blob: 08a7f97750f7a811e64c058985f11ea96b5f066c [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-or-later
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
6 * Copyright (C) 2002, 2003 H. Peter Anvin
7 *
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000011 */
12
13/*
14 * BITMAP UNPLUGGING:
15 *
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
18 * explanation.
19 *
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
24 * new additions.
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27 * the number of the batch it will be in. This is seq_flush+1.
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
31 * batch.
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
35 * miss any bits.
36 */
37
38#include <linux/blkdev.h>
39#include <linux/kthread.h>
40#include <linux/raid/pq.h>
41#include <linux/async_tx.h>
42#include <linux/module.h>
43#include <linux/async.h>
44#include <linux/seq_file.h>
45#include <linux/cpu.h>
46#include <linux/slab.h>
47#include <linux/ratelimit.h>
48#include <linux/nodemask.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000049
50#include <trace/events/block.h>
51#include <linux/list_sort.h>
52
53#include "md.h"
54#include "raid5.h"
55#include "raid0.h"
56#include "md-bitmap.h"
57#include "raid5-log.h"
58
59#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
60
61#define cpu_to_group(cpu) cpu_to_node(cpu)
62#define ANY_GROUP NUMA_NO_NODE
63
64static bool devices_handle_discard_safely = false;
65module_param(devices_handle_discard_safely, bool, 0644);
66MODULE_PARM_DESC(devices_handle_discard_safely,
67 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
68static struct workqueue_struct *raid5_wq;
69
70static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
71{
72 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
73 return &conf->stripe_hashtbl[hash];
74}
75
76static inline int stripe_hash_locks_hash(sector_t sect)
77{
78 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
79}
80
81static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
82{
83 spin_lock_irq(conf->hash_locks + hash);
84 spin_lock(&conf->device_lock);
85}
86
87static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
88{
89 spin_unlock(&conf->device_lock);
90 spin_unlock_irq(conf->hash_locks + hash);
91}
92
93static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
94{
95 int i;
96 spin_lock_irq(conf->hash_locks);
97 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
98 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
99 spin_lock(&conf->device_lock);
100}
101
102static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
103{
104 int i;
105 spin_unlock(&conf->device_lock);
106 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
107 spin_unlock(conf->hash_locks + i);
108 spin_unlock_irq(conf->hash_locks);
109}
110
111/* Find first data disk in a raid6 stripe */
112static inline int raid6_d0(struct stripe_head *sh)
113{
114 if (sh->ddf_layout)
115 /* ddf always start from first device */
116 return 0;
117 /* md starts just after Q block */
118 if (sh->qd_idx == sh->disks - 1)
119 return 0;
120 else
121 return sh->qd_idx + 1;
122}
123static inline int raid6_next_disk(int disk, int raid_disks)
124{
125 disk++;
126 return (disk < raid_disks) ? disk : 0;
127}
128
129/* When walking through the disks in a raid5, starting at raid6_d0,
130 * We need to map each disk to a 'slot', where the data disks are slot
131 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
132 * is raid_disks-1. This help does that mapping.
133 */
134static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
135 int *count, int syndrome_disks)
136{
137 int slot = *count;
138
139 if (sh->ddf_layout)
140 (*count)++;
141 if (idx == sh->pd_idx)
142 return syndrome_disks;
143 if (idx == sh->qd_idx)
144 return syndrome_disks + 1;
145 if (!sh->ddf_layout)
146 (*count)++;
147 return slot;
148}
149
150static void print_raid5_conf (struct r5conf *conf);
151
152static int stripe_operations_active(struct stripe_head *sh)
153{
154 return sh->check_state || sh->reconstruct_state ||
155 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
156 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
157}
158
159static bool stripe_is_lowprio(struct stripe_head *sh)
160{
161 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
162 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
163 !test_bit(STRIPE_R5C_CACHING, &sh->state);
164}
165
166static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
167{
168 struct r5conf *conf = sh->raid_conf;
169 struct r5worker_group *group;
170 int thread_cnt;
171 int i, cpu = sh->cpu;
172
173 if (!cpu_online(cpu)) {
174 cpu = cpumask_any(cpu_online_mask);
175 sh->cpu = cpu;
176 }
177
178 if (list_empty(&sh->lru)) {
179 struct r5worker_group *group;
180 group = conf->worker_groups + cpu_to_group(cpu);
181 if (stripe_is_lowprio(sh))
182 list_add_tail(&sh->lru, &group->loprio_list);
183 else
184 list_add_tail(&sh->lru, &group->handle_list);
185 group->stripes_cnt++;
186 sh->group = group;
187 }
188
189 if (conf->worker_cnt_per_group == 0) {
190 md_wakeup_thread(conf->mddev->thread);
191 return;
192 }
193
194 group = conf->worker_groups + cpu_to_group(sh->cpu);
195
196 group->workers[0].working = true;
197 /* at least one worker should run to avoid race */
198 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
199
200 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
201 /* wakeup more workers */
202 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
203 if (group->workers[i].working == false) {
204 group->workers[i].working = true;
205 queue_work_on(sh->cpu, raid5_wq,
206 &group->workers[i].work);
207 thread_cnt--;
208 }
209 }
210}
211
212static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
213 struct list_head *temp_inactive_list)
214{
215 int i;
216 int injournal = 0; /* number of date pages with R5_InJournal */
217
218 BUG_ON(!list_empty(&sh->lru));
219 BUG_ON(atomic_read(&conf->active_stripes)==0);
220
221 if (r5c_is_writeback(conf->log))
222 for (i = sh->disks; i--; )
223 if (test_bit(R5_InJournal, &sh->dev[i].flags))
224 injournal++;
225 /*
226 * In the following cases, the stripe cannot be released to cached
227 * lists. Therefore, we make the stripe write out and set
228 * STRIPE_HANDLE:
229 * 1. when quiesce in r5c write back;
230 * 2. when resync is requested fot the stripe.
231 */
232 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
233 (conf->quiesce && r5c_is_writeback(conf->log) &&
234 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
235 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
236 r5c_make_stripe_write_out(sh);
237 set_bit(STRIPE_HANDLE, &sh->state);
238 }
239
240 if (test_bit(STRIPE_HANDLE, &sh->state)) {
241 if (test_bit(STRIPE_DELAYED, &sh->state) &&
242 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
243 list_add_tail(&sh->lru, &conf->delayed_list);
244 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
245 sh->bm_seq - conf->seq_write > 0)
246 list_add_tail(&sh->lru, &conf->bitmap_list);
247 else {
248 clear_bit(STRIPE_DELAYED, &sh->state);
249 clear_bit(STRIPE_BIT_DELAY, &sh->state);
250 if (conf->worker_cnt_per_group == 0) {
251 if (stripe_is_lowprio(sh))
252 list_add_tail(&sh->lru,
253 &conf->loprio_list);
254 else
255 list_add_tail(&sh->lru,
256 &conf->handle_list);
257 } else {
258 raid5_wakeup_stripe_thread(sh);
259 return;
260 }
261 }
262 md_wakeup_thread(conf->mddev->thread);
263 } else {
264 BUG_ON(stripe_operations_active(sh));
265 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
266 if (atomic_dec_return(&conf->preread_active_stripes)
267 < IO_THRESHOLD)
268 md_wakeup_thread(conf->mddev->thread);
269 atomic_dec(&conf->active_stripes);
270 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
271 if (!r5c_is_writeback(conf->log))
272 list_add_tail(&sh->lru, temp_inactive_list);
273 else {
274 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
275 if (injournal == 0)
276 list_add_tail(&sh->lru, temp_inactive_list);
277 else if (injournal == conf->raid_disks - conf->max_degraded) {
278 /* full stripe */
279 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
280 atomic_inc(&conf->r5c_cached_full_stripes);
281 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
282 atomic_dec(&conf->r5c_cached_partial_stripes);
283 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
284 r5c_check_cached_full_stripe(conf);
285 } else
286 /*
287 * STRIPE_R5C_PARTIAL_STRIPE is set in
288 * r5c_try_caching_write(). No need to
289 * set it again.
290 */
291 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
292 }
293 }
294 }
295}
296
297static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
298 struct list_head *temp_inactive_list)
299{
300 if (atomic_dec_and_test(&sh->count))
301 do_release_stripe(conf, sh, temp_inactive_list);
302}
303
304/*
305 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
306 *
307 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
308 * given time. Adding stripes only takes device lock, while deleting stripes
309 * only takes hash lock.
310 */
311static void release_inactive_stripe_list(struct r5conf *conf,
312 struct list_head *temp_inactive_list,
313 int hash)
314{
315 int size;
316 bool do_wakeup = false;
317 unsigned long flags;
318
319 if (hash == NR_STRIPE_HASH_LOCKS) {
320 size = NR_STRIPE_HASH_LOCKS;
321 hash = NR_STRIPE_HASH_LOCKS - 1;
322 } else
323 size = 1;
324 while (size) {
325 struct list_head *list = &temp_inactive_list[size - 1];
326
327 /*
328 * We don't hold any lock here yet, raid5_get_active_stripe() might
329 * remove stripes from the list
330 */
331 if (!list_empty_careful(list)) {
332 spin_lock_irqsave(conf->hash_locks + hash, flags);
333 if (list_empty(conf->inactive_list + hash) &&
334 !list_empty(list))
335 atomic_dec(&conf->empty_inactive_list_nr);
336 list_splice_tail_init(list, conf->inactive_list + hash);
337 do_wakeup = true;
338 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
339 }
340 size--;
341 hash--;
342 }
343
344 if (do_wakeup) {
345 wake_up(&conf->wait_for_stripe);
346 if (atomic_read(&conf->active_stripes) == 0)
347 wake_up(&conf->wait_for_quiescent);
348 if (conf->retry_read_aligned)
349 md_wakeup_thread(conf->mddev->thread);
350 }
351}
352
353/* should hold conf->device_lock already */
354static int release_stripe_list(struct r5conf *conf,
355 struct list_head *temp_inactive_list)
356{
357 struct stripe_head *sh, *t;
358 int count = 0;
359 struct llist_node *head;
360
361 head = llist_del_all(&conf->released_stripes);
362 head = llist_reverse_order(head);
363 llist_for_each_entry_safe(sh, t, head, release_list) {
364 int hash;
365
366 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
367 smp_mb();
368 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
369 /*
370 * Don't worry the bit is set here, because if the bit is set
371 * again, the count is always > 1. This is true for
372 * STRIPE_ON_UNPLUG_LIST bit too.
373 */
374 hash = sh->hash_lock_index;
375 __release_stripe(conf, sh, &temp_inactive_list[hash]);
376 count++;
377 }
378
379 return count;
380}
381
382void raid5_release_stripe(struct stripe_head *sh)
383{
384 struct r5conf *conf = sh->raid_conf;
385 unsigned long flags;
386 struct list_head list;
387 int hash;
388 bool wakeup;
389
390 /* Avoid release_list until the last reference.
391 */
392 if (atomic_add_unless(&sh->count, -1, 1))
393 return;
394
395 if (unlikely(!conf->mddev->thread) ||
396 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
397 goto slow_path;
398 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
399 if (wakeup)
400 md_wakeup_thread(conf->mddev->thread);
401 return;
402slow_path:
403 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
404 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
405 INIT_LIST_HEAD(&list);
406 hash = sh->hash_lock_index;
407 do_release_stripe(conf, sh, &list);
408 spin_unlock_irqrestore(&conf->device_lock, flags);
409 release_inactive_stripe_list(conf, &list, hash);
410 }
411}
412
413static inline void remove_hash(struct stripe_head *sh)
414{
415 pr_debug("remove_hash(), stripe %llu\n",
416 (unsigned long long)sh->sector);
417
418 hlist_del_init(&sh->hash);
419}
420
421static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
422{
423 struct hlist_head *hp = stripe_hash(conf, sh->sector);
424
425 pr_debug("insert_hash(), stripe %llu\n",
426 (unsigned long long)sh->sector);
427
428 hlist_add_head(&sh->hash, hp);
429}
430
431/* find an idle stripe, make sure it is unhashed, and return it. */
432static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
433{
434 struct stripe_head *sh = NULL;
435 struct list_head *first;
436
437 if (list_empty(conf->inactive_list + hash))
438 goto out;
439 first = (conf->inactive_list + hash)->next;
440 sh = list_entry(first, struct stripe_head, lru);
441 list_del_init(first);
442 remove_hash(sh);
443 atomic_inc(&conf->active_stripes);
444 BUG_ON(hash != sh->hash_lock_index);
445 if (list_empty(conf->inactive_list + hash))
446 atomic_inc(&conf->empty_inactive_list_nr);
447out:
448 return sh;
449}
450
451static void shrink_buffers(struct stripe_head *sh)
452{
453 struct page *p;
454 int i;
455 int num = sh->raid_conf->pool_size;
456
457 for (i = 0; i < num ; i++) {
458 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
459 p = sh->dev[i].page;
460 if (!p)
461 continue;
462 sh->dev[i].page = NULL;
463 put_page(p);
464 }
465}
466
467static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
468{
469 int i;
470 int num = sh->raid_conf->pool_size;
471
472 for (i = 0; i < num; i++) {
473 struct page *page;
474
475 if (!(page = alloc_page(gfp))) {
476 return 1;
477 }
478 sh->dev[i].page = page;
479 sh->dev[i].orig_page = page;
480 }
481
482 return 0;
483}
484
485static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
486 struct stripe_head *sh);
487
488static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
489{
490 struct r5conf *conf = sh->raid_conf;
491 int i, seq;
492
493 BUG_ON(atomic_read(&sh->count) != 0);
494 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
495 BUG_ON(stripe_operations_active(sh));
496 BUG_ON(sh->batch_head);
497
498 pr_debug("init_stripe called, stripe %llu\n",
499 (unsigned long long)sector);
500retry:
501 seq = read_seqcount_begin(&conf->gen_lock);
502 sh->generation = conf->generation - previous;
503 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
504 sh->sector = sector;
505 stripe_set_idx(sector, conf, previous, sh);
506 sh->state = 0;
507
508 for (i = sh->disks; i--; ) {
509 struct r5dev *dev = &sh->dev[i];
510
511 if (dev->toread || dev->read || dev->towrite || dev->written ||
512 test_bit(R5_LOCKED, &dev->flags)) {
513 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
514 (unsigned long long)sh->sector, i, dev->toread,
515 dev->read, dev->towrite, dev->written,
516 test_bit(R5_LOCKED, &dev->flags));
517 WARN_ON(1);
518 }
519 dev->flags = 0;
520 dev->sector = raid5_compute_blocknr(sh, i, previous);
521 }
522 if (read_seqcount_retry(&conf->gen_lock, seq))
523 goto retry;
524 sh->overwrite_disks = 0;
525 insert_hash(conf, sh);
526 sh->cpu = smp_processor_id();
527 set_bit(STRIPE_BATCH_READY, &sh->state);
528}
529
530static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
531 short generation)
532{
533 struct stripe_head *sh;
534
535 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
536 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
537 if (sh->sector == sector && sh->generation == generation)
538 return sh;
539 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
540 return NULL;
541}
542
543/*
544 * Need to check if array has failed when deciding whether to:
545 * - start an array
546 * - remove non-faulty devices
547 * - add a spare
548 * - allow a reshape
549 * This determination is simple when no reshape is happening.
550 * However if there is a reshape, we need to carefully check
551 * both the before and after sections.
552 * This is because some failed devices may only affect one
553 * of the two sections, and some non-in_sync devices may
554 * be insync in the section most affected by failed devices.
555 */
556int raid5_calc_degraded(struct r5conf *conf)
557{
558 int degraded, degraded2;
559 int i;
560
561 rcu_read_lock();
562 degraded = 0;
563 for (i = 0; i < conf->previous_raid_disks; i++) {
564 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
565 if (rdev && test_bit(Faulty, &rdev->flags))
566 rdev = rcu_dereference(conf->disks[i].replacement);
567 if (!rdev || test_bit(Faulty, &rdev->flags))
568 degraded++;
569 else if (test_bit(In_sync, &rdev->flags))
570 ;
571 else
572 /* not in-sync or faulty.
573 * If the reshape increases the number of devices,
574 * this is being recovered by the reshape, so
575 * this 'previous' section is not in_sync.
576 * If the number of devices is being reduced however,
577 * the device can only be part of the array if
578 * we are reverting a reshape, so this section will
579 * be in-sync.
580 */
581 if (conf->raid_disks >= conf->previous_raid_disks)
582 degraded++;
583 }
584 rcu_read_unlock();
585 if (conf->raid_disks == conf->previous_raid_disks)
586 return degraded;
587 rcu_read_lock();
588 degraded2 = 0;
589 for (i = 0; i < conf->raid_disks; i++) {
590 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
591 if (rdev && test_bit(Faulty, &rdev->flags))
592 rdev = rcu_dereference(conf->disks[i].replacement);
593 if (!rdev || test_bit(Faulty, &rdev->flags))
594 degraded2++;
595 else if (test_bit(In_sync, &rdev->flags))
596 ;
597 else
598 /* not in-sync or faulty.
599 * If reshape increases the number of devices, this
600 * section has already been recovered, else it
601 * almost certainly hasn't.
602 */
603 if (conf->raid_disks <= conf->previous_raid_disks)
604 degraded2++;
605 }
606 rcu_read_unlock();
607 if (degraded2 > degraded)
608 return degraded2;
609 return degraded;
610}
611
612static int has_failed(struct r5conf *conf)
613{
614 int degraded;
615
616 if (conf->mddev->reshape_position == MaxSector)
617 return conf->mddev->degraded > conf->max_degraded;
618
619 degraded = raid5_calc_degraded(conf);
620 if (degraded > conf->max_degraded)
621 return 1;
622 return 0;
623}
624
625struct stripe_head *
626raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
627 int previous, int noblock, int noquiesce)
628{
629 struct stripe_head *sh;
630 int hash = stripe_hash_locks_hash(sector);
631 int inc_empty_inactive_list_flag;
632
633 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
634
635 spin_lock_irq(conf->hash_locks + hash);
636
637 do {
638 wait_event_lock_irq(conf->wait_for_quiescent,
639 conf->quiesce == 0 || noquiesce,
640 *(conf->hash_locks + hash));
641 sh = __find_stripe(conf, sector, conf->generation - previous);
642 if (!sh) {
643 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
644 sh = get_free_stripe(conf, hash);
645 if (!sh && !test_bit(R5_DID_ALLOC,
646 &conf->cache_state))
647 set_bit(R5_ALLOC_MORE,
648 &conf->cache_state);
649 }
650 if (noblock && sh == NULL)
651 break;
652
653 r5c_check_stripe_cache_usage(conf);
654 if (!sh) {
655 set_bit(R5_INACTIVE_BLOCKED,
656 &conf->cache_state);
657 r5l_wake_reclaim(conf->log, 0);
658 wait_event_lock_irq(
659 conf->wait_for_stripe,
660 !list_empty(conf->inactive_list + hash) &&
661 (atomic_read(&conf->active_stripes)
662 < (conf->max_nr_stripes * 3 / 4)
663 || !test_bit(R5_INACTIVE_BLOCKED,
664 &conf->cache_state)),
665 *(conf->hash_locks + hash));
666 clear_bit(R5_INACTIVE_BLOCKED,
667 &conf->cache_state);
668 } else {
669 init_stripe(sh, sector, previous);
670 atomic_inc(&sh->count);
671 }
672 } else if (!atomic_inc_not_zero(&sh->count)) {
673 spin_lock(&conf->device_lock);
674 if (!atomic_read(&sh->count)) {
675 if (!test_bit(STRIPE_HANDLE, &sh->state))
676 atomic_inc(&conf->active_stripes);
677 BUG_ON(list_empty(&sh->lru) &&
678 !test_bit(STRIPE_EXPANDING, &sh->state));
679 inc_empty_inactive_list_flag = 0;
680 if (!list_empty(conf->inactive_list + hash))
681 inc_empty_inactive_list_flag = 1;
682 list_del_init(&sh->lru);
683 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
684 atomic_inc(&conf->empty_inactive_list_nr);
685 if (sh->group) {
686 sh->group->stripes_cnt--;
687 sh->group = NULL;
688 }
689 }
690 atomic_inc(&sh->count);
691 spin_unlock(&conf->device_lock);
692 }
693 } while (sh == NULL);
694
695 spin_unlock_irq(conf->hash_locks + hash);
696 return sh;
697}
698
699static bool is_full_stripe_write(struct stripe_head *sh)
700{
701 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
702 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
703}
704
705static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
David Brazdil0f672f62019-12-10 10:32:29 +0000706 __acquires(&sh1->stripe_lock)
707 __acquires(&sh2->stripe_lock)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000708{
709 if (sh1 > sh2) {
710 spin_lock_irq(&sh2->stripe_lock);
711 spin_lock_nested(&sh1->stripe_lock, 1);
712 } else {
713 spin_lock_irq(&sh1->stripe_lock);
714 spin_lock_nested(&sh2->stripe_lock, 1);
715 }
716}
717
718static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
David Brazdil0f672f62019-12-10 10:32:29 +0000719 __releases(&sh1->stripe_lock)
720 __releases(&sh2->stripe_lock)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000721{
722 spin_unlock(&sh1->stripe_lock);
723 spin_unlock_irq(&sh2->stripe_lock);
724}
725
726/* Only freshly new full stripe normal write stripe can be added to a batch list */
727static bool stripe_can_batch(struct stripe_head *sh)
728{
729 struct r5conf *conf = sh->raid_conf;
730
731 if (raid5_has_log(conf) || raid5_has_ppl(conf))
732 return false;
733 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
734 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
735 is_full_stripe_write(sh);
736}
737
738/* we only do back search */
739static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
740{
741 struct stripe_head *head;
742 sector_t head_sector, tmp_sec;
743 int hash;
744 int dd_idx;
745 int inc_empty_inactive_list_flag;
746
747 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
748 tmp_sec = sh->sector;
749 if (!sector_div(tmp_sec, conf->chunk_sectors))
750 return;
751 head_sector = sh->sector - STRIPE_SECTORS;
752
753 hash = stripe_hash_locks_hash(head_sector);
754 spin_lock_irq(conf->hash_locks + hash);
755 head = __find_stripe(conf, head_sector, conf->generation);
756 if (head && !atomic_inc_not_zero(&head->count)) {
757 spin_lock(&conf->device_lock);
758 if (!atomic_read(&head->count)) {
759 if (!test_bit(STRIPE_HANDLE, &head->state))
760 atomic_inc(&conf->active_stripes);
761 BUG_ON(list_empty(&head->lru) &&
762 !test_bit(STRIPE_EXPANDING, &head->state));
763 inc_empty_inactive_list_flag = 0;
764 if (!list_empty(conf->inactive_list + hash))
765 inc_empty_inactive_list_flag = 1;
766 list_del_init(&head->lru);
767 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
768 atomic_inc(&conf->empty_inactive_list_nr);
769 if (head->group) {
770 head->group->stripes_cnt--;
771 head->group = NULL;
772 }
773 }
774 atomic_inc(&head->count);
775 spin_unlock(&conf->device_lock);
776 }
777 spin_unlock_irq(conf->hash_locks + hash);
778
779 if (!head)
780 return;
781 if (!stripe_can_batch(head))
782 goto out;
783
784 lock_two_stripes(head, sh);
785 /* clear_batch_ready clear the flag */
786 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
787 goto unlock_out;
788
789 if (sh->batch_head)
790 goto unlock_out;
791
792 dd_idx = 0;
793 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
794 dd_idx++;
795 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
796 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
797 goto unlock_out;
798
799 if (head->batch_head) {
800 spin_lock(&head->batch_head->batch_lock);
801 /* This batch list is already running */
802 if (!stripe_can_batch(head)) {
803 spin_unlock(&head->batch_head->batch_lock);
804 goto unlock_out;
805 }
806 /*
807 * We must assign batch_head of this stripe within the
808 * batch_lock, otherwise clear_batch_ready of batch head
809 * stripe could clear BATCH_READY bit of this stripe and
810 * this stripe->batch_head doesn't get assigned, which
811 * could confuse clear_batch_ready for this stripe
812 */
813 sh->batch_head = head->batch_head;
814
815 /*
816 * at this point, head's BATCH_READY could be cleared, but we
817 * can still add the stripe to batch list
818 */
819 list_add(&sh->batch_list, &head->batch_list);
820 spin_unlock(&head->batch_head->batch_lock);
821 } else {
822 head->batch_head = head;
823 sh->batch_head = head->batch_head;
824 spin_lock(&head->batch_lock);
825 list_add_tail(&sh->batch_list, &head->batch_list);
826 spin_unlock(&head->batch_lock);
827 }
828
829 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
830 if (atomic_dec_return(&conf->preread_active_stripes)
831 < IO_THRESHOLD)
832 md_wakeup_thread(conf->mddev->thread);
833
834 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
835 int seq = sh->bm_seq;
836 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
837 sh->batch_head->bm_seq > seq)
838 seq = sh->batch_head->bm_seq;
839 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
840 sh->batch_head->bm_seq = seq;
841 }
842
843 atomic_inc(&sh->count);
844unlock_out:
845 unlock_two_stripes(head, sh);
846out:
847 raid5_release_stripe(head);
848}
849
850/* Determine if 'data_offset' or 'new_data_offset' should be used
851 * in this stripe_head.
852 */
853static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
854{
855 sector_t progress = conf->reshape_progress;
856 /* Need a memory barrier to make sure we see the value
857 * of conf->generation, or ->data_offset that was set before
858 * reshape_progress was updated.
859 */
860 smp_rmb();
861 if (progress == MaxSector)
862 return 0;
863 if (sh->generation == conf->generation - 1)
864 return 0;
865 /* We are in a reshape, and this is a new-generation stripe,
866 * so use new_data_offset.
867 */
868 return 1;
869}
870
871static void dispatch_bio_list(struct bio_list *tmp)
872{
873 struct bio *bio;
874
875 while ((bio = bio_list_pop(tmp)))
876 generic_make_request(bio);
877}
878
879static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
880{
881 const struct r5pending_data *da = list_entry(a,
882 struct r5pending_data, sibling);
883 const struct r5pending_data *db = list_entry(b,
884 struct r5pending_data, sibling);
885 if (da->sector > db->sector)
886 return 1;
887 if (da->sector < db->sector)
888 return -1;
889 return 0;
890}
891
892static void dispatch_defer_bios(struct r5conf *conf, int target,
893 struct bio_list *list)
894{
895 struct r5pending_data *data;
896 struct list_head *first, *next = NULL;
897 int cnt = 0;
898
899 if (conf->pending_data_cnt == 0)
900 return;
901
902 list_sort(NULL, &conf->pending_list, cmp_stripe);
903
904 first = conf->pending_list.next;
905
906 /* temporarily move the head */
907 if (conf->next_pending_data)
908 list_move_tail(&conf->pending_list,
909 &conf->next_pending_data->sibling);
910
911 while (!list_empty(&conf->pending_list)) {
912 data = list_first_entry(&conf->pending_list,
913 struct r5pending_data, sibling);
914 if (&data->sibling == first)
915 first = data->sibling.next;
916 next = data->sibling.next;
917
918 bio_list_merge(list, &data->bios);
919 list_move(&data->sibling, &conf->free_list);
920 cnt++;
921 if (cnt >= target)
922 break;
923 }
924 conf->pending_data_cnt -= cnt;
925 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
926
927 if (next != &conf->pending_list)
928 conf->next_pending_data = list_entry(next,
929 struct r5pending_data, sibling);
930 else
931 conf->next_pending_data = NULL;
932 /* list isn't empty */
933 if (first != &conf->pending_list)
934 list_move_tail(&conf->pending_list, first);
935}
936
937static void flush_deferred_bios(struct r5conf *conf)
938{
939 struct bio_list tmp = BIO_EMPTY_LIST;
940
941 if (conf->pending_data_cnt == 0)
942 return;
943
944 spin_lock(&conf->pending_bios_lock);
945 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
946 BUG_ON(conf->pending_data_cnt != 0);
947 spin_unlock(&conf->pending_bios_lock);
948
949 dispatch_bio_list(&tmp);
950}
951
952static void defer_issue_bios(struct r5conf *conf, sector_t sector,
953 struct bio_list *bios)
954{
955 struct bio_list tmp = BIO_EMPTY_LIST;
956 struct r5pending_data *ent;
957
958 spin_lock(&conf->pending_bios_lock);
959 ent = list_first_entry(&conf->free_list, struct r5pending_data,
960 sibling);
961 list_move_tail(&ent->sibling, &conf->pending_list);
962 ent->sector = sector;
963 bio_list_init(&ent->bios);
964 bio_list_merge(&ent->bios, bios);
965 conf->pending_data_cnt++;
966 if (conf->pending_data_cnt >= PENDING_IO_MAX)
967 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
968
969 spin_unlock(&conf->pending_bios_lock);
970
971 dispatch_bio_list(&tmp);
972}
973
974static void
975raid5_end_read_request(struct bio *bi);
976static void
977raid5_end_write_request(struct bio *bi);
978
979static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
980{
981 struct r5conf *conf = sh->raid_conf;
982 int i, disks = sh->disks;
983 struct stripe_head *head_sh = sh;
984 struct bio_list pending_bios = BIO_EMPTY_LIST;
985 bool should_defer;
986
987 might_sleep();
988
989 if (log_stripe(sh, s) == 0)
990 return;
991
992 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
993
994 for (i = disks; i--; ) {
995 int op, op_flags = 0;
996 int replace_only = 0;
997 struct bio *bi, *rbi;
998 struct md_rdev *rdev, *rrdev = NULL;
999
1000 sh = head_sh;
1001 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1002 op = REQ_OP_WRITE;
1003 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1004 op_flags = REQ_FUA;
1005 if (test_bit(R5_Discard, &sh->dev[i].flags))
1006 op = REQ_OP_DISCARD;
1007 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1008 op = REQ_OP_READ;
1009 else if (test_and_clear_bit(R5_WantReplace,
1010 &sh->dev[i].flags)) {
1011 op = REQ_OP_WRITE;
1012 replace_only = 1;
1013 } else
1014 continue;
1015 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1016 op_flags |= REQ_SYNC;
1017
1018again:
1019 bi = &sh->dev[i].req;
1020 rbi = &sh->dev[i].rreq; /* For writing to replacement */
1021
1022 rcu_read_lock();
1023 rrdev = rcu_dereference(conf->disks[i].replacement);
1024 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1025 rdev = rcu_dereference(conf->disks[i].rdev);
1026 if (!rdev) {
1027 rdev = rrdev;
1028 rrdev = NULL;
1029 }
1030 if (op_is_write(op)) {
1031 if (replace_only)
1032 rdev = NULL;
1033 if (rdev == rrdev)
1034 /* We raced and saw duplicates */
1035 rrdev = NULL;
1036 } else {
1037 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1038 rdev = rrdev;
1039 rrdev = NULL;
1040 }
1041
1042 if (rdev && test_bit(Faulty, &rdev->flags))
1043 rdev = NULL;
1044 if (rdev)
1045 atomic_inc(&rdev->nr_pending);
1046 if (rrdev && test_bit(Faulty, &rrdev->flags))
1047 rrdev = NULL;
1048 if (rrdev)
1049 atomic_inc(&rrdev->nr_pending);
1050 rcu_read_unlock();
1051
1052 /* We have already checked bad blocks for reads. Now
1053 * need to check for writes. We never accept write errors
1054 * on the replacement, so we don't to check rrdev.
1055 */
1056 while (op_is_write(op) && rdev &&
1057 test_bit(WriteErrorSeen, &rdev->flags)) {
1058 sector_t first_bad;
1059 int bad_sectors;
1060 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1061 &first_bad, &bad_sectors);
1062 if (!bad)
1063 break;
1064
1065 if (bad < 0) {
1066 set_bit(BlockedBadBlocks, &rdev->flags);
1067 if (!conf->mddev->external &&
1068 conf->mddev->sb_flags) {
1069 /* It is very unlikely, but we might
1070 * still need to write out the
1071 * bad block log - better give it
1072 * a chance*/
1073 md_check_recovery(conf->mddev);
1074 }
1075 /*
1076 * Because md_wait_for_blocked_rdev
1077 * will dec nr_pending, we must
1078 * increment it first.
1079 */
1080 atomic_inc(&rdev->nr_pending);
1081 md_wait_for_blocked_rdev(rdev, conf->mddev);
1082 } else {
1083 /* Acknowledged bad block - skip the write */
1084 rdev_dec_pending(rdev, conf->mddev);
1085 rdev = NULL;
1086 }
1087 }
1088
1089 if (rdev) {
1090 if (s->syncing || s->expanding || s->expanded
1091 || s->replacing)
1092 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1093
1094 set_bit(STRIPE_IO_STARTED, &sh->state);
1095
1096 bio_set_dev(bi, rdev->bdev);
1097 bio_set_op_attrs(bi, op, op_flags);
1098 bi->bi_end_io = op_is_write(op)
1099 ? raid5_end_write_request
1100 : raid5_end_read_request;
1101 bi->bi_private = sh;
1102
1103 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1104 __func__, (unsigned long long)sh->sector,
1105 bi->bi_opf, i);
1106 atomic_inc(&sh->count);
1107 if (sh != head_sh)
1108 atomic_inc(&head_sh->count);
1109 if (use_new_offset(conf, sh))
1110 bi->bi_iter.bi_sector = (sh->sector
1111 + rdev->new_data_offset);
1112 else
1113 bi->bi_iter.bi_sector = (sh->sector
1114 + rdev->data_offset);
1115 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1116 bi->bi_opf |= REQ_NOMERGE;
1117
1118 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1119 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1120
1121 if (!op_is_write(op) &&
1122 test_bit(R5_InJournal, &sh->dev[i].flags))
1123 /*
1124 * issuing read for a page in journal, this
1125 * must be preparing for prexor in rmw; read
1126 * the data into orig_page
1127 */
1128 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1129 else
1130 sh->dev[i].vec.bv_page = sh->dev[i].page;
1131 bi->bi_vcnt = 1;
1132 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1133 bi->bi_io_vec[0].bv_offset = 0;
1134 bi->bi_iter.bi_size = STRIPE_SIZE;
1135 bi->bi_write_hint = sh->dev[i].write_hint;
1136 if (!rrdev)
1137 sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1138 /*
1139 * If this is discard request, set bi_vcnt 0. We don't
1140 * want to confuse SCSI because SCSI will replace payload
1141 */
1142 if (op == REQ_OP_DISCARD)
1143 bi->bi_vcnt = 0;
1144 if (rrdev)
1145 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1146
1147 if (conf->mddev->gendisk)
1148 trace_block_bio_remap(bi->bi_disk->queue,
1149 bi, disk_devt(conf->mddev->gendisk),
1150 sh->dev[i].sector);
1151 if (should_defer && op_is_write(op))
1152 bio_list_add(&pending_bios, bi);
1153 else
1154 generic_make_request(bi);
1155 }
1156 if (rrdev) {
1157 if (s->syncing || s->expanding || s->expanded
1158 || s->replacing)
1159 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1160
1161 set_bit(STRIPE_IO_STARTED, &sh->state);
1162
1163 bio_set_dev(rbi, rrdev->bdev);
1164 bio_set_op_attrs(rbi, op, op_flags);
1165 BUG_ON(!op_is_write(op));
1166 rbi->bi_end_io = raid5_end_write_request;
1167 rbi->bi_private = sh;
1168
1169 pr_debug("%s: for %llu schedule op %d on "
1170 "replacement disc %d\n",
1171 __func__, (unsigned long long)sh->sector,
1172 rbi->bi_opf, i);
1173 atomic_inc(&sh->count);
1174 if (sh != head_sh)
1175 atomic_inc(&head_sh->count);
1176 if (use_new_offset(conf, sh))
1177 rbi->bi_iter.bi_sector = (sh->sector
1178 + rrdev->new_data_offset);
1179 else
1180 rbi->bi_iter.bi_sector = (sh->sector
1181 + rrdev->data_offset);
1182 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1183 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1184 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1185 rbi->bi_vcnt = 1;
1186 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1187 rbi->bi_io_vec[0].bv_offset = 0;
1188 rbi->bi_iter.bi_size = STRIPE_SIZE;
1189 rbi->bi_write_hint = sh->dev[i].write_hint;
1190 sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1191 /*
1192 * If this is discard request, set bi_vcnt 0. We don't
1193 * want to confuse SCSI because SCSI will replace payload
1194 */
1195 if (op == REQ_OP_DISCARD)
1196 rbi->bi_vcnt = 0;
1197 if (conf->mddev->gendisk)
1198 trace_block_bio_remap(rbi->bi_disk->queue,
1199 rbi, disk_devt(conf->mddev->gendisk),
1200 sh->dev[i].sector);
1201 if (should_defer && op_is_write(op))
1202 bio_list_add(&pending_bios, rbi);
1203 else
1204 generic_make_request(rbi);
1205 }
1206 if (!rdev && !rrdev) {
1207 if (op_is_write(op))
1208 set_bit(STRIPE_DEGRADED, &sh->state);
1209 pr_debug("skip op %d on disc %d for sector %llu\n",
1210 bi->bi_opf, i, (unsigned long long)sh->sector);
1211 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1212 set_bit(STRIPE_HANDLE, &sh->state);
1213 }
1214
1215 if (!head_sh->batch_head)
1216 continue;
1217 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1218 batch_list);
1219 if (sh != head_sh)
1220 goto again;
1221 }
1222
1223 if (should_defer && !bio_list_empty(&pending_bios))
1224 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1225}
1226
1227static struct dma_async_tx_descriptor *
1228async_copy_data(int frombio, struct bio *bio, struct page **page,
1229 sector_t sector, struct dma_async_tx_descriptor *tx,
1230 struct stripe_head *sh, int no_skipcopy)
1231{
1232 struct bio_vec bvl;
1233 struct bvec_iter iter;
1234 struct page *bio_page;
1235 int page_offset;
1236 struct async_submit_ctl submit;
1237 enum async_tx_flags flags = 0;
1238
1239 if (bio->bi_iter.bi_sector >= sector)
1240 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1241 else
1242 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1243
1244 if (frombio)
1245 flags |= ASYNC_TX_FENCE;
1246 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1247
1248 bio_for_each_segment(bvl, bio, iter) {
1249 int len = bvl.bv_len;
1250 int clen;
1251 int b_offset = 0;
1252
1253 if (page_offset < 0) {
1254 b_offset = -page_offset;
1255 page_offset += b_offset;
1256 len -= b_offset;
1257 }
1258
1259 if (len > 0 && page_offset + len > STRIPE_SIZE)
1260 clen = STRIPE_SIZE - page_offset;
1261 else
1262 clen = len;
1263
1264 if (clen > 0) {
1265 b_offset += bvl.bv_offset;
1266 bio_page = bvl.bv_page;
1267 if (frombio) {
1268 if (sh->raid_conf->skip_copy &&
1269 b_offset == 0 && page_offset == 0 &&
1270 clen == STRIPE_SIZE &&
1271 !no_skipcopy)
1272 *page = bio_page;
1273 else
1274 tx = async_memcpy(*page, bio_page, page_offset,
1275 b_offset, clen, &submit);
1276 } else
1277 tx = async_memcpy(bio_page, *page, b_offset,
1278 page_offset, clen, &submit);
1279 }
1280 /* chain the operations */
1281 submit.depend_tx = tx;
1282
1283 if (clen < len) /* hit end of page */
1284 break;
1285 page_offset += len;
1286 }
1287
1288 return tx;
1289}
1290
1291static void ops_complete_biofill(void *stripe_head_ref)
1292{
1293 struct stripe_head *sh = stripe_head_ref;
1294 int i;
1295
1296 pr_debug("%s: stripe %llu\n", __func__,
1297 (unsigned long long)sh->sector);
1298
1299 /* clear completed biofills */
1300 for (i = sh->disks; i--; ) {
1301 struct r5dev *dev = &sh->dev[i];
1302
1303 /* acknowledge completion of a biofill operation */
1304 /* and check if we need to reply to a read request,
1305 * new R5_Wantfill requests are held off until
1306 * !STRIPE_BIOFILL_RUN
1307 */
1308 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1309 struct bio *rbi, *rbi2;
1310
1311 BUG_ON(!dev->read);
1312 rbi = dev->read;
1313 dev->read = NULL;
1314 while (rbi && rbi->bi_iter.bi_sector <
1315 dev->sector + STRIPE_SECTORS) {
1316 rbi2 = r5_next_bio(rbi, dev->sector);
1317 bio_endio(rbi);
1318 rbi = rbi2;
1319 }
1320 }
1321 }
1322 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1323
1324 set_bit(STRIPE_HANDLE, &sh->state);
1325 raid5_release_stripe(sh);
1326}
1327
1328static void ops_run_biofill(struct stripe_head *sh)
1329{
1330 struct dma_async_tx_descriptor *tx = NULL;
1331 struct async_submit_ctl submit;
1332 int i;
1333
1334 BUG_ON(sh->batch_head);
1335 pr_debug("%s: stripe %llu\n", __func__,
1336 (unsigned long long)sh->sector);
1337
1338 for (i = sh->disks; i--; ) {
1339 struct r5dev *dev = &sh->dev[i];
1340 if (test_bit(R5_Wantfill, &dev->flags)) {
1341 struct bio *rbi;
1342 spin_lock_irq(&sh->stripe_lock);
1343 dev->read = rbi = dev->toread;
1344 dev->toread = NULL;
1345 spin_unlock_irq(&sh->stripe_lock);
1346 while (rbi && rbi->bi_iter.bi_sector <
1347 dev->sector + STRIPE_SECTORS) {
1348 tx = async_copy_data(0, rbi, &dev->page,
1349 dev->sector, tx, sh, 0);
1350 rbi = r5_next_bio(rbi, dev->sector);
1351 }
1352 }
1353 }
1354
1355 atomic_inc(&sh->count);
1356 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1357 async_trigger_callback(&submit);
1358}
1359
1360static void mark_target_uptodate(struct stripe_head *sh, int target)
1361{
1362 struct r5dev *tgt;
1363
1364 if (target < 0)
1365 return;
1366
1367 tgt = &sh->dev[target];
1368 set_bit(R5_UPTODATE, &tgt->flags);
1369 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1370 clear_bit(R5_Wantcompute, &tgt->flags);
1371}
1372
1373static void ops_complete_compute(void *stripe_head_ref)
1374{
1375 struct stripe_head *sh = stripe_head_ref;
1376
1377 pr_debug("%s: stripe %llu\n", __func__,
1378 (unsigned long long)sh->sector);
1379
1380 /* mark the computed target(s) as uptodate */
1381 mark_target_uptodate(sh, sh->ops.target);
1382 mark_target_uptodate(sh, sh->ops.target2);
1383
1384 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1385 if (sh->check_state == check_state_compute_run)
1386 sh->check_state = check_state_compute_result;
1387 set_bit(STRIPE_HANDLE, &sh->state);
1388 raid5_release_stripe(sh);
1389}
1390
1391/* return a pointer to the address conversion region of the scribble buffer */
David Brazdil0f672f62019-12-10 10:32:29 +00001392static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001393{
David Brazdil0f672f62019-12-10 10:32:29 +00001394 return percpu->scribble + i * percpu->scribble_obj_size;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001395}
1396
1397/* return a pointer to the address conversion region of the scribble buffer */
David Brazdil0f672f62019-12-10 10:32:29 +00001398static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1399 struct raid5_percpu *percpu, int i)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001400{
David Brazdil0f672f62019-12-10 10:32:29 +00001401 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001402}
1403
1404static struct dma_async_tx_descriptor *
1405ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1406{
1407 int disks = sh->disks;
1408 struct page **xor_srcs = to_addr_page(percpu, 0);
1409 int target = sh->ops.target;
1410 struct r5dev *tgt = &sh->dev[target];
1411 struct page *xor_dest = tgt->page;
1412 int count = 0;
1413 struct dma_async_tx_descriptor *tx;
1414 struct async_submit_ctl submit;
1415 int i;
1416
1417 BUG_ON(sh->batch_head);
1418
1419 pr_debug("%s: stripe %llu block: %d\n",
1420 __func__, (unsigned long long)sh->sector, target);
1421 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1422
1423 for (i = disks; i--; )
1424 if (i != target)
1425 xor_srcs[count++] = sh->dev[i].page;
1426
1427 atomic_inc(&sh->count);
1428
1429 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1430 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1431 if (unlikely(count == 1))
1432 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1433 else
1434 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1435
1436 return tx;
1437}
1438
1439/* set_syndrome_sources - populate source buffers for gen_syndrome
1440 * @srcs - (struct page *) array of size sh->disks
1441 * @sh - stripe_head to parse
1442 *
1443 * Populates srcs in proper layout order for the stripe and returns the
1444 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1445 * destination buffer is recorded in srcs[count] and the Q destination
1446 * is recorded in srcs[count+1]].
1447 */
1448static int set_syndrome_sources(struct page **srcs,
1449 struct stripe_head *sh,
1450 int srctype)
1451{
1452 int disks = sh->disks;
1453 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1454 int d0_idx = raid6_d0(sh);
1455 int count;
1456 int i;
1457
1458 for (i = 0; i < disks; i++)
1459 srcs[i] = NULL;
1460
1461 count = 0;
1462 i = d0_idx;
1463 do {
1464 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1465 struct r5dev *dev = &sh->dev[i];
1466
1467 if (i == sh->qd_idx || i == sh->pd_idx ||
1468 (srctype == SYNDROME_SRC_ALL) ||
1469 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1470 (test_bit(R5_Wantdrain, &dev->flags) ||
1471 test_bit(R5_InJournal, &dev->flags))) ||
1472 (srctype == SYNDROME_SRC_WRITTEN &&
1473 (dev->written ||
1474 test_bit(R5_InJournal, &dev->flags)))) {
1475 if (test_bit(R5_InJournal, &dev->flags))
1476 srcs[slot] = sh->dev[i].orig_page;
1477 else
1478 srcs[slot] = sh->dev[i].page;
1479 }
1480 i = raid6_next_disk(i, disks);
1481 } while (i != d0_idx);
1482
1483 return syndrome_disks;
1484}
1485
1486static struct dma_async_tx_descriptor *
1487ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1488{
1489 int disks = sh->disks;
1490 struct page **blocks = to_addr_page(percpu, 0);
1491 int target;
1492 int qd_idx = sh->qd_idx;
1493 struct dma_async_tx_descriptor *tx;
1494 struct async_submit_ctl submit;
1495 struct r5dev *tgt;
1496 struct page *dest;
1497 int i;
1498 int count;
1499
1500 BUG_ON(sh->batch_head);
1501 if (sh->ops.target < 0)
1502 target = sh->ops.target2;
1503 else if (sh->ops.target2 < 0)
1504 target = sh->ops.target;
1505 else
1506 /* we should only have one valid target */
1507 BUG();
1508 BUG_ON(target < 0);
1509 pr_debug("%s: stripe %llu block: %d\n",
1510 __func__, (unsigned long long)sh->sector, target);
1511
1512 tgt = &sh->dev[target];
1513 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1514 dest = tgt->page;
1515
1516 atomic_inc(&sh->count);
1517
1518 if (target == qd_idx) {
1519 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1520 blocks[count] = NULL; /* regenerating p is not necessary */
1521 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1522 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1523 ops_complete_compute, sh,
1524 to_addr_conv(sh, percpu, 0));
1525 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1526 } else {
1527 /* Compute any data- or p-drive using XOR */
1528 count = 0;
1529 for (i = disks; i-- ; ) {
1530 if (i == target || i == qd_idx)
1531 continue;
1532 blocks[count++] = sh->dev[i].page;
1533 }
1534
1535 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1536 NULL, ops_complete_compute, sh,
1537 to_addr_conv(sh, percpu, 0));
1538 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1539 }
1540
1541 return tx;
1542}
1543
1544static struct dma_async_tx_descriptor *
1545ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1546{
1547 int i, count, disks = sh->disks;
1548 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1549 int d0_idx = raid6_d0(sh);
1550 int faila = -1, failb = -1;
1551 int target = sh->ops.target;
1552 int target2 = sh->ops.target2;
1553 struct r5dev *tgt = &sh->dev[target];
1554 struct r5dev *tgt2 = &sh->dev[target2];
1555 struct dma_async_tx_descriptor *tx;
1556 struct page **blocks = to_addr_page(percpu, 0);
1557 struct async_submit_ctl submit;
1558
1559 BUG_ON(sh->batch_head);
1560 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1561 __func__, (unsigned long long)sh->sector, target, target2);
1562 BUG_ON(target < 0 || target2 < 0);
1563 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1564 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1565
1566 /* we need to open-code set_syndrome_sources to handle the
1567 * slot number conversion for 'faila' and 'failb'
1568 */
1569 for (i = 0; i < disks ; i++)
1570 blocks[i] = NULL;
1571 count = 0;
1572 i = d0_idx;
1573 do {
1574 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1575
1576 blocks[slot] = sh->dev[i].page;
1577
1578 if (i == target)
1579 faila = slot;
1580 if (i == target2)
1581 failb = slot;
1582 i = raid6_next_disk(i, disks);
1583 } while (i != d0_idx);
1584
1585 BUG_ON(faila == failb);
1586 if (failb < faila)
1587 swap(faila, failb);
1588 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1589 __func__, (unsigned long long)sh->sector, faila, failb);
1590
1591 atomic_inc(&sh->count);
1592
1593 if (failb == syndrome_disks+1) {
1594 /* Q disk is one of the missing disks */
1595 if (faila == syndrome_disks) {
1596 /* Missing P+Q, just recompute */
1597 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1598 ops_complete_compute, sh,
1599 to_addr_conv(sh, percpu, 0));
1600 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1601 STRIPE_SIZE, &submit);
1602 } else {
1603 struct page *dest;
1604 int data_target;
1605 int qd_idx = sh->qd_idx;
1606
1607 /* Missing D+Q: recompute D from P, then recompute Q */
1608 if (target == qd_idx)
1609 data_target = target2;
1610 else
1611 data_target = target;
1612
1613 count = 0;
1614 for (i = disks; i-- ; ) {
1615 if (i == data_target || i == qd_idx)
1616 continue;
1617 blocks[count++] = sh->dev[i].page;
1618 }
1619 dest = sh->dev[data_target].page;
1620 init_async_submit(&submit,
1621 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1622 NULL, NULL, NULL,
1623 to_addr_conv(sh, percpu, 0));
1624 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1625 &submit);
1626
1627 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1628 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1629 ops_complete_compute, sh,
1630 to_addr_conv(sh, percpu, 0));
1631 return async_gen_syndrome(blocks, 0, count+2,
1632 STRIPE_SIZE, &submit);
1633 }
1634 } else {
1635 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1636 ops_complete_compute, sh,
1637 to_addr_conv(sh, percpu, 0));
1638 if (failb == syndrome_disks) {
1639 /* We're missing D+P. */
1640 return async_raid6_datap_recov(syndrome_disks+2,
1641 STRIPE_SIZE, faila,
1642 blocks, &submit);
1643 } else {
1644 /* We're missing D+D. */
1645 return async_raid6_2data_recov(syndrome_disks+2,
1646 STRIPE_SIZE, faila, failb,
1647 blocks, &submit);
1648 }
1649 }
1650}
1651
1652static void ops_complete_prexor(void *stripe_head_ref)
1653{
1654 struct stripe_head *sh = stripe_head_ref;
1655
1656 pr_debug("%s: stripe %llu\n", __func__,
1657 (unsigned long long)sh->sector);
1658
1659 if (r5c_is_writeback(sh->raid_conf->log))
1660 /*
1661 * raid5-cache write back uses orig_page during prexor.
1662 * After prexor, it is time to free orig_page
1663 */
1664 r5c_release_extra_page(sh);
1665}
1666
1667static struct dma_async_tx_descriptor *
1668ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1669 struct dma_async_tx_descriptor *tx)
1670{
1671 int disks = sh->disks;
1672 struct page **xor_srcs = to_addr_page(percpu, 0);
1673 int count = 0, pd_idx = sh->pd_idx, i;
1674 struct async_submit_ctl submit;
1675
1676 /* existing parity data subtracted */
1677 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1678
1679 BUG_ON(sh->batch_head);
1680 pr_debug("%s: stripe %llu\n", __func__,
1681 (unsigned long long)sh->sector);
1682
1683 for (i = disks; i--; ) {
1684 struct r5dev *dev = &sh->dev[i];
1685 /* Only process blocks that are known to be uptodate */
1686 if (test_bit(R5_InJournal, &dev->flags))
1687 xor_srcs[count++] = dev->orig_page;
1688 else if (test_bit(R5_Wantdrain, &dev->flags))
1689 xor_srcs[count++] = dev->page;
1690 }
1691
1692 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1693 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1694 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1695
1696 return tx;
1697}
1698
1699static struct dma_async_tx_descriptor *
1700ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1701 struct dma_async_tx_descriptor *tx)
1702{
1703 struct page **blocks = to_addr_page(percpu, 0);
1704 int count;
1705 struct async_submit_ctl submit;
1706
1707 pr_debug("%s: stripe %llu\n", __func__,
1708 (unsigned long long)sh->sector);
1709
1710 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1711
1712 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1713 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1714 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1715
1716 return tx;
1717}
1718
1719static struct dma_async_tx_descriptor *
1720ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1721{
1722 struct r5conf *conf = sh->raid_conf;
1723 int disks = sh->disks;
1724 int i;
1725 struct stripe_head *head_sh = sh;
1726
1727 pr_debug("%s: stripe %llu\n", __func__,
1728 (unsigned long long)sh->sector);
1729
1730 for (i = disks; i--; ) {
1731 struct r5dev *dev;
1732 struct bio *chosen;
1733
1734 sh = head_sh;
1735 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1736 struct bio *wbi;
1737
1738again:
1739 dev = &sh->dev[i];
1740 /*
1741 * clear R5_InJournal, so when rewriting a page in
1742 * journal, it is not skipped by r5l_log_stripe()
1743 */
1744 clear_bit(R5_InJournal, &dev->flags);
1745 spin_lock_irq(&sh->stripe_lock);
1746 chosen = dev->towrite;
1747 dev->towrite = NULL;
1748 sh->overwrite_disks = 0;
1749 BUG_ON(dev->written);
1750 wbi = dev->written = chosen;
1751 spin_unlock_irq(&sh->stripe_lock);
1752 WARN_ON(dev->page != dev->orig_page);
1753
1754 while (wbi && wbi->bi_iter.bi_sector <
1755 dev->sector + STRIPE_SECTORS) {
1756 if (wbi->bi_opf & REQ_FUA)
1757 set_bit(R5_WantFUA, &dev->flags);
1758 if (wbi->bi_opf & REQ_SYNC)
1759 set_bit(R5_SyncIO, &dev->flags);
1760 if (bio_op(wbi) == REQ_OP_DISCARD)
1761 set_bit(R5_Discard, &dev->flags);
1762 else {
1763 tx = async_copy_data(1, wbi, &dev->page,
1764 dev->sector, tx, sh,
1765 r5c_is_writeback(conf->log));
1766 if (dev->page != dev->orig_page &&
1767 !r5c_is_writeback(conf->log)) {
1768 set_bit(R5_SkipCopy, &dev->flags);
1769 clear_bit(R5_UPTODATE, &dev->flags);
1770 clear_bit(R5_OVERWRITE, &dev->flags);
1771 }
1772 }
1773 wbi = r5_next_bio(wbi, dev->sector);
1774 }
1775
1776 if (head_sh->batch_head) {
1777 sh = list_first_entry(&sh->batch_list,
1778 struct stripe_head,
1779 batch_list);
1780 if (sh == head_sh)
1781 continue;
1782 goto again;
1783 }
1784 }
1785 }
1786
1787 return tx;
1788}
1789
1790static void ops_complete_reconstruct(void *stripe_head_ref)
1791{
1792 struct stripe_head *sh = stripe_head_ref;
1793 int disks = sh->disks;
1794 int pd_idx = sh->pd_idx;
1795 int qd_idx = sh->qd_idx;
1796 int i;
1797 bool fua = false, sync = false, discard = false;
1798
1799 pr_debug("%s: stripe %llu\n", __func__,
1800 (unsigned long long)sh->sector);
1801
1802 for (i = disks; i--; ) {
1803 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1804 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1805 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1806 }
1807
1808 for (i = disks; i--; ) {
1809 struct r5dev *dev = &sh->dev[i];
1810
1811 if (dev->written || i == pd_idx || i == qd_idx) {
1812 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1813 set_bit(R5_UPTODATE, &dev->flags);
1814 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1815 set_bit(R5_Expanded, &dev->flags);
1816 }
1817 if (fua)
1818 set_bit(R5_WantFUA, &dev->flags);
1819 if (sync)
1820 set_bit(R5_SyncIO, &dev->flags);
1821 }
1822 }
1823
1824 if (sh->reconstruct_state == reconstruct_state_drain_run)
1825 sh->reconstruct_state = reconstruct_state_drain_result;
1826 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1827 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1828 else {
1829 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1830 sh->reconstruct_state = reconstruct_state_result;
1831 }
1832
1833 set_bit(STRIPE_HANDLE, &sh->state);
1834 raid5_release_stripe(sh);
1835}
1836
1837static void
1838ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1839 struct dma_async_tx_descriptor *tx)
1840{
1841 int disks = sh->disks;
1842 struct page **xor_srcs;
1843 struct async_submit_ctl submit;
1844 int count, pd_idx = sh->pd_idx, i;
1845 struct page *xor_dest;
1846 int prexor = 0;
1847 unsigned long flags;
1848 int j = 0;
1849 struct stripe_head *head_sh = sh;
1850 int last_stripe;
1851
1852 pr_debug("%s: stripe %llu\n", __func__,
1853 (unsigned long long)sh->sector);
1854
1855 for (i = 0; i < sh->disks; i++) {
1856 if (pd_idx == i)
1857 continue;
1858 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1859 break;
1860 }
1861 if (i >= sh->disks) {
1862 atomic_inc(&sh->count);
1863 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1864 ops_complete_reconstruct(sh);
1865 return;
1866 }
1867again:
1868 count = 0;
1869 xor_srcs = to_addr_page(percpu, j);
1870 /* check if prexor is active which means only process blocks
1871 * that are part of a read-modify-write (written)
1872 */
1873 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1874 prexor = 1;
1875 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1876 for (i = disks; i--; ) {
1877 struct r5dev *dev = &sh->dev[i];
1878 if (head_sh->dev[i].written ||
1879 test_bit(R5_InJournal, &head_sh->dev[i].flags))
1880 xor_srcs[count++] = dev->page;
1881 }
1882 } else {
1883 xor_dest = sh->dev[pd_idx].page;
1884 for (i = disks; i--; ) {
1885 struct r5dev *dev = &sh->dev[i];
1886 if (i != pd_idx)
1887 xor_srcs[count++] = dev->page;
1888 }
1889 }
1890
1891 /* 1/ if we prexor'd then the dest is reused as a source
1892 * 2/ if we did not prexor then we are redoing the parity
1893 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1894 * for the synchronous xor case
1895 */
1896 last_stripe = !head_sh->batch_head ||
1897 list_first_entry(&sh->batch_list,
1898 struct stripe_head, batch_list) == head_sh;
1899 if (last_stripe) {
1900 flags = ASYNC_TX_ACK |
1901 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1902
1903 atomic_inc(&head_sh->count);
1904 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1905 to_addr_conv(sh, percpu, j));
1906 } else {
1907 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1908 init_async_submit(&submit, flags, tx, NULL, NULL,
1909 to_addr_conv(sh, percpu, j));
1910 }
1911
1912 if (unlikely(count == 1))
1913 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1914 else
1915 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1916 if (!last_stripe) {
1917 j++;
1918 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1919 batch_list);
1920 goto again;
1921 }
1922}
1923
1924static void
1925ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1926 struct dma_async_tx_descriptor *tx)
1927{
1928 struct async_submit_ctl submit;
1929 struct page **blocks;
1930 int count, i, j = 0;
1931 struct stripe_head *head_sh = sh;
1932 int last_stripe;
1933 int synflags;
1934 unsigned long txflags;
1935
1936 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1937
1938 for (i = 0; i < sh->disks; i++) {
1939 if (sh->pd_idx == i || sh->qd_idx == i)
1940 continue;
1941 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1942 break;
1943 }
1944 if (i >= sh->disks) {
1945 atomic_inc(&sh->count);
1946 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1947 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1948 ops_complete_reconstruct(sh);
1949 return;
1950 }
1951
1952again:
1953 blocks = to_addr_page(percpu, j);
1954
1955 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1956 synflags = SYNDROME_SRC_WRITTEN;
1957 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1958 } else {
1959 synflags = SYNDROME_SRC_ALL;
1960 txflags = ASYNC_TX_ACK;
1961 }
1962
1963 count = set_syndrome_sources(blocks, sh, synflags);
1964 last_stripe = !head_sh->batch_head ||
1965 list_first_entry(&sh->batch_list,
1966 struct stripe_head, batch_list) == head_sh;
1967
1968 if (last_stripe) {
1969 atomic_inc(&head_sh->count);
1970 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1971 head_sh, to_addr_conv(sh, percpu, j));
1972 } else
1973 init_async_submit(&submit, 0, tx, NULL, NULL,
1974 to_addr_conv(sh, percpu, j));
1975 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1976 if (!last_stripe) {
1977 j++;
1978 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1979 batch_list);
1980 goto again;
1981 }
1982}
1983
1984static void ops_complete_check(void *stripe_head_ref)
1985{
1986 struct stripe_head *sh = stripe_head_ref;
1987
1988 pr_debug("%s: stripe %llu\n", __func__,
1989 (unsigned long long)sh->sector);
1990
1991 sh->check_state = check_state_check_result;
1992 set_bit(STRIPE_HANDLE, &sh->state);
1993 raid5_release_stripe(sh);
1994}
1995
1996static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1997{
1998 int disks = sh->disks;
1999 int pd_idx = sh->pd_idx;
2000 int qd_idx = sh->qd_idx;
2001 struct page *xor_dest;
2002 struct page **xor_srcs = to_addr_page(percpu, 0);
2003 struct dma_async_tx_descriptor *tx;
2004 struct async_submit_ctl submit;
2005 int count;
2006 int i;
2007
2008 pr_debug("%s: stripe %llu\n", __func__,
2009 (unsigned long long)sh->sector);
2010
2011 BUG_ON(sh->batch_head);
2012 count = 0;
2013 xor_dest = sh->dev[pd_idx].page;
2014 xor_srcs[count++] = xor_dest;
2015 for (i = disks; i--; ) {
2016 if (i == pd_idx || i == qd_idx)
2017 continue;
2018 xor_srcs[count++] = sh->dev[i].page;
2019 }
2020
2021 init_async_submit(&submit, 0, NULL, NULL, NULL,
2022 to_addr_conv(sh, percpu, 0));
2023 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2024 &sh->ops.zero_sum_result, &submit);
2025
2026 atomic_inc(&sh->count);
2027 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2028 tx = async_trigger_callback(&submit);
2029}
2030
2031static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2032{
2033 struct page **srcs = to_addr_page(percpu, 0);
2034 struct async_submit_ctl submit;
2035 int count;
2036
2037 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2038 (unsigned long long)sh->sector, checkp);
2039
2040 BUG_ON(sh->batch_head);
2041 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2042 if (!checkp)
2043 srcs[count] = NULL;
2044
2045 atomic_inc(&sh->count);
2046 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2047 sh, to_addr_conv(sh, percpu, 0));
2048 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2049 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2050}
2051
2052static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2053{
2054 int overlap_clear = 0, i, disks = sh->disks;
2055 struct dma_async_tx_descriptor *tx = NULL;
2056 struct r5conf *conf = sh->raid_conf;
2057 int level = conf->level;
2058 struct raid5_percpu *percpu;
2059 unsigned long cpu;
2060
2061 cpu = get_cpu();
2062 percpu = per_cpu_ptr(conf->percpu, cpu);
2063 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2064 ops_run_biofill(sh);
2065 overlap_clear++;
2066 }
2067
2068 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2069 if (level < 6)
2070 tx = ops_run_compute5(sh, percpu);
2071 else {
2072 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2073 tx = ops_run_compute6_1(sh, percpu);
2074 else
2075 tx = ops_run_compute6_2(sh, percpu);
2076 }
2077 /* terminate the chain if reconstruct is not set to be run */
2078 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2079 async_tx_ack(tx);
2080 }
2081
2082 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2083 if (level < 6)
2084 tx = ops_run_prexor5(sh, percpu, tx);
2085 else
2086 tx = ops_run_prexor6(sh, percpu, tx);
2087 }
2088
2089 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2090 tx = ops_run_partial_parity(sh, percpu, tx);
2091
2092 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2093 tx = ops_run_biodrain(sh, tx);
2094 overlap_clear++;
2095 }
2096
2097 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2098 if (level < 6)
2099 ops_run_reconstruct5(sh, percpu, tx);
2100 else
2101 ops_run_reconstruct6(sh, percpu, tx);
2102 }
2103
2104 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2105 if (sh->check_state == check_state_run)
2106 ops_run_check_p(sh, percpu);
2107 else if (sh->check_state == check_state_run_q)
2108 ops_run_check_pq(sh, percpu, 0);
2109 else if (sh->check_state == check_state_run_pq)
2110 ops_run_check_pq(sh, percpu, 1);
2111 else
2112 BUG();
2113 }
2114
2115 if (overlap_clear && !sh->batch_head)
2116 for (i = disks; i--; ) {
2117 struct r5dev *dev = &sh->dev[i];
2118 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2119 wake_up(&sh->raid_conf->wait_for_overlap);
2120 }
2121 put_cpu();
2122}
2123
2124static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2125{
2126 if (sh->ppl_page)
2127 __free_page(sh->ppl_page);
2128 kmem_cache_free(sc, sh);
2129}
2130
2131static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2132 int disks, struct r5conf *conf)
2133{
2134 struct stripe_head *sh;
2135 int i;
2136
2137 sh = kmem_cache_zalloc(sc, gfp);
2138 if (sh) {
2139 spin_lock_init(&sh->stripe_lock);
2140 spin_lock_init(&sh->batch_lock);
2141 INIT_LIST_HEAD(&sh->batch_list);
2142 INIT_LIST_HEAD(&sh->lru);
2143 INIT_LIST_HEAD(&sh->r5c);
2144 INIT_LIST_HEAD(&sh->log_list);
2145 atomic_set(&sh->count, 1);
2146 sh->raid_conf = conf;
2147 sh->log_start = MaxSector;
2148 for (i = 0; i < disks; i++) {
2149 struct r5dev *dev = &sh->dev[i];
2150
2151 bio_init(&dev->req, &dev->vec, 1);
2152 bio_init(&dev->rreq, &dev->rvec, 1);
2153 }
2154
2155 if (raid5_has_ppl(conf)) {
2156 sh->ppl_page = alloc_page(gfp);
2157 if (!sh->ppl_page) {
2158 free_stripe(sc, sh);
2159 sh = NULL;
2160 }
2161 }
2162 }
2163 return sh;
2164}
2165static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2166{
2167 struct stripe_head *sh;
2168
2169 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2170 if (!sh)
2171 return 0;
2172
2173 if (grow_buffers(sh, gfp)) {
2174 shrink_buffers(sh);
2175 free_stripe(conf->slab_cache, sh);
2176 return 0;
2177 }
2178 sh->hash_lock_index =
2179 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2180 /* we just created an active stripe so... */
2181 atomic_inc(&conf->active_stripes);
2182
2183 raid5_release_stripe(sh);
2184 conf->max_nr_stripes++;
2185 return 1;
2186}
2187
2188static int grow_stripes(struct r5conf *conf, int num)
2189{
2190 struct kmem_cache *sc;
2191 size_t namelen = sizeof(conf->cache_name[0]);
2192 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2193
2194 if (conf->mddev->gendisk)
2195 snprintf(conf->cache_name[0], namelen,
2196 "raid%d-%s", conf->level, mdname(conf->mddev));
2197 else
2198 snprintf(conf->cache_name[0], namelen,
2199 "raid%d-%p", conf->level, conf->mddev);
2200 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2201
2202 conf->active_name = 0;
2203 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2204 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2205 0, 0, NULL);
2206 if (!sc)
2207 return 1;
2208 conf->slab_cache = sc;
2209 conf->pool_size = devs;
2210 while (num--)
2211 if (!grow_one_stripe(conf, GFP_KERNEL))
2212 return 1;
2213
2214 return 0;
2215}
2216
2217/**
2218 * scribble_len - return the required size of the scribble region
2219 * @num - total number of disks in the array
2220 *
2221 * The size must be enough to contain:
2222 * 1/ a struct page pointer for each device in the array +2
2223 * 2/ room to convert each entry in (1) to its corresponding dma
2224 * (dma_map_page()) or page (page_address()) address.
2225 *
2226 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2227 * calculate over all devices (not just the data blocks), using zeros in place
2228 * of the P and Q blocks.
2229 */
David Brazdil0f672f62019-12-10 10:32:29 +00002230static int scribble_alloc(struct raid5_percpu *percpu,
Olivier Deprez0e641232021-09-23 10:07:05 +02002231 int num, int cnt)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002232{
David Brazdil0f672f62019-12-10 10:32:29 +00002233 size_t obj_size =
2234 sizeof(struct page *) * (num+2) +
2235 sizeof(addr_conv_t) * (num+2);
2236 void *scribble;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002237
Olivier Deprez0e641232021-09-23 10:07:05 +02002238 /*
2239 * If here is in raid array suspend context, it is in memalloc noio
2240 * context as well, there is no potential recursive memory reclaim
2241 * I/Os with the GFP_KERNEL flag.
2242 */
2243 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
David Brazdil0f672f62019-12-10 10:32:29 +00002244 if (!scribble)
2245 return -ENOMEM;
2246
2247 kvfree(percpu->scribble);
2248
2249 percpu->scribble = scribble;
2250 percpu->scribble_obj_size = obj_size;
2251 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002252}
2253
2254static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2255{
2256 unsigned long cpu;
2257 int err = 0;
2258
2259 /*
2260 * Never shrink. And mddev_suspend() could deadlock if this is called
2261 * from raid5d. In that case, scribble_disks and scribble_sectors
2262 * should equal to new_disks and new_sectors
2263 */
2264 if (conf->scribble_disks >= new_disks &&
2265 conf->scribble_sectors >= new_sectors)
2266 return 0;
2267 mddev_suspend(conf->mddev);
2268 get_online_cpus();
David Brazdil0f672f62019-12-10 10:32:29 +00002269
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002270 for_each_present_cpu(cpu) {
2271 struct raid5_percpu *percpu;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002272
2273 percpu = per_cpu_ptr(conf->percpu, cpu);
David Brazdil0f672f62019-12-10 10:32:29 +00002274 err = scribble_alloc(percpu, new_disks,
Olivier Deprez0e641232021-09-23 10:07:05 +02002275 new_sectors / STRIPE_SECTORS);
David Brazdil0f672f62019-12-10 10:32:29 +00002276 if (err)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002277 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002278 }
David Brazdil0f672f62019-12-10 10:32:29 +00002279
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002280 put_online_cpus();
2281 mddev_resume(conf->mddev);
2282 if (!err) {
2283 conf->scribble_disks = new_disks;
2284 conf->scribble_sectors = new_sectors;
2285 }
2286 return err;
2287}
2288
2289static int resize_stripes(struct r5conf *conf, int newsize)
2290{
2291 /* Make all the stripes able to hold 'newsize' devices.
2292 * New slots in each stripe get 'page' set to a new page.
2293 *
2294 * This happens in stages:
2295 * 1/ create a new kmem_cache and allocate the required number of
2296 * stripe_heads.
2297 * 2/ gather all the old stripe_heads and transfer the pages across
2298 * to the new stripe_heads. This will have the side effect of
2299 * freezing the array as once all stripe_heads have been collected,
2300 * no IO will be possible. Old stripe heads are freed once their
2301 * pages have been transferred over, and the old kmem_cache is
2302 * freed when all stripes are done.
2303 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2304 * we simple return a failure status - no need to clean anything up.
2305 * 4/ allocate new pages for the new slots in the new stripe_heads.
2306 * If this fails, we don't bother trying the shrink the
2307 * stripe_heads down again, we just leave them as they are.
2308 * As each stripe_head is processed the new one is released into
2309 * active service.
2310 *
2311 * Once step2 is started, we cannot afford to wait for a write,
2312 * so we use GFP_NOIO allocations.
2313 */
2314 struct stripe_head *osh, *nsh;
2315 LIST_HEAD(newstripes);
2316 struct disk_info *ndisks;
2317 int err = 0;
2318 struct kmem_cache *sc;
2319 int i;
2320 int hash, cnt;
2321
2322 md_allow_write(conf->mddev);
2323
2324 /* Step 1 */
2325 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2326 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2327 0, 0, NULL);
2328 if (!sc)
2329 return -ENOMEM;
2330
2331 /* Need to ensure auto-resizing doesn't interfere */
2332 mutex_lock(&conf->cache_size_mutex);
2333
2334 for (i = conf->max_nr_stripes; i; i--) {
2335 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2336 if (!nsh)
2337 break;
2338
2339 list_add(&nsh->lru, &newstripes);
2340 }
2341 if (i) {
2342 /* didn't get enough, give up */
2343 while (!list_empty(&newstripes)) {
2344 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2345 list_del(&nsh->lru);
2346 free_stripe(sc, nsh);
2347 }
2348 kmem_cache_destroy(sc);
2349 mutex_unlock(&conf->cache_size_mutex);
2350 return -ENOMEM;
2351 }
2352 /* Step 2 - Must use GFP_NOIO now.
2353 * OK, we have enough stripes, start collecting inactive
2354 * stripes and copying them over
2355 */
2356 hash = 0;
2357 cnt = 0;
2358 list_for_each_entry(nsh, &newstripes, lru) {
2359 lock_device_hash_lock(conf, hash);
2360 wait_event_cmd(conf->wait_for_stripe,
2361 !list_empty(conf->inactive_list + hash),
2362 unlock_device_hash_lock(conf, hash),
2363 lock_device_hash_lock(conf, hash));
2364 osh = get_free_stripe(conf, hash);
2365 unlock_device_hash_lock(conf, hash);
2366
2367 for(i=0; i<conf->pool_size; i++) {
2368 nsh->dev[i].page = osh->dev[i].page;
2369 nsh->dev[i].orig_page = osh->dev[i].page;
2370 }
2371 nsh->hash_lock_index = hash;
2372 free_stripe(conf->slab_cache, osh);
2373 cnt++;
2374 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2375 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2376 hash++;
2377 cnt = 0;
2378 }
2379 }
2380 kmem_cache_destroy(conf->slab_cache);
2381
2382 /* Step 3.
2383 * At this point, we are holding all the stripes so the array
2384 * is completely stalled, so now is a good time to resize
2385 * conf->disks and the scribble region
2386 */
2387 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2388 if (ndisks) {
2389 for (i = 0; i < conf->pool_size; i++)
2390 ndisks[i] = conf->disks[i];
2391
2392 for (i = conf->pool_size; i < newsize; i++) {
2393 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2394 if (!ndisks[i].extra_page)
2395 err = -ENOMEM;
2396 }
2397
2398 if (err) {
2399 for (i = conf->pool_size; i < newsize; i++)
2400 if (ndisks[i].extra_page)
2401 put_page(ndisks[i].extra_page);
2402 kfree(ndisks);
2403 } else {
2404 kfree(conf->disks);
2405 conf->disks = ndisks;
2406 }
2407 } else
2408 err = -ENOMEM;
2409
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002410 conf->slab_cache = sc;
2411 conf->active_name = 1-conf->active_name;
2412
2413 /* Step 4, return new stripes to service */
2414 while(!list_empty(&newstripes)) {
2415 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2416 list_del_init(&nsh->lru);
2417
2418 for (i=conf->raid_disks; i < newsize; i++)
2419 if (nsh->dev[i].page == NULL) {
2420 struct page *p = alloc_page(GFP_NOIO);
2421 nsh->dev[i].page = p;
2422 nsh->dev[i].orig_page = p;
2423 if (!p)
2424 err = -ENOMEM;
2425 }
2426 raid5_release_stripe(nsh);
2427 }
2428 /* critical section pass, GFP_NOIO no longer needed */
2429
2430 if (!err)
2431 conf->pool_size = newsize;
Olivier Deprez0e641232021-09-23 10:07:05 +02002432 mutex_unlock(&conf->cache_size_mutex);
2433
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002434 return err;
2435}
2436
2437static int drop_one_stripe(struct r5conf *conf)
2438{
2439 struct stripe_head *sh;
2440 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2441
2442 spin_lock_irq(conf->hash_locks + hash);
2443 sh = get_free_stripe(conf, hash);
2444 spin_unlock_irq(conf->hash_locks + hash);
2445 if (!sh)
2446 return 0;
2447 BUG_ON(atomic_read(&sh->count));
2448 shrink_buffers(sh);
2449 free_stripe(conf->slab_cache, sh);
2450 atomic_dec(&conf->active_stripes);
2451 conf->max_nr_stripes--;
2452 return 1;
2453}
2454
2455static void shrink_stripes(struct r5conf *conf)
2456{
2457 while (conf->max_nr_stripes &&
2458 drop_one_stripe(conf))
2459 ;
2460
2461 kmem_cache_destroy(conf->slab_cache);
2462 conf->slab_cache = NULL;
2463}
2464
2465static void raid5_end_read_request(struct bio * bi)
2466{
2467 struct stripe_head *sh = bi->bi_private;
2468 struct r5conf *conf = sh->raid_conf;
2469 int disks = sh->disks, i;
2470 char b[BDEVNAME_SIZE];
2471 struct md_rdev *rdev = NULL;
2472 sector_t s;
2473
2474 for (i=0 ; i<disks; i++)
2475 if (bi == &sh->dev[i].req)
2476 break;
2477
2478 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2479 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2480 bi->bi_status);
2481 if (i == disks) {
2482 bio_reset(bi);
2483 BUG();
2484 return;
2485 }
2486 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2487 /* If replacement finished while this request was outstanding,
2488 * 'replacement' might be NULL already.
2489 * In that case it moved down to 'rdev'.
2490 * rdev is not removed until all requests are finished.
2491 */
2492 rdev = conf->disks[i].replacement;
2493 if (!rdev)
2494 rdev = conf->disks[i].rdev;
2495
2496 if (use_new_offset(conf, sh))
2497 s = sh->sector + rdev->new_data_offset;
2498 else
2499 s = sh->sector + rdev->data_offset;
2500 if (!bi->bi_status) {
2501 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2502 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2503 /* Note that this cannot happen on a
2504 * replacement device. We just fail those on
2505 * any error
2506 */
2507 pr_info_ratelimited(
2508 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2509 mdname(conf->mddev), STRIPE_SECTORS,
2510 (unsigned long long)s,
2511 bdevname(rdev->bdev, b));
2512 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2513 clear_bit(R5_ReadError, &sh->dev[i].flags);
2514 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2515 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2516 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2517
2518 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2519 /*
2520 * end read for a page in journal, this
2521 * must be preparing for prexor in rmw
2522 */
2523 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2524
2525 if (atomic_read(&rdev->read_errors))
2526 atomic_set(&rdev->read_errors, 0);
2527 } else {
2528 const char *bdn = bdevname(rdev->bdev, b);
2529 int retry = 0;
2530 int set_bad = 0;
2531
2532 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
David Brazdil0f672f62019-12-10 10:32:29 +00002533 if (!(bi->bi_status == BLK_STS_PROTECTION))
2534 atomic_inc(&rdev->read_errors);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002535 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2536 pr_warn_ratelimited(
2537 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2538 mdname(conf->mddev),
2539 (unsigned long long)s,
2540 bdn);
2541 else if (conf->mddev->degraded >= conf->max_degraded) {
2542 set_bad = 1;
2543 pr_warn_ratelimited(
2544 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2545 mdname(conf->mddev),
2546 (unsigned long long)s,
2547 bdn);
2548 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2549 /* Oh, no!!! */
2550 set_bad = 1;
2551 pr_warn_ratelimited(
2552 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2553 mdname(conf->mddev),
2554 (unsigned long long)s,
2555 bdn);
2556 } else if (atomic_read(&rdev->read_errors)
David Brazdil0f672f62019-12-10 10:32:29 +00002557 > conf->max_nr_stripes) {
2558 if (!test_bit(Faulty, &rdev->flags)) {
2559 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2560 mdname(conf->mddev),
2561 atomic_read(&rdev->read_errors),
2562 conf->max_nr_stripes);
2563 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2564 mdname(conf->mddev), bdn);
2565 }
2566 } else
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002567 retry = 1;
2568 if (set_bad && test_bit(In_sync, &rdev->flags)
2569 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2570 retry = 1;
2571 if (retry)
David Brazdil0f672f62019-12-10 10:32:29 +00002572 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2573 set_bit(R5_ReadError, &sh->dev[i].flags);
2574 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002575 set_bit(R5_ReadError, &sh->dev[i].flags);
2576 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2577 } else
2578 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2579 else {
2580 clear_bit(R5_ReadError, &sh->dev[i].flags);
2581 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2582 if (!(set_bad
2583 && test_bit(In_sync, &rdev->flags)
2584 && rdev_set_badblocks(
2585 rdev, sh->sector, STRIPE_SECTORS, 0)))
2586 md_error(conf->mddev, rdev);
2587 }
2588 }
2589 rdev_dec_pending(rdev, conf->mddev);
2590 bio_reset(bi);
2591 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2592 set_bit(STRIPE_HANDLE, &sh->state);
2593 raid5_release_stripe(sh);
2594}
2595
2596static void raid5_end_write_request(struct bio *bi)
2597{
2598 struct stripe_head *sh = bi->bi_private;
2599 struct r5conf *conf = sh->raid_conf;
2600 int disks = sh->disks, i;
2601 struct md_rdev *uninitialized_var(rdev);
2602 sector_t first_bad;
2603 int bad_sectors;
2604 int replacement = 0;
2605
2606 for (i = 0 ; i < disks; i++) {
2607 if (bi == &sh->dev[i].req) {
2608 rdev = conf->disks[i].rdev;
2609 break;
2610 }
2611 if (bi == &sh->dev[i].rreq) {
2612 rdev = conf->disks[i].replacement;
2613 if (rdev)
2614 replacement = 1;
2615 else
2616 /* rdev was removed and 'replacement'
2617 * replaced it. rdev is not removed
2618 * until all requests are finished.
2619 */
2620 rdev = conf->disks[i].rdev;
2621 break;
2622 }
2623 }
2624 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2625 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2626 bi->bi_status);
2627 if (i == disks) {
2628 bio_reset(bi);
2629 BUG();
2630 return;
2631 }
2632
2633 if (replacement) {
2634 if (bi->bi_status)
2635 md_error(conf->mddev, rdev);
2636 else if (is_badblock(rdev, sh->sector,
2637 STRIPE_SECTORS,
2638 &first_bad, &bad_sectors))
2639 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2640 } else {
2641 if (bi->bi_status) {
2642 set_bit(STRIPE_DEGRADED, &sh->state);
2643 set_bit(WriteErrorSeen, &rdev->flags);
2644 set_bit(R5_WriteError, &sh->dev[i].flags);
2645 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2646 set_bit(MD_RECOVERY_NEEDED,
2647 &rdev->mddev->recovery);
2648 } else if (is_badblock(rdev, sh->sector,
2649 STRIPE_SECTORS,
2650 &first_bad, &bad_sectors)) {
2651 set_bit(R5_MadeGood, &sh->dev[i].flags);
2652 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2653 /* That was a successful write so make
2654 * sure it looks like we already did
2655 * a re-write.
2656 */
2657 set_bit(R5_ReWrite, &sh->dev[i].flags);
2658 }
2659 }
2660 rdev_dec_pending(rdev, conf->mddev);
2661
2662 if (sh->batch_head && bi->bi_status && !replacement)
2663 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2664
2665 bio_reset(bi);
2666 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2667 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2668 set_bit(STRIPE_HANDLE, &sh->state);
2669 raid5_release_stripe(sh);
2670
2671 if (sh->batch_head && sh != sh->batch_head)
2672 raid5_release_stripe(sh->batch_head);
2673}
2674
2675static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2676{
2677 char b[BDEVNAME_SIZE];
2678 struct r5conf *conf = mddev->private;
2679 unsigned long flags;
2680 pr_debug("raid456: error called\n");
2681
2682 spin_lock_irqsave(&conf->device_lock, flags);
David Brazdil0f672f62019-12-10 10:32:29 +00002683
2684 if (test_bit(In_sync, &rdev->flags) &&
2685 mddev->degraded == conf->max_degraded) {
2686 /*
2687 * Don't allow to achieve failed state
2688 * Don't try to recover this device
2689 */
2690 conf->recovery_disabled = mddev->recovery_disabled;
2691 spin_unlock_irqrestore(&conf->device_lock, flags);
2692 return;
2693 }
2694
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002695 set_bit(Faulty, &rdev->flags);
2696 clear_bit(In_sync, &rdev->flags);
2697 mddev->degraded = raid5_calc_degraded(conf);
2698 spin_unlock_irqrestore(&conf->device_lock, flags);
2699 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2700
2701 set_bit(Blocked, &rdev->flags);
2702 set_mask_bits(&mddev->sb_flags, 0,
2703 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2704 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2705 "md/raid:%s: Operation continuing on %d devices.\n",
2706 mdname(mddev),
2707 bdevname(rdev->bdev, b),
2708 mdname(mddev),
2709 conf->raid_disks - mddev->degraded);
2710 r5c_update_on_rdev_error(mddev, rdev);
2711}
2712
2713/*
2714 * Input: a 'big' sector number,
2715 * Output: index of the data and parity disk, and the sector # in them.
2716 */
2717sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2718 int previous, int *dd_idx,
2719 struct stripe_head *sh)
2720{
2721 sector_t stripe, stripe2;
2722 sector_t chunk_number;
2723 unsigned int chunk_offset;
2724 int pd_idx, qd_idx;
2725 int ddf_layout = 0;
2726 sector_t new_sector;
2727 int algorithm = previous ? conf->prev_algo
2728 : conf->algorithm;
2729 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2730 : conf->chunk_sectors;
2731 int raid_disks = previous ? conf->previous_raid_disks
2732 : conf->raid_disks;
2733 int data_disks = raid_disks - conf->max_degraded;
2734
2735 /* First compute the information on this sector */
2736
2737 /*
2738 * Compute the chunk number and the sector offset inside the chunk
2739 */
2740 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2741 chunk_number = r_sector;
2742
2743 /*
2744 * Compute the stripe number
2745 */
2746 stripe = chunk_number;
2747 *dd_idx = sector_div(stripe, data_disks);
2748 stripe2 = stripe;
2749 /*
2750 * Select the parity disk based on the user selected algorithm.
2751 */
2752 pd_idx = qd_idx = -1;
2753 switch(conf->level) {
2754 case 4:
2755 pd_idx = data_disks;
2756 break;
2757 case 5:
2758 switch (algorithm) {
2759 case ALGORITHM_LEFT_ASYMMETRIC:
2760 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2761 if (*dd_idx >= pd_idx)
2762 (*dd_idx)++;
2763 break;
2764 case ALGORITHM_RIGHT_ASYMMETRIC:
2765 pd_idx = sector_div(stripe2, raid_disks);
2766 if (*dd_idx >= pd_idx)
2767 (*dd_idx)++;
2768 break;
2769 case ALGORITHM_LEFT_SYMMETRIC:
2770 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2771 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2772 break;
2773 case ALGORITHM_RIGHT_SYMMETRIC:
2774 pd_idx = sector_div(stripe2, raid_disks);
2775 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2776 break;
2777 case ALGORITHM_PARITY_0:
2778 pd_idx = 0;
2779 (*dd_idx)++;
2780 break;
2781 case ALGORITHM_PARITY_N:
2782 pd_idx = data_disks;
2783 break;
2784 default:
2785 BUG();
2786 }
2787 break;
2788 case 6:
2789
2790 switch (algorithm) {
2791 case ALGORITHM_LEFT_ASYMMETRIC:
2792 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2793 qd_idx = pd_idx + 1;
2794 if (pd_idx == raid_disks-1) {
2795 (*dd_idx)++; /* Q D D D P */
2796 qd_idx = 0;
2797 } else if (*dd_idx >= pd_idx)
2798 (*dd_idx) += 2; /* D D P Q D */
2799 break;
2800 case ALGORITHM_RIGHT_ASYMMETRIC:
2801 pd_idx = sector_div(stripe2, raid_disks);
2802 qd_idx = pd_idx + 1;
2803 if (pd_idx == raid_disks-1) {
2804 (*dd_idx)++; /* Q D D D P */
2805 qd_idx = 0;
2806 } else if (*dd_idx >= pd_idx)
2807 (*dd_idx) += 2; /* D D P Q D */
2808 break;
2809 case ALGORITHM_LEFT_SYMMETRIC:
2810 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2811 qd_idx = (pd_idx + 1) % raid_disks;
2812 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2813 break;
2814 case ALGORITHM_RIGHT_SYMMETRIC:
2815 pd_idx = sector_div(stripe2, raid_disks);
2816 qd_idx = (pd_idx + 1) % raid_disks;
2817 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2818 break;
2819
2820 case ALGORITHM_PARITY_0:
2821 pd_idx = 0;
2822 qd_idx = 1;
2823 (*dd_idx) += 2;
2824 break;
2825 case ALGORITHM_PARITY_N:
2826 pd_idx = data_disks;
2827 qd_idx = data_disks + 1;
2828 break;
2829
2830 case ALGORITHM_ROTATING_ZERO_RESTART:
2831 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2832 * of blocks for computing Q is different.
2833 */
2834 pd_idx = sector_div(stripe2, raid_disks);
2835 qd_idx = pd_idx + 1;
2836 if (pd_idx == raid_disks-1) {
2837 (*dd_idx)++; /* Q D D D P */
2838 qd_idx = 0;
2839 } else if (*dd_idx >= pd_idx)
2840 (*dd_idx) += 2; /* D D P Q D */
2841 ddf_layout = 1;
2842 break;
2843
2844 case ALGORITHM_ROTATING_N_RESTART:
2845 /* Same a left_asymmetric, by first stripe is
2846 * D D D P Q rather than
2847 * Q D D D P
2848 */
2849 stripe2 += 1;
2850 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2851 qd_idx = pd_idx + 1;
2852 if (pd_idx == raid_disks-1) {
2853 (*dd_idx)++; /* Q D D D P */
2854 qd_idx = 0;
2855 } else if (*dd_idx >= pd_idx)
2856 (*dd_idx) += 2; /* D D P Q D */
2857 ddf_layout = 1;
2858 break;
2859
2860 case ALGORITHM_ROTATING_N_CONTINUE:
2861 /* Same as left_symmetric but Q is before P */
2862 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2863 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2864 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2865 ddf_layout = 1;
2866 break;
2867
2868 case ALGORITHM_LEFT_ASYMMETRIC_6:
2869 /* RAID5 left_asymmetric, with Q on last device */
2870 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2871 if (*dd_idx >= pd_idx)
2872 (*dd_idx)++;
2873 qd_idx = raid_disks - 1;
2874 break;
2875
2876 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2877 pd_idx = sector_div(stripe2, raid_disks-1);
2878 if (*dd_idx >= pd_idx)
2879 (*dd_idx)++;
2880 qd_idx = raid_disks - 1;
2881 break;
2882
2883 case ALGORITHM_LEFT_SYMMETRIC_6:
2884 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2885 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2886 qd_idx = raid_disks - 1;
2887 break;
2888
2889 case ALGORITHM_RIGHT_SYMMETRIC_6:
2890 pd_idx = sector_div(stripe2, raid_disks-1);
2891 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2892 qd_idx = raid_disks - 1;
2893 break;
2894
2895 case ALGORITHM_PARITY_0_6:
2896 pd_idx = 0;
2897 (*dd_idx)++;
2898 qd_idx = raid_disks - 1;
2899 break;
2900
2901 default:
2902 BUG();
2903 }
2904 break;
2905 }
2906
2907 if (sh) {
2908 sh->pd_idx = pd_idx;
2909 sh->qd_idx = qd_idx;
2910 sh->ddf_layout = ddf_layout;
2911 }
2912 /*
2913 * Finally, compute the new sector number
2914 */
2915 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2916 return new_sector;
2917}
2918
2919sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2920{
2921 struct r5conf *conf = sh->raid_conf;
2922 int raid_disks = sh->disks;
2923 int data_disks = raid_disks - conf->max_degraded;
2924 sector_t new_sector = sh->sector, check;
2925 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2926 : conf->chunk_sectors;
2927 int algorithm = previous ? conf->prev_algo
2928 : conf->algorithm;
2929 sector_t stripe;
2930 int chunk_offset;
2931 sector_t chunk_number;
2932 int dummy1, dd_idx = i;
2933 sector_t r_sector;
2934 struct stripe_head sh2;
2935
2936 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2937 stripe = new_sector;
2938
2939 if (i == sh->pd_idx)
2940 return 0;
2941 switch(conf->level) {
2942 case 4: break;
2943 case 5:
2944 switch (algorithm) {
2945 case ALGORITHM_LEFT_ASYMMETRIC:
2946 case ALGORITHM_RIGHT_ASYMMETRIC:
2947 if (i > sh->pd_idx)
2948 i--;
2949 break;
2950 case ALGORITHM_LEFT_SYMMETRIC:
2951 case ALGORITHM_RIGHT_SYMMETRIC:
2952 if (i < sh->pd_idx)
2953 i += raid_disks;
2954 i -= (sh->pd_idx + 1);
2955 break;
2956 case ALGORITHM_PARITY_0:
2957 i -= 1;
2958 break;
2959 case ALGORITHM_PARITY_N:
2960 break;
2961 default:
2962 BUG();
2963 }
2964 break;
2965 case 6:
2966 if (i == sh->qd_idx)
2967 return 0; /* It is the Q disk */
2968 switch (algorithm) {
2969 case ALGORITHM_LEFT_ASYMMETRIC:
2970 case ALGORITHM_RIGHT_ASYMMETRIC:
2971 case ALGORITHM_ROTATING_ZERO_RESTART:
2972 case ALGORITHM_ROTATING_N_RESTART:
2973 if (sh->pd_idx == raid_disks-1)
2974 i--; /* Q D D D P */
2975 else if (i > sh->pd_idx)
2976 i -= 2; /* D D P Q D */
2977 break;
2978 case ALGORITHM_LEFT_SYMMETRIC:
2979 case ALGORITHM_RIGHT_SYMMETRIC:
2980 if (sh->pd_idx == raid_disks-1)
2981 i--; /* Q D D D P */
2982 else {
2983 /* D D P Q D */
2984 if (i < sh->pd_idx)
2985 i += raid_disks;
2986 i -= (sh->pd_idx + 2);
2987 }
2988 break;
2989 case ALGORITHM_PARITY_0:
2990 i -= 2;
2991 break;
2992 case ALGORITHM_PARITY_N:
2993 break;
2994 case ALGORITHM_ROTATING_N_CONTINUE:
2995 /* Like left_symmetric, but P is before Q */
2996 if (sh->pd_idx == 0)
2997 i--; /* P D D D Q */
2998 else {
2999 /* D D Q P D */
3000 if (i < sh->pd_idx)
3001 i += raid_disks;
3002 i -= (sh->pd_idx + 1);
3003 }
3004 break;
3005 case ALGORITHM_LEFT_ASYMMETRIC_6:
3006 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3007 if (i > sh->pd_idx)
3008 i--;
3009 break;
3010 case ALGORITHM_LEFT_SYMMETRIC_6:
3011 case ALGORITHM_RIGHT_SYMMETRIC_6:
3012 if (i < sh->pd_idx)
3013 i += data_disks + 1;
3014 i -= (sh->pd_idx + 1);
3015 break;
3016 case ALGORITHM_PARITY_0_6:
3017 i -= 1;
3018 break;
3019 default:
3020 BUG();
3021 }
3022 break;
3023 }
3024
3025 chunk_number = stripe * data_disks + i;
3026 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3027
3028 check = raid5_compute_sector(conf, r_sector,
3029 previous, &dummy1, &sh2);
3030 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3031 || sh2.qd_idx != sh->qd_idx) {
3032 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3033 mdname(conf->mddev));
3034 return 0;
3035 }
3036 return r_sector;
3037}
3038
3039/*
3040 * There are cases where we want handle_stripe_dirtying() and
3041 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3042 *
3043 * This function checks whether we want to delay the towrite. Specifically,
3044 * we delay the towrite when:
3045 *
3046 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3047 * stripe has data in journal (for other devices).
3048 *
3049 * In this case, when reading data for the non-overwrite dev, it is
3050 * necessary to handle complex rmw of write back cache (prexor with
3051 * orig_page, and xor with page). To keep read path simple, we would
3052 * like to flush data in journal to RAID disks first, so complex rmw
3053 * is handled in the write patch (handle_stripe_dirtying).
3054 *
3055 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3056 *
3057 * It is important to be able to flush all stripes in raid5-cache.
3058 * Therefore, we need reserve some space on the journal device for
3059 * these flushes. If flush operation includes pending writes to the
3060 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3061 * for the flush out. If we exclude these pending writes from flush
3062 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3063 * Therefore, excluding pending writes in these cases enables more
3064 * efficient use of the journal device.
3065 *
3066 * Note: To make sure the stripe makes progress, we only delay
3067 * towrite for stripes with data already in journal (injournal > 0).
3068 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3069 * no_space_stripes list.
3070 *
3071 * 3. during journal failure
3072 * In journal failure, we try to flush all cached data to raid disks
3073 * based on data in stripe cache. The array is read-only to upper
3074 * layers, so we would skip all pending writes.
3075 *
3076 */
3077static inline bool delay_towrite(struct r5conf *conf,
3078 struct r5dev *dev,
3079 struct stripe_head_state *s)
3080{
3081 /* case 1 above */
3082 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3083 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3084 return true;
3085 /* case 2 above */
3086 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3087 s->injournal > 0)
3088 return true;
3089 /* case 3 above */
3090 if (s->log_failed && s->injournal)
3091 return true;
3092 return false;
3093}
3094
3095static void
3096schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3097 int rcw, int expand)
3098{
3099 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3100 struct r5conf *conf = sh->raid_conf;
3101 int level = conf->level;
3102
3103 if (rcw) {
3104 /*
3105 * In some cases, handle_stripe_dirtying initially decided to
3106 * run rmw and allocates extra page for prexor. However, rcw is
3107 * cheaper later on. We need to free the extra page now,
3108 * because we won't be able to do that in ops_complete_prexor().
3109 */
3110 r5c_release_extra_page(sh);
3111
3112 for (i = disks; i--; ) {
3113 struct r5dev *dev = &sh->dev[i];
3114
3115 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3116 set_bit(R5_LOCKED, &dev->flags);
3117 set_bit(R5_Wantdrain, &dev->flags);
3118 if (!expand)
3119 clear_bit(R5_UPTODATE, &dev->flags);
3120 s->locked++;
3121 } else if (test_bit(R5_InJournal, &dev->flags)) {
3122 set_bit(R5_LOCKED, &dev->flags);
3123 s->locked++;
3124 }
3125 }
3126 /* if we are not expanding this is a proper write request, and
3127 * there will be bios with new data to be drained into the
3128 * stripe cache
3129 */
3130 if (!expand) {
3131 if (!s->locked)
3132 /* False alarm, nothing to do */
3133 return;
3134 sh->reconstruct_state = reconstruct_state_drain_run;
3135 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3136 } else
3137 sh->reconstruct_state = reconstruct_state_run;
3138
3139 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3140
3141 if (s->locked + conf->max_degraded == disks)
3142 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3143 atomic_inc(&conf->pending_full_writes);
3144 } else {
3145 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3146 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3147 BUG_ON(level == 6 &&
3148 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3149 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3150
3151 for (i = disks; i--; ) {
3152 struct r5dev *dev = &sh->dev[i];
3153 if (i == pd_idx || i == qd_idx)
3154 continue;
3155
3156 if (dev->towrite &&
3157 (test_bit(R5_UPTODATE, &dev->flags) ||
3158 test_bit(R5_Wantcompute, &dev->flags))) {
3159 set_bit(R5_Wantdrain, &dev->flags);
3160 set_bit(R5_LOCKED, &dev->flags);
3161 clear_bit(R5_UPTODATE, &dev->flags);
3162 s->locked++;
3163 } else if (test_bit(R5_InJournal, &dev->flags)) {
3164 set_bit(R5_LOCKED, &dev->flags);
3165 s->locked++;
3166 }
3167 }
3168 if (!s->locked)
3169 /* False alarm - nothing to do */
3170 return;
3171 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3172 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3173 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3174 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3175 }
3176
3177 /* keep the parity disk(s) locked while asynchronous operations
3178 * are in flight
3179 */
3180 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3181 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3182 s->locked++;
3183
3184 if (level == 6) {
3185 int qd_idx = sh->qd_idx;
3186 struct r5dev *dev = &sh->dev[qd_idx];
3187
3188 set_bit(R5_LOCKED, &dev->flags);
3189 clear_bit(R5_UPTODATE, &dev->flags);
3190 s->locked++;
3191 }
3192
3193 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3194 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3195 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3196 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3197 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3198
3199 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3200 __func__, (unsigned long long)sh->sector,
3201 s->locked, s->ops_request);
3202}
3203
3204/*
3205 * Each stripe/dev can have one or more bion attached.
3206 * toread/towrite point to the first in a chain.
3207 * The bi_next chain must be in order.
3208 */
3209static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3210 int forwrite, int previous)
3211{
3212 struct bio **bip;
3213 struct r5conf *conf = sh->raid_conf;
3214 int firstwrite=0;
3215
3216 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3217 (unsigned long long)bi->bi_iter.bi_sector,
3218 (unsigned long long)sh->sector);
3219
3220 spin_lock_irq(&sh->stripe_lock);
3221 sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3222 /* Don't allow new IO added to stripes in batch list */
3223 if (sh->batch_head)
3224 goto overlap;
3225 if (forwrite) {
3226 bip = &sh->dev[dd_idx].towrite;
3227 if (*bip == NULL)
3228 firstwrite = 1;
3229 } else
3230 bip = &sh->dev[dd_idx].toread;
3231 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3232 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3233 goto overlap;
3234 bip = & (*bip)->bi_next;
3235 }
3236 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3237 goto overlap;
3238
3239 if (forwrite && raid5_has_ppl(conf)) {
3240 /*
3241 * With PPL only writes to consecutive data chunks within a
3242 * stripe are allowed because for a single stripe_head we can
3243 * only have one PPL entry at a time, which describes one data
3244 * range. Not really an overlap, but wait_for_overlap can be
3245 * used to handle this.
3246 */
3247 sector_t sector;
3248 sector_t first = 0;
3249 sector_t last = 0;
3250 int count = 0;
3251 int i;
3252
3253 for (i = 0; i < sh->disks; i++) {
3254 if (i != sh->pd_idx &&
3255 (i == dd_idx || sh->dev[i].towrite)) {
3256 sector = sh->dev[i].sector;
3257 if (count == 0 || sector < first)
3258 first = sector;
3259 if (sector > last)
3260 last = sector;
3261 count++;
3262 }
3263 }
3264
3265 if (first + conf->chunk_sectors * (count - 1) != last)
3266 goto overlap;
3267 }
3268
3269 if (!forwrite || previous)
3270 clear_bit(STRIPE_BATCH_READY, &sh->state);
3271
3272 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3273 if (*bip)
3274 bi->bi_next = *bip;
3275 *bip = bi;
3276 bio_inc_remaining(bi);
3277 md_write_inc(conf->mddev, bi);
3278
3279 if (forwrite) {
3280 /* check if page is covered */
3281 sector_t sector = sh->dev[dd_idx].sector;
3282 for (bi=sh->dev[dd_idx].towrite;
3283 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3284 bi && bi->bi_iter.bi_sector <= sector;
3285 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3286 if (bio_end_sector(bi) >= sector)
3287 sector = bio_end_sector(bi);
3288 }
3289 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3290 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3291 sh->overwrite_disks++;
3292 }
3293
3294 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3295 (unsigned long long)(*bip)->bi_iter.bi_sector,
3296 (unsigned long long)sh->sector, dd_idx);
3297
3298 if (conf->mddev->bitmap && firstwrite) {
3299 /* Cannot hold spinlock over bitmap_startwrite,
3300 * but must ensure this isn't added to a batch until
3301 * we have added to the bitmap and set bm_seq.
3302 * So set STRIPE_BITMAP_PENDING to prevent
3303 * batching.
3304 * If multiple add_stripe_bio() calls race here they
3305 * much all set STRIPE_BITMAP_PENDING. So only the first one
3306 * to complete "bitmap_startwrite" gets to set
3307 * STRIPE_BIT_DELAY. This is important as once a stripe
3308 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3309 * any more.
3310 */
3311 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3312 spin_unlock_irq(&sh->stripe_lock);
3313 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3314 STRIPE_SECTORS, 0);
3315 spin_lock_irq(&sh->stripe_lock);
3316 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3317 if (!sh->batch_head) {
3318 sh->bm_seq = conf->seq_flush+1;
3319 set_bit(STRIPE_BIT_DELAY, &sh->state);
3320 }
3321 }
3322 spin_unlock_irq(&sh->stripe_lock);
3323
3324 if (stripe_can_batch(sh))
3325 stripe_add_to_batch_list(conf, sh);
3326 return 1;
3327
3328 overlap:
3329 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3330 spin_unlock_irq(&sh->stripe_lock);
3331 return 0;
3332}
3333
3334static void end_reshape(struct r5conf *conf);
3335
3336static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3337 struct stripe_head *sh)
3338{
3339 int sectors_per_chunk =
3340 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3341 int dd_idx;
3342 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3343 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3344
3345 raid5_compute_sector(conf,
3346 stripe * (disks - conf->max_degraded)
3347 *sectors_per_chunk + chunk_offset,
3348 previous,
3349 &dd_idx, sh);
3350}
3351
3352static void
3353handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3354 struct stripe_head_state *s, int disks)
3355{
3356 int i;
3357 BUG_ON(sh->batch_head);
3358 for (i = disks; i--; ) {
3359 struct bio *bi;
3360 int bitmap_end = 0;
3361
3362 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3363 struct md_rdev *rdev;
3364 rcu_read_lock();
3365 rdev = rcu_dereference(conf->disks[i].rdev);
3366 if (rdev && test_bit(In_sync, &rdev->flags) &&
3367 !test_bit(Faulty, &rdev->flags))
3368 atomic_inc(&rdev->nr_pending);
3369 else
3370 rdev = NULL;
3371 rcu_read_unlock();
3372 if (rdev) {
3373 if (!rdev_set_badblocks(
3374 rdev,
3375 sh->sector,
3376 STRIPE_SECTORS, 0))
3377 md_error(conf->mddev, rdev);
3378 rdev_dec_pending(rdev, conf->mddev);
3379 }
3380 }
3381 spin_lock_irq(&sh->stripe_lock);
3382 /* fail all writes first */
3383 bi = sh->dev[i].towrite;
3384 sh->dev[i].towrite = NULL;
3385 sh->overwrite_disks = 0;
3386 spin_unlock_irq(&sh->stripe_lock);
3387 if (bi)
3388 bitmap_end = 1;
3389
3390 log_stripe_write_finished(sh);
3391
3392 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3393 wake_up(&conf->wait_for_overlap);
3394
3395 while (bi && bi->bi_iter.bi_sector <
3396 sh->dev[i].sector + STRIPE_SECTORS) {
3397 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3398
3399 md_write_end(conf->mddev);
3400 bio_io_error(bi);
3401 bi = nextbi;
3402 }
3403 if (bitmap_end)
3404 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3405 STRIPE_SECTORS, 0, 0);
3406 bitmap_end = 0;
3407 /* and fail all 'written' */
3408 bi = sh->dev[i].written;
3409 sh->dev[i].written = NULL;
3410 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3411 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3412 sh->dev[i].page = sh->dev[i].orig_page;
3413 }
3414
3415 if (bi) bitmap_end = 1;
3416 while (bi && bi->bi_iter.bi_sector <
3417 sh->dev[i].sector + STRIPE_SECTORS) {
3418 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3419
3420 md_write_end(conf->mddev);
3421 bio_io_error(bi);
3422 bi = bi2;
3423 }
3424
3425 /* fail any reads if this device is non-operational and
3426 * the data has not reached the cache yet.
3427 */
3428 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3429 s->failed > conf->max_degraded &&
3430 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3431 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3432 spin_lock_irq(&sh->stripe_lock);
3433 bi = sh->dev[i].toread;
3434 sh->dev[i].toread = NULL;
3435 spin_unlock_irq(&sh->stripe_lock);
3436 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3437 wake_up(&conf->wait_for_overlap);
3438 if (bi)
3439 s->to_read--;
3440 while (bi && bi->bi_iter.bi_sector <
3441 sh->dev[i].sector + STRIPE_SECTORS) {
3442 struct bio *nextbi =
3443 r5_next_bio(bi, sh->dev[i].sector);
3444
3445 bio_io_error(bi);
3446 bi = nextbi;
3447 }
3448 }
3449 if (bitmap_end)
3450 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3451 STRIPE_SECTORS, 0, 0);
3452 /* If we were in the middle of a write the parity block might
3453 * still be locked - so just clear all R5_LOCKED flags
3454 */
3455 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3456 }
3457 s->to_write = 0;
3458 s->written = 0;
3459
3460 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3461 if (atomic_dec_and_test(&conf->pending_full_writes))
3462 md_wakeup_thread(conf->mddev->thread);
3463}
3464
3465static void
3466handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3467 struct stripe_head_state *s)
3468{
3469 int abort = 0;
3470 int i;
3471
3472 BUG_ON(sh->batch_head);
3473 clear_bit(STRIPE_SYNCING, &sh->state);
3474 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3475 wake_up(&conf->wait_for_overlap);
3476 s->syncing = 0;
3477 s->replacing = 0;
3478 /* There is nothing more to do for sync/check/repair.
3479 * Don't even need to abort as that is handled elsewhere
3480 * if needed, and not always wanted e.g. if there is a known
3481 * bad block here.
3482 * For recover/replace we need to record a bad block on all
3483 * non-sync devices, or abort the recovery
3484 */
3485 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3486 /* During recovery devices cannot be removed, so
3487 * locking and refcounting of rdevs is not needed
3488 */
3489 rcu_read_lock();
3490 for (i = 0; i < conf->raid_disks; i++) {
3491 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3492 if (rdev
3493 && !test_bit(Faulty, &rdev->flags)
3494 && !test_bit(In_sync, &rdev->flags)
3495 && !rdev_set_badblocks(rdev, sh->sector,
3496 STRIPE_SECTORS, 0))
3497 abort = 1;
3498 rdev = rcu_dereference(conf->disks[i].replacement);
3499 if (rdev
3500 && !test_bit(Faulty, &rdev->flags)
3501 && !test_bit(In_sync, &rdev->flags)
3502 && !rdev_set_badblocks(rdev, sh->sector,
3503 STRIPE_SECTORS, 0))
3504 abort = 1;
3505 }
3506 rcu_read_unlock();
3507 if (abort)
3508 conf->recovery_disabled =
3509 conf->mddev->recovery_disabled;
3510 }
3511 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3512}
3513
3514static int want_replace(struct stripe_head *sh, int disk_idx)
3515{
3516 struct md_rdev *rdev;
3517 int rv = 0;
3518
3519 rcu_read_lock();
3520 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3521 if (rdev
3522 && !test_bit(Faulty, &rdev->flags)
3523 && !test_bit(In_sync, &rdev->flags)
3524 && (rdev->recovery_offset <= sh->sector
3525 || rdev->mddev->recovery_cp <= sh->sector))
3526 rv = 1;
3527 rcu_read_unlock();
3528 return rv;
3529}
3530
3531static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3532 int disk_idx, int disks)
3533{
3534 struct r5dev *dev = &sh->dev[disk_idx];
3535 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3536 &sh->dev[s->failed_num[1]] };
3537 int i;
3538
3539
3540 if (test_bit(R5_LOCKED, &dev->flags) ||
3541 test_bit(R5_UPTODATE, &dev->flags))
3542 /* No point reading this as we already have it or have
3543 * decided to get it.
3544 */
3545 return 0;
3546
3547 if (dev->toread ||
3548 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3549 /* We need this block to directly satisfy a request */
3550 return 1;
3551
3552 if (s->syncing || s->expanding ||
3553 (s->replacing && want_replace(sh, disk_idx)))
3554 /* When syncing, or expanding we read everything.
3555 * When replacing, we need the replaced block.
3556 */
3557 return 1;
3558
3559 if ((s->failed >= 1 && fdev[0]->toread) ||
3560 (s->failed >= 2 && fdev[1]->toread))
3561 /* If we want to read from a failed device, then
3562 * we need to actually read every other device.
3563 */
3564 return 1;
3565
3566 /* Sometimes neither read-modify-write nor reconstruct-write
3567 * cycles can work. In those cases we read every block we
3568 * can. Then the parity-update is certain to have enough to
3569 * work with.
3570 * This can only be a problem when we need to write something,
3571 * and some device has failed. If either of those tests
3572 * fail we need look no further.
3573 */
3574 if (!s->failed || !s->to_write)
3575 return 0;
3576
3577 if (test_bit(R5_Insync, &dev->flags) &&
3578 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3579 /* Pre-reads at not permitted until after short delay
3580 * to gather multiple requests. However if this
3581 * device is no Insync, the block could only be computed
3582 * and there is no need to delay that.
3583 */
3584 return 0;
3585
3586 for (i = 0; i < s->failed && i < 2; i++) {
3587 if (fdev[i]->towrite &&
3588 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3589 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3590 /* If we have a partial write to a failed
3591 * device, then we will need to reconstruct
3592 * the content of that device, so all other
3593 * devices must be read.
3594 */
3595 return 1;
3596 }
3597
3598 /* If we are forced to do a reconstruct-write, either because
3599 * the current RAID6 implementation only supports that, or
3600 * because parity cannot be trusted and we are currently
3601 * recovering it, there is extra need to be careful.
3602 * If one of the devices that we would need to read, because
3603 * it is not being overwritten (and maybe not written at all)
3604 * is missing/faulty, then we need to read everything we can.
3605 */
3606 if (sh->raid_conf->level != 6 &&
Olivier Deprez0e641232021-09-23 10:07:05 +02003607 sh->raid_conf->rmw_level != PARITY_DISABLE_RMW &&
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003608 sh->sector < sh->raid_conf->mddev->recovery_cp)
3609 /* reconstruct-write isn't being forced */
3610 return 0;
3611 for (i = 0; i < s->failed && i < 2; i++) {
3612 if (s->failed_num[i] != sh->pd_idx &&
3613 s->failed_num[i] != sh->qd_idx &&
3614 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3615 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3616 return 1;
3617 }
3618
3619 return 0;
3620}
3621
3622/* fetch_block - checks the given member device to see if its data needs
3623 * to be read or computed to satisfy a request.
3624 *
3625 * Returns 1 when no more member devices need to be checked, otherwise returns
3626 * 0 to tell the loop in handle_stripe_fill to continue
3627 */
3628static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3629 int disk_idx, int disks)
3630{
3631 struct r5dev *dev = &sh->dev[disk_idx];
3632
3633 /* is the data in this block needed, and can we get it? */
3634 if (need_this_block(sh, s, disk_idx, disks)) {
3635 /* we would like to get this block, possibly by computing it,
3636 * otherwise read it if the backing disk is insync
3637 */
3638 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3639 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3640 BUG_ON(sh->batch_head);
3641
3642 /*
3643 * In the raid6 case if the only non-uptodate disk is P
3644 * then we already trusted P to compute the other failed
3645 * drives. It is safe to compute rather than re-read P.
3646 * In other cases we only compute blocks from failed
3647 * devices, otherwise check/repair might fail to detect
3648 * a real inconsistency.
3649 */
3650
3651 if ((s->uptodate == disks - 1) &&
3652 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3653 (s->failed && (disk_idx == s->failed_num[0] ||
3654 disk_idx == s->failed_num[1])))) {
3655 /* have disk failed, and we're requested to fetch it;
3656 * do compute it
3657 */
3658 pr_debug("Computing stripe %llu block %d\n",
3659 (unsigned long long)sh->sector, disk_idx);
3660 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3661 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3662 set_bit(R5_Wantcompute, &dev->flags);
3663 sh->ops.target = disk_idx;
3664 sh->ops.target2 = -1; /* no 2nd target */
3665 s->req_compute = 1;
3666 /* Careful: from this point on 'uptodate' is in the eye
3667 * of raid_run_ops which services 'compute' operations
3668 * before writes. R5_Wantcompute flags a block that will
3669 * be R5_UPTODATE by the time it is needed for a
3670 * subsequent operation.
3671 */
3672 s->uptodate++;
3673 return 1;
3674 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3675 /* Computing 2-failure is *very* expensive; only
3676 * do it if failed >= 2
3677 */
3678 int other;
3679 for (other = disks; other--; ) {
3680 if (other == disk_idx)
3681 continue;
3682 if (!test_bit(R5_UPTODATE,
3683 &sh->dev[other].flags))
3684 break;
3685 }
3686 BUG_ON(other < 0);
3687 pr_debug("Computing stripe %llu blocks %d,%d\n",
3688 (unsigned long long)sh->sector,
3689 disk_idx, other);
3690 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3691 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3692 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3693 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3694 sh->ops.target = disk_idx;
3695 sh->ops.target2 = other;
3696 s->uptodate += 2;
3697 s->req_compute = 1;
3698 return 1;
3699 } else if (test_bit(R5_Insync, &dev->flags)) {
3700 set_bit(R5_LOCKED, &dev->flags);
3701 set_bit(R5_Wantread, &dev->flags);
3702 s->locked++;
3703 pr_debug("Reading block %d (sync=%d)\n",
3704 disk_idx, s->syncing);
3705 }
3706 }
3707
3708 return 0;
3709}
3710
3711/**
3712 * handle_stripe_fill - read or compute data to satisfy pending requests.
3713 */
3714static void handle_stripe_fill(struct stripe_head *sh,
3715 struct stripe_head_state *s,
3716 int disks)
3717{
3718 int i;
3719
3720 /* look for blocks to read/compute, skip this if a compute
3721 * is already in flight, or if the stripe contents are in the
3722 * midst of changing due to a write
3723 */
3724 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3725 !sh->reconstruct_state) {
3726
3727 /*
3728 * For degraded stripe with data in journal, do not handle
3729 * read requests yet, instead, flush the stripe to raid
3730 * disks first, this avoids handling complex rmw of write
3731 * back cache (prexor with orig_page, and then xor with
3732 * page) in the read path
3733 */
3734 if (s->injournal && s->failed) {
3735 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3736 r5c_make_stripe_write_out(sh);
3737 goto out;
3738 }
3739
3740 for (i = disks; i--; )
3741 if (fetch_block(sh, s, i, disks))
3742 break;
3743 }
3744out:
3745 set_bit(STRIPE_HANDLE, &sh->state);
3746}
3747
3748static void break_stripe_batch_list(struct stripe_head *head_sh,
3749 unsigned long handle_flags);
3750/* handle_stripe_clean_event
3751 * any written block on an uptodate or failed drive can be returned.
3752 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3753 * never LOCKED, so we don't need to test 'failed' directly.
3754 */
3755static void handle_stripe_clean_event(struct r5conf *conf,
3756 struct stripe_head *sh, int disks)
3757{
3758 int i;
3759 struct r5dev *dev;
3760 int discard_pending = 0;
3761 struct stripe_head *head_sh = sh;
3762 bool do_endio = false;
3763
3764 for (i = disks; i--; )
3765 if (sh->dev[i].written) {
3766 dev = &sh->dev[i];
3767 if (!test_bit(R5_LOCKED, &dev->flags) &&
3768 (test_bit(R5_UPTODATE, &dev->flags) ||
3769 test_bit(R5_Discard, &dev->flags) ||
3770 test_bit(R5_SkipCopy, &dev->flags))) {
3771 /* We can return any write requests */
3772 struct bio *wbi, *wbi2;
3773 pr_debug("Return write for disc %d\n", i);
3774 if (test_and_clear_bit(R5_Discard, &dev->flags))
3775 clear_bit(R5_UPTODATE, &dev->flags);
3776 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3777 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3778 }
3779 do_endio = true;
3780
3781returnbi:
3782 dev->page = dev->orig_page;
3783 wbi = dev->written;
3784 dev->written = NULL;
3785 while (wbi && wbi->bi_iter.bi_sector <
3786 dev->sector + STRIPE_SECTORS) {
3787 wbi2 = r5_next_bio(wbi, dev->sector);
3788 md_write_end(conf->mddev);
3789 bio_endio(wbi);
3790 wbi = wbi2;
3791 }
3792 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3793 STRIPE_SECTORS,
3794 !test_bit(STRIPE_DEGRADED, &sh->state),
3795 0);
3796 if (head_sh->batch_head) {
3797 sh = list_first_entry(&sh->batch_list,
3798 struct stripe_head,
3799 batch_list);
3800 if (sh != head_sh) {
3801 dev = &sh->dev[i];
3802 goto returnbi;
3803 }
3804 }
3805 sh = head_sh;
3806 dev = &sh->dev[i];
3807 } else if (test_bit(R5_Discard, &dev->flags))
3808 discard_pending = 1;
3809 }
3810
3811 log_stripe_write_finished(sh);
3812
3813 if (!discard_pending &&
3814 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3815 int hash;
3816 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3817 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3818 if (sh->qd_idx >= 0) {
3819 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3820 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3821 }
3822 /* now that discard is done we can proceed with any sync */
3823 clear_bit(STRIPE_DISCARD, &sh->state);
3824 /*
3825 * SCSI discard will change some bio fields and the stripe has
3826 * no updated data, so remove it from hash list and the stripe
3827 * will be reinitialized
3828 */
3829unhash:
3830 hash = sh->hash_lock_index;
3831 spin_lock_irq(conf->hash_locks + hash);
3832 remove_hash(sh);
3833 spin_unlock_irq(conf->hash_locks + hash);
3834 if (head_sh->batch_head) {
3835 sh = list_first_entry(&sh->batch_list,
3836 struct stripe_head, batch_list);
3837 if (sh != head_sh)
3838 goto unhash;
3839 }
3840 sh = head_sh;
3841
3842 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3843 set_bit(STRIPE_HANDLE, &sh->state);
3844
3845 }
3846
3847 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3848 if (atomic_dec_and_test(&conf->pending_full_writes))
3849 md_wakeup_thread(conf->mddev->thread);
3850
3851 if (head_sh->batch_head && do_endio)
3852 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3853}
3854
3855/*
3856 * For RMW in write back cache, we need extra page in prexor to store the
3857 * old data. This page is stored in dev->orig_page.
3858 *
3859 * This function checks whether we have data for prexor. The exact logic
3860 * is:
3861 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3862 */
3863static inline bool uptodate_for_rmw(struct r5dev *dev)
3864{
3865 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3866 (!test_bit(R5_InJournal, &dev->flags) ||
3867 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3868}
3869
3870static int handle_stripe_dirtying(struct r5conf *conf,
3871 struct stripe_head *sh,
3872 struct stripe_head_state *s,
3873 int disks)
3874{
3875 int rmw = 0, rcw = 0, i;
3876 sector_t recovery_cp = conf->mddev->recovery_cp;
3877
3878 /* Check whether resync is now happening or should start.
3879 * If yes, then the array is dirty (after unclean shutdown or
3880 * initial creation), so parity in some stripes might be inconsistent.
3881 * In this case, we need to always do reconstruct-write, to ensure
3882 * that in case of drive failure or read-error correction, we
3883 * generate correct data from the parity.
3884 */
3885 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3886 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3887 s->failed == 0)) {
3888 /* Calculate the real rcw later - for now make it
3889 * look like rcw is cheaper
3890 */
3891 rcw = 1; rmw = 2;
3892 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3893 conf->rmw_level, (unsigned long long)recovery_cp,
3894 (unsigned long long)sh->sector);
3895 } else for (i = disks; i--; ) {
3896 /* would I have to read this buffer for read_modify_write */
3897 struct r5dev *dev = &sh->dev[i];
3898 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3899 i == sh->pd_idx || i == sh->qd_idx ||
3900 test_bit(R5_InJournal, &dev->flags)) &&
3901 !test_bit(R5_LOCKED, &dev->flags) &&
3902 !(uptodate_for_rmw(dev) ||
3903 test_bit(R5_Wantcompute, &dev->flags))) {
3904 if (test_bit(R5_Insync, &dev->flags))
3905 rmw++;
3906 else
3907 rmw += 2*disks; /* cannot read it */
3908 }
3909 /* Would I have to read this buffer for reconstruct_write */
3910 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3911 i != sh->pd_idx && i != sh->qd_idx &&
3912 !test_bit(R5_LOCKED, &dev->flags) &&
3913 !(test_bit(R5_UPTODATE, &dev->flags) ||
3914 test_bit(R5_Wantcompute, &dev->flags))) {
3915 if (test_bit(R5_Insync, &dev->flags))
3916 rcw++;
3917 else
3918 rcw += 2*disks;
3919 }
3920 }
3921
3922 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3923 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3924 set_bit(STRIPE_HANDLE, &sh->state);
3925 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3926 /* prefer read-modify-write, but need to get some data */
3927 if (conf->mddev->queue)
3928 blk_add_trace_msg(conf->mddev->queue,
3929 "raid5 rmw %llu %d",
3930 (unsigned long long)sh->sector, rmw);
3931 for (i = disks; i--; ) {
3932 struct r5dev *dev = &sh->dev[i];
3933 if (test_bit(R5_InJournal, &dev->flags) &&
3934 dev->page == dev->orig_page &&
3935 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3936 /* alloc page for prexor */
3937 struct page *p = alloc_page(GFP_NOIO);
3938
3939 if (p) {
3940 dev->orig_page = p;
3941 continue;
3942 }
3943
3944 /*
3945 * alloc_page() failed, try use
3946 * disk_info->extra_page
3947 */
3948 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3949 &conf->cache_state)) {
3950 r5c_use_extra_page(sh);
3951 break;
3952 }
3953
3954 /* extra_page in use, add to delayed_list */
3955 set_bit(STRIPE_DELAYED, &sh->state);
3956 s->waiting_extra_page = 1;
3957 return -EAGAIN;
3958 }
3959 }
3960
3961 for (i = disks; i--; ) {
3962 struct r5dev *dev = &sh->dev[i];
3963 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3964 i == sh->pd_idx || i == sh->qd_idx ||
3965 test_bit(R5_InJournal, &dev->flags)) &&
3966 !test_bit(R5_LOCKED, &dev->flags) &&
3967 !(uptodate_for_rmw(dev) ||
3968 test_bit(R5_Wantcompute, &dev->flags)) &&
3969 test_bit(R5_Insync, &dev->flags)) {
3970 if (test_bit(STRIPE_PREREAD_ACTIVE,
3971 &sh->state)) {
3972 pr_debug("Read_old block %d for r-m-w\n",
3973 i);
3974 set_bit(R5_LOCKED, &dev->flags);
3975 set_bit(R5_Wantread, &dev->flags);
3976 s->locked++;
3977 } else {
3978 set_bit(STRIPE_DELAYED, &sh->state);
3979 set_bit(STRIPE_HANDLE, &sh->state);
3980 }
3981 }
3982 }
3983 }
3984 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3985 /* want reconstruct write, but need to get some data */
3986 int qread =0;
3987 rcw = 0;
3988 for (i = disks; i--; ) {
3989 struct r5dev *dev = &sh->dev[i];
3990 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3991 i != sh->pd_idx && i != sh->qd_idx &&
3992 !test_bit(R5_LOCKED, &dev->flags) &&
3993 !(test_bit(R5_UPTODATE, &dev->flags) ||
3994 test_bit(R5_Wantcompute, &dev->flags))) {
3995 rcw++;
3996 if (test_bit(R5_Insync, &dev->flags) &&
3997 test_bit(STRIPE_PREREAD_ACTIVE,
3998 &sh->state)) {
3999 pr_debug("Read_old block "
4000 "%d for Reconstruct\n", i);
4001 set_bit(R5_LOCKED, &dev->flags);
4002 set_bit(R5_Wantread, &dev->flags);
4003 s->locked++;
4004 qread++;
4005 } else {
4006 set_bit(STRIPE_DELAYED, &sh->state);
4007 set_bit(STRIPE_HANDLE, &sh->state);
4008 }
4009 }
4010 }
4011 if (rcw && conf->mddev->queue)
4012 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4013 (unsigned long long)sh->sector,
4014 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4015 }
4016
4017 if (rcw > disks && rmw > disks &&
4018 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4019 set_bit(STRIPE_DELAYED, &sh->state);
4020
4021 /* now if nothing is locked, and if we have enough data,
4022 * we can start a write request
4023 */
4024 /* since handle_stripe can be called at any time we need to handle the
4025 * case where a compute block operation has been submitted and then a
4026 * subsequent call wants to start a write request. raid_run_ops only
4027 * handles the case where compute block and reconstruct are requested
4028 * simultaneously. If this is not the case then new writes need to be
4029 * held off until the compute completes.
4030 */
4031 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4032 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4033 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4034 schedule_reconstruction(sh, s, rcw == 0, 0);
4035 return 0;
4036}
4037
4038static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4039 struct stripe_head_state *s, int disks)
4040{
4041 struct r5dev *dev = NULL;
4042
4043 BUG_ON(sh->batch_head);
4044 set_bit(STRIPE_HANDLE, &sh->state);
4045
4046 switch (sh->check_state) {
4047 case check_state_idle:
4048 /* start a new check operation if there are no failures */
4049 if (s->failed == 0) {
4050 BUG_ON(s->uptodate != disks);
4051 sh->check_state = check_state_run;
4052 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4053 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4054 s->uptodate--;
4055 break;
4056 }
4057 dev = &sh->dev[s->failed_num[0]];
4058 /* fall through */
4059 case check_state_compute_result:
4060 sh->check_state = check_state_idle;
4061 if (!dev)
4062 dev = &sh->dev[sh->pd_idx];
4063
4064 /* check that a write has not made the stripe insync */
4065 if (test_bit(STRIPE_INSYNC, &sh->state))
4066 break;
4067
4068 /* either failed parity check, or recovery is happening */
4069 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4070 BUG_ON(s->uptodate != disks);
4071
4072 set_bit(R5_LOCKED, &dev->flags);
4073 s->locked++;
4074 set_bit(R5_Wantwrite, &dev->flags);
4075
4076 clear_bit(STRIPE_DEGRADED, &sh->state);
4077 set_bit(STRIPE_INSYNC, &sh->state);
4078 break;
4079 case check_state_run:
4080 break; /* we will be called again upon completion */
4081 case check_state_check_result:
4082 sh->check_state = check_state_idle;
4083
4084 /* if a failure occurred during the check operation, leave
4085 * STRIPE_INSYNC not set and let the stripe be handled again
4086 */
4087 if (s->failed)
4088 break;
4089
4090 /* handle a successful check operation, if parity is correct
4091 * we are done. Otherwise update the mismatch count and repair
4092 * parity if !MD_RECOVERY_CHECK
4093 */
4094 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4095 /* parity is correct (on disc,
4096 * not in buffer any more)
4097 */
4098 set_bit(STRIPE_INSYNC, &sh->state);
4099 else {
4100 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4101 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4102 /* don't try to repair!! */
4103 set_bit(STRIPE_INSYNC, &sh->state);
4104 pr_warn_ratelimited("%s: mismatch sector in range "
4105 "%llu-%llu\n", mdname(conf->mddev),
4106 (unsigned long long) sh->sector,
4107 (unsigned long long) sh->sector +
4108 STRIPE_SECTORS);
4109 } else {
4110 sh->check_state = check_state_compute_run;
4111 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4112 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4113 set_bit(R5_Wantcompute,
4114 &sh->dev[sh->pd_idx].flags);
4115 sh->ops.target = sh->pd_idx;
4116 sh->ops.target2 = -1;
4117 s->uptodate++;
4118 }
4119 }
4120 break;
4121 case check_state_compute_run:
4122 break;
4123 default:
4124 pr_err("%s: unknown check_state: %d sector: %llu\n",
4125 __func__, sh->check_state,
4126 (unsigned long long) sh->sector);
4127 BUG();
4128 }
4129}
4130
4131static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4132 struct stripe_head_state *s,
4133 int disks)
4134{
4135 int pd_idx = sh->pd_idx;
4136 int qd_idx = sh->qd_idx;
4137 struct r5dev *dev;
4138
4139 BUG_ON(sh->batch_head);
4140 set_bit(STRIPE_HANDLE, &sh->state);
4141
4142 BUG_ON(s->failed > 2);
4143
4144 /* Want to check and possibly repair P and Q.
4145 * However there could be one 'failed' device, in which
4146 * case we can only check one of them, possibly using the
4147 * other to generate missing data
4148 */
4149
4150 switch (sh->check_state) {
4151 case check_state_idle:
4152 /* start a new check operation if there are < 2 failures */
4153 if (s->failed == s->q_failed) {
4154 /* The only possible failed device holds Q, so it
4155 * makes sense to check P (If anything else were failed,
4156 * we would have used P to recreate it).
4157 */
4158 sh->check_state = check_state_run;
4159 }
4160 if (!s->q_failed && s->failed < 2) {
4161 /* Q is not failed, and we didn't use it to generate
4162 * anything, so it makes sense to check it
4163 */
4164 if (sh->check_state == check_state_run)
4165 sh->check_state = check_state_run_pq;
4166 else
4167 sh->check_state = check_state_run_q;
4168 }
4169
4170 /* discard potentially stale zero_sum_result */
4171 sh->ops.zero_sum_result = 0;
4172
4173 if (sh->check_state == check_state_run) {
4174 /* async_xor_zero_sum destroys the contents of P */
4175 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4176 s->uptodate--;
4177 }
4178 if (sh->check_state >= check_state_run &&
4179 sh->check_state <= check_state_run_pq) {
4180 /* async_syndrome_zero_sum preserves P and Q, so
4181 * no need to mark them !uptodate here
4182 */
4183 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4184 break;
4185 }
4186
4187 /* we have 2-disk failure */
4188 BUG_ON(s->failed != 2);
4189 /* fall through */
4190 case check_state_compute_result:
4191 sh->check_state = check_state_idle;
4192
4193 /* check that a write has not made the stripe insync */
4194 if (test_bit(STRIPE_INSYNC, &sh->state))
4195 break;
4196
4197 /* now write out any block on a failed drive,
4198 * or P or Q if they were recomputed
4199 */
David Brazdil0f672f62019-12-10 10:32:29 +00004200 dev = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004201 if (s->failed == 2) {
4202 dev = &sh->dev[s->failed_num[1]];
4203 s->locked++;
4204 set_bit(R5_LOCKED, &dev->flags);
4205 set_bit(R5_Wantwrite, &dev->flags);
4206 }
4207 if (s->failed >= 1) {
4208 dev = &sh->dev[s->failed_num[0]];
4209 s->locked++;
4210 set_bit(R5_LOCKED, &dev->flags);
4211 set_bit(R5_Wantwrite, &dev->flags);
4212 }
4213 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4214 dev = &sh->dev[pd_idx];
4215 s->locked++;
4216 set_bit(R5_LOCKED, &dev->flags);
4217 set_bit(R5_Wantwrite, &dev->flags);
4218 }
4219 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4220 dev = &sh->dev[qd_idx];
4221 s->locked++;
4222 set_bit(R5_LOCKED, &dev->flags);
4223 set_bit(R5_Wantwrite, &dev->flags);
4224 }
David Brazdil0f672f62019-12-10 10:32:29 +00004225 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4226 "%s: disk%td not up to date\n",
4227 mdname(conf->mddev),
4228 dev - (struct r5dev *) &sh->dev)) {
4229 clear_bit(R5_LOCKED, &dev->flags);
4230 clear_bit(R5_Wantwrite, &dev->flags);
4231 s->locked--;
4232 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004233 clear_bit(STRIPE_DEGRADED, &sh->state);
4234
4235 set_bit(STRIPE_INSYNC, &sh->state);
4236 break;
4237 case check_state_run:
4238 case check_state_run_q:
4239 case check_state_run_pq:
4240 break; /* we will be called again upon completion */
4241 case check_state_check_result:
4242 sh->check_state = check_state_idle;
4243
4244 /* handle a successful check operation, if parity is correct
4245 * we are done. Otherwise update the mismatch count and repair
4246 * parity if !MD_RECOVERY_CHECK
4247 */
4248 if (sh->ops.zero_sum_result == 0) {
4249 /* both parities are correct */
4250 if (!s->failed)
4251 set_bit(STRIPE_INSYNC, &sh->state);
4252 else {
4253 /* in contrast to the raid5 case we can validate
4254 * parity, but still have a failure to write
4255 * back
4256 */
4257 sh->check_state = check_state_compute_result;
4258 /* Returning at this point means that we may go
4259 * off and bring p and/or q uptodate again so
4260 * we make sure to check zero_sum_result again
4261 * to verify if p or q need writeback
4262 */
4263 }
4264 } else {
4265 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4266 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4267 /* don't try to repair!! */
4268 set_bit(STRIPE_INSYNC, &sh->state);
4269 pr_warn_ratelimited("%s: mismatch sector in range "
4270 "%llu-%llu\n", mdname(conf->mddev),
4271 (unsigned long long) sh->sector,
4272 (unsigned long long) sh->sector +
4273 STRIPE_SECTORS);
4274 } else {
4275 int *target = &sh->ops.target;
4276
4277 sh->ops.target = -1;
4278 sh->ops.target2 = -1;
4279 sh->check_state = check_state_compute_run;
4280 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4281 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4282 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4283 set_bit(R5_Wantcompute,
4284 &sh->dev[pd_idx].flags);
4285 *target = pd_idx;
4286 target = &sh->ops.target2;
4287 s->uptodate++;
4288 }
4289 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4290 set_bit(R5_Wantcompute,
4291 &sh->dev[qd_idx].flags);
4292 *target = qd_idx;
4293 s->uptodate++;
4294 }
4295 }
4296 }
4297 break;
4298 case check_state_compute_run:
4299 break;
4300 default:
4301 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4302 __func__, sh->check_state,
4303 (unsigned long long) sh->sector);
4304 BUG();
4305 }
4306}
4307
4308static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4309{
4310 int i;
4311
4312 /* We have read all the blocks in this stripe and now we need to
4313 * copy some of them into a target stripe for expand.
4314 */
4315 struct dma_async_tx_descriptor *tx = NULL;
4316 BUG_ON(sh->batch_head);
4317 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4318 for (i = 0; i < sh->disks; i++)
4319 if (i != sh->pd_idx && i != sh->qd_idx) {
4320 int dd_idx, j;
4321 struct stripe_head *sh2;
4322 struct async_submit_ctl submit;
4323
4324 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4325 sector_t s = raid5_compute_sector(conf, bn, 0,
4326 &dd_idx, NULL);
4327 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4328 if (sh2 == NULL)
4329 /* so far only the early blocks of this stripe
4330 * have been requested. When later blocks
4331 * get requested, we will try again
4332 */
4333 continue;
4334 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4335 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4336 /* must have already done this block */
4337 raid5_release_stripe(sh2);
4338 continue;
4339 }
4340
4341 /* place all the copies on one channel */
4342 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4343 tx = async_memcpy(sh2->dev[dd_idx].page,
4344 sh->dev[i].page, 0, 0, STRIPE_SIZE,
4345 &submit);
4346
4347 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4348 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4349 for (j = 0; j < conf->raid_disks; j++)
4350 if (j != sh2->pd_idx &&
4351 j != sh2->qd_idx &&
4352 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4353 break;
4354 if (j == conf->raid_disks) {
4355 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4356 set_bit(STRIPE_HANDLE, &sh2->state);
4357 }
4358 raid5_release_stripe(sh2);
4359
4360 }
4361 /* done submitting copies, wait for them to complete */
4362 async_tx_quiesce(&tx);
4363}
4364
4365/*
4366 * handle_stripe - do things to a stripe.
4367 *
4368 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4369 * state of various bits to see what needs to be done.
4370 * Possible results:
4371 * return some read requests which now have data
4372 * return some write requests which are safely on storage
4373 * schedule a read on some buffers
4374 * schedule a write of some buffers
4375 * return confirmation of parity correctness
4376 *
4377 */
4378
4379static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4380{
4381 struct r5conf *conf = sh->raid_conf;
4382 int disks = sh->disks;
4383 struct r5dev *dev;
4384 int i;
4385 int do_recovery = 0;
4386
4387 memset(s, 0, sizeof(*s));
4388
4389 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4390 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4391 s->failed_num[0] = -1;
4392 s->failed_num[1] = -1;
4393 s->log_failed = r5l_log_disk_error(conf);
4394
4395 /* Now to look around and see what can be done */
4396 rcu_read_lock();
4397 for (i=disks; i--; ) {
4398 struct md_rdev *rdev;
4399 sector_t first_bad;
4400 int bad_sectors;
4401 int is_bad = 0;
4402
4403 dev = &sh->dev[i];
4404
4405 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4406 i, dev->flags,
4407 dev->toread, dev->towrite, dev->written);
4408 /* maybe we can reply to a read
4409 *
4410 * new wantfill requests are only permitted while
4411 * ops_complete_biofill is guaranteed to be inactive
4412 */
4413 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4414 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4415 set_bit(R5_Wantfill, &dev->flags);
4416
4417 /* now count some things */
4418 if (test_bit(R5_LOCKED, &dev->flags))
4419 s->locked++;
4420 if (test_bit(R5_UPTODATE, &dev->flags))
4421 s->uptodate++;
4422 if (test_bit(R5_Wantcompute, &dev->flags)) {
4423 s->compute++;
4424 BUG_ON(s->compute > 2);
4425 }
4426
4427 if (test_bit(R5_Wantfill, &dev->flags))
4428 s->to_fill++;
4429 else if (dev->toread)
4430 s->to_read++;
4431 if (dev->towrite) {
4432 s->to_write++;
4433 if (!test_bit(R5_OVERWRITE, &dev->flags))
4434 s->non_overwrite++;
4435 }
4436 if (dev->written)
4437 s->written++;
4438 /* Prefer to use the replacement for reads, but only
4439 * if it is recovered enough and has no bad blocks.
4440 */
4441 rdev = rcu_dereference(conf->disks[i].replacement);
4442 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4443 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4444 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4445 &first_bad, &bad_sectors))
4446 set_bit(R5_ReadRepl, &dev->flags);
4447 else {
4448 if (rdev && !test_bit(Faulty, &rdev->flags))
4449 set_bit(R5_NeedReplace, &dev->flags);
4450 else
4451 clear_bit(R5_NeedReplace, &dev->flags);
4452 rdev = rcu_dereference(conf->disks[i].rdev);
4453 clear_bit(R5_ReadRepl, &dev->flags);
4454 }
4455 if (rdev && test_bit(Faulty, &rdev->flags))
4456 rdev = NULL;
4457 if (rdev) {
4458 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4459 &first_bad, &bad_sectors);
4460 if (s->blocked_rdev == NULL
4461 && (test_bit(Blocked, &rdev->flags)
4462 || is_bad < 0)) {
4463 if (is_bad < 0)
4464 set_bit(BlockedBadBlocks,
4465 &rdev->flags);
4466 s->blocked_rdev = rdev;
4467 atomic_inc(&rdev->nr_pending);
4468 }
4469 }
4470 clear_bit(R5_Insync, &dev->flags);
4471 if (!rdev)
4472 /* Not in-sync */;
4473 else if (is_bad) {
4474 /* also not in-sync */
4475 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4476 test_bit(R5_UPTODATE, &dev->flags)) {
4477 /* treat as in-sync, but with a read error
4478 * which we can now try to correct
4479 */
4480 set_bit(R5_Insync, &dev->flags);
4481 set_bit(R5_ReadError, &dev->flags);
4482 }
4483 } else if (test_bit(In_sync, &rdev->flags))
4484 set_bit(R5_Insync, &dev->flags);
4485 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4486 /* in sync if before recovery_offset */
4487 set_bit(R5_Insync, &dev->flags);
4488 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4489 test_bit(R5_Expanded, &dev->flags))
4490 /* If we've reshaped into here, we assume it is Insync.
4491 * We will shortly update recovery_offset to make
4492 * it official.
4493 */
4494 set_bit(R5_Insync, &dev->flags);
4495
4496 if (test_bit(R5_WriteError, &dev->flags)) {
4497 /* This flag does not apply to '.replacement'
4498 * only to .rdev, so make sure to check that*/
4499 struct md_rdev *rdev2 = rcu_dereference(
4500 conf->disks[i].rdev);
4501 if (rdev2 == rdev)
4502 clear_bit(R5_Insync, &dev->flags);
4503 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4504 s->handle_bad_blocks = 1;
4505 atomic_inc(&rdev2->nr_pending);
4506 } else
4507 clear_bit(R5_WriteError, &dev->flags);
4508 }
4509 if (test_bit(R5_MadeGood, &dev->flags)) {
4510 /* This flag does not apply to '.replacement'
4511 * only to .rdev, so make sure to check that*/
4512 struct md_rdev *rdev2 = rcu_dereference(
4513 conf->disks[i].rdev);
4514 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4515 s->handle_bad_blocks = 1;
4516 atomic_inc(&rdev2->nr_pending);
4517 } else
4518 clear_bit(R5_MadeGood, &dev->flags);
4519 }
4520 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4521 struct md_rdev *rdev2 = rcu_dereference(
4522 conf->disks[i].replacement);
4523 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4524 s->handle_bad_blocks = 1;
4525 atomic_inc(&rdev2->nr_pending);
4526 } else
4527 clear_bit(R5_MadeGoodRepl, &dev->flags);
4528 }
4529 if (!test_bit(R5_Insync, &dev->flags)) {
4530 /* The ReadError flag will just be confusing now */
4531 clear_bit(R5_ReadError, &dev->flags);
4532 clear_bit(R5_ReWrite, &dev->flags);
4533 }
4534 if (test_bit(R5_ReadError, &dev->flags))
4535 clear_bit(R5_Insync, &dev->flags);
4536 if (!test_bit(R5_Insync, &dev->flags)) {
4537 if (s->failed < 2)
4538 s->failed_num[s->failed] = i;
4539 s->failed++;
4540 if (rdev && !test_bit(Faulty, &rdev->flags))
4541 do_recovery = 1;
4542 else if (!rdev) {
4543 rdev = rcu_dereference(
4544 conf->disks[i].replacement);
4545 if (rdev && !test_bit(Faulty, &rdev->flags))
4546 do_recovery = 1;
4547 }
4548 }
4549
4550 if (test_bit(R5_InJournal, &dev->flags))
4551 s->injournal++;
4552 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4553 s->just_cached++;
4554 }
4555 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4556 /* If there is a failed device being replaced,
4557 * we must be recovering.
4558 * else if we are after recovery_cp, we must be syncing
4559 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4560 * else we can only be replacing
4561 * sync and recovery both need to read all devices, and so
4562 * use the same flag.
4563 */
4564 if (do_recovery ||
4565 sh->sector >= conf->mddev->recovery_cp ||
4566 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4567 s->syncing = 1;
4568 else
4569 s->replacing = 1;
4570 }
4571 rcu_read_unlock();
4572}
4573
4574static int clear_batch_ready(struct stripe_head *sh)
4575{
4576 /* Return '1' if this is a member of batch, or
4577 * '0' if it is a lone stripe or a head which can now be
4578 * handled.
4579 */
4580 struct stripe_head *tmp;
4581 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4582 return (sh->batch_head && sh->batch_head != sh);
4583 spin_lock(&sh->stripe_lock);
4584 if (!sh->batch_head) {
4585 spin_unlock(&sh->stripe_lock);
4586 return 0;
4587 }
4588
4589 /*
4590 * this stripe could be added to a batch list before we check
4591 * BATCH_READY, skips it
4592 */
4593 if (sh->batch_head != sh) {
4594 spin_unlock(&sh->stripe_lock);
4595 return 1;
4596 }
4597 spin_lock(&sh->batch_lock);
4598 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4599 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4600 spin_unlock(&sh->batch_lock);
4601 spin_unlock(&sh->stripe_lock);
4602
4603 /*
4604 * BATCH_READY is cleared, no new stripes can be added.
4605 * batch_list can be accessed without lock
4606 */
4607 return 0;
4608}
4609
4610static void break_stripe_batch_list(struct stripe_head *head_sh,
4611 unsigned long handle_flags)
4612{
4613 struct stripe_head *sh, *next;
4614 int i;
4615 int do_wakeup = 0;
4616
4617 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4618
4619 list_del_init(&sh->batch_list);
4620
4621 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4622 (1 << STRIPE_SYNCING) |
4623 (1 << STRIPE_REPLACED) |
4624 (1 << STRIPE_DELAYED) |
4625 (1 << STRIPE_BIT_DELAY) |
4626 (1 << STRIPE_FULL_WRITE) |
4627 (1 << STRIPE_BIOFILL_RUN) |
4628 (1 << STRIPE_COMPUTE_RUN) |
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004629 (1 << STRIPE_DISCARD) |
4630 (1 << STRIPE_BATCH_READY) |
4631 (1 << STRIPE_BATCH_ERR) |
4632 (1 << STRIPE_BITMAP_PENDING)),
4633 "stripe state: %lx\n", sh->state);
4634 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4635 (1 << STRIPE_REPLACED)),
4636 "head stripe state: %lx\n", head_sh->state);
4637
4638 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4639 (1 << STRIPE_PREREAD_ACTIVE) |
4640 (1 << STRIPE_DEGRADED) |
4641 (1 << STRIPE_ON_UNPLUG_LIST)),
4642 head_sh->state & (1 << STRIPE_INSYNC));
4643
4644 sh->check_state = head_sh->check_state;
4645 sh->reconstruct_state = head_sh->reconstruct_state;
4646 spin_lock_irq(&sh->stripe_lock);
4647 sh->batch_head = NULL;
4648 spin_unlock_irq(&sh->stripe_lock);
4649 for (i = 0; i < sh->disks; i++) {
4650 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4651 do_wakeup = 1;
4652 sh->dev[i].flags = head_sh->dev[i].flags &
4653 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4654 }
4655 if (handle_flags == 0 ||
4656 sh->state & handle_flags)
4657 set_bit(STRIPE_HANDLE, &sh->state);
4658 raid5_release_stripe(sh);
4659 }
4660 spin_lock_irq(&head_sh->stripe_lock);
4661 head_sh->batch_head = NULL;
4662 spin_unlock_irq(&head_sh->stripe_lock);
4663 for (i = 0; i < head_sh->disks; i++)
4664 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4665 do_wakeup = 1;
4666 if (head_sh->state & handle_flags)
4667 set_bit(STRIPE_HANDLE, &head_sh->state);
4668
4669 if (do_wakeup)
4670 wake_up(&head_sh->raid_conf->wait_for_overlap);
4671}
4672
4673static void handle_stripe(struct stripe_head *sh)
4674{
4675 struct stripe_head_state s;
4676 struct r5conf *conf = sh->raid_conf;
4677 int i;
4678 int prexor;
4679 int disks = sh->disks;
4680 struct r5dev *pdev, *qdev;
4681
4682 clear_bit(STRIPE_HANDLE, &sh->state);
4683 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4684 /* already being handled, ensure it gets handled
4685 * again when current action finishes */
4686 set_bit(STRIPE_HANDLE, &sh->state);
4687 return;
4688 }
4689
4690 if (clear_batch_ready(sh) ) {
4691 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4692 return;
4693 }
4694
4695 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4696 break_stripe_batch_list(sh, 0);
4697
4698 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4699 spin_lock(&sh->stripe_lock);
4700 /*
4701 * Cannot process 'sync' concurrently with 'discard'.
4702 * Flush data in r5cache before 'sync'.
4703 */
4704 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4705 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4706 !test_bit(STRIPE_DISCARD, &sh->state) &&
4707 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4708 set_bit(STRIPE_SYNCING, &sh->state);
4709 clear_bit(STRIPE_INSYNC, &sh->state);
4710 clear_bit(STRIPE_REPLACED, &sh->state);
4711 }
4712 spin_unlock(&sh->stripe_lock);
4713 }
4714 clear_bit(STRIPE_DELAYED, &sh->state);
4715
4716 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4717 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4718 (unsigned long long)sh->sector, sh->state,
4719 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4720 sh->check_state, sh->reconstruct_state);
4721
4722 analyse_stripe(sh, &s);
4723
4724 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4725 goto finish;
4726
4727 if (s.handle_bad_blocks ||
4728 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4729 set_bit(STRIPE_HANDLE, &sh->state);
4730 goto finish;
4731 }
4732
4733 if (unlikely(s.blocked_rdev)) {
4734 if (s.syncing || s.expanding || s.expanded ||
4735 s.replacing || s.to_write || s.written) {
4736 set_bit(STRIPE_HANDLE, &sh->state);
4737 goto finish;
4738 }
4739 /* There is nothing for the blocked_rdev to block */
4740 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4741 s.blocked_rdev = NULL;
4742 }
4743
4744 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4745 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4746 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4747 }
4748
4749 pr_debug("locked=%d uptodate=%d to_read=%d"
4750 " to_write=%d failed=%d failed_num=%d,%d\n",
4751 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4752 s.failed_num[0], s.failed_num[1]);
4753 /*
4754 * check if the array has lost more than max_degraded devices and,
4755 * if so, some requests might need to be failed.
4756 *
4757 * When journal device failed (log_failed), we will only process
4758 * the stripe if there is data need write to raid disks
4759 */
4760 if (s.failed > conf->max_degraded ||
4761 (s.log_failed && s.injournal == 0)) {
4762 sh->check_state = 0;
4763 sh->reconstruct_state = 0;
4764 break_stripe_batch_list(sh, 0);
4765 if (s.to_read+s.to_write+s.written)
4766 handle_failed_stripe(conf, sh, &s, disks);
4767 if (s.syncing + s.replacing)
4768 handle_failed_sync(conf, sh, &s);
4769 }
4770
4771 /* Now we check to see if any write operations have recently
4772 * completed
4773 */
4774 prexor = 0;
4775 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4776 prexor = 1;
4777 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4778 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4779 sh->reconstruct_state = reconstruct_state_idle;
4780
4781 /* All the 'written' buffers and the parity block are ready to
4782 * be written back to disk
4783 */
4784 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4785 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4786 BUG_ON(sh->qd_idx >= 0 &&
4787 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4788 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4789 for (i = disks; i--; ) {
4790 struct r5dev *dev = &sh->dev[i];
4791 if (test_bit(R5_LOCKED, &dev->flags) &&
4792 (i == sh->pd_idx || i == sh->qd_idx ||
4793 dev->written || test_bit(R5_InJournal,
4794 &dev->flags))) {
4795 pr_debug("Writing block %d\n", i);
4796 set_bit(R5_Wantwrite, &dev->flags);
4797 if (prexor)
4798 continue;
4799 if (s.failed > 1)
4800 continue;
4801 if (!test_bit(R5_Insync, &dev->flags) ||
4802 ((i == sh->pd_idx || i == sh->qd_idx) &&
4803 s.failed == 0))
4804 set_bit(STRIPE_INSYNC, &sh->state);
4805 }
4806 }
4807 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4808 s.dec_preread_active = 1;
4809 }
4810
4811 /*
4812 * might be able to return some write requests if the parity blocks
4813 * are safe, or on a failed drive
4814 */
4815 pdev = &sh->dev[sh->pd_idx];
4816 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4817 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4818 qdev = &sh->dev[sh->qd_idx];
4819 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4820 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4821 || conf->level < 6;
4822
4823 if (s.written &&
4824 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4825 && !test_bit(R5_LOCKED, &pdev->flags)
4826 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4827 test_bit(R5_Discard, &pdev->flags))))) &&
4828 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4829 && !test_bit(R5_LOCKED, &qdev->flags)
4830 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4831 test_bit(R5_Discard, &qdev->flags))))))
4832 handle_stripe_clean_event(conf, sh, disks);
4833
4834 if (s.just_cached)
4835 r5c_handle_cached_data_endio(conf, sh, disks);
4836 log_stripe_write_finished(sh);
4837
4838 /* Now we might consider reading some blocks, either to check/generate
4839 * parity, or to satisfy requests
4840 * or to load a block that is being partially written.
4841 */
4842 if (s.to_read || s.non_overwrite
Olivier Deprez0e641232021-09-23 10:07:05 +02004843 || (s.to_write && s.failed)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004844 || (s.syncing && (s.uptodate + s.compute < disks))
4845 || s.replacing
4846 || s.expanding)
4847 handle_stripe_fill(sh, &s, disks);
4848
4849 /*
4850 * When the stripe finishes full journal write cycle (write to journal
4851 * and raid disk), this is the clean up procedure so it is ready for
4852 * next operation.
4853 */
4854 r5c_finish_stripe_write_out(conf, sh, &s);
4855
4856 /*
4857 * Now to consider new write requests, cache write back and what else,
4858 * if anything should be read. We do not handle new writes when:
4859 * 1/ A 'write' operation (copy+xor) is already in flight.
4860 * 2/ A 'check' operation is in flight, as it may clobber the parity
4861 * block.
4862 * 3/ A r5c cache log write is in flight.
4863 */
4864
4865 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4866 if (!r5c_is_writeback(conf->log)) {
4867 if (s.to_write)
4868 handle_stripe_dirtying(conf, sh, &s, disks);
4869 } else { /* write back cache */
4870 int ret = 0;
4871
4872 /* First, try handle writes in caching phase */
4873 if (s.to_write)
4874 ret = r5c_try_caching_write(conf, sh, &s,
4875 disks);
4876 /*
4877 * If caching phase failed: ret == -EAGAIN
4878 * OR
4879 * stripe under reclaim: !caching && injournal
4880 *
4881 * fall back to handle_stripe_dirtying()
4882 */
4883 if (ret == -EAGAIN ||
4884 /* stripe under reclaim: !caching && injournal */
4885 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4886 s.injournal > 0)) {
4887 ret = handle_stripe_dirtying(conf, sh, &s,
4888 disks);
4889 if (ret == -EAGAIN)
4890 goto finish;
4891 }
4892 }
4893 }
4894
4895 /* maybe we need to check and possibly fix the parity for this stripe
4896 * Any reads will already have been scheduled, so we just see if enough
4897 * data is available. The parity check is held off while parity
4898 * dependent operations are in flight.
4899 */
4900 if (sh->check_state ||
4901 (s.syncing && s.locked == 0 &&
4902 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4903 !test_bit(STRIPE_INSYNC, &sh->state))) {
4904 if (conf->level == 6)
4905 handle_parity_checks6(conf, sh, &s, disks);
4906 else
4907 handle_parity_checks5(conf, sh, &s, disks);
4908 }
4909
4910 if ((s.replacing || s.syncing) && s.locked == 0
4911 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4912 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4913 /* Write out to replacement devices where possible */
4914 for (i = 0; i < conf->raid_disks; i++)
4915 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4916 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4917 set_bit(R5_WantReplace, &sh->dev[i].flags);
4918 set_bit(R5_LOCKED, &sh->dev[i].flags);
4919 s.locked++;
4920 }
4921 if (s.replacing)
4922 set_bit(STRIPE_INSYNC, &sh->state);
4923 set_bit(STRIPE_REPLACED, &sh->state);
4924 }
4925 if ((s.syncing || s.replacing) && s.locked == 0 &&
4926 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4927 test_bit(STRIPE_INSYNC, &sh->state)) {
4928 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4929 clear_bit(STRIPE_SYNCING, &sh->state);
4930 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4931 wake_up(&conf->wait_for_overlap);
4932 }
4933
4934 /* If the failed drives are just a ReadError, then we might need
4935 * to progress the repair/check process
4936 */
4937 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4938 for (i = 0; i < s.failed; i++) {
4939 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4940 if (test_bit(R5_ReadError, &dev->flags)
4941 && !test_bit(R5_LOCKED, &dev->flags)
4942 && test_bit(R5_UPTODATE, &dev->flags)
4943 ) {
4944 if (!test_bit(R5_ReWrite, &dev->flags)) {
4945 set_bit(R5_Wantwrite, &dev->flags);
4946 set_bit(R5_ReWrite, &dev->flags);
4947 set_bit(R5_LOCKED, &dev->flags);
4948 s.locked++;
4949 } else {
4950 /* let's read it back */
4951 set_bit(R5_Wantread, &dev->flags);
4952 set_bit(R5_LOCKED, &dev->flags);
4953 s.locked++;
4954 }
4955 }
4956 }
4957
4958 /* Finish reconstruct operations initiated by the expansion process */
4959 if (sh->reconstruct_state == reconstruct_state_result) {
4960 struct stripe_head *sh_src
4961 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4962 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4963 /* sh cannot be written until sh_src has been read.
4964 * so arrange for sh to be delayed a little
4965 */
4966 set_bit(STRIPE_DELAYED, &sh->state);
4967 set_bit(STRIPE_HANDLE, &sh->state);
4968 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4969 &sh_src->state))
4970 atomic_inc(&conf->preread_active_stripes);
4971 raid5_release_stripe(sh_src);
4972 goto finish;
4973 }
4974 if (sh_src)
4975 raid5_release_stripe(sh_src);
4976
4977 sh->reconstruct_state = reconstruct_state_idle;
4978 clear_bit(STRIPE_EXPANDING, &sh->state);
4979 for (i = conf->raid_disks; i--; ) {
4980 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4981 set_bit(R5_LOCKED, &sh->dev[i].flags);
4982 s.locked++;
4983 }
4984 }
4985
4986 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4987 !sh->reconstruct_state) {
4988 /* Need to write out all blocks after computing parity */
4989 sh->disks = conf->raid_disks;
4990 stripe_set_idx(sh->sector, conf, 0, sh);
4991 schedule_reconstruction(sh, &s, 1, 1);
4992 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4993 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4994 atomic_dec(&conf->reshape_stripes);
4995 wake_up(&conf->wait_for_overlap);
4996 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4997 }
4998
4999 if (s.expanding && s.locked == 0 &&
5000 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5001 handle_stripe_expansion(conf, sh);
5002
5003finish:
5004 /* wait for this device to become unblocked */
5005 if (unlikely(s.blocked_rdev)) {
5006 if (conf->mddev->external)
5007 md_wait_for_blocked_rdev(s.blocked_rdev,
5008 conf->mddev);
5009 else
5010 /* Internal metadata will immediately
5011 * be written by raid5d, so we don't
5012 * need to wait here.
5013 */
5014 rdev_dec_pending(s.blocked_rdev,
5015 conf->mddev);
5016 }
5017
5018 if (s.handle_bad_blocks)
5019 for (i = disks; i--; ) {
5020 struct md_rdev *rdev;
5021 struct r5dev *dev = &sh->dev[i];
5022 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5023 /* We own a safe reference to the rdev */
5024 rdev = conf->disks[i].rdev;
5025 if (!rdev_set_badblocks(rdev, sh->sector,
5026 STRIPE_SECTORS, 0))
5027 md_error(conf->mddev, rdev);
5028 rdev_dec_pending(rdev, conf->mddev);
5029 }
5030 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5031 rdev = conf->disks[i].rdev;
5032 rdev_clear_badblocks(rdev, sh->sector,
5033 STRIPE_SECTORS, 0);
5034 rdev_dec_pending(rdev, conf->mddev);
5035 }
5036 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5037 rdev = conf->disks[i].replacement;
5038 if (!rdev)
5039 /* rdev have been moved down */
5040 rdev = conf->disks[i].rdev;
5041 rdev_clear_badblocks(rdev, sh->sector,
5042 STRIPE_SECTORS, 0);
5043 rdev_dec_pending(rdev, conf->mddev);
5044 }
5045 }
5046
5047 if (s.ops_request)
5048 raid_run_ops(sh, s.ops_request);
5049
5050 ops_run_io(sh, &s);
5051
5052 if (s.dec_preread_active) {
5053 /* We delay this until after ops_run_io so that if make_request
5054 * is waiting on a flush, it won't continue until the writes
5055 * have actually been submitted.
5056 */
5057 atomic_dec(&conf->preread_active_stripes);
5058 if (atomic_read(&conf->preread_active_stripes) <
5059 IO_THRESHOLD)
5060 md_wakeup_thread(conf->mddev->thread);
5061 }
5062
5063 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5064}
5065
5066static void raid5_activate_delayed(struct r5conf *conf)
5067{
5068 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5069 while (!list_empty(&conf->delayed_list)) {
5070 struct list_head *l = conf->delayed_list.next;
5071 struct stripe_head *sh;
5072 sh = list_entry(l, struct stripe_head, lru);
5073 list_del_init(l);
5074 clear_bit(STRIPE_DELAYED, &sh->state);
5075 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5076 atomic_inc(&conf->preread_active_stripes);
5077 list_add_tail(&sh->lru, &conf->hold_list);
5078 raid5_wakeup_stripe_thread(sh);
5079 }
5080 }
5081}
5082
5083static void activate_bit_delay(struct r5conf *conf,
5084 struct list_head *temp_inactive_list)
5085{
5086 /* device_lock is held */
5087 struct list_head head;
5088 list_add(&head, &conf->bitmap_list);
5089 list_del_init(&conf->bitmap_list);
5090 while (!list_empty(&head)) {
5091 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5092 int hash;
5093 list_del_init(&sh->lru);
5094 atomic_inc(&sh->count);
5095 hash = sh->hash_lock_index;
5096 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5097 }
5098}
5099
5100static int raid5_congested(struct mddev *mddev, int bits)
5101{
5102 struct r5conf *conf = mddev->private;
5103
5104 /* No difference between reads and writes. Just check
5105 * how busy the stripe_cache is
5106 */
5107
5108 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5109 return 1;
5110
5111 /* Also checks whether there is pressure on r5cache log space */
5112 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5113 return 1;
5114 if (conf->quiesce)
5115 return 1;
5116 if (atomic_read(&conf->empty_inactive_list_nr))
5117 return 1;
5118
5119 return 0;
5120}
5121
5122static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5123{
5124 struct r5conf *conf = mddev->private;
5125 sector_t sector = bio->bi_iter.bi_sector;
5126 unsigned int chunk_sectors;
5127 unsigned int bio_sectors = bio_sectors(bio);
5128
5129 WARN_ON_ONCE(bio->bi_partno);
5130
5131 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5132 return chunk_sectors >=
5133 ((sector & (chunk_sectors - 1)) + bio_sectors);
5134}
5135
5136/*
5137 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5138 * later sampled by raid5d.
5139 */
5140static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5141{
5142 unsigned long flags;
5143
5144 spin_lock_irqsave(&conf->device_lock, flags);
5145
5146 bi->bi_next = conf->retry_read_aligned_list;
5147 conf->retry_read_aligned_list = bi;
5148
5149 spin_unlock_irqrestore(&conf->device_lock, flags);
5150 md_wakeup_thread(conf->mddev->thread);
5151}
5152
5153static struct bio *remove_bio_from_retry(struct r5conf *conf,
5154 unsigned int *offset)
5155{
5156 struct bio *bi;
5157
5158 bi = conf->retry_read_aligned;
5159 if (bi) {
5160 *offset = conf->retry_read_offset;
5161 conf->retry_read_aligned = NULL;
5162 return bi;
5163 }
5164 bi = conf->retry_read_aligned_list;
5165 if(bi) {
5166 conf->retry_read_aligned_list = bi->bi_next;
5167 bi->bi_next = NULL;
5168 *offset = 0;
5169 }
5170
5171 return bi;
5172}
5173
5174/*
5175 * The "raid5_align_endio" should check if the read succeeded and if it
5176 * did, call bio_endio on the original bio (having bio_put the new bio
5177 * first).
5178 * If the read failed..
5179 */
5180static void raid5_align_endio(struct bio *bi)
5181{
5182 struct bio* raid_bi = bi->bi_private;
5183 struct mddev *mddev;
5184 struct r5conf *conf;
5185 struct md_rdev *rdev;
5186 blk_status_t error = bi->bi_status;
5187
5188 bio_put(bi);
5189
5190 rdev = (void*)raid_bi->bi_next;
5191 raid_bi->bi_next = NULL;
5192 mddev = rdev->mddev;
5193 conf = mddev->private;
5194
5195 rdev_dec_pending(rdev, conf->mddev);
5196
5197 if (!error) {
5198 bio_endio(raid_bi);
5199 if (atomic_dec_and_test(&conf->active_aligned_reads))
5200 wake_up(&conf->wait_for_quiescent);
5201 return;
5202 }
5203
5204 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5205
5206 add_bio_to_retry(raid_bi, conf);
5207}
5208
5209static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5210{
5211 struct r5conf *conf = mddev->private;
5212 int dd_idx;
5213 struct bio* align_bi;
5214 struct md_rdev *rdev;
5215 sector_t end_sector;
5216
5217 if (!in_chunk_boundary(mddev, raid_bio)) {
5218 pr_debug("%s: non aligned\n", __func__);
5219 return 0;
5220 }
5221 /*
5222 * use bio_clone_fast to make a copy of the bio
5223 */
5224 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5225 if (!align_bi)
5226 return 0;
5227 /*
5228 * set bi_end_io to a new function, and set bi_private to the
5229 * original bio.
5230 */
5231 align_bi->bi_end_io = raid5_align_endio;
5232 align_bi->bi_private = raid_bio;
5233 /*
5234 * compute position
5235 */
5236 align_bi->bi_iter.bi_sector =
5237 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5238 0, &dd_idx, NULL);
5239
5240 end_sector = bio_end_sector(align_bi);
5241 rcu_read_lock();
5242 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5243 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5244 rdev->recovery_offset < end_sector) {
5245 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5246 if (rdev &&
5247 (test_bit(Faulty, &rdev->flags) ||
5248 !(test_bit(In_sync, &rdev->flags) ||
5249 rdev->recovery_offset >= end_sector)))
5250 rdev = NULL;
5251 }
5252
5253 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5254 rcu_read_unlock();
5255 bio_put(align_bi);
5256 return 0;
5257 }
5258
5259 if (rdev) {
5260 sector_t first_bad;
5261 int bad_sectors;
5262
5263 atomic_inc(&rdev->nr_pending);
5264 rcu_read_unlock();
5265 raid_bio->bi_next = (void*)rdev;
5266 bio_set_dev(align_bi, rdev->bdev);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005267
5268 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5269 bio_sectors(align_bi),
5270 &first_bad, &bad_sectors)) {
5271 bio_put(align_bi);
5272 rdev_dec_pending(rdev, mddev);
5273 return 0;
5274 }
5275
5276 /* No reshape active, so we can trust rdev->data_offset */
5277 align_bi->bi_iter.bi_sector += rdev->data_offset;
5278
5279 spin_lock_irq(&conf->device_lock);
5280 wait_event_lock_irq(conf->wait_for_quiescent,
5281 conf->quiesce == 0,
5282 conf->device_lock);
5283 atomic_inc(&conf->active_aligned_reads);
5284 spin_unlock_irq(&conf->device_lock);
5285
5286 if (mddev->gendisk)
5287 trace_block_bio_remap(align_bi->bi_disk->queue,
5288 align_bi, disk_devt(mddev->gendisk),
5289 raid_bio->bi_iter.bi_sector);
5290 generic_make_request(align_bi);
5291 return 1;
5292 } else {
5293 rcu_read_unlock();
5294 bio_put(align_bi);
5295 return 0;
5296 }
5297}
5298
5299static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5300{
5301 struct bio *split;
5302 sector_t sector = raid_bio->bi_iter.bi_sector;
5303 unsigned chunk_sects = mddev->chunk_sectors;
5304 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5305
5306 if (sectors < bio_sectors(raid_bio)) {
5307 struct r5conf *conf = mddev->private;
5308 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5309 bio_chain(split, raid_bio);
5310 generic_make_request(raid_bio);
5311 raid_bio = split;
5312 }
5313
5314 if (!raid5_read_one_chunk(mddev, raid_bio))
5315 return raid_bio;
5316
5317 return NULL;
5318}
5319
5320/* __get_priority_stripe - get the next stripe to process
5321 *
5322 * Full stripe writes are allowed to pass preread active stripes up until
5323 * the bypass_threshold is exceeded. In general the bypass_count
5324 * increments when the handle_list is handled before the hold_list; however, it
5325 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5326 * stripe with in flight i/o. The bypass_count will be reset when the
5327 * head of the hold_list has changed, i.e. the head was promoted to the
5328 * handle_list.
5329 */
5330static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5331{
5332 struct stripe_head *sh, *tmp;
5333 struct list_head *handle_list = NULL;
5334 struct r5worker_group *wg;
5335 bool second_try = !r5c_is_writeback(conf->log) &&
5336 !r5l_log_disk_error(conf);
5337 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5338 r5l_log_disk_error(conf);
5339
5340again:
5341 wg = NULL;
5342 sh = NULL;
5343 if (conf->worker_cnt_per_group == 0) {
5344 handle_list = try_loprio ? &conf->loprio_list :
5345 &conf->handle_list;
5346 } else if (group != ANY_GROUP) {
5347 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5348 &conf->worker_groups[group].handle_list;
5349 wg = &conf->worker_groups[group];
5350 } else {
5351 int i;
5352 for (i = 0; i < conf->group_cnt; i++) {
5353 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5354 &conf->worker_groups[i].handle_list;
5355 wg = &conf->worker_groups[i];
5356 if (!list_empty(handle_list))
5357 break;
5358 }
5359 }
5360
5361 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5362 __func__,
5363 list_empty(handle_list) ? "empty" : "busy",
5364 list_empty(&conf->hold_list) ? "empty" : "busy",
5365 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5366
5367 if (!list_empty(handle_list)) {
5368 sh = list_entry(handle_list->next, typeof(*sh), lru);
5369
5370 if (list_empty(&conf->hold_list))
5371 conf->bypass_count = 0;
5372 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5373 if (conf->hold_list.next == conf->last_hold)
5374 conf->bypass_count++;
5375 else {
5376 conf->last_hold = conf->hold_list.next;
5377 conf->bypass_count -= conf->bypass_threshold;
5378 if (conf->bypass_count < 0)
5379 conf->bypass_count = 0;
5380 }
5381 }
5382 } else if (!list_empty(&conf->hold_list) &&
5383 ((conf->bypass_threshold &&
5384 conf->bypass_count > conf->bypass_threshold) ||
5385 atomic_read(&conf->pending_full_writes) == 0)) {
5386
5387 list_for_each_entry(tmp, &conf->hold_list, lru) {
5388 if (conf->worker_cnt_per_group == 0 ||
5389 group == ANY_GROUP ||
5390 !cpu_online(tmp->cpu) ||
5391 cpu_to_group(tmp->cpu) == group) {
5392 sh = tmp;
5393 break;
5394 }
5395 }
5396
5397 if (sh) {
5398 conf->bypass_count -= conf->bypass_threshold;
5399 if (conf->bypass_count < 0)
5400 conf->bypass_count = 0;
5401 }
5402 wg = NULL;
5403 }
5404
5405 if (!sh) {
5406 if (second_try)
5407 return NULL;
5408 second_try = true;
5409 try_loprio = !try_loprio;
5410 goto again;
5411 }
5412
5413 if (wg) {
5414 wg->stripes_cnt--;
5415 sh->group = NULL;
5416 }
5417 list_del_init(&sh->lru);
5418 BUG_ON(atomic_inc_return(&sh->count) != 1);
5419 return sh;
5420}
5421
5422struct raid5_plug_cb {
5423 struct blk_plug_cb cb;
5424 struct list_head list;
5425 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5426};
5427
5428static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5429{
5430 struct raid5_plug_cb *cb = container_of(
5431 blk_cb, struct raid5_plug_cb, cb);
5432 struct stripe_head *sh;
5433 struct mddev *mddev = cb->cb.data;
5434 struct r5conf *conf = mddev->private;
5435 int cnt = 0;
5436 int hash;
5437
5438 if (cb->list.next && !list_empty(&cb->list)) {
5439 spin_lock_irq(&conf->device_lock);
5440 while (!list_empty(&cb->list)) {
5441 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5442 list_del_init(&sh->lru);
5443 /*
5444 * avoid race release_stripe_plug() sees
5445 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5446 * is still in our list
5447 */
5448 smp_mb__before_atomic();
5449 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5450 /*
5451 * STRIPE_ON_RELEASE_LIST could be set here. In that
5452 * case, the count is always > 1 here
5453 */
5454 hash = sh->hash_lock_index;
5455 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5456 cnt++;
5457 }
5458 spin_unlock_irq(&conf->device_lock);
5459 }
5460 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5461 NR_STRIPE_HASH_LOCKS);
5462 if (mddev->queue)
5463 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5464 kfree(cb);
5465}
5466
5467static void release_stripe_plug(struct mddev *mddev,
5468 struct stripe_head *sh)
5469{
5470 struct blk_plug_cb *blk_cb = blk_check_plugged(
5471 raid5_unplug, mddev,
5472 sizeof(struct raid5_plug_cb));
5473 struct raid5_plug_cb *cb;
5474
5475 if (!blk_cb) {
5476 raid5_release_stripe(sh);
5477 return;
5478 }
5479
5480 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5481
5482 if (cb->list.next == NULL) {
5483 int i;
5484 INIT_LIST_HEAD(&cb->list);
5485 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5486 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5487 }
5488
5489 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5490 list_add_tail(&sh->lru, &cb->list);
5491 else
5492 raid5_release_stripe(sh);
5493}
5494
5495static void make_discard_request(struct mddev *mddev, struct bio *bi)
5496{
5497 struct r5conf *conf = mddev->private;
5498 sector_t logical_sector, last_sector;
5499 struct stripe_head *sh;
5500 int stripe_sectors;
5501
5502 if (mddev->reshape_position != MaxSector)
5503 /* Skip discard while reshape is happening */
5504 return;
5505
5506 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
David Brazdil0f672f62019-12-10 10:32:29 +00005507 last_sector = bio_end_sector(bi);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005508
5509 bi->bi_next = NULL;
5510
5511 stripe_sectors = conf->chunk_sectors *
5512 (conf->raid_disks - conf->max_degraded);
5513 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5514 stripe_sectors);
5515 sector_div(last_sector, stripe_sectors);
5516
5517 logical_sector *= conf->chunk_sectors;
5518 last_sector *= conf->chunk_sectors;
5519
5520 for (; logical_sector < last_sector;
5521 logical_sector += STRIPE_SECTORS) {
5522 DEFINE_WAIT(w);
5523 int d;
5524 again:
5525 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5526 prepare_to_wait(&conf->wait_for_overlap, &w,
5527 TASK_UNINTERRUPTIBLE);
5528 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5529 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5530 raid5_release_stripe(sh);
5531 schedule();
5532 goto again;
5533 }
5534 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5535 spin_lock_irq(&sh->stripe_lock);
5536 for (d = 0; d < conf->raid_disks; d++) {
5537 if (d == sh->pd_idx || d == sh->qd_idx)
5538 continue;
5539 if (sh->dev[d].towrite || sh->dev[d].toread) {
5540 set_bit(R5_Overlap, &sh->dev[d].flags);
5541 spin_unlock_irq(&sh->stripe_lock);
5542 raid5_release_stripe(sh);
5543 schedule();
5544 goto again;
5545 }
5546 }
5547 set_bit(STRIPE_DISCARD, &sh->state);
5548 finish_wait(&conf->wait_for_overlap, &w);
5549 sh->overwrite_disks = 0;
5550 for (d = 0; d < conf->raid_disks; d++) {
5551 if (d == sh->pd_idx || d == sh->qd_idx)
5552 continue;
5553 sh->dev[d].towrite = bi;
5554 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5555 bio_inc_remaining(bi);
5556 md_write_inc(mddev, bi);
5557 sh->overwrite_disks++;
5558 }
5559 spin_unlock_irq(&sh->stripe_lock);
5560 if (conf->mddev->bitmap) {
5561 for (d = 0;
5562 d < conf->raid_disks - conf->max_degraded;
5563 d++)
5564 md_bitmap_startwrite(mddev->bitmap,
5565 sh->sector,
5566 STRIPE_SECTORS,
5567 0);
5568 sh->bm_seq = conf->seq_flush + 1;
5569 set_bit(STRIPE_BIT_DELAY, &sh->state);
5570 }
5571
5572 set_bit(STRIPE_HANDLE, &sh->state);
5573 clear_bit(STRIPE_DELAYED, &sh->state);
5574 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5575 atomic_inc(&conf->preread_active_stripes);
5576 release_stripe_plug(mddev, sh);
5577 }
5578
5579 bio_endio(bi);
5580}
5581
5582static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5583{
5584 struct r5conf *conf = mddev->private;
5585 int dd_idx;
5586 sector_t new_sector;
5587 sector_t logical_sector, last_sector;
5588 struct stripe_head *sh;
5589 const int rw = bio_data_dir(bi);
5590 DEFINE_WAIT(w);
5591 bool do_prepare;
5592 bool do_flush = false;
5593
5594 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5595 int ret = log_handle_flush_request(conf, bi);
5596
5597 if (ret == 0)
5598 return true;
5599 if (ret == -ENODEV) {
Olivier Deprez0e641232021-09-23 10:07:05 +02005600 if (md_flush_request(mddev, bi))
5601 return true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005602 }
5603 /* ret == -EAGAIN, fallback */
5604 /*
5605 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5606 * we need to flush journal device
5607 */
5608 do_flush = bi->bi_opf & REQ_PREFLUSH;
5609 }
5610
5611 if (!md_write_start(mddev, bi))
5612 return false;
5613 /*
5614 * If array is degraded, better not do chunk aligned read because
5615 * later we might have to read it again in order to reconstruct
5616 * data on failed drives.
5617 */
5618 if (rw == READ && mddev->degraded == 0 &&
5619 mddev->reshape_position == MaxSector) {
5620 bi = chunk_aligned_read(mddev, bi);
5621 if (!bi)
5622 return true;
5623 }
5624
5625 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5626 make_discard_request(mddev, bi);
5627 md_write_end(mddev);
5628 return true;
5629 }
5630
5631 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5632 last_sector = bio_end_sector(bi);
5633 bi->bi_next = NULL;
5634
5635 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5636 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5637 int previous;
5638 int seq;
5639
5640 do_prepare = false;
5641 retry:
5642 seq = read_seqcount_begin(&conf->gen_lock);
5643 previous = 0;
5644 if (do_prepare)
5645 prepare_to_wait(&conf->wait_for_overlap, &w,
5646 TASK_UNINTERRUPTIBLE);
5647 if (unlikely(conf->reshape_progress != MaxSector)) {
5648 /* spinlock is needed as reshape_progress may be
5649 * 64bit on a 32bit platform, and so it might be
5650 * possible to see a half-updated value
5651 * Of course reshape_progress could change after
5652 * the lock is dropped, so once we get a reference
5653 * to the stripe that we think it is, we will have
5654 * to check again.
5655 */
5656 spin_lock_irq(&conf->device_lock);
5657 if (mddev->reshape_backwards
5658 ? logical_sector < conf->reshape_progress
5659 : logical_sector >= conf->reshape_progress) {
5660 previous = 1;
5661 } else {
5662 if (mddev->reshape_backwards
5663 ? logical_sector < conf->reshape_safe
5664 : logical_sector >= conf->reshape_safe) {
5665 spin_unlock_irq(&conf->device_lock);
5666 schedule();
5667 do_prepare = true;
5668 goto retry;
5669 }
5670 }
5671 spin_unlock_irq(&conf->device_lock);
5672 }
5673
5674 new_sector = raid5_compute_sector(conf, logical_sector,
5675 previous,
5676 &dd_idx, NULL);
5677 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5678 (unsigned long long)new_sector,
5679 (unsigned long long)logical_sector);
5680
5681 sh = raid5_get_active_stripe(conf, new_sector, previous,
5682 (bi->bi_opf & REQ_RAHEAD), 0);
5683 if (sh) {
5684 if (unlikely(previous)) {
5685 /* expansion might have moved on while waiting for a
5686 * stripe, so we must do the range check again.
5687 * Expansion could still move past after this
5688 * test, but as we are holding a reference to
5689 * 'sh', we know that if that happens,
5690 * STRIPE_EXPANDING will get set and the expansion
5691 * won't proceed until we finish with the stripe.
5692 */
5693 int must_retry = 0;
5694 spin_lock_irq(&conf->device_lock);
5695 if (mddev->reshape_backwards
5696 ? logical_sector >= conf->reshape_progress
5697 : logical_sector < conf->reshape_progress)
5698 /* mismatch, need to try again */
5699 must_retry = 1;
5700 spin_unlock_irq(&conf->device_lock);
5701 if (must_retry) {
5702 raid5_release_stripe(sh);
5703 schedule();
5704 do_prepare = true;
5705 goto retry;
5706 }
5707 }
5708 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5709 /* Might have got the wrong stripe_head
5710 * by accident
5711 */
5712 raid5_release_stripe(sh);
5713 goto retry;
5714 }
5715
5716 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5717 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5718 /* Stripe is busy expanding or
5719 * add failed due to overlap. Flush everything
5720 * and wait a while
5721 */
5722 md_wakeup_thread(mddev->thread);
5723 raid5_release_stripe(sh);
5724 schedule();
5725 do_prepare = true;
5726 goto retry;
5727 }
5728 if (do_flush) {
5729 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5730 /* we only need flush for one stripe */
5731 do_flush = false;
5732 }
5733
Olivier Deprez0e641232021-09-23 10:07:05 +02005734 if (!sh->batch_head || sh == sh->batch_head)
David Brazdil0f672f62019-12-10 10:32:29 +00005735 set_bit(STRIPE_HANDLE, &sh->state);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005736 clear_bit(STRIPE_DELAYED, &sh->state);
5737 if ((!sh->batch_head || sh == sh->batch_head) &&
5738 (bi->bi_opf & REQ_SYNC) &&
5739 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5740 atomic_inc(&conf->preread_active_stripes);
5741 release_stripe_plug(mddev, sh);
5742 } else {
5743 /* cannot get stripe for read-ahead, just give-up */
5744 bi->bi_status = BLK_STS_IOERR;
5745 break;
5746 }
5747 }
5748 finish_wait(&conf->wait_for_overlap, &w);
5749
5750 if (rw == WRITE)
5751 md_write_end(mddev);
5752 bio_endio(bi);
5753 return true;
5754}
5755
5756static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5757
5758static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5759{
5760 /* reshaping is quite different to recovery/resync so it is
5761 * handled quite separately ... here.
5762 *
5763 * On each call to sync_request, we gather one chunk worth of
5764 * destination stripes and flag them as expanding.
5765 * Then we find all the source stripes and request reads.
5766 * As the reads complete, handle_stripe will copy the data
5767 * into the destination stripe and release that stripe.
5768 */
5769 struct r5conf *conf = mddev->private;
5770 struct stripe_head *sh;
5771 struct md_rdev *rdev;
5772 sector_t first_sector, last_sector;
5773 int raid_disks = conf->previous_raid_disks;
5774 int data_disks = raid_disks - conf->max_degraded;
5775 int new_data_disks = conf->raid_disks - conf->max_degraded;
5776 int i;
5777 int dd_idx;
5778 sector_t writepos, readpos, safepos;
5779 sector_t stripe_addr;
5780 int reshape_sectors;
5781 struct list_head stripes;
5782 sector_t retn;
5783
5784 if (sector_nr == 0) {
5785 /* If restarting in the middle, skip the initial sectors */
5786 if (mddev->reshape_backwards &&
5787 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5788 sector_nr = raid5_size(mddev, 0, 0)
5789 - conf->reshape_progress;
5790 } else if (mddev->reshape_backwards &&
5791 conf->reshape_progress == MaxSector) {
5792 /* shouldn't happen, but just in case, finish up.*/
5793 sector_nr = MaxSector;
5794 } else if (!mddev->reshape_backwards &&
5795 conf->reshape_progress > 0)
5796 sector_nr = conf->reshape_progress;
5797 sector_div(sector_nr, new_data_disks);
5798 if (sector_nr) {
5799 mddev->curr_resync_completed = sector_nr;
5800 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5801 *skipped = 1;
5802 retn = sector_nr;
5803 goto finish;
5804 }
5805 }
5806
5807 /* We need to process a full chunk at a time.
5808 * If old and new chunk sizes differ, we need to process the
5809 * largest of these
5810 */
5811
5812 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5813
5814 /* We update the metadata at least every 10 seconds, or when
5815 * the data about to be copied would over-write the source of
5816 * the data at the front of the range. i.e. one new_stripe
5817 * along from reshape_progress new_maps to after where
5818 * reshape_safe old_maps to
5819 */
5820 writepos = conf->reshape_progress;
5821 sector_div(writepos, new_data_disks);
5822 readpos = conf->reshape_progress;
5823 sector_div(readpos, data_disks);
5824 safepos = conf->reshape_safe;
5825 sector_div(safepos, data_disks);
5826 if (mddev->reshape_backwards) {
5827 BUG_ON(writepos < reshape_sectors);
5828 writepos -= reshape_sectors;
5829 readpos += reshape_sectors;
5830 safepos += reshape_sectors;
5831 } else {
5832 writepos += reshape_sectors;
5833 /* readpos and safepos are worst-case calculations.
5834 * A negative number is overly pessimistic, and causes
5835 * obvious problems for unsigned storage. So clip to 0.
5836 */
5837 readpos -= min_t(sector_t, reshape_sectors, readpos);
5838 safepos -= min_t(sector_t, reshape_sectors, safepos);
5839 }
5840
5841 /* Having calculated the 'writepos' possibly use it
5842 * to set 'stripe_addr' which is where we will write to.
5843 */
5844 if (mddev->reshape_backwards) {
5845 BUG_ON(conf->reshape_progress == 0);
5846 stripe_addr = writepos;
5847 BUG_ON((mddev->dev_sectors &
5848 ~((sector_t)reshape_sectors - 1))
5849 - reshape_sectors - stripe_addr
5850 != sector_nr);
5851 } else {
5852 BUG_ON(writepos != sector_nr + reshape_sectors);
5853 stripe_addr = sector_nr;
5854 }
5855
5856 /* 'writepos' is the most advanced device address we might write.
5857 * 'readpos' is the least advanced device address we might read.
5858 * 'safepos' is the least address recorded in the metadata as having
5859 * been reshaped.
5860 * If there is a min_offset_diff, these are adjusted either by
5861 * increasing the safepos/readpos if diff is negative, or
5862 * increasing writepos if diff is positive.
5863 * If 'readpos' is then behind 'writepos', there is no way that we can
5864 * ensure safety in the face of a crash - that must be done by userspace
5865 * making a backup of the data. So in that case there is no particular
5866 * rush to update metadata.
5867 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5868 * update the metadata to advance 'safepos' to match 'readpos' so that
5869 * we can be safe in the event of a crash.
5870 * So we insist on updating metadata if safepos is behind writepos and
5871 * readpos is beyond writepos.
5872 * In any case, update the metadata every 10 seconds.
5873 * Maybe that number should be configurable, but I'm not sure it is
5874 * worth it.... maybe it could be a multiple of safemode_delay???
5875 */
5876 if (conf->min_offset_diff < 0) {
5877 safepos += -conf->min_offset_diff;
5878 readpos += -conf->min_offset_diff;
5879 } else
5880 writepos += conf->min_offset_diff;
5881
5882 if ((mddev->reshape_backwards
5883 ? (safepos > writepos && readpos < writepos)
5884 : (safepos < writepos && readpos > writepos)) ||
5885 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5886 /* Cannot proceed until we've updated the superblock... */
5887 wait_event(conf->wait_for_overlap,
5888 atomic_read(&conf->reshape_stripes)==0
5889 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5890 if (atomic_read(&conf->reshape_stripes) != 0)
5891 return 0;
5892 mddev->reshape_position = conf->reshape_progress;
5893 mddev->curr_resync_completed = sector_nr;
5894 if (!mddev->reshape_backwards)
5895 /* Can update recovery_offset */
5896 rdev_for_each(rdev, mddev)
5897 if (rdev->raid_disk >= 0 &&
5898 !test_bit(Journal, &rdev->flags) &&
5899 !test_bit(In_sync, &rdev->flags) &&
5900 rdev->recovery_offset < sector_nr)
5901 rdev->recovery_offset = sector_nr;
5902
5903 conf->reshape_checkpoint = jiffies;
5904 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5905 md_wakeup_thread(mddev->thread);
5906 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5907 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5908 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5909 return 0;
5910 spin_lock_irq(&conf->device_lock);
5911 conf->reshape_safe = mddev->reshape_position;
5912 spin_unlock_irq(&conf->device_lock);
5913 wake_up(&conf->wait_for_overlap);
5914 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5915 }
5916
5917 INIT_LIST_HEAD(&stripes);
5918 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5919 int j;
5920 int skipped_disk = 0;
5921 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5922 set_bit(STRIPE_EXPANDING, &sh->state);
5923 atomic_inc(&conf->reshape_stripes);
5924 /* If any of this stripe is beyond the end of the old
5925 * array, then we need to zero those blocks
5926 */
5927 for (j=sh->disks; j--;) {
5928 sector_t s;
5929 if (j == sh->pd_idx)
5930 continue;
5931 if (conf->level == 6 &&
5932 j == sh->qd_idx)
5933 continue;
5934 s = raid5_compute_blocknr(sh, j, 0);
5935 if (s < raid5_size(mddev, 0, 0)) {
5936 skipped_disk = 1;
5937 continue;
5938 }
5939 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5940 set_bit(R5_Expanded, &sh->dev[j].flags);
5941 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5942 }
5943 if (!skipped_disk) {
5944 set_bit(STRIPE_EXPAND_READY, &sh->state);
5945 set_bit(STRIPE_HANDLE, &sh->state);
5946 }
5947 list_add(&sh->lru, &stripes);
5948 }
5949 spin_lock_irq(&conf->device_lock);
5950 if (mddev->reshape_backwards)
5951 conf->reshape_progress -= reshape_sectors * new_data_disks;
5952 else
5953 conf->reshape_progress += reshape_sectors * new_data_disks;
5954 spin_unlock_irq(&conf->device_lock);
5955 /* Ok, those stripe are ready. We can start scheduling
5956 * reads on the source stripes.
5957 * The source stripes are determined by mapping the first and last
5958 * block on the destination stripes.
5959 */
5960 first_sector =
5961 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5962 1, &dd_idx, NULL);
5963 last_sector =
5964 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5965 * new_data_disks - 1),
5966 1, &dd_idx, NULL);
5967 if (last_sector >= mddev->dev_sectors)
5968 last_sector = mddev->dev_sectors - 1;
5969 while (first_sector <= last_sector) {
5970 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5971 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5972 set_bit(STRIPE_HANDLE, &sh->state);
5973 raid5_release_stripe(sh);
5974 first_sector += STRIPE_SECTORS;
5975 }
5976 /* Now that the sources are clearly marked, we can release
5977 * the destination stripes
5978 */
5979 while (!list_empty(&stripes)) {
5980 sh = list_entry(stripes.next, struct stripe_head, lru);
5981 list_del_init(&sh->lru);
5982 raid5_release_stripe(sh);
5983 }
5984 /* If this takes us to the resync_max point where we have to pause,
5985 * then we need to write out the superblock.
5986 */
5987 sector_nr += reshape_sectors;
5988 retn = reshape_sectors;
5989finish:
5990 if (mddev->curr_resync_completed > mddev->resync_max ||
5991 (sector_nr - mddev->curr_resync_completed) * 2
5992 >= mddev->resync_max - mddev->curr_resync_completed) {
5993 /* Cannot proceed until we've updated the superblock... */
5994 wait_event(conf->wait_for_overlap,
5995 atomic_read(&conf->reshape_stripes) == 0
5996 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5997 if (atomic_read(&conf->reshape_stripes) != 0)
5998 goto ret;
5999 mddev->reshape_position = conf->reshape_progress;
6000 mddev->curr_resync_completed = sector_nr;
6001 if (!mddev->reshape_backwards)
6002 /* Can update recovery_offset */
6003 rdev_for_each(rdev, mddev)
6004 if (rdev->raid_disk >= 0 &&
6005 !test_bit(Journal, &rdev->flags) &&
6006 !test_bit(In_sync, &rdev->flags) &&
6007 rdev->recovery_offset < sector_nr)
6008 rdev->recovery_offset = sector_nr;
6009 conf->reshape_checkpoint = jiffies;
6010 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6011 md_wakeup_thread(mddev->thread);
6012 wait_event(mddev->sb_wait,
6013 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6014 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6015 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6016 goto ret;
6017 spin_lock_irq(&conf->device_lock);
6018 conf->reshape_safe = mddev->reshape_position;
6019 spin_unlock_irq(&conf->device_lock);
6020 wake_up(&conf->wait_for_overlap);
6021 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6022 }
6023ret:
6024 return retn;
6025}
6026
6027static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6028 int *skipped)
6029{
6030 struct r5conf *conf = mddev->private;
6031 struct stripe_head *sh;
6032 sector_t max_sector = mddev->dev_sectors;
6033 sector_t sync_blocks;
6034 int still_degraded = 0;
6035 int i;
6036
6037 if (sector_nr >= max_sector) {
6038 /* just being told to finish up .. nothing much to do */
6039
6040 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6041 end_reshape(conf);
6042 return 0;
6043 }
6044
6045 if (mddev->curr_resync < max_sector) /* aborted */
6046 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6047 &sync_blocks, 1);
6048 else /* completed sync */
6049 conf->fullsync = 0;
6050 md_bitmap_close_sync(mddev->bitmap);
6051
6052 return 0;
6053 }
6054
6055 /* Allow raid5_quiesce to complete */
6056 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6057
6058 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6059 return reshape_request(mddev, sector_nr, skipped);
6060
6061 /* No need to check resync_max as we never do more than one
6062 * stripe, and as resync_max will always be on a chunk boundary,
6063 * if the check in md_do_sync didn't fire, there is no chance
6064 * of overstepping resync_max here
6065 */
6066
6067 /* if there is too many failed drives and we are trying
6068 * to resync, then assert that we are finished, because there is
6069 * nothing we can do.
6070 */
6071 if (mddev->degraded >= conf->max_degraded &&
6072 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6073 sector_t rv = mddev->dev_sectors - sector_nr;
6074 *skipped = 1;
6075 return rv;
6076 }
6077 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6078 !conf->fullsync &&
6079 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6080 sync_blocks >= STRIPE_SECTORS) {
6081 /* we can skip this block, and probably more */
6082 sync_blocks /= STRIPE_SECTORS;
6083 *skipped = 1;
6084 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6085 }
6086
6087 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6088
6089 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6090 if (sh == NULL) {
6091 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6092 /* make sure we don't swamp the stripe cache if someone else
6093 * is trying to get access
6094 */
6095 schedule_timeout_uninterruptible(1);
6096 }
6097 /* Need to check if array will still be degraded after recovery/resync
6098 * Note in case of > 1 drive failures it's possible we're rebuilding
6099 * one drive while leaving another faulty drive in array.
6100 */
6101 rcu_read_lock();
6102 for (i = 0; i < conf->raid_disks; i++) {
6103 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6104
6105 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6106 still_degraded = 1;
6107 }
6108 rcu_read_unlock();
6109
6110 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6111
6112 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6113 set_bit(STRIPE_HANDLE, &sh->state);
6114
6115 raid5_release_stripe(sh);
6116
6117 return STRIPE_SECTORS;
6118}
6119
6120static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6121 unsigned int offset)
6122{
6123 /* We may not be able to submit a whole bio at once as there
6124 * may not be enough stripe_heads available.
6125 * We cannot pre-allocate enough stripe_heads as we may need
6126 * more than exist in the cache (if we allow ever large chunks).
6127 * So we do one stripe head at a time and record in
6128 * ->bi_hw_segments how many have been done.
6129 *
6130 * We *know* that this entire raid_bio is in one chunk, so
6131 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6132 */
6133 struct stripe_head *sh;
6134 int dd_idx;
6135 sector_t sector, logical_sector, last_sector;
6136 int scnt = 0;
6137 int handled = 0;
6138
6139 logical_sector = raid_bio->bi_iter.bi_sector &
6140 ~((sector_t)STRIPE_SECTORS-1);
6141 sector = raid5_compute_sector(conf, logical_sector,
6142 0, &dd_idx, NULL);
6143 last_sector = bio_end_sector(raid_bio);
6144
6145 for (; logical_sector < last_sector;
6146 logical_sector += STRIPE_SECTORS,
6147 sector += STRIPE_SECTORS,
6148 scnt++) {
6149
6150 if (scnt < offset)
6151 /* already done this stripe */
6152 continue;
6153
6154 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6155
6156 if (!sh) {
6157 /* failed to get a stripe - must wait */
6158 conf->retry_read_aligned = raid_bio;
6159 conf->retry_read_offset = scnt;
6160 return handled;
6161 }
6162
6163 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6164 raid5_release_stripe(sh);
6165 conf->retry_read_aligned = raid_bio;
6166 conf->retry_read_offset = scnt;
6167 return handled;
6168 }
6169
6170 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6171 handle_stripe(sh);
6172 raid5_release_stripe(sh);
6173 handled++;
6174 }
6175
6176 bio_endio(raid_bio);
6177
6178 if (atomic_dec_and_test(&conf->active_aligned_reads))
6179 wake_up(&conf->wait_for_quiescent);
6180 return handled;
6181}
6182
6183static int handle_active_stripes(struct r5conf *conf, int group,
6184 struct r5worker *worker,
6185 struct list_head *temp_inactive_list)
David Brazdil0f672f62019-12-10 10:32:29 +00006186 __releases(&conf->device_lock)
6187 __acquires(&conf->device_lock)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006188{
6189 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6190 int i, batch_size = 0, hash;
6191 bool release_inactive = false;
6192
6193 while (batch_size < MAX_STRIPE_BATCH &&
6194 (sh = __get_priority_stripe(conf, group)) != NULL)
6195 batch[batch_size++] = sh;
6196
6197 if (batch_size == 0) {
6198 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6199 if (!list_empty(temp_inactive_list + i))
6200 break;
6201 if (i == NR_STRIPE_HASH_LOCKS) {
6202 spin_unlock_irq(&conf->device_lock);
6203 log_flush_stripe_to_raid(conf);
6204 spin_lock_irq(&conf->device_lock);
6205 return batch_size;
6206 }
6207 release_inactive = true;
6208 }
6209 spin_unlock_irq(&conf->device_lock);
6210
6211 release_inactive_stripe_list(conf, temp_inactive_list,
6212 NR_STRIPE_HASH_LOCKS);
6213
6214 r5l_flush_stripe_to_raid(conf->log);
6215 if (release_inactive) {
6216 spin_lock_irq(&conf->device_lock);
6217 return 0;
6218 }
6219
6220 for (i = 0; i < batch_size; i++)
6221 handle_stripe(batch[i]);
6222 log_write_stripe_run(conf);
6223
6224 cond_resched();
6225
6226 spin_lock_irq(&conf->device_lock);
6227 for (i = 0; i < batch_size; i++) {
6228 hash = batch[i]->hash_lock_index;
6229 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6230 }
6231 return batch_size;
6232}
6233
6234static void raid5_do_work(struct work_struct *work)
6235{
6236 struct r5worker *worker = container_of(work, struct r5worker, work);
6237 struct r5worker_group *group = worker->group;
6238 struct r5conf *conf = group->conf;
6239 struct mddev *mddev = conf->mddev;
6240 int group_id = group - conf->worker_groups;
6241 int handled;
6242 struct blk_plug plug;
6243
6244 pr_debug("+++ raid5worker active\n");
6245
6246 blk_start_plug(&plug);
6247 handled = 0;
6248 spin_lock_irq(&conf->device_lock);
6249 while (1) {
6250 int batch_size, released;
6251
6252 released = release_stripe_list(conf, worker->temp_inactive_list);
6253
6254 batch_size = handle_active_stripes(conf, group_id, worker,
6255 worker->temp_inactive_list);
6256 worker->working = false;
6257 if (!batch_size && !released)
6258 break;
6259 handled += batch_size;
6260 wait_event_lock_irq(mddev->sb_wait,
6261 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6262 conf->device_lock);
6263 }
6264 pr_debug("%d stripes handled\n", handled);
6265
6266 spin_unlock_irq(&conf->device_lock);
6267
6268 flush_deferred_bios(conf);
6269
6270 r5l_flush_stripe_to_raid(conf->log);
6271
6272 async_tx_issue_pending_all();
6273 blk_finish_plug(&plug);
6274
6275 pr_debug("--- raid5worker inactive\n");
6276}
6277
6278/*
6279 * This is our raid5 kernel thread.
6280 *
6281 * We scan the hash table for stripes which can be handled now.
6282 * During the scan, completed stripes are saved for us by the interrupt
6283 * handler, so that they will not have to wait for our next wakeup.
6284 */
6285static void raid5d(struct md_thread *thread)
6286{
6287 struct mddev *mddev = thread->mddev;
6288 struct r5conf *conf = mddev->private;
6289 int handled;
6290 struct blk_plug plug;
6291
6292 pr_debug("+++ raid5d active\n");
6293
6294 md_check_recovery(mddev);
6295
6296 blk_start_plug(&plug);
6297 handled = 0;
6298 spin_lock_irq(&conf->device_lock);
6299 while (1) {
6300 struct bio *bio;
6301 int batch_size, released;
6302 unsigned int offset;
6303
6304 released = release_stripe_list(conf, conf->temp_inactive_list);
6305 if (released)
6306 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6307
6308 if (
6309 !list_empty(&conf->bitmap_list)) {
6310 /* Now is a good time to flush some bitmap updates */
6311 conf->seq_flush++;
6312 spin_unlock_irq(&conf->device_lock);
6313 md_bitmap_unplug(mddev->bitmap);
6314 spin_lock_irq(&conf->device_lock);
6315 conf->seq_write = conf->seq_flush;
6316 activate_bit_delay(conf, conf->temp_inactive_list);
6317 }
6318 raid5_activate_delayed(conf);
6319
6320 while ((bio = remove_bio_from_retry(conf, &offset))) {
6321 int ok;
6322 spin_unlock_irq(&conf->device_lock);
6323 ok = retry_aligned_read(conf, bio, offset);
6324 spin_lock_irq(&conf->device_lock);
6325 if (!ok)
6326 break;
6327 handled++;
6328 }
6329
6330 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6331 conf->temp_inactive_list);
6332 if (!batch_size && !released)
6333 break;
6334 handled += batch_size;
6335
6336 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6337 spin_unlock_irq(&conf->device_lock);
6338 md_check_recovery(mddev);
6339 spin_lock_irq(&conf->device_lock);
6340 }
6341 }
6342 pr_debug("%d stripes handled\n", handled);
6343
6344 spin_unlock_irq(&conf->device_lock);
6345 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6346 mutex_trylock(&conf->cache_size_mutex)) {
6347 grow_one_stripe(conf, __GFP_NOWARN);
6348 /* Set flag even if allocation failed. This helps
6349 * slow down allocation requests when mem is short
6350 */
6351 set_bit(R5_DID_ALLOC, &conf->cache_state);
6352 mutex_unlock(&conf->cache_size_mutex);
6353 }
6354
6355 flush_deferred_bios(conf);
6356
6357 r5l_flush_stripe_to_raid(conf->log);
6358
6359 async_tx_issue_pending_all();
6360 blk_finish_plug(&plug);
6361
6362 pr_debug("--- raid5d inactive\n");
6363}
6364
6365static ssize_t
6366raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6367{
6368 struct r5conf *conf;
6369 int ret = 0;
6370 spin_lock(&mddev->lock);
6371 conf = mddev->private;
6372 if (conf)
6373 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6374 spin_unlock(&mddev->lock);
6375 return ret;
6376}
6377
6378int
6379raid5_set_cache_size(struct mddev *mddev, int size)
6380{
David Brazdil0f672f62019-12-10 10:32:29 +00006381 int result = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006382 struct r5conf *conf = mddev->private;
6383
6384 if (size <= 16 || size > 32768)
6385 return -EINVAL;
6386
6387 conf->min_nr_stripes = size;
6388 mutex_lock(&conf->cache_size_mutex);
6389 while (size < conf->max_nr_stripes &&
6390 drop_one_stripe(conf))
6391 ;
6392 mutex_unlock(&conf->cache_size_mutex);
6393
6394 md_allow_write(mddev);
6395
6396 mutex_lock(&conf->cache_size_mutex);
6397 while (size > conf->max_nr_stripes)
David Brazdil0f672f62019-12-10 10:32:29 +00006398 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6399 conf->min_nr_stripes = conf->max_nr_stripes;
6400 result = -ENOMEM;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006401 break;
David Brazdil0f672f62019-12-10 10:32:29 +00006402 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006403 mutex_unlock(&conf->cache_size_mutex);
6404
David Brazdil0f672f62019-12-10 10:32:29 +00006405 return result;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006406}
6407EXPORT_SYMBOL(raid5_set_cache_size);
6408
6409static ssize_t
6410raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6411{
6412 struct r5conf *conf;
6413 unsigned long new;
6414 int err;
6415
6416 if (len >= PAGE_SIZE)
6417 return -EINVAL;
6418 if (kstrtoul(page, 10, &new))
6419 return -EINVAL;
6420 err = mddev_lock(mddev);
6421 if (err)
6422 return err;
6423 conf = mddev->private;
6424 if (!conf)
6425 err = -ENODEV;
6426 else
6427 err = raid5_set_cache_size(mddev, new);
6428 mddev_unlock(mddev);
6429
6430 return err ?: len;
6431}
6432
6433static struct md_sysfs_entry
6434raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6435 raid5_show_stripe_cache_size,
6436 raid5_store_stripe_cache_size);
6437
6438static ssize_t
6439raid5_show_rmw_level(struct mddev *mddev, char *page)
6440{
6441 struct r5conf *conf = mddev->private;
6442 if (conf)
6443 return sprintf(page, "%d\n", conf->rmw_level);
6444 else
6445 return 0;
6446}
6447
6448static ssize_t
6449raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6450{
6451 struct r5conf *conf = mddev->private;
6452 unsigned long new;
6453
6454 if (!conf)
6455 return -ENODEV;
6456
6457 if (len >= PAGE_SIZE)
6458 return -EINVAL;
6459
6460 if (kstrtoul(page, 10, &new))
6461 return -EINVAL;
6462
6463 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6464 return -EINVAL;
6465
6466 if (new != PARITY_DISABLE_RMW &&
6467 new != PARITY_ENABLE_RMW &&
6468 new != PARITY_PREFER_RMW)
6469 return -EINVAL;
6470
6471 conf->rmw_level = new;
6472 return len;
6473}
6474
6475static struct md_sysfs_entry
6476raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6477 raid5_show_rmw_level,
6478 raid5_store_rmw_level);
6479
6480
6481static ssize_t
6482raid5_show_preread_threshold(struct mddev *mddev, char *page)
6483{
6484 struct r5conf *conf;
6485 int ret = 0;
6486 spin_lock(&mddev->lock);
6487 conf = mddev->private;
6488 if (conf)
6489 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6490 spin_unlock(&mddev->lock);
6491 return ret;
6492}
6493
6494static ssize_t
6495raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6496{
6497 struct r5conf *conf;
6498 unsigned long new;
6499 int err;
6500
6501 if (len >= PAGE_SIZE)
6502 return -EINVAL;
6503 if (kstrtoul(page, 10, &new))
6504 return -EINVAL;
6505
6506 err = mddev_lock(mddev);
6507 if (err)
6508 return err;
6509 conf = mddev->private;
6510 if (!conf)
6511 err = -ENODEV;
6512 else if (new > conf->min_nr_stripes)
6513 err = -EINVAL;
6514 else
6515 conf->bypass_threshold = new;
6516 mddev_unlock(mddev);
6517 return err ?: len;
6518}
6519
6520static struct md_sysfs_entry
6521raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6522 S_IRUGO | S_IWUSR,
6523 raid5_show_preread_threshold,
6524 raid5_store_preread_threshold);
6525
6526static ssize_t
6527raid5_show_skip_copy(struct mddev *mddev, char *page)
6528{
6529 struct r5conf *conf;
6530 int ret = 0;
6531 spin_lock(&mddev->lock);
6532 conf = mddev->private;
6533 if (conf)
6534 ret = sprintf(page, "%d\n", conf->skip_copy);
6535 spin_unlock(&mddev->lock);
6536 return ret;
6537}
6538
6539static ssize_t
6540raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6541{
6542 struct r5conf *conf;
6543 unsigned long new;
6544 int err;
6545
6546 if (len >= PAGE_SIZE)
6547 return -EINVAL;
6548 if (kstrtoul(page, 10, &new))
6549 return -EINVAL;
6550 new = !!new;
6551
6552 err = mddev_lock(mddev);
6553 if (err)
6554 return err;
6555 conf = mddev->private;
6556 if (!conf)
6557 err = -ENODEV;
6558 else if (new != conf->skip_copy) {
6559 mddev_suspend(mddev);
6560 conf->skip_copy = new;
6561 if (new)
6562 mddev->queue->backing_dev_info->capabilities |=
6563 BDI_CAP_STABLE_WRITES;
6564 else
6565 mddev->queue->backing_dev_info->capabilities &=
6566 ~BDI_CAP_STABLE_WRITES;
6567 mddev_resume(mddev);
6568 }
6569 mddev_unlock(mddev);
6570 return err ?: len;
6571}
6572
6573static struct md_sysfs_entry
6574raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6575 raid5_show_skip_copy,
6576 raid5_store_skip_copy);
6577
6578static ssize_t
6579stripe_cache_active_show(struct mddev *mddev, char *page)
6580{
6581 struct r5conf *conf = mddev->private;
6582 if (conf)
6583 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6584 else
6585 return 0;
6586}
6587
6588static struct md_sysfs_entry
6589raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6590
6591static ssize_t
6592raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6593{
6594 struct r5conf *conf;
6595 int ret = 0;
6596 spin_lock(&mddev->lock);
6597 conf = mddev->private;
6598 if (conf)
6599 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6600 spin_unlock(&mddev->lock);
6601 return ret;
6602}
6603
6604static int alloc_thread_groups(struct r5conf *conf, int cnt,
6605 int *group_cnt,
6606 int *worker_cnt_per_group,
6607 struct r5worker_group **worker_groups);
6608static ssize_t
6609raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6610{
6611 struct r5conf *conf;
6612 unsigned int new;
6613 int err;
6614 struct r5worker_group *new_groups, *old_groups;
6615 int group_cnt, worker_cnt_per_group;
6616
6617 if (len >= PAGE_SIZE)
6618 return -EINVAL;
6619 if (kstrtouint(page, 10, &new))
6620 return -EINVAL;
6621 /* 8192 should be big enough */
6622 if (new > 8192)
6623 return -EINVAL;
6624
6625 err = mddev_lock(mddev);
6626 if (err)
6627 return err;
6628 conf = mddev->private;
6629 if (!conf)
6630 err = -ENODEV;
6631 else if (new != conf->worker_cnt_per_group) {
6632 mddev_suspend(mddev);
6633
6634 old_groups = conf->worker_groups;
6635 if (old_groups)
6636 flush_workqueue(raid5_wq);
6637
6638 err = alloc_thread_groups(conf, new,
6639 &group_cnt, &worker_cnt_per_group,
6640 &new_groups);
6641 if (!err) {
6642 spin_lock_irq(&conf->device_lock);
6643 conf->group_cnt = group_cnt;
6644 conf->worker_cnt_per_group = worker_cnt_per_group;
6645 conf->worker_groups = new_groups;
6646 spin_unlock_irq(&conf->device_lock);
6647
6648 if (old_groups)
6649 kfree(old_groups[0].workers);
6650 kfree(old_groups);
6651 }
6652 mddev_resume(mddev);
6653 }
6654 mddev_unlock(mddev);
6655
6656 return err ?: len;
6657}
6658
6659static struct md_sysfs_entry
6660raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6661 raid5_show_group_thread_cnt,
6662 raid5_store_group_thread_cnt);
6663
6664static struct attribute *raid5_attrs[] = {
6665 &raid5_stripecache_size.attr,
6666 &raid5_stripecache_active.attr,
6667 &raid5_preread_bypass_threshold.attr,
6668 &raid5_group_thread_cnt.attr,
6669 &raid5_skip_copy.attr,
6670 &raid5_rmw_level.attr,
6671 &r5c_journal_mode.attr,
David Brazdil0f672f62019-12-10 10:32:29 +00006672 &ppl_write_hint.attr,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006673 NULL,
6674};
6675static struct attribute_group raid5_attrs_group = {
6676 .name = NULL,
6677 .attrs = raid5_attrs,
6678};
6679
6680static int alloc_thread_groups(struct r5conf *conf, int cnt,
6681 int *group_cnt,
6682 int *worker_cnt_per_group,
6683 struct r5worker_group **worker_groups)
6684{
6685 int i, j, k;
6686 ssize_t size;
6687 struct r5worker *workers;
6688
6689 *worker_cnt_per_group = cnt;
6690 if (cnt == 0) {
6691 *group_cnt = 0;
6692 *worker_groups = NULL;
6693 return 0;
6694 }
6695 *group_cnt = num_possible_nodes();
6696 size = sizeof(struct r5worker) * cnt;
6697 workers = kcalloc(size, *group_cnt, GFP_NOIO);
6698 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6699 GFP_NOIO);
6700 if (!*worker_groups || !workers) {
6701 kfree(workers);
6702 kfree(*worker_groups);
6703 return -ENOMEM;
6704 }
6705
6706 for (i = 0; i < *group_cnt; i++) {
6707 struct r5worker_group *group;
6708
6709 group = &(*worker_groups)[i];
6710 INIT_LIST_HEAD(&group->handle_list);
6711 INIT_LIST_HEAD(&group->loprio_list);
6712 group->conf = conf;
6713 group->workers = workers + i * cnt;
6714
6715 for (j = 0; j < cnt; j++) {
6716 struct r5worker *worker = group->workers + j;
6717 worker->group = group;
6718 INIT_WORK(&worker->work, raid5_do_work);
6719
6720 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6721 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6722 }
6723 }
6724
6725 return 0;
6726}
6727
6728static void free_thread_groups(struct r5conf *conf)
6729{
6730 if (conf->worker_groups)
6731 kfree(conf->worker_groups[0].workers);
6732 kfree(conf->worker_groups);
6733 conf->worker_groups = NULL;
6734}
6735
6736static sector_t
6737raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6738{
6739 struct r5conf *conf = mddev->private;
6740
6741 if (!sectors)
6742 sectors = mddev->dev_sectors;
6743 if (!raid_disks)
6744 /* size is defined by the smallest of previous and new size */
6745 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6746
6747 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6748 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6749 return sectors * (raid_disks - conf->max_degraded);
6750}
6751
6752static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6753{
6754 safe_put_page(percpu->spare_page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006755 percpu->spare_page = NULL;
David Brazdil0f672f62019-12-10 10:32:29 +00006756 kvfree(percpu->scribble);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006757 percpu->scribble = NULL;
6758}
6759
6760static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6761{
David Brazdil0f672f62019-12-10 10:32:29 +00006762 if (conf->level == 6 && !percpu->spare_page) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006763 percpu->spare_page = alloc_page(GFP_KERNEL);
David Brazdil0f672f62019-12-10 10:32:29 +00006764 if (!percpu->spare_page)
6765 return -ENOMEM;
6766 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006767
David Brazdil0f672f62019-12-10 10:32:29 +00006768 if (scribble_alloc(percpu,
6769 max(conf->raid_disks,
6770 conf->previous_raid_disks),
6771 max(conf->chunk_sectors,
6772 conf->prev_chunk_sectors)
Olivier Deprez0e641232021-09-23 10:07:05 +02006773 / STRIPE_SECTORS)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006774 free_scratch_buffer(conf, percpu);
6775 return -ENOMEM;
6776 }
6777
6778 return 0;
6779}
6780
6781static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6782{
6783 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6784
6785 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6786 return 0;
6787}
6788
6789static void raid5_free_percpu(struct r5conf *conf)
6790{
6791 if (!conf->percpu)
6792 return;
6793
6794 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6795 free_percpu(conf->percpu);
6796}
6797
6798static void free_conf(struct r5conf *conf)
6799{
6800 int i;
6801
6802 log_exit(conf);
6803
6804 unregister_shrinker(&conf->shrinker);
6805 free_thread_groups(conf);
6806 shrink_stripes(conf);
6807 raid5_free_percpu(conf);
6808 for (i = 0; i < conf->pool_size; i++)
6809 if (conf->disks[i].extra_page)
6810 put_page(conf->disks[i].extra_page);
6811 kfree(conf->disks);
6812 bioset_exit(&conf->bio_split);
6813 kfree(conf->stripe_hashtbl);
6814 kfree(conf->pending_data);
6815 kfree(conf);
6816}
6817
6818static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6819{
6820 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6821 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6822
6823 if (alloc_scratch_buffer(conf, percpu)) {
6824 pr_warn("%s: failed memory allocation for cpu%u\n",
6825 __func__, cpu);
6826 return -ENOMEM;
6827 }
6828 return 0;
6829}
6830
6831static int raid5_alloc_percpu(struct r5conf *conf)
6832{
6833 int err = 0;
6834
6835 conf->percpu = alloc_percpu(struct raid5_percpu);
6836 if (!conf->percpu)
6837 return -ENOMEM;
6838
6839 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6840 if (!err) {
6841 conf->scribble_disks = max(conf->raid_disks,
6842 conf->previous_raid_disks);
6843 conf->scribble_sectors = max(conf->chunk_sectors,
6844 conf->prev_chunk_sectors);
6845 }
6846 return err;
6847}
6848
6849static unsigned long raid5_cache_scan(struct shrinker *shrink,
6850 struct shrink_control *sc)
6851{
6852 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6853 unsigned long ret = SHRINK_STOP;
6854
6855 if (mutex_trylock(&conf->cache_size_mutex)) {
6856 ret= 0;
6857 while (ret < sc->nr_to_scan &&
6858 conf->max_nr_stripes > conf->min_nr_stripes) {
6859 if (drop_one_stripe(conf) == 0) {
6860 ret = SHRINK_STOP;
6861 break;
6862 }
6863 ret++;
6864 }
6865 mutex_unlock(&conf->cache_size_mutex);
6866 }
6867 return ret;
6868}
6869
6870static unsigned long raid5_cache_count(struct shrinker *shrink,
6871 struct shrink_control *sc)
6872{
6873 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6874
6875 if (conf->max_nr_stripes < conf->min_nr_stripes)
6876 /* unlikely, but not impossible */
6877 return 0;
6878 return conf->max_nr_stripes - conf->min_nr_stripes;
6879}
6880
6881static struct r5conf *setup_conf(struct mddev *mddev)
6882{
6883 struct r5conf *conf;
6884 int raid_disk, memory, max_disks;
6885 struct md_rdev *rdev;
6886 struct disk_info *disk;
6887 char pers_name[6];
6888 int i;
6889 int group_cnt, worker_cnt_per_group;
6890 struct r5worker_group *new_group;
6891 int ret;
6892
6893 if (mddev->new_level != 5
6894 && mddev->new_level != 4
6895 && mddev->new_level != 6) {
6896 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6897 mdname(mddev), mddev->new_level);
6898 return ERR_PTR(-EIO);
6899 }
6900 if ((mddev->new_level == 5
6901 && !algorithm_valid_raid5(mddev->new_layout)) ||
6902 (mddev->new_level == 6
6903 && !algorithm_valid_raid6(mddev->new_layout))) {
6904 pr_warn("md/raid:%s: layout %d not supported\n",
6905 mdname(mddev), mddev->new_layout);
6906 return ERR_PTR(-EIO);
6907 }
6908 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6909 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6910 mdname(mddev), mddev->raid_disks);
6911 return ERR_PTR(-EINVAL);
6912 }
6913
6914 if (!mddev->new_chunk_sectors ||
6915 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6916 !is_power_of_2(mddev->new_chunk_sectors)) {
6917 pr_warn("md/raid:%s: invalid chunk size %d\n",
6918 mdname(mddev), mddev->new_chunk_sectors << 9);
6919 return ERR_PTR(-EINVAL);
6920 }
6921
6922 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6923 if (conf == NULL)
6924 goto abort;
6925 INIT_LIST_HEAD(&conf->free_list);
6926 INIT_LIST_HEAD(&conf->pending_list);
6927 conf->pending_data = kcalloc(PENDING_IO_MAX,
6928 sizeof(struct r5pending_data),
6929 GFP_KERNEL);
6930 if (!conf->pending_data)
6931 goto abort;
6932 for (i = 0; i < PENDING_IO_MAX; i++)
6933 list_add(&conf->pending_data[i].sibling, &conf->free_list);
6934 /* Don't enable multi-threading by default*/
6935 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6936 &new_group)) {
6937 conf->group_cnt = group_cnt;
6938 conf->worker_cnt_per_group = worker_cnt_per_group;
6939 conf->worker_groups = new_group;
6940 } else
6941 goto abort;
6942 spin_lock_init(&conf->device_lock);
6943 seqcount_init(&conf->gen_lock);
6944 mutex_init(&conf->cache_size_mutex);
6945 init_waitqueue_head(&conf->wait_for_quiescent);
6946 init_waitqueue_head(&conf->wait_for_stripe);
6947 init_waitqueue_head(&conf->wait_for_overlap);
6948 INIT_LIST_HEAD(&conf->handle_list);
6949 INIT_LIST_HEAD(&conf->loprio_list);
6950 INIT_LIST_HEAD(&conf->hold_list);
6951 INIT_LIST_HEAD(&conf->delayed_list);
6952 INIT_LIST_HEAD(&conf->bitmap_list);
6953 init_llist_head(&conf->released_stripes);
6954 atomic_set(&conf->active_stripes, 0);
6955 atomic_set(&conf->preread_active_stripes, 0);
6956 atomic_set(&conf->active_aligned_reads, 0);
6957 spin_lock_init(&conf->pending_bios_lock);
6958 conf->batch_bio_dispatch = true;
6959 rdev_for_each(rdev, mddev) {
6960 if (test_bit(Journal, &rdev->flags))
6961 continue;
6962 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6963 conf->batch_bio_dispatch = false;
6964 break;
6965 }
6966 }
6967
6968 conf->bypass_threshold = BYPASS_THRESHOLD;
6969 conf->recovery_disabled = mddev->recovery_disabled - 1;
6970
6971 conf->raid_disks = mddev->raid_disks;
6972 if (mddev->reshape_position == MaxSector)
6973 conf->previous_raid_disks = mddev->raid_disks;
6974 else
6975 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6976 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6977
6978 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
6979 GFP_KERNEL);
6980
6981 if (!conf->disks)
6982 goto abort;
6983
6984 for (i = 0; i < max_disks; i++) {
6985 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6986 if (!conf->disks[i].extra_page)
6987 goto abort;
6988 }
6989
6990 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
6991 if (ret)
6992 goto abort;
6993 conf->mddev = mddev;
6994
6995 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6996 goto abort;
6997
6998 /* We init hash_locks[0] separately to that it can be used
6999 * as the reference lock in the spin_lock_nest_lock() call
7000 * in lock_all_device_hash_locks_irq in order to convince
7001 * lockdep that we know what we are doing.
7002 */
7003 spin_lock_init(conf->hash_locks);
7004 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7005 spin_lock_init(conf->hash_locks + i);
7006
7007 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7008 INIT_LIST_HEAD(conf->inactive_list + i);
7009
7010 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7011 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7012
7013 atomic_set(&conf->r5c_cached_full_stripes, 0);
7014 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7015 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7016 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7017 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7018 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7019
7020 conf->level = mddev->new_level;
7021 conf->chunk_sectors = mddev->new_chunk_sectors;
7022 if (raid5_alloc_percpu(conf) != 0)
7023 goto abort;
7024
7025 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7026
7027 rdev_for_each(rdev, mddev) {
7028 raid_disk = rdev->raid_disk;
7029 if (raid_disk >= max_disks
7030 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7031 continue;
7032 disk = conf->disks + raid_disk;
7033
7034 if (test_bit(Replacement, &rdev->flags)) {
7035 if (disk->replacement)
7036 goto abort;
7037 disk->replacement = rdev;
7038 } else {
7039 if (disk->rdev)
7040 goto abort;
7041 disk->rdev = rdev;
7042 }
7043
7044 if (test_bit(In_sync, &rdev->flags)) {
7045 char b[BDEVNAME_SIZE];
7046 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7047 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7048 } else if (rdev->saved_raid_disk != raid_disk)
7049 /* Cannot rely on bitmap to complete recovery */
7050 conf->fullsync = 1;
7051 }
7052
7053 conf->level = mddev->new_level;
7054 if (conf->level == 6) {
7055 conf->max_degraded = 2;
7056 if (raid6_call.xor_syndrome)
7057 conf->rmw_level = PARITY_ENABLE_RMW;
7058 else
7059 conf->rmw_level = PARITY_DISABLE_RMW;
7060 } else {
7061 conf->max_degraded = 1;
7062 conf->rmw_level = PARITY_ENABLE_RMW;
7063 }
7064 conf->algorithm = mddev->new_layout;
7065 conf->reshape_progress = mddev->reshape_position;
7066 if (conf->reshape_progress != MaxSector) {
7067 conf->prev_chunk_sectors = mddev->chunk_sectors;
7068 conf->prev_algo = mddev->layout;
7069 } else {
7070 conf->prev_chunk_sectors = conf->chunk_sectors;
7071 conf->prev_algo = conf->algorithm;
7072 }
7073
7074 conf->min_nr_stripes = NR_STRIPES;
7075 if (mddev->reshape_position != MaxSector) {
7076 int stripes = max_t(int,
7077 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7078 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7079 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7080 if (conf->min_nr_stripes != NR_STRIPES)
7081 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7082 mdname(mddev), conf->min_nr_stripes);
7083 }
7084 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7085 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7086 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7087 if (grow_stripes(conf, conf->min_nr_stripes)) {
7088 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7089 mdname(mddev), memory);
7090 goto abort;
7091 } else
7092 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7093 /*
7094 * Losing a stripe head costs more than the time to refill it,
7095 * it reduces the queue depth and so can hurt throughput.
7096 * So set it rather large, scaled by number of devices.
7097 */
7098 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7099 conf->shrinker.scan_objects = raid5_cache_scan;
7100 conf->shrinker.count_objects = raid5_cache_count;
7101 conf->shrinker.batch = 128;
7102 conf->shrinker.flags = 0;
7103 if (register_shrinker(&conf->shrinker)) {
7104 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7105 mdname(mddev));
7106 goto abort;
7107 }
7108
7109 sprintf(pers_name, "raid%d", mddev->new_level);
7110 conf->thread = md_register_thread(raid5d, mddev, pers_name);
7111 if (!conf->thread) {
7112 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7113 mdname(mddev));
7114 goto abort;
7115 }
7116
7117 return conf;
7118
7119 abort:
7120 if (conf) {
7121 free_conf(conf);
7122 return ERR_PTR(-EIO);
7123 } else
7124 return ERR_PTR(-ENOMEM);
7125}
7126
7127static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7128{
7129 switch (algo) {
7130 case ALGORITHM_PARITY_0:
7131 if (raid_disk < max_degraded)
7132 return 1;
7133 break;
7134 case ALGORITHM_PARITY_N:
7135 if (raid_disk >= raid_disks - max_degraded)
7136 return 1;
7137 break;
7138 case ALGORITHM_PARITY_0_6:
7139 if (raid_disk == 0 ||
7140 raid_disk == raid_disks - 1)
7141 return 1;
7142 break;
7143 case ALGORITHM_LEFT_ASYMMETRIC_6:
7144 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7145 case ALGORITHM_LEFT_SYMMETRIC_6:
7146 case ALGORITHM_RIGHT_SYMMETRIC_6:
7147 if (raid_disk == raid_disks - 1)
7148 return 1;
7149 }
7150 return 0;
7151}
7152
7153static int raid5_run(struct mddev *mddev)
7154{
7155 struct r5conf *conf;
7156 int working_disks = 0;
7157 int dirty_parity_disks = 0;
7158 struct md_rdev *rdev;
7159 struct md_rdev *journal_dev = NULL;
7160 sector_t reshape_offset = 0;
7161 int i;
7162 long long min_offset_diff = 0;
7163 int first = 1;
7164
7165 if (mddev_init_writes_pending(mddev) < 0)
7166 return -ENOMEM;
7167
7168 if (mddev->recovery_cp != MaxSector)
7169 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7170 mdname(mddev));
7171
7172 rdev_for_each(rdev, mddev) {
7173 long long diff;
7174
7175 if (test_bit(Journal, &rdev->flags)) {
7176 journal_dev = rdev;
7177 continue;
7178 }
7179 if (rdev->raid_disk < 0)
7180 continue;
7181 diff = (rdev->new_data_offset - rdev->data_offset);
7182 if (first) {
7183 min_offset_diff = diff;
7184 first = 0;
7185 } else if (mddev->reshape_backwards &&
7186 diff < min_offset_diff)
7187 min_offset_diff = diff;
7188 else if (!mddev->reshape_backwards &&
7189 diff > min_offset_diff)
7190 min_offset_diff = diff;
7191 }
7192
7193 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7194 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7195 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7196 mdname(mddev));
7197 return -EINVAL;
7198 }
7199
7200 if (mddev->reshape_position != MaxSector) {
7201 /* Check that we can continue the reshape.
7202 * Difficulties arise if the stripe we would write to
7203 * next is at or after the stripe we would read from next.
7204 * For a reshape that changes the number of devices, this
7205 * is only possible for a very short time, and mdadm makes
7206 * sure that time appears to have past before assembling
7207 * the array. So we fail if that time hasn't passed.
7208 * For a reshape that keeps the number of devices the same
7209 * mdadm must be monitoring the reshape can keeping the
7210 * critical areas read-only and backed up. It will start
7211 * the array in read-only mode, so we check for that.
7212 */
7213 sector_t here_new, here_old;
7214 int old_disks;
7215 int max_degraded = (mddev->level == 6 ? 2 : 1);
7216 int chunk_sectors;
7217 int new_data_disks;
7218
7219 if (journal_dev) {
7220 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7221 mdname(mddev));
7222 return -EINVAL;
7223 }
7224
7225 if (mddev->new_level != mddev->level) {
7226 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7227 mdname(mddev));
7228 return -EINVAL;
7229 }
7230 old_disks = mddev->raid_disks - mddev->delta_disks;
7231 /* reshape_position must be on a new-stripe boundary, and one
7232 * further up in new geometry must map after here in old
7233 * geometry.
7234 * If the chunk sizes are different, then as we perform reshape
7235 * in units of the largest of the two, reshape_position needs
7236 * be a multiple of the largest chunk size times new data disks.
7237 */
7238 here_new = mddev->reshape_position;
7239 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7240 new_data_disks = mddev->raid_disks - max_degraded;
7241 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7242 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7243 mdname(mddev));
7244 return -EINVAL;
7245 }
7246 reshape_offset = here_new * chunk_sectors;
7247 /* here_new is the stripe we will write to */
7248 here_old = mddev->reshape_position;
7249 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7250 /* here_old is the first stripe that we might need to read
7251 * from */
7252 if (mddev->delta_disks == 0) {
7253 /* We cannot be sure it is safe to start an in-place
7254 * reshape. It is only safe if user-space is monitoring
7255 * and taking constant backups.
7256 * mdadm always starts a situation like this in
7257 * readonly mode so it can take control before
7258 * allowing any writes. So just check for that.
7259 */
7260 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7261 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7262 /* not really in-place - so OK */;
7263 else if (mddev->ro == 0) {
7264 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7265 mdname(mddev));
7266 return -EINVAL;
7267 }
7268 } else if (mddev->reshape_backwards
7269 ? (here_new * chunk_sectors + min_offset_diff <=
7270 here_old * chunk_sectors)
7271 : (here_new * chunk_sectors >=
7272 here_old * chunk_sectors + (-min_offset_diff))) {
7273 /* Reading from the same stripe as writing to - bad */
7274 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7275 mdname(mddev));
7276 return -EINVAL;
7277 }
7278 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7279 /* OK, we should be able to continue; */
7280 } else {
7281 BUG_ON(mddev->level != mddev->new_level);
7282 BUG_ON(mddev->layout != mddev->new_layout);
7283 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7284 BUG_ON(mddev->delta_disks != 0);
7285 }
7286
7287 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7288 test_bit(MD_HAS_PPL, &mddev->flags)) {
7289 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7290 mdname(mddev));
7291 clear_bit(MD_HAS_PPL, &mddev->flags);
7292 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7293 }
7294
7295 if (mddev->private == NULL)
7296 conf = setup_conf(mddev);
7297 else
7298 conf = mddev->private;
7299
7300 if (IS_ERR(conf))
7301 return PTR_ERR(conf);
7302
7303 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7304 if (!journal_dev) {
7305 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7306 mdname(mddev));
7307 mddev->ro = 1;
7308 set_disk_ro(mddev->gendisk, 1);
7309 } else if (mddev->recovery_cp == MaxSector)
7310 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7311 }
7312
7313 conf->min_offset_diff = min_offset_diff;
7314 mddev->thread = conf->thread;
7315 conf->thread = NULL;
7316 mddev->private = conf;
7317
7318 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7319 i++) {
7320 rdev = conf->disks[i].rdev;
7321 if (!rdev && conf->disks[i].replacement) {
7322 /* The replacement is all we have yet */
7323 rdev = conf->disks[i].replacement;
7324 conf->disks[i].replacement = NULL;
7325 clear_bit(Replacement, &rdev->flags);
7326 conf->disks[i].rdev = rdev;
7327 }
7328 if (!rdev)
7329 continue;
7330 if (conf->disks[i].replacement &&
7331 conf->reshape_progress != MaxSector) {
7332 /* replacements and reshape simply do not mix. */
7333 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7334 goto abort;
7335 }
7336 if (test_bit(In_sync, &rdev->flags)) {
7337 working_disks++;
7338 continue;
7339 }
7340 /* This disc is not fully in-sync. However if it
7341 * just stored parity (beyond the recovery_offset),
7342 * when we don't need to be concerned about the
7343 * array being dirty.
7344 * When reshape goes 'backwards', we never have
7345 * partially completed devices, so we only need
7346 * to worry about reshape going forwards.
7347 */
7348 /* Hack because v0.91 doesn't store recovery_offset properly. */
7349 if (mddev->major_version == 0 &&
7350 mddev->minor_version > 90)
7351 rdev->recovery_offset = reshape_offset;
7352
7353 if (rdev->recovery_offset < reshape_offset) {
7354 /* We need to check old and new layout */
7355 if (!only_parity(rdev->raid_disk,
7356 conf->algorithm,
7357 conf->raid_disks,
7358 conf->max_degraded))
7359 continue;
7360 }
7361 if (!only_parity(rdev->raid_disk,
7362 conf->prev_algo,
7363 conf->previous_raid_disks,
7364 conf->max_degraded))
7365 continue;
7366 dirty_parity_disks++;
7367 }
7368
7369 /*
7370 * 0 for a fully functional array, 1 or 2 for a degraded array.
7371 */
7372 mddev->degraded = raid5_calc_degraded(conf);
7373
7374 if (has_failed(conf)) {
7375 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7376 mdname(mddev), mddev->degraded, conf->raid_disks);
7377 goto abort;
7378 }
7379
7380 /* device size must be a multiple of chunk size */
7381 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7382 mddev->resync_max_sectors = mddev->dev_sectors;
7383
7384 if (mddev->degraded > dirty_parity_disks &&
7385 mddev->recovery_cp != MaxSector) {
7386 if (test_bit(MD_HAS_PPL, &mddev->flags))
7387 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7388 mdname(mddev));
7389 else if (mddev->ok_start_degraded)
7390 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7391 mdname(mddev));
7392 else {
7393 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7394 mdname(mddev));
7395 goto abort;
7396 }
7397 }
7398
7399 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7400 mdname(mddev), conf->level,
7401 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7402 mddev->new_layout);
7403
7404 print_raid5_conf(conf);
7405
7406 if (conf->reshape_progress != MaxSector) {
7407 conf->reshape_safe = conf->reshape_progress;
7408 atomic_set(&conf->reshape_stripes, 0);
7409 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7410 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7411 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7412 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7413 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7414 "reshape");
David Brazdil0f672f62019-12-10 10:32:29 +00007415 if (!mddev->sync_thread)
7416 goto abort;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007417 }
7418
7419 /* Ok, everything is just fine now */
7420 if (mddev->to_remove == &raid5_attrs_group)
7421 mddev->to_remove = NULL;
7422 else if (mddev->kobj.sd &&
7423 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7424 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7425 mdname(mddev));
7426 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7427
7428 if (mddev->queue) {
7429 int chunk_size;
7430 /* read-ahead size must cover two whole stripes, which
7431 * is 2 * (datadisks) * chunksize where 'n' is the
7432 * number of raid devices
7433 */
7434 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7435 int stripe = data_disks *
7436 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7437 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7438 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7439
7440 chunk_size = mddev->chunk_sectors << 9;
7441 blk_queue_io_min(mddev->queue, chunk_size);
7442 blk_queue_io_opt(mddev->queue, chunk_size *
7443 (conf->raid_disks - conf->max_degraded));
7444 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7445 /*
7446 * We can only discard a whole stripe. It doesn't make sense to
7447 * discard data disk but write parity disk
7448 */
7449 stripe = stripe * PAGE_SIZE;
7450 /* Round up to power of 2, as discard handling
7451 * currently assumes that */
7452 while ((stripe-1) & stripe)
7453 stripe = (stripe | (stripe-1)) + 1;
7454 mddev->queue->limits.discard_alignment = stripe;
7455 mddev->queue->limits.discard_granularity = stripe;
7456
7457 blk_queue_max_write_same_sectors(mddev->queue, 0);
7458 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7459
7460 rdev_for_each(rdev, mddev) {
7461 disk_stack_limits(mddev->gendisk, rdev->bdev,
7462 rdev->data_offset << 9);
7463 disk_stack_limits(mddev->gendisk, rdev->bdev,
7464 rdev->new_data_offset << 9);
7465 }
7466
7467 /*
7468 * zeroing is required, otherwise data
7469 * could be lost. Consider a scenario: discard a stripe
7470 * (the stripe could be inconsistent if
7471 * discard_zeroes_data is 0); write one disk of the
7472 * stripe (the stripe could be inconsistent again
7473 * depending on which disks are used to calculate
7474 * parity); the disk is broken; The stripe data of this
7475 * disk is lost.
7476 *
7477 * We only allow DISCARD if the sysadmin has confirmed that
7478 * only safe devices are in use by setting a module parameter.
7479 * A better idea might be to turn DISCARD into WRITE_ZEROES
7480 * requests, as that is required to be safe.
7481 */
7482 if (devices_handle_discard_safely &&
7483 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7484 mddev->queue->limits.discard_granularity >= stripe)
7485 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7486 mddev->queue);
7487 else
7488 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7489 mddev->queue);
7490
7491 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7492 }
7493
7494 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7495 goto abort;
7496
7497 return 0;
7498abort:
7499 md_unregister_thread(&mddev->thread);
7500 print_raid5_conf(conf);
7501 free_conf(conf);
7502 mddev->private = NULL;
7503 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7504 return -EIO;
7505}
7506
7507static void raid5_free(struct mddev *mddev, void *priv)
7508{
7509 struct r5conf *conf = priv;
7510
7511 free_conf(conf);
7512 mddev->to_remove = &raid5_attrs_group;
7513}
7514
7515static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7516{
7517 struct r5conf *conf = mddev->private;
7518 int i;
7519
7520 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7521 conf->chunk_sectors / 2, mddev->layout);
7522 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7523 rcu_read_lock();
7524 for (i = 0; i < conf->raid_disks; i++) {
7525 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7526 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7527 }
7528 rcu_read_unlock();
7529 seq_printf (seq, "]");
7530}
7531
7532static void print_raid5_conf (struct r5conf *conf)
7533{
7534 int i;
7535 struct disk_info *tmp;
7536
7537 pr_debug("RAID conf printout:\n");
7538 if (!conf) {
7539 pr_debug("(conf==NULL)\n");
7540 return;
7541 }
7542 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7543 conf->raid_disks,
7544 conf->raid_disks - conf->mddev->degraded);
7545
7546 for (i = 0; i < conf->raid_disks; i++) {
7547 char b[BDEVNAME_SIZE];
7548 tmp = conf->disks + i;
7549 if (tmp->rdev)
7550 pr_debug(" disk %d, o:%d, dev:%s\n",
7551 i, !test_bit(Faulty, &tmp->rdev->flags),
7552 bdevname(tmp->rdev->bdev, b));
7553 }
7554}
7555
7556static int raid5_spare_active(struct mddev *mddev)
7557{
7558 int i;
7559 struct r5conf *conf = mddev->private;
7560 struct disk_info *tmp;
7561 int count = 0;
7562 unsigned long flags;
7563
7564 for (i = 0; i < conf->raid_disks; i++) {
7565 tmp = conf->disks + i;
7566 if (tmp->replacement
7567 && tmp->replacement->recovery_offset == MaxSector
7568 && !test_bit(Faulty, &tmp->replacement->flags)
7569 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7570 /* Replacement has just become active. */
7571 if (!tmp->rdev
7572 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7573 count++;
7574 if (tmp->rdev) {
7575 /* Replaced device not technically faulty,
7576 * but we need to be sure it gets removed
7577 * and never re-added.
7578 */
7579 set_bit(Faulty, &tmp->rdev->flags);
7580 sysfs_notify_dirent_safe(
7581 tmp->rdev->sysfs_state);
7582 }
7583 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7584 } else if (tmp->rdev
7585 && tmp->rdev->recovery_offset == MaxSector
7586 && !test_bit(Faulty, &tmp->rdev->flags)
7587 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7588 count++;
7589 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7590 }
7591 }
7592 spin_lock_irqsave(&conf->device_lock, flags);
7593 mddev->degraded = raid5_calc_degraded(conf);
7594 spin_unlock_irqrestore(&conf->device_lock, flags);
7595 print_raid5_conf(conf);
7596 return count;
7597}
7598
7599static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7600{
7601 struct r5conf *conf = mddev->private;
7602 int err = 0;
7603 int number = rdev->raid_disk;
7604 struct md_rdev **rdevp;
7605 struct disk_info *p = conf->disks + number;
7606
7607 print_raid5_conf(conf);
7608 if (test_bit(Journal, &rdev->flags) && conf->log) {
7609 /*
7610 * we can't wait pending write here, as this is called in
7611 * raid5d, wait will deadlock.
7612 * neilb: there is no locking about new writes here,
7613 * so this cannot be safe.
7614 */
7615 if (atomic_read(&conf->active_stripes) ||
7616 atomic_read(&conf->r5c_cached_full_stripes) ||
7617 atomic_read(&conf->r5c_cached_partial_stripes)) {
7618 return -EBUSY;
7619 }
7620 log_exit(conf);
7621 return 0;
7622 }
7623 if (rdev == p->rdev)
7624 rdevp = &p->rdev;
7625 else if (rdev == p->replacement)
7626 rdevp = &p->replacement;
7627 else
7628 return 0;
7629
7630 if (number >= conf->raid_disks &&
7631 conf->reshape_progress == MaxSector)
7632 clear_bit(In_sync, &rdev->flags);
7633
7634 if (test_bit(In_sync, &rdev->flags) ||
7635 atomic_read(&rdev->nr_pending)) {
7636 err = -EBUSY;
7637 goto abort;
7638 }
7639 /* Only remove non-faulty devices if recovery
7640 * isn't possible.
7641 */
7642 if (!test_bit(Faulty, &rdev->flags) &&
7643 mddev->recovery_disabled != conf->recovery_disabled &&
7644 !has_failed(conf) &&
7645 (!p->replacement || p->replacement == rdev) &&
7646 number < conf->raid_disks) {
7647 err = -EBUSY;
7648 goto abort;
7649 }
7650 *rdevp = NULL;
7651 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7652 synchronize_rcu();
7653 if (atomic_read(&rdev->nr_pending)) {
7654 /* lost the race, try later */
7655 err = -EBUSY;
7656 *rdevp = rdev;
7657 }
7658 }
7659 if (!err) {
7660 err = log_modify(conf, rdev, false);
7661 if (err)
7662 goto abort;
7663 }
7664 if (p->replacement) {
7665 /* We must have just cleared 'rdev' */
7666 p->rdev = p->replacement;
7667 clear_bit(Replacement, &p->replacement->flags);
7668 smp_mb(); /* Make sure other CPUs may see both as identical
7669 * but will never see neither - if they are careful
7670 */
7671 p->replacement = NULL;
7672
7673 if (!err)
7674 err = log_modify(conf, p->rdev, true);
7675 }
7676
7677 clear_bit(WantReplacement, &rdev->flags);
7678abort:
7679
7680 print_raid5_conf(conf);
7681 return err;
7682}
7683
7684static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7685{
7686 struct r5conf *conf = mddev->private;
David Brazdil0f672f62019-12-10 10:32:29 +00007687 int ret, err = -EEXIST;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007688 int disk;
7689 struct disk_info *p;
7690 int first = 0;
7691 int last = conf->raid_disks - 1;
7692
7693 if (test_bit(Journal, &rdev->flags)) {
7694 if (conf->log)
7695 return -EBUSY;
7696
7697 rdev->raid_disk = 0;
7698 /*
7699 * The array is in readonly mode if journal is missing, so no
7700 * write requests running. We should be safe
7701 */
David Brazdil0f672f62019-12-10 10:32:29 +00007702 ret = log_init(conf, rdev, false);
7703 if (ret)
7704 return ret;
7705
7706 ret = r5l_start(conf->log);
7707 if (ret)
7708 return ret;
7709
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007710 return 0;
7711 }
7712 if (mddev->recovery_disabled == conf->recovery_disabled)
7713 return -EBUSY;
7714
7715 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7716 /* no point adding a device */
7717 return -EINVAL;
7718
7719 if (rdev->raid_disk >= 0)
7720 first = last = rdev->raid_disk;
7721
7722 /*
7723 * find the disk ... but prefer rdev->saved_raid_disk
7724 * if possible.
7725 */
7726 if (rdev->saved_raid_disk >= 0 &&
7727 rdev->saved_raid_disk >= first &&
7728 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7729 first = rdev->saved_raid_disk;
7730
7731 for (disk = first; disk <= last; disk++) {
7732 p = conf->disks + disk;
7733 if (p->rdev == NULL) {
7734 clear_bit(In_sync, &rdev->flags);
7735 rdev->raid_disk = disk;
7736 if (rdev->saved_raid_disk != disk)
7737 conf->fullsync = 1;
7738 rcu_assign_pointer(p->rdev, rdev);
7739
7740 err = log_modify(conf, rdev, true);
7741
7742 goto out;
7743 }
7744 }
7745 for (disk = first; disk <= last; disk++) {
7746 p = conf->disks + disk;
7747 if (test_bit(WantReplacement, &p->rdev->flags) &&
7748 p->replacement == NULL) {
7749 clear_bit(In_sync, &rdev->flags);
7750 set_bit(Replacement, &rdev->flags);
7751 rdev->raid_disk = disk;
7752 err = 0;
7753 conf->fullsync = 1;
7754 rcu_assign_pointer(p->replacement, rdev);
7755 break;
7756 }
7757 }
7758out:
7759 print_raid5_conf(conf);
7760 return err;
7761}
7762
7763static int raid5_resize(struct mddev *mddev, sector_t sectors)
7764{
7765 /* no resync is happening, and there is enough space
7766 * on all devices, so we can resize.
7767 * We need to make sure resync covers any new space.
7768 * If the array is shrinking we should possibly wait until
7769 * any io in the removed space completes, but it hardly seems
7770 * worth it.
7771 */
7772 sector_t newsize;
7773 struct r5conf *conf = mddev->private;
7774
7775 if (raid5_has_log(conf) || raid5_has_ppl(conf))
7776 return -EINVAL;
7777 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7778 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7779 if (mddev->external_size &&
7780 mddev->array_sectors > newsize)
7781 return -EINVAL;
7782 if (mddev->bitmap) {
7783 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
7784 if (ret)
7785 return ret;
7786 }
7787 md_set_array_sectors(mddev, newsize);
7788 if (sectors > mddev->dev_sectors &&
7789 mddev->recovery_cp > mddev->dev_sectors) {
7790 mddev->recovery_cp = mddev->dev_sectors;
7791 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7792 }
7793 mddev->dev_sectors = sectors;
7794 mddev->resync_max_sectors = sectors;
7795 return 0;
7796}
7797
7798static int check_stripe_cache(struct mddev *mddev)
7799{
7800 /* Can only proceed if there are plenty of stripe_heads.
7801 * We need a minimum of one full stripe,, and for sensible progress
7802 * it is best to have about 4 times that.
7803 * If we require 4 times, then the default 256 4K stripe_heads will
7804 * allow for chunk sizes up to 256K, which is probably OK.
7805 * If the chunk size is greater, user-space should request more
7806 * stripe_heads first.
7807 */
7808 struct r5conf *conf = mddev->private;
7809 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7810 > conf->min_nr_stripes ||
7811 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7812 > conf->min_nr_stripes) {
7813 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7814 mdname(mddev),
7815 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7816 / STRIPE_SIZE)*4);
7817 return 0;
7818 }
7819 return 1;
7820}
7821
7822static int check_reshape(struct mddev *mddev)
7823{
7824 struct r5conf *conf = mddev->private;
7825
7826 if (raid5_has_log(conf) || raid5_has_ppl(conf))
7827 return -EINVAL;
7828 if (mddev->delta_disks == 0 &&
7829 mddev->new_layout == mddev->layout &&
7830 mddev->new_chunk_sectors == mddev->chunk_sectors)
7831 return 0; /* nothing to do */
7832 if (has_failed(conf))
7833 return -EINVAL;
7834 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7835 /* We might be able to shrink, but the devices must
7836 * be made bigger first.
7837 * For raid6, 4 is the minimum size.
7838 * Otherwise 2 is the minimum
7839 */
7840 int min = 2;
7841 if (mddev->level == 6)
7842 min = 4;
7843 if (mddev->raid_disks + mddev->delta_disks < min)
7844 return -EINVAL;
7845 }
7846
7847 if (!check_stripe_cache(mddev))
7848 return -ENOSPC;
7849
7850 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7851 mddev->delta_disks > 0)
7852 if (resize_chunks(conf,
7853 conf->previous_raid_disks
7854 + max(0, mddev->delta_disks),
7855 max(mddev->new_chunk_sectors,
7856 mddev->chunk_sectors)
7857 ) < 0)
7858 return -ENOMEM;
7859
7860 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7861 return 0; /* never bother to shrink */
7862 return resize_stripes(conf, (conf->previous_raid_disks
7863 + mddev->delta_disks));
7864}
7865
7866static int raid5_start_reshape(struct mddev *mddev)
7867{
7868 struct r5conf *conf = mddev->private;
7869 struct md_rdev *rdev;
7870 int spares = 0;
7871 unsigned long flags;
7872
7873 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7874 return -EBUSY;
7875
7876 if (!check_stripe_cache(mddev))
7877 return -ENOSPC;
7878
7879 if (has_failed(conf))
7880 return -EINVAL;
7881
7882 rdev_for_each(rdev, mddev) {
7883 if (!test_bit(In_sync, &rdev->flags)
7884 && !test_bit(Faulty, &rdev->flags))
7885 spares++;
7886 }
7887
7888 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7889 /* Not enough devices even to make a degraded array
7890 * of that size
7891 */
7892 return -EINVAL;
7893
7894 /* Refuse to reduce size of the array. Any reductions in
7895 * array size must be through explicit setting of array_size
7896 * attribute.
7897 */
7898 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7899 < mddev->array_sectors) {
7900 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7901 mdname(mddev));
7902 return -EINVAL;
7903 }
7904
7905 atomic_set(&conf->reshape_stripes, 0);
7906 spin_lock_irq(&conf->device_lock);
7907 write_seqcount_begin(&conf->gen_lock);
7908 conf->previous_raid_disks = conf->raid_disks;
7909 conf->raid_disks += mddev->delta_disks;
7910 conf->prev_chunk_sectors = conf->chunk_sectors;
7911 conf->chunk_sectors = mddev->new_chunk_sectors;
7912 conf->prev_algo = conf->algorithm;
7913 conf->algorithm = mddev->new_layout;
7914 conf->generation++;
7915 /* Code that selects data_offset needs to see the generation update
7916 * if reshape_progress has been set - so a memory barrier needed.
7917 */
7918 smp_mb();
7919 if (mddev->reshape_backwards)
7920 conf->reshape_progress = raid5_size(mddev, 0, 0);
7921 else
7922 conf->reshape_progress = 0;
7923 conf->reshape_safe = conf->reshape_progress;
7924 write_seqcount_end(&conf->gen_lock);
7925 spin_unlock_irq(&conf->device_lock);
7926
7927 /* Now make sure any requests that proceeded on the assumption
7928 * the reshape wasn't running - like Discard or Read - have
7929 * completed.
7930 */
7931 mddev_suspend(mddev);
7932 mddev_resume(mddev);
7933
7934 /* Add some new drives, as many as will fit.
7935 * We know there are enough to make the newly sized array work.
7936 * Don't add devices if we are reducing the number of
7937 * devices in the array. This is because it is not possible
7938 * to correctly record the "partially reconstructed" state of
7939 * such devices during the reshape and confusion could result.
7940 */
7941 if (mddev->delta_disks >= 0) {
7942 rdev_for_each(rdev, mddev)
7943 if (rdev->raid_disk < 0 &&
7944 !test_bit(Faulty, &rdev->flags)) {
7945 if (raid5_add_disk(mddev, rdev) == 0) {
7946 if (rdev->raid_disk
7947 >= conf->previous_raid_disks)
7948 set_bit(In_sync, &rdev->flags);
7949 else
7950 rdev->recovery_offset = 0;
7951
7952 if (sysfs_link_rdev(mddev, rdev))
7953 /* Failure here is OK */;
7954 }
7955 } else if (rdev->raid_disk >= conf->previous_raid_disks
7956 && !test_bit(Faulty, &rdev->flags)) {
7957 /* This is a spare that was manually added */
7958 set_bit(In_sync, &rdev->flags);
7959 }
7960
7961 /* When a reshape changes the number of devices,
7962 * ->degraded is measured against the larger of the
7963 * pre and post number of devices.
7964 */
7965 spin_lock_irqsave(&conf->device_lock, flags);
7966 mddev->degraded = raid5_calc_degraded(conf);
7967 spin_unlock_irqrestore(&conf->device_lock, flags);
7968 }
7969 mddev->raid_disks = conf->raid_disks;
7970 mddev->reshape_position = conf->reshape_progress;
7971 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7972
7973 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7974 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7975 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7976 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7977 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7978 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7979 "reshape");
7980 if (!mddev->sync_thread) {
7981 mddev->recovery = 0;
7982 spin_lock_irq(&conf->device_lock);
7983 write_seqcount_begin(&conf->gen_lock);
7984 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7985 mddev->new_chunk_sectors =
7986 conf->chunk_sectors = conf->prev_chunk_sectors;
7987 mddev->new_layout = conf->algorithm = conf->prev_algo;
7988 rdev_for_each(rdev, mddev)
7989 rdev->new_data_offset = rdev->data_offset;
7990 smp_wmb();
7991 conf->generation --;
7992 conf->reshape_progress = MaxSector;
7993 mddev->reshape_position = MaxSector;
7994 write_seqcount_end(&conf->gen_lock);
7995 spin_unlock_irq(&conf->device_lock);
7996 return -EAGAIN;
7997 }
7998 conf->reshape_checkpoint = jiffies;
7999 md_wakeup_thread(mddev->sync_thread);
8000 md_new_event(mddev);
8001 return 0;
8002}
8003
8004/* This is called from the reshape thread and should make any
8005 * changes needed in 'conf'
8006 */
8007static void end_reshape(struct r5conf *conf)
8008{
8009
8010 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8011 struct md_rdev *rdev;
8012
8013 spin_lock_irq(&conf->device_lock);
8014 conf->previous_raid_disks = conf->raid_disks;
8015 md_finish_reshape(conf->mddev);
8016 smp_wmb();
8017 conf->reshape_progress = MaxSector;
8018 conf->mddev->reshape_position = MaxSector;
8019 rdev_for_each(rdev, conf->mddev)
8020 if (rdev->raid_disk >= 0 &&
8021 !test_bit(Journal, &rdev->flags) &&
8022 !test_bit(In_sync, &rdev->flags))
8023 rdev->recovery_offset = MaxSector;
8024 spin_unlock_irq(&conf->device_lock);
8025 wake_up(&conf->wait_for_overlap);
8026
8027 /* read-ahead size must cover two whole stripes, which is
8028 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
8029 */
8030 if (conf->mddev->queue) {
8031 int data_disks = conf->raid_disks - conf->max_degraded;
8032 int stripe = data_disks * ((conf->chunk_sectors << 9)
8033 / PAGE_SIZE);
8034 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
8035 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
8036 }
8037 }
8038}
8039
8040/* This is called from the raid5d thread with mddev_lock held.
8041 * It makes config changes to the device.
8042 */
8043static void raid5_finish_reshape(struct mddev *mddev)
8044{
8045 struct r5conf *conf = mddev->private;
8046
8047 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8048
8049 if (mddev->delta_disks <= 0) {
8050 int d;
8051 spin_lock_irq(&conf->device_lock);
8052 mddev->degraded = raid5_calc_degraded(conf);
8053 spin_unlock_irq(&conf->device_lock);
8054 for (d = conf->raid_disks ;
8055 d < conf->raid_disks - mddev->delta_disks;
8056 d++) {
8057 struct md_rdev *rdev = conf->disks[d].rdev;
8058 if (rdev)
8059 clear_bit(In_sync, &rdev->flags);
8060 rdev = conf->disks[d].replacement;
8061 if (rdev)
8062 clear_bit(In_sync, &rdev->flags);
8063 }
8064 }
8065 mddev->layout = conf->algorithm;
8066 mddev->chunk_sectors = conf->chunk_sectors;
8067 mddev->reshape_position = MaxSector;
8068 mddev->delta_disks = 0;
8069 mddev->reshape_backwards = 0;
8070 }
8071}
8072
8073static void raid5_quiesce(struct mddev *mddev, int quiesce)
8074{
8075 struct r5conf *conf = mddev->private;
8076
8077 if (quiesce) {
8078 /* stop all writes */
8079 lock_all_device_hash_locks_irq(conf);
8080 /* '2' tells resync/reshape to pause so that all
8081 * active stripes can drain
8082 */
8083 r5c_flush_cache(conf, INT_MAX);
8084 conf->quiesce = 2;
8085 wait_event_cmd(conf->wait_for_quiescent,
8086 atomic_read(&conf->active_stripes) == 0 &&
8087 atomic_read(&conf->active_aligned_reads) == 0,
8088 unlock_all_device_hash_locks_irq(conf),
8089 lock_all_device_hash_locks_irq(conf));
8090 conf->quiesce = 1;
8091 unlock_all_device_hash_locks_irq(conf);
8092 /* allow reshape to continue */
8093 wake_up(&conf->wait_for_overlap);
8094 } else {
8095 /* re-enable writes */
8096 lock_all_device_hash_locks_irq(conf);
8097 conf->quiesce = 0;
8098 wake_up(&conf->wait_for_quiescent);
8099 wake_up(&conf->wait_for_overlap);
8100 unlock_all_device_hash_locks_irq(conf);
8101 }
8102 log_quiesce(conf, quiesce);
8103}
8104
8105static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8106{
8107 struct r0conf *raid0_conf = mddev->private;
8108 sector_t sectors;
8109
8110 /* for raid0 takeover only one zone is supported */
8111 if (raid0_conf->nr_strip_zones > 1) {
8112 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8113 mdname(mddev));
8114 return ERR_PTR(-EINVAL);
8115 }
8116
8117 sectors = raid0_conf->strip_zone[0].zone_end;
8118 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8119 mddev->dev_sectors = sectors;
8120 mddev->new_level = level;
8121 mddev->new_layout = ALGORITHM_PARITY_N;
8122 mddev->new_chunk_sectors = mddev->chunk_sectors;
8123 mddev->raid_disks += 1;
8124 mddev->delta_disks = 1;
8125 /* make sure it will be not marked as dirty */
8126 mddev->recovery_cp = MaxSector;
8127
8128 return setup_conf(mddev);
8129}
8130
8131static void *raid5_takeover_raid1(struct mddev *mddev)
8132{
8133 int chunksect;
8134 void *ret;
8135
8136 if (mddev->raid_disks != 2 ||
8137 mddev->degraded > 1)
8138 return ERR_PTR(-EINVAL);
8139
8140 /* Should check if there are write-behind devices? */
8141
8142 chunksect = 64*2; /* 64K by default */
8143
8144 /* The array must be an exact multiple of chunksize */
8145 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8146 chunksect >>= 1;
8147
8148 if ((chunksect<<9) < STRIPE_SIZE)
8149 /* array size does not allow a suitable chunk size */
8150 return ERR_PTR(-EINVAL);
8151
8152 mddev->new_level = 5;
8153 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8154 mddev->new_chunk_sectors = chunksect;
8155
8156 ret = setup_conf(mddev);
8157 if (!IS_ERR(ret))
8158 mddev_clear_unsupported_flags(mddev,
8159 UNSUPPORTED_MDDEV_FLAGS);
8160 return ret;
8161}
8162
8163static void *raid5_takeover_raid6(struct mddev *mddev)
8164{
8165 int new_layout;
8166
8167 switch (mddev->layout) {
8168 case ALGORITHM_LEFT_ASYMMETRIC_6:
8169 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8170 break;
8171 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8172 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8173 break;
8174 case ALGORITHM_LEFT_SYMMETRIC_6:
8175 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8176 break;
8177 case ALGORITHM_RIGHT_SYMMETRIC_6:
8178 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8179 break;
8180 case ALGORITHM_PARITY_0_6:
8181 new_layout = ALGORITHM_PARITY_0;
8182 break;
8183 case ALGORITHM_PARITY_N:
8184 new_layout = ALGORITHM_PARITY_N;
8185 break;
8186 default:
8187 return ERR_PTR(-EINVAL);
8188 }
8189 mddev->new_level = 5;
8190 mddev->new_layout = new_layout;
8191 mddev->delta_disks = -1;
8192 mddev->raid_disks -= 1;
8193 return setup_conf(mddev);
8194}
8195
8196static int raid5_check_reshape(struct mddev *mddev)
8197{
8198 /* For a 2-drive array, the layout and chunk size can be changed
8199 * immediately as not restriping is needed.
8200 * For larger arrays we record the new value - after validation
8201 * to be used by a reshape pass.
8202 */
8203 struct r5conf *conf = mddev->private;
8204 int new_chunk = mddev->new_chunk_sectors;
8205
8206 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8207 return -EINVAL;
8208 if (new_chunk > 0) {
8209 if (!is_power_of_2(new_chunk))
8210 return -EINVAL;
8211 if (new_chunk < (PAGE_SIZE>>9))
8212 return -EINVAL;
8213 if (mddev->array_sectors & (new_chunk-1))
8214 /* not factor of array size */
8215 return -EINVAL;
8216 }
8217
8218 /* They look valid */
8219
8220 if (mddev->raid_disks == 2) {
8221 /* can make the change immediately */
8222 if (mddev->new_layout >= 0) {
8223 conf->algorithm = mddev->new_layout;
8224 mddev->layout = mddev->new_layout;
8225 }
8226 if (new_chunk > 0) {
8227 conf->chunk_sectors = new_chunk ;
8228 mddev->chunk_sectors = new_chunk;
8229 }
8230 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8231 md_wakeup_thread(mddev->thread);
8232 }
8233 return check_reshape(mddev);
8234}
8235
8236static int raid6_check_reshape(struct mddev *mddev)
8237{
8238 int new_chunk = mddev->new_chunk_sectors;
8239
8240 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8241 return -EINVAL;
8242 if (new_chunk > 0) {
8243 if (!is_power_of_2(new_chunk))
8244 return -EINVAL;
8245 if (new_chunk < (PAGE_SIZE >> 9))
8246 return -EINVAL;
8247 if (mddev->array_sectors & (new_chunk-1))
8248 /* not factor of array size */
8249 return -EINVAL;
8250 }
8251
8252 /* They look valid */
8253 return check_reshape(mddev);
8254}
8255
8256static void *raid5_takeover(struct mddev *mddev)
8257{
8258 /* raid5 can take over:
8259 * raid0 - if there is only one strip zone - make it a raid4 layout
8260 * raid1 - if there are two drives. We need to know the chunk size
8261 * raid4 - trivial - just use a raid4 layout.
8262 * raid6 - Providing it is a *_6 layout
8263 */
8264 if (mddev->level == 0)
8265 return raid45_takeover_raid0(mddev, 5);
8266 if (mddev->level == 1)
8267 return raid5_takeover_raid1(mddev);
8268 if (mddev->level == 4) {
8269 mddev->new_layout = ALGORITHM_PARITY_N;
8270 mddev->new_level = 5;
8271 return setup_conf(mddev);
8272 }
8273 if (mddev->level == 6)
8274 return raid5_takeover_raid6(mddev);
8275
8276 return ERR_PTR(-EINVAL);
8277}
8278
8279static void *raid4_takeover(struct mddev *mddev)
8280{
8281 /* raid4 can take over:
8282 * raid0 - if there is only one strip zone
8283 * raid5 - if layout is right
8284 */
8285 if (mddev->level == 0)
8286 return raid45_takeover_raid0(mddev, 4);
8287 if (mddev->level == 5 &&
8288 mddev->layout == ALGORITHM_PARITY_N) {
8289 mddev->new_layout = 0;
8290 mddev->new_level = 4;
8291 return setup_conf(mddev);
8292 }
8293 return ERR_PTR(-EINVAL);
8294}
8295
8296static struct md_personality raid5_personality;
8297
8298static void *raid6_takeover(struct mddev *mddev)
8299{
8300 /* Currently can only take over a raid5. We map the
8301 * personality to an equivalent raid6 personality
8302 * with the Q block at the end.
8303 */
8304 int new_layout;
8305
8306 if (mddev->pers != &raid5_personality)
8307 return ERR_PTR(-EINVAL);
8308 if (mddev->degraded > 1)
8309 return ERR_PTR(-EINVAL);
8310 if (mddev->raid_disks > 253)
8311 return ERR_PTR(-EINVAL);
8312 if (mddev->raid_disks < 3)
8313 return ERR_PTR(-EINVAL);
8314
8315 switch (mddev->layout) {
8316 case ALGORITHM_LEFT_ASYMMETRIC:
8317 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8318 break;
8319 case ALGORITHM_RIGHT_ASYMMETRIC:
8320 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8321 break;
8322 case ALGORITHM_LEFT_SYMMETRIC:
8323 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8324 break;
8325 case ALGORITHM_RIGHT_SYMMETRIC:
8326 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8327 break;
8328 case ALGORITHM_PARITY_0:
8329 new_layout = ALGORITHM_PARITY_0_6;
8330 break;
8331 case ALGORITHM_PARITY_N:
8332 new_layout = ALGORITHM_PARITY_N;
8333 break;
8334 default:
8335 return ERR_PTR(-EINVAL);
8336 }
8337 mddev->new_level = 6;
8338 mddev->new_layout = new_layout;
8339 mddev->delta_disks = 1;
8340 mddev->raid_disks += 1;
8341 return setup_conf(mddev);
8342}
8343
8344static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8345{
8346 struct r5conf *conf;
8347 int err;
8348
8349 err = mddev_lock(mddev);
8350 if (err)
8351 return err;
8352 conf = mddev->private;
8353 if (!conf) {
8354 mddev_unlock(mddev);
8355 return -ENODEV;
8356 }
8357
8358 if (strncmp(buf, "ppl", 3) == 0) {
8359 /* ppl only works with RAID 5 */
8360 if (!raid5_has_ppl(conf) && conf->level == 5) {
8361 err = log_init(conf, NULL, true);
8362 if (!err) {
8363 err = resize_stripes(conf, conf->pool_size);
8364 if (err)
8365 log_exit(conf);
8366 }
8367 } else
8368 err = -EINVAL;
8369 } else if (strncmp(buf, "resync", 6) == 0) {
8370 if (raid5_has_ppl(conf)) {
8371 mddev_suspend(mddev);
8372 log_exit(conf);
8373 mddev_resume(mddev);
8374 err = resize_stripes(conf, conf->pool_size);
8375 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8376 r5l_log_disk_error(conf)) {
8377 bool journal_dev_exists = false;
8378 struct md_rdev *rdev;
8379
8380 rdev_for_each(rdev, mddev)
8381 if (test_bit(Journal, &rdev->flags)) {
8382 journal_dev_exists = true;
8383 break;
8384 }
8385
8386 if (!journal_dev_exists) {
8387 mddev_suspend(mddev);
8388 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8389 mddev_resume(mddev);
8390 } else /* need remove journal device first */
8391 err = -EBUSY;
8392 } else
8393 err = -EINVAL;
8394 } else {
8395 err = -EINVAL;
8396 }
8397
8398 if (!err)
8399 md_update_sb(mddev, 1);
8400
8401 mddev_unlock(mddev);
8402
8403 return err;
8404}
8405
8406static int raid5_start(struct mddev *mddev)
8407{
8408 struct r5conf *conf = mddev->private;
8409
8410 return r5l_start(conf->log);
8411}
8412
8413static struct md_personality raid6_personality =
8414{
8415 .name = "raid6",
8416 .level = 6,
8417 .owner = THIS_MODULE,
8418 .make_request = raid5_make_request,
8419 .run = raid5_run,
8420 .start = raid5_start,
8421 .free = raid5_free,
8422 .status = raid5_status,
8423 .error_handler = raid5_error,
8424 .hot_add_disk = raid5_add_disk,
8425 .hot_remove_disk= raid5_remove_disk,
8426 .spare_active = raid5_spare_active,
8427 .sync_request = raid5_sync_request,
8428 .resize = raid5_resize,
8429 .size = raid5_size,
8430 .check_reshape = raid6_check_reshape,
8431 .start_reshape = raid5_start_reshape,
8432 .finish_reshape = raid5_finish_reshape,
8433 .quiesce = raid5_quiesce,
8434 .takeover = raid6_takeover,
8435 .congested = raid5_congested,
8436 .change_consistency_policy = raid5_change_consistency_policy,
8437};
8438static struct md_personality raid5_personality =
8439{
8440 .name = "raid5",
8441 .level = 5,
8442 .owner = THIS_MODULE,
8443 .make_request = raid5_make_request,
8444 .run = raid5_run,
8445 .start = raid5_start,
8446 .free = raid5_free,
8447 .status = raid5_status,
8448 .error_handler = raid5_error,
8449 .hot_add_disk = raid5_add_disk,
8450 .hot_remove_disk= raid5_remove_disk,
8451 .spare_active = raid5_spare_active,
8452 .sync_request = raid5_sync_request,
8453 .resize = raid5_resize,
8454 .size = raid5_size,
8455 .check_reshape = raid5_check_reshape,
8456 .start_reshape = raid5_start_reshape,
8457 .finish_reshape = raid5_finish_reshape,
8458 .quiesce = raid5_quiesce,
8459 .takeover = raid5_takeover,
8460 .congested = raid5_congested,
8461 .change_consistency_policy = raid5_change_consistency_policy,
8462};
8463
8464static struct md_personality raid4_personality =
8465{
8466 .name = "raid4",
8467 .level = 4,
8468 .owner = THIS_MODULE,
8469 .make_request = raid5_make_request,
8470 .run = raid5_run,
8471 .start = raid5_start,
8472 .free = raid5_free,
8473 .status = raid5_status,
8474 .error_handler = raid5_error,
8475 .hot_add_disk = raid5_add_disk,
8476 .hot_remove_disk= raid5_remove_disk,
8477 .spare_active = raid5_spare_active,
8478 .sync_request = raid5_sync_request,
8479 .resize = raid5_resize,
8480 .size = raid5_size,
8481 .check_reshape = raid5_check_reshape,
8482 .start_reshape = raid5_start_reshape,
8483 .finish_reshape = raid5_finish_reshape,
8484 .quiesce = raid5_quiesce,
8485 .takeover = raid4_takeover,
8486 .congested = raid5_congested,
8487 .change_consistency_policy = raid5_change_consistency_policy,
8488};
8489
8490static int __init raid5_init(void)
8491{
8492 int ret;
8493
8494 raid5_wq = alloc_workqueue("raid5wq",
8495 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8496 if (!raid5_wq)
8497 return -ENOMEM;
8498
8499 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8500 "md/raid5:prepare",
8501 raid456_cpu_up_prepare,
8502 raid456_cpu_dead);
8503 if (ret) {
8504 destroy_workqueue(raid5_wq);
8505 return ret;
8506 }
8507 register_md_personality(&raid6_personality);
8508 register_md_personality(&raid5_personality);
8509 register_md_personality(&raid4_personality);
8510 return 0;
8511}
8512
8513static void raid5_exit(void)
8514{
8515 unregister_md_personality(&raid6_personality);
8516 unregister_md_personality(&raid5_personality);
8517 unregister_md_personality(&raid4_personality);
8518 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8519 destroy_workqueue(raid5_wq);
8520}
8521
8522module_init(raid5_init);
8523module_exit(raid5_exit);
8524MODULE_LICENSE("GPL");
8525MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8526MODULE_ALIAS("md-personality-4"); /* RAID5 */
8527MODULE_ALIAS("md-raid5");
8528MODULE_ALIAS("md-raid4");
8529MODULE_ALIAS("md-level-5");
8530MODULE_ALIAS("md-level-4");
8531MODULE_ALIAS("md-personality-8"); /* RAID6 */
8532MODULE_ALIAS("md-raid6");
8533MODULE_ALIAS("md-level-6");
8534
8535/* This used to be two separate modules, they were: */
8536MODULE_ALIAS("raid5");
8537MODULE_ALIAS("raid6");