blob: bbaad2887ce76ba613d5059249639403a28895b1 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2/*
3 * RocketPort device driver for Linux
4 *
5 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
6 *
7 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
8 */
9
10/*
11 * Kernel Synchronization:
12 *
13 * This driver has 2 kernel control paths - exception handlers (calls into the driver
14 * from user mode) and the timer bottom half (tasklet). This is a polled driver, interrupts
15 * are not used.
16 *
17 * Critical data:
18 * - rp_table[], accessed through passed "info" pointers, is a global (static) array of
19 * serial port state information and the xmit_buf circular buffer. Protected by
20 * a per port spinlock.
21 * - xmit_flags[], an array of ints indexed by line (port) number, indicating that there
22 * is data to be transmitted. Protected by atomic bit operations.
23 * - rp_num_ports, int indicating number of open ports, protected by atomic operations.
24 *
25 * rp_write() and rp_write_char() functions use a per port semaphore to protect against
26 * simultaneous access to the same port by more than one process.
27 */
28
29/****** Defines ******/
30#define ROCKET_PARANOIA_CHECK
31#define ROCKET_DISABLE_SIMUSAGE
32
33#undef ROCKET_SOFT_FLOW
34#undef ROCKET_DEBUG_OPEN
35#undef ROCKET_DEBUG_INTR
36#undef ROCKET_DEBUG_WRITE
37#undef ROCKET_DEBUG_FLOW
38#undef ROCKET_DEBUG_THROTTLE
39#undef ROCKET_DEBUG_WAIT_UNTIL_SENT
40#undef ROCKET_DEBUG_RECEIVE
41#undef ROCKET_DEBUG_HANGUP
42#undef REV_PCI_ORDER
43#undef ROCKET_DEBUG_IO
44
45#define POLL_PERIOD (HZ/100) /* Polling period .01 seconds (10ms) */
46
47/****** Kernel includes ******/
48
49#include <linux/module.h>
50#include <linux/errno.h>
51#include <linux/major.h>
52#include <linux/kernel.h>
53#include <linux/signal.h>
54#include <linux/slab.h>
55#include <linux/mm.h>
56#include <linux/sched.h>
57#include <linux/timer.h>
58#include <linux/interrupt.h>
59#include <linux/tty.h>
60#include <linux/tty_driver.h>
61#include <linux/tty_flip.h>
62#include <linux/serial.h>
63#include <linux/string.h>
64#include <linux/fcntl.h>
65#include <linux/ptrace.h>
66#include <linux/mutex.h>
67#include <linux/ioport.h>
68#include <linux/delay.h>
69#include <linux/completion.h>
70#include <linux/wait.h>
71#include <linux/pci.h>
72#include <linux/uaccess.h>
73#include <linux/atomic.h>
74#include <asm/unaligned.h>
75#include <linux/bitops.h>
76#include <linux/spinlock.h>
77#include <linux/init.h>
78
79/****** RocketPort includes ******/
80
81#include "rocket_int.h"
82#include "rocket.h"
83
84#define ROCKET_VERSION "2.09"
85#define ROCKET_DATE "12-June-2003"
86
87/****** RocketPort Local Variables ******/
88
89static void rp_do_poll(struct timer_list *unused);
90
91static struct tty_driver *rocket_driver;
92
93static struct rocket_version driver_version = {
94 ROCKET_VERSION, ROCKET_DATE
95};
96
97static struct r_port *rp_table[MAX_RP_PORTS]; /* The main repository of serial port state information. */
98static unsigned int xmit_flags[NUM_BOARDS]; /* Bit significant, indicates port had data to transmit. */
99 /* eg. Bit 0 indicates port 0 has xmit data, ... */
100static atomic_t rp_num_ports_open; /* Number of serial ports open */
101static DEFINE_TIMER(rocket_timer, rp_do_poll);
102
103static unsigned long board1; /* ISA addresses, retrieved from rocketport.conf */
104static unsigned long board2;
105static unsigned long board3;
106static unsigned long board4;
107static unsigned long controller;
108static bool support_low_speed;
109static unsigned long modem1;
110static unsigned long modem2;
111static unsigned long modem3;
112static unsigned long modem4;
113static unsigned long pc104_1[8];
114static unsigned long pc104_2[8];
115static unsigned long pc104_3[8];
116static unsigned long pc104_4[8];
117static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
118
119static int rp_baud_base[NUM_BOARDS]; /* Board config info (Someday make a per-board structure) */
120static unsigned long rcktpt_io_addr[NUM_BOARDS];
121static int rcktpt_type[NUM_BOARDS];
122static int is_PCI[NUM_BOARDS];
123static rocketModel_t rocketModel[NUM_BOARDS];
124static int max_board;
125static const struct tty_port_operations rocket_port_ops;
126
127/*
128 * The following arrays define the interrupt bits corresponding to each AIOP.
129 * These bits are different between the ISA and regular PCI boards and the
130 * Universal PCI boards.
131 */
132
133static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
134 AIOP_INTR_BIT_0,
135 AIOP_INTR_BIT_1,
136 AIOP_INTR_BIT_2,
137 AIOP_INTR_BIT_3
138};
139
140#ifdef CONFIG_PCI
141static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
142 UPCI_AIOP_INTR_BIT_0,
143 UPCI_AIOP_INTR_BIT_1,
144 UPCI_AIOP_INTR_BIT_2,
145 UPCI_AIOP_INTR_BIT_3
146};
147#endif
148
149static Byte_t RData[RDATASIZE] = {
150 0x00, 0x09, 0xf6, 0x82,
151 0x02, 0x09, 0x86, 0xfb,
152 0x04, 0x09, 0x00, 0x0a,
153 0x06, 0x09, 0x01, 0x0a,
154 0x08, 0x09, 0x8a, 0x13,
155 0x0a, 0x09, 0xc5, 0x11,
156 0x0c, 0x09, 0x86, 0x85,
157 0x0e, 0x09, 0x20, 0x0a,
158 0x10, 0x09, 0x21, 0x0a,
159 0x12, 0x09, 0x41, 0xff,
160 0x14, 0x09, 0x82, 0x00,
161 0x16, 0x09, 0x82, 0x7b,
162 0x18, 0x09, 0x8a, 0x7d,
163 0x1a, 0x09, 0x88, 0x81,
164 0x1c, 0x09, 0x86, 0x7a,
165 0x1e, 0x09, 0x84, 0x81,
166 0x20, 0x09, 0x82, 0x7c,
167 0x22, 0x09, 0x0a, 0x0a
168};
169
170static Byte_t RRegData[RREGDATASIZE] = {
171 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */
172 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */
173 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */
174 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */
175 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */
176 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */
177 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */
178 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */
179 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */
180 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */
181 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */
182 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */
183 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */
184};
185
186static CONTROLLER_T sController[CTL_SIZE] = {
187 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
188 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
189 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
190 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
191 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
192 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
193 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
194 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
195};
196
197static Byte_t sBitMapClrTbl[8] = {
198 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
199};
200
201static Byte_t sBitMapSetTbl[8] = {
202 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
203};
204
205static int sClockPrescale = 0x14;
206
207/*
208 * Line number is the ttySIx number (x), the Minor number. We
209 * assign them sequentially, starting at zero. The following
210 * array keeps track of the line number assigned to a given board/aiop/channel.
211 */
212static unsigned char lineNumbers[MAX_RP_PORTS];
213static unsigned long nextLineNumber;
214
215/***** RocketPort Static Prototypes *********/
216static int __init init_ISA(int i);
217static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
218static void rp_flush_buffer(struct tty_struct *tty);
219static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
220static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
221static void rp_start(struct tty_struct *tty);
222static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
223 int ChanNum);
224static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
225static void sFlushRxFIFO(CHANNEL_T * ChP);
226static void sFlushTxFIFO(CHANNEL_T * ChP);
227static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
228static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
229static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
230static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
231static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
232static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
233 ByteIO_t * AiopIOList, int AiopIOListSize,
234 int IRQNum, Byte_t Frequency, int PeriodicOnly);
235static int sReadAiopID(ByteIO_t io);
236static int sReadAiopNumChan(WordIO_t io);
237
238MODULE_AUTHOR("Theodore Ts'o");
239MODULE_DESCRIPTION("Comtrol RocketPort driver");
240module_param_hw(board1, ulong, ioport, 0);
241MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
242module_param_hw(board2, ulong, ioport, 0);
243MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
244module_param_hw(board3, ulong, ioport, 0);
245MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
246module_param_hw(board4, ulong, ioport, 0);
247MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
248module_param_hw(controller, ulong, ioport, 0);
249MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
250module_param(support_low_speed, bool, 0);
251MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
252module_param(modem1, ulong, 0);
253MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
254module_param(modem2, ulong, 0);
255MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
256module_param(modem3, ulong, 0);
257MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
258module_param(modem4, ulong, 0);
259MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
260module_param_array(pc104_1, ulong, NULL, 0);
261MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
262module_param_array(pc104_2, ulong, NULL, 0);
263MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
264module_param_array(pc104_3, ulong, NULL, 0);
265MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
266module_param_array(pc104_4, ulong, NULL, 0);
267MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
268
David Brazdil0f672f62019-12-10 10:32:29 +0000269static int __init rp_init(void);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000270static void rp_cleanup_module(void);
271
272module_init(rp_init);
273module_exit(rp_cleanup_module);
274
275
276MODULE_LICENSE("Dual BSD/GPL");
277
278/*************************************************************************/
279/* Module code starts here */
280
281static inline int rocket_paranoia_check(struct r_port *info,
282 const char *routine)
283{
284#ifdef ROCKET_PARANOIA_CHECK
285 if (!info)
286 return 1;
287 if (info->magic != RPORT_MAGIC) {
288 printk(KERN_WARNING "Warning: bad magic number for rocketport "
289 "struct in %s\n", routine);
290 return 1;
291 }
292#endif
293 return 0;
294}
295
296
297/* Serial port receive data function. Called (from timer poll) when an AIOPIC signals
298 * that receive data is present on a serial port. Pulls data from FIFO, moves it into the
299 * tty layer.
300 */
301static void rp_do_receive(struct r_port *info, CHANNEL_t *cp,
302 unsigned int ChanStatus)
303{
304 unsigned int CharNStat;
305 int ToRecv, wRecv, space;
306 unsigned char *cbuf;
307
308 ToRecv = sGetRxCnt(cp);
309#ifdef ROCKET_DEBUG_INTR
310 printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
311#endif
312 if (ToRecv == 0)
313 return;
314
315 /*
316 * if status indicates there are errored characters in the
317 * FIFO, then enter status mode (a word in FIFO holds
318 * character and status).
319 */
320 if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
321 if (!(ChanStatus & STATMODE)) {
322#ifdef ROCKET_DEBUG_RECEIVE
323 printk(KERN_INFO "Entering STATMODE...\n");
324#endif
325 ChanStatus |= STATMODE;
326 sEnRxStatusMode(cp);
327 }
328 }
329
330 /*
331 * if we previously entered status mode, then read down the
332 * FIFO one word at a time, pulling apart the character and
333 * the status. Update error counters depending on status
334 */
335 if (ChanStatus & STATMODE) {
336#ifdef ROCKET_DEBUG_RECEIVE
337 printk(KERN_INFO "Ignore %x, read %x...\n",
338 info->ignore_status_mask, info->read_status_mask);
339#endif
340 while (ToRecv) {
341 char flag;
342
343 CharNStat = sInW(sGetTxRxDataIO(cp));
344#ifdef ROCKET_DEBUG_RECEIVE
345 printk(KERN_INFO "%x...\n", CharNStat);
346#endif
347 if (CharNStat & STMBREAKH)
348 CharNStat &= ~(STMFRAMEH | STMPARITYH);
349 if (CharNStat & info->ignore_status_mask) {
350 ToRecv--;
351 continue;
352 }
353 CharNStat &= info->read_status_mask;
354 if (CharNStat & STMBREAKH)
355 flag = TTY_BREAK;
356 else if (CharNStat & STMPARITYH)
357 flag = TTY_PARITY;
358 else if (CharNStat & STMFRAMEH)
359 flag = TTY_FRAME;
360 else if (CharNStat & STMRCVROVRH)
361 flag = TTY_OVERRUN;
362 else
363 flag = TTY_NORMAL;
364 tty_insert_flip_char(&info->port, CharNStat & 0xff,
365 flag);
366 ToRecv--;
367 }
368
369 /*
370 * after we've emptied the FIFO in status mode, turn
371 * status mode back off
372 */
373 if (sGetRxCnt(cp) == 0) {
374#ifdef ROCKET_DEBUG_RECEIVE
375 printk(KERN_INFO "Status mode off.\n");
376#endif
377 sDisRxStatusMode(cp);
378 }
379 } else {
380 /*
381 * we aren't in status mode, so read down the FIFO two
382 * characters at time by doing repeated word IO
383 * transfer.
384 */
385 space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv);
386 if (space < ToRecv) {
387#ifdef ROCKET_DEBUG_RECEIVE
388 printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
389#endif
390 if (space <= 0)
391 return;
392 ToRecv = space;
393 }
394 wRecv = ToRecv >> 1;
395 if (wRecv)
396 sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
397 if (ToRecv & 1)
398 cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
399 }
400 /* Push the data up to the tty layer */
401 tty_flip_buffer_push(&info->port);
402}
403
404/*
405 * Serial port transmit data function. Called from the timer polling loop as a
406 * result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
407 * to be sent out the serial port. Data is buffered in rp_table[line].xmit_buf, it is
408 * moved to the port's xmit FIFO. *info is critical data, protected by spinlocks.
409 */
410static void rp_do_transmit(struct r_port *info)
411{
412 int c;
413 CHANNEL_t *cp = &info->channel;
414 struct tty_struct *tty;
415 unsigned long flags;
416
417#ifdef ROCKET_DEBUG_INTR
418 printk(KERN_DEBUG "%s\n", __func__);
419#endif
420 if (!info)
421 return;
422 tty = tty_port_tty_get(&info->port);
423
424 if (tty == NULL) {
425 printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__);
426 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
427 return;
428 }
429
430 spin_lock_irqsave(&info->slock, flags);
431 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
432
433 /* Loop sending data to FIFO until done or FIFO full */
434 while (1) {
435 if (tty->stopped)
436 break;
437 c = min(info->xmit_fifo_room, info->xmit_cnt);
438 c = min(c, XMIT_BUF_SIZE - info->xmit_tail);
439 if (c <= 0 || info->xmit_fifo_room <= 0)
440 break;
441 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
442 if (c & 1)
443 sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
444 info->xmit_tail += c;
445 info->xmit_tail &= XMIT_BUF_SIZE - 1;
446 info->xmit_cnt -= c;
447 info->xmit_fifo_room -= c;
448#ifdef ROCKET_DEBUG_INTR
449 printk(KERN_INFO "tx %d chars...\n", c);
450#endif
451 }
452
453 if (info->xmit_cnt == 0)
454 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
455
456 if (info->xmit_cnt < WAKEUP_CHARS) {
457 tty_wakeup(tty);
458#ifdef ROCKETPORT_HAVE_POLL_WAIT
459 wake_up_interruptible(&tty->poll_wait);
460#endif
461 }
462
463 spin_unlock_irqrestore(&info->slock, flags);
464 tty_kref_put(tty);
465
466#ifdef ROCKET_DEBUG_INTR
467 printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
468 info->xmit_tail, info->xmit_fifo_room);
469#endif
470}
471
472/*
473 * Called when a serial port signals it has read data in it's RX FIFO.
474 * It checks what interrupts are pending and services them, including
475 * receiving serial data.
476 */
477static void rp_handle_port(struct r_port *info)
478{
479 CHANNEL_t *cp;
480 unsigned int IntMask, ChanStatus;
481
482 if (!info)
483 return;
484
485 if (!tty_port_initialized(&info->port)) {
486 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
487 "info->flags & NOT_INIT\n");
488 return;
489 }
490
491 cp = &info->channel;
492
493 IntMask = sGetChanIntID(cp) & info->intmask;
494#ifdef ROCKET_DEBUG_INTR
495 printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
496#endif
497 ChanStatus = sGetChanStatus(cp);
498 if (IntMask & RXF_TRIG) { /* Rx FIFO trigger level */
499 rp_do_receive(info, cp, ChanStatus);
500 }
501 if (IntMask & DELTA_CD) { /* CD change */
502#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
503 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
504 (ChanStatus & CD_ACT) ? "on" : "off");
505#endif
506 if (!(ChanStatus & CD_ACT) && info->cd_status) {
507#ifdef ROCKET_DEBUG_HANGUP
508 printk(KERN_INFO "CD drop, calling hangup.\n");
509#endif
510 tty_port_tty_hangup(&info->port, false);
511 }
512 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
513 wake_up_interruptible(&info->port.open_wait);
514 }
515#ifdef ROCKET_DEBUG_INTR
516 if (IntMask & DELTA_CTS) { /* CTS change */
517 printk(KERN_INFO "CTS change...\n");
518 }
519 if (IntMask & DELTA_DSR) { /* DSR change */
520 printk(KERN_INFO "DSR change...\n");
521 }
522#endif
523}
524
525/*
526 * The top level polling routine. Repeats every 1/100 HZ (10ms).
527 */
528static void rp_do_poll(struct timer_list *unused)
529{
530 CONTROLLER_t *ctlp;
531 int ctrl, aiop, ch, line;
532 unsigned int xmitmask, i;
533 unsigned int CtlMask;
534 unsigned char AiopMask;
535 Word_t bit;
536
537 /* Walk through all the boards (ctrl's) */
538 for (ctrl = 0; ctrl < max_board; ctrl++) {
539 if (rcktpt_io_addr[ctrl] <= 0)
540 continue;
541
542 /* Get a ptr to the board's control struct */
543 ctlp = sCtlNumToCtlPtr(ctrl);
544
545 /* Get the interrupt status from the board */
546#ifdef CONFIG_PCI
547 if (ctlp->BusType == isPCI)
548 CtlMask = sPCIGetControllerIntStatus(ctlp);
549 else
550#endif
551 CtlMask = sGetControllerIntStatus(ctlp);
552
553 /* Check if any AIOP read bits are set */
554 for (aiop = 0; CtlMask; aiop++) {
555 bit = ctlp->AiopIntrBits[aiop];
556 if (CtlMask & bit) {
557 CtlMask &= ~bit;
558 AiopMask = sGetAiopIntStatus(ctlp, aiop);
559
560 /* Check if any port read bits are set */
561 for (ch = 0; AiopMask; AiopMask >>= 1, ch++) {
562 if (AiopMask & 1) {
563
564 /* Get the line number (/dev/ttyRx number). */
565 /* Read the data from the port. */
566 line = GetLineNumber(ctrl, aiop, ch);
567 rp_handle_port(rp_table[line]);
568 }
569 }
570 }
571 }
572
573 xmitmask = xmit_flags[ctrl];
574
575 /*
576 * xmit_flags contains bit-significant flags, indicating there is data
577 * to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port
578 * 1, ... (32 total possible). The variable i has the aiop and ch
579 * numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
580 */
581 if (xmitmask) {
582 for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
583 if (xmitmask & (1 << i)) {
584 aiop = (i & 0x18) >> 3;
585 ch = i & 0x07;
586 line = GetLineNumber(ctrl, aiop, ch);
587 rp_do_transmit(rp_table[line]);
588 }
589 }
590 }
591 }
592
593 /*
594 * Reset the timer so we get called at the next clock tick (10ms).
595 */
596 if (atomic_read(&rp_num_ports_open))
597 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
598}
599
600/*
601 * Initializes the r_port structure for a port, as well as enabling the port on
602 * the board.
603 * Inputs: board, aiop, chan numbers
604 */
605static void __init
606init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
607{
608 unsigned rocketMode;
609 struct r_port *info;
610 int line;
611 CONTROLLER_T *ctlp;
612
613 /* Get the next available line number */
614 line = SetLineNumber(board, aiop, chan);
615
616 ctlp = sCtlNumToCtlPtr(board);
617
618 /* Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
619 info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
620 if (!info) {
621 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
622 line);
623 return;
624 }
625
626 info->magic = RPORT_MAGIC;
627 info->line = line;
628 info->ctlp = ctlp;
629 info->board = board;
630 info->aiop = aiop;
631 info->chan = chan;
632 tty_port_init(&info->port);
633 info->port.ops = &rocket_port_ops;
634 info->flags &= ~ROCKET_MODE_MASK;
Olivier Deprez0e641232021-09-23 10:07:05 +0200635 if (board < ARRAY_SIZE(pc104) && line < ARRAY_SIZE(pc104_1))
636 switch (pc104[board][line]) {
637 case 422:
638 info->flags |= ROCKET_MODE_RS422;
639 break;
640 case 485:
641 info->flags |= ROCKET_MODE_RS485;
642 break;
643 case 232:
644 default:
645 info->flags |= ROCKET_MODE_RS232;
646 break;
647 }
648 else
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000649 info->flags |= ROCKET_MODE_RS232;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000650
651 info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
652 if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
653 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
654 board, aiop, chan);
655 tty_port_destroy(&info->port);
656 kfree(info);
657 return;
658 }
659
660 rocketMode = info->flags & ROCKET_MODE_MASK;
661
662 if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
663 sEnRTSToggle(&info->channel);
664 else
665 sDisRTSToggle(&info->channel);
666
667 if (ctlp->boardType == ROCKET_TYPE_PC104) {
668 switch (rocketMode) {
669 case ROCKET_MODE_RS485:
670 sSetInterfaceMode(&info->channel, InterfaceModeRS485);
671 break;
672 case ROCKET_MODE_RS422:
673 sSetInterfaceMode(&info->channel, InterfaceModeRS422);
674 break;
675 case ROCKET_MODE_RS232:
676 default:
677 if (info->flags & ROCKET_RTS_TOGGLE)
678 sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
679 else
680 sSetInterfaceMode(&info->channel, InterfaceModeRS232);
681 break;
682 }
683 }
684 spin_lock_init(&info->slock);
685 mutex_init(&info->write_mtx);
686 rp_table[line] = info;
687 tty_port_register_device(&info->port, rocket_driver, line,
688 pci_dev ? &pci_dev->dev : NULL);
689}
690
691/*
692 * Configures a rocketport port according to its termio settings. Called from
693 * user mode into the driver (exception handler). *info CD manipulation is spinlock protected.
694 */
695static void configure_r_port(struct tty_struct *tty, struct r_port *info,
696 struct ktermios *old_termios)
697{
698 unsigned cflag;
699 unsigned long flags;
700 unsigned rocketMode;
701 int bits, baud, divisor;
702 CHANNEL_t *cp;
703 struct ktermios *t = &tty->termios;
704
705 cp = &info->channel;
706 cflag = t->c_cflag;
707
708 /* Byte size and parity */
709 if ((cflag & CSIZE) == CS8) {
710 sSetData8(cp);
711 bits = 10;
712 } else {
713 sSetData7(cp);
714 bits = 9;
715 }
716 if (cflag & CSTOPB) {
717 sSetStop2(cp);
718 bits++;
719 } else {
720 sSetStop1(cp);
721 }
722
723 if (cflag & PARENB) {
724 sEnParity(cp);
725 bits++;
726 if (cflag & PARODD) {
727 sSetOddParity(cp);
728 } else {
729 sSetEvenParity(cp);
730 }
731 } else {
732 sDisParity(cp);
733 }
734
735 /* baud rate */
736 baud = tty_get_baud_rate(tty);
737 if (!baud)
738 baud = 9600;
739 divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
740 if ((divisor >= 8192 || divisor < 0) && old_termios) {
741 baud = tty_termios_baud_rate(old_termios);
742 if (!baud)
743 baud = 9600;
744 divisor = (rp_baud_base[info->board] / baud) - 1;
745 }
746 if (divisor >= 8192 || divisor < 0) {
747 baud = 9600;
748 divisor = (rp_baud_base[info->board] / baud) - 1;
749 }
750 info->cps = baud / bits;
751 sSetBaud(cp, divisor);
752
753 /* FIXME: Should really back compute a baud rate from the divisor */
754 tty_encode_baud_rate(tty, baud, baud);
755
756 if (cflag & CRTSCTS) {
757 info->intmask |= DELTA_CTS;
758 sEnCTSFlowCtl(cp);
759 } else {
760 info->intmask &= ~DELTA_CTS;
761 sDisCTSFlowCtl(cp);
762 }
763 if (cflag & CLOCAL) {
764 info->intmask &= ~DELTA_CD;
765 } else {
766 spin_lock_irqsave(&info->slock, flags);
767 if (sGetChanStatus(cp) & CD_ACT)
768 info->cd_status = 1;
769 else
770 info->cd_status = 0;
771 info->intmask |= DELTA_CD;
772 spin_unlock_irqrestore(&info->slock, flags);
773 }
774
775 /*
776 * Handle software flow control in the board
777 */
778#ifdef ROCKET_SOFT_FLOW
779 if (I_IXON(tty)) {
780 sEnTxSoftFlowCtl(cp);
781 if (I_IXANY(tty)) {
782 sEnIXANY(cp);
783 } else {
784 sDisIXANY(cp);
785 }
786 sSetTxXONChar(cp, START_CHAR(tty));
787 sSetTxXOFFChar(cp, STOP_CHAR(tty));
788 } else {
789 sDisTxSoftFlowCtl(cp);
790 sDisIXANY(cp);
791 sClrTxXOFF(cp);
792 }
793#endif
794
795 /*
796 * Set up ignore/read mask words
797 */
798 info->read_status_mask = STMRCVROVRH | 0xFF;
799 if (I_INPCK(tty))
800 info->read_status_mask |= STMFRAMEH | STMPARITYH;
801 if (I_BRKINT(tty) || I_PARMRK(tty))
802 info->read_status_mask |= STMBREAKH;
803
804 /*
805 * Characters to ignore
806 */
807 info->ignore_status_mask = 0;
808 if (I_IGNPAR(tty))
809 info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
810 if (I_IGNBRK(tty)) {
811 info->ignore_status_mask |= STMBREAKH;
812 /*
813 * If we're ignoring parity and break indicators,
814 * ignore overruns too. (For real raw support).
815 */
816 if (I_IGNPAR(tty))
817 info->ignore_status_mask |= STMRCVROVRH;
818 }
819
820 rocketMode = info->flags & ROCKET_MODE_MASK;
821
822 if ((info->flags & ROCKET_RTS_TOGGLE)
823 || (rocketMode == ROCKET_MODE_RS485))
824 sEnRTSToggle(cp);
825 else
826 sDisRTSToggle(cp);
827
828 sSetRTS(&info->channel);
829
830 if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
831 switch (rocketMode) {
832 case ROCKET_MODE_RS485:
833 sSetInterfaceMode(cp, InterfaceModeRS485);
834 break;
835 case ROCKET_MODE_RS422:
836 sSetInterfaceMode(cp, InterfaceModeRS422);
837 break;
838 case ROCKET_MODE_RS232:
839 default:
840 if (info->flags & ROCKET_RTS_TOGGLE)
841 sSetInterfaceMode(cp, InterfaceModeRS232T);
842 else
843 sSetInterfaceMode(cp, InterfaceModeRS232);
844 break;
845 }
846 }
847}
848
849static int carrier_raised(struct tty_port *port)
850{
851 struct r_port *info = container_of(port, struct r_port, port);
852 return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0;
853}
854
855static void dtr_rts(struct tty_port *port, int on)
856{
857 struct r_port *info = container_of(port, struct r_port, port);
858 if (on) {
859 sSetDTR(&info->channel);
860 sSetRTS(&info->channel);
861 } else {
862 sClrDTR(&info->channel);
863 sClrRTS(&info->channel);
864 }
865}
866
867/*
868 * Exception handler that opens a serial port. Creates xmit_buf storage, fills in
869 * port's r_port struct. Initializes the port hardware.
870 */
871static int rp_open(struct tty_struct *tty, struct file *filp)
872{
873 struct r_port *info;
874 struct tty_port *port;
875 int retval;
876 CHANNEL_t *cp;
877 unsigned long page;
878
879 info = rp_table[tty->index];
880 if (info == NULL)
881 return -ENXIO;
882 port = &info->port;
883
884 page = __get_free_page(GFP_KERNEL);
885 if (!page)
886 return -ENOMEM;
887
888 /*
889 * We must not sleep from here until the port is marked fully in use.
890 */
891 if (info->xmit_buf)
892 free_page(page);
893 else
894 info->xmit_buf = (unsigned char *) page;
895
896 tty->driver_data = info;
897 tty_port_tty_set(port, tty);
898
899 if (port->count++ == 0) {
900 atomic_inc(&rp_num_ports_open);
901
902#ifdef ROCKET_DEBUG_OPEN
903 printk(KERN_INFO "rocket mod++ = %d...\n",
904 atomic_read(&rp_num_ports_open));
905#endif
906 }
907#ifdef ROCKET_DEBUG_OPEN
908 printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count);
909#endif
910
911 /*
912 * Info->count is now 1; so it's safe to sleep now.
913 */
914 if (!tty_port_initialized(port)) {
915 cp = &info->channel;
916 sSetRxTrigger(cp, TRIG_1);
917 if (sGetChanStatus(cp) & CD_ACT)
918 info->cd_status = 1;
919 else
920 info->cd_status = 0;
921 sDisRxStatusMode(cp);
922 sFlushRxFIFO(cp);
923 sFlushTxFIFO(cp);
924
925 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
926 sSetRxTrigger(cp, TRIG_1);
927
928 sGetChanStatus(cp);
929 sDisRxStatusMode(cp);
930 sClrTxXOFF(cp);
931
932 sDisCTSFlowCtl(cp);
933 sDisTxSoftFlowCtl(cp);
934
935 sEnRxFIFO(cp);
936 sEnTransmit(cp);
937
938 tty_port_set_initialized(&info->port, 1);
939
940 configure_r_port(tty, info, NULL);
941 if (C_BAUD(tty)) {
942 sSetDTR(cp);
943 sSetRTS(cp);
944 }
945 }
946 /* Starts (or resets) the maint polling loop */
947 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
948
949 retval = tty_port_block_til_ready(port, tty, filp);
950 if (retval) {
951#ifdef ROCKET_DEBUG_OPEN
952 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
953#endif
954 return retval;
955 }
956 return 0;
957}
958
959/*
960 * Exception handler that closes a serial port. info->port.count is considered critical.
961 */
962static void rp_close(struct tty_struct *tty, struct file *filp)
963{
964 struct r_port *info = tty->driver_data;
965 struct tty_port *port = &info->port;
966 int timeout;
967 CHANNEL_t *cp;
968
969 if (rocket_paranoia_check(info, "rp_close"))
970 return;
971
972#ifdef ROCKET_DEBUG_OPEN
973 printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count);
974#endif
975
976 if (tty_port_close_start(port, tty, filp) == 0)
977 return;
978
979 mutex_lock(&port->mutex);
980 cp = &info->channel;
981 /*
982 * Before we drop DTR, make sure the UART transmitter
983 * has completely drained; this is especially
984 * important if there is a transmit FIFO!
985 */
986 timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
987 if (timeout == 0)
988 timeout = 1;
989 rp_wait_until_sent(tty, timeout);
990 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
991
992 sDisTransmit(cp);
993 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
994 sDisCTSFlowCtl(cp);
995 sDisTxSoftFlowCtl(cp);
996 sClrTxXOFF(cp);
997 sFlushRxFIFO(cp);
998 sFlushTxFIFO(cp);
999 sClrRTS(cp);
1000 if (C_HUPCL(tty))
1001 sClrDTR(cp);
1002
1003 rp_flush_buffer(tty);
1004
1005 tty_ldisc_flush(tty);
1006
1007 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1008
1009 /* We can't yet use tty_port_close_end as the buffer handling in this
1010 driver is a bit different to the usual */
1011
1012 if (port->blocked_open) {
1013 if (port->close_delay) {
1014 msleep_interruptible(jiffies_to_msecs(port->close_delay));
1015 }
1016 wake_up_interruptible(&port->open_wait);
1017 } else {
1018 if (info->xmit_buf) {
1019 free_page((unsigned long) info->xmit_buf);
1020 info->xmit_buf = NULL;
1021 }
1022 }
1023 spin_lock_irq(&port->lock);
1024 tty->closing = 0;
1025 spin_unlock_irq(&port->lock);
1026 tty_port_set_initialized(port, 0);
1027 tty_port_set_active(port, 0);
1028 mutex_unlock(&port->mutex);
1029 tty_port_tty_set(port, NULL);
1030
1031 atomic_dec(&rp_num_ports_open);
1032
1033#ifdef ROCKET_DEBUG_OPEN
1034 printk(KERN_INFO "rocket mod-- = %d...\n",
1035 atomic_read(&rp_num_ports_open));
1036 printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1037#endif
1038
1039}
1040
1041static void rp_set_termios(struct tty_struct *tty,
1042 struct ktermios *old_termios)
1043{
1044 struct r_port *info = tty->driver_data;
1045 CHANNEL_t *cp;
1046 unsigned cflag;
1047
1048 if (rocket_paranoia_check(info, "rp_set_termios"))
1049 return;
1050
1051 cflag = tty->termios.c_cflag;
1052
1053 /*
1054 * This driver doesn't support CS5 or CS6
1055 */
1056 if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1057 tty->termios.c_cflag =
1058 ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1059 /* Or CMSPAR */
1060 tty->termios.c_cflag &= ~CMSPAR;
1061
1062 configure_r_port(tty, info, old_termios);
1063
1064 cp = &info->channel;
1065
1066 /* Handle transition to B0 status */
1067 if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) {
1068 sClrDTR(cp);
1069 sClrRTS(cp);
1070 }
1071
1072 /* Handle transition away from B0 status */
1073 if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) {
1074 sSetRTS(cp);
1075 sSetDTR(cp);
1076 }
1077
1078 if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty))
1079 rp_start(tty);
1080}
1081
1082static int rp_break(struct tty_struct *tty, int break_state)
1083{
1084 struct r_port *info = tty->driver_data;
1085 unsigned long flags;
1086
1087 if (rocket_paranoia_check(info, "rp_break"))
1088 return -EINVAL;
1089
1090 spin_lock_irqsave(&info->slock, flags);
1091 if (break_state == -1)
1092 sSendBreak(&info->channel);
1093 else
1094 sClrBreak(&info->channel);
1095 spin_unlock_irqrestore(&info->slock, flags);
1096 return 0;
1097}
1098
1099/*
1100 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1101 * the UPCI boards was added, it was decided to make this a function because
1102 * the macro was getting too complicated. All cases except the first one
1103 * (UPCIRingInd) are taken directly from the original macro.
1104 */
1105static int sGetChanRI(CHANNEL_T * ChP)
1106{
1107 CONTROLLER_t *CtlP = ChP->CtlP;
1108 int ChanNum = ChP->ChanNum;
1109 int RingInd = 0;
1110
1111 if (CtlP->UPCIRingInd)
1112 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1113 else if (CtlP->AltChanRingIndicator)
1114 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1115 else if (CtlP->boardType == ROCKET_TYPE_PC104)
1116 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1117
1118 return RingInd;
1119}
1120
1121/********************************************************************************************/
1122/* Here are the routines used by rp_ioctl. These are all called from exception handlers. */
1123
1124/*
1125 * Returns the state of the serial modem control lines. These next 2 functions
1126 * are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1127 */
1128static int rp_tiocmget(struct tty_struct *tty)
1129{
1130 struct r_port *info = tty->driver_data;
1131 unsigned int control, result, ChanStatus;
1132
1133 ChanStatus = sGetChanStatusLo(&info->channel);
1134 control = info->channel.TxControl[3];
1135 result = ((control & SET_RTS) ? TIOCM_RTS : 0) |
1136 ((control & SET_DTR) ? TIOCM_DTR : 0) |
1137 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1138 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1139 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1140 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1141
1142 return result;
1143}
1144
1145/*
1146 * Sets the modem control lines
1147 */
1148static int rp_tiocmset(struct tty_struct *tty,
1149 unsigned int set, unsigned int clear)
1150{
1151 struct r_port *info = tty->driver_data;
1152
1153 if (set & TIOCM_RTS)
1154 info->channel.TxControl[3] |= SET_RTS;
1155 if (set & TIOCM_DTR)
1156 info->channel.TxControl[3] |= SET_DTR;
1157 if (clear & TIOCM_RTS)
1158 info->channel.TxControl[3] &= ~SET_RTS;
1159 if (clear & TIOCM_DTR)
1160 info->channel.TxControl[3] &= ~SET_DTR;
1161
1162 out32(info->channel.IndexAddr, info->channel.TxControl);
1163 return 0;
1164}
1165
1166static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1167{
1168 struct rocket_config tmp;
1169
1170 memset(&tmp, 0, sizeof (tmp));
1171 mutex_lock(&info->port.mutex);
1172 tmp.line = info->line;
1173 tmp.flags = info->flags;
1174 tmp.close_delay = info->port.close_delay;
1175 tmp.closing_wait = info->port.closing_wait;
1176 tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1177 mutex_unlock(&info->port.mutex);
1178
1179 if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1180 return -EFAULT;
1181 return 0;
1182}
1183
1184static int set_config(struct tty_struct *tty, struct r_port *info,
1185 struct rocket_config __user *new_info)
1186{
1187 struct rocket_config new_serial;
1188
1189 if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1190 return -EFAULT;
1191
1192 mutex_lock(&info->port.mutex);
1193 if (!capable(CAP_SYS_ADMIN))
1194 {
1195 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) {
1196 mutex_unlock(&info->port.mutex);
1197 return -EPERM;
1198 }
1199 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
1200 mutex_unlock(&info->port.mutex);
1201 return 0;
1202 }
1203
1204 if ((new_serial.flags ^ info->flags) & ROCKET_SPD_MASK) {
1205 /* warn about deprecation, unless clearing */
1206 if (new_serial.flags & ROCKET_SPD_MASK)
1207 dev_warn_ratelimited(tty->dev, "use of SPD flags is deprecated\n");
1208 }
1209
1210 info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1211 info->port.close_delay = new_serial.close_delay;
1212 info->port.closing_wait = new_serial.closing_wait;
1213
1214 mutex_unlock(&info->port.mutex);
1215
1216 configure_r_port(tty, info, NULL);
1217 return 0;
1218}
1219
1220/*
1221 * This function fills in a rocket_ports struct with information
1222 * about what boards/ports are in the system. This info is passed
1223 * to user space. See setrocket.c where the info is used to create
1224 * the /dev/ttyRx ports.
1225 */
1226static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1227{
1228 struct rocket_ports tmp;
1229 int board;
1230
1231 memset(&tmp, 0, sizeof (tmp));
1232 tmp.tty_major = rocket_driver->major;
1233
1234 for (board = 0; board < 4; board++) {
1235 tmp.rocketModel[board].model = rocketModel[board].model;
1236 strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString);
1237 tmp.rocketModel[board].numPorts = rocketModel[board].numPorts;
1238 tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1239 tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber;
1240 }
1241 if (copy_to_user(retports, &tmp, sizeof (*retports)))
1242 return -EFAULT;
1243 return 0;
1244}
1245
1246static int reset_rm2(struct r_port *info, void __user *arg)
1247{
1248 int reset;
1249
1250 if (!capable(CAP_SYS_ADMIN))
1251 return -EPERM;
1252
1253 if (copy_from_user(&reset, arg, sizeof (int)))
1254 return -EFAULT;
1255 if (reset)
1256 reset = 1;
1257
1258 if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1259 rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1260 return -EINVAL;
1261
1262 if (info->ctlp->BusType == isISA)
1263 sModemReset(info->ctlp, info->chan, reset);
1264 else
1265 sPCIModemReset(info->ctlp, info->chan, reset);
1266
1267 return 0;
1268}
1269
1270static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1271{
1272 if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1273 return -EFAULT;
1274 return 0;
1275}
1276
1277/* IOCTL call handler into the driver */
1278static int rp_ioctl(struct tty_struct *tty,
1279 unsigned int cmd, unsigned long arg)
1280{
1281 struct r_port *info = tty->driver_data;
1282 void __user *argp = (void __user *)arg;
1283 int ret = 0;
1284
1285 if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1286 return -ENXIO;
1287
1288 switch (cmd) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001289 case RCKP_GET_CONFIG:
David Brazdil0f672f62019-12-10 10:32:29 +00001290 dev_warn_ratelimited(tty->dev,
1291 "RCKP_GET_CONFIG option is deprecated\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001292 ret = get_config(info, argp);
1293 break;
1294 case RCKP_SET_CONFIG:
David Brazdil0f672f62019-12-10 10:32:29 +00001295 dev_warn_ratelimited(tty->dev,
1296 "RCKP_SET_CONFIG option is deprecated\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001297 ret = set_config(tty, info, argp);
1298 break;
1299 case RCKP_GET_PORTS:
David Brazdil0f672f62019-12-10 10:32:29 +00001300 dev_warn_ratelimited(tty->dev,
1301 "RCKP_GET_PORTS option is deprecated\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001302 ret = get_ports(info, argp);
1303 break;
1304 case RCKP_RESET_RM2:
David Brazdil0f672f62019-12-10 10:32:29 +00001305 dev_warn_ratelimited(tty->dev,
1306 "RCKP_RESET_RM2 option is deprecated\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001307 ret = reset_rm2(info, argp);
1308 break;
1309 case RCKP_GET_VERSION:
David Brazdil0f672f62019-12-10 10:32:29 +00001310 dev_warn_ratelimited(tty->dev,
1311 "RCKP_GET_VERSION option is deprecated\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001312 ret = get_version(info, argp);
1313 break;
1314 default:
1315 ret = -ENOIOCTLCMD;
1316 }
1317 return ret;
1318}
1319
1320static void rp_send_xchar(struct tty_struct *tty, char ch)
1321{
1322 struct r_port *info = tty->driver_data;
1323 CHANNEL_t *cp;
1324
1325 if (rocket_paranoia_check(info, "rp_send_xchar"))
1326 return;
1327
1328 cp = &info->channel;
1329 if (sGetTxCnt(cp))
1330 sWriteTxPrioByte(cp, ch);
1331 else
1332 sWriteTxByte(sGetTxRxDataIO(cp), ch);
1333}
1334
1335static void rp_throttle(struct tty_struct *tty)
1336{
1337 struct r_port *info = tty->driver_data;
1338
1339#ifdef ROCKET_DEBUG_THROTTLE
1340 printk(KERN_INFO "throttle %s ....\n", tty->name);
1341#endif
1342
1343 if (rocket_paranoia_check(info, "rp_throttle"))
1344 return;
1345
1346 if (I_IXOFF(tty))
1347 rp_send_xchar(tty, STOP_CHAR(tty));
1348
1349 sClrRTS(&info->channel);
1350}
1351
1352static void rp_unthrottle(struct tty_struct *tty)
1353{
1354 struct r_port *info = tty->driver_data;
1355#ifdef ROCKET_DEBUG_THROTTLE
1356 printk(KERN_INFO "unthrottle %s ....\n", tty->name);
1357#endif
1358
1359 if (rocket_paranoia_check(info, "rp_unthrottle"))
1360 return;
1361
1362 if (I_IXOFF(tty))
1363 rp_send_xchar(tty, START_CHAR(tty));
1364
1365 sSetRTS(&info->channel);
1366}
1367
1368/*
1369 * ------------------------------------------------------------
1370 * rp_stop() and rp_start()
1371 *
1372 * This routines are called before setting or resetting tty->stopped.
1373 * They enable or disable transmitter interrupts, as necessary.
1374 * ------------------------------------------------------------
1375 */
1376static void rp_stop(struct tty_struct *tty)
1377{
1378 struct r_port *info = tty->driver_data;
1379
1380#ifdef ROCKET_DEBUG_FLOW
1381 printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1382 info->xmit_cnt, info->xmit_fifo_room);
1383#endif
1384
1385 if (rocket_paranoia_check(info, "rp_stop"))
1386 return;
1387
1388 if (sGetTxCnt(&info->channel))
1389 sDisTransmit(&info->channel);
1390}
1391
1392static void rp_start(struct tty_struct *tty)
1393{
1394 struct r_port *info = tty->driver_data;
1395
1396#ifdef ROCKET_DEBUG_FLOW
1397 printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1398 info->xmit_cnt, info->xmit_fifo_room);
1399#endif
1400
1401 if (rocket_paranoia_check(info, "rp_stop"))
1402 return;
1403
1404 sEnTransmit(&info->channel);
1405 set_bit((info->aiop * 8) + info->chan,
1406 (void *) &xmit_flags[info->board]);
1407}
1408
1409/*
1410 * rp_wait_until_sent() --- wait until the transmitter is empty
1411 */
1412static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1413{
1414 struct r_port *info = tty->driver_data;
1415 CHANNEL_t *cp;
1416 unsigned long orig_jiffies;
1417 int check_time, exit_time;
1418 int txcnt;
1419
1420 if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1421 return;
1422
1423 cp = &info->channel;
1424
1425 orig_jiffies = jiffies;
1426#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1427 printk(KERN_INFO "In %s(%d) (jiff=%lu)...\n", __func__, timeout,
1428 jiffies);
1429 printk(KERN_INFO "cps=%d...\n", info->cps);
1430#endif
1431 while (1) {
1432 txcnt = sGetTxCnt(cp);
1433 if (!txcnt) {
1434 if (sGetChanStatusLo(cp) & TXSHRMT)
1435 break;
1436 check_time = (HZ / info->cps) / 5;
1437 } else {
1438 check_time = HZ * txcnt / info->cps;
1439 }
1440 if (timeout) {
1441 exit_time = orig_jiffies + timeout - jiffies;
1442 if (exit_time <= 0)
1443 break;
1444 if (exit_time < check_time)
1445 check_time = exit_time;
1446 }
1447 if (check_time == 0)
1448 check_time = 1;
1449#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1450 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
1451 jiffies, check_time);
1452#endif
1453 msleep_interruptible(jiffies_to_msecs(check_time));
1454 if (signal_pending(current))
1455 break;
1456 }
1457 __set_current_state(TASK_RUNNING);
1458#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1459 printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1460#endif
1461}
1462
1463/*
1464 * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1465 */
1466static void rp_hangup(struct tty_struct *tty)
1467{
1468 CHANNEL_t *cp;
1469 struct r_port *info = tty->driver_data;
1470 unsigned long flags;
1471
1472 if (rocket_paranoia_check(info, "rp_hangup"))
1473 return;
1474
1475#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1476 printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
1477#endif
1478 rp_flush_buffer(tty);
1479 spin_lock_irqsave(&info->port.lock, flags);
1480 if (info->port.count)
1481 atomic_dec(&rp_num_ports_open);
1482 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1483 spin_unlock_irqrestore(&info->port.lock, flags);
1484
1485 tty_port_hangup(&info->port);
1486
1487 cp = &info->channel;
1488 sDisRxFIFO(cp);
1489 sDisTransmit(cp);
1490 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1491 sDisCTSFlowCtl(cp);
1492 sDisTxSoftFlowCtl(cp);
1493 sClrTxXOFF(cp);
1494 tty_port_set_initialized(&info->port, 0);
1495
1496 wake_up_interruptible(&info->port.open_wait);
1497}
1498
1499/*
1500 * Exception handler - write char routine. The RocketPort driver uses a
1501 * double-buffering strategy, with the twist that if the in-memory CPU
1502 * buffer is empty, and there's space in the transmit FIFO, the
1503 * writing routines will write directly to transmit FIFO.
1504 * Write buffer and counters protected by spinlocks
1505 */
1506static int rp_put_char(struct tty_struct *tty, unsigned char ch)
1507{
1508 struct r_port *info = tty->driver_data;
1509 CHANNEL_t *cp;
1510 unsigned long flags;
1511
1512 if (rocket_paranoia_check(info, "rp_put_char"))
1513 return 0;
1514
1515 /*
1516 * Grab the port write mutex, locking out other processes that try to
1517 * write to this port
1518 */
1519 mutex_lock(&info->write_mtx);
1520
1521#ifdef ROCKET_DEBUG_WRITE
1522 printk(KERN_INFO "rp_put_char %c...\n", ch);
1523#endif
1524
1525 spin_lock_irqsave(&info->slock, flags);
1526 cp = &info->channel;
1527
1528 if (!tty->stopped && info->xmit_fifo_room == 0)
1529 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1530
1531 if (tty->stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1532 info->xmit_buf[info->xmit_head++] = ch;
1533 info->xmit_head &= XMIT_BUF_SIZE - 1;
1534 info->xmit_cnt++;
1535 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1536 } else {
1537 sOutB(sGetTxRxDataIO(cp), ch);
1538 info->xmit_fifo_room--;
1539 }
1540 spin_unlock_irqrestore(&info->slock, flags);
1541 mutex_unlock(&info->write_mtx);
1542 return 1;
1543}
1544
1545/*
1546 * Exception handler - write routine, called when user app writes to the device.
1547 * A per port write mutex is used to protect from another process writing to
1548 * this port at the same time. This other process could be running on the other CPU
1549 * or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out).
1550 * Spinlocks protect the info xmit members.
1551 */
1552static int rp_write(struct tty_struct *tty,
1553 const unsigned char *buf, int count)
1554{
1555 struct r_port *info = tty->driver_data;
1556 CHANNEL_t *cp;
1557 const unsigned char *b;
1558 int c, retval = 0;
1559 unsigned long flags;
1560
1561 if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1562 return 0;
1563
1564 if (mutex_lock_interruptible(&info->write_mtx))
1565 return -ERESTARTSYS;
1566
1567#ifdef ROCKET_DEBUG_WRITE
1568 printk(KERN_INFO "rp_write %d chars...\n", count);
1569#endif
1570 cp = &info->channel;
1571
1572 if (!tty->stopped && info->xmit_fifo_room < count)
1573 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1574
1575 /*
1576 * If the write queue for the port is empty, and there is FIFO space, stuff bytes
1577 * into FIFO. Use the write queue for temp storage.
1578 */
1579 if (!tty->stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1580 c = min(count, info->xmit_fifo_room);
1581 b = buf;
1582
1583 /* Push data into FIFO, 2 bytes at a time */
1584 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1585
1586 /* If there is a byte remaining, write it */
1587 if (c & 1)
1588 sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1589
1590 retval += c;
1591 buf += c;
1592 count -= c;
1593
1594 spin_lock_irqsave(&info->slock, flags);
1595 info->xmit_fifo_room -= c;
1596 spin_unlock_irqrestore(&info->slock, flags);
1597 }
1598
1599 /* If count is zero, we wrote it all and are done */
1600 if (!count)
1601 goto end;
1602
1603 /* Write remaining data into the port's xmit_buf */
1604 while (1) {
1605 /* Hung up ? */
1606 if (!tty_port_active(&info->port))
1607 goto end;
1608 c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1);
1609 c = min(c, XMIT_BUF_SIZE - info->xmit_head);
1610 if (c <= 0)
1611 break;
1612
1613 b = buf;
1614 memcpy(info->xmit_buf + info->xmit_head, b, c);
1615
1616 spin_lock_irqsave(&info->slock, flags);
1617 info->xmit_head =
1618 (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1619 info->xmit_cnt += c;
1620 spin_unlock_irqrestore(&info->slock, flags);
1621
1622 buf += c;
1623 count -= c;
1624 retval += c;
1625 }
1626
1627 if ((retval > 0) && !tty->stopped)
1628 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1629
1630end:
1631 if (info->xmit_cnt < WAKEUP_CHARS) {
1632 tty_wakeup(tty);
1633#ifdef ROCKETPORT_HAVE_POLL_WAIT
1634 wake_up_interruptible(&tty->poll_wait);
1635#endif
1636 }
1637 mutex_unlock(&info->write_mtx);
1638 return retval;
1639}
1640
1641/*
1642 * Return the number of characters that can be sent. We estimate
1643 * only using the in-memory transmit buffer only, and ignore the
1644 * potential space in the transmit FIFO.
1645 */
1646static int rp_write_room(struct tty_struct *tty)
1647{
1648 struct r_port *info = tty->driver_data;
1649 int ret;
1650
1651 if (rocket_paranoia_check(info, "rp_write_room"))
1652 return 0;
1653
1654 ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1655 if (ret < 0)
1656 ret = 0;
1657#ifdef ROCKET_DEBUG_WRITE
1658 printk(KERN_INFO "rp_write_room returns %d...\n", ret);
1659#endif
1660 return ret;
1661}
1662
1663/*
1664 * Return the number of characters in the buffer. Again, this only
1665 * counts those characters in the in-memory transmit buffer.
1666 */
1667static int rp_chars_in_buffer(struct tty_struct *tty)
1668{
1669 struct r_port *info = tty->driver_data;
1670
1671 if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1672 return 0;
1673
1674#ifdef ROCKET_DEBUG_WRITE
1675 printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
1676#endif
1677 return info->xmit_cnt;
1678}
1679
1680/*
1681 * Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1682 * r_port struct for the port. Note that spinlock are used to protect info members,
1683 * do not call this function if the spinlock is already held.
1684 */
1685static void rp_flush_buffer(struct tty_struct *tty)
1686{
1687 struct r_port *info = tty->driver_data;
1688 CHANNEL_t *cp;
1689 unsigned long flags;
1690
1691 if (rocket_paranoia_check(info, "rp_flush_buffer"))
1692 return;
1693
1694 spin_lock_irqsave(&info->slock, flags);
1695 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1696 spin_unlock_irqrestore(&info->slock, flags);
1697
1698#ifdef ROCKETPORT_HAVE_POLL_WAIT
1699 wake_up_interruptible(&tty->poll_wait);
1700#endif
1701 tty_wakeup(tty);
1702
1703 cp = &info->channel;
1704 sFlushTxFIFO(cp);
1705}
1706
1707#ifdef CONFIG_PCI
1708
1709static const struct pci_device_id rocket_pci_ids[] = {
1710 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) },
1711 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) },
1712 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) },
1713 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) },
1714 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) },
1715 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) },
1716 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) },
1717 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) },
1718 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) },
1719 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) },
1720 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) },
1721 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) },
1722 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) },
1723 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) },
1724 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) },
1725 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) },
1726 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) },
1727 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) },
1728 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) },
1729 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) },
1730 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) },
1731 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) },
1732 { }
1733};
1734MODULE_DEVICE_TABLE(pci, rocket_pci_ids);
1735
1736/* Resets the speaker controller on RocketModem II and III devices */
1737static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
1738{
1739 ByteIO_t addr;
1740
1741 /* RocketModem II speaker control is at the 8th port location of offset 0x40 */
1742 if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
1743 addr = CtlP->AiopIO[0] + 0x4F;
1744 sOutB(addr, 0);
1745 }
1746
1747 /* RocketModem III speaker control is at the 1st port location of offset 0x80 */
1748 if ((model == MODEL_UPCI_RM3_8PORT)
1749 || (model == MODEL_UPCI_RM3_4PORT)) {
1750 addr = CtlP->AiopIO[0] + 0x88;
1751 sOutB(addr, 0);
1752 }
1753}
1754
1755/***************************************************************************
1756Function: sPCIInitController
1757Purpose: Initialization of controller global registers and controller
1758 structure.
1759Call: sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
1760 IRQNum,Frequency,PeriodicOnly)
1761 CONTROLLER_T *CtlP; Ptr to controller structure
1762 int CtlNum; Controller number
1763 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
1764 This list must be in the order the AIOPs will be found on the
1765 controller. Once an AIOP in the list is not found, it is
1766 assumed that there are no more AIOPs on the controller.
1767 int AiopIOListSize; Number of addresses in AiopIOList
1768 int IRQNum; Interrupt Request number. Can be any of the following:
1769 0: Disable global interrupts
1770 3: IRQ 3
1771 4: IRQ 4
1772 5: IRQ 5
1773 9: IRQ 9
1774 10: IRQ 10
1775 11: IRQ 11
1776 12: IRQ 12
1777 15: IRQ 15
1778 Byte_t Frequency: A flag identifying the frequency
1779 of the periodic interrupt, can be any one of the following:
1780 FREQ_DIS - periodic interrupt disabled
1781 FREQ_137HZ - 137 Hertz
1782 FREQ_69HZ - 69 Hertz
1783 FREQ_34HZ - 34 Hertz
1784 FREQ_17HZ - 17 Hertz
1785 FREQ_9HZ - 9 Hertz
1786 FREQ_4HZ - 4 Hertz
1787 If IRQNum is set to 0 the Frequency parameter is
1788 overidden, it is forced to a value of FREQ_DIS.
1789 int PeriodicOnly: 1 if all interrupts except the periodic
1790 interrupt are to be blocked.
1791 0 is both the periodic interrupt and
1792 other channel interrupts are allowed.
1793 If IRQNum is set to 0 the PeriodicOnly parameter is
1794 overidden, it is forced to a value of 0.
1795Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
1796 initialization failed.
1797
1798Comments:
1799 If periodic interrupts are to be disabled but AIOP interrupts
1800 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
1801
1802 If interrupts are to be completely disabled set IRQNum to 0.
1803
1804 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
1805 invalid combination.
1806
1807 This function performs initialization of global interrupt modes,
1808 but it does not actually enable global interrupts. To enable
1809 and disable global interrupts use functions sEnGlobalInt() and
1810 sDisGlobalInt(). Enabling of global interrupts is normally not
1811 done until all other initializations are complete.
1812
1813 Even if interrupts are globally enabled, they must also be
1814 individually enabled for each channel that is to generate
1815 interrupts.
1816
1817Warnings: No range checking on any of the parameters is done.
1818
1819 No context switches are allowed while executing this function.
1820
1821 After this function all AIOPs on the controller are disabled,
1822 they can be enabled with sEnAiop().
1823*/
1824static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
1825 ByteIO_t * AiopIOList, int AiopIOListSize,
1826 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
1827 int PeriodicOnly, int altChanRingIndicator,
1828 int UPCIRingInd)
1829{
1830 int i;
1831 ByteIO_t io;
1832
1833 CtlP->AltChanRingIndicator = altChanRingIndicator;
1834 CtlP->UPCIRingInd = UPCIRingInd;
1835 CtlP->CtlNum = CtlNum;
1836 CtlP->CtlID = CTLID_0001; /* controller release 1 */
1837 CtlP->BusType = isPCI; /* controller release 1 */
1838
1839 if (ConfigIO) {
1840 CtlP->isUPCI = 1;
1841 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
1842 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
1843 CtlP->AiopIntrBits = upci_aiop_intr_bits;
1844 } else {
1845 CtlP->isUPCI = 0;
1846 CtlP->PCIIO =
1847 (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
1848 CtlP->AiopIntrBits = aiop_intr_bits;
1849 }
1850
1851 sPCIControllerEOI(CtlP); /* clear EOI if warm init */
1852 /* Init AIOPs */
1853 CtlP->NumAiop = 0;
1854 for (i = 0; i < AiopIOListSize; i++) {
1855 io = AiopIOList[i];
1856 CtlP->AiopIO[i] = (WordIO_t) io;
1857 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
1858
1859 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
1860 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
1861 break; /* done looking for AIOPs */
1862
1863 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
1864 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
1865 sOutB(io + _INDX_DATA, sClockPrescale);
1866 CtlP->NumAiop++; /* bump count of AIOPs */
1867 }
1868
1869 if (CtlP->NumAiop == 0)
1870 return (-1);
1871 else
1872 return (CtlP->NumAiop);
1873}
1874
1875/*
1876 * Called when a PCI card is found. Retrieves and stores model information,
1877 * init's aiopic and serial port hardware.
1878 * Inputs: i is the board number (0-n)
1879 */
1880static __init int register_PCI(int i, struct pci_dev *dev)
1881{
1882 int num_aiops, aiop, max_num_aiops, num_chan, chan;
1883 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1884 CONTROLLER_t *ctlp;
1885
1886 int fast_clock = 0;
1887 int altChanRingIndicator = 0;
1888 int ports_per_aiop = 8;
1889 WordIO_t ConfigIO = 0;
1890 ByteIO_t UPCIRingInd = 0;
1891
1892 if (!dev || !pci_match_id(rocket_pci_ids, dev) ||
1893 pci_enable_device(dev) || i >= NUM_BOARDS)
1894 return 0;
1895
1896 rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1897
1898 rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1899 rocketModel[i].loadrm2 = 0;
1900 rocketModel[i].startingPortNumber = nextLineNumber;
1901
1902 /* Depending on the model, set up some config variables */
1903 switch (dev->device) {
1904 case PCI_DEVICE_ID_RP4QUAD:
1905 max_num_aiops = 1;
1906 ports_per_aiop = 4;
1907 rocketModel[i].model = MODEL_RP4QUAD;
1908 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1909 rocketModel[i].numPorts = 4;
1910 break;
1911 case PCI_DEVICE_ID_RP8OCTA:
1912 max_num_aiops = 1;
1913 rocketModel[i].model = MODEL_RP8OCTA;
1914 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1915 rocketModel[i].numPorts = 8;
1916 break;
1917 case PCI_DEVICE_ID_URP8OCTA:
1918 max_num_aiops = 1;
1919 rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1920 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1921 rocketModel[i].numPorts = 8;
1922 break;
1923 case PCI_DEVICE_ID_RP8INTF:
1924 max_num_aiops = 1;
1925 rocketModel[i].model = MODEL_RP8INTF;
1926 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1927 rocketModel[i].numPorts = 8;
1928 break;
1929 case PCI_DEVICE_ID_URP8INTF:
1930 max_num_aiops = 1;
1931 rocketModel[i].model = MODEL_UPCI_RP8INTF;
1932 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1933 rocketModel[i].numPorts = 8;
1934 break;
1935 case PCI_DEVICE_ID_RP8J:
1936 max_num_aiops = 1;
1937 rocketModel[i].model = MODEL_RP8J;
1938 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1939 rocketModel[i].numPorts = 8;
1940 break;
1941 case PCI_DEVICE_ID_RP4J:
1942 max_num_aiops = 1;
1943 ports_per_aiop = 4;
1944 rocketModel[i].model = MODEL_RP4J;
1945 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1946 rocketModel[i].numPorts = 4;
1947 break;
1948 case PCI_DEVICE_ID_RP8SNI:
1949 max_num_aiops = 1;
1950 rocketModel[i].model = MODEL_RP8SNI;
1951 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1952 rocketModel[i].numPorts = 8;
1953 break;
1954 case PCI_DEVICE_ID_RP16SNI:
1955 max_num_aiops = 2;
1956 rocketModel[i].model = MODEL_RP16SNI;
1957 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1958 rocketModel[i].numPorts = 16;
1959 break;
1960 case PCI_DEVICE_ID_RP16INTF:
1961 max_num_aiops = 2;
1962 rocketModel[i].model = MODEL_RP16INTF;
1963 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
1964 rocketModel[i].numPorts = 16;
1965 break;
1966 case PCI_DEVICE_ID_URP16INTF:
1967 max_num_aiops = 2;
1968 rocketModel[i].model = MODEL_UPCI_RP16INTF;
1969 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
1970 rocketModel[i].numPorts = 16;
1971 break;
1972 case PCI_DEVICE_ID_CRP16INTF:
1973 max_num_aiops = 2;
1974 rocketModel[i].model = MODEL_CPCI_RP16INTF;
1975 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
1976 rocketModel[i].numPorts = 16;
1977 break;
1978 case PCI_DEVICE_ID_RP32INTF:
1979 max_num_aiops = 4;
1980 rocketModel[i].model = MODEL_RP32INTF;
1981 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
1982 rocketModel[i].numPorts = 32;
1983 break;
1984 case PCI_DEVICE_ID_URP32INTF:
1985 max_num_aiops = 4;
1986 rocketModel[i].model = MODEL_UPCI_RP32INTF;
1987 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
1988 rocketModel[i].numPorts = 32;
1989 break;
1990 case PCI_DEVICE_ID_RPP4:
1991 max_num_aiops = 1;
1992 ports_per_aiop = 4;
1993 altChanRingIndicator++;
1994 fast_clock++;
1995 rocketModel[i].model = MODEL_RPP4;
1996 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
1997 rocketModel[i].numPorts = 4;
1998 break;
1999 case PCI_DEVICE_ID_RPP8:
2000 max_num_aiops = 2;
2001 ports_per_aiop = 4;
2002 altChanRingIndicator++;
2003 fast_clock++;
2004 rocketModel[i].model = MODEL_RPP8;
2005 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
2006 rocketModel[i].numPorts = 8;
2007 break;
2008 case PCI_DEVICE_ID_RP2_232:
2009 max_num_aiops = 1;
2010 ports_per_aiop = 2;
2011 altChanRingIndicator++;
2012 fast_clock++;
2013 rocketModel[i].model = MODEL_RP2_232;
2014 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
2015 rocketModel[i].numPorts = 2;
2016 break;
2017 case PCI_DEVICE_ID_RP2_422:
2018 max_num_aiops = 1;
2019 ports_per_aiop = 2;
2020 altChanRingIndicator++;
2021 fast_clock++;
2022 rocketModel[i].model = MODEL_RP2_422;
2023 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
2024 rocketModel[i].numPorts = 2;
2025 break;
2026 case PCI_DEVICE_ID_RP6M:
2027
2028 max_num_aiops = 1;
2029 ports_per_aiop = 6;
2030
2031 /* If revision is 1, the rocketmodem flash must be loaded.
2032 * If it is 2 it is a "socketed" version. */
2033 if (dev->revision == 1) {
2034 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2035 rocketModel[i].loadrm2 = 1;
2036 } else {
2037 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2038 }
2039
2040 rocketModel[i].model = MODEL_RP6M;
2041 strcpy(rocketModel[i].modelString, "RocketModem 6 port");
2042 rocketModel[i].numPorts = 6;
2043 break;
2044 case PCI_DEVICE_ID_RP4M:
2045 max_num_aiops = 1;
2046 ports_per_aiop = 4;
2047 if (dev->revision == 1) {
2048 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2049 rocketModel[i].loadrm2 = 1;
2050 } else {
2051 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2052 }
2053
2054 rocketModel[i].model = MODEL_RP4M;
2055 strcpy(rocketModel[i].modelString, "RocketModem 4 port");
2056 rocketModel[i].numPorts = 4;
2057 break;
2058 default:
2059 max_num_aiops = 0;
2060 break;
2061 }
2062
2063 /*
2064 * Check for UPCI boards.
2065 */
2066
2067 switch (dev->device) {
2068 case PCI_DEVICE_ID_URP32INTF:
2069 case PCI_DEVICE_ID_URP8INTF:
2070 case PCI_DEVICE_ID_URP16INTF:
2071 case PCI_DEVICE_ID_CRP16INTF:
2072 case PCI_DEVICE_ID_URP8OCTA:
2073 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2074 ConfigIO = pci_resource_start(dev, 1);
2075 if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
2076 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2077
2078 /*
2079 * Check for octa or quad cable.
2080 */
2081 if (!
2082 (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
2083 PCI_GPIO_CTRL_8PORT)) {
2084 ports_per_aiop = 4;
2085 rocketModel[i].numPorts = 4;
2086 }
2087 }
2088 break;
2089 case PCI_DEVICE_ID_UPCI_RM3_8PORT:
2090 max_num_aiops = 1;
2091 rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
2092 strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
2093 rocketModel[i].numPorts = 8;
2094 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2095 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2096 ConfigIO = pci_resource_start(dev, 1);
2097 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2098 break;
2099 case PCI_DEVICE_ID_UPCI_RM3_4PORT:
2100 max_num_aiops = 1;
2101 rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
2102 strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
2103 rocketModel[i].numPorts = 4;
2104 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2105 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2106 ConfigIO = pci_resource_start(dev, 1);
2107 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2108 break;
2109 default:
2110 break;
2111 }
2112
2113 if (fast_clock) {
2114 sClockPrescale = 0x12; /* mod 2 (divide by 3) */
2115 rp_baud_base[i] = 921600;
2116 } else {
2117 /*
2118 * If support_low_speed is set, use the slow clock
2119 * prescale, which supports 50 bps
2120 */
2121 if (support_low_speed) {
2122 /* mod 9 (divide by 10) prescale */
2123 sClockPrescale = 0x19;
2124 rp_baud_base[i] = 230400;
2125 } else {
2126 /* mod 4 (divide by 5) prescale */
2127 sClockPrescale = 0x14;
2128 rp_baud_base[i] = 460800;
2129 }
2130 }
2131
2132 for (aiop = 0; aiop < max_num_aiops; aiop++)
2133 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2134 ctlp = sCtlNumToCtlPtr(i);
2135 num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2136 for (aiop = 0; aiop < max_num_aiops; aiop++)
2137 ctlp->AiopNumChan[aiop] = ports_per_aiop;
2138
2139 dev_info(&dev->dev, "comtrol PCI controller #%d found at "
2140 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
2141 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
2142 rocketModel[i].startingPortNumber,
2143 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);
2144
2145 if (num_aiops <= 0) {
2146 rcktpt_io_addr[i] = 0;
2147 return (0);
2148 }
2149 is_PCI[i] = 1;
2150
2151 /* Reset the AIOPIC, init the serial ports */
2152 for (aiop = 0; aiop < num_aiops; aiop++) {
2153 sResetAiopByNum(ctlp, aiop);
2154 num_chan = ports_per_aiop;
2155 for (chan = 0; chan < num_chan; chan++)
2156 init_r_port(i, aiop, chan, dev);
2157 }
2158
2159 /* Rocket modems must be reset */
2160 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2161 (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2162 (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2163 num_chan = ports_per_aiop;
2164 for (chan = 0; chan < num_chan; chan++)
2165 sPCIModemReset(ctlp, chan, 1);
2166 msleep(500);
2167 for (chan = 0; chan < num_chan; chan++)
2168 sPCIModemReset(ctlp, chan, 0);
2169 msleep(500);
2170 rmSpeakerReset(ctlp, rocketModel[i].model);
2171 }
2172 return (1);
2173}
2174
2175/*
2176 * Probes for PCI cards, inits them if found
2177 * Input: board_found = number of ISA boards already found, or the
2178 * starting board number
2179 * Returns: Number of PCI boards found
2180 */
2181static int __init init_PCI(int boards_found)
2182{
2183 struct pci_dev *dev = NULL;
2184 int count = 0;
2185
2186 /* Work through the PCI device list, pulling out ours */
2187 while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2188 if (register_PCI(count + boards_found, dev))
2189 count++;
2190 }
2191 return (count);
2192}
2193
2194#endif /* CONFIG_PCI */
2195
2196/*
2197 * Probes for ISA cards
2198 * Input: i = the board number to look for
2199 * Returns: 1 if board found, 0 else
2200 */
2201static int __init init_ISA(int i)
2202{
2203 int num_aiops, num_chan = 0, total_num_chan = 0;
2204 int aiop, chan;
2205 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2206 CONTROLLER_t *ctlp;
2207 char *type_string;
2208
2209 /* If io_addr is zero, no board configured */
2210 if (rcktpt_io_addr[i] == 0)
2211 return (0);
2212
2213 /* Reserve the IO region */
2214 if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2215 printk(KERN_ERR "Unable to reserve IO region for configured "
2216 "ISA RocketPort at address 0x%lx, board not "
2217 "installed...\n", rcktpt_io_addr[i]);
2218 rcktpt_io_addr[i] = 0;
2219 return (0);
2220 }
2221
2222 ctlp = sCtlNumToCtlPtr(i);
2223
2224 ctlp->boardType = rcktpt_type[i];
2225
2226 switch (rcktpt_type[i]) {
2227 case ROCKET_TYPE_PC104:
2228 type_string = "(PC104)";
2229 break;
2230 case ROCKET_TYPE_MODEM:
2231 type_string = "(RocketModem)";
2232 break;
2233 case ROCKET_TYPE_MODEMII:
2234 type_string = "(RocketModem II)";
2235 break;
2236 default:
2237 type_string = "";
2238 break;
2239 }
2240
2241 /*
2242 * If support_low_speed is set, use the slow clock prescale,
2243 * which supports 50 bps
2244 */
2245 if (support_low_speed) {
2246 sClockPrescale = 0x19; /* mod 9 (divide by 10) prescale */
2247 rp_baud_base[i] = 230400;
2248 } else {
2249 sClockPrescale = 0x14; /* mod 4 (divide by 5) prescale */
2250 rp_baud_base[i] = 460800;
2251 }
2252
2253 for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2254 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2255
2256 num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2257
2258 if (ctlp->boardType == ROCKET_TYPE_PC104) {
2259 sEnAiop(ctlp, 2); /* only one AIOPIC, but these */
2260 sEnAiop(ctlp, 3); /* CSels used for other stuff */
2261 }
2262
2263 /* If something went wrong initing the AIOP's release the ISA IO memory */
2264 if (num_aiops <= 0) {
2265 release_region(rcktpt_io_addr[i], 64);
2266 rcktpt_io_addr[i] = 0;
2267 return (0);
2268 }
2269
2270 rocketModel[i].startingPortNumber = nextLineNumber;
2271
2272 for (aiop = 0; aiop < num_aiops; aiop++) {
2273 sResetAiopByNum(ctlp, aiop);
2274 sEnAiop(ctlp, aiop);
2275 num_chan = sGetAiopNumChan(ctlp, aiop);
2276 total_num_chan += num_chan;
2277 for (chan = 0; chan < num_chan; chan++)
2278 init_r_port(i, aiop, chan, NULL);
2279 }
2280 is_PCI[i] = 0;
2281 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2282 num_chan = sGetAiopNumChan(ctlp, 0);
2283 total_num_chan = num_chan;
2284 for (chan = 0; chan < num_chan; chan++)
2285 sModemReset(ctlp, chan, 1);
2286 msleep(500);
2287 for (chan = 0; chan < num_chan; chan++)
2288 sModemReset(ctlp, chan, 0);
2289 msleep(500);
2290 strcpy(rocketModel[i].modelString, "RocketModem ISA");
2291 } else {
2292 strcpy(rocketModel[i].modelString, "RocketPort ISA");
2293 }
2294 rocketModel[i].numPorts = total_num_chan;
2295 rocketModel[i].model = MODEL_ISA;
2296
2297 printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n",
2298 i, rcktpt_io_addr[i], num_aiops, type_string);
2299
2300 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2301 rocketModel[i].modelString,
2302 rocketModel[i].startingPortNumber,
2303 rocketModel[i].startingPortNumber +
2304 rocketModel[i].numPorts - 1);
2305
2306 return (1);
2307}
2308
2309static const struct tty_operations rocket_ops = {
2310 .open = rp_open,
2311 .close = rp_close,
2312 .write = rp_write,
2313 .put_char = rp_put_char,
2314 .write_room = rp_write_room,
2315 .chars_in_buffer = rp_chars_in_buffer,
2316 .flush_buffer = rp_flush_buffer,
2317 .ioctl = rp_ioctl,
2318 .throttle = rp_throttle,
2319 .unthrottle = rp_unthrottle,
2320 .set_termios = rp_set_termios,
2321 .stop = rp_stop,
2322 .start = rp_start,
2323 .hangup = rp_hangup,
2324 .break_ctl = rp_break,
2325 .send_xchar = rp_send_xchar,
2326 .wait_until_sent = rp_wait_until_sent,
2327 .tiocmget = rp_tiocmget,
2328 .tiocmset = rp_tiocmset,
2329};
2330
2331static const struct tty_port_operations rocket_port_ops = {
2332 .carrier_raised = carrier_raised,
2333 .dtr_rts = dtr_rts,
2334};
2335
2336/*
2337 * The module "startup" routine; it's run when the module is loaded.
2338 */
2339static int __init rp_init(void)
2340{
2341 int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;
2342
2343 printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2344 ROCKET_VERSION, ROCKET_DATE);
2345
2346 rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2347 if (!rocket_driver)
2348 goto err;
2349
2350 /*
2351 * If board 1 is non-zero, there is at least one ISA configured. If controller is
2352 * zero, use the default controller IO address of board1 + 0x40.
2353 */
2354 if (board1) {
2355 if (controller == 0)
2356 controller = board1 + 0x40;
2357 } else {
2358 controller = 0; /* Used as a flag, meaning no ISA boards */
2359 }
2360
2361 /* If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2362 if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2363 printk(KERN_ERR "Unable to reserve IO region for first "
2364 "configured ISA RocketPort controller 0x%lx. "
2365 "Driver exiting\n", controller);
2366 ret = -EBUSY;
2367 goto err_tty;
2368 }
2369
2370 /* Store ISA variable retrieved from command line or .conf file. */
2371 rcktpt_io_addr[0] = board1;
2372 rcktpt_io_addr[1] = board2;
2373 rcktpt_io_addr[2] = board3;
2374 rcktpt_io_addr[3] = board4;
2375
2376 rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2377 rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2378 rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2379 rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2380 rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2381 rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2382 rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2383 rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2384
2385 /*
2386 * Set up the tty driver structure and then register this
2387 * driver with the tty layer.
2388 */
2389
2390 rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
2391 rocket_driver->name = "ttyR";
2392 rocket_driver->driver_name = "Comtrol RocketPort";
2393 rocket_driver->major = TTY_ROCKET_MAJOR;
2394 rocket_driver->minor_start = 0;
2395 rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2396 rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2397 rocket_driver->init_termios = tty_std_termios;
2398 rocket_driver->init_termios.c_cflag =
2399 B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2400 rocket_driver->init_termios.c_ispeed = 9600;
2401 rocket_driver->init_termios.c_ospeed = 9600;
2402#ifdef ROCKET_SOFT_FLOW
2403 rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
2404#endif
2405 tty_set_operations(rocket_driver, &rocket_ops);
2406
2407 ret = tty_register_driver(rocket_driver);
2408 if (ret < 0) {
2409 printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
2410 goto err_controller;
2411 }
2412
2413#ifdef ROCKET_DEBUG_OPEN
2414 printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2415#endif
2416
2417 /*
2418 * OK, let's probe each of the controllers looking for boards. Any boards found
2419 * will be initialized here.
2420 */
2421 isa_boards_found = 0;
2422 pci_boards_found = 0;
2423
2424 for (i = 0; i < NUM_BOARDS; i++) {
2425 if (init_ISA(i))
2426 isa_boards_found++;
2427 }
2428
2429#ifdef CONFIG_PCI
2430 if (isa_boards_found < NUM_BOARDS)
2431 pci_boards_found = init_PCI(isa_boards_found);
2432#endif
2433
2434 max_board = pci_boards_found + isa_boards_found;
2435
2436 if (max_board == 0) {
2437 printk(KERN_ERR "No rocketport ports found; unloading driver\n");
2438 ret = -ENXIO;
2439 goto err_ttyu;
2440 }
2441
2442 return 0;
2443err_ttyu:
2444 tty_unregister_driver(rocket_driver);
2445err_controller:
2446 if (controller)
2447 release_region(controller, 4);
2448err_tty:
2449 put_tty_driver(rocket_driver);
2450err:
2451 return ret;
2452}
2453
2454
2455static void rp_cleanup_module(void)
2456{
2457 int retval;
2458 int i;
2459
2460 del_timer_sync(&rocket_timer);
2461
2462 retval = tty_unregister_driver(rocket_driver);
2463 if (retval)
2464 printk(KERN_ERR "Error %d while trying to unregister "
2465 "rocketport driver\n", -retval);
2466
2467 for (i = 0; i < MAX_RP_PORTS; i++)
2468 if (rp_table[i]) {
2469 tty_unregister_device(rocket_driver, i);
2470 tty_port_destroy(&rp_table[i]->port);
2471 kfree(rp_table[i]);
2472 }
2473
2474 put_tty_driver(rocket_driver);
2475
2476 for (i = 0; i < NUM_BOARDS; i++) {
2477 if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2478 continue;
2479 release_region(rcktpt_io_addr[i], 64);
2480 }
2481 if (controller)
2482 release_region(controller, 4);
2483}
2484
2485/***************************************************************************
2486Function: sInitController
2487Purpose: Initialization of controller global registers and controller
2488 structure.
2489Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2490 IRQNum,Frequency,PeriodicOnly)
2491 CONTROLLER_T *CtlP; Ptr to controller structure
2492 int CtlNum; Controller number
2493 ByteIO_t MudbacIO; Mudbac base I/O address.
2494 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2495 This list must be in the order the AIOPs will be found on the
2496 controller. Once an AIOP in the list is not found, it is
2497 assumed that there are no more AIOPs on the controller.
2498 int AiopIOListSize; Number of addresses in AiopIOList
2499 int IRQNum; Interrupt Request number. Can be any of the following:
2500 0: Disable global interrupts
2501 3: IRQ 3
2502 4: IRQ 4
2503 5: IRQ 5
2504 9: IRQ 9
2505 10: IRQ 10
2506 11: IRQ 11
2507 12: IRQ 12
2508 15: IRQ 15
2509 Byte_t Frequency: A flag identifying the frequency
2510 of the periodic interrupt, can be any one of the following:
2511 FREQ_DIS - periodic interrupt disabled
2512 FREQ_137HZ - 137 Hertz
2513 FREQ_69HZ - 69 Hertz
2514 FREQ_34HZ - 34 Hertz
2515 FREQ_17HZ - 17 Hertz
2516 FREQ_9HZ - 9 Hertz
2517 FREQ_4HZ - 4 Hertz
2518 If IRQNum is set to 0 the Frequency parameter is
2519 overidden, it is forced to a value of FREQ_DIS.
2520 int PeriodicOnly: 1 if all interrupts except the periodic
2521 interrupt are to be blocked.
2522 0 is both the periodic interrupt and
2523 other channel interrupts are allowed.
2524 If IRQNum is set to 0 the PeriodicOnly parameter is
2525 overidden, it is forced to a value of 0.
2526Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
2527 initialization failed.
2528
2529Comments:
2530 If periodic interrupts are to be disabled but AIOP interrupts
2531 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2532
2533 If interrupts are to be completely disabled set IRQNum to 0.
2534
2535 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2536 invalid combination.
2537
2538 This function performs initialization of global interrupt modes,
2539 but it does not actually enable global interrupts. To enable
2540 and disable global interrupts use functions sEnGlobalInt() and
2541 sDisGlobalInt(). Enabling of global interrupts is normally not
2542 done until all other initializations are complete.
2543
2544 Even if interrupts are globally enabled, they must also be
2545 individually enabled for each channel that is to generate
2546 interrupts.
2547
2548Warnings: No range checking on any of the parameters is done.
2549
2550 No context switches are allowed while executing this function.
2551
2552 After this function all AIOPs on the controller are disabled,
2553 they can be enabled with sEnAiop().
2554*/
2555static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2556 ByteIO_t * AiopIOList, int AiopIOListSize,
2557 int IRQNum, Byte_t Frequency, int PeriodicOnly)
2558{
2559 int i;
2560 ByteIO_t io;
2561 int done;
2562
2563 CtlP->AiopIntrBits = aiop_intr_bits;
2564 CtlP->AltChanRingIndicator = 0;
2565 CtlP->CtlNum = CtlNum;
2566 CtlP->CtlID = CTLID_0001; /* controller release 1 */
2567 CtlP->BusType = isISA;
2568 CtlP->MBaseIO = MudbacIO;
2569 CtlP->MReg1IO = MudbacIO + 1;
2570 CtlP->MReg2IO = MudbacIO + 2;
2571 CtlP->MReg3IO = MudbacIO + 3;
2572#if 1
2573 CtlP->MReg2 = 0; /* interrupt disable */
2574 CtlP->MReg3 = 0; /* no periodic interrupts */
2575#else
2576 if (sIRQMap[IRQNum] == 0) { /* interrupts globally disabled */
2577 CtlP->MReg2 = 0; /* interrupt disable */
2578 CtlP->MReg3 = 0; /* no periodic interrupts */
2579 } else {
2580 CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */
2581 CtlP->MReg3 = Frequency; /* set frequency */
2582 if (PeriodicOnly) { /* periodic interrupt only */
2583 CtlP->MReg3 |= PERIODIC_ONLY;
2584 }
2585 }
2586#endif
2587 sOutB(CtlP->MReg2IO, CtlP->MReg2);
2588 sOutB(CtlP->MReg3IO, CtlP->MReg3);
2589 sControllerEOI(CtlP); /* clear EOI if warm init */
2590 /* Init AIOPs */
2591 CtlP->NumAiop = 0;
2592 for (i = done = 0; i < AiopIOListSize; i++) {
2593 io = AiopIOList[i];
2594 CtlP->AiopIO[i] = (WordIO_t) io;
2595 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2596 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */
2597 sOutB(MudbacIO, (Byte_t) (io >> 6)); /* set up AIOP I/O in MUDBAC */
2598 if (done)
2599 continue;
2600 sEnAiop(CtlP, i); /* enable the AIOP */
2601 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
2602 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
2603 done = 1; /* done looking for AIOPs */
2604 else {
2605 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
2606 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
2607 sOutB(io + _INDX_DATA, sClockPrescale);
2608 CtlP->NumAiop++; /* bump count of AIOPs */
2609 }
2610 sDisAiop(CtlP, i); /* disable AIOP */
2611 }
2612
2613 if (CtlP->NumAiop == 0)
2614 return (-1);
2615 else
2616 return (CtlP->NumAiop);
2617}
2618
2619/***************************************************************************
2620Function: sReadAiopID
2621Purpose: Read the AIOP idenfication number directly from an AIOP.
2622Call: sReadAiopID(io)
2623 ByteIO_t io: AIOP base I/O address
2624Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2625 is replace by an identifying number.
2626 Flag AIOPID_NULL if no valid AIOP is found
2627Warnings: No context switches are allowed while executing this function.
2628
2629*/
2630static int sReadAiopID(ByteIO_t io)
2631{
2632 Byte_t AiopID; /* ID byte from AIOP */
2633
2634 sOutB(io + _CMD_REG, RESET_ALL); /* reset AIOP */
2635 sOutB(io + _CMD_REG, 0x0);
2636 AiopID = sInW(io + _CHN_STAT0) & 0x07;
2637 if (AiopID == 0x06)
2638 return (1);
2639 else /* AIOP does not exist */
2640 return (-1);
2641}
2642
2643/***************************************************************************
2644Function: sReadAiopNumChan
2645Purpose: Read the number of channels available in an AIOP directly from
2646 an AIOP.
2647Call: sReadAiopNumChan(io)
2648 WordIO_t io: AIOP base I/O address
2649Return: int: The number of channels available
2650Comments: The number of channels is determined by write/reads from identical
2651 offsets within the SRAM address spaces for channels 0 and 4.
2652 If the channel 4 space is mirrored to channel 0 it is a 4 channel
2653 AIOP, otherwise it is an 8 channel.
2654Warnings: No context switches are allowed while executing this function.
2655*/
2656static int sReadAiopNumChan(WordIO_t io)
2657{
2658 Word_t x;
2659 static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2660
2661 /* write to chan 0 SRAM */
2662 out32((DWordIO_t) io + _INDX_ADDR, R);
2663 sOutW(io + _INDX_ADDR, 0); /* read from SRAM, chan 0 */
2664 x = sInW(io + _INDX_DATA);
2665 sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */
2666 if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */
2667 return (8);
2668 else
2669 return (4);
2670}
2671
2672/***************************************************************************
2673Function: sInitChan
2674Purpose: Initialization of a channel and channel structure
2675Call: sInitChan(CtlP,ChP,AiopNum,ChanNum)
2676 CONTROLLER_T *CtlP; Ptr to controller structure
2677 CHANNEL_T *ChP; Ptr to channel structure
2678 int AiopNum; AIOP number within controller
2679 int ChanNum; Channel number within AIOP
2680Return: int: 1 if initialization succeeded, 0 if it fails because channel
2681 number exceeds number of channels available in AIOP.
2682Comments: This function must be called before a channel can be used.
2683Warnings: No range checking on any of the parameters is done.
2684
2685 No context switches are allowed while executing this function.
2686*/
2687static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2688 int ChanNum)
2689{
2690 int i;
2691 WordIO_t AiopIO;
2692 WordIO_t ChIOOff;
2693 Byte_t *ChR;
2694 Word_t ChOff;
2695 static Byte_t R[4];
2696 int brd9600;
2697
2698 if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2699 return 0; /* exceeds num chans in AIOP */
2700
2701 /* Channel, AIOP, and controller identifiers */
2702 ChP->CtlP = CtlP;
2703 ChP->ChanID = CtlP->AiopID[AiopNum];
2704 ChP->AiopNum = AiopNum;
2705 ChP->ChanNum = ChanNum;
2706
2707 /* Global direct addresses */
2708 AiopIO = CtlP->AiopIO[AiopNum];
2709 ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2710 ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2711 ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2712 ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2713 ChP->IndexData = AiopIO + _INDX_DATA;
2714
2715 /* Channel direct addresses */
2716 ChIOOff = AiopIO + ChP->ChanNum * 2;
2717 ChP->TxRxData = ChIOOff + _TD0;
2718 ChP->ChanStat = ChIOOff + _CHN_STAT0;
2719 ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2720 ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2721
2722 /* Initialize the channel from the RData array */
2723 for (i = 0; i < RDATASIZE; i += 4) {
2724 R[0] = RData[i];
2725 R[1] = RData[i + 1] + 0x10 * ChanNum;
2726 R[2] = RData[i + 2];
2727 R[3] = RData[i + 3];
2728 out32(ChP->IndexAddr, R);
2729 }
2730
2731 ChR = ChP->R;
2732 for (i = 0; i < RREGDATASIZE; i += 4) {
2733 ChR[i] = RRegData[i];
2734 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2735 ChR[i + 2] = RRegData[i + 2];
2736 ChR[i + 3] = RRegData[i + 3];
2737 }
2738
2739 /* Indexed registers */
2740 ChOff = (Word_t) ChanNum *0x1000;
2741
2742 if (sClockPrescale == 0x14)
2743 brd9600 = 47;
2744 else
2745 brd9600 = 23;
2746
2747 ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2748 ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2749 ChP->BaudDiv[2] = (Byte_t) brd9600;
2750 ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2751 out32(ChP->IndexAddr, ChP->BaudDiv);
2752
2753 ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2754 ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2755 ChP->TxControl[2] = 0;
2756 ChP->TxControl[3] = 0;
2757 out32(ChP->IndexAddr, ChP->TxControl);
2758
2759 ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2760 ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2761 ChP->RxControl[2] = 0;
2762 ChP->RxControl[3] = 0;
2763 out32(ChP->IndexAddr, ChP->RxControl);
2764
2765 ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2766 ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2767 ChP->TxEnables[2] = 0;
2768 ChP->TxEnables[3] = 0;
2769 out32(ChP->IndexAddr, ChP->TxEnables);
2770
2771 ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2772 ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2773 ChP->TxCompare[2] = 0;
2774 ChP->TxCompare[3] = 0;
2775 out32(ChP->IndexAddr, ChP->TxCompare);
2776
2777 ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2778 ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2779 ChP->TxReplace1[2] = 0;
2780 ChP->TxReplace1[3] = 0;
2781 out32(ChP->IndexAddr, ChP->TxReplace1);
2782
2783 ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2784 ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2785 ChP->TxReplace2[2] = 0;
2786 ChP->TxReplace2[3] = 0;
2787 out32(ChP->IndexAddr, ChP->TxReplace2);
2788
2789 ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2790 ChP->TxFIFO = ChOff + _TX_FIFO;
2791
2792 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */
2793 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Tx FIFO count */
2794 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2795 sOutW(ChP->IndexData, 0);
2796 ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2797 ChP->RxFIFO = ChOff + _RX_FIFO;
2798
2799 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */
2800 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Rx FIFO count */
2801 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2802 sOutW(ChP->IndexData, 0);
2803 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2804 sOutW(ChP->IndexData, 0);
2805 ChP->TxPrioCnt = ChOff + _TXP_CNT;
2806 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
2807 sOutB(ChP->IndexData, 0);
2808 ChP->TxPrioPtr = ChOff + _TXP_PNTR;
2809 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
2810 sOutB(ChP->IndexData, 0);
2811 ChP->TxPrioBuf = ChOff + _TXP_BUF;
2812 sEnRxProcessor(ChP); /* start the Rx processor */
2813
2814 return 1;
2815}
2816
2817/***************************************************************************
2818Function: sStopRxProcessor
2819Purpose: Stop the receive processor from processing a channel.
2820Call: sStopRxProcessor(ChP)
2821 CHANNEL_T *ChP; Ptr to channel structure
2822
2823Comments: The receive processor can be started again with sStartRxProcessor().
2824 This function causes the receive processor to skip over the
2825 stopped channel. It does not stop it from processing other channels.
2826
2827Warnings: No context switches are allowed while executing this function.
2828
2829 Do not leave the receive processor stopped for more than one
2830 character time.
2831
2832 After calling this function a delay of 4 uS is required to ensure
2833 that the receive processor is no longer processing this channel.
2834*/
2835static void sStopRxProcessor(CHANNEL_T * ChP)
2836{
2837 Byte_t R[4];
2838
2839 R[0] = ChP->R[0];
2840 R[1] = ChP->R[1];
2841 R[2] = 0x0a;
2842 R[3] = ChP->R[3];
2843 out32(ChP->IndexAddr, R);
2844}
2845
2846/***************************************************************************
2847Function: sFlushRxFIFO
2848Purpose: Flush the Rx FIFO
2849Call: sFlushRxFIFO(ChP)
2850 CHANNEL_T *ChP; Ptr to channel structure
2851Return: void
2852Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2853 while it is being flushed the receive processor is stopped
2854 and the transmitter is disabled. After these operations a
2855 4 uS delay is done before clearing the pointers to allow
2856 the receive processor to stop. These items are handled inside
2857 this function.
2858Warnings: No context switches are allowed while executing this function.
2859*/
2860static void sFlushRxFIFO(CHANNEL_T * ChP)
2861{
2862 int i;
2863 Byte_t Ch; /* channel number within AIOP */
2864 int RxFIFOEnabled; /* 1 if Rx FIFO enabled */
2865
2866 if (sGetRxCnt(ChP) == 0) /* Rx FIFO empty */
2867 return; /* don't need to flush */
2868
2869 RxFIFOEnabled = 0;
2870 if (ChP->R[0x32] == 0x08) { /* Rx FIFO is enabled */
2871 RxFIFOEnabled = 1;
2872 sDisRxFIFO(ChP); /* disable it */
2873 for (i = 0; i < 2000 / 200; i++) /* delay 2 uS to allow proc to disable FIFO */
2874 sInB(ChP->IntChan); /* depends on bus i/o timing */
2875 }
2876 sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */
2877 Ch = (Byte_t) sGetChanNum(ChP);
2878 sOutB(ChP->Cmd, Ch | RESRXFCNT); /* apply reset Rx FIFO count */
2879 sOutB(ChP->Cmd, Ch); /* remove reset Rx FIFO count */
2880 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2881 sOutW(ChP->IndexData, 0);
2882 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2883 sOutW(ChP->IndexData, 0);
2884 if (RxFIFOEnabled)
2885 sEnRxFIFO(ChP); /* enable Rx FIFO */
2886}
2887
2888/***************************************************************************
2889Function: sFlushTxFIFO
2890Purpose: Flush the Tx FIFO
2891Call: sFlushTxFIFO(ChP)
2892 CHANNEL_T *ChP; Ptr to channel structure
2893Return: void
2894Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2895 while it is being flushed the receive processor is stopped
2896 and the transmitter is disabled. After these operations a
2897 4 uS delay is done before clearing the pointers to allow
2898 the receive processor to stop. These items are handled inside
2899 this function.
2900Warnings: No context switches are allowed while executing this function.
2901*/
2902static void sFlushTxFIFO(CHANNEL_T * ChP)
2903{
2904 int i;
2905 Byte_t Ch; /* channel number within AIOP */
2906 int TxEnabled; /* 1 if transmitter enabled */
2907
2908 if (sGetTxCnt(ChP) == 0) /* Tx FIFO empty */
2909 return; /* don't need to flush */
2910
2911 TxEnabled = 0;
2912 if (ChP->TxControl[3] & TX_ENABLE) {
2913 TxEnabled = 1;
2914 sDisTransmit(ChP); /* disable transmitter */
2915 }
2916 sStopRxProcessor(ChP); /* stop Rx processor */
2917 for (i = 0; i < 4000 / 200; i++) /* delay 4 uS to allow proc to stop */
2918 sInB(ChP->IntChan); /* depends on bus i/o timing */
2919 Ch = (Byte_t) sGetChanNum(ChP);
2920 sOutB(ChP->Cmd, Ch | RESTXFCNT); /* apply reset Tx FIFO count */
2921 sOutB(ChP->Cmd, Ch); /* remove reset Tx FIFO count */
2922 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2923 sOutW(ChP->IndexData, 0);
2924 if (TxEnabled)
2925 sEnTransmit(ChP); /* enable transmitter */
2926 sStartRxProcessor(ChP); /* restart Rx processor */
2927}
2928
2929/***************************************************************************
2930Function: sWriteTxPrioByte
2931Purpose: Write a byte of priority transmit data to a channel
2932Call: sWriteTxPrioByte(ChP,Data)
2933 CHANNEL_T *ChP; Ptr to channel structure
2934 Byte_t Data; The transmit data byte
2935
2936Return: int: 1 if the bytes is successfully written, otherwise 0.
2937
2938Comments: The priority byte is transmitted before any data in the Tx FIFO.
2939
2940Warnings: No context switches are allowed while executing this function.
2941*/
2942static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
2943{
2944 Byte_t DWBuf[4]; /* buffer for double word writes */
2945 Word_t *WordPtr; /* must be far because Win SS != DS */
2946 register DWordIO_t IndexAddr;
2947
2948 if (sGetTxCnt(ChP) > 1) { /* write it to Tx priority buffer */
2949 IndexAddr = ChP->IndexAddr;
2950 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt); /* get priority buffer status */
2951 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */
2952 return (0); /* nothing sent */
2953
2954 WordPtr = (Word_t *) (&DWBuf[0]);
2955 *WordPtr = ChP->TxPrioBuf; /* data byte address */
2956
2957 DWBuf[2] = Data; /* data byte value */
2958 out32(IndexAddr, DWBuf); /* write it out */
2959
2960 *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */
2961
2962 DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */
2963 DWBuf[3] = 0; /* priority buffer pointer */
2964 out32(IndexAddr, DWBuf); /* write it out */
2965 } else { /* write it to Tx FIFO */
2966
2967 sWriteTxByte(sGetTxRxDataIO(ChP), Data);
2968 }
2969 return (1); /* 1 byte sent */
2970}
2971
2972/***************************************************************************
2973Function: sEnInterrupts
2974Purpose: Enable one or more interrupts for a channel
2975Call: sEnInterrupts(ChP,Flags)
2976 CHANNEL_T *ChP; Ptr to channel structure
2977 Word_t Flags: Interrupt enable flags, can be any combination
2978 of the following flags:
2979 TXINT_EN: Interrupt on Tx FIFO empty
2980 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
2981 sSetRxTrigger())
2982 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
2983 MCINT_EN: Interrupt on modem input change
2984 CHANINT_EN: Allow channel interrupt signal to the AIOP's
2985 Interrupt Channel Register.
2986Return: void
2987Comments: If an interrupt enable flag is set in Flags, that interrupt will be
2988 enabled. If an interrupt enable flag is not set in Flags, that
2989 interrupt will not be changed. Interrupts can be disabled with
2990 function sDisInterrupts().
2991
2992 This function sets the appropriate bit for the channel in the AIOP's
2993 Interrupt Mask Register if the CHANINT_EN flag is set. This allows
2994 this channel's bit to be set in the AIOP's Interrupt Channel Register.
2995
2996 Interrupts must also be globally enabled before channel interrupts
2997 will be passed on to the host. This is done with function
2998 sEnGlobalInt().
2999
3000 In some cases it may be desirable to disable interrupts globally but
3001 enable channel interrupts. This would allow the global interrupt
3002 status register to be used to determine which AIOPs need service.
3003*/
3004static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
3005{
3006 Byte_t Mask; /* Interrupt Mask Register */
3007
3008 ChP->RxControl[2] |=
3009 ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3010
3011 out32(ChP->IndexAddr, ChP->RxControl);
3012
3013 ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3014
3015 out32(ChP->IndexAddr, ChP->TxControl);
3016
3017 if (Flags & CHANINT_EN) {
3018 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3019 sOutB(ChP->IntMask, Mask);
3020 }
3021}
3022
3023/***************************************************************************
3024Function: sDisInterrupts
3025Purpose: Disable one or more interrupts for a channel
3026Call: sDisInterrupts(ChP,Flags)
3027 CHANNEL_T *ChP; Ptr to channel structure
3028 Word_t Flags: Interrupt flags, can be any combination
3029 of the following flags:
3030 TXINT_EN: Interrupt on Tx FIFO empty
3031 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
3032 sSetRxTrigger())
3033 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
3034 MCINT_EN: Interrupt on modem input change
3035 CHANINT_EN: Disable channel interrupt signal to the
3036 AIOP's Interrupt Channel Register.
3037Return: void
3038Comments: If an interrupt flag is set in Flags, that interrupt will be
3039 disabled. If an interrupt flag is not set in Flags, that
3040 interrupt will not be changed. Interrupts can be enabled with
3041 function sEnInterrupts().
3042
3043 This function clears the appropriate bit for the channel in the AIOP's
3044 Interrupt Mask Register if the CHANINT_EN flag is set. This blocks
3045 this channel's bit from being set in the AIOP's Interrupt Channel
3046 Register.
3047*/
3048static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3049{
3050 Byte_t Mask; /* Interrupt Mask Register */
3051
3052 ChP->RxControl[2] &=
3053 ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3054 out32(ChP->IndexAddr, ChP->RxControl);
3055 ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3056 out32(ChP->IndexAddr, ChP->TxControl);
3057
3058 if (Flags & CHANINT_EN) {
3059 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3060 sOutB(ChP->IntMask, Mask);
3061 }
3062}
3063
3064static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3065{
3066 sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3067}
3068
3069/*
3070 * Not an official SSCI function, but how to reset RocketModems.
3071 * ISA bus version
3072 */
3073static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3074{
3075 ByteIO_t addr;
3076 Byte_t val;
3077
3078 addr = CtlP->AiopIO[0] + 0x400;
3079 val = sInB(CtlP->MReg3IO);
3080 /* if AIOP[1] is not enabled, enable it */
3081 if ((val & 2) == 0) {
3082 val = sInB(CtlP->MReg2IO);
3083 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3084 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3085 }
3086
3087 sEnAiop(CtlP, 1);
3088 if (!on)
3089 addr += 8;
3090 sOutB(addr + chan, 0); /* apply or remove reset */
3091 sDisAiop(CtlP, 1);
3092}
3093
3094/*
3095 * Not an official SSCI function, but how to reset RocketModems.
3096 * PCI bus version
3097 */
3098static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3099{
3100 ByteIO_t addr;
3101
3102 addr = CtlP->AiopIO[0] + 0x40; /* 2nd AIOP */
3103 if (!on)
3104 addr += 8;
3105 sOutB(addr + chan, 0); /* apply or remove reset */
3106}
3107
3108/* Returns the line number given the controller (board), aiop and channel number */
3109static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3110{
3111 return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3112}
3113
3114/*
3115 * Stores the line number associated with a given controller (board), aiop
3116 * and channel number.
3117 * Returns: The line number assigned
3118 */
3119static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3120{
3121 lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3122 return (nextLineNumber - 1);
3123}