blob: af296b6fcbbdc3270e124c3f30ee2fd2233b45b0 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-only
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * EMIF driver
4 *
5 * Copyright (C) 2012 Texas Instruments, Inc.
6 *
7 * Aneesh V <aneesh@ti.com>
8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00009 */
10#include <linux/err.h>
11#include <linux/kernel.h>
12#include <linux/reboot.h>
13#include <linux/platform_data/emif_plat.h>
14#include <linux/io.h>
15#include <linux/device.h>
16#include <linux/platform_device.h>
17#include <linux/interrupt.h>
18#include <linux/slab.h>
19#include <linux/of.h>
20#include <linux/debugfs.h>
21#include <linux/seq_file.h>
22#include <linux/module.h>
23#include <linux/list.h>
24#include <linux/spinlock.h>
25#include <linux/pm.h>
David Brazdil0f672f62019-12-10 10:32:29 +000026
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000027#include "emif.h"
David Brazdil0f672f62019-12-10 10:32:29 +000028#include "jedec_ddr.h"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000029#include "of_memory.h"
30
31/**
32 * struct emif_data - Per device static data for driver's use
33 * @duplicate: Whether the DDR devices attached to this EMIF
34 * instance are exactly same as that on EMIF1. In
35 * this case we can save some memory and processing
36 * @temperature_level: Maximum temperature of LPDDR2 devices attached
37 * to this EMIF - read from MR4 register. If there
38 * are two devices attached to this EMIF, this
39 * value is the maximum of the two temperature
40 * levels.
41 * @node: node in the device list
42 * @base: base address of memory-mapped IO registers.
43 * @dev: device pointer.
44 * @addressing table with addressing information from the spec
45 * @regs_cache: An array of 'struct emif_regs' that stores
46 * calculated register values for different
47 * frequencies, to avoid re-calculating them on
48 * each DVFS transition.
49 * @curr_regs: The set of register values used in the last
50 * frequency change (i.e. corresponding to the
51 * frequency in effect at the moment)
52 * @plat_data: Pointer to saved platform data.
53 * @debugfs_root: dentry to the root folder for EMIF in debugfs
54 * @np_ddr: Pointer to ddr device tree node
55 */
56struct emif_data {
57 u8 duplicate;
58 u8 temperature_level;
59 u8 lpmode;
60 struct list_head node;
61 unsigned long irq_state;
62 void __iomem *base;
63 struct device *dev;
64 const struct lpddr2_addressing *addressing;
65 struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
66 struct emif_regs *curr_regs;
67 struct emif_platform_data *plat_data;
68 struct dentry *debugfs_root;
69 struct device_node *np_ddr;
70};
71
72static struct emif_data *emif1;
73static spinlock_t emif_lock;
74static unsigned long irq_state;
75static u32 t_ck; /* DDR clock period in ps */
76static LIST_HEAD(device_list);
77
78#ifdef CONFIG_DEBUG_FS
79static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
80 struct emif_regs *regs)
81{
82 u32 type = emif->plat_data->device_info->type;
83 u32 ip_rev = emif->plat_data->ip_rev;
84
85 seq_printf(s, "EMIF register cache dump for %dMHz\n",
86 regs->freq/1000000);
87
88 seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
89 seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
90 seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
91 seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
92
93 if (ip_rev == EMIF_4D) {
94 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
95 regs->read_idle_ctrl_shdw_normal);
96 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
97 regs->read_idle_ctrl_shdw_volt_ramp);
98 } else if (ip_rev == EMIF_4D5) {
99 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
100 regs->dll_calib_ctrl_shdw_normal);
101 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
102 regs->dll_calib_ctrl_shdw_volt_ramp);
103 }
104
105 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
106 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
107 regs->ref_ctrl_shdw_derated);
108 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
109 regs->sdram_tim1_shdw_derated);
110 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
111 regs->sdram_tim3_shdw_derated);
112 }
113}
114
115static int emif_regdump_show(struct seq_file *s, void *unused)
116{
117 struct emif_data *emif = s->private;
118 struct emif_regs **regs_cache;
119 int i;
120
121 if (emif->duplicate)
122 regs_cache = emif1->regs_cache;
123 else
124 regs_cache = emif->regs_cache;
125
126 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
127 do_emif_regdump_show(s, emif, regs_cache[i]);
128 seq_putc(s, '\n');
129 }
130
131 return 0;
132}
133
134static int emif_regdump_open(struct inode *inode, struct file *file)
135{
136 return single_open(file, emif_regdump_show, inode->i_private);
137}
138
139static const struct file_operations emif_regdump_fops = {
140 .open = emif_regdump_open,
141 .read = seq_read,
142 .release = single_release,
143};
144
145static int emif_mr4_show(struct seq_file *s, void *unused)
146{
147 struct emif_data *emif = s->private;
148
149 seq_printf(s, "MR4=%d\n", emif->temperature_level);
150 return 0;
151}
152
153static int emif_mr4_open(struct inode *inode, struct file *file)
154{
155 return single_open(file, emif_mr4_show, inode->i_private);
156}
157
158static const struct file_operations emif_mr4_fops = {
159 .open = emif_mr4_open,
160 .read = seq_read,
161 .release = single_release,
162};
163
164static int __init_or_module emif_debugfs_init(struct emif_data *emif)
165{
Olivier Deprez0e641232021-09-23 10:07:05 +0200166 emif->debugfs_root = debugfs_create_dir(dev_name(emif->dev), NULL);
167 debugfs_create_file("regcache_dump", S_IRUGO, emif->debugfs_root, emif,
168 &emif_regdump_fops);
169 debugfs_create_file("mr4", S_IRUGO, emif->debugfs_root, emif,
170 &emif_mr4_fops);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000171 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000172}
173
174static void __exit emif_debugfs_exit(struct emif_data *emif)
175{
176 debugfs_remove_recursive(emif->debugfs_root);
177 emif->debugfs_root = NULL;
178}
179#else
180static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
181{
182 return 0;
183}
184
185static inline void __exit emif_debugfs_exit(struct emif_data *emif)
186{
187}
188#endif
189
190/*
191 * Calculate the period of DDR clock from frequency value
192 */
193static void set_ddr_clk_period(u32 freq)
194{
195 /* Divide 10^12 by frequency to get period in ps */
196 t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
197}
198
199/*
200 * Get bus width used by EMIF. Note that this may be different from the
201 * bus width of the DDR devices used. For instance two 16-bit DDR devices
202 * may be connected to a given CS of EMIF. In this case bus width as far
203 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
204 */
205static u32 get_emif_bus_width(struct emif_data *emif)
206{
207 u32 width;
208 void __iomem *base = emif->base;
209
210 width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
211 >> NARROW_MODE_SHIFT;
212 width = width == 0 ? 32 : 16;
213
214 return width;
215}
216
217/*
218 * Get the CL from SDRAM_CONFIG register
219 */
220static u32 get_cl(struct emif_data *emif)
221{
222 u32 cl;
223 void __iomem *base = emif->base;
224
225 cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
226
227 return cl;
228}
229
230static void set_lpmode(struct emif_data *emif, u8 lpmode)
231{
232 u32 temp;
233 void __iomem *base = emif->base;
234
235 /*
236 * Workaround for errata i743 - LPDDR2 Power-Down State is Not
237 * Efficient
238 *
239 * i743 DESCRIPTION:
240 * The EMIF supports power-down state for low power. The EMIF
241 * automatically puts the SDRAM into power-down after the memory is
242 * not accessed for a defined number of cycles and the
243 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
244 * As the EMIF supports automatic output impedance calibration, a ZQ
245 * calibration long command is issued every time it exits active
246 * power-down and precharge power-down modes. The EMIF waits and
247 * blocks any other command during this calibration.
248 * The EMIF does not allow selective disabling of ZQ calibration upon
249 * exit of power-down mode. Due to very short periods of power-down
250 * cycles, ZQ calibration overhead creates bandwidth issues and
251 * increases overall system power consumption. On the other hand,
252 * issuing ZQ calibration long commands when exiting self-refresh is
253 * still required.
254 *
255 * WORKAROUND
256 * Because there is no power consumption benefit of the power-down due
257 * to the calibration and there is a performance risk, the guideline
258 * is to not allow power-down state and, therefore, to not have set
259 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
260 */
261 if ((emif->plat_data->ip_rev == EMIF_4D) &&
262 (EMIF_LP_MODE_PWR_DN == lpmode)) {
263 WARN_ONCE(1,
264 "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by"
265 "erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
266 /* rollback LP_MODE to Self-refresh mode */
267 lpmode = EMIF_LP_MODE_SELF_REFRESH;
268 }
269
270 temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
271 temp &= ~LP_MODE_MASK;
272 temp |= (lpmode << LP_MODE_SHIFT);
273 writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
274}
275
276static void do_freq_update(void)
277{
278 struct emif_data *emif;
279
280 /*
281 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
282 *
283 * i728 DESCRIPTION:
284 * The EMIF automatically puts the SDRAM into self-refresh mode
285 * after the EMIF has not performed accesses during
286 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
287 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
288 * to 0x2. If during a small window the following three events
289 * occur:
290 * - The SR_TIMING counter expires
291 * - And frequency change is requested
292 * - And OCP access is requested
293 * Then it causes instable clock on the DDR interface.
294 *
295 * WORKAROUND
296 * To avoid the occurrence of the three events, the workaround
297 * is to disable the self-refresh when requesting a frequency
298 * change. Before requesting a frequency change the software must
299 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
300 * frequency change has been done, the software can reprogram
301 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
302 */
303 list_for_each_entry(emif, &device_list, node) {
304 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
305 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
306 }
307
308 /*
309 * TODO: Do FREQ_UPDATE here when an API
310 * is available for this as part of the new
311 * clock framework
312 */
313
314 list_for_each_entry(emif, &device_list, node) {
315 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
316 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
317 }
318}
319
320/* Find addressing table entry based on the device's type and density */
321static const struct lpddr2_addressing *get_addressing_table(
322 const struct ddr_device_info *device_info)
323{
324 u32 index, type, density;
325
326 type = device_info->type;
327 density = device_info->density;
328
329 switch (type) {
330 case DDR_TYPE_LPDDR2_S4:
331 index = density - 1;
332 break;
333 case DDR_TYPE_LPDDR2_S2:
334 switch (density) {
335 case DDR_DENSITY_1Gb:
336 case DDR_DENSITY_2Gb:
337 index = density + 3;
338 break;
339 default:
340 index = density - 1;
341 }
342 break;
343 default:
344 return NULL;
345 }
346
347 return &lpddr2_jedec_addressing_table[index];
348}
349
350/*
351 * Find the the right timing table from the array of timing
352 * tables of the device using DDR clock frequency
353 */
354static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
355 u32 freq)
356{
357 u32 i, min, max, freq_nearest;
358 const struct lpddr2_timings *timings = NULL;
359 const struct lpddr2_timings *timings_arr = emif->plat_data->timings;
360 struct device *dev = emif->dev;
361
362 /* Start with a very high frequency - 1GHz */
363 freq_nearest = 1000000000;
364
365 /*
366 * Find the timings table such that:
367 * 1. the frequency range covers the required frequency(safe) AND
368 * 2. the max_freq is closest to the required frequency(optimal)
369 */
370 for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
371 max = timings_arr[i].max_freq;
372 min = timings_arr[i].min_freq;
373 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
374 freq_nearest = max;
375 timings = &timings_arr[i];
376 }
377 }
378
379 if (!timings)
380 dev_err(dev, "%s: couldn't find timings for - %dHz\n",
381 __func__, freq);
382
383 dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
384 __func__, freq, freq_nearest);
385
386 return timings;
387}
388
389static u32 get_sdram_ref_ctrl_shdw(u32 freq,
390 const struct lpddr2_addressing *addressing)
391{
392 u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
393
394 /* Scale down frequency and t_refi to avoid overflow */
395 freq_khz = freq / 1000;
396 t_refi = addressing->tREFI_ns / 100;
397
398 /*
399 * refresh rate to be set is 'tREFI(in us) * freq in MHz
400 * division by 10000 to account for change in units
401 */
402 val = t_refi * freq_khz / 10000;
403 ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
404
405 return ref_ctrl_shdw;
406}
407
408static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
409 const struct lpddr2_min_tck *min_tck,
410 const struct lpddr2_addressing *addressing)
411{
412 u32 tim1 = 0, val = 0;
413
414 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
415 tim1 |= val << T_WTR_SHIFT;
416
417 if (addressing->num_banks == B8)
418 val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
419 else
420 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
421 tim1 |= (val - 1) << T_RRD_SHIFT;
422
423 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
424 tim1 |= val << T_RC_SHIFT;
425
426 val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
427 tim1 |= (val - 1) << T_RAS_SHIFT;
428
429 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
430 tim1 |= val << T_WR_SHIFT;
431
432 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
433 tim1 |= val << T_RCD_SHIFT;
434
435 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
436 tim1 |= val << T_RP_SHIFT;
437
438 return tim1;
439}
440
441static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
442 const struct lpddr2_min_tck *min_tck,
443 const struct lpddr2_addressing *addressing)
444{
445 u32 tim1 = 0, val = 0;
446
447 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
448 tim1 = val << T_WTR_SHIFT;
449
450 /*
451 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
452 * to tFAW for de-rating
453 */
454 if (addressing->num_banks == B8) {
455 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
456 } else {
457 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
458 val = max(min_tck->tRRD, val) - 1;
459 }
460 tim1 |= val << T_RRD_SHIFT;
461
462 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
463 tim1 |= (val - 1) << T_RC_SHIFT;
464
465 val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
466 val = max(min_tck->tRASmin, val) - 1;
467 tim1 |= val << T_RAS_SHIFT;
468
469 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
470 tim1 |= val << T_WR_SHIFT;
471
472 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
473 tim1 |= (val - 1) << T_RCD_SHIFT;
474
475 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
476 tim1 |= (val - 1) << T_RP_SHIFT;
477
478 return tim1;
479}
480
481static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
482 const struct lpddr2_min_tck *min_tck,
483 const struct lpddr2_addressing *addressing,
484 u32 type)
485{
486 u32 tim2 = 0, val = 0;
487
488 val = min_tck->tCKE - 1;
489 tim2 |= val << T_CKE_SHIFT;
490
491 val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
492 tim2 |= val << T_RTP_SHIFT;
493
494 /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
495 val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
496 tim2 |= val << T_XSNR_SHIFT;
497
498 /* XSRD same as XSNR for LPDDR2 */
499 tim2 |= val << T_XSRD_SHIFT;
500
501 val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
502 tim2 |= val << T_XP_SHIFT;
503
504 return tim2;
505}
506
507static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
508 const struct lpddr2_min_tck *min_tck,
509 const struct lpddr2_addressing *addressing,
510 u32 type, u32 ip_rev, u32 derated)
511{
512 u32 tim3 = 0, val = 0, t_dqsck;
513
514 val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
515 val = val > 0xF ? 0xF : val;
516 tim3 |= val << T_RAS_MAX_SHIFT;
517
518 val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
519 tim3 |= val << T_RFC_SHIFT;
520
521 t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
522 timings->tDQSCK_max_derated : timings->tDQSCK_max;
523 if (ip_rev == EMIF_4D5)
524 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
525 else
526 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
527
528 tim3 |= val << T_TDQSCKMAX_SHIFT;
529
530 val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
531 tim3 |= val << ZQ_ZQCS_SHIFT;
532
533 val = DIV_ROUND_UP(timings->tCKESR, t_ck);
534 val = max(min_tck->tCKESR, val) - 1;
535 tim3 |= val << T_CKESR_SHIFT;
536
537 if (ip_rev == EMIF_4D5) {
538 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
539
540 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
541 tim3 |= val << T_PDLL_UL_SHIFT;
542 }
543
544 return tim3;
545}
546
547static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
548 bool cs1_used, bool cal_resistors_per_cs)
549{
550 u32 zq = 0, val = 0;
551
552 val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
553 zq |= val << ZQ_REFINTERVAL_SHIFT;
554
555 val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
556 zq |= val << ZQ_ZQCL_MULT_SHIFT;
557
558 val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
559 zq |= val << ZQ_ZQINIT_MULT_SHIFT;
560
561 zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
562
563 if (cal_resistors_per_cs)
564 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
565 else
566 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
567
568 zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
569
570 val = cs1_used ? 1 : 0;
571 zq |= val << ZQ_CS1EN_SHIFT;
572
573 return zq;
574}
575
576static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
577 const struct emif_custom_configs *custom_configs, bool cs1_used,
578 u32 sdram_io_width, u32 emif_bus_width)
579{
580 u32 alert = 0, interval, devcnt;
581
582 if (custom_configs && (custom_configs->mask &
583 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
584 interval = custom_configs->temp_alert_poll_interval_ms;
585 else
586 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
587
588 interval *= 1000000; /* Convert to ns */
589 interval /= addressing->tREFI_ns; /* Convert to refresh cycles */
590 alert |= (interval << TA_REFINTERVAL_SHIFT);
591
592 /*
593 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
594 * also to this form and subtract to get TA_DEVCNT, which is
595 * in log2(x) form.
596 */
597 emif_bus_width = __fls(emif_bus_width) - 1;
598 devcnt = emif_bus_width - sdram_io_width;
599 alert |= devcnt << TA_DEVCNT_SHIFT;
600
601 /* DEVWDT is in 'log2(x) - 3' form */
602 alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
603
604 alert |= 1 << TA_SFEXITEN_SHIFT;
605 alert |= 1 << TA_CS0EN_SHIFT;
606 alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
607
608 return alert;
609}
610
611static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
612{
613 u32 idle = 0, val = 0;
614
615 /*
616 * Maximum value in normal conditions and increased frequency
617 * when voltage is ramping
618 */
619 if (volt_ramp)
620 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
621 else
622 val = 0x1FF;
623
624 /*
625 * READ_IDLE_CTRL register in EMIF4D has same offset and fields
626 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
627 */
628 idle |= val << DLL_CALIB_INTERVAL_SHIFT;
629 idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
630
631 return idle;
632}
633
634static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
635{
636 u32 calib = 0, val = 0;
637
638 if (volt_ramp == DDR_VOLTAGE_RAMPING)
639 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
640 else
641 val = 0; /* Disabled when voltage is stable */
642
643 calib |= val << DLL_CALIB_INTERVAL_SHIFT;
644 calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
645
646 return calib;
647}
648
649static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
650 u32 freq, u8 RL)
651{
652 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
653
654 val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
655 phy |= val << READ_LATENCY_SHIFT_4D;
656
657 if (freq <= 100000000)
658 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
659 else if (freq <= 200000000)
660 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
661 else
662 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
663
664 phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
665
666 return phy;
667}
668
669static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
670{
671 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
672
673 /*
674 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
675 * half-delay is not needed else set half-delay
676 */
677 if (freq >= 265000000 && freq < 267000000)
678 half_delay = 0;
679 else
680 half_delay = 1;
681
682 phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
683 phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
684 t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
685
686 return phy;
687}
688
689static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
690{
691 u32 fifo_we_slave_ratio;
692
693 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
694 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
695
696 return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
697 fifo_we_slave_ratio << 22;
698}
699
700static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
701{
702 u32 fifo_we_slave_ratio;
703
704 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
705 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
706
707 return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
708 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
709}
710
711static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
712{
713 u32 fifo_we_slave_ratio;
714
715 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
716 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
717
718 return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
719 fifo_we_slave_ratio << 13;
720}
721
722static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
723{
724 u32 pwr_mgmt_ctrl = 0, timeout;
725 u32 lpmode = EMIF_LP_MODE_SELF_REFRESH;
726 u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
727 u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER;
728 u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD;
729 u32 mask;
730 u8 shift;
731
732 struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
733
734 if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
735 lpmode = cust_cfgs->lpmode;
736 timeout_perf = cust_cfgs->lpmode_timeout_performance;
737 timeout_pwr = cust_cfgs->lpmode_timeout_power;
738 freq_threshold = cust_cfgs->lpmode_freq_threshold;
739 }
740
741 /* Timeout based on DDR frequency */
742 timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
743
744 /*
745 * The value to be set in register is "log2(timeout) - 3"
746 * if timeout < 16 load 0 in register
747 * if timeout is not a power of 2, round to next highest power of 2
748 */
749 if (timeout < 16) {
750 timeout = 0;
751 } else {
752 if (timeout & (timeout - 1))
753 timeout <<= 1;
754 timeout = __fls(timeout) - 3;
755 }
756
757 switch (lpmode) {
758 case EMIF_LP_MODE_CLOCK_STOP:
759 shift = CS_TIM_SHIFT;
760 mask = CS_TIM_MASK;
761 break;
762 case EMIF_LP_MODE_SELF_REFRESH:
763 /* Workaround for errata i735 */
764 if (timeout < 6)
765 timeout = 6;
766
767 shift = SR_TIM_SHIFT;
768 mask = SR_TIM_MASK;
769 break;
770 case EMIF_LP_MODE_PWR_DN:
771 shift = PD_TIM_SHIFT;
772 mask = PD_TIM_MASK;
773 break;
774 case EMIF_LP_MODE_DISABLE:
775 default:
776 mask = 0;
777 shift = 0;
778 break;
779 }
780 /* Round to maximum in case of overflow, BUT warn! */
781 if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
782 pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
783 lpmode,
784 timeout_perf,
785 timeout_pwr,
786 freq_threshold);
787 WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
788 timeout, mask >> shift);
789 timeout = mask >> shift;
790 }
791
792 /* Setup required timing */
793 pwr_mgmt_ctrl = (timeout << shift) & mask;
794 /* setup a default mask for rest of the modes */
795 pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
796 ~mask;
797
798 /* No CS_TIM in EMIF_4D5 */
799 if (ip_rev == EMIF_4D5)
800 pwr_mgmt_ctrl &= ~CS_TIM_MASK;
801
802 pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
803
804 return pwr_mgmt_ctrl;
805}
806
807/*
808 * Get the temperature level of the EMIF instance:
809 * Reads the MR4 register of attached SDRAM parts to find out the temperature
810 * level. If there are two parts attached(one on each CS), then the temperature
811 * level for the EMIF instance is the higher of the two temperatures.
812 */
813static void get_temperature_level(struct emif_data *emif)
814{
815 u32 temp, temperature_level;
816 void __iomem *base;
817
818 base = emif->base;
819
820 /* Read mode register 4 */
821 writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
822 temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
823 temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
824 MR4_SDRAM_REF_RATE_SHIFT;
825
826 if (emif->plat_data->device_info->cs1_used) {
827 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
828 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
829 temp = (temp & MR4_SDRAM_REF_RATE_MASK)
830 >> MR4_SDRAM_REF_RATE_SHIFT;
831 temperature_level = max(temp, temperature_level);
832 }
833
834 /* treat everything less than nominal(3) in MR4 as nominal */
835 if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
836 temperature_level = SDRAM_TEMP_NOMINAL;
837
838 /* if we get reserved value in MR4 persist with the existing value */
839 if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
840 emif->temperature_level = temperature_level;
841}
842
843/*
844 * Program EMIF shadow registers that are not dependent on temperature
845 * or voltage
846 */
847static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
848{
849 void __iomem *base = emif->base;
850
851 writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
852 writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
853 writel(regs->pwr_mgmt_ctrl_shdw,
854 base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
855
856 /* Settings specific for EMIF4D5 */
857 if (emif->plat_data->ip_rev != EMIF_4D5)
858 return;
859 writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
860 writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
861 writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
862}
863
864/*
865 * When voltage ramps dll calibration and forced read idle should
866 * happen more often
867 */
868static void setup_volt_sensitive_regs(struct emif_data *emif,
869 struct emif_regs *regs, u32 volt_state)
870{
871 u32 calib_ctrl;
872 void __iomem *base = emif->base;
873
874 /*
875 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
876 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
877 * is an alias of the respective read_idle_ctrl_shdw_* (members of
878 * a union). So, the below code takes care of both cases
879 */
880 if (volt_state == DDR_VOLTAGE_RAMPING)
881 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
882 else
883 calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
884
885 writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
886}
887
888/*
889 * setup_temperature_sensitive_regs() - set the timings for temperature
890 * sensitive registers. This happens once at initialisation time based
891 * on the temperature at boot time and subsequently based on the temperature
892 * alert interrupt. Temperature alert can happen when the temperature
893 * increases or drops. So this function can have the effect of either
894 * derating the timings or going back to nominal values.
895 */
896static void setup_temperature_sensitive_regs(struct emif_data *emif,
897 struct emif_regs *regs)
898{
899 u32 tim1, tim3, ref_ctrl, type;
900 void __iomem *base = emif->base;
901 u32 temperature;
902
903 type = emif->plat_data->device_info->type;
904
905 tim1 = regs->sdram_tim1_shdw;
906 tim3 = regs->sdram_tim3_shdw;
907 ref_ctrl = regs->ref_ctrl_shdw;
908
909 /* No de-rating for non-lpddr2 devices */
910 if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
911 goto out;
912
913 temperature = emif->temperature_level;
914 if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
915 ref_ctrl = regs->ref_ctrl_shdw_derated;
916 } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
917 tim1 = regs->sdram_tim1_shdw_derated;
918 tim3 = regs->sdram_tim3_shdw_derated;
919 ref_ctrl = regs->ref_ctrl_shdw_derated;
920 }
921
922out:
923 writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
924 writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
925 writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
926}
927
928static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
929{
930 u32 old_temp_level;
931 irqreturn_t ret = IRQ_HANDLED;
932 struct emif_custom_configs *custom_configs;
933
934 spin_lock_irqsave(&emif_lock, irq_state);
935 old_temp_level = emif->temperature_level;
936 get_temperature_level(emif);
937
938 if (unlikely(emif->temperature_level == old_temp_level)) {
939 goto out;
940 } else if (!emif->curr_regs) {
941 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
942 goto out;
943 }
944
945 custom_configs = emif->plat_data->custom_configs;
946
947 /*
948 * IF we detect higher than "nominal rating" from DDR sensor
949 * on an unsupported DDR part, shutdown system
950 */
951 if (custom_configs && !(custom_configs->mask &
952 EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
953 if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
954 dev_err(emif->dev,
955 "%s:NOT Extended temperature capable memory."
956 "Converting MR4=0x%02x as shutdown event\n",
957 __func__, emif->temperature_level);
958 /*
959 * Temperature far too high - do kernel_power_off()
960 * from thread context
961 */
962 emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
963 ret = IRQ_WAKE_THREAD;
964 goto out;
965 }
966 }
967
968 if (emif->temperature_level < old_temp_level ||
969 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
970 /*
971 * Temperature coming down - defer handling to thread OR
972 * Temperature far too high - do kernel_power_off() from
973 * thread context
974 */
975 ret = IRQ_WAKE_THREAD;
976 } else {
977 /* Temperature is going up - handle immediately */
978 setup_temperature_sensitive_regs(emif, emif->curr_regs);
979 do_freq_update();
980 }
981
982out:
983 spin_unlock_irqrestore(&emif_lock, irq_state);
984 return ret;
985}
986
987static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
988{
989 u32 interrupts;
990 struct emif_data *emif = dev_id;
991 void __iomem *base = emif->base;
992 struct device *dev = emif->dev;
993 irqreturn_t ret = IRQ_HANDLED;
994
995 /* Save the status and clear it */
996 interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
997 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
998
999 /*
1000 * Handle temperature alert
1001 * Temperature alert should be same for all ports
1002 * So, it's enough to process it only for one of the ports
1003 */
1004 if (interrupts & TA_SYS_MASK)
1005 ret = handle_temp_alert(base, emif);
1006
1007 if (interrupts & ERR_SYS_MASK)
1008 dev_err(dev, "Access error from SYS port - %x\n", interrupts);
1009
1010 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1011 /* Save the status and clear it */
1012 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
1013 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
1014
1015 if (interrupts & ERR_LL_MASK)
1016 dev_err(dev, "Access error from LL port - %x\n",
1017 interrupts);
1018 }
1019
1020 return ret;
1021}
1022
1023static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
1024{
1025 struct emif_data *emif = dev_id;
1026
1027 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
1028 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1029
1030 /* If we have Power OFF ability, use it, else try restarting */
1031 if (pm_power_off) {
1032 kernel_power_off();
1033 } else {
1034 WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
1035 kernel_restart("SDRAM Over-temp Emergency restart");
1036 }
1037 return IRQ_HANDLED;
1038 }
1039
1040 spin_lock_irqsave(&emif_lock, irq_state);
1041
1042 if (emif->curr_regs) {
1043 setup_temperature_sensitive_regs(emif, emif->curr_regs);
1044 do_freq_update();
1045 } else {
1046 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
1047 }
1048
1049 spin_unlock_irqrestore(&emif_lock, irq_state);
1050
1051 return IRQ_HANDLED;
1052}
1053
1054static void clear_all_interrupts(struct emif_data *emif)
1055{
1056 void __iomem *base = emif->base;
1057
1058 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
1059 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1060 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1061 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
1062 base + EMIF_LL_OCP_INTERRUPT_STATUS);
1063}
1064
1065static void disable_and_clear_all_interrupts(struct emif_data *emif)
1066{
1067 void __iomem *base = emif->base;
1068
1069 /* Disable all interrupts */
1070 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
1071 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
1072 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1073 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
1074 base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
1075
1076 /* Clear all interrupts */
1077 clear_all_interrupts(emif);
1078}
1079
1080static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1081{
1082 u32 interrupts, type;
1083 void __iomem *base = emif->base;
1084
1085 type = emif->plat_data->device_info->type;
1086
1087 clear_all_interrupts(emif);
1088
1089 /* Enable interrupts for SYS interface */
1090 interrupts = EN_ERR_SYS_MASK;
1091 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1092 interrupts |= EN_TA_SYS_MASK;
1093 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1094
1095 /* Enable interrupts for LL interface */
1096 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1097 /* TA need not be enabled for LL */
1098 interrupts = EN_ERR_LL_MASK;
1099 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1100 }
1101
1102 /* setup IRQ handlers */
1103 return devm_request_threaded_irq(emif->dev, irq,
1104 emif_interrupt_handler,
1105 emif_threaded_isr,
1106 0, dev_name(emif->dev),
1107 emif);
1108
1109}
1110
1111static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1112{
1113 u32 pwr_mgmt_ctrl, zq, temp_alert_cfg;
1114 void __iomem *base = emif->base;
1115 const struct lpddr2_addressing *addressing;
1116 const struct ddr_device_info *device_info;
1117
1118 device_info = emif->plat_data->device_info;
1119 addressing = get_addressing_table(device_info);
1120
1121 /*
1122 * Init power management settings
1123 * We don't know the frequency yet. Use a high frequency
1124 * value for a conservative timeout setting
1125 */
1126 pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1127 emif->plat_data->ip_rev);
1128 emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1129 writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1130
1131 /* Init ZQ calibration settings */
1132 zq = get_zq_config_reg(addressing, device_info->cs1_used,
1133 device_info->cal_resistors_per_cs);
1134 writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1135
1136 /* Check temperature level temperature level*/
1137 get_temperature_level(emif);
1138 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1139 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1140
1141 /* Init temperature polling */
1142 temp_alert_cfg = get_temp_alert_config(addressing,
1143 emif->plat_data->custom_configs, device_info->cs1_used,
1144 device_info->io_width, get_emif_bus_width(emif));
1145 writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1146
1147 /*
1148 * Program external PHY control registers that are not frequency
1149 * dependent
1150 */
1151 if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1152 return;
1153 writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1154 writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1155 writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1156 writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1157 writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1158 writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1159 writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1160 writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1161 writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1162 writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1163 writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1164 writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1165 writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1166 writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1167 writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1168 writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1169 writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1170 writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1171 writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1172 writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1173 writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1174}
1175
1176static void get_default_timings(struct emif_data *emif)
1177{
1178 struct emif_platform_data *pd = emif->plat_data;
1179
1180 pd->timings = lpddr2_jedec_timings;
1181 pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings);
1182
1183 dev_warn(emif->dev, "%s: using default timings\n", __func__);
1184}
1185
1186static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1187 u32 ip_rev, struct device *dev)
1188{
1189 int valid;
1190
1191 valid = (type == DDR_TYPE_LPDDR2_S4 ||
1192 type == DDR_TYPE_LPDDR2_S2)
1193 && (density >= DDR_DENSITY_64Mb
1194 && density <= DDR_DENSITY_8Gb)
1195 && (io_width >= DDR_IO_WIDTH_8
1196 && io_width <= DDR_IO_WIDTH_32);
1197
1198 /* Combinations of EMIF and PHY revisions that we support today */
1199 switch (ip_rev) {
1200 case EMIF_4D:
1201 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1202 break;
1203 case EMIF_4D5:
1204 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1205 break;
1206 default:
1207 valid = 0;
1208 }
1209
1210 if (!valid)
1211 dev_err(dev, "%s: invalid DDR details\n", __func__);
1212 return valid;
1213}
1214
1215static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1216 struct device *dev)
1217{
1218 int valid = 1;
1219
1220 if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1221 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1222 valid = cust_cfgs->lpmode_freq_threshold &&
1223 cust_cfgs->lpmode_timeout_performance &&
1224 cust_cfgs->lpmode_timeout_power;
1225
1226 if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1227 valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1228
1229 if (!valid)
1230 dev_warn(dev, "%s: invalid custom configs\n", __func__);
1231
1232 return valid;
1233}
1234
1235#if defined(CONFIG_OF)
1236static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1237 struct emif_data *emif)
1238{
1239 struct emif_custom_configs *cust_cfgs = NULL;
1240 int len;
1241 const __be32 *lpmode, *poll_intvl;
1242
1243 lpmode = of_get_property(np_emif, "low-power-mode", &len);
1244 poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1245
1246 if (lpmode || poll_intvl)
1247 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1248 GFP_KERNEL);
1249
1250 if (!cust_cfgs)
1251 return;
1252
1253 if (lpmode) {
1254 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
1255 cust_cfgs->lpmode = be32_to_cpup(lpmode);
1256 of_property_read_u32(np_emif,
1257 "low-power-mode-timeout-performance",
1258 &cust_cfgs->lpmode_timeout_performance);
1259 of_property_read_u32(np_emif,
1260 "low-power-mode-timeout-power",
1261 &cust_cfgs->lpmode_timeout_power);
1262 of_property_read_u32(np_emif,
1263 "low-power-mode-freq-threshold",
1264 &cust_cfgs->lpmode_freq_threshold);
1265 }
1266
1267 if (poll_intvl) {
1268 cust_cfgs->mask |=
1269 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
1270 cust_cfgs->temp_alert_poll_interval_ms =
1271 be32_to_cpup(poll_intvl);
1272 }
1273
1274 if (of_find_property(np_emif, "extended-temp-part", &len))
1275 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
1276
1277 if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1278 devm_kfree(emif->dev, cust_cfgs);
1279 return;
1280 }
1281
1282 emif->plat_data->custom_configs = cust_cfgs;
1283}
1284
1285static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1286 struct device_node *np_ddr,
1287 struct ddr_device_info *dev_info)
1288{
1289 u32 density = 0, io_width = 0;
1290 int len;
1291
1292 if (of_find_property(np_emif, "cs1-used", &len))
1293 dev_info->cs1_used = true;
1294
1295 if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1296 dev_info->cal_resistors_per_cs = true;
1297
1298 if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4"))
1299 dev_info->type = DDR_TYPE_LPDDR2_S4;
1300 else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2"))
1301 dev_info->type = DDR_TYPE_LPDDR2_S2;
1302
1303 of_property_read_u32(np_ddr, "density", &density);
1304 of_property_read_u32(np_ddr, "io-width", &io_width);
1305
1306 /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1307 if (density & (density - 1))
1308 dev_info->density = 0;
1309 else
1310 dev_info->density = __fls(density) - 5;
1311
1312 /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1313 if (io_width & (io_width - 1))
1314 dev_info->io_width = 0;
1315 else
1316 dev_info->io_width = __fls(io_width) - 1;
1317}
1318
1319static struct emif_data * __init_or_module of_get_memory_device_details(
1320 struct device_node *np_emif, struct device *dev)
1321{
1322 struct emif_data *emif = NULL;
1323 struct ddr_device_info *dev_info = NULL;
1324 struct emif_platform_data *pd = NULL;
1325 struct device_node *np_ddr;
1326 int len;
1327
1328 np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1329 if (!np_ddr)
1330 goto error;
1331 emif = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1332 pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1333 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1334
1335 if (!emif || !pd || !dev_info) {
1336 dev_err(dev, "%s: Out of memory!!\n",
1337 __func__);
1338 goto error;
1339 }
1340
1341 emif->plat_data = pd;
1342 pd->device_info = dev_info;
1343 emif->dev = dev;
1344 emif->np_ddr = np_ddr;
1345 emif->temperature_level = SDRAM_TEMP_NOMINAL;
1346
1347 if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1348 emif->plat_data->ip_rev = EMIF_4D;
1349 else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1350 emif->plat_data->ip_rev = EMIF_4D5;
1351
1352 of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1353
1354 if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1355 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1356
1357 of_get_ddr_info(np_emif, np_ddr, dev_info);
1358 if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1359 pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1360 emif->dev)) {
1361 dev_err(dev, "%s: invalid device data!!\n", __func__);
1362 goto error;
1363 }
1364 /*
1365 * For EMIF instances other than EMIF1 see if the devices connected
1366 * are exactly same as on EMIF1(which is typically the case). If so,
1367 * mark it as a duplicate of EMIF1. This will save some memory and
1368 * computation.
1369 */
1370 if (emif1 && emif1->np_ddr == np_ddr) {
1371 emif->duplicate = true;
1372 goto out;
1373 } else if (emif1) {
1374 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1375 __func__);
1376 }
1377
1378 of_get_custom_configs(np_emif, emif);
1379 emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1380 emif->plat_data->device_info->type,
1381 &emif->plat_data->timings_arr_size);
1382
1383 emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1384 goto out;
1385
1386error:
1387 return NULL;
1388out:
1389 return emif;
1390}
1391
1392#else
1393
1394static struct emif_data * __init_or_module of_get_memory_device_details(
1395 struct device_node *np_emif, struct device *dev)
1396{
1397 return NULL;
1398}
1399#endif
1400
1401static struct emif_data *__init_or_module get_device_details(
1402 struct platform_device *pdev)
1403{
1404 u32 size;
1405 struct emif_data *emif = NULL;
1406 struct ddr_device_info *dev_info;
1407 struct emif_custom_configs *cust_cfgs;
1408 struct emif_platform_data *pd;
1409 struct device *dev;
1410 void *temp;
1411
1412 pd = pdev->dev.platform_data;
1413 dev = &pdev->dev;
1414
1415 if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1416 pd->device_info->density, pd->device_info->io_width,
1417 pd->phy_type, pd->ip_rev, dev))) {
1418 dev_err(dev, "%s: invalid device data\n", __func__);
1419 goto error;
1420 }
1421
1422 emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1423 temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1424 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1425
1426 if (!emif || !pd || !dev_info) {
1427 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1428 goto error;
1429 }
1430
1431 memcpy(temp, pd, sizeof(*pd));
1432 pd = temp;
1433 memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1434
1435 pd->device_info = dev_info;
1436 emif->plat_data = pd;
1437 emif->dev = dev;
1438 emif->temperature_level = SDRAM_TEMP_NOMINAL;
1439
1440 /*
1441 * For EMIF instances other than EMIF1 see if the devices connected
1442 * are exactly same as on EMIF1(which is typically the case). If so,
1443 * mark it as a duplicate of EMIF1 and skip copying timings data.
1444 * This will save some memory and some computation later.
1445 */
1446 emif->duplicate = emif1 && (memcmp(dev_info,
1447 emif1->plat_data->device_info,
1448 sizeof(struct ddr_device_info)) == 0);
1449
1450 if (emif->duplicate) {
1451 pd->timings = NULL;
1452 pd->min_tck = NULL;
1453 goto out;
1454 } else if (emif1) {
1455 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1456 __func__);
1457 }
1458
1459 /*
1460 * Copy custom configs - ignore allocation error, if any, as
1461 * custom_configs is not very critical
1462 */
1463 cust_cfgs = pd->custom_configs;
1464 if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1465 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1466 if (temp)
1467 memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1468 else
1469 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1470 __LINE__);
1471 pd->custom_configs = temp;
1472 }
1473
1474 /*
1475 * Copy timings and min-tck values from platform data. If it is not
1476 * available or if memory allocation fails, use JEDEC defaults
1477 */
1478 size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1479 if (pd->timings) {
1480 temp = devm_kzalloc(dev, size, GFP_KERNEL);
1481 if (temp) {
1482 memcpy(temp, pd->timings, size);
1483 pd->timings = temp;
1484 } else {
1485 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1486 __LINE__);
1487 get_default_timings(emif);
1488 }
1489 } else {
1490 get_default_timings(emif);
1491 }
1492
1493 if (pd->min_tck) {
1494 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1495 if (temp) {
1496 memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1497 pd->min_tck = temp;
1498 } else {
1499 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1500 __LINE__);
1501 pd->min_tck = &lpddr2_jedec_min_tck;
1502 }
1503 } else {
1504 pd->min_tck = &lpddr2_jedec_min_tck;
1505 }
1506
1507out:
1508 return emif;
1509
1510error:
1511 return NULL;
1512}
1513
1514static int __init_or_module emif_probe(struct platform_device *pdev)
1515{
1516 struct emif_data *emif;
1517 struct resource *res;
1518 int irq;
1519
1520 if (pdev->dev.of_node)
1521 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1522 else
1523 emif = get_device_details(pdev);
1524
1525 if (!emif) {
1526 pr_err("%s: error getting device data\n", __func__);
1527 goto error;
1528 }
1529
1530 list_add(&emif->node, &device_list);
1531 emif->addressing = get_addressing_table(emif->plat_data->device_info);
1532
1533 /* Save pointers to each other in emif and device structures */
1534 emif->dev = &pdev->dev;
1535 platform_set_drvdata(pdev, emif);
1536
1537 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1538 emif->base = devm_ioremap_resource(emif->dev, res);
1539 if (IS_ERR(emif->base))
1540 goto error;
1541
1542 irq = platform_get_irq(pdev, 0);
1543 if (irq < 0) {
1544 dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
1545 __func__, irq);
1546 goto error;
1547 }
1548
1549 emif_onetime_settings(emif);
1550 emif_debugfs_init(emif);
1551 disable_and_clear_all_interrupts(emif);
1552 setup_interrupts(emif, irq);
1553
1554 /* One-time actions taken on probing the first device */
1555 if (!emif1) {
1556 emif1 = emif;
1557 spin_lock_init(&emif_lock);
1558
1559 /*
1560 * TODO: register notifiers for frequency and voltage
1561 * change here once the respective frameworks are
1562 * available
1563 */
1564 }
1565
1566 dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1567 __func__, emif->base, irq);
1568
1569 return 0;
1570error:
1571 return -ENODEV;
1572}
1573
1574static int __exit emif_remove(struct platform_device *pdev)
1575{
1576 struct emif_data *emif = platform_get_drvdata(pdev);
1577
1578 emif_debugfs_exit(emif);
1579
1580 return 0;
1581}
1582
1583static void emif_shutdown(struct platform_device *pdev)
1584{
1585 struct emif_data *emif = platform_get_drvdata(pdev);
1586
1587 disable_and_clear_all_interrupts(emif);
1588}
1589
1590static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1591 struct emif_regs *regs)
1592{
1593 u32 cs1_used, ip_rev, phy_type;
1594 u32 cl, type;
1595 const struct lpddr2_timings *timings;
1596 const struct lpddr2_min_tck *min_tck;
1597 const struct ddr_device_info *device_info;
1598 const struct lpddr2_addressing *addressing;
1599 struct emif_data *emif_for_calc;
1600 struct device *dev;
1601 const struct emif_custom_configs *custom_configs;
1602
1603 dev = emif->dev;
1604 /*
1605 * If the devices on this EMIF instance is duplicate of EMIF1,
1606 * use EMIF1 details for the calculation
1607 */
1608 emif_for_calc = emif->duplicate ? emif1 : emif;
1609 timings = get_timings_table(emif_for_calc, freq);
1610 addressing = emif_for_calc->addressing;
1611 if (!timings || !addressing) {
1612 dev_err(dev, "%s: not enough data available for %dHz",
1613 __func__, freq);
1614 return -1;
1615 }
1616
1617 device_info = emif_for_calc->plat_data->device_info;
1618 type = device_info->type;
1619 cs1_used = device_info->cs1_used;
1620 ip_rev = emif_for_calc->plat_data->ip_rev;
1621 phy_type = emif_for_calc->plat_data->phy_type;
1622
1623 min_tck = emif_for_calc->plat_data->min_tck;
1624 custom_configs = emif_for_calc->plat_data->custom_configs;
1625
1626 set_ddr_clk_period(freq);
1627
1628 regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1629 regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1630 addressing);
1631 regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1632 addressing, type);
1633 regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1634 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1635
1636 cl = get_cl(emif);
1637
1638 if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1639 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1640 timings, freq, cl);
1641 } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1642 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1643 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1644 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1645 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1646 } else {
1647 return -1;
1648 }
1649
1650 /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1651 regs->pwr_mgmt_ctrl_shdw =
1652 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1653 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1654
1655 if (ip_rev & EMIF_4D) {
1656 regs->read_idle_ctrl_shdw_normal =
1657 get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1658
1659 regs->read_idle_ctrl_shdw_volt_ramp =
1660 get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1661 } else if (ip_rev & EMIF_4D5) {
1662 regs->dll_calib_ctrl_shdw_normal =
1663 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1664
1665 regs->dll_calib_ctrl_shdw_volt_ramp =
1666 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1667 }
1668
1669 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1670 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1671 addressing);
1672
1673 regs->sdram_tim1_shdw_derated =
1674 get_sdram_tim_1_shdw_derated(timings, min_tck,
1675 addressing);
1676
1677 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1678 min_tck, addressing, type, ip_rev,
1679 EMIF_DERATED_TIMINGS);
1680 }
1681
1682 regs->freq = freq;
1683
1684 return 0;
1685}
1686
1687/*
1688 * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1689 * given frequency(freq):
1690 *
1691 * As an optimisation, every EMIF instance other than EMIF1 shares the
1692 * register cache with EMIF1 if the devices connected on this instance
1693 * are same as that on EMIF1(indicated by the duplicate flag)
1694 *
1695 * If we do not have an entry corresponding to the frequency given, we
1696 * allocate a new entry and calculate the values
1697 *
1698 * Upon finding the right reg dump, save it in curr_regs. It can be
1699 * directly used for thermal de-rating and voltage ramping changes.
1700 */
1701static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1702{
1703 int i;
1704 struct emif_regs **regs_cache;
1705 struct emif_regs *regs = NULL;
1706 struct device *dev;
1707
1708 dev = emif->dev;
1709 if (emif->curr_regs && emif->curr_regs->freq == freq) {
1710 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1711 return emif->curr_regs;
1712 }
1713
1714 if (emif->duplicate)
1715 regs_cache = emif1->regs_cache;
1716 else
1717 regs_cache = emif->regs_cache;
1718
1719 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1720 if (regs_cache[i]->freq == freq) {
1721 regs = regs_cache[i];
1722 dev_dbg(dev,
1723 "%s: reg dump found in reg cache for %u Hz\n",
1724 __func__, freq);
1725 break;
1726 }
1727 }
1728
1729 /*
1730 * If we don't have an entry for this frequency in the cache create one
1731 * and calculate the values
1732 */
1733 if (!regs) {
1734 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1735 if (!regs)
1736 return NULL;
1737
1738 if (get_emif_reg_values(emif, freq, regs)) {
1739 devm_kfree(emif->dev, regs);
1740 return NULL;
1741 }
1742
1743 /*
1744 * Now look for an un-used entry in the cache and save the
1745 * newly created struct. If there are no free entries
1746 * over-write the last entry
1747 */
1748 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1749 ;
1750
1751 if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1752 dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1753 __func__);
1754 i = EMIF_MAX_NUM_FREQUENCIES - 1;
1755 devm_kfree(emif->dev, regs_cache[i]);
1756 }
1757 regs_cache[i] = regs;
1758 }
1759
1760 return regs;
1761}
1762
1763static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1764{
1765 dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1766 volt_state);
1767
1768 if (!emif->curr_regs) {
1769 dev_err(emif->dev,
1770 "%s: volt-notify before registers are ready: %d\n",
1771 __func__, volt_state);
1772 return;
1773 }
1774
1775 setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1776}
1777
1778/*
1779 * TODO: voltage notify handling should be hooked up to
1780 * regulator framework as soon as the necessary support
1781 * is available in mainline kernel. This function is un-used
1782 * right now.
1783 */
1784static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1785{
1786 struct emif_data *emif;
1787
1788 spin_lock_irqsave(&emif_lock, irq_state);
1789
1790 list_for_each_entry(emif, &device_list, node)
1791 do_volt_notify_handling(emif, volt_state);
1792 do_freq_update();
1793
1794 spin_unlock_irqrestore(&emif_lock, irq_state);
1795}
1796
1797static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1798{
1799 struct emif_regs *regs;
1800
1801 regs = get_regs(emif, new_freq);
1802 if (!regs)
1803 return;
1804
1805 emif->curr_regs = regs;
1806
1807 /*
1808 * Update the shadow registers:
1809 * Temperature and voltage-ramp sensitive settings are also configured
1810 * in terms of DDR cycles. So, we need to update them too when there
1811 * is a freq change
1812 */
1813 dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1814 __func__, new_freq);
1815 setup_registers(emif, regs);
1816 setup_temperature_sensitive_regs(emif, regs);
1817 setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1818
1819 /*
1820 * Part of workaround for errata i728. See do_freq_update()
1821 * for more details
1822 */
1823 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1824 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1825}
1826
1827/*
1828 * TODO: frequency notify handling should be hooked up to
1829 * clock framework as soon as the necessary support is
1830 * available in mainline kernel. This function is un-used
1831 * right now.
1832 */
1833static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1834{
1835 struct emif_data *emif;
1836
1837 /*
1838 * NOTE: we are taking the spin-lock here and releases it
1839 * only in post-notifier. This doesn't look good and
1840 * Sparse complains about it, but this seems to be
1841 * un-avoidable. We need to lock a sequence of events
1842 * that is split between EMIF and clock framework.
1843 *
1844 * 1. EMIF driver updates EMIF timings in shadow registers in the
1845 * frequency pre-notify callback from clock framework
1846 * 2. clock framework sets up the registers for the new frequency
1847 * 3. clock framework initiates a hw-sequence that updates
1848 * the frequency EMIF timings synchronously.
1849 *
1850 * All these 3 steps should be performed as an atomic operation
1851 * vis-a-vis similar sequence in the EMIF interrupt handler
1852 * for temperature events. Otherwise, there could be race
1853 * conditions that could result in incorrect EMIF timings for
1854 * a given frequency
1855 */
1856 spin_lock_irqsave(&emif_lock, irq_state);
1857
1858 list_for_each_entry(emif, &device_list, node)
1859 do_freq_pre_notify_handling(emif, new_freq);
1860}
1861
1862static void do_freq_post_notify_handling(struct emif_data *emif)
1863{
1864 /*
1865 * Part of workaround for errata i728. See do_freq_update()
1866 * for more details
1867 */
1868 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1869 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1870}
1871
1872/*
1873 * TODO: frequency notify handling should be hooked up to
1874 * clock framework as soon as the necessary support is
1875 * available in mainline kernel. This function is un-used
1876 * right now.
1877 */
1878static void __attribute__((unused)) freq_post_notify_handling(void)
1879{
1880 struct emif_data *emif;
1881
1882 list_for_each_entry(emif, &device_list, node)
1883 do_freq_post_notify_handling(emif);
1884
1885 /*
1886 * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1887 * for more details
1888 */
1889 spin_unlock_irqrestore(&emif_lock, irq_state);
1890}
1891
1892#if defined(CONFIG_OF)
1893static const struct of_device_id emif_of_match[] = {
1894 { .compatible = "ti,emif-4d" },
1895 { .compatible = "ti,emif-4d5" },
1896 {},
1897};
1898MODULE_DEVICE_TABLE(of, emif_of_match);
1899#endif
1900
1901static struct platform_driver emif_driver = {
1902 .remove = __exit_p(emif_remove),
1903 .shutdown = emif_shutdown,
1904 .driver = {
1905 .name = "emif",
1906 .of_match_table = of_match_ptr(emif_of_match),
1907 },
1908};
1909
1910module_platform_driver_probe(emif_driver, emif_probe);
1911
1912MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1913MODULE_LICENSE("GPL");
1914MODULE_ALIAS("platform:emif");
1915MODULE_AUTHOR("Texas Instruments Inc");