blob: 94fde39d9ff7a8a41f38a1374d4970ad90214183 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * This file is part of STM32 ADC driver
4 *
5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7 */
8
9#include <linux/clk.h>
10#include <linux/delay.h>
11#include <linux/dma-mapping.h>
12#include <linux/dmaengine.h>
13#include <linux/iio/iio.h>
14#include <linux/iio/buffer.h>
15#include <linux/iio/timer/stm32-lptim-trigger.h>
16#include <linux/iio/timer/stm32-timer-trigger.h>
17#include <linux/iio/trigger.h>
18#include <linux/iio/trigger_consumer.h>
19#include <linux/iio/triggered_buffer.h>
20#include <linux/interrupt.h>
21#include <linux/io.h>
22#include <linux/iopoll.h>
23#include <linux/module.h>
24#include <linux/platform_device.h>
David Brazdil0f672f62019-12-10 10:32:29 +000025#include <linux/pm_runtime.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000026#include <linux/of.h>
27#include <linux/of_device.h>
28
29#include "stm32-adc-core.h"
30
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000031/* Number of linear calibration shadow registers / LINCALRDYW control bits */
32#define STM32H7_LINCALFACT_NUM 6
33
34/* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
35#define STM32H7_BOOST_CLKRATE 20000000UL
36
37#define STM32_ADC_CH_MAX 20 /* max number of channels */
38#define STM32_ADC_CH_SZ 10 /* max channel name size */
39#define STM32_ADC_MAX_SQ 16 /* SQ1..SQ16 */
40#define STM32_ADC_MAX_SMP 7 /* SMPx range is [0..7] */
41#define STM32_ADC_TIMEOUT_US 100000
42#define STM32_ADC_TIMEOUT (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
David Brazdil0f672f62019-12-10 10:32:29 +000043#define STM32_ADC_HW_STOP_DELAY_MS 100
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000044
45#define STM32_DMA_BUFFER_SIZE PAGE_SIZE
46
47/* External trigger enable */
48enum stm32_adc_exten {
49 STM32_EXTEN_SWTRIG,
50 STM32_EXTEN_HWTRIG_RISING_EDGE,
51 STM32_EXTEN_HWTRIG_FALLING_EDGE,
52 STM32_EXTEN_HWTRIG_BOTH_EDGES,
53};
54
55/* extsel - trigger mux selection value */
56enum stm32_adc_extsel {
57 STM32_EXT0,
58 STM32_EXT1,
59 STM32_EXT2,
60 STM32_EXT3,
61 STM32_EXT4,
62 STM32_EXT5,
63 STM32_EXT6,
64 STM32_EXT7,
65 STM32_EXT8,
66 STM32_EXT9,
67 STM32_EXT10,
68 STM32_EXT11,
69 STM32_EXT12,
70 STM32_EXT13,
71 STM32_EXT14,
72 STM32_EXT15,
73 STM32_EXT16,
74 STM32_EXT17,
75 STM32_EXT18,
76 STM32_EXT19,
77 STM32_EXT20,
78};
79
80/**
81 * struct stm32_adc_trig_info - ADC trigger info
82 * @name: name of the trigger, corresponding to its source
83 * @extsel: trigger selection
84 */
85struct stm32_adc_trig_info {
86 const char *name;
87 enum stm32_adc_extsel extsel;
88};
89
90/**
91 * struct stm32_adc_calib - optional adc calibration data
92 * @calfact_s: Calibration offset for single ended channels
93 * @calfact_d: Calibration offset in differential
94 * @lincalfact: Linearity calibration factor
David Brazdil0f672f62019-12-10 10:32:29 +000095 * @calibrated: Indicates calibration status
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000096 */
97struct stm32_adc_calib {
98 u32 calfact_s;
99 u32 calfact_d;
100 u32 lincalfact[STM32H7_LINCALFACT_NUM];
David Brazdil0f672f62019-12-10 10:32:29 +0000101 bool calibrated;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000102};
103
104/**
105 * stm32_adc_regs - stm32 ADC misc registers & bitfield desc
106 * @reg: register offset
107 * @mask: bitfield mask
108 * @shift: left shift
109 */
110struct stm32_adc_regs {
111 int reg;
112 int mask;
113 int shift;
114};
115
116/**
117 * stm32_adc_regspec - stm32 registers definition, compatible dependent data
118 * @dr: data register offset
119 * @ier_eoc: interrupt enable register & eocie bitfield
120 * @isr_eoc: interrupt status register & eoc bitfield
121 * @sqr: reference to sequence registers array
122 * @exten: trigger control register & bitfield
123 * @extsel: trigger selection register & bitfield
124 * @res: resolution selection register & bitfield
125 * @smpr: smpr1 & smpr2 registers offset array
126 * @smp_bits: smpr1 & smpr2 index and bitfields
127 */
128struct stm32_adc_regspec {
129 const u32 dr;
130 const struct stm32_adc_regs ier_eoc;
131 const struct stm32_adc_regs isr_eoc;
132 const struct stm32_adc_regs *sqr;
133 const struct stm32_adc_regs exten;
134 const struct stm32_adc_regs extsel;
135 const struct stm32_adc_regs res;
136 const u32 smpr[2];
137 const struct stm32_adc_regs *smp_bits;
138};
139
140struct stm32_adc;
141
142/**
143 * stm32_adc_cfg - stm32 compatible configuration data
144 * @regs: registers descriptions
145 * @adc_info: per instance input channels definitions
146 * @trigs: external trigger sources
147 * @clk_required: clock is required
148 * @has_vregready: vregready status flag presence
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000149 * @prepare: optional prepare routine (power-up, enable)
150 * @start_conv: routine to start conversions
151 * @stop_conv: routine to stop conversions
152 * @unprepare: optional unprepare routine (disable, power-down)
153 * @smp_cycles: programmable sampling time (ADC clock cycles)
154 */
155struct stm32_adc_cfg {
156 const struct stm32_adc_regspec *regs;
157 const struct stm32_adc_info *adc_info;
158 struct stm32_adc_trig_info *trigs;
159 bool clk_required;
160 bool has_vregready;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000161 int (*prepare)(struct stm32_adc *);
162 void (*start_conv)(struct stm32_adc *, bool dma);
163 void (*stop_conv)(struct stm32_adc *);
164 void (*unprepare)(struct stm32_adc *);
165 const unsigned int *smp_cycles;
166};
167
168/**
169 * struct stm32_adc - private data of each ADC IIO instance
170 * @common: reference to ADC block common data
171 * @offset: ADC instance register offset in ADC block
172 * @cfg: compatible configuration data
173 * @completion: end of single conversion completion
174 * @buffer: data buffer
175 * @clk: clock for this adc instance
176 * @irq: interrupt for this adc instance
177 * @lock: spinlock
178 * @bufi: data buffer index
179 * @num_conv: expected number of scan conversions
180 * @res: data resolution (e.g. RES bitfield value)
181 * @trigger_polarity: external trigger polarity (e.g. exten)
182 * @dma_chan: dma channel
183 * @rx_buf: dma rx buffer cpu address
184 * @rx_dma_buf: dma rx buffer bus address
185 * @rx_buf_sz: dma rx buffer size
186 * @difsel bitmask to set single-ended/differential channel
187 * @pcsel bitmask to preselect channels on some devices
188 * @smpr_val: sampling time settings (e.g. smpr1 / smpr2)
189 * @cal: optional calibration data on some devices
190 * @chan_name: channel name array
191 */
192struct stm32_adc {
193 struct stm32_adc_common *common;
194 u32 offset;
195 const struct stm32_adc_cfg *cfg;
196 struct completion completion;
197 u16 buffer[STM32_ADC_MAX_SQ];
198 struct clk *clk;
199 int irq;
200 spinlock_t lock; /* interrupt lock */
201 unsigned int bufi;
202 unsigned int num_conv;
203 u32 res;
204 u32 trigger_polarity;
205 struct dma_chan *dma_chan;
206 u8 *rx_buf;
207 dma_addr_t rx_dma_buf;
208 unsigned int rx_buf_sz;
209 u32 difsel;
210 u32 pcsel;
211 u32 smpr_val[2];
212 struct stm32_adc_calib cal;
213 char chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
214};
215
216struct stm32_adc_diff_channel {
217 u32 vinp;
218 u32 vinn;
219};
220
221/**
222 * struct stm32_adc_info - stm32 ADC, per instance config data
223 * @max_channels: Number of channels
224 * @resolutions: available resolutions
225 * @num_res: number of available resolutions
226 */
227struct stm32_adc_info {
228 int max_channels;
229 const unsigned int *resolutions;
230 const unsigned int num_res;
231};
232
233static const unsigned int stm32f4_adc_resolutions[] = {
234 /* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
235 12, 10, 8, 6,
236};
237
238/* stm32f4 can have up to 16 channels */
239static const struct stm32_adc_info stm32f4_adc_info = {
240 .max_channels = 16,
241 .resolutions = stm32f4_adc_resolutions,
242 .num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
243};
244
245static const unsigned int stm32h7_adc_resolutions[] = {
246 /* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
247 16, 14, 12, 10, 8,
248};
249
250/* stm32h7 can have up to 20 channels */
251static const struct stm32_adc_info stm32h7_adc_info = {
252 .max_channels = STM32_ADC_CH_MAX,
253 .resolutions = stm32h7_adc_resolutions,
254 .num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
255};
256
257/**
258 * stm32f4_sq - describe regular sequence registers
259 * - L: sequence len (register & bit field)
260 * - SQ1..SQ16: sequence entries (register & bit field)
261 */
262static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
263 /* L: len bit field description to be kept as first element */
264 { STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
265 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
266 { STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
267 { STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
268 { STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
269 { STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
270 { STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
271 { STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
272 { STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
273 { STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
274 { STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
275 { STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
276 { STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
277 { STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
278 { STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
279 { STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
280 { STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
281 { STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
282};
283
284/* STM32F4 external trigger sources for all instances */
285static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
286 { TIM1_CH1, STM32_EXT0 },
287 { TIM1_CH2, STM32_EXT1 },
288 { TIM1_CH3, STM32_EXT2 },
289 { TIM2_CH2, STM32_EXT3 },
290 { TIM2_CH3, STM32_EXT4 },
291 { TIM2_CH4, STM32_EXT5 },
292 { TIM2_TRGO, STM32_EXT6 },
293 { TIM3_CH1, STM32_EXT7 },
294 { TIM3_TRGO, STM32_EXT8 },
295 { TIM4_CH4, STM32_EXT9 },
296 { TIM5_CH1, STM32_EXT10 },
297 { TIM5_CH2, STM32_EXT11 },
298 { TIM5_CH3, STM32_EXT12 },
299 { TIM8_CH1, STM32_EXT13 },
300 { TIM8_TRGO, STM32_EXT14 },
301 {}, /* sentinel */
302};
303
304/**
305 * stm32f4_smp_bits[] - describe sampling time register index & bit fields
306 * Sorted so it can be indexed by channel number.
307 */
308static const struct stm32_adc_regs stm32f4_smp_bits[] = {
309 /* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
310 { 1, GENMASK(2, 0), 0 },
311 { 1, GENMASK(5, 3), 3 },
312 { 1, GENMASK(8, 6), 6 },
313 { 1, GENMASK(11, 9), 9 },
314 { 1, GENMASK(14, 12), 12 },
315 { 1, GENMASK(17, 15), 15 },
316 { 1, GENMASK(20, 18), 18 },
317 { 1, GENMASK(23, 21), 21 },
318 { 1, GENMASK(26, 24), 24 },
319 { 1, GENMASK(29, 27), 27 },
320 /* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
321 { 0, GENMASK(2, 0), 0 },
322 { 0, GENMASK(5, 3), 3 },
323 { 0, GENMASK(8, 6), 6 },
324 { 0, GENMASK(11, 9), 9 },
325 { 0, GENMASK(14, 12), 12 },
326 { 0, GENMASK(17, 15), 15 },
327 { 0, GENMASK(20, 18), 18 },
328 { 0, GENMASK(23, 21), 21 },
329 { 0, GENMASK(26, 24), 24 },
330};
331
332/* STM32F4 programmable sampling time (ADC clock cycles) */
333static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
334 3, 15, 28, 56, 84, 112, 144, 480,
335};
336
337static const struct stm32_adc_regspec stm32f4_adc_regspec = {
338 .dr = STM32F4_ADC_DR,
339 .ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
340 .isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
341 .sqr = stm32f4_sq,
342 .exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
343 .extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
344 STM32F4_EXTSEL_SHIFT },
345 .res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
346 .smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
347 .smp_bits = stm32f4_smp_bits,
348};
349
350static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
351 /* L: len bit field description to be kept as first element */
352 { STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
353 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
354 { STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
355 { STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
356 { STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
357 { STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
358 { STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
359 { STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
360 { STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
361 { STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
362 { STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
363 { STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
364 { STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
365 { STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
366 { STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
367 { STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
368 { STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
369 { STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
370};
371
372/* STM32H7 external trigger sources for all instances */
373static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
374 { TIM1_CH1, STM32_EXT0 },
375 { TIM1_CH2, STM32_EXT1 },
376 { TIM1_CH3, STM32_EXT2 },
377 { TIM2_CH2, STM32_EXT3 },
378 { TIM3_TRGO, STM32_EXT4 },
379 { TIM4_CH4, STM32_EXT5 },
380 { TIM8_TRGO, STM32_EXT7 },
381 { TIM8_TRGO2, STM32_EXT8 },
382 { TIM1_TRGO, STM32_EXT9 },
383 { TIM1_TRGO2, STM32_EXT10 },
384 { TIM2_TRGO, STM32_EXT11 },
385 { TIM4_TRGO, STM32_EXT12 },
386 { TIM6_TRGO, STM32_EXT13 },
387 { TIM15_TRGO, STM32_EXT14 },
388 { TIM3_CH4, STM32_EXT15 },
389 { LPTIM1_OUT, STM32_EXT18 },
390 { LPTIM2_OUT, STM32_EXT19 },
391 { LPTIM3_OUT, STM32_EXT20 },
392 {},
393};
394
395/**
396 * stm32h7_smp_bits - describe sampling time register index & bit fields
397 * Sorted so it can be indexed by channel number.
398 */
399static const struct stm32_adc_regs stm32h7_smp_bits[] = {
400 /* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
401 { 0, GENMASK(2, 0), 0 },
402 { 0, GENMASK(5, 3), 3 },
403 { 0, GENMASK(8, 6), 6 },
404 { 0, GENMASK(11, 9), 9 },
405 { 0, GENMASK(14, 12), 12 },
406 { 0, GENMASK(17, 15), 15 },
407 { 0, GENMASK(20, 18), 18 },
408 { 0, GENMASK(23, 21), 21 },
409 { 0, GENMASK(26, 24), 24 },
410 { 0, GENMASK(29, 27), 27 },
411 /* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
412 { 1, GENMASK(2, 0), 0 },
413 { 1, GENMASK(5, 3), 3 },
414 { 1, GENMASK(8, 6), 6 },
415 { 1, GENMASK(11, 9), 9 },
416 { 1, GENMASK(14, 12), 12 },
417 { 1, GENMASK(17, 15), 15 },
418 { 1, GENMASK(20, 18), 18 },
419 { 1, GENMASK(23, 21), 21 },
420 { 1, GENMASK(26, 24), 24 },
421 { 1, GENMASK(29, 27), 27 },
422};
423
424/* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
425static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
426 1, 2, 8, 16, 32, 64, 387, 810,
427};
428
429static const struct stm32_adc_regspec stm32h7_adc_regspec = {
430 .dr = STM32H7_ADC_DR,
431 .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
432 .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
433 .sqr = stm32h7_sq,
434 .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
435 .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
436 STM32H7_EXTSEL_SHIFT },
437 .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
438 .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
439 .smp_bits = stm32h7_smp_bits,
440};
441
442/**
443 * STM32 ADC registers access routines
444 * @adc: stm32 adc instance
445 * @reg: reg offset in adc instance
446 *
447 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
448 * for adc1, adc2 and adc3.
449 */
450static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
451{
452 return readl_relaxed(adc->common->base + adc->offset + reg);
453}
454
455#define stm32_adc_readl_addr(addr) stm32_adc_readl(adc, addr)
456
457#define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
458 readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
459 cond, sleep_us, timeout_us)
460
461static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
462{
463 return readw_relaxed(adc->common->base + adc->offset + reg);
464}
465
466static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
467{
468 writel_relaxed(val, adc->common->base + adc->offset + reg);
469}
470
471static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
472{
473 unsigned long flags;
474
475 spin_lock_irqsave(&adc->lock, flags);
476 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
477 spin_unlock_irqrestore(&adc->lock, flags);
478}
479
480static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
481{
482 unsigned long flags;
483
484 spin_lock_irqsave(&adc->lock, flags);
485 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
486 spin_unlock_irqrestore(&adc->lock, flags);
487}
488
489/**
490 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
491 * @adc: stm32 adc instance
492 */
493static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
494{
495 stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
496 adc->cfg->regs->ier_eoc.mask);
497};
498
499/**
500 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
501 * @adc: stm32 adc instance
502 */
503static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
504{
505 stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
506 adc->cfg->regs->ier_eoc.mask);
507}
508
509static void stm32_adc_set_res(struct stm32_adc *adc)
510{
511 const struct stm32_adc_regs *res = &adc->cfg->regs->res;
512 u32 val;
513
514 val = stm32_adc_readl(adc, res->reg);
515 val = (val & ~res->mask) | (adc->res << res->shift);
516 stm32_adc_writel(adc, res->reg, val);
517}
518
David Brazdil0f672f62019-12-10 10:32:29 +0000519static int stm32_adc_hw_stop(struct device *dev)
520{
521 struct stm32_adc *adc = dev_get_drvdata(dev);
522
523 if (adc->cfg->unprepare)
524 adc->cfg->unprepare(adc);
525
526 if (adc->clk)
527 clk_disable_unprepare(adc->clk);
528
529 return 0;
530}
531
532static int stm32_adc_hw_start(struct device *dev)
533{
534 struct stm32_adc *adc = dev_get_drvdata(dev);
535 int ret;
536
537 if (adc->clk) {
538 ret = clk_prepare_enable(adc->clk);
539 if (ret)
540 return ret;
541 }
542
543 stm32_adc_set_res(adc);
544
545 if (adc->cfg->prepare) {
546 ret = adc->cfg->prepare(adc);
547 if (ret)
548 goto err_clk_dis;
549 }
550
551 return 0;
552
553err_clk_dis:
554 if (adc->clk)
555 clk_disable_unprepare(adc->clk);
556
557 return ret;
558}
559
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000560/**
561 * stm32f4_adc_start_conv() - Start conversions for regular channels.
562 * @adc: stm32 adc instance
563 * @dma: use dma to transfer conversion result
564 *
565 * Start conversions for regular channels.
566 * Also take care of normal or DMA mode. Circular DMA may be used for regular
567 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
568 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
569 */
570static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma)
571{
572 stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
573
574 if (dma)
575 stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
576 STM32F4_DMA | STM32F4_DDS);
577
578 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
579
580 /* Wait for Power-up time (tSTAB from datasheet) */
581 usleep_range(2, 3);
582
583 /* Software start ? (e.g. trigger detection disabled ?) */
584 if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
585 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
586}
587
588static void stm32f4_adc_stop_conv(struct stm32_adc *adc)
589{
590 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
591 stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
592
593 stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
594 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
595 STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
596}
597
598static void stm32h7_adc_start_conv(struct stm32_adc *adc, bool dma)
599{
600 enum stm32h7_adc_dmngt dmngt;
601 unsigned long flags;
602 u32 val;
603
604 if (dma)
605 dmngt = STM32H7_DMNGT_DMA_CIRC;
606 else
607 dmngt = STM32H7_DMNGT_DR_ONLY;
608
609 spin_lock_irqsave(&adc->lock, flags);
610 val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
611 val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
612 stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
613 spin_unlock_irqrestore(&adc->lock, flags);
614
615 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
616}
617
618static void stm32h7_adc_stop_conv(struct stm32_adc *adc)
619{
620 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
621 int ret;
622 u32 val;
623
624 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
625
626 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
627 !(val & (STM32H7_ADSTART)),
628 100, STM32_ADC_TIMEOUT_US);
629 if (ret)
630 dev_warn(&indio_dev->dev, "stop failed\n");
631
632 stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
633}
634
635static int stm32h7_adc_exit_pwr_down(struct stm32_adc *adc)
636{
637 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
638 int ret;
639 u32 val;
640
641 /* Exit deep power down, then enable ADC voltage regulator */
642 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
643 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
644
645 if (adc->common->rate > STM32H7_BOOST_CLKRATE)
646 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
647
648 /* Wait for startup time */
649 if (!adc->cfg->has_vregready) {
650 usleep_range(10, 20);
651 return 0;
652 }
653
654 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
655 val & STM32MP1_VREGREADY, 100,
656 STM32_ADC_TIMEOUT_US);
657 if (ret) {
658 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
659 dev_err(&indio_dev->dev, "Failed to exit power down\n");
660 }
661
662 return ret;
663}
664
665static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
666{
667 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
668
669 /* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
670 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
671}
672
673static int stm32h7_adc_enable(struct stm32_adc *adc)
674{
675 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
676 int ret;
677 u32 val;
678
679 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
680
681 /* Poll for ADRDY to be set (after adc startup time) */
682 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
683 val & STM32H7_ADRDY,
684 100, STM32_ADC_TIMEOUT_US);
685 if (ret) {
686 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
687 dev_err(&indio_dev->dev, "Failed to enable ADC\n");
688 } else {
689 /* Clear ADRDY by writing one */
690 stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
691 }
692
693 return ret;
694}
695
696static void stm32h7_adc_disable(struct stm32_adc *adc)
697{
698 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
699 int ret;
700 u32 val;
701
702 /* Disable ADC and wait until it's effectively disabled */
703 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
704 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
705 !(val & STM32H7_ADEN), 100,
706 STM32_ADC_TIMEOUT_US);
707 if (ret)
708 dev_warn(&indio_dev->dev, "Failed to disable\n");
709}
710
711/**
712 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
713 * @adc: stm32 adc instance
David Brazdil0f672f62019-12-10 10:32:29 +0000714 * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000715 */
716static int stm32h7_adc_read_selfcalib(struct stm32_adc *adc)
717{
718 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
719 int i, ret;
720 u32 lincalrdyw_mask, val;
721
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000722 /* Read linearity calibration */
723 lincalrdyw_mask = STM32H7_LINCALRDYW6;
724 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
725 /* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
726 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
727
728 /* Poll: wait calib data to be ready in CALFACT2 register */
729 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
730 !(val & lincalrdyw_mask),
731 100, STM32_ADC_TIMEOUT_US);
732 if (ret) {
733 dev_err(&indio_dev->dev, "Failed to read calfact\n");
David Brazdil0f672f62019-12-10 10:32:29 +0000734 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000735 }
736
737 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
738 adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
739 adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
740
741 lincalrdyw_mask >>= 1;
742 }
743
744 /* Read offset calibration */
745 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
746 adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
747 adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
748 adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
749 adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
David Brazdil0f672f62019-12-10 10:32:29 +0000750 adc->cal.calibrated = true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000751
David Brazdil0f672f62019-12-10 10:32:29 +0000752 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000753}
754
755/**
756 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
757 * @adc: stm32 adc instance
758 * Note: ADC must be enabled, with no on-going conversions.
759 */
760static int stm32h7_adc_restore_selfcalib(struct stm32_adc *adc)
761{
762 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
763 int i, ret;
764 u32 lincalrdyw_mask, val;
765
766 val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
767 (adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
768 stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
769
770 lincalrdyw_mask = STM32H7_LINCALRDYW6;
771 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
772 /*
773 * Write saved calibration data to shadow registers:
774 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
775 * data write. Then poll to wait for complete transfer.
776 */
777 val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
778 stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
779 stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
780 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
781 val & lincalrdyw_mask,
782 100, STM32_ADC_TIMEOUT_US);
783 if (ret) {
784 dev_err(&indio_dev->dev, "Failed to write calfact\n");
785 return ret;
786 }
787
788 /*
789 * Read back calibration data, has two effects:
790 * - It ensures bits LINCALRDYW[6..1] are kept cleared
791 * for next time calibration needs to be restored.
792 * - BTW, bit clear triggers a read, then check data has been
793 * correctly written.
794 */
795 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
796 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
797 !(val & lincalrdyw_mask),
798 100, STM32_ADC_TIMEOUT_US);
799 if (ret) {
800 dev_err(&indio_dev->dev, "Failed to read calfact\n");
801 return ret;
802 }
803 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
804 if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
805 dev_err(&indio_dev->dev, "calfact not consistent\n");
806 return -EIO;
807 }
808
809 lincalrdyw_mask >>= 1;
810 }
811
812 return 0;
813}
814
815/**
816 * Fixed timeout value for ADC calibration.
817 * worst cases:
818 * - low clock frequency
819 * - maximum prescalers
820 * Calibration requires:
821 * - 131,072 ADC clock cycle for the linear calibration
822 * - 20 ADC clock cycle for the offset calibration
823 *
824 * Set to 100ms for now
825 */
826#define STM32H7_ADC_CALIB_TIMEOUT_US 100000
827
828/**
David Brazdil0f672f62019-12-10 10:32:29 +0000829 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000830 * @adc: stm32 adc instance
David Brazdil0f672f62019-12-10 10:32:29 +0000831 * Note: Must be called once ADC is out of power down.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000832 */
833static int stm32h7_adc_selfcalib(struct stm32_adc *adc)
834{
835 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
836 int ret;
837 u32 val;
838
David Brazdil0f672f62019-12-10 10:32:29 +0000839 if (adc->cal.calibrated)
840 return true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000841
842 /*
843 * Select calibration mode:
844 * - Offset calibration for single ended inputs
845 * - No linearity calibration (do it later, before reading it)
846 */
847 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
848 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
849
850 /* Start calibration, then wait for completion */
851 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
852 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
853 !(val & STM32H7_ADCAL), 100,
854 STM32H7_ADC_CALIB_TIMEOUT_US);
855 if (ret) {
856 dev_err(&indio_dev->dev, "calibration failed\n");
David Brazdil0f672f62019-12-10 10:32:29 +0000857 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000858 }
859
860 /*
861 * Select calibration mode, then start calibration:
862 * - Offset calibration for differential input
863 * - Linearity calibration (needs to be done only once for single/diff)
864 * will run simultaneously with offset calibration.
865 */
866 stm32_adc_set_bits(adc, STM32H7_ADC_CR,
867 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
868 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
869 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
870 !(val & STM32H7_ADCAL), 100,
871 STM32H7_ADC_CALIB_TIMEOUT_US);
872 if (ret) {
873 dev_err(&indio_dev->dev, "calibration failed\n");
David Brazdil0f672f62019-12-10 10:32:29 +0000874 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000875 }
876
David Brazdil0f672f62019-12-10 10:32:29 +0000877out:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000878 stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
879 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
880
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000881 return ret;
882}
883
884/**
885 * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
886 * @adc: stm32 adc instance
887 * Leave power down mode.
888 * Configure channels as single ended or differential before enabling ADC.
889 * Enable ADC.
890 * Restore calibration data.
891 * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
892 * - Only one input is selected for single ended (e.g. 'vinp')
893 * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
894 */
895static int stm32h7_adc_prepare(struct stm32_adc *adc)
896{
David Brazdil0f672f62019-12-10 10:32:29 +0000897 int calib, ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000898
899 ret = stm32h7_adc_exit_pwr_down(adc);
900 if (ret)
901 return ret;
902
David Brazdil0f672f62019-12-10 10:32:29 +0000903 ret = stm32h7_adc_selfcalib(adc);
904 if (ret < 0)
905 goto pwr_dwn;
906 calib = ret;
907
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000908 stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
909
910 ret = stm32h7_adc_enable(adc);
911 if (ret)
912 goto pwr_dwn;
913
David Brazdil0f672f62019-12-10 10:32:29 +0000914 /* Either restore or read calibration result for future reference */
915 if (calib)
916 ret = stm32h7_adc_restore_selfcalib(adc);
917 else
918 ret = stm32h7_adc_read_selfcalib(adc);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000919 if (ret)
920 goto disable;
921
922 stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
923
924 return 0;
925
926disable:
927 stm32h7_adc_disable(adc);
928pwr_dwn:
929 stm32h7_adc_enter_pwr_down(adc);
930
931 return ret;
932}
933
934static void stm32h7_adc_unprepare(struct stm32_adc *adc)
935{
936 stm32h7_adc_disable(adc);
937 stm32h7_adc_enter_pwr_down(adc);
938}
939
940/**
941 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
942 * @indio_dev: IIO device
943 * @scan_mask: channels to be converted
944 *
945 * Conversion sequence :
946 * Apply sampling time settings for all channels.
947 * Configure ADC scan sequence based on selected channels in scan_mask.
948 * Add channels to SQR registers, from scan_mask LSB to MSB, then
949 * program sequence len.
950 */
951static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
952 const unsigned long *scan_mask)
953{
954 struct stm32_adc *adc = iio_priv(indio_dev);
955 const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
956 const struct iio_chan_spec *chan;
957 u32 val, bit;
958 int i = 0;
959
960 /* Apply sampling time settings */
961 stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
962 stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
963
964 for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
965 chan = indio_dev->channels + bit;
966 /*
967 * Assign one channel per SQ entry in regular
968 * sequence, starting with SQ1.
969 */
970 i++;
971 if (i > STM32_ADC_MAX_SQ)
972 return -EINVAL;
973
974 dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
975 __func__, chan->channel, i);
976
977 val = stm32_adc_readl(adc, sqr[i].reg);
978 val &= ~sqr[i].mask;
979 val |= chan->channel << sqr[i].shift;
980 stm32_adc_writel(adc, sqr[i].reg, val);
981 }
982
983 if (!i)
984 return -EINVAL;
985
986 /* Sequence len */
987 val = stm32_adc_readl(adc, sqr[0].reg);
988 val &= ~sqr[0].mask;
989 val |= ((i - 1) << sqr[0].shift);
990 stm32_adc_writel(adc, sqr[0].reg, val);
991
992 return 0;
993}
994
995/**
996 * stm32_adc_get_trig_extsel() - Get external trigger selection
997 * @trig: trigger
998 *
999 * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1000 */
1001static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1002 struct iio_trigger *trig)
1003{
1004 struct stm32_adc *adc = iio_priv(indio_dev);
1005 int i;
1006
1007 /* lookup triggers registered by stm32 timer trigger driver */
1008 for (i = 0; adc->cfg->trigs[i].name; i++) {
1009 /**
1010 * Checking both stm32 timer trigger type and trig name
1011 * should be safe against arbitrary trigger names.
1012 */
1013 if ((is_stm32_timer_trigger(trig) ||
1014 is_stm32_lptim_trigger(trig)) &&
1015 !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1016 return adc->cfg->trigs[i].extsel;
1017 }
1018 }
1019
1020 return -EINVAL;
1021}
1022
1023/**
1024 * stm32_adc_set_trig() - Set a regular trigger
1025 * @indio_dev: IIO device
1026 * @trig: IIO trigger
1027 *
1028 * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1029 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1030 * - if HW trigger enabled, set source & polarity
1031 */
1032static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1033 struct iio_trigger *trig)
1034{
1035 struct stm32_adc *adc = iio_priv(indio_dev);
1036 u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1037 unsigned long flags;
1038 int ret;
1039
1040 if (trig) {
1041 ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1042 if (ret < 0)
1043 return ret;
1044
1045 /* set trigger source and polarity (default to rising edge) */
1046 extsel = ret;
1047 exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1048 }
1049
1050 spin_lock_irqsave(&adc->lock, flags);
1051 val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1052 val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1053 val |= exten << adc->cfg->regs->exten.shift;
1054 val |= extsel << adc->cfg->regs->extsel.shift;
1055 stm32_adc_writel(adc, adc->cfg->regs->exten.reg, val);
1056 spin_unlock_irqrestore(&adc->lock, flags);
1057
1058 return 0;
1059}
1060
1061static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1062 const struct iio_chan_spec *chan,
1063 unsigned int type)
1064{
1065 struct stm32_adc *adc = iio_priv(indio_dev);
1066
1067 adc->trigger_polarity = type;
1068
1069 return 0;
1070}
1071
1072static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1073 const struct iio_chan_spec *chan)
1074{
1075 struct stm32_adc *adc = iio_priv(indio_dev);
1076
1077 return adc->trigger_polarity;
1078}
1079
1080static const char * const stm32_trig_pol_items[] = {
1081 "rising-edge", "falling-edge", "both-edges",
1082};
1083
1084static const struct iio_enum stm32_adc_trig_pol = {
1085 .items = stm32_trig_pol_items,
1086 .num_items = ARRAY_SIZE(stm32_trig_pol_items),
1087 .get = stm32_adc_get_trig_pol,
1088 .set = stm32_adc_set_trig_pol,
1089};
1090
1091/**
1092 * stm32_adc_single_conv() - Performs a single conversion
1093 * @indio_dev: IIO device
1094 * @chan: IIO channel
1095 * @res: conversion result
1096 *
1097 * The function performs a single conversion on a given channel:
1098 * - Apply sampling time settings
1099 * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1100 * - Use SW trigger
1101 * - Start conversion, then wait for interrupt completion.
1102 */
1103static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1104 const struct iio_chan_spec *chan,
1105 int *res)
1106{
1107 struct stm32_adc *adc = iio_priv(indio_dev);
David Brazdil0f672f62019-12-10 10:32:29 +00001108 struct device *dev = indio_dev->dev.parent;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001109 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1110 long timeout;
1111 u32 val;
1112 int ret;
1113
1114 reinit_completion(&adc->completion);
1115
1116 adc->bufi = 0;
1117
David Brazdil0f672f62019-12-10 10:32:29 +00001118 ret = pm_runtime_get_sync(dev);
1119 if (ret < 0) {
1120 pm_runtime_put_noidle(dev);
1121 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001122 }
1123
1124 /* Apply sampling time settings */
1125 stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1126 stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1127
1128 /* Program chan number in regular sequence (SQ1) */
1129 val = stm32_adc_readl(adc, regs->sqr[1].reg);
1130 val &= ~regs->sqr[1].mask;
1131 val |= chan->channel << regs->sqr[1].shift;
1132 stm32_adc_writel(adc, regs->sqr[1].reg, val);
1133
1134 /* Set regular sequence len (0 for 1 conversion) */
1135 stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1136
1137 /* Trigger detection disabled (conversion can be launched in SW) */
1138 stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1139
1140 stm32_adc_conv_irq_enable(adc);
1141
1142 adc->cfg->start_conv(adc, false);
1143
1144 timeout = wait_for_completion_interruptible_timeout(
1145 &adc->completion, STM32_ADC_TIMEOUT);
1146 if (timeout == 0) {
1147 ret = -ETIMEDOUT;
1148 } else if (timeout < 0) {
1149 ret = timeout;
1150 } else {
1151 *res = adc->buffer[0];
1152 ret = IIO_VAL_INT;
1153 }
1154
1155 adc->cfg->stop_conv(adc);
1156
1157 stm32_adc_conv_irq_disable(adc);
1158
David Brazdil0f672f62019-12-10 10:32:29 +00001159 pm_runtime_mark_last_busy(dev);
1160 pm_runtime_put_autosuspend(dev);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001161
1162 return ret;
1163}
1164
1165static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1166 struct iio_chan_spec const *chan,
1167 int *val, int *val2, long mask)
1168{
1169 struct stm32_adc *adc = iio_priv(indio_dev);
1170 int ret;
1171
1172 switch (mask) {
1173 case IIO_CHAN_INFO_RAW:
1174 ret = iio_device_claim_direct_mode(indio_dev);
1175 if (ret)
1176 return ret;
1177 if (chan->type == IIO_VOLTAGE)
1178 ret = stm32_adc_single_conv(indio_dev, chan, val);
1179 else
1180 ret = -EINVAL;
1181 iio_device_release_direct_mode(indio_dev);
1182 return ret;
1183
1184 case IIO_CHAN_INFO_SCALE:
1185 if (chan->differential) {
1186 *val = adc->common->vref_mv * 2;
1187 *val2 = chan->scan_type.realbits;
1188 } else {
1189 *val = adc->common->vref_mv;
1190 *val2 = chan->scan_type.realbits;
1191 }
1192 return IIO_VAL_FRACTIONAL_LOG2;
1193
1194 case IIO_CHAN_INFO_OFFSET:
1195 if (chan->differential)
1196 /* ADC_full_scale / 2 */
1197 *val = -((1 << chan->scan_type.realbits) / 2);
1198 else
1199 *val = 0;
1200 return IIO_VAL_INT;
1201
1202 default:
1203 return -EINVAL;
1204 }
1205}
1206
1207static irqreturn_t stm32_adc_isr(int irq, void *data)
1208{
1209 struct stm32_adc *adc = data;
1210 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1211 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1212 u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1213
1214 if (status & regs->isr_eoc.mask) {
1215 /* Reading DR also clears EOC status flag */
1216 adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1217 if (iio_buffer_enabled(indio_dev)) {
1218 adc->bufi++;
1219 if (adc->bufi >= adc->num_conv) {
1220 stm32_adc_conv_irq_disable(adc);
1221 iio_trigger_poll(indio_dev->trig);
1222 }
1223 } else {
1224 complete(&adc->completion);
1225 }
1226 return IRQ_HANDLED;
1227 }
1228
1229 return IRQ_NONE;
1230}
1231
1232/**
1233 * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1234 * @indio_dev: IIO device
1235 * @trig: new trigger
1236 *
1237 * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1238 * driver, -EINVAL otherwise.
1239 */
1240static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1241 struct iio_trigger *trig)
1242{
1243 return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1244}
1245
1246static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1247{
1248 struct stm32_adc *adc = iio_priv(indio_dev);
1249 unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1250 unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1251
1252 /*
1253 * dma cyclic transfers are used, buffer is split into two periods.
1254 * There should be :
1255 * - always one buffer (period) dma is working on
1256 * - one buffer (period) driver can push with iio_trigger_poll().
1257 */
1258 watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1259 adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1260
1261 return 0;
1262}
1263
1264static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1265 const unsigned long *scan_mask)
1266{
1267 struct stm32_adc *adc = iio_priv(indio_dev);
David Brazdil0f672f62019-12-10 10:32:29 +00001268 struct device *dev = indio_dev->dev.parent;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001269 int ret;
1270
David Brazdil0f672f62019-12-10 10:32:29 +00001271 ret = pm_runtime_get_sync(dev);
1272 if (ret < 0) {
1273 pm_runtime_put_noidle(dev);
1274 return ret;
1275 }
1276
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001277 adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1278
1279 ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
David Brazdil0f672f62019-12-10 10:32:29 +00001280 pm_runtime_mark_last_busy(dev);
1281 pm_runtime_put_autosuspend(dev);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001282
David Brazdil0f672f62019-12-10 10:32:29 +00001283 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001284}
1285
1286static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1287 const struct of_phandle_args *iiospec)
1288{
1289 int i;
1290
1291 for (i = 0; i < indio_dev->num_channels; i++)
1292 if (indio_dev->channels[i].channel == iiospec->args[0])
1293 return i;
1294
1295 return -EINVAL;
1296}
1297
1298/**
1299 * stm32_adc_debugfs_reg_access - read or write register value
1300 *
1301 * To read a value from an ADC register:
1302 * echo [ADC reg offset] > direct_reg_access
1303 * cat direct_reg_access
1304 *
1305 * To write a value in a ADC register:
1306 * echo [ADC_reg_offset] [value] > direct_reg_access
1307 */
1308static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1309 unsigned reg, unsigned writeval,
1310 unsigned *readval)
1311{
1312 struct stm32_adc *adc = iio_priv(indio_dev);
David Brazdil0f672f62019-12-10 10:32:29 +00001313 struct device *dev = indio_dev->dev.parent;
1314 int ret;
1315
1316 ret = pm_runtime_get_sync(dev);
1317 if (ret < 0) {
1318 pm_runtime_put_noidle(dev);
1319 return ret;
1320 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001321
1322 if (!readval)
1323 stm32_adc_writel(adc, reg, writeval);
1324 else
1325 *readval = stm32_adc_readl(adc, reg);
1326
David Brazdil0f672f62019-12-10 10:32:29 +00001327 pm_runtime_mark_last_busy(dev);
1328 pm_runtime_put_autosuspend(dev);
1329
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001330 return 0;
1331}
1332
1333static const struct iio_info stm32_adc_iio_info = {
1334 .read_raw = stm32_adc_read_raw,
1335 .validate_trigger = stm32_adc_validate_trigger,
1336 .hwfifo_set_watermark = stm32_adc_set_watermark,
1337 .update_scan_mode = stm32_adc_update_scan_mode,
1338 .debugfs_reg_access = stm32_adc_debugfs_reg_access,
1339 .of_xlate = stm32_adc_of_xlate,
1340};
1341
1342static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1343{
1344 struct dma_tx_state state;
1345 enum dma_status status;
1346
1347 status = dmaengine_tx_status(adc->dma_chan,
1348 adc->dma_chan->cookie,
1349 &state);
1350 if (status == DMA_IN_PROGRESS) {
1351 /* Residue is size in bytes from end of buffer */
1352 unsigned int i = adc->rx_buf_sz - state.residue;
1353 unsigned int size;
1354
1355 /* Return available bytes */
1356 if (i >= adc->bufi)
1357 size = i - adc->bufi;
1358 else
1359 size = adc->rx_buf_sz + i - adc->bufi;
1360
1361 return size;
1362 }
1363
1364 return 0;
1365}
1366
1367static void stm32_adc_dma_buffer_done(void *data)
1368{
1369 struct iio_dev *indio_dev = data;
Olivier Deprez0e641232021-09-23 10:07:05 +02001370 struct stm32_adc *adc = iio_priv(indio_dev);
1371 int residue = stm32_adc_dma_residue(adc);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001372
Olivier Deprez0e641232021-09-23 10:07:05 +02001373 /*
1374 * In DMA mode the trigger services of IIO are not used
1375 * (e.g. no call to iio_trigger_poll).
1376 * Calling irq handler associated to the hardware trigger is not
1377 * relevant as the conversions have already been done. Data
1378 * transfers are performed directly in DMA callback instead.
1379 * This implementation avoids to call trigger irq handler that
1380 * may sleep, in an atomic context (DMA irq handler context).
1381 */
1382 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1383
1384 while (residue >= indio_dev->scan_bytes) {
1385 u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1386
1387 iio_push_to_buffers(indio_dev, buffer);
1388
1389 residue -= indio_dev->scan_bytes;
1390 adc->bufi += indio_dev->scan_bytes;
1391 if (adc->bufi >= adc->rx_buf_sz)
1392 adc->bufi = 0;
1393 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001394}
1395
1396static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1397{
1398 struct stm32_adc *adc = iio_priv(indio_dev);
1399 struct dma_async_tx_descriptor *desc;
1400 dma_cookie_t cookie;
1401 int ret;
1402
1403 if (!adc->dma_chan)
1404 return 0;
1405
1406 dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1407 adc->rx_buf_sz, adc->rx_buf_sz / 2);
1408
1409 /* Prepare a DMA cyclic transaction */
1410 desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1411 adc->rx_dma_buf,
1412 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1413 DMA_DEV_TO_MEM,
1414 DMA_PREP_INTERRUPT);
1415 if (!desc)
1416 return -EBUSY;
1417
1418 desc->callback = stm32_adc_dma_buffer_done;
1419 desc->callback_param = indio_dev;
1420
1421 cookie = dmaengine_submit(desc);
1422 ret = dma_submit_error(cookie);
1423 if (ret) {
David Brazdil0f672f62019-12-10 10:32:29 +00001424 dmaengine_terminate_sync(adc->dma_chan);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001425 return ret;
1426 }
1427
1428 /* Issue pending DMA requests */
1429 dma_async_issue_pending(adc->dma_chan);
1430
1431 return 0;
1432}
1433
David Brazdil0f672f62019-12-10 10:32:29 +00001434static int __stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001435{
1436 struct stm32_adc *adc = iio_priv(indio_dev);
David Brazdil0f672f62019-12-10 10:32:29 +00001437 struct device *dev = indio_dev->dev.parent;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001438 int ret;
1439
David Brazdil0f672f62019-12-10 10:32:29 +00001440 ret = pm_runtime_get_sync(dev);
1441 if (ret < 0) {
1442 pm_runtime_put_noidle(dev);
1443 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001444 }
1445
1446 ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1447 if (ret) {
1448 dev_err(&indio_dev->dev, "Can't set trigger\n");
David Brazdil0f672f62019-12-10 10:32:29 +00001449 goto err_pm_put;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001450 }
1451
1452 ret = stm32_adc_dma_start(indio_dev);
1453 if (ret) {
1454 dev_err(&indio_dev->dev, "Can't start dma\n");
1455 goto err_clr_trig;
1456 }
1457
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001458 /* Reset adc buffer index */
1459 adc->bufi = 0;
1460
1461 if (!adc->dma_chan)
1462 stm32_adc_conv_irq_enable(adc);
1463
1464 adc->cfg->start_conv(adc, !!adc->dma_chan);
1465
1466 return 0;
1467
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001468err_clr_trig:
1469 stm32_adc_set_trig(indio_dev, NULL);
David Brazdil0f672f62019-12-10 10:32:29 +00001470err_pm_put:
1471 pm_runtime_mark_last_busy(dev);
1472 pm_runtime_put_autosuspend(dev);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001473
1474 return ret;
1475}
1476
David Brazdil0f672f62019-12-10 10:32:29 +00001477static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1478{
1479 int ret;
1480
1481 ret = iio_triggered_buffer_postenable(indio_dev);
1482 if (ret < 0)
1483 return ret;
1484
1485 ret = __stm32_adc_buffer_postenable(indio_dev);
1486 if (ret < 0)
1487 iio_triggered_buffer_predisable(indio_dev);
1488
1489 return ret;
1490}
1491
1492static void __stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001493{
1494 struct stm32_adc *adc = iio_priv(indio_dev);
David Brazdil0f672f62019-12-10 10:32:29 +00001495 struct device *dev = indio_dev->dev.parent;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001496
1497 adc->cfg->stop_conv(adc);
1498 if (!adc->dma_chan)
1499 stm32_adc_conv_irq_disable(adc);
1500
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001501 if (adc->dma_chan)
David Brazdil0f672f62019-12-10 10:32:29 +00001502 dmaengine_terminate_sync(adc->dma_chan);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001503
1504 if (stm32_adc_set_trig(indio_dev, NULL))
1505 dev_err(&indio_dev->dev, "Can't clear trigger\n");
1506
David Brazdil0f672f62019-12-10 10:32:29 +00001507 pm_runtime_mark_last_busy(dev);
1508 pm_runtime_put_autosuspend(dev);
1509}
1510
1511static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1512{
1513 int ret;
1514
1515 __stm32_adc_buffer_predisable(indio_dev);
1516
1517 ret = iio_triggered_buffer_predisable(indio_dev);
1518 if (ret < 0)
1519 dev_err(&indio_dev->dev, "predisable failed\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001520
1521 return ret;
1522}
1523
1524static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1525 .postenable = &stm32_adc_buffer_postenable,
1526 .predisable = &stm32_adc_buffer_predisable,
1527};
1528
1529static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1530{
1531 struct iio_poll_func *pf = p;
1532 struct iio_dev *indio_dev = pf->indio_dev;
1533 struct stm32_adc *adc = iio_priv(indio_dev);
1534
1535 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1536
1537 if (!adc->dma_chan) {
1538 /* reset buffer index */
1539 adc->bufi = 0;
1540 iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1541 pf->timestamp);
1542 } else {
1543 int residue = stm32_adc_dma_residue(adc);
1544
1545 while (residue >= indio_dev->scan_bytes) {
1546 u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1547
1548 iio_push_to_buffers_with_timestamp(indio_dev, buffer,
1549 pf->timestamp);
1550 residue -= indio_dev->scan_bytes;
1551 adc->bufi += indio_dev->scan_bytes;
1552 if (adc->bufi >= adc->rx_buf_sz)
1553 adc->bufi = 0;
1554 }
1555 }
1556
1557 iio_trigger_notify_done(indio_dev->trig);
1558
1559 /* re-enable eoc irq */
1560 if (!adc->dma_chan)
1561 stm32_adc_conv_irq_enable(adc);
1562
1563 return IRQ_HANDLED;
1564}
1565
1566static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1567 IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1568 {
1569 .name = "trigger_polarity_available",
1570 .shared = IIO_SHARED_BY_ALL,
1571 .read = iio_enum_available_read,
1572 .private = (uintptr_t)&stm32_adc_trig_pol,
1573 },
1574 {},
1575};
1576
1577static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1578{
1579 struct device_node *node = indio_dev->dev.of_node;
1580 struct stm32_adc *adc = iio_priv(indio_dev);
1581 unsigned int i;
1582 u32 res;
1583
1584 if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1585 res = adc->cfg->adc_info->resolutions[0];
1586
1587 for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1588 if (res == adc->cfg->adc_info->resolutions[i])
1589 break;
1590 if (i >= adc->cfg->adc_info->num_res) {
1591 dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1592 return -EINVAL;
1593 }
1594
1595 dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1596 adc->res = i;
1597
1598 return 0;
1599}
1600
1601static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1602{
1603 const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1604 u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1605 unsigned int smp, r = smpr->reg;
1606
1607 /* Determine sampling time (ADC clock cycles) */
1608 period_ns = NSEC_PER_SEC / adc->common->rate;
1609 for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1610 if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1611 break;
1612 if (smp > STM32_ADC_MAX_SMP)
1613 smp = STM32_ADC_MAX_SMP;
1614
1615 /* pre-build sampling time registers (e.g. smpr1, smpr2) */
1616 adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1617}
1618
1619static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1620 struct iio_chan_spec *chan, u32 vinp,
1621 u32 vinn, int scan_index, bool differential)
1622{
1623 struct stm32_adc *adc = iio_priv(indio_dev);
1624 char *name = adc->chan_name[vinp];
1625
1626 chan->type = IIO_VOLTAGE;
1627 chan->channel = vinp;
1628 if (differential) {
1629 chan->differential = 1;
1630 chan->channel2 = vinn;
1631 snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1632 } else {
1633 snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1634 }
1635 chan->datasheet_name = name;
1636 chan->scan_index = scan_index;
1637 chan->indexed = 1;
1638 chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1639 chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1640 BIT(IIO_CHAN_INFO_OFFSET);
1641 chan->scan_type.sign = 'u';
1642 chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1643 chan->scan_type.storagebits = 16;
1644 chan->ext_info = stm32_adc_ext_info;
1645
1646 /* pre-build selected channels mask */
1647 adc->pcsel |= BIT(chan->channel);
1648 if (differential) {
1649 /* pre-build diff channels mask */
1650 adc->difsel |= BIT(chan->channel);
1651 /* Also add negative input to pre-selected channels */
1652 adc->pcsel |= BIT(chan->channel2);
1653 }
1654}
1655
1656static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1657{
1658 struct device_node *node = indio_dev->dev.of_node;
1659 struct stm32_adc *adc = iio_priv(indio_dev);
1660 const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1661 struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
1662 struct property *prop;
1663 const __be32 *cur;
1664 struct iio_chan_spec *channels;
1665 int scan_index = 0, num_channels = 0, num_diff = 0, ret, i;
1666 u32 val, smp = 0;
1667
1668 ret = of_property_count_u32_elems(node, "st,adc-channels");
1669 if (ret > adc_info->max_channels) {
1670 dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1671 return -EINVAL;
1672 } else if (ret > 0) {
1673 num_channels += ret;
1674 }
1675
1676 ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
1677 sizeof(*diff));
1678 if (ret > adc_info->max_channels) {
1679 dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
1680 return -EINVAL;
1681 } else if (ret > 0) {
1682 int size = ret * sizeof(*diff) / sizeof(u32);
1683
1684 num_diff = ret;
1685 num_channels += ret;
1686 ret = of_property_read_u32_array(node, "st,adc-diff-channels",
1687 (u32 *)diff, size);
1688 if (ret)
1689 return ret;
1690 }
1691
1692 if (!num_channels) {
1693 dev_err(&indio_dev->dev, "No channels configured\n");
1694 return -ENODATA;
1695 }
1696
1697 /* Optional sample time is provided either for each, or all channels */
1698 ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1699 if (ret > 1 && ret != num_channels) {
1700 dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1701 return -EINVAL;
1702 }
1703
1704 channels = devm_kcalloc(&indio_dev->dev, num_channels,
1705 sizeof(struct iio_chan_spec), GFP_KERNEL);
1706 if (!channels)
1707 return -ENOMEM;
1708
1709 of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1710 if (val >= adc_info->max_channels) {
1711 dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1712 return -EINVAL;
1713 }
1714
1715 /* Channel can't be configured both as single-ended & diff */
1716 for (i = 0; i < num_diff; i++) {
1717 if (val == diff[i].vinp) {
1718 dev_err(&indio_dev->dev,
1719 "channel %d miss-configured\n", val);
1720 return -EINVAL;
1721 }
1722 }
1723 stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
1724 0, scan_index, false);
1725 scan_index++;
1726 }
1727
1728 for (i = 0; i < num_diff; i++) {
1729 if (diff[i].vinp >= adc_info->max_channels ||
1730 diff[i].vinn >= adc_info->max_channels) {
1731 dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
1732 diff[i].vinp, diff[i].vinn);
1733 return -EINVAL;
1734 }
1735 stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1736 diff[i].vinp, diff[i].vinn, scan_index,
1737 true);
1738 scan_index++;
1739 }
1740
1741 for (i = 0; i < scan_index; i++) {
1742 /*
1743 * Using of_property_read_u32_index(), smp value will only be
1744 * modified if valid u32 value can be decoded. This allows to
1745 * get either no value, 1 shared value for all indexes, or one
1746 * value per channel.
1747 */
1748 of_property_read_u32_index(node, "st,min-sample-time-nsecs",
1749 i, &smp);
1750 /* Prepare sampling time settings */
1751 stm32_adc_smpr_init(adc, channels[i].channel, smp);
1752 }
1753
1754 indio_dev->num_channels = scan_index;
1755 indio_dev->channels = channels;
1756
1757 return 0;
1758}
1759
Olivier Deprez0e641232021-09-23 10:07:05 +02001760static int stm32_adc_dma_request(struct device *dev, struct iio_dev *indio_dev)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001761{
1762 struct stm32_adc *adc = iio_priv(indio_dev);
1763 struct dma_slave_config config;
1764 int ret;
1765
Olivier Deprez0e641232021-09-23 10:07:05 +02001766 adc->dma_chan = dma_request_chan(dev, "rx");
1767 if (IS_ERR(adc->dma_chan)) {
1768 ret = PTR_ERR(adc->dma_chan);
1769 if (ret != -ENODEV) {
1770 if (ret != -EPROBE_DEFER)
1771 dev_err(dev,
1772 "DMA channel request failed with %d\n",
1773 ret);
1774 return ret;
1775 }
1776
1777 /* DMA is optional: fall back to IRQ mode */
1778 adc->dma_chan = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001779 return 0;
Olivier Deprez0e641232021-09-23 10:07:05 +02001780 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001781
1782 adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1783 STM32_DMA_BUFFER_SIZE,
1784 &adc->rx_dma_buf, GFP_KERNEL);
1785 if (!adc->rx_buf) {
1786 ret = -ENOMEM;
1787 goto err_release;
1788 }
1789
1790 /* Configure DMA channel to read data register */
1791 memset(&config, 0, sizeof(config));
1792 config.src_addr = (dma_addr_t)adc->common->phys_base;
1793 config.src_addr += adc->offset + adc->cfg->regs->dr;
1794 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1795
1796 ret = dmaengine_slave_config(adc->dma_chan, &config);
1797 if (ret)
1798 goto err_free;
1799
1800 return 0;
1801
1802err_free:
1803 dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1804 adc->rx_buf, adc->rx_dma_buf);
1805err_release:
1806 dma_release_channel(adc->dma_chan);
1807
1808 return ret;
1809}
1810
1811static int stm32_adc_probe(struct platform_device *pdev)
1812{
1813 struct iio_dev *indio_dev;
1814 struct device *dev = &pdev->dev;
Olivier Deprez0e641232021-09-23 10:07:05 +02001815 irqreturn_t (*handler)(int irq, void *p) = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001816 struct stm32_adc *adc;
1817 int ret;
1818
1819 if (!pdev->dev.of_node)
1820 return -ENODEV;
1821
1822 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1823 if (!indio_dev)
1824 return -ENOMEM;
1825
1826 adc = iio_priv(indio_dev);
1827 adc->common = dev_get_drvdata(pdev->dev.parent);
1828 spin_lock_init(&adc->lock);
1829 init_completion(&adc->completion);
1830 adc->cfg = (const struct stm32_adc_cfg *)
1831 of_match_device(dev->driver->of_match_table, dev)->data;
1832
1833 indio_dev->name = dev_name(&pdev->dev);
1834 indio_dev->dev.parent = &pdev->dev;
1835 indio_dev->dev.of_node = pdev->dev.of_node;
1836 indio_dev->info = &stm32_adc_iio_info;
1837 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
1838
1839 platform_set_drvdata(pdev, adc);
1840
1841 ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1842 if (ret != 0) {
1843 dev_err(&pdev->dev, "missing reg property\n");
1844 return -EINVAL;
1845 }
1846
1847 adc->irq = platform_get_irq(pdev, 0);
David Brazdil0f672f62019-12-10 10:32:29 +00001848 if (adc->irq < 0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001849 return adc->irq;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001850
1851 ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1852 0, pdev->name, adc);
1853 if (ret) {
1854 dev_err(&pdev->dev, "failed to request IRQ\n");
1855 return ret;
1856 }
1857
1858 adc->clk = devm_clk_get(&pdev->dev, NULL);
1859 if (IS_ERR(adc->clk)) {
1860 ret = PTR_ERR(adc->clk);
1861 if (ret == -ENOENT && !adc->cfg->clk_required) {
1862 adc->clk = NULL;
1863 } else {
1864 dev_err(&pdev->dev, "Can't get clock\n");
1865 return ret;
1866 }
1867 }
1868
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001869 ret = stm32_adc_of_get_resolution(indio_dev);
1870 if (ret < 0)
David Brazdil0f672f62019-12-10 10:32:29 +00001871 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001872
1873 ret = stm32_adc_chan_of_init(indio_dev);
1874 if (ret < 0)
David Brazdil0f672f62019-12-10 10:32:29 +00001875 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001876
Olivier Deprez0e641232021-09-23 10:07:05 +02001877 ret = stm32_adc_dma_request(dev, indio_dev);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001878 if (ret < 0)
David Brazdil0f672f62019-12-10 10:32:29 +00001879 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001880
Olivier Deprez0e641232021-09-23 10:07:05 +02001881 if (!adc->dma_chan)
1882 handler = &stm32_adc_trigger_handler;
1883
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001884 ret = iio_triggered_buffer_setup(indio_dev,
Olivier Deprez0e641232021-09-23 10:07:05 +02001885 &iio_pollfunc_store_time, handler,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001886 &stm32_adc_buffer_setup_ops);
1887 if (ret) {
1888 dev_err(&pdev->dev, "buffer setup failed\n");
1889 goto err_dma_disable;
1890 }
1891
David Brazdil0f672f62019-12-10 10:32:29 +00001892 /* Get stm32-adc-core PM online */
1893 pm_runtime_get_noresume(dev);
1894 pm_runtime_set_active(dev);
1895 pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
1896 pm_runtime_use_autosuspend(dev);
1897 pm_runtime_enable(dev);
1898
1899 ret = stm32_adc_hw_start(dev);
1900 if (ret)
1901 goto err_buffer_cleanup;
1902
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001903 ret = iio_device_register(indio_dev);
1904 if (ret) {
1905 dev_err(&pdev->dev, "iio dev register failed\n");
David Brazdil0f672f62019-12-10 10:32:29 +00001906 goto err_hw_stop;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001907 }
1908
David Brazdil0f672f62019-12-10 10:32:29 +00001909 pm_runtime_mark_last_busy(dev);
1910 pm_runtime_put_autosuspend(dev);
1911
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001912 return 0;
1913
David Brazdil0f672f62019-12-10 10:32:29 +00001914err_hw_stop:
1915 stm32_adc_hw_stop(dev);
1916
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001917err_buffer_cleanup:
David Brazdil0f672f62019-12-10 10:32:29 +00001918 pm_runtime_disable(dev);
1919 pm_runtime_set_suspended(dev);
1920 pm_runtime_put_noidle(dev);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001921 iio_triggered_buffer_cleanup(indio_dev);
1922
1923err_dma_disable:
1924 if (adc->dma_chan) {
1925 dma_free_coherent(adc->dma_chan->device->dev,
1926 STM32_DMA_BUFFER_SIZE,
1927 adc->rx_buf, adc->rx_dma_buf);
1928 dma_release_channel(adc->dma_chan);
1929 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001930
1931 return ret;
1932}
1933
1934static int stm32_adc_remove(struct platform_device *pdev)
1935{
1936 struct stm32_adc *adc = platform_get_drvdata(pdev);
1937 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1938
David Brazdil0f672f62019-12-10 10:32:29 +00001939 pm_runtime_get_sync(&pdev->dev);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001940 iio_device_unregister(indio_dev);
David Brazdil0f672f62019-12-10 10:32:29 +00001941 stm32_adc_hw_stop(&pdev->dev);
1942 pm_runtime_disable(&pdev->dev);
1943 pm_runtime_set_suspended(&pdev->dev);
1944 pm_runtime_put_noidle(&pdev->dev);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001945 iio_triggered_buffer_cleanup(indio_dev);
1946 if (adc->dma_chan) {
1947 dma_free_coherent(adc->dma_chan->device->dev,
1948 STM32_DMA_BUFFER_SIZE,
1949 adc->rx_buf, adc->rx_dma_buf);
1950 dma_release_channel(adc->dma_chan);
1951 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001952
1953 return 0;
1954}
1955
David Brazdil0f672f62019-12-10 10:32:29 +00001956#if defined(CONFIG_PM_SLEEP)
1957static int stm32_adc_suspend(struct device *dev)
1958{
1959 struct stm32_adc *adc = dev_get_drvdata(dev);
1960 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1961
1962 if (iio_buffer_enabled(indio_dev))
1963 __stm32_adc_buffer_predisable(indio_dev);
1964
1965 return pm_runtime_force_suspend(dev);
1966}
1967
1968static int stm32_adc_resume(struct device *dev)
1969{
1970 struct stm32_adc *adc = dev_get_drvdata(dev);
1971 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1972 int ret;
1973
1974 ret = pm_runtime_force_resume(dev);
1975 if (ret < 0)
1976 return ret;
1977
1978 if (!iio_buffer_enabled(indio_dev))
1979 return 0;
1980
1981 ret = stm32_adc_update_scan_mode(indio_dev,
1982 indio_dev->active_scan_mask);
1983 if (ret < 0)
1984 return ret;
1985
1986 return __stm32_adc_buffer_postenable(indio_dev);
1987}
1988#endif
1989
1990#if defined(CONFIG_PM)
1991static int stm32_adc_runtime_suspend(struct device *dev)
1992{
1993 return stm32_adc_hw_stop(dev);
1994}
1995
1996static int stm32_adc_runtime_resume(struct device *dev)
1997{
1998 return stm32_adc_hw_start(dev);
1999}
2000#endif
2001
2002static const struct dev_pm_ops stm32_adc_pm_ops = {
2003 SET_SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
2004 SET_RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
2005 NULL)
2006};
2007
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002008static const struct stm32_adc_cfg stm32f4_adc_cfg = {
2009 .regs = &stm32f4_adc_regspec,
2010 .adc_info = &stm32f4_adc_info,
2011 .trigs = stm32f4_adc_trigs,
2012 .clk_required = true,
2013 .start_conv = stm32f4_adc_start_conv,
2014 .stop_conv = stm32f4_adc_stop_conv,
2015 .smp_cycles = stm32f4_adc_smp_cycles,
2016};
2017
2018static const struct stm32_adc_cfg stm32h7_adc_cfg = {
2019 .regs = &stm32h7_adc_regspec,
2020 .adc_info = &stm32h7_adc_info,
2021 .trigs = stm32h7_adc_trigs,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002022 .start_conv = stm32h7_adc_start_conv,
2023 .stop_conv = stm32h7_adc_stop_conv,
2024 .prepare = stm32h7_adc_prepare,
2025 .unprepare = stm32h7_adc_unprepare,
2026 .smp_cycles = stm32h7_adc_smp_cycles,
2027};
2028
2029static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
2030 .regs = &stm32h7_adc_regspec,
2031 .adc_info = &stm32h7_adc_info,
2032 .trigs = stm32h7_adc_trigs,
2033 .has_vregready = true,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002034 .start_conv = stm32h7_adc_start_conv,
2035 .stop_conv = stm32h7_adc_stop_conv,
2036 .prepare = stm32h7_adc_prepare,
2037 .unprepare = stm32h7_adc_unprepare,
2038 .smp_cycles = stm32h7_adc_smp_cycles,
2039};
2040
2041static const struct of_device_id stm32_adc_of_match[] = {
2042 { .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
2043 { .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
2044 { .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
2045 {},
2046};
2047MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
2048
2049static struct platform_driver stm32_adc_driver = {
2050 .probe = stm32_adc_probe,
2051 .remove = stm32_adc_remove,
2052 .driver = {
2053 .name = "stm32-adc",
2054 .of_match_table = stm32_adc_of_match,
David Brazdil0f672f62019-12-10 10:32:29 +00002055 .pm = &stm32_adc_pm_ops,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002056 },
2057};
2058module_platform_driver(stm32_adc_driver);
2059
2060MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2061MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2062MODULE_LICENSE("GPL v2");
2063MODULE_ALIAS("platform:stm32-adc");