Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 1991, 1992 Linus Torvalds |
| 3 | * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs |
| 4 | */ |
| 5 | #include <linux/kallsyms.h> |
| 6 | #include <linux/kprobes.h> |
| 7 | #include <linux/uaccess.h> |
| 8 | #include <linux/utsname.h> |
| 9 | #include <linux/hardirq.h> |
| 10 | #include <linux/kdebug.h> |
| 11 | #include <linux/module.h> |
| 12 | #include <linux/ptrace.h> |
| 13 | #include <linux/sched/debug.h> |
| 14 | #include <linux/sched/task_stack.h> |
| 15 | #include <linux/ftrace.h> |
| 16 | #include <linux/kexec.h> |
| 17 | #include <linux/bug.h> |
| 18 | #include <linux/nmi.h> |
| 19 | #include <linux/sysfs.h> |
| 20 | #include <linux/kasan.h> |
| 21 | |
| 22 | #include <asm/cpu_entry_area.h> |
| 23 | #include <asm/stacktrace.h> |
| 24 | #include <asm/unwind.h> |
| 25 | |
| 26 | int panic_on_unrecovered_nmi; |
| 27 | int panic_on_io_nmi; |
| 28 | static int die_counter; |
| 29 | |
| 30 | static struct pt_regs exec_summary_regs; |
| 31 | |
| 32 | bool in_task_stack(unsigned long *stack, struct task_struct *task, |
| 33 | struct stack_info *info) |
| 34 | { |
| 35 | unsigned long *begin = task_stack_page(task); |
| 36 | unsigned long *end = task_stack_page(task) + THREAD_SIZE; |
| 37 | |
| 38 | if (stack < begin || stack >= end) |
| 39 | return false; |
| 40 | |
| 41 | info->type = STACK_TYPE_TASK; |
| 42 | info->begin = begin; |
| 43 | info->end = end; |
| 44 | info->next_sp = NULL; |
| 45 | |
| 46 | return true; |
| 47 | } |
| 48 | |
| 49 | bool in_entry_stack(unsigned long *stack, struct stack_info *info) |
| 50 | { |
| 51 | struct entry_stack *ss = cpu_entry_stack(smp_processor_id()); |
| 52 | |
| 53 | void *begin = ss; |
| 54 | void *end = ss + 1; |
| 55 | |
| 56 | if ((void *)stack < begin || (void *)stack >= end) |
| 57 | return false; |
| 58 | |
| 59 | info->type = STACK_TYPE_ENTRY; |
| 60 | info->begin = begin; |
| 61 | info->end = end; |
| 62 | info->next_sp = NULL; |
| 63 | |
| 64 | return true; |
| 65 | } |
| 66 | |
| 67 | static void printk_stack_address(unsigned long address, int reliable, |
| 68 | char *log_lvl) |
| 69 | { |
| 70 | touch_nmi_watchdog(); |
| 71 | printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address); |
| 72 | } |
| 73 | |
| 74 | /* |
| 75 | * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus: |
| 76 | * |
| 77 | * In case where we don't have the exact kernel image (which, if we did, we can |
| 78 | * simply disassemble and navigate to the RIP), the purpose of the bigger |
| 79 | * prologue is to have more context and to be able to correlate the code from |
| 80 | * the different toolchains better. |
| 81 | * |
| 82 | * In addition, it helps in recreating the register allocation of the failing |
| 83 | * kernel and thus make sense of the register dump. |
| 84 | * |
| 85 | * What is more, the additional complication of a variable length insn arch like |
| 86 | * x86 warrants having longer byte sequence before rIP so that the disassembler |
| 87 | * can "sync" up properly and find instruction boundaries when decoding the |
| 88 | * opcode bytes. |
| 89 | * |
| 90 | * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random |
| 91 | * guesstimate in attempt to achieve all of the above. |
| 92 | */ |
| 93 | void show_opcodes(struct pt_regs *regs, const char *loglvl) |
| 94 | { |
| 95 | #define PROLOGUE_SIZE 42 |
| 96 | #define EPILOGUE_SIZE 21 |
| 97 | #define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE) |
| 98 | u8 opcodes[OPCODE_BUFSIZE]; |
| 99 | unsigned long prologue = regs->ip - PROLOGUE_SIZE; |
| 100 | bool bad_ip; |
| 101 | |
| 102 | /* |
| 103 | * Make sure userspace isn't trying to trick us into dumping kernel |
| 104 | * memory by pointing the userspace instruction pointer at it. |
| 105 | */ |
| 106 | bad_ip = user_mode(regs) && |
| 107 | __chk_range_not_ok(prologue, OPCODE_BUFSIZE, TASK_SIZE_MAX); |
| 108 | |
| 109 | if (bad_ip || probe_kernel_read(opcodes, (u8 *)prologue, |
| 110 | OPCODE_BUFSIZE)) { |
| 111 | printk("%sCode: Bad RIP value.\n", loglvl); |
| 112 | } else { |
| 113 | printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %" |
| 114 | __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes, |
| 115 | opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1); |
| 116 | } |
| 117 | } |
| 118 | |
| 119 | void show_ip(struct pt_regs *regs, const char *loglvl) |
| 120 | { |
| 121 | #ifdef CONFIG_X86_32 |
| 122 | printk("%sEIP: %pS\n", loglvl, (void *)regs->ip); |
| 123 | #else |
| 124 | printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip); |
| 125 | #endif |
| 126 | show_opcodes(regs, loglvl); |
| 127 | } |
| 128 | |
| 129 | void show_iret_regs(struct pt_regs *regs) |
| 130 | { |
| 131 | show_ip(regs, KERN_DEFAULT); |
| 132 | printk(KERN_DEFAULT "RSP: %04x:%016lx EFLAGS: %08lx", (int)regs->ss, |
| 133 | regs->sp, regs->flags); |
| 134 | } |
| 135 | |
| 136 | static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs, |
| 137 | bool partial) |
| 138 | { |
| 139 | /* |
| 140 | * These on_stack() checks aren't strictly necessary: the unwind code |
| 141 | * has already validated the 'regs' pointer. The checks are done for |
| 142 | * ordering reasons: if the registers are on the next stack, we don't |
| 143 | * want to print them out yet. Otherwise they'll be shown as part of |
| 144 | * the wrong stack. Later, when show_trace_log_lvl() switches to the |
| 145 | * next stack, this function will be called again with the same regs so |
| 146 | * they can be printed in the right context. |
| 147 | */ |
| 148 | if (!partial && on_stack(info, regs, sizeof(*regs))) { |
| 149 | __show_regs(regs, SHOW_REGS_SHORT); |
| 150 | |
| 151 | } else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET, |
| 152 | IRET_FRAME_SIZE)) { |
| 153 | /* |
| 154 | * When an interrupt or exception occurs in entry code, the |
| 155 | * full pt_regs might not have been saved yet. In that case |
| 156 | * just print the iret frame. |
| 157 | */ |
| 158 | show_iret_regs(regs); |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs, |
| 163 | unsigned long *stack, char *log_lvl) |
| 164 | { |
| 165 | struct unwind_state state; |
| 166 | struct stack_info stack_info = {0}; |
| 167 | unsigned long visit_mask = 0; |
| 168 | int graph_idx = 0; |
| 169 | bool partial = false; |
| 170 | |
| 171 | printk("%sCall Trace:\n", log_lvl); |
| 172 | |
| 173 | unwind_start(&state, task, regs, stack); |
| 174 | stack = stack ? : get_stack_pointer(task, regs); |
| 175 | regs = unwind_get_entry_regs(&state, &partial); |
| 176 | |
| 177 | /* |
| 178 | * Iterate through the stacks, starting with the current stack pointer. |
| 179 | * Each stack has a pointer to the next one. |
| 180 | * |
| 181 | * x86-64 can have several stacks: |
| 182 | * - task stack |
| 183 | * - interrupt stack |
| 184 | * - HW exception stacks (double fault, nmi, debug, mce) |
| 185 | * - entry stack |
| 186 | * |
| 187 | * x86-32 can have up to four stacks: |
| 188 | * - task stack |
| 189 | * - softirq stack |
| 190 | * - hardirq stack |
| 191 | * - entry stack |
| 192 | */ |
| 193 | for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) { |
| 194 | const char *stack_name; |
| 195 | |
| 196 | if (get_stack_info(stack, task, &stack_info, &visit_mask)) { |
| 197 | /* |
| 198 | * We weren't on a valid stack. It's possible that |
| 199 | * we overflowed a valid stack into a guard page. |
| 200 | * See if the next page up is valid so that we can |
| 201 | * generate some kind of backtrace if this happens. |
| 202 | */ |
| 203 | stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack); |
| 204 | if (get_stack_info(stack, task, &stack_info, &visit_mask)) |
| 205 | break; |
| 206 | } |
| 207 | |
| 208 | stack_name = stack_type_name(stack_info.type); |
| 209 | if (stack_name) |
| 210 | printk("%s <%s>\n", log_lvl, stack_name); |
| 211 | |
| 212 | if (regs) |
| 213 | show_regs_if_on_stack(&stack_info, regs, partial); |
| 214 | |
| 215 | /* |
| 216 | * Scan the stack, printing any text addresses we find. At the |
| 217 | * same time, follow proper stack frames with the unwinder. |
| 218 | * |
| 219 | * Addresses found during the scan which are not reported by |
| 220 | * the unwinder are considered to be additional clues which are |
| 221 | * sometimes useful for debugging and are prefixed with '?'. |
| 222 | * This also serves as a failsafe option in case the unwinder |
| 223 | * goes off in the weeds. |
| 224 | */ |
| 225 | for (; stack < stack_info.end; stack++) { |
| 226 | unsigned long real_addr; |
| 227 | int reliable = 0; |
| 228 | unsigned long addr = READ_ONCE_NOCHECK(*stack); |
| 229 | unsigned long *ret_addr_p = |
| 230 | unwind_get_return_address_ptr(&state); |
| 231 | |
| 232 | if (!__kernel_text_address(addr)) |
| 233 | continue; |
| 234 | |
| 235 | /* |
| 236 | * Don't print regs->ip again if it was already printed |
| 237 | * by show_regs_if_on_stack(). |
| 238 | */ |
| 239 | if (regs && stack == ®s->ip) |
| 240 | goto next; |
| 241 | |
| 242 | if (stack == ret_addr_p) |
| 243 | reliable = 1; |
| 244 | |
| 245 | /* |
| 246 | * When function graph tracing is enabled for a |
| 247 | * function, its return address on the stack is |
| 248 | * replaced with the address of an ftrace handler |
| 249 | * (return_to_handler). In that case, before printing |
| 250 | * the "real" address, we want to print the handler |
| 251 | * address as an "unreliable" hint that function graph |
| 252 | * tracing was involved. |
| 253 | */ |
| 254 | real_addr = ftrace_graph_ret_addr(task, &graph_idx, |
| 255 | addr, stack); |
| 256 | if (real_addr != addr) |
| 257 | printk_stack_address(addr, 0, log_lvl); |
| 258 | printk_stack_address(real_addr, reliable, log_lvl); |
| 259 | |
| 260 | if (!reliable) |
| 261 | continue; |
| 262 | |
| 263 | next: |
| 264 | /* |
| 265 | * Get the next frame from the unwinder. No need to |
| 266 | * check for an error: if anything goes wrong, the rest |
| 267 | * of the addresses will just be printed as unreliable. |
| 268 | */ |
| 269 | unwind_next_frame(&state); |
| 270 | |
| 271 | /* if the frame has entry regs, print them */ |
| 272 | regs = unwind_get_entry_regs(&state, &partial); |
| 273 | if (regs) |
| 274 | show_regs_if_on_stack(&stack_info, regs, partial); |
| 275 | } |
| 276 | |
| 277 | if (stack_name) |
| 278 | printk("%s </%s>\n", log_lvl, stack_name); |
| 279 | } |
| 280 | } |
| 281 | |
| 282 | void show_stack(struct task_struct *task, unsigned long *sp) |
| 283 | { |
| 284 | task = task ? : current; |
| 285 | |
| 286 | /* |
| 287 | * Stack frames below this one aren't interesting. Don't show them |
| 288 | * if we're printing for %current. |
| 289 | */ |
| 290 | if (!sp && task == current) |
| 291 | sp = get_stack_pointer(current, NULL); |
| 292 | |
| 293 | show_trace_log_lvl(task, NULL, sp, KERN_DEFAULT); |
| 294 | } |
| 295 | |
| 296 | void show_stack_regs(struct pt_regs *regs) |
| 297 | { |
| 298 | show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT); |
| 299 | } |
| 300 | |
| 301 | static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED; |
| 302 | static int die_owner = -1; |
| 303 | static unsigned int die_nest_count; |
| 304 | |
| 305 | unsigned long oops_begin(void) |
| 306 | { |
| 307 | int cpu; |
| 308 | unsigned long flags; |
| 309 | |
| 310 | oops_enter(); |
| 311 | |
| 312 | /* racy, but better than risking deadlock. */ |
| 313 | raw_local_irq_save(flags); |
| 314 | cpu = smp_processor_id(); |
| 315 | if (!arch_spin_trylock(&die_lock)) { |
| 316 | if (cpu == die_owner) |
| 317 | /* nested oops. should stop eventually */; |
| 318 | else |
| 319 | arch_spin_lock(&die_lock); |
| 320 | } |
| 321 | die_nest_count++; |
| 322 | die_owner = cpu; |
| 323 | console_verbose(); |
| 324 | bust_spinlocks(1); |
| 325 | return flags; |
| 326 | } |
| 327 | NOKPROBE_SYMBOL(oops_begin); |
| 328 | |
| 329 | void __noreturn rewind_stack_do_exit(int signr); |
| 330 | |
| 331 | void oops_end(unsigned long flags, struct pt_regs *regs, int signr) |
| 332 | { |
| 333 | if (regs && kexec_should_crash(current)) |
| 334 | crash_kexec(regs); |
| 335 | |
| 336 | bust_spinlocks(0); |
| 337 | die_owner = -1; |
| 338 | add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); |
| 339 | die_nest_count--; |
| 340 | if (!die_nest_count) |
| 341 | /* Nest count reaches zero, release the lock. */ |
| 342 | arch_spin_unlock(&die_lock); |
| 343 | raw_local_irq_restore(flags); |
| 344 | oops_exit(); |
| 345 | |
| 346 | /* Executive summary in case the oops scrolled away */ |
| 347 | __show_regs(&exec_summary_regs, SHOW_REGS_ALL); |
| 348 | |
| 349 | if (!signr) |
| 350 | return; |
| 351 | if (in_interrupt()) |
| 352 | panic("Fatal exception in interrupt"); |
| 353 | if (panic_on_oops) |
| 354 | panic("Fatal exception"); |
| 355 | |
| 356 | /* |
| 357 | * We're not going to return, but we might be on an IST stack or |
| 358 | * have very little stack space left. Rewind the stack and kill |
| 359 | * the task. |
| 360 | * Before we rewind the stack, we have to tell KASAN that we're going to |
| 361 | * reuse the task stack and that existing poisons are invalid. |
| 362 | */ |
| 363 | kasan_unpoison_task_stack(current); |
| 364 | rewind_stack_do_exit(signr); |
| 365 | } |
| 366 | NOKPROBE_SYMBOL(oops_end); |
| 367 | |
| 368 | int __die(const char *str, struct pt_regs *regs, long err) |
| 369 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 370 | const char *pr = ""; |
| 371 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 372 | /* Save the regs of the first oops for the executive summary later. */ |
| 373 | if (!die_counter) |
| 374 | exec_summary_regs = *regs; |
| 375 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 376 | if (IS_ENABLED(CONFIG_PREEMPTION)) |
| 377 | pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT"; |
| 378 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 379 | printk(KERN_DEFAULT |
| 380 | "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 381 | pr, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 382 | IS_ENABLED(CONFIG_SMP) ? " SMP" : "", |
| 383 | debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "", |
| 384 | IS_ENABLED(CONFIG_KASAN) ? " KASAN" : "", |
| 385 | IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ? |
| 386 | (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : ""); |
| 387 | |
| 388 | show_regs(regs); |
| 389 | print_modules(); |
| 390 | |
| 391 | if (notify_die(DIE_OOPS, str, regs, err, |
| 392 | current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP) |
| 393 | return 1; |
| 394 | |
| 395 | return 0; |
| 396 | } |
| 397 | NOKPROBE_SYMBOL(__die); |
| 398 | |
| 399 | /* |
| 400 | * This is gone through when something in the kernel has done something bad |
| 401 | * and is about to be terminated: |
| 402 | */ |
| 403 | void die(const char *str, struct pt_regs *regs, long err) |
| 404 | { |
| 405 | unsigned long flags = oops_begin(); |
| 406 | int sig = SIGSEGV; |
| 407 | |
| 408 | if (__die(str, regs, err)) |
| 409 | sig = 0; |
| 410 | oops_end(flags, regs, sig); |
| 411 | } |
| 412 | |
| 413 | void show_regs(struct pt_regs *regs) |
| 414 | { |
| 415 | show_regs_print_info(KERN_DEFAULT); |
| 416 | |
| 417 | __show_regs(regs, user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL); |
| 418 | |
| 419 | /* |
| 420 | * When in-kernel, we also print out the stack at the time of the fault.. |
| 421 | */ |
| 422 | if (!user_mode(regs)) |
| 423 | show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT); |
| 424 | } |