blob: 7f644a58db51105059a9bfc0eec11dcd8a9c6300 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 STRATO. All rights reserved.
4 */
5
6#include <linux/mm.h>
7#include <linux/rbtree.h>
8#include <trace/events/btrfs.h>
9#include "ctree.h"
10#include "disk-io.h"
11#include "backref.h"
12#include "ulist.h"
13#include "transaction.h"
14#include "delayed-ref.h"
15#include "locking.h"
16
17/* Just an arbitrary number so we can be sure this happened */
18#define BACKREF_FOUND_SHARED 6
19
20struct extent_inode_elem {
21 u64 inum;
22 u64 offset;
23 struct extent_inode_elem *next;
24};
25
26static int check_extent_in_eb(const struct btrfs_key *key,
27 const struct extent_buffer *eb,
28 const struct btrfs_file_extent_item *fi,
29 u64 extent_item_pos,
30 struct extent_inode_elem **eie,
31 bool ignore_offset)
32{
33 u64 offset = 0;
34 struct extent_inode_elem *e;
35
36 if (!ignore_offset &&
37 !btrfs_file_extent_compression(eb, fi) &&
38 !btrfs_file_extent_encryption(eb, fi) &&
39 !btrfs_file_extent_other_encoding(eb, fi)) {
40 u64 data_offset;
41 u64 data_len;
42
43 data_offset = btrfs_file_extent_offset(eb, fi);
44 data_len = btrfs_file_extent_num_bytes(eb, fi);
45
46 if (extent_item_pos < data_offset ||
47 extent_item_pos >= data_offset + data_len)
48 return 1;
49 offset = extent_item_pos - data_offset;
50 }
51
52 e = kmalloc(sizeof(*e), GFP_NOFS);
53 if (!e)
54 return -ENOMEM;
55
56 e->next = *eie;
57 e->inum = key->objectid;
58 e->offset = key->offset + offset;
59 *eie = e;
60
61 return 0;
62}
63
64static void free_inode_elem_list(struct extent_inode_elem *eie)
65{
66 struct extent_inode_elem *eie_next;
67
68 for (; eie; eie = eie_next) {
69 eie_next = eie->next;
70 kfree(eie);
71 }
72}
73
74static int find_extent_in_eb(const struct extent_buffer *eb,
75 u64 wanted_disk_byte, u64 extent_item_pos,
76 struct extent_inode_elem **eie,
77 bool ignore_offset)
78{
79 u64 disk_byte;
80 struct btrfs_key key;
81 struct btrfs_file_extent_item *fi;
82 int slot;
83 int nritems;
84 int extent_type;
85 int ret;
86
87 /*
88 * from the shared data ref, we only have the leaf but we need
89 * the key. thus, we must look into all items and see that we
90 * find one (some) with a reference to our extent item.
91 */
92 nritems = btrfs_header_nritems(eb);
93 for (slot = 0; slot < nritems; ++slot) {
94 btrfs_item_key_to_cpu(eb, &key, slot);
95 if (key.type != BTRFS_EXTENT_DATA_KEY)
96 continue;
97 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
98 extent_type = btrfs_file_extent_type(eb, fi);
99 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
100 continue;
101 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
102 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
103 if (disk_byte != wanted_disk_byte)
104 continue;
105
106 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
107 if (ret < 0)
108 return ret;
109 }
110
111 return 0;
112}
113
114struct preftree {
David Brazdil0f672f62019-12-10 10:32:29 +0000115 struct rb_root_cached root;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000116 unsigned int count;
117};
118
David Brazdil0f672f62019-12-10 10:32:29 +0000119#define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000120
121struct preftrees {
122 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
123 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
124 struct preftree indirect_missing_keys;
125};
126
127/*
128 * Checks for a shared extent during backref search.
129 *
130 * The share_count tracks prelim_refs (direct and indirect) having a
131 * ref->count >0:
132 * - incremented when a ref->count transitions to >0
133 * - decremented when a ref->count transitions to <1
134 */
135struct share_check {
136 u64 root_objectid;
137 u64 inum;
138 int share_count;
139};
140
141static inline int extent_is_shared(struct share_check *sc)
142{
143 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
144}
145
146static struct kmem_cache *btrfs_prelim_ref_cache;
147
148int __init btrfs_prelim_ref_init(void)
149{
150 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
151 sizeof(struct prelim_ref),
152 0,
153 SLAB_MEM_SPREAD,
154 NULL);
155 if (!btrfs_prelim_ref_cache)
156 return -ENOMEM;
157 return 0;
158}
159
160void __cold btrfs_prelim_ref_exit(void)
161{
162 kmem_cache_destroy(btrfs_prelim_ref_cache);
163}
164
165static void free_pref(struct prelim_ref *ref)
166{
167 kmem_cache_free(btrfs_prelim_ref_cache, ref);
168}
169
170/*
171 * Return 0 when both refs are for the same block (and can be merged).
172 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
173 * indicates a 'higher' block.
174 */
175static int prelim_ref_compare(struct prelim_ref *ref1,
176 struct prelim_ref *ref2)
177{
178 if (ref1->level < ref2->level)
179 return -1;
180 if (ref1->level > ref2->level)
181 return 1;
182 if (ref1->root_id < ref2->root_id)
183 return -1;
184 if (ref1->root_id > ref2->root_id)
185 return 1;
186 if (ref1->key_for_search.type < ref2->key_for_search.type)
187 return -1;
188 if (ref1->key_for_search.type > ref2->key_for_search.type)
189 return 1;
190 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
191 return -1;
192 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
193 return 1;
194 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
195 return -1;
196 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
197 return 1;
198 if (ref1->parent < ref2->parent)
199 return -1;
200 if (ref1->parent > ref2->parent)
201 return 1;
202
203 return 0;
204}
205
206static void update_share_count(struct share_check *sc, int oldcount,
207 int newcount)
208{
209 if ((!sc) || (oldcount == 0 && newcount < 1))
210 return;
211
212 if (oldcount > 0 && newcount < 1)
213 sc->share_count--;
214 else if (oldcount < 1 && newcount > 0)
215 sc->share_count++;
216}
217
218/*
219 * Add @newref to the @root rbtree, merging identical refs.
220 *
221 * Callers should assume that newref has been freed after calling.
222 */
223static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
224 struct preftree *preftree,
225 struct prelim_ref *newref,
226 struct share_check *sc)
227{
David Brazdil0f672f62019-12-10 10:32:29 +0000228 struct rb_root_cached *root;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000229 struct rb_node **p;
230 struct rb_node *parent = NULL;
231 struct prelim_ref *ref;
232 int result;
David Brazdil0f672f62019-12-10 10:32:29 +0000233 bool leftmost = true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000234
235 root = &preftree->root;
David Brazdil0f672f62019-12-10 10:32:29 +0000236 p = &root->rb_root.rb_node;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000237
238 while (*p) {
239 parent = *p;
240 ref = rb_entry(parent, struct prelim_ref, rbnode);
241 result = prelim_ref_compare(ref, newref);
242 if (result < 0) {
243 p = &(*p)->rb_left;
244 } else if (result > 0) {
245 p = &(*p)->rb_right;
David Brazdil0f672f62019-12-10 10:32:29 +0000246 leftmost = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000247 } else {
248 /* Identical refs, merge them and free @newref */
249 struct extent_inode_elem *eie = ref->inode_list;
250
251 while (eie && eie->next)
252 eie = eie->next;
253
254 if (!eie)
255 ref->inode_list = newref->inode_list;
256 else
257 eie->next = newref->inode_list;
258 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
259 preftree->count);
260 /*
261 * A delayed ref can have newref->count < 0.
262 * The ref->count is updated to follow any
263 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
264 */
265 update_share_count(sc, ref->count,
266 ref->count + newref->count);
267 ref->count += newref->count;
268 free_pref(newref);
269 return;
270 }
271 }
272
273 update_share_count(sc, 0, newref->count);
274 preftree->count++;
275 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
276 rb_link_node(&newref->rbnode, parent, p);
David Brazdil0f672f62019-12-10 10:32:29 +0000277 rb_insert_color_cached(&newref->rbnode, root, leftmost);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000278}
279
280/*
281 * Release the entire tree. We don't care about internal consistency so
282 * just free everything and then reset the tree root.
283 */
284static void prelim_release(struct preftree *preftree)
285{
286 struct prelim_ref *ref, *next_ref;
287
David Brazdil0f672f62019-12-10 10:32:29 +0000288 rbtree_postorder_for_each_entry_safe(ref, next_ref,
289 &preftree->root.rb_root, rbnode)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000290 free_pref(ref);
291
David Brazdil0f672f62019-12-10 10:32:29 +0000292 preftree->root = RB_ROOT_CACHED;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000293 preftree->count = 0;
294}
295
296/*
297 * the rules for all callers of this function are:
298 * - obtaining the parent is the goal
299 * - if you add a key, you must know that it is a correct key
300 * - if you cannot add the parent or a correct key, then we will look into the
301 * block later to set a correct key
302 *
303 * delayed refs
304 * ============
305 * backref type | shared | indirect | shared | indirect
306 * information | tree | tree | data | data
307 * --------------------+--------+----------+--------+----------
308 * parent logical | y | - | - | -
309 * key to resolve | - | y | y | y
310 * tree block logical | - | - | - | -
311 * root for resolving | y | y | y | y
312 *
313 * - column 1: we've the parent -> done
314 * - column 2, 3, 4: we use the key to find the parent
315 *
316 * on disk refs (inline or keyed)
317 * ==============================
318 * backref type | shared | indirect | shared | indirect
319 * information | tree | tree | data | data
320 * --------------------+--------+----------+--------+----------
321 * parent logical | y | - | y | -
322 * key to resolve | - | - | - | y
323 * tree block logical | y | y | y | y
324 * root for resolving | - | y | y | y
325 *
326 * - column 1, 3: we've the parent -> done
327 * - column 2: we take the first key from the block to find the parent
328 * (see add_missing_keys)
329 * - column 4: we use the key to find the parent
330 *
331 * additional information that's available but not required to find the parent
332 * block might help in merging entries to gain some speed.
333 */
334static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
335 struct preftree *preftree, u64 root_id,
336 const struct btrfs_key *key, int level, u64 parent,
337 u64 wanted_disk_byte, int count,
338 struct share_check *sc, gfp_t gfp_mask)
339{
340 struct prelim_ref *ref;
341
342 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
343 return 0;
344
345 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
346 if (!ref)
347 return -ENOMEM;
348
349 ref->root_id = root_id;
Olivier Deprez0e641232021-09-23 10:07:05 +0200350 if (key)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000351 ref->key_for_search = *key;
Olivier Deprez0e641232021-09-23 10:07:05 +0200352 else
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000353 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000354
355 ref->inode_list = NULL;
356 ref->level = level;
357 ref->count = count;
358 ref->parent = parent;
359 ref->wanted_disk_byte = wanted_disk_byte;
360 prelim_ref_insert(fs_info, preftree, ref, sc);
361 return extent_is_shared(sc);
362}
363
364/* direct refs use root == 0, key == NULL */
365static int add_direct_ref(const struct btrfs_fs_info *fs_info,
366 struct preftrees *preftrees, int level, u64 parent,
367 u64 wanted_disk_byte, int count,
368 struct share_check *sc, gfp_t gfp_mask)
369{
370 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
371 parent, wanted_disk_byte, count, sc, gfp_mask);
372}
373
374/* indirect refs use parent == 0 */
375static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
376 struct preftrees *preftrees, u64 root_id,
377 const struct btrfs_key *key, int level,
378 u64 wanted_disk_byte, int count,
379 struct share_check *sc, gfp_t gfp_mask)
380{
381 struct preftree *tree = &preftrees->indirect;
382
383 if (!key)
384 tree = &preftrees->indirect_missing_keys;
385 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
386 wanted_disk_byte, count, sc, gfp_mask);
387}
388
Olivier Deprez0e641232021-09-23 10:07:05 +0200389static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
390{
391 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
392 struct rb_node *parent = NULL;
393 struct prelim_ref *ref = NULL;
394 struct prelim_ref target = {0};
395 int result;
396
397 target.parent = bytenr;
398
399 while (*p) {
400 parent = *p;
401 ref = rb_entry(parent, struct prelim_ref, rbnode);
402 result = prelim_ref_compare(ref, &target);
403
404 if (result < 0)
405 p = &(*p)->rb_left;
406 else if (result > 0)
407 p = &(*p)->rb_right;
408 else
409 return 1;
410 }
411 return 0;
412}
413
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000414static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
Olivier Deprez0e641232021-09-23 10:07:05 +0200415 struct ulist *parents,
416 struct preftrees *preftrees, struct prelim_ref *ref,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000417 int level, u64 time_seq, const u64 *extent_item_pos,
Olivier Deprez0e641232021-09-23 10:07:05 +0200418 bool ignore_offset)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000419{
420 int ret = 0;
421 int slot;
422 struct extent_buffer *eb;
423 struct btrfs_key key;
424 struct btrfs_key *key_for_search = &ref->key_for_search;
425 struct btrfs_file_extent_item *fi;
426 struct extent_inode_elem *eie = NULL, *old = NULL;
427 u64 disk_byte;
428 u64 wanted_disk_byte = ref->wanted_disk_byte;
429 u64 count = 0;
Olivier Deprez0e641232021-09-23 10:07:05 +0200430 u64 data_offset;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000431
432 if (level != 0) {
433 eb = path->nodes[level];
434 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
435 if (ret < 0)
436 return ret;
437 return 0;
438 }
439
440 /*
Olivier Deprez0e641232021-09-23 10:07:05 +0200441 * 1. We normally enter this function with the path already pointing to
442 * the first item to check. But sometimes, we may enter it with
443 * slot == nritems.
444 * 2. We are searching for normal backref but bytenr of this leaf
445 * matches shared data backref
446 * 3. The leaf owner is not equal to the root we are searching
447 *
448 * For these cases, go to the next leaf before we continue.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000449 */
Olivier Deprez0e641232021-09-23 10:07:05 +0200450 eb = path->nodes[0];
451 if (path->slots[0] >= btrfs_header_nritems(eb) ||
452 is_shared_data_backref(preftrees, eb->start) ||
453 ref->root_id != btrfs_header_owner(eb)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000454 if (time_seq == SEQ_LAST)
455 ret = btrfs_next_leaf(root, path);
456 else
457 ret = btrfs_next_old_leaf(root, path, time_seq);
458 }
459
Olivier Deprez0e641232021-09-23 10:07:05 +0200460 while (!ret && count < ref->count) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000461 eb = path->nodes[0];
462 slot = path->slots[0];
463
464 btrfs_item_key_to_cpu(eb, &key, slot);
465
466 if (key.objectid != key_for_search->objectid ||
467 key.type != BTRFS_EXTENT_DATA_KEY)
468 break;
469
Olivier Deprez0e641232021-09-23 10:07:05 +0200470 /*
471 * We are searching for normal backref but bytenr of this leaf
472 * matches shared data backref, OR
473 * the leaf owner is not equal to the root we are searching for
474 */
475 if (slot == 0 &&
476 (is_shared_data_backref(preftrees, eb->start) ||
477 ref->root_id != btrfs_header_owner(eb))) {
478 if (time_seq == SEQ_LAST)
479 ret = btrfs_next_leaf(root, path);
480 else
481 ret = btrfs_next_old_leaf(root, path, time_seq);
482 continue;
483 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000484 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
485 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
Olivier Deprez0e641232021-09-23 10:07:05 +0200486 data_offset = btrfs_file_extent_offset(eb, fi);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000487
488 if (disk_byte == wanted_disk_byte) {
489 eie = NULL;
490 old = NULL;
Olivier Deprez0e641232021-09-23 10:07:05 +0200491 if (ref->key_for_search.offset == key.offset - data_offset)
492 count++;
493 else
494 goto next;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000495 if (extent_item_pos) {
496 ret = check_extent_in_eb(&key, eb, fi,
497 *extent_item_pos,
498 &eie, ignore_offset);
499 if (ret < 0)
500 break;
501 }
502 if (ret > 0)
503 goto next;
504 ret = ulist_add_merge_ptr(parents, eb->start,
505 eie, (void **)&old, GFP_NOFS);
506 if (ret < 0)
507 break;
508 if (!ret && extent_item_pos) {
509 while (old->next)
510 old = old->next;
511 old->next = eie;
512 }
513 eie = NULL;
514 }
515next:
516 if (time_seq == SEQ_LAST)
517 ret = btrfs_next_item(root, path);
518 else
519 ret = btrfs_next_old_item(root, path, time_seq);
520 }
521
522 if (ret > 0)
523 ret = 0;
524 else if (ret < 0)
525 free_inode_elem_list(eie);
526 return ret;
527}
528
529/*
530 * resolve an indirect backref in the form (root_id, key, level)
531 * to a logical address
532 */
533static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
534 struct btrfs_path *path, u64 time_seq,
Olivier Deprez0e641232021-09-23 10:07:05 +0200535 struct preftrees *preftrees,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000536 struct prelim_ref *ref, struct ulist *parents,
Olivier Deprez0e641232021-09-23 10:07:05 +0200537 const u64 *extent_item_pos, bool ignore_offset)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000538{
539 struct btrfs_root *root;
540 struct btrfs_key root_key;
541 struct extent_buffer *eb;
542 int ret = 0;
543 int root_level;
544 int level = ref->level;
545 int index;
Olivier Deprez0e641232021-09-23 10:07:05 +0200546 struct btrfs_key search_key = ref->key_for_search;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000547
548 root_key.objectid = ref->root_id;
549 root_key.type = BTRFS_ROOT_ITEM_KEY;
550 root_key.offset = (u64)-1;
551
552 index = srcu_read_lock(&fs_info->subvol_srcu);
553
554 root = btrfs_get_fs_root(fs_info, &root_key, false);
555 if (IS_ERR(root)) {
556 srcu_read_unlock(&fs_info->subvol_srcu, index);
557 ret = PTR_ERR(root);
558 goto out;
559 }
560
561 if (btrfs_is_testing(fs_info)) {
562 srcu_read_unlock(&fs_info->subvol_srcu, index);
563 ret = -ENOENT;
564 goto out;
565 }
566
567 if (path->search_commit_root)
568 root_level = btrfs_header_level(root->commit_root);
569 else if (time_seq == SEQ_LAST)
570 root_level = btrfs_header_level(root->node);
571 else
572 root_level = btrfs_old_root_level(root, time_seq);
573
574 if (root_level + 1 == level) {
575 srcu_read_unlock(&fs_info->subvol_srcu, index);
576 goto out;
577 }
578
Olivier Deprez0e641232021-09-23 10:07:05 +0200579 /*
580 * We can often find data backrefs with an offset that is too large
581 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
582 * subtracting a file's offset with the data offset of its
583 * corresponding extent data item. This can happen for example in the
584 * clone ioctl.
585 *
586 * So if we detect such case we set the search key's offset to zero to
587 * make sure we will find the matching file extent item at
588 * add_all_parents(), otherwise we will miss it because the offset
589 * taken form the backref is much larger then the offset of the file
590 * extent item. This can make us scan a very large number of file
591 * extent items, but at least it will not make us miss any.
592 *
593 * This is an ugly workaround for a behaviour that should have never
594 * existed, but it does and a fix for the clone ioctl would touch a lot
595 * of places, cause backwards incompatibility and would not fix the
596 * problem for extents cloned with older kernels.
597 */
598 if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
599 search_key.offset >= LLONG_MAX)
600 search_key.offset = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000601 path->lowest_level = level;
602 if (time_seq == SEQ_LAST)
Olivier Deprez0e641232021-09-23 10:07:05 +0200603 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000604 else
Olivier Deprez0e641232021-09-23 10:07:05 +0200605 ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000606
607 /* root node has been locked, we can release @subvol_srcu safely here */
608 srcu_read_unlock(&fs_info->subvol_srcu, index);
609
610 btrfs_debug(fs_info,
611 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
612 ref->root_id, level, ref->count, ret,
613 ref->key_for_search.objectid, ref->key_for_search.type,
614 ref->key_for_search.offset);
615 if (ret < 0)
616 goto out;
617
618 eb = path->nodes[level];
619 while (!eb) {
620 if (WARN_ON(!level)) {
621 ret = 1;
622 goto out;
623 }
624 level--;
625 eb = path->nodes[level];
626 }
627
Olivier Deprez0e641232021-09-23 10:07:05 +0200628 ret = add_all_parents(root, path, parents, preftrees, ref, level,
629 time_seq, extent_item_pos, ignore_offset);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000630out:
631 path->lowest_level = 0;
632 btrfs_release_path(path);
633 return ret;
634}
635
636static struct extent_inode_elem *
637unode_aux_to_inode_list(struct ulist_node *node)
638{
639 if (!node)
640 return NULL;
641 return (struct extent_inode_elem *)(uintptr_t)node->aux;
642}
643
644/*
David Brazdil0f672f62019-12-10 10:32:29 +0000645 * We maintain three separate rbtrees: one for direct refs, one for
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000646 * indirect refs which have a key, and one for indirect refs which do not
647 * have a key. Each tree does merge on insertion.
648 *
649 * Once all of the references are located, we iterate over the tree of
650 * indirect refs with missing keys. An appropriate key is located and
651 * the ref is moved onto the tree for indirect refs. After all missing
652 * keys are thus located, we iterate over the indirect ref tree, resolve
653 * each reference, and then insert the resolved reference onto the
654 * direct tree (merging there too).
655 *
656 * New backrefs (i.e., for parent nodes) are added to the appropriate
657 * rbtree as they are encountered. The new backrefs are subsequently
658 * resolved as above.
659 */
660static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
661 struct btrfs_path *path, u64 time_seq,
662 struct preftrees *preftrees,
Olivier Deprez0e641232021-09-23 10:07:05 +0200663 const u64 *extent_item_pos,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000664 struct share_check *sc, bool ignore_offset)
665{
666 int err;
667 int ret = 0;
668 struct ulist *parents;
669 struct ulist_node *node;
670 struct ulist_iterator uiter;
671 struct rb_node *rnode;
672
673 parents = ulist_alloc(GFP_NOFS);
674 if (!parents)
675 return -ENOMEM;
676
677 /*
678 * We could trade memory usage for performance here by iterating
679 * the tree, allocating new refs for each insertion, and then
680 * freeing the entire indirect tree when we're done. In some test
681 * cases, the tree can grow quite large (~200k objects).
682 */
David Brazdil0f672f62019-12-10 10:32:29 +0000683 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000684 struct prelim_ref *ref;
685
686 ref = rb_entry(rnode, struct prelim_ref, rbnode);
687 if (WARN(ref->parent,
688 "BUG: direct ref found in indirect tree")) {
689 ret = -EINVAL;
690 goto out;
691 }
692
David Brazdil0f672f62019-12-10 10:32:29 +0000693 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000694 preftrees->indirect.count--;
695
696 if (ref->count == 0) {
697 free_pref(ref);
698 continue;
699 }
700
701 if (sc && sc->root_objectid &&
702 ref->root_id != sc->root_objectid) {
703 free_pref(ref);
704 ret = BACKREF_FOUND_SHARED;
705 goto out;
706 }
Olivier Deprez0e641232021-09-23 10:07:05 +0200707 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
708 ref, parents, extent_item_pos,
709 ignore_offset);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000710 /*
711 * we can only tolerate ENOENT,otherwise,we should catch error
712 * and return directly.
713 */
714 if (err == -ENOENT) {
715 prelim_ref_insert(fs_info, &preftrees->direct, ref,
716 NULL);
717 continue;
718 } else if (err) {
719 free_pref(ref);
720 ret = err;
721 goto out;
722 }
723
724 /* we put the first parent into the ref at hand */
725 ULIST_ITER_INIT(&uiter);
726 node = ulist_next(parents, &uiter);
727 ref->parent = node ? node->val : 0;
728 ref->inode_list = unode_aux_to_inode_list(node);
729
730 /* Add a prelim_ref(s) for any other parent(s). */
731 while ((node = ulist_next(parents, &uiter))) {
732 struct prelim_ref *new_ref;
733
734 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
735 GFP_NOFS);
736 if (!new_ref) {
737 free_pref(ref);
738 ret = -ENOMEM;
739 goto out;
740 }
741 memcpy(new_ref, ref, sizeof(*ref));
742 new_ref->parent = node->val;
743 new_ref->inode_list = unode_aux_to_inode_list(node);
744 prelim_ref_insert(fs_info, &preftrees->direct,
745 new_ref, NULL);
746 }
747
748 /*
David Brazdil0f672f62019-12-10 10:32:29 +0000749 * Now it's a direct ref, put it in the direct tree. We must
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000750 * do this last because the ref could be merged/freed here.
751 */
752 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
753
754 ulist_reinit(parents);
755 cond_resched();
756 }
757out:
758 ulist_free(parents);
759 return ret;
760}
761
762/*
763 * read tree blocks and add keys where required.
764 */
765static int add_missing_keys(struct btrfs_fs_info *fs_info,
David Brazdil0f672f62019-12-10 10:32:29 +0000766 struct preftrees *preftrees, bool lock)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000767{
768 struct prelim_ref *ref;
769 struct extent_buffer *eb;
770 struct preftree *tree = &preftrees->indirect_missing_keys;
771 struct rb_node *node;
772
David Brazdil0f672f62019-12-10 10:32:29 +0000773 while ((node = rb_first_cached(&tree->root))) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000774 ref = rb_entry(node, struct prelim_ref, rbnode);
David Brazdil0f672f62019-12-10 10:32:29 +0000775 rb_erase_cached(node, &tree->root);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000776
777 BUG_ON(ref->parent); /* should not be a direct ref */
778 BUG_ON(ref->key_for_search.type);
779 BUG_ON(!ref->wanted_disk_byte);
780
781 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
782 ref->level - 1, NULL);
783 if (IS_ERR(eb)) {
784 free_pref(ref);
785 return PTR_ERR(eb);
786 } else if (!extent_buffer_uptodate(eb)) {
787 free_pref(ref);
788 free_extent_buffer(eb);
789 return -EIO;
790 }
David Brazdil0f672f62019-12-10 10:32:29 +0000791 if (lock)
792 btrfs_tree_read_lock(eb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000793 if (btrfs_header_level(eb) == 0)
794 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
795 else
796 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
David Brazdil0f672f62019-12-10 10:32:29 +0000797 if (lock)
798 btrfs_tree_read_unlock(eb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000799 free_extent_buffer(eb);
800 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
801 cond_resched();
802 }
803 return 0;
804}
805
806/*
807 * add all currently queued delayed refs from this head whose seq nr is
808 * smaller or equal that seq to the list
809 */
810static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
811 struct btrfs_delayed_ref_head *head, u64 seq,
Olivier Deprez0e641232021-09-23 10:07:05 +0200812 struct preftrees *preftrees, struct share_check *sc)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000813{
814 struct btrfs_delayed_ref_node *node;
815 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
816 struct btrfs_key key;
817 struct btrfs_key tmp_op_key;
818 struct rb_node *n;
819 int count;
820 int ret = 0;
821
822 if (extent_op && extent_op->update_key)
823 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
824
825 spin_lock(&head->lock);
David Brazdil0f672f62019-12-10 10:32:29 +0000826 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000827 node = rb_entry(n, struct btrfs_delayed_ref_node,
828 ref_node);
829 if (node->seq > seq)
830 continue;
831
832 switch (node->action) {
833 case BTRFS_ADD_DELAYED_EXTENT:
834 case BTRFS_UPDATE_DELAYED_HEAD:
835 WARN_ON(1);
836 continue;
837 case BTRFS_ADD_DELAYED_REF:
838 count = node->ref_mod;
839 break;
840 case BTRFS_DROP_DELAYED_REF:
841 count = node->ref_mod * -1;
842 break;
843 default:
David Brazdil0f672f62019-12-10 10:32:29 +0000844 BUG();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000845 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000846 switch (node->type) {
847 case BTRFS_TREE_BLOCK_REF_KEY: {
848 /* NORMAL INDIRECT METADATA backref */
849 struct btrfs_delayed_tree_ref *ref;
850
851 ref = btrfs_delayed_node_to_tree_ref(node);
852 ret = add_indirect_ref(fs_info, preftrees, ref->root,
853 &tmp_op_key, ref->level + 1,
854 node->bytenr, count, sc,
855 GFP_ATOMIC);
856 break;
857 }
858 case BTRFS_SHARED_BLOCK_REF_KEY: {
859 /* SHARED DIRECT METADATA backref */
860 struct btrfs_delayed_tree_ref *ref;
861
862 ref = btrfs_delayed_node_to_tree_ref(node);
863
864 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
865 ref->parent, node->bytenr, count,
866 sc, GFP_ATOMIC);
867 break;
868 }
869 case BTRFS_EXTENT_DATA_REF_KEY: {
870 /* NORMAL INDIRECT DATA backref */
871 struct btrfs_delayed_data_ref *ref;
872 ref = btrfs_delayed_node_to_data_ref(node);
873
874 key.objectid = ref->objectid;
875 key.type = BTRFS_EXTENT_DATA_KEY;
876 key.offset = ref->offset;
877
878 /*
879 * Found a inum that doesn't match our known inum, we
880 * know it's shared.
881 */
882 if (sc && sc->inum && ref->objectid != sc->inum) {
883 ret = BACKREF_FOUND_SHARED;
884 goto out;
885 }
886
887 ret = add_indirect_ref(fs_info, preftrees, ref->root,
888 &key, 0, node->bytenr, count, sc,
889 GFP_ATOMIC);
890 break;
891 }
892 case BTRFS_SHARED_DATA_REF_KEY: {
893 /* SHARED DIRECT FULL backref */
894 struct btrfs_delayed_data_ref *ref;
895
896 ref = btrfs_delayed_node_to_data_ref(node);
897
898 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
899 node->bytenr, count, sc,
900 GFP_ATOMIC);
901 break;
902 }
903 default:
904 WARN_ON(1);
905 }
906 /*
907 * We must ignore BACKREF_FOUND_SHARED until all delayed
908 * refs have been checked.
909 */
910 if (ret && (ret != BACKREF_FOUND_SHARED))
911 break;
912 }
913 if (!ret)
914 ret = extent_is_shared(sc);
915out:
916 spin_unlock(&head->lock);
917 return ret;
918}
919
920/*
921 * add all inline backrefs for bytenr to the list
922 *
923 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
924 */
925static int add_inline_refs(const struct btrfs_fs_info *fs_info,
926 struct btrfs_path *path, u64 bytenr,
927 int *info_level, struct preftrees *preftrees,
Olivier Deprez0e641232021-09-23 10:07:05 +0200928 struct share_check *sc)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000929{
930 int ret = 0;
931 int slot;
932 struct extent_buffer *leaf;
933 struct btrfs_key key;
934 struct btrfs_key found_key;
935 unsigned long ptr;
936 unsigned long end;
937 struct btrfs_extent_item *ei;
938 u64 flags;
939 u64 item_size;
940
941 /*
942 * enumerate all inline refs
943 */
944 leaf = path->nodes[0];
945 slot = path->slots[0];
946
947 item_size = btrfs_item_size_nr(leaf, slot);
948 BUG_ON(item_size < sizeof(*ei));
949
950 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
951 flags = btrfs_extent_flags(leaf, ei);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000952 btrfs_item_key_to_cpu(leaf, &found_key, slot);
953
954 ptr = (unsigned long)(ei + 1);
955 end = (unsigned long)ei + item_size;
956
957 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
958 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
959 struct btrfs_tree_block_info *info;
960
961 info = (struct btrfs_tree_block_info *)ptr;
962 *info_level = btrfs_tree_block_level(leaf, info);
963 ptr += sizeof(struct btrfs_tree_block_info);
964 BUG_ON(ptr > end);
965 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
966 *info_level = found_key.offset;
967 } else {
968 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
969 }
970
971 while (ptr < end) {
972 struct btrfs_extent_inline_ref *iref;
973 u64 offset;
974 int type;
975
976 iref = (struct btrfs_extent_inline_ref *)ptr;
977 type = btrfs_get_extent_inline_ref_type(leaf, iref,
978 BTRFS_REF_TYPE_ANY);
979 if (type == BTRFS_REF_TYPE_INVALID)
980 return -EUCLEAN;
981
982 offset = btrfs_extent_inline_ref_offset(leaf, iref);
983
984 switch (type) {
985 case BTRFS_SHARED_BLOCK_REF_KEY:
986 ret = add_direct_ref(fs_info, preftrees,
987 *info_level + 1, offset,
988 bytenr, 1, NULL, GFP_NOFS);
989 break;
990 case BTRFS_SHARED_DATA_REF_KEY: {
991 struct btrfs_shared_data_ref *sdref;
992 int count;
993
994 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
995 count = btrfs_shared_data_ref_count(leaf, sdref);
996
997 ret = add_direct_ref(fs_info, preftrees, 0, offset,
998 bytenr, count, sc, GFP_NOFS);
999 break;
1000 }
1001 case BTRFS_TREE_BLOCK_REF_KEY:
1002 ret = add_indirect_ref(fs_info, preftrees, offset,
1003 NULL, *info_level + 1,
1004 bytenr, 1, NULL, GFP_NOFS);
1005 break;
1006 case BTRFS_EXTENT_DATA_REF_KEY: {
1007 struct btrfs_extent_data_ref *dref;
1008 int count;
1009 u64 root;
1010
1011 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1012 count = btrfs_extent_data_ref_count(leaf, dref);
1013 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1014 dref);
1015 key.type = BTRFS_EXTENT_DATA_KEY;
1016 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1017
1018 if (sc && sc->inum && key.objectid != sc->inum) {
1019 ret = BACKREF_FOUND_SHARED;
1020 break;
1021 }
1022
1023 root = btrfs_extent_data_ref_root(leaf, dref);
1024
1025 ret = add_indirect_ref(fs_info, preftrees, root,
1026 &key, 0, bytenr, count,
1027 sc, GFP_NOFS);
1028 break;
1029 }
1030 default:
1031 WARN_ON(1);
1032 }
1033 if (ret)
1034 return ret;
1035 ptr += btrfs_extent_inline_ref_size(type);
1036 }
1037
1038 return 0;
1039}
1040
1041/*
1042 * add all non-inline backrefs for bytenr to the list
1043 *
1044 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1045 */
1046static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1047 struct btrfs_path *path, u64 bytenr,
1048 int info_level, struct preftrees *preftrees,
1049 struct share_check *sc)
1050{
1051 struct btrfs_root *extent_root = fs_info->extent_root;
1052 int ret;
1053 int slot;
1054 struct extent_buffer *leaf;
1055 struct btrfs_key key;
1056
1057 while (1) {
1058 ret = btrfs_next_item(extent_root, path);
1059 if (ret < 0)
1060 break;
1061 if (ret) {
1062 ret = 0;
1063 break;
1064 }
1065
1066 slot = path->slots[0];
1067 leaf = path->nodes[0];
1068 btrfs_item_key_to_cpu(leaf, &key, slot);
1069
1070 if (key.objectid != bytenr)
1071 break;
1072 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1073 continue;
1074 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1075 break;
1076
1077 switch (key.type) {
1078 case BTRFS_SHARED_BLOCK_REF_KEY:
1079 /* SHARED DIRECT METADATA backref */
1080 ret = add_direct_ref(fs_info, preftrees,
1081 info_level + 1, key.offset,
1082 bytenr, 1, NULL, GFP_NOFS);
1083 break;
1084 case BTRFS_SHARED_DATA_REF_KEY: {
1085 /* SHARED DIRECT FULL backref */
1086 struct btrfs_shared_data_ref *sdref;
1087 int count;
1088
1089 sdref = btrfs_item_ptr(leaf, slot,
1090 struct btrfs_shared_data_ref);
1091 count = btrfs_shared_data_ref_count(leaf, sdref);
1092 ret = add_direct_ref(fs_info, preftrees, 0,
1093 key.offset, bytenr, count,
1094 sc, GFP_NOFS);
1095 break;
1096 }
1097 case BTRFS_TREE_BLOCK_REF_KEY:
1098 /* NORMAL INDIRECT METADATA backref */
1099 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1100 NULL, info_level + 1, bytenr,
1101 1, NULL, GFP_NOFS);
1102 break;
1103 case BTRFS_EXTENT_DATA_REF_KEY: {
1104 /* NORMAL INDIRECT DATA backref */
1105 struct btrfs_extent_data_ref *dref;
1106 int count;
1107 u64 root;
1108
1109 dref = btrfs_item_ptr(leaf, slot,
1110 struct btrfs_extent_data_ref);
1111 count = btrfs_extent_data_ref_count(leaf, dref);
1112 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1113 dref);
1114 key.type = BTRFS_EXTENT_DATA_KEY;
1115 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1116
1117 if (sc && sc->inum && key.objectid != sc->inum) {
1118 ret = BACKREF_FOUND_SHARED;
1119 break;
1120 }
1121
1122 root = btrfs_extent_data_ref_root(leaf, dref);
1123 ret = add_indirect_ref(fs_info, preftrees, root,
1124 &key, 0, bytenr, count,
1125 sc, GFP_NOFS);
1126 break;
1127 }
1128 default:
1129 WARN_ON(1);
1130 }
1131 if (ret)
1132 return ret;
1133
1134 }
1135
1136 return ret;
1137}
1138
1139/*
1140 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1141 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1142 * indirect refs to their parent bytenr.
1143 * When roots are found, they're added to the roots list
1144 *
1145 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1146 * much like trans == NULL case, the difference only lies in it will not
1147 * commit root.
1148 * The special case is for qgroup to search roots in commit_transaction().
1149 *
1150 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1151 * shared extent is detected.
1152 *
1153 * Otherwise this returns 0 for success and <0 for an error.
1154 *
1155 * If ignore_offset is set to false, only extent refs whose offsets match
1156 * extent_item_pos are returned. If true, every extent ref is returned
1157 * and extent_item_pos is ignored.
1158 *
1159 * FIXME some caching might speed things up
1160 */
1161static int find_parent_nodes(struct btrfs_trans_handle *trans,
1162 struct btrfs_fs_info *fs_info, u64 bytenr,
1163 u64 time_seq, struct ulist *refs,
1164 struct ulist *roots, const u64 *extent_item_pos,
1165 struct share_check *sc, bool ignore_offset)
1166{
1167 struct btrfs_key key;
1168 struct btrfs_path *path;
1169 struct btrfs_delayed_ref_root *delayed_refs = NULL;
1170 struct btrfs_delayed_ref_head *head;
1171 int info_level = 0;
1172 int ret;
1173 struct prelim_ref *ref;
1174 struct rb_node *node;
1175 struct extent_inode_elem *eie = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001176 struct preftrees preftrees = {
1177 .direct = PREFTREE_INIT,
1178 .indirect = PREFTREE_INIT,
1179 .indirect_missing_keys = PREFTREE_INIT
1180 };
1181
1182 key.objectid = bytenr;
1183 key.offset = (u64)-1;
1184 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1185 key.type = BTRFS_METADATA_ITEM_KEY;
1186 else
1187 key.type = BTRFS_EXTENT_ITEM_KEY;
1188
1189 path = btrfs_alloc_path();
1190 if (!path)
1191 return -ENOMEM;
1192 if (!trans) {
1193 path->search_commit_root = 1;
1194 path->skip_locking = 1;
1195 }
1196
1197 if (time_seq == SEQ_LAST)
1198 path->skip_locking = 1;
1199
1200 /*
1201 * grab both a lock on the path and a lock on the delayed ref head.
1202 * We need both to get a consistent picture of how the refs look
1203 * at a specified point in time
1204 */
1205again:
1206 head = NULL;
1207
1208 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1209 if (ret < 0)
1210 goto out;
1211 BUG_ON(ret == 0);
1212
1213#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1214 if (trans && likely(trans->type != __TRANS_DUMMY) &&
1215 time_seq != SEQ_LAST) {
1216#else
1217 if (trans && time_seq != SEQ_LAST) {
1218#endif
1219 /*
1220 * look if there are updates for this ref queued and lock the
1221 * head
1222 */
1223 delayed_refs = &trans->transaction->delayed_refs;
1224 spin_lock(&delayed_refs->lock);
1225 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1226 if (head) {
1227 if (!mutex_trylock(&head->mutex)) {
1228 refcount_inc(&head->refs);
1229 spin_unlock(&delayed_refs->lock);
1230
1231 btrfs_release_path(path);
1232
1233 /*
1234 * Mutex was contended, block until it's
1235 * released and try again
1236 */
1237 mutex_lock(&head->mutex);
1238 mutex_unlock(&head->mutex);
1239 btrfs_put_delayed_ref_head(head);
1240 goto again;
1241 }
1242 spin_unlock(&delayed_refs->lock);
1243 ret = add_delayed_refs(fs_info, head, time_seq,
Olivier Deprez0e641232021-09-23 10:07:05 +02001244 &preftrees, sc);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001245 mutex_unlock(&head->mutex);
1246 if (ret)
1247 goto out;
1248 } else {
1249 spin_unlock(&delayed_refs->lock);
1250 }
1251 }
1252
1253 if (path->slots[0]) {
1254 struct extent_buffer *leaf;
1255 int slot;
1256
1257 path->slots[0]--;
1258 leaf = path->nodes[0];
1259 slot = path->slots[0];
1260 btrfs_item_key_to_cpu(leaf, &key, slot);
1261 if (key.objectid == bytenr &&
1262 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1263 key.type == BTRFS_METADATA_ITEM_KEY)) {
1264 ret = add_inline_refs(fs_info, path, bytenr,
Olivier Deprez0e641232021-09-23 10:07:05 +02001265 &info_level, &preftrees, sc);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001266 if (ret)
1267 goto out;
1268 ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1269 &preftrees, sc);
1270 if (ret)
1271 goto out;
1272 }
1273 }
1274
1275 btrfs_release_path(path);
1276
David Brazdil0f672f62019-12-10 10:32:29 +00001277 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001278 if (ret)
1279 goto out;
1280
David Brazdil0f672f62019-12-10 10:32:29 +00001281 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001282
1283 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
Olivier Deprez0e641232021-09-23 10:07:05 +02001284 extent_item_pos, sc, ignore_offset);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001285 if (ret)
1286 goto out;
1287
David Brazdil0f672f62019-12-10 10:32:29 +00001288 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001289
1290 /*
1291 * This walks the tree of merged and resolved refs. Tree blocks are
1292 * read in as needed. Unique entries are added to the ulist, and
1293 * the list of found roots is updated.
1294 *
1295 * We release the entire tree in one go before returning.
1296 */
David Brazdil0f672f62019-12-10 10:32:29 +00001297 node = rb_first_cached(&preftrees.direct.root);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001298 while (node) {
1299 ref = rb_entry(node, struct prelim_ref, rbnode);
1300 node = rb_next(&ref->rbnode);
1301 /*
1302 * ref->count < 0 can happen here if there are delayed
1303 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1304 * prelim_ref_insert() relies on this when merging
1305 * identical refs to keep the overall count correct.
1306 * prelim_ref_insert() will merge only those refs
1307 * which compare identically. Any refs having
1308 * e.g. different offsets would not be merged,
1309 * and would retain their original ref->count < 0.
1310 */
1311 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1312 if (sc && sc->root_objectid &&
1313 ref->root_id != sc->root_objectid) {
1314 ret = BACKREF_FOUND_SHARED;
1315 goto out;
1316 }
1317
1318 /* no parent == root of tree */
1319 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1320 if (ret < 0)
1321 goto out;
1322 }
1323 if (ref->count && ref->parent) {
1324 if (extent_item_pos && !ref->inode_list &&
1325 ref->level == 0) {
1326 struct extent_buffer *eb;
1327
1328 eb = read_tree_block(fs_info, ref->parent, 0,
1329 ref->level, NULL);
1330 if (IS_ERR(eb)) {
1331 ret = PTR_ERR(eb);
1332 goto out;
1333 } else if (!extent_buffer_uptodate(eb)) {
1334 free_extent_buffer(eb);
1335 ret = -EIO;
1336 goto out;
1337 }
David Brazdil0f672f62019-12-10 10:32:29 +00001338
1339 if (!path->skip_locking) {
1340 btrfs_tree_read_lock(eb);
1341 btrfs_set_lock_blocking_read(eb);
1342 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001343 ret = find_extent_in_eb(eb, bytenr,
1344 *extent_item_pos, &eie, ignore_offset);
David Brazdil0f672f62019-12-10 10:32:29 +00001345 if (!path->skip_locking)
1346 btrfs_tree_read_unlock_blocking(eb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001347 free_extent_buffer(eb);
1348 if (ret < 0)
1349 goto out;
1350 ref->inode_list = eie;
1351 }
1352 ret = ulist_add_merge_ptr(refs, ref->parent,
1353 ref->inode_list,
1354 (void **)&eie, GFP_NOFS);
1355 if (ret < 0)
1356 goto out;
1357 if (!ret && extent_item_pos) {
1358 /*
1359 * we've recorded that parent, so we must extend
1360 * its inode list here
1361 */
1362 BUG_ON(!eie);
1363 while (eie->next)
1364 eie = eie->next;
1365 eie->next = ref->inode_list;
1366 }
1367 eie = NULL;
1368 }
1369 cond_resched();
1370 }
1371
1372out:
1373 btrfs_free_path(path);
1374
1375 prelim_release(&preftrees.direct);
1376 prelim_release(&preftrees.indirect);
1377 prelim_release(&preftrees.indirect_missing_keys);
1378
1379 if (ret < 0)
1380 free_inode_elem_list(eie);
1381 return ret;
1382}
1383
1384static void free_leaf_list(struct ulist *blocks)
1385{
1386 struct ulist_node *node = NULL;
1387 struct extent_inode_elem *eie;
1388 struct ulist_iterator uiter;
1389
1390 ULIST_ITER_INIT(&uiter);
1391 while ((node = ulist_next(blocks, &uiter))) {
1392 if (!node->aux)
1393 continue;
1394 eie = unode_aux_to_inode_list(node);
1395 free_inode_elem_list(eie);
1396 node->aux = 0;
1397 }
1398
1399 ulist_free(blocks);
1400}
1401
1402/*
1403 * Finds all leafs with a reference to the specified combination of bytenr and
1404 * offset. key_list_head will point to a list of corresponding keys (caller must
1405 * free each list element). The leafs will be stored in the leafs ulist, which
1406 * must be freed with ulist_free.
1407 *
1408 * returns 0 on success, <0 on error
1409 */
1410static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1411 struct btrfs_fs_info *fs_info, u64 bytenr,
1412 u64 time_seq, struct ulist **leafs,
1413 const u64 *extent_item_pos, bool ignore_offset)
1414{
1415 int ret;
1416
1417 *leafs = ulist_alloc(GFP_NOFS);
1418 if (!*leafs)
1419 return -ENOMEM;
1420
1421 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1422 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
1423 if (ret < 0 && ret != -ENOENT) {
1424 free_leaf_list(*leafs);
1425 return ret;
1426 }
1427
1428 return 0;
1429}
1430
1431/*
1432 * walk all backrefs for a given extent to find all roots that reference this
1433 * extent. Walking a backref means finding all extents that reference this
1434 * extent and in turn walk the backrefs of those, too. Naturally this is a
1435 * recursive process, but here it is implemented in an iterative fashion: We
1436 * find all referencing extents for the extent in question and put them on a
1437 * list. In turn, we find all referencing extents for those, further appending
1438 * to the list. The way we iterate the list allows adding more elements after
1439 * the current while iterating. The process stops when we reach the end of the
1440 * list. Found roots are added to the roots list.
1441 *
1442 * returns 0 on success, < 0 on error.
1443 */
1444static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1445 struct btrfs_fs_info *fs_info, u64 bytenr,
1446 u64 time_seq, struct ulist **roots,
1447 bool ignore_offset)
1448{
1449 struct ulist *tmp;
1450 struct ulist_node *node = NULL;
1451 struct ulist_iterator uiter;
1452 int ret;
1453
1454 tmp = ulist_alloc(GFP_NOFS);
1455 if (!tmp)
1456 return -ENOMEM;
1457 *roots = ulist_alloc(GFP_NOFS);
1458 if (!*roots) {
1459 ulist_free(tmp);
1460 return -ENOMEM;
1461 }
1462
1463 ULIST_ITER_INIT(&uiter);
1464 while (1) {
1465 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1466 tmp, *roots, NULL, NULL, ignore_offset);
1467 if (ret < 0 && ret != -ENOENT) {
1468 ulist_free(tmp);
1469 ulist_free(*roots);
Olivier Deprez0e641232021-09-23 10:07:05 +02001470 *roots = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001471 return ret;
1472 }
1473 node = ulist_next(tmp, &uiter);
1474 if (!node)
1475 break;
1476 bytenr = node->val;
1477 cond_resched();
1478 }
1479
1480 ulist_free(tmp);
1481 return 0;
1482}
1483
1484int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1485 struct btrfs_fs_info *fs_info, u64 bytenr,
1486 u64 time_seq, struct ulist **roots,
1487 bool ignore_offset)
1488{
1489 int ret;
1490
1491 if (!trans)
1492 down_read(&fs_info->commit_root_sem);
1493 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1494 time_seq, roots, ignore_offset);
1495 if (!trans)
1496 up_read(&fs_info->commit_root_sem);
1497 return ret;
1498}
1499
1500/**
1501 * btrfs_check_shared - tell us whether an extent is shared
1502 *
1503 * btrfs_check_shared uses the backref walking code but will short
1504 * circuit as soon as it finds a root or inode that doesn't match the
1505 * one passed in. This provides a significant performance benefit for
1506 * callers (such as fiemap) which want to know whether the extent is
1507 * shared but do not need a ref count.
1508 *
David Brazdil0f672f62019-12-10 10:32:29 +00001509 * This attempts to attach to the running transaction in order to account for
1510 * delayed refs, but continues on even when no running transaction exists.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001511 *
1512 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1513 */
David Brazdil0f672f62019-12-10 10:32:29 +00001514int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1515 struct ulist *roots, struct ulist *tmp)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001516{
1517 struct btrfs_fs_info *fs_info = root->fs_info;
1518 struct btrfs_trans_handle *trans;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001519 struct ulist_iterator uiter;
1520 struct ulist_node *node;
1521 struct seq_list elem = SEQ_LIST_INIT(elem);
1522 int ret = 0;
1523 struct share_check shared = {
David Brazdil0f672f62019-12-10 10:32:29 +00001524 .root_objectid = root->root_key.objectid,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001525 .inum = inum,
1526 .share_count = 0,
1527 };
1528
David Brazdil0f672f62019-12-10 10:32:29 +00001529 ulist_init(roots);
1530 ulist_init(tmp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001531
David Brazdil0f672f62019-12-10 10:32:29 +00001532 trans = btrfs_join_transaction_nostart(root);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001533 if (IS_ERR(trans)) {
David Brazdil0f672f62019-12-10 10:32:29 +00001534 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1535 ret = PTR_ERR(trans);
1536 goto out;
1537 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001538 trans = NULL;
1539 down_read(&fs_info->commit_root_sem);
1540 } else {
1541 btrfs_get_tree_mod_seq(fs_info, &elem);
1542 }
1543
1544 ULIST_ITER_INIT(&uiter);
1545 while (1) {
1546 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1547 roots, NULL, &shared, false);
1548 if (ret == BACKREF_FOUND_SHARED) {
1549 /* this is the only condition under which we return 1 */
1550 ret = 1;
1551 break;
1552 }
1553 if (ret < 0 && ret != -ENOENT)
1554 break;
1555 ret = 0;
1556 node = ulist_next(tmp, &uiter);
1557 if (!node)
1558 break;
1559 bytenr = node->val;
1560 shared.share_count = 0;
1561 cond_resched();
1562 }
1563
1564 if (trans) {
1565 btrfs_put_tree_mod_seq(fs_info, &elem);
1566 btrfs_end_transaction(trans);
1567 } else {
1568 up_read(&fs_info->commit_root_sem);
1569 }
David Brazdil0f672f62019-12-10 10:32:29 +00001570out:
1571 ulist_release(roots);
1572 ulist_release(tmp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001573 return ret;
1574}
1575
1576int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1577 u64 start_off, struct btrfs_path *path,
1578 struct btrfs_inode_extref **ret_extref,
1579 u64 *found_off)
1580{
1581 int ret, slot;
1582 struct btrfs_key key;
1583 struct btrfs_key found_key;
1584 struct btrfs_inode_extref *extref;
1585 const struct extent_buffer *leaf;
1586 unsigned long ptr;
1587
1588 key.objectid = inode_objectid;
1589 key.type = BTRFS_INODE_EXTREF_KEY;
1590 key.offset = start_off;
1591
1592 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1593 if (ret < 0)
1594 return ret;
1595
1596 while (1) {
1597 leaf = path->nodes[0];
1598 slot = path->slots[0];
1599 if (slot >= btrfs_header_nritems(leaf)) {
1600 /*
1601 * If the item at offset is not found,
1602 * btrfs_search_slot will point us to the slot
1603 * where it should be inserted. In our case
1604 * that will be the slot directly before the
1605 * next INODE_REF_KEY_V2 item. In the case
1606 * that we're pointing to the last slot in a
1607 * leaf, we must move one leaf over.
1608 */
1609 ret = btrfs_next_leaf(root, path);
1610 if (ret) {
1611 if (ret >= 1)
1612 ret = -ENOENT;
1613 break;
1614 }
1615 continue;
1616 }
1617
1618 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1619
1620 /*
1621 * Check that we're still looking at an extended ref key for
1622 * this particular objectid. If we have different
1623 * objectid or type then there are no more to be found
1624 * in the tree and we can exit.
1625 */
1626 ret = -ENOENT;
1627 if (found_key.objectid != inode_objectid)
1628 break;
1629 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1630 break;
1631
1632 ret = 0;
1633 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1634 extref = (struct btrfs_inode_extref *)ptr;
1635 *ret_extref = extref;
1636 if (found_off)
1637 *found_off = found_key.offset;
1638 break;
1639 }
1640
1641 return ret;
1642}
1643
1644/*
1645 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1646 * Elements of the path are separated by '/' and the path is guaranteed to be
1647 * 0-terminated. the path is only given within the current file system.
1648 * Therefore, it never starts with a '/'. the caller is responsible to provide
1649 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1650 * the start point of the resulting string is returned. this pointer is within
1651 * dest, normally.
1652 * in case the path buffer would overflow, the pointer is decremented further
1653 * as if output was written to the buffer, though no more output is actually
1654 * generated. that way, the caller can determine how much space would be
1655 * required for the path to fit into the buffer. in that case, the returned
1656 * value will be smaller than dest. callers must check this!
1657 */
1658char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1659 u32 name_len, unsigned long name_off,
1660 struct extent_buffer *eb_in, u64 parent,
1661 char *dest, u32 size)
1662{
1663 int slot;
1664 u64 next_inum;
1665 int ret;
1666 s64 bytes_left = ((s64)size) - 1;
1667 struct extent_buffer *eb = eb_in;
1668 struct btrfs_key found_key;
1669 int leave_spinning = path->leave_spinning;
1670 struct btrfs_inode_ref *iref;
1671
1672 if (bytes_left >= 0)
1673 dest[bytes_left] = '\0';
1674
1675 path->leave_spinning = 1;
1676 while (1) {
1677 bytes_left -= name_len;
1678 if (bytes_left >= 0)
1679 read_extent_buffer(eb, dest + bytes_left,
1680 name_off, name_len);
1681 if (eb != eb_in) {
1682 if (!path->skip_locking)
1683 btrfs_tree_read_unlock_blocking(eb);
1684 free_extent_buffer(eb);
1685 }
1686 ret = btrfs_find_item(fs_root, path, parent, 0,
1687 BTRFS_INODE_REF_KEY, &found_key);
1688 if (ret > 0)
1689 ret = -ENOENT;
1690 if (ret)
1691 break;
1692
1693 next_inum = found_key.offset;
1694
1695 /* regular exit ahead */
1696 if (parent == next_inum)
1697 break;
1698
1699 slot = path->slots[0];
1700 eb = path->nodes[0];
1701 /* make sure we can use eb after releasing the path */
1702 if (eb != eb_in) {
1703 if (!path->skip_locking)
David Brazdil0f672f62019-12-10 10:32:29 +00001704 btrfs_set_lock_blocking_read(eb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001705 path->nodes[0] = NULL;
1706 path->locks[0] = 0;
1707 }
1708 btrfs_release_path(path);
1709 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1710
1711 name_len = btrfs_inode_ref_name_len(eb, iref);
1712 name_off = (unsigned long)(iref + 1);
1713
1714 parent = next_inum;
1715 --bytes_left;
1716 if (bytes_left >= 0)
1717 dest[bytes_left] = '/';
1718 }
1719
1720 btrfs_release_path(path);
1721 path->leave_spinning = leave_spinning;
1722
1723 if (ret)
1724 return ERR_PTR(ret);
1725
1726 return dest + bytes_left;
1727}
1728
1729/*
1730 * this makes the path point to (logical EXTENT_ITEM *)
1731 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1732 * tree blocks and <0 on error.
1733 */
1734int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1735 struct btrfs_path *path, struct btrfs_key *found_key,
1736 u64 *flags_ret)
1737{
1738 int ret;
1739 u64 flags;
1740 u64 size = 0;
1741 u32 item_size;
1742 const struct extent_buffer *eb;
1743 struct btrfs_extent_item *ei;
1744 struct btrfs_key key;
1745
1746 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1747 key.type = BTRFS_METADATA_ITEM_KEY;
1748 else
1749 key.type = BTRFS_EXTENT_ITEM_KEY;
1750 key.objectid = logical;
1751 key.offset = (u64)-1;
1752
1753 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1754 if (ret < 0)
1755 return ret;
1756
1757 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1758 if (ret) {
1759 if (ret > 0)
1760 ret = -ENOENT;
1761 return ret;
1762 }
1763 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1764 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1765 size = fs_info->nodesize;
1766 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1767 size = found_key->offset;
1768
1769 if (found_key->objectid > logical ||
1770 found_key->objectid + size <= logical) {
1771 btrfs_debug(fs_info,
1772 "logical %llu is not within any extent", logical);
1773 return -ENOENT;
1774 }
1775
1776 eb = path->nodes[0];
1777 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1778 BUG_ON(item_size < sizeof(*ei));
1779
1780 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1781 flags = btrfs_extent_flags(eb, ei);
1782
1783 btrfs_debug(fs_info,
1784 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1785 logical, logical - found_key->objectid, found_key->objectid,
1786 found_key->offset, flags, item_size);
1787
1788 WARN_ON(!flags_ret);
1789 if (flags_ret) {
1790 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1791 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1792 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1793 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1794 else
David Brazdil0f672f62019-12-10 10:32:29 +00001795 BUG();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001796 return 0;
1797 }
1798
1799 return -EIO;
1800}
1801
1802/*
1803 * helper function to iterate extent inline refs. ptr must point to a 0 value
1804 * for the first call and may be modified. it is used to track state.
1805 * if more refs exist, 0 is returned and the next call to
1806 * get_extent_inline_ref must pass the modified ptr parameter to get the
1807 * next ref. after the last ref was processed, 1 is returned.
1808 * returns <0 on error
1809 */
1810static int get_extent_inline_ref(unsigned long *ptr,
1811 const struct extent_buffer *eb,
1812 const struct btrfs_key *key,
1813 const struct btrfs_extent_item *ei,
1814 u32 item_size,
1815 struct btrfs_extent_inline_ref **out_eiref,
1816 int *out_type)
1817{
1818 unsigned long end;
1819 u64 flags;
1820 struct btrfs_tree_block_info *info;
1821
1822 if (!*ptr) {
1823 /* first call */
1824 flags = btrfs_extent_flags(eb, ei);
1825 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1826 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1827 /* a skinny metadata extent */
1828 *out_eiref =
1829 (struct btrfs_extent_inline_ref *)(ei + 1);
1830 } else {
1831 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1832 info = (struct btrfs_tree_block_info *)(ei + 1);
1833 *out_eiref =
1834 (struct btrfs_extent_inline_ref *)(info + 1);
1835 }
1836 } else {
1837 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1838 }
1839 *ptr = (unsigned long)*out_eiref;
1840 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1841 return -ENOENT;
1842 }
1843
1844 end = (unsigned long)ei + item_size;
1845 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1846 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1847 BTRFS_REF_TYPE_ANY);
1848 if (*out_type == BTRFS_REF_TYPE_INVALID)
1849 return -EUCLEAN;
1850
1851 *ptr += btrfs_extent_inline_ref_size(*out_type);
1852 WARN_ON(*ptr > end);
1853 if (*ptr == end)
1854 return 1; /* last */
1855
1856 return 0;
1857}
1858
1859/*
1860 * reads the tree block backref for an extent. tree level and root are returned
1861 * through out_level and out_root. ptr must point to a 0 value for the first
1862 * call and may be modified (see get_extent_inline_ref comment).
1863 * returns 0 if data was provided, 1 if there was no more data to provide or
1864 * <0 on error.
1865 */
1866int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1867 struct btrfs_key *key, struct btrfs_extent_item *ei,
1868 u32 item_size, u64 *out_root, u8 *out_level)
1869{
1870 int ret;
1871 int type;
1872 struct btrfs_extent_inline_ref *eiref;
1873
1874 if (*ptr == (unsigned long)-1)
1875 return 1;
1876
1877 while (1) {
1878 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1879 &eiref, &type);
1880 if (ret < 0)
1881 return ret;
1882
1883 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1884 type == BTRFS_SHARED_BLOCK_REF_KEY)
1885 break;
1886
1887 if (ret == 1)
1888 return 1;
1889 }
1890
1891 /* we can treat both ref types equally here */
1892 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1893
1894 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1895 struct btrfs_tree_block_info *info;
1896
1897 info = (struct btrfs_tree_block_info *)(ei + 1);
1898 *out_level = btrfs_tree_block_level(eb, info);
1899 } else {
1900 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1901 *out_level = (u8)key->offset;
1902 }
1903
1904 if (ret == 1)
1905 *ptr = (unsigned long)-1;
1906
1907 return 0;
1908}
1909
1910static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1911 struct extent_inode_elem *inode_list,
1912 u64 root, u64 extent_item_objectid,
1913 iterate_extent_inodes_t *iterate, void *ctx)
1914{
1915 struct extent_inode_elem *eie;
1916 int ret = 0;
1917
1918 for (eie = inode_list; eie; eie = eie->next) {
1919 btrfs_debug(fs_info,
1920 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1921 extent_item_objectid, eie->inum,
1922 eie->offset, root);
1923 ret = iterate(eie->inum, eie->offset, root, ctx);
1924 if (ret) {
1925 btrfs_debug(fs_info,
1926 "stopping iteration for %llu due to ret=%d",
1927 extent_item_objectid, ret);
1928 break;
1929 }
1930 }
1931
1932 return ret;
1933}
1934
1935/*
1936 * calls iterate() for every inode that references the extent identified by
1937 * the given parameters.
1938 * when the iterator function returns a non-zero value, iteration stops.
1939 */
1940int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1941 u64 extent_item_objectid, u64 extent_item_pos,
1942 int search_commit_root,
1943 iterate_extent_inodes_t *iterate, void *ctx,
1944 bool ignore_offset)
1945{
1946 int ret;
1947 struct btrfs_trans_handle *trans = NULL;
1948 struct ulist *refs = NULL;
1949 struct ulist *roots = NULL;
1950 struct ulist_node *ref_node = NULL;
1951 struct ulist_node *root_node = NULL;
1952 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1953 struct ulist_iterator ref_uiter;
1954 struct ulist_iterator root_uiter;
1955
1956 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1957 extent_item_objectid);
1958
1959 if (!search_commit_root) {
David Brazdil0f672f62019-12-10 10:32:29 +00001960 trans = btrfs_attach_transaction(fs_info->extent_root);
1961 if (IS_ERR(trans)) {
1962 if (PTR_ERR(trans) != -ENOENT &&
1963 PTR_ERR(trans) != -EROFS)
1964 return PTR_ERR(trans);
1965 trans = NULL;
1966 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001967 }
1968
David Brazdil0f672f62019-12-10 10:32:29 +00001969 if (trans)
1970 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1971 else
1972 down_read(&fs_info->commit_root_sem);
1973
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001974 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1975 tree_mod_seq_elem.seq, &refs,
1976 &extent_item_pos, ignore_offset);
1977 if (ret)
1978 goto out;
1979
1980 ULIST_ITER_INIT(&ref_uiter);
1981 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1982 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1983 tree_mod_seq_elem.seq, &roots,
1984 ignore_offset);
1985 if (ret)
1986 break;
1987 ULIST_ITER_INIT(&root_uiter);
1988 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1989 btrfs_debug(fs_info,
1990 "root %llu references leaf %llu, data list %#llx",
1991 root_node->val, ref_node->val,
1992 ref_node->aux);
1993 ret = iterate_leaf_refs(fs_info,
1994 (struct extent_inode_elem *)
1995 (uintptr_t)ref_node->aux,
1996 root_node->val,
1997 extent_item_objectid,
1998 iterate, ctx);
1999 }
2000 ulist_free(roots);
2001 }
2002
2003 free_leaf_list(refs);
2004out:
David Brazdil0f672f62019-12-10 10:32:29 +00002005 if (trans) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002006 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2007 btrfs_end_transaction(trans);
2008 } else {
2009 up_read(&fs_info->commit_root_sem);
2010 }
2011
2012 return ret;
2013}
2014
2015int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2016 struct btrfs_path *path,
2017 iterate_extent_inodes_t *iterate, void *ctx,
2018 bool ignore_offset)
2019{
2020 int ret;
2021 u64 extent_item_pos;
2022 u64 flags = 0;
2023 struct btrfs_key found_key;
2024 int search_commit_root = path->search_commit_root;
2025
2026 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2027 btrfs_release_path(path);
2028 if (ret < 0)
2029 return ret;
2030 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2031 return -EINVAL;
2032
2033 extent_item_pos = logical - found_key.objectid;
2034 ret = iterate_extent_inodes(fs_info, found_key.objectid,
2035 extent_item_pos, search_commit_root,
2036 iterate, ctx, ignore_offset);
2037
2038 return ret;
2039}
2040
2041typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2042 struct extent_buffer *eb, void *ctx);
2043
2044static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2045 struct btrfs_path *path,
2046 iterate_irefs_t *iterate, void *ctx)
2047{
2048 int ret = 0;
2049 int slot;
2050 u32 cur;
2051 u32 len;
2052 u32 name_len;
2053 u64 parent = 0;
2054 int found = 0;
2055 struct extent_buffer *eb;
2056 struct btrfs_item *item;
2057 struct btrfs_inode_ref *iref;
2058 struct btrfs_key found_key;
2059
2060 while (!ret) {
2061 ret = btrfs_find_item(fs_root, path, inum,
2062 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2063 &found_key);
2064
2065 if (ret < 0)
2066 break;
2067 if (ret) {
2068 ret = found ? 0 : -ENOENT;
2069 break;
2070 }
2071 ++found;
2072
2073 parent = found_key.offset;
2074 slot = path->slots[0];
2075 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2076 if (!eb) {
2077 ret = -ENOMEM;
2078 break;
2079 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002080 btrfs_release_path(path);
2081
2082 item = btrfs_item_nr(slot);
2083 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2084
2085 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2086 name_len = btrfs_inode_ref_name_len(eb, iref);
2087 /* path must be released before calling iterate()! */
2088 btrfs_debug(fs_root->fs_info,
2089 "following ref at offset %u for inode %llu in tree %llu",
David Brazdil0f672f62019-12-10 10:32:29 +00002090 cur, found_key.objectid,
2091 fs_root->root_key.objectid);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002092 ret = iterate(parent, name_len,
2093 (unsigned long)(iref + 1), eb, ctx);
2094 if (ret)
2095 break;
2096 len = sizeof(*iref) + name_len;
2097 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2098 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002099 free_extent_buffer(eb);
2100 }
2101
2102 btrfs_release_path(path);
2103
2104 return ret;
2105}
2106
2107static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2108 struct btrfs_path *path,
2109 iterate_irefs_t *iterate, void *ctx)
2110{
2111 int ret;
2112 int slot;
2113 u64 offset = 0;
2114 u64 parent;
2115 int found = 0;
2116 struct extent_buffer *eb;
2117 struct btrfs_inode_extref *extref;
2118 u32 item_size;
2119 u32 cur_offset;
2120 unsigned long ptr;
2121
2122 while (1) {
2123 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2124 &offset);
2125 if (ret < 0)
2126 break;
2127 if (ret) {
2128 ret = found ? 0 : -ENOENT;
2129 break;
2130 }
2131 ++found;
2132
2133 slot = path->slots[0];
2134 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2135 if (!eb) {
2136 ret = -ENOMEM;
2137 break;
2138 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002139 btrfs_release_path(path);
2140
2141 item_size = btrfs_item_size_nr(eb, slot);
2142 ptr = btrfs_item_ptr_offset(eb, slot);
2143 cur_offset = 0;
2144
2145 while (cur_offset < item_size) {
2146 u32 name_len;
2147
2148 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2149 parent = btrfs_inode_extref_parent(eb, extref);
2150 name_len = btrfs_inode_extref_name_len(eb, extref);
2151 ret = iterate(parent, name_len,
2152 (unsigned long)&extref->name, eb, ctx);
2153 if (ret)
2154 break;
2155
2156 cur_offset += btrfs_inode_extref_name_len(eb, extref);
2157 cur_offset += sizeof(*extref);
2158 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002159 free_extent_buffer(eb);
2160
2161 offset++;
2162 }
2163
2164 btrfs_release_path(path);
2165
2166 return ret;
2167}
2168
2169static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2170 struct btrfs_path *path, iterate_irefs_t *iterate,
2171 void *ctx)
2172{
2173 int ret;
2174 int found_refs = 0;
2175
2176 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2177 if (!ret)
2178 ++found_refs;
2179 else if (ret != -ENOENT)
2180 return ret;
2181
2182 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2183 if (ret == -ENOENT && found_refs)
2184 return 0;
2185
2186 return ret;
2187}
2188
2189/*
2190 * returns 0 if the path could be dumped (probably truncated)
2191 * returns <0 in case of an error
2192 */
2193static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2194 struct extent_buffer *eb, void *ctx)
2195{
2196 struct inode_fs_paths *ipath = ctx;
2197 char *fspath;
2198 char *fspath_min;
2199 int i = ipath->fspath->elem_cnt;
2200 const int s_ptr = sizeof(char *);
2201 u32 bytes_left;
2202
2203 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2204 ipath->fspath->bytes_left - s_ptr : 0;
2205
2206 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2207 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2208 name_off, eb, inum, fspath_min, bytes_left);
2209 if (IS_ERR(fspath))
2210 return PTR_ERR(fspath);
2211
2212 if (fspath > fspath_min) {
2213 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2214 ++ipath->fspath->elem_cnt;
2215 ipath->fspath->bytes_left = fspath - fspath_min;
2216 } else {
2217 ++ipath->fspath->elem_missed;
2218 ipath->fspath->bytes_missing += fspath_min - fspath;
2219 ipath->fspath->bytes_left = 0;
2220 }
2221
2222 return 0;
2223}
2224
2225/*
2226 * this dumps all file system paths to the inode into the ipath struct, provided
2227 * is has been created large enough. each path is zero-terminated and accessed
2228 * from ipath->fspath->val[i].
2229 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2230 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2231 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2232 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2233 * have been needed to return all paths.
2234 */
2235int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2236{
2237 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2238 inode_to_path, ipath);
2239}
2240
2241struct btrfs_data_container *init_data_container(u32 total_bytes)
2242{
2243 struct btrfs_data_container *data;
2244 size_t alloc_bytes;
2245
2246 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2247 data = kvmalloc(alloc_bytes, GFP_KERNEL);
2248 if (!data)
2249 return ERR_PTR(-ENOMEM);
2250
2251 if (total_bytes >= sizeof(*data)) {
2252 data->bytes_left = total_bytes - sizeof(*data);
2253 data->bytes_missing = 0;
2254 } else {
2255 data->bytes_missing = sizeof(*data) - total_bytes;
2256 data->bytes_left = 0;
2257 }
2258
2259 data->elem_cnt = 0;
2260 data->elem_missed = 0;
2261
2262 return data;
2263}
2264
2265/*
2266 * allocates space to return multiple file system paths for an inode.
2267 * total_bytes to allocate are passed, note that space usable for actual path
2268 * information will be total_bytes - sizeof(struct inode_fs_paths).
2269 * the returned pointer must be freed with free_ipath() in the end.
2270 */
2271struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2272 struct btrfs_path *path)
2273{
2274 struct inode_fs_paths *ifp;
2275 struct btrfs_data_container *fspath;
2276
2277 fspath = init_data_container(total_bytes);
2278 if (IS_ERR(fspath))
2279 return ERR_CAST(fspath);
2280
2281 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2282 if (!ifp) {
2283 kvfree(fspath);
2284 return ERR_PTR(-ENOMEM);
2285 }
2286
2287 ifp->btrfs_path = path;
2288 ifp->fspath = fspath;
2289 ifp->fs_root = fs_root;
2290
2291 return ifp;
2292}
2293
2294void free_ipath(struct inode_fs_paths *ipath)
2295{
2296 if (!ipath)
2297 return;
2298 kvfree(ipath->fspath);
2299 kfree(ipath);
2300}