blob: e2eb9b9b8363dbaefb3a10a4504d59b57889b24f [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-only
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * The input core
4 *
5 * Copyright (c) 1999-2002 Vojtech Pavlik
6 */
7
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00008
9#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10
11#include <linux/init.h>
12#include <linux/types.h>
13#include <linux/idr.h>
14#include <linux/input/mt.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/random.h>
18#include <linux/major.h>
19#include <linux/proc_fs.h>
20#include <linux/sched.h>
21#include <linux/seq_file.h>
22#include <linux/poll.h>
23#include <linux/device.h>
24#include <linux/mutex.h>
25#include <linux/rcupdate.h>
26#include "input-compat.h"
David Brazdil0f672f62019-12-10 10:32:29 +000027#include "input-poller.h"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000028
29MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30MODULE_DESCRIPTION("Input core");
31MODULE_LICENSE("GPL");
32
33#define INPUT_MAX_CHAR_DEVICES 1024
34#define INPUT_FIRST_DYNAMIC_DEV 256
35static DEFINE_IDA(input_ida);
36
37static LIST_HEAD(input_dev_list);
38static LIST_HEAD(input_handler_list);
39
40/*
41 * input_mutex protects access to both input_dev_list and input_handler_list.
42 * This also causes input_[un]register_device and input_[un]register_handler
43 * be mutually exclusive which simplifies locking in drivers implementing
44 * input handlers.
45 */
46static DEFINE_MUTEX(input_mutex);
47
48static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
49
50static inline int is_event_supported(unsigned int code,
51 unsigned long *bm, unsigned int max)
52{
53 return code <= max && test_bit(code, bm);
54}
55
56static int input_defuzz_abs_event(int value, int old_val, int fuzz)
57{
58 if (fuzz) {
59 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
60 return old_val;
61
62 if (value > old_val - fuzz && value < old_val + fuzz)
63 return (old_val * 3 + value) / 4;
64
65 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
66 return (old_val + value) / 2;
67 }
68
69 return value;
70}
71
72static void input_start_autorepeat(struct input_dev *dev, int code)
73{
74 if (test_bit(EV_REP, dev->evbit) &&
75 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
76 dev->timer.function) {
77 dev->repeat_key = code;
78 mod_timer(&dev->timer,
79 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
80 }
81}
82
83static void input_stop_autorepeat(struct input_dev *dev)
84{
85 del_timer(&dev->timer);
86}
87
88/*
89 * Pass event first through all filters and then, if event has not been
90 * filtered out, through all open handles. This function is called with
91 * dev->event_lock held and interrupts disabled.
92 */
93static unsigned int input_to_handler(struct input_handle *handle,
94 struct input_value *vals, unsigned int count)
95{
96 struct input_handler *handler = handle->handler;
97 struct input_value *end = vals;
98 struct input_value *v;
99
100 if (handler->filter) {
101 for (v = vals; v != vals + count; v++) {
102 if (handler->filter(handle, v->type, v->code, v->value))
103 continue;
104 if (end != v)
105 *end = *v;
106 end++;
107 }
108 count = end - vals;
109 }
110
111 if (!count)
112 return 0;
113
114 if (handler->events)
115 handler->events(handle, vals, count);
116 else if (handler->event)
117 for (v = vals; v != vals + count; v++)
118 handler->event(handle, v->type, v->code, v->value);
119
120 return count;
121}
122
123/*
124 * Pass values first through all filters and then, if event has not been
125 * filtered out, through all open handles. This function is called with
126 * dev->event_lock held and interrupts disabled.
127 */
128static void input_pass_values(struct input_dev *dev,
129 struct input_value *vals, unsigned int count)
130{
131 struct input_handle *handle;
132 struct input_value *v;
133
134 if (!count)
135 return;
136
137 rcu_read_lock();
138
139 handle = rcu_dereference(dev->grab);
140 if (handle) {
141 count = input_to_handler(handle, vals, count);
142 } else {
143 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
144 if (handle->open) {
145 count = input_to_handler(handle, vals, count);
146 if (!count)
147 break;
148 }
149 }
150
151 rcu_read_unlock();
152
153 /* trigger auto repeat for key events */
154 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
155 for (v = vals; v != vals + count; v++) {
156 if (v->type == EV_KEY && v->value != 2) {
157 if (v->value)
158 input_start_autorepeat(dev, v->code);
159 else
160 input_stop_autorepeat(dev);
161 }
162 }
163 }
164}
165
166static void input_pass_event(struct input_dev *dev,
167 unsigned int type, unsigned int code, int value)
168{
169 struct input_value vals[] = { { type, code, value } };
170
171 input_pass_values(dev, vals, ARRAY_SIZE(vals));
172}
173
174/*
175 * Generate software autorepeat event. Note that we take
176 * dev->event_lock here to avoid racing with input_event
177 * which may cause keys get "stuck".
178 */
179static void input_repeat_key(struct timer_list *t)
180{
181 struct input_dev *dev = from_timer(dev, t, timer);
182 unsigned long flags;
183
184 spin_lock_irqsave(&dev->event_lock, flags);
185
186 if (test_bit(dev->repeat_key, dev->key) &&
187 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
188 struct input_value vals[] = {
189 { EV_KEY, dev->repeat_key, 2 },
190 input_value_sync
191 };
192
Olivier Deprez0e641232021-09-23 10:07:05 +0200193 input_set_timestamp(dev, ktime_get());
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000194 input_pass_values(dev, vals, ARRAY_SIZE(vals));
195
196 if (dev->rep[REP_PERIOD])
197 mod_timer(&dev->timer, jiffies +
198 msecs_to_jiffies(dev->rep[REP_PERIOD]));
199 }
200
201 spin_unlock_irqrestore(&dev->event_lock, flags);
202}
203
204#define INPUT_IGNORE_EVENT 0
205#define INPUT_PASS_TO_HANDLERS 1
206#define INPUT_PASS_TO_DEVICE 2
207#define INPUT_SLOT 4
208#define INPUT_FLUSH 8
209#define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
210
211static int input_handle_abs_event(struct input_dev *dev,
212 unsigned int code, int *pval)
213{
214 struct input_mt *mt = dev->mt;
215 bool is_mt_event;
216 int *pold;
217
218 if (code == ABS_MT_SLOT) {
219 /*
220 * "Stage" the event; we'll flush it later, when we
221 * get actual touch data.
222 */
223 if (mt && *pval >= 0 && *pval < mt->num_slots)
224 mt->slot = *pval;
225
226 return INPUT_IGNORE_EVENT;
227 }
228
229 is_mt_event = input_is_mt_value(code);
230
231 if (!is_mt_event) {
232 pold = &dev->absinfo[code].value;
233 } else if (mt) {
234 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
235 } else {
236 /*
237 * Bypass filtering for multi-touch events when
238 * not employing slots.
239 */
240 pold = NULL;
241 }
242
243 if (pold) {
244 *pval = input_defuzz_abs_event(*pval, *pold,
245 dev->absinfo[code].fuzz);
246 if (*pold == *pval)
247 return INPUT_IGNORE_EVENT;
248
249 *pold = *pval;
250 }
251
252 /* Flush pending "slot" event */
253 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
254 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
255 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
256 }
257
258 return INPUT_PASS_TO_HANDLERS;
259}
260
261static int input_get_disposition(struct input_dev *dev,
262 unsigned int type, unsigned int code, int *pval)
263{
264 int disposition = INPUT_IGNORE_EVENT;
265 int value = *pval;
266
267 switch (type) {
268
269 case EV_SYN:
270 switch (code) {
271 case SYN_CONFIG:
272 disposition = INPUT_PASS_TO_ALL;
273 break;
274
275 case SYN_REPORT:
276 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
277 break;
278 case SYN_MT_REPORT:
279 disposition = INPUT_PASS_TO_HANDLERS;
280 break;
281 }
282 break;
283
284 case EV_KEY:
285 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
286
287 /* auto-repeat bypasses state updates */
288 if (value == 2) {
289 disposition = INPUT_PASS_TO_HANDLERS;
290 break;
291 }
292
293 if (!!test_bit(code, dev->key) != !!value) {
294
295 __change_bit(code, dev->key);
296 disposition = INPUT_PASS_TO_HANDLERS;
297 }
298 }
299 break;
300
301 case EV_SW:
302 if (is_event_supported(code, dev->swbit, SW_MAX) &&
303 !!test_bit(code, dev->sw) != !!value) {
304
305 __change_bit(code, dev->sw);
306 disposition = INPUT_PASS_TO_HANDLERS;
307 }
308 break;
309
310 case EV_ABS:
311 if (is_event_supported(code, dev->absbit, ABS_MAX))
312 disposition = input_handle_abs_event(dev, code, &value);
313
314 break;
315
316 case EV_REL:
317 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
318 disposition = INPUT_PASS_TO_HANDLERS;
319
320 break;
321
322 case EV_MSC:
323 if (is_event_supported(code, dev->mscbit, MSC_MAX))
324 disposition = INPUT_PASS_TO_ALL;
325
326 break;
327
328 case EV_LED:
329 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
330 !!test_bit(code, dev->led) != !!value) {
331
332 __change_bit(code, dev->led);
333 disposition = INPUT_PASS_TO_ALL;
334 }
335 break;
336
337 case EV_SND:
338 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
339
340 if (!!test_bit(code, dev->snd) != !!value)
341 __change_bit(code, dev->snd);
342 disposition = INPUT_PASS_TO_ALL;
343 }
344 break;
345
346 case EV_REP:
347 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
348 dev->rep[code] = value;
349 disposition = INPUT_PASS_TO_ALL;
350 }
351 break;
352
353 case EV_FF:
354 if (value >= 0)
355 disposition = INPUT_PASS_TO_ALL;
356 break;
357
358 case EV_PWR:
359 disposition = INPUT_PASS_TO_ALL;
360 break;
361 }
362
363 *pval = value;
364 return disposition;
365}
366
367static void input_handle_event(struct input_dev *dev,
368 unsigned int type, unsigned int code, int value)
369{
370 int disposition = input_get_disposition(dev, type, code, &value);
371
372 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
373 add_input_randomness(type, code, value);
374
375 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
376 dev->event(dev, type, code, value);
377
378 if (!dev->vals)
379 return;
380
381 if (disposition & INPUT_PASS_TO_HANDLERS) {
382 struct input_value *v;
383
384 if (disposition & INPUT_SLOT) {
385 v = &dev->vals[dev->num_vals++];
386 v->type = EV_ABS;
387 v->code = ABS_MT_SLOT;
388 v->value = dev->mt->slot;
389 }
390
391 v = &dev->vals[dev->num_vals++];
392 v->type = type;
393 v->code = code;
394 v->value = value;
395 }
396
397 if (disposition & INPUT_FLUSH) {
398 if (dev->num_vals >= 2)
399 input_pass_values(dev, dev->vals, dev->num_vals);
400 dev->num_vals = 0;
David Brazdil0f672f62019-12-10 10:32:29 +0000401 /*
402 * Reset the timestamp on flush so we won't end up
403 * with a stale one. Note we only need to reset the
404 * monolithic one as we use its presence when deciding
405 * whether to generate a synthetic timestamp.
406 */
407 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000408 } else if (dev->num_vals >= dev->max_vals - 2) {
409 dev->vals[dev->num_vals++] = input_value_sync;
410 input_pass_values(dev, dev->vals, dev->num_vals);
411 dev->num_vals = 0;
412 }
413
414}
415
416/**
417 * input_event() - report new input event
418 * @dev: device that generated the event
419 * @type: type of the event
420 * @code: event code
421 * @value: value of the event
422 *
423 * This function should be used by drivers implementing various input
424 * devices to report input events. See also input_inject_event().
425 *
426 * NOTE: input_event() may be safely used right after input device was
427 * allocated with input_allocate_device(), even before it is registered
428 * with input_register_device(), but the event will not reach any of the
429 * input handlers. Such early invocation of input_event() may be used
430 * to 'seed' initial state of a switch or initial position of absolute
431 * axis, etc.
432 */
433void input_event(struct input_dev *dev,
434 unsigned int type, unsigned int code, int value)
435{
436 unsigned long flags;
437
438 if (is_event_supported(type, dev->evbit, EV_MAX)) {
439
440 spin_lock_irqsave(&dev->event_lock, flags);
441 input_handle_event(dev, type, code, value);
442 spin_unlock_irqrestore(&dev->event_lock, flags);
443 }
444}
445EXPORT_SYMBOL(input_event);
446
447/**
448 * input_inject_event() - send input event from input handler
449 * @handle: input handle to send event through
450 * @type: type of the event
451 * @code: event code
452 * @value: value of the event
453 *
454 * Similar to input_event() but will ignore event if device is
455 * "grabbed" and handle injecting event is not the one that owns
456 * the device.
457 */
458void input_inject_event(struct input_handle *handle,
459 unsigned int type, unsigned int code, int value)
460{
461 struct input_dev *dev = handle->dev;
462 struct input_handle *grab;
463 unsigned long flags;
464
465 if (is_event_supported(type, dev->evbit, EV_MAX)) {
466 spin_lock_irqsave(&dev->event_lock, flags);
467
468 rcu_read_lock();
469 grab = rcu_dereference(dev->grab);
470 if (!grab || grab == handle)
471 input_handle_event(dev, type, code, value);
472 rcu_read_unlock();
473
474 spin_unlock_irqrestore(&dev->event_lock, flags);
475 }
476}
477EXPORT_SYMBOL(input_inject_event);
478
479/**
480 * input_alloc_absinfo - allocates array of input_absinfo structs
481 * @dev: the input device emitting absolute events
482 *
483 * If the absinfo struct the caller asked for is already allocated, this
484 * functions will not do anything.
485 */
486void input_alloc_absinfo(struct input_dev *dev)
487{
488 if (dev->absinfo)
489 return;
490
491 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
492 if (!dev->absinfo) {
493 dev_err(dev->dev.parent ?: &dev->dev,
494 "%s: unable to allocate memory\n", __func__);
495 /*
496 * We will handle this allocation failure in
497 * input_register_device() when we refuse to register input
498 * device with ABS bits but without absinfo.
499 */
500 }
501}
502EXPORT_SYMBOL(input_alloc_absinfo);
503
504void input_set_abs_params(struct input_dev *dev, unsigned int axis,
505 int min, int max, int fuzz, int flat)
506{
507 struct input_absinfo *absinfo;
508
509 input_alloc_absinfo(dev);
510 if (!dev->absinfo)
511 return;
512
513 absinfo = &dev->absinfo[axis];
514 absinfo->minimum = min;
515 absinfo->maximum = max;
516 absinfo->fuzz = fuzz;
517 absinfo->flat = flat;
518
519 __set_bit(EV_ABS, dev->evbit);
520 __set_bit(axis, dev->absbit);
521}
522EXPORT_SYMBOL(input_set_abs_params);
523
524
525/**
526 * input_grab_device - grabs device for exclusive use
527 * @handle: input handle that wants to own the device
528 *
529 * When a device is grabbed by an input handle all events generated by
530 * the device are delivered only to this handle. Also events injected
531 * by other input handles are ignored while device is grabbed.
532 */
533int input_grab_device(struct input_handle *handle)
534{
535 struct input_dev *dev = handle->dev;
536 int retval;
537
538 retval = mutex_lock_interruptible(&dev->mutex);
539 if (retval)
540 return retval;
541
542 if (dev->grab) {
543 retval = -EBUSY;
544 goto out;
545 }
546
547 rcu_assign_pointer(dev->grab, handle);
548
549 out:
550 mutex_unlock(&dev->mutex);
551 return retval;
552}
553EXPORT_SYMBOL(input_grab_device);
554
555static void __input_release_device(struct input_handle *handle)
556{
557 struct input_dev *dev = handle->dev;
558 struct input_handle *grabber;
559
560 grabber = rcu_dereference_protected(dev->grab,
561 lockdep_is_held(&dev->mutex));
562 if (grabber == handle) {
563 rcu_assign_pointer(dev->grab, NULL);
564 /* Make sure input_pass_event() notices that grab is gone */
565 synchronize_rcu();
566
567 list_for_each_entry(handle, &dev->h_list, d_node)
568 if (handle->open && handle->handler->start)
569 handle->handler->start(handle);
570 }
571}
572
573/**
574 * input_release_device - release previously grabbed device
575 * @handle: input handle that owns the device
576 *
577 * Releases previously grabbed device so that other input handles can
578 * start receiving input events. Upon release all handlers attached
579 * to the device have their start() method called so they have a change
580 * to synchronize device state with the rest of the system.
581 */
582void input_release_device(struct input_handle *handle)
583{
584 struct input_dev *dev = handle->dev;
585
586 mutex_lock(&dev->mutex);
587 __input_release_device(handle);
588 mutex_unlock(&dev->mutex);
589}
590EXPORT_SYMBOL(input_release_device);
591
592/**
593 * input_open_device - open input device
594 * @handle: handle through which device is being accessed
595 *
596 * This function should be called by input handlers when they
597 * want to start receive events from given input device.
598 */
599int input_open_device(struct input_handle *handle)
600{
601 struct input_dev *dev = handle->dev;
602 int retval;
603
604 retval = mutex_lock_interruptible(&dev->mutex);
605 if (retval)
606 return retval;
607
608 if (dev->going_away) {
609 retval = -ENODEV;
610 goto out;
611 }
612
613 handle->open++;
614
David Brazdil0f672f62019-12-10 10:32:29 +0000615 if (dev->users++) {
616 /*
617 * Device is already opened, so we can exit immediately and
618 * report success.
619 */
620 goto out;
621 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000622
David Brazdil0f672f62019-12-10 10:32:29 +0000623 if (dev->open) {
624 retval = dev->open(dev);
625 if (retval) {
626 dev->users--;
627 handle->open--;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000628 /*
629 * Make sure we are not delivering any more events
630 * through this handle
631 */
632 synchronize_rcu();
David Brazdil0f672f62019-12-10 10:32:29 +0000633 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000634 }
635 }
636
David Brazdil0f672f62019-12-10 10:32:29 +0000637 if (dev->poller)
638 input_dev_poller_start(dev->poller);
639
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000640 out:
641 mutex_unlock(&dev->mutex);
642 return retval;
643}
644EXPORT_SYMBOL(input_open_device);
645
646int input_flush_device(struct input_handle *handle, struct file *file)
647{
648 struct input_dev *dev = handle->dev;
649 int retval;
650
651 retval = mutex_lock_interruptible(&dev->mutex);
652 if (retval)
653 return retval;
654
655 if (dev->flush)
656 retval = dev->flush(dev, file);
657
658 mutex_unlock(&dev->mutex);
659 return retval;
660}
661EXPORT_SYMBOL(input_flush_device);
662
663/**
664 * input_close_device - close input device
665 * @handle: handle through which device is being accessed
666 *
667 * This function should be called by input handlers when they
668 * want to stop receive events from given input device.
669 */
670void input_close_device(struct input_handle *handle)
671{
672 struct input_dev *dev = handle->dev;
673
674 mutex_lock(&dev->mutex);
675
676 __input_release_device(handle);
677
David Brazdil0f672f62019-12-10 10:32:29 +0000678 if (!--dev->users) {
679 if (dev->poller)
680 input_dev_poller_stop(dev->poller);
681
682 if (dev->close)
683 dev->close(dev);
684 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000685
686 if (!--handle->open) {
687 /*
688 * synchronize_rcu() makes sure that input_pass_event()
689 * completed and that no more input events are delivered
690 * through this handle
691 */
692 synchronize_rcu();
693 }
694
695 mutex_unlock(&dev->mutex);
696}
697EXPORT_SYMBOL(input_close_device);
698
699/*
700 * Simulate keyup events for all keys that are marked as pressed.
701 * The function must be called with dev->event_lock held.
702 */
703static void input_dev_release_keys(struct input_dev *dev)
704{
705 bool need_sync = false;
706 int code;
707
708 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
709 for_each_set_bit(code, dev->key, KEY_CNT) {
710 input_pass_event(dev, EV_KEY, code, 0);
711 need_sync = true;
712 }
713
714 if (need_sync)
715 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
716
717 memset(dev->key, 0, sizeof(dev->key));
718 }
719}
720
721/*
722 * Prepare device for unregistering
723 */
724static void input_disconnect_device(struct input_dev *dev)
725{
726 struct input_handle *handle;
727
728 /*
729 * Mark device as going away. Note that we take dev->mutex here
730 * not to protect access to dev->going_away but rather to ensure
731 * that there are no threads in the middle of input_open_device()
732 */
733 mutex_lock(&dev->mutex);
734 dev->going_away = true;
735 mutex_unlock(&dev->mutex);
736
737 spin_lock_irq(&dev->event_lock);
738
739 /*
740 * Simulate keyup events for all pressed keys so that handlers
741 * are not left with "stuck" keys. The driver may continue
742 * generate events even after we done here but they will not
743 * reach any handlers.
744 */
745 input_dev_release_keys(dev);
746
747 list_for_each_entry(handle, &dev->h_list, d_node)
748 handle->open = 0;
749
750 spin_unlock_irq(&dev->event_lock);
751}
752
753/**
754 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
755 * @ke: keymap entry containing scancode to be converted.
756 * @scancode: pointer to the location where converted scancode should
757 * be stored.
758 *
759 * This function is used to convert scancode stored in &struct keymap_entry
760 * into scalar form understood by legacy keymap handling methods. These
761 * methods expect scancodes to be represented as 'unsigned int'.
762 */
763int input_scancode_to_scalar(const struct input_keymap_entry *ke,
764 unsigned int *scancode)
765{
766 switch (ke->len) {
767 case 1:
768 *scancode = *((u8 *)ke->scancode);
769 break;
770
771 case 2:
772 *scancode = *((u16 *)ke->scancode);
773 break;
774
775 case 4:
776 *scancode = *((u32 *)ke->scancode);
777 break;
778
779 default:
780 return -EINVAL;
781 }
782
783 return 0;
784}
785EXPORT_SYMBOL(input_scancode_to_scalar);
786
787/*
788 * Those routines handle the default case where no [gs]etkeycode() is
789 * defined. In this case, an array indexed by the scancode is used.
790 */
791
792static unsigned int input_fetch_keycode(struct input_dev *dev,
793 unsigned int index)
794{
795 switch (dev->keycodesize) {
796 case 1:
797 return ((u8 *)dev->keycode)[index];
798
799 case 2:
800 return ((u16 *)dev->keycode)[index];
801
802 default:
803 return ((u32 *)dev->keycode)[index];
804 }
805}
806
807static int input_default_getkeycode(struct input_dev *dev,
808 struct input_keymap_entry *ke)
809{
810 unsigned int index;
811 int error;
812
813 if (!dev->keycodesize)
814 return -EINVAL;
815
816 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
817 index = ke->index;
818 else {
819 error = input_scancode_to_scalar(ke, &index);
820 if (error)
821 return error;
822 }
823
824 if (index >= dev->keycodemax)
825 return -EINVAL;
826
827 ke->keycode = input_fetch_keycode(dev, index);
828 ke->index = index;
829 ke->len = sizeof(index);
830 memcpy(ke->scancode, &index, sizeof(index));
831
832 return 0;
833}
834
835static int input_default_setkeycode(struct input_dev *dev,
836 const struct input_keymap_entry *ke,
837 unsigned int *old_keycode)
838{
839 unsigned int index;
840 int error;
841 int i;
842
843 if (!dev->keycodesize)
844 return -EINVAL;
845
846 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
847 index = ke->index;
848 } else {
849 error = input_scancode_to_scalar(ke, &index);
850 if (error)
851 return error;
852 }
853
854 if (index >= dev->keycodemax)
855 return -EINVAL;
856
857 if (dev->keycodesize < sizeof(ke->keycode) &&
858 (ke->keycode >> (dev->keycodesize * 8)))
859 return -EINVAL;
860
861 switch (dev->keycodesize) {
862 case 1: {
863 u8 *k = (u8 *)dev->keycode;
864 *old_keycode = k[index];
865 k[index] = ke->keycode;
866 break;
867 }
868 case 2: {
869 u16 *k = (u16 *)dev->keycode;
870 *old_keycode = k[index];
871 k[index] = ke->keycode;
872 break;
873 }
874 default: {
875 u32 *k = (u32 *)dev->keycode;
876 *old_keycode = k[index];
877 k[index] = ke->keycode;
878 break;
879 }
880 }
881
Olivier Deprez0e641232021-09-23 10:07:05 +0200882 if (*old_keycode <= KEY_MAX) {
883 __clear_bit(*old_keycode, dev->keybit);
884 for (i = 0; i < dev->keycodemax; i++) {
885 if (input_fetch_keycode(dev, i) == *old_keycode) {
886 __set_bit(*old_keycode, dev->keybit);
887 /* Setting the bit twice is useless, so break */
888 break;
889 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000890 }
891 }
892
Olivier Deprez0e641232021-09-23 10:07:05 +0200893 __set_bit(ke->keycode, dev->keybit);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000894 return 0;
895}
896
897/**
898 * input_get_keycode - retrieve keycode currently mapped to a given scancode
899 * @dev: input device which keymap is being queried
900 * @ke: keymap entry
901 *
902 * This function should be called by anyone interested in retrieving current
903 * keymap. Presently evdev handlers use it.
904 */
905int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
906{
907 unsigned long flags;
908 int retval;
909
910 spin_lock_irqsave(&dev->event_lock, flags);
911 retval = dev->getkeycode(dev, ke);
912 spin_unlock_irqrestore(&dev->event_lock, flags);
913
914 return retval;
915}
916EXPORT_SYMBOL(input_get_keycode);
917
918/**
919 * input_set_keycode - attribute a keycode to a given scancode
920 * @dev: input device which keymap is being updated
921 * @ke: new keymap entry
922 *
923 * This function should be called by anyone needing to update current
924 * keymap. Presently keyboard and evdev handlers use it.
925 */
926int input_set_keycode(struct input_dev *dev,
927 const struct input_keymap_entry *ke)
928{
929 unsigned long flags;
930 unsigned int old_keycode;
931 int retval;
932
933 if (ke->keycode > KEY_MAX)
934 return -EINVAL;
935
936 spin_lock_irqsave(&dev->event_lock, flags);
937
938 retval = dev->setkeycode(dev, ke, &old_keycode);
939 if (retval)
940 goto out;
941
942 /* Make sure KEY_RESERVED did not get enabled. */
943 __clear_bit(KEY_RESERVED, dev->keybit);
944
945 /*
946 * Simulate keyup event if keycode is not present
947 * in the keymap anymore
948 */
Olivier Deprez0e641232021-09-23 10:07:05 +0200949 if (old_keycode > KEY_MAX) {
950 dev_warn(dev->dev.parent ?: &dev->dev,
951 "%s: got too big old keycode %#x\n",
952 __func__, old_keycode);
953 } else if (test_bit(EV_KEY, dev->evbit) &&
954 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
955 __test_and_clear_bit(old_keycode, dev->key)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000956 struct input_value vals[] = {
957 { EV_KEY, old_keycode, 0 },
958 input_value_sync
959 };
960
961 input_pass_values(dev, vals, ARRAY_SIZE(vals));
962 }
963
964 out:
965 spin_unlock_irqrestore(&dev->event_lock, flags);
966
967 return retval;
968}
969EXPORT_SYMBOL(input_set_keycode);
970
971bool input_match_device_id(const struct input_dev *dev,
972 const struct input_device_id *id)
973{
974 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
975 if (id->bustype != dev->id.bustype)
976 return false;
977
978 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
979 if (id->vendor != dev->id.vendor)
980 return false;
981
982 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
983 if (id->product != dev->id.product)
984 return false;
985
986 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
987 if (id->version != dev->id.version)
988 return false;
989
990 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
991 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
992 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
993 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
994 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
995 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
996 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
997 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
998 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
999 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1000 return false;
1001 }
1002
1003 return true;
1004}
1005EXPORT_SYMBOL(input_match_device_id);
1006
1007static const struct input_device_id *input_match_device(struct input_handler *handler,
1008 struct input_dev *dev)
1009{
1010 const struct input_device_id *id;
1011
1012 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1013 if (input_match_device_id(dev, id) &&
1014 (!handler->match || handler->match(handler, dev))) {
1015 return id;
1016 }
1017 }
1018
1019 return NULL;
1020}
1021
1022static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1023{
1024 const struct input_device_id *id;
1025 int error;
1026
1027 id = input_match_device(handler, dev);
1028 if (!id)
1029 return -ENODEV;
1030
1031 error = handler->connect(handler, dev, id);
1032 if (error && error != -ENODEV)
1033 pr_err("failed to attach handler %s to device %s, error: %d\n",
1034 handler->name, kobject_name(&dev->dev.kobj), error);
1035
1036 return error;
1037}
1038
1039#ifdef CONFIG_COMPAT
1040
1041static int input_bits_to_string(char *buf, int buf_size,
1042 unsigned long bits, bool skip_empty)
1043{
1044 int len = 0;
1045
1046 if (in_compat_syscall()) {
1047 u32 dword = bits >> 32;
1048 if (dword || !skip_empty)
1049 len += snprintf(buf, buf_size, "%x ", dword);
1050
1051 dword = bits & 0xffffffffUL;
1052 if (dword || !skip_empty || len)
1053 len += snprintf(buf + len, max(buf_size - len, 0),
1054 "%x", dword);
1055 } else {
1056 if (bits || !skip_empty)
1057 len += snprintf(buf, buf_size, "%lx", bits);
1058 }
1059
1060 return len;
1061}
1062
1063#else /* !CONFIG_COMPAT */
1064
1065static int input_bits_to_string(char *buf, int buf_size,
1066 unsigned long bits, bool skip_empty)
1067{
1068 return bits || !skip_empty ?
1069 snprintf(buf, buf_size, "%lx", bits) : 0;
1070}
1071
1072#endif
1073
1074#ifdef CONFIG_PROC_FS
1075
1076static struct proc_dir_entry *proc_bus_input_dir;
1077static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1078static int input_devices_state;
1079
1080static inline void input_wakeup_procfs_readers(void)
1081{
1082 input_devices_state++;
1083 wake_up(&input_devices_poll_wait);
1084}
1085
1086static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1087{
1088 poll_wait(file, &input_devices_poll_wait, wait);
1089 if (file->f_version != input_devices_state) {
1090 file->f_version = input_devices_state;
1091 return EPOLLIN | EPOLLRDNORM;
1092 }
1093
1094 return 0;
1095}
1096
1097union input_seq_state {
1098 struct {
1099 unsigned short pos;
1100 bool mutex_acquired;
1101 };
1102 void *p;
1103};
1104
1105static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1106{
1107 union input_seq_state *state = (union input_seq_state *)&seq->private;
1108 int error;
1109
1110 /* We need to fit into seq->private pointer */
1111 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1112
1113 error = mutex_lock_interruptible(&input_mutex);
1114 if (error) {
1115 state->mutex_acquired = false;
1116 return ERR_PTR(error);
1117 }
1118
1119 state->mutex_acquired = true;
1120
1121 return seq_list_start(&input_dev_list, *pos);
1122}
1123
1124static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1125{
1126 return seq_list_next(v, &input_dev_list, pos);
1127}
1128
1129static void input_seq_stop(struct seq_file *seq, void *v)
1130{
1131 union input_seq_state *state = (union input_seq_state *)&seq->private;
1132
1133 if (state->mutex_acquired)
1134 mutex_unlock(&input_mutex);
1135}
1136
1137static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1138 unsigned long *bitmap, int max)
1139{
1140 int i;
1141 bool skip_empty = true;
1142 char buf[18];
1143
1144 seq_printf(seq, "B: %s=", name);
1145
1146 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1147 if (input_bits_to_string(buf, sizeof(buf),
1148 bitmap[i], skip_empty)) {
1149 skip_empty = false;
1150 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1151 }
1152 }
1153
1154 /*
1155 * If no output was produced print a single 0.
1156 */
1157 if (skip_empty)
1158 seq_putc(seq, '0');
1159
1160 seq_putc(seq, '\n');
1161}
1162
1163static int input_devices_seq_show(struct seq_file *seq, void *v)
1164{
1165 struct input_dev *dev = container_of(v, struct input_dev, node);
1166 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1167 struct input_handle *handle;
1168
1169 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1170 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1171
1172 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1173 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1174 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1175 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1176 seq_puts(seq, "H: Handlers=");
1177
1178 list_for_each_entry(handle, &dev->h_list, d_node)
1179 seq_printf(seq, "%s ", handle->name);
1180 seq_putc(seq, '\n');
1181
1182 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1183
1184 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1185 if (test_bit(EV_KEY, dev->evbit))
1186 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1187 if (test_bit(EV_REL, dev->evbit))
1188 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1189 if (test_bit(EV_ABS, dev->evbit))
1190 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1191 if (test_bit(EV_MSC, dev->evbit))
1192 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1193 if (test_bit(EV_LED, dev->evbit))
1194 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1195 if (test_bit(EV_SND, dev->evbit))
1196 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1197 if (test_bit(EV_FF, dev->evbit))
1198 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1199 if (test_bit(EV_SW, dev->evbit))
1200 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1201
1202 seq_putc(seq, '\n');
1203
1204 kfree(path);
1205 return 0;
1206}
1207
1208static const struct seq_operations input_devices_seq_ops = {
1209 .start = input_devices_seq_start,
1210 .next = input_devices_seq_next,
1211 .stop = input_seq_stop,
1212 .show = input_devices_seq_show,
1213};
1214
1215static int input_proc_devices_open(struct inode *inode, struct file *file)
1216{
1217 return seq_open(file, &input_devices_seq_ops);
1218}
1219
1220static const struct file_operations input_devices_fileops = {
1221 .owner = THIS_MODULE,
1222 .open = input_proc_devices_open,
1223 .poll = input_proc_devices_poll,
1224 .read = seq_read,
1225 .llseek = seq_lseek,
1226 .release = seq_release,
1227};
1228
1229static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1230{
1231 union input_seq_state *state = (union input_seq_state *)&seq->private;
1232 int error;
1233
1234 /* We need to fit into seq->private pointer */
1235 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1236
1237 error = mutex_lock_interruptible(&input_mutex);
1238 if (error) {
1239 state->mutex_acquired = false;
1240 return ERR_PTR(error);
1241 }
1242
1243 state->mutex_acquired = true;
1244 state->pos = *pos;
1245
1246 return seq_list_start(&input_handler_list, *pos);
1247}
1248
1249static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1250{
1251 union input_seq_state *state = (union input_seq_state *)&seq->private;
1252
1253 state->pos = *pos + 1;
1254 return seq_list_next(v, &input_handler_list, pos);
1255}
1256
1257static int input_handlers_seq_show(struct seq_file *seq, void *v)
1258{
1259 struct input_handler *handler = container_of(v, struct input_handler, node);
1260 union input_seq_state *state = (union input_seq_state *)&seq->private;
1261
1262 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1263 if (handler->filter)
1264 seq_puts(seq, " (filter)");
1265 if (handler->legacy_minors)
1266 seq_printf(seq, " Minor=%d", handler->minor);
1267 seq_putc(seq, '\n');
1268
1269 return 0;
1270}
1271
1272static const struct seq_operations input_handlers_seq_ops = {
1273 .start = input_handlers_seq_start,
1274 .next = input_handlers_seq_next,
1275 .stop = input_seq_stop,
1276 .show = input_handlers_seq_show,
1277};
1278
1279static int input_proc_handlers_open(struct inode *inode, struct file *file)
1280{
1281 return seq_open(file, &input_handlers_seq_ops);
1282}
1283
1284static const struct file_operations input_handlers_fileops = {
1285 .owner = THIS_MODULE,
1286 .open = input_proc_handlers_open,
1287 .read = seq_read,
1288 .llseek = seq_lseek,
1289 .release = seq_release,
1290};
1291
1292static int __init input_proc_init(void)
1293{
1294 struct proc_dir_entry *entry;
1295
1296 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1297 if (!proc_bus_input_dir)
1298 return -ENOMEM;
1299
1300 entry = proc_create("devices", 0, proc_bus_input_dir,
1301 &input_devices_fileops);
1302 if (!entry)
1303 goto fail1;
1304
1305 entry = proc_create("handlers", 0, proc_bus_input_dir,
1306 &input_handlers_fileops);
1307 if (!entry)
1308 goto fail2;
1309
1310 return 0;
1311
1312 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1313 fail1: remove_proc_entry("bus/input", NULL);
1314 return -ENOMEM;
1315}
1316
1317static void input_proc_exit(void)
1318{
1319 remove_proc_entry("devices", proc_bus_input_dir);
1320 remove_proc_entry("handlers", proc_bus_input_dir);
1321 remove_proc_entry("bus/input", NULL);
1322}
1323
1324#else /* !CONFIG_PROC_FS */
1325static inline void input_wakeup_procfs_readers(void) { }
1326static inline int input_proc_init(void) { return 0; }
1327static inline void input_proc_exit(void) { }
1328#endif
1329
1330#define INPUT_DEV_STRING_ATTR_SHOW(name) \
1331static ssize_t input_dev_show_##name(struct device *dev, \
1332 struct device_attribute *attr, \
1333 char *buf) \
1334{ \
1335 struct input_dev *input_dev = to_input_dev(dev); \
1336 \
1337 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1338 input_dev->name ? input_dev->name : ""); \
1339} \
1340static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1341
1342INPUT_DEV_STRING_ATTR_SHOW(name);
1343INPUT_DEV_STRING_ATTR_SHOW(phys);
1344INPUT_DEV_STRING_ATTR_SHOW(uniq);
1345
1346static int input_print_modalias_bits(char *buf, int size,
1347 char name, unsigned long *bm,
1348 unsigned int min_bit, unsigned int max_bit)
1349{
1350 int len = 0, i;
1351
1352 len += snprintf(buf, max(size, 0), "%c", name);
1353 for (i = min_bit; i < max_bit; i++)
1354 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1355 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1356 return len;
1357}
1358
1359static int input_print_modalias(char *buf, int size, struct input_dev *id,
1360 int add_cr)
1361{
1362 int len;
1363
1364 len = snprintf(buf, max(size, 0),
1365 "input:b%04Xv%04Xp%04Xe%04X-",
1366 id->id.bustype, id->id.vendor,
1367 id->id.product, id->id.version);
1368
1369 len += input_print_modalias_bits(buf + len, size - len,
1370 'e', id->evbit, 0, EV_MAX);
1371 len += input_print_modalias_bits(buf + len, size - len,
1372 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1373 len += input_print_modalias_bits(buf + len, size - len,
1374 'r', id->relbit, 0, REL_MAX);
1375 len += input_print_modalias_bits(buf + len, size - len,
1376 'a', id->absbit, 0, ABS_MAX);
1377 len += input_print_modalias_bits(buf + len, size - len,
1378 'm', id->mscbit, 0, MSC_MAX);
1379 len += input_print_modalias_bits(buf + len, size - len,
1380 'l', id->ledbit, 0, LED_MAX);
1381 len += input_print_modalias_bits(buf + len, size - len,
1382 's', id->sndbit, 0, SND_MAX);
1383 len += input_print_modalias_bits(buf + len, size - len,
1384 'f', id->ffbit, 0, FF_MAX);
1385 len += input_print_modalias_bits(buf + len, size - len,
1386 'w', id->swbit, 0, SW_MAX);
1387
1388 if (add_cr)
1389 len += snprintf(buf + len, max(size - len, 0), "\n");
1390
1391 return len;
1392}
1393
1394static ssize_t input_dev_show_modalias(struct device *dev,
1395 struct device_attribute *attr,
1396 char *buf)
1397{
1398 struct input_dev *id = to_input_dev(dev);
1399 ssize_t len;
1400
1401 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1402
1403 return min_t(int, len, PAGE_SIZE);
1404}
1405static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1406
1407static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1408 int max, int add_cr);
1409
1410static ssize_t input_dev_show_properties(struct device *dev,
1411 struct device_attribute *attr,
1412 char *buf)
1413{
1414 struct input_dev *input_dev = to_input_dev(dev);
1415 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1416 INPUT_PROP_MAX, true);
1417 return min_t(int, len, PAGE_SIZE);
1418}
1419static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1420
1421static struct attribute *input_dev_attrs[] = {
1422 &dev_attr_name.attr,
1423 &dev_attr_phys.attr,
1424 &dev_attr_uniq.attr,
1425 &dev_attr_modalias.attr,
1426 &dev_attr_properties.attr,
1427 NULL
1428};
1429
1430static const struct attribute_group input_dev_attr_group = {
1431 .attrs = input_dev_attrs,
1432};
1433
1434#define INPUT_DEV_ID_ATTR(name) \
1435static ssize_t input_dev_show_id_##name(struct device *dev, \
1436 struct device_attribute *attr, \
1437 char *buf) \
1438{ \
1439 struct input_dev *input_dev = to_input_dev(dev); \
1440 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1441} \
1442static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1443
1444INPUT_DEV_ID_ATTR(bustype);
1445INPUT_DEV_ID_ATTR(vendor);
1446INPUT_DEV_ID_ATTR(product);
1447INPUT_DEV_ID_ATTR(version);
1448
1449static struct attribute *input_dev_id_attrs[] = {
1450 &dev_attr_bustype.attr,
1451 &dev_attr_vendor.attr,
1452 &dev_attr_product.attr,
1453 &dev_attr_version.attr,
1454 NULL
1455};
1456
1457static const struct attribute_group input_dev_id_attr_group = {
1458 .name = "id",
1459 .attrs = input_dev_id_attrs,
1460};
1461
1462static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1463 int max, int add_cr)
1464{
1465 int i;
1466 int len = 0;
1467 bool skip_empty = true;
1468
1469 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1470 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1471 bitmap[i], skip_empty);
1472 if (len) {
1473 skip_empty = false;
1474 if (i > 0)
1475 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1476 }
1477 }
1478
1479 /*
1480 * If no output was produced print a single 0.
1481 */
1482 if (len == 0)
1483 len = snprintf(buf, buf_size, "%d", 0);
1484
1485 if (add_cr)
1486 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1487
1488 return len;
1489}
1490
1491#define INPUT_DEV_CAP_ATTR(ev, bm) \
1492static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1493 struct device_attribute *attr, \
1494 char *buf) \
1495{ \
1496 struct input_dev *input_dev = to_input_dev(dev); \
1497 int len = input_print_bitmap(buf, PAGE_SIZE, \
1498 input_dev->bm##bit, ev##_MAX, \
1499 true); \
1500 return min_t(int, len, PAGE_SIZE); \
1501} \
1502static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1503
1504INPUT_DEV_CAP_ATTR(EV, ev);
1505INPUT_DEV_CAP_ATTR(KEY, key);
1506INPUT_DEV_CAP_ATTR(REL, rel);
1507INPUT_DEV_CAP_ATTR(ABS, abs);
1508INPUT_DEV_CAP_ATTR(MSC, msc);
1509INPUT_DEV_CAP_ATTR(LED, led);
1510INPUT_DEV_CAP_ATTR(SND, snd);
1511INPUT_DEV_CAP_ATTR(FF, ff);
1512INPUT_DEV_CAP_ATTR(SW, sw);
1513
1514static struct attribute *input_dev_caps_attrs[] = {
1515 &dev_attr_ev.attr,
1516 &dev_attr_key.attr,
1517 &dev_attr_rel.attr,
1518 &dev_attr_abs.attr,
1519 &dev_attr_msc.attr,
1520 &dev_attr_led.attr,
1521 &dev_attr_snd.attr,
1522 &dev_attr_ff.attr,
1523 &dev_attr_sw.attr,
1524 NULL
1525};
1526
1527static const struct attribute_group input_dev_caps_attr_group = {
1528 .name = "capabilities",
1529 .attrs = input_dev_caps_attrs,
1530};
1531
1532static const struct attribute_group *input_dev_attr_groups[] = {
1533 &input_dev_attr_group,
1534 &input_dev_id_attr_group,
1535 &input_dev_caps_attr_group,
David Brazdil0f672f62019-12-10 10:32:29 +00001536 &input_poller_attribute_group,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001537 NULL
1538};
1539
1540static void input_dev_release(struct device *device)
1541{
1542 struct input_dev *dev = to_input_dev(device);
1543
1544 input_ff_destroy(dev);
1545 input_mt_destroy_slots(dev);
David Brazdil0f672f62019-12-10 10:32:29 +00001546 kfree(dev->poller);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001547 kfree(dev->absinfo);
1548 kfree(dev->vals);
1549 kfree(dev);
1550
1551 module_put(THIS_MODULE);
1552}
1553
1554/*
1555 * Input uevent interface - loading event handlers based on
1556 * device bitfields.
1557 */
1558static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1559 const char *name, unsigned long *bitmap, int max)
1560{
1561 int len;
1562
1563 if (add_uevent_var(env, "%s", name))
1564 return -ENOMEM;
1565
1566 len = input_print_bitmap(&env->buf[env->buflen - 1],
1567 sizeof(env->buf) - env->buflen,
1568 bitmap, max, false);
1569 if (len >= (sizeof(env->buf) - env->buflen))
1570 return -ENOMEM;
1571
1572 env->buflen += len;
1573 return 0;
1574}
1575
1576static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1577 struct input_dev *dev)
1578{
1579 int len;
1580
1581 if (add_uevent_var(env, "MODALIAS="))
1582 return -ENOMEM;
1583
1584 len = input_print_modalias(&env->buf[env->buflen - 1],
1585 sizeof(env->buf) - env->buflen,
1586 dev, 0);
1587 if (len >= (sizeof(env->buf) - env->buflen))
1588 return -ENOMEM;
1589
1590 env->buflen += len;
1591 return 0;
1592}
1593
1594#define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1595 do { \
1596 int err = add_uevent_var(env, fmt, val); \
1597 if (err) \
1598 return err; \
1599 } while (0)
1600
1601#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1602 do { \
1603 int err = input_add_uevent_bm_var(env, name, bm, max); \
1604 if (err) \
1605 return err; \
1606 } while (0)
1607
1608#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1609 do { \
1610 int err = input_add_uevent_modalias_var(env, dev); \
1611 if (err) \
1612 return err; \
1613 } while (0)
1614
1615static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1616{
1617 struct input_dev *dev = to_input_dev(device);
1618
1619 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1620 dev->id.bustype, dev->id.vendor,
1621 dev->id.product, dev->id.version);
1622 if (dev->name)
1623 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1624 if (dev->phys)
1625 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1626 if (dev->uniq)
1627 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1628
1629 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1630
1631 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1632 if (test_bit(EV_KEY, dev->evbit))
1633 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1634 if (test_bit(EV_REL, dev->evbit))
1635 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1636 if (test_bit(EV_ABS, dev->evbit))
1637 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1638 if (test_bit(EV_MSC, dev->evbit))
1639 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1640 if (test_bit(EV_LED, dev->evbit))
1641 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1642 if (test_bit(EV_SND, dev->evbit))
1643 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1644 if (test_bit(EV_FF, dev->evbit))
1645 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1646 if (test_bit(EV_SW, dev->evbit))
1647 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1648
1649 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1650
1651 return 0;
1652}
1653
1654#define INPUT_DO_TOGGLE(dev, type, bits, on) \
1655 do { \
1656 int i; \
1657 bool active; \
1658 \
1659 if (!test_bit(EV_##type, dev->evbit)) \
1660 break; \
1661 \
1662 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1663 active = test_bit(i, dev->bits); \
1664 if (!active && !on) \
1665 continue; \
1666 \
1667 dev->event(dev, EV_##type, i, on ? active : 0); \
1668 } \
1669 } while (0)
1670
1671static void input_dev_toggle(struct input_dev *dev, bool activate)
1672{
1673 if (!dev->event)
1674 return;
1675
1676 INPUT_DO_TOGGLE(dev, LED, led, activate);
1677 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1678
1679 if (activate && test_bit(EV_REP, dev->evbit)) {
1680 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1681 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1682 }
1683}
1684
1685/**
1686 * input_reset_device() - reset/restore the state of input device
1687 * @dev: input device whose state needs to be reset
1688 *
1689 * This function tries to reset the state of an opened input device and
1690 * bring internal state and state if the hardware in sync with each other.
1691 * We mark all keys as released, restore LED state, repeat rate, etc.
1692 */
1693void input_reset_device(struct input_dev *dev)
1694{
1695 unsigned long flags;
1696
1697 mutex_lock(&dev->mutex);
1698 spin_lock_irqsave(&dev->event_lock, flags);
1699
1700 input_dev_toggle(dev, true);
1701 input_dev_release_keys(dev);
1702
1703 spin_unlock_irqrestore(&dev->event_lock, flags);
1704 mutex_unlock(&dev->mutex);
1705}
1706EXPORT_SYMBOL(input_reset_device);
1707
1708#ifdef CONFIG_PM_SLEEP
1709static int input_dev_suspend(struct device *dev)
1710{
1711 struct input_dev *input_dev = to_input_dev(dev);
1712
1713 spin_lock_irq(&input_dev->event_lock);
1714
1715 /*
1716 * Keys that are pressed now are unlikely to be
1717 * still pressed when we resume.
1718 */
1719 input_dev_release_keys(input_dev);
1720
1721 /* Turn off LEDs and sounds, if any are active. */
1722 input_dev_toggle(input_dev, false);
1723
1724 spin_unlock_irq(&input_dev->event_lock);
1725
1726 return 0;
1727}
1728
1729static int input_dev_resume(struct device *dev)
1730{
1731 struct input_dev *input_dev = to_input_dev(dev);
1732
1733 spin_lock_irq(&input_dev->event_lock);
1734
1735 /* Restore state of LEDs and sounds, if any were active. */
1736 input_dev_toggle(input_dev, true);
1737
1738 spin_unlock_irq(&input_dev->event_lock);
1739
1740 return 0;
1741}
1742
1743static int input_dev_freeze(struct device *dev)
1744{
1745 struct input_dev *input_dev = to_input_dev(dev);
1746
1747 spin_lock_irq(&input_dev->event_lock);
1748
1749 /*
1750 * Keys that are pressed now are unlikely to be
1751 * still pressed when we resume.
1752 */
1753 input_dev_release_keys(input_dev);
1754
1755 spin_unlock_irq(&input_dev->event_lock);
1756
1757 return 0;
1758}
1759
1760static int input_dev_poweroff(struct device *dev)
1761{
1762 struct input_dev *input_dev = to_input_dev(dev);
1763
1764 spin_lock_irq(&input_dev->event_lock);
1765
1766 /* Turn off LEDs and sounds, if any are active. */
1767 input_dev_toggle(input_dev, false);
1768
1769 spin_unlock_irq(&input_dev->event_lock);
1770
1771 return 0;
1772}
1773
1774static const struct dev_pm_ops input_dev_pm_ops = {
1775 .suspend = input_dev_suspend,
1776 .resume = input_dev_resume,
1777 .freeze = input_dev_freeze,
1778 .poweroff = input_dev_poweroff,
1779 .restore = input_dev_resume,
1780};
1781#endif /* CONFIG_PM */
1782
1783static const struct device_type input_dev_type = {
1784 .groups = input_dev_attr_groups,
1785 .release = input_dev_release,
1786 .uevent = input_dev_uevent,
1787#ifdef CONFIG_PM_SLEEP
1788 .pm = &input_dev_pm_ops,
1789#endif
1790};
1791
1792static char *input_devnode(struct device *dev, umode_t *mode)
1793{
1794 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1795}
1796
1797struct class input_class = {
1798 .name = "input",
1799 .devnode = input_devnode,
1800};
1801EXPORT_SYMBOL_GPL(input_class);
1802
1803/**
1804 * input_allocate_device - allocate memory for new input device
1805 *
1806 * Returns prepared struct input_dev or %NULL.
1807 *
1808 * NOTE: Use input_free_device() to free devices that have not been
1809 * registered; input_unregister_device() should be used for already
1810 * registered devices.
1811 */
1812struct input_dev *input_allocate_device(void)
1813{
1814 static atomic_t input_no = ATOMIC_INIT(-1);
1815 struct input_dev *dev;
1816
1817 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1818 if (dev) {
1819 dev->dev.type = &input_dev_type;
1820 dev->dev.class = &input_class;
1821 device_initialize(&dev->dev);
1822 mutex_init(&dev->mutex);
1823 spin_lock_init(&dev->event_lock);
1824 timer_setup(&dev->timer, NULL, 0);
1825 INIT_LIST_HEAD(&dev->h_list);
1826 INIT_LIST_HEAD(&dev->node);
1827
1828 dev_set_name(&dev->dev, "input%lu",
1829 (unsigned long)atomic_inc_return(&input_no));
1830
1831 __module_get(THIS_MODULE);
1832 }
1833
1834 return dev;
1835}
1836EXPORT_SYMBOL(input_allocate_device);
1837
1838struct input_devres {
1839 struct input_dev *input;
1840};
1841
1842static int devm_input_device_match(struct device *dev, void *res, void *data)
1843{
1844 struct input_devres *devres = res;
1845
1846 return devres->input == data;
1847}
1848
1849static void devm_input_device_release(struct device *dev, void *res)
1850{
1851 struct input_devres *devres = res;
1852 struct input_dev *input = devres->input;
1853
1854 dev_dbg(dev, "%s: dropping reference to %s\n",
1855 __func__, dev_name(&input->dev));
1856 input_put_device(input);
1857}
1858
1859/**
1860 * devm_input_allocate_device - allocate managed input device
1861 * @dev: device owning the input device being created
1862 *
1863 * Returns prepared struct input_dev or %NULL.
1864 *
1865 * Managed input devices do not need to be explicitly unregistered or
1866 * freed as it will be done automatically when owner device unbinds from
1867 * its driver (or binding fails). Once managed input device is allocated,
1868 * it is ready to be set up and registered in the same fashion as regular
1869 * input device. There are no special devm_input_device_[un]register()
1870 * variants, regular ones work with both managed and unmanaged devices,
1871 * should you need them. In most cases however, managed input device need
1872 * not be explicitly unregistered or freed.
1873 *
1874 * NOTE: the owner device is set up as parent of input device and users
1875 * should not override it.
1876 */
1877struct input_dev *devm_input_allocate_device(struct device *dev)
1878{
1879 struct input_dev *input;
1880 struct input_devres *devres;
1881
1882 devres = devres_alloc(devm_input_device_release,
1883 sizeof(*devres), GFP_KERNEL);
1884 if (!devres)
1885 return NULL;
1886
1887 input = input_allocate_device();
1888 if (!input) {
1889 devres_free(devres);
1890 return NULL;
1891 }
1892
1893 input->dev.parent = dev;
1894 input->devres_managed = true;
1895
1896 devres->input = input;
1897 devres_add(dev, devres);
1898
1899 return input;
1900}
1901EXPORT_SYMBOL(devm_input_allocate_device);
1902
1903/**
1904 * input_free_device - free memory occupied by input_dev structure
1905 * @dev: input device to free
1906 *
1907 * This function should only be used if input_register_device()
1908 * was not called yet or if it failed. Once device was registered
1909 * use input_unregister_device() and memory will be freed once last
1910 * reference to the device is dropped.
1911 *
1912 * Device should be allocated by input_allocate_device().
1913 *
1914 * NOTE: If there are references to the input device then memory
1915 * will not be freed until last reference is dropped.
1916 */
1917void input_free_device(struct input_dev *dev)
1918{
1919 if (dev) {
1920 if (dev->devres_managed)
1921 WARN_ON(devres_destroy(dev->dev.parent,
1922 devm_input_device_release,
1923 devm_input_device_match,
1924 dev));
1925 input_put_device(dev);
1926 }
1927}
1928EXPORT_SYMBOL(input_free_device);
1929
1930/**
David Brazdil0f672f62019-12-10 10:32:29 +00001931 * input_set_timestamp - set timestamp for input events
1932 * @dev: input device to set timestamp for
1933 * @timestamp: the time at which the event has occurred
1934 * in CLOCK_MONOTONIC
1935 *
1936 * This function is intended to provide to the input system a more
1937 * accurate time of when an event actually occurred. The driver should
1938 * call this function as soon as a timestamp is acquired ensuring
1939 * clock conversions in input_set_timestamp are done correctly.
1940 *
1941 * The system entering suspend state between timestamp acquisition and
1942 * calling input_set_timestamp can result in inaccurate conversions.
1943 */
1944void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
1945{
1946 dev->timestamp[INPUT_CLK_MONO] = timestamp;
1947 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
1948 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
1949 TK_OFFS_BOOT);
1950}
1951EXPORT_SYMBOL(input_set_timestamp);
1952
1953/**
1954 * input_get_timestamp - get timestamp for input events
1955 * @dev: input device to get timestamp from
1956 *
1957 * A valid timestamp is a timestamp of non-zero value.
1958 */
1959ktime_t *input_get_timestamp(struct input_dev *dev)
1960{
1961 const ktime_t invalid_timestamp = ktime_set(0, 0);
1962
1963 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
1964 input_set_timestamp(dev, ktime_get());
1965
1966 return dev->timestamp;
1967}
1968EXPORT_SYMBOL(input_get_timestamp);
1969
1970/**
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001971 * input_set_capability - mark device as capable of a certain event
1972 * @dev: device that is capable of emitting or accepting event
1973 * @type: type of the event (EV_KEY, EV_REL, etc...)
1974 * @code: event code
1975 *
1976 * In addition to setting up corresponding bit in appropriate capability
1977 * bitmap the function also adjusts dev->evbit.
1978 */
1979void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1980{
1981 switch (type) {
1982 case EV_KEY:
1983 __set_bit(code, dev->keybit);
1984 break;
1985
1986 case EV_REL:
1987 __set_bit(code, dev->relbit);
1988 break;
1989
1990 case EV_ABS:
1991 input_alloc_absinfo(dev);
1992 if (!dev->absinfo)
1993 return;
1994
1995 __set_bit(code, dev->absbit);
1996 break;
1997
1998 case EV_MSC:
1999 __set_bit(code, dev->mscbit);
2000 break;
2001
2002 case EV_SW:
2003 __set_bit(code, dev->swbit);
2004 break;
2005
2006 case EV_LED:
2007 __set_bit(code, dev->ledbit);
2008 break;
2009
2010 case EV_SND:
2011 __set_bit(code, dev->sndbit);
2012 break;
2013
2014 case EV_FF:
2015 __set_bit(code, dev->ffbit);
2016 break;
2017
2018 case EV_PWR:
2019 /* do nothing */
2020 break;
2021
2022 default:
2023 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2024 dump_stack();
2025 return;
2026 }
2027
2028 __set_bit(type, dev->evbit);
2029}
2030EXPORT_SYMBOL(input_set_capability);
2031
2032static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2033{
2034 int mt_slots;
2035 int i;
2036 unsigned int events;
2037
2038 if (dev->mt) {
2039 mt_slots = dev->mt->num_slots;
2040 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2041 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2042 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2043 mt_slots = clamp(mt_slots, 2, 32);
2044 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2045 mt_slots = 2;
2046 } else {
2047 mt_slots = 0;
2048 }
2049
2050 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2051
2052 if (test_bit(EV_ABS, dev->evbit))
2053 for_each_set_bit(i, dev->absbit, ABS_CNT)
2054 events += input_is_mt_axis(i) ? mt_slots : 1;
2055
2056 if (test_bit(EV_REL, dev->evbit))
2057 events += bitmap_weight(dev->relbit, REL_CNT);
2058
2059 /* Make room for KEY and MSC events */
2060 events += 7;
2061
2062 return events;
2063}
2064
2065#define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2066 do { \
2067 if (!test_bit(EV_##type, dev->evbit)) \
2068 memset(dev->bits##bit, 0, \
2069 sizeof(dev->bits##bit)); \
2070 } while (0)
2071
2072static void input_cleanse_bitmasks(struct input_dev *dev)
2073{
2074 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2075 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2076 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2077 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2078 INPUT_CLEANSE_BITMASK(dev, LED, led);
2079 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2080 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2081 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2082}
2083
2084static void __input_unregister_device(struct input_dev *dev)
2085{
2086 struct input_handle *handle, *next;
2087
2088 input_disconnect_device(dev);
2089
2090 mutex_lock(&input_mutex);
2091
2092 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2093 handle->handler->disconnect(handle);
2094 WARN_ON(!list_empty(&dev->h_list));
2095
2096 del_timer_sync(&dev->timer);
2097 list_del_init(&dev->node);
2098
2099 input_wakeup_procfs_readers();
2100
2101 mutex_unlock(&input_mutex);
2102
2103 device_del(&dev->dev);
2104}
2105
2106static void devm_input_device_unregister(struct device *dev, void *res)
2107{
2108 struct input_devres *devres = res;
2109 struct input_dev *input = devres->input;
2110
2111 dev_dbg(dev, "%s: unregistering device %s\n",
2112 __func__, dev_name(&input->dev));
2113 __input_unregister_device(input);
2114}
2115
2116/**
2117 * input_enable_softrepeat - enable software autorepeat
2118 * @dev: input device
2119 * @delay: repeat delay
2120 * @period: repeat period
2121 *
2122 * Enable software autorepeat on the input device.
2123 */
2124void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2125{
2126 dev->timer.function = input_repeat_key;
2127 dev->rep[REP_DELAY] = delay;
2128 dev->rep[REP_PERIOD] = period;
2129}
2130EXPORT_SYMBOL(input_enable_softrepeat);
2131
2132/**
2133 * input_register_device - register device with input core
2134 * @dev: device to be registered
2135 *
2136 * This function registers device with input core. The device must be
2137 * allocated with input_allocate_device() and all it's capabilities
2138 * set up before registering.
2139 * If function fails the device must be freed with input_free_device().
2140 * Once device has been successfully registered it can be unregistered
2141 * with input_unregister_device(); input_free_device() should not be
2142 * called in this case.
2143 *
2144 * Note that this function is also used to register managed input devices
2145 * (ones allocated with devm_input_allocate_device()). Such managed input
2146 * devices need not be explicitly unregistered or freed, their tear down
2147 * is controlled by the devres infrastructure. It is also worth noting
2148 * that tear down of managed input devices is internally a 2-step process:
2149 * registered managed input device is first unregistered, but stays in
2150 * memory and can still handle input_event() calls (although events will
2151 * not be delivered anywhere). The freeing of managed input device will
2152 * happen later, when devres stack is unwound to the point where device
2153 * allocation was made.
2154 */
2155int input_register_device(struct input_dev *dev)
2156{
2157 struct input_devres *devres = NULL;
2158 struct input_handler *handler;
2159 unsigned int packet_size;
2160 const char *path;
2161 int error;
2162
2163 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2164 dev_err(&dev->dev,
2165 "Absolute device without dev->absinfo, refusing to register\n");
2166 return -EINVAL;
2167 }
2168
2169 if (dev->devres_managed) {
2170 devres = devres_alloc(devm_input_device_unregister,
2171 sizeof(*devres), GFP_KERNEL);
2172 if (!devres)
2173 return -ENOMEM;
2174
2175 devres->input = dev;
2176 }
2177
2178 /* Every input device generates EV_SYN/SYN_REPORT events. */
2179 __set_bit(EV_SYN, dev->evbit);
2180
2181 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2182 __clear_bit(KEY_RESERVED, dev->keybit);
2183
2184 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2185 input_cleanse_bitmasks(dev);
2186
2187 packet_size = input_estimate_events_per_packet(dev);
2188 if (dev->hint_events_per_packet < packet_size)
2189 dev->hint_events_per_packet = packet_size;
2190
2191 dev->max_vals = dev->hint_events_per_packet + 2;
2192 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2193 if (!dev->vals) {
2194 error = -ENOMEM;
2195 goto err_devres_free;
2196 }
2197
2198 /*
2199 * If delay and period are pre-set by the driver, then autorepeating
2200 * is handled by the driver itself and we don't do it in input.c.
2201 */
2202 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2203 input_enable_softrepeat(dev, 250, 33);
2204
2205 if (!dev->getkeycode)
2206 dev->getkeycode = input_default_getkeycode;
2207
2208 if (!dev->setkeycode)
2209 dev->setkeycode = input_default_setkeycode;
2210
David Brazdil0f672f62019-12-10 10:32:29 +00002211 if (dev->poller)
2212 input_dev_poller_finalize(dev->poller);
2213
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002214 error = device_add(&dev->dev);
2215 if (error)
2216 goto err_free_vals;
2217
2218 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2219 pr_info("%s as %s\n",
2220 dev->name ? dev->name : "Unspecified device",
2221 path ? path : "N/A");
2222 kfree(path);
2223
2224 error = mutex_lock_interruptible(&input_mutex);
2225 if (error)
2226 goto err_device_del;
2227
2228 list_add_tail(&dev->node, &input_dev_list);
2229
2230 list_for_each_entry(handler, &input_handler_list, node)
2231 input_attach_handler(dev, handler);
2232
2233 input_wakeup_procfs_readers();
2234
2235 mutex_unlock(&input_mutex);
2236
2237 if (dev->devres_managed) {
2238 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2239 __func__, dev_name(&dev->dev));
2240 devres_add(dev->dev.parent, devres);
2241 }
2242 return 0;
2243
2244err_device_del:
2245 device_del(&dev->dev);
2246err_free_vals:
2247 kfree(dev->vals);
2248 dev->vals = NULL;
2249err_devres_free:
2250 devres_free(devres);
2251 return error;
2252}
2253EXPORT_SYMBOL(input_register_device);
2254
2255/**
2256 * input_unregister_device - unregister previously registered device
2257 * @dev: device to be unregistered
2258 *
2259 * This function unregisters an input device. Once device is unregistered
2260 * the caller should not try to access it as it may get freed at any moment.
2261 */
2262void input_unregister_device(struct input_dev *dev)
2263{
2264 if (dev->devres_managed) {
2265 WARN_ON(devres_destroy(dev->dev.parent,
2266 devm_input_device_unregister,
2267 devm_input_device_match,
2268 dev));
2269 __input_unregister_device(dev);
2270 /*
2271 * We do not do input_put_device() here because it will be done
2272 * when 2nd devres fires up.
2273 */
2274 } else {
2275 __input_unregister_device(dev);
2276 input_put_device(dev);
2277 }
2278}
2279EXPORT_SYMBOL(input_unregister_device);
2280
2281/**
2282 * input_register_handler - register a new input handler
2283 * @handler: handler to be registered
2284 *
2285 * This function registers a new input handler (interface) for input
2286 * devices in the system and attaches it to all input devices that
2287 * are compatible with the handler.
2288 */
2289int input_register_handler(struct input_handler *handler)
2290{
2291 struct input_dev *dev;
2292 int error;
2293
2294 error = mutex_lock_interruptible(&input_mutex);
2295 if (error)
2296 return error;
2297
2298 INIT_LIST_HEAD(&handler->h_list);
2299
2300 list_add_tail(&handler->node, &input_handler_list);
2301
2302 list_for_each_entry(dev, &input_dev_list, node)
2303 input_attach_handler(dev, handler);
2304
2305 input_wakeup_procfs_readers();
2306
2307 mutex_unlock(&input_mutex);
2308 return 0;
2309}
2310EXPORT_SYMBOL(input_register_handler);
2311
2312/**
2313 * input_unregister_handler - unregisters an input handler
2314 * @handler: handler to be unregistered
2315 *
2316 * This function disconnects a handler from its input devices and
2317 * removes it from lists of known handlers.
2318 */
2319void input_unregister_handler(struct input_handler *handler)
2320{
2321 struct input_handle *handle, *next;
2322
2323 mutex_lock(&input_mutex);
2324
2325 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2326 handler->disconnect(handle);
2327 WARN_ON(!list_empty(&handler->h_list));
2328
2329 list_del_init(&handler->node);
2330
2331 input_wakeup_procfs_readers();
2332
2333 mutex_unlock(&input_mutex);
2334}
2335EXPORT_SYMBOL(input_unregister_handler);
2336
2337/**
2338 * input_handler_for_each_handle - handle iterator
2339 * @handler: input handler to iterate
2340 * @data: data for the callback
2341 * @fn: function to be called for each handle
2342 *
2343 * Iterate over @bus's list of devices, and call @fn for each, passing
2344 * it @data and stop when @fn returns a non-zero value. The function is
2345 * using RCU to traverse the list and therefore may be using in atomic
2346 * contexts. The @fn callback is invoked from RCU critical section and
2347 * thus must not sleep.
2348 */
2349int input_handler_for_each_handle(struct input_handler *handler, void *data,
2350 int (*fn)(struct input_handle *, void *))
2351{
2352 struct input_handle *handle;
2353 int retval = 0;
2354
2355 rcu_read_lock();
2356
2357 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2358 retval = fn(handle, data);
2359 if (retval)
2360 break;
2361 }
2362
2363 rcu_read_unlock();
2364
2365 return retval;
2366}
2367EXPORT_SYMBOL(input_handler_for_each_handle);
2368
2369/**
2370 * input_register_handle - register a new input handle
2371 * @handle: handle to register
2372 *
2373 * This function puts a new input handle onto device's
2374 * and handler's lists so that events can flow through
2375 * it once it is opened using input_open_device().
2376 *
2377 * This function is supposed to be called from handler's
2378 * connect() method.
2379 */
2380int input_register_handle(struct input_handle *handle)
2381{
2382 struct input_handler *handler = handle->handler;
2383 struct input_dev *dev = handle->dev;
2384 int error;
2385
2386 /*
2387 * We take dev->mutex here to prevent race with
2388 * input_release_device().
2389 */
2390 error = mutex_lock_interruptible(&dev->mutex);
2391 if (error)
2392 return error;
2393
2394 /*
2395 * Filters go to the head of the list, normal handlers
2396 * to the tail.
2397 */
2398 if (handler->filter)
2399 list_add_rcu(&handle->d_node, &dev->h_list);
2400 else
2401 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2402
2403 mutex_unlock(&dev->mutex);
2404
2405 /*
2406 * Since we are supposed to be called from ->connect()
2407 * which is mutually exclusive with ->disconnect()
2408 * we can't be racing with input_unregister_handle()
2409 * and so separate lock is not needed here.
2410 */
2411 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2412
2413 if (handler->start)
2414 handler->start(handle);
2415
2416 return 0;
2417}
2418EXPORT_SYMBOL(input_register_handle);
2419
2420/**
2421 * input_unregister_handle - unregister an input handle
2422 * @handle: handle to unregister
2423 *
2424 * This function removes input handle from device's
2425 * and handler's lists.
2426 *
2427 * This function is supposed to be called from handler's
2428 * disconnect() method.
2429 */
2430void input_unregister_handle(struct input_handle *handle)
2431{
2432 struct input_dev *dev = handle->dev;
2433
2434 list_del_rcu(&handle->h_node);
2435
2436 /*
2437 * Take dev->mutex to prevent race with input_release_device().
2438 */
2439 mutex_lock(&dev->mutex);
2440 list_del_rcu(&handle->d_node);
2441 mutex_unlock(&dev->mutex);
2442
2443 synchronize_rcu();
2444}
2445EXPORT_SYMBOL(input_unregister_handle);
2446
2447/**
2448 * input_get_new_minor - allocates a new input minor number
2449 * @legacy_base: beginning or the legacy range to be searched
2450 * @legacy_num: size of legacy range
2451 * @allow_dynamic: whether we can also take ID from the dynamic range
2452 *
2453 * This function allocates a new device minor for from input major namespace.
2454 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2455 * parameters and whether ID can be allocated from dynamic range if there are
2456 * no free IDs in legacy range.
2457 */
2458int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2459 bool allow_dynamic)
2460{
2461 /*
2462 * This function should be called from input handler's ->connect()
2463 * methods, which are serialized with input_mutex, so no additional
2464 * locking is needed here.
2465 */
2466 if (legacy_base >= 0) {
2467 int minor = ida_simple_get(&input_ida,
2468 legacy_base,
2469 legacy_base + legacy_num,
2470 GFP_KERNEL);
2471 if (minor >= 0 || !allow_dynamic)
2472 return minor;
2473 }
2474
2475 return ida_simple_get(&input_ida,
2476 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2477 GFP_KERNEL);
2478}
2479EXPORT_SYMBOL(input_get_new_minor);
2480
2481/**
2482 * input_free_minor - release previously allocated minor
2483 * @minor: minor to be released
2484 *
2485 * This function releases previously allocated input minor so that it can be
2486 * reused later.
2487 */
2488void input_free_minor(unsigned int minor)
2489{
2490 ida_simple_remove(&input_ida, minor);
2491}
2492EXPORT_SYMBOL(input_free_minor);
2493
2494static int __init input_init(void)
2495{
2496 int err;
2497
2498 err = class_register(&input_class);
2499 if (err) {
2500 pr_err("unable to register input_dev class\n");
2501 return err;
2502 }
2503
2504 err = input_proc_init();
2505 if (err)
2506 goto fail1;
2507
2508 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2509 INPUT_MAX_CHAR_DEVICES, "input");
2510 if (err) {
2511 pr_err("unable to register char major %d", INPUT_MAJOR);
2512 goto fail2;
2513 }
2514
2515 return 0;
2516
2517 fail2: input_proc_exit();
2518 fail1: class_unregister(&input_class);
2519 return err;
2520}
2521
2522static void __exit input_exit(void)
2523{
2524 input_proc_exit();
2525 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2526 INPUT_MAX_CHAR_DEVICES);
2527 class_unregister(&input_class);
2528}
2529
2530subsys_initcall(input_init);
2531module_exit(input_exit);