type != key.type) {
4929 ret = 0;
4930 goto out;
4931 }
4932
4933 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4934 if (ret < 0)
4935 goto out;
4936
4937 path->slots[0]++;
4938 }
4939
4940out:
4941 btrfs_free_path(path);
4942 return ret;
4943}
4944
4945static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4946{
4947 struct btrfs_root *root = sctx->send_root;
4948 struct btrfs_fs_info *fs_info = root->fs_info;
4949 struct inode *inode;
4950 struct page *page;
4951 char *addr;
4952 struct btrfs_key key;
4953 pgoff_t index = offset >> PAGE_SHIFT;
4954 pgoff_t last_index;
David Brazdil0f672f62019-12-10 10:32:29 +00004955 unsigned pg_offset = offset_in_page(offset);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004956 ssize_t ret = 0;
4957
4958 key.objectid = sctx->cur_ino;
4959 key.type = BTRFS_INODE_ITEM_KEY;
4960 key.offset = 0;
4961
4962 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4963 if (IS_ERR(inode))
4964 return PTR_ERR(inode);
4965
4966 if (offset + len > i_size_read(inode)) {
4967 if (offset > i_size_read(inode))
4968 len = 0;
4969 else
4970 len = offset - i_size_read(inode);
4971 }
4972 if (len == 0)
4973 goto out;
4974
4975 last_index = (offset + len - 1) >> PAGE_SHIFT;
4976
4977 /* initial readahead */
4978 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4979 file_ra_state_init(&sctx->ra, inode->i_mapping);
4980
4981 while (index <= last_index) {
4982 unsigned cur_len = min_t(unsigned, len,
4983 PAGE_SIZE - pg_offset);
4984
4985 page = find_lock_page(inode->i_mapping, index);
4986 if (!page) {
4987 page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4988 NULL, index, last_index + 1 - index);
4989
4990 page = find_or_create_page(inode->i_mapping, index,
4991 GFP_KERNEL);
4992 if (!page) {
4993 ret = -ENOMEM;
4994 break;
4995 }
4996 }
4997
4998 if (PageReadahead(page)) {
4999 page_cache_async_readahead(inode->i_mapping, &sctx->ra,
5000 NULL, page, index, last_index + 1 - index);
5001 }
5002
5003 if (!PageUptodate(page)) {
5004 btrfs_readpage(NULL, page);
5005 lock_page(page);
5006 if (!PageUptodate(page)) {
5007 unlock_page(page);
5008 put_page(page);
5009 ret = -EIO;
5010 break;
5011 }
5012 }
5013
5014 addr = kmap(page);
5015 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
5016 kunmap(page);
5017 unlock_page(page);
5018 put_page(page);
5019 index++;
5020 pg_offset = 0;
5021 len -= cur_len;
5022 ret += cur_len;
5023 }
5024out:
5025 iput(inode);
5026 return ret;
5027}
5028
5029/*
5030 * Read some bytes from the current inode/file and send a write command to
5031 * user space.
5032 */
5033static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5034{
5035 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5036 int ret = 0;
5037 struct fs_path *p;
5038 ssize_t num_read = 0;
5039
5040 p = fs_path_alloc();
5041 if (!p)
5042 return -ENOMEM;
5043
5044 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5045
5046 num_read = fill_read_buf(sctx, offset, len);
5047 if (num_read <= 0) {
5048 if (num_read < 0)
5049 ret = num_read;
5050 goto out;
5051 }
5052
5053 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5054 if (ret < 0)
5055 goto out;
5056
5057 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5058 if (ret < 0)
5059 goto out;
5060
5061 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5062 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5063 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
5064
5065 ret = send_cmd(sctx);
5066
5067tlv_put_failure:
5068out:
5069 fs_path_free(p);
5070 if (ret < 0)
5071 return ret;
5072 return num_read;
5073}
5074
5075/*
5076 * Send a clone command to user space.
5077 */
5078static int send_clone(struct send_ctx *sctx,
5079 u64 offset, u32 len,
5080 struct clone_root *clone_root)
5081{
5082 int ret = 0;
5083 struct fs_path *p;
5084 u64 gen;
5085
5086 btrfs_debug(sctx->send_root->fs_info,
5087 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
David Brazdil0f672f62019-12-10 10:32:29 +00005088 offset, len, clone_root->root->root_key.objectid,
5089 clone_root->ino, clone_root->offset);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005090
5091 p = fs_path_alloc();
5092 if (!p)
5093 return -ENOMEM;
5094
5095 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5096 if (ret < 0)
5097 goto out;
5098
5099 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5100 if (ret < 0)
5101 goto out;
5102
5103 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5104 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5105 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5106
5107 if (clone_root->root == sctx->send_root) {
5108 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
5109 &gen, NULL, NULL, NULL, NULL);
5110 if (ret < 0)
5111 goto out;
5112 ret = get_cur_path(sctx, clone_root->ino, gen, p);
5113 } else {
5114 ret = get_inode_path(clone_root->root, clone_root->ino, p);
5115 }
5116 if (ret < 0)
5117 goto out;
5118
5119 /*
5120 * If the parent we're using has a received_uuid set then use that as
5121 * our clone source as that is what we will look for when doing a
5122 * receive.
5123 *
5124 * This covers the case that we create a snapshot off of a received
5125 * subvolume and then use that as the parent and try to receive on a
5126 * different host.
5127 */
5128 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5129 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5130 clone_root->root->root_item.received_uuid);
5131 else
5132 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5133 clone_root->root->root_item.uuid);
5134 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5135 le64_to_cpu(clone_root->root->root_item.ctransid));
5136 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5137 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5138 clone_root->offset);
5139
5140 ret = send_cmd(sctx);
5141
5142tlv_put_failure:
5143out:
5144 fs_path_free(p);
5145 return ret;
5146}
5147
5148/*
5149 * Send an update extent command to user space.
5150 */
5151static int send_update_extent(struct send_ctx *sctx,
5152 u64 offset, u32 len)
5153{
5154 int ret = 0;
5155 struct fs_path *p;
5156
5157 p = fs_path_alloc();
5158 if (!p)
5159 return -ENOMEM;
5160
5161 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5162 if (ret < 0)
5163 goto out;
5164
5165 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5166 if (ret < 0)
5167 goto out;
5168
5169 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5170 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5171 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5172
5173 ret = send_cmd(sctx);
5174
5175tlv_put_failure:
5176out:
5177 fs_path_free(p);
5178 return ret;
5179}
5180
5181static int send_hole(struct send_ctx *sctx, u64 end)
5182{
5183 struct fs_path *p = NULL;
5184 u64 offset = sctx->cur_inode_last_extent;
5185 u64 len;
5186 int ret = 0;
5187
5188 /*
5189 * A hole that starts at EOF or beyond it. Since we do not yet support
5190 * fallocate (for extent preallocation and hole punching), sending a
5191 * write of zeroes starting at EOF or beyond would later require issuing
5192 * a truncate operation which would undo the write and achieve nothing.
5193 */
5194 if (offset >= sctx->cur_inode_size)
5195 return 0;
5196
David Brazdil0f672f62019-12-10 10:32:29 +00005197 /*
5198 * Don't go beyond the inode's i_size due to prealloc extents that start
5199 * after the i_size.
5200 */
5201 end = min_t(u64, end, sctx->cur_inode_size);
5202
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005203 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5204 return send_update_extent(sctx, offset, end - offset);
5205
5206 p = fs_path_alloc();
5207 if (!p)
5208 return -ENOMEM;
5209 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5210 if (ret < 0)
5211 goto tlv_put_failure;
5212 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5213 while (offset < end) {
5214 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5215
5216 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5217 if (ret < 0)
5218 break;
5219 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5220 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5221 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
5222 ret = send_cmd(sctx);
5223 if (ret < 0)
5224 break;
5225 offset += len;
5226 }
5227 sctx->cur_inode_next_write_offset = offset;
5228tlv_put_failure:
5229 fs_path_free(p);
5230 return ret;
5231}
5232
5233static int send_extent_data(struct send_ctx *sctx,
5234 const u64 offset,
5235 const u64 len)
5236{
5237 u64 sent = 0;
5238
5239 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5240 return send_update_extent(sctx, offset, len);
5241
5242 while (sent < len) {
5243 u64 size = len - sent;
5244 int ret;
5245
5246 if (size > BTRFS_SEND_READ_SIZE)
5247 size = BTRFS_SEND_READ_SIZE;
5248 ret = send_write(sctx, offset + sent, size);
5249 if (ret < 0)
5250 return ret;
5251 if (!ret)
5252 break;
5253 sent += ret;
5254 }
5255 return 0;
5256}
5257
Olivier Deprez0e641232021-09-23 10:07:05 +02005258/*
5259 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5260 * found, call send_set_xattr function to emit it.
5261 *
5262 * Return 0 if there isn't a capability, or when the capability was emitted
5263 * successfully, or < 0 if an error occurred.
5264 */
5265static int send_capabilities(struct send_ctx *sctx)
5266{
5267 struct fs_path *fspath = NULL;
5268 struct btrfs_path *path;
5269 struct btrfs_dir_item *di;
5270 struct extent_buffer *leaf;
5271 unsigned long data_ptr;
5272 char *buf = NULL;
5273 int buf_len;
5274 int ret = 0;
5275
5276 path = alloc_path_for_send();
5277 if (!path)
5278 return -ENOMEM;
5279
5280 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5281 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5282 if (!di) {
5283 /* There is no xattr for this inode */
5284 goto out;
5285 } else if (IS_ERR(di)) {
5286 ret = PTR_ERR(di);
5287 goto out;
5288 }
5289
5290 leaf = path->nodes[0];
5291 buf_len = btrfs_dir_data_len(leaf, di);
5292
5293 fspath = fs_path_alloc();
5294 buf = kmalloc(buf_len, GFP_KERNEL);
5295 if (!fspath || !buf) {
5296 ret = -ENOMEM;
5297 goto out;
5298 }
5299
5300 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5301 if (ret < 0)
5302 goto out;
5303
5304 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5305 read_extent_buffer(leaf, buf, data_ptr, buf_len);
5306
5307 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5308 strlen(XATTR_NAME_CAPS), buf, buf_len);
5309out:
5310 kfree(buf);
5311 fs_path_free(fspath);
5312 btrfs_free_path(path);
5313 return ret;
5314}
5315
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005316static int clone_range(struct send_ctx *sctx,
5317 struct clone_root *clone_root,
5318 const u64 disk_byte,
5319 u64 data_offset,
5320 u64 offset,
5321 u64 len)
5322{
5323 struct btrfs_path *path;
5324 struct btrfs_key key;
5325 int ret;
David Brazdil0f672f62019-12-10 10:32:29 +00005326 u64 clone_src_i_size = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005327
5328 /*
5329 * Prevent cloning from a zero offset with a length matching the sector
5330 * size because in some scenarios this will make the receiver fail.
5331 *
5332 * For example, if in the source filesystem the extent at offset 0
5333 * has a length of sectorsize and it was written using direct IO, then
5334 * it can never be an inline extent (even if compression is enabled).
5335 * Then this extent can be cloned in the original filesystem to a non
5336 * zero file offset, but it may not be possible to clone in the
5337 * destination filesystem because it can be inlined due to compression
5338 * on the destination filesystem (as the receiver's write operations are
5339 * always done using buffered IO). The same happens when the original
5340 * filesystem does not have compression enabled but the destination
5341 * filesystem has.
5342 */
5343 if (clone_root->offset == 0 &&
5344 len == sctx->send_root->fs_info->sectorsize)
5345 return send_extent_data(sctx, offset, len);
5346
5347 path = alloc_path_for_send();
5348 if (!path)
5349 return -ENOMEM;
5350
5351 /*
David Brazdil0f672f62019-12-10 10:32:29 +00005352 * There are inodes that have extents that lie behind its i_size. Don't
5353 * accept clones from these extents.
5354 */
5355 ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5356 &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5357 btrfs_release_path(path);
5358 if (ret < 0)
5359 goto out;
5360
5361 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005362 * We can't send a clone operation for the entire range if we find
5363 * extent items in the respective range in the source file that
5364 * refer to different extents or if we find holes.
5365 * So check for that and do a mix of clone and regular write/copy
5366 * operations if needed.
5367 *
5368 * Example:
5369 *
5370 * mkfs.btrfs -f /dev/sda
5371 * mount /dev/sda /mnt
5372 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5373 * cp --reflink=always /mnt/foo /mnt/bar
5374 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5375 * btrfs subvolume snapshot -r /mnt /mnt/snap
5376 *
5377 * If when we send the snapshot and we are processing file bar (which
5378 * has a higher inode number than foo) we blindly send a clone operation
5379 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5380 * a file bar that matches the content of file foo - iow, doesn't match
5381 * the content from bar in the original filesystem.
5382 */
5383 key.objectid = clone_root->ino;
5384 key.type = BTRFS_EXTENT_DATA_KEY;
5385 key.offset = clone_root->offset;
5386 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5387 if (ret < 0)
5388 goto out;
5389 if (ret > 0 && path->slots[0] > 0) {
5390 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5391 if (key.objectid == clone_root->ino &&
5392 key.type == BTRFS_EXTENT_DATA_KEY)
5393 path->slots[0]--;
5394 }
5395
5396 while (true) {
5397 struct extent_buffer *leaf = path->nodes[0];
5398 int slot = path->slots[0];
5399 struct btrfs_file_extent_item *ei;
5400 u8 type;
5401 u64 ext_len;
5402 u64 clone_len;
David Brazdil0f672f62019-12-10 10:32:29 +00005403 u64 clone_data_offset;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005404
5405 if (slot >= btrfs_header_nritems(leaf)) {
5406 ret = btrfs_next_leaf(clone_root->root, path);
5407 if (ret < 0)
5408 goto out;
5409 else if (ret > 0)
5410 break;
5411 continue;
5412 }
5413
5414 btrfs_item_key_to_cpu(leaf, &key, slot);
5415
5416 /*
5417 * We might have an implicit trailing hole (NO_HOLES feature
5418 * enabled). We deal with it after leaving this loop.
5419 */
5420 if (key.objectid != clone_root->ino ||
5421 key.type != BTRFS_EXTENT_DATA_KEY)
5422 break;
5423
5424 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5425 type = btrfs_file_extent_type(leaf, ei);
5426 if (type == BTRFS_FILE_EXTENT_INLINE) {
5427 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5428 ext_len = PAGE_ALIGN(ext_len);
5429 } else {
5430 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5431 }
5432
5433 if (key.offset + ext_len <= clone_root->offset)
5434 goto next;
5435
5436 if (key.offset > clone_root->offset) {
5437 /* Implicit hole, NO_HOLES feature enabled. */
5438 u64 hole_len = key.offset - clone_root->offset;
5439
5440 if (hole_len > len)
5441 hole_len = len;
5442 ret = send_extent_data(sctx, offset, hole_len);
5443 if (ret < 0)
5444 goto out;
5445
5446 len -= hole_len;
5447 if (len == 0)
5448 break;
5449 offset += hole_len;
5450 clone_root->offset += hole_len;
5451 data_offset += hole_len;
5452 }
5453
5454 if (key.offset >= clone_root->offset + len)
5455 break;
5456
David Brazdil0f672f62019-12-10 10:32:29 +00005457 if (key.offset >= clone_src_i_size)
5458 break;
5459
5460 if (key.offset + ext_len > clone_src_i_size)
5461 ext_len = clone_src_i_size - key.offset;
5462
5463 clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5464 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5465 clone_root->offset = key.offset;
5466 if (clone_data_offset < data_offset &&
5467 clone_data_offset + ext_len > data_offset) {
5468 u64 extent_offset;
5469
5470 extent_offset = data_offset - clone_data_offset;
5471 ext_len -= extent_offset;
5472 clone_data_offset += extent_offset;
5473 clone_root->offset += extent_offset;
5474 }
5475 }
5476
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005477 clone_len = min_t(u64, ext_len, len);
5478
5479 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
David Brazdil0f672f62019-12-10 10:32:29 +00005480 clone_data_offset == data_offset) {
5481 const u64 src_end = clone_root->offset + clone_len;
5482 const u64 sectorsize = SZ_64K;
5483
5484 /*
5485 * We can't clone the last block, when its size is not
5486 * sector size aligned, into the middle of a file. If we
5487 * do so, the receiver will get a failure (-EINVAL) when
5488 * trying to clone or will silently corrupt the data in
5489 * the destination file if it's on a kernel without the
5490 * fix introduced by commit ac765f83f1397646
5491 * ("Btrfs: fix data corruption due to cloning of eof
5492 * block).
5493 *
5494 * So issue a clone of the aligned down range plus a
5495 * regular write for the eof block, if we hit that case.
5496 *
5497 * Also, we use the maximum possible sector size, 64K,
5498 * because we don't know what's the sector size of the
5499 * filesystem that receives the stream, so we have to
5500 * assume the largest possible sector size.
5501 */
5502 if (src_end == clone_src_i_size &&
5503 !IS_ALIGNED(src_end, sectorsize) &&
5504 offset + clone_len < sctx->cur_inode_size) {
5505 u64 slen;
5506
5507 slen = ALIGN_DOWN(src_end - clone_root->offset,
5508 sectorsize);
5509 if (slen > 0) {
5510 ret = send_clone(sctx, offset, slen,
5511 clone_root);
5512 if (ret < 0)
5513 goto out;
5514 }
5515 ret = send_extent_data(sctx, offset + slen,
5516 clone_len - slen);
5517 } else {
5518 ret = send_clone(sctx, offset, clone_len,
5519 clone_root);
5520 }
5521 } else {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005522 ret = send_extent_data(sctx, offset, clone_len);
David Brazdil0f672f62019-12-10 10:32:29 +00005523 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005524
5525 if (ret < 0)
5526 goto out;
5527
5528 len -= clone_len;
5529 if (len == 0)
5530 break;
5531 offset += clone_len;
5532 clone_root->offset += clone_len;
Olivier Deprez0e641232021-09-23 10:07:05 +02005533
5534 /*
5535 * If we are cloning from the file we are currently processing,
5536 * and using the send root as the clone root, we must stop once
5537 * the current clone offset reaches the current eof of the file
5538 * at the receiver, otherwise we would issue an invalid clone
5539 * operation (source range going beyond eof) and cause the
5540 * receiver to fail. So if we reach the current eof, bail out
5541 * and fallback to a regular write.
5542 */
5543 if (clone_root->root == sctx->send_root &&
5544 clone_root->ino == sctx->cur_ino &&
5545 clone_root->offset >= sctx->cur_inode_next_write_offset)
5546 break;
5547
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005548 data_offset += clone_len;
5549next:
5550 path->slots[0]++;
5551 }
5552
5553 if (len > 0)
5554 ret = send_extent_data(sctx, offset, len);
5555 else
5556 ret = 0;
5557out:
5558 btrfs_free_path(path);
5559 return ret;
5560}
5561
5562static int send_write_or_clone(struct send_ctx *sctx,
5563 struct btrfs_path *path,
5564 struct btrfs_key *key,
5565 struct clone_root *clone_root)
5566{
5567 int ret = 0;
5568 struct btrfs_file_extent_item *ei;
5569 u64 offset = key->offset;
5570 u64 len;
5571 u8 type;
5572 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5573
5574 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5575 struct btrfs_file_extent_item);
5576 type = btrfs_file_extent_type(path->nodes[0], ei);
5577 if (type == BTRFS_FILE_EXTENT_INLINE) {
5578 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
5579 /*
5580 * it is possible the inline item won't cover the whole page,
5581 * but there may be items after this page. Make
5582 * sure to send the whole thing
5583 */
5584 len = PAGE_ALIGN(len);
5585 } else {
5586 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5587 }
5588
5589 if (offset >= sctx->cur_inode_size) {
5590 ret = 0;
5591 goto out;
5592 }
5593 if (offset + len > sctx->cur_inode_size)
5594 len = sctx->cur_inode_size - offset;
5595 if (len == 0) {
5596 ret = 0;
5597 goto out;
5598 }
5599
5600 if (clone_root && IS_ALIGNED(offset + len, bs)) {
5601 u64 disk_byte;
5602 u64 data_offset;
5603
5604 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5605 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5606 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5607 offset, len);
5608 } else {
5609 ret = send_extent_data(sctx, offset, len);
5610 }
5611 sctx->cur_inode_next_write_offset = offset + len;
5612out:
5613 return ret;
5614}
5615
5616static int is_extent_unchanged(struct send_ctx *sctx,
5617 struct btrfs_path *left_path,
5618 struct btrfs_key *ekey)
5619{
5620 int ret = 0;
5621 struct btrfs_key key;
5622 struct btrfs_path *path = NULL;
5623 struct extent_buffer *eb;
5624 int slot;
5625 struct btrfs_key found_key;
5626 struct btrfs_file_extent_item *ei;
5627 u64 left_disknr;
5628 u64 right_disknr;
5629 u64 left_offset;
5630 u64 right_offset;
5631 u64 left_offset_fixed;
5632 u64 left_len;
5633 u64 right_len;
5634 u64 left_gen;
5635 u64 right_gen;
5636 u8 left_type;
5637 u8 right_type;
5638
5639 path = alloc_path_for_send();
5640 if (!path)
5641 return -ENOMEM;
5642
5643 eb = left_path->nodes[0];
5644 slot = left_path->slots[0];
5645 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5646 left_type = btrfs_file_extent_type(eb, ei);
5647
5648 if (left_type != BTRFS_FILE_EXTENT_REG) {
5649 ret = 0;
5650 goto out;
5651 }
5652 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5653 left_len = btrfs_file_extent_num_bytes(eb, ei);
5654 left_offset = btrfs_file_extent_offset(eb, ei);
5655 left_gen = btrfs_file_extent_generation(eb, ei);
5656
5657 /*
5658 * Following comments will refer to these graphics. L is the left
5659 * extents which we are checking at the moment. 1-8 are the right
5660 * extents that we iterate.
5661 *
5662 * |-----L-----|
5663 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5664 *
5665 * |-----L-----|
5666 * |--1--|-2b-|...(same as above)
5667 *
5668 * Alternative situation. Happens on files where extents got split.
5669 * |-----L-----|
5670 * |-----------7-----------|-6-|
5671 *
5672 * Alternative situation. Happens on files which got larger.
5673 * |-----L-----|
5674 * |-8-|
5675 * Nothing follows after 8.
5676 */
5677
5678 key.objectid = ekey->objectid;
5679 key.type = BTRFS_EXTENT_DATA_KEY;
5680 key.offset = ekey->offset;
5681 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5682 if (ret < 0)
5683 goto out;
5684 if (ret) {
5685 ret = 0;
5686 goto out;
5687 }
5688
5689 /*
5690 * Handle special case where the right side has no extents at all.
5691 */
5692 eb = path->nodes[0];
5693 slot = path->slots[0];
5694 btrfs_item_key_to_cpu(eb, &found_key, slot);
5695 if (found_key.objectid != key.objectid ||
5696 found_key.type != key.type) {
5697 /* If we're a hole then just pretend nothing changed */
5698 ret = (left_disknr) ? 0 : 1;
5699 goto out;
5700 }
5701
5702 /*
5703 * We're now on 2a, 2b or 7.
5704 */
5705 key = found_key;
5706 while (key.offset < ekey->offset + left_len) {
5707 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5708 right_type = btrfs_file_extent_type(eb, ei);
5709 if (right_type != BTRFS_FILE_EXTENT_REG &&
5710 right_type != BTRFS_FILE_EXTENT_INLINE) {
5711 ret = 0;
5712 goto out;
5713 }
5714
5715 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5716 right_len = btrfs_file_extent_ram_bytes(eb, ei);
5717 right_len = PAGE_ALIGN(right_len);
5718 } else {
5719 right_len = btrfs_file_extent_num_bytes(eb, ei);
5720 }
5721
5722 /*
5723 * Are we at extent 8? If yes, we know the extent is changed.
5724 * This may only happen on the first iteration.
5725 */
5726 if (found_key.offset + right_len <= ekey->offset) {
5727 /* If we're a hole just pretend nothing changed */
5728 ret = (left_disknr) ? 0 : 1;
5729 goto out;
5730 }
5731
5732 /*
5733 * We just wanted to see if when we have an inline extent, what
5734 * follows it is a regular extent (wanted to check the above
5735 * condition for inline extents too). This should normally not
5736 * happen but it's possible for example when we have an inline
5737 * compressed extent representing data with a size matching
5738 * the page size (currently the same as sector size).
5739 */
5740 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5741 ret = 0;
5742 goto out;
5743 }
5744
5745 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5746 right_offset = btrfs_file_extent_offset(eb, ei);
5747 right_gen = btrfs_file_extent_generation(eb, ei);
5748
5749 left_offset_fixed = left_offset;
5750 if (key.offset < ekey->offset) {
5751 /* Fix the right offset for 2a and 7. */
5752 right_offset += ekey->offset - key.offset;
5753 } else {
5754 /* Fix the left offset for all behind 2a and 2b */
5755 left_offset_fixed += key.offset - ekey->offset;
5756 }
5757
5758 /*
5759 * Check if we have the same extent.
5760 */
5761 if (left_disknr != right_disknr ||
5762 left_offset_fixed != right_offset ||
5763 left_gen != right_gen) {
5764 ret = 0;
5765 goto out;
5766 }
5767
5768 /*
5769 * Go to the next extent.
5770 */
5771 ret = btrfs_next_item(sctx->parent_root, path);
5772 if (ret < 0)
5773 goto out;
5774 if (!ret) {
5775 eb = path->nodes[0];
5776 slot = path->slots[0];
5777 btrfs_item_key_to_cpu(eb, &found_key, slot);
5778 }
5779 if (ret || found_key.objectid != key.objectid ||
5780 found_key.type != key.type) {
5781 key.offset += right_len;
5782 break;
5783 }
5784 if (found_key.offset != key.offset + right_len) {
5785 ret = 0;
5786 goto out;
5787 }
5788 key = found_key;
5789 }
5790
5791 /*
5792 * We're now behind the left extent (treat as unchanged) or at the end
5793 * of the right side (treat as changed).
5794 */
5795 if (key.offset >= ekey->offset + left_len)
5796 ret = 1;
5797 else
5798 ret = 0;
5799
5800
5801out:
5802 btrfs_free_path(path);
5803 return ret;
5804}
5805
5806static int get_last_extent(struct send_ctx *sctx, u64 offset)
5807{
5808 struct btrfs_path *path;
5809 struct btrfs_root *root = sctx->send_root;
5810 struct btrfs_file_extent_item *fi;
5811 struct btrfs_key key;
5812 u64 extent_end;
5813 u8 type;
5814 int ret;
5815
5816 path = alloc_path_for_send();
5817 if (!path)
5818 return -ENOMEM;
5819
5820 sctx->cur_inode_last_extent = 0;
5821
5822 key.objectid = sctx->cur_ino;
5823 key.type = BTRFS_EXTENT_DATA_KEY;
5824 key.offset = offset;
5825 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5826 if (ret < 0)
5827 goto out;
5828 ret = 0;
5829 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5830 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5831 goto out;
5832
5833 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5834 struct btrfs_file_extent_item);
5835 type = btrfs_file_extent_type(path->nodes[0], fi);
5836 if (type == BTRFS_FILE_EXTENT_INLINE) {
5837 u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
5838 extent_end = ALIGN(key.offset + size,
5839 sctx->send_root->fs_info->sectorsize);
5840 } else {
5841 extent_end = key.offset +
5842 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5843 }
5844 sctx->cur_inode_last_extent = extent_end;
5845out:
5846 btrfs_free_path(path);
5847 return ret;
5848}
5849
5850static int range_is_hole_in_parent(struct send_ctx *sctx,
5851 const u64 start,
5852 const u64 end)
5853{
5854 struct btrfs_path *path;
5855 struct btrfs_key key;
5856 struct btrfs_root *root = sctx->parent_root;
5857 u64 search_start = start;
5858 int ret;
5859
5860 path = alloc_path_for_send();
5861 if (!path)
5862 return -ENOMEM;
5863
5864 key.objectid = sctx->cur_ino;
5865 key.type = BTRFS_EXTENT_DATA_KEY;
5866 key.offset = search_start;
5867 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5868 if (ret < 0)
5869 goto out;
5870 if (ret > 0 && path->slots[0] > 0)
5871 path->slots[0]--;
5872
5873 while (search_start < end) {
5874 struct extent_buffer *leaf = path->nodes[0];
5875 int slot = path->slots[0];
5876 struct btrfs_file_extent_item *fi;
5877 u64 extent_end;
5878
5879 if (slot >= btrfs_header_nritems(leaf)) {
5880 ret = btrfs_next_leaf(root, path);
5881 if (ret < 0)
5882 goto out;
5883 else if (ret > 0)
5884 break;
5885 continue;
5886 }
5887
5888 btrfs_item_key_to_cpu(leaf, &key, slot);
5889 if (key.objectid < sctx->cur_ino ||
5890 key.type < BTRFS_EXTENT_DATA_KEY)
5891 goto next;
5892 if (key.objectid > sctx->cur_ino ||
5893 key.type > BTRFS_EXTENT_DATA_KEY ||
5894 key.offset >= end)
5895 break;
5896
5897 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5898 if (btrfs_file_extent_type(leaf, fi) ==
5899 BTRFS_FILE_EXTENT_INLINE) {
5900 u64 size = btrfs_file_extent_ram_bytes(leaf, fi);
5901
5902 extent_end = ALIGN(key.offset + size,
5903 root->fs_info->sectorsize);
5904 } else {
5905 extent_end = key.offset +
5906 btrfs_file_extent_num_bytes(leaf, fi);
5907 }
5908 if (extent_end <= start)
5909 goto next;
5910 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5911 search_start = extent_end;
5912 goto next;
5913 }
5914 ret = 0;
5915 goto out;
5916next:
5917 path->slots[0]++;
5918 }
5919 ret = 1;
5920out:
5921 btrfs_free_path(path);
5922 return ret;
5923}
5924
5925static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5926 struct btrfs_key *key)
5927{
5928 struct btrfs_file_extent_item *fi;
5929 u64 extent_end;
5930 u8 type;
5931 int ret = 0;
5932
5933 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5934 return 0;
5935
5936 if (sctx->cur_inode_last_extent == (u64)-1) {
5937 ret = get_last_extent(sctx, key->offset - 1);
5938 if (ret)
5939 return ret;
5940 }
5941
5942 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5943 struct btrfs_file_extent_item);
5944 type = btrfs_file_extent_type(path->nodes[0], fi);
5945 if (type == BTRFS_FILE_EXTENT_INLINE) {
5946 u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
5947 extent_end = ALIGN(key->offset + size,
5948 sctx->send_root->fs_info->sectorsize);
5949 } else {
5950 extent_end = key->offset +
5951 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5952 }
5953
5954 if (path->slots[0] == 0 &&
5955 sctx->cur_inode_last_extent < key->offset) {
5956 /*
5957 * We might have skipped entire leafs that contained only
5958 * file extent items for our current inode. These leafs have
5959 * a generation number smaller (older) than the one in the
5960 * current leaf and the leaf our last extent came from, and
5961 * are located between these 2 leafs.
5962 */
5963 ret = get_last_extent(sctx, key->offset - 1);
5964 if (ret)
5965 return ret;
5966 }
5967
5968 if (sctx->cur_inode_last_extent < key->offset) {
5969 ret = range_is_hole_in_parent(sctx,
5970 sctx->cur_inode_last_extent,
5971 key->offset);
5972 if (ret < 0)
5973 return ret;
5974 else if (ret == 0)
5975 ret = send_hole(sctx, key->offset);
5976 else
5977 ret = 0;
5978 }
5979 sctx->cur_inode_last_extent = extent_end;
5980 return ret;
5981}
5982
5983static int process_extent(struct send_ctx *sctx,
5984 struct btrfs_path *path,
5985 struct btrfs_key *key)
5986{
5987 struct clone_root *found_clone = NULL;
5988 int ret = 0;
5989
5990 if (S_ISLNK(sctx->cur_inode_mode))
5991 return 0;
5992
5993 if (sctx->parent_root && !sctx->cur_inode_new) {
5994 ret = is_extent_unchanged(sctx, path, key);
5995 if (ret < 0)
5996 goto out;
5997 if (ret) {
5998 ret = 0;
5999 goto out_hole;
6000 }
6001 } else {
6002 struct btrfs_file_extent_item *ei;
6003 u8 type;
6004
6005 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6006 struct btrfs_file_extent_item);
6007 type = btrfs_file_extent_type(path->nodes[0], ei);
6008 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6009 type == BTRFS_FILE_EXTENT_REG) {
6010 /*
6011 * The send spec does not have a prealloc command yet,
6012 * so just leave a hole for prealloc'ed extents until
6013 * we have enough commands queued up to justify rev'ing
6014 * the send spec.
6015 */
6016 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6017 ret = 0;
6018 goto out;
6019 }
6020
6021 /* Have a hole, just skip it. */
6022 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6023 ret = 0;
6024 goto out;
6025 }
6026 }
6027 }
6028
6029 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6030 sctx->cur_inode_size, &found_clone);
6031 if (ret != -ENOENT && ret < 0)
6032 goto out;
6033
6034 ret = send_write_or_clone(sctx, path, key, found_clone);
6035 if (ret)
6036 goto out;
6037out_hole:
6038 ret = maybe_send_hole(sctx, path, key);
6039out:
6040 return ret;
6041}
6042
6043static int process_all_extents(struct send_ctx *sctx)
6044{
6045 int ret;
6046 struct btrfs_root *root;
6047 struct btrfs_path *path;
6048 struct btrfs_key key;
6049 struct btrfs_key found_key;
6050 struct extent_buffer *eb;
6051 int slot;
6052
6053 root = sctx->send_root;
6054 path = alloc_path_for_send();
6055 if (!path)
6056 return -ENOMEM;
6057
6058 key.objectid = sctx->cmp_key->objectid;
6059 key.type = BTRFS_EXTENT_DATA_KEY;
6060 key.offset = 0;
6061 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6062 if (ret < 0)
6063 goto out;
6064
6065 while (1) {
6066 eb = path->nodes[0];
6067 slot = path->slots[0];
6068
6069 if (slot >= btrfs_header_nritems(eb)) {
6070 ret = btrfs_next_leaf(root, path);
6071 if (ret < 0) {
6072 goto out;
6073 } else if (ret > 0) {
6074 ret = 0;
6075 break;
6076 }
6077 continue;
6078 }
6079
6080 btrfs_item_key_to_cpu(eb, &found_key, slot);
6081
6082 if (found_key.objectid != key.objectid ||
6083 found_key.type != key.type) {
6084 ret = 0;
6085 goto out;
6086 }
6087
6088 ret = process_extent(sctx, path, &found_key);
6089 if (ret < 0)
6090 goto out;
6091
6092 path->slots[0]++;
6093 }
6094
6095out:
6096 btrfs_free_path(path);
6097 return ret;
6098}
6099
6100static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6101 int *pending_move,
6102 int *refs_processed)
6103{
6104 int ret = 0;
6105
6106 if (sctx->cur_ino == 0)
6107 goto out;
6108 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6109 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6110 goto out;
6111 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6112 goto out;
6113
6114 ret = process_recorded_refs(sctx, pending_move);
6115 if (ret < 0)
6116 goto out;
6117
6118 *refs_processed = 1;
6119out:
6120 return ret;
6121}
6122
6123static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6124{
6125 int ret = 0;
6126 u64 left_mode;
6127 u64 left_uid;
6128 u64 left_gid;
6129 u64 right_mode;
6130 u64 right_uid;
6131 u64 right_gid;
6132 int need_chmod = 0;
6133 int need_chown = 0;
6134 int need_truncate = 1;
6135 int pending_move = 0;
6136 int refs_processed = 0;
6137
6138 if (sctx->ignore_cur_inode)
6139 return 0;
6140
6141 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6142 &refs_processed);
6143 if (ret < 0)
6144 goto out;
6145
6146 /*
6147 * We have processed the refs and thus need to advance send_progress.
6148 * Now, calls to get_cur_xxx will take the updated refs of the current
6149 * inode into account.
6150 *
6151 * On the other hand, if our current inode is a directory and couldn't
6152 * be moved/renamed because its parent was renamed/moved too and it has
6153 * a higher inode number, we can only move/rename our current inode
6154 * after we moved/renamed its parent. Therefore in this case operate on
6155 * the old path (pre move/rename) of our current inode, and the
6156 * move/rename will be performed later.
6157 */
6158 if (refs_processed && !pending_move)
6159 sctx->send_progress = sctx->cur_ino + 1;
6160
6161 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6162 goto out;
6163 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6164 goto out;
6165
6166 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
6167 &left_mode, &left_uid, &left_gid, NULL);
6168 if (ret < 0)
6169 goto out;
6170
6171 if (!sctx->parent_root || sctx->cur_inode_new) {
6172 need_chown = 1;
6173 if (!S_ISLNK(sctx->cur_inode_mode))
6174 need_chmod = 1;
6175 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6176 need_truncate = 0;
6177 } else {
6178 u64 old_size;
6179
6180 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
6181 &old_size, NULL, &right_mode, &right_uid,
6182 &right_gid, NULL);
6183 if (ret < 0)
6184 goto out;
6185
6186 if (left_uid != right_uid || left_gid != right_gid)
6187 need_chown = 1;
6188 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6189 need_chmod = 1;
6190 if ((old_size == sctx->cur_inode_size) ||
6191 (sctx->cur_inode_size > old_size &&
6192 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6193 need_truncate = 0;
6194 }
6195
6196 if (S_ISREG(sctx->cur_inode_mode)) {
6197 if (need_send_hole(sctx)) {
6198 if (sctx->cur_inode_last_extent == (u64)-1 ||
6199 sctx->cur_inode_last_extent <
6200 sctx->cur_inode_size) {
6201 ret = get_last_extent(sctx, (u64)-1);
6202 if (ret)
6203 goto out;
6204 }
6205 if (sctx->cur_inode_last_extent <
6206 sctx->cur_inode_size) {
6207 ret = send_hole(sctx, sctx->cur_inode_size);
6208 if (ret)
6209 goto out;
6210 }
6211 }
6212 if (need_truncate) {
6213 ret = send_truncate(sctx, sctx->cur_ino,
6214 sctx->cur_inode_gen,
6215 sctx->cur_inode_size);
6216 if (ret < 0)
6217 goto out;
6218 }
6219 }
6220
6221 if (need_chown) {
6222 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6223 left_uid, left_gid);
6224 if (ret < 0)
6225 goto out;
6226 }
6227 if (need_chmod) {
6228 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6229 left_mode);
6230 if (ret < 0)
6231 goto out;
6232 }
6233
Olivier Deprez0e641232021-09-23 10:07:05 +02006234 ret = send_capabilities(sctx);
6235 if (ret < 0)
6236 goto out;
6237
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006238 /*
6239 * If other directory inodes depended on our current directory
6240 * inode's move/rename, now do their move/rename operations.
6241 */
6242 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6243 ret = apply_children_dir_moves(sctx);
6244 if (ret)
6245 goto out;
6246 /*
6247 * Need to send that every time, no matter if it actually
6248 * changed between the two trees as we have done changes to
6249 * the inode before. If our inode is a directory and it's
6250 * waiting to be moved/renamed, we will send its utimes when
6251 * it's moved/renamed, therefore we don't need to do it here.
6252 */
6253 sctx->send_progress = sctx->cur_ino + 1;
6254 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6255 if (ret < 0)
6256 goto out;
6257 }
6258
6259out:
6260 return ret;
6261}
6262
6263struct parent_paths_ctx {
6264 struct list_head *refs;
6265 struct send_ctx *sctx;
6266};
6267
6268static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6269 void *ctx)
6270{
6271 struct parent_paths_ctx *ppctx = ctx;
6272
6273 return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6274 ppctx->refs);
6275}
6276
6277/*
6278 * Issue unlink operations for all paths of the current inode found in the
6279 * parent snapshot.
6280 */
6281static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6282{
6283 LIST_HEAD(deleted_refs);
6284 struct btrfs_path *path;
6285 struct btrfs_key key;
6286 struct parent_paths_ctx ctx;
6287 int ret;
6288
6289 path = alloc_path_for_send();
6290 if (!path)
6291 return -ENOMEM;
6292
6293 key.objectid = sctx->cur_ino;
6294 key.type = BTRFS_INODE_REF_KEY;
6295 key.offset = 0;
6296 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
6297 if (ret < 0)
6298 goto out;
6299
6300 ctx.refs = &deleted_refs;
6301 ctx.sctx = sctx;
6302
6303 while (true) {
6304 struct extent_buffer *eb = path->nodes[0];
6305 int slot = path->slots[0];
6306
6307 if (slot >= btrfs_header_nritems(eb)) {
6308 ret = btrfs_next_leaf(sctx->parent_root, path);
6309 if (ret < 0)
6310 goto out;
6311 else if (ret > 0)
6312 break;
6313 continue;
6314 }
6315
6316 btrfs_item_key_to_cpu(eb, &key, slot);
6317 if (key.objectid != sctx->cur_ino)
6318 break;
6319 if (key.type != BTRFS_INODE_REF_KEY &&
6320 key.type != BTRFS_INODE_EXTREF_KEY)
6321 break;
6322
6323 ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
6324 record_parent_ref, &ctx);
6325 if (ret < 0)
6326 goto out;
6327
6328 path->slots[0]++;
6329 }
6330
6331 while (!list_empty(&deleted_refs)) {
6332 struct recorded_ref *ref;
6333
6334 ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6335 ret = send_unlink(sctx, ref->full_path);
6336 if (ret < 0)
6337 goto out;
6338 fs_path_free(ref->full_path);
6339 list_del(&ref->list);
6340 kfree(ref);
6341 }
6342 ret = 0;
6343out:
6344 btrfs_free_path(path);
6345 if (ret)
6346 __free_recorded_refs(&deleted_refs);
6347 return ret;
6348}
6349
6350static int changed_inode(struct send_ctx *sctx,
6351 enum btrfs_compare_tree_result result)
6352{
6353 int ret = 0;
6354 struct btrfs_key *key = sctx->cmp_key;
6355 struct btrfs_inode_item *left_ii = NULL;
6356 struct btrfs_inode_item *right_ii = NULL;
6357 u64 left_gen = 0;
6358 u64 right_gen = 0;
6359
6360 sctx->cur_ino = key->objectid;
6361 sctx->cur_inode_new_gen = 0;
6362 sctx->cur_inode_last_extent = (u64)-1;
6363 sctx->cur_inode_next_write_offset = 0;
6364 sctx->ignore_cur_inode = false;
6365
6366 /*
6367 * Set send_progress to current inode. This will tell all get_cur_xxx
6368 * functions that the current inode's refs are not updated yet. Later,
6369 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6370 */
6371 sctx->send_progress = sctx->cur_ino;
6372
6373 if (result == BTRFS_COMPARE_TREE_NEW ||
6374 result == BTRFS_COMPARE_TREE_CHANGED) {
6375 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6376 sctx->left_path->slots[0],
6377 struct btrfs_inode_item);
6378 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6379 left_ii);
6380 } else {
6381 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6382 sctx->right_path->slots[0],
6383 struct btrfs_inode_item);
6384 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6385 right_ii);
6386 }
6387 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6388 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6389 sctx->right_path->slots[0],
6390 struct btrfs_inode_item);
6391
6392 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6393 right_ii);
6394
6395 /*
6396 * The cur_ino = root dir case is special here. We can't treat
6397 * the inode as deleted+reused because it would generate a
6398 * stream that tries to delete/mkdir the root dir.
6399 */
6400 if (left_gen != right_gen &&
6401 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6402 sctx->cur_inode_new_gen = 1;
6403 }
6404
6405 /*
6406 * Normally we do not find inodes with a link count of zero (orphans)
6407 * because the most common case is to create a snapshot and use it
6408 * for a send operation. However other less common use cases involve
6409 * using a subvolume and send it after turning it to RO mode just
6410 * after deleting all hard links of a file while holding an open
6411 * file descriptor against it or turning a RO snapshot into RW mode,
6412 * keep an open file descriptor against a file, delete it and then
6413 * turn the snapshot back to RO mode before using it for a send
6414 * operation. So if we find such cases, ignore the inode and all its
6415 * items completely if it's a new inode, or if it's a changed inode
6416 * make sure all its previous paths (from the parent snapshot) are all
6417 * unlinked and all other the inode items are ignored.
6418 */
6419 if (result == BTRFS_COMPARE_TREE_NEW ||
6420 result == BTRFS_COMPARE_TREE_CHANGED) {
6421 u32 nlinks;
6422
6423 nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6424 if (nlinks == 0) {
6425 sctx->ignore_cur_inode = true;
6426 if (result == BTRFS_COMPARE_TREE_CHANGED)
6427 ret = btrfs_unlink_all_paths(sctx);
6428 goto out;
6429 }
6430 }
6431
6432 if (result == BTRFS_COMPARE_TREE_NEW) {
6433 sctx->cur_inode_gen = left_gen;
6434 sctx->cur_inode_new = 1;
6435 sctx->cur_inode_deleted = 0;
6436 sctx->cur_inode_size = btrfs_inode_size(
6437 sctx->left_path->nodes[0], left_ii);
6438 sctx->cur_inode_mode = btrfs_inode_mode(
6439 sctx->left_path->nodes[0], left_ii);
6440 sctx->cur_inode_rdev = btrfs_inode_rdev(
6441 sctx->left_path->nodes[0], left_ii);
6442 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6443 ret = send_create_inode_if_needed(sctx);
6444 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6445 sctx->cur_inode_gen = right_gen;
6446 sctx->cur_inode_new = 0;
6447 sctx->cur_inode_deleted = 1;
6448 sctx->cur_inode_size = btrfs_inode_size(
6449 sctx->right_path->nodes[0], right_ii);
6450 sctx->cur_inode_mode = btrfs_inode_mode(
6451 sctx->right_path->nodes[0], right_ii);
6452 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6453 /*
6454 * We need to do some special handling in case the inode was
6455 * reported as changed with a changed generation number. This
6456 * means that the original inode was deleted and new inode
6457 * reused the same inum. So we have to treat the old inode as
6458 * deleted and the new one as new.
6459 */
6460 if (sctx->cur_inode_new_gen) {
6461 /*
6462 * First, process the inode as if it was deleted.
6463 */
6464 sctx->cur_inode_gen = right_gen;
6465 sctx->cur_inode_new = 0;
6466 sctx->cur_inode_deleted = 1;
6467 sctx->cur_inode_size = btrfs_inode_size(
6468 sctx->right_path->nodes[0], right_ii);
6469 sctx->cur_inode_mode = btrfs_inode_mode(
6470 sctx->right_path->nodes[0], right_ii);
6471 ret = process_all_refs(sctx,
6472 BTRFS_COMPARE_TREE_DELETED);
6473 if (ret < 0)
6474 goto out;
6475
6476 /*
6477 * Now process the inode as if it was new.
6478 */
6479 sctx->cur_inode_gen = left_gen;
6480 sctx->cur_inode_new = 1;
6481 sctx->cur_inode_deleted = 0;
6482 sctx->cur_inode_size = btrfs_inode_size(
6483 sctx->left_path->nodes[0], left_ii);
6484 sctx->cur_inode_mode = btrfs_inode_mode(
6485 sctx->left_path->nodes[0], left_ii);
6486 sctx->cur_inode_rdev = btrfs_inode_rdev(
6487 sctx->left_path->nodes[0], left_ii);
6488 ret = send_create_inode_if_needed(sctx);
6489 if (ret < 0)
6490 goto out;
6491
6492 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6493 if (ret < 0)
6494 goto out;
6495 /*
6496 * Advance send_progress now as we did not get into
6497 * process_recorded_refs_if_needed in the new_gen case.
6498 */
6499 sctx->send_progress = sctx->cur_ino + 1;
6500
6501 /*
6502 * Now process all extents and xattrs of the inode as if
6503 * they were all new.
6504 */
6505 ret = process_all_extents(sctx);
6506 if (ret < 0)
6507 goto out;
6508 ret = process_all_new_xattrs(sctx);
6509 if (ret < 0)
6510 goto out;
6511 } else {
6512 sctx->cur_inode_gen = left_gen;
6513 sctx->cur_inode_new = 0;
6514 sctx->cur_inode_new_gen = 0;
6515 sctx->cur_inode_deleted = 0;
6516 sctx->cur_inode_size = btrfs_inode_size(
6517 sctx->left_path->nodes[0], left_ii);
6518 sctx->cur_inode_mode = btrfs_inode_mode(
6519 sctx->left_path->nodes[0], left_ii);
6520 }
6521 }
6522
6523out:
6524 return ret;
6525}
6526
6527/*
6528 * We have to process new refs before deleted refs, but compare_trees gives us
6529 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6530 * first and later process them in process_recorded_refs.
6531 * For the cur_inode_new_gen case, we skip recording completely because
6532 * changed_inode did already initiate processing of refs. The reason for this is
6533 * that in this case, compare_tree actually compares the refs of 2 different
6534 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6535 * refs of the right tree as deleted and all refs of the left tree as new.
6536 */
6537static int changed_ref(struct send_ctx *sctx,
6538 enum btrfs_compare_tree_result result)
6539{
6540 int ret = 0;
6541
6542 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6543 inconsistent_snapshot_error(sctx, result, "reference");
6544 return -EIO;
6545 }
6546
6547 if (!sctx->cur_inode_new_gen &&
6548 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6549 if (result == BTRFS_COMPARE_TREE_NEW)
6550 ret = record_new_ref(sctx);
6551 else if (result == BTRFS_COMPARE_TREE_DELETED)
6552 ret = record_deleted_ref(sctx);
6553 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6554 ret = record_changed_ref(sctx);
6555 }
6556
6557 return ret;
6558}
6559
6560/*
6561 * Process new/deleted/changed xattrs. We skip processing in the
6562 * cur_inode_new_gen case because changed_inode did already initiate processing
6563 * of xattrs. The reason is the same as in changed_ref
6564 */
6565static int changed_xattr(struct send_ctx *sctx,
6566 enum btrfs_compare_tree_result result)
6567{
6568 int ret = 0;
6569
6570 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6571 inconsistent_snapshot_error(sctx, result, "xattr");
6572 return -EIO;
6573 }
6574
6575 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6576 if (result == BTRFS_COMPARE_TREE_NEW)
6577 ret = process_new_xattr(sctx);
6578 else if (result == BTRFS_COMPARE_TREE_DELETED)
6579 ret = process_deleted_xattr(sctx);
6580 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6581 ret = process_changed_xattr(sctx);
6582 }
6583
6584 return ret;
6585}
6586
6587/*
6588 * Process new/deleted/changed extents. We skip processing in the
6589 * cur_inode_new_gen case because changed_inode did already initiate processing
6590 * of extents. The reason is the same as in changed_ref
6591 */
6592static int changed_extent(struct send_ctx *sctx,
6593 enum btrfs_compare_tree_result result)
6594{
6595 int ret = 0;
6596
David Brazdil0f672f62019-12-10 10:32:29 +00006597 /*
6598 * We have found an extent item that changed without the inode item
6599 * having changed. This can happen either after relocation (where the
6600 * disk_bytenr of an extent item is replaced at
6601 * relocation.c:replace_file_extents()) or after deduplication into a
6602 * file in both the parent and send snapshots (where an extent item can
6603 * get modified or replaced with a new one). Note that deduplication
6604 * updates the inode item, but it only changes the iversion (sequence
6605 * field in the inode item) of the inode, so if a file is deduplicated
6606 * the same amount of times in both the parent and send snapshots, its
6607 * iversion becames the same in both snapshots, whence the inode item is
6608 * the same on both snapshots.
6609 */
6610 if (sctx->cur_ino != sctx->cmp_key->objectid)
6611 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006612
6613 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6614 if (result != BTRFS_COMPARE_TREE_DELETED)
6615 ret = process_extent(sctx, sctx->left_path,
6616 sctx->cmp_key);
6617 }
6618
6619 return ret;
6620}
6621
6622static int dir_changed(struct send_ctx *sctx, u64 dir)
6623{
6624 u64 orig_gen, new_gen;
6625 int ret;
6626
6627 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6628 NULL, NULL);
6629 if (ret)
6630 return ret;
6631
6632 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6633 NULL, NULL, NULL);
6634 if (ret)
6635 return ret;
6636
6637 return (orig_gen != new_gen) ? 1 : 0;
6638}
6639
6640static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6641 struct btrfs_key *key)
6642{
6643 struct btrfs_inode_extref *extref;
6644 struct extent_buffer *leaf;
6645 u64 dirid = 0, last_dirid = 0;
6646 unsigned long ptr;
6647 u32 item_size;
6648 u32 cur_offset = 0;
6649 int ref_name_len;
6650 int ret = 0;
6651
6652 /* Easy case, just check this one dirid */
6653 if (key->type == BTRFS_INODE_REF_KEY) {
6654 dirid = key->offset;
6655
6656 ret = dir_changed(sctx, dirid);
6657 goto out;
6658 }
6659
6660 leaf = path->nodes[0];
6661 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6662 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6663 while (cur_offset < item_size) {
6664 extref = (struct btrfs_inode_extref *)(ptr +
6665 cur_offset);
6666 dirid = btrfs_inode_extref_parent(leaf, extref);
6667 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6668 cur_offset += ref_name_len + sizeof(*extref);
6669 if (dirid == last_dirid)
6670 continue;
6671 ret = dir_changed(sctx, dirid);
6672 if (ret)
6673 break;
6674 last_dirid = dirid;
6675 }
6676out:
6677 return ret;
6678}
6679
6680/*
6681 * Updates compare related fields in sctx and simply forwards to the actual
6682 * changed_xxx functions.
6683 */
6684static int changed_cb(struct btrfs_path *left_path,
6685 struct btrfs_path *right_path,
6686 struct btrfs_key *key,
6687 enum btrfs_compare_tree_result result,
6688 void *ctx)
6689{
6690 int ret = 0;
6691 struct send_ctx *sctx = ctx;
6692
6693 if (result == BTRFS_COMPARE_TREE_SAME) {
6694 if (key->type == BTRFS_INODE_REF_KEY ||
6695 key->type == BTRFS_INODE_EXTREF_KEY) {
6696 ret = compare_refs(sctx, left_path, key);
6697 if (!ret)
6698 return 0;
6699 if (ret < 0)
6700 return ret;
6701 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6702 return maybe_send_hole(sctx, left_path, key);
6703 } else {
6704 return 0;
6705 }
6706 result = BTRFS_COMPARE_TREE_CHANGED;
6707 ret = 0;
6708 }
6709
6710 sctx->left_path = left_path;
6711 sctx->right_path = right_path;
6712 sctx->cmp_key = key;
6713
6714 ret = finish_inode_if_needed(sctx, 0);
6715 if (ret < 0)
6716 goto out;
6717
6718 /* Ignore non-FS objects */
6719 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6720 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6721 goto out;
6722
6723 if (key->type == BTRFS_INODE_ITEM_KEY) {
6724 ret = changed_inode(sctx, result);
6725 } else if (!sctx->ignore_cur_inode) {
6726 if (key->type == BTRFS_INODE_REF_KEY ||
6727 key->type == BTRFS_INODE_EXTREF_KEY)
6728 ret = changed_ref(sctx, result);
6729 else if (key->type == BTRFS_XATTR_ITEM_KEY)
6730 ret = changed_xattr(sctx, result);
6731 else if (key->type == BTRFS_EXTENT_DATA_KEY)
6732 ret = changed_extent(sctx, result);
6733 }
6734
6735out:
6736 return ret;
6737}
6738
6739static int full_send_tree(struct send_ctx *sctx)
6740{
6741 int ret;
6742 struct btrfs_root *send_root = sctx->send_root;
6743 struct btrfs_key key;
6744 struct btrfs_path *path;
6745 struct extent_buffer *eb;
6746 int slot;
6747
6748 path = alloc_path_for_send();
6749 if (!path)
6750 return -ENOMEM;
6751
6752 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6753 key.type = BTRFS_INODE_ITEM_KEY;
6754 key.offset = 0;
6755
6756 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6757 if (ret < 0)
6758 goto out;
6759 if (ret)
6760 goto out_finish;
6761
6762 while (1) {
6763 eb = path->nodes[0];
6764 slot = path->slots[0];
6765 btrfs_item_key_to_cpu(eb, &key, slot);
6766
6767 ret = changed_cb(path, NULL, &key,
6768 BTRFS_COMPARE_TREE_NEW, sctx);
6769 if (ret < 0)
6770 goto out;
6771
6772 ret = btrfs_next_item(send_root, path);
6773 if (ret < 0)
6774 goto out;
6775 if (ret) {
6776 ret = 0;
6777 break;
6778 }
6779 }
6780
6781out_finish:
6782 ret = finish_inode_if_needed(sctx, 1);
6783
6784out:
6785 btrfs_free_path(path);
6786 return ret;
6787}
6788
David Brazdil0f672f62019-12-10 10:32:29 +00006789static int tree_move_down(struct btrfs_path *path, int *level)
6790{
6791 struct extent_buffer *eb;
6792
6793 BUG_ON(*level == 0);
6794 eb = btrfs_read_node_slot(path->nodes[*level], path->slots[*level]);
6795 if (IS_ERR(eb))
6796 return PTR_ERR(eb);
6797
6798 path->nodes[*level - 1] = eb;
6799 path->slots[*level - 1] = 0;
6800 (*level)--;
6801 return 0;
6802}
6803
6804static int tree_move_next_or_upnext(struct btrfs_path *path,
6805 int *level, int root_level)
6806{
6807 int ret = 0;
6808 int nritems;
6809 nritems = btrfs_header_nritems(path->nodes[*level]);
6810
6811 path->slots[*level]++;
6812
6813 while (path->slots[*level] >= nritems) {
6814 if (*level == root_level)
6815 return -1;
6816
6817 /* move upnext */
6818 path->slots[*level] = 0;
6819 free_extent_buffer(path->nodes[*level]);
6820 path->nodes[*level] = NULL;
6821 (*level)++;
6822 path->slots[*level]++;
6823
6824 nritems = btrfs_header_nritems(path->nodes[*level]);
6825 ret = 1;
6826 }
6827 return ret;
6828}
6829
6830/*
6831 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6832 * or down.
6833 */
6834static int tree_advance(struct btrfs_path *path,
6835 int *level, int root_level,
6836 int allow_down,
6837 struct btrfs_key *key)
6838{
6839 int ret;
6840
6841 if (*level == 0 || !allow_down) {
6842 ret = tree_move_next_or_upnext(path, level, root_level);
6843 } else {
6844 ret = tree_move_down(path, level);
6845 }
6846 if (ret >= 0) {
6847 if (*level == 0)
6848 btrfs_item_key_to_cpu(path->nodes[*level], key,
6849 path->slots[*level]);
6850 else
6851 btrfs_node_key_to_cpu(path->nodes[*level], key,
6852 path->slots[*level]);
6853 }
6854 return ret;
6855}
6856
6857static int tree_compare_item(struct btrfs_path *left_path,
6858 struct btrfs_path *right_path,
6859 char *tmp_buf)
6860{
6861 int cmp;
6862 int len1, len2;
6863 unsigned long off1, off2;
6864
6865 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
6866 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
6867 if (len1 != len2)
6868 return 1;
6869
6870 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
6871 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
6872 right_path->slots[0]);
6873
6874 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
6875
6876 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
6877 if (cmp)
6878 return 1;
6879 return 0;
6880}
6881
6882/*
6883 * This function compares two trees and calls the provided callback for
6884 * every changed/new/deleted item it finds.
6885 * If shared tree blocks are encountered, whole subtrees are skipped, making
6886 * the compare pretty fast on snapshotted subvolumes.
6887 *
6888 * This currently works on commit roots only. As commit roots are read only,
6889 * we don't do any locking. The commit roots are protected with transactions.
6890 * Transactions are ended and rejoined when a commit is tried in between.
6891 *
6892 * This function checks for modifications done to the trees while comparing.
6893 * If it detects a change, it aborts immediately.
6894 */
6895static int btrfs_compare_trees(struct btrfs_root *left_root,
6896 struct btrfs_root *right_root,
6897 btrfs_changed_cb_t changed_cb, void *ctx)
6898{
6899 struct btrfs_fs_info *fs_info = left_root->fs_info;
6900 int ret;
6901 int cmp;
6902 struct btrfs_path *left_path = NULL;
6903 struct btrfs_path *right_path = NULL;
6904 struct btrfs_key left_key;
6905 struct btrfs_key right_key;
6906 char *tmp_buf = NULL;
6907 int left_root_level;
6908 int right_root_level;
6909 int left_level;
6910 int right_level;
6911 int left_end_reached;
6912 int right_end_reached;
6913 int advance_left;
6914 int advance_right;
6915 u64 left_blockptr;
6916 u64 right_blockptr;
6917 u64 left_gen;
6918 u64 right_gen;
6919
6920 left_path = btrfs_alloc_path();
6921 if (!left_path) {
6922 ret = -ENOMEM;
6923 goto out;
6924 }
6925 right_path = btrfs_alloc_path();
6926 if (!right_path) {
6927 ret = -ENOMEM;
6928 goto out;
6929 }
6930
6931 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
6932 if (!tmp_buf) {
6933 ret = -ENOMEM;
6934 goto out;
6935 }
6936
6937 left_path->search_commit_root = 1;
6938 left_path->skip_locking = 1;
6939 right_path->search_commit_root = 1;
6940 right_path->skip_locking = 1;
6941
6942 /*
6943 * Strategy: Go to the first items of both trees. Then do
6944 *
6945 * If both trees are at level 0
6946 * Compare keys of current items
6947 * If left < right treat left item as new, advance left tree
6948 * and repeat
6949 * If left > right treat right item as deleted, advance right tree
6950 * and repeat
6951 * If left == right do deep compare of items, treat as changed if
6952 * needed, advance both trees and repeat
6953 * If both trees are at the same level but not at level 0
6954 * Compare keys of current nodes/leafs
6955 * If left < right advance left tree and repeat
6956 * If left > right advance right tree and repeat
6957 * If left == right compare blockptrs of the next nodes/leafs
6958 * If they match advance both trees but stay at the same level
6959 * and repeat
6960 * If they don't match advance both trees while allowing to go
6961 * deeper and repeat
6962 * If tree levels are different
6963 * Advance the tree that needs it and repeat
6964 *
6965 * Advancing a tree means:
6966 * If we are at level 0, try to go to the next slot. If that's not
6967 * possible, go one level up and repeat. Stop when we found a level
6968 * where we could go to the next slot. We may at this point be on a
6969 * node or a leaf.
6970 *
6971 * If we are not at level 0 and not on shared tree blocks, go one
6972 * level deeper.
6973 *
6974 * If we are not at level 0 and on shared tree blocks, go one slot to
6975 * the right if possible or go up and right.
6976 */
6977
6978 down_read(&fs_info->commit_root_sem);
6979 left_level = btrfs_header_level(left_root->commit_root);
6980 left_root_level = left_level;
6981 left_path->nodes[left_level] =
6982 btrfs_clone_extent_buffer(left_root->commit_root);
6983 if (!left_path->nodes[left_level]) {
6984 up_read(&fs_info->commit_root_sem);
6985 ret = -ENOMEM;
6986 goto out;
6987 }
6988
6989 right_level = btrfs_header_level(right_root->commit_root);
6990 right_root_level = right_level;
6991 right_path->nodes[right_level] =
6992 btrfs_clone_extent_buffer(right_root->commit_root);
6993 if (!right_path->nodes[right_level]) {
6994 up_read(&fs_info->commit_root_sem);
6995 ret = -ENOMEM;
6996 goto out;
6997 }
6998 up_read(&fs_info->commit_root_sem);
6999
7000 if (left_level == 0)
7001 btrfs_item_key_to_cpu(left_path->nodes[left_level],
7002 &left_key, left_path->slots[left_level]);
7003 else
7004 btrfs_node_key_to_cpu(left_path->nodes[left_level],
7005 &left_key, left_path->slots[left_level]);
7006 if (right_level == 0)
7007 btrfs_item_key_to_cpu(right_path->nodes[right_level],
7008 &right_key, right_path->slots[right_level]);
7009 else
7010 btrfs_node_key_to_cpu(right_path->nodes[right_level],
7011 &right_key, right_path->slots[right_level]);
7012
7013 left_end_reached = right_end_reached = 0;
7014 advance_left = advance_right = 0;
7015
7016 while (1) {
7017 cond_resched();
7018 if (advance_left && !left_end_reached) {
7019 ret = tree_advance(left_path, &left_level,
7020 left_root_level,
7021 advance_left != ADVANCE_ONLY_NEXT,
7022 &left_key);
7023 if (ret == -1)
7024 left_end_reached = ADVANCE;
7025 else if (ret < 0)
7026 goto out;
7027 advance_left = 0;
7028 }
7029 if (advance_right && !right_end_reached) {
7030 ret = tree_advance(right_path, &right_level,
7031 right_root_level,
7032 advance_right != ADVANCE_ONLY_NEXT,
7033 &right_key);
7034 if (ret == -1)
7035 right_end_reached = ADVANCE;
7036 else if (ret < 0)
7037 goto out;
7038 advance_right = 0;
7039 }
7040
7041 if (left_end_reached && right_end_reached) {
7042 ret = 0;
7043 goto out;
7044 } else if (left_end_reached) {
7045 if (right_level == 0) {
7046 ret = changed_cb(left_path, right_path,
7047 &right_key,
7048 BTRFS_COMPARE_TREE_DELETED,
7049 ctx);
7050 if (ret < 0)
7051 goto out;
7052 }
7053 advance_right = ADVANCE;
7054 continue;
7055 } else if (right_end_reached) {
7056 if (left_level == 0) {
7057 ret = changed_cb(left_path, right_path,
7058 &left_key,
7059 BTRFS_COMPARE_TREE_NEW,
7060 ctx);
7061 if (ret < 0)
7062 goto out;
7063 }
7064 advance_left = ADVANCE;
7065 continue;
7066 }
7067
7068 if (left_level == 0 && right_level == 0) {
7069 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7070 if (cmp < 0) {
7071 ret = changed_cb(left_path, right_path,
7072 &left_key,
7073 BTRFS_COMPARE_TREE_NEW,
7074 ctx);
7075 if (ret < 0)
7076 goto out;
7077 advance_left = ADVANCE;
7078 } else if (cmp > 0) {
7079 ret = changed_cb(left_path, right_path,
7080 &right_key,
7081 BTRFS_COMPARE_TREE_DELETED,
7082 ctx);
7083 if (ret < 0)
7084 goto out;
7085 advance_right = ADVANCE;
7086 } else {
7087 enum btrfs_compare_tree_result result;
7088
7089 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7090 ret = tree_compare_item(left_path, right_path,
7091 tmp_buf);
7092 if (ret)
7093 result = BTRFS_COMPARE_TREE_CHANGED;
7094 else
7095 result = BTRFS_COMPARE_TREE_SAME;
7096 ret = changed_cb(left_path, right_path,
7097 &left_key, result, ctx);
7098 if (ret < 0)
7099 goto out;
7100 advance_left = ADVANCE;
7101 advance_right = ADVANCE;
7102 }
7103 } else if (left_level == right_level) {
7104 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7105 if (cmp < 0) {
7106 advance_left = ADVANCE;
7107 } else if (cmp > 0) {
7108 advance_right = ADVANCE;
7109 } else {
7110 left_blockptr = btrfs_node_blockptr(
7111 left_path->nodes[left_level],
7112 left_path->slots[left_level]);
7113 right_blockptr = btrfs_node_blockptr(
7114 right_path->nodes[right_level],
7115 right_path->slots[right_level]);
7116 left_gen = btrfs_node_ptr_generation(
7117 left_path->nodes[left_level],
7118 left_path->slots[left_level]);
7119 right_gen = btrfs_node_ptr_generation(
7120 right_path->nodes[right_level],
7121 right_path->slots[right_level]);
7122 if (left_blockptr == right_blockptr &&
7123 left_gen == right_gen) {
7124 /*
7125 * As we're on a shared block, don't
7126 * allow to go deeper.
7127 */
7128 advance_left = ADVANCE_ONLY_NEXT;
7129 advance_right = ADVANCE_ONLY_NEXT;
7130 } else {
7131 advance_left = ADVANCE;
7132 advance_right = ADVANCE;
7133 }
7134 }
7135 } else if (left_level < right_level) {
7136 advance_right = ADVANCE;
7137 } else {
7138 advance_left = ADVANCE;
7139 }
7140 }
7141
7142out:
7143 btrfs_free_path(left_path);
7144 btrfs_free_path(right_path);
7145 kvfree(tmp_buf);
7146 return ret;
7147}
7148
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007149static int send_subvol(struct send_ctx *sctx)
7150{
7151 int ret;
7152
7153 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7154 ret = send_header(sctx);
7155 if (ret < 0)
7156 goto out;
7157 }
7158
7159 ret = send_subvol_begin(sctx);
7160 if (ret < 0)
7161 goto out;
7162
7163 if (sctx->parent_root) {
7164 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
7165 changed_cb, sctx);
7166 if (ret < 0)
7167 goto out;
7168 ret = finish_inode_if_needed(sctx, 1);
7169 if (ret < 0)
7170 goto out;
7171 } else {
7172 ret = full_send_tree(sctx);
7173 if (ret < 0)
7174 goto out;
7175 }
7176
7177out:
7178 free_recorded_refs(sctx);
7179 return ret;
7180}
7181
7182/*
7183 * If orphan cleanup did remove any orphans from a root, it means the tree
7184 * was modified and therefore the commit root is not the same as the current
7185 * root anymore. This is a problem, because send uses the commit root and
7186 * therefore can see inode items that don't exist in the current root anymore,
7187 * and for example make calls to btrfs_iget, which will do tree lookups based
7188 * on the current root and not on the commit root. Those lookups will fail,
7189 * returning a -ESTALE error, and making send fail with that error. So make
7190 * sure a send does not see any orphans we have just removed, and that it will
7191 * see the same inodes regardless of whether a transaction commit happened
7192 * before it started (meaning that the commit root will be the same as the
7193 * current root) or not.
7194 */
7195static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7196{
7197 int i;
7198 struct btrfs_trans_handle *trans = NULL;
7199
7200again:
7201 if (sctx->parent_root &&
7202 sctx->parent_root->node != sctx->parent_root->commit_root)
7203 goto commit_trans;
7204
7205 for (i = 0; i < sctx->clone_roots_cnt; i++)
7206 if (sctx->clone_roots[i].root->node !=
7207 sctx->clone_roots[i].root->commit_root)
7208 goto commit_trans;
7209
7210 if (trans)
7211 return btrfs_end_transaction(trans);
7212
7213 return 0;
7214
7215commit_trans:
7216 /* Use any root, all fs roots will get their commit roots updated. */
7217 if (!trans) {
7218 trans = btrfs_join_transaction(sctx->send_root);
7219 if (IS_ERR(trans))
7220 return PTR_ERR(trans);
7221 goto again;
7222 }
7223
7224 return btrfs_commit_transaction(trans);
7225}
7226
David Brazdil0f672f62019-12-10 10:32:29 +00007227/*
7228 * Make sure any existing dellaloc is flushed for any root used by a send
7229 * operation so that we do not miss any data and we do not race with writeback
7230 * finishing and changing a tree while send is using the tree. This could
7231 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7232 * a send operation then uses the subvolume.
7233 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7234 */
7235static int flush_delalloc_roots(struct send_ctx *sctx)
7236{
7237 struct btrfs_root *root = sctx->parent_root;
7238 int ret;
7239 int i;
7240
7241 if (root) {
7242 ret = btrfs_start_delalloc_snapshot(root);
7243 if (ret)
7244 return ret;
7245 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7246 }
7247
7248 for (i = 0; i < sctx->clone_roots_cnt; i++) {
7249 root = sctx->clone_roots[i].root;
7250 ret = btrfs_start_delalloc_snapshot(root);
7251 if (ret)
7252 return ret;
7253 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7254 }
7255
7256 return 0;
7257}
7258
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007259static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7260{
7261 spin_lock(&root->root_item_lock);
7262 root->send_in_progress--;
7263 /*
7264 * Not much left to do, we don't know why it's unbalanced and
7265 * can't blindly reset it to 0.
7266 */
7267 if (root->send_in_progress < 0)
7268 btrfs_err(root->fs_info,
7269 "send_in_progress unbalanced %d root %llu",
7270 root->send_in_progress, root->root_key.objectid);
7271 spin_unlock(&root->root_item_lock);
7272}
7273
David Brazdil0f672f62019-12-10 10:32:29 +00007274static void dedupe_in_progress_warn(const struct btrfs_root *root)
7275{
7276 btrfs_warn_rl(root->fs_info,
7277"cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7278 root->root_key.objectid, root->dedupe_in_progress);
7279}
7280
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007281long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
7282{
7283 int ret = 0;
7284 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
7285 struct btrfs_fs_info *fs_info = send_root->fs_info;
7286 struct btrfs_root *clone_root;
7287 struct btrfs_key key;
7288 struct send_ctx *sctx = NULL;
7289 u32 i;
7290 u64 *clone_sources_tmp = NULL;
7291 int clone_sources_to_rollback = 0;
7292 unsigned alloc_size;
7293 int sort_clone_roots = 0;
7294 int index;
7295
7296 if (!capable(CAP_SYS_ADMIN))
7297 return -EPERM;
7298
7299 /*
7300 * The subvolume must remain read-only during send, protect against
7301 * making it RW. This also protects against deletion.
7302 */
7303 spin_lock(&send_root->root_item_lock);
David Brazdil0f672f62019-12-10 10:32:29 +00007304 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7305 dedupe_in_progress_warn(send_root);
7306 spin_unlock(&send_root->root_item_lock);
7307 return -EAGAIN;
7308 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007309 send_root->send_in_progress++;
7310 spin_unlock(&send_root->root_item_lock);
7311
7312 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007313 * Userspace tools do the checks and warn the user if it's
7314 * not RO.
7315 */
7316 if (!btrfs_root_readonly(send_root)) {
7317 ret = -EPERM;
7318 goto out;
7319 }
7320
7321 /*
7322 * Check that we don't overflow at later allocations, we request
7323 * clone_sources_count + 1 items, and compare to unsigned long inside
7324 * access_ok.
7325 */
7326 if (arg->clone_sources_count >
7327 ULONG_MAX / sizeof(struct clone_root) - 1) {
7328 ret = -EINVAL;
7329 goto out;
7330 }
7331
David Brazdil0f672f62019-12-10 10:32:29 +00007332 if (!access_ok(arg->clone_sources,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007333 sizeof(*arg->clone_sources) *
7334 arg->clone_sources_count)) {
7335 ret = -EFAULT;
7336 goto out;
7337 }
7338
7339 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7340 ret = -EINVAL;
7341 goto out;
7342 }
7343
7344 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7345 if (!sctx) {
7346 ret = -ENOMEM;
7347 goto out;
7348 }
7349
7350 INIT_LIST_HEAD(&sctx->new_refs);
7351 INIT_LIST_HEAD(&sctx->deleted_refs);
7352 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
7353 INIT_LIST_HEAD(&sctx->name_cache_list);
7354
7355 sctx->flags = arg->flags;
7356
7357 sctx->send_filp = fget(arg->send_fd);
7358 if (!sctx->send_filp) {
7359 ret = -EBADF;
7360 goto out;
7361 }
7362
7363 sctx->send_root = send_root;
7364 /*
7365 * Unlikely but possible, if the subvolume is marked for deletion but
7366 * is slow to remove the directory entry, send can still be started
7367 */
7368 if (btrfs_root_dead(sctx->send_root)) {
7369 ret = -EPERM;
7370 goto out;
7371 }
7372
7373 sctx->clone_roots_cnt = arg->clone_sources_count;
7374
7375 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
7376 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7377 if (!sctx->send_buf) {
7378 ret = -ENOMEM;
7379 goto out;
7380 }
7381
7382 sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
7383 if (!sctx->read_buf) {
7384 ret = -ENOMEM;
7385 goto out;
7386 }
7387
7388 sctx->pending_dir_moves = RB_ROOT;
7389 sctx->waiting_dir_moves = RB_ROOT;
7390 sctx->orphan_dirs = RB_ROOT;
7391
7392 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
7393
Olivier Deprez0e641232021-09-23 10:07:05 +02007394 sctx->clone_roots = kvzalloc(alloc_size, GFP_KERNEL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007395 if (!sctx->clone_roots) {
7396 ret = -ENOMEM;
7397 goto out;
7398 }
7399
7400 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
7401
7402 if (arg->clone_sources_count) {
7403 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
7404 if (!clone_sources_tmp) {
7405 ret = -ENOMEM;
7406 goto out;
7407 }
7408
7409 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7410 alloc_size);
7411 if (ret) {
7412 ret = -EFAULT;
7413 goto out;
7414 }
7415
7416 for (i = 0; i < arg->clone_sources_count; i++) {
7417 key.objectid = clone_sources_tmp[i];
7418 key.type = BTRFS_ROOT_ITEM_KEY;
7419 key.offset = (u64)-1;
7420
7421 index = srcu_read_lock(&fs_info->subvol_srcu);
7422
7423 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
7424 if (IS_ERR(clone_root)) {
7425 srcu_read_unlock(&fs_info->subvol_srcu, index);
7426 ret = PTR_ERR(clone_root);
7427 goto out;
7428 }
7429 spin_lock(&clone_root->root_item_lock);
7430 if (!btrfs_root_readonly(clone_root) ||
7431 btrfs_root_dead(clone_root)) {
7432 spin_unlock(&clone_root->root_item_lock);
7433 srcu_read_unlock(&fs_info->subvol_srcu, index);
7434 ret = -EPERM;
7435 goto out;
7436 }
David Brazdil0f672f62019-12-10 10:32:29 +00007437 if (clone_root->dedupe_in_progress) {
7438 dedupe_in_progress_warn(clone_root);
7439 spin_unlock(&clone_root->root_item_lock);
7440 srcu_read_unlock(&fs_info->subvol_srcu, index);
7441 ret = -EAGAIN;
7442 goto out;
7443 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007444 clone_root->send_in_progress++;
7445 spin_unlock(&clone_root->root_item_lock);
7446 srcu_read_unlock(&fs_info->subvol_srcu, index);
7447
7448 sctx->clone_roots[i].root = clone_root;
7449 clone_sources_to_rollback = i + 1;
7450 }
7451 kvfree(clone_sources_tmp);
7452 clone_sources_tmp = NULL;
7453 }
7454
7455 if (arg->parent_root) {
7456 key.objectid = arg->parent_root;
7457 key.type = BTRFS_ROOT_ITEM_KEY;
7458 key.offset = (u64)-1;
7459
7460 index = srcu_read_lock(&fs_info->subvol_srcu);
7461
7462 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
7463 if (IS_ERR(sctx->parent_root)) {
7464 srcu_read_unlock(&fs_info->subvol_srcu, index);
7465 ret = PTR_ERR(sctx->parent_root);
7466 goto out;
7467 }
7468
7469 spin_lock(&sctx->parent_root->root_item_lock);
7470 sctx->parent_root->send_in_progress++;
7471 if (!btrfs_root_readonly(sctx->parent_root) ||
7472 btrfs_root_dead(sctx->parent_root)) {
7473 spin_unlock(&sctx->parent_root->root_item_lock);
7474 srcu_read_unlock(&fs_info->subvol_srcu, index);
7475 ret = -EPERM;
7476 goto out;
7477 }
David Brazdil0f672f62019-12-10 10:32:29 +00007478 if (sctx->parent_root->dedupe_in_progress) {
7479 dedupe_in_progress_warn(sctx->parent_root);
7480 spin_unlock(&sctx->parent_root->root_item_lock);
7481 srcu_read_unlock(&fs_info->subvol_srcu, index);
7482 ret = -EAGAIN;
7483 goto out;
7484 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007485 spin_unlock(&sctx->parent_root->root_item_lock);
7486
7487 srcu_read_unlock(&fs_info->subvol_srcu, index);
7488 }
7489
7490 /*
7491 * Clones from send_root are allowed, but only if the clone source
7492 * is behind the current send position. This is checked while searching
7493 * for possible clone sources.
7494 */
7495 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
7496
7497 /* We do a bsearch later */
7498 sort(sctx->clone_roots, sctx->clone_roots_cnt,
7499 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7500 NULL);
7501 sort_clone_roots = 1;
7502
David Brazdil0f672f62019-12-10 10:32:29 +00007503 ret = flush_delalloc_roots(sctx);
7504 if (ret)
7505 goto out;
7506
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007507 ret = ensure_commit_roots_uptodate(sctx);
7508 if (ret)
7509 goto out;
7510
David Brazdil0f672f62019-12-10 10:32:29 +00007511 mutex_lock(&fs_info->balance_mutex);
7512 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
7513 mutex_unlock(&fs_info->balance_mutex);
7514 btrfs_warn_rl(fs_info,
7515 "cannot run send because a balance operation is in progress");
7516 ret = -EAGAIN;
7517 goto out;
7518 }
7519 fs_info->send_in_progress++;
7520 mutex_unlock(&fs_info->balance_mutex);
7521
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007522 current->journal_info = BTRFS_SEND_TRANS_STUB;
7523 ret = send_subvol(sctx);
7524 current->journal_info = NULL;
David Brazdil0f672f62019-12-10 10:32:29 +00007525 mutex_lock(&fs_info->balance_mutex);
7526 fs_info->send_in_progress--;
7527 mutex_unlock(&fs_info->balance_mutex);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007528 if (ret < 0)
7529 goto out;
7530
7531 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7532 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7533 if (ret < 0)
7534 goto out;
7535 ret = send_cmd(sctx);
7536 if (ret < 0)
7537 goto out;
7538 }
7539
7540out:
7541 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7542 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7543 struct rb_node *n;
7544 struct pending_dir_move *pm;
7545
7546 n = rb_first(&sctx->pending_dir_moves);
7547 pm = rb_entry(n, struct pending_dir_move, node);
7548 while (!list_empty(&pm->list)) {
7549 struct pending_dir_move *pm2;
7550
7551 pm2 = list_first_entry(&pm->list,
7552 struct pending_dir_move, list);
7553 free_pending_move(sctx, pm2);
7554 }
7555 free_pending_move(sctx, pm);
7556 }
7557
7558 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7559 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7560 struct rb_node *n;
7561 struct waiting_dir_move *dm;
7562
7563 n = rb_first(&sctx->waiting_dir_moves);
7564 dm = rb_entry(n, struct waiting_dir_move, node);
7565 rb_erase(&dm->node, &sctx->waiting_dir_moves);
7566 kfree(dm);
7567 }
7568
7569 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
7570 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
7571 struct rb_node *n;
7572 struct orphan_dir_info *odi;
7573
7574 n = rb_first(&sctx->orphan_dirs);
7575 odi = rb_entry(n, struct orphan_dir_info, node);
7576 free_orphan_dir_info(sctx, odi);
7577 }
7578
7579 if (sort_clone_roots) {
7580 for (i = 0; i < sctx->clone_roots_cnt; i++)
7581 btrfs_root_dec_send_in_progress(
7582 sctx->clone_roots[i].root);
7583 } else {
7584 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
7585 btrfs_root_dec_send_in_progress(
7586 sctx->clone_roots[i].root);
7587
7588 btrfs_root_dec_send_in_progress(send_root);
7589 }
7590 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
7591 btrfs_root_dec_send_in_progress(sctx->parent_root);
7592
7593 kvfree(clone_sources_tmp);
7594
7595 if (sctx) {
7596 if (sctx->send_filp)
7597 fput(sctx->send_filp);
7598
7599 kvfree(sctx->clone_roots);
7600 kvfree(sctx->send_buf);
7601 kvfree(sctx->read_buf);
7602
7603 name_cache_free(sctx);
7604
7605 kfree(sctx);
7606 }
7607
7608 return ret;
7609}