blob: 946ae198b3449f0f2d54366523a510eb2d1c72e5 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/blkdev.h>
8#include <linux/radix-tree.h>
9#include <linux/writeback.h>
10#include <linux/buffer_head.h>
11#include <linux/workqueue.h>
12#include <linux/kthread.h>
13#include <linux/slab.h>
14#include <linux/migrate.h>
15#include <linux/ratelimit.h>
16#include <linux/uuid.h>
17#include <linux/semaphore.h>
18#include <linux/error-injection.h>
19#include <linux/crc32c.h>
David Brazdil0f672f62019-12-10 10:32:29 +000020#include <linux/sched/mm.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000021#include <asm/unaligned.h>
David Brazdil0f672f62019-12-10 10:32:29 +000022#include <crypto/hash.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000023#include "ctree.h"
24#include "disk-io.h"
25#include "transaction.h"
26#include "btrfs_inode.h"
27#include "volumes.h"
28#include "print-tree.h"
29#include "locking.h"
30#include "tree-log.h"
31#include "free-space-cache.h"
32#include "free-space-tree.h"
33#include "inode-map.h"
34#include "check-integrity.h"
35#include "rcu-string.h"
36#include "dev-replace.h"
37#include "raid56.h"
38#include "sysfs.h"
39#include "qgroup.h"
40#include "compression.h"
41#include "tree-checker.h"
42#include "ref-verify.h"
David Brazdil0f672f62019-12-10 10:32:29 +000043#include "block-group.h"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000044
45#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
46 BTRFS_HEADER_FLAG_RELOC |\
47 BTRFS_SUPER_FLAG_ERROR |\
48 BTRFS_SUPER_FLAG_SEEDING |\
49 BTRFS_SUPER_FLAG_METADUMP |\
50 BTRFS_SUPER_FLAG_METADUMP_V2)
51
52static const struct extent_io_ops btree_extent_io_ops;
53static void end_workqueue_fn(struct btrfs_work *work);
54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_fs_info *fs_info);
57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 struct extent_io_tree *dirty_pages,
60 int mark);
61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 struct extent_io_tree *pinned_extents);
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66/*
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
71struct btrfs_end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 blk_status_t status;
77 enum btrfs_wq_endio_type metadata;
78 struct btrfs_work work;
79};
80
81static struct kmem_cache *btrfs_end_io_wq_cache;
82
83int __init btrfs_end_io_wq_init(void)
84{
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
87 0,
88 SLAB_MEM_SPREAD,
89 NULL);
90 if (!btrfs_end_io_wq_cache)
91 return -ENOMEM;
92 return 0;
93}
94
95void __cold btrfs_end_io_wq_exit(void)
96{
97 kmem_cache_destroy(btrfs_end_io_wq_cache);
98}
99
100/*
101 * async submit bios are used to offload expensive checksumming
102 * onto the worker threads. They checksum file and metadata bios
103 * just before they are sent down the IO stack.
104 */
105struct async_submit_bio {
106 void *private_data;
107 struct bio *bio;
108 extent_submit_bio_start_t *submit_bio_start;
109 int mirror_num;
110 /*
111 * bio_offset is optional, can be used if the pages in the bio
112 * can't tell us where in the file the bio should go
113 */
114 u64 bio_offset;
115 struct btrfs_work work;
116 blk_status_t status;
117};
118
119/*
120 * Lockdep class keys for extent_buffer->lock's in this root. For a given
121 * eb, the lockdep key is determined by the btrfs_root it belongs to and
122 * the level the eb occupies in the tree.
123 *
124 * Different roots are used for different purposes and may nest inside each
125 * other and they require separate keysets. As lockdep keys should be
126 * static, assign keysets according to the purpose of the root as indicated
David Brazdil0f672f62019-12-10 10:32:29 +0000127 * by btrfs_root->root_key.objectid. This ensures that all special purpose
128 * roots have separate keysets.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000129 *
130 * Lock-nesting across peer nodes is always done with the immediate parent
131 * node locked thus preventing deadlock. As lockdep doesn't know this, use
132 * subclass to avoid triggering lockdep warning in such cases.
133 *
134 * The key is set by the readpage_end_io_hook after the buffer has passed
135 * csum validation but before the pages are unlocked. It is also set by
136 * btrfs_init_new_buffer on freshly allocated blocks.
137 *
138 * We also add a check to make sure the highest level of the tree is the
139 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
140 * needs update as well.
141 */
142#ifdef CONFIG_DEBUG_LOCK_ALLOC
143# if BTRFS_MAX_LEVEL != 8
144# error
145# endif
146
147static struct btrfs_lockdep_keyset {
148 u64 id; /* root objectid */
149 const char *name_stem; /* lock name stem */
150 char names[BTRFS_MAX_LEVEL + 1][20];
151 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
152} btrfs_lockdep_keysets[] = {
153 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
154 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
155 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
156 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
157 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
158 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
159 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
160 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
161 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
162 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
163 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
164 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
165 { .id = 0, .name_stem = "tree" },
166};
167
168void __init btrfs_init_lockdep(void)
169{
170 int i, j;
171
172 /* initialize lockdep class names */
173 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
174 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
175
176 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
177 snprintf(ks->names[j], sizeof(ks->names[j]),
178 "btrfs-%s-%02d", ks->name_stem, j);
179 }
180}
181
182void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
183 int level)
184{
185 struct btrfs_lockdep_keyset *ks;
186
187 BUG_ON(level >= ARRAY_SIZE(ks->keys));
188
189 /* find the matching keyset, id 0 is the default entry */
190 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
191 if (ks->id == objectid)
192 break;
193
194 lockdep_set_class_and_name(&eb->lock,
195 &ks->keys[level], ks->names[level]);
196}
197
198#endif
199
200/*
201 * extents on the btree inode are pretty simple, there's one extent
202 * that covers the entire device
203 */
204struct extent_map *btree_get_extent(struct btrfs_inode *inode,
205 struct page *page, size_t pg_offset, u64 start, u64 len,
206 int create)
207{
208 struct btrfs_fs_info *fs_info = inode->root->fs_info;
209 struct extent_map_tree *em_tree = &inode->extent_tree;
210 struct extent_map *em;
211 int ret;
212
213 read_lock(&em_tree->lock);
214 em = lookup_extent_mapping(em_tree, start, len);
215 if (em) {
216 em->bdev = fs_info->fs_devices->latest_bdev;
217 read_unlock(&em_tree->lock);
218 goto out;
219 }
220 read_unlock(&em_tree->lock);
221
222 em = alloc_extent_map();
223 if (!em) {
224 em = ERR_PTR(-ENOMEM);
225 goto out;
226 }
227 em->start = 0;
228 em->len = (u64)-1;
229 em->block_len = (u64)-1;
230 em->block_start = 0;
231 em->bdev = fs_info->fs_devices->latest_bdev;
232
233 write_lock(&em_tree->lock);
234 ret = add_extent_mapping(em_tree, em, 0);
235 if (ret == -EEXIST) {
236 free_extent_map(em);
237 em = lookup_extent_mapping(em_tree, start, len);
238 if (!em)
239 em = ERR_PTR(-EIO);
240 } else if (ret) {
241 free_extent_map(em);
242 em = ERR_PTR(ret);
243 }
244 write_unlock(&em_tree->lock);
245
246out:
247 return em;
248}
249
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000250/*
David Brazdil0f672f62019-12-10 10:32:29 +0000251 * Compute the csum of a btree block and store the result to provided buffer.
252 *
253 * Returns error if the extent buffer cannot be mapped.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000254 */
David Brazdil0f672f62019-12-10 10:32:29 +0000255static int csum_tree_block(struct extent_buffer *buf, u8 *result)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000256{
David Brazdil0f672f62019-12-10 10:32:29 +0000257 struct btrfs_fs_info *fs_info = buf->fs_info;
258 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000259 unsigned long len;
260 unsigned long cur_len;
261 unsigned long offset = BTRFS_CSUM_SIZE;
262 char *kaddr;
263 unsigned long map_start;
264 unsigned long map_len;
265 int err;
David Brazdil0f672f62019-12-10 10:32:29 +0000266
267 shash->tfm = fs_info->csum_shash;
268 crypto_shash_init(shash);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000269
270 len = buf->len - offset;
David Brazdil0f672f62019-12-10 10:32:29 +0000271
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000272 while (len > 0) {
David Brazdil0f672f62019-12-10 10:32:29 +0000273 /*
274 * Note: we don't need to check for the err == 1 case here, as
275 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
276 * and 'min_len = 32' and the currently implemented mapping
277 * algorithm we cannot cross a page boundary.
278 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000279 err = map_private_extent_buffer(buf, offset, 32,
280 &kaddr, &map_start, &map_len);
David Brazdil0f672f62019-12-10 10:32:29 +0000281 if (WARN_ON(err))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000282 return err;
283 cur_len = min(len, map_len - (offset - map_start));
David Brazdil0f672f62019-12-10 10:32:29 +0000284 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000285 len -= cur_len;
286 offset += cur_len;
287 }
288 memset(result, 0, BTRFS_CSUM_SIZE);
289
David Brazdil0f672f62019-12-10 10:32:29 +0000290 crypto_shash_final(shash, result);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000291
292 return 0;
293}
294
295/*
296 * we can't consider a given block up to date unless the transid of the
297 * block matches the transid in the parent node's pointer. This is how we
298 * detect blocks that either didn't get written at all or got written
299 * in the wrong place.
300 */
301static int verify_parent_transid(struct extent_io_tree *io_tree,
302 struct extent_buffer *eb, u64 parent_transid,
303 int atomic)
304{
305 struct extent_state *cached_state = NULL;
306 int ret;
307 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
308
309 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
310 return 0;
311
312 if (atomic)
313 return -EAGAIN;
314
315 if (need_lock) {
316 btrfs_tree_read_lock(eb);
David Brazdil0f672f62019-12-10 10:32:29 +0000317 btrfs_set_lock_blocking_read(eb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000318 }
319
320 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
321 &cached_state);
322 if (extent_buffer_uptodate(eb) &&
323 btrfs_header_generation(eb) == parent_transid) {
324 ret = 0;
325 goto out;
326 }
327 btrfs_err_rl(eb->fs_info,
328 "parent transid verify failed on %llu wanted %llu found %llu",
329 eb->start,
330 parent_transid, btrfs_header_generation(eb));
331 ret = 1;
332
333 /*
334 * Things reading via commit roots that don't have normal protection,
335 * like send, can have a really old block in cache that may point at a
336 * block that has been freed and re-allocated. So don't clear uptodate
337 * if we find an eb that is under IO (dirty/writeback) because we could
338 * end up reading in the stale data and then writing it back out and
339 * making everybody very sad.
340 */
341 if (!extent_buffer_under_io(eb))
342 clear_extent_buffer_uptodate(eb);
343out:
344 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
345 &cached_state);
346 if (need_lock)
347 btrfs_tree_read_unlock_blocking(eb);
348 return ret;
349}
350
David Brazdil0f672f62019-12-10 10:32:29 +0000351static bool btrfs_supported_super_csum(u16 csum_type)
352{
353 switch (csum_type) {
354 case BTRFS_CSUM_TYPE_CRC32:
355 return true;
356 default:
357 return false;
358 }
359}
360
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000361/*
362 * Return 0 if the superblock checksum type matches the checksum value of that
363 * algorithm. Pass the raw disk superblock data.
364 */
365static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
366 char *raw_disk_sb)
367{
368 struct btrfs_super_block *disk_sb =
369 (struct btrfs_super_block *)raw_disk_sb;
David Brazdil0f672f62019-12-10 10:32:29 +0000370 char result[BTRFS_CSUM_SIZE];
371 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000372
David Brazdil0f672f62019-12-10 10:32:29 +0000373 shash->tfm = fs_info->csum_shash;
374 crypto_shash_init(shash);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000375
David Brazdil0f672f62019-12-10 10:32:29 +0000376 /*
377 * The super_block structure does not span the whole
378 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
379 * filled with zeros and is included in the checksum.
380 */
381 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
382 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
383 crypto_shash_final(shash, result);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000384
David Brazdil0f672f62019-12-10 10:32:29 +0000385 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
386 return 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000387
David Brazdil0f672f62019-12-10 10:32:29 +0000388 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000389}
390
David Brazdil0f672f62019-12-10 10:32:29 +0000391int btrfs_verify_level_key(struct extent_buffer *eb, int level,
392 struct btrfs_key *first_key, u64 parent_transid)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000393{
David Brazdil0f672f62019-12-10 10:32:29 +0000394 struct btrfs_fs_info *fs_info = eb->fs_info;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000395 int found_level;
396 struct btrfs_key found_key;
397 int ret;
398
399 found_level = btrfs_header_level(eb);
400 if (found_level != level) {
David Brazdil0f672f62019-12-10 10:32:29 +0000401 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
402 KERN_ERR "BTRFS: tree level check failed\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000403 btrfs_err(fs_info,
404"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
405 eb->start, level, found_level);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000406 return -EIO;
407 }
408
409 if (!first_key)
410 return 0;
411
412 /*
413 * For live tree block (new tree blocks in current transaction),
414 * we need proper lock context to avoid race, which is impossible here.
415 * So we only checks tree blocks which is read from disk, whose
416 * generation <= fs_info->last_trans_committed.
417 */
418 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
419 return 0;
David Brazdil0f672f62019-12-10 10:32:29 +0000420
421 /* We have @first_key, so this @eb must have at least one item */
422 if (btrfs_header_nritems(eb) == 0) {
423 btrfs_err(fs_info,
424 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
425 eb->start);
426 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
427 return -EUCLEAN;
428 }
429
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000430 if (found_level)
431 btrfs_node_key_to_cpu(eb, &found_key, 0);
432 else
433 btrfs_item_key_to_cpu(eb, &found_key, 0);
434 ret = btrfs_comp_cpu_keys(first_key, &found_key);
435
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000436 if (ret) {
David Brazdil0f672f62019-12-10 10:32:29 +0000437 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
438 KERN_ERR "BTRFS: tree first key check failed\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000439 btrfs_err(fs_info,
440"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
441 eb->start, parent_transid, first_key->objectid,
442 first_key->type, first_key->offset,
443 found_key.objectid, found_key.type,
444 found_key.offset);
445 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000446 return ret;
447}
448
449/*
450 * helper to read a given tree block, doing retries as required when
451 * the checksums don't match and we have alternate mirrors to try.
452 *
453 * @parent_transid: expected transid, skip check if 0
454 * @level: expected level, mandatory check
455 * @first_key: expected key of first slot, skip check if NULL
456 */
David Brazdil0f672f62019-12-10 10:32:29 +0000457static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000458 u64 parent_transid, int level,
459 struct btrfs_key *first_key)
460{
David Brazdil0f672f62019-12-10 10:32:29 +0000461 struct btrfs_fs_info *fs_info = eb->fs_info;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000462 struct extent_io_tree *io_tree;
463 int failed = 0;
464 int ret;
465 int num_copies = 0;
466 int mirror_num = 0;
467 int failed_mirror = 0;
468
469 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
470 while (1) {
471 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
David Brazdil0f672f62019-12-10 10:32:29 +0000472 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000473 if (!ret) {
474 if (verify_parent_transid(io_tree, eb,
475 parent_transid, 0))
476 ret = -EIO;
David Brazdil0f672f62019-12-10 10:32:29 +0000477 else if (btrfs_verify_level_key(eb, level,
478 first_key, parent_transid))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000479 ret = -EUCLEAN;
480 else
481 break;
482 }
483
484 num_copies = btrfs_num_copies(fs_info,
485 eb->start, eb->len);
486 if (num_copies == 1)
487 break;
488
489 if (!failed_mirror) {
490 failed = 1;
491 failed_mirror = eb->read_mirror;
492 }
493
494 mirror_num++;
495 if (mirror_num == failed_mirror)
496 mirror_num++;
497
498 if (mirror_num > num_copies)
499 break;
500 }
501
502 if (failed && !ret && failed_mirror)
David Brazdil0f672f62019-12-10 10:32:29 +0000503 btrfs_repair_eb_io_failure(eb, failed_mirror);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000504
505 return ret;
506}
507
508/*
509 * checksum a dirty tree block before IO. This has extra checks to make sure
510 * we only fill in the checksum field in the first page of a multi-page block
511 */
512
513static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
514{
515 u64 start = page_offset(page);
516 u64 found_start;
David Brazdil0f672f62019-12-10 10:32:29 +0000517 u8 result[BTRFS_CSUM_SIZE];
518 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000519 struct extent_buffer *eb;
David Brazdil0f672f62019-12-10 10:32:29 +0000520 int ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000521
522 eb = (struct extent_buffer *)page->private;
523 if (page != eb->pages[0])
524 return 0;
525
526 found_start = btrfs_header_bytenr(eb);
527 /*
528 * Please do not consolidate these warnings into a single if.
529 * It is useful to know what went wrong.
530 */
531 if (WARN_ON(found_start != start))
532 return -EUCLEAN;
533 if (WARN_ON(!PageUptodate(page)))
534 return -EUCLEAN;
535
David Brazdil0f672f62019-12-10 10:32:29 +0000536 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000537 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
538
David Brazdil0f672f62019-12-10 10:32:29 +0000539 if (csum_tree_block(eb, result))
540 return -EINVAL;
541
542 if (btrfs_header_level(eb))
543 ret = btrfs_check_node(eb);
544 else
545 ret = btrfs_check_leaf_full(eb);
546
547 if (ret < 0) {
548 btrfs_err(fs_info,
549 "block=%llu write time tree block corruption detected",
550 eb->start);
551 return ret;
552 }
553 write_extent_buffer(eb, result, 0, csum_size);
554
555 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000556}
557
David Brazdil0f672f62019-12-10 10:32:29 +0000558static int check_tree_block_fsid(struct extent_buffer *eb)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000559{
David Brazdil0f672f62019-12-10 10:32:29 +0000560 struct btrfs_fs_info *fs_info = eb->fs_info;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000561 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
562 u8 fsid[BTRFS_FSID_SIZE];
563 int ret = 1;
564
565 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
566 while (fs_devices) {
David Brazdil0f672f62019-12-10 10:32:29 +0000567 u8 *metadata_uuid;
568
569 /*
570 * Checking the incompat flag is only valid for the current
571 * fs. For seed devices it's forbidden to have their uuid
572 * changed so reading ->fsid in this case is fine
573 */
574 if (fs_devices == fs_info->fs_devices &&
575 btrfs_fs_incompat(fs_info, METADATA_UUID))
576 metadata_uuid = fs_devices->metadata_uuid;
577 else
578 metadata_uuid = fs_devices->fsid;
579
580 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000581 ret = 0;
582 break;
583 }
584 fs_devices = fs_devices->seed;
585 }
586 return ret;
587}
588
589static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
590 u64 phy_offset, struct page *page,
591 u64 start, u64 end, int mirror)
592{
593 u64 found_start;
594 int found_level;
595 struct extent_buffer *eb;
596 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
597 struct btrfs_fs_info *fs_info = root->fs_info;
David Brazdil0f672f62019-12-10 10:32:29 +0000598 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000599 int ret = 0;
David Brazdil0f672f62019-12-10 10:32:29 +0000600 u8 result[BTRFS_CSUM_SIZE];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000601 int reads_done;
602
603 if (!page->private)
604 goto out;
605
606 eb = (struct extent_buffer *)page->private;
607
608 /* the pending IO might have been the only thing that kept this buffer
609 * in memory. Make sure we have a ref for all this other checks
610 */
611 extent_buffer_get(eb);
612
613 reads_done = atomic_dec_and_test(&eb->io_pages);
614 if (!reads_done)
615 goto err;
616
617 eb->read_mirror = mirror;
618 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
619 ret = -EIO;
620 goto err;
621 }
622
623 found_start = btrfs_header_bytenr(eb);
624 if (found_start != eb->start) {
625 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
626 eb->start, found_start);
627 ret = -EIO;
628 goto err;
629 }
David Brazdil0f672f62019-12-10 10:32:29 +0000630 if (check_tree_block_fsid(eb)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000631 btrfs_err_rl(fs_info, "bad fsid on block %llu",
632 eb->start);
633 ret = -EIO;
634 goto err;
635 }
636 found_level = btrfs_header_level(eb);
637 if (found_level >= BTRFS_MAX_LEVEL) {
638 btrfs_err(fs_info, "bad tree block level %d on %llu",
639 (int)btrfs_header_level(eb), eb->start);
640 ret = -EIO;
641 goto err;
642 }
643
644 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
645 eb, found_level);
646
David Brazdil0f672f62019-12-10 10:32:29 +0000647 ret = csum_tree_block(eb, result);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000648 if (ret)
649 goto err;
650
David Brazdil0f672f62019-12-10 10:32:29 +0000651 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
Olivier Deprez0e641232021-09-23 10:07:05 +0200652 u8 val[BTRFS_CSUM_SIZE] = { 0 };
David Brazdil0f672f62019-12-10 10:32:29 +0000653
654 read_extent_buffer(eb, &val, 0, csum_size);
655 btrfs_warn_rl(fs_info,
Olivier Deprez0e641232021-09-23 10:07:05 +0200656 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
David Brazdil0f672f62019-12-10 10:32:29 +0000657 fs_info->sb->s_id, eb->start,
Olivier Deprez0e641232021-09-23 10:07:05 +0200658 CSUM_FMT_VALUE(csum_size, val),
659 CSUM_FMT_VALUE(csum_size, result),
660 btrfs_header_level(eb));
David Brazdil0f672f62019-12-10 10:32:29 +0000661 ret = -EUCLEAN;
662 goto err;
663 }
664
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000665 /*
666 * If this is a leaf block and it is corrupt, set the corrupt bit so
667 * that we don't try and read the other copies of this block, just
668 * return -EIO.
669 */
David Brazdil0f672f62019-12-10 10:32:29 +0000670 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000671 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
672 ret = -EIO;
673 }
674
David Brazdil0f672f62019-12-10 10:32:29 +0000675 if (found_level > 0 && btrfs_check_node(eb))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000676 ret = -EIO;
677
678 if (!ret)
679 set_extent_buffer_uptodate(eb);
David Brazdil0f672f62019-12-10 10:32:29 +0000680 else
681 btrfs_err(fs_info,
682 "block=%llu read time tree block corruption detected",
683 eb->start);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000684err:
685 if (reads_done &&
686 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
687 btree_readahead_hook(eb, ret);
688
689 if (ret) {
690 /*
691 * our io error hook is going to dec the io pages
692 * again, we have to make sure it has something
693 * to decrement
694 */
695 atomic_inc(&eb->io_pages);
696 clear_extent_buffer_uptodate(eb);
697 }
698 free_extent_buffer(eb);
699out:
700 return ret;
701}
702
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000703static void end_workqueue_bio(struct bio *bio)
704{
705 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
706 struct btrfs_fs_info *fs_info;
707 struct btrfs_workqueue *wq;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000708
709 fs_info = end_io_wq->info;
710 end_io_wq->status = bio->bi_status;
711
712 if (bio_op(bio) == REQ_OP_WRITE) {
Olivier Deprez0e641232021-09-23 10:07:05 +0200713 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000714 wq = fs_info->endio_meta_write_workers;
Olivier Deprez0e641232021-09-23 10:07:05 +0200715 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000716 wq = fs_info->endio_freespace_worker;
Olivier Deprez0e641232021-09-23 10:07:05 +0200717 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000718 wq = fs_info->endio_raid56_workers;
Olivier Deprez0e641232021-09-23 10:07:05 +0200719 else
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000720 wq = fs_info->endio_write_workers;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000721 } else {
Olivier Deprez0e641232021-09-23 10:07:05 +0200722 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000723 wq = fs_info->endio_repair_workers;
Olivier Deprez0e641232021-09-23 10:07:05 +0200724 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000725 wq = fs_info->endio_raid56_workers;
Olivier Deprez0e641232021-09-23 10:07:05 +0200726 else if (end_io_wq->metadata)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000727 wq = fs_info->endio_meta_workers;
Olivier Deprez0e641232021-09-23 10:07:05 +0200728 else
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000729 wq = fs_info->endio_workers;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000730 }
731
Olivier Deprez0e641232021-09-23 10:07:05 +0200732 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000733 btrfs_queue_work(wq, &end_io_wq->work);
734}
735
736blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
737 enum btrfs_wq_endio_type metadata)
738{
739 struct btrfs_end_io_wq *end_io_wq;
740
741 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
742 if (!end_io_wq)
743 return BLK_STS_RESOURCE;
744
745 end_io_wq->private = bio->bi_private;
746 end_io_wq->end_io = bio->bi_end_io;
747 end_io_wq->info = info;
748 end_io_wq->status = 0;
749 end_io_wq->bio = bio;
750 end_io_wq->metadata = metadata;
751
752 bio->bi_private = end_io_wq;
753 bio->bi_end_io = end_workqueue_bio;
754 return 0;
755}
756
757static void run_one_async_start(struct btrfs_work *work)
758{
759 struct async_submit_bio *async;
760 blk_status_t ret;
761
762 async = container_of(work, struct async_submit_bio, work);
763 ret = async->submit_bio_start(async->private_data, async->bio,
764 async->bio_offset);
765 if (ret)
766 async->status = ret;
767}
768
David Brazdil0f672f62019-12-10 10:32:29 +0000769/*
770 * In order to insert checksums into the metadata in large chunks, we wait
771 * until bio submission time. All the pages in the bio are checksummed and
772 * sums are attached onto the ordered extent record.
773 *
774 * At IO completion time the csums attached on the ordered extent record are
775 * inserted into the tree.
776 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000777static void run_one_async_done(struct btrfs_work *work)
778{
779 struct async_submit_bio *async;
David Brazdil0f672f62019-12-10 10:32:29 +0000780 struct inode *inode;
781 blk_status_t ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000782
783 async = container_of(work, struct async_submit_bio, work);
David Brazdil0f672f62019-12-10 10:32:29 +0000784 inode = async->private_data;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000785
786 /* If an error occurred we just want to clean up the bio and move on */
787 if (async->status) {
788 async->bio->bi_status = async->status;
789 bio_endio(async->bio);
790 return;
791 }
792
David Brazdil0f672f62019-12-10 10:32:29 +0000793 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
794 async->mirror_num, 1);
795 if (ret) {
796 async->bio->bi_status = ret;
797 bio_endio(async->bio);
798 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000799}
800
801static void run_one_async_free(struct btrfs_work *work)
802{
803 struct async_submit_bio *async;
804
805 async = container_of(work, struct async_submit_bio, work);
806 kfree(async);
807}
808
809blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
810 int mirror_num, unsigned long bio_flags,
811 u64 bio_offset, void *private_data,
812 extent_submit_bio_start_t *submit_bio_start)
813{
814 struct async_submit_bio *async;
815
816 async = kmalloc(sizeof(*async), GFP_NOFS);
817 if (!async)
818 return BLK_STS_RESOURCE;
819
820 async->private_data = private_data;
821 async->bio = bio;
822 async->mirror_num = mirror_num;
823 async->submit_bio_start = submit_bio_start;
824
Olivier Deprez0e641232021-09-23 10:07:05 +0200825 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
826 run_one_async_free);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000827
828 async->bio_offset = bio_offset;
829
830 async->status = 0;
831
832 if (op_is_sync(bio->bi_opf))
833 btrfs_set_work_high_priority(&async->work);
834
835 btrfs_queue_work(fs_info->workers, &async->work);
836 return 0;
837}
838
839static blk_status_t btree_csum_one_bio(struct bio *bio)
840{
841 struct bio_vec *bvec;
842 struct btrfs_root *root;
David Brazdil0f672f62019-12-10 10:32:29 +0000843 int ret = 0;
844 struct bvec_iter_all iter_all;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000845
846 ASSERT(!bio_flagged(bio, BIO_CLONED));
David Brazdil0f672f62019-12-10 10:32:29 +0000847 bio_for_each_segment_all(bvec, bio, iter_all) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000848 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
849 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
850 if (ret)
851 break;
852 }
853
854 return errno_to_blk_status(ret);
855}
856
857static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
858 u64 bio_offset)
859{
860 /*
861 * when we're called for a write, we're already in the async
862 * submission context. Just jump into btrfs_map_bio
863 */
864 return btree_csum_one_bio(bio);
865}
866
David Brazdil0f672f62019-12-10 10:32:29 +0000867static int check_async_write(struct btrfs_fs_info *fs_info,
868 struct btrfs_inode *bi)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000869{
870 if (atomic_read(&bi->sync_writers))
871 return 0;
David Brazdil0f672f62019-12-10 10:32:29 +0000872 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000873 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000874 return 1;
875}
876
David Brazdil0f672f62019-12-10 10:32:29 +0000877static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
878 int mirror_num,
879 unsigned long bio_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000880{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000881 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
David Brazdil0f672f62019-12-10 10:32:29 +0000882 int async = check_async_write(fs_info, BTRFS_I(inode));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000883 blk_status_t ret;
884
885 if (bio_op(bio) != REQ_OP_WRITE) {
886 /*
887 * called for a read, do the setup so that checksum validation
888 * can happen in the async kernel threads
889 */
890 ret = btrfs_bio_wq_end_io(fs_info, bio,
891 BTRFS_WQ_ENDIO_METADATA);
892 if (ret)
893 goto out_w_error;
894 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
895 } else if (!async) {
896 ret = btree_csum_one_bio(bio);
897 if (ret)
898 goto out_w_error;
899 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
900 } else {
901 /*
902 * kthread helpers are used to submit writes so that
903 * checksumming can happen in parallel across all CPUs
904 */
905 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
David Brazdil0f672f62019-12-10 10:32:29 +0000906 0, inode, btree_submit_bio_start);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000907 }
908
909 if (ret)
910 goto out_w_error;
911 return 0;
912
913out_w_error:
914 bio->bi_status = ret;
915 bio_endio(bio);
916 return ret;
917}
918
919#ifdef CONFIG_MIGRATION
920static int btree_migratepage(struct address_space *mapping,
921 struct page *newpage, struct page *page,
922 enum migrate_mode mode)
923{
924 /*
925 * we can't safely write a btree page from here,
926 * we haven't done the locking hook
927 */
928 if (PageDirty(page))
929 return -EAGAIN;
930 /*
931 * Buffers may be managed in a filesystem specific way.
932 * We must have no buffers or drop them.
933 */
934 if (page_has_private(page) &&
935 !try_to_release_page(page, GFP_KERNEL))
936 return -EAGAIN;
937 return migrate_page(mapping, newpage, page, mode);
938}
939#endif
940
941
942static int btree_writepages(struct address_space *mapping,
943 struct writeback_control *wbc)
944{
945 struct btrfs_fs_info *fs_info;
946 int ret;
947
948 if (wbc->sync_mode == WB_SYNC_NONE) {
949
950 if (wbc->for_kupdate)
951 return 0;
952
953 fs_info = BTRFS_I(mapping->host)->root->fs_info;
954 /* this is a bit racy, but that's ok */
955 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
956 BTRFS_DIRTY_METADATA_THRESH,
957 fs_info->dirty_metadata_batch);
958 if (ret < 0)
959 return 0;
960 }
961 return btree_write_cache_pages(mapping, wbc);
962}
963
964static int btree_readpage(struct file *file, struct page *page)
965{
966 struct extent_io_tree *tree;
967 tree = &BTRFS_I(page->mapping->host)->io_tree;
968 return extent_read_full_page(tree, page, btree_get_extent, 0);
969}
970
971static int btree_releasepage(struct page *page, gfp_t gfp_flags)
972{
973 if (PageWriteback(page) || PageDirty(page))
974 return 0;
975
976 return try_release_extent_buffer(page);
977}
978
979static void btree_invalidatepage(struct page *page, unsigned int offset,
980 unsigned int length)
981{
982 struct extent_io_tree *tree;
983 tree = &BTRFS_I(page->mapping->host)->io_tree;
984 extent_invalidatepage(tree, page, offset);
985 btree_releasepage(page, GFP_NOFS);
986 if (PagePrivate(page)) {
987 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
988 "page private not zero on page %llu",
989 (unsigned long long)page_offset(page));
990 ClearPagePrivate(page);
991 set_page_private(page, 0);
992 put_page(page);
993 }
994}
995
996static int btree_set_page_dirty(struct page *page)
997{
998#ifdef DEBUG
999 struct extent_buffer *eb;
1000
1001 BUG_ON(!PagePrivate(page));
1002 eb = (struct extent_buffer *)page->private;
1003 BUG_ON(!eb);
1004 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1005 BUG_ON(!atomic_read(&eb->refs));
1006 btrfs_assert_tree_locked(eb);
1007#endif
1008 return __set_page_dirty_nobuffers(page);
1009}
1010
1011static const struct address_space_operations btree_aops = {
1012 .readpage = btree_readpage,
1013 .writepages = btree_writepages,
1014 .releasepage = btree_releasepage,
1015 .invalidatepage = btree_invalidatepage,
1016#ifdef CONFIG_MIGRATION
1017 .migratepage = btree_migratepage,
1018#endif
1019 .set_page_dirty = btree_set_page_dirty,
1020};
1021
1022void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1023{
1024 struct extent_buffer *buf = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001025 int ret;
1026
1027 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1028 if (IS_ERR(buf))
David Brazdil0f672f62019-12-10 10:32:29 +00001029 return;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001030
David Brazdil0f672f62019-12-10 10:32:29 +00001031 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1032 if (ret < 0)
1033 free_extent_buffer_stale(buf);
1034 else
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001035 free_extent_buffer(buf);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001036}
1037
1038struct extent_buffer *btrfs_find_create_tree_block(
1039 struct btrfs_fs_info *fs_info,
1040 u64 bytenr)
1041{
1042 if (btrfs_is_testing(fs_info))
1043 return alloc_test_extent_buffer(fs_info, bytenr);
1044 return alloc_extent_buffer(fs_info, bytenr);
1045}
1046
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001047/*
1048 * Read tree block at logical address @bytenr and do variant basic but critical
1049 * verification.
1050 *
1051 * @parent_transid: expected transid of this tree block, skip check if 0
1052 * @level: expected level, mandatory check
1053 * @first_key: expected key in slot 0, skip check if NULL
1054 */
1055struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1056 u64 parent_transid, int level,
1057 struct btrfs_key *first_key)
1058{
1059 struct extent_buffer *buf = NULL;
1060 int ret;
1061
1062 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1063 if (IS_ERR(buf))
1064 return buf;
1065
David Brazdil0f672f62019-12-10 10:32:29 +00001066 ret = btree_read_extent_buffer_pages(buf, parent_transid,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001067 level, first_key);
1068 if (ret) {
David Brazdil0f672f62019-12-10 10:32:29 +00001069 free_extent_buffer_stale(buf);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001070 return ERR_PTR(ret);
1071 }
1072 return buf;
1073
1074}
1075
David Brazdil0f672f62019-12-10 10:32:29 +00001076void btrfs_clean_tree_block(struct extent_buffer *buf)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001077{
David Brazdil0f672f62019-12-10 10:32:29 +00001078 struct btrfs_fs_info *fs_info = buf->fs_info;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001079 if (btrfs_header_generation(buf) ==
1080 fs_info->running_transaction->transid) {
1081 btrfs_assert_tree_locked(buf);
1082
1083 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1084 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1085 -buf->len,
1086 fs_info->dirty_metadata_batch);
1087 /* ugh, clear_extent_buffer_dirty needs to lock the page */
David Brazdil0f672f62019-12-10 10:32:29 +00001088 btrfs_set_lock_blocking_write(buf);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001089 clear_extent_buffer_dirty(buf);
1090 }
1091 }
1092}
1093
1094static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1095{
1096 struct btrfs_subvolume_writers *writers;
1097 int ret;
1098
1099 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1100 if (!writers)
1101 return ERR_PTR(-ENOMEM);
1102
1103 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1104 if (ret < 0) {
1105 kfree(writers);
1106 return ERR_PTR(ret);
1107 }
1108
1109 init_waitqueue_head(&writers->wait);
1110 return writers;
1111}
1112
1113static void
1114btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1115{
1116 percpu_counter_destroy(&writers->counter);
1117 kfree(writers);
1118}
1119
1120static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1121 u64 objectid)
1122{
1123 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1124 root->node = NULL;
1125 root->commit_root = NULL;
1126 root->state = 0;
1127 root->orphan_cleanup_state = 0;
1128
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001129 root->last_trans = 0;
1130 root->highest_objectid = 0;
1131 root->nr_delalloc_inodes = 0;
1132 root->nr_ordered_extents = 0;
1133 root->inode_tree = RB_ROOT;
1134 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1135 root->block_rsv = NULL;
1136
1137 INIT_LIST_HEAD(&root->dirty_list);
1138 INIT_LIST_HEAD(&root->root_list);
1139 INIT_LIST_HEAD(&root->delalloc_inodes);
1140 INIT_LIST_HEAD(&root->delalloc_root);
1141 INIT_LIST_HEAD(&root->ordered_extents);
1142 INIT_LIST_HEAD(&root->ordered_root);
David Brazdil0f672f62019-12-10 10:32:29 +00001143 INIT_LIST_HEAD(&root->reloc_dirty_list);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001144 INIT_LIST_HEAD(&root->logged_list[0]);
1145 INIT_LIST_HEAD(&root->logged_list[1]);
1146 spin_lock_init(&root->inode_lock);
1147 spin_lock_init(&root->delalloc_lock);
1148 spin_lock_init(&root->ordered_extent_lock);
1149 spin_lock_init(&root->accounting_lock);
1150 spin_lock_init(&root->log_extents_lock[0]);
1151 spin_lock_init(&root->log_extents_lock[1]);
1152 spin_lock_init(&root->qgroup_meta_rsv_lock);
1153 mutex_init(&root->objectid_mutex);
1154 mutex_init(&root->log_mutex);
1155 mutex_init(&root->ordered_extent_mutex);
1156 mutex_init(&root->delalloc_mutex);
Olivier Deprez0e641232021-09-23 10:07:05 +02001157 init_waitqueue_head(&root->qgroup_flush_wait);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001158 init_waitqueue_head(&root->log_writer_wait);
1159 init_waitqueue_head(&root->log_commit_wait[0]);
1160 init_waitqueue_head(&root->log_commit_wait[1]);
1161 INIT_LIST_HEAD(&root->log_ctxs[0]);
1162 INIT_LIST_HEAD(&root->log_ctxs[1]);
1163 atomic_set(&root->log_commit[0], 0);
1164 atomic_set(&root->log_commit[1], 0);
1165 atomic_set(&root->log_writers, 0);
1166 atomic_set(&root->log_batch, 0);
1167 refcount_set(&root->refs, 1);
1168 atomic_set(&root->will_be_snapshotted, 0);
1169 atomic_set(&root->snapshot_force_cow, 0);
David Brazdil0f672f62019-12-10 10:32:29 +00001170 atomic_set(&root->nr_swapfiles, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001171 root->log_transid = 0;
1172 root->log_transid_committed = -1;
1173 root->last_log_commit = 0;
1174 if (!dummy)
David Brazdil0f672f62019-12-10 10:32:29 +00001175 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1176 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001177
1178 memset(&root->root_key, 0, sizeof(root->root_key));
1179 memset(&root->root_item, 0, sizeof(root->root_item));
1180 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1181 if (!dummy)
1182 root->defrag_trans_start = fs_info->generation;
1183 else
1184 root->defrag_trans_start = 0;
1185 root->root_key.objectid = objectid;
1186 root->anon_dev = 0;
1187
1188 spin_lock_init(&root->root_item_lock);
David Brazdil0f672f62019-12-10 10:32:29 +00001189 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001190}
1191
1192static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1193 gfp_t flags)
1194{
1195 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1196 if (root)
1197 root->fs_info = fs_info;
1198 return root;
1199}
1200
1201#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1202/* Should only be used by the testing infrastructure */
1203struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1204{
1205 struct btrfs_root *root;
1206
1207 if (!fs_info)
1208 return ERR_PTR(-EINVAL);
1209
1210 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1211 if (!root)
1212 return ERR_PTR(-ENOMEM);
1213
1214 /* We don't use the stripesize in selftest, set it as sectorsize */
1215 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1216 root->alloc_bytenr = 0;
1217
1218 return root;
1219}
1220#endif
1221
1222struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001223 u64 objectid)
1224{
David Brazdil0f672f62019-12-10 10:32:29 +00001225 struct btrfs_fs_info *fs_info = trans->fs_info;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001226 struct extent_buffer *leaf;
1227 struct btrfs_root *tree_root = fs_info->tree_root;
1228 struct btrfs_root *root;
1229 struct btrfs_key key;
David Brazdil0f672f62019-12-10 10:32:29 +00001230 unsigned int nofs_flag;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001231 int ret = 0;
1232 uuid_le uuid = NULL_UUID_LE;
1233
David Brazdil0f672f62019-12-10 10:32:29 +00001234 /*
1235 * We're holding a transaction handle, so use a NOFS memory allocation
1236 * context to avoid deadlock if reclaim happens.
1237 */
1238 nofs_flag = memalloc_nofs_save();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001239 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
David Brazdil0f672f62019-12-10 10:32:29 +00001240 memalloc_nofs_restore(nofs_flag);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001241 if (!root)
1242 return ERR_PTR(-ENOMEM);
1243
1244 __setup_root(root, fs_info, objectid);
1245 root->root_key.objectid = objectid;
1246 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1247 root->root_key.offset = 0;
1248
1249 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1250 if (IS_ERR(leaf)) {
1251 ret = PTR_ERR(leaf);
1252 leaf = NULL;
1253 goto fail;
1254 }
1255
1256 root->node = leaf;
1257 btrfs_mark_buffer_dirty(leaf);
1258
1259 root->commit_root = btrfs_root_node(root);
1260 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1261
1262 root->root_item.flags = 0;
1263 root->root_item.byte_limit = 0;
1264 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1265 btrfs_set_root_generation(&root->root_item, trans->transid);
1266 btrfs_set_root_level(&root->root_item, 0);
1267 btrfs_set_root_refs(&root->root_item, 1);
1268 btrfs_set_root_used(&root->root_item, leaf->len);
1269 btrfs_set_root_last_snapshot(&root->root_item, 0);
1270 btrfs_set_root_dirid(&root->root_item, 0);
1271 if (is_fstree(objectid))
1272 uuid_le_gen(&uuid);
1273 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1274 root->root_item.drop_level = 0;
1275
1276 key.objectid = objectid;
1277 key.type = BTRFS_ROOT_ITEM_KEY;
1278 key.offset = 0;
1279 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1280 if (ret)
1281 goto fail;
1282
1283 btrfs_tree_unlock(leaf);
1284
1285 return root;
1286
1287fail:
1288 if (leaf) {
1289 btrfs_tree_unlock(leaf);
1290 free_extent_buffer(root->commit_root);
1291 free_extent_buffer(leaf);
1292 }
1293 kfree(root);
1294
1295 return ERR_PTR(ret);
1296}
1297
1298static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1299 struct btrfs_fs_info *fs_info)
1300{
1301 struct btrfs_root *root;
1302 struct extent_buffer *leaf;
1303
1304 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1305 if (!root)
1306 return ERR_PTR(-ENOMEM);
1307
1308 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1309
1310 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1311 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1312 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1313
1314 /*
1315 * DON'T set REF_COWS for log trees
1316 *
1317 * log trees do not get reference counted because they go away
1318 * before a real commit is actually done. They do store pointers
1319 * to file data extents, and those reference counts still get
1320 * updated (along with back refs to the log tree).
1321 */
1322
1323 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1324 NULL, 0, 0, 0);
1325 if (IS_ERR(leaf)) {
1326 kfree(root);
1327 return ERR_CAST(leaf);
1328 }
1329
1330 root->node = leaf;
1331
1332 btrfs_mark_buffer_dirty(root->node);
1333 btrfs_tree_unlock(root->node);
1334 return root;
1335}
1336
1337int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1338 struct btrfs_fs_info *fs_info)
1339{
1340 struct btrfs_root *log_root;
1341
1342 log_root = alloc_log_tree(trans, fs_info);
1343 if (IS_ERR(log_root))
1344 return PTR_ERR(log_root);
1345 WARN_ON(fs_info->log_root_tree);
1346 fs_info->log_root_tree = log_root;
1347 return 0;
1348}
1349
1350int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1351 struct btrfs_root *root)
1352{
1353 struct btrfs_fs_info *fs_info = root->fs_info;
1354 struct btrfs_root *log_root;
1355 struct btrfs_inode_item *inode_item;
1356
1357 log_root = alloc_log_tree(trans, fs_info);
1358 if (IS_ERR(log_root))
1359 return PTR_ERR(log_root);
1360
1361 log_root->last_trans = trans->transid;
1362 log_root->root_key.offset = root->root_key.objectid;
1363
1364 inode_item = &log_root->root_item.inode;
1365 btrfs_set_stack_inode_generation(inode_item, 1);
1366 btrfs_set_stack_inode_size(inode_item, 3);
1367 btrfs_set_stack_inode_nlink(inode_item, 1);
1368 btrfs_set_stack_inode_nbytes(inode_item,
1369 fs_info->nodesize);
1370 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1371
1372 btrfs_set_root_node(&log_root->root_item, log_root->node);
1373
1374 WARN_ON(root->log_root);
1375 root->log_root = log_root;
1376 root->log_transid = 0;
1377 root->log_transid_committed = -1;
1378 root->last_log_commit = 0;
1379 return 0;
1380}
1381
1382static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1383 struct btrfs_key *key)
1384{
1385 struct btrfs_root *root;
1386 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1387 struct btrfs_path *path;
1388 u64 generation;
1389 int ret;
1390 int level;
1391
1392 path = btrfs_alloc_path();
1393 if (!path)
1394 return ERR_PTR(-ENOMEM);
1395
1396 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1397 if (!root) {
1398 ret = -ENOMEM;
1399 goto alloc_fail;
1400 }
1401
1402 __setup_root(root, fs_info, key->objectid);
1403
1404 ret = btrfs_find_root(tree_root, key, path,
1405 &root->root_item, &root->root_key);
1406 if (ret) {
1407 if (ret > 0)
1408 ret = -ENOENT;
1409 goto find_fail;
1410 }
1411
1412 generation = btrfs_root_generation(&root->root_item);
1413 level = btrfs_root_level(&root->root_item);
1414 root->node = read_tree_block(fs_info,
1415 btrfs_root_bytenr(&root->root_item),
1416 generation, level, NULL);
1417 if (IS_ERR(root->node)) {
1418 ret = PTR_ERR(root->node);
1419 goto find_fail;
1420 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1421 ret = -EIO;
1422 free_extent_buffer(root->node);
1423 goto find_fail;
1424 }
1425 root->commit_root = btrfs_root_node(root);
1426out:
1427 btrfs_free_path(path);
1428 return root;
1429
1430find_fail:
1431 kfree(root);
1432alloc_fail:
1433 root = ERR_PTR(ret);
1434 goto out;
1435}
1436
1437struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1438 struct btrfs_key *location)
1439{
1440 struct btrfs_root *root;
1441
1442 root = btrfs_read_tree_root(tree_root, location);
1443 if (IS_ERR(root))
1444 return root;
1445
1446 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1447 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1448 btrfs_check_and_init_root_item(&root->root_item);
1449 }
1450
1451 return root;
1452}
1453
1454int btrfs_init_fs_root(struct btrfs_root *root)
1455{
1456 int ret;
1457 struct btrfs_subvolume_writers *writers;
1458
1459 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1460 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1461 GFP_NOFS);
1462 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1463 ret = -ENOMEM;
1464 goto fail;
1465 }
1466
1467 writers = btrfs_alloc_subvolume_writers();
1468 if (IS_ERR(writers)) {
1469 ret = PTR_ERR(writers);
1470 goto fail;
1471 }
1472 root->subv_writers = writers;
1473
1474 btrfs_init_free_ino_ctl(root);
1475 spin_lock_init(&root->ino_cache_lock);
1476 init_waitqueue_head(&root->ino_cache_wait);
1477
Olivier Deprez0e641232021-09-23 10:07:05 +02001478 /*
1479 * Don't assign anonymous block device to roots that are not exposed to
1480 * userspace, the id pool is limited to 1M
1481 */
1482 if (is_fstree(root->root_key.objectid) &&
1483 btrfs_root_refs(&root->root_item) > 0) {
1484 ret = get_anon_bdev(&root->anon_dev);
1485 if (ret)
1486 goto fail;
1487 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001488
1489 mutex_lock(&root->objectid_mutex);
1490 ret = btrfs_find_highest_objectid(root,
1491 &root->highest_objectid);
1492 if (ret) {
1493 mutex_unlock(&root->objectid_mutex);
1494 goto fail;
1495 }
1496
1497 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1498
1499 mutex_unlock(&root->objectid_mutex);
1500
1501 return 0;
1502fail:
1503 /* The caller is responsible to call btrfs_free_fs_root */
1504 return ret;
1505}
1506
1507struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1508 u64 root_id)
1509{
1510 struct btrfs_root *root;
1511
1512 spin_lock(&fs_info->fs_roots_radix_lock);
1513 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1514 (unsigned long)root_id);
1515 spin_unlock(&fs_info->fs_roots_radix_lock);
1516 return root;
1517}
1518
1519int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1520 struct btrfs_root *root)
1521{
1522 int ret;
1523
1524 ret = radix_tree_preload(GFP_NOFS);
1525 if (ret)
1526 return ret;
1527
1528 spin_lock(&fs_info->fs_roots_radix_lock);
1529 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1530 (unsigned long)root->root_key.objectid,
1531 root);
1532 if (ret == 0)
1533 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1534 spin_unlock(&fs_info->fs_roots_radix_lock);
1535 radix_tree_preload_end();
1536
1537 return ret;
1538}
1539
1540struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1541 struct btrfs_key *location,
1542 bool check_ref)
1543{
1544 struct btrfs_root *root;
1545 struct btrfs_path *path;
1546 struct btrfs_key key;
1547 int ret;
1548
1549 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1550 return fs_info->tree_root;
1551 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1552 return fs_info->extent_root;
1553 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1554 return fs_info->chunk_root;
1555 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1556 return fs_info->dev_root;
1557 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1558 return fs_info->csum_root;
1559 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1560 return fs_info->quota_root ? fs_info->quota_root :
1561 ERR_PTR(-ENOENT);
1562 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1563 return fs_info->uuid_root ? fs_info->uuid_root :
1564 ERR_PTR(-ENOENT);
1565 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1566 return fs_info->free_space_root ? fs_info->free_space_root :
1567 ERR_PTR(-ENOENT);
1568again:
1569 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1570 if (root) {
1571 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1572 return ERR_PTR(-ENOENT);
1573 return root;
1574 }
1575
1576 root = btrfs_read_fs_root(fs_info->tree_root, location);
1577 if (IS_ERR(root))
1578 return root;
1579
1580 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1581 ret = -ENOENT;
1582 goto fail;
1583 }
1584
1585 ret = btrfs_init_fs_root(root);
1586 if (ret)
1587 goto fail;
1588
1589 path = btrfs_alloc_path();
1590 if (!path) {
1591 ret = -ENOMEM;
1592 goto fail;
1593 }
1594 key.objectid = BTRFS_ORPHAN_OBJECTID;
1595 key.type = BTRFS_ORPHAN_ITEM_KEY;
1596 key.offset = location->objectid;
1597
1598 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1599 btrfs_free_path(path);
1600 if (ret < 0)
1601 goto fail;
1602 if (ret == 0)
1603 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1604
1605 ret = btrfs_insert_fs_root(fs_info, root);
1606 if (ret) {
1607 if (ret == -EEXIST) {
1608 btrfs_free_fs_root(root);
1609 goto again;
1610 }
1611 goto fail;
1612 }
1613 return root;
1614fail:
1615 btrfs_free_fs_root(root);
1616 return ERR_PTR(ret);
1617}
1618
1619static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1620{
1621 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1622 int ret = 0;
1623 struct btrfs_device *device;
1624 struct backing_dev_info *bdi;
1625
1626 rcu_read_lock();
1627 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1628 if (!device->bdev)
1629 continue;
1630 bdi = device->bdev->bd_bdi;
1631 if (bdi_congested(bdi, bdi_bits)) {
1632 ret = 1;
1633 break;
1634 }
1635 }
1636 rcu_read_unlock();
1637 return ret;
1638}
1639
1640/*
1641 * called by the kthread helper functions to finally call the bio end_io
1642 * functions. This is where read checksum verification actually happens
1643 */
1644static void end_workqueue_fn(struct btrfs_work *work)
1645{
1646 struct bio *bio;
1647 struct btrfs_end_io_wq *end_io_wq;
1648
1649 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1650 bio = end_io_wq->bio;
1651
1652 bio->bi_status = end_io_wq->status;
1653 bio->bi_private = end_io_wq->private;
1654 bio->bi_end_io = end_io_wq->end_io;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001655 bio_endio(bio);
Olivier Deprez0e641232021-09-23 10:07:05 +02001656 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001657}
1658
1659static int cleaner_kthread(void *arg)
1660{
1661 struct btrfs_root *root = arg;
1662 struct btrfs_fs_info *fs_info = root->fs_info;
1663 int again;
1664
1665 while (1) {
1666 again = 0;
1667
David Brazdil0f672f62019-12-10 10:32:29 +00001668 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1669
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001670 /* Make the cleaner go to sleep early. */
1671 if (btrfs_need_cleaner_sleep(fs_info))
1672 goto sleep;
1673
1674 /*
1675 * Do not do anything if we might cause open_ctree() to block
1676 * before we have finished mounting the filesystem.
1677 */
1678 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1679 goto sleep;
1680
1681 if (!mutex_trylock(&fs_info->cleaner_mutex))
1682 goto sleep;
1683
1684 /*
1685 * Avoid the problem that we change the status of the fs
1686 * during the above check and trylock.
1687 */
1688 if (btrfs_need_cleaner_sleep(fs_info)) {
1689 mutex_unlock(&fs_info->cleaner_mutex);
1690 goto sleep;
1691 }
1692
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001693 btrfs_run_delayed_iputs(fs_info);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001694
1695 again = btrfs_clean_one_deleted_snapshot(root);
1696 mutex_unlock(&fs_info->cleaner_mutex);
1697
1698 /*
1699 * The defragger has dealt with the R/O remount and umount,
1700 * needn't do anything special here.
1701 */
1702 btrfs_run_defrag_inodes(fs_info);
1703
1704 /*
1705 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1706 * with relocation (btrfs_relocate_chunk) and relocation
1707 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1708 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1709 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1710 * unused block groups.
1711 */
1712 btrfs_delete_unused_bgs(fs_info);
1713sleep:
David Brazdil0f672f62019-12-10 10:32:29 +00001714 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001715 if (kthread_should_park())
1716 kthread_parkme();
1717 if (kthread_should_stop())
1718 return 0;
1719 if (!again) {
1720 set_current_state(TASK_INTERRUPTIBLE);
1721 schedule();
1722 __set_current_state(TASK_RUNNING);
1723 }
1724 }
1725}
1726
1727static int transaction_kthread(void *arg)
1728{
1729 struct btrfs_root *root = arg;
1730 struct btrfs_fs_info *fs_info = root->fs_info;
1731 struct btrfs_trans_handle *trans;
1732 struct btrfs_transaction *cur;
1733 u64 transid;
1734 time64_t now;
1735 unsigned long delay;
1736 bool cannot_commit;
1737
1738 do {
1739 cannot_commit = false;
1740 delay = HZ * fs_info->commit_interval;
1741 mutex_lock(&fs_info->transaction_kthread_mutex);
1742
1743 spin_lock(&fs_info->trans_lock);
1744 cur = fs_info->running_transaction;
1745 if (!cur) {
1746 spin_unlock(&fs_info->trans_lock);
1747 goto sleep;
1748 }
1749
1750 now = ktime_get_seconds();
Olivier Deprez0e641232021-09-23 10:07:05 +02001751 if (cur->state < TRANS_STATE_COMMIT_START &&
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001752 (now < cur->start_time ||
1753 now - cur->start_time < fs_info->commit_interval)) {
1754 spin_unlock(&fs_info->trans_lock);
1755 delay = HZ * 5;
1756 goto sleep;
1757 }
1758 transid = cur->transid;
1759 spin_unlock(&fs_info->trans_lock);
1760
1761 /* If the file system is aborted, this will always fail. */
1762 trans = btrfs_attach_transaction(root);
1763 if (IS_ERR(trans)) {
1764 if (PTR_ERR(trans) != -ENOENT)
1765 cannot_commit = true;
1766 goto sleep;
1767 }
1768 if (transid == trans->transid) {
1769 btrfs_commit_transaction(trans);
1770 } else {
1771 btrfs_end_transaction(trans);
1772 }
1773sleep:
1774 wake_up_process(fs_info->cleaner_kthread);
1775 mutex_unlock(&fs_info->transaction_kthread_mutex);
1776
1777 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1778 &fs_info->fs_state)))
1779 btrfs_cleanup_transaction(fs_info);
1780 if (!kthread_should_stop() &&
1781 (!btrfs_transaction_blocked(fs_info) ||
1782 cannot_commit))
1783 schedule_timeout_interruptible(delay);
1784 } while (!kthread_should_stop());
1785 return 0;
1786}
1787
1788/*
1789 * this will find the highest generation in the array of
1790 * root backups. The index of the highest array is returned,
1791 * or -1 if we can't find anything.
1792 *
1793 * We check to make sure the array is valid by comparing the
1794 * generation of the latest root in the array with the generation
1795 * in the super block. If they don't match we pitch it.
1796 */
1797static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1798{
1799 u64 cur;
1800 int newest_index = -1;
1801 struct btrfs_root_backup *root_backup;
1802 int i;
1803
1804 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1805 root_backup = info->super_copy->super_roots + i;
1806 cur = btrfs_backup_tree_root_gen(root_backup);
1807 if (cur == newest_gen)
1808 newest_index = i;
1809 }
1810
1811 /* check to see if we actually wrapped around */
1812 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1813 root_backup = info->super_copy->super_roots;
1814 cur = btrfs_backup_tree_root_gen(root_backup);
1815 if (cur == newest_gen)
1816 newest_index = 0;
1817 }
1818 return newest_index;
1819}
1820
1821
1822/*
1823 * find the oldest backup so we know where to store new entries
1824 * in the backup array. This will set the backup_root_index
1825 * field in the fs_info struct
1826 */
1827static void find_oldest_super_backup(struct btrfs_fs_info *info,
1828 u64 newest_gen)
1829{
1830 int newest_index = -1;
1831
1832 newest_index = find_newest_super_backup(info, newest_gen);
1833 /* if there was garbage in there, just move along */
1834 if (newest_index == -1) {
1835 info->backup_root_index = 0;
1836 } else {
1837 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1838 }
1839}
1840
1841/*
1842 * copy all the root pointers into the super backup array.
1843 * this will bump the backup pointer by one when it is
1844 * done
1845 */
1846static void backup_super_roots(struct btrfs_fs_info *info)
1847{
1848 int next_backup;
1849 struct btrfs_root_backup *root_backup;
1850 int last_backup;
1851
1852 next_backup = info->backup_root_index;
1853 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1854 BTRFS_NUM_BACKUP_ROOTS;
1855
1856 /*
1857 * just overwrite the last backup if we're at the same generation
1858 * this happens only at umount
1859 */
1860 root_backup = info->super_for_commit->super_roots + last_backup;
1861 if (btrfs_backup_tree_root_gen(root_backup) ==
1862 btrfs_header_generation(info->tree_root->node))
1863 next_backup = last_backup;
1864
1865 root_backup = info->super_for_commit->super_roots + next_backup;
1866
1867 /*
1868 * make sure all of our padding and empty slots get zero filled
1869 * regardless of which ones we use today
1870 */
1871 memset(root_backup, 0, sizeof(*root_backup));
1872
1873 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1874
1875 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1876 btrfs_set_backup_tree_root_gen(root_backup,
1877 btrfs_header_generation(info->tree_root->node));
1878
1879 btrfs_set_backup_tree_root_level(root_backup,
1880 btrfs_header_level(info->tree_root->node));
1881
1882 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1883 btrfs_set_backup_chunk_root_gen(root_backup,
1884 btrfs_header_generation(info->chunk_root->node));
1885 btrfs_set_backup_chunk_root_level(root_backup,
1886 btrfs_header_level(info->chunk_root->node));
1887
1888 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1889 btrfs_set_backup_extent_root_gen(root_backup,
1890 btrfs_header_generation(info->extent_root->node));
1891 btrfs_set_backup_extent_root_level(root_backup,
1892 btrfs_header_level(info->extent_root->node));
1893
1894 /*
1895 * we might commit during log recovery, which happens before we set
1896 * the fs_root. Make sure it is valid before we fill it in.
1897 */
1898 if (info->fs_root && info->fs_root->node) {
1899 btrfs_set_backup_fs_root(root_backup,
1900 info->fs_root->node->start);
1901 btrfs_set_backup_fs_root_gen(root_backup,
1902 btrfs_header_generation(info->fs_root->node));
1903 btrfs_set_backup_fs_root_level(root_backup,
1904 btrfs_header_level(info->fs_root->node));
1905 }
1906
1907 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1908 btrfs_set_backup_dev_root_gen(root_backup,
1909 btrfs_header_generation(info->dev_root->node));
1910 btrfs_set_backup_dev_root_level(root_backup,
1911 btrfs_header_level(info->dev_root->node));
1912
1913 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1914 btrfs_set_backup_csum_root_gen(root_backup,
1915 btrfs_header_generation(info->csum_root->node));
1916 btrfs_set_backup_csum_root_level(root_backup,
1917 btrfs_header_level(info->csum_root->node));
1918
1919 btrfs_set_backup_total_bytes(root_backup,
1920 btrfs_super_total_bytes(info->super_copy));
1921 btrfs_set_backup_bytes_used(root_backup,
1922 btrfs_super_bytes_used(info->super_copy));
1923 btrfs_set_backup_num_devices(root_backup,
1924 btrfs_super_num_devices(info->super_copy));
1925
1926 /*
1927 * if we don't copy this out to the super_copy, it won't get remembered
1928 * for the next commit
1929 */
1930 memcpy(&info->super_copy->super_roots,
1931 &info->super_for_commit->super_roots,
1932 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1933}
1934
1935/*
1936 * this copies info out of the root backup array and back into
1937 * the in-memory super block. It is meant to help iterate through
1938 * the array, so you send it the number of backups you've already
1939 * tried and the last backup index you used.
1940 *
1941 * this returns -1 when it has tried all the backups
1942 */
1943static noinline int next_root_backup(struct btrfs_fs_info *info,
1944 struct btrfs_super_block *super,
1945 int *num_backups_tried, int *backup_index)
1946{
1947 struct btrfs_root_backup *root_backup;
1948 int newest = *backup_index;
1949
1950 if (*num_backups_tried == 0) {
1951 u64 gen = btrfs_super_generation(super);
1952
1953 newest = find_newest_super_backup(info, gen);
1954 if (newest == -1)
1955 return -1;
1956
1957 *backup_index = newest;
1958 *num_backups_tried = 1;
1959 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1960 /* we've tried all the backups, all done */
1961 return -1;
1962 } else {
1963 /* jump to the next oldest backup */
1964 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1965 BTRFS_NUM_BACKUP_ROOTS;
1966 *backup_index = newest;
1967 *num_backups_tried += 1;
1968 }
1969 root_backup = super->super_roots + newest;
1970
1971 btrfs_set_super_generation(super,
1972 btrfs_backup_tree_root_gen(root_backup));
1973 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1974 btrfs_set_super_root_level(super,
1975 btrfs_backup_tree_root_level(root_backup));
1976 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1977
1978 /*
1979 * fixme: the total bytes and num_devices need to match or we should
1980 * need a fsck
1981 */
1982 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1983 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1984 return 0;
1985}
1986
1987/* helper to cleanup workers */
1988static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1989{
1990 btrfs_destroy_workqueue(fs_info->fixup_workers);
1991 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1992 btrfs_destroy_workqueue(fs_info->workers);
1993 btrfs_destroy_workqueue(fs_info->endio_workers);
1994 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1995 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
1996 btrfs_destroy_workqueue(fs_info->rmw_workers);
1997 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1998 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1999 btrfs_destroy_workqueue(fs_info->submit_workers);
2000 btrfs_destroy_workqueue(fs_info->delayed_workers);
2001 btrfs_destroy_workqueue(fs_info->caching_workers);
2002 btrfs_destroy_workqueue(fs_info->readahead_workers);
2003 btrfs_destroy_workqueue(fs_info->flush_workers);
2004 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002005 /*
2006 * Now that all other work queues are destroyed, we can safely destroy
2007 * the queues used for metadata I/O, since tasks from those other work
2008 * queues can do metadata I/O operations.
2009 */
2010 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2011 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2012}
2013
2014static void free_root_extent_buffers(struct btrfs_root *root)
2015{
2016 if (root) {
2017 free_extent_buffer(root->node);
2018 free_extent_buffer(root->commit_root);
2019 root->node = NULL;
2020 root->commit_root = NULL;
2021 }
2022}
2023
2024/* helper to cleanup tree roots */
Olivier Deprez0e641232021-09-23 10:07:05 +02002025static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002026{
2027 free_root_extent_buffers(info->tree_root);
2028
2029 free_root_extent_buffers(info->dev_root);
2030 free_root_extent_buffers(info->extent_root);
2031 free_root_extent_buffers(info->csum_root);
2032 free_root_extent_buffers(info->quota_root);
2033 free_root_extent_buffers(info->uuid_root);
Olivier Deprez0e641232021-09-23 10:07:05 +02002034 if (free_chunk_root)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002035 free_root_extent_buffers(info->chunk_root);
2036 free_root_extent_buffers(info->free_space_root);
2037}
2038
2039void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2040{
2041 int ret;
2042 struct btrfs_root *gang[8];
2043 int i;
2044
2045 while (!list_empty(&fs_info->dead_roots)) {
2046 gang[0] = list_entry(fs_info->dead_roots.next,
2047 struct btrfs_root, root_list);
2048 list_del(&gang[0]->root_list);
2049
2050 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2051 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2052 } else {
2053 free_extent_buffer(gang[0]->node);
2054 free_extent_buffer(gang[0]->commit_root);
2055 btrfs_put_fs_root(gang[0]);
2056 }
2057 }
2058
2059 while (1) {
2060 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2061 (void **)gang, 0,
2062 ARRAY_SIZE(gang));
2063 if (!ret)
2064 break;
2065 for (i = 0; i < ret; i++)
2066 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2067 }
2068
2069 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2070 btrfs_free_log_root_tree(NULL, fs_info);
2071 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2072 }
2073}
2074
2075static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2076{
2077 mutex_init(&fs_info->scrub_lock);
2078 atomic_set(&fs_info->scrubs_running, 0);
2079 atomic_set(&fs_info->scrub_pause_req, 0);
2080 atomic_set(&fs_info->scrubs_paused, 0);
2081 atomic_set(&fs_info->scrub_cancel_req, 0);
2082 init_waitqueue_head(&fs_info->scrub_pause_wait);
David Brazdil0f672f62019-12-10 10:32:29 +00002083 refcount_set(&fs_info->scrub_workers_refcnt, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002084}
2085
2086static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2087{
2088 spin_lock_init(&fs_info->balance_lock);
2089 mutex_init(&fs_info->balance_mutex);
2090 atomic_set(&fs_info->balance_pause_req, 0);
2091 atomic_set(&fs_info->balance_cancel_req, 0);
2092 fs_info->balance_ctl = NULL;
2093 init_waitqueue_head(&fs_info->balance_wait_q);
2094}
2095
2096static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2097{
2098 struct inode *inode = fs_info->btree_inode;
2099
2100 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2101 set_nlink(inode, 1);
2102 /*
2103 * we set the i_size on the btree inode to the max possible int.
2104 * the real end of the address space is determined by all of
2105 * the devices in the system
2106 */
2107 inode->i_size = OFFSET_MAX;
2108 inode->i_mapping->a_ops = &btree_aops;
2109
2110 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
David Brazdil0f672f62019-12-10 10:32:29 +00002111 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2112 IO_TREE_INODE_IO, inode);
2113 BTRFS_I(inode)->io_tree.track_uptodate = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002114 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2115
2116 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2117
2118 BTRFS_I(inode)->root = fs_info->tree_root;
2119 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2120 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2121 btrfs_insert_inode_hash(inode);
2122}
2123
2124static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2125{
2126 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
David Brazdil0f672f62019-12-10 10:32:29 +00002127 init_rwsem(&fs_info->dev_replace.rwsem);
2128 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002129}
2130
2131static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2132{
2133 spin_lock_init(&fs_info->qgroup_lock);
2134 mutex_init(&fs_info->qgroup_ioctl_lock);
2135 fs_info->qgroup_tree = RB_ROOT;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002136 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2137 fs_info->qgroup_seq = 1;
2138 fs_info->qgroup_ulist = NULL;
2139 fs_info->qgroup_rescan_running = false;
2140 mutex_init(&fs_info->qgroup_rescan_lock);
2141}
2142
2143static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2144 struct btrfs_fs_devices *fs_devices)
2145{
2146 u32 max_active = fs_info->thread_pool_size;
2147 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2148
2149 fs_info->workers =
2150 btrfs_alloc_workqueue(fs_info, "worker",
2151 flags | WQ_HIGHPRI, max_active, 16);
2152
2153 fs_info->delalloc_workers =
2154 btrfs_alloc_workqueue(fs_info, "delalloc",
2155 flags, max_active, 2);
2156
2157 fs_info->flush_workers =
2158 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2159 flags, max_active, 0);
2160
2161 fs_info->caching_workers =
2162 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2163
2164 /*
2165 * a higher idle thresh on the submit workers makes it much more
2166 * likely that bios will be send down in a sane order to the
2167 * devices
2168 */
2169 fs_info->submit_workers =
2170 btrfs_alloc_workqueue(fs_info, "submit", flags,
2171 min_t(u64, fs_devices->num_devices,
2172 max_active), 64);
2173
2174 fs_info->fixup_workers =
2175 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2176
2177 /*
2178 * endios are largely parallel and should have a very
2179 * low idle thresh
2180 */
2181 fs_info->endio_workers =
2182 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2183 fs_info->endio_meta_workers =
2184 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2185 max_active, 4);
2186 fs_info->endio_meta_write_workers =
2187 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2188 max_active, 2);
2189 fs_info->endio_raid56_workers =
2190 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2191 max_active, 4);
2192 fs_info->endio_repair_workers =
2193 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2194 fs_info->rmw_workers =
2195 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2196 fs_info->endio_write_workers =
2197 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2198 max_active, 2);
2199 fs_info->endio_freespace_worker =
2200 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2201 max_active, 0);
2202 fs_info->delayed_workers =
2203 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2204 max_active, 0);
2205 fs_info->readahead_workers =
2206 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2207 max_active, 2);
2208 fs_info->qgroup_rescan_workers =
2209 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002210
2211 if (!(fs_info->workers && fs_info->delalloc_workers &&
2212 fs_info->submit_workers && fs_info->flush_workers &&
2213 fs_info->endio_workers && fs_info->endio_meta_workers &&
2214 fs_info->endio_meta_write_workers &&
2215 fs_info->endio_repair_workers &&
2216 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2217 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2218 fs_info->caching_workers && fs_info->readahead_workers &&
2219 fs_info->fixup_workers && fs_info->delayed_workers &&
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002220 fs_info->qgroup_rescan_workers)) {
2221 return -ENOMEM;
2222 }
2223
2224 return 0;
2225}
2226
David Brazdil0f672f62019-12-10 10:32:29 +00002227static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2228{
2229 struct crypto_shash *csum_shash;
2230 const char *csum_name = btrfs_super_csum_name(csum_type);
2231
2232 csum_shash = crypto_alloc_shash(csum_name, 0, 0);
2233
2234 if (IS_ERR(csum_shash)) {
2235 btrfs_err(fs_info, "error allocating %s hash for checksum",
2236 csum_name);
2237 return PTR_ERR(csum_shash);
2238 }
2239
2240 fs_info->csum_shash = csum_shash;
2241
2242 return 0;
2243}
2244
2245static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2246{
2247 crypto_free_shash(fs_info->csum_shash);
2248}
2249
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002250static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2251 struct btrfs_fs_devices *fs_devices)
2252{
2253 int ret;
2254 struct btrfs_root *log_tree_root;
2255 struct btrfs_super_block *disk_super = fs_info->super_copy;
2256 u64 bytenr = btrfs_super_log_root(disk_super);
2257 int level = btrfs_super_log_root_level(disk_super);
2258
2259 if (fs_devices->rw_devices == 0) {
2260 btrfs_warn(fs_info, "log replay required on RO media");
2261 return -EIO;
2262 }
2263
2264 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2265 if (!log_tree_root)
2266 return -ENOMEM;
2267
2268 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2269
2270 log_tree_root->node = read_tree_block(fs_info, bytenr,
2271 fs_info->generation + 1,
2272 level, NULL);
2273 if (IS_ERR(log_tree_root->node)) {
2274 btrfs_warn(fs_info, "failed to read log tree");
2275 ret = PTR_ERR(log_tree_root->node);
2276 kfree(log_tree_root);
2277 return ret;
2278 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2279 btrfs_err(fs_info, "failed to read log tree");
2280 free_extent_buffer(log_tree_root->node);
2281 kfree(log_tree_root);
2282 return -EIO;
2283 }
2284 /* returns with log_tree_root freed on success */
2285 ret = btrfs_recover_log_trees(log_tree_root);
2286 if (ret) {
2287 btrfs_handle_fs_error(fs_info, ret,
2288 "Failed to recover log tree");
2289 free_extent_buffer(log_tree_root->node);
2290 kfree(log_tree_root);
2291 return ret;
2292 }
2293
2294 if (sb_rdonly(fs_info->sb)) {
2295 ret = btrfs_commit_super(fs_info);
2296 if (ret)
2297 return ret;
2298 }
2299
2300 return 0;
2301}
2302
2303static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2304{
2305 struct btrfs_root *tree_root = fs_info->tree_root;
2306 struct btrfs_root *root;
2307 struct btrfs_key location;
2308 int ret;
2309
2310 BUG_ON(!fs_info->tree_root);
2311
2312 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2313 location.type = BTRFS_ROOT_ITEM_KEY;
2314 location.offset = 0;
2315
2316 root = btrfs_read_tree_root(tree_root, &location);
2317 if (IS_ERR(root)) {
2318 ret = PTR_ERR(root);
2319 goto out;
2320 }
2321 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2322 fs_info->extent_root = root;
2323
2324 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2325 root = btrfs_read_tree_root(tree_root, &location);
2326 if (IS_ERR(root)) {
2327 ret = PTR_ERR(root);
2328 goto out;
2329 }
2330 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2331 fs_info->dev_root = root;
2332 btrfs_init_devices_late(fs_info);
2333
2334 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2335 root = btrfs_read_tree_root(tree_root, &location);
2336 if (IS_ERR(root)) {
2337 ret = PTR_ERR(root);
2338 goto out;
2339 }
2340 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2341 fs_info->csum_root = root;
2342
2343 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2344 root = btrfs_read_tree_root(tree_root, &location);
2345 if (!IS_ERR(root)) {
2346 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2347 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2348 fs_info->quota_root = root;
2349 }
2350
2351 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2352 root = btrfs_read_tree_root(tree_root, &location);
2353 if (IS_ERR(root)) {
2354 ret = PTR_ERR(root);
2355 if (ret != -ENOENT)
2356 goto out;
2357 } else {
2358 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2359 fs_info->uuid_root = root;
2360 }
2361
2362 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2363 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2364 root = btrfs_read_tree_root(tree_root, &location);
2365 if (IS_ERR(root)) {
2366 ret = PTR_ERR(root);
2367 goto out;
2368 }
2369 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2370 fs_info->free_space_root = root;
2371 }
2372
2373 return 0;
2374out:
2375 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2376 location.objectid, ret);
2377 return ret;
2378}
2379
2380/*
2381 * Real super block validation
2382 * NOTE: super csum type and incompat features will not be checked here.
2383 *
2384 * @sb: super block to check
2385 * @mirror_num: the super block number to check its bytenr:
2386 * 0 the primary (1st) sb
2387 * 1, 2 2nd and 3rd backup copy
2388 * -1 skip bytenr check
2389 */
2390static int validate_super(struct btrfs_fs_info *fs_info,
2391 struct btrfs_super_block *sb, int mirror_num)
2392{
2393 u64 nodesize = btrfs_super_nodesize(sb);
2394 u64 sectorsize = btrfs_super_sectorsize(sb);
2395 int ret = 0;
2396
2397 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2398 btrfs_err(fs_info, "no valid FS found");
2399 ret = -EINVAL;
2400 }
2401 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2402 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2403 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2404 ret = -EINVAL;
2405 }
2406 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2407 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2408 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2409 ret = -EINVAL;
2410 }
2411 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2412 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2413 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2414 ret = -EINVAL;
2415 }
2416 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2417 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2418 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2419 ret = -EINVAL;
2420 }
2421
2422 /*
2423 * Check sectorsize and nodesize first, other check will need it.
2424 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2425 */
2426 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2427 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2428 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2429 ret = -EINVAL;
2430 }
2431 /* Only PAGE SIZE is supported yet */
2432 if (sectorsize != PAGE_SIZE) {
2433 btrfs_err(fs_info,
2434 "sectorsize %llu not supported yet, only support %lu",
2435 sectorsize, PAGE_SIZE);
2436 ret = -EINVAL;
2437 }
2438 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2439 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2440 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2441 ret = -EINVAL;
2442 }
2443 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2444 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2445 le32_to_cpu(sb->__unused_leafsize), nodesize);
2446 ret = -EINVAL;
2447 }
2448
2449 /* Root alignment check */
2450 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2451 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2452 btrfs_super_root(sb));
2453 ret = -EINVAL;
2454 }
2455 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2456 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2457 btrfs_super_chunk_root(sb));
2458 ret = -EINVAL;
2459 }
2460 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2461 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2462 btrfs_super_log_root(sb));
2463 ret = -EINVAL;
2464 }
2465
Olivier Deprez0e641232021-09-23 10:07:05 +02002466 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2467 BTRFS_FSID_SIZE)) {
2468 btrfs_err(fs_info,
2469 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2470 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2471 ret = -EINVAL;
2472 }
2473
2474 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2475 memcmp(fs_info->fs_devices->metadata_uuid,
2476 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2477 btrfs_err(fs_info,
2478"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2479 fs_info->super_copy->metadata_uuid,
2480 fs_info->fs_devices->metadata_uuid);
2481 ret = -EINVAL;
2482 }
2483
David Brazdil0f672f62019-12-10 10:32:29 +00002484 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2485 BTRFS_FSID_SIZE) != 0) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002486 btrfs_err(fs_info,
David Brazdil0f672f62019-12-10 10:32:29 +00002487 "dev_item UUID does not match metadata fsid: %pU != %pU",
2488 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002489 ret = -EINVAL;
2490 }
2491
2492 /*
2493 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2494 * done later
2495 */
2496 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2497 btrfs_err(fs_info, "bytes_used is too small %llu",
2498 btrfs_super_bytes_used(sb));
2499 ret = -EINVAL;
2500 }
2501 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2502 btrfs_err(fs_info, "invalid stripesize %u",
2503 btrfs_super_stripesize(sb));
2504 ret = -EINVAL;
2505 }
2506 if (btrfs_super_num_devices(sb) > (1UL << 31))
2507 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2508 btrfs_super_num_devices(sb));
2509 if (btrfs_super_num_devices(sb) == 0) {
2510 btrfs_err(fs_info, "number of devices is 0");
2511 ret = -EINVAL;
2512 }
2513
2514 if (mirror_num >= 0 &&
2515 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2516 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2517 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2518 ret = -EINVAL;
2519 }
2520
2521 /*
2522 * Obvious sys_chunk_array corruptions, it must hold at least one key
2523 * and one chunk
2524 */
2525 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2526 btrfs_err(fs_info, "system chunk array too big %u > %u",
2527 btrfs_super_sys_array_size(sb),
2528 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2529 ret = -EINVAL;
2530 }
2531 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2532 + sizeof(struct btrfs_chunk)) {
2533 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2534 btrfs_super_sys_array_size(sb),
2535 sizeof(struct btrfs_disk_key)
2536 + sizeof(struct btrfs_chunk));
2537 ret = -EINVAL;
2538 }
2539
2540 /*
2541 * The generation is a global counter, we'll trust it more than the others
2542 * but it's still possible that it's the one that's wrong.
2543 */
2544 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2545 btrfs_warn(fs_info,
2546 "suspicious: generation < chunk_root_generation: %llu < %llu",
2547 btrfs_super_generation(sb),
2548 btrfs_super_chunk_root_generation(sb));
2549 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2550 && btrfs_super_cache_generation(sb) != (u64)-1)
2551 btrfs_warn(fs_info,
2552 "suspicious: generation < cache_generation: %llu < %llu",
2553 btrfs_super_generation(sb),
2554 btrfs_super_cache_generation(sb));
2555
2556 return ret;
2557}
2558
2559/*
2560 * Validation of super block at mount time.
2561 * Some checks already done early at mount time, like csum type and incompat
2562 * flags will be skipped.
2563 */
2564static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2565{
2566 return validate_super(fs_info, fs_info->super_copy, 0);
2567}
2568
2569/*
2570 * Validation of super block at write time.
2571 * Some checks like bytenr check will be skipped as their values will be
2572 * overwritten soon.
2573 * Extra checks like csum type and incompat flags will be done here.
2574 */
2575static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2576 struct btrfs_super_block *sb)
2577{
2578 int ret;
2579
2580 ret = validate_super(fs_info, sb, -1);
2581 if (ret < 0)
2582 goto out;
David Brazdil0f672f62019-12-10 10:32:29 +00002583 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002584 ret = -EUCLEAN;
2585 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2586 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2587 goto out;
2588 }
2589 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2590 ret = -EUCLEAN;
2591 btrfs_err(fs_info,
2592 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2593 btrfs_super_incompat_flags(sb),
2594 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2595 goto out;
2596 }
2597out:
2598 if (ret < 0)
2599 btrfs_err(fs_info,
2600 "super block corruption detected before writing it to disk");
2601 return ret;
2602}
2603
2604int open_ctree(struct super_block *sb,
2605 struct btrfs_fs_devices *fs_devices,
2606 char *options)
2607{
2608 u32 sectorsize;
2609 u32 nodesize;
2610 u32 stripesize;
2611 u64 generation;
2612 u64 features;
David Brazdil0f672f62019-12-10 10:32:29 +00002613 u16 csum_type;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002614 struct btrfs_key location;
2615 struct buffer_head *bh;
2616 struct btrfs_super_block *disk_super;
2617 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2618 struct btrfs_root *tree_root;
2619 struct btrfs_root *chunk_root;
2620 int ret;
2621 int err = -EINVAL;
2622 int num_backups_tried = 0;
2623 int backup_index = 0;
2624 int clear_free_space_tree = 0;
2625 int level;
2626
2627 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2628 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2629 if (!tree_root || !chunk_root) {
2630 err = -ENOMEM;
2631 goto fail;
2632 }
2633
2634 ret = init_srcu_struct(&fs_info->subvol_srcu);
2635 if (ret) {
2636 err = ret;
2637 goto fail;
2638 }
2639
David Brazdil0f672f62019-12-10 10:32:29 +00002640 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002641 if (ret) {
2642 err = ret;
2643 goto fail_srcu;
2644 }
David Brazdil0f672f62019-12-10 10:32:29 +00002645
2646 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2647 if (ret) {
2648 err = ret;
2649 goto fail_dio_bytes;
2650 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002651 fs_info->dirty_metadata_batch = PAGE_SIZE *
2652 (1 + ilog2(nr_cpu_ids));
2653
2654 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2655 if (ret) {
2656 err = ret;
2657 goto fail_dirty_metadata_bytes;
2658 }
2659
David Brazdil0f672f62019-12-10 10:32:29 +00002660 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2661 GFP_KERNEL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002662 if (ret) {
2663 err = ret;
2664 goto fail_delalloc_bytes;
2665 }
2666
2667 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2668 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2669 INIT_LIST_HEAD(&fs_info->trans_list);
2670 INIT_LIST_HEAD(&fs_info->dead_roots);
2671 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2672 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2673 INIT_LIST_HEAD(&fs_info->caching_block_groups);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002674 spin_lock_init(&fs_info->delalloc_root_lock);
2675 spin_lock_init(&fs_info->trans_lock);
2676 spin_lock_init(&fs_info->fs_roots_radix_lock);
2677 spin_lock_init(&fs_info->delayed_iput_lock);
2678 spin_lock_init(&fs_info->defrag_inodes_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002679 spin_lock_init(&fs_info->super_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002680 spin_lock_init(&fs_info->buffer_lock);
2681 spin_lock_init(&fs_info->unused_bgs_lock);
2682 rwlock_init(&fs_info->tree_mod_log_lock);
2683 mutex_init(&fs_info->unused_bg_unpin_mutex);
2684 mutex_init(&fs_info->delete_unused_bgs_mutex);
2685 mutex_init(&fs_info->reloc_mutex);
2686 mutex_init(&fs_info->delalloc_root_mutex);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002687 seqlock_init(&fs_info->profiles_lock);
2688
2689 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2690 INIT_LIST_HEAD(&fs_info->space_info);
2691 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2692 INIT_LIST_HEAD(&fs_info->unused_bgs);
David Brazdil0f672f62019-12-10 10:32:29 +00002693 extent_map_tree_init(&fs_info->mapping_tree);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002694 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2695 BTRFS_BLOCK_RSV_GLOBAL);
2696 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2697 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2698 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2699 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2700 BTRFS_BLOCK_RSV_DELOPS);
David Brazdil0f672f62019-12-10 10:32:29 +00002701 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2702 BTRFS_BLOCK_RSV_DELREFS);
2703
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002704 atomic_set(&fs_info->async_delalloc_pages, 0);
2705 atomic_set(&fs_info->defrag_running, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002706 atomic_set(&fs_info->reada_works_cnt, 0);
David Brazdil0f672f62019-12-10 10:32:29 +00002707 atomic_set(&fs_info->nr_delayed_iputs, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002708 atomic64_set(&fs_info->tree_mod_seq, 0);
2709 fs_info->sb = sb;
2710 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2711 fs_info->metadata_ratio = 0;
2712 fs_info->defrag_inodes = RB_ROOT;
2713 atomic64_set(&fs_info->free_chunk_space, 0);
2714 fs_info->tree_mod_log = RB_ROOT;
2715 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2716 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2717 /* readahead state */
2718 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2719 spin_lock_init(&fs_info->reada_lock);
2720 btrfs_init_ref_verify(fs_info);
2721
2722 fs_info->thread_pool_size = min_t(unsigned long,
2723 num_online_cpus() + 2, 8);
2724
2725 INIT_LIST_HEAD(&fs_info->ordered_roots);
2726 spin_lock_init(&fs_info->ordered_root_lock);
2727
2728 fs_info->btree_inode = new_inode(sb);
2729 if (!fs_info->btree_inode) {
2730 err = -ENOMEM;
2731 goto fail_bio_counter;
2732 }
2733 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2734
2735 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2736 GFP_KERNEL);
2737 if (!fs_info->delayed_root) {
2738 err = -ENOMEM;
2739 goto fail_iput;
2740 }
2741 btrfs_init_delayed_root(fs_info->delayed_root);
2742
2743 btrfs_init_scrub(fs_info);
2744#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2745 fs_info->check_integrity_print_mask = 0;
2746#endif
2747 btrfs_init_balance(fs_info);
2748 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2749
2750 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2751 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2752
2753 btrfs_init_btree_inode(fs_info);
2754
2755 spin_lock_init(&fs_info->block_group_cache_lock);
2756 fs_info->block_group_cache_tree = RB_ROOT;
2757 fs_info->first_logical_byte = (u64)-1;
2758
David Brazdil0f672f62019-12-10 10:32:29 +00002759 extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2760 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2761 extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2762 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002763 fs_info->pinned_extents = &fs_info->freed_extents[0];
2764 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2765
2766 mutex_init(&fs_info->ordered_operations_mutex);
2767 mutex_init(&fs_info->tree_log_mutex);
2768 mutex_init(&fs_info->chunk_mutex);
2769 mutex_init(&fs_info->transaction_kthread_mutex);
2770 mutex_init(&fs_info->cleaner_mutex);
2771 mutex_init(&fs_info->ro_block_group_mutex);
2772 init_rwsem(&fs_info->commit_root_sem);
2773 init_rwsem(&fs_info->cleanup_work_sem);
2774 init_rwsem(&fs_info->subvol_sem);
2775 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2776
2777 btrfs_init_dev_replace_locks(fs_info);
2778 btrfs_init_qgroup(fs_info);
2779
2780 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2781 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2782
2783 init_waitqueue_head(&fs_info->transaction_throttle);
2784 init_waitqueue_head(&fs_info->transaction_wait);
2785 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2786 init_waitqueue_head(&fs_info->async_submit_wait);
David Brazdil0f672f62019-12-10 10:32:29 +00002787 init_waitqueue_head(&fs_info->delayed_iputs_wait);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002788
2789 /* Usable values until the real ones are cached from the superblock */
2790 fs_info->nodesize = 4096;
2791 fs_info->sectorsize = 4096;
2792 fs_info->stripesize = 4096;
2793
David Brazdil0f672f62019-12-10 10:32:29 +00002794 spin_lock_init(&fs_info->swapfile_pins_lock);
2795 fs_info->swapfile_pins = RB_ROOT;
2796
2797 fs_info->send_in_progress = 0;
2798
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002799 ret = btrfs_alloc_stripe_hash_table(fs_info);
2800 if (ret) {
2801 err = ret;
2802 goto fail_alloc;
2803 }
2804
2805 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2806
2807 invalidate_bdev(fs_devices->latest_bdev);
2808
2809 /*
2810 * Read super block and check the signature bytes only
2811 */
2812 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2813 if (IS_ERR(bh)) {
2814 err = PTR_ERR(bh);
2815 goto fail_alloc;
2816 }
2817
2818 /*
Olivier Deprez0e641232021-09-23 10:07:05 +02002819 * Verify the type first, if that or the checksum value are
David Brazdil0f672f62019-12-10 10:32:29 +00002820 * corrupted, we'll find out
2821 */
2822 csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2823 if (!btrfs_supported_super_csum(csum_type)) {
2824 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2825 csum_type);
2826 err = -EINVAL;
2827 brelse(bh);
2828 goto fail_alloc;
2829 }
2830
2831 ret = btrfs_init_csum_hash(fs_info, csum_type);
2832 if (ret) {
2833 err = ret;
2834 goto fail_alloc;
2835 }
2836
2837 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002838 * We want to check superblock checksum, the type is stored inside.
2839 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2840 */
2841 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2842 btrfs_err(fs_info, "superblock checksum mismatch");
2843 err = -EINVAL;
2844 brelse(bh);
David Brazdil0f672f62019-12-10 10:32:29 +00002845 goto fail_csum;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002846 }
2847
2848 /*
2849 * super_copy is zeroed at allocation time and we never touch the
2850 * following bytes up to INFO_SIZE, the checksum is calculated from
2851 * the whole block of INFO_SIZE
2852 */
2853 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002854 brelse(bh);
2855
David Brazdil0f672f62019-12-10 10:32:29 +00002856 disk_super = fs_info->super_copy;
2857
David Brazdil0f672f62019-12-10 10:32:29 +00002858
2859 features = btrfs_super_flags(disk_super);
2860 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2861 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2862 btrfs_set_super_flags(disk_super, features);
2863 btrfs_info(fs_info,
2864 "found metadata UUID change in progress flag, clearing");
2865 }
2866
2867 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2868 sizeof(*fs_info->super_for_commit));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002869
2870 ret = btrfs_validate_mount_super(fs_info);
2871 if (ret) {
2872 btrfs_err(fs_info, "superblock contains fatal errors");
2873 err = -EINVAL;
David Brazdil0f672f62019-12-10 10:32:29 +00002874 goto fail_csum;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002875 }
2876
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002877 if (!btrfs_super_root(disk_super))
David Brazdil0f672f62019-12-10 10:32:29 +00002878 goto fail_csum;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002879
2880 /* check FS state, whether FS is broken. */
2881 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2882 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2883
2884 /*
2885 * run through our array of backup supers and setup
2886 * our ring pointer to the oldest one
2887 */
2888 generation = btrfs_super_generation(disk_super);
2889 find_oldest_super_backup(fs_info, generation);
2890
2891 /*
2892 * In the long term, we'll store the compression type in the super
2893 * block, and it'll be used for per file compression control.
2894 */
2895 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2896
Olivier Deprez0e641232021-09-23 10:07:05 +02002897 /*
2898 * Flag our filesystem as having big metadata blocks if they are bigger
2899 * than the page size
2900 */
2901 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2902 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2903 btrfs_info(fs_info,
2904 "flagging fs with big metadata feature");
2905 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2906 }
2907
2908 /* Set up fs_info before parsing mount options */
2909 nodesize = btrfs_super_nodesize(disk_super);
2910 sectorsize = btrfs_super_sectorsize(disk_super);
2911 stripesize = sectorsize;
2912 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2913 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2914
2915 /* Cache block sizes */
2916 fs_info->nodesize = nodesize;
2917 fs_info->sectorsize = sectorsize;
2918 fs_info->stripesize = stripesize;
2919
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002920 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2921 if (ret) {
2922 err = ret;
David Brazdil0f672f62019-12-10 10:32:29 +00002923 goto fail_csum;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002924 }
2925
2926 features = btrfs_super_incompat_flags(disk_super) &
2927 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2928 if (features) {
2929 btrfs_err(fs_info,
2930 "cannot mount because of unsupported optional features (%llx)",
2931 features);
2932 err = -EINVAL;
David Brazdil0f672f62019-12-10 10:32:29 +00002933 goto fail_csum;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002934 }
2935
2936 features = btrfs_super_incompat_flags(disk_super);
2937 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2938 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2939 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2940 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2941 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2942
2943 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2944 btrfs_info(fs_info, "has skinny extents");
2945
2946 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002947 * mixed block groups end up with duplicate but slightly offset
2948 * extent buffers for the same range. It leads to corruptions
2949 */
2950 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2951 (sectorsize != nodesize)) {
2952 btrfs_err(fs_info,
2953"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2954 nodesize, sectorsize);
David Brazdil0f672f62019-12-10 10:32:29 +00002955 goto fail_csum;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002956 }
2957
2958 /*
2959 * Needn't use the lock because there is no other task which will
2960 * update the flag.
2961 */
2962 btrfs_set_super_incompat_flags(disk_super, features);
2963
2964 features = btrfs_super_compat_ro_flags(disk_super) &
2965 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2966 if (!sb_rdonly(sb) && features) {
2967 btrfs_err(fs_info,
2968 "cannot mount read-write because of unsupported optional features (%llx)",
2969 features);
2970 err = -EINVAL;
David Brazdil0f672f62019-12-10 10:32:29 +00002971 goto fail_csum;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002972 }
2973
2974 ret = btrfs_init_workqueues(fs_info, fs_devices);
2975 if (ret) {
2976 err = ret;
2977 goto fail_sb_buffer;
2978 }
2979
2980 sb->s_bdi->congested_fn = btrfs_congested_fn;
2981 sb->s_bdi->congested_data = fs_info;
2982 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
David Brazdil0f672f62019-12-10 10:32:29 +00002983 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002984 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2985 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2986
2987 sb->s_blocksize = sectorsize;
2988 sb->s_blocksize_bits = blksize_bits(sectorsize);
David Brazdil0f672f62019-12-10 10:32:29 +00002989 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002990
2991 mutex_lock(&fs_info->chunk_mutex);
2992 ret = btrfs_read_sys_array(fs_info);
2993 mutex_unlock(&fs_info->chunk_mutex);
2994 if (ret) {
2995 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2996 goto fail_sb_buffer;
2997 }
2998
2999 generation = btrfs_super_chunk_root_generation(disk_super);
3000 level = btrfs_super_chunk_root_level(disk_super);
3001
3002 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
3003
3004 chunk_root->node = read_tree_block(fs_info,
3005 btrfs_super_chunk_root(disk_super),
3006 generation, level, NULL);
3007 if (IS_ERR(chunk_root->node) ||
3008 !extent_buffer_uptodate(chunk_root->node)) {
3009 btrfs_err(fs_info, "failed to read chunk root");
3010 if (!IS_ERR(chunk_root->node))
3011 free_extent_buffer(chunk_root->node);
3012 chunk_root->node = NULL;
3013 goto fail_tree_roots;
3014 }
3015 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3016 chunk_root->commit_root = btrfs_root_node(chunk_root);
3017
3018 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3019 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3020
3021 ret = btrfs_read_chunk_tree(fs_info);
3022 if (ret) {
3023 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3024 goto fail_tree_roots;
3025 }
3026
3027 /*
3028 * Keep the devid that is marked to be the target device for the
3029 * device replace procedure
3030 */
3031 btrfs_free_extra_devids(fs_devices, 0);
3032
3033 if (!fs_devices->latest_bdev) {
3034 btrfs_err(fs_info, "failed to read devices");
3035 goto fail_tree_roots;
3036 }
3037
3038retry_root_backup:
3039 generation = btrfs_super_generation(disk_super);
3040 level = btrfs_super_root_level(disk_super);
3041
3042 tree_root->node = read_tree_block(fs_info,
3043 btrfs_super_root(disk_super),
3044 generation, level, NULL);
3045 if (IS_ERR(tree_root->node) ||
3046 !extent_buffer_uptodate(tree_root->node)) {
3047 btrfs_warn(fs_info, "failed to read tree root");
3048 if (!IS_ERR(tree_root->node))
3049 free_extent_buffer(tree_root->node);
3050 tree_root->node = NULL;
3051 goto recovery_tree_root;
3052 }
3053
3054 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3055 tree_root->commit_root = btrfs_root_node(tree_root);
3056 btrfs_set_root_refs(&tree_root->root_item, 1);
3057
3058 mutex_lock(&tree_root->objectid_mutex);
3059 ret = btrfs_find_highest_objectid(tree_root,
3060 &tree_root->highest_objectid);
3061 if (ret) {
3062 mutex_unlock(&tree_root->objectid_mutex);
3063 goto recovery_tree_root;
3064 }
3065
3066 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3067
3068 mutex_unlock(&tree_root->objectid_mutex);
3069
3070 ret = btrfs_read_roots(fs_info);
3071 if (ret)
3072 goto recovery_tree_root;
3073
3074 fs_info->generation = generation;
3075 fs_info->last_trans_committed = generation;
3076
Olivier Deprez0e641232021-09-23 10:07:05 +02003077 /*
3078 * If we have a uuid root and we're not being told to rescan we need to
3079 * check the generation here so we can set the
3080 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3081 * transaction during a balance or the log replay without updating the
3082 * uuid generation, and then if we crash we would rescan the uuid tree,
3083 * even though it was perfectly fine.
3084 */
3085 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3086 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3087 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3088
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003089 ret = btrfs_verify_dev_extents(fs_info);
3090 if (ret) {
3091 btrfs_err(fs_info,
3092 "failed to verify dev extents against chunks: %d",
3093 ret);
3094 goto fail_block_groups;
3095 }
3096 ret = btrfs_recover_balance(fs_info);
3097 if (ret) {
3098 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3099 goto fail_block_groups;
3100 }
3101
3102 ret = btrfs_init_dev_stats(fs_info);
3103 if (ret) {
3104 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3105 goto fail_block_groups;
3106 }
3107
3108 ret = btrfs_init_dev_replace(fs_info);
3109 if (ret) {
3110 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3111 goto fail_block_groups;
3112 }
3113
3114 btrfs_free_extra_devids(fs_devices, 1);
3115
3116 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3117 if (ret) {
3118 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3119 ret);
3120 goto fail_block_groups;
3121 }
3122
3123 ret = btrfs_sysfs_add_device(fs_devices);
3124 if (ret) {
3125 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3126 ret);
3127 goto fail_fsdev_sysfs;
3128 }
3129
3130 ret = btrfs_sysfs_add_mounted(fs_info);
3131 if (ret) {
3132 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3133 goto fail_fsdev_sysfs;
3134 }
3135
3136 ret = btrfs_init_space_info(fs_info);
3137 if (ret) {
3138 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3139 goto fail_sysfs;
3140 }
3141
3142 ret = btrfs_read_block_groups(fs_info);
3143 if (ret) {
3144 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3145 goto fail_sysfs;
3146 }
3147
3148 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3149 btrfs_warn(fs_info,
David Brazdil0f672f62019-12-10 10:32:29 +00003150 "writable mount is not allowed due to too many missing devices");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003151 goto fail_sysfs;
3152 }
3153
3154 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3155 "btrfs-cleaner");
3156 if (IS_ERR(fs_info->cleaner_kthread))
3157 goto fail_sysfs;
3158
3159 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3160 tree_root,
3161 "btrfs-transaction");
3162 if (IS_ERR(fs_info->transaction_kthread))
3163 goto fail_cleaner;
3164
3165 if (!btrfs_test_opt(fs_info, NOSSD) &&
3166 !fs_info->fs_devices->rotating) {
3167 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3168 }
3169
3170 /*
3171 * Mount does not set all options immediately, we can do it now and do
3172 * not have to wait for transaction commit
3173 */
3174 btrfs_apply_pending_changes(fs_info);
3175
3176#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3177 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3178 ret = btrfsic_mount(fs_info, fs_devices,
3179 btrfs_test_opt(fs_info,
3180 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3181 1 : 0,
3182 fs_info->check_integrity_print_mask);
3183 if (ret)
3184 btrfs_warn(fs_info,
3185 "failed to initialize integrity check module: %d",
3186 ret);
3187 }
3188#endif
3189 ret = btrfs_read_qgroup_config(fs_info);
3190 if (ret)
3191 goto fail_trans_kthread;
3192
3193 if (btrfs_build_ref_tree(fs_info))
3194 btrfs_err(fs_info, "couldn't build ref tree");
3195
3196 /* do not make disk changes in broken FS or nologreplay is given */
3197 if (btrfs_super_log_root(disk_super) != 0 &&
3198 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
Olivier Deprez0e641232021-09-23 10:07:05 +02003199 btrfs_info(fs_info, "start tree-log replay");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003200 ret = btrfs_replay_log(fs_info, fs_devices);
3201 if (ret) {
3202 err = ret;
3203 goto fail_qgroup;
3204 }
3205 }
3206
3207 ret = btrfs_find_orphan_roots(fs_info);
3208 if (ret)
3209 goto fail_qgroup;
3210
3211 if (!sb_rdonly(sb)) {
3212 ret = btrfs_cleanup_fs_roots(fs_info);
3213 if (ret)
3214 goto fail_qgroup;
3215
3216 mutex_lock(&fs_info->cleaner_mutex);
3217 ret = btrfs_recover_relocation(tree_root);
3218 mutex_unlock(&fs_info->cleaner_mutex);
3219 if (ret < 0) {
3220 btrfs_warn(fs_info, "failed to recover relocation: %d",
3221 ret);
3222 err = -EINVAL;
3223 goto fail_qgroup;
3224 }
3225 }
3226
3227 location.objectid = BTRFS_FS_TREE_OBJECTID;
3228 location.type = BTRFS_ROOT_ITEM_KEY;
3229 location.offset = 0;
3230
3231 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3232 if (IS_ERR(fs_info->fs_root)) {
3233 err = PTR_ERR(fs_info->fs_root);
3234 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
Olivier Deprez0e641232021-09-23 10:07:05 +02003235 fs_info->fs_root = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003236 goto fail_qgroup;
3237 }
3238
3239 if (sb_rdonly(sb))
3240 return 0;
3241
3242 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3243 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3244 clear_free_space_tree = 1;
3245 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3246 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3247 btrfs_warn(fs_info, "free space tree is invalid");
3248 clear_free_space_tree = 1;
3249 }
3250
3251 if (clear_free_space_tree) {
3252 btrfs_info(fs_info, "clearing free space tree");
3253 ret = btrfs_clear_free_space_tree(fs_info);
3254 if (ret) {
3255 btrfs_warn(fs_info,
3256 "failed to clear free space tree: %d", ret);
3257 close_ctree(fs_info);
3258 return ret;
3259 }
3260 }
3261
3262 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3263 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3264 btrfs_info(fs_info, "creating free space tree");
3265 ret = btrfs_create_free_space_tree(fs_info);
3266 if (ret) {
3267 btrfs_warn(fs_info,
3268 "failed to create free space tree: %d", ret);
3269 close_ctree(fs_info);
3270 return ret;
3271 }
3272 }
3273
3274 down_read(&fs_info->cleanup_work_sem);
3275 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3276 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3277 up_read(&fs_info->cleanup_work_sem);
3278 close_ctree(fs_info);
3279 return ret;
3280 }
3281 up_read(&fs_info->cleanup_work_sem);
3282
3283 ret = btrfs_resume_balance_async(fs_info);
3284 if (ret) {
3285 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3286 close_ctree(fs_info);
3287 return ret;
3288 }
3289
3290 ret = btrfs_resume_dev_replace_async(fs_info);
3291 if (ret) {
3292 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3293 close_ctree(fs_info);
3294 return ret;
3295 }
3296
3297 btrfs_qgroup_rescan_resume(fs_info);
3298
3299 if (!fs_info->uuid_root) {
3300 btrfs_info(fs_info, "creating UUID tree");
3301 ret = btrfs_create_uuid_tree(fs_info);
3302 if (ret) {
3303 btrfs_warn(fs_info,
3304 "failed to create the UUID tree: %d", ret);
3305 close_ctree(fs_info);
3306 return ret;
3307 }
3308 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3309 fs_info->generation !=
3310 btrfs_super_uuid_tree_generation(disk_super)) {
3311 btrfs_info(fs_info, "checking UUID tree");
3312 ret = btrfs_check_uuid_tree(fs_info);
3313 if (ret) {
3314 btrfs_warn(fs_info,
3315 "failed to check the UUID tree: %d", ret);
3316 close_ctree(fs_info);
3317 return ret;
3318 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003319 }
3320 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3321
3322 /*
3323 * backuproot only affect mount behavior, and if open_ctree succeeded,
3324 * no need to keep the flag
3325 */
3326 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3327
3328 return 0;
3329
3330fail_qgroup:
3331 btrfs_free_qgroup_config(fs_info);
3332fail_trans_kthread:
3333 kthread_stop(fs_info->transaction_kthread);
3334 btrfs_cleanup_transaction(fs_info);
3335 btrfs_free_fs_roots(fs_info);
3336fail_cleaner:
3337 kthread_stop(fs_info->cleaner_kthread);
3338
3339 /*
3340 * make sure we're done with the btree inode before we stop our
3341 * kthreads
3342 */
3343 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3344
3345fail_sysfs:
3346 btrfs_sysfs_remove_mounted(fs_info);
3347
3348fail_fsdev_sysfs:
3349 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3350
3351fail_block_groups:
3352 btrfs_put_block_group_cache(fs_info);
3353
3354fail_tree_roots:
Olivier Deprez0e641232021-09-23 10:07:05 +02003355 free_root_pointers(fs_info, true);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003356 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3357
3358fail_sb_buffer:
3359 btrfs_stop_all_workers(fs_info);
3360 btrfs_free_block_groups(fs_info);
David Brazdil0f672f62019-12-10 10:32:29 +00003361fail_csum:
3362 btrfs_free_csum_hash(fs_info);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003363fail_alloc:
3364fail_iput:
3365 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3366
3367 iput(fs_info->btree_inode);
3368fail_bio_counter:
David Brazdil0f672f62019-12-10 10:32:29 +00003369 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003370fail_delalloc_bytes:
3371 percpu_counter_destroy(&fs_info->delalloc_bytes);
3372fail_dirty_metadata_bytes:
3373 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
David Brazdil0f672f62019-12-10 10:32:29 +00003374fail_dio_bytes:
3375 percpu_counter_destroy(&fs_info->dio_bytes);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003376fail_srcu:
3377 cleanup_srcu_struct(&fs_info->subvol_srcu);
3378fail:
3379 btrfs_free_stripe_hash_table(fs_info);
3380 btrfs_close_devices(fs_info->fs_devices);
3381 return err;
3382
3383recovery_tree_root:
3384 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3385 goto fail_tree_roots;
3386
Olivier Deprez0e641232021-09-23 10:07:05 +02003387 free_root_pointers(fs_info, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003388
3389 /* don't use the log in recovery mode, it won't be valid */
3390 btrfs_set_super_log_root(disk_super, 0);
3391
3392 /* we can't trust the free space cache either */
3393 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3394
3395 ret = next_root_backup(fs_info, fs_info->super_copy,
3396 &num_backups_tried, &backup_index);
3397 if (ret == -1)
3398 goto fail_block_groups;
3399 goto retry_root_backup;
3400}
3401ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3402
3403static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3404{
3405 if (uptodate) {
3406 set_buffer_uptodate(bh);
3407 } else {
3408 struct btrfs_device *device = (struct btrfs_device *)
3409 bh->b_private;
3410
3411 btrfs_warn_rl_in_rcu(device->fs_info,
3412 "lost page write due to IO error on %s",
3413 rcu_str_deref(device->name));
3414 /* note, we don't set_buffer_write_io_error because we have
3415 * our own ways of dealing with the IO errors
3416 */
3417 clear_buffer_uptodate(bh);
3418 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3419 }
3420 unlock_buffer(bh);
3421 put_bh(bh);
3422}
3423
3424int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3425 struct buffer_head **bh_ret)
3426{
3427 struct buffer_head *bh;
3428 struct btrfs_super_block *super;
3429 u64 bytenr;
3430
3431 bytenr = btrfs_sb_offset(copy_num);
3432 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3433 return -EINVAL;
3434
3435 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3436 /*
3437 * If we fail to read from the underlying devices, as of now
3438 * the best option we have is to mark it EIO.
3439 */
3440 if (!bh)
3441 return -EIO;
3442
3443 super = (struct btrfs_super_block *)bh->b_data;
3444 if (btrfs_super_bytenr(super) != bytenr ||
3445 btrfs_super_magic(super) != BTRFS_MAGIC) {
3446 brelse(bh);
3447 return -EINVAL;
3448 }
3449
3450 *bh_ret = bh;
3451 return 0;
3452}
3453
3454
3455struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3456{
3457 struct buffer_head *bh;
3458 struct buffer_head *latest = NULL;
3459 struct btrfs_super_block *super;
3460 int i;
3461 u64 transid = 0;
3462 int ret = -EINVAL;
3463
3464 /* we would like to check all the supers, but that would make
3465 * a btrfs mount succeed after a mkfs from a different FS.
3466 * So, we need to add a special mount option to scan for
3467 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3468 */
3469 for (i = 0; i < 1; i++) {
3470 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3471 if (ret)
3472 continue;
3473
3474 super = (struct btrfs_super_block *)bh->b_data;
3475
3476 if (!latest || btrfs_super_generation(super) > transid) {
3477 brelse(latest);
3478 latest = bh;
3479 transid = btrfs_super_generation(super);
3480 } else {
3481 brelse(bh);
3482 }
3483 }
3484
3485 if (!latest)
3486 return ERR_PTR(ret);
3487
3488 return latest;
3489}
3490
3491/*
3492 * Write superblock @sb to the @device. Do not wait for completion, all the
3493 * buffer heads we write are pinned.
3494 *
3495 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3496 * the expected device size at commit time. Note that max_mirrors must be
3497 * same for write and wait phases.
3498 *
3499 * Return number of errors when buffer head is not found or submission fails.
3500 */
3501static int write_dev_supers(struct btrfs_device *device,
3502 struct btrfs_super_block *sb, int max_mirrors)
3503{
David Brazdil0f672f62019-12-10 10:32:29 +00003504 struct btrfs_fs_info *fs_info = device->fs_info;
3505 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003506 struct buffer_head *bh;
3507 int i;
3508 int ret;
3509 int errors = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003510 u64 bytenr;
3511 int op_flags;
3512
3513 if (max_mirrors == 0)
3514 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3515
David Brazdil0f672f62019-12-10 10:32:29 +00003516 shash->tfm = fs_info->csum_shash;
3517
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003518 for (i = 0; i < max_mirrors; i++) {
3519 bytenr = btrfs_sb_offset(i);
3520 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3521 device->commit_total_bytes)
3522 break;
3523
3524 btrfs_set_super_bytenr(sb, bytenr);
3525
David Brazdil0f672f62019-12-10 10:32:29 +00003526 crypto_shash_init(shash);
3527 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3528 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3529 crypto_shash_final(shash, sb->csum);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003530
3531 /* One reference for us, and we leave it for the caller */
3532 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3533 BTRFS_SUPER_INFO_SIZE);
3534 if (!bh) {
3535 btrfs_err(device->fs_info,
3536 "couldn't get super buffer head for bytenr %llu",
3537 bytenr);
3538 errors++;
3539 continue;
3540 }
3541
3542 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3543
3544 /* one reference for submit_bh */
3545 get_bh(bh);
3546
3547 set_buffer_uptodate(bh);
3548 lock_buffer(bh);
3549 bh->b_end_io = btrfs_end_buffer_write_sync;
3550 bh->b_private = device;
3551
3552 /*
3553 * we fua the first super. The others we allow
3554 * to go down lazy.
3555 */
3556 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3557 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3558 op_flags |= REQ_FUA;
3559 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3560 if (ret)
3561 errors++;
3562 }
3563 return errors < i ? 0 : -1;
3564}
3565
3566/*
3567 * Wait for write completion of superblocks done by write_dev_supers,
3568 * @max_mirrors same for write and wait phases.
3569 *
3570 * Return number of errors when buffer head is not found or not marked up to
3571 * date.
3572 */
3573static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3574{
3575 struct buffer_head *bh;
3576 int i;
3577 int errors = 0;
3578 bool primary_failed = false;
3579 u64 bytenr;
3580
3581 if (max_mirrors == 0)
3582 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3583
3584 for (i = 0; i < max_mirrors; i++) {
3585 bytenr = btrfs_sb_offset(i);
3586 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3587 device->commit_total_bytes)
3588 break;
3589
3590 bh = __find_get_block(device->bdev,
3591 bytenr / BTRFS_BDEV_BLOCKSIZE,
3592 BTRFS_SUPER_INFO_SIZE);
3593 if (!bh) {
3594 errors++;
3595 if (i == 0)
3596 primary_failed = true;
3597 continue;
3598 }
3599 wait_on_buffer(bh);
3600 if (!buffer_uptodate(bh)) {
3601 errors++;
3602 if (i == 0)
3603 primary_failed = true;
3604 }
3605
3606 /* drop our reference */
3607 brelse(bh);
3608
3609 /* drop the reference from the writing run */
3610 brelse(bh);
3611 }
3612
3613 /* log error, force error return */
3614 if (primary_failed) {
3615 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3616 device->devid);
3617 return -1;
3618 }
3619
3620 return errors < i ? 0 : -1;
3621}
3622
3623/*
3624 * endio for the write_dev_flush, this will wake anyone waiting
3625 * for the barrier when it is done
3626 */
3627static void btrfs_end_empty_barrier(struct bio *bio)
3628{
3629 complete(bio->bi_private);
3630}
3631
3632/*
3633 * Submit a flush request to the device if it supports it. Error handling is
3634 * done in the waiting counterpart.
3635 */
3636static void write_dev_flush(struct btrfs_device *device)
3637{
3638 struct request_queue *q = bdev_get_queue(device->bdev);
3639 struct bio *bio = device->flush_bio;
3640
3641 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3642 return;
3643
3644 bio_reset(bio);
3645 bio->bi_end_io = btrfs_end_empty_barrier;
3646 bio_set_dev(bio, device->bdev);
3647 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3648 init_completion(&device->flush_wait);
3649 bio->bi_private = &device->flush_wait;
3650
3651 btrfsic_submit_bio(bio);
3652 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3653}
3654
3655/*
3656 * If the flush bio has been submitted by write_dev_flush, wait for it.
3657 */
3658static blk_status_t wait_dev_flush(struct btrfs_device *device)
3659{
3660 struct bio *bio = device->flush_bio;
3661
3662 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3663 return BLK_STS_OK;
3664
3665 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3666 wait_for_completion_io(&device->flush_wait);
3667
3668 return bio->bi_status;
3669}
3670
3671static int check_barrier_error(struct btrfs_fs_info *fs_info)
3672{
3673 if (!btrfs_check_rw_degradable(fs_info, NULL))
3674 return -EIO;
3675 return 0;
3676}
3677
3678/*
3679 * send an empty flush down to each device in parallel,
3680 * then wait for them
3681 */
3682static int barrier_all_devices(struct btrfs_fs_info *info)
3683{
3684 struct list_head *head;
3685 struct btrfs_device *dev;
3686 int errors_wait = 0;
3687 blk_status_t ret;
3688
3689 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3690 /* send down all the barriers */
3691 head = &info->fs_devices->devices;
3692 list_for_each_entry(dev, head, dev_list) {
3693 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3694 continue;
3695 if (!dev->bdev)
3696 continue;
3697 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3698 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3699 continue;
3700
3701 write_dev_flush(dev);
3702 dev->last_flush_error = BLK_STS_OK;
3703 }
3704
3705 /* wait for all the barriers */
3706 list_for_each_entry(dev, head, dev_list) {
3707 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3708 continue;
3709 if (!dev->bdev) {
3710 errors_wait++;
3711 continue;
3712 }
3713 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3714 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3715 continue;
3716
3717 ret = wait_dev_flush(dev);
3718 if (ret) {
3719 dev->last_flush_error = ret;
3720 btrfs_dev_stat_inc_and_print(dev,
3721 BTRFS_DEV_STAT_FLUSH_ERRS);
3722 errors_wait++;
3723 }
3724 }
3725
3726 if (errors_wait) {
3727 /*
3728 * At some point we need the status of all disks
3729 * to arrive at the volume status. So error checking
3730 * is being pushed to a separate loop.
3731 */
3732 return check_barrier_error(info);
3733 }
3734 return 0;
3735}
3736
3737int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3738{
3739 int raid_type;
3740 int min_tolerated = INT_MAX;
3741
3742 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3743 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
David Brazdil0f672f62019-12-10 10:32:29 +00003744 min_tolerated = min_t(int, min_tolerated,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003745 btrfs_raid_array[BTRFS_RAID_SINGLE].
3746 tolerated_failures);
3747
3748 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3749 if (raid_type == BTRFS_RAID_SINGLE)
3750 continue;
3751 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3752 continue;
David Brazdil0f672f62019-12-10 10:32:29 +00003753 min_tolerated = min_t(int, min_tolerated,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003754 btrfs_raid_array[raid_type].
3755 tolerated_failures);
3756 }
3757
3758 if (min_tolerated == INT_MAX) {
3759 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3760 min_tolerated = 0;
3761 }
3762
3763 return min_tolerated;
3764}
3765
3766int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3767{
3768 struct list_head *head;
3769 struct btrfs_device *dev;
3770 struct btrfs_super_block *sb;
3771 struct btrfs_dev_item *dev_item;
3772 int ret;
3773 int do_barriers;
3774 int max_errors;
3775 int total_errors = 0;
3776 u64 flags;
3777
3778 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3779
3780 /*
3781 * max_mirrors == 0 indicates we're from commit_transaction,
3782 * not from fsync where the tree roots in fs_info have not
3783 * been consistent on disk.
3784 */
3785 if (max_mirrors == 0)
3786 backup_super_roots(fs_info);
3787
3788 sb = fs_info->super_for_commit;
3789 dev_item = &sb->dev_item;
3790
3791 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3792 head = &fs_info->fs_devices->devices;
3793 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3794
3795 if (do_barriers) {
3796 ret = barrier_all_devices(fs_info);
3797 if (ret) {
3798 mutex_unlock(
3799 &fs_info->fs_devices->device_list_mutex);
3800 btrfs_handle_fs_error(fs_info, ret,
3801 "errors while submitting device barriers.");
3802 return ret;
3803 }
3804 }
3805
3806 list_for_each_entry(dev, head, dev_list) {
3807 if (!dev->bdev) {
3808 total_errors++;
3809 continue;
3810 }
3811 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3812 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3813 continue;
3814
3815 btrfs_set_stack_device_generation(dev_item, 0);
3816 btrfs_set_stack_device_type(dev_item, dev->type);
3817 btrfs_set_stack_device_id(dev_item, dev->devid);
3818 btrfs_set_stack_device_total_bytes(dev_item,
3819 dev->commit_total_bytes);
3820 btrfs_set_stack_device_bytes_used(dev_item,
3821 dev->commit_bytes_used);
3822 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3823 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3824 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3825 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
David Brazdil0f672f62019-12-10 10:32:29 +00003826 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3827 BTRFS_FSID_SIZE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003828
3829 flags = btrfs_super_flags(sb);
3830 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3831
3832 ret = btrfs_validate_write_super(fs_info, sb);
3833 if (ret < 0) {
3834 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3835 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3836 "unexpected superblock corruption detected");
3837 return -EUCLEAN;
3838 }
3839
3840 ret = write_dev_supers(dev, sb, max_mirrors);
3841 if (ret)
3842 total_errors++;
3843 }
3844 if (total_errors > max_errors) {
3845 btrfs_err(fs_info, "%d errors while writing supers",
3846 total_errors);
3847 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3848
3849 /* FUA is masked off if unsupported and can't be the reason */
3850 btrfs_handle_fs_error(fs_info, -EIO,
3851 "%d errors while writing supers",
3852 total_errors);
3853 return -EIO;
3854 }
3855
3856 total_errors = 0;
3857 list_for_each_entry(dev, head, dev_list) {
3858 if (!dev->bdev)
3859 continue;
3860 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3861 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3862 continue;
3863
3864 ret = wait_dev_supers(dev, max_mirrors);
3865 if (ret)
3866 total_errors++;
3867 }
3868 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3869 if (total_errors > max_errors) {
3870 btrfs_handle_fs_error(fs_info, -EIO,
3871 "%d errors while writing supers",
3872 total_errors);
3873 return -EIO;
3874 }
3875 return 0;
3876}
3877
3878/* Drop a fs root from the radix tree and free it. */
3879void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3880 struct btrfs_root *root)
3881{
3882 spin_lock(&fs_info->fs_roots_radix_lock);
3883 radix_tree_delete(&fs_info->fs_roots_radix,
3884 (unsigned long)root->root_key.objectid);
3885 spin_unlock(&fs_info->fs_roots_radix_lock);
3886
3887 if (btrfs_root_refs(&root->root_item) == 0)
3888 synchronize_srcu(&fs_info->subvol_srcu);
3889
3890 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3891 btrfs_free_log(NULL, root);
3892 if (root->reloc_root) {
3893 free_extent_buffer(root->reloc_root->node);
3894 free_extent_buffer(root->reloc_root->commit_root);
3895 btrfs_put_fs_root(root->reloc_root);
3896 root->reloc_root = NULL;
3897 }
3898 }
3899
3900 if (root->free_ino_pinned)
3901 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3902 if (root->free_ino_ctl)
3903 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3904 btrfs_free_fs_root(root);
3905}
3906
3907void btrfs_free_fs_root(struct btrfs_root *root)
3908{
3909 iput(root->ino_cache_inode);
3910 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3911 if (root->anon_dev)
3912 free_anon_bdev(root->anon_dev);
3913 if (root->subv_writers)
3914 btrfs_free_subvolume_writers(root->subv_writers);
3915 free_extent_buffer(root->node);
3916 free_extent_buffer(root->commit_root);
3917 kfree(root->free_ino_ctl);
3918 kfree(root->free_ino_pinned);
3919 btrfs_put_fs_root(root);
3920}
3921
3922int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3923{
3924 u64 root_objectid = 0;
3925 struct btrfs_root *gang[8];
3926 int i = 0;
3927 int err = 0;
3928 unsigned int ret = 0;
3929 int index;
3930
3931 while (1) {
3932 index = srcu_read_lock(&fs_info->subvol_srcu);
3933 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3934 (void **)gang, root_objectid,
3935 ARRAY_SIZE(gang));
3936 if (!ret) {
3937 srcu_read_unlock(&fs_info->subvol_srcu, index);
3938 break;
3939 }
3940 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3941
3942 for (i = 0; i < ret; i++) {
3943 /* Avoid to grab roots in dead_roots */
3944 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3945 gang[i] = NULL;
3946 continue;
3947 }
3948 /* grab all the search result for later use */
3949 gang[i] = btrfs_grab_fs_root(gang[i]);
3950 }
3951 srcu_read_unlock(&fs_info->subvol_srcu, index);
3952
3953 for (i = 0; i < ret; i++) {
3954 if (!gang[i])
3955 continue;
3956 root_objectid = gang[i]->root_key.objectid;
3957 err = btrfs_orphan_cleanup(gang[i]);
3958 if (err)
3959 break;
3960 btrfs_put_fs_root(gang[i]);
3961 }
3962 root_objectid++;
3963 }
3964
3965 /* release the uncleaned roots due to error */
3966 for (; i < ret; i++) {
3967 if (gang[i])
3968 btrfs_put_fs_root(gang[i]);
3969 }
3970 return err;
3971}
3972
3973int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3974{
3975 struct btrfs_root *root = fs_info->tree_root;
3976 struct btrfs_trans_handle *trans;
3977
3978 mutex_lock(&fs_info->cleaner_mutex);
3979 btrfs_run_delayed_iputs(fs_info);
3980 mutex_unlock(&fs_info->cleaner_mutex);
3981 wake_up_process(fs_info->cleaner_kthread);
3982
3983 /* wait until ongoing cleanup work done */
3984 down_write(&fs_info->cleanup_work_sem);
3985 up_write(&fs_info->cleanup_work_sem);
3986
3987 trans = btrfs_join_transaction(root);
3988 if (IS_ERR(trans))
3989 return PTR_ERR(trans);
3990 return btrfs_commit_transaction(trans);
3991}
3992
3993void close_ctree(struct btrfs_fs_info *fs_info)
3994{
3995 int ret;
3996
3997 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3998 /*
3999 * We don't want the cleaner to start new transactions, add more delayed
4000 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4001 * because that frees the task_struct, and the transaction kthread might
4002 * still try to wake up the cleaner.
4003 */
4004 kthread_park(fs_info->cleaner_kthread);
4005
4006 /* wait for the qgroup rescan worker to stop */
4007 btrfs_qgroup_wait_for_completion(fs_info, false);
4008
4009 /* wait for the uuid_scan task to finish */
4010 down(&fs_info->uuid_tree_rescan_sem);
4011 /* avoid complains from lockdep et al., set sem back to initial state */
4012 up(&fs_info->uuid_tree_rescan_sem);
4013
4014 /* pause restriper - we want to resume on mount */
4015 btrfs_pause_balance(fs_info);
4016
4017 btrfs_dev_replace_suspend_for_unmount(fs_info);
4018
4019 btrfs_scrub_cancel(fs_info);
4020
4021 /* wait for any defraggers to finish */
4022 wait_event(fs_info->transaction_wait,
4023 (atomic_read(&fs_info->defrag_running) == 0));
4024
4025 /* clear out the rbtree of defraggable inodes */
4026 btrfs_cleanup_defrag_inodes(fs_info);
4027
4028 cancel_work_sync(&fs_info->async_reclaim_work);
4029
4030 if (!sb_rdonly(fs_info->sb)) {
4031 /*
4032 * The cleaner kthread is stopped, so do one final pass over
4033 * unused block groups.
4034 */
4035 btrfs_delete_unused_bgs(fs_info);
4036
Olivier Deprez0e641232021-09-23 10:07:05 +02004037 /*
4038 * There might be existing delayed inode workers still running
4039 * and holding an empty delayed inode item. We must wait for
4040 * them to complete first because they can create a transaction.
4041 * This happens when someone calls btrfs_balance_delayed_items()
4042 * and then a transaction commit runs the same delayed nodes
4043 * before any delayed worker has done something with the nodes.
4044 * We must wait for any worker here and not at transaction
4045 * commit time since that could cause a deadlock.
4046 * This is a very rare case.
4047 */
4048 btrfs_flush_workqueue(fs_info->delayed_workers);
4049
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004050 ret = btrfs_commit_super(fs_info);
4051 if (ret)
4052 btrfs_err(fs_info, "commit super ret %d", ret);
4053 }
4054
4055 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4056 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4057 btrfs_error_commit_super(fs_info);
4058
4059 kthread_stop(fs_info->transaction_kthread);
4060 kthread_stop(fs_info->cleaner_kthread);
4061
David Brazdil0f672f62019-12-10 10:32:29 +00004062 ASSERT(list_empty(&fs_info->delayed_iputs));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004063 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4064
4065 btrfs_free_qgroup_config(fs_info);
4066 ASSERT(list_empty(&fs_info->delalloc_roots));
4067
4068 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4069 btrfs_info(fs_info, "at unmount delalloc count %lld",
4070 percpu_counter_sum(&fs_info->delalloc_bytes));
4071 }
4072
David Brazdil0f672f62019-12-10 10:32:29 +00004073 if (percpu_counter_sum(&fs_info->dio_bytes))
4074 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4075 percpu_counter_sum(&fs_info->dio_bytes));
4076
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004077 btrfs_sysfs_remove_mounted(fs_info);
4078 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4079
4080 btrfs_free_fs_roots(fs_info);
4081
4082 btrfs_put_block_group_cache(fs_info);
4083
4084 /*
4085 * we must make sure there is not any read request to
4086 * submit after we stopping all workers.
4087 */
4088 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4089 btrfs_stop_all_workers(fs_info);
4090
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004091 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
Olivier Deprez0e641232021-09-23 10:07:05 +02004092 free_root_pointers(fs_info, true);
4093
4094 /*
4095 * We must free the block groups after dropping the fs_roots as we could
4096 * have had an IO error and have left over tree log blocks that aren't
4097 * cleaned up until the fs roots are freed. This makes the block group
4098 * accounting appear to be wrong because there's pending reserved bytes,
4099 * so make sure we do the block group cleanup afterwards.
4100 */
4101 btrfs_free_block_groups(fs_info);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004102
4103 iput(fs_info->btree_inode);
4104
4105#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4106 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4107 btrfsic_unmount(fs_info->fs_devices);
4108#endif
4109
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004110 btrfs_mapping_tree_free(&fs_info->mapping_tree);
David Brazdil0f672f62019-12-10 10:32:29 +00004111 btrfs_close_devices(fs_info->fs_devices);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004112
4113 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4114 percpu_counter_destroy(&fs_info->delalloc_bytes);
David Brazdil0f672f62019-12-10 10:32:29 +00004115 percpu_counter_destroy(&fs_info->dio_bytes);
4116 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004117 cleanup_srcu_struct(&fs_info->subvol_srcu);
4118
David Brazdil0f672f62019-12-10 10:32:29 +00004119 btrfs_free_csum_hash(fs_info);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004120 btrfs_free_stripe_hash_table(fs_info);
4121 btrfs_free_ref_cache(fs_info);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004122}
4123
4124int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4125 int atomic)
4126{
4127 int ret;
4128 struct inode *btree_inode = buf->pages[0]->mapping->host;
4129
4130 ret = extent_buffer_uptodate(buf);
4131 if (!ret)
4132 return ret;
4133
4134 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4135 parent_transid, atomic);
4136 if (ret == -EAGAIN)
4137 return ret;
4138 return !ret;
4139}
4140
4141void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4142{
4143 struct btrfs_fs_info *fs_info;
4144 struct btrfs_root *root;
4145 u64 transid = btrfs_header_generation(buf);
4146 int was_dirty;
4147
4148#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4149 /*
4150 * This is a fast path so only do this check if we have sanity tests
David Brazdil0f672f62019-12-10 10:32:29 +00004151 * enabled. Normal people shouldn't be using unmapped buffers as dirty
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004152 * outside of the sanity tests.
4153 */
4154 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4155 return;
4156#endif
4157 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4158 fs_info = root->fs_info;
4159 btrfs_assert_tree_locked(buf);
4160 if (transid != fs_info->generation)
4161 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4162 buf->start, transid, fs_info->generation);
4163 was_dirty = set_extent_buffer_dirty(buf);
4164 if (!was_dirty)
4165 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4166 buf->len,
4167 fs_info->dirty_metadata_batch);
4168#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4169 /*
4170 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4171 * but item data not updated.
4172 * So here we should only check item pointers, not item data.
4173 */
4174 if (btrfs_header_level(buf) == 0 &&
David Brazdil0f672f62019-12-10 10:32:29 +00004175 btrfs_check_leaf_relaxed(buf)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004176 btrfs_print_leaf(buf);
4177 ASSERT(0);
4178 }
4179#endif
4180}
4181
4182static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4183 int flush_delayed)
4184{
4185 /*
4186 * looks as though older kernels can get into trouble with
4187 * this code, they end up stuck in balance_dirty_pages forever
4188 */
4189 int ret;
4190
4191 if (current->flags & PF_MEMALLOC)
4192 return;
4193
4194 if (flush_delayed)
4195 btrfs_balance_delayed_items(fs_info);
4196
4197 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4198 BTRFS_DIRTY_METADATA_THRESH,
4199 fs_info->dirty_metadata_batch);
4200 if (ret > 0) {
4201 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4202 }
4203}
4204
4205void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4206{
4207 __btrfs_btree_balance_dirty(fs_info, 1);
4208}
4209
4210void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4211{
4212 __btrfs_btree_balance_dirty(fs_info, 0);
4213}
4214
4215int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4216 struct btrfs_key *first_key)
4217{
David Brazdil0f672f62019-12-10 10:32:29 +00004218 return btree_read_extent_buffer_pages(buf, parent_transid,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004219 level, first_key);
4220}
4221
4222static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4223{
4224 /* cleanup FS via transaction */
4225 btrfs_cleanup_transaction(fs_info);
4226
4227 mutex_lock(&fs_info->cleaner_mutex);
4228 btrfs_run_delayed_iputs(fs_info);
4229 mutex_unlock(&fs_info->cleaner_mutex);
4230
4231 down_write(&fs_info->cleanup_work_sem);
4232 up_write(&fs_info->cleanup_work_sem);
4233}
4234
4235static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4236{
4237 struct btrfs_ordered_extent *ordered;
4238
4239 spin_lock(&root->ordered_extent_lock);
4240 /*
4241 * This will just short circuit the ordered completion stuff which will
4242 * make sure the ordered extent gets properly cleaned up.
4243 */
4244 list_for_each_entry(ordered, &root->ordered_extents,
4245 root_extent_list)
4246 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4247 spin_unlock(&root->ordered_extent_lock);
4248}
4249
4250static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4251{
4252 struct btrfs_root *root;
4253 struct list_head splice;
4254
4255 INIT_LIST_HEAD(&splice);
4256
4257 spin_lock(&fs_info->ordered_root_lock);
4258 list_splice_init(&fs_info->ordered_roots, &splice);
4259 while (!list_empty(&splice)) {
4260 root = list_first_entry(&splice, struct btrfs_root,
4261 ordered_root);
4262 list_move_tail(&root->ordered_root,
4263 &fs_info->ordered_roots);
4264
4265 spin_unlock(&fs_info->ordered_root_lock);
4266 btrfs_destroy_ordered_extents(root);
4267
4268 cond_resched();
4269 spin_lock(&fs_info->ordered_root_lock);
4270 }
4271 spin_unlock(&fs_info->ordered_root_lock);
David Brazdil0f672f62019-12-10 10:32:29 +00004272
4273 /*
4274 * We need this here because if we've been flipped read-only we won't
4275 * get sync() from the umount, so we need to make sure any ordered
4276 * extents that haven't had their dirty pages IO start writeout yet
4277 * actually get run and error out properly.
4278 */
4279 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004280}
4281
4282static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4283 struct btrfs_fs_info *fs_info)
4284{
4285 struct rb_node *node;
4286 struct btrfs_delayed_ref_root *delayed_refs;
4287 struct btrfs_delayed_ref_node *ref;
4288 int ret = 0;
4289
4290 delayed_refs = &trans->delayed_refs;
4291
4292 spin_lock(&delayed_refs->lock);
4293 if (atomic_read(&delayed_refs->num_entries) == 0) {
4294 spin_unlock(&delayed_refs->lock);
4295 btrfs_info(fs_info, "delayed_refs has NO entry");
4296 return ret;
4297 }
4298
David Brazdil0f672f62019-12-10 10:32:29 +00004299 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004300 struct btrfs_delayed_ref_head *head;
4301 struct rb_node *n;
4302 bool pin_bytes = false;
4303
4304 head = rb_entry(node, struct btrfs_delayed_ref_head,
4305 href_node);
David Brazdil0f672f62019-12-10 10:32:29 +00004306 if (btrfs_delayed_ref_lock(delayed_refs, head))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004307 continue;
David Brazdil0f672f62019-12-10 10:32:29 +00004308
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004309 spin_lock(&head->lock);
David Brazdil0f672f62019-12-10 10:32:29 +00004310 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004311 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4312 ref_node);
4313 ref->in_tree = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00004314 rb_erase_cached(&ref->ref_node, &head->ref_tree);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004315 RB_CLEAR_NODE(&ref->ref_node);
4316 if (!list_empty(&ref->add_list))
4317 list_del(&ref->add_list);
4318 atomic_dec(&delayed_refs->num_entries);
4319 btrfs_put_delayed_ref(ref);
4320 }
4321 if (head->must_insert_reserved)
4322 pin_bytes = true;
4323 btrfs_free_delayed_extent_op(head->extent_op);
David Brazdil0f672f62019-12-10 10:32:29 +00004324 btrfs_delete_ref_head(delayed_refs, head);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004325 spin_unlock(&head->lock);
4326 spin_unlock(&delayed_refs->lock);
4327 mutex_unlock(&head->mutex);
4328
4329 if (pin_bytes)
4330 btrfs_pin_extent(fs_info, head->bytenr,
4331 head->num_bytes, 1);
David Brazdil0f672f62019-12-10 10:32:29 +00004332 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004333 btrfs_put_delayed_ref_head(head);
4334 cond_resched();
4335 spin_lock(&delayed_refs->lock);
4336 }
Olivier Deprez0e641232021-09-23 10:07:05 +02004337 btrfs_qgroup_destroy_extent_records(trans);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004338
4339 spin_unlock(&delayed_refs->lock);
4340
4341 return ret;
4342}
4343
4344static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4345{
4346 struct btrfs_inode *btrfs_inode;
4347 struct list_head splice;
4348
4349 INIT_LIST_HEAD(&splice);
4350
4351 spin_lock(&root->delalloc_lock);
4352 list_splice_init(&root->delalloc_inodes, &splice);
4353
4354 while (!list_empty(&splice)) {
4355 struct inode *inode = NULL;
4356 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4357 delalloc_inodes);
4358 __btrfs_del_delalloc_inode(root, btrfs_inode);
4359 spin_unlock(&root->delalloc_lock);
4360
4361 /*
4362 * Make sure we get a live inode and that it'll not disappear
4363 * meanwhile.
4364 */
4365 inode = igrab(&btrfs_inode->vfs_inode);
4366 if (inode) {
4367 invalidate_inode_pages2(inode->i_mapping);
4368 iput(inode);
4369 }
4370 spin_lock(&root->delalloc_lock);
4371 }
4372 spin_unlock(&root->delalloc_lock);
4373}
4374
4375static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4376{
4377 struct btrfs_root *root;
4378 struct list_head splice;
4379
4380 INIT_LIST_HEAD(&splice);
4381
4382 spin_lock(&fs_info->delalloc_root_lock);
4383 list_splice_init(&fs_info->delalloc_roots, &splice);
4384 while (!list_empty(&splice)) {
4385 root = list_first_entry(&splice, struct btrfs_root,
4386 delalloc_root);
4387 root = btrfs_grab_fs_root(root);
4388 BUG_ON(!root);
4389 spin_unlock(&fs_info->delalloc_root_lock);
4390
4391 btrfs_destroy_delalloc_inodes(root);
4392 btrfs_put_fs_root(root);
4393
4394 spin_lock(&fs_info->delalloc_root_lock);
4395 }
4396 spin_unlock(&fs_info->delalloc_root_lock);
4397}
4398
4399static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4400 struct extent_io_tree *dirty_pages,
4401 int mark)
4402{
4403 int ret;
4404 struct extent_buffer *eb;
4405 u64 start = 0;
4406 u64 end;
4407
4408 while (1) {
4409 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4410 mark, NULL);
4411 if (ret)
4412 break;
4413
4414 clear_extent_bits(dirty_pages, start, end, mark);
4415 while (start <= end) {
4416 eb = find_extent_buffer(fs_info, start);
4417 start += fs_info->nodesize;
4418 if (!eb)
4419 continue;
4420 wait_on_extent_buffer_writeback(eb);
4421
4422 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4423 &eb->bflags))
4424 clear_extent_buffer_dirty(eb);
4425 free_extent_buffer_stale(eb);
4426 }
4427 }
4428
4429 return ret;
4430}
4431
4432static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4433 struct extent_io_tree *pinned_extents)
4434{
4435 struct extent_io_tree *unpin;
4436 u64 start;
4437 u64 end;
4438 int ret;
4439 bool loop = true;
4440
4441 unpin = pinned_extents;
4442again:
4443 while (1) {
David Brazdil0f672f62019-12-10 10:32:29 +00004444 struct extent_state *cached_state = NULL;
4445
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004446 /*
4447 * The btrfs_finish_extent_commit() may get the same range as
4448 * ours between find_first_extent_bit and clear_extent_dirty.
4449 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4450 * the same extent range.
4451 */
4452 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4453 ret = find_first_extent_bit(unpin, 0, &start, &end,
David Brazdil0f672f62019-12-10 10:32:29 +00004454 EXTENT_DIRTY, &cached_state);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004455 if (ret) {
4456 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4457 break;
4458 }
4459
David Brazdil0f672f62019-12-10 10:32:29 +00004460 clear_extent_dirty(unpin, start, end, &cached_state);
4461 free_extent_state(cached_state);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004462 btrfs_error_unpin_extent_range(fs_info, start, end);
4463 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4464 cond_resched();
4465 }
4466
4467 if (loop) {
4468 if (unpin == &fs_info->freed_extents[0])
4469 unpin = &fs_info->freed_extents[1];
4470 else
4471 unpin = &fs_info->freed_extents[0];
4472 loop = false;
4473 goto again;
4474 }
4475
4476 return 0;
4477}
4478
4479static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4480{
4481 struct inode *inode;
4482
4483 inode = cache->io_ctl.inode;
4484 if (inode) {
4485 invalidate_inode_pages2(inode->i_mapping);
4486 BTRFS_I(inode)->generation = 0;
4487 cache->io_ctl.inode = NULL;
4488 iput(inode);
4489 }
Olivier Deprez0e641232021-09-23 10:07:05 +02004490 ASSERT(cache->io_ctl.pages == NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004491 btrfs_put_block_group(cache);
4492}
4493
4494void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4495 struct btrfs_fs_info *fs_info)
4496{
4497 struct btrfs_block_group_cache *cache;
4498
4499 spin_lock(&cur_trans->dirty_bgs_lock);
4500 while (!list_empty(&cur_trans->dirty_bgs)) {
4501 cache = list_first_entry(&cur_trans->dirty_bgs,
4502 struct btrfs_block_group_cache,
4503 dirty_list);
4504
4505 if (!list_empty(&cache->io_list)) {
4506 spin_unlock(&cur_trans->dirty_bgs_lock);
4507 list_del_init(&cache->io_list);
4508 btrfs_cleanup_bg_io(cache);
4509 spin_lock(&cur_trans->dirty_bgs_lock);
4510 }
4511
4512 list_del_init(&cache->dirty_list);
4513 spin_lock(&cache->lock);
4514 cache->disk_cache_state = BTRFS_DC_ERROR;
4515 spin_unlock(&cache->lock);
4516
4517 spin_unlock(&cur_trans->dirty_bgs_lock);
4518 btrfs_put_block_group(cache);
David Brazdil0f672f62019-12-10 10:32:29 +00004519 btrfs_delayed_refs_rsv_release(fs_info, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004520 spin_lock(&cur_trans->dirty_bgs_lock);
4521 }
4522 spin_unlock(&cur_trans->dirty_bgs_lock);
4523
4524 /*
4525 * Refer to the definition of io_bgs member for details why it's safe
4526 * to use it without any locking
4527 */
4528 while (!list_empty(&cur_trans->io_bgs)) {
4529 cache = list_first_entry(&cur_trans->io_bgs,
4530 struct btrfs_block_group_cache,
4531 io_list);
4532
4533 list_del_init(&cache->io_list);
4534 spin_lock(&cache->lock);
4535 cache->disk_cache_state = BTRFS_DC_ERROR;
4536 spin_unlock(&cache->lock);
4537 btrfs_cleanup_bg_io(cache);
4538 }
4539}
4540
4541void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4542 struct btrfs_fs_info *fs_info)
4543{
David Brazdil0f672f62019-12-10 10:32:29 +00004544 struct btrfs_device *dev, *tmp;
4545
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004546 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4547 ASSERT(list_empty(&cur_trans->dirty_bgs));
4548 ASSERT(list_empty(&cur_trans->io_bgs));
4549
David Brazdil0f672f62019-12-10 10:32:29 +00004550 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4551 post_commit_list) {
4552 list_del_init(&dev->post_commit_list);
4553 }
4554
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004555 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4556
4557 cur_trans->state = TRANS_STATE_COMMIT_START;
4558 wake_up(&fs_info->transaction_blocked_wait);
4559
4560 cur_trans->state = TRANS_STATE_UNBLOCKED;
4561 wake_up(&fs_info->transaction_wait);
4562
4563 btrfs_destroy_delayed_inodes(fs_info);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004564
4565 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4566 EXTENT_DIRTY);
4567 btrfs_destroy_pinned_extent(fs_info,
4568 fs_info->pinned_extents);
4569
4570 cur_trans->state =TRANS_STATE_COMPLETED;
4571 wake_up(&cur_trans->commit_wait);
4572}
4573
4574static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4575{
4576 struct btrfs_transaction *t;
4577
4578 mutex_lock(&fs_info->transaction_kthread_mutex);
4579
4580 spin_lock(&fs_info->trans_lock);
4581 while (!list_empty(&fs_info->trans_list)) {
4582 t = list_first_entry(&fs_info->trans_list,
4583 struct btrfs_transaction, list);
4584 if (t->state >= TRANS_STATE_COMMIT_START) {
4585 refcount_inc(&t->use_count);
4586 spin_unlock(&fs_info->trans_lock);
4587 btrfs_wait_for_commit(fs_info, t->transid);
4588 btrfs_put_transaction(t);
4589 spin_lock(&fs_info->trans_lock);
4590 continue;
4591 }
4592 if (t == fs_info->running_transaction) {
4593 t->state = TRANS_STATE_COMMIT_DOING;
4594 spin_unlock(&fs_info->trans_lock);
4595 /*
4596 * We wait for 0 num_writers since we don't hold a trans
4597 * handle open currently for this transaction.
4598 */
4599 wait_event(t->writer_wait,
4600 atomic_read(&t->num_writers) == 0);
4601 } else {
4602 spin_unlock(&fs_info->trans_lock);
4603 }
4604 btrfs_cleanup_one_transaction(t, fs_info);
4605
4606 spin_lock(&fs_info->trans_lock);
4607 if (t == fs_info->running_transaction)
4608 fs_info->running_transaction = NULL;
4609 list_del_init(&t->list);
4610 spin_unlock(&fs_info->trans_lock);
4611
4612 btrfs_put_transaction(t);
4613 trace_btrfs_transaction_commit(fs_info->tree_root);
4614 spin_lock(&fs_info->trans_lock);
4615 }
4616 spin_unlock(&fs_info->trans_lock);
4617 btrfs_destroy_all_ordered_extents(fs_info);
4618 btrfs_destroy_delayed_inodes(fs_info);
4619 btrfs_assert_delayed_root_empty(fs_info);
4620 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4621 btrfs_destroy_all_delalloc_inodes(fs_info);
4622 mutex_unlock(&fs_info->transaction_kthread_mutex);
4623
4624 return 0;
4625}
4626
4627static const struct extent_io_ops btree_extent_io_ops = {
4628 /* mandatory callbacks */
4629 .submit_bio_hook = btree_submit_bio_hook,
4630 .readpage_end_io_hook = btree_readpage_end_io_hook,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004631};