blob: 7ac679ed2b6c604d4d0b6854f1de733c76ac95f5 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2012 Fusion-io All rights reserved.
4 * Copyright (C) 2012 Intel Corp. All rights reserved.
5 */
6
7#include <linux/sched.h>
8#include <linux/bio.h>
9#include <linux/slab.h>
10#include <linux/blkdev.h>
11#include <linux/raid/pq.h>
12#include <linux/hash.h>
13#include <linux/list_sort.h>
14#include <linux/raid/xor.h>
15#include <linux/mm.h>
16#include "ctree.h"
17#include "disk-io.h"
18#include "volumes.h"
19#include "raid56.h"
20#include "async-thread.h"
21
22/* set when additional merges to this rbio are not allowed */
23#define RBIO_RMW_LOCKED_BIT 1
24
25/*
26 * set when this rbio is sitting in the hash, but it is just a cache
27 * of past RMW
28 */
29#define RBIO_CACHE_BIT 2
30
31/*
32 * set when it is safe to trust the stripe_pages for caching
33 */
34#define RBIO_CACHE_READY_BIT 3
35
36#define RBIO_CACHE_SIZE 1024
37
David Brazdil0f672f62019-12-10 10:32:29 +000038#define BTRFS_STRIPE_HASH_TABLE_BITS 11
39
40/* Used by the raid56 code to lock stripes for read/modify/write */
41struct btrfs_stripe_hash {
42 struct list_head hash_list;
43 spinlock_t lock;
44};
45
46/* Used by the raid56 code to lock stripes for read/modify/write */
47struct btrfs_stripe_hash_table {
48 struct list_head stripe_cache;
49 spinlock_t cache_lock;
50 int cache_size;
51 struct btrfs_stripe_hash table[];
52};
53
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000054enum btrfs_rbio_ops {
55 BTRFS_RBIO_WRITE,
56 BTRFS_RBIO_READ_REBUILD,
57 BTRFS_RBIO_PARITY_SCRUB,
58 BTRFS_RBIO_REBUILD_MISSING,
59};
60
61struct btrfs_raid_bio {
62 struct btrfs_fs_info *fs_info;
63 struct btrfs_bio *bbio;
64
65 /* while we're doing rmw on a stripe
66 * we put it into a hash table so we can
67 * lock the stripe and merge more rbios
68 * into it.
69 */
70 struct list_head hash_list;
71
72 /*
73 * LRU list for the stripe cache
74 */
75 struct list_head stripe_cache;
76
77 /*
78 * for scheduling work in the helper threads
79 */
80 struct btrfs_work work;
81
82 /*
83 * bio list and bio_list_lock are used
84 * to add more bios into the stripe
85 * in hopes of avoiding the full rmw
86 */
87 struct bio_list bio_list;
88 spinlock_t bio_list_lock;
89
90 /* also protected by the bio_list_lock, the
91 * plug list is used by the plugging code
92 * to collect partial bios while plugged. The
93 * stripe locking code also uses it to hand off
94 * the stripe lock to the next pending IO
95 */
96 struct list_head plug_list;
97
98 /*
99 * flags that tell us if it is safe to
100 * merge with this bio
101 */
102 unsigned long flags;
103
104 /* size of each individual stripe on disk */
105 int stripe_len;
106
107 /* number of data stripes (no p/q) */
108 int nr_data;
109
110 int real_stripes;
111
112 int stripe_npages;
113 /*
114 * set if we're doing a parity rebuild
115 * for a read from higher up, which is handled
116 * differently from a parity rebuild as part of
117 * rmw
118 */
119 enum btrfs_rbio_ops operation;
120
121 /* first bad stripe */
122 int faila;
123
124 /* second bad stripe (for raid6 use) */
125 int failb;
126
127 int scrubp;
128 /*
129 * number of pages needed to represent the full
130 * stripe
131 */
132 int nr_pages;
133
134 /*
135 * size of all the bios in the bio_list. This
136 * helps us decide if the rbio maps to a full
137 * stripe or not
138 */
139 int bio_list_bytes;
140
141 int generic_bio_cnt;
142
143 refcount_t refs;
144
145 atomic_t stripes_pending;
146
147 atomic_t error;
148 /*
149 * these are two arrays of pointers. We allocate the
150 * rbio big enough to hold them both and setup their
151 * locations when the rbio is allocated
152 */
153
154 /* pointers to pages that we allocated for
155 * reading/writing stripes directly from the disk (including P/Q)
156 */
157 struct page **stripe_pages;
158
159 /*
160 * pointers to the pages in the bio_list. Stored
161 * here for faster lookup
162 */
163 struct page **bio_pages;
164
165 /*
166 * bitmap to record which horizontal stripe has data
167 */
168 unsigned long *dbitmap;
169
170 /* allocated with real_stripes-many pointers for finish_*() calls */
171 void **finish_pointers;
172
173 /* allocated with stripe_npages-many bits for finish_*() calls */
174 unsigned long *finish_pbitmap;
175};
176
177static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
178static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
179static void rmw_work(struct btrfs_work *work);
180static void read_rebuild_work(struct btrfs_work *work);
181static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
182static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
183static void __free_raid_bio(struct btrfs_raid_bio *rbio);
184static void index_rbio_pages(struct btrfs_raid_bio *rbio);
185static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
186
187static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
188 int need_check);
189static void scrub_parity_work(struct btrfs_work *work);
190
191static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func)
192{
Olivier Deprez0e641232021-09-23 10:07:05 +0200193 btrfs_init_work(&rbio->work, work_func, NULL, NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000194 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
195}
196
197/*
198 * the stripe hash table is used for locking, and to collect
199 * bios in hopes of making a full stripe
200 */
201int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
202{
203 struct btrfs_stripe_hash_table *table;
204 struct btrfs_stripe_hash_table *x;
205 struct btrfs_stripe_hash *cur;
206 struct btrfs_stripe_hash *h;
207 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
208 int i;
209 int table_size;
210
211 if (info->stripe_hash_table)
212 return 0;
213
214 /*
215 * The table is large, starting with order 4 and can go as high as
216 * order 7 in case lock debugging is turned on.
217 *
218 * Try harder to allocate and fallback to vmalloc to lower the chance
219 * of a failing mount.
220 */
221 table_size = sizeof(*table) + sizeof(*h) * num_entries;
222 table = kvzalloc(table_size, GFP_KERNEL);
223 if (!table)
224 return -ENOMEM;
225
226 spin_lock_init(&table->cache_lock);
227 INIT_LIST_HEAD(&table->stripe_cache);
228
229 h = table->table;
230
231 for (i = 0; i < num_entries; i++) {
232 cur = h + i;
233 INIT_LIST_HEAD(&cur->hash_list);
234 spin_lock_init(&cur->lock);
235 }
236
237 x = cmpxchg(&info->stripe_hash_table, NULL, table);
238 if (x)
239 kvfree(x);
240 return 0;
241}
242
243/*
244 * caching an rbio means to copy anything from the
245 * bio_pages array into the stripe_pages array. We
246 * use the page uptodate bit in the stripe cache array
247 * to indicate if it has valid data
248 *
249 * once the caching is done, we set the cache ready
250 * bit.
251 */
252static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
253{
254 int i;
255 char *s;
256 char *d;
257 int ret;
258
259 ret = alloc_rbio_pages(rbio);
260 if (ret)
261 return;
262
263 for (i = 0; i < rbio->nr_pages; i++) {
264 if (!rbio->bio_pages[i])
265 continue;
266
267 s = kmap(rbio->bio_pages[i]);
268 d = kmap(rbio->stripe_pages[i]);
269
270 copy_page(d, s);
271
272 kunmap(rbio->bio_pages[i]);
273 kunmap(rbio->stripe_pages[i]);
274 SetPageUptodate(rbio->stripe_pages[i]);
275 }
276 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
277}
278
279/*
280 * we hash on the first logical address of the stripe
281 */
282static int rbio_bucket(struct btrfs_raid_bio *rbio)
283{
284 u64 num = rbio->bbio->raid_map[0];
285
286 /*
287 * we shift down quite a bit. We're using byte
288 * addressing, and most of the lower bits are zeros.
289 * This tends to upset hash_64, and it consistently
290 * returns just one or two different values.
291 *
292 * shifting off the lower bits fixes things.
293 */
294 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
295}
296
297/*
298 * stealing an rbio means taking all the uptodate pages from the stripe
299 * array in the source rbio and putting them into the destination rbio
300 */
301static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
302{
303 int i;
304 struct page *s;
305 struct page *d;
306
307 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
308 return;
309
310 for (i = 0; i < dest->nr_pages; i++) {
311 s = src->stripe_pages[i];
312 if (!s || !PageUptodate(s)) {
313 continue;
314 }
315
316 d = dest->stripe_pages[i];
317 if (d)
318 __free_page(d);
319
320 dest->stripe_pages[i] = s;
321 src->stripe_pages[i] = NULL;
322 }
323}
324
325/*
326 * merging means we take the bio_list from the victim and
327 * splice it into the destination. The victim should
328 * be discarded afterwards.
329 *
330 * must be called with dest->rbio_list_lock held
331 */
332static void merge_rbio(struct btrfs_raid_bio *dest,
333 struct btrfs_raid_bio *victim)
334{
335 bio_list_merge(&dest->bio_list, &victim->bio_list);
336 dest->bio_list_bytes += victim->bio_list_bytes;
337 dest->generic_bio_cnt += victim->generic_bio_cnt;
338 bio_list_init(&victim->bio_list);
339}
340
341/*
342 * used to prune items that are in the cache. The caller
343 * must hold the hash table lock.
344 */
345static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
346{
347 int bucket = rbio_bucket(rbio);
348 struct btrfs_stripe_hash_table *table;
349 struct btrfs_stripe_hash *h;
350 int freeit = 0;
351
352 /*
353 * check the bit again under the hash table lock.
354 */
355 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
356 return;
357
358 table = rbio->fs_info->stripe_hash_table;
359 h = table->table + bucket;
360
361 /* hold the lock for the bucket because we may be
362 * removing it from the hash table
363 */
364 spin_lock(&h->lock);
365
366 /*
367 * hold the lock for the bio list because we need
368 * to make sure the bio list is empty
369 */
370 spin_lock(&rbio->bio_list_lock);
371
372 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
373 list_del_init(&rbio->stripe_cache);
374 table->cache_size -= 1;
375 freeit = 1;
376
377 /* if the bio list isn't empty, this rbio is
378 * still involved in an IO. We take it out
379 * of the cache list, and drop the ref that
380 * was held for the list.
381 *
382 * If the bio_list was empty, we also remove
383 * the rbio from the hash_table, and drop
384 * the corresponding ref
385 */
386 if (bio_list_empty(&rbio->bio_list)) {
387 if (!list_empty(&rbio->hash_list)) {
388 list_del_init(&rbio->hash_list);
389 refcount_dec(&rbio->refs);
390 BUG_ON(!list_empty(&rbio->plug_list));
391 }
392 }
393 }
394
395 spin_unlock(&rbio->bio_list_lock);
396 spin_unlock(&h->lock);
397
398 if (freeit)
399 __free_raid_bio(rbio);
400}
401
402/*
403 * prune a given rbio from the cache
404 */
405static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
406{
407 struct btrfs_stripe_hash_table *table;
408 unsigned long flags;
409
410 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
411 return;
412
413 table = rbio->fs_info->stripe_hash_table;
414
415 spin_lock_irqsave(&table->cache_lock, flags);
416 __remove_rbio_from_cache(rbio);
417 spin_unlock_irqrestore(&table->cache_lock, flags);
418}
419
420/*
421 * remove everything in the cache
422 */
423static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
424{
425 struct btrfs_stripe_hash_table *table;
426 unsigned long flags;
427 struct btrfs_raid_bio *rbio;
428
429 table = info->stripe_hash_table;
430
431 spin_lock_irqsave(&table->cache_lock, flags);
432 while (!list_empty(&table->stripe_cache)) {
433 rbio = list_entry(table->stripe_cache.next,
434 struct btrfs_raid_bio,
435 stripe_cache);
436 __remove_rbio_from_cache(rbio);
437 }
438 spin_unlock_irqrestore(&table->cache_lock, flags);
439}
440
441/*
442 * remove all cached entries and free the hash table
443 * used by unmount
444 */
445void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
446{
447 if (!info->stripe_hash_table)
448 return;
449 btrfs_clear_rbio_cache(info);
450 kvfree(info->stripe_hash_table);
451 info->stripe_hash_table = NULL;
452}
453
454/*
455 * insert an rbio into the stripe cache. It
456 * must have already been prepared by calling
457 * cache_rbio_pages
458 *
459 * If this rbio was already cached, it gets
460 * moved to the front of the lru.
461 *
462 * If the size of the rbio cache is too big, we
463 * prune an item.
464 */
465static void cache_rbio(struct btrfs_raid_bio *rbio)
466{
467 struct btrfs_stripe_hash_table *table;
468 unsigned long flags;
469
470 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
471 return;
472
473 table = rbio->fs_info->stripe_hash_table;
474
475 spin_lock_irqsave(&table->cache_lock, flags);
476 spin_lock(&rbio->bio_list_lock);
477
478 /* bump our ref if we were not in the list before */
479 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
480 refcount_inc(&rbio->refs);
481
482 if (!list_empty(&rbio->stripe_cache)){
483 list_move(&rbio->stripe_cache, &table->stripe_cache);
484 } else {
485 list_add(&rbio->stripe_cache, &table->stripe_cache);
486 table->cache_size += 1;
487 }
488
489 spin_unlock(&rbio->bio_list_lock);
490
491 if (table->cache_size > RBIO_CACHE_SIZE) {
492 struct btrfs_raid_bio *found;
493
494 found = list_entry(table->stripe_cache.prev,
495 struct btrfs_raid_bio,
496 stripe_cache);
497
498 if (found != rbio)
499 __remove_rbio_from_cache(found);
500 }
501
502 spin_unlock_irqrestore(&table->cache_lock, flags);
503}
504
505/*
506 * helper function to run the xor_blocks api. It is only
507 * able to do MAX_XOR_BLOCKS at a time, so we need to
508 * loop through.
509 */
510static void run_xor(void **pages, int src_cnt, ssize_t len)
511{
512 int src_off = 0;
513 int xor_src_cnt = 0;
514 void *dest = pages[src_cnt];
515
516 while(src_cnt > 0) {
517 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
518 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
519
520 src_cnt -= xor_src_cnt;
521 src_off += xor_src_cnt;
522 }
523}
524
525/*
526 * Returns true if the bio list inside this rbio covers an entire stripe (no
527 * rmw required).
528 */
529static int rbio_is_full(struct btrfs_raid_bio *rbio)
530{
531 unsigned long flags;
532 unsigned long size = rbio->bio_list_bytes;
533 int ret = 1;
534
535 spin_lock_irqsave(&rbio->bio_list_lock, flags);
536 if (size != rbio->nr_data * rbio->stripe_len)
537 ret = 0;
538 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
539 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
540
541 return ret;
542}
543
544/*
545 * returns 1 if it is safe to merge two rbios together.
546 * The merging is safe if the two rbios correspond to
547 * the same stripe and if they are both going in the same
548 * direction (read vs write), and if neither one is
549 * locked for final IO
550 *
551 * The caller is responsible for locking such that
552 * rmw_locked is safe to test
553 */
554static int rbio_can_merge(struct btrfs_raid_bio *last,
555 struct btrfs_raid_bio *cur)
556{
557 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
558 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
559 return 0;
560
561 /*
562 * we can't merge with cached rbios, since the
563 * idea is that when we merge the destination
564 * rbio is going to run our IO for us. We can
565 * steal from cached rbios though, other functions
566 * handle that.
567 */
568 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
569 test_bit(RBIO_CACHE_BIT, &cur->flags))
570 return 0;
571
572 if (last->bbio->raid_map[0] !=
573 cur->bbio->raid_map[0])
574 return 0;
575
576 /* we can't merge with different operations */
577 if (last->operation != cur->operation)
578 return 0;
579 /*
580 * We've need read the full stripe from the drive.
581 * check and repair the parity and write the new results.
582 *
583 * We're not allowed to add any new bios to the
584 * bio list here, anyone else that wants to
585 * change this stripe needs to do their own rmw.
586 */
587 if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
588 return 0;
589
590 if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
591 return 0;
592
593 if (last->operation == BTRFS_RBIO_READ_REBUILD) {
594 int fa = last->faila;
595 int fb = last->failb;
596 int cur_fa = cur->faila;
597 int cur_fb = cur->failb;
598
599 if (last->faila >= last->failb) {
600 fa = last->failb;
601 fb = last->faila;
602 }
603
604 if (cur->faila >= cur->failb) {
605 cur_fa = cur->failb;
606 cur_fb = cur->faila;
607 }
608
609 if (fa != cur_fa || fb != cur_fb)
610 return 0;
611 }
612 return 1;
613}
614
615static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
616 int index)
617{
618 return stripe * rbio->stripe_npages + index;
619}
620
621/*
622 * these are just the pages from the rbio array, not from anything
623 * the FS sent down to us
624 */
625static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
626 int index)
627{
628 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
629}
630
631/*
632 * helper to index into the pstripe
633 */
634static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
635{
636 return rbio_stripe_page(rbio, rbio->nr_data, index);
637}
638
639/*
640 * helper to index into the qstripe, returns null
641 * if there is no qstripe
642 */
643static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
644{
645 if (rbio->nr_data + 1 == rbio->real_stripes)
646 return NULL;
647 return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
648}
649
650/*
651 * The first stripe in the table for a logical address
652 * has the lock. rbios are added in one of three ways:
653 *
654 * 1) Nobody has the stripe locked yet. The rbio is given
655 * the lock and 0 is returned. The caller must start the IO
656 * themselves.
657 *
658 * 2) Someone has the stripe locked, but we're able to merge
659 * with the lock owner. The rbio is freed and the IO will
660 * start automatically along with the existing rbio. 1 is returned.
661 *
662 * 3) Someone has the stripe locked, but we're not able to merge.
663 * The rbio is added to the lock owner's plug list, or merged into
664 * an rbio already on the plug list. When the lock owner unlocks,
665 * the next rbio on the list is run and the IO is started automatically.
666 * 1 is returned
667 *
668 * If we return 0, the caller still owns the rbio and must continue with
669 * IO submission. If we return 1, the caller must assume the rbio has
670 * already been freed.
671 */
672static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
673{
674 int bucket = rbio_bucket(rbio);
675 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
676 struct btrfs_raid_bio *cur;
677 struct btrfs_raid_bio *pending;
678 unsigned long flags;
679 struct btrfs_raid_bio *freeit = NULL;
680 struct btrfs_raid_bio *cache_drop = NULL;
681 int ret = 0;
682
683 spin_lock_irqsave(&h->lock, flags);
684 list_for_each_entry(cur, &h->hash_list, hash_list) {
685 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
686 spin_lock(&cur->bio_list_lock);
687
688 /* can we steal this cached rbio's pages? */
689 if (bio_list_empty(&cur->bio_list) &&
690 list_empty(&cur->plug_list) &&
691 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
692 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
693 list_del_init(&cur->hash_list);
694 refcount_dec(&cur->refs);
695
696 steal_rbio(cur, rbio);
697 cache_drop = cur;
698 spin_unlock(&cur->bio_list_lock);
699
700 goto lockit;
701 }
702
703 /* can we merge into the lock owner? */
704 if (rbio_can_merge(cur, rbio)) {
705 merge_rbio(cur, rbio);
706 spin_unlock(&cur->bio_list_lock);
707 freeit = rbio;
708 ret = 1;
709 goto out;
710 }
711
712
713 /*
714 * we couldn't merge with the running
715 * rbio, see if we can merge with the
716 * pending ones. We don't have to
717 * check for rmw_locked because there
718 * is no way they are inside finish_rmw
719 * right now
720 */
721 list_for_each_entry(pending, &cur->plug_list,
722 plug_list) {
723 if (rbio_can_merge(pending, rbio)) {
724 merge_rbio(pending, rbio);
725 spin_unlock(&cur->bio_list_lock);
726 freeit = rbio;
727 ret = 1;
728 goto out;
729 }
730 }
731
732 /* no merging, put us on the tail of the plug list,
733 * our rbio will be started with the currently
734 * running rbio unlocks
735 */
736 list_add_tail(&rbio->plug_list, &cur->plug_list);
737 spin_unlock(&cur->bio_list_lock);
738 ret = 1;
739 goto out;
740 }
741 }
742lockit:
743 refcount_inc(&rbio->refs);
744 list_add(&rbio->hash_list, &h->hash_list);
745out:
746 spin_unlock_irqrestore(&h->lock, flags);
747 if (cache_drop)
748 remove_rbio_from_cache(cache_drop);
749 if (freeit)
750 __free_raid_bio(freeit);
751 return ret;
752}
753
754/*
755 * called as rmw or parity rebuild is completed. If the plug list has more
756 * rbios waiting for this stripe, the next one on the list will be started
757 */
758static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
759{
760 int bucket;
761 struct btrfs_stripe_hash *h;
762 unsigned long flags;
763 int keep_cache = 0;
764
765 bucket = rbio_bucket(rbio);
766 h = rbio->fs_info->stripe_hash_table->table + bucket;
767
768 if (list_empty(&rbio->plug_list))
769 cache_rbio(rbio);
770
771 spin_lock_irqsave(&h->lock, flags);
772 spin_lock(&rbio->bio_list_lock);
773
774 if (!list_empty(&rbio->hash_list)) {
775 /*
776 * if we're still cached and there is no other IO
777 * to perform, just leave this rbio here for others
778 * to steal from later
779 */
780 if (list_empty(&rbio->plug_list) &&
781 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
782 keep_cache = 1;
783 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
784 BUG_ON(!bio_list_empty(&rbio->bio_list));
785 goto done;
786 }
787
788 list_del_init(&rbio->hash_list);
789 refcount_dec(&rbio->refs);
790
791 /*
792 * we use the plug list to hold all the rbios
793 * waiting for the chance to lock this stripe.
794 * hand the lock over to one of them.
795 */
796 if (!list_empty(&rbio->plug_list)) {
797 struct btrfs_raid_bio *next;
798 struct list_head *head = rbio->plug_list.next;
799
800 next = list_entry(head, struct btrfs_raid_bio,
801 plug_list);
802
803 list_del_init(&rbio->plug_list);
804
805 list_add(&next->hash_list, &h->hash_list);
806 refcount_inc(&next->refs);
807 spin_unlock(&rbio->bio_list_lock);
808 spin_unlock_irqrestore(&h->lock, flags);
809
810 if (next->operation == BTRFS_RBIO_READ_REBUILD)
811 start_async_work(next, read_rebuild_work);
812 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
813 steal_rbio(rbio, next);
814 start_async_work(next, read_rebuild_work);
815 } else if (next->operation == BTRFS_RBIO_WRITE) {
816 steal_rbio(rbio, next);
817 start_async_work(next, rmw_work);
818 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
819 steal_rbio(rbio, next);
820 start_async_work(next, scrub_parity_work);
821 }
822
823 goto done_nolock;
824 }
825 }
826done:
827 spin_unlock(&rbio->bio_list_lock);
828 spin_unlock_irqrestore(&h->lock, flags);
829
830done_nolock:
831 if (!keep_cache)
832 remove_rbio_from_cache(rbio);
833}
834
835static void __free_raid_bio(struct btrfs_raid_bio *rbio)
836{
837 int i;
838
839 if (!refcount_dec_and_test(&rbio->refs))
840 return;
841
842 WARN_ON(!list_empty(&rbio->stripe_cache));
843 WARN_ON(!list_empty(&rbio->hash_list));
844 WARN_ON(!bio_list_empty(&rbio->bio_list));
845
846 for (i = 0; i < rbio->nr_pages; i++) {
847 if (rbio->stripe_pages[i]) {
848 __free_page(rbio->stripe_pages[i]);
849 rbio->stripe_pages[i] = NULL;
850 }
851 }
852
853 btrfs_put_bbio(rbio->bbio);
854 kfree(rbio);
855}
856
857static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
858{
859 struct bio *next;
860
861 while (cur) {
862 next = cur->bi_next;
863 cur->bi_next = NULL;
864 cur->bi_status = err;
865 bio_endio(cur);
866 cur = next;
867 }
868}
869
870/*
871 * this frees the rbio and runs through all the bios in the
872 * bio_list and calls end_io on them
873 */
874static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
875{
876 struct bio *cur = bio_list_get(&rbio->bio_list);
877 struct bio *extra;
878
879 if (rbio->generic_bio_cnt)
880 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
881
882 /*
883 * At this moment, rbio->bio_list is empty, however since rbio does not
884 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
885 * hash list, rbio may be merged with others so that rbio->bio_list
886 * becomes non-empty.
887 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
888 * more and we can call bio_endio() on all queued bios.
889 */
890 unlock_stripe(rbio);
891 extra = bio_list_get(&rbio->bio_list);
892 __free_raid_bio(rbio);
893
894 rbio_endio_bio_list(cur, err);
895 if (extra)
896 rbio_endio_bio_list(extra, err);
897}
898
899/*
900 * end io function used by finish_rmw. When we finally
901 * get here, we've written a full stripe
902 */
903static void raid_write_end_io(struct bio *bio)
904{
905 struct btrfs_raid_bio *rbio = bio->bi_private;
906 blk_status_t err = bio->bi_status;
907 int max_errors;
908
909 if (err)
910 fail_bio_stripe(rbio, bio);
911
912 bio_put(bio);
913
914 if (!atomic_dec_and_test(&rbio->stripes_pending))
915 return;
916
917 err = BLK_STS_OK;
918
919 /* OK, we have read all the stripes we need to. */
920 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
921 0 : rbio->bbio->max_errors;
922 if (atomic_read(&rbio->error) > max_errors)
923 err = BLK_STS_IOERR;
924
925 rbio_orig_end_io(rbio, err);
926}
927
928/*
929 * the read/modify/write code wants to use the original bio for
930 * any pages it included, and then use the rbio for everything
931 * else. This function decides if a given index (stripe number)
932 * and page number in that stripe fall inside the original bio
933 * or the rbio.
934 *
935 * if you set bio_list_only, you'll get a NULL back for any ranges
936 * that are outside the bio_list
937 *
938 * This doesn't take any refs on anything, you get a bare page pointer
939 * and the caller must bump refs as required.
940 *
941 * You must call index_rbio_pages once before you can trust
942 * the answers from this function.
943 */
944static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
945 int index, int pagenr, int bio_list_only)
946{
947 int chunk_page;
948 struct page *p = NULL;
949
950 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
951
952 spin_lock_irq(&rbio->bio_list_lock);
953 p = rbio->bio_pages[chunk_page];
954 spin_unlock_irq(&rbio->bio_list_lock);
955
956 if (p || bio_list_only)
957 return p;
958
959 return rbio->stripe_pages[chunk_page];
960}
961
962/*
963 * number of pages we need for the entire stripe across all the
964 * drives
965 */
966static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
967{
968 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
969}
970
971/*
972 * allocation and initial setup for the btrfs_raid_bio. Not
973 * this does not allocate any pages for rbio->pages.
974 */
975static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
976 struct btrfs_bio *bbio,
977 u64 stripe_len)
978{
979 struct btrfs_raid_bio *rbio;
980 int nr_data = 0;
981 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
982 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
983 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
984 void *p;
985
986 rbio = kzalloc(sizeof(*rbio) +
987 sizeof(*rbio->stripe_pages) * num_pages +
988 sizeof(*rbio->bio_pages) * num_pages +
989 sizeof(*rbio->finish_pointers) * real_stripes +
990 sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) +
991 sizeof(*rbio->finish_pbitmap) *
992 BITS_TO_LONGS(stripe_npages),
993 GFP_NOFS);
994 if (!rbio)
995 return ERR_PTR(-ENOMEM);
996
997 bio_list_init(&rbio->bio_list);
998 INIT_LIST_HEAD(&rbio->plug_list);
999 spin_lock_init(&rbio->bio_list_lock);
1000 INIT_LIST_HEAD(&rbio->stripe_cache);
1001 INIT_LIST_HEAD(&rbio->hash_list);
1002 rbio->bbio = bbio;
1003 rbio->fs_info = fs_info;
1004 rbio->stripe_len = stripe_len;
1005 rbio->nr_pages = num_pages;
1006 rbio->real_stripes = real_stripes;
1007 rbio->stripe_npages = stripe_npages;
1008 rbio->faila = -1;
1009 rbio->failb = -1;
1010 refcount_set(&rbio->refs, 1);
1011 atomic_set(&rbio->error, 0);
1012 atomic_set(&rbio->stripes_pending, 0);
1013
1014 /*
1015 * the stripe_pages, bio_pages, etc arrays point to the extra
1016 * memory we allocated past the end of the rbio
1017 */
1018 p = rbio + 1;
1019#define CONSUME_ALLOC(ptr, count) do { \
1020 ptr = p; \
1021 p = (unsigned char *)p + sizeof(*(ptr)) * (count); \
1022 } while (0)
1023 CONSUME_ALLOC(rbio->stripe_pages, num_pages);
1024 CONSUME_ALLOC(rbio->bio_pages, num_pages);
1025 CONSUME_ALLOC(rbio->finish_pointers, real_stripes);
1026 CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages));
1027 CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages));
1028#undef CONSUME_ALLOC
1029
1030 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1031 nr_data = real_stripes - 1;
1032 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1033 nr_data = real_stripes - 2;
1034 else
1035 BUG();
1036
1037 rbio->nr_data = nr_data;
1038 return rbio;
1039}
1040
1041/* allocate pages for all the stripes in the bio, including parity */
1042static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1043{
1044 int i;
1045 struct page *page;
1046
1047 for (i = 0; i < rbio->nr_pages; i++) {
1048 if (rbio->stripe_pages[i])
1049 continue;
1050 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1051 if (!page)
1052 return -ENOMEM;
1053 rbio->stripe_pages[i] = page;
1054 }
1055 return 0;
1056}
1057
1058/* only allocate pages for p/q stripes */
1059static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1060{
1061 int i;
1062 struct page *page;
1063
1064 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1065
1066 for (; i < rbio->nr_pages; i++) {
1067 if (rbio->stripe_pages[i])
1068 continue;
1069 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1070 if (!page)
1071 return -ENOMEM;
1072 rbio->stripe_pages[i] = page;
1073 }
1074 return 0;
1075}
1076
1077/*
1078 * add a single page from a specific stripe into our list of bios for IO
1079 * this will try to merge into existing bios if possible, and returns
1080 * zero if all went well.
1081 */
1082static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1083 struct bio_list *bio_list,
1084 struct page *page,
1085 int stripe_nr,
1086 unsigned long page_index,
1087 unsigned long bio_max_len)
1088{
1089 struct bio *last = bio_list->tail;
1090 u64 last_end = 0;
1091 int ret;
1092 struct bio *bio;
1093 struct btrfs_bio_stripe *stripe;
1094 u64 disk_start;
1095
1096 stripe = &rbio->bbio->stripes[stripe_nr];
1097 disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1098
1099 /* if the device is missing, just fail this stripe */
1100 if (!stripe->dev->bdev)
1101 return fail_rbio_index(rbio, stripe_nr);
1102
1103 /* see if we can add this page onto our existing bio */
1104 if (last) {
1105 last_end = (u64)last->bi_iter.bi_sector << 9;
1106 last_end += last->bi_iter.bi_size;
1107
1108 /*
1109 * we can't merge these if they are from different
1110 * devices or if they are not contiguous
1111 */
1112 if (last_end == disk_start && stripe->dev->bdev &&
1113 !last->bi_status &&
1114 last->bi_disk == stripe->dev->bdev->bd_disk &&
1115 last->bi_partno == stripe->dev->bdev->bd_partno) {
1116 ret = bio_add_page(last, page, PAGE_SIZE, 0);
1117 if (ret == PAGE_SIZE)
1118 return 0;
1119 }
1120 }
1121
1122 /* put a new bio on the list */
1123 bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1124 bio->bi_iter.bi_size = 0;
1125 bio_set_dev(bio, stripe->dev->bdev);
1126 bio->bi_iter.bi_sector = disk_start >> 9;
1127
1128 bio_add_page(bio, page, PAGE_SIZE, 0);
1129 bio_list_add(bio_list, bio);
1130 return 0;
1131}
1132
1133/*
1134 * while we're doing the read/modify/write cycle, we could
1135 * have errors in reading pages off the disk. This checks
1136 * for errors and if we're not able to read the page it'll
1137 * trigger parity reconstruction. The rmw will be finished
1138 * after we've reconstructed the failed stripes
1139 */
1140static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1141{
1142 if (rbio->faila >= 0 || rbio->failb >= 0) {
1143 BUG_ON(rbio->faila == rbio->real_stripes - 1);
1144 __raid56_parity_recover(rbio);
1145 } else {
1146 finish_rmw(rbio);
1147 }
1148}
1149
1150/*
1151 * helper function to walk our bio list and populate the bio_pages array with
1152 * the result. This seems expensive, but it is faster than constantly
1153 * searching through the bio list as we setup the IO in finish_rmw or stripe
1154 * reconstruction.
1155 *
1156 * This must be called before you trust the answers from page_in_rbio
1157 */
1158static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1159{
1160 struct bio *bio;
1161 u64 start;
1162 unsigned long stripe_offset;
1163 unsigned long page_index;
1164
1165 spin_lock_irq(&rbio->bio_list_lock);
1166 bio_list_for_each(bio, &rbio->bio_list) {
1167 struct bio_vec bvec;
1168 struct bvec_iter iter;
1169 int i = 0;
1170
1171 start = (u64)bio->bi_iter.bi_sector << 9;
1172 stripe_offset = start - rbio->bbio->raid_map[0];
1173 page_index = stripe_offset >> PAGE_SHIFT;
1174
1175 if (bio_flagged(bio, BIO_CLONED))
1176 bio->bi_iter = btrfs_io_bio(bio)->iter;
1177
1178 bio_for_each_segment(bvec, bio, iter) {
1179 rbio->bio_pages[page_index + i] = bvec.bv_page;
1180 i++;
1181 }
1182 }
1183 spin_unlock_irq(&rbio->bio_list_lock);
1184}
1185
1186/*
1187 * this is called from one of two situations. We either
1188 * have a full stripe from the higher layers, or we've read all
1189 * the missing bits off disk.
1190 *
1191 * This will calculate the parity and then send down any
1192 * changed blocks.
1193 */
1194static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1195{
1196 struct btrfs_bio *bbio = rbio->bbio;
1197 void **pointers = rbio->finish_pointers;
1198 int nr_data = rbio->nr_data;
1199 int stripe;
1200 int pagenr;
Olivier Deprez0e641232021-09-23 10:07:05 +02001201 bool has_qstripe;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001202 struct bio_list bio_list;
1203 struct bio *bio;
1204 int ret;
1205
1206 bio_list_init(&bio_list);
1207
Olivier Deprez0e641232021-09-23 10:07:05 +02001208 if (rbio->real_stripes - rbio->nr_data == 1)
1209 has_qstripe = false;
1210 else if (rbio->real_stripes - rbio->nr_data == 2)
1211 has_qstripe = true;
1212 else
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001213 BUG();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001214
1215 /* at this point we either have a full stripe,
1216 * or we've read the full stripe from the drive.
1217 * recalculate the parity and write the new results.
1218 *
1219 * We're not allowed to add any new bios to the
1220 * bio list here, anyone else that wants to
1221 * change this stripe needs to do their own rmw.
1222 */
1223 spin_lock_irq(&rbio->bio_list_lock);
1224 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1225 spin_unlock_irq(&rbio->bio_list_lock);
1226
1227 atomic_set(&rbio->error, 0);
1228
1229 /*
1230 * now that we've set rmw_locked, run through the
1231 * bio list one last time and map the page pointers
1232 *
1233 * We don't cache full rbios because we're assuming
1234 * the higher layers are unlikely to use this area of
1235 * the disk again soon. If they do use it again,
1236 * hopefully they will send another full bio.
1237 */
1238 index_rbio_pages(rbio);
1239 if (!rbio_is_full(rbio))
1240 cache_rbio_pages(rbio);
1241 else
1242 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1243
1244 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1245 struct page *p;
1246 /* first collect one page from each data stripe */
1247 for (stripe = 0; stripe < nr_data; stripe++) {
1248 p = page_in_rbio(rbio, stripe, pagenr, 0);
1249 pointers[stripe] = kmap(p);
1250 }
1251
1252 /* then add the parity stripe */
1253 p = rbio_pstripe_page(rbio, pagenr);
1254 SetPageUptodate(p);
1255 pointers[stripe++] = kmap(p);
1256
Olivier Deprez0e641232021-09-23 10:07:05 +02001257 if (has_qstripe) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001258
1259 /*
1260 * raid6, add the qstripe and call the
1261 * library function to fill in our p/q
1262 */
1263 p = rbio_qstripe_page(rbio, pagenr);
1264 SetPageUptodate(p);
1265 pointers[stripe++] = kmap(p);
1266
1267 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1268 pointers);
1269 } else {
1270 /* raid5 */
1271 copy_page(pointers[nr_data], pointers[0]);
1272 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1273 }
1274
1275
1276 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1277 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1278 }
1279
1280 /*
1281 * time to start writing. Make bios for everything from the
1282 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1283 * everything else.
1284 */
1285 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1286 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1287 struct page *page;
1288 if (stripe < rbio->nr_data) {
1289 page = page_in_rbio(rbio, stripe, pagenr, 1);
1290 if (!page)
1291 continue;
1292 } else {
1293 page = rbio_stripe_page(rbio, stripe, pagenr);
1294 }
1295
1296 ret = rbio_add_io_page(rbio, &bio_list,
1297 page, stripe, pagenr, rbio->stripe_len);
1298 if (ret)
1299 goto cleanup;
1300 }
1301 }
1302
1303 if (likely(!bbio->num_tgtdevs))
1304 goto write_data;
1305
1306 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1307 if (!bbio->tgtdev_map[stripe])
1308 continue;
1309
1310 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1311 struct page *page;
1312 if (stripe < rbio->nr_data) {
1313 page = page_in_rbio(rbio, stripe, pagenr, 1);
1314 if (!page)
1315 continue;
1316 } else {
1317 page = rbio_stripe_page(rbio, stripe, pagenr);
1318 }
1319
1320 ret = rbio_add_io_page(rbio, &bio_list, page,
1321 rbio->bbio->tgtdev_map[stripe],
1322 pagenr, rbio->stripe_len);
1323 if (ret)
1324 goto cleanup;
1325 }
1326 }
1327
1328write_data:
1329 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1330 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1331
1332 while (1) {
1333 bio = bio_list_pop(&bio_list);
1334 if (!bio)
1335 break;
1336
1337 bio->bi_private = rbio;
1338 bio->bi_end_io = raid_write_end_io;
1339 bio->bi_opf = REQ_OP_WRITE;
1340
1341 submit_bio(bio);
1342 }
1343 return;
1344
1345cleanup:
1346 rbio_orig_end_io(rbio, BLK_STS_IOERR);
1347
1348 while ((bio = bio_list_pop(&bio_list)))
1349 bio_put(bio);
1350}
1351
1352/*
1353 * helper to find the stripe number for a given bio. Used to figure out which
1354 * stripe has failed. This expects the bio to correspond to a physical disk,
1355 * so it looks up based on physical sector numbers.
1356 */
1357static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1358 struct bio *bio)
1359{
1360 u64 physical = bio->bi_iter.bi_sector;
1361 u64 stripe_start;
1362 int i;
1363 struct btrfs_bio_stripe *stripe;
1364
1365 physical <<= 9;
1366
1367 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1368 stripe = &rbio->bbio->stripes[i];
1369 stripe_start = stripe->physical;
1370 if (physical >= stripe_start &&
1371 physical < stripe_start + rbio->stripe_len &&
1372 stripe->dev->bdev &&
1373 bio->bi_disk == stripe->dev->bdev->bd_disk &&
1374 bio->bi_partno == stripe->dev->bdev->bd_partno) {
1375 return i;
1376 }
1377 }
1378 return -1;
1379}
1380
1381/*
1382 * helper to find the stripe number for a given
1383 * bio (before mapping). Used to figure out which stripe has
1384 * failed. This looks up based on logical block numbers.
1385 */
1386static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1387 struct bio *bio)
1388{
1389 u64 logical = bio->bi_iter.bi_sector;
1390 u64 stripe_start;
1391 int i;
1392
1393 logical <<= 9;
1394
1395 for (i = 0; i < rbio->nr_data; i++) {
1396 stripe_start = rbio->bbio->raid_map[i];
1397 if (logical >= stripe_start &&
1398 logical < stripe_start + rbio->stripe_len) {
1399 return i;
1400 }
1401 }
1402 return -1;
1403}
1404
1405/*
1406 * returns -EIO if we had too many failures
1407 */
1408static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1409{
1410 unsigned long flags;
1411 int ret = 0;
1412
1413 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1414
1415 /* we already know this stripe is bad, move on */
1416 if (rbio->faila == failed || rbio->failb == failed)
1417 goto out;
1418
1419 if (rbio->faila == -1) {
1420 /* first failure on this rbio */
1421 rbio->faila = failed;
1422 atomic_inc(&rbio->error);
1423 } else if (rbio->failb == -1) {
1424 /* second failure on this rbio */
1425 rbio->failb = failed;
1426 atomic_inc(&rbio->error);
1427 } else {
1428 ret = -EIO;
1429 }
1430out:
1431 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1432
1433 return ret;
1434}
1435
1436/*
1437 * helper to fail a stripe based on a physical disk
1438 * bio.
1439 */
1440static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1441 struct bio *bio)
1442{
1443 int failed = find_bio_stripe(rbio, bio);
1444
1445 if (failed < 0)
1446 return -EIO;
1447
1448 return fail_rbio_index(rbio, failed);
1449}
1450
1451/*
1452 * this sets each page in the bio uptodate. It should only be used on private
1453 * rbio pages, nothing that comes in from the higher layers
1454 */
1455static void set_bio_pages_uptodate(struct bio *bio)
1456{
1457 struct bio_vec *bvec;
David Brazdil0f672f62019-12-10 10:32:29 +00001458 struct bvec_iter_all iter_all;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001459
1460 ASSERT(!bio_flagged(bio, BIO_CLONED));
1461
David Brazdil0f672f62019-12-10 10:32:29 +00001462 bio_for_each_segment_all(bvec, bio, iter_all)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001463 SetPageUptodate(bvec->bv_page);
1464}
1465
1466/*
1467 * end io for the read phase of the rmw cycle. All the bios here are physical
1468 * stripe bios we've read from the disk so we can recalculate the parity of the
1469 * stripe.
1470 *
1471 * This will usually kick off finish_rmw once all the bios are read in, but it
1472 * may trigger parity reconstruction if we had any errors along the way
1473 */
1474static void raid_rmw_end_io(struct bio *bio)
1475{
1476 struct btrfs_raid_bio *rbio = bio->bi_private;
1477
1478 if (bio->bi_status)
1479 fail_bio_stripe(rbio, bio);
1480 else
1481 set_bio_pages_uptodate(bio);
1482
1483 bio_put(bio);
1484
1485 if (!atomic_dec_and_test(&rbio->stripes_pending))
1486 return;
1487
1488 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1489 goto cleanup;
1490
1491 /*
1492 * this will normally call finish_rmw to start our write
1493 * but if there are any failed stripes we'll reconstruct
1494 * from parity first
1495 */
1496 validate_rbio_for_rmw(rbio);
1497 return;
1498
1499cleanup:
1500
1501 rbio_orig_end_io(rbio, BLK_STS_IOERR);
1502}
1503
1504/*
1505 * the stripe must be locked by the caller. It will
1506 * unlock after all the writes are done
1507 */
1508static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1509{
1510 int bios_to_read = 0;
1511 struct bio_list bio_list;
1512 int ret;
1513 int pagenr;
1514 int stripe;
1515 struct bio *bio;
1516
1517 bio_list_init(&bio_list);
1518
1519 ret = alloc_rbio_pages(rbio);
1520 if (ret)
1521 goto cleanup;
1522
1523 index_rbio_pages(rbio);
1524
1525 atomic_set(&rbio->error, 0);
1526 /*
1527 * build a list of bios to read all the missing parts of this
1528 * stripe
1529 */
1530 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1531 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1532 struct page *page;
1533 /*
1534 * we want to find all the pages missing from
1535 * the rbio and read them from the disk. If
1536 * page_in_rbio finds a page in the bio list
1537 * we don't need to read it off the stripe.
1538 */
1539 page = page_in_rbio(rbio, stripe, pagenr, 1);
1540 if (page)
1541 continue;
1542
1543 page = rbio_stripe_page(rbio, stripe, pagenr);
1544 /*
1545 * the bio cache may have handed us an uptodate
1546 * page. If so, be happy and use it
1547 */
1548 if (PageUptodate(page))
1549 continue;
1550
1551 ret = rbio_add_io_page(rbio, &bio_list, page,
1552 stripe, pagenr, rbio->stripe_len);
1553 if (ret)
1554 goto cleanup;
1555 }
1556 }
1557
1558 bios_to_read = bio_list_size(&bio_list);
1559 if (!bios_to_read) {
1560 /*
1561 * this can happen if others have merged with
1562 * us, it means there is nothing left to read.
1563 * But if there are missing devices it may not be
1564 * safe to do the full stripe write yet.
1565 */
1566 goto finish;
1567 }
1568
1569 /*
1570 * the bbio may be freed once we submit the last bio. Make sure
1571 * not to touch it after that
1572 */
1573 atomic_set(&rbio->stripes_pending, bios_to_read);
1574 while (1) {
1575 bio = bio_list_pop(&bio_list);
1576 if (!bio)
1577 break;
1578
1579 bio->bi_private = rbio;
1580 bio->bi_end_io = raid_rmw_end_io;
1581 bio->bi_opf = REQ_OP_READ;
1582
1583 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1584
1585 submit_bio(bio);
1586 }
1587 /* the actual write will happen once the reads are done */
1588 return 0;
1589
1590cleanup:
1591 rbio_orig_end_io(rbio, BLK_STS_IOERR);
1592
1593 while ((bio = bio_list_pop(&bio_list)))
1594 bio_put(bio);
1595
1596 return -EIO;
1597
1598finish:
1599 validate_rbio_for_rmw(rbio);
1600 return 0;
1601}
1602
1603/*
1604 * if the upper layers pass in a full stripe, we thank them by only allocating
1605 * enough pages to hold the parity, and sending it all down quickly.
1606 */
1607static int full_stripe_write(struct btrfs_raid_bio *rbio)
1608{
1609 int ret;
1610
1611 ret = alloc_rbio_parity_pages(rbio);
1612 if (ret) {
1613 __free_raid_bio(rbio);
1614 return ret;
1615 }
1616
1617 ret = lock_stripe_add(rbio);
1618 if (ret == 0)
1619 finish_rmw(rbio);
1620 return 0;
1621}
1622
1623/*
1624 * partial stripe writes get handed over to async helpers.
1625 * We're really hoping to merge a few more writes into this
1626 * rbio before calculating new parity
1627 */
1628static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1629{
1630 int ret;
1631
1632 ret = lock_stripe_add(rbio);
1633 if (ret == 0)
1634 start_async_work(rbio, rmw_work);
1635 return 0;
1636}
1637
1638/*
1639 * sometimes while we were reading from the drive to
1640 * recalculate parity, enough new bios come into create
1641 * a full stripe. So we do a check here to see if we can
1642 * go directly to finish_rmw
1643 */
1644static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1645{
1646 /* head off into rmw land if we don't have a full stripe */
1647 if (!rbio_is_full(rbio))
1648 return partial_stripe_write(rbio);
1649 return full_stripe_write(rbio);
1650}
1651
1652/*
1653 * We use plugging call backs to collect full stripes.
1654 * Any time we get a partial stripe write while plugged
1655 * we collect it into a list. When the unplug comes down,
1656 * we sort the list by logical block number and merge
1657 * everything we can into the same rbios
1658 */
1659struct btrfs_plug_cb {
1660 struct blk_plug_cb cb;
1661 struct btrfs_fs_info *info;
1662 struct list_head rbio_list;
1663 struct btrfs_work work;
1664};
1665
1666/*
1667 * rbios on the plug list are sorted for easier merging.
1668 */
1669static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1670{
1671 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1672 plug_list);
1673 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1674 plug_list);
1675 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1676 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1677
1678 if (a_sector < b_sector)
1679 return -1;
1680 if (a_sector > b_sector)
1681 return 1;
1682 return 0;
1683}
1684
1685static void run_plug(struct btrfs_plug_cb *plug)
1686{
1687 struct btrfs_raid_bio *cur;
1688 struct btrfs_raid_bio *last = NULL;
1689
1690 /*
1691 * sort our plug list then try to merge
1692 * everything we can in hopes of creating full
1693 * stripes.
1694 */
1695 list_sort(NULL, &plug->rbio_list, plug_cmp);
1696 while (!list_empty(&plug->rbio_list)) {
1697 cur = list_entry(plug->rbio_list.next,
1698 struct btrfs_raid_bio, plug_list);
1699 list_del_init(&cur->plug_list);
1700
1701 if (rbio_is_full(cur)) {
1702 int ret;
1703
1704 /* we have a full stripe, send it down */
1705 ret = full_stripe_write(cur);
1706 BUG_ON(ret);
1707 continue;
1708 }
1709 if (last) {
1710 if (rbio_can_merge(last, cur)) {
1711 merge_rbio(last, cur);
1712 __free_raid_bio(cur);
1713 continue;
1714
1715 }
1716 __raid56_parity_write(last);
1717 }
1718 last = cur;
1719 }
1720 if (last) {
1721 __raid56_parity_write(last);
1722 }
1723 kfree(plug);
1724}
1725
1726/*
1727 * if the unplug comes from schedule, we have to push the
1728 * work off to a helper thread
1729 */
1730static void unplug_work(struct btrfs_work *work)
1731{
1732 struct btrfs_plug_cb *plug;
1733 plug = container_of(work, struct btrfs_plug_cb, work);
1734 run_plug(plug);
1735}
1736
1737static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1738{
1739 struct btrfs_plug_cb *plug;
1740 plug = container_of(cb, struct btrfs_plug_cb, cb);
1741
1742 if (from_schedule) {
Olivier Deprez0e641232021-09-23 10:07:05 +02001743 btrfs_init_work(&plug->work, unplug_work, NULL, NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001744 btrfs_queue_work(plug->info->rmw_workers,
1745 &plug->work);
1746 return;
1747 }
1748 run_plug(plug);
1749}
1750
1751/*
1752 * our main entry point for writes from the rest of the FS.
1753 */
1754int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1755 struct btrfs_bio *bbio, u64 stripe_len)
1756{
1757 struct btrfs_raid_bio *rbio;
1758 struct btrfs_plug_cb *plug = NULL;
1759 struct blk_plug_cb *cb;
1760 int ret;
1761
1762 rbio = alloc_rbio(fs_info, bbio, stripe_len);
1763 if (IS_ERR(rbio)) {
1764 btrfs_put_bbio(bbio);
1765 return PTR_ERR(rbio);
1766 }
1767 bio_list_add(&rbio->bio_list, bio);
1768 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1769 rbio->operation = BTRFS_RBIO_WRITE;
1770
1771 btrfs_bio_counter_inc_noblocked(fs_info);
1772 rbio->generic_bio_cnt = 1;
1773
1774 /*
1775 * don't plug on full rbios, just get them out the door
1776 * as quickly as we can
1777 */
1778 if (rbio_is_full(rbio)) {
1779 ret = full_stripe_write(rbio);
1780 if (ret)
1781 btrfs_bio_counter_dec(fs_info);
1782 return ret;
1783 }
1784
1785 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1786 if (cb) {
1787 plug = container_of(cb, struct btrfs_plug_cb, cb);
1788 if (!plug->info) {
1789 plug->info = fs_info;
1790 INIT_LIST_HEAD(&plug->rbio_list);
1791 }
1792 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1793 ret = 0;
1794 } else {
1795 ret = __raid56_parity_write(rbio);
1796 if (ret)
1797 btrfs_bio_counter_dec(fs_info);
1798 }
1799 return ret;
1800}
1801
1802/*
1803 * all parity reconstruction happens here. We've read in everything
1804 * we can find from the drives and this does the heavy lifting of
1805 * sorting the good from the bad.
1806 */
1807static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1808{
1809 int pagenr, stripe;
1810 void **pointers;
1811 int faila = -1, failb = -1;
1812 struct page *page;
1813 blk_status_t err;
1814 int i;
1815
1816 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1817 if (!pointers) {
1818 err = BLK_STS_RESOURCE;
1819 goto cleanup_io;
1820 }
1821
1822 faila = rbio->faila;
1823 failb = rbio->failb;
1824
1825 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1826 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1827 spin_lock_irq(&rbio->bio_list_lock);
1828 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1829 spin_unlock_irq(&rbio->bio_list_lock);
1830 }
1831
1832 index_rbio_pages(rbio);
1833
1834 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1835 /*
1836 * Now we just use bitmap to mark the horizontal stripes in
1837 * which we have data when doing parity scrub.
1838 */
1839 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1840 !test_bit(pagenr, rbio->dbitmap))
1841 continue;
1842
1843 /* setup our array of pointers with pages
1844 * from each stripe
1845 */
1846 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1847 /*
1848 * if we're rebuilding a read, we have to use
1849 * pages from the bio list
1850 */
1851 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1852 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1853 (stripe == faila || stripe == failb)) {
1854 page = page_in_rbio(rbio, stripe, pagenr, 0);
1855 } else {
1856 page = rbio_stripe_page(rbio, stripe, pagenr);
1857 }
1858 pointers[stripe] = kmap(page);
1859 }
1860
1861 /* all raid6 handling here */
1862 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1863 /*
1864 * single failure, rebuild from parity raid5
1865 * style
1866 */
1867 if (failb < 0) {
1868 if (faila == rbio->nr_data) {
1869 /*
1870 * Just the P stripe has failed, without
1871 * a bad data or Q stripe.
1872 * TODO, we should redo the xor here.
1873 */
1874 err = BLK_STS_IOERR;
1875 goto cleanup;
1876 }
1877 /*
1878 * a single failure in raid6 is rebuilt
1879 * in the pstripe code below
1880 */
1881 goto pstripe;
1882 }
1883
1884 /* make sure our ps and qs are in order */
1885 if (faila > failb) {
1886 int tmp = failb;
1887 failb = faila;
1888 faila = tmp;
1889 }
1890
1891 /* if the q stripe is failed, do a pstripe reconstruction
1892 * from the xors.
1893 * If both the q stripe and the P stripe are failed, we're
1894 * here due to a crc mismatch and we can't give them the
1895 * data they want
1896 */
1897 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1898 if (rbio->bbio->raid_map[faila] ==
1899 RAID5_P_STRIPE) {
1900 err = BLK_STS_IOERR;
1901 goto cleanup;
1902 }
1903 /*
1904 * otherwise we have one bad data stripe and
1905 * a good P stripe. raid5!
1906 */
1907 goto pstripe;
1908 }
1909
1910 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1911 raid6_datap_recov(rbio->real_stripes,
1912 PAGE_SIZE, faila, pointers);
1913 } else {
1914 raid6_2data_recov(rbio->real_stripes,
1915 PAGE_SIZE, faila, failb,
1916 pointers);
1917 }
1918 } else {
1919 void *p;
1920
1921 /* rebuild from P stripe here (raid5 or raid6) */
1922 BUG_ON(failb != -1);
1923pstripe:
1924 /* Copy parity block into failed block to start with */
1925 copy_page(pointers[faila], pointers[rbio->nr_data]);
1926
1927 /* rearrange the pointer array */
1928 p = pointers[faila];
1929 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1930 pointers[stripe] = pointers[stripe + 1];
1931 pointers[rbio->nr_data - 1] = p;
1932
1933 /* xor in the rest */
1934 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1935 }
1936 /* if we're doing this rebuild as part of an rmw, go through
1937 * and set all of our private rbio pages in the
1938 * failed stripes as uptodate. This way finish_rmw will
1939 * know they can be trusted. If this was a read reconstruction,
1940 * other endio functions will fiddle the uptodate bits
1941 */
1942 if (rbio->operation == BTRFS_RBIO_WRITE) {
1943 for (i = 0; i < rbio->stripe_npages; i++) {
1944 if (faila != -1) {
1945 page = rbio_stripe_page(rbio, faila, i);
1946 SetPageUptodate(page);
1947 }
1948 if (failb != -1) {
1949 page = rbio_stripe_page(rbio, failb, i);
1950 SetPageUptodate(page);
1951 }
1952 }
1953 }
1954 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1955 /*
1956 * if we're rebuilding a read, we have to use
1957 * pages from the bio list
1958 */
1959 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1960 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1961 (stripe == faila || stripe == failb)) {
1962 page = page_in_rbio(rbio, stripe, pagenr, 0);
1963 } else {
1964 page = rbio_stripe_page(rbio, stripe, pagenr);
1965 }
1966 kunmap(page);
1967 }
1968 }
1969
1970 err = BLK_STS_OK;
1971cleanup:
1972 kfree(pointers);
1973
1974cleanup_io:
1975 /*
1976 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
1977 * valid rbio which is consistent with ondisk content, thus such a
1978 * valid rbio can be cached to avoid further disk reads.
1979 */
1980 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1981 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1982 /*
1983 * - In case of two failures, where rbio->failb != -1:
1984 *
1985 * Do not cache this rbio since the above read reconstruction
1986 * (raid6_datap_recov() or raid6_2data_recov()) may have
1987 * changed some content of stripes which are not identical to
1988 * on-disk content any more, otherwise, a later write/recover
1989 * may steal stripe_pages from this rbio and end up with
1990 * corruptions or rebuild failures.
1991 *
1992 * - In case of single failure, where rbio->failb == -1:
1993 *
1994 * Cache this rbio iff the above read reconstruction is
David Brazdil0f672f62019-12-10 10:32:29 +00001995 * executed without problems.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001996 */
1997 if (err == BLK_STS_OK && rbio->failb < 0)
1998 cache_rbio_pages(rbio);
1999 else
2000 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2001
2002 rbio_orig_end_io(rbio, err);
2003 } else if (err == BLK_STS_OK) {
2004 rbio->faila = -1;
2005 rbio->failb = -1;
2006
2007 if (rbio->operation == BTRFS_RBIO_WRITE)
2008 finish_rmw(rbio);
2009 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
2010 finish_parity_scrub(rbio, 0);
2011 else
2012 BUG();
2013 } else {
2014 rbio_orig_end_io(rbio, err);
2015 }
2016}
2017
2018/*
2019 * This is called only for stripes we've read from disk to
2020 * reconstruct the parity.
2021 */
2022static void raid_recover_end_io(struct bio *bio)
2023{
2024 struct btrfs_raid_bio *rbio = bio->bi_private;
2025
2026 /*
2027 * we only read stripe pages off the disk, set them
2028 * up to date if there were no errors
2029 */
2030 if (bio->bi_status)
2031 fail_bio_stripe(rbio, bio);
2032 else
2033 set_bio_pages_uptodate(bio);
2034 bio_put(bio);
2035
2036 if (!atomic_dec_and_test(&rbio->stripes_pending))
2037 return;
2038
2039 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2040 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2041 else
2042 __raid_recover_end_io(rbio);
2043}
2044
2045/*
2046 * reads everything we need off the disk to reconstruct
2047 * the parity. endio handlers trigger final reconstruction
2048 * when the IO is done.
2049 *
2050 * This is used both for reads from the higher layers and for
2051 * parity construction required to finish a rmw cycle.
2052 */
2053static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2054{
2055 int bios_to_read = 0;
2056 struct bio_list bio_list;
2057 int ret;
2058 int pagenr;
2059 int stripe;
2060 struct bio *bio;
2061
2062 bio_list_init(&bio_list);
2063
2064 ret = alloc_rbio_pages(rbio);
2065 if (ret)
2066 goto cleanup;
2067
2068 atomic_set(&rbio->error, 0);
2069
2070 /*
2071 * read everything that hasn't failed. Thanks to the
2072 * stripe cache, it is possible that some or all of these
2073 * pages are going to be uptodate.
2074 */
2075 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2076 if (rbio->faila == stripe || rbio->failb == stripe) {
2077 atomic_inc(&rbio->error);
2078 continue;
2079 }
2080
2081 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2082 struct page *p;
2083
2084 /*
2085 * the rmw code may have already read this
2086 * page in
2087 */
2088 p = rbio_stripe_page(rbio, stripe, pagenr);
2089 if (PageUptodate(p))
2090 continue;
2091
2092 ret = rbio_add_io_page(rbio, &bio_list,
2093 rbio_stripe_page(rbio, stripe, pagenr),
2094 stripe, pagenr, rbio->stripe_len);
2095 if (ret < 0)
2096 goto cleanup;
2097 }
2098 }
2099
2100 bios_to_read = bio_list_size(&bio_list);
2101 if (!bios_to_read) {
2102 /*
2103 * we might have no bios to read just because the pages
2104 * were up to date, or we might have no bios to read because
2105 * the devices were gone.
2106 */
2107 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2108 __raid_recover_end_io(rbio);
2109 goto out;
2110 } else {
2111 goto cleanup;
2112 }
2113 }
2114
2115 /*
2116 * the bbio may be freed once we submit the last bio. Make sure
2117 * not to touch it after that
2118 */
2119 atomic_set(&rbio->stripes_pending, bios_to_read);
2120 while (1) {
2121 bio = bio_list_pop(&bio_list);
2122 if (!bio)
2123 break;
2124
2125 bio->bi_private = rbio;
2126 bio->bi_end_io = raid_recover_end_io;
2127 bio->bi_opf = REQ_OP_READ;
2128
2129 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2130
2131 submit_bio(bio);
2132 }
2133out:
2134 return 0;
2135
2136cleanup:
2137 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2138 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2139 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2140
2141 while ((bio = bio_list_pop(&bio_list)))
2142 bio_put(bio);
2143
2144 return -EIO;
2145}
2146
2147/*
2148 * the main entry point for reads from the higher layers. This
2149 * is really only called when the normal read path had a failure,
2150 * so we assume the bio they send down corresponds to a failed part
2151 * of the drive.
2152 */
2153int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2154 struct btrfs_bio *bbio, u64 stripe_len,
2155 int mirror_num, int generic_io)
2156{
2157 struct btrfs_raid_bio *rbio;
2158 int ret;
2159
2160 if (generic_io) {
2161 ASSERT(bbio->mirror_num == mirror_num);
2162 btrfs_io_bio(bio)->mirror_num = mirror_num;
2163 }
2164
2165 rbio = alloc_rbio(fs_info, bbio, stripe_len);
2166 if (IS_ERR(rbio)) {
2167 if (generic_io)
2168 btrfs_put_bbio(bbio);
2169 return PTR_ERR(rbio);
2170 }
2171
2172 rbio->operation = BTRFS_RBIO_READ_REBUILD;
2173 bio_list_add(&rbio->bio_list, bio);
2174 rbio->bio_list_bytes = bio->bi_iter.bi_size;
2175
2176 rbio->faila = find_logical_bio_stripe(rbio, bio);
2177 if (rbio->faila == -1) {
2178 btrfs_warn(fs_info,
2179 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2180 __func__, (u64)bio->bi_iter.bi_sector << 9,
2181 (u64)bio->bi_iter.bi_size, bbio->map_type);
2182 if (generic_io)
2183 btrfs_put_bbio(bbio);
2184 kfree(rbio);
2185 return -EIO;
2186 }
2187
2188 if (generic_io) {
2189 btrfs_bio_counter_inc_noblocked(fs_info);
2190 rbio->generic_bio_cnt = 1;
2191 } else {
2192 btrfs_get_bbio(bbio);
2193 }
2194
2195 /*
2196 * Loop retry:
2197 * for 'mirror == 2', reconstruct from all other stripes.
2198 * for 'mirror_num > 2', select a stripe to fail on every retry.
2199 */
2200 if (mirror_num > 2) {
2201 /*
2202 * 'mirror == 3' is to fail the p stripe and
2203 * reconstruct from the q stripe. 'mirror > 3' is to
2204 * fail a data stripe and reconstruct from p+q stripe.
2205 */
2206 rbio->failb = rbio->real_stripes - (mirror_num - 1);
2207 ASSERT(rbio->failb > 0);
2208 if (rbio->failb <= rbio->faila)
2209 rbio->failb--;
2210 }
2211
2212 ret = lock_stripe_add(rbio);
2213
2214 /*
2215 * __raid56_parity_recover will end the bio with
2216 * any errors it hits. We don't want to return
2217 * its error value up the stack because our caller
2218 * will end up calling bio_endio with any nonzero
2219 * return
2220 */
2221 if (ret == 0)
2222 __raid56_parity_recover(rbio);
2223 /*
2224 * our rbio has been added to the list of
2225 * rbios that will be handled after the
2226 * currently lock owner is done
2227 */
2228 return 0;
2229
2230}
2231
2232static void rmw_work(struct btrfs_work *work)
2233{
2234 struct btrfs_raid_bio *rbio;
2235
2236 rbio = container_of(work, struct btrfs_raid_bio, work);
2237 raid56_rmw_stripe(rbio);
2238}
2239
2240static void read_rebuild_work(struct btrfs_work *work)
2241{
2242 struct btrfs_raid_bio *rbio;
2243
2244 rbio = container_of(work, struct btrfs_raid_bio, work);
2245 __raid56_parity_recover(rbio);
2246}
2247
2248/*
2249 * The following code is used to scrub/replace the parity stripe
2250 *
2251 * Caller must have already increased bio_counter for getting @bbio.
2252 *
2253 * Note: We need make sure all the pages that add into the scrub/replace
2254 * raid bio are correct and not be changed during the scrub/replace. That
2255 * is those pages just hold metadata or file data with checksum.
2256 */
2257
2258struct btrfs_raid_bio *
2259raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2260 struct btrfs_bio *bbio, u64 stripe_len,
2261 struct btrfs_device *scrub_dev,
2262 unsigned long *dbitmap, int stripe_nsectors)
2263{
2264 struct btrfs_raid_bio *rbio;
2265 int i;
2266
2267 rbio = alloc_rbio(fs_info, bbio, stripe_len);
2268 if (IS_ERR(rbio))
2269 return NULL;
2270 bio_list_add(&rbio->bio_list, bio);
2271 /*
2272 * This is a special bio which is used to hold the completion handler
2273 * and make the scrub rbio is similar to the other types
2274 */
2275 ASSERT(!bio->bi_iter.bi_size);
2276 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2277
2278 /*
2279 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2280 * to the end position, so this search can start from the first parity
2281 * stripe.
2282 */
2283 for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2284 if (bbio->stripes[i].dev == scrub_dev) {
2285 rbio->scrubp = i;
2286 break;
2287 }
2288 }
2289 ASSERT(i < rbio->real_stripes);
2290
2291 /* Now we just support the sectorsize equals to page size */
2292 ASSERT(fs_info->sectorsize == PAGE_SIZE);
2293 ASSERT(rbio->stripe_npages == stripe_nsectors);
2294 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2295
2296 /*
2297 * We have already increased bio_counter when getting bbio, record it
2298 * so we can free it at rbio_orig_end_io().
2299 */
2300 rbio->generic_bio_cnt = 1;
2301
2302 return rbio;
2303}
2304
2305/* Used for both parity scrub and missing. */
2306void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2307 u64 logical)
2308{
2309 int stripe_offset;
2310 int index;
2311
2312 ASSERT(logical >= rbio->bbio->raid_map[0]);
2313 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2314 rbio->stripe_len * rbio->nr_data);
2315 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2316 index = stripe_offset >> PAGE_SHIFT;
2317 rbio->bio_pages[index] = page;
2318}
2319
2320/*
2321 * We just scrub the parity that we have correct data on the same horizontal,
2322 * so we needn't allocate all pages for all the stripes.
2323 */
2324static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2325{
2326 int i;
2327 int bit;
2328 int index;
2329 struct page *page;
2330
2331 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2332 for (i = 0; i < rbio->real_stripes; i++) {
2333 index = i * rbio->stripe_npages + bit;
2334 if (rbio->stripe_pages[index])
2335 continue;
2336
2337 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2338 if (!page)
2339 return -ENOMEM;
2340 rbio->stripe_pages[index] = page;
2341 }
2342 }
2343 return 0;
2344}
2345
2346static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2347 int need_check)
2348{
2349 struct btrfs_bio *bbio = rbio->bbio;
2350 void **pointers = rbio->finish_pointers;
2351 unsigned long *pbitmap = rbio->finish_pbitmap;
2352 int nr_data = rbio->nr_data;
2353 int stripe;
2354 int pagenr;
Olivier Deprez0e641232021-09-23 10:07:05 +02002355 bool has_qstripe;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002356 struct page *p_page = NULL;
2357 struct page *q_page = NULL;
2358 struct bio_list bio_list;
2359 struct bio *bio;
2360 int is_replace = 0;
2361 int ret;
2362
2363 bio_list_init(&bio_list);
2364
Olivier Deprez0e641232021-09-23 10:07:05 +02002365 if (rbio->real_stripes - rbio->nr_data == 1)
2366 has_qstripe = false;
2367 else if (rbio->real_stripes - rbio->nr_data == 2)
2368 has_qstripe = true;
2369 else
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002370 BUG();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002371
2372 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2373 is_replace = 1;
2374 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2375 }
2376
2377 /*
2378 * Because the higher layers(scrubber) are unlikely to
2379 * use this area of the disk again soon, so don't cache
2380 * it.
2381 */
2382 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2383
2384 if (!need_check)
2385 goto writeback;
2386
2387 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2388 if (!p_page)
2389 goto cleanup;
2390 SetPageUptodate(p_page);
2391
Olivier Deprez0e641232021-09-23 10:07:05 +02002392 if (has_qstripe) {
2393 /* RAID6, allocate and map temp space for the Q stripe */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002394 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2395 if (!q_page) {
2396 __free_page(p_page);
2397 goto cleanup;
2398 }
2399 SetPageUptodate(q_page);
Olivier Deprez0e641232021-09-23 10:07:05 +02002400 pointers[rbio->real_stripes - 1] = kmap(q_page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002401 }
2402
2403 atomic_set(&rbio->error, 0);
2404
Olivier Deprez0e641232021-09-23 10:07:05 +02002405 /* Map the parity stripe just once */
2406 pointers[nr_data] = kmap(p_page);
2407
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002408 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2409 struct page *p;
2410 void *parity;
2411 /* first collect one page from each data stripe */
2412 for (stripe = 0; stripe < nr_data; stripe++) {
2413 p = page_in_rbio(rbio, stripe, pagenr, 0);
2414 pointers[stripe] = kmap(p);
2415 }
2416
Olivier Deprez0e641232021-09-23 10:07:05 +02002417 if (has_qstripe) {
2418 /* RAID6, call the library function to fill in our P/Q */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002419 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2420 pointers);
2421 } else {
2422 /* raid5 */
2423 copy_page(pointers[nr_data], pointers[0]);
2424 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2425 }
2426
2427 /* Check scrubbing parity and repair it */
2428 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2429 parity = kmap(p);
2430 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2431 copy_page(parity, pointers[rbio->scrubp]);
2432 else
2433 /* Parity is right, needn't writeback */
2434 bitmap_clear(rbio->dbitmap, pagenr, 1);
2435 kunmap(p);
2436
David Brazdil0f672f62019-12-10 10:32:29 +00002437 for (stripe = 0; stripe < nr_data; stripe++)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002438 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002439 }
2440
Olivier Deprez0e641232021-09-23 10:07:05 +02002441 kunmap(p_page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002442 __free_page(p_page);
Olivier Deprez0e641232021-09-23 10:07:05 +02002443 if (q_page) {
2444 kunmap(q_page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002445 __free_page(q_page);
Olivier Deprez0e641232021-09-23 10:07:05 +02002446 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002447
2448writeback:
2449 /*
2450 * time to start writing. Make bios for everything from the
2451 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2452 * everything else.
2453 */
2454 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2455 struct page *page;
2456
2457 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2458 ret = rbio_add_io_page(rbio, &bio_list,
2459 page, rbio->scrubp, pagenr, rbio->stripe_len);
2460 if (ret)
2461 goto cleanup;
2462 }
2463
2464 if (!is_replace)
2465 goto submit_write;
2466
2467 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2468 struct page *page;
2469
2470 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2471 ret = rbio_add_io_page(rbio, &bio_list, page,
2472 bbio->tgtdev_map[rbio->scrubp],
2473 pagenr, rbio->stripe_len);
2474 if (ret)
2475 goto cleanup;
2476 }
2477
2478submit_write:
2479 nr_data = bio_list_size(&bio_list);
2480 if (!nr_data) {
2481 /* Every parity is right */
2482 rbio_orig_end_io(rbio, BLK_STS_OK);
2483 return;
2484 }
2485
2486 atomic_set(&rbio->stripes_pending, nr_data);
2487
2488 while (1) {
2489 bio = bio_list_pop(&bio_list);
2490 if (!bio)
2491 break;
2492
2493 bio->bi_private = rbio;
2494 bio->bi_end_io = raid_write_end_io;
2495 bio->bi_opf = REQ_OP_WRITE;
2496
2497 submit_bio(bio);
2498 }
2499 return;
2500
2501cleanup:
2502 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2503
2504 while ((bio = bio_list_pop(&bio_list)))
2505 bio_put(bio);
2506}
2507
2508static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2509{
2510 if (stripe >= 0 && stripe < rbio->nr_data)
2511 return 1;
2512 return 0;
2513}
2514
2515/*
2516 * While we're doing the parity check and repair, we could have errors
2517 * in reading pages off the disk. This checks for errors and if we're
2518 * not able to read the page it'll trigger parity reconstruction. The
2519 * parity scrub will be finished after we've reconstructed the failed
2520 * stripes
2521 */
2522static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2523{
2524 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2525 goto cleanup;
2526
2527 if (rbio->faila >= 0 || rbio->failb >= 0) {
2528 int dfail = 0, failp = -1;
2529
2530 if (is_data_stripe(rbio, rbio->faila))
2531 dfail++;
2532 else if (is_parity_stripe(rbio->faila))
2533 failp = rbio->faila;
2534
2535 if (is_data_stripe(rbio, rbio->failb))
2536 dfail++;
2537 else if (is_parity_stripe(rbio->failb))
2538 failp = rbio->failb;
2539
2540 /*
2541 * Because we can not use a scrubbing parity to repair
2542 * the data, so the capability of the repair is declined.
2543 * (In the case of RAID5, we can not repair anything)
2544 */
2545 if (dfail > rbio->bbio->max_errors - 1)
2546 goto cleanup;
2547
2548 /*
2549 * If all data is good, only parity is correctly, just
2550 * repair the parity.
2551 */
2552 if (dfail == 0) {
2553 finish_parity_scrub(rbio, 0);
2554 return;
2555 }
2556
2557 /*
2558 * Here means we got one corrupted data stripe and one
2559 * corrupted parity on RAID6, if the corrupted parity
2560 * is scrubbing parity, luckily, use the other one to repair
2561 * the data, or we can not repair the data stripe.
2562 */
2563 if (failp != rbio->scrubp)
2564 goto cleanup;
2565
2566 __raid_recover_end_io(rbio);
2567 } else {
2568 finish_parity_scrub(rbio, 1);
2569 }
2570 return;
2571
2572cleanup:
2573 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2574}
2575
2576/*
2577 * end io for the read phase of the rmw cycle. All the bios here are physical
2578 * stripe bios we've read from the disk so we can recalculate the parity of the
2579 * stripe.
2580 *
2581 * This will usually kick off finish_rmw once all the bios are read in, but it
2582 * may trigger parity reconstruction if we had any errors along the way
2583 */
2584static void raid56_parity_scrub_end_io(struct bio *bio)
2585{
2586 struct btrfs_raid_bio *rbio = bio->bi_private;
2587
2588 if (bio->bi_status)
2589 fail_bio_stripe(rbio, bio);
2590 else
2591 set_bio_pages_uptodate(bio);
2592
2593 bio_put(bio);
2594
2595 if (!atomic_dec_and_test(&rbio->stripes_pending))
2596 return;
2597
2598 /*
2599 * this will normally call finish_rmw to start our write
2600 * but if there are any failed stripes we'll reconstruct
2601 * from parity first
2602 */
2603 validate_rbio_for_parity_scrub(rbio);
2604}
2605
2606static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2607{
2608 int bios_to_read = 0;
2609 struct bio_list bio_list;
2610 int ret;
2611 int pagenr;
2612 int stripe;
2613 struct bio *bio;
2614
2615 bio_list_init(&bio_list);
2616
2617 ret = alloc_rbio_essential_pages(rbio);
2618 if (ret)
2619 goto cleanup;
2620
2621 atomic_set(&rbio->error, 0);
2622 /*
2623 * build a list of bios to read all the missing parts of this
2624 * stripe
2625 */
2626 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2627 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2628 struct page *page;
2629 /*
2630 * we want to find all the pages missing from
2631 * the rbio and read them from the disk. If
2632 * page_in_rbio finds a page in the bio list
2633 * we don't need to read it off the stripe.
2634 */
2635 page = page_in_rbio(rbio, stripe, pagenr, 1);
2636 if (page)
2637 continue;
2638
2639 page = rbio_stripe_page(rbio, stripe, pagenr);
2640 /*
2641 * the bio cache may have handed us an uptodate
2642 * page. If so, be happy and use it
2643 */
2644 if (PageUptodate(page))
2645 continue;
2646
2647 ret = rbio_add_io_page(rbio, &bio_list, page,
2648 stripe, pagenr, rbio->stripe_len);
2649 if (ret)
2650 goto cleanup;
2651 }
2652 }
2653
2654 bios_to_read = bio_list_size(&bio_list);
2655 if (!bios_to_read) {
2656 /*
2657 * this can happen if others have merged with
2658 * us, it means there is nothing left to read.
2659 * But if there are missing devices it may not be
2660 * safe to do the full stripe write yet.
2661 */
2662 goto finish;
2663 }
2664
2665 /*
2666 * the bbio may be freed once we submit the last bio. Make sure
2667 * not to touch it after that
2668 */
2669 atomic_set(&rbio->stripes_pending, bios_to_read);
2670 while (1) {
2671 bio = bio_list_pop(&bio_list);
2672 if (!bio)
2673 break;
2674
2675 bio->bi_private = rbio;
2676 bio->bi_end_io = raid56_parity_scrub_end_io;
2677 bio->bi_opf = REQ_OP_READ;
2678
2679 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2680
2681 submit_bio(bio);
2682 }
2683 /* the actual write will happen once the reads are done */
2684 return;
2685
2686cleanup:
2687 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2688
2689 while ((bio = bio_list_pop(&bio_list)))
2690 bio_put(bio);
2691
2692 return;
2693
2694finish:
2695 validate_rbio_for_parity_scrub(rbio);
2696}
2697
2698static void scrub_parity_work(struct btrfs_work *work)
2699{
2700 struct btrfs_raid_bio *rbio;
2701
2702 rbio = container_of(work, struct btrfs_raid_bio, work);
2703 raid56_parity_scrub_stripe(rbio);
2704}
2705
2706void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2707{
2708 if (!lock_stripe_add(rbio))
2709 start_async_work(rbio, scrub_parity_work);
2710}
2711
2712/* The following code is used for dev replace of a missing RAID 5/6 device. */
2713
2714struct btrfs_raid_bio *
2715raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2716 struct btrfs_bio *bbio, u64 length)
2717{
2718 struct btrfs_raid_bio *rbio;
2719
2720 rbio = alloc_rbio(fs_info, bbio, length);
2721 if (IS_ERR(rbio))
2722 return NULL;
2723
2724 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2725 bio_list_add(&rbio->bio_list, bio);
2726 /*
2727 * This is a special bio which is used to hold the completion handler
2728 * and make the scrub rbio is similar to the other types
2729 */
2730 ASSERT(!bio->bi_iter.bi_size);
2731
2732 rbio->faila = find_logical_bio_stripe(rbio, bio);
2733 if (rbio->faila == -1) {
2734 BUG();
2735 kfree(rbio);
2736 return NULL;
2737 }
2738
2739 /*
2740 * When we get bbio, we have already increased bio_counter, record it
2741 * so we can free it at rbio_orig_end_io()
2742 */
2743 rbio->generic_bio_cnt = 1;
2744
2745 return rbio;
2746}
2747
2748void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2749{
2750 if (!lock_stripe_add(rbio))
2751 start_async_work(rbio, read_rebuild_work);
2752}