blob: b9550cd4280ca5698e7df5972b50ca7811dcaa9e [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11#include <linux/acpi.h>
12#include <linux/kernel.h>
13#include <linux/delay.h>
14#include <linux/dmi.h>
15#include <linux/init.h>
16#include <linux/of.h>
17#include <linux/of_pci.h>
18#include <linux/pci.h>
19#include <linux/pm.h>
20#include <linux/slab.h>
21#include <linux/module.h>
22#include <linux/spinlock.h>
23#include <linux/string.h>
24#include <linux/log2.h>
25#include <linux/logic_pio.h>
26#include <linux/pm_wakeup.h>
27#include <linux/interrupt.h>
28#include <linux/device.h>
29#include <linux/pm_runtime.h>
30#include <linux/pci_hotplug.h>
31#include <linux/vmalloc.h>
32#include <linux/pci-ats.h>
33#include <asm/setup.h>
34#include <asm/dma.h>
35#include <linux/aer.h>
36#include "pci.h"
37
David Brazdil0f672f62019-12-10 10:32:29 +000038DEFINE_MUTEX(pci_slot_mutex);
39
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000040const char *pci_power_names[] = {
41 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
42};
43EXPORT_SYMBOL_GPL(pci_power_names);
44
45int isa_dma_bridge_buggy;
46EXPORT_SYMBOL(isa_dma_bridge_buggy);
47
48int pci_pci_problems;
49EXPORT_SYMBOL(pci_pci_problems);
50
51unsigned int pci_pm_d3_delay;
52
53static void pci_pme_list_scan(struct work_struct *work);
54
55static LIST_HEAD(pci_pme_list);
56static DEFINE_MUTEX(pci_pme_list_mutex);
57static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58
59struct pci_pme_device {
60 struct list_head list;
61 struct pci_dev *dev;
62};
63
64#define PME_TIMEOUT 1000 /* How long between PME checks */
65
66static void pci_dev_d3_sleep(struct pci_dev *dev)
67{
68 unsigned int delay = dev->d3_delay;
69
70 if (delay < pci_pm_d3_delay)
71 delay = pci_pm_d3_delay;
72
73 if (delay)
74 msleep(delay);
75}
76
77#ifdef CONFIG_PCI_DOMAINS
78int pci_domains_supported = 1;
79#endif
80
81#define DEFAULT_CARDBUS_IO_SIZE (256)
82#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
83/* pci=cbmemsize=nnM,cbiosize=nn can override this */
84unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
85unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
86
87#define DEFAULT_HOTPLUG_IO_SIZE (256)
88#define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
89/* pci=hpmemsize=nnM,hpiosize=nn can override this */
90unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
91unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
92
93#define DEFAULT_HOTPLUG_BUS_SIZE 1
94unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
95
96enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
97
98/*
99 * The default CLS is used if arch didn't set CLS explicitly and not
100 * all pci devices agree on the same value. Arch can override either
101 * the dfl or actual value as it sees fit. Don't forget this is
102 * measured in 32-bit words, not bytes.
103 */
104u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
105u8 pci_cache_line_size;
106
107/*
108 * If we set up a device for bus mastering, we need to check the latency
109 * timer as certain BIOSes forget to set it properly.
110 */
111unsigned int pcibios_max_latency = 255;
112
113/* If set, the PCIe ARI capability will not be used. */
114static bool pcie_ari_disabled;
115
116/* If set, the PCIe ATS capability will not be used. */
117static bool pcie_ats_disabled;
118
119/* If set, the PCI config space of each device is printed during boot. */
120bool pci_early_dump;
121
122bool pci_ats_disabled(void)
123{
124 return pcie_ats_disabled;
125}
126
127/* Disable bridge_d3 for all PCIe ports */
128static bool pci_bridge_d3_disable;
129/* Force bridge_d3 for all PCIe ports */
130static bool pci_bridge_d3_force;
131
132static int __init pcie_port_pm_setup(char *str)
133{
134 if (!strcmp(str, "off"))
135 pci_bridge_d3_disable = true;
136 else if (!strcmp(str, "force"))
137 pci_bridge_d3_force = true;
138 return 1;
139}
140__setup("pcie_port_pm=", pcie_port_pm_setup);
141
142/* Time to wait after a reset for device to become responsive */
143#define PCIE_RESET_READY_POLL_MS 60000
144
145/**
146 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
147 * @bus: pointer to PCI bus structure to search
148 *
149 * Given a PCI bus, returns the highest PCI bus number present in the set
150 * including the given PCI bus and its list of child PCI buses.
151 */
152unsigned char pci_bus_max_busnr(struct pci_bus *bus)
153{
154 struct pci_bus *tmp;
155 unsigned char max, n;
156
157 max = bus->busn_res.end;
158 list_for_each_entry(tmp, &bus->children, node) {
159 n = pci_bus_max_busnr(tmp);
160 if (n > max)
161 max = n;
162 }
163 return max;
164}
165EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
166
167#ifdef CONFIG_HAS_IOMEM
168void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
169{
170 struct resource *res = &pdev->resource[bar];
171
172 /*
173 * Make sure the BAR is actually a memory resource, not an IO resource
174 */
175 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
176 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
177 return NULL;
178 }
179 return ioremap_nocache(res->start, resource_size(res));
180}
181EXPORT_SYMBOL_GPL(pci_ioremap_bar);
182
183void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
184{
185 /*
186 * Make sure the BAR is actually a memory resource, not an IO resource
187 */
188 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
189 WARN_ON(1);
190 return NULL;
191 }
192 return ioremap_wc(pci_resource_start(pdev, bar),
193 pci_resource_len(pdev, bar));
194}
195EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
196#endif
197
198/**
199 * pci_dev_str_match_path - test if a path string matches a device
David Brazdil0f672f62019-12-10 10:32:29 +0000200 * @dev: the PCI device to test
201 * @path: string to match the device against
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000202 * @endptr: pointer to the string after the match
203 *
204 * Test if a string (typically from a kernel parameter) formatted as a
205 * path of device/function addresses matches a PCI device. The string must
206 * be of the form:
207 *
208 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
209 *
210 * A path for a device can be obtained using 'lspci -t'. Using a path
211 * is more robust against bus renumbering than using only a single bus,
212 * device and function address.
213 *
214 * Returns 1 if the string matches the device, 0 if it does not and
215 * a negative error code if it fails to parse the string.
216 */
217static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
218 const char **endptr)
219{
220 int ret;
221 int seg, bus, slot, func;
222 char *wpath, *p;
223 char end;
224
225 *endptr = strchrnul(path, ';');
226
Olivier Deprez0e641232021-09-23 10:07:05 +0200227 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000228 if (!wpath)
229 return -ENOMEM;
230
231 while (1) {
232 p = strrchr(wpath, '/');
233 if (!p)
234 break;
235 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
236 if (ret != 2) {
237 ret = -EINVAL;
238 goto free_and_exit;
239 }
240
241 if (dev->devfn != PCI_DEVFN(slot, func)) {
242 ret = 0;
243 goto free_and_exit;
244 }
245
246 /*
247 * Note: we don't need to get a reference to the upstream
248 * bridge because we hold a reference to the top level
249 * device which should hold a reference to the bridge,
250 * and so on.
251 */
252 dev = pci_upstream_bridge(dev);
253 if (!dev) {
254 ret = 0;
255 goto free_and_exit;
256 }
257
258 *p = 0;
259 }
260
261 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
262 &func, &end);
263 if (ret != 4) {
264 seg = 0;
265 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
266 if (ret != 3) {
267 ret = -EINVAL;
268 goto free_and_exit;
269 }
270 }
271
272 ret = (seg == pci_domain_nr(dev->bus) &&
273 bus == dev->bus->number &&
274 dev->devfn == PCI_DEVFN(slot, func));
275
276free_and_exit:
277 kfree(wpath);
278 return ret;
279}
280
281/**
282 * pci_dev_str_match - test if a string matches a device
David Brazdil0f672f62019-12-10 10:32:29 +0000283 * @dev: the PCI device to test
284 * @p: string to match the device against
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000285 * @endptr: pointer to the string after the match
286 *
287 * Test if a string (typically from a kernel parameter) matches a specified
288 * PCI device. The string may be of one of the following formats:
289 *
290 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
291 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
292 *
293 * The first format specifies a PCI bus/device/function address which
294 * may change if new hardware is inserted, if motherboard firmware changes,
295 * or due to changes caused in kernel parameters. If the domain is
296 * left unspecified, it is taken to be 0. In order to be robust against
297 * bus renumbering issues, a path of PCI device/function numbers may be used
298 * to address the specific device. The path for a device can be determined
299 * through the use of 'lspci -t'.
300 *
301 * The second format matches devices using IDs in the configuration
302 * space which may match multiple devices in the system. A value of 0
303 * for any field will match all devices. (Note: this differs from
304 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
305 * legacy reasons and convenience so users don't have to specify
306 * FFFFFFFFs on the command line.)
307 *
308 * Returns 1 if the string matches the device, 0 if it does not and
309 * a negative error code if the string cannot be parsed.
310 */
311static int pci_dev_str_match(struct pci_dev *dev, const char *p,
312 const char **endptr)
313{
314 int ret;
315 int count;
316 unsigned short vendor, device, subsystem_vendor, subsystem_device;
317
318 if (strncmp(p, "pci:", 4) == 0) {
319 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
320 p += 4;
321 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
322 &subsystem_vendor, &subsystem_device, &count);
323 if (ret != 4) {
324 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
325 if (ret != 2)
326 return -EINVAL;
327
328 subsystem_vendor = 0;
329 subsystem_device = 0;
330 }
331
332 p += count;
333
334 if ((!vendor || vendor == dev->vendor) &&
335 (!device || device == dev->device) &&
336 (!subsystem_vendor ||
337 subsystem_vendor == dev->subsystem_vendor) &&
338 (!subsystem_device ||
339 subsystem_device == dev->subsystem_device))
340 goto found;
341 } else {
342 /*
343 * PCI Bus, Device, Function IDs are specified
David Brazdil0f672f62019-12-10 10:32:29 +0000344 * (optionally, may include a path of devfns following it)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000345 */
346 ret = pci_dev_str_match_path(dev, p, &p);
347 if (ret < 0)
348 return ret;
349 else if (ret)
350 goto found;
351 }
352
353 *endptr = p;
354 return 0;
355
356found:
357 *endptr = p;
358 return 1;
359}
360
361static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
362 u8 pos, int cap, int *ttl)
363{
364 u8 id;
365 u16 ent;
366
367 pci_bus_read_config_byte(bus, devfn, pos, &pos);
368
369 while ((*ttl)--) {
370 if (pos < 0x40)
371 break;
372 pos &= ~3;
373 pci_bus_read_config_word(bus, devfn, pos, &ent);
374
375 id = ent & 0xff;
376 if (id == 0xff)
377 break;
378 if (id == cap)
379 return pos;
380 pos = (ent >> 8);
381 }
382 return 0;
383}
384
385static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
386 u8 pos, int cap)
387{
388 int ttl = PCI_FIND_CAP_TTL;
389
390 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
391}
392
393int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
394{
395 return __pci_find_next_cap(dev->bus, dev->devfn,
396 pos + PCI_CAP_LIST_NEXT, cap);
397}
398EXPORT_SYMBOL_GPL(pci_find_next_capability);
399
400static int __pci_bus_find_cap_start(struct pci_bus *bus,
401 unsigned int devfn, u8 hdr_type)
402{
403 u16 status;
404
405 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
406 if (!(status & PCI_STATUS_CAP_LIST))
407 return 0;
408
409 switch (hdr_type) {
410 case PCI_HEADER_TYPE_NORMAL:
411 case PCI_HEADER_TYPE_BRIDGE:
412 return PCI_CAPABILITY_LIST;
413 case PCI_HEADER_TYPE_CARDBUS:
414 return PCI_CB_CAPABILITY_LIST;
415 }
416
417 return 0;
418}
419
420/**
421 * pci_find_capability - query for devices' capabilities
422 * @dev: PCI device to query
423 * @cap: capability code
424 *
425 * Tell if a device supports a given PCI capability.
426 * Returns the address of the requested capability structure within the
427 * device's PCI configuration space or 0 in case the device does not
David Brazdil0f672f62019-12-10 10:32:29 +0000428 * support it. Possible values for @cap include:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000429 *
430 * %PCI_CAP_ID_PM Power Management
431 * %PCI_CAP_ID_AGP Accelerated Graphics Port
432 * %PCI_CAP_ID_VPD Vital Product Data
433 * %PCI_CAP_ID_SLOTID Slot Identification
434 * %PCI_CAP_ID_MSI Message Signalled Interrupts
435 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
436 * %PCI_CAP_ID_PCIX PCI-X
437 * %PCI_CAP_ID_EXP PCI Express
438 */
439int pci_find_capability(struct pci_dev *dev, int cap)
440{
441 int pos;
442
443 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
444 if (pos)
445 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
446
447 return pos;
448}
449EXPORT_SYMBOL(pci_find_capability);
450
451/**
452 * pci_bus_find_capability - query for devices' capabilities
David Brazdil0f672f62019-12-10 10:32:29 +0000453 * @bus: the PCI bus to query
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000454 * @devfn: PCI device to query
David Brazdil0f672f62019-12-10 10:32:29 +0000455 * @cap: capability code
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000456 *
David Brazdil0f672f62019-12-10 10:32:29 +0000457 * Like pci_find_capability() but works for PCI devices that do not have a
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000458 * pci_dev structure set up yet.
459 *
460 * Returns the address of the requested capability structure within the
461 * device's PCI configuration space or 0 in case the device does not
462 * support it.
463 */
464int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
465{
466 int pos;
467 u8 hdr_type;
468
469 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
470
471 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
472 if (pos)
473 pos = __pci_find_next_cap(bus, devfn, pos, cap);
474
475 return pos;
476}
477EXPORT_SYMBOL(pci_bus_find_capability);
478
479/**
480 * pci_find_next_ext_capability - Find an extended capability
481 * @dev: PCI device to query
482 * @start: address at which to start looking (0 to start at beginning of list)
483 * @cap: capability code
484 *
485 * Returns the address of the next matching extended capability structure
486 * within the device's PCI configuration space or 0 if the device does
487 * not support it. Some capabilities can occur several times, e.g., the
488 * vendor-specific capability, and this provides a way to find them all.
489 */
490int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
491{
492 u32 header;
493 int ttl;
494 int pos = PCI_CFG_SPACE_SIZE;
495
496 /* minimum 8 bytes per capability */
497 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
498
499 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
500 return 0;
501
502 if (start)
503 pos = start;
504
505 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
506 return 0;
507
508 /*
509 * If we have no capabilities, this is indicated by cap ID,
510 * cap version and next pointer all being 0.
511 */
512 if (header == 0)
513 return 0;
514
515 while (ttl-- > 0) {
516 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
517 return pos;
518
519 pos = PCI_EXT_CAP_NEXT(header);
520 if (pos < PCI_CFG_SPACE_SIZE)
521 break;
522
523 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
524 break;
525 }
526
527 return 0;
528}
529EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
530
531/**
532 * pci_find_ext_capability - Find an extended capability
533 * @dev: PCI device to query
534 * @cap: capability code
535 *
536 * Returns the address of the requested extended capability structure
537 * within the device's PCI configuration space or 0 if the device does
David Brazdil0f672f62019-12-10 10:32:29 +0000538 * not support it. Possible values for @cap include:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000539 *
540 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
541 * %PCI_EXT_CAP_ID_VC Virtual Channel
542 * %PCI_EXT_CAP_ID_DSN Device Serial Number
543 * %PCI_EXT_CAP_ID_PWR Power Budgeting
544 */
545int pci_find_ext_capability(struct pci_dev *dev, int cap)
546{
547 return pci_find_next_ext_capability(dev, 0, cap);
548}
549EXPORT_SYMBOL_GPL(pci_find_ext_capability);
550
551static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
552{
553 int rc, ttl = PCI_FIND_CAP_TTL;
554 u8 cap, mask;
555
556 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
557 mask = HT_3BIT_CAP_MASK;
558 else
559 mask = HT_5BIT_CAP_MASK;
560
561 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
562 PCI_CAP_ID_HT, &ttl);
563 while (pos) {
564 rc = pci_read_config_byte(dev, pos + 3, &cap);
565 if (rc != PCIBIOS_SUCCESSFUL)
566 return 0;
567
568 if ((cap & mask) == ht_cap)
569 return pos;
570
571 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
572 pos + PCI_CAP_LIST_NEXT,
573 PCI_CAP_ID_HT, &ttl);
574 }
575
576 return 0;
577}
578/**
579 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
580 * @dev: PCI device to query
581 * @pos: Position from which to continue searching
582 * @ht_cap: Hypertransport capability code
583 *
584 * To be used in conjunction with pci_find_ht_capability() to search for
585 * all capabilities matching @ht_cap. @pos should always be a value returned
586 * from pci_find_ht_capability().
587 *
588 * NB. To be 100% safe against broken PCI devices, the caller should take
589 * steps to avoid an infinite loop.
590 */
591int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
592{
593 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
594}
595EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
596
597/**
598 * pci_find_ht_capability - query a device's Hypertransport capabilities
599 * @dev: PCI device to query
600 * @ht_cap: Hypertransport capability code
601 *
602 * Tell if a device supports a given Hypertransport capability.
603 * Returns an address within the device's PCI configuration space
604 * or 0 in case the device does not support the request capability.
605 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
606 * which has a Hypertransport capability matching @ht_cap.
607 */
608int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
609{
610 int pos;
611
612 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
613 if (pos)
614 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
615
616 return pos;
617}
618EXPORT_SYMBOL_GPL(pci_find_ht_capability);
619
620/**
David Brazdil0f672f62019-12-10 10:32:29 +0000621 * pci_find_parent_resource - return resource region of parent bus of given
622 * region
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000623 * @dev: PCI device structure contains resources to be searched
624 * @res: child resource record for which parent is sought
625 *
David Brazdil0f672f62019-12-10 10:32:29 +0000626 * For given resource region of given device, return the resource region of
627 * parent bus the given region is contained in.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000628 */
629struct resource *pci_find_parent_resource(const struct pci_dev *dev,
630 struct resource *res)
631{
632 const struct pci_bus *bus = dev->bus;
633 struct resource *r;
634 int i;
635
636 pci_bus_for_each_resource(bus, r, i) {
637 if (!r)
638 continue;
639 if (resource_contains(r, res)) {
640
641 /*
642 * If the window is prefetchable but the BAR is
643 * not, the allocator made a mistake.
644 */
645 if (r->flags & IORESOURCE_PREFETCH &&
646 !(res->flags & IORESOURCE_PREFETCH))
647 return NULL;
648
649 /*
650 * If we're below a transparent bridge, there may
651 * be both a positively-decoded aperture and a
652 * subtractively-decoded region that contain the BAR.
653 * We want the positively-decoded one, so this depends
654 * on pci_bus_for_each_resource() giving us those
655 * first.
656 */
657 return r;
658 }
659 }
660 return NULL;
661}
662EXPORT_SYMBOL(pci_find_parent_resource);
663
664/**
665 * pci_find_resource - Return matching PCI device resource
666 * @dev: PCI device to query
667 * @res: Resource to look for
668 *
669 * Goes over standard PCI resources (BARs) and checks if the given resource
670 * is partially or fully contained in any of them. In that case the
671 * matching resource is returned, %NULL otherwise.
672 */
673struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
674{
675 int i;
676
677 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
678 struct resource *r = &dev->resource[i];
679
680 if (r->start && resource_contains(r, res))
681 return r;
682 }
683
684 return NULL;
685}
686EXPORT_SYMBOL(pci_find_resource);
687
688/**
689 * pci_find_pcie_root_port - return PCIe Root Port
690 * @dev: PCI device to query
691 *
692 * Traverse up the parent chain and return the PCIe Root Port PCI Device
693 * for a given PCI Device.
694 */
695struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
696{
697 struct pci_dev *bridge, *highest_pcie_bridge = dev;
698
699 bridge = pci_upstream_bridge(dev);
700 while (bridge && pci_is_pcie(bridge)) {
701 highest_pcie_bridge = bridge;
702 bridge = pci_upstream_bridge(bridge);
703 }
704
705 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
706 return NULL;
707
708 return highest_pcie_bridge;
709}
710EXPORT_SYMBOL(pci_find_pcie_root_port);
711
712/**
713 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
714 * @dev: the PCI device to operate on
715 * @pos: config space offset of status word
716 * @mask: mask of bit(s) to care about in status word
717 *
718 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
719 */
720int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
721{
722 int i;
723
724 /* Wait for Transaction Pending bit clean */
725 for (i = 0; i < 4; i++) {
726 u16 status;
727 if (i)
728 msleep((1 << (i - 1)) * 100);
729
730 pci_read_config_word(dev, pos, &status);
731 if (!(status & mask))
732 return 1;
733 }
734
735 return 0;
736}
737
738/**
739 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
740 * @dev: PCI device to have its BARs restored
741 *
742 * Restore the BAR values for a given device, so as to make it
743 * accessible by its driver.
744 */
745static void pci_restore_bars(struct pci_dev *dev)
746{
747 int i;
748
749 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
750 pci_update_resource(dev, i);
751}
752
753static const struct pci_platform_pm_ops *pci_platform_pm;
754
755int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
756{
757 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
758 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
759 return -EINVAL;
760 pci_platform_pm = ops;
761 return 0;
762}
763
764static inline bool platform_pci_power_manageable(struct pci_dev *dev)
765{
766 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
767}
768
769static inline int platform_pci_set_power_state(struct pci_dev *dev,
770 pci_power_t t)
771{
772 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
773}
774
775static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
776{
777 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
778}
779
David Brazdil0f672f62019-12-10 10:32:29 +0000780static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
781{
782 if (pci_platform_pm && pci_platform_pm->refresh_state)
783 pci_platform_pm->refresh_state(dev);
784}
785
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000786static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
787{
788 return pci_platform_pm ?
789 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
790}
791
792static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
793{
794 return pci_platform_pm ?
795 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
796}
797
798static inline bool platform_pci_need_resume(struct pci_dev *dev)
799{
800 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
801}
802
David Brazdil0f672f62019-12-10 10:32:29 +0000803static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
804{
Olivier Deprez0e641232021-09-23 10:07:05 +0200805 if (pci_platform_pm && pci_platform_pm->bridge_d3)
806 return pci_platform_pm->bridge_d3(dev);
807 return false;
David Brazdil0f672f62019-12-10 10:32:29 +0000808}
809
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000810/**
811 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
David Brazdil0f672f62019-12-10 10:32:29 +0000812 * given PCI device
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000813 * @dev: PCI device to handle.
814 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
815 *
816 * RETURN VALUE:
817 * -EINVAL if the requested state is invalid.
818 * -EIO if device does not support PCI PM or its PM capabilities register has a
819 * wrong version, or device doesn't support the requested state.
820 * 0 if device already is in the requested state.
821 * 0 if device's power state has been successfully changed.
822 */
823static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
824{
825 u16 pmcsr;
826 bool need_restore = false;
827
828 /* Check if we're already there */
829 if (dev->current_state == state)
830 return 0;
831
832 if (!dev->pm_cap)
833 return -EIO;
834
835 if (state < PCI_D0 || state > PCI_D3hot)
836 return -EINVAL;
837
David Brazdil0f672f62019-12-10 10:32:29 +0000838 /*
839 * Validate current state:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000840 * Can enter D0 from any state, but if we can only go deeper
841 * to sleep if we're already in a low power state
842 */
843 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
844 && dev->current_state > state) {
845 pci_err(dev, "invalid power transition (from state %d to %d)\n",
846 dev->current_state, state);
847 return -EINVAL;
848 }
849
David Brazdil0f672f62019-12-10 10:32:29 +0000850 /* Check if this device supports the desired state */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000851 if ((state == PCI_D1 && !dev->d1_support)
852 || (state == PCI_D2 && !dev->d2_support))
853 return -EIO;
854
855 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
856
David Brazdil0f672f62019-12-10 10:32:29 +0000857 /*
858 * If we're (effectively) in D3, force entire word to 0.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000859 * This doesn't affect PME_Status, disables PME_En, and
860 * sets PowerState to 0.
861 */
862 switch (dev->current_state) {
863 case PCI_D0:
864 case PCI_D1:
865 case PCI_D2:
866 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
867 pmcsr |= state;
868 break;
869 case PCI_D3hot:
870 case PCI_D3cold:
871 case PCI_UNKNOWN: /* Boot-up */
872 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
873 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
874 need_restore = true;
David Brazdil0f672f62019-12-10 10:32:29 +0000875 /* Fall-through - force to D0 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000876 default:
877 pmcsr = 0;
878 break;
879 }
880
David Brazdil0f672f62019-12-10 10:32:29 +0000881 /* Enter specified state */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000882 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
883
David Brazdil0f672f62019-12-10 10:32:29 +0000884 /*
885 * Mandatory power management transition delays; see PCI PM 1.1
886 * 5.6.1 table 18
887 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000888 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
889 pci_dev_d3_sleep(dev);
890 else if (state == PCI_D2 || dev->current_state == PCI_D2)
891 udelay(PCI_PM_D2_DELAY);
892
893 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
894 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
David Brazdil0f672f62019-12-10 10:32:29 +0000895 if (dev->current_state != state)
896 pci_info_ratelimited(dev, "Refused to change power state, currently in D%d\n",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000897 dev->current_state);
898
899 /*
900 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
901 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
902 * from D3hot to D0 _may_ perform an internal reset, thereby
903 * going to "D0 Uninitialized" rather than "D0 Initialized".
904 * For example, at least some versions of the 3c905B and the
905 * 3c556B exhibit this behaviour.
906 *
907 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
908 * devices in a D3hot state at boot. Consequently, we need to
909 * restore at least the BARs so that the device will be
910 * accessible to its driver.
911 */
912 if (need_restore)
913 pci_restore_bars(dev);
914
915 if (dev->bus->self)
916 pcie_aspm_pm_state_change(dev->bus->self);
917
918 return 0;
919}
920
921/**
922 * pci_update_current_state - Read power state of given device and cache it
923 * @dev: PCI device to handle.
924 * @state: State to cache in case the device doesn't have the PM capability
925 *
926 * The power state is read from the PMCSR register, which however is
927 * inaccessible in D3cold. The platform firmware is therefore queried first
928 * to detect accessibility of the register. In case the platform firmware
929 * reports an incorrect state or the device isn't power manageable by the
930 * platform at all, we try to detect D3cold by testing accessibility of the
931 * vendor ID in config space.
932 */
933void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
934{
935 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
936 !pci_device_is_present(dev)) {
937 dev->current_state = PCI_D3cold;
938 } else if (dev->pm_cap) {
939 u16 pmcsr;
940
941 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
942 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
943 } else {
944 dev->current_state = state;
945 }
946}
947
948/**
David Brazdil0f672f62019-12-10 10:32:29 +0000949 * pci_refresh_power_state - Refresh the given device's power state data
950 * @dev: Target PCI device.
951 *
952 * Ask the platform to refresh the devices power state information and invoke
953 * pci_update_current_state() to update its current PCI power state.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000954 */
David Brazdil0f672f62019-12-10 10:32:29 +0000955void pci_refresh_power_state(struct pci_dev *dev)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000956{
957 if (platform_pci_power_manageable(dev))
David Brazdil0f672f62019-12-10 10:32:29 +0000958 platform_pci_refresh_power_state(dev);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000959
David Brazdil0f672f62019-12-10 10:32:29 +0000960 pci_update_current_state(dev, dev->current_state);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000961}
962
963/**
964 * pci_platform_power_transition - Use platform to change device power state
965 * @dev: PCI device to handle.
966 * @state: State to put the device into.
967 */
968static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
969{
970 int error;
971
972 if (platform_pci_power_manageable(dev)) {
973 error = platform_pci_set_power_state(dev, state);
974 if (!error)
975 pci_update_current_state(dev, state);
976 } else
977 error = -ENODEV;
978
979 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
980 dev->current_state = PCI_D0;
981
982 return error;
983}
984
985/**
986 * pci_wakeup - Wake up a PCI device
987 * @pci_dev: Device to handle.
988 * @ign: ignored parameter
989 */
990static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
991{
992 pci_wakeup_event(pci_dev);
993 pm_request_resume(&pci_dev->dev);
994 return 0;
995}
996
997/**
998 * pci_wakeup_bus - Walk given bus and wake up devices on it
999 * @bus: Top bus of the subtree to walk.
1000 */
1001void pci_wakeup_bus(struct pci_bus *bus)
1002{
1003 if (bus)
1004 pci_walk_bus(bus, pci_wakeup, NULL);
1005}
1006
1007/**
1008 * __pci_start_power_transition - Start power transition of a PCI device
1009 * @dev: PCI device to handle.
1010 * @state: State to put the device into.
1011 */
1012static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
1013{
1014 if (state == PCI_D0) {
1015 pci_platform_power_transition(dev, PCI_D0);
1016 /*
1017 * Mandatory power management transition delays, see
1018 * PCI Express Base Specification Revision 2.0 Section
1019 * 6.6.1: Conventional Reset. Do not delay for
1020 * devices powered on/off by corresponding bridge,
1021 * because have already delayed for the bridge.
1022 */
1023 if (dev->runtime_d3cold) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001024 /*
1025 * When powering on a bridge from D3cold, the
1026 * whole hierarchy may be powered on into
1027 * D0uninitialized state, resume them to give
1028 * them a chance to suspend again
1029 */
1030 pci_wakeup_bus(dev->subordinate);
1031 }
1032 }
1033}
1034
1035/**
1036 * __pci_dev_set_current_state - Set current state of a PCI device
1037 * @dev: Device to handle
1038 * @data: pointer to state to be set
1039 */
1040static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1041{
1042 pci_power_t state = *(pci_power_t *)data;
1043
1044 dev->current_state = state;
1045 return 0;
1046}
1047
1048/**
1049 * pci_bus_set_current_state - Walk given bus and set current state of devices
1050 * @bus: Top bus of the subtree to walk.
1051 * @state: state to be set
1052 */
1053void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1054{
1055 if (bus)
1056 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1057}
1058
1059/**
1060 * __pci_complete_power_transition - Complete power transition of a PCI device
1061 * @dev: PCI device to handle.
1062 * @state: State to put the device into.
1063 *
1064 * This function should not be called directly by device drivers.
1065 */
1066int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
1067{
1068 int ret;
1069
1070 if (state <= PCI_D0)
1071 return -EINVAL;
1072 ret = pci_platform_power_transition(dev, state);
1073 /* Power off the bridge may power off the whole hierarchy */
1074 if (!ret && state == PCI_D3cold)
1075 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1076 return ret;
1077}
1078EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
1079
1080/**
1081 * pci_set_power_state - Set the power state of a PCI device
1082 * @dev: PCI device to handle.
1083 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1084 *
1085 * Transition a device to a new power state, using the platform firmware and/or
1086 * the device's PCI PM registers.
1087 *
1088 * RETURN VALUE:
1089 * -EINVAL if the requested state is invalid.
1090 * -EIO if device does not support PCI PM or its PM capabilities register has a
1091 * wrong version, or device doesn't support the requested state.
1092 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1093 * 0 if device already is in the requested state.
1094 * 0 if the transition is to D3 but D3 is not supported.
1095 * 0 if device's power state has been successfully changed.
1096 */
1097int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1098{
1099 int error;
1100
David Brazdil0f672f62019-12-10 10:32:29 +00001101 /* Bound the state we're entering */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001102 if (state > PCI_D3cold)
1103 state = PCI_D3cold;
1104 else if (state < PCI_D0)
1105 state = PCI_D0;
1106 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
David Brazdil0f672f62019-12-10 10:32:29 +00001107
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001108 /*
David Brazdil0f672f62019-12-10 10:32:29 +00001109 * If the device or the parent bridge do not support PCI
1110 * PM, ignore the request if we're doing anything other
1111 * than putting it into D0 (which would only happen on
1112 * boot).
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001113 */
1114 return 0;
1115
1116 /* Check if we're already there */
1117 if (dev->current_state == state)
1118 return 0;
1119
1120 __pci_start_power_transition(dev, state);
1121
David Brazdil0f672f62019-12-10 10:32:29 +00001122 /*
1123 * This device is quirked not to be put into D3, so don't put it in
1124 * D3
1125 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001126 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1127 return 0;
1128
1129 /*
1130 * To put device in D3cold, we put device into D3hot in native
1131 * way, then put device into D3cold with platform ops
1132 */
1133 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1134 PCI_D3hot : state);
1135
1136 if (!__pci_complete_power_transition(dev, state))
1137 error = 0;
1138
1139 return error;
1140}
1141EXPORT_SYMBOL(pci_set_power_state);
1142
1143/**
David Brazdil0f672f62019-12-10 10:32:29 +00001144 * pci_power_up - Put the given device into D0 forcibly
1145 * @dev: PCI device to power up
1146 */
1147void pci_power_up(struct pci_dev *dev)
1148{
1149 __pci_start_power_transition(dev, PCI_D0);
1150 pci_raw_set_power_state(dev, PCI_D0);
1151 pci_update_current_state(dev, PCI_D0);
1152}
1153
1154/**
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001155 * pci_choose_state - Choose the power state of a PCI device
1156 * @dev: PCI device to be suspended
1157 * @state: target sleep state for the whole system. This is the value
David Brazdil0f672f62019-12-10 10:32:29 +00001158 * that is passed to suspend() function.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001159 *
1160 * Returns PCI power state suitable for given device and given system
1161 * message.
1162 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001163pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1164{
1165 pci_power_t ret;
1166
1167 if (!dev->pm_cap)
1168 return PCI_D0;
1169
1170 ret = platform_pci_choose_state(dev);
1171 if (ret != PCI_POWER_ERROR)
1172 return ret;
1173
1174 switch (state.event) {
1175 case PM_EVENT_ON:
1176 return PCI_D0;
1177 case PM_EVENT_FREEZE:
1178 case PM_EVENT_PRETHAW:
1179 /* REVISIT both freeze and pre-thaw "should" use D0 */
1180 case PM_EVENT_SUSPEND:
1181 case PM_EVENT_HIBERNATE:
1182 return PCI_D3hot;
1183 default:
1184 pci_info(dev, "unrecognized suspend event %d\n",
1185 state.event);
1186 BUG();
1187 }
1188 return PCI_D0;
1189}
1190EXPORT_SYMBOL(pci_choose_state);
1191
1192#define PCI_EXP_SAVE_REGS 7
1193
1194static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1195 u16 cap, bool extended)
1196{
1197 struct pci_cap_saved_state *tmp;
1198
1199 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1200 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1201 return tmp;
1202 }
1203 return NULL;
1204}
1205
1206struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1207{
1208 return _pci_find_saved_cap(dev, cap, false);
1209}
1210
1211struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1212{
1213 return _pci_find_saved_cap(dev, cap, true);
1214}
1215
1216static int pci_save_pcie_state(struct pci_dev *dev)
1217{
1218 int i = 0;
1219 struct pci_cap_saved_state *save_state;
1220 u16 *cap;
1221
1222 if (!pci_is_pcie(dev))
1223 return 0;
1224
1225 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1226 if (!save_state) {
1227 pci_err(dev, "buffer not found in %s\n", __func__);
1228 return -ENOMEM;
1229 }
1230
1231 cap = (u16 *)&save_state->cap.data[0];
1232 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1233 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1234 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1235 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1236 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1237 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1238 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1239
1240 return 0;
1241}
1242
1243static void pci_restore_pcie_state(struct pci_dev *dev)
1244{
1245 int i = 0;
1246 struct pci_cap_saved_state *save_state;
1247 u16 *cap;
1248
1249 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1250 if (!save_state)
1251 return;
1252
1253 cap = (u16 *)&save_state->cap.data[0];
1254 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1255 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1256 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1257 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1258 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1259 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1260 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1261}
1262
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001263static int pci_save_pcix_state(struct pci_dev *dev)
1264{
1265 int pos;
1266 struct pci_cap_saved_state *save_state;
1267
1268 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1269 if (!pos)
1270 return 0;
1271
1272 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1273 if (!save_state) {
1274 pci_err(dev, "buffer not found in %s\n", __func__);
1275 return -ENOMEM;
1276 }
1277
1278 pci_read_config_word(dev, pos + PCI_X_CMD,
1279 (u16 *)save_state->cap.data);
1280
1281 return 0;
1282}
1283
1284static void pci_restore_pcix_state(struct pci_dev *dev)
1285{
1286 int i = 0, pos;
1287 struct pci_cap_saved_state *save_state;
1288 u16 *cap;
1289
1290 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1291 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1292 if (!save_state || !pos)
1293 return;
1294 cap = (u16 *)&save_state->cap.data[0];
1295
1296 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1297}
1298
David Brazdil0f672f62019-12-10 10:32:29 +00001299static void pci_save_ltr_state(struct pci_dev *dev)
1300{
1301 int ltr;
1302 struct pci_cap_saved_state *save_state;
1303 u16 *cap;
1304
1305 if (!pci_is_pcie(dev))
1306 return;
1307
1308 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1309 if (!ltr)
1310 return;
1311
1312 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1313 if (!save_state) {
1314 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1315 return;
1316 }
1317
1318 cap = (u16 *)&save_state->cap.data[0];
1319 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1320 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1321}
1322
1323static void pci_restore_ltr_state(struct pci_dev *dev)
1324{
1325 struct pci_cap_saved_state *save_state;
1326 int ltr;
1327 u16 *cap;
1328
1329 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1330 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1331 if (!save_state || !ltr)
1332 return;
1333
1334 cap = (u16 *)&save_state->cap.data[0];
1335 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1336 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1337}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001338
1339/**
David Brazdil0f672f62019-12-10 10:32:29 +00001340 * pci_save_state - save the PCI configuration space of a device before
1341 * suspending
1342 * @dev: PCI device that we're dealing with
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001343 */
1344int pci_save_state(struct pci_dev *dev)
1345{
1346 int i;
1347 /* XXX: 100% dword access ok here? */
1348 for (i = 0; i < 16; i++)
1349 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1350 dev->state_saved = true;
1351
1352 i = pci_save_pcie_state(dev);
1353 if (i != 0)
1354 return i;
1355
1356 i = pci_save_pcix_state(dev);
1357 if (i != 0)
1358 return i;
1359
David Brazdil0f672f62019-12-10 10:32:29 +00001360 pci_save_ltr_state(dev);
1361 pci_save_dpc_state(dev);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001362 return pci_save_vc_state(dev);
1363}
1364EXPORT_SYMBOL(pci_save_state);
1365
1366static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1367 u32 saved_val, int retry, bool force)
1368{
1369 u32 val;
1370
1371 pci_read_config_dword(pdev, offset, &val);
1372 if (!force && val == saved_val)
1373 return;
1374
1375 for (;;) {
1376 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1377 offset, val, saved_val);
1378 pci_write_config_dword(pdev, offset, saved_val);
1379 if (retry-- <= 0)
1380 return;
1381
1382 pci_read_config_dword(pdev, offset, &val);
1383 if (val == saved_val)
1384 return;
1385
1386 mdelay(1);
1387 }
1388}
1389
1390static void pci_restore_config_space_range(struct pci_dev *pdev,
1391 int start, int end, int retry,
1392 bool force)
1393{
1394 int index;
1395
1396 for (index = end; index >= start; index--)
1397 pci_restore_config_dword(pdev, 4 * index,
1398 pdev->saved_config_space[index],
1399 retry, force);
1400}
1401
1402static void pci_restore_config_space(struct pci_dev *pdev)
1403{
1404 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1405 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1406 /* Restore BARs before the command register. */
1407 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1408 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1409 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1410 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1411
1412 /*
1413 * Force rewriting of prefetch registers to avoid S3 resume
1414 * issues on Intel PCI bridges that occur when these
1415 * registers are not explicitly written.
1416 */
1417 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1418 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1419 } else {
1420 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1421 }
1422}
1423
1424static void pci_restore_rebar_state(struct pci_dev *pdev)
1425{
1426 unsigned int pos, nbars, i;
1427 u32 ctrl;
1428
1429 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1430 if (!pos)
1431 return;
1432
1433 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1434 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1435 PCI_REBAR_CTRL_NBAR_SHIFT;
1436
1437 for (i = 0; i < nbars; i++, pos += 8) {
1438 struct resource *res;
1439 int bar_idx, size;
1440
1441 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1442 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1443 res = pdev->resource + bar_idx;
David Brazdil0f672f62019-12-10 10:32:29 +00001444 size = ilog2(resource_size(res)) - 20;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001445 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1446 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1447 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1448 }
1449}
1450
1451/**
1452 * pci_restore_state - Restore the saved state of a PCI device
David Brazdil0f672f62019-12-10 10:32:29 +00001453 * @dev: PCI device that we're dealing with
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001454 */
1455void pci_restore_state(struct pci_dev *dev)
1456{
1457 if (!dev->state_saved)
1458 return;
1459
David Brazdil0f672f62019-12-10 10:32:29 +00001460 /*
1461 * Restore max latencies (in the LTR capability) before enabling
1462 * LTR itself (in the PCIe capability).
1463 */
1464 pci_restore_ltr_state(dev);
1465
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001466 pci_restore_pcie_state(dev);
1467 pci_restore_pasid_state(dev);
1468 pci_restore_pri_state(dev);
1469 pci_restore_ats_state(dev);
1470 pci_restore_vc_state(dev);
1471 pci_restore_rebar_state(dev);
David Brazdil0f672f62019-12-10 10:32:29 +00001472 pci_restore_dpc_state(dev);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001473
1474 pci_cleanup_aer_error_status_regs(dev);
1475
1476 pci_restore_config_space(dev);
1477
1478 pci_restore_pcix_state(dev);
1479 pci_restore_msi_state(dev);
1480
1481 /* Restore ACS and IOV configuration state */
1482 pci_enable_acs(dev);
1483 pci_restore_iov_state(dev);
1484
1485 dev->state_saved = false;
1486}
1487EXPORT_SYMBOL(pci_restore_state);
1488
1489struct pci_saved_state {
1490 u32 config_space[16];
1491 struct pci_cap_saved_data cap[0];
1492};
1493
1494/**
1495 * pci_store_saved_state - Allocate and return an opaque struct containing
1496 * the device saved state.
1497 * @dev: PCI device that we're dealing with
1498 *
1499 * Return NULL if no state or error.
1500 */
1501struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1502{
1503 struct pci_saved_state *state;
1504 struct pci_cap_saved_state *tmp;
1505 struct pci_cap_saved_data *cap;
1506 size_t size;
1507
1508 if (!dev->state_saved)
1509 return NULL;
1510
1511 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1512
1513 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1514 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1515
1516 state = kzalloc(size, GFP_KERNEL);
1517 if (!state)
1518 return NULL;
1519
1520 memcpy(state->config_space, dev->saved_config_space,
1521 sizeof(state->config_space));
1522
1523 cap = state->cap;
1524 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1525 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1526 memcpy(cap, &tmp->cap, len);
1527 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1528 }
1529 /* Empty cap_save terminates list */
1530
1531 return state;
1532}
1533EXPORT_SYMBOL_GPL(pci_store_saved_state);
1534
1535/**
1536 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1537 * @dev: PCI device that we're dealing with
1538 * @state: Saved state returned from pci_store_saved_state()
1539 */
1540int pci_load_saved_state(struct pci_dev *dev,
1541 struct pci_saved_state *state)
1542{
1543 struct pci_cap_saved_data *cap;
1544
1545 dev->state_saved = false;
1546
1547 if (!state)
1548 return 0;
1549
1550 memcpy(dev->saved_config_space, state->config_space,
1551 sizeof(state->config_space));
1552
1553 cap = state->cap;
1554 while (cap->size) {
1555 struct pci_cap_saved_state *tmp;
1556
1557 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1558 if (!tmp || tmp->cap.size != cap->size)
1559 return -EINVAL;
1560
1561 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1562 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1563 sizeof(struct pci_cap_saved_data) + cap->size);
1564 }
1565
1566 dev->state_saved = true;
1567 return 0;
1568}
1569EXPORT_SYMBOL_GPL(pci_load_saved_state);
1570
1571/**
1572 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1573 * and free the memory allocated for it.
1574 * @dev: PCI device that we're dealing with
1575 * @state: Pointer to saved state returned from pci_store_saved_state()
1576 */
1577int pci_load_and_free_saved_state(struct pci_dev *dev,
1578 struct pci_saved_state **state)
1579{
1580 int ret = pci_load_saved_state(dev, *state);
1581 kfree(*state);
1582 *state = NULL;
1583 return ret;
1584}
1585EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1586
1587int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1588{
1589 return pci_enable_resources(dev, bars);
1590}
1591
1592static int do_pci_enable_device(struct pci_dev *dev, int bars)
1593{
1594 int err;
1595 struct pci_dev *bridge;
1596 u16 cmd;
1597 u8 pin;
1598
1599 err = pci_set_power_state(dev, PCI_D0);
1600 if (err < 0 && err != -EIO)
1601 return err;
1602
1603 bridge = pci_upstream_bridge(dev);
1604 if (bridge)
1605 pcie_aspm_powersave_config_link(bridge);
1606
1607 err = pcibios_enable_device(dev, bars);
1608 if (err < 0)
1609 return err;
1610 pci_fixup_device(pci_fixup_enable, dev);
1611
1612 if (dev->msi_enabled || dev->msix_enabled)
1613 return 0;
1614
1615 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1616 if (pin) {
1617 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1618 if (cmd & PCI_COMMAND_INTX_DISABLE)
1619 pci_write_config_word(dev, PCI_COMMAND,
1620 cmd & ~PCI_COMMAND_INTX_DISABLE);
1621 }
1622
1623 return 0;
1624}
1625
1626/**
1627 * pci_reenable_device - Resume abandoned device
1628 * @dev: PCI device to be resumed
1629 *
David Brazdil0f672f62019-12-10 10:32:29 +00001630 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1631 * to be called by normal code, write proper resume handler and use it instead.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001632 */
1633int pci_reenable_device(struct pci_dev *dev)
1634{
1635 if (pci_is_enabled(dev))
1636 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1637 return 0;
1638}
1639EXPORT_SYMBOL(pci_reenable_device);
1640
1641static void pci_enable_bridge(struct pci_dev *dev)
1642{
1643 struct pci_dev *bridge;
1644 int retval;
1645
1646 bridge = pci_upstream_bridge(dev);
1647 if (bridge)
1648 pci_enable_bridge(bridge);
1649
1650 if (pci_is_enabled(dev)) {
1651 if (!dev->is_busmaster)
1652 pci_set_master(dev);
1653 return;
1654 }
1655
1656 retval = pci_enable_device(dev);
1657 if (retval)
1658 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1659 retval);
1660 pci_set_master(dev);
1661}
1662
1663static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1664{
1665 struct pci_dev *bridge;
1666 int err;
1667 int i, bars = 0;
1668
1669 /*
1670 * Power state could be unknown at this point, either due to a fresh
1671 * boot or a device removal call. So get the current power state
1672 * so that things like MSI message writing will behave as expected
1673 * (e.g. if the device really is in D0 at enable time).
1674 */
Olivier Deprez0e641232021-09-23 10:07:05 +02001675 pci_update_current_state(dev, dev->current_state);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001676
1677 if (atomic_inc_return(&dev->enable_cnt) > 1)
1678 return 0; /* already enabled */
1679
1680 bridge = pci_upstream_bridge(dev);
1681 if (bridge)
1682 pci_enable_bridge(bridge);
1683
1684 /* only skip sriov related */
1685 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1686 if (dev->resource[i].flags & flags)
1687 bars |= (1 << i);
1688 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1689 if (dev->resource[i].flags & flags)
1690 bars |= (1 << i);
1691
1692 err = do_pci_enable_device(dev, bars);
1693 if (err < 0)
1694 atomic_dec(&dev->enable_cnt);
1695 return err;
1696}
1697
1698/**
1699 * pci_enable_device_io - Initialize a device for use with IO space
1700 * @dev: PCI device to be initialized
1701 *
David Brazdil0f672f62019-12-10 10:32:29 +00001702 * Initialize device before it's used by a driver. Ask low-level code
1703 * to enable I/O resources. Wake up the device if it was suspended.
1704 * Beware, this function can fail.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001705 */
1706int pci_enable_device_io(struct pci_dev *dev)
1707{
1708 return pci_enable_device_flags(dev, IORESOURCE_IO);
1709}
1710EXPORT_SYMBOL(pci_enable_device_io);
1711
1712/**
1713 * pci_enable_device_mem - Initialize a device for use with Memory space
1714 * @dev: PCI device to be initialized
1715 *
David Brazdil0f672f62019-12-10 10:32:29 +00001716 * Initialize device before it's used by a driver. Ask low-level code
1717 * to enable Memory resources. Wake up the device if it was suspended.
1718 * Beware, this function can fail.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001719 */
1720int pci_enable_device_mem(struct pci_dev *dev)
1721{
1722 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1723}
1724EXPORT_SYMBOL(pci_enable_device_mem);
1725
1726/**
1727 * pci_enable_device - Initialize device before it's used by a driver.
1728 * @dev: PCI device to be initialized
1729 *
David Brazdil0f672f62019-12-10 10:32:29 +00001730 * Initialize device before it's used by a driver. Ask low-level code
1731 * to enable I/O and memory. Wake up the device if it was suspended.
1732 * Beware, this function can fail.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001733 *
David Brazdil0f672f62019-12-10 10:32:29 +00001734 * Note we don't actually enable the device many times if we call
1735 * this function repeatedly (we just increment the count).
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001736 */
1737int pci_enable_device(struct pci_dev *dev)
1738{
1739 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1740}
1741EXPORT_SYMBOL(pci_enable_device);
1742
1743/*
David Brazdil0f672f62019-12-10 10:32:29 +00001744 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1745 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001746 * there's no need to track it separately. pci_devres is initialized
1747 * when a device is enabled using managed PCI device enable interface.
1748 */
1749struct pci_devres {
1750 unsigned int enabled:1;
1751 unsigned int pinned:1;
1752 unsigned int orig_intx:1;
1753 unsigned int restore_intx:1;
1754 unsigned int mwi:1;
1755 u32 region_mask;
1756};
1757
1758static void pcim_release(struct device *gendev, void *res)
1759{
1760 struct pci_dev *dev = to_pci_dev(gendev);
1761 struct pci_devres *this = res;
1762 int i;
1763
1764 if (dev->msi_enabled)
1765 pci_disable_msi(dev);
1766 if (dev->msix_enabled)
1767 pci_disable_msix(dev);
1768
1769 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1770 if (this->region_mask & (1 << i))
1771 pci_release_region(dev, i);
1772
1773 if (this->mwi)
1774 pci_clear_mwi(dev);
1775
1776 if (this->restore_intx)
1777 pci_intx(dev, this->orig_intx);
1778
1779 if (this->enabled && !this->pinned)
1780 pci_disable_device(dev);
1781}
1782
1783static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1784{
1785 struct pci_devres *dr, *new_dr;
1786
1787 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1788 if (dr)
1789 return dr;
1790
1791 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1792 if (!new_dr)
1793 return NULL;
1794 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1795}
1796
1797static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1798{
1799 if (pci_is_managed(pdev))
1800 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1801 return NULL;
1802}
1803
1804/**
1805 * pcim_enable_device - Managed pci_enable_device()
1806 * @pdev: PCI device to be initialized
1807 *
1808 * Managed pci_enable_device().
1809 */
1810int pcim_enable_device(struct pci_dev *pdev)
1811{
1812 struct pci_devres *dr;
1813 int rc;
1814
1815 dr = get_pci_dr(pdev);
1816 if (unlikely(!dr))
1817 return -ENOMEM;
1818 if (dr->enabled)
1819 return 0;
1820
1821 rc = pci_enable_device(pdev);
1822 if (!rc) {
1823 pdev->is_managed = 1;
1824 dr->enabled = 1;
1825 }
1826 return rc;
1827}
1828EXPORT_SYMBOL(pcim_enable_device);
1829
1830/**
1831 * pcim_pin_device - Pin managed PCI device
1832 * @pdev: PCI device to pin
1833 *
1834 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1835 * driver detach. @pdev must have been enabled with
1836 * pcim_enable_device().
1837 */
1838void pcim_pin_device(struct pci_dev *pdev)
1839{
1840 struct pci_devres *dr;
1841
1842 dr = find_pci_dr(pdev);
1843 WARN_ON(!dr || !dr->enabled);
1844 if (dr)
1845 dr->pinned = 1;
1846}
1847EXPORT_SYMBOL(pcim_pin_device);
1848
1849/*
1850 * pcibios_add_device - provide arch specific hooks when adding device dev
1851 * @dev: the PCI device being added
1852 *
1853 * Permits the platform to provide architecture specific functionality when
1854 * devices are added. This is the default implementation. Architecture
1855 * implementations can override this.
1856 */
1857int __weak pcibios_add_device(struct pci_dev *dev)
1858{
1859 return 0;
1860}
1861
1862/**
David Brazdil0f672f62019-12-10 10:32:29 +00001863 * pcibios_release_device - provide arch specific hooks when releasing
1864 * device dev
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001865 * @dev: the PCI device being released
1866 *
1867 * Permits the platform to provide architecture specific functionality when
1868 * devices are released. This is the default implementation. Architecture
1869 * implementations can override this.
1870 */
1871void __weak pcibios_release_device(struct pci_dev *dev) {}
1872
1873/**
1874 * pcibios_disable_device - disable arch specific PCI resources for device dev
1875 * @dev: the PCI device to disable
1876 *
1877 * Disables architecture specific PCI resources for the device. This
1878 * is the default implementation. Architecture implementations can
1879 * override this.
1880 */
1881void __weak pcibios_disable_device(struct pci_dev *dev) {}
1882
1883/**
1884 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1885 * @irq: ISA IRQ to penalize
1886 * @active: IRQ active or not
1887 *
1888 * Permits the platform to provide architecture-specific functionality when
1889 * penalizing ISA IRQs. This is the default implementation. Architecture
1890 * implementations can override this.
1891 */
1892void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1893
1894static void do_pci_disable_device(struct pci_dev *dev)
1895{
1896 u16 pci_command;
1897
1898 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1899 if (pci_command & PCI_COMMAND_MASTER) {
1900 pci_command &= ~PCI_COMMAND_MASTER;
1901 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1902 }
1903
1904 pcibios_disable_device(dev);
1905}
1906
1907/**
1908 * pci_disable_enabled_device - Disable device without updating enable_cnt
1909 * @dev: PCI device to disable
1910 *
1911 * NOTE: This function is a backend of PCI power management routines and is
1912 * not supposed to be called drivers.
1913 */
1914void pci_disable_enabled_device(struct pci_dev *dev)
1915{
1916 if (pci_is_enabled(dev))
1917 do_pci_disable_device(dev);
1918}
1919
1920/**
1921 * pci_disable_device - Disable PCI device after use
1922 * @dev: PCI device to be disabled
1923 *
1924 * Signal to the system that the PCI device is not in use by the system
1925 * anymore. This only involves disabling PCI bus-mastering, if active.
1926 *
1927 * Note we don't actually disable the device until all callers of
1928 * pci_enable_device() have called pci_disable_device().
1929 */
1930void pci_disable_device(struct pci_dev *dev)
1931{
1932 struct pci_devres *dr;
1933
1934 dr = find_pci_dr(dev);
1935 if (dr)
1936 dr->enabled = 0;
1937
1938 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1939 "disabling already-disabled device");
1940
1941 if (atomic_dec_return(&dev->enable_cnt) != 0)
1942 return;
1943
1944 do_pci_disable_device(dev);
1945
1946 dev->is_busmaster = 0;
1947}
1948EXPORT_SYMBOL(pci_disable_device);
1949
1950/**
1951 * pcibios_set_pcie_reset_state - set reset state for device dev
1952 * @dev: the PCIe device reset
1953 * @state: Reset state to enter into
1954 *
David Brazdil0f672f62019-12-10 10:32:29 +00001955 * Set the PCIe reset state for the device. This is the default
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001956 * implementation. Architecture implementations can override this.
1957 */
1958int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1959 enum pcie_reset_state state)
1960{
1961 return -EINVAL;
1962}
1963
1964/**
1965 * pci_set_pcie_reset_state - set reset state for device dev
1966 * @dev: the PCIe device reset
1967 * @state: Reset state to enter into
1968 *
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001969 * Sets the PCI reset state for the device.
1970 */
1971int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1972{
1973 return pcibios_set_pcie_reset_state(dev, state);
1974}
1975EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1976
1977/**
1978 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1979 * @dev: PCIe root port or event collector.
1980 */
1981void pcie_clear_root_pme_status(struct pci_dev *dev)
1982{
1983 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1984}
1985
1986/**
1987 * pci_check_pme_status - Check if given device has generated PME.
1988 * @dev: Device to check.
1989 *
1990 * Check the PME status of the device and if set, clear it and clear PME enable
1991 * (if set). Return 'true' if PME status and PME enable were both set or
1992 * 'false' otherwise.
1993 */
1994bool pci_check_pme_status(struct pci_dev *dev)
1995{
1996 int pmcsr_pos;
1997 u16 pmcsr;
1998 bool ret = false;
1999
2000 if (!dev->pm_cap)
2001 return false;
2002
2003 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2004 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2005 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2006 return false;
2007
2008 /* Clear PME status. */
2009 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2010 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2011 /* Disable PME to avoid interrupt flood. */
2012 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2013 ret = true;
2014 }
2015
2016 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2017
2018 return ret;
2019}
2020
2021/**
2022 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2023 * @dev: Device to handle.
2024 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2025 *
2026 * Check if @dev has generated PME and queue a resume request for it in that
2027 * case.
2028 */
2029static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2030{
2031 if (pme_poll_reset && dev->pme_poll)
2032 dev->pme_poll = false;
2033
2034 if (pci_check_pme_status(dev)) {
2035 pci_wakeup_event(dev);
2036 pm_request_resume(&dev->dev);
2037 }
2038 return 0;
2039}
2040
2041/**
2042 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2043 * @bus: Top bus of the subtree to walk.
2044 */
2045void pci_pme_wakeup_bus(struct pci_bus *bus)
2046{
2047 if (bus)
2048 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2049}
2050
2051
2052/**
2053 * pci_pme_capable - check the capability of PCI device to generate PME#
2054 * @dev: PCI device to handle.
2055 * @state: PCI state from which device will issue PME#.
2056 */
2057bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2058{
2059 if (!dev->pm_cap)
2060 return false;
2061
2062 return !!(dev->pme_support & (1 << state));
2063}
2064EXPORT_SYMBOL(pci_pme_capable);
2065
2066static void pci_pme_list_scan(struct work_struct *work)
2067{
2068 struct pci_pme_device *pme_dev, *n;
2069
2070 mutex_lock(&pci_pme_list_mutex);
2071 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2072 if (pme_dev->dev->pme_poll) {
2073 struct pci_dev *bridge;
2074
2075 bridge = pme_dev->dev->bus->self;
2076 /*
2077 * If bridge is in low power state, the
2078 * configuration space of subordinate devices
2079 * may be not accessible
2080 */
2081 if (bridge && bridge->current_state != PCI_D0)
2082 continue;
David Brazdil0f672f62019-12-10 10:32:29 +00002083 /*
2084 * If the device is in D3cold it should not be
2085 * polled either.
2086 */
2087 if (pme_dev->dev->current_state == PCI_D3cold)
2088 continue;
2089
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002090 pci_pme_wakeup(pme_dev->dev, NULL);
2091 } else {
2092 list_del(&pme_dev->list);
2093 kfree(pme_dev);
2094 }
2095 }
2096 if (!list_empty(&pci_pme_list))
2097 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2098 msecs_to_jiffies(PME_TIMEOUT));
2099 mutex_unlock(&pci_pme_list_mutex);
2100}
2101
2102static void __pci_pme_active(struct pci_dev *dev, bool enable)
2103{
2104 u16 pmcsr;
2105
2106 if (!dev->pme_support)
2107 return;
2108
2109 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2110 /* Clear PME_Status by writing 1 to it and enable PME# */
2111 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2112 if (!enable)
2113 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2114
2115 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2116}
2117
2118/**
2119 * pci_pme_restore - Restore PME configuration after config space restore.
2120 * @dev: PCI device to update.
2121 */
2122void pci_pme_restore(struct pci_dev *dev)
2123{
2124 u16 pmcsr;
2125
2126 if (!dev->pme_support)
2127 return;
2128
2129 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2130 if (dev->wakeup_prepared) {
2131 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2132 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2133 } else {
2134 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2135 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2136 }
2137 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2138}
2139
2140/**
2141 * pci_pme_active - enable or disable PCI device's PME# function
2142 * @dev: PCI device to handle.
2143 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2144 *
2145 * The caller must verify that the device is capable of generating PME# before
2146 * calling this function with @enable equal to 'true'.
2147 */
2148void pci_pme_active(struct pci_dev *dev, bool enable)
2149{
2150 __pci_pme_active(dev, enable);
2151
2152 /*
2153 * PCI (as opposed to PCIe) PME requires that the device have
2154 * its PME# line hooked up correctly. Not all hardware vendors
2155 * do this, so the PME never gets delivered and the device
2156 * remains asleep. The easiest way around this is to
2157 * periodically walk the list of suspended devices and check
2158 * whether any have their PME flag set. The assumption is that
2159 * we'll wake up often enough anyway that this won't be a huge
2160 * hit, and the power savings from the devices will still be a
2161 * win.
2162 *
2163 * Although PCIe uses in-band PME message instead of PME# line
2164 * to report PME, PME does not work for some PCIe devices in
2165 * reality. For example, there are devices that set their PME
2166 * status bits, but don't really bother to send a PME message;
2167 * there are PCI Express Root Ports that don't bother to
2168 * trigger interrupts when they receive PME messages from the
2169 * devices below. So PME poll is used for PCIe devices too.
2170 */
2171
2172 if (dev->pme_poll) {
2173 struct pci_pme_device *pme_dev;
2174 if (enable) {
2175 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2176 GFP_KERNEL);
2177 if (!pme_dev) {
2178 pci_warn(dev, "can't enable PME#\n");
2179 return;
2180 }
2181 pme_dev->dev = dev;
2182 mutex_lock(&pci_pme_list_mutex);
2183 list_add(&pme_dev->list, &pci_pme_list);
2184 if (list_is_singular(&pci_pme_list))
2185 queue_delayed_work(system_freezable_wq,
2186 &pci_pme_work,
2187 msecs_to_jiffies(PME_TIMEOUT));
2188 mutex_unlock(&pci_pme_list_mutex);
2189 } else {
2190 mutex_lock(&pci_pme_list_mutex);
2191 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2192 if (pme_dev->dev == dev) {
2193 list_del(&pme_dev->list);
2194 kfree(pme_dev);
2195 break;
2196 }
2197 }
2198 mutex_unlock(&pci_pme_list_mutex);
2199 }
2200 }
2201
2202 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2203}
2204EXPORT_SYMBOL(pci_pme_active);
2205
2206/**
2207 * __pci_enable_wake - enable PCI device as wakeup event source
2208 * @dev: PCI device affected
2209 * @state: PCI state from which device will issue wakeup events
2210 * @enable: True to enable event generation; false to disable
2211 *
2212 * This enables the device as a wakeup event source, or disables it.
2213 * When such events involves platform-specific hooks, those hooks are
2214 * called automatically by this routine.
2215 *
2216 * Devices with legacy power management (no standard PCI PM capabilities)
2217 * always require such platform hooks.
2218 *
2219 * RETURN VALUE:
2220 * 0 is returned on success
2221 * -EINVAL is returned if device is not supposed to wake up the system
2222 * Error code depending on the platform is returned if both the platform and
2223 * the native mechanism fail to enable the generation of wake-up events
2224 */
2225static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2226{
2227 int ret = 0;
2228
2229 /*
David Brazdil0f672f62019-12-10 10:32:29 +00002230 * Bridges that are not power-manageable directly only signal
2231 * wakeup on behalf of subordinate devices which is set up
2232 * elsewhere, so skip them. However, bridges that are
2233 * power-manageable may signal wakeup for themselves (for example,
2234 * on a hotplug event) and they need to be covered here.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002235 */
David Brazdil0f672f62019-12-10 10:32:29 +00002236 if (!pci_power_manageable(dev))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002237 return 0;
2238
2239 /* Don't do the same thing twice in a row for one device. */
2240 if (!!enable == !!dev->wakeup_prepared)
2241 return 0;
2242
2243 /*
2244 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2245 * Anderson we should be doing PME# wake enable followed by ACPI wake
2246 * enable. To disable wake-up we call the platform first, for symmetry.
2247 */
2248
2249 if (enable) {
2250 int error;
2251
Olivier Deprez0e641232021-09-23 10:07:05 +02002252 /*
2253 * Enable PME signaling if the device can signal PME from
2254 * D3cold regardless of whether or not it can signal PME from
2255 * the current target state, because that will allow it to
2256 * signal PME when the hierarchy above it goes into D3cold and
2257 * the device itself ends up in D3cold as a result of that.
2258 */
2259 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002260 pci_pme_active(dev, true);
2261 else
2262 ret = 1;
2263 error = platform_pci_set_wakeup(dev, true);
2264 if (ret)
2265 ret = error;
2266 if (!ret)
2267 dev->wakeup_prepared = true;
2268 } else {
2269 platform_pci_set_wakeup(dev, false);
2270 pci_pme_active(dev, false);
2271 dev->wakeup_prepared = false;
2272 }
2273
2274 return ret;
2275}
2276
2277/**
2278 * pci_enable_wake - change wakeup settings for a PCI device
2279 * @pci_dev: Target device
2280 * @state: PCI state from which device will issue wakeup events
2281 * @enable: Whether or not to enable event generation
2282 *
2283 * If @enable is set, check device_may_wakeup() for the device before calling
2284 * __pci_enable_wake() for it.
2285 */
2286int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2287{
2288 if (enable && !device_may_wakeup(&pci_dev->dev))
2289 return -EINVAL;
2290
2291 return __pci_enable_wake(pci_dev, state, enable);
2292}
2293EXPORT_SYMBOL(pci_enable_wake);
2294
2295/**
2296 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2297 * @dev: PCI device to prepare
2298 * @enable: True to enable wake-up event generation; false to disable
2299 *
2300 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2301 * and this function allows them to set that up cleanly - pci_enable_wake()
2302 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2303 * ordering constraints.
2304 *
2305 * This function only returns error code if the device is not allowed to wake
2306 * up the system from sleep or it is not capable of generating PME# from both
2307 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2308 */
2309int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2310{
2311 return pci_pme_capable(dev, PCI_D3cold) ?
2312 pci_enable_wake(dev, PCI_D3cold, enable) :
2313 pci_enable_wake(dev, PCI_D3hot, enable);
2314}
2315EXPORT_SYMBOL(pci_wake_from_d3);
2316
2317/**
2318 * pci_target_state - find an appropriate low power state for a given PCI dev
2319 * @dev: PCI device
2320 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2321 *
2322 * Use underlying platform code to find a supported low power state for @dev.
2323 * If the platform can't manage @dev, return the deepest state from which it
2324 * can generate wake events, based on any available PME info.
2325 */
2326static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2327{
2328 pci_power_t target_state = PCI_D3hot;
2329
2330 if (platform_pci_power_manageable(dev)) {
2331 /*
2332 * Call the platform to find the target state for the device.
2333 */
2334 pci_power_t state = platform_pci_choose_state(dev);
2335
2336 switch (state) {
2337 case PCI_POWER_ERROR:
2338 case PCI_UNKNOWN:
2339 break;
2340 case PCI_D1:
2341 case PCI_D2:
2342 if (pci_no_d1d2(dev))
2343 break;
David Brazdil0f672f62019-12-10 10:32:29 +00002344 /* else, fall through */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002345 default:
2346 target_state = state;
2347 }
2348
2349 return target_state;
2350 }
2351
2352 if (!dev->pm_cap)
2353 target_state = PCI_D0;
2354
2355 /*
2356 * If the device is in D3cold even though it's not power-manageable by
2357 * the platform, it may have been powered down by non-standard means.
2358 * Best to let it slumber.
2359 */
2360 if (dev->current_state == PCI_D3cold)
2361 target_state = PCI_D3cold;
2362
Olivier Deprez0e641232021-09-23 10:07:05 +02002363 if (wakeup && dev->pme_support) {
2364 pci_power_t state = target_state;
2365
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002366 /*
2367 * Find the deepest state from which the device can generate
2368 * PME#.
2369 */
Olivier Deprez0e641232021-09-23 10:07:05 +02002370 while (state && !(dev->pme_support & (1 << state)))
2371 state--;
2372
2373 if (state)
2374 return state;
2375 else if (dev->pme_support & 1)
2376 return PCI_D0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002377 }
2378
2379 return target_state;
2380}
2381
2382/**
David Brazdil0f672f62019-12-10 10:32:29 +00002383 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2384 * into a sleep state
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002385 * @dev: Device to handle.
2386 *
2387 * Choose the power state appropriate for the device depending on whether
2388 * it can wake up the system and/or is power manageable by the platform
2389 * (PCI_D3hot is the default) and put the device into that state.
2390 */
2391int pci_prepare_to_sleep(struct pci_dev *dev)
2392{
2393 bool wakeup = device_may_wakeup(&dev->dev);
2394 pci_power_t target_state = pci_target_state(dev, wakeup);
2395 int error;
2396
2397 if (target_state == PCI_POWER_ERROR)
2398 return -EIO;
2399
2400 pci_enable_wake(dev, target_state, wakeup);
2401
2402 error = pci_set_power_state(dev, target_state);
2403
2404 if (error)
2405 pci_enable_wake(dev, target_state, false);
2406
2407 return error;
2408}
2409EXPORT_SYMBOL(pci_prepare_to_sleep);
2410
2411/**
David Brazdil0f672f62019-12-10 10:32:29 +00002412 * pci_back_from_sleep - turn PCI device on during system-wide transition
2413 * into working state
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002414 * @dev: Device to handle.
2415 *
2416 * Disable device's system wake-up capability and put it into D0.
2417 */
2418int pci_back_from_sleep(struct pci_dev *dev)
2419{
2420 pci_enable_wake(dev, PCI_D0, false);
2421 return pci_set_power_state(dev, PCI_D0);
2422}
2423EXPORT_SYMBOL(pci_back_from_sleep);
2424
2425/**
2426 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2427 * @dev: PCI device being suspended.
2428 *
2429 * Prepare @dev to generate wake-up events at run time and put it into a low
2430 * power state.
2431 */
2432int pci_finish_runtime_suspend(struct pci_dev *dev)
2433{
2434 pci_power_t target_state;
2435 int error;
2436
2437 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2438 if (target_state == PCI_POWER_ERROR)
2439 return -EIO;
2440
2441 dev->runtime_d3cold = target_state == PCI_D3cold;
2442
2443 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2444
2445 error = pci_set_power_state(dev, target_state);
2446
2447 if (error) {
2448 pci_enable_wake(dev, target_state, false);
2449 dev->runtime_d3cold = false;
2450 }
2451
2452 return error;
2453}
2454
2455/**
2456 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2457 * @dev: Device to check.
2458 *
2459 * Return true if the device itself is capable of generating wake-up events
2460 * (through the platform or using the native PCIe PME) or if the device supports
2461 * PME and one of its upstream bridges can generate wake-up events.
2462 */
2463bool pci_dev_run_wake(struct pci_dev *dev)
2464{
2465 struct pci_bus *bus = dev->bus;
2466
2467 if (!dev->pme_support)
2468 return false;
2469
2470 /* PME-capable in principle, but not from the target power state */
2471 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2472 return false;
2473
2474 if (device_can_wakeup(&dev->dev))
2475 return true;
2476
2477 while (bus->parent) {
2478 struct pci_dev *bridge = bus->self;
2479
2480 if (device_can_wakeup(&bridge->dev))
2481 return true;
2482
2483 bus = bus->parent;
2484 }
2485
2486 /* We have reached the root bus. */
2487 if (bus->bridge)
2488 return device_can_wakeup(bus->bridge);
2489
2490 return false;
2491}
2492EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2493
2494/**
David Brazdil0f672f62019-12-10 10:32:29 +00002495 * pci_dev_need_resume - Check if it is necessary to resume the device.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002496 * @pci_dev: Device to check.
2497 *
David Brazdil0f672f62019-12-10 10:32:29 +00002498 * Return 'true' if the device is not runtime-suspended or it has to be
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002499 * reconfigured due to wakeup settings difference between system and runtime
David Brazdil0f672f62019-12-10 10:32:29 +00002500 * suspend, or the current power state of it is not suitable for the upcoming
2501 * (system-wide) transition.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002502 */
David Brazdil0f672f62019-12-10 10:32:29 +00002503bool pci_dev_need_resume(struct pci_dev *pci_dev)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002504{
2505 struct device *dev = &pci_dev->dev;
David Brazdil0f672f62019-12-10 10:32:29 +00002506 pci_power_t target_state;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002507
David Brazdil0f672f62019-12-10 10:32:29 +00002508 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2509 return true;
2510
2511 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002512
2513 /*
David Brazdil0f672f62019-12-10 10:32:29 +00002514 * If the earlier platform check has not triggered, D3cold is just power
2515 * removal on top of D3hot, so no need to resume the device in that
2516 * case.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002517 */
David Brazdil0f672f62019-12-10 10:32:29 +00002518 return target_state != pci_dev->current_state &&
2519 target_state != PCI_D3cold &&
2520 pci_dev->current_state != PCI_D3hot;
2521}
2522
2523/**
2524 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2525 * @pci_dev: Device to check.
2526 *
2527 * If the device is suspended and it is not configured for system wakeup,
2528 * disable PME for it to prevent it from waking up the system unnecessarily.
2529 *
2530 * Note that if the device's power state is D3cold and the platform check in
2531 * pci_dev_need_resume() has not triggered, the device's configuration need not
2532 * be changed.
2533 */
2534void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2535{
2536 struct device *dev = &pci_dev->dev;
2537
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002538 spin_lock_irq(&dev->power.lock);
2539
David Brazdil0f672f62019-12-10 10:32:29 +00002540 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2541 pci_dev->current_state < PCI_D3cold)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002542 __pci_pme_active(pci_dev, false);
2543
2544 spin_unlock_irq(&dev->power.lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002545}
2546
2547/**
2548 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2549 * @pci_dev: Device to handle.
2550 *
2551 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2552 * it might have been disabled during the prepare phase of system suspend if
2553 * the device was not configured for system wakeup.
2554 */
2555void pci_dev_complete_resume(struct pci_dev *pci_dev)
2556{
2557 struct device *dev = &pci_dev->dev;
2558
2559 if (!pci_dev_run_wake(pci_dev))
2560 return;
2561
2562 spin_lock_irq(&dev->power.lock);
2563
2564 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2565 __pci_pme_active(pci_dev, true);
2566
2567 spin_unlock_irq(&dev->power.lock);
2568}
2569
2570void pci_config_pm_runtime_get(struct pci_dev *pdev)
2571{
2572 struct device *dev = &pdev->dev;
2573 struct device *parent = dev->parent;
2574
2575 if (parent)
2576 pm_runtime_get_sync(parent);
2577 pm_runtime_get_noresume(dev);
2578 /*
2579 * pdev->current_state is set to PCI_D3cold during suspending,
2580 * so wait until suspending completes
2581 */
2582 pm_runtime_barrier(dev);
2583 /*
2584 * Only need to resume devices in D3cold, because config
2585 * registers are still accessible for devices suspended but
2586 * not in D3cold.
2587 */
2588 if (pdev->current_state == PCI_D3cold)
2589 pm_runtime_resume(dev);
2590}
2591
2592void pci_config_pm_runtime_put(struct pci_dev *pdev)
2593{
2594 struct device *dev = &pdev->dev;
2595 struct device *parent = dev->parent;
2596
2597 pm_runtime_put(dev);
2598 if (parent)
2599 pm_runtime_put_sync(parent);
2600}
2601
David Brazdil0f672f62019-12-10 10:32:29 +00002602static const struct dmi_system_id bridge_d3_blacklist[] = {
2603#ifdef CONFIG_X86
2604 {
2605 /*
2606 * Gigabyte X299 root port is not marked as hotplug capable
2607 * which allows Linux to power manage it. However, this
2608 * confuses the BIOS SMI handler so don't power manage root
2609 * ports on that system.
2610 */
2611 .ident = "X299 DESIGNARE EX-CF",
2612 .matches = {
2613 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2614 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2615 },
2616 },
2617#endif
2618 { }
2619};
2620
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002621/**
2622 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2623 * @bridge: Bridge to check
2624 *
2625 * This function checks if it is possible to move the bridge to D3.
2626 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2627 */
2628bool pci_bridge_d3_possible(struct pci_dev *bridge)
2629{
2630 if (!pci_is_pcie(bridge))
2631 return false;
2632
2633 switch (pci_pcie_type(bridge)) {
2634 case PCI_EXP_TYPE_ROOT_PORT:
2635 case PCI_EXP_TYPE_UPSTREAM:
2636 case PCI_EXP_TYPE_DOWNSTREAM:
2637 if (pci_bridge_d3_disable)
2638 return false;
2639
2640 /*
2641 * Hotplug ports handled by firmware in System Management Mode
2642 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2643 */
2644 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2645 return false;
2646
2647 if (pci_bridge_d3_force)
2648 return true;
2649
2650 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2651 if (bridge->is_thunderbolt)
2652 return true;
2653
David Brazdil0f672f62019-12-10 10:32:29 +00002654 /* Platform might know better if the bridge supports D3 */
2655 if (platform_pci_bridge_d3(bridge))
2656 return true;
2657
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002658 /*
2659 * Hotplug ports handled natively by the OS were not validated
2660 * by vendors for runtime D3 at least until 2018 because there
2661 * was no OS support.
2662 */
2663 if (bridge->is_hotplug_bridge)
2664 return false;
2665
David Brazdil0f672f62019-12-10 10:32:29 +00002666 if (dmi_check_system(bridge_d3_blacklist))
2667 return false;
2668
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002669 /*
2670 * It should be safe to put PCIe ports from 2015 or newer
2671 * to D3.
2672 */
2673 if (dmi_get_bios_year() >= 2015)
2674 return true;
2675 break;
2676 }
2677
2678 return false;
2679}
2680
2681static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2682{
2683 bool *d3cold_ok = data;
2684
2685 if (/* The device needs to be allowed to go D3cold ... */
2686 dev->no_d3cold || !dev->d3cold_allowed ||
2687
2688 /* ... and if it is wakeup capable to do so from D3cold. */
2689 (device_may_wakeup(&dev->dev) &&
2690 !pci_pme_capable(dev, PCI_D3cold)) ||
2691
2692 /* If it is a bridge it must be allowed to go to D3. */
2693 !pci_power_manageable(dev))
2694
2695 *d3cold_ok = false;
2696
2697 return !*d3cold_ok;
2698}
2699
2700/*
2701 * pci_bridge_d3_update - Update bridge D3 capabilities
2702 * @dev: PCI device which is changed
2703 *
2704 * Update upstream bridge PM capabilities accordingly depending on if the
2705 * device PM configuration was changed or the device is being removed. The
2706 * change is also propagated upstream.
2707 */
2708void pci_bridge_d3_update(struct pci_dev *dev)
2709{
2710 bool remove = !device_is_registered(&dev->dev);
2711 struct pci_dev *bridge;
2712 bool d3cold_ok = true;
2713
2714 bridge = pci_upstream_bridge(dev);
2715 if (!bridge || !pci_bridge_d3_possible(bridge))
2716 return;
2717
2718 /*
2719 * If D3 is currently allowed for the bridge, removing one of its
2720 * children won't change that.
2721 */
2722 if (remove && bridge->bridge_d3)
2723 return;
2724
2725 /*
2726 * If D3 is currently allowed for the bridge and a child is added or
2727 * changed, disallowance of D3 can only be caused by that child, so
2728 * we only need to check that single device, not any of its siblings.
2729 *
2730 * If D3 is currently not allowed for the bridge, checking the device
2731 * first may allow us to skip checking its siblings.
2732 */
2733 if (!remove)
2734 pci_dev_check_d3cold(dev, &d3cold_ok);
2735
2736 /*
2737 * If D3 is currently not allowed for the bridge, this may be caused
2738 * either by the device being changed/removed or any of its siblings,
2739 * so we need to go through all children to find out if one of them
2740 * continues to block D3.
2741 */
2742 if (d3cold_ok && !bridge->bridge_d3)
2743 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2744 &d3cold_ok);
2745
2746 if (bridge->bridge_d3 != d3cold_ok) {
2747 bridge->bridge_d3 = d3cold_ok;
2748 /* Propagate change to upstream bridges */
2749 pci_bridge_d3_update(bridge);
2750 }
2751}
2752
2753/**
2754 * pci_d3cold_enable - Enable D3cold for device
2755 * @dev: PCI device to handle
2756 *
2757 * This function can be used in drivers to enable D3cold from the device
2758 * they handle. It also updates upstream PCI bridge PM capabilities
2759 * accordingly.
2760 */
2761void pci_d3cold_enable(struct pci_dev *dev)
2762{
2763 if (dev->no_d3cold) {
2764 dev->no_d3cold = false;
2765 pci_bridge_d3_update(dev);
2766 }
2767}
2768EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2769
2770/**
2771 * pci_d3cold_disable - Disable D3cold for device
2772 * @dev: PCI device to handle
2773 *
2774 * This function can be used in drivers to disable D3cold from the device
2775 * they handle. It also updates upstream PCI bridge PM capabilities
2776 * accordingly.
2777 */
2778void pci_d3cold_disable(struct pci_dev *dev)
2779{
2780 if (!dev->no_d3cold) {
2781 dev->no_d3cold = true;
2782 pci_bridge_d3_update(dev);
2783 }
2784}
2785EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2786
2787/**
2788 * pci_pm_init - Initialize PM functions of given PCI device
2789 * @dev: PCI device to handle.
2790 */
2791void pci_pm_init(struct pci_dev *dev)
2792{
2793 int pm;
David Brazdil0f672f62019-12-10 10:32:29 +00002794 u16 status;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002795 u16 pmc;
2796
2797 pm_runtime_forbid(&dev->dev);
2798 pm_runtime_set_active(&dev->dev);
2799 pm_runtime_enable(&dev->dev);
2800 device_enable_async_suspend(&dev->dev);
2801 dev->wakeup_prepared = false;
2802
2803 dev->pm_cap = 0;
2804 dev->pme_support = 0;
2805
2806 /* find PCI PM capability in list */
2807 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2808 if (!pm)
2809 return;
2810 /* Check device's ability to generate PME# */
2811 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2812
2813 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2814 pci_err(dev, "unsupported PM cap regs version (%u)\n",
2815 pmc & PCI_PM_CAP_VER_MASK);
2816 return;
2817 }
2818
2819 dev->pm_cap = pm;
2820 dev->d3_delay = PCI_PM_D3_WAIT;
2821 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2822 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2823 dev->d3cold_allowed = true;
2824
2825 dev->d1_support = false;
2826 dev->d2_support = false;
2827 if (!pci_no_d1d2(dev)) {
2828 if (pmc & PCI_PM_CAP_D1)
2829 dev->d1_support = true;
2830 if (pmc & PCI_PM_CAP_D2)
2831 dev->d2_support = true;
2832
2833 if (dev->d1_support || dev->d2_support)
David Brazdil0f672f62019-12-10 10:32:29 +00002834 pci_info(dev, "supports%s%s\n",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002835 dev->d1_support ? " D1" : "",
2836 dev->d2_support ? " D2" : "");
2837 }
2838
2839 pmc &= PCI_PM_CAP_PME_MASK;
2840 if (pmc) {
David Brazdil0f672f62019-12-10 10:32:29 +00002841 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002842 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2843 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2844 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2845 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2846 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2847 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2848 dev->pme_poll = true;
2849 /*
2850 * Make device's PM flags reflect the wake-up capability, but
2851 * let the user space enable it to wake up the system as needed.
2852 */
2853 device_set_wakeup_capable(&dev->dev, true);
2854 /* Disable the PME# generation functionality */
2855 pci_pme_active(dev, false);
2856 }
David Brazdil0f672f62019-12-10 10:32:29 +00002857
2858 pci_read_config_word(dev, PCI_STATUS, &status);
2859 if (status & PCI_STATUS_IMM_READY)
2860 dev->imm_ready = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002861}
2862
2863static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2864{
2865 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2866
2867 switch (prop) {
2868 case PCI_EA_P_MEM:
2869 case PCI_EA_P_VF_MEM:
2870 flags |= IORESOURCE_MEM;
2871 break;
2872 case PCI_EA_P_MEM_PREFETCH:
2873 case PCI_EA_P_VF_MEM_PREFETCH:
2874 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2875 break;
2876 case PCI_EA_P_IO:
2877 flags |= IORESOURCE_IO;
2878 break;
2879 default:
2880 return 0;
2881 }
2882
2883 return flags;
2884}
2885
2886static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2887 u8 prop)
2888{
2889 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2890 return &dev->resource[bei];
2891#ifdef CONFIG_PCI_IOV
2892 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2893 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2894 return &dev->resource[PCI_IOV_RESOURCES +
2895 bei - PCI_EA_BEI_VF_BAR0];
2896#endif
2897 else if (bei == PCI_EA_BEI_ROM)
2898 return &dev->resource[PCI_ROM_RESOURCE];
2899 else
2900 return NULL;
2901}
2902
2903/* Read an Enhanced Allocation (EA) entry */
2904static int pci_ea_read(struct pci_dev *dev, int offset)
2905{
2906 struct resource *res;
2907 int ent_size, ent_offset = offset;
2908 resource_size_t start, end;
2909 unsigned long flags;
2910 u32 dw0, bei, base, max_offset;
2911 u8 prop;
2912 bool support_64 = (sizeof(resource_size_t) >= 8);
2913
2914 pci_read_config_dword(dev, ent_offset, &dw0);
2915 ent_offset += 4;
2916
2917 /* Entry size field indicates DWORDs after 1st */
2918 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2919
2920 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2921 goto out;
2922
2923 bei = (dw0 & PCI_EA_BEI) >> 4;
2924 prop = (dw0 & PCI_EA_PP) >> 8;
2925
2926 /*
2927 * If the Property is in the reserved range, try the Secondary
2928 * Property instead.
2929 */
2930 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2931 prop = (dw0 & PCI_EA_SP) >> 16;
2932 if (prop > PCI_EA_P_BRIDGE_IO)
2933 goto out;
2934
2935 res = pci_ea_get_resource(dev, bei, prop);
2936 if (!res) {
2937 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2938 goto out;
2939 }
2940
2941 flags = pci_ea_flags(dev, prop);
2942 if (!flags) {
2943 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2944 goto out;
2945 }
2946
2947 /* Read Base */
2948 pci_read_config_dword(dev, ent_offset, &base);
2949 start = (base & PCI_EA_FIELD_MASK);
2950 ent_offset += 4;
2951
2952 /* Read MaxOffset */
2953 pci_read_config_dword(dev, ent_offset, &max_offset);
2954 ent_offset += 4;
2955
2956 /* Read Base MSBs (if 64-bit entry) */
2957 if (base & PCI_EA_IS_64) {
2958 u32 base_upper;
2959
2960 pci_read_config_dword(dev, ent_offset, &base_upper);
2961 ent_offset += 4;
2962
2963 flags |= IORESOURCE_MEM_64;
2964
2965 /* entry starts above 32-bit boundary, can't use */
2966 if (!support_64 && base_upper)
2967 goto out;
2968
2969 if (support_64)
2970 start |= ((u64)base_upper << 32);
2971 }
2972
2973 end = start + (max_offset | 0x03);
2974
2975 /* Read MaxOffset MSBs (if 64-bit entry) */
2976 if (max_offset & PCI_EA_IS_64) {
2977 u32 max_offset_upper;
2978
2979 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2980 ent_offset += 4;
2981
2982 flags |= IORESOURCE_MEM_64;
2983
2984 /* entry too big, can't use */
2985 if (!support_64 && max_offset_upper)
2986 goto out;
2987
2988 if (support_64)
2989 end += ((u64)max_offset_upper << 32);
2990 }
2991
2992 if (end < start) {
2993 pci_err(dev, "EA Entry crosses address boundary\n");
2994 goto out;
2995 }
2996
2997 if (ent_size != ent_offset - offset) {
2998 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2999 ent_size, ent_offset - offset);
3000 goto out;
3001 }
3002
3003 res->name = pci_name(dev);
3004 res->start = start;
3005 res->end = end;
3006 res->flags = flags;
3007
3008 if (bei <= PCI_EA_BEI_BAR5)
David Brazdil0f672f62019-12-10 10:32:29 +00003009 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003010 bei, res, prop);
3011 else if (bei == PCI_EA_BEI_ROM)
David Brazdil0f672f62019-12-10 10:32:29 +00003012 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003013 res, prop);
3014 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
David Brazdil0f672f62019-12-10 10:32:29 +00003015 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003016 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3017 else
David Brazdil0f672f62019-12-10 10:32:29 +00003018 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003019 bei, res, prop);
3020
3021out:
3022 return offset + ent_size;
3023}
3024
3025/* Enhanced Allocation Initialization */
3026void pci_ea_init(struct pci_dev *dev)
3027{
3028 int ea;
3029 u8 num_ent;
3030 int offset;
3031 int i;
3032
3033 /* find PCI EA capability in list */
3034 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3035 if (!ea)
3036 return;
3037
3038 /* determine the number of entries */
3039 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3040 &num_ent);
3041 num_ent &= PCI_EA_NUM_ENT_MASK;
3042
3043 offset = ea + PCI_EA_FIRST_ENT;
3044
3045 /* Skip DWORD 2 for type 1 functions */
3046 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3047 offset += 4;
3048
3049 /* parse each EA entry */
3050 for (i = 0; i < num_ent; ++i)
3051 offset = pci_ea_read(dev, offset);
3052}
3053
3054static void pci_add_saved_cap(struct pci_dev *pci_dev,
3055 struct pci_cap_saved_state *new_cap)
3056{
3057 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3058}
3059
3060/**
3061 * _pci_add_cap_save_buffer - allocate buffer for saving given
David Brazdil0f672f62019-12-10 10:32:29 +00003062 * capability registers
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003063 * @dev: the PCI device
3064 * @cap: the capability to allocate the buffer for
3065 * @extended: Standard or Extended capability ID
3066 * @size: requested size of the buffer
3067 */
3068static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3069 bool extended, unsigned int size)
3070{
3071 int pos;
3072 struct pci_cap_saved_state *save_state;
3073
3074 if (extended)
3075 pos = pci_find_ext_capability(dev, cap);
3076 else
3077 pos = pci_find_capability(dev, cap);
3078
3079 if (!pos)
3080 return 0;
3081
3082 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3083 if (!save_state)
3084 return -ENOMEM;
3085
3086 save_state->cap.cap_nr = cap;
3087 save_state->cap.cap_extended = extended;
3088 save_state->cap.size = size;
3089 pci_add_saved_cap(dev, save_state);
3090
3091 return 0;
3092}
3093
3094int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3095{
3096 return _pci_add_cap_save_buffer(dev, cap, false, size);
3097}
3098
3099int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3100{
3101 return _pci_add_cap_save_buffer(dev, cap, true, size);
3102}
3103
3104/**
3105 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3106 * @dev: the PCI device
3107 */
3108void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3109{
3110 int error;
3111
3112 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3113 PCI_EXP_SAVE_REGS * sizeof(u16));
3114 if (error)
3115 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3116
3117 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3118 if (error)
3119 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3120
David Brazdil0f672f62019-12-10 10:32:29 +00003121 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3122 2 * sizeof(u16));
3123 if (error)
3124 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3125
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003126 pci_allocate_vc_save_buffers(dev);
3127}
3128
3129void pci_free_cap_save_buffers(struct pci_dev *dev)
3130{
3131 struct pci_cap_saved_state *tmp;
3132 struct hlist_node *n;
3133
3134 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3135 kfree(tmp);
3136}
3137
3138/**
3139 * pci_configure_ari - enable or disable ARI forwarding
3140 * @dev: the PCI device
3141 *
3142 * If @dev and its upstream bridge both support ARI, enable ARI in the
3143 * bridge. Otherwise, disable ARI in the bridge.
3144 */
3145void pci_configure_ari(struct pci_dev *dev)
3146{
3147 u32 cap;
3148 struct pci_dev *bridge;
3149
3150 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3151 return;
3152
3153 bridge = dev->bus->self;
3154 if (!bridge)
3155 return;
3156
3157 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3158 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3159 return;
3160
3161 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3162 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3163 PCI_EXP_DEVCTL2_ARI);
3164 bridge->ari_enabled = 1;
3165 } else {
3166 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3167 PCI_EXP_DEVCTL2_ARI);
3168 bridge->ari_enabled = 0;
3169 }
3170}
3171
3172static int pci_acs_enable;
3173
3174/**
3175 * pci_request_acs - ask for ACS to be enabled if supported
3176 */
3177void pci_request_acs(void)
3178{
3179 pci_acs_enable = 1;
3180}
3181
3182static const char *disable_acs_redir_param;
3183
3184/**
3185 * pci_disable_acs_redir - disable ACS redirect capabilities
3186 * @dev: the PCI device
3187 *
3188 * For only devices specified in the disable_acs_redir parameter.
3189 */
3190static void pci_disable_acs_redir(struct pci_dev *dev)
3191{
3192 int ret = 0;
3193 const char *p;
3194 int pos;
3195 u16 ctrl;
3196
3197 if (!disable_acs_redir_param)
3198 return;
3199
3200 p = disable_acs_redir_param;
3201 while (*p) {
3202 ret = pci_dev_str_match(dev, p, &p);
3203 if (ret < 0) {
3204 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3205 disable_acs_redir_param);
3206
3207 break;
3208 } else if (ret == 1) {
3209 /* Found a match */
3210 break;
3211 }
3212
3213 if (*p != ';' && *p != ',') {
3214 /* End of param or invalid format */
3215 break;
3216 }
3217 p++;
3218 }
3219
3220 if (ret != 1)
3221 return;
3222
3223 if (!pci_dev_specific_disable_acs_redir(dev))
3224 return;
3225
3226 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3227 if (!pos) {
3228 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3229 return;
3230 }
3231
3232 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3233
3234 /* P2P Request & Completion Redirect */
3235 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3236
3237 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3238
3239 pci_info(dev, "disabled ACS redirect\n");
3240}
3241
3242/**
David Brazdil0f672f62019-12-10 10:32:29 +00003243 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003244 * @dev: the PCI device
3245 */
3246static void pci_std_enable_acs(struct pci_dev *dev)
3247{
3248 int pos;
3249 u16 cap;
3250 u16 ctrl;
3251
3252 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3253 if (!pos)
3254 return;
3255
3256 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3257 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3258
3259 /* Source Validation */
3260 ctrl |= (cap & PCI_ACS_SV);
3261
3262 /* P2P Request Redirect */
3263 ctrl |= (cap & PCI_ACS_RR);
3264
3265 /* P2P Completion Redirect */
3266 ctrl |= (cap & PCI_ACS_CR);
3267
3268 /* Upstream Forwarding */
3269 ctrl |= (cap & PCI_ACS_UF);
3270
3271 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3272}
3273
3274/**
3275 * pci_enable_acs - enable ACS if hardware support it
3276 * @dev: the PCI device
3277 */
3278void pci_enable_acs(struct pci_dev *dev)
3279{
3280 if (!pci_acs_enable)
3281 goto disable_acs_redir;
3282
3283 if (!pci_dev_specific_enable_acs(dev))
3284 goto disable_acs_redir;
3285
3286 pci_std_enable_acs(dev);
3287
3288disable_acs_redir:
3289 /*
3290 * Note: pci_disable_acs_redir() must be called even if ACS was not
3291 * enabled by the kernel because it may have been enabled by
3292 * platform firmware. So if we are told to disable it, we should
3293 * always disable it after setting the kernel's default
3294 * preferences.
3295 */
3296 pci_disable_acs_redir(dev);
3297}
3298
3299static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3300{
3301 int pos;
3302 u16 cap, ctrl;
3303
3304 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3305 if (!pos)
3306 return false;
3307
3308 /*
3309 * Except for egress control, capabilities are either required
3310 * or only required if controllable. Features missing from the
3311 * capability field can therefore be assumed as hard-wired enabled.
3312 */
3313 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3314 acs_flags &= (cap | PCI_ACS_EC);
3315
3316 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3317 return (ctrl & acs_flags) == acs_flags;
3318}
3319
3320/**
3321 * pci_acs_enabled - test ACS against required flags for a given device
3322 * @pdev: device to test
3323 * @acs_flags: required PCI ACS flags
3324 *
3325 * Return true if the device supports the provided flags. Automatically
3326 * filters out flags that are not implemented on multifunction devices.
3327 *
3328 * Note that this interface checks the effective ACS capabilities of the
3329 * device rather than the actual capabilities. For instance, most single
3330 * function endpoints are not required to support ACS because they have no
3331 * opportunity for peer-to-peer access. We therefore return 'true'
3332 * regardless of whether the device exposes an ACS capability. This makes
3333 * it much easier for callers of this function to ignore the actual type
3334 * or topology of the device when testing ACS support.
3335 */
3336bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3337{
3338 int ret;
3339
3340 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3341 if (ret >= 0)
3342 return ret > 0;
3343
3344 /*
3345 * Conventional PCI and PCI-X devices never support ACS, either
3346 * effectively or actually. The shared bus topology implies that
3347 * any device on the bus can receive or snoop DMA.
3348 */
3349 if (!pci_is_pcie(pdev))
3350 return false;
3351
3352 switch (pci_pcie_type(pdev)) {
3353 /*
3354 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3355 * but since their primary interface is PCI/X, we conservatively
3356 * handle them as we would a non-PCIe device.
3357 */
3358 case PCI_EXP_TYPE_PCIE_BRIDGE:
3359 /*
3360 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3361 * applicable... must never implement an ACS Extended Capability...".
3362 * This seems arbitrary, but we take a conservative interpretation
3363 * of this statement.
3364 */
3365 case PCI_EXP_TYPE_PCI_BRIDGE:
3366 case PCI_EXP_TYPE_RC_EC:
3367 return false;
3368 /*
3369 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3370 * implement ACS in order to indicate their peer-to-peer capabilities,
3371 * regardless of whether they are single- or multi-function devices.
3372 */
3373 case PCI_EXP_TYPE_DOWNSTREAM:
3374 case PCI_EXP_TYPE_ROOT_PORT:
3375 return pci_acs_flags_enabled(pdev, acs_flags);
3376 /*
3377 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3378 * implemented by the remaining PCIe types to indicate peer-to-peer
3379 * capabilities, but only when they are part of a multifunction
3380 * device. The footnote for section 6.12 indicates the specific
3381 * PCIe types included here.
3382 */
3383 case PCI_EXP_TYPE_ENDPOINT:
3384 case PCI_EXP_TYPE_UPSTREAM:
3385 case PCI_EXP_TYPE_LEG_END:
3386 case PCI_EXP_TYPE_RC_END:
3387 if (!pdev->multifunction)
3388 break;
3389
3390 return pci_acs_flags_enabled(pdev, acs_flags);
3391 }
3392
3393 /*
3394 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3395 * to single function devices with the exception of downstream ports.
3396 */
3397 return true;
3398}
3399
3400/**
3401 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3402 * @start: starting downstream device
3403 * @end: ending upstream device or NULL to search to the root bus
3404 * @acs_flags: required flags
3405 *
3406 * Walk up a device tree from start to end testing PCI ACS support. If
3407 * any step along the way does not support the required flags, return false.
3408 */
3409bool pci_acs_path_enabled(struct pci_dev *start,
3410 struct pci_dev *end, u16 acs_flags)
3411{
3412 struct pci_dev *pdev, *parent = start;
3413
3414 do {
3415 pdev = parent;
3416
3417 if (!pci_acs_enabled(pdev, acs_flags))
3418 return false;
3419
3420 if (pci_is_root_bus(pdev->bus))
3421 return (end == NULL);
3422
3423 parent = pdev->bus->self;
3424 } while (pdev != end);
3425
3426 return true;
3427}
3428
3429/**
3430 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3431 * @pdev: PCI device
3432 * @bar: BAR to find
3433 *
3434 * Helper to find the position of the ctrl register for a BAR.
3435 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3436 * Returns -ENOENT if no ctrl register for the BAR could be found.
3437 */
3438static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3439{
3440 unsigned int pos, nbars, i;
3441 u32 ctrl;
3442
3443 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3444 if (!pos)
3445 return -ENOTSUPP;
3446
3447 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3448 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3449 PCI_REBAR_CTRL_NBAR_SHIFT;
3450
3451 for (i = 0; i < nbars; i++, pos += 8) {
3452 int bar_idx;
3453
3454 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3455 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3456 if (bar_idx == bar)
3457 return pos;
3458 }
3459
3460 return -ENOENT;
3461}
3462
3463/**
3464 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3465 * @pdev: PCI device
3466 * @bar: BAR to query
3467 *
3468 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3469 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3470 */
3471u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3472{
3473 int pos;
3474 u32 cap;
3475
3476 pos = pci_rebar_find_pos(pdev, bar);
3477 if (pos < 0)
3478 return 0;
3479
3480 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
Olivier Deprez0e641232021-09-23 10:07:05 +02003481 cap &= PCI_REBAR_CAP_SIZES;
3482
3483 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3484 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3485 bar == 0 && cap == 0x7000)
3486 cap = 0x3f000;
3487
3488 return cap >> 4;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003489}
3490
3491/**
3492 * pci_rebar_get_current_size - get the current size of a BAR
3493 * @pdev: PCI device
3494 * @bar: BAR to set size to
3495 *
3496 * Read the size of a BAR from the resizable BAR config.
3497 * Returns size if found or negative error code.
3498 */
3499int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3500{
3501 int pos;
3502 u32 ctrl;
3503
3504 pos = pci_rebar_find_pos(pdev, bar);
3505 if (pos < 0)
3506 return pos;
3507
3508 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3509 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3510}
3511
3512/**
3513 * pci_rebar_set_size - set a new size for a BAR
3514 * @pdev: PCI device
3515 * @bar: BAR to set size to
3516 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3517 *
3518 * Set the new size of a BAR as defined in the spec.
3519 * Returns zero if resizing was successful, error code otherwise.
3520 */
3521int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3522{
3523 int pos;
3524 u32 ctrl;
3525
3526 pos = pci_rebar_find_pos(pdev, bar);
3527 if (pos < 0)
3528 return pos;
3529
3530 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3531 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3532 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3533 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3534 return 0;
3535}
3536
3537/**
3538 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3539 * @dev: the PCI device
3540 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3541 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3542 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3543 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3544 *
3545 * Return 0 if all upstream bridges support AtomicOp routing, egress
3546 * blocking is disabled on all upstream ports, and the root port supports
3547 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3548 * AtomicOp completion), or negative otherwise.
3549 */
3550int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3551{
3552 struct pci_bus *bus = dev->bus;
3553 struct pci_dev *bridge;
3554 u32 cap, ctl2;
3555
3556 if (!pci_is_pcie(dev))
3557 return -EINVAL;
3558
3559 /*
3560 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3561 * AtomicOp requesters. For now, we only support endpoints as
3562 * requesters and root ports as completers. No endpoints as
3563 * completers, and no peer-to-peer.
3564 */
3565
3566 switch (pci_pcie_type(dev)) {
3567 case PCI_EXP_TYPE_ENDPOINT:
3568 case PCI_EXP_TYPE_LEG_END:
3569 case PCI_EXP_TYPE_RC_END:
3570 break;
3571 default:
3572 return -EINVAL;
3573 }
3574
3575 while (bus->parent) {
3576 bridge = bus->self;
3577
3578 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3579
3580 switch (pci_pcie_type(bridge)) {
3581 /* Ensure switch ports support AtomicOp routing */
3582 case PCI_EXP_TYPE_UPSTREAM:
3583 case PCI_EXP_TYPE_DOWNSTREAM:
3584 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3585 return -EINVAL;
3586 break;
3587
3588 /* Ensure root port supports all the sizes we care about */
3589 case PCI_EXP_TYPE_ROOT_PORT:
3590 if ((cap & cap_mask) != cap_mask)
3591 return -EINVAL;
3592 break;
3593 }
3594
3595 /* Ensure upstream ports don't block AtomicOps on egress */
David Brazdil0f672f62019-12-10 10:32:29 +00003596 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003597 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3598 &ctl2);
3599 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3600 return -EINVAL;
3601 }
3602
3603 bus = bus->parent;
3604 }
3605
3606 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3607 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3608 return 0;
3609}
3610EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3611
3612/**
3613 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3614 * @dev: the PCI device
3615 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3616 *
3617 * Perform INTx swizzling for a device behind one level of bridge. This is
3618 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3619 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3620 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3621 * the PCI Express Base Specification, Revision 2.1)
3622 */
3623u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3624{
3625 int slot;
3626
3627 if (pci_ari_enabled(dev->bus))
3628 slot = 0;
3629 else
3630 slot = PCI_SLOT(dev->devfn);
3631
3632 return (((pin - 1) + slot) % 4) + 1;
3633}
3634
3635int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3636{
3637 u8 pin;
3638
3639 pin = dev->pin;
3640 if (!pin)
3641 return -1;
3642
3643 while (!pci_is_root_bus(dev->bus)) {
3644 pin = pci_swizzle_interrupt_pin(dev, pin);
3645 dev = dev->bus->self;
3646 }
3647 *bridge = dev;
3648 return pin;
3649}
3650
3651/**
3652 * pci_common_swizzle - swizzle INTx all the way to root bridge
3653 * @dev: the PCI device
3654 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3655 *
3656 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3657 * bridges all the way up to a PCI root bus.
3658 */
3659u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3660{
3661 u8 pin = *pinp;
3662
3663 while (!pci_is_root_bus(dev->bus)) {
3664 pin = pci_swizzle_interrupt_pin(dev, pin);
3665 dev = dev->bus->self;
3666 }
3667 *pinp = pin;
3668 return PCI_SLOT(dev->devfn);
3669}
3670EXPORT_SYMBOL_GPL(pci_common_swizzle);
3671
3672/**
David Brazdil0f672f62019-12-10 10:32:29 +00003673 * pci_release_region - Release a PCI bar
3674 * @pdev: PCI device whose resources were previously reserved by
3675 * pci_request_region()
3676 * @bar: BAR to release
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003677 *
David Brazdil0f672f62019-12-10 10:32:29 +00003678 * Releases the PCI I/O and memory resources previously reserved by a
3679 * successful call to pci_request_region(). Call this function only
3680 * after all use of the PCI regions has ceased.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003681 */
3682void pci_release_region(struct pci_dev *pdev, int bar)
3683{
3684 struct pci_devres *dr;
3685
3686 if (pci_resource_len(pdev, bar) == 0)
3687 return;
3688 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3689 release_region(pci_resource_start(pdev, bar),
3690 pci_resource_len(pdev, bar));
3691 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3692 release_mem_region(pci_resource_start(pdev, bar),
3693 pci_resource_len(pdev, bar));
3694
3695 dr = find_pci_dr(pdev);
3696 if (dr)
3697 dr->region_mask &= ~(1 << bar);
3698}
3699EXPORT_SYMBOL(pci_release_region);
3700
3701/**
David Brazdil0f672f62019-12-10 10:32:29 +00003702 * __pci_request_region - Reserved PCI I/O and memory resource
3703 * @pdev: PCI device whose resources are to be reserved
3704 * @bar: BAR to be reserved
3705 * @res_name: Name to be associated with resource.
3706 * @exclusive: whether the region access is exclusive or not
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003707 *
David Brazdil0f672f62019-12-10 10:32:29 +00003708 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3709 * being reserved by owner @res_name. Do not access any
3710 * address inside the PCI regions unless this call returns
3711 * successfully.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003712 *
David Brazdil0f672f62019-12-10 10:32:29 +00003713 * If @exclusive is set, then the region is marked so that userspace
3714 * is explicitly not allowed to map the resource via /dev/mem or
3715 * sysfs MMIO access.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003716 *
David Brazdil0f672f62019-12-10 10:32:29 +00003717 * Returns 0 on success, or %EBUSY on error. A warning
3718 * message is also printed on failure.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003719 */
3720static int __pci_request_region(struct pci_dev *pdev, int bar,
3721 const char *res_name, int exclusive)
3722{
3723 struct pci_devres *dr;
3724
3725 if (pci_resource_len(pdev, bar) == 0)
3726 return 0;
3727
3728 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3729 if (!request_region(pci_resource_start(pdev, bar),
3730 pci_resource_len(pdev, bar), res_name))
3731 goto err_out;
3732 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3733 if (!__request_mem_region(pci_resource_start(pdev, bar),
3734 pci_resource_len(pdev, bar), res_name,
3735 exclusive))
3736 goto err_out;
3737 }
3738
3739 dr = find_pci_dr(pdev);
3740 if (dr)
3741 dr->region_mask |= 1 << bar;
3742
3743 return 0;
3744
3745err_out:
3746 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3747 &pdev->resource[bar]);
3748 return -EBUSY;
3749}
3750
3751/**
David Brazdil0f672f62019-12-10 10:32:29 +00003752 * pci_request_region - Reserve PCI I/O and memory resource
3753 * @pdev: PCI device whose resources are to be reserved
3754 * @bar: BAR to be reserved
3755 * @res_name: Name to be associated with resource
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003756 *
David Brazdil0f672f62019-12-10 10:32:29 +00003757 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3758 * being reserved by owner @res_name. Do not access any
3759 * address inside the PCI regions unless this call returns
3760 * successfully.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003761 *
David Brazdil0f672f62019-12-10 10:32:29 +00003762 * Returns 0 on success, or %EBUSY on error. A warning
3763 * message is also printed on failure.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003764 */
3765int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3766{
3767 return __pci_request_region(pdev, bar, res_name, 0);
3768}
3769EXPORT_SYMBOL(pci_request_region);
3770
3771/**
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003772 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3773 * @pdev: PCI device whose resources were previously reserved
3774 * @bars: Bitmask of BARs to be released
3775 *
3776 * Release selected PCI I/O and memory resources previously reserved.
3777 * Call this function only after all use of the PCI regions has ceased.
3778 */
3779void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3780{
3781 int i;
3782
3783 for (i = 0; i < 6; i++)
3784 if (bars & (1 << i))
3785 pci_release_region(pdev, i);
3786}
3787EXPORT_SYMBOL(pci_release_selected_regions);
3788
3789static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3790 const char *res_name, int excl)
3791{
3792 int i;
3793
3794 for (i = 0; i < 6; i++)
3795 if (bars & (1 << i))
3796 if (__pci_request_region(pdev, i, res_name, excl))
3797 goto err_out;
3798 return 0;
3799
3800err_out:
3801 while (--i >= 0)
3802 if (bars & (1 << i))
3803 pci_release_region(pdev, i);
3804
3805 return -EBUSY;
3806}
3807
3808
3809/**
3810 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3811 * @pdev: PCI device whose resources are to be reserved
3812 * @bars: Bitmask of BARs to be requested
3813 * @res_name: Name to be associated with resource
3814 */
3815int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3816 const char *res_name)
3817{
3818 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3819}
3820EXPORT_SYMBOL(pci_request_selected_regions);
3821
3822int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3823 const char *res_name)
3824{
3825 return __pci_request_selected_regions(pdev, bars, res_name,
3826 IORESOURCE_EXCLUSIVE);
3827}
3828EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3829
3830/**
David Brazdil0f672f62019-12-10 10:32:29 +00003831 * pci_release_regions - Release reserved PCI I/O and memory resources
3832 * @pdev: PCI device whose resources were previously reserved by
3833 * pci_request_regions()
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003834 *
David Brazdil0f672f62019-12-10 10:32:29 +00003835 * Releases all PCI I/O and memory resources previously reserved by a
3836 * successful call to pci_request_regions(). Call this function only
3837 * after all use of the PCI regions has ceased.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003838 */
3839
3840void pci_release_regions(struct pci_dev *pdev)
3841{
3842 pci_release_selected_regions(pdev, (1 << 6) - 1);
3843}
3844EXPORT_SYMBOL(pci_release_regions);
3845
3846/**
David Brazdil0f672f62019-12-10 10:32:29 +00003847 * pci_request_regions - Reserve PCI I/O and memory resources
3848 * @pdev: PCI device whose resources are to be reserved
3849 * @res_name: Name to be associated with resource.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003850 *
David Brazdil0f672f62019-12-10 10:32:29 +00003851 * Mark all PCI regions associated with PCI device @pdev as
3852 * being reserved by owner @res_name. Do not access any
3853 * address inside the PCI regions unless this call returns
3854 * successfully.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003855 *
David Brazdil0f672f62019-12-10 10:32:29 +00003856 * Returns 0 on success, or %EBUSY on error. A warning
3857 * message is also printed on failure.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003858 */
3859int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3860{
3861 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3862}
3863EXPORT_SYMBOL(pci_request_regions);
3864
3865/**
David Brazdil0f672f62019-12-10 10:32:29 +00003866 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3867 * @pdev: PCI device whose resources are to be reserved
3868 * @res_name: Name to be associated with resource.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003869 *
David Brazdil0f672f62019-12-10 10:32:29 +00003870 * Mark all PCI regions associated with PCI device @pdev as being reserved
3871 * by owner @res_name. Do not access any address inside the PCI regions
3872 * unless this call returns successfully.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003873 *
David Brazdil0f672f62019-12-10 10:32:29 +00003874 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3875 * and the sysfs MMIO access will not be allowed.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003876 *
David Brazdil0f672f62019-12-10 10:32:29 +00003877 * Returns 0 on success, or %EBUSY on error. A warning message is also
3878 * printed on failure.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003879 */
3880int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3881{
3882 return pci_request_selected_regions_exclusive(pdev,
3883 ((1 << 6) - 1), res_name);
3884}
3885EXPORT_SYMBOL(pci_request_regions_exclusive);
3886
3887/*
3888 * Record the PCI IO range (expressed as CPU physical address + size).
David Brazdil0f672f62019-12-10 10:32:29 +00003889 * Return a negative value if an error has occurred, zero otherwise
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003890 */
3891int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3892 resource_size_t size)
3893{
3894 int ret = 0;
3895#ifdef PCI_IOBASE
3896 struct logic_pio_hwaddr *range;
3897
3898 if (!size || addr + size < addr)
3899 return -EINVAL;
3900
3901 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3902 if (!range)
3903 return -ENOMEM;
3904
3905 range->fwnode = fwnode;
3906 range->size = size;
3907 range->hw_start = addr;
3908 range->flags = LOGIC_PIO_CPU_MMIO;
3909
3910 ret = logic_pio_register_range(range);
3911 if (ret)
3912 kfree(range);
Olivier Deprez0e641232021-09-23 10:07:05 +02003913
3914 /* Ignore duplicates due to deferred probing */
3915 if (ret == -EEXIST)
3916 ret = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003917#endif
3918
3919 return ret;
3920}
3921
3922phys_addr_t pci_pio_to_address(unsigned long pio)
3923{
3924 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3925
3926#ifdef PCI_IOBASE
3927 if (pio >= MMIO_UPPER_LIMIT)
3928 return address;
3929
3930 address = logic_pio_to_hwaddr(pio);
3931#endif
3932
3933 return address;
3934}
3935
3936unsigned long __weak pci_address_to_pio(phys_addr_t address)
3937{
3938#ifdef PCI_IOBASE
3939 return logic_pio_trans_cpuaddr(address);
3940#else
3941 if (address > IO_SPACE_LIMIT)
3942 return (unsigned long)-1;
3943
3944 return (unsigned long) address;
3945#endif
3946}
3947
3948/**
David Brazdil0f672f62019-12-10 10:32:29 +00003949 * pci_remap_iospace - Remap the memory mapped I/O space
3950 * @res: Resource describing the I/O space
3951 * @phys_addr: physical address of range to be mapped
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003952 *
David Brazdil0f672f62019-12-10 10:32:29 +00003953 * Remap the memory mapped I/O space described by the @res and the CPU
3954 * physical address @phys_addr into virtual address space. Only
3955 * architectures that have memory mapped IO functions defined (and the
3956 * PCI_IOBASE value defined) should call this function.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003957 */
3958int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3959{
3960#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3961 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3962
3963 if (!(res->flags & IORESOURCE_IO))
3964 return -EINVAL;
3965
3966 if (res->end > IO_SPACE_LIMIT)
3967 return -EINVAL;
3968
3969 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3970 pgprot_device(PAGE_KERNEL));
3971#else
David Brazdil0f672f62019-12-10 10:32:29 +00003972 /*
3973 * This architecture does not have memory mapped I/O space,
3974 * so this function should never be called
3975 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003976 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3977 return -ENODEV;
3978#endif
3979}
3980EXPORT_SYMBOL(pci_remap_iospace);
3981
3982/**
David Brazdil0f672f62019-12-10 10:32:29 +00003983 * pci_unmap_iospace - Unmap the memory mapped I/O space
3984 * @res: resource to be unmapped
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003985 *
David Brazdil0f672f62019-12-10 10:32:29 +00003986 * Unmap the CPU virtual address @res from virtual address space. Only
3987 * architectures that have memory mapped IO functions defined (and the
3988 * PCI_IOBASE value defined) should call this function.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003989 */
3990void pci_unmap_iospace(struct resource *res)
3991{
3992#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3993 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3994
3995 unmap_kernel_range(vaddr, resource_size(res));
3996#endif
3997}
3998EXPORT_SYMBOL(pci_unmap_iospace);
3999
4000static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4001{
4002 struct resource **res = ptr;
4003
4004 pci_unmap_iospace(*res);
4005}
4006
4007/**
4008 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4009 * @dev: Generic device to remap IO address for
4010 * @res: Resource describing the I/O space
4011 * @phys_addr: physical address of range to be mapped
4012 *
4013 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4014 * detach.
4015 */
4016int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4017 phys_addr_t phys_addr)
4018{
4019 const struct resource **ptr;
4020 int error;
4021
4022 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4023 if (!ptr)
4024 return -ENOMEM;
4025
4026 error = pci_remap_iospace(res, phys_addr);
4027 if (error) {
4028 devres_free(ptr);
4029 } else {
4030 *ptr = res;
4031 devres_add(dev, ptr);
4032 }
4033
4034 return error;
4035}
4036EXPORT_SYMBOL(devm_pci_remap_iospace);
4037
4038/**
4039 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4040 * @dev: Generic device to remap IO address for
4041 * @offset: Resource address to map
4042 * @size: Size of map
4043 *
4044 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4045 * detach.
4046 */
4047void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4048 resource_size_t offset,
4049 resource_size_t size)
4050{
4051 void __iomem **ptr, *addr;
4052
4053 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4054 if (!ptr)
4055 return NULL;
4056
4057 addr = pci_remap_cfgspace(offset, size);
4058 if (addr) {
4059 *ptr = addr;
4060 devres_add(dev, ptr);
4061 } else
4062 devres_free(ptr);
4063
4064 return addr;
4065}
4066EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4067
4068/**
4069 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4070 * @dev: generic device to handle the resource for
4071 * @res: configuration space resource to be handled
4072 *
4073 * Checks that a resource is a valid memory region, requests the memory
4074 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4075 * proper PCI configuration space memory attributes are guaranteed.
4076 *
4077 * All operations are managed and will be undone on driver detach.
4078 *
4079 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4080 * on failure. Usage example::
4081 *
4082 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4083 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4084 * if (IS_ERR(base))
4085 * return PTR_ERR(base);
4086 */
4087void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4088 struct resource *res)
4089{
4090 resource_size_t size;
4091 const char *name;
4092 void __iomem *dest_ptr;
4093
4094 BUG_ON(!dev);
4095
4096 if (!res || resource_type(res) != IORESOURCE_MEM) {
4097 dev_err(dev, "invalid resource\n");
4098 return IOMEM_ERR_PTR(-EINVAL);
4099 }
4100
4101 size = resource_size(res);
4102 name = res->name ?: dev_name(dev);
4103
4104 if (!devm_request_mem_region(dev, res->start, size, name)) {
4105 dev_err(dev, "can't request region for resource %pR\n", res);
4106 return IOMEM_ERR_PTR(-EBUSY);
4107 }
4108
4109 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4110 if (!dest_ptr) {
4111 dev_err(dev, "ioremap failed for resource %pR\n", res);
4112 devm_release_mem_region(dev, res->start, size);
4113 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4114 }
4115
4116 return dest_ptr;
4117}
4118EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4119
4120static void __pci_set_master(struct pci_dev *dev, bool enable)
4121{
4122 u16 old_cmd, cmd;
4123
4124 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4125 if (enable)
4126 cmd = old_cmd | PCI_COMMAND_MASTER;
4127 else
4128 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4129 if (cmd != old_cmd) {
4130 pci_dbg(dev, "%s bus mastering\n",
4131 enable ? "enabling" : "disabling");
4132 pci_write_config_word(dev, PCI_COMMAND, cmd);
4133 }
4134 dev->is_busmaster = enable;
4135}
4136
4137/**
4138 * pcibios_setup - process "pci=" kernel boot arguments
4139 * @str: string used to pass in "pci=" kernel boot arguments
4140 *
4141 * Process kernel boot arguments. This is the default implementation.
4142 * Architecture specific implementations can override this as necessary.
4143 */
4144char * __weak __init pcibios_setup(char *str)
4145{
4146 return str;
4147}
4148
4149/**
4150 * pcibios_set_master - enable PCI bus-mastering for device dev
4151 * @dev: the PCI device to enable
4152 *
4153 * Enables PCI bus-mastering for the device. This is the default
4154 * implementation. Architecture specific implementations can override
4155 * this if necessary.
4156 */
4157void __weak pcibios_set_master(struct pci_dev *dev)
4158{
4159 u8 lat;
4160
4161 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4162 if (pci_is_pcie(dev))
4163 return;
4164
4165 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4166 if (lat < 16)
4167 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4168 else if (lat > pcibios_max_latency)
4169 lat = pcibios_max_latency;
4170 else
4171 return;
4172
4173 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4174}
4175
4176/**
4177 * pci_set_master - enables bus-mastering for device dev
4178 * @dev: the PCI device to enable
4179 *
4180 * Enables bus-mastering on the device and calls pcibios_set_master()
4181 * to do the needed arch specific settings.
4182 */
4183void pci_set_master(struct pci_dev *dev)
4184{
4185 __pci_set_master(dev, true);
4186 pcibios_set_master(dev);
4187}
4188EXPORT_SYMBOL(pci_set_master);
4189
4190/**
4191 * pci_clear_master - disables bus-mastering for device dev
4192 * @dev: the PCI device to disable
4193 */
4194void pci_clear_master(struct pci_dev *dev)
4195{
4196 __pci_set_master(dev, false);
4197}
4198EXPORT_SYMBOL(pci_clear_master);
4199
4200/**
4201 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4202 * @dev: the PCI device for which MWI is to be enabled
4203 *
4204 * Helper function for pci_set_mwi.
4205 * Originally copied from drivers/net/acenic.c.
4206 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4207 *
4208 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4209 */
4210int pci_set_cacheline_size(struct pci_dev *dev)
4211{
4212 u8 cacheline_size;
4213
4214 if (!pci_cache_line_size)
4215 return -EINVAL;
4216
4217 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4218 equal to or multiple of the right value. */
4219 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4220 if (cacheline_size >= pci_cache_line_size &&
4221 (cacheline_size % pci_cache_line_size) == 0)
4222 return 0;
4223
4224 /* Write the correct value. */
4225 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4226 /* Read it back. */
4227 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4228 if (cacheline_size == pci_cache_line_size)
4229 return 0;
4230
David Brazdil0f672f62019-12-10 10:32:29 +00004231 pci_info(dev, "cache line size of %d is not supported\n",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004232 pci_cache_line_size << 2);
4233
4234 return -EINVAL;
4235}
4236EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4237
4238/**
4239 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4240 * @dev: the PCI device for which MWI is enabled
4241 *
4242 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4243 *
4244 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4245 */
4246int pci_set_mwi(struct pci_dev *dev)
4247{
4248#ifdef PCI_DISABLE_MWI
4249 return 0;
4250#else
4251 int rc;
4252 u16 cmd;
4253
4254 rc = pci_set_cacheline_size(dev);
4255 if (rc)
4256 return rc;
4257
4258 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4259 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4260 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4261 cmd |= PCI_COMMAND_INVALIDATE;
4262 pci_write_config_word(dev, PCI_COMMAND, cmd);
4263 }
4264 return 0;
4265#endif
4266}
4267EXPORT_SYMBOL(pci_set_mwi);
4268
4269/**
4270 * pcim_set_mwi - a device-managed pci_set_mwi()
4271 * @dev: the PCI device for which MWI is enabled
4272 *
4273 * Managed pci_set_mwi().
4274 *
4275 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4276 */
4277int pcim_set_mwi(struct pci_dev *dev)
4278{
4279 struct pci_devres *dr;
4280
4281 dr = find_pci_dr(dev);
4282 if (!dr)
4283 return -ENOMEM;
4284
4285 dr->mwi = 1;
4286 return pci_set_mwi(dev);
4287}
4288EXPORT_SYMBOL(pcim_set_mwi);
4289
4290/**
4291 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4292 * @dev: the PCI device for which MWI is enabled
4293 *
4294 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4295 * Callers are not required to check the return value.
4296 *
4297 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4298 */
4299int pci_try_set_mwi(struct pci_dev *dev)
4300{
4301#ifdef PCI_DISABLE_MWI
4302 return 0;
4303#else
4304 return pci_set_mwi(dev);
4305#endif
4306}
4307EXPORT_SYMBOL(pci_try_set_mwi);
4308
4309/**
4310 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4311 * @dev: the PCI device to disable
4312 *
4313 * Disables PCI Memory-Write-Invalidate transaction on the device
4314 */
4315void pci_clear_mwi(struct pci_dev *dev)
4316{
4317#ifndef PCI_DISABLE_MWI
4318 u16 cmd;
4319
4320 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4321 if (cmd & PCI_COMMAND_INVALIDATE) {
4322 cmd &= ~PCI_COMMAND_INVALIDATE;
4323 pci_write_config_word(dev, PCI_COMMAND, cmd);
4324 }
4325#endif
4326}
4327EXPORT_SYMBOL(pci_clear_mwi);
4328
4329/**
4330 * pci_intx - enables/disables PCI INTx for device dev
4331 * @pdev: the PCI device to operate on
4332 * @enable: boolean: whether to enable or disable PCI INTx
4333 *
David Brazdil0f672f62019-12-10 10:32:29 +00004334 * Enables/disables PCI INTx for device @pdev
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004335 */
4336void pci_intx(struct pci_dev *pdev, int enable)
4337{
4338 u16 pci_command, new;
4339
4340 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4341
4342 if (enable)
4343 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4344 else
4345 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4346
4347 if (new != pci_command) {
4348 struct pci_devres *dr;
4349
4350 pci_write_config_word(pdev, PCI_COMMAND, new);
4351
4352 dr = find_pci_dr(pdev);
4353 if (dr && !dr->restore_intx) {
4354 dr->restore_intx = 1;
4355 dr->orig_intx = !enable;
4356 }
4357 }
4358}
4359EXPORT_SYMBOL_GPL(pci_intx);
4360
4361static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4362{
4363 struct pci_bus *bus = dev->bus;
4364 bool mask_updated = true;
4365 u32 cmd_status_dword;
4366 u16 origcmd, newcmd;
4367 unsigned long flags;
4368 bool irq_pending;
4369
4370 /*
4371 * We do a single dword read to retrieve both command and status.
4372 * Document assumptions that make this possible.
4373 */
4374 BUILD_BUG_ON(PCI_COMMAND % 4);
4375 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4376
4377 raw_spin_lock_irqsave(&pci_lock, flags);
4378
4379 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4380
4381 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4382
4383 /*
4384 * Check interrupt status register to see whether our device
4385 * triggered the interrupt (when masking) or the next IRQ is
4386 * already pending (when unmasking).
4387 */
4388 if (mask != irq_pending) {
4389 mask_updated = false;
4390 goto done;
4391 }
4392
4393 origcmd = cmd_status_dword;
4394 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4395 if (mask)
4396 newcmd |= PCI_COMMAND_INTX_DISABLE;
4397 if (newcmd != origcmd)
4398 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4399
4400done:
4401 raw_spin_unlock_irqrestore(&pci_lock, flags);
4402
4403 return mask_updated;
4404}
4405
4406/**
4407 * pci_check_and_mask_intx - mask INTx on pending interrupt
4408 * @dev: the PCI device to operate on
4409 *
David Brazdil0f672f62019-12-10 10:32:29 +00004410 * Check if the device dev has its INTx line asserted, mask it and return
4411 * true in that case. False is returned if no interrupt was pending.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004412 */
4413bool pci_check_and_mask_intx(struct pci_dev *dev)
4414{
4415 return pci_check_and_set_intx_mask(dev, true);
4416}
4417EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4418
4419/**
4420 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4421 * @dev: the PCI device to operate on
4422 *
David Brazdil0f672f62019-12-10 10:32:29 +00004423 * Check if the device dev has its INTx line asserted, unmask it if not and
4424 * return true. False is returned and the mask remains active if there was
4425 * still an interrupt pending.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004426 */
4427bool pci_check_and_unmask_intx(struct pci_dev *dev)
4428{
4429 return pci_check_and_set_intx_mask(dev, false);
4430}
4431EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4432
4433/**
David Brazdil0f672f62019-12-10 10:32:29 +00004434 * pci_wait_for_pending_transaction - wait for pending transaction
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004435 * @dev: the PCI device to operate on
4436 *
4437 * Return 0 if transaction is pending 1 otherwise.
4438 */
4439int pci_wait_for_pending_transaction(struct pci_dev *dev)
4440{
4441 if (!pci_is_pcie(dev))
4442 return 1;
4443
4444 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4445 PCI_EXP_DEVSTA_TRPND);
4446}
4447EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4448
4449static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
4450{
4451 int delay = 1;
4452 u32 id;
4453
4454 /*
4455 * After reset, the device should not silently discard config
4456 * requests, but it may still indicate that it needs more time by
4457 * responding to them with CRS completions. The Root Port will
4458 * generally synthesize ~0 data to complete the read (except when
4459 * CRS SV is enabled and the read was for the Vendor ID; in that
4460 * case it synthesizes 0x0001 data).
4461 *
4462 * Wait for the device to return a non-CRS completion. Read the
4463 * Command register instead of Vendor ID so we don't have to
4464 * contend with the CRS SV value.
4465 */
4466 pci_read_config_dword(dev, PCI_COMMAND, &id);
4467 while (id == ~0) {
4468 if (delay > timeout) {
4469 pci_warn(dev, "not ready %dms after %s; giving up\n",
4470 delay - 1, reset_type);
4471 return -ENOTTY;
4472 }
4473
4474 if (delay > 1000)
4475 pci_info(dev, "not ready %dms after %s; waiting\n",
4476 delay - 1, reset_type);
4477
4478 msleep(delay);
4479 delay *= 2;
4480 pci_read_config_dword(dev, PCI_COMMAND, &id);
4481 }
4482
4483 if (delay > 1000)
4484 pci_info(dev, "ready %dms after %s\n", delay - 1,
4485 reset_type);
4486
4487 return 0;
4488}
4489
4490/**
4491 * pcie_has_flr - check if a device supports function level resets
David Brazdil0f672f62019-12-10 10:32:29 +00004492 * @dev: device to check
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004493 *
4494 * Returns true if the device advertises support for PCIe function level
4495 * resets.
4496 */
4497bool pcie_has_flr(struct pci_dev *dev)
4498{
4499 u32 cap;
4500
4501 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4502 return false;
4503
4504 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4505 return cap & PCI_EXP_DEVCAP_FLR;
4506}
4507EXPORT_SYMBOL_GPL(pcie_has_flr);
4508
4509/**
4510 * pcie_flr - initiate a PCIe function level reset
David Brazdil0f672f62019-12-10 10:32:29 +00004511 * @dev: device to reset
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004512 *
4513 * Initiate a function level reset on @dev. The caller should ensure the
4514 * device supports FLR before calling this function, e.g. by using the
4515 * pcie_has_flr() helper.
4516 */
4517int pcie_flr(struct pci_dev *dev)
4518{
4519 if (!pci_wait_for_pending_transaction(dev))
4520 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4521
4522 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4523
David Brazdil0f672f62019-12-10 10:32:29 +00004524 if (dev->imm_ready)
4525 return 0;
4526
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004527 /*
4528 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4529 * 100ms, but may silently discard requests while the FLR is in
4530 * progress. Wait 100ms before trying to access the device.
4531 */
4532 msleep(100);
4533
4534 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4535}
4536EXPORT_SYMBOL_GPL(pcie_flr);
4537
4538static int pci_af_flr(struct pci_dev *dev, int probe)
4539{
4540 int pos;
4541 u8 cap;
4542
4543 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4544 if (!pos)
4545 return -ENOTTY;
4546
4547 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4548 return -ENOTTY;
4549
4550 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4551 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4552 return -ENOTTY;
4553
4554 if (probe)
4555 return 0;
4556
4557 /*
4558 * Wait for Transaction Pending bit to clear. A word-aligned test
David Brazdil0f672f62019-12-10 10:32:29 +00004559 * is used, so we use the control offset rather than status and shift
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004560 * the test bit to match.
4561 */
4562 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4563 PCI_AF_STATUS_TP << 8))
4564 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4565
4566 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4567
David Brazdil0f672f62019-12-10 10:32:29 +00004568 if (dev->imm_ready)
4569 return 0;
4570
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004571 /*
4572 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4573 * updated 27 July 2006; a device must complete an FLR within
4574 * 100ms, but may silently discard requests while the FLR is in
4575 * progress. Wait 100ms before trying to access the device.
4576 */
4577 msleep(100);
4578
4579 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4580}
4581
4582/**
4583 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4584 * @dev: Device to reset.
4585 * @probe: If set, only check if the device can be reset this way.
4586 *
4587 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4588 * unset, it will be reinitialized internally when going from PCI_D3hot to
4589 * PCI_D0. If that's the case and the device is not in a low-power state
4590 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4591 *
4592 * NOTE: This causes the caller to sleep for twice the device power transition
4593 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4594 * by default (i.e. unless the @dev's d3_delay field has a different value).
4595 * Moreover, only devices in D0 can be reset by this function.
4596 */
4597static int pci_pm_reset(struct pci_dev *dev, int probe)
4598{
4599 u16 csr;
4600
4601 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4602 return -ENOTTY;
4603
4604 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4605 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4606 return -ENOTTY;
4607
4608 if (probe)
4609 return 0;
4610
4611 if (dev->current_state != PCI_D0)
4612 return -EINVAL;
4613
4614 csr &= ~PCI_PM_CTRL_STATE_MASK;
4615 csr |= PCI_D3hot;
4616 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4617 pci_dev_d3_sleep(dev);
4618
4619 csr &= ~PCI_PM_CTRL_STATE_MASK;
4620 csr |= PCI_D0;
4621 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4622 pci_dev_d3_sleep(dev);
4623
4624 return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4625}
Olivier Deprez0e641232021-09-23 10:07:05 +02004626
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004627/**
Olivier Deprez0e641232021-09-23 10:07:05 +02004628 * pcie_wait_for_link_delay - Wait until link is active or inactive
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004629 * @pdev: Bridge device
4630 * @active: waiting for active or inactive?
Olivier Deprez0e641232021-09-23 10:07:05 +02004631 * @delay: Delay to wait after link has become active (in ms)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004632 *
4633 * Use this to wait till link becomes active or inactive.
4634 */
Olivier Deprez0e641232021-09-23 10:07:05 +02004635static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4636 int delay)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004637{
4638 int timeout = 1000;
4639 bool ret;
4640 u16 lnk_status;
4641
David Brazdil0f672f62019-12-10 10:32:29 +00004642 /*
4643 * Some controllers might not implement link active reporting. In this
Olivier Deprez0e641232021-09-23 10:07:05 +02004644 * case, we wait for 1000 ms + any delay requested by the caller.
David Brazdil0f672f62019-12-10 10:32:29 +00004645 */
4646 if (!pdev->link_active_reporting) {
Olivier Deprez0e641232021-09-23 10:07:05 +02004647 msleep(timeout + delay);
David Brazdil0f672f62019-12-10 10:32:29 +00004648 return true;
4649 }
4650
4651 /*
4652 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4653 * after which we should expect an link active if the reset was
4654 * successful. If so, software must wait a minimum 100ms before sending
4655 * configuration requests to devices downstream this port.
4656 *
4657 * If the link fails to activate, either the device was physically
4658 * removed or the link is permanently failed.
4659 */
4660 if (active)
4661 msleep(20);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004662 for (;;) {
4663 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4664 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4665 if (ret == active)
David Brazdil0f672f62019-12-10 10:32:29 +00004666 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004667 if (timeout <= 0)
4668 break;
4669 msleep(10);
4670 timeout -= 10;
4671 }
David Brazdil0f672f62019-12-10 10:32:29 +00004672 if (active && ret)
Olivier Deprez0e641232021-09-23 10:07:05 +02004673 msleep(delay);
David Brazdil0f672f62019-12-10 10:32:29 +00004674 else if (ret != active)
4675 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4676 active ? "set" : "cleared");
4677 return ret == active;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004678}
4679
Olivier Deprez0e641232021-09-23 10:07:05 +02004680/**
4681 * pcie_wait_for_link - Wait until link is active or inactive
4682 * @pdev: Bridge device
4683 * @active: waiting for active or inactive?
4684 *
4685 * Use this to wait till link becomes active or inactive.
4686 */
4687bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4688{
4689 return pcie_wait_for_link_delay(pdev, active, 100);
4690}
4691
4692/*
4693 * Find maximum D3cold delay required by all the devices on the bus. The
4694 * spec says 100 ms, but firmware can lower it and we allow drivers to
4695 * increase it as well.
4696 *
4697 * Called with @pci_bus_sem locked for reading.
4698 */
4699static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4700{
4701 const struct pci_dev *pdev;
4702 int min_delay = 100;
4703 int max_delay = 0;
4704
4705 list_for_each_entry(pdev, &bus->devices, bus_list) {
4706 if (pdev->d3cold_delay < min_delay)
4707 min_delay = pdev->d3cold_delay;
4708 if (pdev->d3cold_delay > max_delay)
4709 max_delay = pdev->d3cold_delay;
4710 }
4711
4712 return max(min_delay, max_delay);
4713}
4714
4715/**
4716 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4717 * @dev: PCI bridge
4718 *
4719 * Handle necessary delays before access to the devices on the secondary
4720 * side of the bridge are permitted after D3cold to D0 transition.
4721 *
4722 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4723 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4724 * 4.3.2.
4725 */
4726void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4727{
4728 struct pci_dev *child;
4729 int delay;
4730
4731 if (pci_dev_is_disconnected(dev))
4732 return;
4733
4734 if (!pci_is_bridge(dev) || !dev->bridge_d3)
4735 return;
4736
4737 down_read(&pci_bus_sem);
4738
4739 /*
4740 * We only deal with devices that are present currently on the bus.
4741 * For any hot-added devices the access delay is handled in pciehp
4742 * board_added(). In case of ACPI hotplug the firmware is expected
4743 * to configure the devices before OS is notified.
4744 */
4745 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4746 up_read(&pci_bus_sem);
4747 return;
4748 }
4749
4750 /* Take d3cold_delay requirements into account */
4751 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4752 if (!delay) {
4753 up_read(&pci_bus_sem);
4754 return;
4755 }
4756
4757 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4758 bus_list);
4759 up_read(&pci_bus_sem);
4760
4761 /*
4762 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4763 * accessing the device after reset (that is 1000 ms + 100 ms). In
4764 * practice this should not be needed because we don't do power
4765 * management for them (see pci_bridge_d3_possible()).
4766 */
4767 if (!pci_is_pcie(dev)) {
4768 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4769 msleep(1000 + delay);
4770 return;
4771 }
4772
4773 /*
4774 * For PCIe downstream and root ports that do not support speeds
4775 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4776 * speeds (gen3) we need to wait first for the data link layer to
4777 * become active.
4778 *
4779 * However, 100 ms is the minimum and the PCIe spec says the
4780 * software must allow at least 1s before it can determine that the
4781 * device that did not respond is a broken device. There is
4782 * evidence that 100 ms is not always enough, for example certain
4783 * Titan Ridge xHCI controller does not always respond to
4784 * configuration requests if we only wait for 100 ms (see
4785 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4786 *
4787 * Therefore we wait for 100 ms and check for the device presence.
4788 * If it is still not present give it an additional 100 ms.
4789 */
4790 if (!pcie_downstream_port(dev))
4791 return;
4792
4793 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4794 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4795 msleep(delay);
4796 } else {
4797 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4798 delay);
4799 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4800 /* Did not train, no need to wait any further */
4801 return;
4802 }
4803 }
4804
4805 if (!pci_device_is_present(child)) {
4806 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4807 msleep(delay);
4808 }
4809}
4810
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004811void pci_reset_secondary_bus(struct pci_dev *dev)
4812{
4813 u16 ctrl;
4814
4815 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4816 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4817 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4818
4819 /*
4820 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4821 * this to 2ms to ensure that we meet the minimum requirement.
4822 */
4823 msleep(2);
4824
4825 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4826 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4827
4828 /*
4829 * Trhfa for conventional PCI is 2^25 clock cycles.
4830 * Assuming a minimum 33MHz clock this results in a 1s
4831 * delay before we can consider subordinate devices to
4832 * be re-initialized. PCIe has some ways to shorten this,
4833 * but we don't make use of them yet.
4834 */
4835 ssleep(1);
4836}
4837
4838void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4839{
4840 pci_reset_secondary_bus(dev);
4841}
4842
4843/**
4844 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4845 * @dev: Bridge device
4846 *
4847 * Use the bridge control register to assert reset on the secondary bus.
4848 * Devices on the secondary bus are left in power-on state.
4849 */
4850int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4851{
4852 pcibios_reset_secondary_bus(dev);
4853
4854 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4855}
4856EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4857
4858static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4859{
4860 struct pci_dev *pdev;
4861
4862 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4863 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4864 return -ENOTTY;
4865
4866 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4867 if (pdev != dev)
4868 return -ENOTTY;
4869
4870 if (probe)
4871 return 0;
4872
4873 return pci_bridge_secondary_bus_reset(dev->bus->self);
4874}
4875
4876static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4877{
4878 int rc = -ENOTTY;
4879
David Brazdil0f672f62019-12-10 10:32:29 +00004880 if (!hotplug || !try_module_get(hotplug->owner))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004881 return rc;
4882
4883 if (hotplug->ops->reset_slot)
4884 rc = hotplug->ops->reset_slot(hotplug, probe);
4885
David Brazdil0f672f62019-12-10 10:32:29 +00004886 module_put(hotplug->owner);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004887
4888 return rc;
4889}
4890
4891static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4892{
4893 struct pci_dev *pdev;
4894
4895 if (dev->subordinate || !dev->slot ||
4896 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4897 return -ENOTTY;
4898
4899 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4900 if (pdev != dev && pdev->slot == dev->slot)
4901 return -ENOTTY;
4902
4903 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4904}
4905
4906static void pci_dev_lock(struct pci_dev *dev)
4907{
4908 pci_cfg_access_lock(dev);
4909 /* block PM suspend, driver probe, etc. */
4910 device_lock(&dev->dev);
4911}
4912
4913/* Return 1 on successful lock, 0 on contention */
4914static int pci_dev_trylock(struct pci_dev *dev)
4915{
4916 if (pci_cfg_access_trylock(dev)) {
4917 if (device_trylock(&dev->dev))
4918 return 1;
4919 pci_cfg_access_unlock(dev);
4920 }
4921
4922 return 0;
4923}
4924
4925static void pci_dev_unlock(struct pci_dev *dev)
4926{
4927 device_unlock(&dev->dev);
4928 pci_cfg_access_unlock(dev);
4929}
4930
4931static void pci_dev_save_and_disable(struct pci_dev *dev)
4932{
4933 const struct pci_error_handlers *err_handler =
4934 dev->driver ? dev->driver->err_handler : NULL;
4935
4936 /*
4937 * dev->driver->err_handler->reset_prepare() is protected against
4938 * races with ->remove() by the device lock, which must be held by
4939 * the caller.
4940 */
4941 if (err_handler && err_handler->reset_prepare)
4942 err_handler->reset_prepare(dev);
4943
4944 /*
4945 * Wake-up device prior to save. PM registers default to D0 after
4946 * reset and a simple register restore doesn't reliably return
4947 * to a non-D0 state anyway.
4948 */
4949 pci_set_power_state(dev, PCI_D0);
4950
4951 pci_save_state(dev);
4952 /*
4953 * Disable the device by clearing the Command register, except for
4954 * INTx-disable which is set. This not only disables MMIO and I/O port
4955 * BARs, but also prevents the device from being Bus Master, preventing
4956 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4957 * compliant devices, INTx-disable prevents legacy interrupts.
4958 */
4959 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4960}
4961
4962static void pci_dev_restore(struct pci_dev *dev)
4963{
4964 const struct pci_error_handlers *err_handler =
4965 dev->driver ? dev->driver->err_handler : NULL;
4966
4967 pci_restore_state(dev);
4968
4969 /*
4970 * dev->driver->err_handler->reset_done() is protected against
4971 * races with ->remove() by the device lock, which must be held by
4972 * the caller.
4973 */
4974 if (err_handler && err_handler->reset_done)
4975 err_handler->reset_done(dev);
4976}
4977
4978/**
4979 * __pci_reset_function_locked - reset a PCI device function while holding
4980 * the @dev mutex lock.
4981 * @dev: PCI device to reset
4982 *
4983 * Some devices allow an individual function to be reset without affecting
4984 * other functions in the same device. The PCI device must be responsive
4985 * to PCI config space in order to use this function.
4986 *
4987 * The device function is presumed to be unused and the caller is holding
4988 * the device mutex lock when this function is called.
David Brazdil0f672f62019-12-10 10:32:29 +00004989 *
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004990 * Resetting the device will make the contents of PCI configuration space
4991 * random, so any caller of this must be prepared to reinitialise the
4992 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4993 * etc.
4994 *
4995 * Returns 0 if the device function was successfully reset or negative if the
4996 * device doesn't support resetting a single function.
4997 */
4998int __pci_reset_function_locked(struct pci_dev *dev)
4999{
5000 int rc;
5001
5002 might_sleep();
5003
5004 /*
5005 * A reset method returns -ENOTTY if it doesn't support this device
5006 * and we should try the next method.
5007 *
5008 * If it returns 0 (success), we're finished. If it returns any
5009 * other error, we're also finished: this indicates that further
5010 * reset mechanisms might be broken on the device.
5011 */
5012 rc = pci_dev_specific_reset(dev, 0);
5013 if (rc != -ENOTTY)
5014 return rc;
5015 if (pcie_has_flr(dev)) {
5016 rc = pcie_flr(dev);
5017 if (rc != -ENOTTY)
5018 return rc;
5019 }
5020 rc = pci_af_flr(dev, 0);
5021 if (rc != -ENOTTY)
5022 return rc;
5023 rc = pci_pm_reset(dev, 0);
5024 if (rc != -ENOTTY)
5025 return rc;
5026 rc = pci_dev_reset_slot_function(dev, 0);
5027 if (rc != -ENOTTY)
5028 return rc;
5029 return pci_parent_bus_reset(dev, 0);
5030}
5031EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5032
5033/**
5034 * pci_probe_reset_function - check whether the device can be safely reset
5035 * @dev: PCI device to reset
5036 *
5037 * Some devices allow an individual function to be reset without affecting
5038 * other functions in the same device. The PCI device must be responsive
5039 * to PCI config space in order to use this function.
5040 *
5041 * Returns 0 if the device function can be reset or negative if the
5042 * device doesn't support resetting a single function.
5043 */
5044int pci_probe_reset_function(struct pci_dev *dev)
5045{
5046 int rc;
5047
5048 might_sleep();
5049
5050 rc = pci_dev_specific_reset(dev, 1);
5051 if (rc != -ENOTTY)
5052 return rc;
5053 if (pcie_has_flr(dev))
5054 return 0;
5055 rc = pci_af_flr(dev, 1);
5056 if (rc != -ENOTTY)
5057 return rc;
5058 rc = pci_pm_reset(dev, 1);
5059 if (rc != -ENOTTY)
5060 return rc;
5061 rc = pci_dev_reset_slot_function(dev, 1);
5062 if (rc != -ENOTTY)
5063 return rc;
5064
5065 return pci_parent_bus_reset(dev, 1);
5066}
5067
5068/**
5069 * pci_reset_function - quiesce and reset a PCI device function
5070 * @dev: PCI device to reset
5071 *
5072 * Some devices allow an individual function to be reset without affecting
5073 * other functions in the same device. The PCI device must be responsive
5074 * to PCI config space in order to use this function.
5075 *
5076 * This function does not just reset the PCI portion of a device, but
5077 * clears all the state associated with the device. This function differs
5078 * from __pci_reset_function_locked() in that it saves and restores device state
5079 * over the reset and takes the PCI device lock.
5080 *
5081 * Returns 0 if the device function was successfully reset or negative if the
5082 * device doesn't support resetting a single function.
5083 */
5084int pci_reset_function(struct pci_dev *dev)
5085{
5086 int rc;
5087
5088 if (!dev->reset_fn)
5089 return -ENOTTY;
5090
5091 pci_dev_lock(dev);
5092 pci_dev_save_and_disable(dev);
5093
5094 rc = __pci_reset_function_locked(dev);
5095
5096 pci_dev_restore(dev);
5097 pci_dev_unlock(dev);
5098
5099 return rc;
5100}
5101EXPORT_SYMBOL_GPL(pci_reset_function);
5102
5103/**
5104 * pci_reset_function_locked - quiesce and reset a PCI device function
5105 * @dev: PCI device to reset
5106 *
5107 * Some devices allow an individual function to be reset without affecting
5108 * other functions in the same device. The PCI device must be responsive
5109 * to PCI config space in order to use this function.
5110 *
5111 * This function does not just reset the PCI portion of a device, but
5112 * clears all the state associated with the device. This function differs
5113 * from __pci_reset_function_locked() in that it saves and restores device state
5114 * over the reset. It also differs from pci_reset_function() in that it
5115 * requires the PCI device lock to be held.
5116 *
5117 * Returns 0 if the device function was successfully reset or negative if the
5118 * device doesn't support resetting a single function.
5119 */
5120int pci_reset_function_locked(struct pci_dev *dev)
5121{
5122 int rc;
5123
5124 if (!dev->reset_fn)
5125 return -ENOTTY;
5126
5127 pci_dev_save_and_disable(dev);
5128
5129 rc = __pci_reset_function_locked(dev);
5130
5131 pci_dev_restore(dev);
5132
5133 return rc;
5134}
5135EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5136
5137/**
5138 * pci_try_reset_function - quiesce and reset a PCI device function
5139 * @dev: PCI device to reset
5140 *
5141 * Same as above, except return -EAGAIN if unable to lock device.
5142 */
5143int pci_try_reset_function(struct pci_dev *dev)
5144{
5145 int rc;
5146
5147 if (!dev->reset_fn)
5148 return -ENOTTY;
5149
5150 if (!pci_dev_trylock(dev))
5151 return -EAGAIN;
5152
5153 pci_dev_save_and_disable(dev);
5154 rc = __pci_reset_function_locked(dev);
5155 pci_dev_restore(dev);
5156 pci_dev_unlock(dev);
5157
5158 return rc;
5159}
5160EXPORT_SYMBOL_GPL(pci_try_reset_function);
5161
5162/* Do any devices on or below this bus prevent a bus reset? */
5163static bool pci_bus_resetable(struct pci_bus *bus)
5164{
5165 struct pci_dev *dev;
5166
5167
5168 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5169 return false;
5170
5171 list_for_each_entry(dev, &bus->devices, bus_list) {
5172 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5173 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5174 return false;
5175 }
5176
5177 return true;
5178}
5179
5180/* Lock devices from the top of the tree down */
5181static void pci_bus_lock(struct pci_bus *bus)
5182{
5183 struct pci_dev *dev;
5184
5185 list_for_each_entry(dev, &bus->devices, bus_list) {
5186 pci_dev_lock(dev);
5187 if (dev->subordinate)
5188 pci_bus_lock(dev->subordinate);
5189 }
5190}
5191
5192/* Unlock devices from the bottom of the tree up */
5193static void pci_bus_unlock(struct pci_bus *bus)
5194{
5195 struct pci_dev *dev;
5196
5197 list_for_each_entry(dev, &bus->devices, bus_list) {
5198 if (dev->subordinate)
5199 pci_bus_unlock(dev->subordinate);
5200 pci_dev_unlock(dev);
5201 }
5202}
5203
5204/* Return 1 on successful lock, 0 on contention */
5205static int pci_bus_trylock(struct pci_bus *bus)
5206{
5207 struct pci_dev *dev;
5208
5209 list_for_each_entry(dev, &bus->devices, bus_list) {
5210 if (!pci_dev_trylock(dev))
5211 goto unlock;
5212 if (dev->subordinate) {
5213 if (!pci_bus_trylock(dev->subordinate)) {
5214 pci_dev_unlock(dev);
5215 goto unlock;
5216 }
5217 }
5218 }
5219 return 1;
5220
5221unlock:
5222 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5223 if (dev->subordinate)
5224 pci_bus_unlock(dev->subordinate);
5225 pci_dev_unlock(dev);
5226 }
5227 return 0;
5228}
5229
5230/* Do any devices on or below this slot prevent a bus reset? */
5231static bool pci_slot_resetable(struct pci_slot *slot)
5232{
5233 struct pci_dev *dev;
5234
5235 if (slot->bus->self &&
5236 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5237 return false;
5238
5239 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5240 if (!dev->slot || dev->slot != slot)
5241 continue;
5242 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5243 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5244 return false;
5245 }
5246
5247 return true;
5248}
5249
5250/* Lock devices from the top of the tree down */
5251static void pci_slot_lock(struct pci_slot *slot)
5252{
5253 struct pci_dev *dev;
5254
5255 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5256 if (!dev->slot || dev->slot != slot)
5257 continue;
5258 pci_dev_lock(dev);
5259 if (dev->subordinate)
5260 pci_bus_lock(dev->subordinate);
5261 }
5262}
5263
5264/* Unlock devices from the bottom of the tree up */
5265static void pci_slot_unlock(struct pci_slot *slot)
5266{
5267 struct pci_dev *dev;
5268
5269 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5270 if (!dev->slot || dev->slot != slot)
5271 continue;
5272 if (dev->subordinate)
5273 pci_bus_unlock(dev->subordinate);
5274 pci_dev_unlock(dev);
5275 }
5276}
5277
5278/* Return 1 on successful lock, 0 on contention */
5279static int pci_slot_trylock(struct pci_slot *slot)
5280{
5281 struct pci_dev *dev;
5282
5283 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5284 if (!dev->slot || dev->slot != slot)
5285 continue;
5286 if (!pci_dev_trylock(dev))
5287 goto unlock;
5288 if (dev->subordinate) {
5289 if (!pci_bus_trylock(dev->subordinate)) {
5290 pci_dev_unlock(dev);
5291 goto unlock;
5292 }
5293 }
5294 }
5295 return 1;
5296
5297unlock:
5298 list_for_each_entry_continue_reverse(dev,
5299 &slot->bus->devices, bus_list) {
5300 if (!dev->slot || dev->slot != slot)
5301 continue;
5302 if (dev->subordinate)
5303 pci_bus_unlock(dev->subordinate);
5304 pci_dev_unlock(dev);
5305 }
5306 return 0;
5307}
5308
David Brazdil0f672f62019-12-10 10:32:29 +00005309/*
5310 * Save and disable devices from the top of the tree down while holding
5311 * the @dev mutex lock for the entire tree.
5312 */
5313static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005314{
5315 struct pci_dev *dev;
5316
5317 list_for_each_entry(dev, &bus->devices, bus_list) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005318 pci_dev_save_and_disable(dev);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005319 if (dev->subordinate)
David Brazdil0f672f62019-12-10 10:32:29 +00005320 pci_bus_save_and_disable_locked(dev->subordinate);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005321 }
5322}
5323
5324/*
David Brazdil0f672f62019-12-10 10:32:29 +00005325 * Restore devices from top of the tree down while holding @dev mutex lock
5326 * for the entire tree. Parent bridges need to be restored before we can
5327 * get to subordinate devices.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005328 */
David Brazdil0f672f62019-12-10 10:32:29 +00005329static void pci_bus_restore_locked(struct pci_bus *bus)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005330{
5331 struct pci_dev *dev;
5332
5333 list_for_each_entry(dev, &bus->devices, bus_list) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005334 pci_dev_restore(dev);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005335 if (dev->subordinate)
David Brazdil0f672f62019-12-10 10:32:29 +00005336 pci_bus_restore_locked(dev->subordinate);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005337 }
5338}
5339
David Brazdil0f672f62019-12-10 10:32:29 +00005340/*
5341 * Save and disable devices from the top of the tree down while holding
5342 * the @dev mutex lock for the entire tree.
5343 */
5344static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005345{
5346 struct pci_dev *dev;
5347
5348 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5349 if (!dev->slot || dev->slot != slot)
5350 continue;
5351 pci_dev_save_and_disable(dev);
5352 if (dev->subordinate)
David Brazdil0f672f62019-12-10 10:32:29 +00005353 pci_bus_save_and_disable_locked(dev->subordinate);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005354 }
5355}
5356
5357/*
David Brazdil0f672f62019-12-10 10:32:29 +00005358 * Restore devices from top of the tree down while holding @dev mutex lock
5359 * for the entire tree. Parent bridges need to be restored before we can
5360 * get to subordinate devices.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005361 */
David Brazdil0f672f62019-12-10 10:32:29 +00005362static void pci_slot_restore_locked(struct pci_slot *slot)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005363{
5364 struct pci_dev *dev;
5365
5366 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5367 if (!dev->slot || dev->slot != slot)
5368 continue;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005369 pci_dev_restore(dev);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005370 if (dev->subordinate)
David Brazdil0f672f62019-12-10 10:32:29 +00005371 pci_bus_restore_locked(dev->subordinate);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005372 }
5373}
5374
5375static int pci_slot_reset(struct pci_slot *slot, int probe)
5376{
5377 int rc;
5378
5379 if (!slot || !pci_slot_resetable(slot))
5380 return -ENOTTY;
5381
5382 if (!probe)
5383 pci_slot_lock(slot);
5384
5385 might_sleep();
5386
5387 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5388
5389 if (!probe)
5390 pci_slot_unlock(slot);
5391
5392 return rc;
5393}
5394
5395/**
5396 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5397 * @slot: PCI slot to probe
5398 *
5399 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5400 */
5401int pci_probe_reset_slot(struct pci_slot *slot)
5402{
5403 return pci_slot_reset(slot, 1);
5404}
5405EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5406
5407/**
5408 * __pci_reset_slot - Try to reset a PCI slot
5409 * @slot: PCI slot to reset
5410 *
5411 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5412 * independent of other slots. For instance, some slots may support slot power
5413 * control. In the case of a 1:1 bus to slot architecture, this function may
5414 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5415 * Generally a slot reset should be attempted before a bus reset. All of the
5416 * function of the slot and any subordinate buses behind the slot are reset
5417 * through this function. PCI config space of all devices in the slot and
5418 * behind the slot is saved before and restored after reset.
5419 *
5420 * Same as above except return -EAGAIN if the slot cannot be locked
5421 */
5422static int __pci_reset_slot(struct pci_slot *slot)
5423{
5424 int rc;
5425
5426 rc = pci_slot_reset(slot, 1);
5427 if (rc)
5428 return rc;
5429
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005430 if (pci_slot_trylock(slot)) {
David Brazdil0f672f62019-12-10 10:32:29 +00005431 pci_slot_save_and_disable_locked(slot);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005432 might_sleep();
5433 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
David Brazdil0f672f62019-12-10 10:32:29 +00005434 pci_slot_restore_locked(slot);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005435 pci_slot_unlock(slot);
5436 } else
5437 rc = -EAGAIN;
5438
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005439 return rc;
5440}
5441
5442static int pci_bus_reset(struct pci_bus *bus, int probe)
5443{
5444 int ret;
5445
5446 if (!bus->self || !pci_bus_resetable(bus))
5447 return -ENOTTY;
5448
5449 if (probe)
5450 return 0;
5451
5452 pci_bus_lock(bus);
5453
5454 might_sleep();
5455
5456 ret = pci_bridge_secondary_bus_reset(bus->self);
5457
5458 pci_bus_unlock(bus);
5459
5460 return ret;
5461}
5462
5463/**
David Brazdil0f672f62019-12-10 10:32:29 +00005464 * pci_bus_error_reset - reset the bridge's subordinate bus
5465 * @bridge: The parent device that connects to the bus to reset
5466 *
5467 * This function will first try to reset the slots on this bus if the method is
5468 * available. If slot reset fails or is not available, this will fall back to a
5469 * secondary bus reset.
5470 */
5471int pci_bus_error_reset(struct pci_dev *bridge)
5472{
5473 struct pci_bus *bus = bridge->subordinate;
5474 struct pci_slot *slot;
5475
5476 if (!bus)
5477 return -ENOTTY;
5478
5479 mutex_lock(&pci_slot_mutex);
5480 if (list_empty(&bus->slots))
5481 goto bus_reset;
5482
5483 list_for_each_entry(slot, &bus->slots, list)
5484 if (pci_probe_reset_slot(slot))
5485 goto bus_reset;
5486
5487 list_for_each_entry(slot, &bus->slots, list)
5488 if (pci_slot_reset(slot, 0))
5489 goto bus_reset;
5490
5491 mutex_unlock(&pci_slot_mutex);
5492 return 0;
5493bus_reset:
5494 mutex_unlock(&pci_slot_mutex);
5495 return pci_bus_reset(bridge->subordinate, 0);
5496}
5497
5498/**
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005499 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5500 * @bus: PCI bus to probe
5501 *
5502 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5503 */
5504int pci_probe_reset_bus(struct pci_bus *bus)
5505{
5506 return pci_bus_reset(bus, 1);
5507}
5508EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5509
5510/**
5511 * __pci_reset_bus - Try to reset a PCI bus
5512 * @bus: top level PCI bus to reset
5513 *
5514 * Same as above except return -EAGAIN if the bus cannot be locked
5515 */
5516static int __pci_reset_bus(struct pci_bus *bus)
5517{
5518 int rc;
5519
5520 rc = pci_bus_reset(bus, 1);
5521 if (rc)
5522 return rc;
5523
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005524 if (pci_bus_trylock(bus)) {
David Brazdil0f672f62019-12-10 10:32:29 +00005525 pci_bus_save_and_disable_locked(bus);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005526 might_sleep();
5527 rc = pci_bridge_secondary_bus_reset(bus->self);
David Brazdil0f672f62019-12-10 10:32:29 +00005528 pci_bus_restore_locked(bus);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005529 pci_bus_unlock(bus);
5530 } else
5531 rc = -EAGAIN;
5532
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005533 return rc;
5534}
5535
5536/**
5537 * pci_reset_bus - Try to reset a PCI bus
5538 * @pdev: top level PCI device to reset via slot/bus
5539 *
5540 * Same as above except return -EAGAIN if the bus cannot be locked
5541 */
5542int pci_reset_bus(struct pci_dev *pdev)
5543{
5544 return (!pci_probe_reset_slot(pdev->slot)) ?
5545 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5546}
5547EXPORT_SYMBOL_GPL(pci_reset_bus);
5548
5549/**
5550 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5551 * @dev: PCI device to query
5552 *
David Brazdil0f672f62019-12-10 10:32:29 +00005553 * Returns mmrbc: maximum designed memory read count in bytes or
5554 * appropriate error value.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005555 */
5556int pcix_get_max_mmrbc(struct pci_dev *dev)
5557{
5558 int cap;
5559 u32 stat;
5560
5561 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5562 if (!cap)
5563 return -EINVAL;
5564
5565 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5566 return -EINVAL;
5567
5568 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5569}
5570EXPORT_SYMBOL(pcix_get_max_mmrbc);
5571
5572/**
5573 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5574 * @dev: PCI device to query
5575 *
David Brazdil0f672f62019-12-10 10:32:29 +00005576 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5577 * value.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005578 */
5579int pcix_get_mmrbc(struct pci_dev *dev)
5580{
5581 int cap;
5582 u16 cmd;
5583
5584 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5585 if (!cap)
5586 return -EINVAL;
5587
5588 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5589 return -EINVAL;
5590
5591 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5592}
5593EXPORT_SYMBOL(pcix_get_mmrbc);
5594
5595/**
5596 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5597 * @dev: PCI device to query
5598 * @mmrbc: maximum memory read count in bytes
5599 * valid values are 512, 1024, 2048, 4096
5600 *
David Brazdil0f672f62019-12-10 10:32:29 +00005601 * If possible sets maximum memory read byte count, some bridges have errata
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005602 * that prevent this.
5603 */
5604int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5605{
5606 int cap;
5607 u32 stat, v, o;
5608 u16 cmd;
5609
5610 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5611 return -EINVAL;
5612
5613 v = ffs(mmrbc) - 10;
5614
5615 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5616 if (!cap)
5617 return -EINVAL;
5618
5619 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5620 return -EINVAL;
5621
5622 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5623 return -E2BIG;
5624
5625 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5626 return -EINVAL;
5627
5628 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5629 if (o != v) {
5630 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5631 return -EIO;
5632
5633 cmd &= ~PCI_X_CMD_MAX_READ;
5634 cmd |= v << 2;
5635 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5636 return -EIO;
5637 }
5638 return 0;
5639}
5640EXPORT_SYMBOL(pcix_set_mmrbc);
5641
5642/**
5643 * pcie_get_readrq - get PCI Express read request size
5644 * @dev: PCI device to query
5645 *
David Brazdil0f672f62019-12-10 10:32:29 +00005646 * Returns maximum memory read request in bytes or appropriate error value.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005647 */
5648int pcie_get_readrq(struct pci_dev *dev)
5649{
5650 u16 ctl;
5651
5652 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5653
5654 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5655}
5656EXPORT_SYMBOL(pcie_get_readrq);
5657
5658/**
5659 * pcie_set_readrq - set PCI Express maximum memory read request
5660 * @dev: PCI device to query
5661 * @rq: maximum memory read count in bytes
5662 * valid values are 128, 256, 512, 1024, 2048, 4096
5663 *
5664 * If possible sets maximum memory read request in bytes
5665 */
5666int pcie_set_readrq(struct pci_dev *dev, int rq)
5667{
5668 u16 v;
5669
5670 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5671 return -EINVAL;
5672
5673 /*
David Brazdil0f672f62019-12-10 10:32:29 +00005674 * If using the "performance" PCIe config, we clamp the read rq
5675 * size to the max packet size to keep the host bridge from
5676 * generating requests larger than we can cope with.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005677 */
5678 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5679 int mps = pcie_get_mps(dev);
5680
5681 if (mps < rq)
5682 rq = mps;
5683 }
5684
5685 v = (ffs(rq) - 8) << 12;
5686
5687 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5688 PCI_EXP_DEVCTL_READRQ, v);
5689}
5690EXPORT_SYMBOL(pcie_set_readrq);
5691
5692/**
5693 * pcie_get_mps - get PCI Express maximum payload size
5694 * @dev: PCI device to query
5695 *
5696 * Returns maximum payload size in bytes
5697 */
5698int pcie_get_mps(struct pci_dev *dev)
5699{
5700 u16 ctl;
5701
5702 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5703
5704 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5705}
5706EXPORT_SYMBOL(pcie_get_mps);
5707
5708/**
5709 * pcie_set_mps - set PCI Express maximum payload size
5710 * @dev: PCI device to query
5711 * @mps: maximum payload size in bytes
5712 * valid values are 128, 256, 512, 1024, 2048, 4096
5713 *
5714 * If possible sets maximum payload size
5715 */
5716int pcie_set_mps(struct pci_dev *dev, int mps)
5717{
5718 u16 v;
5719
5720 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5721 return -EINVAL;
5722
5723 v = ffs(mps) - 8;
5724 if (v > dev->pcie_mpss)
5725 return -EINVAL;
5726 v <<= 5;
5727
5728 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5729 PCI_EXP_DEVCTL_PAYLOAD, v);
5730}
5731EXPORT_SYMBOL(pcie_set_mps);
5732
5733/**
5734 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5735 * device and its bandwidth limitation
5736 * @dev: PCI device to query
5737 * @limiting_dev: storage for device causing the bandwidth limitation
5738 * @speed: storage for speed of limiting device
5739 * @width: storage for width of limiting device
5740 *
5741 * Walk up the PCI device chain and find the point where the minimum
5742 * bandwidth is available. Return the bandwidth available there and (if
5743 * limiting_dev, speed, and width pointers are supplied) information about
5744 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5745 * raw bandwidth.
5746 */
5747u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5748 enum pci_bus_speed *speed,
5749 enum pcie_link_width *width)
5750{
5751 u16 lnksta;
5752 enum pci_bus_speed next_speed;
5753 enum pcie_link_width next_width;
5754 u32 bw, next_bw;
5755
5756 if (speed)
5757 *speed = PCI_SPEED_UNKNOWN;
5758 if (width)
5759 *width = PCIE_LNK_WIDTH_UNKNOWN;
5760
5761 bw = 0;
5762
5763 while (dev) {
5764 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5765
5766 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5767 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5768 PCI_EXP_LNKSTA_NLW_SHIFT;
5769
5770 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5771
5772 /* Check if current device limits the total bandwidth */
5773 if (!bw || next_bw <= bw) {
5774 bw = next_bw;
5775
5776 if (limiting_dev)
5777 *limiting_dev = dev;
5778 if (speed)
5779 *speed = next_speed;
5780 if (width)
5781 *width = next_width;
5782 }
5783
5784 dev = pci_upstream_bridge(dev);
5785 }
5786
5787 return bw;
5788}
5789EXPORT_SYMBOL(pcie_bandwidth_available);
5790
5791/**
5792 * pcie_get_speed_cap - query for the PCI device's link speed capability
5793 * @dev: PCI device to query
5794 *
5795 * Query the PCI device speed capability. Return the maximum link speed
5796 * supported by the device.
5797 */
5798enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5799{
5800 u32 lnkcap2, lnkcap;
5801
5802 /*
5803 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5804 * implementation note there recommends using the Supported Link
5805 * Speeds Vector in Link Capabilities 2 when supported.
5806 *
5807 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5808 * should use the Supported Link Speeds field in Link Capabilities,
5809 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5810 */
5811 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5812 if (lnkcap2) { /* PCIe r3.0-compliant */
David Brazdil0f672f62019-12-10 10:32:29 +00005813 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_32_0GB)
5814 return PCIE_SPEED_32_0GT;
5815 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005816 return PCIE_SPEED_16_0GT;
5817 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5818 return PCIE_SPEED_8_0GT;
5819 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5820 return PCIE_SPEED_5_0GT;
5821 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5822 return PCIE_SPEED_2_5GT;
5823 return PCI_SPEED_UNKNOWN;
5824 }
5825
5826 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5827 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5828 return PCIE_SPEED_5_0GT;
5829 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5830 return PCIE_SPEED_2_5GT;
5831
5832 return PCI_SPEED_UNKNOWN;
5833}
5834EXPORT_SYMBOL(pcie_get_speed_cap);
5835
5836/**
5837 * pcie_get_width_cap - query for the PCI device's link width capability
5838 * @dev: PCI device to query
5839 *
5840 * Query the PCI device width capability. Return the maximum link width
5841 * supported by the device.
5842 */
5843enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5844{
5845 u32 lnkcap;
5846
5847 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5848 if (lnkcap)
5849 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5850
5851 return PCIE_LNK_WIDTH_UNKNOWN;
5852}
5853EXPORT_SYMBOL(pcie_get_width_cap);
5854
5855/**
5856 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5857 * @dev: PCI device
5858 * @speed: storage for link speed
5859 * @width: storage for link width
5860 *
5861 * Calculate a PCI device's link bandwidth by querying for its link speed
5862 * and width, multiplying them, and applying encoding overhead. The result
5863 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5864 */
5865u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5866 enum pcie_link_width *width)
5867{
5868 *speed = pcie_get_speed_cap(dev);
5869 *width = pcie_get_width_cap(dev);
5870
5871 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5872 return 0;
5873
5874 return *width * PCIE_SPEED2MBS_ENC(*speed);
5875}
5876
5877/**
5878 * __pcie_print_link_status - Report the PCI device's link speed and width
5879 * @dev: PCI device to query
5880 * @verbose: Print info even when enough bandwidth is available
5881 *
5882 * If the available bandwidth at the device is less than the device is
5883 * capable of, report the device's maximum possible bandwidth and the
5884 * upstream link that limits its performance. If @verbose, always print
5885 * the available bandwidth, even if the device isn't constrained.
5886 */
5887void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5888{
5889 enum pcie_link_width width, width_cap;
5890 enum pci_bus_speed speed, speed_cap;
5891 struct pci_dev *limiting_dev = NULL;
5892 u32 bw_avail, bw_cap;
5893
5894 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5895 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5896
5897 if (bw_avail >= bw_cap && verbose)
5898 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5899 bw_cap / 1000, bw_cap % 1000,
5900 PCIE_SPEED2STR(speed_cap), width_cap);
5901 else if (bw_avail < bw_cap)
5902 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5903 bw_avail / 1000, bw_avail % 1000,
5904 PCIE_SPEED2STR(speed), width,
5905 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5906 bw_cap / 1000, bw_cap % 1000,
5907 PCIE_SPEED2STR(speed_cap), width_cap);
5908}
5909
5910/**
5911 * pcie_print_link_status - Report the PCI device's link speed and width
5912 * @dev: PCI device to query
5913 *
5914 * Report the available bandwidth at the device.
5915 */
5916void pcie_print_link_status(struct pci_dev *dev)
5917{
5918 __pcie_print_link_status(dev, true);
5919}
5920EXPORT_SYMBOL(pcie_print_link_status);
5921
5922/**
5923 * pci_select_bars - Make BAR mask from the type of resource
5924 * @dev: the PCI device for which BAR mask is made
5925 * @flags: resource type mask to be selected
5926 *
5927 * This helper routine makes bar mask from the type of resource.
5928 */
5929int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5930{
5931 int i, bars = 0;
5932 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5933 if (pci_resource_flags(dev, i) & flags)
5934 bars |= (1 << i);
5935 return bars;
5936}
5937EXPORT_SYMBOL(pci_select_bars);
5938
5939/* Some architectures require additional programming to enable VGA */
5940static arch_set_vga_state_t arch_set_vga_state;
5941
5942void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5943{
5944 arch_set_vga_state = func; /* NULL disables */
5945}
5946
5947static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5948 unsigned int command_bits, u32 flags)
5949{
5950 if (arch_set_vga_state)
5951 return arch_set_vga_state(dev, decode, command_bits,
5952 flags);
5953 return 0;
5954}
5955
5956/**
5957 * pci_set_vga_state - set VGA decode state on device and parents if requested
5958 * @dev: the PCI device
5959 * @decode: true = enable decoding, false = disable decoding
5960 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5961 * @flags: traverse ancestors and change bridges
5962 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5963 */
5964int pci_set_vga_state(struct pci_dev *dev, bool decode,
5965 unsigned int command_bits, u32 flags)
5966{
5967 struct pci_bus *bus;
5968 struct pci_dev *bridge;
5969 u16 cmd;
5970 int rc;
5971
5972 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5973
5974 /* ARCH specific VGA enables */
5975 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5976 if (rc)
5977 return rc;
5978
5979 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5980 pci_read_config_word(dev, PCI_COMMAND, &cmd);
5981 if (decode == true)
5982 cmd |= command_bits;
5983 else
5984 cmd &= ~command_bits;
5985 pci_write_config_word(dev, PCI_COMMAND, cmd);
5986 }
5987
5988 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5989 return 0;
5990
5991 bus = dev->bus;
5992 while (bus) {
5993 bridge = bus->self;
5994 if (bridge) {
5995 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5996 &cmd);
5997 if (decode == true)
5998 cmd |= PCI_BRIDGE_CTL_VGA;
5999 else
6000 cmd &= ~PCI_BRIDGE_CTL_VGA;
6001 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6002 cmd);
6003 }
6004 bus = bus->parent;
6005 }
6006 return 0;
6007}
6008
Olivier Deprez0e641232021-09-23 10:07:05 +02006009#ifdef CONFIG_ACPI
6010bool pci_pr3_present(struct pci_dev *pdev)
6011{
6012 struct acpi_device *adev;
6013
6014 if (acpi_disabled)
6015 return false;
6016
6017 adev = ACPI_COMPANION(&pdev->dev);
6018 if (!adev)
6019 return false;
6020
6021 return adev->power.flags.power_resources &&
6022 acpi_has_method(adev->handle, "_PR3");
6023}
6024EXPORT_SYMBOL_GPL(pci_pr3_present);
6025#endif
6026
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006027/**
6028 * pci_add_dma_alias - Add a DMA devfn alias for a device
6029 * @dev: the PCI device for which alias is added
Olivier Deprez0e641232021-09-23 10:07:05 +02006030 * @devfn_from: alias slot and function
6031 * @nr_devfns: number of subsequent devfns to alias
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006032 *
6033 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6034 * which is used to program permissible bus-devfn source addresses for DMA
6035 * requests in an IOMMU. These aliases factor into IOMMU group creation
6036 * and are useful for devices generating DMA requests beyond or different
6037 * from their logical bus-devfn. Examples include device quirks where the
6038 * device simply uses the wrong devfn, as well as non-transparent bridges
6039 * where the alias may be a proxy for devices in another domain.
6040 *
6041 * IOMMU group creation is performed during device discovery or addition,
6042 * prior to any potential DMA mapping and therefore prior to driver probing
6043 * (especially for userspace assigned devices where IOMMU group definition
6044 * cannot be left as a userspace activity). DMA aliases should therefore
6045 * be configured via quirks, such as the PCI fixup header quirk.
6046 */
Olivier Deprez0e641232021-09-23 10:07:05 +02006047void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006048{
Olivier Deprez0e641232021-09-23 10:07:05 +02006049 int devfn_to;
6050
6051 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6052 devfn_to = devfn_from + nr_devfns - 1;
6053
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006054 if (!dev->dma_alias_mask)
Olivier Deprez0e641232021-09-23 10:07:05 +02006055 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006056 if (!dev->dma_alias_mask) {
6057 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6058 return;
6059 }
6060
Olivier Deprez0e641232021-09-23 10:07:05 +02006061 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6062
6063 if (nr_devfns == 1)
6064 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6065 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6066 else if (nr_devfns > 1)
6067 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6068 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6069 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006070}
6071
6072bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6073{
6074 return (dev1->dma_alias_mask &&
6075 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6076 (dev2->dma_alias_mask &&
6077 test_bit(dev1->devfn, dev2->dma_alias_mask));
6078}
6079
6080bool pci_device_is_present(struct pci_dev *pdev)
6081{
6082 u32 v;
6083
6084 if (pci_dev_is_disconnected(pdev))
6085 return false;
6086 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6087}
6088EXPORT_SYMBOL_GPL(pci_device_is_present);
6089
6090void pci_ignore_hotplug(struct pci_dev *dev)
6091{
6092 struct pci_dev *bridge = dev->bus->self;
6093
6094 dev->ignore_hotplug = 1;
6095 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6096 if (bridge)
6097 bridge->ignore_hotplug = 1;
6098}
6099EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6100
6101resource_size_t __weak pcibios_default_alignment(void)
6102{
6103 return 0;
6104}
6105
David Brazdil0f672f62019-12-10 10:32:29 +00006106/*
6107 * Arches that don't want to expose struct resource to userland as-is in
6108 * sysfs and /proc can implement their own pci_resource_to_user().
6109 */
6110void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6111 const struct resource *rsrc,
6112 resource_size_t *start, resource_size_t *end)
6113{
6114 *start = rsrc->start;
6115 *end = rsrc->end;
6116}
6117
6118static char *resource_alignment_param;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006119static DEFINE_SPINLOCK(resource_alignment_lock);
6120
6121/**
6122 * pci_specified_resource_alignment - get resource alignment specified by user.
6123 * @dev: the PCI device to get
6124 * @resize: whether or not to change resources' size when reassigning alignment
6125 *
6126 * RETURNS: Resource alignment if it is specified.
6127 * Zero if it is not specified.
6128 */
6129static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6130 bool *resize)
6131{
6132 int align_order, count;
6133 resource_size_t align = pcibios_default_alignment();
6134 const char *p;
6135 int ret;
6136
6137 spin_lock(&resource_alignment_lock);
6138 p = resource_alignment_param;
David Brazdil0f672f62019-12-10 10:32:29 +00006139 if (!p || !*p)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006140 goto out;
6141 if (pci_has_flag(PCI_PROBE_ONLY)) {
6142 align = 0;
6143 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6144 goto out;
6145 }
6146
6147 while (*p) {
6148 count = 0;
6149 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
Olivier Deprez0e641232021-09-23 10:07:05 +02006150 p[count] == '@') {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006151 p += count + 1;
Olivier Deprez0e641232021-09-23 10:07:05 +02006152 if (align_order > 63) {
6153 pr_err("PCI: Invalid requested alignment (order %d)\n",
6154 align_order);
6155 align_order = PAGE_SHIFT;
6156 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006157 } else {
Olivier Deprez0e641232021-09-23 10:07:05 +02006158 align_order = PAGE_SHIFT;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006159 }
6160
6161 ret = pci_dev_str_match(dev, p, &p);
6162 if (ret == 1) {
6163 *resize = true;
Olivier Deprez0e641232021-09-23 10:07:05 +02006164 align = 1ULL << align_order;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006165 break;
6166 } else if (ret < 0) {
6167 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6168 p);
6169 break;
6170 }
6171
6172 if (*p != ';' && *p != ',') {
6173 /* End of param or invalid format */
6174 break;
6175 }
6176 p++;
6177 }
6178out:
6179 spin_unlock(&resource_alignment_lock);
6180 return align;
6181}
6182
6183static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6184 resource_size_t align, bool resize)
6185{
6186 struct resource *r = &dev->resource[bar];
6187 resource_size_t size;
6188
6189 if (!(r->flags & IORESOURCE_MEM))
6190 return;
6191
6192 if (r->flags & IORESOURCE_PCI_FIXED) {
6193 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6194 bar, r, (unsigned long long)align);
6195 return;
6196 }
6197
6198 size = resource_size(r);
6199 if (size >= align)
6200 return;
6201
6202 /*
6203 * Increase the alignment of the resource. There are two ways we
6204 * can do this:
6205 *
6206 * 1) Increase the size of the resource. BARs are aligned on their
6207 * size, so when we reallocate space for this resource, we'll
6208 * allocate it with the larger alignment. This also prevents
6209 * assignment of any other BARs inside the alignment region, so
6210 * if we're requesting page alignment, this means no other BARs
6211 * will share the page.
6212 *
6213 * The disadvantage is that this makes the resource larger than
6214 * the hardware BAR, which may break drivers that compute things
6215 * based on the resource size, e.g., to find registers at a
6216 * fixed offset before the end of the BAR.
6217 *
6218 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6219 * set r->start to the desired alignment. By itself this
6220 * doesn't prevent other BARs being put inside the alignment
6221 * region, but if we realign *every* resource of every device in
6222 * the system, none of them will share an alignment region.
6223 *
6224 * When the user has requested alignment for only some devices via
6225 * the "pci=resource_alignment" argument, "resize" is true and we
6226 * use the first method. Otherwise we assume we're aligning all
6227 * devices and we use the second.
6228 */
6229
6230 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6231 bar, r, (unsigned long long)align);
6232
6233 if (resize) {
6234 r->start = 0;
6235 r->end = align - 1;
6236 } else {
6237 r->flags &= ~IORESOURCE_SIZEALIGN;
6238 r->flags |= IORESOURCE_STARTALIGN;
6239 r->start = align;
6240 r->end = r->start + size - 1;
6241 }
6242 r->flags |= IORESOURCE_UNSET;
6243}
6244
6245/*
6246 * This function disables memory decoding and releases memory resources
6247 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6248 * It also rounds up size to specified alignment.
6249 * Later on, the kernel will assign page-aligned memory resource back
6250 * to the device.
6251 */
6252void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6253{
6254 int i;
6255 struct resource *r;
6256 resource_size_t align;
6257 u16 command;
6258 bool resize = false;
6259
6260 /*
6261 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6262 * 3.4.1.11. Their resources are allocated from the space
6263 * described by the VF BARx register in the PF's SR-IOV capability.
6264 * We can't influence their alignment here.
6265 */
6266 if (dev->is_virtfn)
6267 return;
6268
6269 /* check if specified PCI is target device to reassign */
6270 align = pci_specified_resource_alignment(dev, &resize);
6271 if (!align)
6272 return;
6273
6274 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6275 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6276 pci_warn(dev, "Can't reassign resources to host bridge\n");
6277 return;
6278 }
6279
6280 pci_read_config_word(dev, PCI_COMMAND, &command);
6281 command &= ~PCI_COMMAND_MEMORY;
6282 pci_write_config_word(dev, PCI_COMMAND, command);
6283
6284 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6285 pci_request_resource_alignment(dev, i, align, resize);
6286
6287 /*
6288 * Need to disable bridge's resource window,
6289 * to enable the kernel to reassign new resource
6290 * window later on.
6291 */
David Brazdil0f672f62019-12-10 10:32:29 +00006292 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006293 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6294 r = &dev->resource[i];
6295 if (!(r->flags & IORESOURCE_MEM))
6296 continue;
6297 r->flags |= IORESOURCE_UNSET;
6298 r->end = resource_size(r) - 1;
6299 r->start = 0;
6300 }
6301 pci_disable_bridge_window(dev);
6302 }
6303}
6304
David Brazdil0f672f62019-12-10 10:32:29 +00006305static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006306{
David Brazdil0f672f62019-12-10 10:32:29 +00006307 size_t count = 0;
6308
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006309 spin_lock(&resource_alignment_lock);
David Brazdil0f672f62019-12-10 10:32:29 +00006310 if (resource_alignment_param)
6311 count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006312 spin_unlock(&resource_alignment_lock);
David Brazdil0f672f62019-12-10 10:32:29 +00006313
6314 /*
6315 * When set by the command line, resource_alignment_param will not
6316 * have a trailing line feed, which is ugly. So conditionally add
6317 * it here.
6318 */
6319 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6320 buf[count - 1] = '\n';
6321 buf[count++] = 0;
6322 }
6323
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006324 return count;
6325}
6326
David Brazdil0f672f62019-12-10 10:32:29 +00006327static ssize_t resource_alignment_store(struct bus_type *bus,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006328 const char *buf, size_t count)
6329{
David Brazdil0f672f62019-12-10 10:32:29 +00006330 char *param = kstrndup(buf, count, GFP_KERNEL);
6331
6332 if (!param)
6333 return -ENOMEM;
6334
6335 spin_lock(&resource_alignment_lock);
6336 kfree(resource_alignment_param);
6337 resource_alignment_param = param;
6338 spin_unlock(&resource_alignment_lock);
6339 return count;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006340}
6341
David Brazdil0f672f62019-12-10 10:32:29 +00006342static BUS_ATTR_RW(resource_alignment);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006343
6344static int __init pci_resource_alignment_sysfs_init(void)
6345{
6346 return bus_create_file(&pci_bus_type,
6347 &bus_attr_resource_alignment);
6348}
6349late_initcall(pci_resource_alignment_sysfs_init);
6350
6351static void pci_no_domains(void)
6352{
6353#ifdef CONFIG_PCI_DOMAINS
6354 pci_domains_supported = 0;
6355#endif
6356}
6357
6358#ifdef CONFIG_PCI_DOMAINS_GENERIC
6359static atomic_t __domain_nr = ATOMIC_INIT(-1);
6360
6361static int pci_get_new_domain_nr(void)
6362{
6363 return atomic_inc_return(&__domain_nr);
6364}
6365
6366static int of_pci_bus_find_domain_nr(struct device *parent)
6367{
6368 static int use_dt_domains = -1;
6369 int domain = -1;
6370
6371 if (parent)
6372 domain = of_get_pci_domain_nr(parent->of_node);
David Brazdil0f672f62019-12-10 10:32:29 +00006373
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006374 /*
6375 * Check DT domain and use_dt_domains values.
6376 *
6377 * If DT domain property is valid (domain >= 0) and
6378 * use_dt_domains != 0, the DT assignment is valid since this means
6379 * we have not previously allocated a domain number by using
6380 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6381 * 1, to indicate that we have just assigned a domain number from
6382 * DT.
6383 *
6384 * If DT domain property value is not valid (ie domain < 0), and we
6385 * have not previously assigned a domain number from DT
6386 * (use_dt_domains != 1) we should assign a domain number by
6387 * using the:
6388 *
6389 * pci_get_new_domain_nr()
6390 *
6391 * API and update the use_dt_domains value to keep track of method we
6392 * are using to assign domain numbers (use_dt_domains = 0).
6393 *
6394 * All other combinations imply we have a platform that is trying
6395 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6396 * which is a recipe for domain mishandling and it is prevented by
6397 * invalidating the domain value (domain = -1) and printing a
6398 * corresponding error.
6399 */
6400 if (domain >= 0 && use_dt_domains) {
6401 use_dt_domains = 1;
6402 } else if (domain < 0 && use_dt_domains != 1) {
6403 use_dt_domains = 0;
6404 domain = pci_get_new_domain_nr();
6405 } else {
6406 if (parent)
6407 pr_err("Node %pOF has ", parent->of_node);
6408 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6409 domain = -1;
6410 }
6411
6412 return domain;
6413}
6414
6415int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6416{
6417 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6418 acpi_pci_bus_find_domain_nr(bus);
6419}
6420#endif
6421
6422/**
6423 * pci_ext_cfg_avail - can we access extended PCI config space?
6424 *
6425 * Returns 1 if we can access PCI extended config space (offsets
6426 * greater than 0xff). This is the default implementation. Architecture
6427 * implementations can override this.
6428 */
6429int __weak pci_ext_cfg_avail(void)
6430{
6431 return 1;
6432}
6433
6434void __weak pci_fixup_cardbus(struct pci_bus *bus)
6435{
6436}
6437EXPORT_SYMBOL(pci_fixup_cardbus);
6438
6439static int __init pci_setup(char *str)
6440{
6441 while (str) {
6442 char *k = strchr(str, ',');
6443 if (k)
6444 *k++ = 0;
6445 if (*str && (str = pcibios_setup(str)) && *str) {
6446 if (!strcmp(str, "nomsi")) {
6447 pci_no_msi();
6448 } else if (!strncmp(str, "noats", 5)) {
6449 pr_info("PCIe: ATS is disabled\n");
6450 pcie_ats_disabled = true;
6451 } else if (!strcmp(str, "noaer")) {
6452 pci_no_aer();
6453 } else if (!strcmp(str, "earlydump")) {
6454 pci_early_dump = true;
6455 } else if (!strncmp(str, "realloc=", 8)) {
6456 pci_realloc_get_opt(str + 8);
6457 } else if (!strncmp(str, "realloc", 7)) {
6458 pci_realloc_get_opt("on");
6459 } else if (!strcmp(str, "nodomains")) {
6460 pci_no_domains();
6461 } else if (!strncmp(str, "noari", 5)) {
6462 pcie_ari_disabled = true;
6463 } else if (!strncmp(str, "cbiosize=", 9)) {
6464 pci_cardbus_io_size = memparse(str + 9, &str);
6465 } else if (!strncmp(str, "cbmemsize=", 10)) {
6466 pci_cardbus_mem_size = memparse(str + 10, &str);
6467 } else if (!strncmp(str, "resource_alignment=", 19)) {
David Brazdil0f672f62019-12-10 10:32:29 +00006468 resource_alignment_param = str + 19;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006469 } else if (!strncmp(str, "ecrc=", 5)) {
6470 pcie_ecrc_get_policy(str + 5);
6471 } else if (!strncmp(str, "hpiosize=", 9)) {
6472 pci_hotplug_io_size = memparse(str + 9, &str);
6473 } else if (!strncmp(str, "hpmemsize=", 10)) {
6474 pci_hotplug_mem_size = memparse(str + 10, &str);
6475 } else if (!strncmp(str, "hpbussize=", 10)) {
6476 pci_hotplug_bus_size =
6477 simple_strtoul(str + 10, &str, 0);
6478 if (pci_hotplug_bus_size > 0xff)
6479 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6480 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6481 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6482 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6483 pcie_bus_config = PCIE_BUS_SAFE;
6484 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6485 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6486 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6487 pcie_bus_config = PCIE_BUS_PEER2PEER;
6488 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6489 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6490 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6491 disable_acs_redir_param = str + 18;
6492 } else {
David Brazdil0f672f62019-12-10 10:32:29 +00006493 pr_err("PCI: Unknown option `%s'\n", str);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006494 }
6495 }
6496 str = k;
6497 }
6498 return 0;
6499}
6500early_param("pci", pci_setup);
David Brazdil0f672f62019-12-10 10:32:29 +00006501
6502/*
6503 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6504 * in pci_setup(), above, to point to data in the __initdata section which
6505 * will be freed after the init sequence is complete. We can't allocate memory
6506 * in pci_setup() because some architectures do not have any memory allocation
6507 * service available during an early_param() call. So we allocate memory and
6508 * copy the variable here before the init section is freed.
6509 *
6510 */
6511static int __init pci_realloc_setup_params(void)
6512{
6513 resource_alignment_param = kstrdup(resource_alignment_param,
6514 GFP_KERNEL);
6515 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6516
6517 return 0;
6518}
6519pure_initcall(pci_realloc_setup_params);