blob: 6ff87cd86712109a2d1efae2f36e2a11f5444401 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5 *
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst
7 */
8
9#include <linux/clk.h>
10#include <linux/clk-provider.h>
11#include <linux/clk/clk-conf.h>
12#include <linux/module.h>
13#include <linux/mutex.h>
14#include <linux/spinlock.h>
15#include <linux/err.h>
16#include <linux/list.h>
17#include <linux/slab.h>
18#include <linux/of.h>
19#include <linux/device.h>
20#include <linux/init.h>
21#include <linux/pm_runtime.h>
22#include <linux/sched.h>
23#include <linux/clkdev.h>
24
25#include "clk.h"
26
27static DEFINE_SPINLOCK(enable_lock);
28static DEFINE_MUTEX(prepare_lock);
29
30static struct task_struct *prepare_owner;
31static struct task_struct *enable_owner;
32
33static int prepare_refcnt;
34static int enable_refcnt;
35
36static HLIST_HEAD(clk_root_list);
37static HLIST_HEAD(clk_orphan_list);
38static LIST_HEAD(clk_notifier_list);
39
David Brazdil0f672f62019-12-10 10:32:29 +000040static struct hlist_head *all_lists[] = {
41 &clk_root_list,
42 &clk_orphan_list,
43 NULL,
44};
45
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000046/*** private data structures ***/
47
David Brazdil0f672f62019-12-10 10:32:29 +000048struct clk_parent_map {
49 const struct clk_hw *hw;
50 struct clk_core *core;
51 const char *fw_name;
52 const char *name;
53 int index;
54};
55
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000056struct clk_core {
57 const char *name;
58 const struct clk_ops *ops;
59 struct clk_hw *hw;
60 struct module *owner;
61 struct device *dev;
David Brazdil0f672f62019-12-10 10:32:29 +000062 struct device_node *of_node;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000063 struct clk_core *parent;
David Brazdil0f672f62019-12-10 10:32:29 +000064 struct clk_parent_map *parents;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000065 u8 num_parents;
66 u8 new_parent_index;
67 unsigned long rate;
68 unsigned long req_rate;
69 unsigned long new_rate;
70 struct clk_core *new_parent;
71 struct clk_core *new_child;
72 unsigned long flags;
73 bool orphan;
David Brazdil0f672f62019-12-10 10:32:29 +000074 bool rpm_enabled;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000075 unsigned int enable_count;
76 unsigned int prepare_count;
77 unsigned int protect_count;
78 unsigned long min_rate;
79 unsigned long max_rate;
80 unsigned long accuracy;
81 int phase;
82 struct clk_duty duty;
83 struct hlist_head children;
84 struct hlist_node child_node;
85 struct hlist_head clks;
86 unsigned int notifier_count;
87#ifdef CONFIG_DEBUG_FS
88 struct dentry *dentry;
89 struct hlist_node debug_node;
90#endif
91 struct kref ref;
92};
93
94#define CREATE_TRACE_POINTS
95#include <trace/events/clk.h>
96
97struct clk {
98 struct clk_core *core;
David Brazdil0f672f62019-12-10 10:32:29 +000099 struct device *dev;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000100 const char *dev_id;
101 const char *con_id;
102 unsigned long min_rate;
103 unsigned long max_rate;
104 unsigned int exclusive_count;
105 struct hlist_node clks_node;
106};
107
108/*** runtime pm ***/
109static int clk_pm_runtime_get(struct clk_core *core)
110{
David Brazdil0f672f62019-12-10 10:32:29 +0000111 int ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000112
David Brazdil0f672f62019-12-10 10:32:29 +0000113 if (!core->rpm_enabled)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000114 return 0;
115
116 ret = pm_runtime_get_sync(core->dev);
Olivier Deprez0e641232021-09-23 10:07:05 +0200117 if (ret < 0) {
118 pm_runtime_put_noidle(core->dev);
119 return ret;
120 }
121 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000122}
123
124static void clk_pm_runtime_put(struct clk_core *core)
125{
David Brazdil0f672f62019-12-10 10:32:29 +0000126 if (!core->rpm_enabled)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000127 return;
128
129 pm_runtime_put_sync(core->dev);
130}
131
132/*** locking ***/
133static void clk_prepare_lock(void)
134{
135 if (!mutex_trylock(&prepare_lock)) {
136 if (prepare_owner == current) {
137 prepare_refcnt++;
138 return;
139 }
140 mutex_lock(&prepare_lock);
141 }
142 WARN_ON_ONCE(prepare_owner != NULL);
143 WARN_ON_ONCE(prepare_refcnt != 0);
144 prepare_owner = current;
145 prepare_refcnt = 1;
146}
147
148static void clk_prepare_unlock(void)
149{
150 WARN_ON_ONCE(prepare_owner != current);
151 WARN_ON_ONCE(prepare_refcnt == 0);
152
153 if (--prepare_refcnt)
154 return;
155 prepare_owner = NULL;
156 mutex_unlock(&prepare_lock);
157}
158
159static unsigned long clk_enable_lock(void)
160 __acquires(enable_lock)
161{
162 unsigned long flags;
163
164 /*
165 * On UP systems, spin_trylock_irqsave() always returns true, even if
166 * we already hold the lock. So, in that case, we rely only on
167 * reference counting.
168 */
169 if (!IS_ENABLED(CONFIG_SMP) ||
170 !spin_trylock_irqsave(&enable_lock, flags)) {
171 if (enable_owner == current) {
172 enable_refcnt++;
173 __acquire(enable_lock);
174 if (!IS_ENABLED(CONFIG_SMP))
175 local_save_flags(flags);
176 return flags;
177 }
178 spin_lock_irqsave(&enable_lock, flags);
179 }
180 WARN_ON_ONCE(enable_owner != NULL);
181 WARN_ON_ONCE(enable_refcnt != 0);
182 enable_owner = current;
183 enable_refcnt = 1;
184 return flags;
185}
186
187static void clk_enable_unlock(unsigned long flags)
188 __releases(enable_lock)
189{
190 WARN_ON_ONCE(enable_owner != current);
191 WARN_ON_ONCE(enable_refcnt == 0);
192
193 if (--enable_refcnt) {
194 __release(enable_lock);
195 return;
196 }
197 enable_owner = NULL;
198 spin_unlock_irqrestore(&enable_lock, flags);
199}
200
201static bool clk_core_rate_is_protected(struct clk_core *core)
202{
203 return core->protect_count;
204}
205
206static bool clk_core_is_prepared(struct clk_core *core)
207{
208 bool ret = false;
209
210 /*
211 * .is_prepared is optional for clocks that can prepare
212 * fall back to software usage counter if it is missing
213 */
214 if (!core->ops->is_prepared)
215 return core->prepare_count;
216
217 if (!clk_pm_runtime_get(core)) {
218 ret = core->ops->is_prepared(core->hw);
219 clk_pm_runtime_put(core);
220 }
221
222 return ret;
223}
224
225static bool clk_core_is_enabled(struct clk_core *core)
226{
227 bool ret = false;
228
229 /*
230 * .is_enabled is only mandatory for clocks that gate
231 * fall back to software usage counter if .is_enabled is missing
232 */
233 if (!core->ops->is_enabled)
234 return core->enable_count;
235
236 /*
237 * Check if clock controller's device is runtime active before
238 * calling .is_enabled callback. If not, assume that clock is
239 * disabled, because we might be called from atomic context, from
240 * which pm_runtime_get() is not allowed.
241 * This function is called mainly from clk_disable_unused_subtree,
242 * which ensures proper runtime pm activation of controller before
243 * taking enable spinlock, but the below check is needed if one tries
244 * to call it from other places.
245 */
David Brazdil0f672f62019-12-10 10:32:29 +0000246 if (core->rpm_enabled) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000247 pm_runtime_get_noresume(core->dev);
248 if (!pm_runtime_active(core->dev)) {
249 ret = false;
250 goto done;
251 }
252 }
253
254 ret = core->ops->is_enabled(core->hw);
255done:
David Brazdil0f672f62019-12-10 10:32:29 +0000256 if (core->rpm_enabled)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000257 pm_runtime_put(core->dev);
258
259 return ret;
260}
261
262/*** helper functions ***/
263
264const char *__clk_get_name(const struct clk *clk)
265{
266 return !clk ? NULL : clk->core->name;
267}
268EXPORT_SYMBOL_GPL(__clk_get_name);
269
270const char *clk_hw_get_name(const struct clk_hw *hw)
271{
272 return hw->core->name;
273}
274EXPORT_SYMBOL_GPL(clk_hw_get_name);
275
276struct clk_hw *__clk_get_hw(struct clk *clk)
277{
278 return !clk ? NULL : clk->core->hw;
279}
280EXPORT_SYMBOL_GPL(__clk_get_hw);
281
282unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
283{
284 return hw->core->num_parents;
285}
286EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
287
288struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
289{
290 return hw->core->parent ? hw->core->parent->hw : NULL;
291}
292EXPORT_SYMBOL_GPL(clk_hw_get_parent);
293
294static struct clk_core *__clk_lookup_subtree(const char *name,
295 struct clk_core *core)
296{
297 struct clk_core *child;
298 struct clk_core *ret;
299
300 if (!strcmp(core->name, name))
301 return core;
302
303 hlist_for_each_entry(child, &core->children, child_node) {
304 ret = __clk_lookup_subtree(name, child);
305 if (ret)
306 return ret;
307 }
308
309 return NULL;
310}
311
312static struct clk_core *clk_core_lookup(const char *name)
313{
314 struct clk_core *root_clk;
315 struct clk_core *ret;
316
317 if (!name)
318 return NULL;
319
320 /* search the 'proper' clk tree first */
321 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
322 ret = __clk_lookup_subtree(name, root_clk);
323 if (ret)
324 return ret;
325 }
326
327 /* if not found, then search the orphan tree */
328 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
329 ret = __clk_lookup_subtree(name, root_clk);
330 if (ret)
331 return ret;
332 }
333
334 return NULL;
335}
336
David Brazdil0f672f62019-12-10 10:32:29 +0000337#ifdef CONFIG_OF
338static int of_parse_clkspec(const struct device_node *np, int index,
339 const char *name, struct of_phandle_args *out_args);
340static struct clk_hw *
341of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
342#else
343static inline int of_parse_clkspec(const struct device_node *np, int index,
344 const char *name,
345 struct of_phandle_args *out_args)
346{
347 return -ENOENT;
348}
349static inline struct clk_hw *
350of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
351{
352 return ERR_PTR(-ENOENT);
353}
354#endif
355
356/**
357 * clk_core_get - Find the clk_core parent of a clk
358 * @core: clk to find parent of
359 * @p_index: parent index to search for
360 *
361 * This is the preferred method for clk providers to find the parent of a
362 * clk when that parent is external to the clk controller. The parent_names
363 * array is indexed and treated as a local name matching a string in the device
364 * node's 'clock-names' property or as the 'con_id' matching the device's
365 * dev_name() in a clk_lookup. This allows clk providers to use their own
366 * namespace instead of looking for a globally unique parent string.
367 *
368 * For example the following DT snippet would allow a clock registered by the
369 * clock-controller@c001 that has a clk_init_data::parent_data array
370 * with 'xtal' in the 'name' member to find the clock provided by the
371 * clock-controller@f00abcd without needing to get the globally unique name of
372 * the xtal clk.
373 *
374 * parent: clock-controller@f00abcd {
375 * reg = <0xf00abcd 0xabcd>;
376 * #clock-cells = <0>;
377 * };
378 *
379 * clock-controller@c001 {
380 * reg = <0xc001 0xf00d>;
381 * clocks = <&parent>;
382 * clock-names = "xtal";
383 * #clock-cells = <1>;
384 * };
385 *
386 * Returns: -ENOENT when the provider can't be found or the clk doesn't
387 * exist in the provider or the name can't be found in the DT node or
388 * in a clkdev lookup. NULL when the provider knows about the clk but it
389 * isn't provided on this system.
390 * A valid clk_core pointer when the clk can be found in the provider.
391 */
392static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
393{
394 const char *name = core->parents[p_index].fw_name;
395 int index = core->parents[p_index].index;
396 struct clk_hw *hw = ERR_PTR(-ENOENT);
397 struct device *dev = core->dev;
398 const char *dev_id = dev ? dev_name(dev) : NULL;
399 struct device_node *np = core->of_node;
400 struct of_phandle_args clkspec;
401
402 if (np && (name || index >= 0) &&
403 !of_parse_clkspec(np, index, name, &clkspec)) {
404 hw = of_clk_get_hw_from_clkspec(&clkspec);
405 of_node_put(clkspec.np);
406 } else if (name) {
407 /*
408 * If the DT search above couldn't find the provider fallback to
409 * looking up via clkdev based clk_lookups.
410 */
411 hw = clk_find_hw(dev_id, name);
412 }
413
414 if (IS_ERR(hw))
415 return ERR_CAST(hw);
416
417 return hw->core;
418}
419
420static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
421{
422 struct clk_parent_map *entry = &core->parents[index];
423 struct clk_core *parent = ERR_PTR(-ENOENT);
424
425 if (entry->hw) {
426 parent = entry->hw->core;
427 /*
428 * We have a direct reference but it isn't registered yet?
429 * Orphan it and let clk_reparent() update the orphan status
430 * when the parent is registered.
431 */
432 if (!parent)
433 parent = ERR_PTR(-EPROBE_DEFER);
434 } else {
435 parent = clk_core_get(core, index);
436 if (IS_ERR(parent) && PTR_ERR(parent) == -ENOENT && entry->name)
437 parent = clk_core_lookup(entry->name);
438 }
439
440 /* Only cache it if it's not an error */
441 if (!IS_ERR(parent))
442 entry->core = parent;
443}
444
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000445static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
446 u8 index)
447{
David Brazdil0f672f62019-12-10 10:32:29 +0000448 if (!core || index >= core->num_parents || !core->parents)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000449 return NULL;
450
David Brazdil0f672f62019-12-10 10:32:29 +0000451 if (!core->parents[index].core)
452 clk_core_fill_parent_index(core, index);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000453
David Brazdil0f672f62019-12-10 10:32:29 +0000454 return core->parents[index].core;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000455}
456
457struct clk_hw *
458clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
459{
460 struct clk_core *parent;
461
462 parent = clk_core_get_parent_by_index(hw->core, index);
463
464 return !parent ? NULL : parent->hw;
465}
466EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
467
468unsigned int __clk_get_enable_count(struct clk *clk)
469{
470 return !clk ? 0 : clk->core->enable_count;
471}
472
473static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
474{
David Brazdil0f672f62019-12-10 10:32:29 +0000475 if (!core)
476 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000477
David Brazdil0f672f62019-12-10 10:32:29 +0000478 if (!core->num_parents || core->parent)
479 return core->rate;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000480
David Brazdil0f672f62019-12-10 10:32:29 +0000481 /*
482 * Clk must have a parent because num_parents > 0 but the parent isn't
483 * known yet. Best to return 0 as the rate of this clk until we can
484 * properly recalc the rate based on the parent's rate.
485 */
486 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000487}
488
489unsigned long clk_hw_get_rate(const struct clk_hw *hw)
490{
491 return clk_core_get_rate_nolock(hw->core);
492}
493EXPORT_SYMBOL_GPL(clk_hw_get_rate);
494
495static unsigned long __clk_get_accuracy(struct clk_core *core)
496{
497 if (!core)
498 return 0;
499
500 return core->accuracy;
501}
502
503unsigned long __clk_get_flags(struct clk *clk)
504{
505 return !clk ? 0 : clk->core->flags;
506}
507EXPORT_SYMBOL_GPL(__clk_get_flags);
508
509unsigned long clk_hw_get_flags(const struct clk_hw *hw)
510{
511 return hw->core->flags;
512}
513EXPORT_SYMBOL_GPL(clk_hw_get_flags);
514
515bool clk_hw_is_prepared(const struct clk_hw *hw)
516{
517 return clk_core_is_prepared(hw->core);
518}
David Brazdil0f672f62019-12-10 10:32:29 +0000519EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000520
521bool clk_hw_rate_is_protected(const struct clk_hw *hw)
522{
523 return clk_core_rate_is_protected(hw->core);
524}
David Brazdil0f672f62019-12-10 10:32:29 +0000525EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000526
527bool clk_hw_is_enabled(const struct clk_hw *hw)
528{
529 return clk_core_is_enabled(hw->core);
530}
David Brazdil0f672f62019-12-10 10:32:29 +0000531EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000532
533bool __clk_is_enabled(struct clk *clk)
534{
535 if (!clk)
536 return false;
537
538 return clk_core_is_enabled(clk->core);
539}
540EXPORT_SYMBOL_GPL(__clk_is_enabled);
541
542static bool mux_is_better_rate(unsigned long rate, unsigned long now,
543 unsigned long best, unsigned long flags)
544{
545 if (flags & CLK_MUX_ROUND_CLOSEST)
546 return abs(now - rate) < abs(best - rate);
547
548 return now <= rate && now > best;
549}
550
551int clk_mux_determine_rate_flags(struct clk_hw *hw,
552 struct clk_rate_request *req,
553 unsigned long flags)
554{
555 struct clk_core *core = hw->core, *parent, *best_parent = NULL;
556 int i, num_parents, ret;
557 unsigned long best = 0;
558 struct clk_rate_request parent_req = *req;
559
560 /* if NO_REPARENT flag set, pass through to current parent */
561 if (core->flags & CLK_SET_RATE_NO_REPARENT) {
562 parent = core->parent;
563 if (core->flags & CLK_SET_RATE_PARENT) {
564 ret = __clk_determine_rate(parent ? parent->hw : NULL,
565 &parent_req);
566 if (ret)
567 return ret;
568
569 best = parent_req.rate;
570 } else if (parent) {
571 best = clk_core_get_rate_nolock(parent);
572 } else {
573 best = clk_core_get_rate_nolock(core);
574 }
575
576 goto out;
577 }
578
579 /* find the parent that can provide the fastest rate <= rate */
580 num_parents = core->num_parents;
581 for (i = 0; i < num_parents; i++) {
582 parent = clk_core_get_parent_by_index(core, i);
583 if (!parent)
584 continue;
585
586 if (core->flags & CLK_SET_RATE_PARENT) {
587 parent_req = *req;
588 ret = __clk_determine_rate(parent->hw, &parent_req);
589 if (ret)
590 continue;
591 } else {
592 parent_req.rate = clk_core_get_rate_nolock(parent);
593 }
594
595 if (mux_is_better_rate(req->rate, parent_req.rate,
596 best, flags)) {
597 best_parent = parent;
598 best = parent_req.rate;
599 }
600 }
601
602 if (!best_parent)
603 return -EINVAL;
604
605out:
606 if (best_parent)
607 req->best_parent_hw = best_parent->hw;
608 req->best_parent_rate = best;
609 req->rate = best;
610
611 return 0;
612}
613EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
614
615struct clk *__clk_lookup(const char *name)
616{
617 struct clk_core *core = clk_core_lookup(name);
618
619 return !core ? NULL : core->hw->clk;
620}
621
622static void clk_core_get_boundaries(struct clk_core *core,
623 unsigned long *min_rate,
624 unsigned long *max_rate)
625{
626 struct clk *clk_user;
627
David Brazdil0f672f62019-12-10 10:32:29 +0000628 lockdep_assert_held(&prepare_lock);
629
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000630 *min_rate = core->min_rate;
631 *max_rate = core->max_rate;
632
633 hlist_for_each_entry(clk_user, &core->clks, clks_node)
634 *min_rate = max(*min_rate, clk_user->min_rate);
635
636 hlist_for_each_entry(clk_user, &core->clks, clks_node)
637 *max_rate = min(*max_rate, clk_user->max_rate);
638}
639
640void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
641 unsigned long max_rate)
642{
643 hw->core->min_rate = min_rate;
644 hw->core->max_rate = max_rate;
645}
646EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
647
648/*
David Brazdil0f672f62019-12-10 10:32:29 +0000649 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
650 * @hw: mux type clk to determine rate on
651 * @req: rate request, also used to return preferred parent and frequencies
652 *
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000653 * Helper for finding best parent to provide a given frequency. This can be used
654 * directly as a determine_rate callback (e.g. for a mux), or from a more
655 * complex clock that may combine a mux with other operations.
David Brazdil0f672f62019-12-10 10:32:29 +0000656 *
657 * Returns: 0 on success, -EERROR value on error
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000658 */
659int __clk_mux_determine_rate(struct clk_hw *hw,
660 struct clk_rate_request *req)
661{
662 return clk_mux_determine_rate_flags(hw, req, 0);
663}
664EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
665
666int __clk_mux_determine_rate_closest(struct clk_hw *hw,
667 struct clk_rate_request *req)
668{
669 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
670}
671EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
672
673/*** clk api ***/
674
675static void clk_core_rate_unprotect(struct clk_core *core)
676{
677 lockdep_assert_held(&prepare_lock);
678
679 if (!core)
680 return;
681
682 if (WARN(core->protect_count == 0,
683 "%s already unprotected\n", core->name))
684 return;
685
686 if (--core->protect_count > 0)
687 return;
688
689 clk_core_rate_unprotect(core->parent);
690}
691
692static int clk_core_rate_nuke_protect(struct clk_core *core)
693{
694 int ret;
695
696 lockdep_assert_held(&prepare_lock);
697
698 if (!core)
699 return -EINVAL;
700
701 if (core->protect_count == 0)
702 return 0;
703
704 ret = core->protect_count;
705 core->protect_count = 1;
706 clk_core_rate_unprotect(core);
707
708 return ret;
709}
710
711/**
712 * clk_rate_exclusive_put - release exclusivity over clock rate control
713 * @clk: the clk over which the exclusivity is released
714 *
715 * clk_rate_exclusive_put() completes a critical section during which a clock
716 * consumer cannot tolerate any other consumer making any operation on the
717 * clock which could result in a rate change or rate glitch. Exclusive clocks
718 * cannot have their rate changed, either directly or indirectly due to changes
719 * further up the parent chain of clocks. As a result, clocks up parent chain
720 * also get under exclusive control of the calling consumer.
721 *
722 * If exlusivity is claimed more than once on clock, even by the same consumer,
723 * the rate effectively gets locked as exclusivity can't be preempted.
724 *
725 * Calls to clk_rate_exclusive_put() must be balanced with calls to
726 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
727 * error status.
728 */
729void clk_rate_exclusive_put(struct clk *clk)
730{
731 if (!clk)
732 return;
733
734 clk_prepare_lock();
735
736 /*
737 * if there is something wrong with this consumer protect count, stop
738 * here before messing with the provider
739 */
740 if (WARN_ON(clk->exclusive_count <= 0))
741 goto out;
742
743 clk_core_rate_unprotect(clk->core);
744 clk->exclusive_count--;
745out:
746 clk_prepare_unlock();
747}
748EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
749
750static void clk_core_rate_protect(struct clk_core *core)
751{
752 lockdep_assert_held(&prepare_lock);
753
754 if (!core)
755 return;
756
757 if (core->protect_count == 0)
758 clk_core_rate_protect(core->parent);
759
760 core->protect_count++;
761}
762
763static void clk_core_rate_restore_protect(struct clk_core *core, int count)
764{
765 lockdep_assert_held(&prepare_lock);
766
767 if (!core)
768 return;
769
770 if (count == 0)
771 return;
772
773 clk_core_rate_protect(core);
774 core->protect_count = count;
775}
776
777/**
778 * clk_rate_exclusive_get - get exclusivity over the clk rate control
779 * @clk: the clk over which the exclusity of rate control is requested
780 *
781 * clk_rate_exlusive_get() begins a critical section during which a clock
782 * consumer cannot tolerate any other consumer making any operation on the
783 * clock which could result in a rate change or rate glitch. Exclusive clocks
784 * cannot have their rate changed, either directly or indirectly due to changes
785 * further up the parent chain of clocks. As a result, clocks up parent chain
786 * also get under exclusive control of the calling consumer.
787 *
788 * If exlusivity is claimed more than once on clock, even by the same consumer,
789 * the rate effectively gets locked as exclusivity can't be preempted.
790 *
791 * Calls to clk_rate_exclusive_get() should be balanced with calls to
792 * clk_rate_exclusive_put(). Calls to this function may sleep.
793 * Returns 0 on success, -EERROR otherwise
794 */
795int clk_rate_exclusive_get(struct clk *clk)
796{
797 if (!clk)
798 return 0;
799
800 clk_prepare_lock();
801 clk_core_rate_protect(clk->core);
802 clk->exclusive_count++;
803 clk_prepare_unlock();
804
805 return 0;
806}
807EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
808
809static void clk_core_unprepare(struct clk_core *core)
810{
811 lockdep_assert_held(&prepare_lock);
812
813 if (!core)
814 return;
815
816 if (WARN(core->prepare_count == 0,
817 "%s already unprepared\n", core->name))
818 return;
819
820 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
821 "Unpreparing critical %s\n", core->name))
822 return;
823
824 if (core->flags & CLK_SET_RATE_GATE)
825 clk_core_rate_unprotect(core);
826
827 if (--core->prepare_count > 0)
828 return;
829
830 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
831
832 trace_clk_unprepare(core);
833
834 if (core->ops->unprepare)
835 core->ops->unprepare(core->hw);
836
837 clk_pm_runtime_put(core);
838
839 trace_clk_unprepare_complete(core);
840 clk_core_unprepare(core->parent);
841}
842
843static void clk_core_unprepare_lock(struct clk_core *core)
844{
845 clk_prepare_lock();
846 clk_core_unprepare(core);
847 clk_prepare_unlock();
848}
849
850/**
851 * clk_unprepare - undo preparation of a clock source
852 * @clk: the clk being unprepared
853 *
854 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
855 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
856 * if the operation may sleep. One example is a clk which is accessed over
857 * I2c. In the complex case a clk gate operation may require a fast and a slow
858 * part. It is this reason that clk_unprepare and clk_disable are not mutually
859 * exclusive. In fact clk_disable must be called before clk_unprepare.
860 */
861void clk_unprepare(struct clk *clk)
862{
863 if (IS_ERR_OR_NULL(clk))
864 return;
865
866 clk_core_unprepare_lock(clk->core);
867}
868EXPORT_SYMBOL_GPL(clk_unprepare);
869
870static int clk_core_prepare(struct clk_core *core)
871{
872 int ret = 0;
873
874 lockdep_assert_held(&prepare_lock);
875
876 if (!core)
877 return 0;
878
879 if (core->prepare_count == 0) {
880 ret = clk_pm_runtime_get(core);
881 if (ret)
882 return ret;
883
884 ret = clk_core_prepare(core->parent);
885 if (ret)
886 goto runtime_put;
887
888 trace_clk_prepare(core);
889
890 if (core->ops->prepare)
891 ret = core->ops->prepare(core->hw);
892
893 trace_clk_prepare_complete(core);
894
895 if (ret)
896 goto unprepare;
897 }
898
899 core->prepare_count++;
900
901 /*
902 * CLK_SET_RATE_GATE is a special case of clock protection
903 * Instead of a consumer claiming exclusive rate control, it is
904 * actually the provider which prevents any consumer from making any
905 * operation which could result in a rate change or rate glitch while
906 * the clock is prepared.
907 */
908 if (core->flags & CLK_SET_RATE_GATE)
909 clk_core_rate_protect(core);
910
911 return 0;
912unprepare:
913 clk_core_unprepare(core->parent);
914runtime_put:
915 clk_pm_runtime_put(core);
916 return ret;
917}
918
919static int clk_core_prepare_lock(struct clk_core *core)
920{
921 int ret;
922
923 clk_prepare_lock();
924 ret = clk_core_prepare(core);
925 clk_prepare_unlock();
926
927 return ret;
928}
929
930/**
931 * clk_prepare - prepare a clock source
932 * @clk: the clk being prepared
933 *
934 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
935 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
936 * operation may sleep. One example is a clk which is accessed over I2c. In
937 * the complex case a clk ungate operation may require a fast and a slow part.
938 * It is this reason that clk_prepare and clk_enable are not mutually
939 * exclusive. In fact clk_prepare must be called before clk_enable.
940 * Returns 0 on success, -EERROR otherwise.
941 */
942int clk_prepare(struct clk *clk)
943{
944 if (!clk)
945 return 0;
946
947 return clk_core_prepare_lock(clk->core);
948}
949EXPORT_SYMBOL_GPL(clk_prepare);
950
951static void clk_core_disable(struct clk_core *core)
952{
953 lockdep_assert_held(&enable_lock);
954
955 if (!core)
956 return;
957
958 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
959 return;
960
961 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
962 "Disabling critical %s\n", core->name))
963 return;
964
965 if (--core->enable_count > 0)
966 return;
967
968 trace_clk_disable_rcuidle(core);
969
970 if (core->ops->disable)
971 core->ops->disable(core->hw);
972
973 trace_clk_disable_complete_rcuidle(core);
974
975 clk_core_disable(core->parent);
976}
977
978static void clk_core_disable_lock(struct clk_core *core)
979{
980 unsigned long flags;
981
982 flags = clk_enable_lock();
983 clk_core_disable(core);
984 clk_enable_unlock(flags);
985}
986
987/**
988 * clk_disable - gate a clock
989 * @clk: the clk being gated
990 *
991 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
992 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
993 * clk if the operation is fast and will never sleep. One example is a
994 * SoC-internal clk which is controlled via simple register writes. In the
995 * complex case a clk gate operation may require a fast and a slow part. It is
996 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
997 * In fact clk_disable must be called before clk_unprepare.
998 */
999void clk_disable(struct clk *clk)
1000{
1001 if (IS_ERR_OR_NULL(clk))
1002 return;
1003
1004 clk_core_disable_lock(clk->core);
1005}
1006EXPORT_SYMBOL_GPL(clk_disable);
1007
1008static int clk_core_enable(struct clk_core *core)
1009{
1010 int ret = 0;
1011
1012 lockdep_assert_held(&enable_lock);
1013
1014 if (!core)
1015 return 0;
1016
1017 if (WARN(core->prepare_count == 0,
1018 "Enabling unprepared %s\n", core->name))
1019 return -ESHUTDOWN;
1020
1021 if (core->enable_count == 0) {
1022 ret = clk_core_enable(core->parent);
1023
1024 if (ret)
1025 return ret;
1026
1027 trace_clk_enable_rcuidle(core);
1028
1029 if (core->ops->enable)
1030 ret = core->ops->enable(core->hw);
1031
1032 trace_clk_enable_complete_rcuidle(core);
1033
1034 if (ret) {
1035 clk_core_disable(core->parent);
1036 return ret;
1037 }
1038 }
1039
1040 core->enable_count++;
1041 return 0;
1042}
1043
1044static int clk_core_enable_lock(struct clk_core *core)
1045{
1046 unsigned long flags;
1047 int ret;
1048
1049 flags = clk_enable_lock();
1050 ret = clk_core_enable(core);
1051 clk_enable_unlock(flags);
1052
1053 return ret;
1054}
1055
1056/**
David Brazdil0f672f62019-12-10 10:32:29 +00001057 * clk_gate_restore_context - restore context for poweroff
1058 * @hw: the clk_hw pointer of clock whose state is to be restored
1059 *
1060 * The clock gate restore context function enables or disables
1061 * the gate clocks based on the enable_count. This is done in cases
1062 * where the clock context is lost and based on the enable_count
1063 * the clock either needs to be enabled/disabled. This
1064 * helps restore the state of gate clocks.
1065 */
1066void clk_gate_restore_context(struct clk_hw *hw)
1067{
1068 struct clk_core *core = hw->core;
1069
1070 if (core->enable_count)
1071 core->ops->enable(hw);
1072 else
1073 core->ops->disable(hw);
1074}
1075EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1076
1077static int clk_core_save_context(struct clk_core *core)
1078{
1079 struct clk_core *child;
1080 int ret = 0;
1081
1082 hlist_for_each_entry(child, &core->children, child_node) {
1083 ret = clk_core_save_context(child);
1084 if (ret < 0)
1085 return ret;
1086 }
1087
1088 if (core->ops && core->ops->save_context)
1089 ret = core->ops->save_context(core->hw);
1090
1091 return ret;
1092}
1093
1094static void clk_core_restore_context(struct clk_core *core)
1095{
1096 struct clk_core *child;
1097
1098 if (core->ops && core->ops->restore_context)
1099 core->ops->restore_context(core->hw);
1100
1101 hlist_for_each_entry(child, &core->children, child_node)
1102 clk_core_restore_context(child);
1103}
1104
1105/**
1106 * clk_save_context - save clock context for poweroff
1107 *
1108 * Saves the context of the clock register for powerstates in which the
1109 * contents of the registers will be lost. Occurs deep within the suspend
1110 * code. Returns 0 on success.
1111 */
1112int clk_save_context(void)
1113{
1114 struct clk_core *clk;
1115 int ret;
1116
1117 hlist_for_each_entry(clk, &clk_root_list, child_node) {
1118 ret = clk_core_save_context(clk);
1119 if (ret < 0)
1120 return ret;
1121 }
1122
1123 hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1124 ret = clk_core_save_context(clk);
1125 if (ret < 0)
1126 return ret;
1127 }
1128
1129 return 0;
1130}
1131EXPORT_SYMBOL_GPL(clk_save_context);
1132
1133/**
1134 * clk_restore_context - restore clock context after poweroff
1135 *
1136 * Restore the saved clock context upon resume.
1137 *
1138 */
1139void clk_restore_context(void)
1140{
1141 struct clk_core *core;
1142
1143 hlist_for_each_entry(core, &clk_root_list, child_node)
1144 clk_core_restore_context(core);
1145
1146 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1147 clk_core_restore_context(core);
1148}
1149EXPORT_SYMBOL_GPL(clk_restore_context);
1150
1151/**
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001152 * clk_enable - ungate a clock
1153 * @clk: the clk being ungated
1154 *
1155 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
1156 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1157 * if the operation will never sleep. One example is a SoC-internal clk which
1158 * is controlled via simple register writes. In the complex case a clk ungate
1159 * operation may require a fast and a slow part. It is this reason that
1160 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
1161 * must be called before clk_enable. Returns 0 on success, -EERROR
1162 * otherwise.
1163 */
1164int clk_enable(struct clk *clk)
1165{
1166 if (!clk)
1167 return 0;
1168
1169 return clk_core_enable_lock(clk->core);
1170}
1171EXPORT_SYMBOL_GPL(clk_enable);
1172
1173static int clk_core_prepare_enable(struct clk_core *core)
1174{
1175 int ret;
1176
1177 ret = clk_core_prepare_lock(core);
1178 if (ret)
1179 return ret;
1180
1181 ret = clk_core_enable_lock(core);
1182 if (ret)
1183 clk_core_unprepare_lock(core);
1184
1185 return ret;
1186}
1187
1188static void clk_core_disable_unprepare(struct clk_core *core)
1189{
1190 clk_core_disable_lock(core);
1191 clk_core_unprepare_lock(core);
1192}
1193
1194static void clk_unprepare_unused_subtree(struct clk_core *core)
1195{
1196 struct clk_core *child;
1197
1198 lockdep_assert_held(&prepare_lock);
1199
1200 hlist_for_each_entry(child, &core->children, child_node)
1201 clk_unprepare_unused_subtree(child);
1202
1203 if (core->prepare_count)
1204 return;
1205
1206 if (core->flags & CLK_IGNORE_UNUSED)
1207 return;
1208
1209 if (clk_pm_runtime_get(core))
1210 return;
1211
1212 if (clk_core_is_prepared(core)) {
1213 trace_clk_unprepare(core);
1214 if (core->ops->unprepare_unused)
1215 core->ops->unprepare_unused(core->hw);
1216 else if (core->ops->unprepare)
1217 core->ops->unprepare(core->hw);
1218 trace_clk_unprepare_complete(core);
1219 }
1220
1221 clk_pm_runtime_put(core);
1222}
1223
1224static void clk_disable_unused_subtree(struct clk_core *core)
1225{
1226 struct clk_core *child;
1227 unsigned long flags;
1228
1229 lockdep_assert_held(&prepare_lock);
1230
1231 hlist_for_each_entry(child, &core->children, child_node)
1232 clk_disable_unused_subtree(child);
1233
1234 if (core->flags & CLK_OPS_PARENT_ENABLE)
1235 clk_core_prepare_enable(core->parent);
1236
1237 if (clk_pm_runtime_get(core))
1238 goto unprepare_out;
1239
1240 flags = clk_enable_lock();
1241
1242 if (core->enable_count)
1243 goto unlock_out;
1244
1245 if (core->flags & CLK_IGNORE_UNUSED)
1246 goto unlock_out;
1247
1248 /*
1249 * some gate clocks have special needs during the disable-unused
1250 * sequence. call .disable_unused if available, otherwise fall
1251 * back to .disable
1252 */
1253 if (clk_core_is_enabled(core)) {
1254 trace_clk_disable(core);
1255 if (core->ops->disable_unused)
1256 core->ops->disable_unused(core->hw);
1257 else if (core->ops->disable)
1258 core->ops->disable(core->hw);
1259 trace_clk_disable_complete(core);
1260 }
1261
1262unlock_out:
1263 clk_enable_unlock(flags);
1264 clk_pm_runtime_put(core);
1265unprepare_out:
1266 if (core->flags & CLK_OPS_PARENT_ENABLE)
1267 clk_core_disable_unprepare(core->parent);
1268}
1269
1270static bool clk_ignore_unused;
1271static int __init clk_ignore_unused_setup(char *__unused)
1272{
1273 clk_ignore_unused = true;
1274 return 1;
1275}
1276__setup("clk_ignore_unused", clk_ignore_unused_setup);
1277
1278static int clk_disable_unused(void)
1279{
1280 struct clk_core *core;
1281
1282 if (clk_ignore_unused) {
1283 pr_warn("clk: Not disabling unused clocks\n");
1284 return 0;
1285 }
1286
1287 clk_prepare_lock();
1288
1289 hlist_for_each_entry(core, &clk_root_list, child_node)
1290 clk_disable_unused_subtree(core);
1291
1292 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1293 clk_disable_unused_subtree(core);
1294
1295 hlist_for_each_entry(core, &clk_root_list, child_node)
1296 clk_unprepare_unused_subtree(core);
1297
1298 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1299 clk_unprepare_unused_subtree(core);
1300
1301 clk_prepare_unlock();
1302
1303 return 0;
1304}
1305late_initcall_sync(clk_disable_unused);
1306
1307static int clk_core_determine_round_nolock(struct clk_core *core,
1308 struct clk_rate_request *req)
1309{
1310 long rate;
1311
1312 lockdep_assert_held(&prepare_lock);
1313
1314 if (!core)
1315 return 0;
1316
1317 /*
1318 * At this point, core protection will be disabled if
1319 * - if the provider is not protected at all
1320 * - if the calling consumer is the only one which has exclusivity
1321 * over the provider
1322 */
1323 if (clk_core_rate_is_protected(core)) {
1324 req->rate = core->rate;
1325 } else if (core->ops->determine_rate) {
1326 return core->ops->determine_rate(core->hw, req);
1327 } else if (core->ops->round_rate) {
1328 rate = core->ops->round_rate(core->hw, req->rate,
1329 &req->best_parent_rate);
1330 if (rate < 0)
1331 return rate;
1332
1333 req->rate = rate;
1334 } else {
1335 return -EINVAL;
1336 }
1337
1338 return 0;
1339}
1340
1341static void clk_core_init_rate_req(struct clk_core * const core,
1342 struct clk_rate_request *req)
1343{
1344 struct clk_core *parent;
1345
1346 if (WARN_ON(!core || !req))
1347 return;
1348
1349 parent = core->parent;
1350 if (parent) {
1351 req->best_parent_hw = parent->hw;
1352 req->best_parent_rate = parent->rate;
1353 } else {
1354 req->best_parent_hw = NULL;
1355 req->best_parent_rate = 0;
1356 }
1357}
1358
1359static bool clk_core_can_round(struct clk_core * const core)
1360{
David Brazdil0f672f62019-12-10 10:32:29 +00001361 return core->ops->determine_rate || core->ops->round_rate;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001362}
1363
1364static int clk_core_round_rate_nolock(struct clk_core *core,
1365 struct clk_rate_request *req)
1366{
1367 lockdep_assert_held(&prepare_lock);
1368
1369 if (!core) {
1370 req->rate = 0;
1371 return 0;
1372 }
1373
1374 clk_core_init_rate_req(core, req);
1375
1376 if (clk_core_can_round(core))
1377 return clk_core_determine_round_nolock(core, req);
1378 else if (core->flags & CLK_SET_RATE_PARENT)
1379 return clk_core_round_rate_nolock(core->parent, req);
1380
1381 req->rate = core->rate;
1382 return 0;
1383}
1384
1385/**
1386 * __clk_determine_rate - get the closest rate actually supported by a clock
1387 * @hw: determine the rate of this clock
1388 * @req: target rate request
1389 *
1390 * Useful for clk_ops such as .set_rate and .determine_rate.
1391 */
1392int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1393{
1394 if (!hw) {
1395 req->rate = 0;
1396 return 0;
1397 }
1398
1399 return clk_core_round_rate_nolock(hw->core, req);
1400}
1401EXPORT_SYMBOL_GPL(__clk_determine_rate);
1402
1403unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1404{
1405 int ret;
1406 struct clk_rate_request req;
1407
1408 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1409 req.rate = rate;
1410
1411 ret = clk_core_round_rate_nolock(hw->core, &req);
1412 if (ret)
1413 return 0;
1414
1415 return req.rate;
1416}
1417EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1418
1419/**
1420 * clk_round_rate - round the given rate for a clk
1421 * @clk: the clk for which we are rounding a rate
1422 * @rate: the rate which is to be rounded
1423 *
1424 * Takes in a rate as input and rounds it to a rate that the clk can actually
1425 * use which is then returned. If clk doesn't support round_rate operation
1426 * then the parent rate is returned.
1427 */
1428long clk_round_rate(struct clk *clk, unsigned long rate)
1429{
1430 struct clk_rate_request req;
1431 int ret;
1432
1433 if (!clk)
1434 return 0;
1435
1436 clk_prepare_lock();
1437
1438 if (clk->exclusive_count)
1439 clk_core_rate_unprotect(clk->core);
1440
1441 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1442 req.rate = rate;
1443
1444 ret = clk_core_round_rate_nolock(clk->core, &req);
1445
1446 if (clk->exclusive_count)
1447 clk_core_rate_protect(clk->core);
1448
1449 clk_prepare_unlock();
1450
1451 if (ret)
1452 return ret;
1453
1454 return req.rate;
1455}
1456EXPORT_SYMBOL_GPL(clk_round_rate);
1457
1458/**
1459 * __clk_notify - call clk notifier chain
1460 * @core: clk that is changing rate
1461 * @msg: clk notifier type (see include/linux/clk.h)
1462 * @old_rate: old clk rate
1463 * @new_rate: new clk rate
1464 *
1465 * Triggers a notifier call chain on the clk rate-change notification
1466 * for 'clk'. Passes a pointer to the struct clk and the previous
1467 * and current rates to the notifier callback. Intended to be called by
1468 * internal clock code only. Returns NOTIFY_DONE from the last driver
1469 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1470 * a driver returns that.
1471 */
1472static int __clk_notify(struct clk_core *core, unsigned long msg,
1473 unsigned long old_rate, unsigned long new_rate)
1474{
1475 struct clk_notifier *cn;
1476 struct clk_notifier_data cnd;
1477 int ret = NOTIFY_DONE;
1478
1479 cnd.old_rate = old_rate;
1480 cnd.new_rate = new_rate;
1481
1482 list_for_each_entry(cn, &clk_notifier_list, node) {
1483 if (cn->clk->core == core) {
1484 cnd.clk = cn->clk;
1485 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1486 &cnd);
1487 if (ret & NOTIFY_STOP_MASK)
1488 return ret;
1489 }
1490 }
1491
1492 return ret;
1493}
1494
1495/**
1496 * __clk_recalc_accuracies
1497 * @core: first clk in the subtree
1498 *
1499 * Walks the subtree of clks starting with clk and recalculates accuracies as
1500 * it goes. Note that if a clk does not implement the .recalc_accuracy
1501 * callback then it is assumed that the clock will take on the accuracy of its
1502 * parent.
1503 */
1504static void __clk_recalc_accuracies(struct clk_core *core)
1505{
1506 unsigned long parent_accuracy = 0;
1507 struct clk_core *child;
1508
1509 lockdep_assert_held(&prepare_lock);
1510
1511 if (core->parent)
1512 parent_accuracy = core->parent->accuracy;
1513
1514 if (core->ops->recalc_accuracy)
1515 core->accuracy = core->ops->recalc_accuracy(core->hw,
1516 parent_accuracy);
1517 else
1518 core->accuracy = parent_accuracy;
1519
1520 hlist_for_each_entry(child, &core->children, child_node)
1521 __clk_recalc_accuracies(child);
1522}
1523
1524static long clk_core_get_accuracy(struct clk_core *core)
1525{
1526 unsigned long accuracy;
1527
1528 clk_prepare_lock();
1529 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1530 __clk_recalc_accuracies(core);
1531
1532 accuracy = __clk_get_accuracy(core);
1533 clk_prepare_unlock();
1534
1535 return accuracy;
1536}
1537
1538/**
1539 * clk_get_accuracy - return the accuracy of clk
1540 * @clk: the clk whose accuracy is being returned
1541 *
1542 * Simply returns the cached accuracy of the clk, unless
1543 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1544 * issued.
1545 * If clk is NULL then returns 0.
1546 */
1547long clk_get_accuracy(struct clk *clk)
1548{
1549 if (!clk)
1550 return 0;
1551
1552 return clk_core_get_accuracy(clk->core);
1553}
1554EXPORT_SYMBOL_GPL(clk_get_accuracy);
1555
1556static unsigned long clk_recalc(struct clk_core *core,
1557 unsigned long parent_rate)
1558{
1559 unsigned long rate = parent_rate;
1560
1561 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1562 rate = core->ops->recalc_rate(core->hw, parent_rate);
1563 clk_pm_runtime_put(core);
1564 }
1565 return rate;
1566}
1567
1568/**
1569 * __clk_recalc_rates
1570 * @core: first clk in the subtree
1571 * @msg: notification type (see include/linux/clk.h)
1572 *
1573 * Walks the subtree of clks starting with clk and recalculates rates as it
1574 * goes. Note that if a clk does not implement the .recalc_rate callback then
1575 * it is assumed that the clock will take on the rate of its parent.
1576 *
1577 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1578 * if necessary.
1579 */
1580static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1581{
1582 unsigned long old_rate;
1583 unsigned long parent_rate = 0;
1584 struct clk_core *child;
1585
1586 lockdep_assert_held(&prepare_lock);
1587
1588 old_rate = core->rate;
1589
1590 if (core->parent)
1591 parent_rate = core->parent->rate;
1592
1593 core->rate = clk_recalc(core, parent_rate);
1594
1595 /*
1596 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1597 * & ABORT_RATE_CHANGE notifiers
1598 */
1599 if (core->notifier_count && msg)
1600 __clk_notify(core, msg, old_rate, core->rate);
1601
1602 hlist_for_each_entry(child, &core->children, child_node)
1603 __clk_recalc_rates(child, msg);
1604}
1605
1606static unsigned long clk_core_get_rate(struct clk_core *core)
1607{
1608 unsigned long rate;
1609
1610 clk_prepare_lock();
1611
1612 if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1613 __clk_recalc_rates(core, 0);
1614
1615 rate = clk_core_get_rate_nolock(core);
1616 clk_prepare_unlock();
1617
1618 return rate;
1619}
1620
1621/**
1622 * clk_get_rate - return the rate of clk
1623 * @clk: the clk whose rate is being returned
1624 *
1625 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1626 * is set, which means a recalc_rate will be issued.
1627 * If clk is NULL then returns 0.
1628 */
1629unsigned long clk_get_rate(struct clk *clk)
1630{
1631 if (!clk)
1632 return 0;
1633
1634 return clk_core_get_rate(clk->core);
1635}
1636EXPORT_SYMBOL_GPL(clk_get_rate);
1637
1638static int clk_fetch_parent_index(struct clk_core *core,
1639 struct clk_core *parent)
1640{
1641 int i;
1642
1643 if (!parent)
1644 return -EINVAL;
1645
David Brazdil0f672f62019-12-10 10:32:29 +00001646 for (i = 0; i < core->num_parents; i++) {
1647 /* Found it first try! */
1648 if (core->parents[i].core == parent)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001649 return i;
1650
David Brazdil0f672f62019-12-10 10:32:29 +00001651 /* Something else is here, so keep looking */
1652 if (core->parents[i].core)
1653 continue;
1654
1655 /* Maybe core hasn't been cached but the hw is all we know? */
1656 if (core->parents[i].hw) {
1657 if (core->parents[i].hw == parent->hw)
1658 break;
1659
1660 /* Didn't match, but we're expecting a clk_hw */
1661 continue;
1662 }
1663
1664 /* Maybe it hasn't been cached (clk_set_parent() path) */
1665 if (parent == clk_core_get(core, i))
1666 break;
1667
1668 /* Fallback to comparing globally unique names */
1669 if (core->parents[i].name &&
1670 !strcmp(parent->name, core->parents[i].name))
1671 break;
1672 }
1673
1674 if (i == core->num_parents)
1675 return -EINVAL;
1676
1677 core->parents[i].core = parent;
1678 return i;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001679}
1680
1681/*
1682 * Update the orphan status of @core and all its children.
1683 */
1684static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1685{
1686 struct clk_core *child;
1687
1688 core->orphan = is_orphan;
1689
1690 hlist_for_each_entry(child, &core->children, child_node)
1691 clk_core_update_orphan_status(child, is_orphan);
1692}
1693
1694static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1695{
1696 bool was_orphan = core->orphan;
1697
1698 hlist_del(&core->child_node);
1699
1700 if (new_parent) {
1701 bool becomes_orphan = new_parent->orphan;
1702
1703 /* avoid duplicate POST_RATE_CHANGE notifications */
1704 if (new_parent->new_child == core)
1705 new_parent->new_child = NULL;
1706
1707 hlist_add_head(&core->child_node, &new_parent->children);
1708
1709 if (was_orphan != becomes_orphan)
1710 clk_core_update_orphan_status(core, becomes_orphan);
1711 } else {
1712 hlist_add_head(&core->child_node, &clk_orphan_list);
1713 if (!was_orphan)
1714 clk_core_update_orphan_status(core, true);
1715 }
1716
1717 core->parent = new_parent;
1718}
1719
1720static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1721 struct clk_core *parent)
1722{
1723 unsigned long flags;
1724 struct clk_core *old_parent = core->parent;
1725
1726 /*
1727 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1728 *
1729 * 2. Migrate prepare state between parents and prevent race with
1730 * clk_enable().
1731 *
1732 * If the clock is not prepared, then a race with
1733 * clk_enable/disable() is impossible since we already have the
1734 * prepare lock (future calls to clk_enable() need to be preceded by
1735 * a clk_prepare()).
1736 *
1737 * If the clock is prepared, migrate the prepared state to the new
1738 * parent and also protect against a race with clk_enable() by
1739 * forcing the clock and the new parent on. This ensures that all
1740 * future calls to clk_enable() are practically NOPs with respect to
1741 * hardware and software states.
1742 *
1743 * See also: Comment for clk_set_parent() below.
1744 */
1745
1746 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1747 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1748 clk_core_prepare_enable(old_parent);
1749 clk_core_prepare_enable(parent);
1750 }
1751
1752 /* migrate prepare count if > 0 */
1753 if (core->prepare_count) {
1754 clk_core_prepare_enable(parent);
1755 clk_core_enable_lock(core);
1756 }
1757
1758 /* update the clk tree topology */
1759 flags = clk_enable_lock();
1760 clk_reparent(core, parent);
1761 clk_enable_unlock(flags);
1762
1763 return old_parent;
1764}
1765
1766static void __clk_set_parent_after(struct clk_core *core,
1767 struct clk_core *parent,
1768 struct clk_core *old_parent)
1769{
1770 /*
1771 * Finish the migration of prepare state and undo the changes done
1772 * for preventing a race with clk_enable().
1773 */
1774 if (core->prepare_count) {
1775 clk_core_disable_lock(core);
1776 clk_core_disable_unprepare(old_parent);
1777 }
1778
1779 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1780 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1781 clk_core_disable_unprepare(parent);
1782 clk_core_disable_unprepare(old_parent);
1783 }
1784}
1785
1786static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1787 u8 p_index)
1788{
1789 unsigned long flags;
1790 int ret = 0;
1791 struct clk_core *old_parent;
1792
1793 old_parent = __clk_set_parent_before(core, parent);
1794
1795 trace_clk_set_parent(core, parent);
1796
1797 /* change clock input source */
1798 if (parent && core->ops->set_parent)
1799 ret = core->ops->set_parent(core->hw, p_index);
1800
1801 trace_clk_set_parent_complete(core, parent);
1802
1803 if (ret) {
1804 flags = clk_enable_lock();
1805 clk_reparent(core, old_parent);
1806 clk_enable_unlock(flags);
1807 __clk_set_parent_after(core, old_parent, parent);
1808
1809 return ret;
1810 }
1811
1812 __clk_set_parent_after(core, parent, old_parent);
1813
1814 return 0;
1815}
1816
1817/**
1818 * __clk_speculate_rates
1819 * @core: first clk in the subtree
1820 * @parent_rate: the "future" rate of clk's parent
1821 *
1822 * Walks the subtree of clks starting with clk, speculating rates as it
1823 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1824 *
1825 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1826 * pre-rate change notifications and returns early if no clks in the
1827 * subtree have subscribed to the notifications. Note that if a clk does not
1828 * implement the .recalc_rate callback then it is assumed that the clock will
1829 * take on the rate of its parent.
1830 */
1831static int __clk_speculate_rates(struct clk_core *core,
1832 unsigned long parent_rate)
1833{
1834 struct clk_core *child;
1835 unsigned long new_rate;
1836 int ret = NOTIFY_DONE;
1837
1838 lockdep_assert_held(&prepare_lock);
1839
1840 new_rate = clk_recalc(core, parent_rate);
1841
1842 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1843 if (core->notifier_count)
1844 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1845
1846 if (ret & NOTIFY_STOP_MASK) {
1847 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1848 __func__, core->name, ret);
1849 goto out;
1850 }
1851
1852 hlist_for_each_entry(child, &core->children, child_node) {
1853 ret = __clk_speculate_rates(child, new_rate);
1854 if (ret & NOTIFY_STOP_MASK)
1855 break;
1856 }
1857
1858out:
1859 return ret;
1860}
1861
1862static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1863 struct clk_core *new_parent, u8 p_index)
1864{
1865 struct clk_core *child;
1866
1867 core->new_rate = new_rate;
1868 core->new_parent = new_parent;
1869 core->new_parent_index = p_index;
1870 /* include clk in new parent's PRE_RATE_CHANGE notifications */
1871 core->new_child = NULL;
1872 if (new_parent && new_parent != core->parent)
1873 new_parent->new_child = core;
1874
1875 hlist_for_each_entry(child, &core->children, child_node) {
1876 child->new_rate = clk_recalc(child, new_rate);
1877 clk_calc_subtree(child, child->new_rate, NULL, 0);
1878 }
1879}
1880
1881/*
1882 * calculate the new rates returning the topmost clock that has to be
1883 * changed.
1884 */
1885static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1886 unsigned long rate)
1887{
1888 struct clk_core *top = core;
1889 struct clk_core *old_parent, *parent;
1890 unsigned long best_parent_rate = 0;
1891 unsigned long new_rate;
1892 unsigned long min_rate;
1893 unsigned long max_rate;
1894 int p_index = 0;
1895 long ret;
1896
1897 /* sanity */
1898 if (IS_ERR_OR_NULL(core))
1899 return NULL;
1900
1901 /* save parent rate, if it exists */
1902 parent = old_parent = core->parent;
1903 if (parent)
1904 best_parent_rate = parent->rate;
1905
1906 clk_core_get_boundaries(core, &min_rate, &max_rate);
1907
1908 /* find the closest rate and parent clk/rate */
1909 if (clk_core_can_round(core)) {
1910 struct clk_rate_request req;
1911
1912 req.rate = rate;
1913 req.min_rate = min_rate;
1914 req.max_rate = max_rate;
1915
1916 clk_core_init_rate_req(core, &req);
1917
1918 ret = clk_core_determine_round_nolock(core, &req);
1919 if (ret < 0)
1920 return NULL;
1921
1922 best_parent_rate = req.best_parent_rate;
1923 new_rate = req.rate;
1924 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1925
1926 if (new_rate < min_rate || new_rate > max_rate)
1927 return NULL;
1928 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1929 /* pass-through clock without adjustable parent */
1930 core->new_rate = core->rate;
1931 return NULL;
1932 } else {
1933 /* pass-through clock with adjustable parent */
1934 top = clk_calc_new_rates(parent, rate);
1935 new_rate = parent->new_rate;
1936 goto out;
1937 }
1938
1939 /* some clocks must be gated to change parent */
1940 if (parent != old_parent &&
1941 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1942 pr_debug("%s: %s not gated but wants to reparent\n",
1943 __func__, core->name);
1944 return NULL;
1945 }
1946
1947 /* try finding the new parent index */
1948 if (parent && core->num_parents > 1) {
1949 p_index = clk_fetch_parent_index(core, parent);
1950 if (p_index < 0) {
1951 pr_debug("%s: clk %s can not be parent of clk %s\n",
1952 __func__, parent->name, core->name);
1953 return NULL;
1954 }
1955 }
1956
1957 if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1958 best_parent_rate != parent->rate)
1959 top = clk_calc_new_rates(parent, best_parent_rate);
1960
1961out:
1962 clk_calc_subtree(core, new_rate, parent, p_index);
1963
1964 return top;
1965}
1966
1967/*
1968 * Notify about rate changes in a subtree. Always walk down the whole tree
1969 * so that in case of an error we can walk down the whole tree again and
1970 * abort the change.
1971 */
1972static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1973 unsigned long event)
1974{
1975 struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1976 int ret = NOTIFY_DONE;
1977
1978 if (core->rate == core->new_rate)
1979 return NULL;
1980
1981 if (core->notifier_count) {
1982 ret = __clk_notify(core, event, core->rate, core->new_rate);
1983 if (ret & NOTIFY_STOP_MASK)
1984 fail_clk = core;
1985 }
1986
1987 hlist_for_each_entry(child, &core->children, child_node) {
1988 /* Skip children who will be reparented to another clock */
1989 if (child->new_parent && child->new_parent != core)
1990 continue;
1991 tmp_clk = clk_propagate_rate_change(child, event);
1992 if (tmp_clk)
1993 fail_clk = tmp_clk;
1994 }
1995
1996 /* handle the new child who might not be in core->children yet */
1997 if (core->new_child) {
1998 tmp_clk = clk_propagate_rate_change(core->new_child, event);
1999 if (tmp_clk)
2000 fail_clk = tmp_clk;
2001 }
2002
2003 return fail_clk;
2004}
2005
2006/*
2007 * walk down a subtree and set the new rates notifying the rate
2008 * change on the way
2009 */
2010static void clk_change_rate(struct clk_core *core)
2011{
2012 struct clk_core *child;
2013 struct hlist_node *tmp;
2014 unsigned long old_rate;
2015 unsigned long best_parent_rate = 0;
2016 bool skip_set_rate = false;
2017 struct clk_core *old_parent;
2018 struct clk_core *parent = NULL;
2019
2020 old_rate = core->rate;
2021
2022 if (core->new_parent) {
2023 parent = core->new_parent;
2024 best_parent_rate = core->new_parent->rate;
2025 } else if (core->parent) {
2026 parent = core->parent;
2027 best_parent_rate = core->parent->rate;
2028 }
2029
2030 if (clk_pm_runtime_get(core))
2031 return;
2032
2033 if (core->flags & CLK_SET_RATE_UNGATE) {
2034 unsigned long flags;
2035
2036 clk_core_prepare(core);
2037 flags = clk_enable_lock();
2038 clk_core_enable(core);
2039 clk_enable_unlock(flags);
2040 }
2041
2042 if (core->new_parent && core->new_parent != core->parent) {
2043 old_parent = __clk_set_parent_before(core, core->new_parent);
2044 trace_clk_set_parent(core, core->new_parent);
2045
2046 if (core->ops->set_rate_and_parent) {
2047 skip_set_rate = true;
2048 core->ops->set_rate_and_parent(core->hw, core->new_rate,
2049 best_parent_rate,
2050 core->new_parent_index);
2051 } else if (core->ops->set_parent) {
2052 core->ops->set_parent(core->hw, core->new_parent_index);
2053 }
2054
2055 trace_clk_set_parent_complete(core, core->new_parent);
2056 __clk_set_parent_after(core, core->new_parent, old_parent);
2057 }
2058
2059 if (core->flags & CLK_OPS_PARENT_ENABLE)
2060 clk_core_prepare_enable(parent);
2061
2062 trace_clk_set_rate(core, core->new_rate);
2063
2064 if (!skip_set_rate && core->ops->set_rate)
2065 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2066
2067 trace_clk_set_rate_complete(core, core->new_rate);
2068
2069 core->rate = clk_recalc(core, best_parent_rate);
2070
2071 if (core->flags & CLK_SET_RATE_UNGATE) {
2072 unsigned long flags;
2073
2074 flags = clk_enable_lock();
2075 clk_core_disable(core);
2076 clk_enable_unlock(flags);
2077 clk_core_unprepare(core);
2078 }
2079
2080 if (core->flags & CLK_OPS_PARENT_ENABLE)
2081 clk_core_disable_unprepare(parent);
2082
2083 if (core->notifier_count && old_rate != core->rate)
2084 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2085
2086 if (core->flags & CLK_RECALC_NEW_RATES)
2087 (void)clk_calc_new_rates(core, core->new_rate);
2088
2089 /*
2090 * Use safe iteration, as change_rate can actually swap parents
2091 * for certain clock types.
2092 */
2093 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2094 /* Skip children who will be reparented to another clock */
2095 if (child->new_parent && child->new_parent != core)
2096 continue;
2097 clk_change_rate(child);
2098 }
2099
2100 /* handle the new child who might not be in core->children yet */
2101 if (core->new_child)
2102 clk_change_rate(core->new_child);
2103
2104 clk_pm_runtime_put(core);
2105}
2106
2107static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2108 unsigned long req_rate)
2109{
2110 int ret, cnt;
2111 struct clk_rate_request req;
2112
2113 lockdep_assert_held(&prepare_lock);
2114
2115 if (!core)
2116 return 0;
2117
2118 /* simulate what the rate would be if it could be freely set */
2119 cnt = clk_core_rate_nuke_protect(core);
2120 if (cnt < 0)
2121 return cnt;
2122
2123 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2124 req.rate = req_rate;
2125
2126 ret = clk_core_round_rate_nolock(core, &req);
2127
2128 /* restore the protection */
2129 clk_core_rate_restore_protect(core, cnt);
2130
2131 return ret ? 0 : req.rate;
2132}
2133
2134static int clk_core_set_rate_nolock(struct clk_core *core,
2135 unsigned long req_rate)
2136{
2137 struct clk_core *top, *fail_clk;
2138 unsigned long rate;
2139 int ret = 0;
2140
2141 if (!core)
2142 return 0;
2143
2144 rate = clk_core_req_round_rate_nolock(core, req_rate);
2145
2146 /* bail early if nothing to do */
2147 if (rate == clk_core_get_rate_nolock(core))
2148 return 0;
2149
2150 /* fail on a direct rate set of a protected provider */
2151 if (clk_core_rate_is_protected(core))
2152 return -EBUSY;
2153
2154 /* calculate new rates and get the topmost changed clock */
2155 top = clk_calc_new_rates(core, req_rate);
2156 if (!top)
2157 return -EINVAL;
2158
2159 ret = clk_pm_runtime_get(core);
2160 if (ret)
2161 return ret;
2162
2163 /* notify that we are about to change rates */
2164 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2165 if (fail_clk) {
2166 pr_debug("%s: failed to set %s rate\n", __func__,
2167 fail_clk->name);
2168 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2169 ret = -EBUSY;
2170 goto err;
2171 }
2172
2173 /* change the rates */
2174 clk_change_rate(top);
2175
2176 core->req_rate = req_rate;
2177err:
2178 clk_pm_runtime_put(core);
2179
2180 return ret;
2181}
2182
2183/**
2184 * clk_set_rate - specify a new rate for clk
2185 * @clk: the clk whose rate is being changed
2186 * @rate: the new rate for clk
2187 *
2188 * In the simplest case clk_set_rate will only adjust the rate of clk.
2189 *
2190 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2191 * propagate up to clk's parent; whether or not this happens depends on the
2192 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
2193 * after calling .round_rate then upstream parent propagation is ignored. If
2194 * *parent_rate comes back with a new rate for clk's parent then we propagate
2195 * up to clk's parent and set its rate. Upward propagation will continue
2196 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2197 * .round_rate stops requesting changes to clk's parent_rate.
2198 *
2199 * Rate changes are accomplished via tree traversal that also recalculates the
2200 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2201 *
2202 * Returns 0 on success, -EERROR otherwise.
2203 */
2204int clk_set_rate(struct clk *clk, unsigned long rate)
2205{
2206 int ret;
2207
2208 if (!clk)
2209 return 0;
2210
2211 /* prevent racing with updates to the clock topology */
2212 clk_prepare_lock();
2213
2214 if (clk->exclusive_count)
2215 clk_core_rate_unprotect(clk->core);
2216
2217 ret = clk_core_set_rate_nolock(clk->core, rate);
2218
2219 if (clk->exclusive_count)
2220 clk_core_rate_protect(clk->core);
2221
2222 clk_prepare_unlock();
2223
2224 return ret;
2225}
2226EXPORT_SYMBOL_GPL(clk_set_rate);
2227
2228/**
David Brazdil0f672f62019-12-10 10:32:29 +00002229 * clk_set_rate_exclusive - specify a new rate and get exclusive control
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002230 * @clk: the clk whose rate is being changed
2231 * @rate: the new rate for clk
2232 *
2233 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2234 * within a critical section
2235 *
2236 * This can be used initially to ensure that at least 1 consumer is
David Brazdil0f672f62019-12-10 10:32:29 +00002237 * satisfied when several consumers are competing for exclusivity over the
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002238 * same clock provider.
2239 *
2240 * The exclusivity is not applied if setting the rate failed.
2241 *
2242 * Calls to clk_rate_exclusive_get() should be balanced with calls to
2243 * clk_rate_exclusive_put().
2244 *
2245 * Returns 0 on success, -EERROR otherwise.
2246 */
2247int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2248{
2249 int ret;
2250
2251 if (!clk)
2252 return 0;
2253
2254 /* prevent racing with updates to the clock topology */
2255 clk_prepare_lock();
2256
2257 /*
2258 * The temporary protection removal is not here, on purpose
2259 * This function is meant to be used instead of clk_rate_protect,
2260 * so before the consumer code path protect the clock provider
2261 */
2262
2263 ret = clk_core_set_rate_nolock(clk->core, rate);
2264 if (!ret) {
2265 clk_core_rate_protect(clk->core);
2266 clk->exclusive_count++;
2267 }
2268
2269 clk_prepare_unlock();
2270
2271 return ret;
2272}
2273EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2274
2275/**
2276 * clk_set_rate_range - set a rate range for a clock source
2277 * @clk: clock source
2278 * @min: desired minimum clock rate in Hz, inclusive
2279 * @max: desired maximum clock rate in Hz, inclusive
2280 *
2281 * Returns success (0) or negative errno.
2282 */
2283int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2284{
2285 int ret = 0;
2286 unsigned long old_min, old_max, rate;
2287
2288 if (!clk)
2289 return 0;
2290
2291 if (min > max) {
2292 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2293 __func__, clk->core->name, clk->dev_id, clk->con_id,
2294 min, max);
2295 return -EINVAL;
2296 }
2297
2298 clk_prepare_lock();
2299
2300 if (clk->exclusive_count)
2301 clk_core_rate_unprotect(clk->core);
2302
2303 /* Save the current values in case we need to rollback the change */
2304 old_min = clk->min_rate;
2305 old_max = clk->max_rate;
2306 clk->min_rate = min;
2307 clk->max_rate = max;
2308
2309 rate = clk_core_get_rate_nolock(clk->core);
2310 if (rate < min || rate > max) {
2311 /*
2312 * FIXME:
2313 * We are in bit of trouble here, current rate is outside the
2314 * the requested range. We are going try to request appropriate
2315 * range boundary but there is a catch. It may fail for the
2316 * usual reason (clock broken, clock protected, etc) but also
2317 * because:
2318 * - round_rate() was not favorable and fell on the wrong
2319 * side of the boundary
2320 * - the determine_rate() callback does not really check for
2321 * this corner case when determining the rate
2322 */
2323
2324 if (rate < min)
2325 rate = min;
2326 else
2327 rate = max;
2328
2329 ret = clk_core_set_rate_nolock(clk->core, rate);
2330 if (ret) {
2331 /* rollback the changes */
2332 clk->min_rate = old_min;
2333 clk->max_rate = old_max;
2334 }
2335 }
2336
2337 if (clk->exclusive_count)
2338 clk_core_rate_protect(clk->core);
2339
2340 clk_prepare_unlock();
2341
2342 return ret;
2343}
2344EXPORT_SYMBOL_GPL(clk_set_rate_range);
2345
2346/**
2347 * clk_set_min_rate - set a minimum clock rate for a clock source
2348 * @clk: clock source
2349 * @rate: desired minimum clock rate in Hz, inclusive
2350 *
2351 * Returns success (0) or negative errno.
2352 */
2353int clk_set_min_rate(struct clk *clk, unsigned long rate)
2354{
2355 if (!clk)
2356 return 0;
2357
2358 return clk_set_rate_range(clk, rate, clk->max_rate);
2359}
2360EXPORT_SYMBOL_GPL(clk_set_min_rate);
2361
2362/**
2363 * clk_set_max_rate - set a maximum clock rate for a clock source
2364 * @clk: clock source
2365 * @rate: desired maximum clock rate in Hz, inclusive
2366 *
2367 * Returns success (0) or negative errno.
2368 */
2369int clk_set_max_rate(struct clk *clk, unsigned long rate)
2370{
2371 if (!clk)
2372 return 0;
2373
2374 return clk_set_rate_range(clk, clk->min_rate, rate);
2375}
2376EXPORT_SYMBOL_GPL(clk_set_max_rate);
2377
2378/**
2379 * clk_get_parent - return the parent of a clk
2380 * @clk: the clk whose parent gets returned
2381 *
2382 * Simply returns clk->parent. Returns NULL if clk is NULL.
2383 */
2384struct clk *clk_get_parent(struct clk *clk)
2385{
2386 struct clk *parent;
2387
2388 if (!clk)
2389 return NULL;
2390
2391 clk_prepare_lock();
2392 /* TODO: Create a per-user clk and change callers to call clk_put */
2393 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2394 clk_prepare_unlock();
2395
2396 return parent;
2397}
2398EXPORT_SYMBOL_GPL(clk_get_parent);
2399
2400static struct clk_core *__clk_init_parent(struct clk_core *core)
2401{
2402 u8 index = 0;
2403
2404 if (core->num_parents > 1 && core->ops->get_parent)
2405 index = core->ops->get_parent(core->hw);
2406
2407 return clk_core_get_parent_by_index(core, index);
2408}
2409
2410static void clk_core_reparent(struct clk_core *core,
2411 struct clk_core *new_parent)
2412{
2413 clk_reparent(core, new_parent);
2414 __clk_recalc_accuracies(core);
2415 __clk_recalc_rates(core, POST_RATE_CHANGE);
2416}
2417
2418void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2419{
2420 if (!hw)
2421 return;
2422
2423 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2424}
2425
2426/**
2427 * clk_has_parent - check if a clock is a possible parent for another
2428 * @clk: clock source
2429 * @parent: parent clock source
2430 *
2431 * This function can be used in drivers that need to check that a clock can be
2432 * the parent of another without actually changing the parent.
2433 *
2434 * Returns true if @parent is a possible parent for @clk, false otherwise.
2435 */
2436bool clk_has_parent(struct clk *clk, struct clk *parent)
2437{
2438 struct clk_core *core, *parent_core;
David Brazdil0f672f62019-12-10 10:32:29 +00002439 int i;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002440
2441 /* NULL clocks should be nops, so return success if either is NULL. */
2442 if (!clk || !parent)
2443 return true;
2444
2445 core = clk->core;
2446 parent_core = parent->core;
2447
2448 /* Optimize for the case where the parent is already the parent. */
2449 if (core->parent == parent_core)
2450 return true;
2451
David Brazdil0f672f62019-12-10 10:32:29 +00002452 for (i = 0; i < core->num_parents; i++)
2453 if (!strcmp(core->parents[i].name, parent_core->name))
2454 return true;
2455
2456 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002457}
2458EXPORT_SYMBOL_GPL(clk_has_parent);
2459
2460static int clk_core_set_parent_nolock(struct clk_core *core,
2461 struct clk_core *parent)
2462{
2463 int ret = 0;
2464 int p_index = 0;
2465 unsigned long p_rate = 0;
2466
2467 lockdep_assert_held(&prepare_lock);
2468
2469 if (!core)
2470 return 0;
2471
2472 if (core->parent == parent)
2473 return 0;
2474
David Brazdil0f672f62019-12-10 10:32:29 +00002475 /* verify ops for multi-parent clks */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002476 if (core->num_parents > 1 && !core->ops->set_parent)
2477 return -EPERM;
2478
2479 /* check that we are allowed to re-parent if the clock is in use */
2480 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2481 return -EBUSY;
2482
2483 if (clk_core_rate_is_protected(core))
2484 return -EBUSY;
2485
2486 /* try finding the new parent index */
2487 if (parent) {
2488 p_index = clk_fetch_parent_index(core, parent);
2489 if (p_index < 0) {
2490 pr_debug("%s: clk %s can not be parent of clk %s\n",
2491 __func__, parent->name, core->name);
2492 return p_index;
2493 }
2494 p_rate = parent->rate;
2495 }
2496
2497 ret = clk_pm_runtime_get(core);
2498 if (ret)
2499 return ret;
2500
2501 /* propagate PRE_RATE_CHANGE notifications */
2502 ret = __clk_speculate_rates(core, p_rate);
2503
2504 /* abort if a driver objects */
2505 if (ret & NOTIFY_STOP_MASK)
2506 goto runtime_put;
2507
2508 /* do the re-parent */
2509 ret = __clk_set_parent(core, parent, p_index);
2510
2511 /* propagate rate an accuracy recalculation accordingly */
2512 if (ret) {
2513 __clk_recalc_rates(core, ABORT_RATE_CHANGE);
2514 } else {
2515 __clk_recalc_rates(core, POST_RATE_CHANGE);
2516 __clk_recalc_accuracies(core);
2517 }
2518
2519runtime_put:
2520 clk_pm_runtime_put(core);
2521
2522 return ret;
2523}
2524
David Brazdil0f672f62019-12-10 10:32:29 +00002525int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2526{
2527 return clk_core_set_parent_nolock(hw->core, parent->core);
2528}
2529EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2530
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002531/**
2532 * clk_set_parent - switch the parent of a mux clk
2533 * @clk: the mux clk whose input we are switching
2534 * @parent: the new input to clk
2535 *
2536 * Re-parent clk to use parent as its new input source. If clk is in
2537 * prepared state, the clk will get enabled for the duration of this call. If
2538 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2539 * that, the reparenting is glitchy in hardware, etc), use the
2540 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2541 *
2542 * After successfully changing clk's parent clk_set_parent will update the
2543 * clk topology, sysfs topology and propagate rate recalculation via
2544 * __clk_recalc_rates.
2545 *
2546 * Returns 0 on success, -EERROR otherwise.
2547 */
2548int clk_set_parent(struct clk *clk, struct clk *parent)
2549{
2550 int ret;
2551
2552 if (!clk)
2553 return 0;
2554
2555 clk_prepare_lock();
2556
2557 if (clk->exclusive_count)
2558 clk_core_rate_unprotect(clk->core);
2559
2560 ret = clk_core_set_parent_nolock(clk->core,
2561 parent ? parent->core : NULL);
2562
2563 if (clk->exclusive_count)
2564 clk_core_rate_protect(clk->core);
2565
2566 clk_prepare_unlock();
2567
2568 return ret;
2569}
2570EXPORT_SYMBOL_GPL(clk_set_parent);
2571
2572static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2573{
2574 int ret = -EINVAL;
2575
2576 lockdep_assert_held(&prepare_lock);
2577
2578 if (!core)
2579 return 0;
2580
2581 if (clk_core_rate_is_protected(core))
2582 return -EBUSY;
2583
2584 trace_clk_set_phase(core, degrees);
2585
2586 if (core->ops->set_phase) {
2587 ret = core->ops->set_phase(core->hw, degrees);
2588 if (!ret)
2589 core->phase = degrees;
2590 }
2591
2592 trace_clk_set_phase_complete(core, degrees);
2593
2594 return ret;
2595}
2596
2597/**
2598 * clk_set_phase - adjust the phase shift of a clock signal
2599 * @clk: clock signal source
2600 * @degrees: number of degrees the signal is shifted
2601 *
2602 * Shifts the phase of a clock signal by the specified
2603 * degrees. Returns 0 on success, -EERROR otherwise.
2604 *
2605 * This function makes no distinction about the input or reference
2606 * signal that we adjust the clock signal phase against. For example
2607 * phase locked-loop clock signal generators we may shift phase with
2608 * respect to feedback clock signal input, but for other cases the
2609 * clock phase may be shifted with respect to some other, unspecified
2610 * signal.
2611 *
2612 * Additionally the concept of phase shift does not propagate through
2613 * the clock tree hierarchy, which sets it apart from clock rates and
2614 * clock accuracy. A parent clock phase attribute does not have an
2615 * impact on the phase attribute of a child clock.
2616 */
2617int clk_set_phase(struct clk *clk, int degrees)
2618{
2619 int ret;
2620
2621 if (!clk)
2622 return 0;
2623
2624 /* sanity check degrees */
2625 degrees %= 360;
2626 if (degrees < 0)
2627 degrees += 360;
2628
2629 clk_prepare_lock();
2630
2631 if (clk->exclusive_count)
2632 clk_core_rate_unprotect(clk->core);
2633
2634 ret = clk_core_set_phase_nolock(clk->core, degrees);
2635
2636 if (clk->exclusive_count)
2637 clk_core_rate_protect(clk->core);
2638
2639 clk_prepare_unlock();
2640
2641 return ret;
2642}
2643EXPORT_SYMBOL_GPL(clk_set_phase);
2644
2645static int clk_core_get_phase(struct clk_core *core)
2646{
2647 int ret;
2648
Olivier Deprez0e641232021-09-23 10:07:05 +02002649 lockdep_assert_held(&prepare_lock);
2650 if (!core->ops->get_phase)
2651 return 0;
2652
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002653 /* Always try to update cached phase if possible */
Olivier Deprez0e641232021-09-23 10:07:05 +02002654 ret = core->ops->get_phase(core->hw);
2655 if (ret >= 0)
2656 core->phase = ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002657
2658 return ret;
2659}
2660
2661/**
2662 * clk_get_phase - return the phase shift of a clock signal
2663 * @clk: clock signal source
2664 *
2665 * Returns the phase shift of a clock node in degrees, otherwise returns
2666 * -EERROR.
2667 */
2668int clk_get_phase(struct clk *clk)
2669{
Olivier Deprez0e641232021-09-23 10:07:05 +02002670 int ret;
2671
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002672 if (!clk)
2673 return 0;
2674
Olivier Deprez0e641232021-09-23 10:07:05 +02002675 clk_prepare_lock();
2676 ret = clk_core_get_phase(clk->core);
2677 clk_prepare_unlock();
2678
2679 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002680}
2681EXPORT_SYMBOL_GPL(clk_get_phase);
2682
2683static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2684{
2685 /* Assume a default value of 50% */
2686 core->duty.num = 1;
2687 core->duty.den = 2;
2688}
2689
2690static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2691
2692static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2693{
2694 struct clk_duty *duty = &core->duty;
2695 int ret = 0;
2696
2697 if (!core->ops->get_duty_cycle)
2698 return clk_core_update_duty_cycle_parent_nolock(core);
2699
2700 ret = core->ops->get_duty_cycle(core->hw, duty);
2701 if (ret)
2702 goto reset;
2703
2704 /* Don't trust the clock provider too much */
2705 if (duty->den == 0 || duty->num > duty->den) {
2706 ret = -EINVAL;
2707 goto reset;
2708 }
2709
2710 return 0;
2711
2712reset:
2713 clk_core_reset_duty_cycle_nolock(core);
2714 return ret;
2715}
2716
2717static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2718{
2719 int ret = 0;
2720
2721 if (core->parent &&
2722 core->flags & CLK_DUTY_CYCLE_PARENT) {
2723 ret = clk_core_update_duty_cycle_nolock(core->parent);
2724 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2725 } else {
2726 clk_core_reset_duty_cycle_nolock(core);
2727 }
2728
2729 return ret;
2730}
2731
2732static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2733 struct clk_duty *duty);
2734
2735static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2736 struct clk_duty *duty)
2737{
2738 int ret;
2739
2740 lockdep_assert_held(&prepare_lock);
2741
2742 if (clk_core_rate_is_protected(core))
2743 return -EBUSY;
2744
2745 trace_clk_set_duty_cycle(core, duty);
2746
2747 if (!core->ops->set_duty_cycle)
2748 return clk_core_set_duty_cycle_parent_nolock(core, duty);
2749
2750 ret = core->ops->set_duty_cycle(core->hw, duty);
2751 if (!ret)
2752 memcpy(&core->duty, duty, sizeof(*duty));
2753
2754 trace_clk_set_duty_cycle_complete(core, duty);
2755
2756 return ret;
2757}
2758
2759static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2760 struct clk_duty *duty)
2761{
2762 int ret = 0;
2763
2764 if (core->parent &&
2765 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2766 ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2767 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2768 }
2769
2770 return ret;
2771}
2772
2773/**
2774 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2775 * @clk: clock signal source
2776 * @num: numerator of the duty cycle ratio to be applied
2777 * @den: denominator of the duty cycle ratio to be applied
2778 *
2779 * Apply the duty cycle ratio if the ratio is valid and the clock can
2780 * perform this operation
2781 *
2782 * Returns (0) on success, a negative errno otherwise.
2783 */
2784int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2785{
2786 int ret;
2787 struct clk_duty duty;
2788
2789 if (!clk)
2790 return 0;
2791
2792 /* sanity check the ratio */
2793 if (den == 0 || num > den)
2794 return -EINVAL;
2795
2796 duty.num = num;
2797 duty.den = den;
2798
2799 clk_prepare_lock();
2800
2801 if (clk->exclusive_count)
2802 clk_core_rate_unprotect(clk->core);
2803
2804 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2805
2806 if (clk->exclusive_count)
2807 clk_core_rate_protect(clk->core);
2808
2809 clk_prepare_unlock();
2810
2811 return ret;
2812}
2813EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2814
2815static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2816 unsigned int scale)
2817{
2818 struct clk_duty *duty = &core->duty;
2819 int ret;
2820
2821 clk_prepare_lock();
2822
2823 ret = clk_core_update_duty_cycle_nolock(core);
2824 if (!ret)
2825 ret = mult_frac(scale, duty->num, duty->den);
2826
2827 clk_prepare_unlock();
2828
2829 return ret;
2830}
2831
2832/**
2833 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2834 * @clk: clock signal source
2835 * @scale: scaling factor to be applied to represent the ratio as an integer
2836 *
2837 * Returns the duty cycle ratio of a clock node multiplied by the provided
2838 * scaling factor, or negative errno on error.
2839 */
2840int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2841{
2842 if (!clk)
2843 return 0;
2844
2845 return clk_core_get_scaled_duty_cycle(clk->core, scale);
2846}
2847EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2848
2849/**
2850 * clk_is_match - check if two clk's point to the same hardware clock
2851 * @p: clk compared against q
2852 * @q: clk compared against p
2853 *
2854 * Returns true if the two struct clk pointers both point to the same hardware
2855 * clock node. Put differently, returns true if struct clk *p and struct clk *q
2856 * share the same struct clk_core object.
2857 *
2858 * Returns false otherwise. Note that two NULL clks are treated as matching.
2859 */
2860bool clk_is_match(const struct clk *p, const struct clk *q)
2861{
2862 /* trivial case: identical struct clk's or both NULL */
2863 if (p == q)
2864 return true;
2865
2866 /* true if clk->core pointers match. Avoid dereferencing garbage */
2867 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2868 if (p->core == q->core)
2869 return true;
2870
2871 return false;
2872}
2873EXPORT_SYMBOL_GPL(clk_is_match);
2874
2875/*** debugfs support ***/
2876
2877#ifdef CONFIG_DEBUG_FS
2878#include <linux/debugfs.h>
2879
2880static struct dentry *rootdir;
2881static int inited = 0;
2882static DEFINE_MUTEX(clk_debug_lock);
2883static HLIST_HEAD(clk_debug_list);
2884
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002885static struct hlist_head *orphan_list[] = {
2886 &clk_orphan_list,
2887 NULL,
2888};
2889
2890static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2891 int level)
2892{
Olivier Deprez0e641232021-09-23 10:07:05 +02002893 int phase;
2894
2895 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002896 level * 3 + 1, "",
2897 30 - level * 3, c->name,
2898 c->enable_count, c->prepare_count, c->protect_count,
Olivier Deprez0e641232021-09-23 10:07:05 +02002899 clk_core_get_rate(c), clk_core_get_accuracy(c));
2900
2901 phase = clk_core_get_phase(c);
2902 if (phase >= 0)
2903 seq_printf(s, "%5d", phase);
2904 else
2905 seq_puts(s, "-----");
2906
2907 seq_printf(s, " %6d\n", clk_core_get_scaled_duty_cycle(c, 100000));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002908}
2909
2910static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2911 int level)
2912{
2913 struct clk_core *child;
2914
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002915 clk_summary_show_one(s, c, level);
2916
2917 hlist_for_each_entry(child, &c->children, child_node)
2918 clk_summary_show_subtree(s, child, level + 1);
2919}
2920
2921static int clk_summary_show(struct seq_file *s, void *data)
2922{
2923 struct clk_core *c;
2924 struct hlist_head **lists = (struct hlist_head **)s->private;
2925
2926 seq_puts(s, " enable prepare protect duty\n");
2927 seq_puts(s, " clock count count count rate accuracy phase cycle\n");
2928 seq_puts(s, "---------------------------------------------------------------------------------------------\n");
2929
2930 clk_prepare_lock();
2931
2932 for (; *lists; lists++)
2933 hlist_for_each_entry(c, *lists, child_node)
2934 clk_summary_show_subtree(s, c, 0);
2935
2936 clk_prepare_unlock();
2937
2938 return 0;
2939}
2940DEFINE_SHOW_ATTRIBUTE(clk_summary);
2941
2942static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2943{
Olivier Deprez0e641232021-09-23 10:07:05 +02002944 int phase;
David Brazdil0f672f62019-12-10 10:32:29 +00002945 unsigned long min_rate, max_rate;
2946
2947 clk_core_get_boundaries(c, &min_rate, &max_rate);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002948
2949 /* This should be JSON format, i.e. elements separated with a comma */
2950 seq_printf(s, "\"%s\": { ", c->name);
2951 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2952 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2953 seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2954 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
David Brazdil0f672f62019-12-10 10:32:29 +00002955 seq_printf(s, "\"min_rate\": %lu,", min_rate);
2956 seq_printf(s, "\"max_rate\": %lu,", max_rate);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002957 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
Olivier Deprez0e641232021-09-23 10:07:05 +02002958 phase = clk_core_get_phase(c);
2959 if (phase >= 0)
2960 seq_printf(s, "\"phase\": %d,", phase);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002961 seq_printf(s, "\"duty_cycle\": %u",
2962 clk_core_get_scaled_duty_cycle(c, 100000));
2963}
2964
2965static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2966{
2967 struct clk_core *child;
2968
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002969 clk_dump_one(s, c, level);
2970
2971 hlist_for_each_entry(child, &c->children, child_node) {
2972 seq_putc(s, ',');
2973 clk_dump_subtree(s, child, level + 1);
2974 }
2975
2976 seq_putc(s, '}');
2977}
2978
2979static int clk_dump_show(struct seq_file *s, void *data)
2980{
2981 struct clk_core *c;
2982 bool first_node = true;
2983 struct hlist_head **lists = (struct hlist_head **)s->private;
2984
2985 seq_putc(s, '{');
2986 clk_prepare_lock();
2987
2988 for (; *lists; lists++) {
2989 hlist_for_each_entry(c, *lists, child_node) {
2990 if (!first_node)
2991 seq_putc(s, ',');
2992 first_node = false;
2993 clk_dump_subtree(s, c, 0);
2994 }
2995 }
2996
2997 clk_prepare_unlock();
2998
2999 seq_puts(s, "}\n");
3000 return 0;
3001}
3002DEFINE_SHOW_ATTRIBUTE(clk_dump);
3003
3004static const struct {
3005 unsigned long flag;
3006 const char *name;
3007} clk_flags[] = {
3008#define ENTRY(f) { f, #f }
3009 ENTRY(CLK_SET_RATE_GATE),
3010 ENTRY(CLK_SET_PARENT_GATE),
3011 ENTRY(CLK_SET_RATE_PARENT),
3012 ENTRY(CLK_IGNORE_UNUSED),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003013 ENTRY(CLK_GET_RATE_NOCACHE),
3014 ENTRY(CLK_SET_RATE_NO_REPARENT),
3015 ENTRY(CLK_GET_ACCURACY_NOCACHE),
3016 ENTRY(CLK_RECALC_NEW_RATES),
3017 ENTRY(CLK_SET_RATE_UNGATE),
3018 ENTRY(CLK_IS_CRITICAL),
3019 ENTRY(CLK_OPS_PARENT_ENABLE),
3020 ENTRY(CLK_DUTY_CYCLE_PARENT),
3021#undef ENTRY
3022};
3023
3024static int clk_flags_show(struct seq_file *s, void *data)
3025{
3026 struct clk_core *core = s->private;
3027 unsigned long flags = core->flags;
3028 unsigned int i;
3029
3030 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3031 if (flags & clk_flags[i].flag) {
3032 seq_printf(s, "%s\n", clk_flags[i].name);
3033 flags &= ~clk_flags[i].flag;
3034 }
3035 }
3036 if (flags) {
3037 /* Unknown flags */
3038 seq_printf(s, "0x%lx\n", flags);
3039 }
3040
3041 return 0;
3042}
3043DEFINE_SHOW_ATTRIBUTE(clk_flags);
3044
David Brazdil0f672f62019-12-10 10:32:29 +00003045static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3046 unsigned int i, char terminator)
3047{
3048 struct clk_core *parent;
3049
3050 /*
3051 * Go through the following options to fetch a parent's name.
3052 *
3053 * 1. Fetch the registered parent clock and use its name
3054 * 2. Use the global (fallback) name if specified
3055 * 3. Use the local fw_name if provided
3056 * 4. Fetch parent clock's clock-output-name if DT index was set
3057 *
3058 * This may still fail in some cases, such as when the parent is
3059 * specified directly via a struct clk_hw pointer, but it isn't
3060 * registered (yet).
3061 */
3062 parent = clk_core_get_parent_by_index(core, i);
3063 if (parent)
3064 seq_puts(s, parent->name);
3065 else if (core->parents[i].name)
3066 seq_puts(s, core->parents[i].name);
3067 else if (core->parents[i].fw_name)
3068 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3069 else if (core->parents[i].index >= 0)
3070 seq_puts(s,
3071 of_clk_get_parent_name(core->of_node,
3072 core->parents[i].index));
3073 else
3074 seq_puts(s, "(missing)");
3075
3076 seq_putc(s, terminator);
3077}
3078
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003079static int possible_parents_show(struct seq_file *s, void *data)
3080{
3081 struct clk_core *core = s->private;
3082 int i;
3083
3084 for (i = 0; i < core->num_parents - 1; i++)
David Brazdil0f672f62019-12-10 10:32:29 +00003085 possible_parent_show(s, core, i, ' ');
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003086
David Brazdil0f672f62019-12-10 10:32:29 +00003087 possible_parent_show(s, core, i, '\n');
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003088
3089 return 0;
3090}
3091DEFINE_SHOW_ATTRIBUTE(possible_parents);
3092
David Brazdil0f672f62019-12-10 10:32:29 +00003093static int current_parent_show(struct seq_file *s, void *data)
3094{
3095 struct clk_core *core = s->private;
3096
3097 if (core->parent)
3098 seq_printf(s, "%s\n", core->parent->name);
3099
3100 return 0;
3101}
3102DEFINE_SHOW_ATTRIBUTE(current_parent);
3103
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003104static int clk_duty_cycle_show(struct seq_file *s, void *data)
3105{
3106 struct clk_core *core = s->private;
3107 struct clk_duty *duty = &core->duty;
3108
3109 seq_printf(s, "%u/%u\n", duty->num, duty->den);
3110
3111 return 0;
3112}
3113DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3114
David Brazdil0f672f62019-12-10 10:32:29 +00003115static int clk_min_rate_show(struct seq_file *s, void *data)
3116{
3117 struct clk_core *core = s->private;
3118 unsigned long min_rate, max_rate;
3119
3120 clk_prepare_lock();
3121 clk_core_get_boundaries(core, &min_rate, &max_rate);
3122 clk_prepare_unlock();
3123 seq_printf(s, "%lu\n", min_rate);
3124
3125 return 0;
3126}
3127DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3128
3129static int clk_max_rate_show(struct seq_file *s, void *data)
3130{
3131 struct clk_core *core = s->private;
3132 unsigned long min_rate, max_rate;
3133
3134 clk_prepare_lock();
3135 clk_core_get_boundaries(core, &min_rate, &max_rate);
3136 clk_prepare_unlock();
3137 seq_printf(s, "%lu\n", max_rate);
3138
3139 return 0;
3140}
3141DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3142
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003143static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3144{
3145 struct dentry *root;
3146
3147 if (!core || !pdentry)
3148 return;
3149
3150 root = debugfs_create_dir(core->name, pdentry);
3151 core->dentry = root;
3152
3153 debugfs_create_ulong("clk_rate", 0444, root, &core->rate);
David Brazdil0f672f62019-12-10 10:32:29 +00003154 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3155 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003156 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3157 debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3158 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3159 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3160 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3161 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3162 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3163 debugfs_create_file("clk_duty_cycle", 0444, root, core,
3164 &clk_duty_cycle_fops);
3165
David Brazdil0f672f62019-12-10 10:32:29 +00003166 if (core->num_parents > 0)
3167 debugfs_create_file("clk_parent", 0444, root, core,
3168 &current_parent_fops);
3169
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003170 if (core->num_parents > 1)
3171 debugfs_create_file("clk_possible_parents", 0444, root, core,
3172 &possible_parents_fops);
3173
3174 if (core->ops->debug_init)
3175 core->ops->debug_init(core->hw, core->dentry);
3176}
3177
3178/**
3179 * clk_debug_register - add a clk node to the debugfs clk directory
3180 * @core: the clk being added to the debugfs clk directory
3181 *
3182 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3183 * initialized. Otherwise it bails out early since the debugfs clk directory
3184 * will be created lazily by clk_debug_init as part of a late_initcall.
3185 */
3186static void clk_debug_register(struct clk_core *core)
3187{
3188 mutex_lock(&clk_debug_lock);
3189 hlist_add_head(&core->debug_node, &clk_debug_list);
3190 if (inited)
3191 clk_debug_create_one(core, rootdir);
3192 mutex_unlock(&clk_debug_lock);
3193}
3194
3195 /**
3196 * clk_debug_unregister - remove a clk node from the debugfs clk directory
3197 * @core: the clk being removed from the debugfs clk directory
3198 *
3199 * Dynamically removes a clk and all its child nodes from the
3200 * debugfs clk directory if clk->dentry points to debugfs created by
3201 * clk_debug_register in __clk_core_init.
3202 */
3203static void clk_debug_unregister(struct clk_core *core)
3204{
3205 mutex_lock(&clk_debug_lock);
3206 hlist_del_init(&core->debug_node);
3207 debugfs_remove_recursive(core->dentry);
3208 core->dentry = NULL;
3209 mutex_unlock(&clk_debug_lock);
3210}
3211
3212/**
3213 * clk_debug_init - lazily populate the debugfs clk directory
3214 *
3215 * clks are often initialized very early during boot before memory can be
3216 * dynamically allocated and well before debugfs is setup. This function
3217 * populates the debugfs clk directory once at boot-time when we know that
3218 * debugfs is setup. It should only be called once at boot-time, all other clks
3219 * added dynamically will be done so with clk_debug_register.
3220 */
3221static int __init clk_debug_init(void)
3222{
3223 struct clk_core *core;
3224
3225 rootdir = debugfs_create_dir("clk", NULL);
3226
3227 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3228 &clk_summary_fops);
3229 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3230 &clk_dump_fops);
3231 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3232 &clk_summary_fops);
3233 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3234 &clk_dump_fops);
3235
3236 mutex_lock(&clk_debug_lock);
3237 hlist_for_each_entry(core, &clk_debug_list, debug_node)
3238 clk_debug_create_one(core, rootdir);
3239
3240 inited = 1;
3241 mutex_unlock(&clk_debug_lock);
3242
3243 return 0;
3244}
3245late_initcall(clk_debug_init);
3246#else
3247static inline void clk_debug_register(struct clk_core *core) { }
3248static inline void clk_debug_reparent(struct clk_core *core,
3249 struct clk_core *new_parent)
3250{
3251}
3252static inline void clk_debug_unregister(struct clk_core *core)
3253{
3254}
3255#endif
3256
Olivier Deprez0e641232021-09-23 10:07:05 +02003257static void clk_core_reparent_orphans_nolock(void)
3258{
3259 struct clk_core *orphan;
3260 struct hlist_node *tmp2;
3261
3262 /*
3263 * walk the list of orphan clocks and reparent any that newly finds a
3264 * parent.
3265 */
3266 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3267 struct clk_core *parent = __clk_init_parent(orphan);
3268
3269 /*
3270 * We need to use __clk_set_parent_before() and _after() to
3271 * to properly migrate any prepare/enable count of the orphan
3272 * clock. This is important for CLK_IS_CRITICAL clocks, which
3273 * are enabled during init but might not have a parent yet.
3274 */
3275 if (parent) {
3276 /* update the clk tree topology */
3277 __clk_set_parent_before(orphan, parent);
3278 __clk_set_parent_after(orphan, parent, NULL);
3279 __clk_recalc_accuracies(orphan);
3280 __clk_recalc_rates(orphan, 0);
3281 }
3282 }
3283}
3284
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003285/**
3286 * __clk_core_init - initialize the data structures in a struct clk_core
3287 * @core: clk_core being initialized
3288 *
3289 * Initializes the lists in struct clk_core, queries the hardware for the
3290 * parent and rate and sets them both.
3291 */
3292static int __clk_core_init(struct clk_core *core)
3293{
David Brazdil0f672f62019-12-10 10:32:29 +00003294 int ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003295 unsigned long rate;
3296
3297 if (!core)
3298 return -EINVAL;
3299
3300 clk_prepare_lock();
3301
3302 ret = clk_pm_runtime_get(core);
3303 if (ret)
3304 goto unlock;
3305
3306 /* check to see if a clock with this name is already registered */
3307 if (clk_core_lookup(core->name)) {
3308 pr_debug("%s: clk %s already initialized\n",
3309 __func__, core->name);
3310 ret = -EEXIST;
3311 goto out;
3312 }
3313
3314 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */
3315 if (core->ops->set_rate &&
3316 !((core->ops->round_rate || core->ops->determine_rate) &&
3317 core->ops->recalc_rate)) {
3318 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3319 __func__, core->name);
3320 ret = -EINVAL;
3321 goto out;
3322 }
3323
3324 if (core->ops->set_parent && !core->ops->get_parent) {
3325 pr_err("%s: %s must implement .get_parent & .set_parent\n",
3326 __func__, core->name);
3327 ret = -EINVAL;
3328 goto out;
3329 }
3330
3331 if (core->num_parents > 1 && !core->ops->get_parent) {
3332 pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3333 __func__, core->name);
3334 ret = -EINVAL;
3335 goto out;
3336 }
3337
3338 if (core->ops->set_rate_and_parent &&
3339 !(core->ops->set_parent && core->ops->set_rate)) {
3340 pr_err("%s: %s must implement .set_parent & .set_rate\n",
3341 __func__, core->name);
3342 ret = -EINVAL;
3343 goto out;
3344 }
3345
Olivier Deprez0e641232021-09-23 10:07:05 +02003346 /*
3347 * optional platform-specific magic
3348 *
3349 * The .init callback is not used by any of the basic clock types, but
3350 * exists for weird hardware that must perform initialization magic.
3351 * Please consider other ways of solving initialization problems before
3352 * using this callback, as its use is discouraged.
3353 *
3354 * If it exist, this callback should called before any other callback of
3355 * the clock
3356 */
3357 if (core->ops->init)
3358 core->ops->init(core->hw);
3359
3360
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003361 core->parent = __clk_init_parent(core);
3362
3363 /*
3364 * Populate core->parent if parent has already been clk_core_init'd. If
3365 * parent has not yet been clk_core_init'd then place clk in the orphan
3366 * list. If clk doesn't have any parents then place it in the root
3367 * clk list.
3368 *
3369 * Every time a new clk is clk_init'd then we walk the list of orphan
3370 * clocks and re-parent any that are children of the clock currently
3371 * being clk_init'd.
3372 */
3373 if (core->parent) {
3374 hlist_add_head(&core->child_node,
3375 &core->parent->children);
3376 core->orphan = core->parent->orphan;
3377 } else if (!core->num_parents) {
3378 hlist_add_head(&core->child_node, &clk_root_list);
3379 core->orphan = false;
3380 } else {
3381 hlist_add_head(&core->child_node, &clk_orphan_list);
3382 core->orphan = true;
3383 }
3384
3385 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003386 * Set clk's accuracy. The preferred method is to use
3387 * .recalc_accuracy. For simple clocks and lazy developers the default
3388 * fallback is to use the parent's accuracy. If a clock doesn't have a
3389 * parent (or is orphaned) then accuracy is set to zero (perfect
3390 * clock).
3391 */
3392 if (core->ops->recalc_accuracy)
3393 core->accuracy = core->ops->recalc_accuracy(core->hw,
3394 __clk_get_accuracy(core->parent));
3395 else if (core->parent)
3396 core->accuracy = core->parent->accuracy;
3397 else
3398 core->accuracy = 0;
3399
3400 /*
Olivier Deprez0e641232021-09-23 10:07:05 +02003401 * Set clk's phase by clk_core_get_phase() caching the phase.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003402 * Since a phase is by definition relative to its parent, just
3403 * query the current clock phase, or just assume it's in phase.
3404 */
Olivier Deprez0e641232021-09-23 10:07:05 +02003405 clk_core_get_phase(core);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003406
3407 /*
3408 * Set clk's duty cycle.
3409 */
3410 clk_core_update_duty_cycle_nolock(core);
3411
3412 /*
3413 * Set clk's rate. The preferred method is to use .recalc_rate. For
3414 * simple clocks and lazy developers the default fallback is to use the
3415 * parent's rate. If a clock doesn't have a parent (or is orphaned)
3416 * then rate is set to zero.
3417 */
3418 if (core->ops->recalc_rate)
3419 rate = core->ops->recalc_rate(core->hw,
3420 clk_core_get_rate_nolock(core->parent));
3421 else if (core->parent)
3422 rate = core->parent->rate;
3423 else
3424 rate = 0;
3425 core->rate = core->req_rate = rate;
3426
3427 /*
3428 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3429 * don't get accidentally disabled when walking the orphan tree and
3430 * reparenting clocks
3431 */
3432 if (core->flags & CLK_IS_CRITICAL) {
3433 unsigned long flags;
3434
Olivier Deprez0e641232021-09-23 10:07:05 +02003435 ret = clk_core_prepare(core);
3436 if (ret)
3437 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003438
3439 flags = clk_enable_lock();
Olivier Deprez0e641232021-09-23 10:07:05 +02003440 ret = clk_core_enable(core);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003441 clk_enable_unlock(flags);
Olivier Deprez0e641232021-09-23 10:07:05 +02003442 if (ret) {
3443 clk_core_unprepare(core);
3444 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003445 }
3446 }
3447
Olivier Deprez0e641232021-09-23 10:07:05 +02003448 clk_core_reparent_orphans_nolock();
3449
3450
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003451 kref_init(&core->ref);
3452out:
3453 clk_pm_runtime_put(core);
3454unlock:
Olivier Deprez0e641232021-09-23 10:07:05 +02003455 if (ret)
3456 hlist_del_init(&core->child_node);
3457
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003458 clk_prepare_unlock();
3459
3460 if (!ret)
3461 clk_debug_register(core);
3462
3463 return ret;
3464}
3465
David Brazdil0f672f62019-12-10 10:32:29 +00003466/**
3467 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3468 * @core: clk to add consumer to
3469 * @clk: consumer to link to a clk
3470 */
3471static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3472{
3473 clk_prepare_lock();
3474 hlist_add_head(&clk->clks_node, &core->clks);
3475 clk_prepare_unlock();
3476}
3477
3478/**
3479 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3480 * @clk: consumer to unlink
3481 */
3482static void clk_core_unlink_consumer(struct clk *clk)
3483{
3484 lockdep_assert_held(&prepare_lock);
3485 hlist_del(&clk->clks_node);
3486}
3487
3488/**
3489 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3490 * @core: clk to allocate a consumer for
3491 * @dev_id: string describing device name
3492 * @con_id: connection ID string on device
3493 *
3494 * Returns: clk consumer left unlinked from the consumer list
3495 */
3496static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003497 const char *con_id)
3498{
3499 struct clk *clk;
3500
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003501 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3502 if (!clk)
3503 return ERR_PTR(-ENOMEM);
3504
David Brazdil0f672f62019-12-10 10:32:29 +00003505 clk->core = core;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003506 clk->dev_id = dev_id;
3507 clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3508 clk->max_rate = ULONG_MAX;
3509
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003510 return clk;
3511}
3512
David Brazdil0f672f62019-12-10 10:32:29 +00003513/**
3514 * free_clk - Free a clk consumer
3515 * @clk: clk consumer to free
3516 *
3517 * Note, this assumes the clk has been unlinked from the clk_core consumer
3518 * list.
3519 */
3520static void free_clk(struct clk *clk)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003521{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003522 kfree_const(clk->con_id);
3523 kfree(clk);
3524}
3525
3526/**
David Brazdil0f672f62019-12-10 10:32:29 +00003527 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3528 * a clk_hw
3529 * @dev: clk consumer device
3530 * @hw: clk_hw associated with the clk being consumed
3531 * @dev_id: string describing device name
3532 * @con_id: connection ID string on device
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003533 *
David Brazdil0f672f62019-12-10 10:32:29 +00003534 * This is the main function used to create a clk pointer for use by clk
3535 * consumers. It connects a consumer to the clk_core and clk_hw structures
3536 * used by the framework and clk provider respectively.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003537 */
David Brazdil0f672f62019-12-10 10:32:29 +00003538struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3539 const char *dev_id, const char *con_id)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003540{
David Brazdil0f672f62019-12-10 10:32:29 +00003541 struct clk *clk;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003542 struct clk_core *core;
3543
David Brazdil0f672f62019-12-10 10:32:29 +00003544 /* This is to allow this function to be chained to others */
3545 if (IS_ERR_OR_NULL(hw))
3546 return ERR_CAST(hw);
3547
3548 core = hw->core;
3549 clk = alloc_clk(core, dev_id, con_id);
3550 if (IS_ERR(clk))
3551 return clk;
3552 clk->dev = dev;
3553
3554 if (!try_module_get(core->owner)) {
3555 free_clk(clk);
3556 return ERR_PTR(-ENOENT);
3557 }
3558
3559 kref_get(&core->ref);
3560 clk_core_link_consumer(core, clk);
3561
3562 return clk;
3563}
3564
3565static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3566{
3567 const char *dst;
3568
3569 if (!src) {
3570 if (must_exist)
3571 return -EINVAL;
3572 return 0;
3573 }
3574
3575 *dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3576 if (!dst)
3577 return -ENOMEM;
3578
3579 return 0;
3580}
3581
3582static int clk_core_populate_parent_map(struct clk_core *core,
3583 const struct clk_init_data *init)
3584{
3585 u8 num_parents = init->num_parents;
3586 const char * const *parent_names = init->parent_names;
3587 const struct clk_hw **parent_hws = init->parent_hws;
3588 const struct clk_parent_data *parent_data = init->parent_data;
3589 int i, ret = 0;
3590 struct clk_parent_map *parents, *parent;
3591
3592 if (!num_parents)
3593 return 0;
3594
3595 /*
3596 * Avoid unnecessary string look-ups of clk_core's possible parents by
3597 * having a cache of names/clk_hw pointers to clk_core pointers.
3598 */
3599 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3600 core->parents = parents;
3601 if (!parents)
3602 return -ENOMEM;
3603
3604 /* Copy everything over because it might be __initdata */
3605 for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3606 parent->index = -1;
3607 if (parent_names) {
3608 /* throw a WARN if any entries are NULL */
3609 WARN(!parent_names[i],
3610 "%s: invalid NULL in %s's .parent_names\n",
3611 __func__, core->name);
3612 ret = clk_cpy_name(&parent->name, parent_names[i],
3613 true);
3614 } else if (parent_data) {
3615 parent->hw = parent_data[i].hw;
3616 parent->index = parent_data[i].index;
3617 ret = clk_cpy_name(&parent->fw_name,
3618 parent_data[i].fw_name, false);
3619 if (!ret)
3620 ret = clk_cpy_name(&parent->name,
3621 parent_data[i].name,
3622 false);
3623 } else if (parent_hws) {
3624 parent->hw = parent_hws[i];
3625 } else {
3626 ret = -EINVAL;
3627 WARN(1, "Must specify parents if num_parents > 0\n");
3628 }
3629
3630 if (ret) {
3631 do {
3632 kfree_const(parents[i].name);
3633 kfree_const(parents[i].fw_name);
3634 } while (--i >= 0);
3635 kfree(parents);
3636
3637 return ret;
3638 }
3639 }
3640
3641 return 0;
3642}
3643
3644static void clk_core_free_parent_map(struct clk_core *core)
3645{
3646 int i = core->num_parents;
3647
3648 if (!core->num_parents)
3649 return;
3650
3651 while (--i >= 0) {
3652 kfree_const(core->parents[i].name);
3653 kfree_const(core->parents[i].fw_name);
3654 }
3655
3656 kfree(core->parents);
3657}
3658
3659static struct clk *
3660__clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3661{
3662 int ret;
3663 struct clk_core *core;
3664 const struct clk_init_data *init = hw->init;
3665
3666 /*
3667 * The init data is not supposed to be used outside of registration path.
3668 * Set it to NULL so that provider drivers can't use it either and so that
3669 * we catch use of hw->init early on in the core.
3670 */
3671 hw->init = NULL;
3672
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003673 core = kzalloc(sizeof(*core), GFP_KERNEL);
3674 if (!core) {
3675 ret = -ENOMEM;
3676 goto fail_out;
3677 }
3678
David Brazdil0f672f62019-12-10 10:32:29 +00003679 core->name = kstrdup_const(init->name, GFP_KERNEL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003680 if (!core->name) {
3681 ret = -ENOMEM;
3682 goto fail_name;
3683 }
3684
David Brazdil0f672f62019-12-10 10:32:29 +00003685 if (WARN_ON(!init->ops)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003686 ret = -EINVAL;
3687 goto fail_ops;
3688 }
David Brazdil0f672f62019-12-10 10:32:29 +00003689 core->ops = init->ops;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003690
3691 if (dev && pm_runtime_enabled(dev))
David Brazdil0f672f62019-12-10 10:32:29 +00003692 core->rpm_enabled = true;
3693 core->dev = dev;
3694 core->of_node = np;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003695 if (dev && dev->driver)
3696 core->owner = dev->driver->owner;
3697 core->hw = hw;
David Brazdil0f672f62019-12-10 10:32:29 +00003698 core->flags = init->flags;
3699 core->num_parents = init->num_parents;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003700 core->min_rate = 0;
3701 core->max_rate = ULONG_MAX;
3702 hw->core = core;
3703
David Brazdil0f672f62019-12-10 10:32:29 +00003704 ret = clk_core_populate_parent_map(core, init);
3705 if (ret)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003706 goto fail_parents;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003707
3708 INIT_HLIST_HEAD(&core->clks);
3709
David Brazdil0f672f62019-12-10 10:32:29 +00003710 /*
3711 * Don't call clk_hw_create_clk() here because that would pin the
3712 * provider module to itself and prevent it from ever being removed.
3713 */
3714 hw->clk = alloc_clk(core, NULL, NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003715 if (IS_ERR(hw->clk)) {
3716 ret = PTR_ERR(hw->clk);
David Brazdil0f672f62019-12-10 10:32:29 +00003717 goto fail_create_clk;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003718 }
3719
David Brazdil0f672f62019-12-10 10:32:29 +00003720 clk_core_link_consumer(hw->core, hw->clk);
3721
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003722 ret = __clk_core_init(core);
3723 if (!ret)
3724 return hw->clk;
3725
David Brazdil0f672f62019-12-10 10:32:29 +00003726 clk_prepare_lock();
3727 clk_core_unlink_consumer(hw->clk);
3728 clk_prepare_unlock();
3729
3730 free_clk(hw->clk);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003731 hw->clk = NULL;
3732
David Brazdil0f672f62019-12-10 10:32:29 +00003733fail_create_clk:
3734 clk_core_free_parent_map(core);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003735fail_parents:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003736fail_ops:
3737 kfree_const(core->name);
3738fail_name:
3739 kfree(core);
3740fail_out:
3741 return ERR_PTR(ret);
3742}
David Brazdil0f672f62019-12-10 10:32:29 +00003743
3744/**
Olivier Deprez0e641232021-09-23 10:07:05 +02003745 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
3746 * @dev: Device to get device node of
3747 *
3748 * Return: device node pointer of @dev, or the device node pointer of
3749 * @dev->parent if dev doesn't have a device node, or NULL if neither
3750 * @dev or @dev->parent have a device node.
3751 */
3752static struct device_node *dev_or_parent_of_node(struct device *dev)
3753{
3754 struct device_node *np;
3755
3756 if (!dev)
3757 return NULL;
3758
3759 np = dev_of_node(dev);
3760 if (!np)
3761 np = dev_of_node(dev->parent);
3762
3763 return np;
3764}
3765
3766/**
David Brazdil0f672f62019-12-10 10:32:29 +00003767 * clk_register - allocate a new clock, register it and return an opaque cookie
3768 * @dev: device that is registering this clock
3769 * @hw: link to hardware-specific clock data
3770 *
3771 * clk_register is the *deprecated* interface for populating the clock tree with
3772 * new clock nodes. Use clk_hw_register() instead.
3773 *
3774 * Returns: a pointer to the newly allocated struct clk which
3775 * cannot be dereferenced by driver code but may be used in conjunction with the
3776 * rest of the clock API. In the event of an error clk_register will return an
3777 * error code; drivers must test for an error code after calling clk_register.
3778 */
3779struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3780{
Olivier Deprez0e641232021-09-23 10:07:05 +02003781 return __clk_register(dev, dev_or_parent_of_node(dev), hw);
David Brazdil0f672f62019-12-10 10:32:29 +00003782}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003783EXPORT_SYMBOL_GPL(clk_register);
3784
3785/**
3786 * clk_hw_register - register a clk_hw and return an error code
3787 * @dev: device that is registering this clock
3788 * @hw: link to hardware-specific clock data
3789 *
3790 * clk_hw_register is the primary interface for populating the clock tree with
3791 * new clock nodes. It returns an integer equal to zero indicating success or
3792 * less than zero indicating failure. Drivers must test for an error code after
3793 * calling clk_hw_register().
3794 */
3795int clk_hw_register(struct device *dev, struct clk_hw *hw)
3796{
Olivier Deprez0e641232021-09-23 10:07:05 +02003797 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
3798 hw));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003799}
3800EXPORT_SYMBOL_GPL(clk_hw_register);
3801
David Brazdil0f672f62019-12-10 10:32:29 +00003802/*
3803 * of_clk_hw_register - register a clk_hw and return an error code
3804 * @node: device_node of device that is registering this clock
3805 * @hw: link to hardware-specific clock data
3806 *
3807 * of_clk_hw_register() is the primary interface for populating the clock tree
3808 * with new clock nodes when a struct device is not available, but a struct
3809 * device_node is. It returns an integer equal to zero indicating success or
3810 * less than zero indicating failure. Drivers must test for an error code after
3811 * calling of_clk_hw_register().
3812 */
3813int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
3814{
3815 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
3816}
3817EXPORT_SYMBOL_GPL(of_clk_hw_register);
3818
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003819/* Free memory allocated for a clock. */
3820static void __clk_release(struct kref *ref)
3821{
3822 struct clk_core *core = container_of(ref, struct clk_core, ref);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003823
3824 lockdep_assert_held(&prepare_lock);
3825
David Brazdil0f672f62019-12-10 10:32:29 +00003826 clk_core_free_parent_map(core);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003827 kfree_const(core->name);
3828 kfree(core);
3829}
3830
3831/*
3832 * Empty clk_ops for unregistered clocks. These are used temporarily
3833 * after clk_unregister() was called on a clock and until last clock
3834 * consumer calls clk_put() and the struct clk object is freed.
3835 */
3836static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3837{
3838 return -ENXIO;
3839}
3840
3841static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3842{
3843 WARN_ON_ONCE(1);
3844}
3845
3846static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3847 unsigned long parent_rate)
3848{
3849 return -ENXIO;
3850}
3851
3852static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3853{
3854 return -ENXIO;
3855}
3856
3857static const struct clk_ops clk_nodrv_ops = {
3858 .enable = clk_nodrv_prepare_enable,
3859 .disable = clk_nodrv_disable_unprepare,
3860 .prepare = clk_nodrv_prepare_enable,
3861 .unprepare = clk_nodrv_disable_unprepare,
3862 .set_rate = clk_nodrv_set_rate,
3863 .set_parent = clk_nodrv_set_parent,
3864};
3865
David Brazdil0f672f62019-12-10 10:32:29 +00003866static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
3867 struct clk_core *target)
3868{
3869 int i;
3870 struct clk_core *child;
3871
3872 for (i = 0; i < root->num_parents; i++)
3873 if (root->parents[i].core == target)
3874 root->parents[i].core = NULL;
3875
3876 hlist_for_each_entry(child, &root->children, child_node)
3877 clk_core_evict_parent_cache_subtree(child, target);
3878}
3879
3880/* Remove this clk from all parent caches */
3881static void clk_core_evict_parent_cache(struct clk_core *core)
3882{
3883 struct hlist_head **lists;
3884 struct clk_core *root;
3885
3886 lockdep_assert_held(&prepare_lock);
3887
3888 for (lists = all_lists; *lists; lists++)
3889 hlist_for_each_entry(root, *lists, child_node)
3890 clk_core_evict_parent_cache_subtree(root, core);
3891
3892}
3893
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003894/**
3895 * clk_unregister - unregister a currently registered clock
3896 * @clk: clock to unregister
3897 */
3898void clk_unregister(struct clk *clk)
3899{
3900 unsigned long flags;
3901
3902 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3903 return;
3904
3905 clk_debug_unregister(clk->core);
3906
3907 clk_prepare_lock();
3908
3909 if (clk->core->ops == &clk_nodrv_ops) {
3910 pr_err("%s: unregistered clock: %s\n", __func__,
3911 clk->core->name);
3912 goto unlock;
3913 }
3914 /*
3915 * Assign empty clock ops for consumers that might still hold
3916 * a reference to this clock.
3917 */
3918 flags = clk_enable_lock();
3919 clk->core->ops = &clk_nodrv_ops;
3920 clk_enable_unlock(flags);
3921
3922 if (!hlist_empty(&clk->core->children)) {
3923 struct clk_core *child;
3924 struct hlist_node *t;
3925
3926 /* Reparent all children to the orphan list. */
3927 hlist_for_each_entry_safe(child, t, &clk->core->children,
3928 child_node)
3929 clk_core_set_parent_nolock(child, NULL);
3930 }
3931
David Brazdil0f672f62019-12-10 10:32:29 +00003932 clk_core_evict_parent_cache(clk->core);
3933
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003934 hlist_del_init(&clk->core->child_node);
3935
3936 if (clk->core->prepare_count)
3937 pr_warn("%s: unregistering prepared clock: %s\n",
3938 __func__, clk->core->name);
3939
3940 if (clk->core->protect_count)
3941 pr_warn("%s: unregistering protected clock: %s\n",
3942 __func__, clk->core->name);
3943
3944 kref_put(&clk->core->ref, __clk_release);
Olivier Deprez0e641232021-09-23 10:07:05 +02003945 free_clk(clk);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003946unlock:
3947 clk_prepare_unlock();
3948}
3949EXPORT_SYMBOL_GPL(clk_unregister);
3950
3951/**
3952 * clk_hw_unregister - unregister a currently registered clk_hw
3953 * @hw: hardware-specific clock data to unregister
3954 */
3955void clk_hw_unregister(struct clk_hw *hw)
3956{
3957 clk_unregister(hw->clk);
3958}
3959EXPORT_SYMBOL_GPL(clk_hw_unregister);
3960
3961static void devm_clk_release(struct device *dev, void *res)
3962{
3963 clk_unregister(*(struct clk **)res);
3964}
3965
3966static void devm_clk_hw_release(struct device *dev, void *res)
3967{
3968 clk_hw_unregister(*(struct clk_hw **)res);
3969}
3970
3971/**
3972 * devm_clk_register - resource managed clk_register()
3973 * @dev: device that is registering this clock
3974 * @hw: link to hardware-specific clock data
3975 *
David Brazdil0f672f62019-12-10 10:32:29 +00003976 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
3977 *
3978 * Clocks returned from this function are automatically clk_unregister()ed on
3979 * driver detach. See clk_register() for more information.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003980 */
3981struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
3982{
3983 struct clk *clk;
3984 struct clk **clkp;
3985
3986 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
3987 if (!clkp)
3988 return ERR_PTR(-ENOMEM);
3989
3990 clk = clk_register(dev, hw);
3991 if (!IS_ERR(clk)) {
3992 *clkp = clk;
3993 devres_add(dev, clkp);
3994 } else {
3995 devres_free(clkp);
3996 }
3997
3998 return clk;
3999}
4000EXPORT_SYMBOL_GPL(devm_clk_register);
4001
4002/**
4003 * devm_clk_hw_register - resource managed clk_hw_register()
4004 * @dev: device that is registering this clock
4005 * @hw: link to hardware-specific clock data
4006 *
4007 * Managed clk_hw_register(). Clocks registered by this function are
4008 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4009 * for more information.
4010 */
4011int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4012{
4013 struct clk_hw **hwp;
4014 int ret;
4015
4016 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
4017 if (!hwp)
4018 return -ENOMEM;
4019
4020 ret = clk_hw_register(dev, hw);
4021 if (!ret) {
4022 *hwp = hw;
4023 devres_add(dev, hwp);
4024 } else {
4025 devres_free(hwp);
4026 }
4027
4028 return ret;
4029}
4030EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4031
4032static int devm_clk_match(struct device *dev, void *res, void *data)
4033{
4034 struct clk *c = res;
4035 if (WARN_ON(!c))
4036 return 0;
4037 return c == data;
4038}
4039
4040static int devm_clk_hw_match(struct device *dev, void *res, void *data)
4041{
4042 struct clk_hw *hw = res;
4043
4044 if (WARN_ON(!hw))
4045 return 0;
4046 return hw == data;
4047}
4048
4049/**
4050 * devm_clk_unregister - resource managed clk_unregister()
4051 * @clk: clock to unregister
4052 *
4053 * Deallocate a clock allocated with devm_clk_register(). Normally
4054 * this function will not need to be called and the resource management
4055 * code will ensure that the resource is freed.
4056 */
4057void devm_clk_unregister(struct device *dev, struct clk *clk)
4058{
4059 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
4060}
4061EXPORT_SYMBOL_GPL(devm_clk_unregister);
4062
4063/**
4064 * devm_clk_hw_unregister - resource managed clk_hw_unregister()
4065 * @dev: device that is unregistering the hardware-specific clock data
4066 * @hw: link to hardware-specific clock data
4067 *
4068 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
4069 * this function will not need to be called and the resource management
4070 * code will ensure that the resource is freed.
4071 */
4072void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
4073{
4074 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
4075 hw));
4076}
4077EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
4078
4079/*
4080 * clkdev helpers
4081 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004082
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004083void __clk_put(struct clk *clk)
4084{
4085 struct module *owner;
4086
4087 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4088 return;
4089
4090 clk_prepare_lock();
4091
4092 /*
4093 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4094 * given user should be balanced with calls to clk_rate_exclusive_put()
4095 * and by that same consumer
4096 */
4097 if (WARN_ON(clk->exclusive_count)) {
4098 /* We voiced our concern, let's sanitize the situation */
4099 clk->core->protect_count -= (clk->exclusive_count - 1);
4100 clk_core_rate_unprotect(clk->core);
4101 clk->exclusive_count = 0;
4102 }
4103
4104 hlist_del(&clk->clks_node);
4105 if (clk->min_rate > clk->core->req_rate ||
4106 clk->max_rate < clk->core->req_rate)
4107 clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
4108
4109 owner = clk->core->owner;
4110 kref_put(&clk->core->ref, __clk_release);
4111
4112 clk_prepare_unlock();
4113
4114 module_put(owner);
4115
David Brazdil0f672f62019-12-10 10:32:29 +00004116 free_clk(clk);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004117}
4118
4119/*** clk rate change notifiers ***/
4120
4121/**
4122 * clk_notifier_register - add a clk rate change notifier
4123 * @clk: struct clk * to watch
4124 * @nb: struct notifier_block * with callback info
4125 *
4126 * Request notification when clk's rate changes. This uses an SRCU
4127 * notifier because we want it to block and notifier unregistrations are
4128 * uncommon. The callbacks associated with the notifier must not
4129 * re-enter into the clk framework by calling any top-level clk APIs;
4130 * this will cause a nested prepare_lock mutex.
4131 *
4132 * In all notification cases (pre, post and abort rate change) the original
4133 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4134 * and the new frequency is passed via struct clk_notifier_data.new_rate.
4135 *
4136 * clk_notifier_register() must be called from non-atomic context.
4137 * Returns -EINVAL if called with null arguments, -ENOMEM upon
4138 * allocation failure; otherwise, passes along the return value of
4139 * srcu_notifier_chain_register().
4140 */
4141int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4142{
4143 struct clk_notifier *cn;
4144 int ret = -ENOMEM;
4145
4146 if (!clk || !nb)
4147 return -EINVAL;
4148
4149 clk_prepare_lock();
4150
4151 /* search the list of notifiers for this clk */
4152 list_for_each_entry(cn, &clk_notifier_list, node)
4153 if (cn->clk == clk)
Olivier Deprez0e641232021-09-23 10:07:05 +02004154 goto found;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004155
4156 /* if clk wasn't in the notifier list, allocate new clk_notifier */
Olivier Deprez0e641232021-09-23 10:07:05 +02004157 cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4158 if (!cn)
4159 goto out;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004160
Olivier Deprez0e641232021-09-23 10:07:05 +02004161 cn->clk = clk;
4162 srcu_init_notifier_head(&cn->notifier_head);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004163
Olivier Deprez0e641232021-09-23 10:07:05 +02004164 list_add(&cn->node, &clk_notifier_list);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004165
Olivier Deprez0e641232021-09-23 10:07:05 +02004166found:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004167 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4168
4169 clk->core->notifier_count++;
4170
4171out:
4172 clk_prepare_unlock();
4173
4174 return ret;
4175}
4176EXPORT_SYMBOL_GPL(clk_notifier_register);
4177
4178/**
4179 * clk_notifier_unregister - remove a clk rate change notifier
4180 * @clk: struct clk *
4181 * @nb: struct notifier_block * with callback info
4182 *
4183 * Request no further notification for changes to 'clk' and frees memory
4184 * allocated in clk_notifier_register.
4185 *
4186 * Returns -EINVAL if called with null arguments; otherwise, passes
4187 * along the return value of srcu_notifier_chain_unregister().
4188 */
4189int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4190{
Olivier Deprez0e641232021-09-23 10:07:05 +02004191 struct clk_notifier *cn;
4192 int ret = -ENOENT;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004193
4194 if (!clk || !nb)
4195 return -EINVAL;
4196
4197 clk_prepare_lock();
4198
Olivier Deprez0e641232021-09-23 10:07:05 +02004199 list_for_each_entry(cn, &clk_notifier_list, node) {
4200 if (cn->clk == clk) {
4201 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4202
4203 clk->core->notifier_count--;
4204
4205 /* XXX the notifier code should handle this better */
4206 if (!cn->notifier_head.head) {
4207 srcu_cleanup_notifier_head(&cn->notifier_head);
4208 list_del(&cn->node);
4209 kfree(cn);
4210 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004211 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004212 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004213 }
4214
4215 clk_prepare_unlock();
4216
4217 return ret;
4218}
4219EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4220
4221#ifdef CONFIG_OF
Olivier Deprez0e641232021-09-23 10:07:05 +02004222static void clk_core_reparent_orphans(void)
4223{
4224 clk_prepare_lock();
4225 clk_core_reparent_orphans_nolock();
4226 clk_prepare_unlock();
4227}
4228
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004229/**
4230 * struct of_clk_provider - Clock provider registration structure
4231 * @link: Entry in global list of clock providers
4232 * @node: Pointer to device tree node of clock provider
4233 * @get: Get clock callback. Returns NULL or a struct clk for the
4234 * given clock specifier
4235 * @data: context pointer to be passed into @get callback
4236 */
4237struct of_clk_provider {
4238 struct list_head link;
4239
4240 struct device_node *node;
4241 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4242 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4243 void *data;
4244};
4245
David Brazdil0f672f62019-12-10 10:32:29 +00004246extern struct of_device_id __clk_of_table;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004247static const struct of_device_id __clk_of_table_sentinel
4248 __used __section(__clk_of_table_end);
4249
4250static LIST_HEAD(of_clk_providers);
4251static DEFINE_MUTEX(of_clk_mutex);
4252
4253struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4254 void *data)
4255{
4256 return data;
4257}
4258EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4259
4260struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4261{
4262 return data;
4263}
4264EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4265
4266struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4267{
4268 struct clk_onecell_data *clk_data = data;
4269 unsigned int idx = clkspec->args[0];
4270
4271 if (idx >= clk_data->clk_num) {
4272 pr_err("%s: invalid clock index %u\n", __func__, idx);
4273 return ERR_PTR(-EINVAL);
4274 }
4275
4276 return clk_data->clks[idx];
4277}
4278EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4279
4280struct clk_hw *
4281of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4282{
4283 struct clk_hw_onecell_data *hw_data = data;
4284 unsigned int idx = clkspec->args[0];
4285
4286 if (idx >= hw_data->num) {
4287 pr_err("%s: invalid index %u\n", __func__, idx);
4288 return ERR_PTR(-EINVAL);
4289 }
4290
4291 return hw_data->hws[idx];
4292}
4293EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4294
4295/**
4296 * of_clk_add_provider() - Register a clock provider for a node
4297 * @np: Device node pointer associated with clock provider
4298 * @clk_src_get: callback for decoding clock
4299 * @data: context pointer for @clk_src_get callback.
David Brazdil0f672f62019-12-10 10:32:29 +00004300 *
4301 * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004302 */
4303int of_clk_add_provider(struct device_node *np,
4304 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4305 void *data),
4306 void *data)
4307{
4308 struct of_clk_provider *cp;
4309 int ret;
4310
4311 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4312 if (!cp)
4313 return -ENOMEM;
4314
4315 cp->node = of_node_get(np);
4316 cp->data = data;
4317 cp->get = clk_src_get;
4318
4319 mutex_lock(&of_clk_mutex);
4320 list_add(&cp->link, &of_clk_providers);
4321 mutex_unlock(&of_clk_mutex);
4322 pr_debug("Added clock from %pOF\n", np);
4323
Olivier Deprez0e641232021-09-23 10:07:05 +02004324 clk_core_reparent_orphans();
4325
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004326 ret = of_clk_set_defaults(np, true);
4327 if (ret < 0)
4328 of_clk_del_provider(np);
4329
4330 return ret;
4331}
4332EXPORT_SYMBOL_GPL(of_clk_add_provider);
4333
4334/**
4335 * of_clk_add_hw_provider() - Register a clock provider for a node
4336 * @np: Device node pointer associated with clock provider
4337 * @get: callback for decoding clk_hw
4338 * @data: context pointer for @get callback.
4339 */
4340int of_clk_add_hw_provider(struct device_node *np,
4341 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4342 void *data),
4343 void *data)
4344{
4345 struct of_clk_provider *cp;
4346 int ret;
4347
4348 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4349 if (!cp)
4350 return -ENOMEM;
4351
4352 cp->node = of_node_get(np);
4353 cp->data = data;
4354 cp->get_hw = get;
4355
4356 mutex_lock(&of_clk_mutex);
4357 list_add(&cp->link, &of_clk_providers);
4358 mutex_unlock(&of_clk_mutex);
4359 pr_debug("Added clk_hw provider from %pOF\n", np);
4360
Olivier Deprez0e641232021-09-23 10:07:05 +02004361 clk_core_reparent_orphans();
4362
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004363 ret = of_clk_set_defaults(np, true);
4364 if (ret < 0)
4365 of_clk_del_provider(np);
4366
4367 return ret;
4368}
4369EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4370
4371static void devm_of_clk_release_provider(struct device *dev, void *res)
4372{
4373 of_clk_del_provider(*(struct device_node **)res);
4374}
4375
David Brazdil0f672f62019-12-10 10:32:29 +00004376/*
4377 * We allow a child device to use its parent device as the clock provider node
4378 * for cases like MFD sub-devices where the child device driver wants to use
4379 * devm_*() APIs but not list the device in DT as a sub-node.
4380 */
4381static struct device_node *get_clk_provider_node(struct device *dev)
4382{
4383 struct device_node *np, *parent_np;
4384
4385 np = dev->of_node;
4386 parent_np = dev->parent ? dev->parent->of_node : NULL;
4387
4388 if (!of_find_property(np, "#clock-cells", NULL))
4389 if (of_find_property(parent_np, "#clock-cells", NULL))
4390 np = parent_np;
4391
4392 return np;
4393}
4394
4395/**
4396 * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4397 * @dev: Device acting as the clock provider (used for DT node and lifetime)
4398 * @get: callback for decoding clk_hw
4399 * @data: context pointer for @get callback
4400 *
4401 * Registers clock provider for given device's node. If the device has no DT
4402 * node or if the device node lacks of clock provider information (#clock-cells)
4403 * then the parent device's node is scanned for this information. If parent node
4404 * has the #clock-cells then it is used in registration. Provider is
4405 * automatically released at device exit.
4406 *
4407 * Return: 0 on success or an errno on failure.
4408 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004409int devm_of_clk_add_hw_provider(struct device *dev,
4410 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4411 void *data),
4412 void *data)
4413{
4414 struct device_node **ptr, *np;
4415 int ret;
4416
4417 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4418 GFP_KERNEL);
4419 if (!ptr)
4420 return -ENOMEM;
4421
David Brazdil0f672f62019-12-10 10:32:29 +00004422 np = get_clk_provider_node(dev);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004423 ret = of_clk_add_hw_provider(np, get, data);
4424 if (!ret) {
4425 *ptr = np;
4426 devres_add(dev, ptr);
4427 } else {
4428 devres_free(ptr);
4429 }
4430
4431 return ret;
4432}
4433EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4434
4435/**
4436 * of_clk_del_provider() - Remove a previously registered clock provider
4437 * @np: Device node pointer associated with clock provider
4438 */
4439void of_clk_del_provider(struct device_node *np)
4440{
4441 struct of_clk_provider *cp;
4442
4443 mutex_lock(&of_clk_mutex);
4444 list_for_each_entry(cp, &of_clk_providers, link) {
4445 if (cp->node == np) {
4446 list_del(&cp->link);
4447 of_node_put(cp->node);
4448 kfree(cp);
4449 break;
4450 }
4451 }
4452 mutex_unlock(&of_clk_mutex);
4453}
4454EXPORT_SYMBOL_GPL(of_clk_del_provider);
4455
4456static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4457{
4458 struct device_node **np = res;
4459
4460 if (WARN_ON(!np || !*np))
4461 return 0;
4462
4463 return *np == data;
4464}
4465
David Brazdil0f672f62019-12-10 10:32:29 +00004466/**
4467 * devm_of_clk_del_provider() - Remove clock provider registered using devm
4468 * @dev: Device to whose lifetime the clock provider was bound
4469 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004470void devm_of_clk_del_provider(struct device *dev)
4471{
4472 int ret;
David Brazdil0f672f62019-12-10 10:32:29 +00004473 struct device_node *np = get_clk_provider_node(dev);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004474
4475 ret = devres_release(dev, devm_of_clk_release_provider,
David Brazdil0f672f62019-12-10 10:32:29 +00004476 devm_clk_provider_match, np);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004477
4478 WARN_ON(ret);
4479}
4480EXPORT_SYMBOL(devm_of_clk_del_provider);
4481
David Brazdil0f672f62019-12-10 10:32:29 +00004482/**
4483 * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4484 * @np: device node to parse clock specifier from
4485 * @index: index of phandle to parse clock out of. If index < 0, @name is used
4486 * @name: clock name to find and parse. If name is NULL, the index is used
4487 * @out_args: Result of parsing the clock specifier
4488 *
4489 * Parses a device node's "clocks" and "clock-names" properties to find the
4490 * phandle and cells for the index or name that is desired. The resulting clock
4491 * specifier is placed into @out_args, or an errno is returned when there's a
4492 * parsing error. The @index argument is ignored if @name is non-NULL.
4493 *
4494 * Example:
4495 *
4496 * phandle1: clock-controller@1 {
4497 * #clock-cells = <2>;
4498 * }
4499 *
4500 * phandle2: clock-controller@2 {
4501 * #clock-cells = <1>;
4502 * }
4503 *
4504 * clock-consumer@3 {
4505 * clocks = <&phandle1 1 2 &phandle2 3>;
4506 * clock-names = "name1", "name2";
4507 * }
4508 *
4509 * To get a device_node for `clock-controller@2' node you may call this
4510 * function a few different ways:
4511 *
4512 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4513 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4514 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4515 *
4516 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4517 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4518 * the "clock-names" property of @np.
4519 */
4520static int of_parse_clkspec(const struct device_node *np, int index,
4521 const char *name, struct of_phandle_args *out_args)
4522{
4523 int ret = -ENOENT;
4524
4525 /* Walk up the tree of devices looking for a clock property that matches */
4526 while (np) {
4527 /*
4528 * For named clocks, first look up the name in the
4529 * "clock-names" property. If it cannot be found, then index
4530 * will be an error code and of_parse_phandle_with_args() will
4531 * return -EINVAL.
4532 */
4533 if (name)
4534 index = of_property_match_string(np, "clock-names", name);
4535 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4536 index, out_args);
4537 if (!ret)
4538 break;
4539 if (name && index >= 0)
4540 break;
4541
4542 /*
4543 * No matching clock found on this node. If the parent node
4544 * has a "clock-ranges" property, then we can try one of its
4545 * clocks.
4546 */
4547 np = np->parent;
4548 if (np && !of_get_property(np, "clock-ranges", NULL))
4549 break;
4550 index = 0;
4551 }
4552
4553 return ret;
4554}
4555
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004556static struct clk_hw *
4557__of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4558 struct of_phandle_args *clkspec)
4559{
4560 struct clk *clk;
4561
4562 if (provider->get_hw)
4563 return provider->get_hw(clkspec, provider->data);
4564
4565 clk = provider->get(clkspec, provider->data);
4566 if (IS_ERR(clk))
4567 return ERR_CAST(clk);
4568 return __clk_get_hw(clk);
4569}
4570
David Brazdil0f672f62019-12-10 10:32:29 +00004571static struct clk_hw *
4572of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004573{
4574 struct of_clk_provider *provider;
David Brazdil0f672f62019-12-10 10:32:29 +00004575 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004576
4577 if (!clkspec)
4578 return ERR_PTR(-EINVAL);
4579
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004580 mutex_lock(&of_clk_mutex);
4581 list_for_each_entry(provider, &of_clk_providers, link) {
4582 if (provider->node == clkspec->np) {
4583 hw = __of_clk_get_hw_from_provider(provider, clkspec);
David Brazdil0f672f62019-12-10 10:32:29 +00004584 if (!IS_ERR(hw))
4585 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004586 }
4587 }
4588 mutex_unlock(&of_clk_mutex);
4589
David Brazdil0f672f62019-12-10 10:32:29 +00004590 return hw;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004591}
4592
4593/**
4594 * of_clk_get_from_provider() - Lookup a clock from a clock provider
4595 * @clkspec: pointer to a clock specifier data structure
4596 *
4597 * This function looks up a struct clk from the registered list of clock
4598 * providers, an input is a clock specifier data structure as returned
4599 * from the of_parse_phandle_with_args() function call.
4600 */
4601struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4602{
David Brazdil0f672f62019-12-10 10:32:29 +00004603 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4604
4605 return clk_hw_create_clk(NULL, hw, NULL, __func__);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004606}
4607EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4608
David Brazdil0f672f62019-12-10 10:32:29 +00004609struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4610 const char *con_id)
4611{
4612 int ret;
4613 struct clk_hw *hw;
4614 struct of_phandle_args clkspec;
4615
4616 ret = of_parse_clkspec(np, index, con_id, &clkspec);
4617 if (ret)
4618 return ERR_PTR(ret);
4619
4620 hw = of_clk_get_hw_from_clkspec(&clkspec);
4621 of_node_put(clkspec.np);
4622
4623 return hw;
4624}
4625
4626static struct clk *__of_clk_get(struct device_node *np,
4627 int index, const char *dev_id,
4628 const char *con_id)
4629{
4630 struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
4631
4632 return clk_hw_create_clk(NULL, hw, dev_id, con_id);
4633}
4634
4635struct clk *of_clk_get(struct device_node *np, int index)
4636{
4637 return __of_clk_get(np, index, np->full_name, NULL);
4638}
4639EXPORT_SYMBOL(of_clk_get);
4640
4641/**
4642 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
4643 * @np: pointer to clock consumer node
4644 * @name: name of consumer's clock input, or NULL for the first clock reference
4645 *
4646 * This function parses the clocks and clock-names properties,
4647 * and uses them to look up the struct clk from the registered list of clock
4648 * providers.
4649 */
4650struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
4651{
4652 if (!np)
4653 return ERR_PTR(-ENOENT);
4654
4655 return __of_clk_get(np, 0, np->full_name, name);
4656}
4657EXPORT_SYMBOL(of_clk_get_by_name);
4658
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004659/**
4660 * of_clk_get_parent_count() - Count the number of clocks a device node has
4661 * @np: device node to count
4662 *
4663 * Returns: The number of clocks that are possible parents of this node
4664 */
4665unsigned int of_clk_get_parent_count(struct device_node *np)
4666{
4667 int count;
4668
4669 count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
4670 if (count < 0)
4671 return 0;
4672
4673 return count;
4674}
4675EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
4676
4677const char *of_clk_get_parent_name(struct device_node *np, int index)
4678{
4679 struct of_phandle_args clkspec;
4680 struct property *prop;
4681 const char *clk_name;
4682 const __be32 *vp;
4683 u32 pv;
4684 int rc;
4685 int count;
4686 struct clk *clk;
4687
4688 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
4689 &clkspec);
4690 if (rc)
4691 return NULL;
4692
4693 index = clkspec.args_count ? clkspec.args[0] : 0;
4694 count = 0;
4695
4696 /* if there is an indices property, use it to transfer the index
4697 * specified into an array offset for the clock-output-names property.
4698 */
4699 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
4700 if (index == pv) {
4701 index = count;
4702 break;
4703 }
4704 count++;
4705 }
4706 /* We went off the end of 'clock-indices' without finding it */
4707 if (prop && !vp)
4708 return NULL;
4709
4710 if (of_property_read_string_index(clkspec.np, "clock-output-names",
4711 index,
4712 &clk_name) < 0) {
4713 /*
4714 * Best effort to get the name if the clock has been
4715 * registered with the framework. If the clock isn't
4716 * registered, we return the node name as the name of
4717 * the clock as long as #clock-cells = 0.
4718 */
4719 clk = of_clk_get_from_provider(&clkspec);
4720 if (IS_ERR(clk)) {
4721 if (clkspec.args_count == 0)
4722 clk_name = clkspec.np->name;
4723 else
4724 clk_name = NULL;
4725 } else {
4726 clk_name = __clk_get_name(clk);
4727 clk_put(clk);
4728 }
4729 }
4730
4731
4732 of_node_put(clkspec.np);
4733 return clk_name;
4734}
4735EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
4736
4737/**
4738 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
4739 * number of parents
4740 * @np: Device node pointer associated with clock provider
4741 * @parents: pointer to char array that hold the parents' names
4742 * @size: size of the @parents array
4743 *
4744 * Return: number of parents for the clock node.
4745 */
4746int of_clk_parent_fill(struct device_node *np, const char **parents,
4747 unsigned int size)
4748{
4749 unsigned int i = 0;
4750
4751 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
4752 i++;
4753
4754 return i;
4755}
4756EXPORT_SYMBOL_GPL(of_clk_parent_fill);
4757
4758struct clock_provider {
4759 void (*clk_init_cb)(struct device_node *);
4760 struct device_node *np;
4761 struct list_head node;
4762};
4763
4764/*
4765 * This function looks for a parent clock. If there is one, then it
4766 * checks that the provider for this parent clock was initialized, in
4767 * this case the parent clock will be ready.
4768 */
4769static int parent_ready(struct device_node *np)
4770{
4771 int i = 0;
4772
4773 while (true) {
4774 struct clk *clk = of_clk_get(np, i);
4775
4776 /* this parent is ready we can check the next one */
4777 if (!IS_ERR(clk)) {
4778 clk_put(clk);
4779 i++;
4780 continue;
4781 }
4782
4783 /* at least one parent is not ready, we exit now */
4784 if (PTR_ERR(clk) == -EPROBE_DEFER)
4785 return 0;
4786
4787 /*
4788 * Here we make assumption that the device tree is
4789 * written correctly. So an error means that there is
4790 * no more parent. As we didn't exit yet, then the
4791 * previous parent are ready. If there is no clock
4792 * parent, no need to wait for them, then we can
4793 * consider their absence as being ready
4794 */
4795 return 1;
4796 }
4797}
4798
4799/**
4800 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
4801 * @np: Device node pointer associated with clock provider
4802 * @index: clock index
4803 * @flags: pointer to top-level framework flags
4804 *
4805 * Detects if the clock-critical property exists and, if so, sets the
4806 * corresponding CLK_IS_CRITICAL flag.
4807 *
4808 * Do not use this function. It exists only for legacy Device Tree
4809 * bindings, such as the one-clock-per-node style that are outdated.
4810 * Those bindings typically put all clock data into .dts and the Linux
4811 * driver has no clock data, thus making it impossible to set this flag
4812 * correctly from the driver. Only those drivers may call
4813 * of_clk_detect_critical from their setup functions.
4814 *
4815 * Return: error code or zero on success
4816 */
4817int of_clk_detect_critical(struct device_node *np,
4818 int index, unsigned long *flags)
4819{
4820 struct property *prop;
4821 const __be32 *cur;
4822 uint32_t idx;
4823
4824 if (!np || !flags)
4825 return -EINVAL;
4826
4827 of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
4828 if (index == idx)
4829 *flags |= CLK_IS_CRITICAL;
4830
4831 return 0;
4832}
4833
4834/**
4835 * of_clk_init() - Scan and init clock providers from the DT
4836 * @matches: array of compatible values and init functions for providers.
4837 *
4838 * This function scans the device tree for matching clock providers
4839 * and calls their initialization functions. It also does it by trying
4840 * to follow the dependencies.
4841 */
4842void __init of_clk_init(const struct of_device_id *matches)
4843{
4844 const struct of_device_id *match;
4845 struct device_node *np;
4846 struct clock_provider *clk_provider, *next;
4847 bool is_init_done;
4848 bool force = false;
4849 LIST_HEAD(clk_provider_list);
4850
4851 if (!matches)
4852 matches = &__clk_of_table;
4853
4854 /* First prepare the list of the clocks providers */
4855 for_each_matching_node_and_match(np, matches, &match) {
4856 struct clock_provider *parent;
4857
4858 if (!of_device_is_available(np))
4859 continue;
4860
4861 parent = kzalloc(sizeof(*parent), GFP_KERNEL);
4862 if (!parent) {
4863 list_for_each_entry_safe(clk_provider, next,
4864 &clk_provider_list, node) {
4865 list_del(&clk_provider->node);
4866 of_node_put(clk_provider->np);
4867 kfree(clk_provider);
4868 }
4869 of_node_put(np);
4870 return;
4871 }
4872
4873 parent->clk_init_cb = match->data;
4874 parent->np = of_node_get(np);
4875 list_add_tail(&parent->node, &clk_provider_list);
4876 }
4877
4878 while (!list_empty(&clk_provider_list)) {
4879 is_init_done = false;
4880 list_for_each_entry_safe(clk_provider, next,
4881 &clk_provider_list, node) {
4882 if (force || parent_ready(clk_provider->np)) {
4883
4884 /* Don't populate platform devices */
4885 of_node_set_flag(clk_provider->np,
4886 OF_POPULATED);
4887
4888 clk_provider->clk_init_cb(clk_provider->np);
4889 of_clk_set_defaults(clk_provider->np, true);
4890
4891 list_del(&clk_provider->node);
4892 of_node_put(clk_provider->np);
4893 kfree(clk_provider);
4894 is_init_done = true;
4895 }
4896 }
4897
4898 /*
4899 * We didn't manage to initialize any of the
4900 * remaining providers during the last loop, so now we
4901 * initialize all the remaining ones unconditionally
4902 * in case the clock parent was not mandatory
4903 */
4904 if (!is_init_done)
4905 force = true;
4906 }
4907}
4908#endif