blob: 5bb001c0c771a480c1cc2e2181e9130dba6cb976 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-only
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
6 *
7 * Pentium III FXSR, SSE support
8 * Gareth Hughes <gareth@valinux.com>, May 2000
9 */
10
11/*
12 * Handle hardware traps and faults.
13 */
14#include <linux/spinlock.h>
15#include <linux/kprobes.h>
16#include <linux/kdebug.h>
17#include <linux/sched/debug.h>
18#include <linux/nmi.h>
19#include <linux/debugfs.h>
20#include <linux/delay.h>
21#include <linux/hardirq.h>
22#include <linux/ratelimit.h>
23#include <linux/slab.h>
24#include <linux/export.h>
David Brazdil0f672f62019-12-10 10:32:29 +000025#include <linux/atomic.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000026#include <linux/sched/clock.h>
27
28#if defined(CONFIG_EDAC)
29#include <linux/edac.h>
30#endif
31
David Brazdil0f672f62019-12-10 10:32:29 +000032#include <asm/cpu_entry_area.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000033#include <asm/traps.h>
34#include <asm/mach_traps.h>
35#include <asm/nmi.h>
36#include <asm/x86_init.h>
37#include <asm/reboot.h>
38#include <asm/cache.h>
David Brazdil0f672f62019-12-10 10:32:29 +000039#include <asm/nospec-branch.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000040
41#define CREATE_TRACE_POINTS
42#include <trace/events/nmi.h>
43
44struct nmi_desc {
45 raw_spinlock_t lock;
46 struct list_head head;
47};
48
49static struct nmi_desc nmi_desc[NMI_MAX] =
50{
51 {
52 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
53 .head = LIST_HEAD_INIT(nmi_desc[0].head),
54 },
55 {
56 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
57 .head = LIST_HEAD_INIT(nmi_desc[1].head),
58 },
59 {
60 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
61 .head = LIST_HEAD_INIT(nmi_desc[2].head),
62 },
63 {
64 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
65 .head = LIST_HEAD_INIT(nmi_desc[3].head),
66 },
67
68};
69
70struct nmi_stats {
71 unsigned int normal;
72 unsigned int unknown;
73 unsigned int external;
74 unsigned int swallow;
75};
76
77static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
78
79static int ignore_nmis __read_mostly;
80
81int unknown_nmi_panic;
82/*
83 * Prevent NMI reason port (0x61) being accessed simultaneously, can
84 * only be used in NMI handler.
85 */
86static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
87
88static int __init setup_unknown_nmi_panic(char *str)
89{
90 unknown_nmi_panic = 1;
91 return 1;
92}
93__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
94
95#define nmi_to_desc(type) (&nmi_desc[type])
96
97static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
98
99static int __init nmi_warning_debugfs(void)
100{
101 debugfs_create_u64("nmi_longest_ns", 0644,
102 arch_debugfs_dir, &nmi_longest_ns);
103 return 0;
104}
105fs_initcall(nmi_warning_debugfs);
106
Olivier Deprez0e641232021-09-23 10:07:05 +0200107static void nmi_check_duration(struct nmiaction *action, u64 duration)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000108{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000109 int remainder_ns, decimal_msecs;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000110
Olivier Deprez0e641232021-09-23 10:07:05 +0200111 if (duration < nmi_longest_ns || duration < action->max_duration)
112 return;
113
114 action->max_duration = duration;
115
116 remainder_ns = do_div(duration, (1000 * 1000));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000117 decimal_msecs = remainder_ns / 1000;
118
119 printk_ratelimited(KERN_INFO
120 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
Olivier Deprez0e641232021-09-23 10:07:05 +0200121 action->handler, duration, decimal_msecs);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000122}
123
124static int nmi_handle(unsigned int type, struct pt_regs *regs)
125{
126 struct nmi_desc *desc = nmi_to_desc(type);
127 struct nmiaction *a;
128 int handled=0;
129
130 rcu_read_lock();
131
132 /*
133 * NMIs are edge-triggered, which means if you have enough
134 * of them concurrently, you can lose some because only one
135 * can be latched at any given time. Walk the whole list
136 * to handle those situations.
137 */
138 list_for_each_entry_rcu(a, &desc->head, list) {
139 int thishandled;
140 u64 delta;
141
142 delta = sched_clock();
143 thishandled = a->handler(type, regs);
144 handled += thishandled;
145 delta = sched_clock() - delta;
146 trace_nmi_handler(a->handler, (int)delta, thishandled);
147
Olivier Deprez0e641232021-09-23 10:07:05 +0200148 nmi_check_duration(a, delta);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000149 }
150
151 rcu_read_unlock();
152
153 /* return total number of NMI events handled */
154 return handled;
155}
156NOKPROBE_SYMBOL(nmi_handle);
157
158int __register_nmi_handler(unsigned int type, struct nmiaction *action)
159{
160 struct nmi_desc *desc = nmi_to_desc(type);
161 unsigned long flags;
162
163 if (!action->handler)
164 return -EINVAL;
165
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000166 raw_spin_lock_irqsave(&desc->lock, flags);
167
168 /*
169 * Indicate if there are multiple registrations on the
170 * internal NMI handler call chains (SERR and IO_CHECK).
171 */
172 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
173 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
174
175 /*
176 * some handlers need to be executed first otherwise a fake
177 * event confuses some handlers (kdump uses this flag)
178 */
179 if (action->flags & NMI_FLAG_FIRST)
180 list_add_rcu(&action->list, &desc->head);
181 else
182 list_add_tail_rcu(&action->list, &desc->head);
183
184 raw_spin_unlock_irqrestore(&desc->lock, flags);
185 return 0;
186}
187EXPORT_SYMBOL(__register_nmi_handler);
188
189void unregister_nmi_handler(unsigned int type, const char *name)
190{
191 struct nmi_desc *desc = nmi_to_desc(type);
192 struct nmiaction *n;
193 unsigned long flags;
194
195 raw_spin_lock_irqsave(&desc->lock, flags);
196
197 list_for_each_entry_rcu(n, &desc->head, list) {
198 /*
199 * the name passed in to describe the nmi handler
200 * is used as the lookup key
201 */
202 if (!strcmp(n->name, name)) {
203 WARN(in_nmi(),
204 "Trying to free NMI (%s) from NMI context!\n", n->name);
205 list_del_rcu(&n->list);
206 break;
207 }
208 }
209
210 raw_spin_unlock_irqrestore(&desc->lock, flags);
211 synchronize_rcu();
212}
213EXPORT_SYMBOL_GPL(unregister_nmi_handler);
214
215static void
216pci_serr_error(unsigned char reason, struct pt_regs *regs)
217{
218 /* check to see if anyone registered against these types of errors */
219 if (nmi_handle(NMI_SERR, regs))
220 return;
221
222 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
223 reason, smp_processor_id());
224
225 if (panic_on_unrecovered_nmi)
226 nmi_panic(regs, "NMI: Not continuing");
227
228 pr_emerg("Dazed and confused, but trying to continue\n");
229
230 /* Clear and disable the PCI SERR error line. */
231 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
232 outb(reason, NMI_REASON_PORT);
233}
234NOKPROBE_SYMBOL(pci_serr_error);
235
236static void
237io_check_error(unsigned char reason, struct pt_regs *regs)
238{
239 unsigned long i;
240
241 /* check to see if anyone registered against these types of errors */
242 if (nmi_handle(NMI_IO_CHECK, regs))
243 return;
244
245 pr_emerg(
246 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
247 reason, smp_processor_id());
248 show_regs(regs);
249
250 if (panic_on_io_nmi) {
251 nmi_panic(regs, "NMI IOCK error: Not continuing");
252
253 /*
254 * If we end up here, it means we have received an NMI while
255 * processing panic(). Simply return without delaying and
256 * re-enabling NMIs.
257 */
258 return;
259 }
260
261 /* Re-enable the IOCK line, wait for a few seconds */
262 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
263 outb(reason, NMI_REASON_PORT);
264
265 i = 20000;
266 while (--i) {
267 touch_nmi_watchdog();
268 udelay(100);
269 }
270
271 reason &= ~NMI_REASON_CLEAR_IOCHK;
272 outb(reason, NMI_REASON_PORT);
273}
274NOKPROBE_SYMBOL(io_check_error);
275
276static void
277unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
278{
279 int handled;
280
281 /*
282 * Use 'false' as back-to-back NMIs are dealt with one level up.
283 * Of course this makes having multiple 'unknown' handlers useless
284 * as only the first one is ever run (unless it can actually determine
285 * if it caused the NMI)
286 */
287 handled = nmi_handle(NMI_UNKNOWN, regs);
288 if (handled) {
289 __this_cpu_add(nmi_stats.unknown, handled);
290 return;
291 }
292
293 __this_cpu_add(nmi_stats.unknown, 1);
294
295 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
296 reason, smp_processor_id());
297
298 pr_emerg("Do you have a strange power saving mode enabled?\n");
299 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
300 nmi_panic(regs, "NMI: Not continuing");
301
302 pr_emerg("Dazed and confused, but trying to continue\n");
303}
304NOKPROBE_SYMBOL(unknown_nmi_error);
305
306static DEFINE_PER_CPU(bool, swallow_nmi);
307static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
308
309static void default_do_nmi(struct pt_regs *regs)
310{
311 unsigned char reason = 0;
312 int handled;
313 bool b2b = false;
314
315 /*
316 * CPU-specific NMI must be processed before non-CPU-specific
317 * NMI, otherwise we may lose it, because the CPU-specific
318 * NMI can not be detected/processed on other CPUs.
319 */
320
321 /*
322 * Back-to-back NMIs are interesting because they can either
323 * be two NMI or more than two NMIs (any thing over two is dropped
324 * due to NMI being edge-triggered). If this is the second half
325 * of the back-to-back NMI, assume we dropped things and process
326 * more handlers. Otherwise reset the 'swallow' NMI behaviour
327 */
328 if (regs->ip == __this_cpu_read(last_nmi_rip))
329 b2b = true;
330 else
331 __this_cpu_write(swallow_nmi, false);
332
333 __this_cpu_write(last_nmi_rip, regs->ip);
334
335 handled = nmi_handle(NMI_LOCAL, regs);
336 __this_cpu_add(nmi_stats.normal, handled);
337 if (handled) {
338 /*
339 * There are cases when a NMI handler handles multiple
340 * events in the current NMI. One of these events may
341 * be queued for in the next NMI. Because the event is
342 * already handled, the next NMI will result in an unknown
343 * NMI. Instead lets flag this for a potential NMI to
344 * swallow.
345 */
346 if (handled > 1)
347 __this_cpu_write(swallow_nmi, true);
348 return;
349 }
350
351 /*
352 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
353 *
354 * Another CPU may be processing panic routines while holding
355 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
356 * and if so, call its callback directly. If there is no CPU preparing
357 * crash dump, we simply loop here.
358 */
359 while (!raw_spin_trylock(&nmi_reason_lock)) {
360 run_crash_ipi_callback(regs);
361 cpu_relax();
362 }
363
364 reason = x86_platform.get_nmi_reason();
365
366 if (reason & NMI_REASON_MASK) {
367 if (reason & NMI_REASON_SERR)
368 pci_serr_error(reason, regs);
369 else if (reason & NMI_REASON_IOCHK)
370 io_check_error(reason, regs);
371#ifdef CONFIG_X86_32
372 /*
373 * Reassert NMI in case it became active
374 * meanwhile as it's edge-triggered:
375 */
376 reassert_nmi();
377#endif
378 __this_cpu_add(nmi_stats.external, 1);
379 raw_spin_unlock(&nmi_reason_lock);
380 return;
381 }
382 raw_spin_unlock(&nmi_reason_lock);
383
384 /*
385 * Only one NMI can be latched at a time. To handle
386 * this we may process multiple nmi handlers at once to
387 * cover the case where an NMI is dropped. The downside
388 * to this approach is we may process an NMI prematurely,
389 * while its real NMI is sitting latched. This will cause
390 * an unknown NMI on the next run of the NMI processing.
391 *
392 * We tried to flag that condition above, by setting the
393 * swallow_nmi flag when we process more than one event.
394 * This condition is also only present on the second half
395 * of a back-to-back NMI, so we flag that condition too.
396 *
397 * If both are true, we assume we already processed this
398 * NMI previously and we swallow it. Otherwise we reset
399 * the logic.
400 *
401 * There are scenarios where we may accidentally swallow
402 * a 'real' unknown NMI. For example, while processing
403 * a perf NMI another perf NMI comes in along with a
404 * 'real' unknown NMI. These two NMIs get combined into
405 * one (as descibed above). When the next NMI gets
406 * processed, it will be flagged by perf as handled, but
407 * noone will know that there was a 'real' unknown NMI sent
408 * also. As a result it gets swallowed. Or if the first
409 * perf NMI returns two events handled then the second
410 * NMI will get eaten by the logic below, again losing a
411 * 'real' unknown NMI. But this is the best we can do
412 * for now.
413 */
414 if (b2b && __this_cpu_read(swallow_nmi))
415 __this_cpu_add(nmi_stats.swallow, 1);
416 else
417 unknown_nmi_error(reason, regs);
418}
419NOKPROBE_SYMBOL(default_do_nmi);
420
421/*
422 * NMIs can page fault or hit breakpoints which will cause it to lose
423 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
424 *
425 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
426 * NMI processing. On x86_64, the asm glue protects us from nested NMIs
427 * if the outer NMI came from kernel mode, but we can still nest if the
428 * outer NMI came from user mode.
429 *
430 * To handle these nested NMIs, we have three states:
431 *
432 * 1) not running
433 * 2) executing
434 * 3) latched
435 *
436 * When no NMI is in progress, it is in the "not running" state.
437 * When an NMI comes in, it goes into the "executing" state.
438 * Normally, if another NMI is triggered, it does not interrupt
439 * the running NMI and the HW will simply latch it so that when
440 * the first NMI finishes, it will restart the second NMI.
441 * (Note, the latch is binary, thus multiple NMIs triggering,
442 * when one is running, are ignored. Only one NMI is restarted.)
443 *
444 * If an NMI executes an iret, another NMI can preempt it. We do not
445 * want to allow this new NMI to run, but we want to execute it when the
446 * first one finishes. We set the state to "latched", and the exit of
447 * the first NMI will perform a dec_return, if the result is zero
448 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
449 * dec_return would have set the state to NMI_EXECUTING (what we want it
450 * to be when we are running). In this case, we simply jump back to
451 * rerun the NMI handler again, and restart the 'latched' NMI.
452 *
453 * No trap (breakpoint or page fault) should be hit before nmi_restart,
454 * thus there is no race between the first check of state for NOT_RUNNING
455 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
456 * at this point.
457 *
458 * In case the NMI takes a page fault, we need to save off the CR2
459 * because the NMI could have preempted another page fault and corrupt
460 * the CR2 that is about to be read. As nested NMIs must be restarted
461 * and they can not take breakpoints or page faults, the update of the
462 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
463 * Otherwise, there would be a race of another nested NMI coming in
464 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
465 */
466enum nmi_states {
467 NMI_NOT_RUNNING = 0,
468 NMI_EXECUTING,
469 NMI_LATCHED,
470};
471static DEFINE_PER_CPU(enum nmi_states, nmi_state);
472static DEFINE_PER_CPU(unsigned long, nmi_cr2);
473
474#ifdef CONFIG_X86_64
475/*
476 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without
477 * some care, the inner breakpoint will clobber the outer breakpoint's
478 * stack.
479 *
480 * If a breakpoint is being processed, and the debug stack is being
481 * used, if an NMI comes in and also hits a breakpoint, the stack
482 * pointer will be set to the same fixed address as the breakpoint that
483 * was interrupted, causing that stack to be corrupted. To handle this
484 * case, check if the stack that was interrupted is the debug stack, and
485 * if so, change the IDT so that new breakpoints will use the current
486 * stack and not switch to the fixed address. On return of the NMI,
487 * switch back to the original IDT.
488 */
489static DEFINE_PER_CPU(int, update_debug_stack);
David Brazdil0f672f62019-12-10 10:32:29 +0000490
491static bool notrace is_debug_stack(unsigned long addr)
492{
493 struct cea_exception_stacks *cs = __this_cpu_read(cea_exception_stacks);
494 unsigned long top = CEA_ESTACK_TOP(cs, DB);
495 unsigned long bot = CEA_ESTACK_BOT(cs, DB1);
496
497 if (__this_cpu_read(debug_stack_usage))
498 return true;
499 /*
500 * Note, this covers the guard page between DB and DB1 as well to
501 * avoid two checks. But by all means @addr can never point into
502 * the guard page.
503 */
504 return addr >= bot && addr < top;
505}
506NOKPROBE_SYMBOL(is_debug_stack);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000507#endif
508
509dotraplinkage notrace void
510do_nmi(struct pt_regs *regs, long error_code)
511{
David Brazdil0f672f62019-12-10 10:32:29 +0000512 if (IS_ENABLED(CONFIG_SMP) && cpu_is_offline(smp_processor_id()))
513 return;
514
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000515 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
516 this_cpu_write(nmi_state, NMI_LATCHED);
517 return;
518 }
519 this_cpu_write(nmi_state, NMI_EXECUTING);
520 this_cpu_write(nmi_cr2, read_cr2());
521nmi_restart:
522
523#ifdef CONFIG_X86_64
524 /*
525 * If we interrupted a breakpoint, it is possible that
526 * the nmi handler will have breakpoints too. We need to
527 * change the IDT such that breakpoints that happen here
528 * continue to use the NMI stack.
529 */
530 if (unlikely(is_debug_stack(regs->sp))) {
531 debug_stack_set_zero();
532 this_cpu_write(update_debug_stack, 1);
533 }
534#endif
535
536 nmi_enter();
537
538 inc_irq_stat(__nmi_count);
539
540 if (!ignore_nmis)
541 default_do_nmi(regs);
542
543 nmi_exit();
544
545#ifdef CONFIG_X86_64
546 if (unlikely(this_cpu_read(update_debug_stack))) {
547 debug_stack_reset();
548 this_cpu_write(update_debug_stack, 0);
549 }
550#endif
551
552 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
553 write_cr2(this_cpu_read(nmi_cr2));
554 if (this_cpu_dec_return(nmi_state))
555 goto nmi_restart;
David Brazdil0f672f62019-12-10 10:32:29 +0000556
557 if (user_mode(regs))
558 mds_user_clear_cpu_buffers();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000559}
560NOKPROBE_SYMBOL(do_nmi);
561
562void stop_nmi(void)
563{
564 ignore_nmis++;
565}
566
567void restart_nmi(void)
568{
569 ignore_nmis--;
570}
571
572/* reset the back-to-back NMI logic */
573void local_touch_nmi(void)
574{
575 __this_cpu_write(last_nmi_rip, 0);
576}
577EXPORT_SYMBOL_GPL(local_touch_nmi);