David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
| 3 | * EMIF driver |
| 4 | * |
| 5 | * Copyright (C) 2012 Texas Instruments, Inc. |
| 6 | * |
| 7 | * Aneesh V <aneesh@ti.com> |
| 8 | * Santosh Shilimkar <santosh.shilimkar@ti.com> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 9 | */ |
| 10 | #include <linux/err.h> |
| 11 | #include <linux/kernel.h> |
| 12 | #include <linux/reboot.h> |
| 13 | #include <linux/platform_data/emif_plat.h> |
| 14 | #include <linux/io.h> |
| 15 | #include <linux/device.h> |
| 16 | #include <linux/platform_device.h> |
| 17 | #include <linux/interrupt.h> |
| 18 | #include <linux/slab.h> |
| 19 | #include <linux/of.h> |
| 20 | #include <linux/debugfs.h> |
| 21 | #include <linux/seq_file.h> |
| 22 | #include <linux/module.h> |
| 23 | #include <linux/list.h> |
| 24 | #include <linux/spinlock.h> |
| 25 | #include <linux/pm.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 26 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 27 | #include "emif.h" |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 28 | #include "jedec_ddr.h" |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 29 | #include "of_memory.h" |
| 30 | |
| 31 | /** |
| 32 | * struct emif_data - Per device static data for driver's use |
| 33 | * @duplicate: Whether the DDR devices attached to this EMIF |
| 34 | * instance are exactly same as that on EMIF1. In |
| 35 | * this case we can save some memory and processing |
| 36 | * @temperature_level: Maximum temperature of LPDDR2 devices attached |
| 37 | * to this EMIF - read from MR4 register. If there |
| 38 | * are two devices attached to this EMIF, this |
| 39 | * value is the maximum of the two temperature |
| 40 | * levels. |
| 41 | * @node: node in the device list |
| 42 | * @base: base address of memory-mapped IO registers. |
| 43 | * @dev: device pointer. |
| 44 | * @addressing table with addressing information from the spec |
| 45 | * @regs_cache: An array of 'struct emif_regs' that stores |
| 46 | * calculated register values for different |
| 47 | * frequencies, to avoid re-calculating them on |
| 48 | * each DVFS transition. |
| 49 | * @curr_regs: The set of register values used in the last |
| 50 | * frequency change (i.e. corresponding to the |
| 51 | * frequency in effect at the moment) |
| 52 | * @plat_data: Pointer to saved platform data. |
| 53 | * @debugfs_root: dentry to the root folder for EMIF in debugfs |
| 54 | * @np_ddr: Pointer to ddr device tree node |
| 55 | */ |
| 56 | struct emif_data { |
| 57 | u8 duplicate; |
| 58 | u8 temperature_level; |
| 59 | u8 lpmode; |
| 60 | struct list_head node; |
| 61 | unsigned long irq_state; |
| 62 | void __iomem *base; |
| 63 | struct device *dev; |
| 64 | const struct lpddr2_addressing *addressing; |
| 65 | struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES]; |
| 66 | struct emif_regs *curr_regs; |
| 67 | struct emif_platform_data *plat_data; |
| 68 | struct dentry *debugfs_root; |
| 69 | struct device_node *np_ddr; |
| 70 | }; |
| 71 | |
| 72 | static struct emif_data *emif1; |
| 73 | static spinlock_t emif_lock; |
| 74 | static unsigned long irq_state; |
| 75 | static u32 t_ck; /* DDR clock period in ps */ |
| 76 | static LIST_HEAD(device_list); |
| 77 | |
| 78 | #ifdef CONFIG_DEBUG_FS |
| 79 | static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif, |
| 80 | struct emif_regs *regs) |
| 81 | { |
| 82 | u32 type = emif->plat_data->device_info->type; |
| 83 | u32 ip_rev = emif->plat_data->ip_rev; |
| 84 | |
| 85 | seq_printf(s, "EMIF register cache dump for %dMHz\n", |
| 86 | regs->freq/1000000); |
| 87 | |
| 88 | seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw); |
| 89 | seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw); |
| 90 | seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw); |
| 91 | seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw); |
| 92 | |
| 93 | if (ip_rev == EMIF_4D) { |
| 94 | seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n", |
| 95 | regs->read_idle_ctrl_shdw_normal); |
| 96 | seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n", |
| 97 | regs->read_idle_ctrl_shdw_volt_ramp); |
| 98 | } else if (ip_rev == EMIF_4D5) { |
| 99 | seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n", |
| 100 | regs->dll_calib_ctrl_shdw_normal); |
| 101 | seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n", |
| 102 | regs->dll_calib_ctrl_shdw_volt_ramp); |
| 103 | } |
| 104 | |
| 105 | if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { |
| 106 | seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n", |
| 107 | regs->ref_ctrl_shdw_derated); |
| 108 | seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n", |
| 109 | regs->sdram_tim1_shdw_derated); |
| 110 | seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n", |
| 111 | regs->sdram_tim3_shdw_derated); |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | static int emif_regdump_show(struct seq_file *s, void *unused) |
| 116 | { |
| 117 | struct emif_data *emif = s->private; |
| 118 | struct emif_regs **regs_cache; |
| 119 | int i; |
| 120 | |
| 121 | if (emif->duplicate) |
| 122 | regs_cache = emif1->regs_cache; |
| 123 | else |
| 124 | regs_cache = emif->regs_cache; |
| 125 | |
| 126 | for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { |
| 127 | do_emif_regdump_show(s, emif, regs_cache[i]); |
| 128 | seq_putc(s, '\n'); |
| 129 | } |
| 130 | |
| 131 | return 0; |
| 132 | } |
| 133 | |
| 134 | static int emif_regdump_open(struct inode *inode, struct file *file) |
| 135 | { |
| 136 | return single_open(file, emif_regdump_show, inode->i_private); |
| 137 | } |
| 138 | |
| 139 | static const struct file_operations emif_regdump_fops = { |
| 140 | .open = emif_regdump_open, |
| 141 | .read = seq_read, |
| 142 | .release = single_release, |
| 143 | }; |
| 144 | |
| 145 | static int emif_mr4_show(struct seq_file *s, void *unused) |
| 146 | { |
| 147 | struct emif_data *emif = s->private; |
| 148 | |
| 149 | seq_printf(s, "MR4=%d\n", emif->temperature_level); |
| 150 | return 0; |
| 151 | } |
| 152 | |
| 153 | static int emif_mr4_open(struct inode *inode, struct file *file) |
| 154 | { |
| 155 | return single_open(file, emif_mr4_show, inode->i_private); |
| 156 | } |
| 157 | |
| 158 | static const struct file_operations emif_mr4_fops = { |
| 159 | .open = emif_mr4_open, |
| 160 | .read = seq_read, |
| 161 | .release = single_release, |
| 162 | }; |
| 163 | |
| 164 | static int __init_or_module emif_debugfs_init(struct emif_data *emif) |
| 165 | { |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 166 | emif->debugfs_root = debugfs_create_dir(dev_name(emif->dev), NULL); |
| 167 | debugfs_create_file("regcache_dump", S_IRUGO, emif->debugfs_root, emif, |
| 168 | &emif_regdump_fops); |
| 169 | debugfs_create_file("mr4", S_IRUGO, emif->debugfs_root, emif, |
| 170 | &emif_mr4_fops); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 171 | return 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 172 | } |
| 173 | |
| 174 | static void __exit emif_debugfs_exit(struct emif_data *emif) |
| 175 | { |
| 176 | debugfs_remove_recursive(emif->debugfs_root); |
| 177 | emif->debugfs_root = NULL; |
| 178 | } |
| 179 | #else |
| 180 | static inline int __init_or_module emif_debugfs_init(struct emif_data *emif) |
| 181 | { |
| 182 | return 0; |
| 183 | } |
| 184 | |
| 185 | static inline void __exit emif_debugfs_exit(struct emif_data *emif) |
| 186 | { |
| 187 | } |
| 188 | #endif |
| 189 | |
| 190 | /* |
| 191 | * Calculate the period of DDR clock from frequency value |
| 192 | */ |
| 193 | static void set_ddr_clk_period(u32 freq) |
| 194 | { |
| 195 | /* Divide 10^12 by frequency to get period in ps */ |
| 196 | t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq); |
| 197 | } |
| 198 | |
| 199 | /* |
| 200 | * Get bus width used by EMIF. Note that this may be different from the |
| 201 | * bus width of the DDR devices used. For instance two 16-bit DDR devices |
| 202 | * may be connected to a given CS of EMIF. In this case bus width as far |
| 203 | * as EMIF is concerned is 32, where as the DDR bus width is 16 bits. |
| 204 | */ |
| 205 | static u32 get_emif_bus_width(struct emif_data *emif) |
| 206 | { |
| 207 | u32 width; |
| 208 | void __iomem *base = emif->base; |
| 209 | |
| 210 | width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK) |
| 211 | >> NARROW_MODE_SHIFT; |
| 212 | width = width == 0 ? 32 : 16; |
| 213 | |
| 214 | return width; |
| 215 | } |
| 216 | |
| 217 | /* |
| 218 | * Get the CL from SDRAM_CONFIG register |
| 219 | */ |
| 220 | static u32 get_cl(struct emif_data *emif) |
| 221 | { |
| 222 | u32 cl; |
| 223 | void __iomem *base = emif->base; |
| 224 | |
| 225 | cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT; |
| 226 | |
| 227 | return cl; |
| 228 | } |
| 229 | |
| 230 | static void set_lpmode(struct emif_data *emif, u8 lpmode) |
| 231 | { |
| 232 | u32 temp; |
| 233 | void __iomem *base = emif->base; |
| 234 | |
| 235 | /* |
| 236 | * Workaround for errata i743 - LPDDR2 Power-Down State is Not |
| 237 | * Efficient |
| 238 | * |
| 239 | * i743 DESCRIPTION: |
| 240 | * The EMIF supports power-down state for low power. The EMIF |
| 241 | * automatically puts the SDRAM into power-down after the memory is |
| 242 | * not accessed for a defined number of cycles and the |
| 243 | * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4. |
| 244 | * As the EMIF supports automatic output impedance calibration, a ZQ |
| 245 | * calibration long command is issued every time it exits active |
| 246 | * power-down and precharge power-down modes. The EMIF waits and |
| 247 | * blocks any other command during this calibration. |
| 248 | * The EMIF does not allow selective disabling of ZQ calibration upon |
| 249 | * exit of power-down mode. Due to very short periods of power-down |
| 250 | * cycles, ZQ calibration overhead creates bandwidth issues and |
| 251 | * increases overall system power consumption. On the other hand, |
| 252 | * issuing ZQ calibration long commands when exiting self-refresh is |
| 253 | * still required. |
| 254 | * |
| 255 | * WORKAROUND |
| 256 | * Because there is no power consumption benefit of the power-down due |
| 257 | * to the calibration and there is a performance risk, the guideline |
| 258 | * is to not allow power-down state and, therefore, to not have set |
| 259 | * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4. |
| 260 | */ |
| 261 | if ((emif->plat_data->ip_rev == EMIF_4D) && |
| 262 | (EMIF_LP_MODE_PWR_DN == lpmode)) { |
| 263 | WARN_ONCE(1, |
| 264 | "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by" |
| 265 | "erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n"); |
| 266 | /* rollback LP_MODE to Self-refresh mode */ |
| 267 | lpmode = EMIF_LP_MODE_SELF_REFRESH; |
| 268 | } |
| 269 | |
| 270 | temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL); |
| 271 | temp &= ~LP_MODE_MASK; |
| 272 | temp |= (lpmode << LP_MODE_SHIFT); |
| 273 | writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL); |
| 274 | } |
| 275 | |
| 276 | static void do_freq_update(void) |
| 277 | { |
| 278 | struct emif_data *emif; |
| 279 | |
| 280 | /* |
| 281 | * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE |
| 282 | * |
| 283 | * i728 DESCRIPTION: |
| 284 | * The EMIF automatically puts the SDRAM into self-refresh mode |
| 285 | * after the EMIF has not performed accesses during |
| 286 | * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles |
| 287 | * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set |
| 288 | * to 0x2. If during a small window the following three events |
| 289 | * occur: |
| 290 | * - The SR_TIMING counter expires |
| 291 | * - And frequency change is requested |
| 292 | * - And OCP access is requested |
| 293 | * Then it causes instable clock on the DDR interface. |
| 294 | * |
| 295 | * WORKAROUND |
| 296 | * To avoid the occurrence of the three events, the workaround |
| 297 | * is to disable the self-refresh when requesting a frequency |
| 298 | * change. Before requesting a frequency change the software must |
| 299 | * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the |
| 300 | * frequency change has been done, the software can reprogram |
| 301 | * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2 |
| 302 | */ |
| 303 | list_for_each_entry(emif, &device_list, node) { |
| 304 | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) |
| 305 | set_lpmode(emif, EMIF_LP_MODE_DISABLE); |
| 306 | } |
| 307 | |
| 308 | /* |
| 309 | * TODO: Do FREQ_UPDATE here when an API |
| 310 | * is available for this as part of the new |
| 311 | * clock framework |
| 312 | */ |
| 313 | |
| 314 | list_for_each_entry(emif, &device_list, node) { |
| 315 | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) |
| 316 | set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | /* Find addressing table entry based on the device's type and density */ |
| 321 | static const struct lpddr2_addressing *get_addressing_table( |
| 322 | const struct ddr_device_info *device_info) |
| 323 | { |
| 324 | u32 index, type, density; |
| 325 | |
| 326 | type = device_info->type; |
| 327 | density = device_info->density; |
| 328 | |
| 329 | switch (type) { |
| 330 | case DDR_TYPE_LPDDR2_S4: |
| 331 | index = density - 1; |
| 332 | break; |
| 333 | case DDR_TYPE_LPDDR2_S2: |
| 334 | switch (density) { |
| 335 | case DDR_DENSITY_1Gb: |
| 336 | case DDR_DENSITY_2Gb: |
| 337 | index = density + 3; |
| 338 | break; |
| 339 | default: |
| 340 | index = density - 1; |
| 341 | } |
| 342 | break; |
| 343 | default: |
| 344 | return NULL; |
| 345 | } |
| 346 | |
| 347 | return &lpddr2_jedec_addressing_table[index]; |
| 348 | } |
| 349 | |
| 350 | /* |
| 351 | * Find the the right timing table from the array of timing |
| 352 | * tables of the device using DDR clock frequency |
| 353 | */ |
| 354 | static const struct lpddr2_timings *get_timings_table(struct emif_data *emif, |
| 355 | u32 freq) |
| 356 | { |
| 357 | u32 i, min, max, freq_nearest; |
| 358 | const struct lpddr2_timings *timings = NULL; |
| 359 | const struct lpddr2_timings *timings_arr = emif->plat_data->timings; |
| 360 | struct device *dev = emif->dev; |
| 361 | |
| 362 | /* Start with a very high frequency - 1GHz */ |
| 363 | freq_nearest = 1000000000; |
| 364 | |
| 365 | /* |
| 366 | * Find the timings table such that: |
| 367 | * 1. the frequency range covers the required frequency(safe) AND |
| 368 | * 2. the max_freq is closest to the required frequency(optimal) |
| 369 | */ |
| 370 | for (i = 0; i < emif->plat_data->timings_arr_size; i++) { |
| 371 | max = timings_arr[i].max_freq; |
| 372 | min = timings_arr[i].min_freq; |
| 373 | if ((freq >= min) && (freq <= max) && (max < freq_nearest)) { |
| 374 | freq_nearest = max; |
| 375 | timings = &timings_arr[i]; |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | if (!timings) |
| 380 | dev_err(dev, "%s: couldn't find timings for - %dHz\n", |
| 381 | __func__, freq); |
| 382 | |
| 383 | dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n", |
| 384 | __func__, freq, freq_nearest); |
| 385 | |
| 386 | return timings; |
| 387 | } |
| 388 | |
| 389 | static u32 get_sdram_ref_ctrl_shdw(u32 freq, |
| 390 | const struct lpddr2_addressing *addressing) |
| 391 | { |
| 392 | u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi; |
| 393 | |
| 394 | /* Scale down frequency and t_refi to avoid overflow */ |
| 395 | freq_khz = freq / 1000; |
| 396 | t_refi = addressing->tREFI_ns / 100; |
| 397 | |
| 398 | /* |
| 399 | * refresh rate to be set is 'tREFI(in us) * freq in MHz |
| 400 | * division by 10000 to account for change in units |
| 401 | */ |
| 402 | val = t_refi * freq_khz / 10000; |
| 403 | ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT; |
| 404 | |
| 405 | return ref_ctrl_shdw; |
| 406 | } |
| 407 | |
| 408 | static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings, |
| 409 | const struct lpddr2_min_tck *min_tck, |
| 410 | const struct lpddr2_addressing *addressing) |
| 411 | { |
| 412 | u32 tim1 = 0, val = 0; |
| 413 | |
| 414 | val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; |
| 415 | tim1 |= val << T_WTR_SHIFT; |
| 416 | |
| 417 | if (addressing->num_banks == B8) |
| 418 | val = DIV_ROUND_UP(timings->tFAW, t_ck*4); |
| 419 | else |
| 420 | val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck)); |
| 421 | tim1 |= (val - 1) << T_RRD_SHIFT; |
| 422 | |
| 423 | val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1; |
| 424 | tim1 |= val << T_RC_SHIFT; |
| 425 | |
| 426 | val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck)); |
| 427 | tim1 |= (val - 1) << T_RAS_SHIFT; |
| 428 | |
| 429 | val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; |
| 430 | tim1 |= val << T_WR_SHIFT; |
| 431 | |
| 432 | val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1; |
| 433 | tim1 |= val << T_RCD_SHIFT; |
| 434 | |
| 435 | val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1; |
| 436 | tim1 |= val << T_RP_SHIFT; |
| 437 | |
| 438 | return tim1; |
| 439 | } |
| 440 | |
| 441 | static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings, |
| 442 | const struct lpddr2_min_tck *min_tck, |
| 443 | const struct lpddr2_addressing *addressing) |
| 444 | { |
| 445 | u32 tim1 = 0, val = 0; |
| 446 | |
| 447 | val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; |
| 448 | tim1 = val << T_WTR_SHIFT; |
| 449 | |
| 450 | /* |
| 451 | * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps |
| 452 | * to tFAW for de-rating |
| 453 | */ |
| 454 | if (addressing->num_banks == B8) { |
| 455 | val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1; |
| 456 | } else { |
| 457 | val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck); |
| 458 | val = max(min_tck->tRRD, val) - 1; |
| 459 | } |
| 460 | tim1 |= val << T_RRD_SHIFT; |
| 461 | |
| 462 | val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck); |
| 463 | tim1 |= (val - 1) << T_RC_SHIFT; |
| 464 | |
| 465 | val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck); |
| 466 | val = max(min_tck->tRASmin, val) - 1; |
| 467 | tim1 |= val << T_RAS_SHIFT; |
| 468 | |
| 469 | val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; |
| 470 | tim1 |= val << T_WR_SHIFT; |
| 471 | |
| 472 | val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck)); |
| 473 | tim1 |= (val - 1) << T_RCD_SHIFT; |
| 474 | |
| 475 | val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck)); |
| 476 | tim1 |= (val - 1) << T_RP_SHIFT; |
| 477 | |
| 478 | return tim1; |
| 479 | } |
| 480 | |
| 481 | static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings, |
| 482 | const struct lpddr2_min_tck *min_tck, |
| 483 | const struct lpddr2_addressing *addressing, |
| 484 | u32 type) |
| 485 | { |
| 486 | u32 tim2 = 0, val = 0; |
| 487 | |
| 488 | val = min_tck->tCKE - 1; |
| 489 | tim2 |= val << T_CKE_SHIFT; |
| 490 | |
| 491 | val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1; |
| 492 | tim2 |= val << T_RTP_SHIFT; |
| 493 | |
| 494 | /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */ |
| 495 | val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1; |
| 496 | tim2 |= val << T_XSNR_SHIFT; |
| 497 | |
| 498 | /* XSRD same as XSNR for LPDDR2 */ |
| 499 | tim2 |= val << T_XSRD_SHIFT; |
| 500 | |
| 501 | val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1; |
| 502 | tim2 |= val << T_XP_SHIFT; |
| 503 | |
| 504 | return tim2; |
| 505 | } |
| 506 | |
| 507 | static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings, |
| 508 | const struct lpddr2_min_tck *min_tck, |
| 509 | const struct lpddr2_addressing *addressing, |
| 510 | u32 type, u32 ip_rev, u32 derated) |
| 511 | { |
| 512 | u32 tim3 = 0, val = 0, t_dqsck; |
| 513 | |
| 514 | val = timings->tRAS_max_ns / addressing->tREFI_ns - 1; |
| 515 | val = val > 0xF ? 0xF : val; |
| 516 | tim3 |= val << T_RAS_MAX_SHIFT; |
| 517 | |
| 518 | val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1; |
| 519 | tim3 |= val << T_RFC_SHIFT; |
| 520 | |
| 521 | t_dqsck = (derated == EMIF_DERATED_TIMINGS) ? |
| 522 | timings->tDQSCK_max_derated : timings->tDQSCK_max; |
| 523 | if (ip_rev == EMIF_4D5) |
| 524 | val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1; |
| 525 | else |
| 526 | val = DIV_ROUND_UP(t_dqsck, t_ck) - 1; |
| 527 | |
| 528 | tim3 |= val << T_TDQSCKMAX_SHIFT; |
| 529 | |
| 530 | val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1; |
| 531 | tim3 |= val << ZQ_ZQCS_SHIFT; |
| 532 | |
| 533 | val = DIV_ROUND_UP(timings->tCKESR, t_ck); |
| 534 | val = max(min_tck->tCKESR, val) - 1; |
| 535 | tim3 |= val << T_CKESR_SHIFT; |
| 536 | |
| 537 | if (ip_rev == EMIF_4D5) { |
| 538 | tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT; |
| 539 | |
| 540 | val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1; |
| 541 | tim3 |= val << T_PDLL_UL_SHIFT; |
| 542 | } |
| 543 | |
| 544 | return tim3; |
| 545 | } |
| 546 | |
| 547 | static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing, |
| 548 | bool cs1_used, bool cal_resistors_per_cs) |
| 549 | { |
| 550 | u32 zq = 0, val = 0; |
| 551 | |
| 552 | val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns; |
| 553 | zq |= val << ZQ_REFINTERVAL_SHIFT; |
| 554 | |
| 555 | val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1; |
| 556 | zq |= val << ZQ_ZQCL_MULT_SHIFT; |
| 557 | |
| 558 | val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1; |
| 559 | zq |= val << ZQ_ZQINIT_MULT_SHIFT; |
| 560 | |
| 561 | zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT; |
| 562 | |
| 563 | if (cal_resistors_per_cs) |
| 564 | zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT; |
| 565 | else |
| 566 | zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT; |
| 567 | |
| 568 | zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */ |
| 569 | |
| 570 | val = cs1_used ? 1 : 0; |
| 571 | zq |= val << ZQ_CS1EN_SHIFT; |
| 572 | |
| 573 | return zq; |
| 574 | } |
| 575 | |
| 576 | static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing, |
| 577 | const struct emif_custom_configs *custom_configs, bool cs1_used, |
| 578 | u32 sdram_io_width, u32 emif_bus_width) |
| 579 | { |
| 580 | u32 alert = 0, interval, devcnt; |
| 581 | |
| 582 | if (custom_configs && (custom_configs->mask & |
| 583 | EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)) |
| 584 | interval = custom_configs->temp_alert_poll_interval_ms; |
| 585 | else |
| 586 | interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS; |
| 587 | |
| 588 | interval *= 1000000; /* Convert to ns */ |
| 589 | interval /= addressing->tREFI_ns; /* Convert to refresh cycles */ |
| 590 | alert |= (interval << TA_REFINTERVAL_SHIFT); |
| 591 | |
| 592 | /* |
| 593 | * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width |
| 594 | * also to this form and subtract to get TA_DEVCNT, which is |
| 595 | * in log2(x) form. |
| 596 | */ |
| 597 | emif_bus_width = __fls(emif_bus_width) - 1; |
| 598 | devcnt = emif_bus_width - sdram_io_width; |
| 599 | alert |= devcnt << TA_DEVCNT_SHIFT; |
| 600 | |
| 601 | /* DEVWDT is in 'log2(x) - 3' form */ |
| 602 | alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT; |
| 603 | |
| 604 | alert |= 1 << TA_SFEXITEN_SHIFT; |
| 605 | alert |= 1 << TA_CS0EN_SHIFT; |
| 606 | alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT; |
| 607 | |
| 608 | return alert; |
| 609 | } |
| 610 | |
| 611 | static u32 get_read_idle_ctrl_shdw(u8 volt_ramp) |
| 612 | { |
| 613 | u32 idle = 0, val = 0; |
| 614 | |
| 615 | /* |
| 616 | * Maximum value in normal conditions and increased frequency |
| 617 | * when voltage is ramping |
| 618 | */ |
| 619 | if (volt_ramp) |
| 620 | val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1; |
| 621 | else |
| 622 | val = 0x1FF; |
| 623 | |
| 624 | /* |
| 625 | * READ_IDLE_CTRL register in EMIF4D has same offset and fields |
| 626 | * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts |
| 627 | */ |
| 628 | idle |= val << DLL_CALIB_INTERVAL_SHIFT; |
| 629 | idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT; |
| 630 | |
| 631 | return idle; |
| 632 | } |
| 633 | |
| 634 | static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp) |
| 635 | { |
| 636 | u32 calib = 0, val = 0; |
| 637 | |
| 638 | if (volt_ramp == DDR_VOLTAGE_RAMPING) |
| 639 | val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1; |
| 640 | else |
| 641 | val = 0; /* Disabled when voltage is stable */ |
| 642 | |
| 643 | calib |= val << DLL_CALIB_INTERVAL_SHIFT; |
| 644 | calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT; |
| 645 | |
| 646 | return calib; |
| 647 | } |
| 648 | |
| 649 | static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings, |
| 650 | u32 freq, u8 RL) |
| 651 | { |
| 652 | u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0; |
| 653 | |
| 654 | val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1; |
| 655 | phy |= val << READ_LATENCY_SHIFT_4D; |
| 656 | |
| 657 | if (freq <= 100000000) |
| 658 | val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY; |
| 659 | else if (freq <= 200000000) |
| 660 | val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY; |
| 661 | else |
| 662 | val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY; |
| 663 | |
| 664 | phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D; |
| 665 | |
| 666 | return phy; |
| 667 | } |
| 668 | |
| 669 | static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl) |
| 670 | { |
| 671 | u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay; |
| 672 | |
| 673 | /* |
| 674 | * DLL operates at 266 MHz. If DDR frequency is near 266 MHz, |
| 675 | * half-delay is not needed else set half-delay |
| 676 | */ |
| 677 | if (freq >= 265000000 && freq < 267000000) |
| 678 | half_delay = 0; |
| 679 | else |
| 680 | half_delay = 1; |
| 681 | |
| 682 | phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5; |
| 683 | phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS, |
| 684 | t_ck) - 1) << READ_LATENCY_SHIFT_4D5); |
| 685 | |
| 686 | return phy; |
| 687 | } |
| 688 | |
| 689 | static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void) |
| 690 | { |
| 691 | u32 fifo_we_slave_ratio; |
| 692 | |
| 693 | fifo_we_slave_ratio = DIV_ROUND_CLOSEST( |
| 694 | EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); |
| 695 | |
| 696 | return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 | |
| 697 | fifo_we_slave_ratio << 22; |
| 698 | } |
| 699 | |
| 700 | static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void) |
| 701 | { |
| 702 | u32 fifo_we_slave_ratio; |
| 703 | |
| 704 | fifo_we_slave_ratio = DIV_ROUND_CLOSEST( |
| 705 | EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); |
| 706 | |
| 707 | return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 | |
| 708 | fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23; |
| 709 | } |
| 710 | |
| 711 | static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void) |
| 712 | { |
| 713 | u32 fifo_we_slave_ratio; |
| 714 | |
| 715 | fifo_we_slave_ratio = DIV_ROUND_CLOSEST( |
| 716 | EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); |
| 717 | |
| 718 | return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 | |
| 719 | fifo_we_slave_ratio << 13; |
| 720 | } |
| 721 | |
| 722 | static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev) |
| 723 | { |
| 724 | u32 pwr_mgmt_ctrl = 0, timeout; |
| 725 | u32 lpmode = EMIF_LP_MODE_SELF_REFRESH; |
| 726 | u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE; |
| 727 | u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER; |
| 728 | u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD; |
| 729 | u32 mask; |
| 730 | u8 shift; |
| 731 | |
| 732 | struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs; |
| 733 | |
| 734 | if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) { |
| 735 | lpmode = cust_cfgs->lpmode; |
| 736 | timeout_perf = cust_cfgs->lpmode_timeout_performance; |
| 737 | timeout_pwr = cust_cfgs->lpmode_timeout_power; |
| 738 | freq_threshold = cust_cfgs->lpmode_freq_threshold; |
| 739 | } |
| 740 | |
| 741 | /* Timeout based on DDR frequency */ |
| 742 | timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr; |
| 743 | |
| 744 | /* |
| 745 | * The value to be set in register is "log2(timeout) - 3" |
| 746 | * if timeout < 16 load 0 in register |
| 747 | * if timeout is not a power of 2, round to next highest power of 2 |
| 748 | */ |
| 749 | if (timeout < 16) { |
| 750 | timeout = 0; |
| 751 | } else { |
| 752 | if (timeout & (timeout - 1)) |
| 753 | timeout <<= 1; |
| 754 | timeout = __fls(timeout) - 3; |
| 755 | } |
| 756 | |
| 757 | switch (lpmode) { |
| 758 | case EMIF_LP_MODE_CLOCK_STOP: |
| 759 | shift = CS_TIM_SHIFT; |
| 760 | mask = CS_TIM_MASK; |
| 761 | break; |
| 762 | case EMIF_LP_MODE_SELF_REFRESH: |
| 763 | /* Workaround for errata i735 */ |
| 764 | if (timeout < 6) |
| 765 | timeout = 6; |
| 766 | |
| 767 | shift = SR_TIM_SHIFT; |
| 768 | mask = SR_TIM_MASK; |
| 769 | break; |
| 770 | case EMIF_LP_MODE_PWR_DN: |
| 771 | shift = PD_TIM_SHIFT; |
| 772 | mask = PD_TIM_MASK; |
| 773 | break; |
| 774 | case EMIF_LP_MODE_DISABLE: |
| 775 | default: |
| 776 | mask = 0; |
| 777 | shift = 0; |
| 778 | break; |
| 779 | } |
| 780 | /* Round to maximum in case of overflow, BUT warn! */ |
| 781 | if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) { |
| 782 | pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n", |
| 783 | lpmode, |
| 784 | timeout_perf, |
| 785 | timeout_pwr, |
| 786 | freq_threshold); |
| 787 | WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n", |
| 788 | timeout, mask >> shift); |
| 789 | timeout = mask >> shift; |
| 790 | } |
| 791 | |
| 792 | /* Setup required timing */ |
| 793 | pwr_mgmt_ctrl = (timeout << shift) & mask; |
| 794 | /* setup a default mask for rest of the modes */ |
| 795 | pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) & |
| 796 | ~mask; |
| 797 | |
| 798 | /* No CS_TIM in EMIF_4D5 */ |
| 799 | if (ip_rev == EMIF_4D5) |
| 800 | pwr_mgmt_ctrl &= ~CS_TIM_MASK; |
| 801 | |
| 802 | pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT; |
| 803 | |
| 804 | return pwr_mgmt_ctrl; |
| 805 | } |
| 806 | |
| 807 | /* |
| 808 | * Get the temperature level of the EMIF instance: |
| 809 | * Reads the MR4 register of attached SDRAM parts to find out the temperature |
| 810 | * level. If there are two parts attached(one on each CS), then the temperature |
| 811 | * level for the EMIF instance is the higher of the two temperatures. |
| 812 | */ |
| 813 | static void get_temperature_level(struct emif_data *emif) |
| 814 | { |
| 815 | u32 temp, temperature_level; |
| 816 | void __iomem *base; |
| 817 | |
| 818 | base = emif->base; |
| 819 | |
| 820 | /* Read mode register 4 */ |
| 821 | writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG); |
| 822 | temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA); |
| 823 | temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >> |
| 824 | MR4_SDRAM_REF_RATE_SHIFT; |
| 825 | |
| 826 | if (emif->plat_data->device_info->cs1_used) { |
| 827 | writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG); |
| 828 | temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA); |
| 829 | temp = (temp & MR4_SDRAM_REF_RATE_MASK) |
| 830 | >> MR4_SDRAM_REF_RATE_SHIFT; |
| 831 | temperature_level = max(temp, temperature_level); |
| 832 | } |
| 833 | |
| 834 | /* treat everything less than nominal(3) in MR4 as nominal */ |
| 835 | if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL)) |
| 836 | temperature_level = SDRAM_TEMP_NOMINAL; |
| 837 | |
| 838 | /* if we get reserved value in MR4 persist with the existing value */ |
| 839 | if (likely(temperature_level != SDRAM_TEMP_RESERVED_4)) |
| 840 | emif->temperature_level = temperature_level; |
| 841 | } |
| 842 | |
| 843 | /* |
| 844 | * Program EMIF shadow registers that are not dependent on temperature |
| 845 | * or voltage |
| 846 | */ |
| 847 | static void setup_registers(struct emif_data *emif, struct emif_regs *regs) |
| 848 | { |
| 849 | void __iomem *base = emif->base; |
| 850 | |
| 851 | writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW); |
| 852 | writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW); |
| 853 | writel(regs->pwr_mgmt_ctrl_shdw, |
| 854 | base + EMIF_POWER_MANAGEMENT_CTRL_SHDW); |
| 855 | |
| 856 | /* Settings specific for EMIF4D5 */ |
| 857 | if (emif->plat_data->ip_rev != EMIF_4D5) |
| 858 | return; |
| 859 | writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW); |
| 860 | writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW); |
| 861 | writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW); |
| 862 | } |
| 863 | |
| 864 | /* |
| 865 | * When voltage ramps dll calibration and forced read idle should |
| 866 | * happen more often |
| 867 | */ |
| 868 | static void setup_volt_sensitive_regs(struct emif_data *emif, |
| 869 | struct emif_regs *regs, u32 volt_state) |
| 870 | { |
| 871 | u32 calib_ctrl; |
| 872 | void __iomem *base = emif->base; |
| 873 | |
| 874 | /* |
| 875 | * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as |
| 876 | * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_* |
| 877 | * is an alias of the respective read_idle_ctrl_shdw_* (members of |
| 878 | * a union). So, the below code takes care of both cases |
| 879 | */ |
| 880 | if (volt_state == DDR_VOLTAGE_RAMPING) |
| 881 | calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp; |
| 882 | else |
| 883 | calib_ctrl = regs->dll_calib_ctrl_shdw_normal; |
| 884 | |
| 885 | writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW); |
| 886 | } |
| 887 | |
| 888 | /* |
| 889 | * setup_temperature_sensitive_regs() - set the timings for temperature |
| 890 | * sensitive registers. This happens once at initialisation time based |
| 891 | * on the temperature at boot time and subsequently based on the temperature |
| 892 | * alert interrupt. Temperature alert can happen when the temperature |
| 893 | * increases or drops. So this function can have the effect of either |
| 894 | * derating the timings or going back to nominal values. |
| 895 | */ |
| 896 | static void setup_temperature_sensitive_regs(struct emif_data *emif, |
| 897 | struct emif_regs *regs) |
| 898 | { |
| 899 | u32 tim1, tim3, ref_ctrl, type; |
| 900 | void __iomem *base = emif->base; |
| 901 | u32 temperature; |
| 902 | |
| 903 | type = emif->plat_data->device_info->type; |
| 904 | |
| 905 | tim1 = regs->sdram_tim1_shdw; |
| 906 | tim3 = regs->sdram_tim3_shdw; |
| 907 | ref_ctrl = regs->ref_ctrl_shdw; |
| 908 | |
| 909 | /* No de-rating for non-lpddr2 devices */ |
| 910 | if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4) |
| 911 | goto out; |
| 912 | |
| 913 | temperature = emif->temperature_level; |
| 914 | if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) { |
| 915 | ref_ctrl = regs->ref_ctrl_shdw_derated; |
| 916 | } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) { |
| 917 | tim1 = regs->sdram_tim1_shdw_derated; |
| 918 | tim3 = regs->sdram_tim3_shdw_derated; |
| 919 | ref_ctrl = regs->ref_ctrl_shdw_derated; |
| 920 | } |
| 921 | |
| 922 | out: |
| 923 | writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW); |
| 924 | writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW); |
| 925 | writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW); |
| 926 | } |
| 927 | |
| 928 | static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif) |
| 929 | { |
| 930 | u32 old_temp_level; |
| 931 | irqreturn_t ret = IRQ_HANDLED; |
| 932 | struct emif_custom_configs *custom_configs; |
| 933 | |
| 934 | spin_lock_irqsave(&emif_lock, irq_state); |
| 935 | old_temp_level = emif->temperature_level; |
| 936 | get_temperature_level(emif); |
| 937 | |
| 938 | if (unlikely(emif->temperature_level == old_temp_level)) { |
| 939 | goto out; |
| 940 | } else if (!emif->curr_regs) { |
| 941 | dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); |
| 942 | goto out; |
| 943 | } |
| 944 | |
| 945 | custom_configs = emif->plat_data->custom_configs; |
| 946 | |
| 947 | /* |
| 948 | * IF we detect higher than "nominal rating" from DDR sensor |
| 949 | * on an unsupported DDR part, shutdown system |
| 950 | */ |
| 951 | if (custom_configs && !(custom_configs->mask & |
| 952 | EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) { |
| 953 | if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) { |
| 954 | dev_err(emif->dev, |
| 955 | "%s:NOT Extended temperature capable memory." |
| 956 | "Converting MR4=0x%02x as shutdown event\n", |
| 957 | __func__, emif->temperature_level); |
| 958 | /* |
| 959 | * Temperature far too high - do kernel_power_off() |
| 960 | * from thread context |
| 961 | */ |
| 962 | emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN; |
| 963 | ret = IRQ_WAKE_THREAD; |
| 964 | goto out; |
| 965 | } |
| 966 | } |
| 967 | |
| 968 | if (emif->temperature_level < old_temp_level || |
| 969 | emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { |
| 970 | /* |
| 971 | * Temperature coming down - defer handling to thread OR |
| 972 | * Temperature far too high - do kernel_power_off() from |
| 973 | * thread context |
| 974 | */ |
| 975 | ret = IRQ_WAKE_THREAD; |
| 976 | } else { |
| 977 | /* Temperature is going up - handle immediately */ |
| 978 | setup_temperature_sensitive_regs(emif, emif->curr_regs); |
| 979 | do_freq_update(); |
| 980 | } |
| 981 | |
| 982 | out: |
| 983 | spin_unlock_irqrestore(&emif_lock, irq_state); |
| 984 | return ret; |
| 985 | } |
| 986 | |
| 987 | static irqreturn_t emif_interrupt_handler(int irq, void *dev_id) |
| 988 | { |
| 989 | u32 interrupts; |
| 990 | struct emif_data *emif = dev_id; |
| 991 | void __iomem *base = emif->base; |
| 992 | struct device *dev = emif->dev; |
| 993 | irqreturn_t ret = IRQ_HANDLED; |
| 994 | |
| 995 | /* Save the status and clear it */ |
| 996 | interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); |
| 997 | writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); |
| 998 | |
| 999 | /* |
| 1000 | * Handle temperature alert |
| 1001 | * Temperature alert should be same for all ports |
| 1002 | * So, it's enough to process it only for one of the ports |
| 1003 | */ |
| 1004 | if (interrupts & TA_SYS_MASK) |
| 1005 | ret = handle_temp_alert(base, emif); |
| 1006 | |
| 1007 | if (interrupts & ERR_SYS_MASK) |
| 1008 | dev_err(dev, "Access error from SYS port - %x\n", interrupts); |
| 1009 | |
| 1010 | if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { |
| 1011 | /* Save the status and clear it */ |
| 1012 | interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS); |
| 1013 | writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS); |
| 1014 | |
| 1015 | if (interrupts & ERR_LL_MASK) |
| 1016 | dev_err(dev, "Access error from LL port - %x\n", |
| 1017 | interrupts); |
| 1018 | } |
| 1019 | |
| 1020 | return ret; |
| 1021 | } |
| 1022 | |
| 1023 | static irqreturn_t emif_threaded_isr(int irq, void *dev_id) |
| 1024 | { |
| 1025 | struct emif_data *emif = dev_id; |
| 1026 | |
| 1027 | if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { |
| 1028 | dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); |
| 1029 | |
| 1030 | /* If we have Power OFF ability, use it, else try restarting */ |
| 1031 | if (pm_power_off) { |
| 1032 | kernel_power_off(); |
| 1033 | } else { |
| 1034 | WARN(1, "FIXME: NO pm_power_off!!! trying restart\n"); |
| 1035 | kernel_restart("SDRAM Over-temp Emergency restart"); |
| 1036 | } |
| 1037 | return IRQ_HANDLED; |
| 1038 | } |
| 1039 | |
| 1040 | spin_lock_irqsave(&emif_lock, irq_state); |
| 1041 | |
| 1042 | if (emif->curr_regs) { |
| 1043 | setup_temperature_sensitive_regs(emif, emif->curr_regs); |
| 1044 | do_freq_update(); |
| 1045 | } else { |
| 1046 | dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); |
| 1047 | } |
| 1048 | |
| 1049 | spin_unlock_irqrestore(&emif_lock, irq_state); |
| 1050 | |
| 1051 | return IRQ_HANDLED; |
| 1052 | } |
| 1053 | |
| 1054 | static void clear_all_interrupts(struct emif_data *emif) |
| 1055 | { |
| 1056 | void __iomem *base = emif->base; |
| 1057 | |
| 1058 | writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS), |
| 1059 | base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); |
| 1060 | if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) |
| 1061 | writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS), |
| 1062 | base + EMIF_LL_OCP_INTERRUPT_STATUS); |
| 1063 | } |
| 1064 | |
| 1065 | static void disable_and_clear_all_interrupts(struct emif_data *emif) |
| 1066 | { |
| 1067 | void __iomem *base = emif->base; |
| 1068 | |
| 1069 | /* Disable all interrupts */ |
| 1070 | writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET), |
| 1071 | base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR); |
| 1072 | if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) |
| 1073 | writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET), |
| 1074 | base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR); |
| 1075 | |
| 1076 | /* Clear all interrupts */ |
| 1077 | clear_all_interrupts(emif); |
| 1078 | } |
| 1079 | |
| 1080 | static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq) |
| 1081 | { |
| 1082 | u32 interrupts, type; |
| 1083 | void __iomem *base = emif->base; |
| 1084 | |
| 1085 | type = emif->plat_data->device_info->type; |
| 1086 | |
| 1087 | clear_all_interrupts(emif); |
| 1088 | |
| 1089 | /* Enable interrupts for SYS interface */ |
| 1090 | interrupts = EN_ERR_SYS_MASK; |
| 1091 | if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) |
| 1092 | interrupts |= EN_TA_SYS_MASK; |
| 1093 | writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET); |
| 1094 | |
| 1095 | /* Enable interrupts for LL interface */ |
| 1096 | if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { |
| 1097 | /* TA need not be enabled for LL */ |
| 1098 | interrupts = EN_ERR_LL_MASK; |
| 1099 | writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET); |
| 1100 | } |
| 1101 | |
| 1102 | /* setup IRQ handlers */ |
| 1103 | return devm_request_threaded_irq(emif->dev, irq, |
| 1104 | emif_interrupt_handler, |
| 1105 | emif_threaded_isr, |
| 1106 | 0, dev_name(emif->dev), |
| 1107 | emif); |
| 1108 | |
| 1109 | } |
| 1110 | |
| 1111 | static void __init_or_module emif_onetime_settings(struct emif_data *emif) |
| 1112 | { |
| 1113 | u32 pwr_mgmt_ctrl, zq, temp_alert_cfg; |
| 1114 | void __iomem *base = emif->base; |
| 1115 | const struct lpddr2_addressing *addressing; |
| 1116 | const struct ddr_device_info *device_info; |
| 1117 | |
| 1118 | device_info = emif->plat_data->device_info; |
| 1119 | addressing = get_addressing_table(device_info); |
| 1120 | |
| 1121 | /* |
| 1122 | * Init power management settings |
| 1123 | * We don't know the frequency yet. Use a high frequency |
| 1124 | * value for a conservative timeout setting |
| 1125 | */ |
| 1126 | pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif, |
| 1127 | emif->plat_data->ip_rev); |
| 1128 | emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT; |
| 1129 | writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL); |
| 1130 | |
| 1131 | /* Init ZQ calibration settings */ |
| 1132 | zq = get_zq_config_reg(addressing, device_info->cs1_used, |
| 1133 | device_info->cal_resistors_per_cs); |
| 1134 | writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG); |
| 1135 | |
| 1136 | /* Check temperature level temperature level*/ |
| 1137 | get_temperature_level(emif); |
| 1138 | if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) |
| 1139 | dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); |
| 1140 | |
| 1141 | /* Init temperature polling */ |
| 1142 | temp_alert_cfg = get_temp_alert_config(addressing, |
| 1143 | emif->plat_data->custom_configs, device_info->cs1_used, |
| 1144 | device_info->io_width, get_emif_bus_width(emif)); |
| 1145 | writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG); |
| 1146 | |
| 1147 | /* |
| 1148 | * Program external PHY control registers that are not frequency |
| 1149 | * dependent |
| 1150 | */ |
| 1151 | if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY) |
| 1152 | return; |
| 1153 | writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW); |
| 1154 | writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW); |
| 1155 | writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW); |
| 1156 | writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW); |
| 1157 | writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW); |
| 1158 | writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW); |
| 1159 | writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW); |
| 1160 | writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW); |
| 1161 | writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW); |
| 1162 | writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW); |
| 1163 | writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW); |
| 1164 | writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW); |
| 1165 | writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW); |
| 1166 | writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW); |
| 1167 | writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW); |
| 1168 | writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW); |
| 1169 | writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW); |
| 1170 | writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW); |
| 1171 | writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW); |
| 1172 | writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW); |
| 1173 | writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW); |
| 1174 | } |
| 1175 | |
| 1176 | static void get_default_timings(struct emif_data *emif) |
| 1177 | { |
| 1178 | struct emif_platform_data *pd = emif->plat_data; |
| 1179 | |
| 1180 | pd->timings = lpddr2_jedec_timings; |
| 1181 | pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings); |
| 1182 | |
| 1183 | dev_warn(emif->dev, "%s: using default timings\n", __func__); |
| 1184 | } |
| 1185 | |
| 1186 | static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type, |
| 1187 | u32 ip_rev, struct device *dev) |
| 1188 | { |
| 1189 | int valid; |
| 1190 | |
| 1191 | valid = (type == DDR_TYPE_LPDDR2_S4 || |
| 1192 | type == DDR_TYPE_LPDDR2_S2) |
| 1193 | && (density >= DDR_DENSITY_64Mb |
| 1194 | && density <= DDR_DENSITY_8Gb) |
| 1195 | && (io_width >= DDR_IO_WIDTH_8 |
| 1196 | && io_width <= DDR_IO_WIDTH_32); |
| 1197 | |
| 1198 | /* Combinations of EMIF and PHY revisions that we support today */ |
| 1199 | switch (ip_rev) { |
| 1200 | case EMIF_4D: |
| 1201 | valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY); |
| 1202 | break; |
| 1203 | case EMIF_4D5: |
| 1204 | valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY); |
| 1205 | break; |
| 1206 | default: |
| 1207 | valid = 0; |
| 1208 | } |
| 1209 | |
| 1210 | if (!valid) |
| 1211 | dev_err(dev, "%s: invalid DDR details\n", __func__); |
| 1212 | return valid; |
| 1213 | } |
| 1214 | |
| 1215 | static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs, |
| 1216 | struct device *dev) |
| 1217 | { |
| 1218 | int valid = 1; |
| 1219 | |
| 1220 | if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) && |
| 1221 | (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE)) |
| 1222 | valid = cust_cfgs->lpmode_freq_threshold && |
| 1223 | cust_cfgs->lpmode_timeout_performance && |
| 1224 | cust_cfgs->lpmode_timeout_power; |
| 1225 | |
| 1226 | if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL) |
| 1227 | valid = valid && cust_cfgs->temp_alert_poll_interval_ms; |
| 1228 | |
| 1229 | if (!valid) |
| 1230 | dev_warn(dev, "%s: invalid custom configs\n", __func__); |
| 1231 | |
| 1232 | return valid; |
| 1233 | } |
| 1234 | |
| 1235 | #if defined(CONFIG_OF) |
| 1236 | static void __init_or_module of_get_custom_configs(struct device_node *np_emif, |
| 1237 | struct emif_data *emif) |
| 1238 | { |
| 1239 | struct emif_custom_configs *cust_cfgs = NULL; |
| 1240 | int len; |
| 1241 | const __be32 *lpmode, *poll_intvl; |
| 1242 | |
| 1243 | lpmode = of_get_property(np_emif, "low-power-mode", &len); |
| 1244 | poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len); |
| 1245 | |
| 1246 | if (lpmode || poll_intvl) |
| 1247 | cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs), |
| 1248 | GFP_KERNEL); |
| 1249 | |
| 1250 | if (!cust_cfgs) |
| 1251 | return; |
| 1252 | |
| 1253 | if (lpmode) { |
| 1254 | cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE; |
| 1255 | cust_cfgs->lpmode = be32_to_cpup(lpmode); |
| 1256 | of_property_read_u32(np_emif, |
| 1257 | "low-power-mode-timeout-performance", |
| 1258 | &cust_cfgs->lpmode_timeout_performance); |
| 1259 | of_property_read_u32(np_emif, |
| 1260 | "low-power-mode-timeout-power", |
| 1261 | &cust_cfgs->lpmode_timeout_power); |
| 1262 | of_property_read_u32(np_emif, |
| 1263 | "low-power-mode-freq-threshold", |
| 1264 | &cust_cfgs->lpmode_freq_threshold); |
| 1265 | } |
| 1266 | |
| 1267 | if (poll_intvl) { |
| 1268 | cust_cfgs->mask |= |
| 1269 | EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL; |
| 1270 | cust_cfgs->temp_alert_poll_interval_ms = |
| 1271 | be32_to_cpup(poll_intvl); |
| 1272 | } |
| 1273 | |
| 1274 | if (of_find_property(np_emif, "extended-temp-part", &len)) |
| 1275 | cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART; |
| 1276 | |
| 1277 | if (!is_custom_config_valid(cust_cfgs, emif->dev)) { |
| 1278 | devm_kfree(emif->dev, cust_cfgs); |
| 1279 | return; |
| 1280 | } |
| 1281 | |
| 1282 | emif->plat_data->custom_configs = cust_cfgs; |
| 1283 | } |
| 1284 | |
| 1285 | static void __init_or_module of_get_ddr_info(struct device_node *np_emif, |
| 1286 | struct device_node *np_ddr, |
| 1287 | struct ddr_device_info *dev_info) |
| 1288 | { |
| 1289 | u32 density = 0, io_width = 0; |
| 1290 | int len; |
| 1291 | |
| 1292 | if (of_find_property(np_emif, "cs1-used", &len)) |
| 1293 | dev_info->cs1_used = true; |
| 1294 | |
| 1295 | if (of_find_property(np_emif, "cal-resistor-per-cs", &len)) |
| 1296 | dev_info->cal_resistors_per_cs = true; |
| 1297 | |
| 1298 | if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4")) |
| 1299 | dev_info->type = DDR_TYPE_LPDDR2_S4; |
| 1300 | else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2")) |
| 1301 | dev_info->type = DDR_TYPE_LPDDR2_S2; |
| 1302 | |
| 1303 | of_property_read_u32(np_ddr, "density", &density); |
| 1304 | of_property_read_u32(np_ddr, "io-width", &io_width); |
| 1305 | |
| 1306 | /* Convert from density in Mb to the density encoding in jedc_ddr.h */ |
| 1307 | if (density & (density - 1)) |
| 1308 | dev_info->density = 0; |
| 1309 | else |
| 1310 | dev_info->density = __fls(density) - 5; |
| 1311 | |
| 1312 | /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */ |
| 1313 | if (io_width & (io_width - 1)) |
| 1314 | dev_info->io_width = 0; |
| 1315 | else |
| 1316 | dev_info->io_width = __fls(io_width) - 1; |
| 1317 | } |
| 1318 | |
| 1319 | static struct emif_data * __init_or_module of_get_memory_device_details( |
| 1320 | struct device_node *np_emif, struct device *dev) |
| 1321 | { |
| 1322 | struct emif_data *emif = NULL; |
| 1323 | struct ddr_device_info *dev_info = NULL; |
| 1324 | struct emif_platform_data *pd = NULL; |
| 1325 | struct device_node *np_ddr; |
| 1326 | int len; |
| 1327 | |
| 1328 | np_ddr = of_parse_phandle(np_emif, "device-handle", 0); |
| 1329 | if (!np_ddr) |
| 1330 | goto error; |
| 1331 | emif = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL); |
| 1332 | pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); |
| 1333 | dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); |
| 1334 | |
| 1335 | if (!emif || !pd || !dev_info) { |
| 1336 | dev_err(dev, "%s: Out of memory!!\n", |
| 1337 | __func__); |
| 1338 | goto error; |
| 1339 | } |
| 1340 | |
| 1341 | emif->plat_data = pd; |
| 1342 | pd->device_info = dev_info; |
| 1343 | emif->dev = dev; |
| 1344 | emif->np_ddr = np_ddr; |
| 1345 | emif->temperature_level = SDRAM_TEMP_NOMINAL; |
| 1346 | |
| 1347 | if (of_device_is_compatible(np_emif, "ti,emif-4d")) |
| 1348 | emif->plat_data->ip_rev = EMIF_4D; |
| 1349 | else if (of_device_is_compatible(np_emif, "ti,emif-4d5")) |
| 1350 | emif->plat_data->ip_rev = EMIF_4D5; |
| 1351 | |
| 1352 | of_property_read_u32(np_emif, "phy-type", &pd->phy_type); |
| 1353 | |
| 1354 | if (of_find_property(np_emif, "hw-caps-ll-interface", &len)) |
| 1355 | pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE; |
| 1356 | |
| 1357 | of_get_ddr_info(np_emif, np_ddr, dev_info); |
| 1358 | if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density, |
| 1359 | pd->device_info->io_width, pd->phy_type, pd->ip_rev, |
| 1360 | emif->dev)) { |
| 1361 | dev_err(dev, "%s: invalid device data!!\n", __func__); |
| 1362 | goto error; |
| 1363 | } |
| 1364 | /* |
| 1365 | * For EMIF instances other than EMIF1 see if the devices connected |
| 1366 | * are exactly same as on EMIF1(which is typically the case). If so, |
| 1367 | * mark it as a duplicate of EMIF1. This will save some memory and |
| 1368 | * computation. |
| 1369 | */ |
| 1370 | if (emif1 && emif1->np_ddr == np_ddr) { |
| 1371 | emif->duplicate = true; |
| 1372 | goto out; |
| 1373 | } else if (emif1) { |
| 1374 | dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", |
| 1375 | __func__); |
| 1376 | } |
| 1377 | |
| 1378 | of_get_custom_configs(np_emif, emif); |
| 1379 | emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev, |
| 1380 | emif->plat_data->device_info->type, |
| 1381 | &emif->plat_data->timings_arr_size); |
| 1382 | |
| 1383 | emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev); |
| 1384 | goto out; |
| 1385 | |
| 1386 | error: |
| 1387 | return NULL; |
| 1388 | out: |
| 1389 | return emif; |
| 1390 | } |
| 1391 | |
| 1392 | #else |
| 1393 | |
| 1394 | static struct emif_data * __init_or_module of_get_memory_device_details( |
| 1395 | struct device_node *np_emif, struct device *dev) |
| 1396 | { |
| 1397 | return NULL; |
| 1398 | } |
| 1399 | #endif |
| 1400 | |
| 1401 | static struct emif_data *__init_or_module get_device_details( |
| 1402 | struct platform_device *pdev) |
| 1403 | { |
| 1404 | u32 size; |
| 1405 | struct emif_data *emif = NULL; |
| 1406 | struct ddr_device_info *dev_info; |
| 1407 | struct emif_custom_configs *cust_cfgs; |
| 1408 | struct emif_platform_data *pd; |
| 1409 | struct device *dev; |
| 1410 | void *temp; |
| 1411 | |
| 1412 | pd = pdev->dev.platform_data; |
| 1413 | dev = &pdev->dev; |
| 1414 | |
| 1415 | if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type, |
| 1416 | pd->device_info->density, pd->device_info->io_width, |
| 1417 | pd->phy_type, pd->ip_rev, dev))) { |
| 1418 | dev_err(dev, "%s: invalid device data\n", __func__); |
| 1419 | goto error; |
| 1420 | } |
| 1421 | |
| 1422 | emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL); |
| 1423 | temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); |
| 1424 | dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); |
| 1425 | |
| 1426 | if (!emif || !pd || !dev_info) { |
| 1427 | dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__); |
| 1428 | goto error; |
| 1429 | } |
| 1430 | |
| 1431 | memcpy(temp, pd, sizeof(*pd)); |
| 1432 | pd = temp; |
| 1433 | memcpy(dev_info, pd->device_info, sizeof(*dev_info)); |
| 1434 | |
| 1435 | pd->device_info = dev_info; |
| 1436 | emif->plat_data = pd; |
| 1437 | emif->dev = dev; |
| 1438 | emif->temperature_level = SDRAM_TEMP_NOMINAL; |
| 1439 | |
| 1440 | /* |
| 1441 | * For EMIF instances other than EMIF1 see if the devices connected |
| 1442 | * are exactly same as on EMIF1(which is typically the case). If so, |
| 1443 | * mark it as a duplicate of EMIF1 and skip copying timings data. |
| 1444 | * This will save some memory and some computation later. |
| 1445 | */ |
| 1446 | emif->duplicate = emif1 && (memcmp(dev_info, |
| 1447 | emif1->plat_data->device_info, |
| 1448 | sizeof(struct ddr_device_info)) == 0); |
| 1449 | |
| 1450 | if (emif->duplicate) { |
| 1451 | pd->timings = NULL; |
| 1452 | pd->min_tck = NULL; |
| 1453 | goto out; |
| 1454 | } else if (emif1) { |
| 1455 | dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", |
| 1456 | __func__); |
| 1457 | } |
| 1458 | |
| 1459 | /* |
| 1460 | * Copy custom configs - ignore allocation error, if any, as |
| 1461 | * custom_configs is not very critical |
| 1462 | */ |
| 1463 | cust_cfgs = pd->custom_configs; |
| 1464 | if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) { |
| 1465 | temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL); |
| 1466 | if (temp) |
| 1467 | memcpy(temp, cust_cfgs, sizeof(*cust_cfgs)); |
| 1468 | else |
| 1469 | dev_warn(dev, "%s:%d: allocation error\n", __func__, |
| 1470 | __LINE__); |
| 1471 | pd->custom_configs = temp; |
| 1472 | } |
| 1473 | |
| 1474 | /* |
| 1475 | * Copy timings and min-tck values from platform data. If it is not |
| 1476 | * available or if memory allocation fails, use JEDEC defaults |
| 1477 | */ |
| 1478 | size = sizeof(struct lpddr2_timings) * pd->timings_arr_size; |
| 1479 | if (pd->timings) { |
| 1480 | temp = devm_kzalloc(dev, size, GFP_KERNEL); |
| 1481 | if (temp) { |
| 1482 | memcpy(temp, pd->timings, size); |
| 1483 | pd->timings = temp; |
| 1484 | } else { |
| 1485 | dev_warn(dev, "%s:%d: allocation error\n", __func__, |
| 1486 | __LINE__); |
| 1487 | get_default_timings(emif); |
| 1488 | } |
| 1489 | } else { |
| 1490 | get_default_timings(emif); |
| 1491 | } |
| 1492 | |
| 1493 | if (pd->min_tck) { |
| 1494 | temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL); |
| 1495 | if (temp) { |
| 1496 | memcpy(temp, pd->min_tck, sizeof(*pd->min_tck)); |
| 1497 | pd->min_tck = temp; |
| 1498 | } else { |
| 1499 | dev_warn(dev, "%s:%d: allocation error\n", __func__, |
| 1500 | __LINE__); |
| 1501 | pd->min_tck = &lpddr2_jedec_min_tck; |
| 1502 | } |
| 1503 | } else { |
| 1504 | pd->min_tck = &lpddr2_jedec_min_tck; |
| 1505 | } |
| 1506 | |
| 1507 | out: |
| 1508 | return emif; |
| 1509 | |
| 1510 | error: |
| 1511 | return NULL; |
| 1512 | } |
| 1513 | |
| 1514 | static int __init_or_module emif_probe(struct platform_device *pdev) |
| 1515 | { |
| 1516 | struct emif_data *emif; |
| 1517 | struct resource *res; |
| 1518 | int irq; |
| 1519 | |
| 1520 | if (pdev->dev.of_node) |
| 1521 | emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev); |
| 1522 | else |
| 1523 | emif = get_device_details(pdev); |
| 1524 | |
| 1525 | if (!emif) { |
| 1526 | pr_err("%s: error getting device data\n", __func__); |
| 1527 | goto error; |
| 1528 | } |
| 1529 | |
| 1530 | list_add(&emif->node, &device_list); |
| 1531 | emif->addressing = get_addressing_table(emif->plat_data->device_info); |
| 1532 | |
| 1533 | /* Save pointers to each other in emif and device structures */ |
| 1534 | emif->dev = &pdev->dev; |
| 1535 | platform_set_drvdata(pdev, emif); |
| 1536 | |
| 1537 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 1538 | emif->base = devm_ioremap_resource(emif->dev, res); |
| 1539 | if (IS_ERR(emif->base)) |
| 1540 | goto error; |
| 1541 | |
| 1542 | irq = platform_get_irq(pdev, 0); |
| 1543 | if (irq < 0) { |
| 1544 | dev_err(emif->dev, "%s: error getting IRQ resource - %d\n", |
| 1545 | __func__, irq); |
| 1546 | goto error; |
| 1547 | } |
| 1548 | |
| 1549 | emif_onetime_settings(emif); |
| 1550 | emif_debugfs_init(emif); |
| 1551 | disable_and_clear_all_interrupts(emif); |
| 1552 | setup_interrupts(emif, irq); |
| 1553 | |
| 1554 | /* One-time actions taken on probing the first device */ |
| 1555 | if (!emif1) { |
| 1556 | emif1 = emif; |
| 1557 | spin_lock_init(&emif_lock); |
| 1558 | |
| 1559 | /* |
| 1560 | * TODO: register notifiers for frequency and voltage |
| 1561 | * change here once the respective frameworks are |
| 1562 | * available |
| 1563 | */ |
| 1564 | } |
| 1565 | |
| 1566 | dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n", |
| 1567 | __func__, emif->base, irq); |
| 1568 | |
| 1569 | return 0; |
| 1570 | error: |
| 1571 | return -ENODEV; |
| 1572 | } |
| 1573 | |
| 1574 | static int __exit emif_remove(struct platform_device *pdev) |
| 1575 | { |
| 1576 | struct emif_data *emif = platform_get_drvdata(pdev); |
| 1577 | |
| 1578 | emif_debugfs_exit(emif); |
| 1579 | |
| 1580 | return 0; |
| 1581 | } |
| 1582 | |
| 1583 | static void emif_shutdown(struct platform_device *pdev) |
| 1584 | { |
| 1585 | struct emif_data *emif = platform_get_drvdata(pdev); |
| 1586 | |
| 1587 | disable_and_clear_all_interrupts(emif); |
| 1588 | } |
| 1589 | |
| 1590 | static int get_emif_reg_values(struct emif_data *emif, u32 freq, |
| 1591 | struct emif_regs *regs) |
| 1592 | { |
| 1593 | u32 cs1_used, ip_rev, phy_type; |
| 1594 | u32 cl, type; |
| 1595 | const struct lpddr2_timings *timings; |
| 1596 | const struct lpddr2_min_tck *min_tck; |
| 1597 | const struct ddr_device_info *device_info; |
| 1598 | const struct lpddr2_addressing *addressing; |
| 1599 | struct emif_data *emif_for_calc; |
| 1600 | struct device *dev; |
| 1601 | const struct emif_custom_configs *custom_configs; |
| 1602 | |
| 1603 | dev = emif->dev; |
| 1604 | /* |
| 1605 | * If the devices on this EMIF instance is duplicate of EMIF1, |
| 1606 | * use EMIF1 details for the calculation |
| 1607 | */ |
| 1608 | emif_for_calc = emif->duplicate ? emif1 : emif; |
| 1609 | timings = get_timings_table(emif_for_calc, freq); |
| 1610 | addressing = emif_for_calc->addressing; |
| 1611 | if (!timings || !addressing) { |
| 1612 | dev_err(dev, "%s: not enough data available for %dHz", |
| 1613 | __func__, freq); |
| 1614 | return -1; |
| 1615 | } |
| 1616 | |
| 1617 | device_info = emif_for_calc->plat_data->device_info; |
| 1618 | type = device_info->type; |
| 1619 | cs1_used = device_info->cs1_used; |
| 1620 | ip_rev = emif_for_calc->plat_data->ip_rev; |
| 1621 | phy_type = emif_for_calc->plat_data->phy_type; |
| 1622 | |
| 1623 | min_tck = emif_for_calc->plat_data->min_tck; |
| 1624 | custom_configs = emif_for_calc->plat_data->custom_configs; |
| 1625 | |
| 1626 | set_ddr_clk_period(freq); |
| 1627 | |
| 1628 | regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing); |
| 1629 | regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck, |
| 1630 | addressing); |
| 1631 | regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck, |
| 1632 | addressing, type); |
| 1633 | regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck, |
| 1634 | addressing, type, ip_rev, EMIF_NORMAL_TIMINGS); |
| 1635 | |
| 1636 | cl = get_cl(emif); |
| 1637 | |
| 1638 | if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) { |
| 1639 | regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d( |
| 1640 | timings, freq, cl); |
| 1641 | } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) { |
| 1642 | regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl); |
| 1643 | regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5(); |
| 1644 | regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5(); |
| 1645 | regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5(); |
| 1646 | } else { |
| 1647 | return -1; |
| 1648 | } |
| 1649 | |
| 1650 | /* Only timeout values in pwr_mgmt_ctrl_shdw register */ |
| 1651 | regs->pwr_mgmt_ctrl_shdw = |
| 1652 | get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) & |
| 1653 | (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK); |
| 1654 | |
| 1655 | if (ip_rev & EMIF_4D) { |
| 1656 | regs->read_idle_ctrl_shdw_normal = |
| 1657 | get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE); |
| 1658 | |
| 1659 | regs->read_idle_ctrl_shdw_volt_ramp = |
| 1660 | get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING); |
| 1661 | } else if (ip_rev & EMIF_4D5) { |
| 1662 | regs->dll_calib_ctrl_shdw_normal = |
| 1663 | get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE); |
| 1664 | |
| 1665 | regs->dll_calib_ctrl_shdw_volt_ramp = |
| 1666 | get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING); |
| 1667 | } |
| 1668 | |
| 1669 | if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { |
| 1670 | regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4, |
| 1671 | addressing); |
| 1672 | |
| 1673 | regs->sdram_tim1_shdw_derated = |
| 1674 | get_sdram_tim_1_shdw_derated(timings, min_tck, |
| 1675 | addressing); |
| 1676 | |
| 1677 | regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings, |
| 1678 | min_tck, addressing, type, ip_rev, |
| 1679 | EMIF_DERATED_TIMINGS); |
| 1680 | } |
| 1681 | |
| 1682 | regs->freq = freq; |
| 1683 | |
| 1684 | return 0; |
| 1685 | } |
| 1686 | |
| 1687 | /* |
| 1688 | * get_regs() - gets the cached emif_regs structure for a given EMIF instance |
| 1689 | * given frequency(freq): |
| 1690 | * |
| 1691 | * As an optimisation, every EMIF instance other than EMIF1 shares the |
| 1692 | * register cache with EMIF1 if the devices connected on this instance |
| 1693 | * are same as that on EMIF1(indicated by the duplicate flag) |
| 1694 | * |
| 1695 | * If we do not have an entry corresponding to the frequency given, we |
| 1696 | * allocate a new entry and calculate the values |
| 1697 | * |
| 1698 | * Upon finding the right reg dump, save it in curr_regs. It can be |
| 1699 | * directly used for thermal de-rating and voltage ramping changes. |
| 1700 | */ |
| 1701 | static struct emif_regs *get_regs(struct emif_data *emif, u32 freq) |
| 1702 | { |
| 1703 | int i; |
| 1704 | struct emif_regs **regs_cache; |
| 1705 | struct emif_regs *regs = NULL; |
| 1706 | struct device *dev; |
| 1707 | |
| 1708 | dev = emif->dev; |
| 1709 | if (emif->curr_regs && emif->curr_regs->freq == freq) { |
| 1710 | dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq); |
| 1711 | return emif->curr_regs; |
| 1712 | } |
| 1713 | |
| 1714 | if (emif->duplicate) |
| 1715 | regs_cache = emif1->regs_cache; |
| 1716 | else |
| 1717 | regs_cache = emif->regs_cache; |
| 1718 | |
| 1719 | for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { |
| 1720 | if (regs_cache[i]->freq == freq) { |
| 1721 | regs = regs_cache[i]; |
| 1722 | dev_dbg(dev, |
| 1723 | "%s: reg dump found in reg cache for %u Hz\n", |
| 1724 | __func__, freq); |
| 1725 | break; |
| 1726 | } |
| 1727 | } |
| 1728 | |
| 1729 | /* |
| 1730 | * If we don't have an entry for this frequency in the cache create one |
| 1731 | * and calculate the values |
| 1732 | */ |
| 1733 | if (!regs) { |
| 1734 | regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC); |
| 1735 | if (!regs) |
| 1736 | return NULL; |
| 1737 | |
| 1738 | if (get_emif_reg_values(emif, freq, regs)) { |
| 1739 | devm_kfree(emif->dev, regs); |
| 1740 | return NULL; |
| 1741 | } |
| 1742 | |
| 1743 | /* |
| 1744 | * Now look for an un-used entry in the cache and save the |
| 1745 | * newly created struct. If there are no free entries |
| 1746 | * over-write the last entry |
| 1747 | */ |
| 1748 | for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) |
| 1749 | ; |
| 1750 | |
| 1751 | if (i >= EMIF_MAX_NUM_FREQUENCIES) { |
| 1752 | dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n", |
| 1753 | __func__); |
| 1754 | i = EMIF_MAX_NUM_FREQUENCIES - 1; |
| 1755 | devm_kfree(emif->dev, regs_cache[i]); |
| 1756 | } |
| 1757 | regs_cache[i] = regs; |
| 1758 | } |
| 1759 | |
| 1760 | return regs; |
| 1761 | } |
| 1762 | |
| 1763 | static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state) |
| 1764 | { |
| 1765 | dev_dbg(emif->dev, "%s: voltage notification : %d", __func__, |
| 1766 | volt_state); |
| 1767 | |
| 1768 | if (!emif->curr_regs) { |
| 1769 | dev_err(emif->dev, |
| 1770 | "%s: volt-notify before registers are ready: %d\n", |
| 1771 | __func__, volt_state); |
| 1772 | return; |
| 1773 | } |
| 1774 | |
| 1775 | setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state); |
| 1776 | } |
| 1777 | |
| 1778 | /* |
| 1779 | * TODO: voltage notify handling should be hooked up to |
| 1780 | * regulator framework as soon as the necessary support |
| 1781 | * is available in mainline kernel. This function is un-used |
| 1782 | * right now. |
| 1783 | */ |
| 1784 | static void __attribute__((unused)) volt_notify_handling(u32 volt_state) |
| 1785 | { |
| 1786 | struct emif_data *emif; |
| 1787 | |
| 1788 | spin_lock_irqsave(&emif_lock, irq_state); |
| 1789 | |
| 1790 | list_for_each_entry(emif, &device_list, node) |
| 1791 | do_volt_notify_handling(emif, volt_state); |
| 1792 | do_freq_update(); |
| 1793 | |
| 1794 | spin_unlock_irqrestore(&emif_lock, irq_state); |
| 1795 | } |
| 1796 | |
| 1797 | static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq) |
| 1798 | { |
| 1799 | struct emif_regs *regs; |
| 1800 | |
| 1801 | regs = get_regs(emif, new_freq); |
| 1802 | if (!regs) |
| 1803 | return; |
| 1804 | |
| 1805 | emif->curr_regs = regs; |
| 1806 | |
| 1807 | /* |
| 1808 | * Update the shadow registers: |
| 1809 | * Temperature and voltage-ramp sensitive settings are also configured |
| 1810 | * in terms of DDR cycles. So, we need to update them too when there |
| 1811 | * is a freq change |
| 1812 | */ |
| 1813 | dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz", |
| 1814 | __func__, new_freq); |
| 1815 | setup_registers(emif, regs); |
| 1816 | setup_temperature_sensitive_regs(emif, regs); |
| 1817 | setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE); |
| 1818 | |
| 1819 | /* |
| 1820 | * Part of workaround for errata i728. See do_freq_update() |
| 1821 | * for more details |
| 1822 | */ |
| 1823 | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) |
| 1824 | set_lpmode(emif, EMIF_LP_MODE_DISABLE); |
| 1825 | } |
| 1826 | |
| 1827 | /* |
| 1828 | * TODO: frequency notify handling should be hooked up to |
| 1829 | * clock framework as soon as the necessary support is |
| 1830 | * available in mainline kernel. This function is un-used |
| 1831 | * right now. |
| 1832 | */ |
| 1833 | static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq) |
| 1834 | { |
| 1835 | struct emif_data *emif; |
| 1836 | |
| 1837 | /* |
| 1838 | * NOTE: we are taking the spin-lock here and releases it |
| 1839 | * only in post-notifier. This doesn't look good and |
| 1840 | * Sparse complains about it, but this seems to be |
| 1841 | * un-avoidable. We need to lock a sequence of events |
| 1842 | * that is split between EMIF and clock framework. |
| 1843 | * |
| 1844 | * 1. EMIF driver updates EMIF timings in shadow registers in the |
| 1845 | * frequency pre-notify callback from clock framework |
| 1846 | * 2. clock framework sets up the registers for the new frequency |
| 1847 | * 3. clock framework initiates a hw-sequence that updates |
| 1848 | * the frequency EMIF timings synchronously. |
| 1849 | * |
| 1850 | * All these 3 steps should be performed as an atomic operation |
| 1851 | * vis-a-vis similar sequence in the EMIF interrupt handler |
| 1852 | * for temperature events. Otherwise, there could be race |
| 1853 | * conditions that could result in incorrect EMIF timings for |
| 1854 | * a given frequency |
| 1855 | */ |
| 1856 | spin_lock_irqsave(&emif_lock, irq_state); |
| 1857 | |
| 1858 | list_for_each_entry(emif, &device_list, node) |
| 1859 | do_freq_pre_notify_handling(emif, new_freq); |
| 1860 | } |
| 1861 | |
| 1862 | static void do_freq_post_notify_handling(struct emif_data *emif) |
| 1863 | { |
| 1864 | /* |
| 1865 | * Part of workaround for errata i728. See do_freq_update() |
| 1866 | * for more details |
| 1867 | */ |
| 1868 | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) |
| 1869 | set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); |
| 1870 | } |
| 1871 | |
| 1872 | /* |
| 1873 | * TODO: frequency notify handling should be hooked up to |
| 1874 | * clock framework as soon as the necessary support is |
| 1875 | * available in mainline kernel. This function is un-used |
| 1876 | * right now. |
| 1877 | */ |
| 1878 | static void __attribute__((unused)) freq_post_notify_handling(void) |
| 1879 | { |
| 1880 | struct emif_data *emif; |
| 1881 | |
| 1882 | list_for_each_entry(emif, &device_list, node) |
| 1883 | do_freq_post_notify_handling(emif); |
| 1884 | |
| 1885 | /* |
| 1886 | * Lock is done in pre-notify handler. See freq_pre_notify_handling() |
| 1887 | * for more details |
| 1888 | */ |
| 1889 | spin_unlock_irqrestore(&emif_lock, irq_state); |
| 1890 | } |
| 1891 | |
| 1892 | #if defined(CONFIG_OF) |
| 1893 | static const struct of_device_id emif_of_match[] = { |
| 1894 | { .compatible = "ti,emif-4d" }, |
| 1895 | { .compatible = "ti,emif-4d5" }, |
| 1896 | {}, |
| 1897 | }; |
| 1898 | MODULE_DEVICE_TABLE(of, emif_of_match); |
| 1899 | #endif |
| 1900 | |
| 1901 | static struct platform_driver emif_driver = { |
| 1902 | .remove = __exit_p(emif_remove), |
| 1903 | .shutdown = emif_shutdown, |
| 1904 | .driver = { |
| 1905 | .name = "emif", |
| 1906 | .of_match_table = of_match_ptr(emif_of_match), |
| 1907 | }, |
| 1908 | }; |
| 1909 | |
| 1910 | module_platform_driver_probe(emif_driver, emif_probe); |
| 1911 | |
| 1912 | MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver"); |
| 1913 | MODULE_LICENSE("GPL"); |
| 1914 | MODULE_ALIAS("platform:emif"); |
| 1915 | MODULE_AUTHOR("Texas Instruments Inc"); |