blob: 5e73cc6ad0ce40a44c10ebd162d3ffa2688c33d8 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * Copyright (C) 2010-2011 Neil Brown
3 * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include <linux/slab.h>
9#include <linux/module.h>
10
11#include "md.h"
12#include "raid1.h"
13#include "raid5.h"
14#include "raid10.h"
15#include "md-bitmap.h"
16
17#include <linux/device-mapper.h>
18
19#define DM_MSG_PREFIX "raid"
20#define MAX_RAID_DEVICES 253 /* md-raid kernel limit */
21
22/*
23 * Minimum sectors of free reshape space per raid device
24 */
25#define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26
27/*
28 * Minimum journal space 4 MiB in sectors.
29 */
30#define MIN_RAID456_JOURNAL_SPACE (4*2048)
31
32static bool devices_handle_discard_safely = false;
33
34/*
35 * The following flags are used by dm-raid.c to set up the array state.
36 * They must be cleared before md_run is called.
37 */
38#define FirstUse 10 /* rdev flag */
39
40struct raid_dev {
41 /*
42 * Two DM devices, one to hold metadata and one to hold the
43 * actual data/parity. The reason for this is to not confuse
44 * ti->len and give more flexibility in altering size and
45 * characteristics.
46 *
47 * While it is possible for this device to be associated
48 * with a different physical device than the data_dev, it
49 * is intended for it to be the same.
50 * |--------- Physical Device ---------|
51 * |- meta_dev -|------ data_dev ------|
52 */
53 struct dm_dev *meta_dev;
54 struct dm_dev *data_dev;
55 struct md_rdev rdev;
56};
57
58/*
59 * Bits for establishing rs->ctr_flags
60 *
61 * 1 = no flag value
62 * 2 = flag with value
63 */
64#define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */
65#define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */
66#define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */
67#define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */
68#define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */
69#define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */
70#define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */
71#define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */
72#define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */
73#define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */
74#define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */
75#define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */
76/* New for v1.9.0 */
77#define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
78#define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
79#define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
80
81/* New for v1.10.0 */
82#define __CTR_FLAG_JOURNAL_DEV 15 /* 2 */ /* Only with raid4/5/6 (journal device)! */
83
84/* New for v1.11.1 */
85#define __CTR_FLAG_JOURNAL_MODE 16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */
86
87/*
88 * Flags for rs->ctr_flags field.
89 */
90#define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC)
91#define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC)
92#define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD)
93#define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP)
94#define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
95#define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
96#define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
97#define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY)
98#define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE)
99#define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE)
100#define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES)
101#define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT)
102#define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS)
103#define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET)
104#define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
105#define CTR_FLAG_JOURNAL_DEV (1 << __CTR_FLAG_JOURNAL_DEV)
106#define CTR_FLAG_JOURNAL_MODE (1 << __CTR_FLAG_JOURNAL_MODE)
107
108/*
109 * Definitions of various constructor flags to
110 * be used in checks of valid / invalid flags
111 * per raid level.
112 */
113/* Define all any sync flags */
114#define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
115
116/* Define flags for options without argument (e.g. 'nosync') */
117#define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \
118 CTR_FLAG_RAID10_USE_NEAR_SETS)
119
120/* Define flags for options with one argument (e.g. 'delta_disks +2') */
121#define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
122 CTR_FLAG_WRITE_MOSTLY | \
123 CTR_FLAG_DAEMON_SLEEP | \
124 CTR_FLAG_MIN_RECOVERY_RATE | \
125 CTR_FLAG_MAX_RECOVERY_RATE | \
126 CTR_FLAG_MAX_WRITE_BEHIND | \
127 CTR_FLAG_STRIPE_CACHE | \
128 CTR_FLAG_REGION_SIZE | \
129 CTR_FLAG_RAID10_COPIES | \
130 CTR_FLAG_RAID10_FORMAT | \
131 CTR_FLAG_DELTA_DISKS | \
132 CTR_FLAG_DATA_OFFSET)
133
134/* Valid options definitions per raid level... */
135
136/* "raid0" does only accept data offset */
137#define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET)
138
139/* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
140#define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
141 CTR_FLAG_REBUILD | \
142 CTR_FLAG_WRITE_MOSTLY | \
143 CTR_FLAG_DAEMON_SLEEP | \
144 CTR_FLAG_MIN_RECOVERY_RATE | \
145 CTR_FLAG_MAX_RECOVERY_RATE | \
146 CTR_FLAG_MAX_WRITE_BEHIND | \
147 CTR_FLAG_REGION_SIZE | \
148 CTR_FLAG_DELTA_DISKS | \
149 CTR_FLAG_DATA_OFFSET)
150
151/* "raid10" does not accept any raid1 or stripe cache options */
152#define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
153 CTR_FLAG_REBUILD | \
154 CTR_FLAG_DAEMON_SLEEP | \
155 CTR_FLAG_MIN_RECOVERY_RATE | \
156 CTR_FLAG_MAX_RECOVERY_RATE | \
157 CTR_FLAG_REGION_SIZE | \
158 CTR_FLAG_RAID10_COPIES | \
159 CTR_FLAG_RAID10_FORMAT | \
160 CTR_FLAG_DELTA_DISKS | \
161 CTR_FLAG_DATA_OFFSET | \
162 CTR_FLAG_RAID10_USE_NEAR_SETS)
163
164/*
165 * "raid4/5/6" do not accept any raid1 or raid10 specific options
166 *
167 * "raid6" does not accept "nosync", because it is not guaranteed
168 * that both parity and q-syndrome are being written properly with
169 * any writes
170 */
171#define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
172 CTR_FLAG_REBUILD | \
173 CTR_FLAG_DAEMON_SLEEP | \
174 CTR_FLAG_MIN_RECOVERY_RATE | \
175 CTR_FLAG_MAX_RECOVERY_RATE | \
176 CTR_FLAG_STRIPE_CACHE | \
177 CTR_FLAG_REGION_SIZE | \
178 CTR_FLAG_DELTA_DISKS | \
179 CTR_FLAG_DATA_OFFSET | \
180 CTR_FLAG_JOURNAL_DEV | \
181 CTR_FLAG_JOURNAL_MODE)
182
183#define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \
184 CTR_FLAG_REBUILD | \
185 CTR_FLAG_DAEMON_SLEEP | \
186 CTR_FLAG_MIN_RECOVERY_RATE | \
187 CTR_FLAG_MAX_RECOVERY_RATE | \
188 CTR_FLAG_STRIPE_CACHE | \
189 CTR_FLAG_REGION_SIZE | \
190 CTR_FLAG_DELTA_DISKS | \
191 CTR_FLAG_DATA_OFFSET | \
192 CTR_FLAG_JOURNAL_DEV | \
193 CTR_FLAG_JOURNAL_MODE)
194/* ...valid options definitions per raid level */
195
196/*
197 * Flags for rs->runtime_flags field
198 * (RT_FLAG prefix meaning "runtime flag")
199 *
200 * These are all internal and used to define runtime state,
201 * e.g. to prevent another resume from preresume processing
202 * the raid set all over again.
203 */
204#define RT_FLAG_RS_PRERESUMED 0
205#define RT_FLAG_RS_RESUMED 1
206#define RT_FLAG_RS_BITMAP_LOADED 2
207#define RT_FLAG_UPDATE_SBS 3
208#define RT_FLAG_RESHAPE_RS 4
209#define RT_FLAG_RS_SUSPENDED 5
210#define RT_FLAG_RS_IN_SYNC 6
211#define RT_FLAG_RS_RESYNCING 7
212
213/* Array elements of 64 bit needed for rebuild/failed disk bits */
214#define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
215
216/*
217 * raid set level, layout and chunk sectors backup/restore
218 */
219struct rs_layout {
220 int new_level;
221 int new_layout;
222 int new_chunk_sectors;
223};
224
225struct raid_set {
226 struct dm_target *ti;
227
228 uint32_t stripe_cache_entries;
229 unsigned long ctr_flags;
230 unsigned long runtime_flags;
231
232 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
233
234 int raid_disks;
235 int delta_disks;
236 int data_offset;
237 int raid10_copies;
238 int requested_bitmap_chunk_sectors;
239
240 struct mddev md;
241 struct raid_type *raid_type;
242 struct dm_target_callbacks callbacks;
243
244 /* Optional raid4/5/6 journal device */
245 struct journal_dev {
246 struct dm_dev *dev;
247 struct md_rdev rdev;
248 int mode;
249 } journal_dev;
250
251 struct raid_dev dev[0];
252};
253
254static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
255{
256 struct mddev *mddev = &rs->md;
257
258 l->new_level = mddev->new_level;
259 l->new_layout = mddev->new_layout;
260 l->new_chunk_sectors = mddev->new_chunk_sectors;
261}
262
263static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
264{
265 struct mddev *mddev = &rs->md;
266
267 mddev->new_level = l->new_level;
268 mddev->new_layout = l->new_layout;
269 mddev->new_chunk_sectors = l->new_chunk_sectors;
270}
271
272/* raid10 algorithms (i.e. formats) */
273#define ALGORITHM_RAID10_DEFAULT 0
274#define ALGORITHM_RAID10_NEAR 1
275#define ALGORITHM_RAID10_OFFSET 2
276#define ALGORITHM_RAID10_FAR 3
277
278/* Supported raid types and properties. */
279static struct raid_type {
280 const char *name; /* RAID algorithm. */
281 const char *descr; /* Descriptor text for logging. */
282 const unsigned int parity_devs; /* # of parity devices. */
283 const unsigned int minimal_devs;/* minimal # of devices in set. */
284 const unsigned int level; /* RAID level. */
285 const unsigned int algorithm; /* RAID algorithm. */
286} raid_types[] = {
287 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */},
288 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */},
289 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR},
290 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET},
291 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR},
292 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT},
293 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
294 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N},
295 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
296 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
297 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
298 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
299 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
300 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
301 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE},
302 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6},
303 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6},
304 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6},
305 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6},
306 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6}
307};
308
309/* True, if @v is in inclusive range [@min, @max] */
310static bool __within_range(long v, long min, long max)
311{
312 return v >= min && v <= max;
313}
314
315/* All table line arguments are defined here */
316static struct arg_name_flag {
317 const unsigned long flag;
318 const char *name;
319} __arg_name_flags[] = {
320 { CTR_FLAG_SYNC, "sync"},
321 { CTR_FLAG_NOSYNC, "nosync"},
322 { CTR_FLAG_REBUILD, "rebuild"},
323 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
324 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
325 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
326 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
327 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
328 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
329 { CTR_FLAG_REGION_SIZE, "region_size"},
330 { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
331 { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
332 { CTR_FLAG_DATA_OFFSET, "data_offset"},
333 { CTR_FLAG_DELTA_DISKS, "delta_disks"},
334 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
335 { CTR_FLAG_JOURNAL_DEV, "journal_dev" },
336 { CTR_FLAG_JOURNAL_MODE, "journal_mode" },
337};
338
339/* Return argument name string for given @flag */
340static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
341{
342 if (hweight32(flag) == 1) {
343 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
344
345 while (anf-- > __arg_name_flags)
346 if (flag & anf->flag)
347 return anf->name;
348
349 } else
350 DMERR("%s called with more than one flag!", __func__);
351
352 return NULL;
353}
354
355/* Define correlation of raid456 journal cache modes and dm-raid target line parameters */
356static struct {
357 const int mode;
358 const char *param;
359} _raid456_journal_mode[] = {
360 { R5C_JOURNAL_MODE_WRITE_THROUGH , "writethrough" },
361 { R5C_JOURNAL_MODE_WRITE_BACK , "writeback" }
362};
363
364/* Return MD raid4/5/6 journal mode for dm @journal_mode one */
365static int dm_raid_journal_mode_to_md(const char *mode)
366{
367 int m = ARRAY_SIZE(_raid456_journal_mode);
368
369 while (m--)
370 if (!strcasecmp(mode, _raid456_journal_mode[m].param))
371 return _raid456_journal_mode[m].mode;
372
373 return -EINVAL;
374}
375
376/* Return dm-raid raid4/5/6 journal mode string for @mode */
377static const char *md_journal_mode_to_dm_raid(const int mode)
378{
379 int m = ARRAY_SIZE(_raid456_journal_mode);
380
381 while (m--)
382 if (mode == _raid456_journal_mode[m].mode)
383 return _raid456_journal_mode[m].param;
384
385 return "unknown";
386}
387
388/*
389 * Bool helpers to test for various raid levels of a raid set.
390 * It's level as reported by the superblock rather than
391 * the requested raid_type passed to the constructor.
392 */
393/* Return true, if raid set in @rs is raid0 */
394static bool rs_is_raid0(struct raid_set *rs)
395{
396 return !rs->md.level;
397}
398
399/* Return true, if raid set in @rs is raid1 */
400static bool rs_is_raid1(struct raid_set *rs)
401{
402 return rs->md.level == 1;
403}
404
405/* Return true, if raid set in @rs is raid10 */
406static bool rs_is_raid10(struct raid_set *rs)
407{
408 return rs->md.level == 10;
409}
410
411/* Return true, if raid set in @rs is level 6 */
412static bool rs_is_raid6(struct raid_set *rs)
413{
414 return rs->md.level == 6;
415}
416
417/* Return true, if raid set in @rs is level 4, 5 or 6 */
418static bool rs_is_raid456(struct raid_set *rs)
419{
420 return __within_range(rs->md.level, 4, 6);
421}
422
423/* Return true, if raid set in @rs is reshapable */
424static bool __is_raid10_far(int layout);
425static bool rs_is_reshapable(struct raid_set *rs)
426{
427 return rs_is_raid456(rs) ||
428 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
429}
430
431/* Return true, if raid set in @rs is recovering */
432static bool rs_is_recovering(struct raid_set *rs)
433{
434 return rs->md.recovery_cp < rs->md.dev_sectors;
435}
436
437/* Return true, if raid set in @rs is reshaping */
438static bool rs_is_reshaping(struct raid_set *rs)
439{
440 return rs->md.reshape_position != MaxSector;
441}
442
443/*
444 * bool helpers to test for various raid levels of a raid type @rt
445 */
446
447/* Return true, if raid type in @rt is raid0 */
448static bool rt_is_raid0(struct raid_type *rt)
449{
450 return !rt->level;
451}
452
453/* Return true, if raid type in @rt is raid1 */
454static bool rt_is_raid1(struct raid_type *rt)
455{
456 return rt->level == 1;
457}
458
459/* Return true, if raid type in @rt is raid10 */
460static bool rt_is_raid10(struct raid_type *rt)
461{
462 return rt->level == 10;
463}
464
465/* Return true, if raid type in @rt is raid4/5 */
466static bool rt_is_raid45(struct raid_type *rt)
467{
468 return __within_range(rt->level, 4, 5);
469}
470
471/* Return true, if raid type in @rt is raid6 */
472static bool rt_is_raid6(struct raid_type *rt)
473{
474 return rt->level == 6;
475}
476
477/* Return true, if raid type in @rt is raid4/5/6 */
478static bool rt_is_raid456(struct raid_type *rt)
479{
480 return __within_range(rt->level, 4, 6);
481}
482/* END: raid level bools */
483
484/* Return valid ctr flags for the raid level of @rs */
485static unsigned long __valid_flags(struct raid_set *rs)
486{
487 if (rt_is_raid0(rs->raid_type))
488 return RAID0_VALID_FLAGS;
489 else if (rt_is_raid1(rs->raid_type))
490 return RAID1_VALID_FLAGS;
491 else if (rt_is_raid10(rs->raid_type))
492 return RAID10_VALID_FLAGS;
493 else if (rt_is_raid45(rs->raid_type))
494 return RAID45_VALID_FLAGS;
495 else if (rt_is_raid6(rs->raid_type))
496 return RAID6_VALID_FLAGS;
497
498 return 0;
499}
500
501/*
502 * Check for valid flags set on @rs
503 *
504 * Has to be called after parsing of the ctr flags!
505 */
506static int rs_check_for_valid_flags(struct raid_set *rs)
507{
508 if (rs->ctr_flags & ~__valid_flags(rs)) {
509 rs->ti->error = "Invalid flags combination";
510 return -EINVAL;
511 }
512
513 return 0;
514}
515
516/* MD raid10 bit definitions and helpers */
517#define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */
518#define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
519#define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */
520#define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */
521
522/* Return md raid10 near copies for @layout */
523static unsigned int __raid10_near_copies(int layout)
524{
525 return layout & 0xFF;
526}
527
528/* Return md raid10 far copies for @layout */
529static unsigned int __raid10_far_copies(int layout)
530{
531 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
532}
533
534/* Return true if md raid10 offset for @layout */
535static bool __is_raid10_offset(int layout)
536{
537 return !!(layout & RAID10_OFFSET);
538}
539
540/* Return true if md raid10 near for @layout */
541static bool __is_raid10_near(int layout)
542{
543 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
544}
545
546/* Return true if md raid10 far for @layout */
547static bool __is_raid10_far(int layout)
548{
549 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
550}
551
552/* Return md raid10 layout string for @layout */
553static const char *raid10_md_layout_to_format(int layout)
554{
555 /*
556 * Bit 16 stands for "offset"
557 * (i.e. adjacent stripes hold copies)
558 *
559 * Refer to MD's raid10.c for details
560 */
561 if (__is_raid10_offset(layout))
562 return "offset";
563
564 if (__raid10_near_copies(layout) > 1)
565 return "near";
566
567 if (__raid10_far_copies(layout) > 1)
568 return "far";
569
570 return "unknown";
571}
572
573/* Return md raid10 algorithm for @name */
574static int raid10_name_to_format(const char *name)
575{
576 if (!strcasecmp(name, "near"))
577 return ALGORITHM_RAID10_NEAR;
578 else if (!strcasecmp(name, "offset"))
579 return ALGORITHM_RAID10_OFFSET;
580 else if (!strcasecmp(name, "far"))
581 return ALGORITHM_RAID10_FAR;
582
583 return -EINVAL;
584}
585
586/* Return md raid10 copies for @layout */
587static unsigned int raid10_md_layout_to_copies(int layout)
588{
589 return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
590}
591
592/* Return md raid10 format id for @format string */
593static int raid10_format_to_md_layout(struct raid_set *rs,
594 unsigned int algorithm,
595 unsigned int copies)
596{
597 unsigned int n = 1, f = 1, r = 0;
598
599 /*
600 * MD resilienece flaw:
601 *
602 * enabling use_far_sets for far/offset formats causes copies
603 * to be colocated on the same devs together with their origins!
604 *
605 * -> disable it for now in the definition above
606 */
607 if (algorithm == ALGORITHM_RAID10_DEFAULT ||
608 algorithm == ALGORITHM_RAID10_NEAR)
609 n = copies;
610
611 else if (algorithm == ALGORITHM_RAID10_OFFSET) {
612 f = copies;
613 r = RAID10_OFFSET;
614 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
615 r |= RAID10_USE_FAR_SETS;
616
617 } else if (algorithm == ALGORITHM_RAID10_FAR) {
618 f = copies;
619 r = !RAID10_OFFSET;
620 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
621 r |= RAID10_USE_FAR_SETS;
622
623 } else
624 return -EINVAL;
625
626 return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
627}
628/* END: MD raid10 bit definitions and helpers */
629
630/* Check for any of the raid10 algorithms */
631static bool __got_raid10(struct raid_type *rtp, const int layout)
632{
633 if (rtp->level == 10) {
634 switch (rtp->algorithm) {
635 case ALGORITHM_RAID10_DEFAULT:
636 case ALGORITHM_RAID10_NEAR:
637 return __is_raid10_near(layout);
638 case ALGORITHM_RAID10_OFFSET:
639 return __is_raid10_offset(layout);
640 case ALGORITHM_RAID10_FAR:
641 return __is_raid10_far(layout);
642 default:
643 break;
644 }
645 }
646
647 return false;
648}
649
650/* Return raid_type for @name */
651static struct raid_type *get_raid_type(const char *name)
652{
653 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
654
655 while (rtp-- > raid_types)
656 if (!strcasecmp(rtp->name, name))
657 return rtp;
658
659 return NULL;
660}
661
662/* Return raid_type for @name based derived from @level and @layout */
663static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
664{
665 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
666
667 while (rtp-- > raid_types) {
668 /* RAID10 special checks based on @layout flags/properties */
669 if (rtp->level == level &&
670 (__got_raid10(rtp, layout) || rtp->algorithm == layout))
671 return rtp;
672 }
673
674 return NULL;
675}
676
677/* Adjust rdev sectors */
678static void rs_set_rdev_sectors(struct raid_set *rs)
679{
680 struct mddev *mddev = &rs->md;
681 struct md_rdev *rdev;
682
683 /*
684 * raid10 sets rdev->sector to the device size, which
685 * is unintended in case of out-of-place reshaping
686 */
687 rdev_for_each(rdev, mddev)
688 if (!test_bit(Journal, &rdev->flags))
689 rdev->sectors = mddev->dev_sectors;
690}
691
692/*
693 * Change bdev capacity of @rs in case of a disk add/remove reshape
694 */
695static void rs_set_capacity(struct raid_set *rs)
696{
697 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
698
699 set_capacity(gendisk, rs->md.array_sectors);
700 revalidate_disk(gendisk);
701}
702
703/*
704 * Set the mddev properties in @rs to the current
705 * ones retrieved from the freshest superblock
706 */
707static void rs_set_cur(struct raid_set *rs)
708{
709 struct mddev *mddev = &rs->md;
710
711 mddev->new_level = mddev->level;
712 mddev->new_layout = mddev->layout;
713 mddev->new_chunk_sectors = mddev->chunk_sectors;
714}
715
716/*
717 * Set the mddev properties in @rs to the new
718 * ones requested by the ctr
719 */
720static void rs_set_new(struct raid_set *rs)
721{
722 struct mddev *mddev = &rs->md;
723
724 mddev->level = mddev->new_level;
725 mddev->layout = mddev->new_layout;
726 mddev->chunk_sectors = mddev->new_chunk_sectors;
727 mddev->raid_disks = rs->raid_disks;
728 mddev->delta_disks = 0;
729}
730
731static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
732 unsigned int raid_devs)
733{
734 unsigned int i;
735 struct raid_set *rs;
736
737 if (raid_devs <= raid_type->parity_devs) {
738 ti->error = "Insufficient number of devices";
739 return ERR_PTR(-EINVAL);
740 }
741
742 rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL);
743 if (!rs) {
744 ti->error = "Cannot allocate raid context";
745 return ERR_PTR(-ENOMEM);
746 }
747
748 mddev_init(&rs->md);
749
750 rs->raid_disks = raid_devs;
751 rs->delta_disks = 0;
752
753 rs->ti = ti;
754 rs->raid_type = raid_type;
755 rs->stripe_cache_entries = 256;
756 rs->md.raid_disks = raid_devs;
757 rs->md.level = raid_type->level;
758 rs->md.new_level = rs->md.level;
759 rs->md.layout = raid_type->algorithm;
760 rs->md.new_layout = rs->md.layout;
761 rs->md.delta_disks = 0;
762 rs->md.recovery_cp = MaxSector;
763
764 for (i = 0; i < raid_devs; i++)
765 md_rdev_init(&rs->dev[i].rdev);
766
767 /*
768 * Remaining items to be initialized by further RAID params:
769 * rs->md.persistent
770 * rs->md.external
771 * rs->md.chunk_sectors
772 * rs->md.new_chunk_sectors
773 * rs->md.dev_sectors
774 */
775
776 return rs;
777}
778
779/* Free all @rs allocations */
780static void raid_set_free(struct raid_set *rs)
781{
782 int i;
783
784 if (rs->journal_dev.dev) {
785 md_rdev_clear(&rs->journal_dev.rdev);
786 dm_put_device(rs->ti, rs->journal_dev.dev);
787 }
788
789 for (i = 0; i < rs->raid_disks; i++) {
790 if (rs->dev[i].meta_dev)
791 dm_put_device(rs->ti, rs->dev[i].meta_dev);
792 md_rdev_clear(&rs->dev[i].rdev);
793 if (rs->dev[i].data_dev)
794 dm_put_device(rs->ti, rs->dev[i].data_dev);
795 }
796
797 kfree(rs);
798}
799
800/*
801 * For every device we have two words
802 * <meta_dev>: meta device name or '-' if missing
803 * <data_dev>: data device name or '-' if missing
804 *
805 * The following are permitted:
806 * - -
807 * - <data_dev>
808 * <meta_dev> <data_dev>
809 *
810 * The following is not allowed:
811 * <meta_dev> -
812 *
813 * This code parses those words. If there is a failure,
814 * the caller must use raid_set_free() to unwind the operations.
815 */
816static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
817{
818 int i;
819 int rebuild = 0;
820 int metadata_available = 0;
821 int r = 0;
822 const char *arg;
823
824 /* Put off the number of raid devices argument to get to dev pairs */
825 arg = dm_shift_arg(as);
826 if (!arg)
827 return -EINVAL;
828
829 for (i = 0; i < rs->raid_disks; i++) {
830 rs->dev[i].rdev.raid_disk = i;
831
832 rs->dev[i].meta_dev = NULL;
833 rs->dev[i].data_dev = NULL;
834
835 /*
836 * There are no offsets initially.
837 * Out of place reshape will set them accordingly.
838 */
839 rs->dev[i].rdev.data_offset = 0;
840 rs->dev[i].rdev.new_data_offset = 0;
841 rs->dev[i].rdev.mddev = &rs->md;
842
843 arg = dm_shift_arg(as);
844 if (!arg)
845 return -EINVAL;
846
847 if (strcmp(arg, "-")) {
848 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
849 &rs->dev[i].meta_dev);
850 if (r) {
851 rs->ti->error = "RAID metadata device lookup failure";
852 return r;
853 }
854
855 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
856 if (!rs->dev[i].rdev.sb_page) {
857 rs->ti->error = "Failed to allocate superblock page";
858 return -ENOMEM;
859 }
860 }
861
862 arg = dm_shift_arg(as);
863 if (!arg)
864 return -EINVAL;
865
866 if (!strcmp(arg, "-")) {
867 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
868 (!rs->dev[i].rdev.recovery_offset)) {
869 rs->ti->error = "Drive designated for rebuild not specified";
870 return -EINVAL;
871 }
872
873 if (rs->dev[i].meta_dev) {
874 rs->ti->error = "No data device supplied with metadata device";
875 return -EINVAL;
876 }
877
878 continue;
879 }
880
881 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
882 &rs->dev[i].data_dev);
883 if (r) {
884 rs->ti->error = "RAID device lookup failure";
885 return r;
886 }
887
888 if (rs->dev[i].meta_dev) {
889 metadata_available = 1;
890 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
891 }
892 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
893 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
894 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
895 rebuild++;
896 }
897
898 if (rs->journal_dev.dev)
899 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks);
900
901 if (metadata_available) {
902 rs->md.external = 0;
903 rs->md.persistent = 1;
904 rs->md.major_version = 2;
905 } else if (rebuild && !rs->md.recovery_cp) {
906 /*
907 * Without metadata, we will not be able to tell if the array
908 * is in-sync or not - we must assume it is not. Therefore,
909 * it is impossible to rebuild a drive.
910 *
911 * Even if there is metadata, the on-disk information may
912 * indicate that the array is not in-sync and it will then
913 * fail at that time.
914 *
915 * User could specify 'nosync' option if desperate.
916 */
917 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
918 return -EINVAL;
919 }
920
921 return 0;
922}
923
924/*
925 * validate_region_size
926 * @rs
927 * @region_size: region size in sectors. If 0, pick a size (4MiB default).
928 *
929 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
930 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
931 *
932 * Returns: 0 on success, -EINVAL on failure.
933 */
934static int validate_region_size(struct raid_set *rs, unsigned long region_size)
935{
936 unsigned long min_region_size = rs->ti->len / (1 << 21);
937
938 if (rs_is_raid0(rs))
939 return 0;
940
941 if (!region_size) {
942 /*
943 * Choose a reasonable default. All figures in sectors.
944 */
945 if (min_region_size > (1 << 13)) {
946 /* If not a power of 2, make it the next power of 2 */
947 region_size = roundup_pow_of_two(min_region_size);
948 DMINFO("Choosing default region size of %lu sectors",
949 region_size);
950 } else {
951 DMINFO("Choosing default region size of 4MiB");
952 region_size = 1 << 13; /* sectors */
953 }
954 } else {
955 /*
956 * Validate user-supplied value.
957 */
958 if (region_size > rs->ti->len) {
959 rs->ti->error = "Supplied region size is too large";
960 return -EINVAL;
961 }
962
963 if (region_size < min_region_size) {
964 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
965 region_size, min_region_size);
966 rs->ti->error = "Supplied region size is too small";
967 return -EINVAL;
968 }
969
970 if (!is_power_of_2(region_size)) {
971 rs->ti->error = "Region size is not a power of 2";
972 return -EINVAL;
973 }
974
975 if (region_size < rs->md.chunk_sectors) {
976 rs->ti->error = "Region size is smaller than the chunk size";
977 return -EINVAL;
978 }
979 }
980
981 /*
982 * Convert sectors to bytes.
983 */
984 rs->md.bitmap_info.chunksize = to_bytes(region_size);
985
986 return 0;
987}
988
989/*
990 * validate_raid_redundancy
991 * @rs
992 *
993 * Determine if there are enough devices in the array that haven't
994 * failed (or are being rebuilt) to form a usable array.
995 *
996 * Returns: 0 on success, -EINVAL on failure.
997 */
998static int validate_raid_redundancy(struct raid_set *rs)
999{
1000 unsigned int i, rebuild_cnt = 0;
1001 unsigned int rebuilds_per_group = 0, copies;
1002 unsigned int group_size, last_group_start;
1003
1004 for (i = 0; i < rs->md.raid_disks; i++)
1005 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
1006 !rs->dev[i].rdev.sb_page)
1007 rebuild_cnt++;
1008
1009 switch (rs->md.level) {
1010 case 0:
1011 break;
1012 case 1:
1013 if (rebuild_cnt >= rs->md.raid_disks)
1014 goto too_many;
1015 break;
1016 case 4:
1017 case 5:
1018 case 6:
1019 if (rebuild_cnt > rs->raid_type->parity_devs)
1020 goto too_many;
1021 break;
1022 case 10:
1023 copies = raid10_md_layout_to_copies(rs->md.new_layout);
1024 if (copies < 2) {
1025 DMERR("Bogus raid10 data copies < 2!");
1026 return -EINVAL;
1027 }
1028
1029 if (rebuild_cnt < copies)
1030 break;
1031
1032 /*
1033 * It is possible to have a higher rebuild count for RAID10,
1034 * as long as the failed devices occur in different mirror
1035 * groups (i.e. different stripes).
1036 *
1037 * When checking "near" format, make sure no adjacent devices
1038 * have failed beyond what can be handled. In addition to the
1039 * simple case where the number of devices is a multiple of the
1040 * number of copies, we must also handle cases where the number
1041 * of devices is not a multiple of the number of copies.
1042 * E.g. dev1 dev2 dev3 dev4 dev5
1043 * A A B B C
1044 * C D D E E
1045 */
1046 if (__is_raid10_near(rs->md.new_layout)) {
1047 for (i = 0; i < rs->md.raid_disks; i++) {
1048 if (!(i % copies))
1049 rebuilds_per_group = 0;
1050 if ((!rs->dev[i].rdev.sb_page ||
1051 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1052 (++rebuilds_per_group >= copies))
1053 goto too_many;
1054 }
1055 break;
1056 }
1057
1058 /*
1059 * When checking "far" and "offset" formats, we need to ensure
1060 * that the device that holds its copy is not also dead or
1061 * being rebuilt. (Note that "far" and "offset" formats only
1062 * support two copies right now. These formats also only ever
1063 * use the 'use_far_sets' variant.)
1064 *
1065 * This check is somewhat complicated by the need to account
1066 * for arrays that are not a multiple of (far) copies. This
1067 * results in the need to treat the last (potentially larger)
1068 * set differently.
1069 */
1070 group_size = (rs->md.raid_disks / copies);
1071 last_group_start = (rs->md.raid_disks / group_size) - 1;
1072 last_group_start *= group_size;
1073 for (i = 0; i < rs->md.raid_disks; i++) {
1074 if (!(i % copies) && !(i > last_group_start))
1075 rebuilds_per_group = 0;
1076 if ((!rs->dev[i].rdev.sb_page ||
1077 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1078 (++rebuilds_per_group >= copies))
1079 goto too_many;
1080 }
1081 break;
1082 default:
1083 if (rebuild_cnt)
1084 return -EINVAL;
1085 }
1086
1087 return 0;
1088
1089too_many:
1090 return -EINVAL;
1091}
1092
1093/*
1094 * Possible arguments are...
1095 * <chunk_size> [optional_args]
1096 *
1097 * Argument definitions
1098 * <chunk_size> The number of sectors per disk that
1099 * will form the "stripe"
1100 * [[no]sync] Force or prevent recovery of the
1101 * entire array
1102 * [rebuild <idx>] Rebuild the drive indicated by the index
1103 * [daemon_sleep <ms>] Time between bitmap daemon work to
1104 * clear bits
1105 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1106 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1107 * [write_mostly <idx>] Indicate a write mostly drive via index
1108 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
1109 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
1110 * [region_size <sectors>] Defines granularity of bitmap
1111 * [journal_dev <dev>] raid4/5/6 journaling deviice
1112 * (i.e. write hole closing log)
1113 *
1114 * RAID10-only options:
1115 * [raid10_copies <# copies>] Number of copies. (Default: 2)
1116 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near)
1117 */
1118static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1119 unsigned int num_raid_params)
1120{
1121 int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1122 unsigned int raid10_copies = 2;
1123 unsigned int i, write_mostly = 0;
1124 unsigned int region_size = 0;
1125 sector_t max_io_len;
1126 const char *arg, *key;
1127 struct raid_dev *rd;
1128 struct raid_type *rt = rs->raid_type;
1129
1130 arg = dm_shift_arg(as);
1131 num_raid_params--; /* Account for chunk_size argument */
1132
1133 if (kstrtoint(arg, 10, &value) < 0) {
1134 rs->ti->error = "Bad numerical argument given for chunk_size";
1135 return -EINVAL;
1136 }
1137
1138 /*
1139 * First, parse the in-order required arguments
1140 * "chunk_size" is the only argument of this type.
1141 */
1142 if (rt_is_raid1(rt)) {
1143 if (value)
1144 DMERR("Ignoring chunk size parameter for RAID 1");
1145 value = 0;
1146 } else if (!is_power_of_2(value)) {
1147 rs->ti->error = "Chunk size must be a power of 2";
1148 return -EINVAL;
1149 } else if (value < 8) {
1150 rs->ti->error = "Chunk size value is too small";
1151 return -EINVAL;
1152 }
1153
1154 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1155
1156 /*
1157 * We set each individual device as In_sync with a completed
1158 * 'recovery_offset'. If there has been a device failure or
1159 * replacement then one of the following cases applies:
1160 *
1161 * 1) User specifies 'rebuild'.
1162 * - Device is reset when param is read.
1163 * 2) A new device is supplied.
1164 * - No matching superblock found, resets device.
1165 * 3) Device failure was transient and returns on reload.
1166 * - Failure noticed, resets device for bitmap replay.
1167 * 4) Device hadn't completed recovery after previous failure.
1168 * - Superblock is read and overrides recovery_offset.
1169 *
1170 * What is found in the superblocks of the devices is always
1171 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1172 */
1173 for (i = 0; i < rs->raid_disks; i++) {
1174 set_bit(In_sync, &rs->dev[i].rdev.flags);
1175 rs->dev[i].rdev.recovery_offset = MaxSector;
1176 }
1177
1178 /*
1179 * Second, parse the unordered optional arguments
1180 */
1181 for (i = 0; i < num_raid_params; i++) {
1182 key = dm_shift_arg(as);
1183 if (!key) {
1184 rs->ti->error = "Not enough raid parameters given";
1185 return -EINVAL;
1186 }
1187
1188 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1189 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1190 rs->ti->error = "Only one 'nosync' argument allowed";
1191 return -EINVAL;
1192 }
1193 continue;
1194 }
1195 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1196 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1197 rs->ti->error = "Only one 'sync' argument allowed";
1198 return -EINVAL;
1199 }
1200 continue;
1201 }
1202 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1203 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1204 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1205 return -EINVAL;
1206 }
1207 continue;
1208 }
1209
1210 arg = dm_shift_arg(as);
1211 i++; /* Account for the argument pairs */
1212 if (!arg) {
1213 rs->ti->error = "Wrong number of raid parameters given";
1214 return -EINVAL;
1215 }
1216
1217 /*
1218 * Parameters that take a string value are checked here.
1219 */
1220 /* "raid10_format {near|offset|far} */
1221 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1222 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1223 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1224 return -EINVAL;
1225 }
1226 if (!rt_is_raid10(rt)) {
1227 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1228 return -EINVAL;
1229 }
1230 raid10_format = raid10_name_to_format(arg);
1231 if (raid10_format < 0) {
1232 rs->ti->error = "Invalid 'raid10_format' value given";
1233 return raid10_format;
1234 }
1235 continue;
1236 }
1237
1238 /* "journal_dev <dev>" */
1239 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) {
1240 int r;
1241 struct md_rdev *jdev;
1242
1243 if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1244 rs->ti->error = "Only one raid4/5/6 set journaling device allowed";
1245 return -EINVAL;
1246 }
1247 if (!rt_is_raid456(rt)) {
1248 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type";
1249 return -EINVAL;
1250 }
1251 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
1252 &rs->journal_dev.dev);
1253 if (r) {
1254 rs->ti->error = "raid4/5/6 journal device lookup failure";
1255 return r;
1256 }
1257 jdev = &rs->journal_dev.rdev;
1258 md_rdev_init(jdev);
1259 jdev->mddev = &rs->md;
1260 jdev->bdev = rs->journal_dev.dev->bdev;
1261 jdev->sectors = to_sector(i_size_read(jdev->bdev->bd_inode));
1262 if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) {
1263 rs->ti->error = "No space for raid4/5/6 journal";
1264 return -ENOSPC;
1265 }
1266 rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
1267 set_bit(Journal, &jdev->flags);
1268 continue;
1269 }
1270
1271 /* "journal_mode <mode>" ("journal_dev" mandatory!) */
1272 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) {
1273 int r;
1274
1275 if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1276 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'";
1277 return -EINVAL;
1278 }
1279 if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
1280 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed";
1281 return -EINVAL;
1282 }
1283 r = dm_raid_journal_mode_to_md(arg);
1284 if (r < 0) {
1285 rs->ti->error = "Invalid 'journal_mode' argument";
1286 return r;
1287 }
1288 rs->journal_dev.mode = r;
1289 continue;
1290 }
1291
1292 /*
1293 * Parameters with number values from here on.
1294 */
1295 if (kstrtoint(arg, 10, &value) < 0) {
1296 rs->ti->error = "Bad numerical argument given in raid params";
1297 return -EINVAL;
1298 }
1299
1300 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1301 /*
1302 * "rebuild" is being passed in by userspace to provide
1303 * indexes of replaced devices and to set up additional
1304 * devices on raid level takeover.
1305 */
1306 if (!__within_range(value, 0, rs->raid_disks - 1)) {
1307 rs->ti->error = "Invalid rebuild index given";
1308 return -EINVAL;
1309 }
1310
1311 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1312 rs->ti->error = "rebuild for this index already given";
1313 return -EINVAL;
1314 }
1315
1316 rd = rs->dev + value;
1317 clear_bit(In_sync, &rd->rdev.flags);
1318 clear_bit(Faulty, &rd->rdev.flags);
1319 rd->rdev.recovery_offset = 0;
1320 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1321 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1322 if (!rt_is_raid1(rt)) {
1323 rs->ti->error = "write_mostly option is only valid for RAID1";
1324 return -EINVAL;
1325 }
1326
1327 if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1328 rs->ti->error = "Invalid write_mostly index given";
1329 return -EINVAL;
1330 }
1331
1332 write_mostly++;
1333 set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1334 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1335 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1336 if (!rt_is_raid1(rt)) {
1337 rs->ti->error = "max_write_behind option is only valid for RAID1";
1338 return -EINVAL;
1339 }
1340
1341 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1342 rs->ti->error = "Only one max_write_behind argument pair allowed";
1343 return -EINVAL;
1344 }
1345
1346 /*
1347 * In device-mapper, we specify things in sectors, but
1348 * MD records this value in kB
1349 */
1350 if (value < 0 || value / 2 > COUNTER_MAX) {
1351 rs->ti->error = "Max write-behind limit out of range";
1352 return -EINVAL;
1353 }
1354
1355 rs->md.bitmap_info.max_write_behind = value / 2;
1356 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1357 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1358 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1359 return -EINVAL;
1360 }
1361 if (value < 0) {
1362 rs->ti->error = "daemon sleep period out of range";
1363 return -EINVAL;
1364 }
1365 rs->md.bitmap_info.daemon_sleep = value;
1366 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1367 /* Userspace passes new data_offset after having extended the the data image LV */
1368 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1369 rs->ti->error = "Only one data_offset argument pair allowed";
1370 return -EINVAL;
1371 }
1372 /* Ensure sensible data offset */
1373 if (value < 0 ||
1374 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1375 rs->ti->error = "Bogus data_offset value";
1376 return -EINVAL;
1377 }
1378 rs->data_offset = value;
1379 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1380 /* Define the +/-# of disks to add to/remove from the given raid set */
1381 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1382 rs->ti->error = "Only one delta_disks argument pair allowed";
1383 return -EINVAL;
1384 }
1385 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1386 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1387 rs->ti->error = "Too many delta_disk requested";
1388 return -EINVAL;
1389 }
1390
1391 rs->delta_disks = value;
1392 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1393 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1394 rs->ti->error = "Only one stripe_cache argument pair allowed";
1395 return -EINVAL;
1396 }
1397
1398 if (!rt_is_raid456(rt)) {
1399 rs->ti->error = "Inappropriate argument: stripe_cache";
1400 return -EINVAL;
1401 }
1402
1403 if (value < 0) {
1404 rs->ti->error = "Bogus stripe cache entries value";
1405 return -EINVAL;
1406 }
1407 rs->stripe_cache_entries = value;
1408 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1409 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1410 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1411 return -EINVAL;
1412 }
1413
1414 if (value < 0) {
1415 rs->ti->error = "min_recovery_rate out of range";
1416 return -EINVAL;
1417 }
1418 rs->md.sync_speed_min = value;
1419 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1420 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1421 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1422 return -EINVAL;
1423 }
1424
1425 if (value < 0) {
1426 rs->ti->error = "max_recovery_rate out of range";
1427 return -EINVAL;
1428 }
1429 rs->md.sync_speed_max = value;
1430 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1431 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1432 rs->ti->error = "Only one region_size argument pair allowed";
1433 return -EINVAL;
1434 }
1435
1436 region_size = value;
1437 rs->requested_bitmap_chunk_sectors = value;
1438 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1439 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1440 rs->ti->error = "Only one raid10_copies argument pair allowed";
1441 return -EINVAL;
1442 }
1443
1444 if (!__within_range(value, 2, rs->md.raid_disks)) {
1445 rs->ti->error = "Bad value for 'raid10_copies'";
1446 return -EINVAL;
1447 }
1448
1449 raid10_copies = value;
1450 } else {
1451 DMERR("Unable to parse RAID parameter: %s", key);
1452 rs->ti->error = "Unable to parse RAID parameter";
1453 return -EINVAL;
1454 }
1455 }
1456
1457 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1458 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1459 rs->ti->error = "sync and nosync are mutually exclusive";
1460 return -EINVAL;
1461 }
1462
1463 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1464 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1465 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1466 rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1467 return -EINVAL;
1468 }
1469
1470 if (write_mostly >= rs->md.raid_disks) {
1471 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1472 return -EINVAL;
1473 }
1474
1475 if (rs->md.sync_speed_max &&
1476 rs->md.sync_speed_min > rs->md.sync_speed_max) {
1477 rs->ti->error = "Bogus recovery rates";
1478 return -EINVAL;
1479 }
1480
1481 if (validate_region_size(rs, region_size))
1482 return -EINVAL;
1483
1484 if (rs->md.chunk_sectors)
1485 max_io_len = rs->md.chunk_sectors;
1486 else
1487 max_io_len = region_size;
1488
1489 if (dm_set_target_max_io_len(rs->ti, max_io_len))
1490 return -EINVAL;
1491
1492 if (rt_is_raid10(rt)) {
1493 if (raid10_copies > rs->md.raid_disks) {
1494 rs->ti->error = "Not enough devices to satisfy specification";
1495 return -EINVAL;
1496 }
1497
1498 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1499 if (rs->md.new_layout < 0) {
1500 rs->ti->error = "Error getting raid10 format";
1501 return rs->md.new_layout;
1502 }
1503
1504 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1505 if (!rt) {
1506 rs->ti->error = "Failed to recognize new raid10 layout";
1507 return -EINVAL;
1508 }
1509
1510 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1511 rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1512 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1513 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1514 return -EINVAL;
1515 }
1516 }
1517
1518 rs->raid10_copies = raid10_copies;
1519
1520 /* Assume there are no metadata devices until the drives are parsed */
1521 rs->md.persistent = 0;
1522 rs->md.external = 1;
1523
1524 /* Check, if any invalid ctr arguments have been passed in for the raid level */
1525 return rs_check_for_valid_flags(rs);
1526}
1527
1528/* Set raid4/5/6 cache size */
1529static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1530{
1531 int r;
1532 struct r5conf *conf;
1533 struct mddev *mddev = &rs->md;
1534 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1535 uint32_t nr_stripes = rs->stripe_cache_entries;
1536
1537 if (!rt_is_raid456(rs->raid_type)) {
1538 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1539 return -EINVAL;
1540 }
1541
1542 if (nr_stripes < min_stripes) {
1543 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1544 nr_stripes, min_stripes);
1545 nr_stripes = min_stripes;
1546 }
1547
1548 conf = mddev->private;
1549 if (!conf) {
1550 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1551 return -EINVAL;
1552 }
1553
1554 /* Try setting number of stripes in raid456 stripe cache */
1555 if (conf->min_nr_stripes != nr_stripes) {
1556 r = raid5_set_cache_size(mddev, nr_stripes);
1557 if (r) {
1558 rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1559 return r;
1560 }
1561
1562 DMINFO("%u stripe cache entries", nr_stripes);
1563 }
1564
1565 return 0;
1566}
1567
1568/* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1569static unsigned int mddev_data_stripes(struct raid_set *rs)
1570{
1571 return rs->md.raid_disks - rs->raid_type->parity_devs;
1572}
1573
1574/* Return # of data stripes of @rs (i.e. as of ctr) */
1575static unsigned int rs_data_stripes(struct raid_set *rs)
1576{
1577 return rs->raid_disks - rs->raid_type->parity_devs;
1578}
1579
1580/*
1581 * Retrieve rdev->sectors from any valid raid device of @rs
1582 * to allow userpace to pass in arbitray "- -" device tupples.
1583 */
1584static sector_t __rdev_sectors(struct raid_set *rs)
1585{
1586 int i;
1587
1588 for (i = 0; i < rs->md.raid_disks; i++) {
1589 struct md_rdev *rdev = &rs->dev[i].rdev;
1590
1591 if (!test_bit(Journal, &rdev->flags) &&
1592 rdev->bdev && rdev->sectors)
1593 return rdev->sectors;
1594 }
1595
1596 return 0;
1597}
1598
1599/* Check that calculated dev_sectors fits all component devices. */
1600static int _check_data_dev_sectors(struct raid_set *rs)
1601{
1602 sector_t ds = ~0;
1603 struct md_rdev *rdev;
1604
1605 rdev_for_each(rdev, &rs->md)
1606 if (!test_bit(Journal, &rdev->flags) && rdev->bdev) {
1607 ds = min(ds, to_sector(i_size_read(rdev->bdev->bd_inode)));
1608 if (ds < rs->md.dev_sectors) {
1609 rs->ti->error = "Component device(s) too small";
1610 return -EINVAL;
1611 }
1612 }
1613
1614 return 0;
1615}
1616
1617/* Calculate the sectors per device and per array used for @rs */
1618static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev)
1619{
1620 int delta_disks;
1621 unsigned int data_stripes;
1622 struct mddev *mddev = &rs->md;
1623 struct md_rdev *rdev;
1624 sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len;
1625
1626 if (use_mddev) {
1627 delta_disks = mddev->delta_disks;
1628 data_stripes = mddev_data_stripes(rs);
1629 } else {
1630 delta_disks = rs->delta_disks;
1631 data_stripes = rs_data_stripes(rs);
1632 }
1633
1634 /* Special raid1 case w/o delta_disks support (yet) */
1635 if (rt_is_raid1(rs->raid_type))
1636 ;
1637 else if (rt_is_raid10(rs->raid_type)) {
1638 if (rs->raid10_copies < 2 ||
1639 delta_disks < 0) {
1640 rs->ti->error = "Bogus raid10 data copies or delta disks";
1641 return -EINVAL;
1642 }
1643
1644 dev_sectors *= rs->raid10_copies;
1645 if (sector_div(dev_sectors, data_stripes))
1646 goto bad;
1647
1648 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1649 if (sector_div(array_sectors, rs->raid10_copies))
1650 goto bad;
1651
1652 } else if (sector_div(dev_sectors, data_stripes))
1653 goto bad;
1654
1655 else
1656 /* Striped layouts */
1657 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1658
1659 rdev_for_each(rdev, mddev)
1660 if (!test_bit(Journal, &rdev->flags))
1661 rdev->sectors = dev_sectors;
1662
1663 mddev->array_sectors = array_sectors;
1664 mddev->dev_sectors = dev_sectors;
1665
1666 return _check_data_dev_sectors(rs);
1667bad:
1668 rs->ti->error = "Target length not divisible by number of data devices";
1669 return -EINVAL;
1670}
1671
1672/* Setup recovery on @rs */
1673static void __rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1674{
1675 /* raid0 does not recover */
1676 if (rs_is_raid0(rs))
1677 rs->md.recovery_cp = MaxSector;
1678 /*
1679 * A raid6 set has to be recovered either
1680 * completely or for the grown part to
1681 * ensure proper parity and Q-Syndrome
1682 */
1683 else if (rs_is_raid6(rs))
1684 rs->md.recovery_cp = dev_sectors;
1685 /*
1686 * Other raid set types may skip recovery
1687 * depending on the 'nosync' flag.
1688 */
1689 else
1690 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1691 ? MaxSector : dev_sectors;
1692}
1693
1694/* Setup recovery on @rs based on raid type, device size and 'nosync' flag */
1695static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1696{
1697 if (!dev_sectors)
1698 /* New raid set or 'sync' flag provided */
1699 __rs_setup_recovery(rs, 0);
1700 else if (dev_sectors == MaxSector)
1701 /* Prevent recovery */
1702 __rs_setup_recovery(rs, MaxSector);
1703 else if (__rdev_sectors(rs) < dev_sectors)
1704 /* Grown raid set */
1705 __rs_setup_recovery(rs, __rdev_sectors(rs));
1706 else
1707 __rs_setup_recovery(rs, MaxSector);
1708}
1709
1710static void do_table_event(struct work_struct *ws)
1711{
1712 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1713
1714 smp_rmb(); /* Make sure we access most actual mddev properties */
1715 if (!rs_is_reshaping(rs)) {
1716 if (rs_is_raid10(rs))
1717 rs_set_rdev_sectors(rs);
1718 rs_set_capacity(rs);
1719 }
1720 dm_table_event(rs->ti->table);
1721}
1722
1723static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1724{
1725 struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1726
1727 return mddev_congested(&rs->md, bits);
1728}
1729
1730/*
1731 * Make sure a valid takover (level switch) is being requested on @rs
1732 *
1733 * Conversions of raid sets from one MD personality to another
1734 * have to conform to restrictions which are enforced here.
1735 */
1736static int rs_check_takeover(struct raid_set *rs)
1737{
1738 struct mddev *mddev = &rs->md;
1739 unsigned int near_copies;
1740
1741 if (rs->md.degraded) {
1742 rs->ti->error = "Can't takeover degraded raid set";
1743 return -EPERM;
1744 }
1745
1746 if (rs_is_reshaping(rs)) {
1747 rs->ti->error = "Can't takeover reshaping raid set";
1748 return -EPERM;
1749 }
1750
1751 switch (mddev->level) {
1752 case 0:
1753 /* raid0 -> raid1/5 with one disk */
1754 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1755 mddev->raid_disks == 1)
1756 return 0;
1757
1758 /* raid0 -> raid10 */
1759 if (mddev->new_level == 10 &&
1760 !(rs->raid_disks % mddev->raid_disks))
1761 return 0;
1762
1763 /* raid0 with multiple disks -> raid4/5/6 */
1764 if (__within_range(mddev->new_level, 4, 6) &&
1765 mddev->new_layout == ALGORITHM_PARITY_N &&
1766 mddev->raid_disks > 1)
1767 return 0;
1768
1769 break;
1770
1771 case 10:
1772 /* Can't takeover raid10_offset! */
1773 if (__is_raid10_offset(mddev->layout))
1774 break;
1775
1776 near_copies = __raid10_near_copies(mddev->layout);
1777
1778 /* raid10* -> raid0 */
1779 if (mddev->new_level == 0) {
1780 /* Can takeover raid10_near with raid disks divisable by data copies! */
1781 if (near_copies > 1 &&
1782 !(mddev->raid_disks % near_copies)) {
1783 mddev->raid_disks /= near_copies;
1784 mddev->delta_disks = mddev->raid_disks;
1785 return 0;
1786 }
1787
1788 /* Can takeover raid10_far */
1789 if (near_copies == 1 &&
1790 __raid10_far_copies(mddev->layout) > 1)
1791 return 0;
1792
1793 break;
1794 }
1795
1796 /* raid10_{near,far} -> raid1 */
1797 if (mddev->new_level == 1 &&
1798 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1799 return 0;
1800
1801 /* raid10_{near,far} with 2 disks -> raid4/5 */
1802 if (__within_range(mddev->new_level, 4, 5) &&
1803 mddev->raid_disks == 2)
1804 return 0;
1805 break;
1806
1807 case 1:
1808 /* raid1 with 2 disks -> raid4/5 */
1809 if (__within_range(mddev->new_level, 4, 5) &&
1810 mddev->raid_disks == 2) {
1811 mddev->degraded = 1;
1812 return 0;
1813 }
1814
1815 /* raid1 -> raid0 */
1816 if (mddev->new_level == 0 &&
1817 mddev->raid_disks == 1)
1818 return 0;
1819
1820 /* raid1 -> raid10 */
1821 if (mddev->new_level == 10)
1822 return 0;
1823 break;
1824
1825 case 4:
1826 /* raid4 -> raid0 */
1827 if (mddev->new_level == 0)
1828 return 0;
1829
1830 /* raid4 -> raid1/5 with 2 disks */
1831 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1832 mddev->raid_disks == 2)
1833 return 0;
1834
1835 /* raid4 -> raid5/6 with parity N */
1836 if (__within_range(mddev->new_level, 5, 6) &&
1837 mddev->layout == ALGORITHM_PARITY_N)
1838 return 0;
1839 break;
1840
1841 case 5:
1842 /* raid5 with parity N -> raid0 */
1843 if (mddev->new_level == 0 &&
1844 mddev->layout == ALGORITHM_PARITY_N)
1845 return 0;
1846
1847 /* raid5 with parity N -> raid4 */
1848 if (mddev->new_level == 4 &&
1849 mddev->layout == ALGORITHM_PARITY_N)
1850 return 0;
1851
1852 /* raid5 with 2 disks -> raid1/4/10 */
1853 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1854 mddev->raid_disks == 2)
1855 return 0;
1856
1857 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1858 if (mddev->new_level == 6 &&
1859 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1860 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1861 return 0;
1862 break;
1863
1864 case 6:
1865 /* raid6 with parity N -> raid0 */
1866 if (mddev->new_level == 0 &&
1867 mddev->layout == ALGORITHM_PARITY_N)
1868 return 0;
1869
1870 /* raid6 with parity N -> raid4 */
1871 if (mddev->new_level == 4 &&
1872 mddev->layout == ALGORITHM_PARITY_N)
1873 return 0;
1874
1875 /* raid6_*_n with Q-Syndrome N -> raid5_* */
1876 if (mddev->new_level == 5 &&
1877 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1878 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1879 return 0;
1880
1881 default:
1882 break;
1883 }
1884
1885 rs->ti->error = "takeover not possible";
1886 return -EINVAL;
1887}
1888
1889/* True if @rs requested to be taken over */
1890static bool rs_takeover_requested(struct raid_set *rs)
1891{
1892 return rs->md.new_level != rs->md.level;
1893}
1894
Olivier Deprez0e641232021-09-23 10:07:05 +02001895/* True if layout is set to reshape. */
1896static bool rs_is_layout_change(struct raid_set *rs, bool use_mddev)
1897{
1898 return (use_mddev ? rs->md.delta_disks : rs->delta_disks) ||
1899 rs->md.new_layout != rs->md.layout ||
1900 rs->md.new_chunk_sectors != rs->md.chunk_sectors;
1901}
1902
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001903/* True if @rs is requested to reshape by ctr */
1904static bool rs_reshape_requested(struct raid_set *rs)
1905{
1906 bool change;
1907 struct mddev *mddev = &rs->md;
1908
1909 if (rs_takeover_requested(rs))
1910 return false;
1911
1912 if (rs_is_raid0(rs))
1913 return false;
1914
Olivier Deprez0e641232021-09-23 10:07:05 +02001915 change = rs_is_layout_change(rs, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001916
1917 /* Historical case to support raid1 reshape without delta disks */
1918 if (rs_is_raid1(rs)) {
1919 if (rs->delta_disks)
1920 return !!rs->delta_disks;
1921
1922 return !change &&
1923 mddev->raid_disks != rs->raid_disks;
1924 }
1925
1926 if (rs_is_raid10(rs))
1927 return change &&
1928 !__is_raid10_far(mddev->new_layout) &&
1929 rs->delta_disks >= 0;
1930
1931 return change;
1932}
1933
1934/* Features */
1935#define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */
1936
1937/* State flags for sb->flags */
1938#define SB_FLAG_RESHAPE_ACTIVE 0x1
1939#define SB_FLAG_RESHAPE_BACKWARDS 0x2
1940
1941/*
1942 * This structure is never routinely used by userspace, unlike md superblocks.
1943 * Devices with this superblock should only ever be accessed via device-mapper.
1944 */
1945#define DM_RAID_MAGIC 0x64526D44
1946struct dm_raid_superblock {
1947 __le32 magic; /* "DmRd" */
1948 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1949
1950 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */
1951 __le32 array_position; /* The position of this drive in the raid set */
1952
1953 __le64 events; /* Incremented by md when superblock updated */
1954 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */
1955 /* indicate failures (see extension below) */
1956
1957 /*
1958 * This offset tracks the progress of the repair or replacement of
1959 * an individual drive.
1960 */
1961 __le64 disk_recovery_offset;
1962
1963 /*
1964 * This offset tracks the progress of the initial raid set
1965 * synchronisation/parity calculation.
1966 */
1967 __le64 array_resync_offset;
1968
1969 /*
1970 * raid characteristics
1971 */
1972 __le32 level;
1973 __le32 layout;
1974 __le32 stripe_sectors;
1975
1976 /********************************************************************
1977 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1978 *
1979 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
1980 */
1981
1982 __le32 flags; /* Flags defining array states for reshaping */
1983
1984 /*
1985 * This offset tracks the progress of a raid
1986 * set reshape in order to be able to restart it
1987 */
1988 __le64 reshape_position;
1989
1990 /*
1991 * These define the properties of the array in case of an interrupted reshape
1992 */
1993 __le32 new_level;
1994 __le32 new_layout;
1995 __le32 new_stripe_sectors;
1996 __le32 delta_disks;
1997
1998 __le64 array_sectors; /* Array size in sectors */
1999
2000 /*
2001 * Sector offsets to data on devices (reshaping).
2002 * Needed to support out of place reshaping, thus
2003 * not writing over any stripes whilst converting
2004 * them from old to new layout
2005 */
2006 __le64 data_offset;
2007 __le64 new_data_offset;
2008
2009 __le64 sectors; /* Used device size in sectors */
2010
2011 /*
2012 * Additonal Bit field of devices indicating failures to support
2013 * up to 256 devices with the 1.9.0 on-disk metadata format
2014 */
2015 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
2016
2017 __le32 incompat_features; /* Used to indicate any incompatible features */
2018
2019 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
2020} __packed;
2021
2022/*
2023 * Check for reshape constraints on raid set @rs:
2024 *
2025 * - reshape function non-existent
2026 * - degraded set
2027 * - ongoing recovery
2028 * - ongoing reshape
2029 *
2030 * Returns 0 if none or -EPERM if given constraint
2031 * and error message reference in @errmsg
2032 */
2033static int rs_check_reshape(struct raid_set *rs)
2034{
2035 struct mddev *mddev = &rs->md;
2036
2037 if (!mddev->pers || !mddev->pers->check_reshape)
2038 rs->ti->error = "Reshape not supported";
2039 else if (mddev->degraded)
2040 rs->ti->error = "Can't reshape degraded raid set";
2041 else if (rs_is_recovering(rs))
2042 rs->ti->error = "Convert request on recovering raid set prohibited";
2043 else if (rs_is_reshaping(rs))
2044 rs->ti->error = "raid set already reshaping!";
2045 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
2046 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
2047 else
2048 return 0;
2049
2050 return -EPERM;
2051}
2052
2053static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload)
2054{
2055 BUG_ON(!rdev->sb_page);
2056
2057 if (rdev->sb_loaded && !force_reload)
2058 return 0;
2059
2060 rdev->sb_loaded = 0;
2061
2062 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) {
2063 DMERR("Failed to read superblock of device at position %d",
2064 rdev->raid_disk);
2065 md_error(rdev->mddev, rdev);
2066 set_bit(Faulty, &rdev->flags);
2067 return -EIO;
2068 }
2069
2070 rdev->sb_loaded = 1;
2071
2072 return 0;
2073}
2074
2075static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2076{
2077 failed_devices[0] = le64_to_cpu(sb->failed_devices);
2078 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
2079
2080 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2081 int i = ARRAY_SIZE(sb->extended_failed_devices);
2082
2083 while (i--)
2084 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
2085 }
2086}
2087
2088static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2089{
2090 int i = ARRAY_SIZE(sb->extended_failed_devices);
2091
2092 sb->failed_devices = cpu_to_le64(failed_devices[0]);
2093 while (i--)
2094 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
2095}
2096
2097/*
2098 * Synchronize the superblock members with the raid set properties
2099 *
2100 * All superblock data is little endian.
2101 */
2102static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
2103{
2104 bool update_failed_devices = false;
2105 unsigned int i;
2106 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2107 struct dm_raid_superblock *sb;
2108 struct raid_set *rs = container_of(mddev, struct raid_set, md);
2109
2110 /* No metadata device, no superblock */
2111 if (!rdev->meta_bdev)
2112 return;
2113
2114 BUG_ON(!rdev->sb_page);
2115
2116 sb = page_address(rdev->sb_page);
2117
2118 sb_retrieve_failed_devices(sb, failed_devices);
2119
2120 for (i = 0; i < rs->raid_disks; i++)
2121 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
2122 update_failed_devices = true;
2123 set_bit(i, (void *) failed_devices);
2124 }
2125
2126 if (update_failed_devices)
2127 sb_update_failed_devices(sb, failed_devices);
2128
2129 sb->magic = cpu_to_le32(DM_RAID_MAGIC);
2130 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2131
2132 sb->num_devices = cpu_to_le32(mddev->raid_disks);
2133 sb->array_position = cpu_to_le32(rdev->raid_disk);
2134
2135 sb->events = cpu_to_le64(mddev->events);
2136
2137 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
2138 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
2139
2140 sb->level = cpu_to_le32(mddev->level);
2141 sb->layout = cpu_to_le32(mddev->layout);
2142 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
2143
2144 /********************************************************************
2145 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
2146 *
2147 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
2148 */
2149 sb->new_level = cpu_to_le32(mddev->new_level);
2150 sb->new_layout = cpu_to_le32(mddev->new_layout);
2151 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
2152
2153 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2154
2155 smp_rmb(); /* Make sure we access most recent reshape position */
2156 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2157 if (le64_to_cpu(sb->reshape_position) != MaxSector) {
2158 /* Flag ongoing reshape */
2159 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
2160
2161 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
2162 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
2163 } else {
2164 /* Clear reshape flags */
2165 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
2166 }
2167
2168 sb->array_sectors = cpu_to_le64(mddev->array_sectors);
2169 sb->data_offset = cpu_to_le64(rdev->data_offset);
2170 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
2171 sb->sectors = cpu_to_le64(rdev->sectors);
2172 sb->incompat_features = cpu_to_le32(0);
2173
2174 /* Zero out the rest of the payload after the size of the superblock */
2175 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
2176}
2177
2178/*
2179 * super_load
2180 *
2181 * This function creates a superblock if one is not found on the device
2182 * and will decide which superblock to use if there's a choice.
2183 *
2184 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
2185 */
2186static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
2187{
2188 int r;
2189 struct dm_raid_superblock *sb;
2190 struct dm_raid_superblock *refsb;
2191 uint64_t events_sb, events_refsb;
2192
2193 r = read_disk_sb(rdev, rdev->sb_size, false);
2194 if (r)
2195 return r;
2196
2197 sb = page_address(rdev->sb_page);
2198
2199 /*
2200 * Two cases that we want to write new superblocks and rebuild:
2201 * 1) New device (no matching magic number)
2202 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2203 */
2204 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2205 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2206 super_sync(rdev->mddev, rdev);
2207
2208 set_bit(FirstUse, &rdev->flags);
2209 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2210
2211 /* Force writing of superblocks to disk */
2212 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2213
2214 /* Any superblock is better than none, choose that if given */
2215 return refdev ? 0 : 1;
2216 }
2217
2218 if (!refdev)
2219 return 1;
2220
2221 events_sb = le64_to_cpu(sb->events);
2222
2223 refsb = page_address(refdev->sb_page);
2224 events_refsb = le64_to_cpu(refsb->events);
2225
2226 return (events_sb > events_refsb) ? 1 : 0;
2227}
2228
2229static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2230{
2231 int role;
2232 unsigned int d;
2233 struct mddev *mddev = &rs->md;
2234 uint64_t events_sb;
2235 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2236 struct dm_raid_superblock *sb;
2237 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2238 struct md_rdev *r;
2239 struct dm_raid_superblock *sb2;
2240
2241 sb = page_address(rdev->sb_page);
2242 events_sb = le64_to_cpu(sb->events);
2243
2244 /*
2245 * Initialise to 1 if this is a new superblock.
2246 */
2247 mddev->events = events_sb ? : 1;
2248
2249 mddev->reshape_position = MaxSector;
2250
2251 mddev->raid_disks = le32_to_cpu(sb->num_devices);
2252 mddev->level = le32_to_cpu(sb->level);
2253 mddev->layout = le32_to_cpu(sb->layout);
2254 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2255
2256 /*
2257 * Reshaping is supported, e.g. reshape_position is valid
2258 * in superblock and superblock content is authoritative.
2259 */
2260 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2261 /* Superblock is authoritative wrt given raid set layout! */
2262 mddev->new_level = le32_to_cpu(sb->new_level);
2263 mddev->new_layout = le32_to_cpu(sb->new_layout);
2264 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2265 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2266 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2267
2268 /* raid was reshaping and got interrupted */
2269 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2270 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2271 DMERR("Reshape requested but raid set is still reshaping");
2272 return -EINVAL;
2273 }
2274
2275 if (mddev->delta_disks < 0 ||
2276 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2277 mddev->reshape_backwards = 1;
2278 else
2279 mddev->reshape_backwards = 0;
2280
2281 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2282 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2283 }
2284
2285 } else {
2286 /*
2287 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2288 */
2289 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2290 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2291
2292 if (rs_takeover_requested(rs)) {
2293 if (rt_cur && rt_new)
2294 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2295 rt_cur->name, rt_new->name);
2296 else
2297 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2298 return -EINVAL;
2299 } else if (rs_reshape_requested(rs)) {
2300 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2301 if (mddev->layout != mddev->new_layout) {
2302 if (rt_cur && rt_new)
2303 DMERR(" current layout %s vs new layout %s",
2304 rt_cur->name, rt_new->name);
2305 else
2306 DMERR(" current layout 0x%X vs new layout 0x%X",
2307 le32_to_cpu(sb->layout), mddev->new_layout);
2308 }
2309 if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2310 DMERR(" current stripe sectors %u vs new stripe sectors %u",
2311 mddev->chunk_sectors, mddev->new_chunk_sectors);
2312 if (rs->delta_disks)
2313 DMERR(" current %u disks vs new %u disks",
2314 mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2315 if (rs_is_raid10(rs)) {
2316 DMERR(" Old layout: %s w/ %u copies",
2317 raid10_md_layout_to_format(mddev->layout),
2318 raid10_md_layout_to_copies(mddev->layout));
2319 DMERR(" New layout: %s w/ %u copies",
2320 raid10_md_layout_to_format(mddev->new_layout),
2321 raid10_md_layout_to_copies(mddev->new_layout));
2322 }
2323 return -EINVAL;
2324 }
2325
2326 DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2327 }
2328
2329 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2330 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2331
2332 /*
2333 * During load, we set FirstUse if a new superblock was written.
2334 * There are two reasons we might not have a superblock:
2335 * 1) The raid set is brand new - in which case, all of the
2336 * devices must have their In_sync bit set. Also,
2337 * recovery_cp must be 0, unless forced.
2338 * 2) This is a new device being added to an old raid set
2339 * and the new device needs to be rebuilt - in which
2340 * case the In_sync bit will /not/ be set and
2341 * recovery_cp must be MaxSector.
2342 * 3) This is/are a new device(s) being added to an old
2343 * raid set during takeover to a higher raid level
2344 * to provide capacity for redundancy or during reshape
2345 * to add capacity to grow the raid set.
2346 */
2347 d = 0;
2348 rdev_for_each(r, mddev) {
2349 if (test_bit(Journal, &rdev->flags))
2350 continue;
2351
2352 if (test_bit(FirstUse, &r->flags))
2353 new_devs++;
2354
2355 if (!test_bit(In_sync, &r->flags)) {
2356 DMINFO("Device %d specified for rebuild; clearing superblock",
2357 r->raid_disk);
2358 rebuilds++;
2359
2360 if (test_bit(FirstUse, &r->flags))
2361 rebuild_and_new++;
2362 }
2363
2364 d++;
2365 }
2366
2367 if (new_devs == rs->raid_disks || !rebuilds) {
2368 /* Replace a broken device */
2369 if (new_devs == 1 && !rs->delta_disks)
2370 ;
2371 if (new_devs == rs->raid_disks) {
2372 DMINFO("Superblocks created for new raid set");
2373 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2374 } else if (new_devs != rebuilds &&
2375 new_devs != rs->delta_disks) {
2376 DMERR("New device injected into existing raid set without "
2377 "'delta_disks' or 'rebuild' parameter specified");
2378 return -EINVAL;
2379 }
2380 } else if (new_devs && new_devs != rebuilds) {
2381 DMERR("%u 'rebuild' devices cannot be injected into"
2382 " a raid set with %u other first-time devices",
2383 rebuilds, new_devs);
2384 return -EINVAL;
2385 } else if (rebuilds) {
2386 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2387 DMERR("new device%s provided without 'rebuild'",
2388 new_devs > 1 ? "s" : "");
2389 return -EINVAL;
2390 } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) {
2391 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2392 (unsigned long long) mddev->recovery_cp);
2393 return -EINVAL;
2394 } else if (rs_is_reshaping(rs)) {
2395 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2396 (unsigned long long) mddev->reshape_position);
2397 return -EINVAL;
2398 }
2399 }
2400
2401 /*
2402 * Now we set the Faulty bit for those devices that are
2403 * recorded in the superblock as failed.
2404 */
2405 sb_retrieve_failed_devices(sb, failed_devices);
2406 rdev_for_each(r, mddev) {
2407 if (test_bit(Journal, &rdev->flags) ||
2408 !r->sb_page)
2409 continue;
2410 sb2 = page_address(r->sb_page);
2411 sb2->failed_devices = 0;
2412 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2413
2414 /*
2415 * Check for any device re-ordering.
2416 */
2417 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2418 role = le32_to_cpu(sb2->array_position);
2419 if (role < 0)
2420 continue;
2421
2422 if (role != r->raid_disk) {
2423 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2424 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2425 rs->raid_disks % rs->raid10_copies) {
2426 rs->ti->error =
2427 "Cannot change raid10 near set to odd # of devices!";
2428 return -EINVAL;
2429 }
2430
2431 sb2->array_position = cpu_to_le32(r->raid_disk);
2432
2433 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2434 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2435 !rt_is_raid1(rs->raid_type)) {
2436 rs->ti->error = "Cannot change device positions in raid set";
2437 return -EINVAL;
2438 }
2439
2440 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2441 }
2442
2443 /*
2444 * Partial recovery is performed on
2445 * returning failed devices.
2446 */
2447 if (test_bit(role, (void *) failed_devices))
2448 set_bit(Faulty, &r->flags);
2449 }
2450 }
2451
2452 return 0;
2453}
2454
2455static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2456{
2457 struct mddev *mddev = &rs->md;
2458 struct dm_raid_superblock *sb;
2459
2460 if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0)
2461 return 0;
2462
2463 sb = page_address(rdev->sb_page);
2464
2465 /*
2466 * If mddev->events is not set, we know we have not yet initialized
2467 * the array.
2468 */
2469 if (!mddev->events && super_init_validation(rs, rdev))
2470 return -EINVAL;
2471
2472 if (le32_to_cpu(sb->compat_features) &&
2473 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2474 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2475 return -EINVAL;
2476 }
2477
2478 if (sb->incompat_features) {
2479 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2480 return -EINVAL;
2481 }
2482
2483 /* Enable bitmap creation for RAID levels != 0 */
David Brazdil0f672f62019-12-10 10:32:29 +00002484 mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002485 mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2486
2487 if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2488 /*
2489 * Retrieve rdev size stored in superblock to be prepared for shrink.
2490 * Check extended superblock members are present otherwise the size
2491 * will not be set!
2492 */
2493 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190)
2494 rdev->sectors = le64_to_cpu(sb->sectors);
2495
2496 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2497 if (rdev->recovery_offset == MaxSector)
2498 set_bit(In_sync, &rdev->flags);
2499 /*
2500 * If no reshape in progress -> we're recovering single
2501 * disk(s) and have to set the device(s) to out-of-sync
2502 */
2503 else if (!rs_is_reshaping(rs))
2504 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2505 }
2506
2507 /*
2508 * If a device comes back, set it as not In_sync and no longer faulty.
2509 */
2510 if (test_and_clear_bit(Faulty, &rdev->flags)) {
2511 rdev->recovery_offset = 0;
2512 clear_bit(In_sync, &rdev->flags);
2513 rdev->saved_raid_disk = rdev->raid_disk;
2514 }
2515
2516 /* Reshape support -> restore repective data offsets */
2517 rdev->data_offset = le64_to_cpu(sb->data_offset);
2518 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2519
2520 return 0;
2521}
2522
2523/*
2524 * Analyse superblocks and select the freshest.
2525 */
2526static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2527{
2528 int r;
2529 struct md_rdev *rdev, *freshest;
2530 struct mddev *mddev = &rs->md;
2531
2532 freshest = NULL;
2533 rdev_for_each(rdev, mddev) {
2534 if (test_bit(Journal, &rdev->flags))
2535 continue;
2536
2537 if (!rdev->meta_bdev)
2538 continue;
2539
2540 /* Set superblock offset/size for metadata device. */
2541 rdev->sb_start = 0;
2542 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
2543 if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) {
2544 DMERR("superblock size of a logical block is no longer valid");
2545 return -EINVAL;
2546 }
2547
2548 /*
2549 * Skipping super_load due to CTR_FLAG_SYNC will cause
2550 * the array to undergo initialization again as
2551 * though it were new. This is the intended effect
2552 * of the "sync" directive.
2553 *
2554 * With reshaping capability added, we must ensure that
2555 * that the "sync" directive is disallowed during the reshape.
2556 */
2557 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2558 continue;
2559
2560 r = super_load(rdev, freshest);
2561
2562 switch (r) {
2563 case 1:
2564 freshest = rdev;
2565 break;
2566 case 0:
2567 break;
2568 default:
2569 /* This is a failure to read the superblock from the metadata device. */
2570 /*
2571 * We have to keep any raid0 data/metadata device pairs or
2572 * the MD raid0 personality will fail to start the array.
2573 */
2574 if (rs_is_raid0(rs))
2575 continue;
2576
2577 /*
2578 * We keep the dm_devs to be able to emit the device tuple
2579 * properly on the table line in raid_status() (rather than
2580 * mistakenly acting as if '- -' got passed into the constructor).
2581 *
2582 * The rdev has to stay on the same_set list to allow for
2583 * the attempt to restore faulty devices on second resume.
2584 */
2585 rdev->raid_disk = rdev->saved_raid_disk = -1;
2586 break;
2587 }
2588 }
2589
2590 if (!freshest)
2591 return 0;
2592
2593 /*
2594 * Validation of the freshest device provides the source of
2595 * validation for the remaining devices.
2596 */
2597 rs->ti->error = "Unable to assemble array: Invalid superblocks";
2598 if (super_validate(rs, freshest))
2599 return -EINVAL;
2600
2601 if (validate_raid_redundancy(rs)) {
2602 rs->ti->error = "Insufficient redundancy to activate array";
2603 return -EINVAL;
2604 }
2605
2606 rdev_for_each(rdev, mddev)
2607 if (!test_bit(Journal, &rdev->flags) &&
2608 rdev != freshest &&
2609 super_validate(rs, rdev))
2610 return -EINVAL;
2611 return 0;
2612}
2613
2614/*
2615 * Adjust data_offset and new_data_offset on all disk members of @rs
2616 * for out of place reshaping if requested by contructor
2617 *
2618 * We need free space at the beginning of each raid disk for forward
2619 * and at the end for backward reshapes which userspace has to provide
2620 * via remapping/reordering of space.
2621 */
2622static int rs_adjust_data_offsets(struct raid_set *rs)
2623{
2624 sector_t data_offset = 0, new_data_offset = 0;
2625 struct md_rdev *rdev;
2626
2627 /* Constructor did not request data offset change */
2628 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2629 if (!rs_is_reshapable(rs))
2630 goto out;
2631
2632 return 0;
2633 }
2634
2635 /* HM FIXME: get In_Sync raid_dev? */
2636 rdev = &rs->dev[0].rdev;
2637
2638 if (rs->delta_disks < 0) {
2639 /*
2640 * Removing disks (reshaping backwards):
2641 *
2642 * - before reshape: data is at offset 0 and free space
2643 * is at end of each component LV
2644 *
2645 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2646 */
2647 data_offset = 0;
2648 new_data_offset = rs->data_offset;
2649
2650 } else if (rs->delta_disks > 0) {
2651 /*
2652 * Adding disks (reshaping forwards):
2653 *
2654 * - before reshape: data is at offset rs->data_offset != 0 and
2655 * free space is at begin of each component LV
2656 *
2657 * - after reshape: data is at offset 0 on each component LV
2658 */
2659 data_offset = rs->data_offset;
2660 new_data_offset = 0;
2661
2662 } else {
2663 /*
2664 * User space passes in 0 for data offset after having removed reshape space
2665 *
2666 * - or - (data offset != 0)
2667 *
2668 * Changing RAID layout or chunk size -> toggle offsets
2669 *
2670 * - before reshape: data is at offset rs->data_offset 0 and
2671 * free space is at end of each component LV
2672 * -or-
2673 * data is at offset rs->data_offset != 0 and
2674 * free space is at begin of each component LV
2675 *
2676 * - after reshape: data is at offset 0 if it was at offset != 0
2677 * or at offset != 0 if it was at offset 0
2678 * on each component LV
2679 *
2680 */
2681 data_offset = rs->data_offset ? rdev->data_offset : 0;
2682 new_data_offset = data_offset ? 0 : rs->data_offset;
2683 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2684 }
2685
2686 /*
2687 * Make sure we got a minimum amount of free sectors per device
2688 */
2689 if (rs->data_offset &&
2690 to_sector(i_size_read(rdev->bdev->bd_inode)) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) {
2691 rs->ti->error = data_offset ? "No space for forward reshape" :
2692 "No space for backward reshape";
2693 return -ENOSPC;
2694 }
2695out:
2696 /*
2697 * Raise recovery_cp in case data_offset != 0 to
2698 * avoid false recovery positives in the constructor.
2699 */
2700 if (rs->md.recovery_cp < rs->md.dev_sectors)
2701 rs->md.recovery_cp += rs->dev[0].rdev.data_offset;
2702
2703 /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */
2704 rdev_for_each(rdev, &rs->md) {
2705 if (!test_bit(Journal, &rdev->flags)) {
2706 rdev->data_offset = data_offset;
2707 rdev->new_data_offset = new_data_offset;
2708 }
2709 }
2710
2711 return 0;
2712}
2713
2714/* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2715static void __reorder_raid_disk_indexes(struct raid_set *rs)
2716{
2717 int i = 0;
2718 struct md_rdev *rdev;
2719
2720 rdev_for_each(rdev, &rs->md) {
2721 if (!test_bit(Journal, &rdev->flags)) {
2722 rdev->raid_disk = i++;
2723 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2724 }
2725 }
2726}
2727
2728/*
2729 * Setup @rs for takeover by a different raid level
2730 */
2731static int rs_setup_takeover(struct raid_set *rs)
2732{
2733 struct mddev *mddev = &rs->md;
2734 struct md_rdev *rdev;
2735 unsigned int d = mddev->raid_disks = rs->raid_disks;
2736 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2737
2738 if (rt_is_raid10(rs->raid_type)) {
2739 if (rs_is_raid0(rs)) {
2740 /* Userpace reordered disks -> adjust raid_disk indexes */
2741 __reorder_raid_disk_indexes(rs);
2742
2743 /* raid0 -> raid10_far layout */
2744 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2745 rs->raid10_copies);
2746 } else if (rs_is_raid1(rs))
2747 /* raid1 -> raid10_near layout */
2748 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2749 rs->raid_disks);
2750 else
2751 return -EINVAL;
2752
2753 }
2754
2755 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2756 mddev->recovery_cp = MaxSector;
2757
2758 while (d--) {
2759 rdev = &rs->dev[d].rdev;
2760
2761 if (test_bit(d, (void *) rs->rebuild_disks)) {
2762 clear_bit(In_sync, &rdev->flags);
2763 clear_bit(Faulty, &rdev->flags);
2764 mddev->recovery_cp = rdev->recovery_offset = 0;
2765 /* Bitmap has to be created when we do an "up" takeover */
2766 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2767 }
2768
2769 rdev->new_data_offset = new_data_offset;
2770 }
2771
2772 return 0;
2773}
2774
2775/* Prepare @rs for reshape */
2776static int rs_prepare_reshape(struct raid_set *rs)
2777{
2778 bool reshape;
2779 struct mddev *mddev = &rs->md;
2780
2781 if (rs_is_raid10(rs)) {
2782 if (rs->raid_disks != mddev->raid_disks &&
2783 __is_raid10_near(mddev->layout) &&
2784 rs->raid10_copies &&
2785 rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2786 /*
2787 * raid disk have to be multiple of data copies to allow this conversion,
2788 *
2789 * This is actually not a reshape it is a
2790 * rebuild of any additional mirrors per group
2791 */
2792 if (rs->raid_disks % rs->raid10_copies) {
2793 rs->ti->error = "Can't reshape raid10 mirror groups";
2794 return -EINVAL;
2795 }
2796
2797 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2798 __reorder_raid_disk_indexes(rs);
2799 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2800 rs->raid10_copies);
2801 mddev->new_layout = mddev->layout;
2802 reshape = false;
2803 } else
2804 reshape = true;
2805
2806 } else if (rs_is_raid456(rs))
2807 reshape = true;
2808
2809 else if (rs_is_raid1(rs)) {
2810 if (rs->delta_disks) {
2811 /* Process raid1 via delta_disks */
2812 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2813 reshape = true;
2814 } else {
2815 /* Process raid1 without delta_disks */
2816 mddev->raid_disks = rs->raid_disks;
2817 reshape = false;
2818 }
2819 } else {
2820 rs->ti->error = "Called with bogus raid type";
2821 return -EINVAL;
2822 }
2823
2824 if (reshape) {
2825 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2826 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2827 } else if (mddev->raid_disks < rs->raid_disks)
2828 /* Create new superblocks and bitmaps, if any new disks */
2829 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2830
2831 return 0;
2832}
2833
2834/* Get reshape sectors from data_offsets or raid set */
2835static sector_t _get_reshape_sectors(struct raid_set *rs)
2836{
2837 struct md_rdev *rdev;
2838 sector_t reshape_sectors = 0;
2839
2840 rdev_for_each(rdev, &rs->md)
2841 if (!test_bit(Journal, &rdev->flags)) {
2842 reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ?
2843 rdev->data_offset - rdev->new_data_offset :
2844 rdev->new_data_offset - rdev->data_offset;
2845 break;
2846 }
2847
2848 return max(reshape_sectors, (sector_t) rs->data_offset);
2849}
2850
2851/*
Olivier Deprez0e641232021-09-23 10:07:05 +02002852 * Reshape:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002853 * - change raid layout
2854 * - change chunk size
2855 * - add disks
2856 * - remove disks
2857 */
2858static int rs_setup_reshape(struct raid_set *rs)
2859{
2860 int r = 0;
2861 unsigned int cur_raid_devs, d;
2862 sector_t reshape_sectors = _get_reshape_sectors(rs);
2863 struct mddev *mddev = &rs->md;
2864 struct md_rdev *rdev;
2865
2866 mddev->delta_disks = rs->delta_disks;
2867 cur_raid_devs = mddev->raid_disks;
2868
2869 /* Ignore impossible layout change whilst adding/removing disks */
2870 if (mddev->delta_disks &&
2871 mddev->layout != mddev->new_layout) {
2872 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2873 mddev->new_layout = mddev->layout;
2874 }
2875
2876 /*
2877 * Adjust array size:
2878 *
2879 * - in case of adding disk(s), array size has
2880 * to grow after the disk adding reshape,
2881 * which'll hapen in the event handler;
2882 * reshape will happen forward, so space has to
2883 * be available at the beginning of each disk
2884 *
2885 * - in case of removing disk(s), array size
2886 * has to shrink before starting the reshape,
2887 * which'll happen here;
2888 * reshape will happen backward, so space has to
2889 * be available at the end of each disk
2890 *
2891 * - data_offset and new_data_offset are
2892 * adjusted for aforementioned out of place
2893 * reshaping based on userspace passing in
2894 * the "data_offset <sectors>" key/value
2895 * pair via the constructor
2896 */
2897
2898 /* Add disk(s) */
2899 if (rs->delta_disks > 0) {
2900 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2901 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2902 rdev = &rs->dev[d].rdev;
2903 clear_bit(In_sync, &rdev->flags);
2904
2905 /*
2906 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2907 * by md, which'll store that erroneously in the superblock on reshape
2908 */
2909 rdev->saved_raid_disk = -1;
2910 rdev->raid_disk = d;
2911
2912 rdev->sectors = mddev->dev_sectors;
2913 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2914 }
2915
2916 mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */
2917
2918 /* Remove disk(s) */
2919 } else if (rs->delta_disks < 0) {
2920 r = rs_set_dev_and_array_sectors(rs, true);
2921 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2922
2923 /* Change layout and/or chunk size */
2924 } else {
2925 /*
2926 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2927 *
2928 * keeping number of disks and do layout change ->
2929 *
2930 * toggle reshape_backward depending on data_offset:
2931 *
2932 * - free space upfront -> reshape forward
2933 *
2934 * - free space at the end -> reshape backward
2935 *
2936 *
2937 * This utilizes free reshape space avoiding the need
2938 * for userspace to move (parts of) LV segments in
2939 * case of layout/chunksize change (for disk
2940 * adding/removing reshape space has to be at
2941 * the proper address (see above with delta_disks):
2942 *
2943 * add disk(s) -> begin
2944 * remove disk(s)-> end
2945 */
2946 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2947 }
2948
2949 /*
2950 * Adjust device size for forward reshape
2951 * because md_finish_reshape() reduces it.
2952 */
2953 if (!mddev->reshape_backwards)
2954 rdev_for_each(rdev, &rs->md)
2955 if (!test_bit(Journal, &rdev->flags))
2956 rdev->sectors += reshape_sectors;
2957
2958 return r;
2959}
2960
2961/*
Olivier Deprez0e641232021-09-23 10:07:05 +02002962 * If the md resync thread has updated superblock with max reshape position
2963 * at the end of a reshape but not (yet) reset the layout configuration
2964 * changes -> reset the latter.
2965 */
2966static void rs_reset_inconclusive_reshape(struct raid_set *rs)
2967{
2968 if (!rs_is_reshaping(rs) && rs_is_layout_change(rs, true)) {
2969 rs_set_cur(rs);
2970 rs->md.delta_disks = 0;
2971 rs->md.reshape_backwards = 0;
2972 }
2973}
2974
2975/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002976 * Enable/disable discard support on RAID set depending on
2977 * RAID level and discard properties of underlying RAID members.
2978 */
2979static void configure_discard_support(struct raid_set *rs)
2980{
2981 int i;
2982 bool raid456;
2983 struct dm_target *ti = rs->ti;
2984
2985 /*
2986 * XXX: RAID level 4,5,6 require zeroing for safety.
2987 */
2988 raid456 = rs_is_raid456(rs);
2989
2990 for (i = 0; i < rs->raid_disks; i++) {
2991 struct request_queue *q;
2992
2993 if (!rs->dev[i].rdev.bdev)
2994 continue;
2995
2996 q = bdev_get_queue(rs->dev[i].rdev.bdev);
2997 if (!q || !blk_queue_discard(q))
2998 return;
2999
3000 if (raid456) {
3001 if (!devices_handle_discard_safely) {
3002 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
3003 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
3004 return;
3005 }
3006 }
3007 }
3008
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003009 ti->num_discard_bios = 1;
3010}
3011
3012/*
3013 * Construct a RAID0/1/10/4/5/6 mapping:
3014 * Args:
3015 * <raid_type> <#raid_params> <raid_params>{0,} \
3016 * <#raid_devs> [<meta_dev1> <dev1>]{1,}
3017 *
3018 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
3019 * details on possible <raid_params>.
3020 *
3021 * Userspace is free to initialize the metadata devices, hence the superblocks to
3022 * enforce recreation based on the passed in table parameters.
3023 *
3024 */
3025static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3026{
3027 int r;
3028 bool resize = false;
3029 struct raid_type *rt;
3030 unsigned int num_raid_params, num_raid_devs;
3031 sector_t calculated_dev_sectors, rdev_sectors, reshape_sectors;
3032 struct raid_set *rs = NULL;
3033 const char *arg;
3034 struct rs_layout rs_layout;
3035 struct dm_arg_set as = { argc, argv }, as_nrd;
3036 struct dm_arg _args[] = {
3037 { 0, as.argc, "Cannot understand number of raid parameters" },
3038 { 1, 254, "Cannot understand number of raid devices parameters" }
3039 };
3040
3041 /* Must have <raid_type> */
3042 arg = dm_shift_arg(&as);
3043 if (!arg) {
3044 ti->error = "No arguments";
3045 return -EINVAL;
3046 }
3047
3048 rt = get_raid_type(arg);
3049 if (!rt) {
3050 ti->error = "Unrecognised raid_type";
3051 return -EINVAL;
3052 }
3053
3054 /* Must have <#raid_params> */
3055 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
3056 return -EINVAL;
3057
3058 /* number of raid device tupples <meta_dev data_dev> */
3059 as_nrd = as;
3060 dm_consume_args(&as_nrd, num_raid_params);
3061 _args[1].max = (as_nrd.argc - 1) / 2;
3062 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
3063 return -EINVAL;
3064
3065 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
3066 ti->error = "Invalid number of supplied raid devices";
3067 return -EINVAL;
3068 }
3069
3070 rs = raid_set_alloc(ti, rt, num_raid_devs);
3071 if (IS_ERR(rs))
3072 return PTR_ERR(rs);
3073
3074 r = parse_raid_params(rs, &as, num_raid_params);
3075 if (r)
3076 goto bad;
3077
3078 r = parse_dev_params(rs, &as);
3079 if (r)
3080 goto bad;
3081
3082 rs->md.sync_super = super_sync;
3083
3084 /*
3085 * Calculate ctr requested array and device sizes to allow
3086 * for superblock analysis needing device sizes defined.
3087 *
3088 * Any existing superblock will overwrite the array and device sizes
3089 */
3090 r = rs_set_dev_and_array_sectors(rs, false);
3091 if (r)
3092 goto bad;
3093
3094 calculated_dev_sectors = rs->md.dev_sectors;
3095
3096 /*
3097 * Backup any new raid set level, layout, ...
3098 * requested to be able to compare to superblock
3099 * members for conversion decisions.
3100 */
3101 rs_config_backup(rs, &rs_layout);
3102
3103 r = analyse_superblocks(ti, rs);
3104 if (r)
3105 goto bad;
3106
3107 rdev_sectors = __rdev_sectors(rs);
3108 if (!rdev_sectors) {
3109 ti->error = "Invalid rdev size";
3110 r = -EINVAL;
3111 goto bad;
3112 }
3113
3114
3115 reshape_sectors = _get_reshape_sectors(rs);
3116 if (calculated_dev_sectors != rdev_sectors)
3117 resize = calculated_dev_sectors != (reshape_sectors ? rdev_sectors - reshape_sectors : rdev_sectors);
3118
3119 INIT_WORK(&rs->md.event_work, do_table_event);
3120 ti->private = rs;
3121 ti->num_flush_bios = 1;
3122
3123 /* Restore any requested new layout for conversion decision */
3124 rs_config_restore(rs, &rs_layout);
3125
3126 /*
3127 * Now that we have any superblock metadata available,
3128 * check for new, recovering, reshaping, to be taken over,
3129 * to be reshaped or an existing, unchanged raid set to
3130 * run in sequence.
3131 */
3132 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
3133 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
3134 if (rs_is_raid6(rs) &&
3135 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
3136 ti->error = "'nosync' not allowed for new raid6 set";
3137 r = -EINVAL;
3138 goto bad;
3139 }
3140 rs_setup_recovery(rs, 0);
3141 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3142 rs_set_new(rs);
3143 } else if (rs_is_recovering(rs)) {
3144 /* Rebuild particular devices */
3145 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3146 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3147 rs_setup_recovery(rs, MaxSector);
3148 }
3149 /* A recovering raid set may be resized */
3150 ; /* skip setup rs */
3151 } else if (rs_is_reshaping(rs)) {
3152 /* Have to reject size change request during reshape */
3153 if (resize) {
3154 ti->error = "Can't resize a reshaping raid set";
3155 r = -EPERM;
3156 goto bad;
3157 }
3158 /* skip setup rs */
3159 } else if (rs_takeover_requested(rs)) {
3160 if (rs_is_reshaping(rs)) {
3161 ti->error = "Can't takeover a reshaping raid set";
3162 r = -EPERM;
3163 goto bad;
3164 }
3165
3166 /* We can't takeover a journaled raid4/5/6 */
3167 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3168 ti->error = "Can't takeover a journaled raid4/5/6 set";
3169 r = -EPERM;
3170 goto bad;
3171 }
3172
3173 /*
3174 * If a takeover is needed, userspace sets any additional
3175 * devices to rebuild and we can check for a valid request here.
3176 *
3177 * If acceptible, set the level to the new requested
3178 * one, prohibit requesting recovery, allow the raid
3179 * set to run and store superblocks during resume.
3180 */
3181 r = rs_check_takeover(rs);
3182 if (r)
3183 goto bad;
3184
3185 r = rs_setup_takeover(rs);
3186 if (r)
3187 goto bad;
3188
3189 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3190 /* Takeover ain't recovery, so disable recovery */
3191 rs_setup_recovery(rs, MaxSector);
3192 rs_set_new(rs);
3193 } else if (rs_reshape_requested(rs)) {
3194 /*
3195 * No need to check for 'ongoing' takeover here, because takeover
3196 * is an instant operation as oposed to an ongoing reshape.
3197 */
3198
3199 /* We can't reshape a journaled raid4/5/6 */
3200 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3201 ti->error = "Can't reshape a journaled raid4/5/6 set";
3202 r = -EPERM;
3203 goto bad;
3204 }
3205
3206 /* Out-of-place space has to be available to allow for a reshape unless raid1! */
3207 if (reshape_sectors || rs_is_raid1(rs)) {
3208 /*
3209 * We can only prepare for a reshape here, because the
3210 * raid set needs to run to provide the repective reshape
3211 * check functions via its MD personality instance.
3212 *
3213 * So do the reshape check after md_run() succeeded.
3214 */
3215 r = rs_prepare_reshape(rs);
3216 if (r)
David Brazdil0f672f62019-12-10 10:32:29 +00003217 goto bad;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003218
3219 /* Reshaping ain't recovery, so disable recovery */
3220 rs_setup_recovery(rs, MaxSector);
3221 }
3222 rs_set_cur(rs);
3223 } else {
3224 /* May not set recovery when a device rebuild is requested */
3225 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3226 rs_setup_recovery(rs, MaxSector);
3227 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3228 } else
3229 rs_setup_recovery(rs, test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ?
3230 0 : (resize ? calculated_dev_sectors : MaxSector));
3231 rs_set_cur(rs);
3232 }
3233
3234 /* If constructor requested it, change data and new_data offsets */
3235 r = rs_adjust_data_offsets(rs);
3236 if (r)
3237 goto bad;
3238
Olivier Deprez0e641232021-09-23 10:07:05 +02003239 /* Catch any inconclusive reshape superblock content. */
3240 rs_reset_inconclusive_reshape(rs);
3241
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003242 /* Start raid set read-only and assumed clean to change in raid_resume() */
3243 rs->md.ro = 1;
3244 rs->md.in_sync = 1;
3245
Olivier Deprez0e641232021-09-23 10:07:05 +02003246 /* Keep array frozen until resume. */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003247 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
3248
3249 /* Has to be held on running the array */
3250 mddev_lock_nointr(&rs->md);
3251 r = md_run(&rs->md);
3252 rs->md.in_sync = 0; /* Assume already marked dirty */
3253 if (r) {
3254 ti->error = "Failed to run raid array";
3255 mddev_unlock(&rs->md);
3256 goto bad;
3257 }
3258
3259 r = md_start(&rs->md);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003260 if (r) {
3261 ti->error = "Failed to start raid array";
3262 mddev_unlock(&rs->md);
3263 goto bad_md_start;
3264 }
3265
3266 rs->callbacks.congested_fn = raid_is_congested;
3267 dm_table_add_target_callbacks(ti->table, &rs->callbacks);
3268
3269 /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */
3270 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
3271 r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode);
3272 if (r) {
3273 ti->error = "Failed to set raid4/5/6 journal mode";
3274 mddev_unlock(&rs->md);
3275 goto bad_journal_mode_set;
3276 }
3277 }
3278
3279 mddev_suspend(&rs->md);
3280 set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags);
3281
3282 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
3283 if (rs_is_raid456(rs)) {
3284 r = rs_set_raid456_stripe_cache(rs);
3285 if (r)
3286 goto bad_stripe_cache;
3287 }
3288
3289 /* Now do an early reshape check */
3290 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3291 r = rs_check_reshape(rs);
3292 if (r)
3293 goto bad_check_reshape;
3294
3295 /* Restore new, ctr requested layout to perform check */
3296 rs_config_restore(rs, &rs_layout);
3297
3298 if (rs->md.pers->start_reshape) {
3299 r = rs->md.pers->check_reshape(&rs->md);
3300 if (r) {
3301 ti->error = "Reshape check failed";
3302 goto bad_check_reshape;
3303 }
3304 }
3305 }
3306
3307 /* Disable/enable discard support on raid set. */
3308 configure_discard_support(rs);
3309
3310 mddev_unlock(&rs->md);
3311 return 0;
3312
3313bad_md_start:
3314bad_journal_mode_set:
3315bad_stripe_cache:
3316bad_check_reshape:
3317 md_stop(&rs->md);
3318bad:
3319 raid_set_free(rs);
3320
3321 return r;
3322}
3323
3324static void raid_dtr(struct dm_target *ti)
3325{
3326 struct raid_set *rs = ti->private;
3327
3328 list_del_init(&rs->callbacks.list);
3329 md_stop(&rs->md);
3330 raid_set_free(rs);
3331}
3332
3333static int raid_map(struct dm_target *ti, struct bio *bio)
3334{
3335 struct raid_set *rs = ti->private;
3336 struct mddev *mddev = &rs->md;
3337
3338 /*
3339 * If we're reshaping to add disk(s)), ti->len and
3340 * mddev->array_sectors will differ during the process
3341 * (ti->len > mddev->array_sectors), so we have to requeue
3342 * bios with addresses > mddev->array_sectors here or
3343 * there will occur accesses past EOD of the component
3344 * data images thus erroring the raid set.
3345 */
3346 if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
3347 return DM_MAPIO_REQUEUE;
3348
3349 md_handle_request(mddev, bio);
3350
3351 return DM_MAPIO_SUBMITTED;
3352}
3353
3354/* Return sync state string for @state */
3355enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle };
3356static const char *sync_str(enum sync_state state)
3357{
3358 /* Has to be in above sync_state order! */
3359 static const char *sync_strs[] = {
3360 "frozen",
3361 "reshape",
3362 "resync",
3363 "check",
3364 "repair",
3365 "recover",
3366 "idle"
3367 };
3368
3369 return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef";
3370};
3371
3372/* Return enum sync_state for @mddev derived from @recovery flags */
3373static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery)
3374{
3375 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
3376 return st_frozen;
3377
3378 /* The MD sync thread can be done with io or be interrupted but still be running */
3379 if (!test_bit(MD_RECOVERY_DONE, &recovery) &&
3380 (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
3381 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) {
3382 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
3383 return st_reshape;
3384
3385 if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
3386 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
3387 return st_resync;
3388 if (test_bit(MD_RECOVERY_CHECK, &recovery))
3389 return st_check;
3390 return st_repair;
3391 }
3392
3393 if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3394 return st_recover;
3395
3396 if (mddev->reshape_position != MaxSector)
3397 return st_reshape;
3398 }
3399
3400 return st_idle;
3401}
3402
3403/*
3404 * Return status string for @rdev
3405 *
3406 * Status characters:
3407 *
3408 * 'D' = Dead/Failed raid set component or raid4/5/6 journal device
3409 * 'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device
3410 * 'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device
3411 * '-' = Non-existing device (i.e. uspace passed '- -' into the ctr)
3412 */
3413static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev)
3414{
3415 if (!rdev->bdev)
3416 return "-";
3417 else if (test_bit(Faulty, &rdev->flags))
3418 return "D";
3419 else if (test_bit(Journal, &rdev->flags))
3420 return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a";
3421 else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) ||
3422 (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) &&
3423 !test_bit(In_sync, &rdev->flags)))
3424 return "a";
3425 else
3426 return "A";
3427}
3428
3429/* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */
3430static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery,
3431 sector_t resync_max_sectors)
3432{
3433 sector_t r;
3434 enum sync_state state;
3435 struct mddev *mddev = &rs->md;
3436
3437 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3438 clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3439
3440 if (rs_is_raid0(rs)) {
3441 r = resync_max_sectors;
3442 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3443
3444 } else {
3445 state = decipher_sync_action(mddev, recovery);
3446
3447 if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery))
3448 r = mddev->recovery_cp;
3449 else
3450 r = mddev->curr_resync_completed;
3451
3452 if (state == st_idle && r >= resync_max_sectors) {
3453 /*
3454 * Sync complete.
3455 */
3456 /* In case we have finished recovering, the array is in sync. */
3457 if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3458 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3459
3460 } else if (state == st_recover)
3461 /*
3462 * In case we are recovering, the array is not in sync
3463 * and health chars should show the recovering legs.
3464 */
3465 ;
3466 else if (state == st_resync)
3467 /*
3468 * If "resync" is occurring, the raid set
3469 * is or may be out of sync hence the health
3470 * characters shall be 'a'.
3471 */
3472 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3473 else if (state == st_reshape)
3474 /*
3475 * If "reshape" is occurring, the raid set
3476 * is or may be out of sync hence the health
3477 * characters shall be 'a'.
3478 */
3479 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3480
3481 else if (state == st_check || state == st_repair)
3482 /*
3483 * If "check" or "repair" is occurring, the raid set has
3484 * undergone an initial sync and the health characters
3485 * should not be 'a' anymore.
3486 */
3487 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3488
3489 else {
3490 struct md_rdev *rdev;
3491
3492 /*
3493 * We are idle and recovery is needed, prevent 'A' chars race
3494 * caused by components still set to in-sync by constructor.
3495 */
3496 if (test_bit(MD_RECOVERY_NEEDED, &recovery))
3497 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3498
3499 /*
3500 * The raid set may be doing an initial sync, or it may
3501 * be rebuilding individual components. If all the
3502 * devices are In_sync, then it is the raid set that is
3503 * being initialized.
3504 */
3505 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3506 rdev_for_each(rdev, mddev)
3507 if (!test_bit(Journal, &rdev->flags) &&
3508 !test_bit(In_sync, &rdev->flags)) {
3509 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3510 break;
3511 }
3512 }
3513 }
3514
3515 return min(r, resync_max_sectors);
3516}
3517
3518/* Helper to return @dev name or "-" if !@dev */
3519static const char *__get_dev_name(struct dm_dev *dev)
3520{
3521 return dev ? dev->name : "-";
3522}
3523
3524static void raid_status(struct dm_target *ti, status_type_t type,
3525 unsigned int status_flags, char *result, unsigned int maxlen)
3526{
3527 struct raid_set *rs = ti->private;
3528 struct mddev *mddev = &rs->md;
3529 struct r5conf *conf = mddev->private;
3530 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3531 unsigned long recovery;
3532 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3533 unsigned int sz = 0;
3534 unsigned int rebuild_disks;
3535 unsigned int write_mostly_params = 0;
3536 sector_t progress, resync_max_sectors, resync_mismatches;
3537 const char *sync_action;
3538 struct raid_type *rt;
3539
3540 switch (type) {
3541 case STATUSTYPE_INFO:
3542 /* *Should* always succeed */
3543 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3544 if (!rt)
3545 return;
3546
3547 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3548
3549 /* Access most recent mddev properties for status output */
3550 smp_rmb();
3551 recovery = rs->md.recovery;
3552 /* Get sensible max sectors even if raid set not yet started */
3553 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3554 mddev->resync_max_sectors : mddev->dev_sectors;
3555 progress = rs_get_progress(rs, recovery, resync_max_sectors);
3556 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3557 atomic64_read(&mddev->resync_mismatches) : 0;
3558 sync_action = sync_str(decipher_sync_action(&rs->md, recovery));
3559
3560 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */
3561 for (i = 0; i < rs->raid_disks; i++)
3562 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3563
3564 /*
3565 * In-sync/Reshape ratio:
3566 * The in-sync ratio shows the progress of:
3567 * - Initializing the raid set
3568 * - Rebuilding a subset of devices of the raid set
3569 * The user can distinguish between the two by referring
3570 * to the status characters.
3571 *
3572 * The reshape ratio shows the progress of
3573 * changing the raid layout or the number of
3574 * disks of a raid set
3575 */
3576 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3577 (unsigned long long) resync_max_sectors);
3578
3579 /*
3580 * v1.5.0+:
3581 *
3582 * Sync action:
David Brazdil0f672f62019-12-10 10:32:29 +00003583 * See Documentation/admin-guide/device-mapper/dm-raid.rst for
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003584 * information on each of these states.
3585 */
3586 DMEMIT(" %s", sync_action);
3587
3588 /*
3589 * v1.5.0+:
3590 *
3591 * resync_mismatches/mismatch_cnt
3592 * This field shows the number of discrepancies found when
3593 * performing a "check" of the raid set.
3594 */
3595 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3596
3597 /*
3598 * v1.9.0+:
3599 *
3600 * data_offset (needed for out of space reshaping)
3601 * This field shows the data offset into the data
3602 * image LV where the first stripes data starts.
3603 *
3604 * We keep data_offset equal on all raid disks of the set,
3605 * so retrieving it from the first raid disk is sufficient.
3606 */
3607 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3608
3609 /*
3610 * v1.10.0+:
3611 */
3612 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ?
3613 __raid_dev_status(rs, &rs->journal_dev.rdev) : "-");
3614 break;
3615
3616 case STATUSTYPE_TABLE:
3617 /* Report the table line string you would use to construct this raid set */
3618
3619 /* Calculate raid parameter count */
3620 for (i = 0; i < rs->raid_disks; i++)
3621 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3622 write_mostly_params += 2;
3623 rebuild_disks = memweight(rs->rebuild_disks, DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks));
3624 raid_param_cnt += rebuild_disks * 2 +
3625 write_mostly_params +
3626 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3627 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2 +
3628 (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? 2 : 0) +
3629 (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags) ? 2 : 0);
3630
3631 /* Emit table line */
3632 /* This has to be in the documented order for userspace! */
3633 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3634 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3635 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3636 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3637 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3638 if (rebuild_disks)
3639 for (i = 0; i < rs->raid_disks; i++)
3640 if (test_bit(rs->dev[i].rdev.raid_disk, (void *) rs->rebuild_disks))
3641 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
3642 rs->dev[i].rdev.raid_disk);
3643 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3644 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3645 mddev->bitmap_info.daemon_sleep);
3646 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3647 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3648 mddev->sync_speed_min);
3649 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3650 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3651 mddev->sync_speed_max);
3652 if (write_mostly_params)
3653 for (i = 0; i < rs->raid_disks; i++)
3654 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3655 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3656 rs->dev[i].rdev.raid_disk);
3657 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3658 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3659 mddev->bitmap_info.max_write_behind);
3660 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3661 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3662 max_nr_stripes);
3663 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3664 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3665 (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3666 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3667 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3668 raid10_md_layout_to_copies(mddev->layout));
3669 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3670 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3671 raid10_md_layout_to_format(mddev->layout));
3672 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3673 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3674 max(rs->delta_disks, mddev->delta_disks));
3675 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3676 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3677 (unsigned long long) rs->data_offset);
3678 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags))
3679 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV),
3680 __get_dev_name(rs->journal_dev.dev));
3681 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags))
3682 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE),
3683 md_journal_mode_to_dm_raid(rs->journal_dev.mode));
3684 DMEMIT(" %d", rs->raid_disks);
3685 for (i = 0; i < rs->raid_disks; i++)
3686 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3687 __get_dev_name(rs->dev[i].data_dev));
3688 }
3689}
3690
3691static int raid_message(struct dm_target *ti, unsigned int argc, char **argv,
3692 char *result, unsigned maxlen)
3693{
3694 struct raid_set *rs = ti->private;
3695 struct mddev *mddev = &rs->md;
3696
3697 if (!mddev->pers || !mddev->pers->sync_request)
3698 return -EINVAL;
3699
3700 if (!strcasecmp(argv[0], "frozen"))
3701 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3702 else
3703 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3704
3705 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3706 if (mddev->sync_thread) {
3707 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3708 md_reap_sync_thread(mddev);
3709 }
David Brazdil0f672f62019-12-10 10:32:29 +00003710 } else if (decipher_sync_action(mddev, mddev->recovery) != st_idle)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003711 return -EBUSY;
3712 else if (!strcasecmp(argv[0], "resync"))
3713 ; /* MD_RECOVERY_NEEDED set below */
3714 else if (!strcasecmp(argv[0], "recover"))
3715 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3716 else {
3717 if (!strcasecmp(argv[0], "check")) {
3718 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3719 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3720 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3721 } else if (!strcasecmp(argv[0], "repair")) {
3722 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3723 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3724 } else
3725 return -EINVAL;
3726 }
3727 if (mddev->ro == 2) {
3728 /* A write to sync_action is enough to justify
3729 * canceling read-auto mode
3730 */
3731 mddev->ro = 0;
3732 if (!mddev->suspended && mddev->sync_thread)
3733 md_wakeup_thread(mddev->sync_thread);
3734 }
3735 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3736 if (!mddev->suspended && mddev->thread)
3737 md_wakeup_thread(mddev->thread);
3738
3739 return 0;
3740}
3741
3742static int raid_iterate_devices(struct dm_target *ti,
3743 iterate_devices_callout_fn fn, void *data)
3744{
3745 struct raid_set *rs = ti->private;
3746 unsigned int i;
3747 int r = 0;
3748
3749 for (i = 0; !r && i < rs->md.raid_disks; i++)
3750 if (rs->dev[i].data_dev)
3751 r = fn(ti,
3752 rs->dev[i].data_dev,
3753 0, /* No offset on data devs */
3754 rs->md.dev_sectors,
3755 data);
3756
3757 return r;
3758}
3759
3760static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3761{
3762 struct raid_set *rs = ti->private;
David Brazdil0f672f62019-12-10 10:32:29 +00003763 unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003764
David Brazdil0f672f62019-12-10 10:32:29 +00003765 blk_limits_io_min(limits, chunk_size_bytes);
3766 blk_limits_io_opt(limits, chunk_size_bytes * mddev_data_stripes(rs));
3767
3768 /*
Olivier Deprez0e641232021-09-23 10:07:05 +02003769 * RAID0 and RAID10 personalities require bio splitting,
3770 * RAID1/4/5/6 don't and process large discard bios properly.
David Brazdil0f672f62019-12-10 10:32:29 +00003771 */
Olivier Deprez0e641232021-09-23 10:07:05 +02003772 if (rs_is_raid0(rs) || rs_is_raid10(rs)) {
David Brazdil0f672f62019-12-10 10:32:29 +00003773 limits->discard_granularity = chunk_size_bytes;
3774 limits->max_discard_sectors = rs->md.chunk_sectors;
3775 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003776}
3777
3778static void raid_postsuspend(struct dm_target *ti)
3779{
3780 struct raid_set *rs = ti->private;
3781
3782 if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
3783 /* Writes have to be stopped before suspending to avoid deadlocks. */
3784 if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery))
3785 md_stop_writes(&rs->md);
3786
3787 mddev_lock_nointr(&rs->md);
3788 mddev_suspend(&rs->md);
3789 mddev_unlock(&rs->md);
3790 }
3791}
3792
3793static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3794{
3795 int i;
3796 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3797 unsigned long flags;
3798 bool cleared = false;
3799 struct dm_raid_superblock *sb;
3800 struct mddev *mddev = &rs->md;
3801 struct md_rdev *r;
3802
3803 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3804 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3805 return;
3806
3807 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3808
3809 for (i = 0; i < mddev->raid_disks; i++) {
3810 r = &rs->dev[i].rdev;
3811 /* HM FIXME: enhance journal device recovery processing */
3812 if (test_bit(Journal, &r->flags))
3813 continue;
3814
3815 if (test_bit(Faulty, &r->flags) &&
3816 r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) {
3817 DMINFO("Faulty %s device #%d has readable super block."
3818 " Attempting to revive it.",
3819 rs->raid_type->name, i);
3820
3821 /*
3822 * Faulty bit may be set, but sometimes the array can
3823 * be suspended before the personalities can respond
3824 * by removing the device from the array (i.e. calling
3825 * 'hot_remove_disk'). If they haven't yet removed
3826 * the failed device, its 'raid_disk' number will be
3827 * '>= 0' - meaning we must call this function
3828 * ourselves.
3829 */
3830 flags = r->flags;
3831 clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */
3832 if (r->raid_disk >= 0) {
3833 if (mddev->pers->hot_remove_disk(mddev, r)) {
3834 /* Failed to revive this device, try next */
3835 r->flags = flags;
3836 continue;
3837 }
3838 } else
3839 r->raid_disk = r->saved_raid_disk = i;
3840
3841 clear_bit(Faulty, &r->flags);
3842 clear_bit(WriteErrorSeen, &r->flags);
3843
3844 if (mddev->pers->hot_add_disk(mddev, r)) {
3845 /* Failed to revive this device, try next */
3846 r->raid_disk = r->saved_raid_disk = -1;
3847 r->flags = flags;
3848 } else {
3849 clear_bit(In_sync, &r->flags);
3850 r->recovery_offset = 0;
3851 set_bit(i, (void *) cleared_failed_devices);
3852 cleared = true;
3853 }
3854 }
3855 }
3856
3857 /* If any failed devices could be cleared, update all sbs failed_devices bits */
3858 if (cleared) {
3859 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3860
3861 rdev_for_each(r, &rs->md) {
3862 if (test_bit(Journal, &r->flags))
3863 continue;
3864
3865 sb = page_address(r->sb_page);
3866 sb_retrieve_failed_devices(sb, failed_devices);
3867
3868 for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3869 failed_devices[i] &= ~cleared_failed_devices[i];
3870
3871 sb_update_failed_devices(sb, failed_devices);
3872 }
3873 }
3874}
3875
3876static int __load_dirty_region_bitmap(struct raid_set *rs)
3877{
3878 int r = 0;
3879
3880 /* Try loading the bitmap unless "raid0", which does not have one */
3881 if (!rs_is_raid0(rs) &&
3882 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3883 r = md_bitmap_load(&rs->md);
3884 if (r)
3885 DMERR("Failed to load bitmap");
3886 }
3887
3888 return r;
3889}
3890
3891/* Enforce updating all superblocks */
3892static void rs_update_sbs(struct raid_set *rs)
3893{
3894 struct mddev *mddev = &rs->md;
3895 int ro = mddev->ro;
3896
3897 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3898 mddev->ro = 0;
3899 md_update_sb(mddev, 1);
3900 mddev->ro = ro;
3901}
3902
3903/*
3904 * Reshape changes raid algorithm of @rs to new one within personality
3905 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3906 * disks from a raid set thus growing/shrinking it or resizes the set
3907 *
3908 * Call mddev_lock_nointr() before!
3909 */
3910static int rs_start_reshape(struct raid_set *rs)
3911{
3912 int r;
3913 struct mddev *mddev = &rs->md;
3914 struct md_personality *pers = mddev->pers;
3915
3916 /* Don't allow the sync thread to work until the table gets reloaded. */
3917 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
3918
3919 r = rs_setup_reshape(rs);
3920 if (r)
3921 return r;
3922
3923 /*
3924 * Check any reshape constraints enforced by the personalility
3925 *
3926 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3927 */
3928 r = pers->check_reshape(mddev);
3929 if (r) {
3930 rs->ti->error = "pers->check_reshape() failed";
3931 return r;
3932 }
3933
3934 /*
3935 * Personality may not provide start reshape method in which
3936 * case check_reshape above has already covered everything
3937 */
3938 if (pers->start_reshape) {
3939 r = pers->start_reshape(mddev);
3940 if (r) {
3941 rs->ti->error = "pers->start_reshape() failed";
3942 return r;
3943 }
3944 }
3945
3946 /*
3947 * Now reshape got set up, update superblocks to
3948 * reflect the fact so that a table reload will
3949 * access proper superblock content in the ctr.
3950 */
3951 rs_update_sbs(rs);
3952
3953 return 0;
3954}
3955
3956static int raid_preresume(struct dm_target *ti)
3957{
3958 int r;
3959 struct raid_set *rs = ti->private;
3960 struct mddev *mddev = &rs->md;
3961
3962 /* This is a resume after a suspend of the set -> it's already started. */
3963 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3964 return 0;
3965
3966 /*
3967 * The superblocks need to be updated on disk if the
3968 * array is new or new devices got added (thus zeroed
3969 * out by userspace) or __load_dirty_region_bitmap
3970 * will overwrite them in core with old data or fail.
3971 */
3972 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3973 rs_update_sbs(rs);
3974
3975 /* Load the bitmap from disk unless raid0 */
3976 r = __load_dirty_region_bitmap(rs);
3977 if (r)
3978 return r;
3979
3980 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) */
3981 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap &&
3982 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)) {
3983 r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors,
3984 to_bytes(rs->requested_bitmap_chunk_sectors), 0);
3985 if (r)
3986 DMERR("Failed to resize bitmap");
3987 }
3988
3989 /* Check for any resize/reshape on @rs and adjust/initiate */
3990 /* Be prepared for mddev_resume() in raid_resume() */
3991 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3992 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
3993 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3994 mddev->resync_min = mddev->recovery_cp;
3995 }
3996
3997 /* Check for any reshape request unless new raid set */
3998 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3999 /* Initiate a reshape. */
4000 rs_set_rdev_sectors(rs);
4001 mddev_lock_nointr(mddev);
4002 r = rs_start_reshape(rs);
4003 mddev_unlock(mddev);
4004 if (r)
4005 DMWARN("Failed to check/start reshape, continuing without change");
4006 r = 0;
4007 }
4008
4009 return r;
4010}
4011
4012static void raid_resume(struct dm_target *ti)
4013{
4014 struct raid_set *rs = ti->private;
4015 struct mddev *mddev = &rs->md;
4016
4017 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
4018 /*
4019 * A secondary resume while the device is active.
4020 * Take this opportunity to check whether any failed
4021 * devices are reachable again.
4022 */
4023 attempt_restore_of_faulty_devices(rs);
4024 }
4025
4026 if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
4027 /* Only reduce raid set size before running a disk removing reshape. */
4028 if (mddev->delta_disks < 0)
4029 rs_set_capacity(rs);
4030
4031 mddev_lock_nointr(mddev);
4032 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4033 mddev->ro = 0;
4034 mddev->in_sync = 0;
4035 mddev_resume(mddev);
4036 mddev_unlock(mddev);
4037 }
4038}
4039
4040static struct target_type raid_target = {
4041 .name = "raid",
4042 .version = {1, 14, 0},
4043 .module = THIS_MODULE,
4044 .ctr = raid_ctr,
4045 .dtr = raid_dtr,
4046 .map = raid_map,
4047 .status = raid_status,
4048 .message = raid_message,
4049 .iterate_devices = raid_iterate_devices,
4050 .io_hints = raid_io_hints,
4051 .postsuspend = raid_postsuspend,
4052 .preresume = raid_preresume,
4053 .resume = raid_resume,
4054};
4055
4056static int __init dm_raid_init(void)
4057{
4058 DMINFO("Loading target version %u.%u.%u",
4059 raid_target.version[0],
4060 raid_target.version[1],
4061 raid_target.version[2]);
4062 return dm_register_target(&raid_target);
4063}
4064
4065static void __exit dm_raid_exit(void)
4066{
4067 dm_unregister_target(&raid_target);
4068}
4069
4070module_init(dm_raid_init);
4071module_exit(dm_raid_exit);
4072
4073module_param(devices_handle_discard_safely, bool, 0644);
4074MODULE_PARM_DESC(devices_handle_discard_safely,
4075 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
4076
4077MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
4078MODULE_ALIAS("dm-raid0");
4079MODULE_ALIAS("dm-raid1");
4080MODULE_ALIAS("dm-raid10");
4081MODULE_ALIAS("dm-raid4");
4082MODULE_ALIAS("dm-raid5");
4083MODULE_ALIAS("dm-raid6");
4084MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
4085MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
4086MODULE_LICENSE("GPL");