David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
| 3 | * The file intends to implement PE based on the information from |
| 4 | * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device. |
| 5 | * All the PEs should be organized as hierarchy tree. The first level |
| 6 | * of the tree will be associated to existing PHBs since the particular |
| 7 | * PE is only meaningful in one PHB domain. |
| 8 | * |
| 9 | * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 10 | */ |
| 11 | |
| 12 | #include <linux/delay.h> |
| 13 | #include <linux/export.h> |
| 14 | #include <linux/gfp.h> |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/pci.h> |
| 17 | #include <linux/string.h> |
| 18 | |
| 19 | #include <asm/pci-bridge.h> |
| 20 | #include <asm/ppc-pci.h> |
| 21 | |
| 22 | static int eeh_pe_aux_size = 0; |
| 23 | static LIST_HEAD(eeh_phb_pe); |
| 24 | |
| 25 | /** |
| 26 | * eeh_set_pe_aux_size - Set PE auxillary data size |
| 27 | * @size: PE auxillary data size |
| 28 | * |
| 29 | * Set PE auxillary data size |
| 30 | */ |
| 31 | void eeh_set_pe_aux_size(int size) |
| 32 | { |
| 33 | if (size < 0) |
| 34 | return; |
| 35 | |
| 36 | eeh_pe_aux_size = size; |
| 37 | } |
| 38 | |
| 39 | /** |
| 40 | * eeh_pe_alloc - Allocate PE |
| 41 | * @phb: PCI controller |
| 42 | * @type: PE type |
| 43 | * |
| 44 | * Allocate PE instance dynamically. |
| 45 | */ |
| 46 | static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type) |
| 47 | { |
| 48 | struct eeh_pe *pe; |
| 49 | size_t alloc_size; |
| 50 | |
| 51 | alloc_size = sizeof(struct eeh_pe); |
| 52 | if (eeh_pe_aux_size) { |
| 53 | alloc_size = ALIGN(alloc_size, cache_line_size()); |
| 54 | alloc_size += eeh_pe_aux_size; |
| 55 | } |
| 56 | |
| 57 | /* Allocate PHB PE */ |
| 58 | pe = kzalloc(alloc_size, GFP_KERNEL); |
| 59 | if (!pe) return NULL; |
| 60 | |
| 61 | /* Initialize PHB PE */ |
| 62 | pe->type = type; |
| 63 | pe->phb = phb; |
| 64 | INIT_LIST_HEAD(&pe->child_list); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 65 | INIT_LIST_HEAD(&pe->edevs); |
| 66 | |
| 67 | pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe), |
| 68 | cache_line_size()); |
| 69 | return pe; |
| 70 | } |
| 71 | |
| 72 | /** |
| 73 | * eeh_phb_pe_create - Create PHB PE |
| 74 | * @phb: PCI controller |
| 75 | * |
| 76 | * The function should be called while the PHB is detected during |
| 77 | * system boot or PCI hotplug in order to create PHB PE. |
| 78 | */ |
| 79 | int eeh_phb_pe_create(struct pci_controller *phb) |
| 80 | { |
| 81 | struct eeh_pe *pe; |
| 82 | |
| 83 | /* Allocate PHB PE */ |
| 84 | pe = eeh_pe_alloc(phb, EEH_PE_PHB); |
| 85 | if (!pe) { |
| 86 | pr_err("%s: out of memory!\n", __func__); |
| 87 | return -ENOMEM; |
| 88 | } |
| 89 | |
| 90 | /* Put it into the list */ |
| 91 | list_add_tail(&pe->child, &eeh_phb_pe); |
| 92 | |
| 93 | pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number); |
| 94 | |
| 95 | return 0; |
| 96 | } |
| 97 | |
| 98 | /** |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 99 | * eeh_wait_state - Wait for PE state |
| 100 | * @pe: EEH PE |
| 101 | * @max_wait: maximal period in millisecond |
| 102 | * |
| 103 | * Wait for the state of associated PE. It might take some time |
| 104 | * to retrieve the PE's state. |
| 105 | */ |
| 106 | int eeh_wait_state(struct eeh_pe *pe, int max_wait) |
| 107 | { |
| 108 | int ret; |
| 109 | int mwait; |
| 110 | |
| 111 | /* |
| 112 | * According to PAPR, the state of PE might be temporarily |
| 113 | * unavailable. Under the circumstance, we have to wait |
| 114 | * for indicated time determined by firmware. The maximal |
| 115 | * wait time is 5 minutes, which is acquired from the original |
| 116 | * EEH implementation. Also, the original implementation |
| 117 | * also defined the minimal wait time as 1 second. |
| 118 | */ |
| 119 | #define EEH_STATE_MIN_WAIT_TIME (1000) |
| 120 | #define EEH_STATE_MAX_WAIT_TIME (300 * 1000) |
| 121 | |
| 122 | while (1) { |
| 123 | ret = eeh_ops->get_state(pe, &mwait); |
| 124 | |
| 125 | if (ret != EEH_STATE_UNAVAILABLE) |
| 126 | return ret; |
| 127 | |
| 128 | if (max_wait <= 0) { |
| 129 | pr_warn("%s: Timeout when getting PE's state (%d)\n", |
| 130 | __func__, max_wait); |
| 131 | return EEH_STATE_NOT_SUPPORT; |
| 132 | } |
| 133 | |
| 134 | if (mwait < EEH_STATE_MIN_WAIT_TIME) { |
| 135 | pr_warn("%s: Firmware returned bad wait value %d\n", |
| 136 | __func__, mwait); |
| 137 | mwait = EEH_STATE_MIN_WAIT_TIME; |
| 138 | } else if (mwait > EEH_STATE_MAX_WAIT_TIME) { |
| 139 | pr_warn("%s: Firmware returned too long wait value %d\n", |
| 140 | __func__, mwait); |
| 141 | mwait = EEH_STATE_MAX_WAIT_TIME; |
| 142 | } |
| 143 | |
| 144 | msleep(min(mwait, max_wait)); |
| 145 | max_wait -= mwait; |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | /** |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 150 | * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB |
| 151 | * @phb: PCI controller |
| 152 | * |
| 153 | * The overall PEs form hierarchy tree. The first layer of the |
| 154 | * hierarchy tree is composed of PHB PEs. The function is used |
| 155 | * to retrieve the corresponding PHB PE according to the given PHB. |
| 156 | */ |
| 157 | struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb) |
| 158 | { |
| 159 | struct eeh_pe *pe; |
| 160 | |
| 161 | list_for_each_entry(pe, &eeh_phb_pe, child) { |
| 162 | /* |
| 163 | * Actually, we needn't check the type since |
| 164 | * the PE for PHB has been determined when that |
| 165 | * was created. |
| 166 | */ |
| 167 | if ((pe->type & EEH_PE_PHB) && pe->phb == phb) |
| 168 | return pe; |
| 169 | } |
| 170 | |
| 171 | return NULL; |
| 172 | } |
| 173 | |
| 174 | /** |
| 175 | * eeh_pe_next - Retrieve the next PE in the tree |
| 176 | * @pe: current PE |
| 177 | * @root: root PE |
| 178 | * |
| 179 | * The function is used to retrieve the next PE in the |
| 180 | * hierarchy PE tree. |
| 181 | */ |
| 182 | struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root) |
| 183 | { |
| 184 | struct list_head *next = pe->child_list.next; |
| 185 | |
| 186 | if (next == &pe->child_list) { |
| 187 | while (1) { |
| 188 | if (pe == root) |
| 189 | return NULL; |
| 190 | next = pe->child.next; |
| 191 | if (next != &pe->parent->child_list) |
| 192 | break; |
| 193 | pe = pe->parent; |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | return list_entry(next, struct eeh_pe, child); |
| 198 | } |
| 199 | |
| 200 | /** |
| 201 | * eeh_pe_traverse - Traverse PEs in the specified PHB |
| 202 | * @root: root PE |
| 203 | * @fn: callback |
| 204 | * @flag: extra parameter to callback |
| 205 | * |
| 206 | * The function is used to traverse the specified PE and its |
| 207 | * child PEs. The traversing is to be terminated once the |
| 208 | * callback returns something other than NULL, or no more PEs |
| 209 | * to be traversed. |
| 210 | */ |
| 211 | void *eeh_pe_traverse(struct eeh_pe *root, |
| 212 | eeh_pe_traverse_func fn, void *flag) |
| 213 | { |
| 214 | struct eeh_pe *pe; |
| 215 | void *ret; |
| 216 | |
| 217 | eeh_for_each_pe(root, pe) { |
| 218 | ret = fn(pe, flag); |
| 219 | if (ret) return ret; |
| 220 | } |
| 221 | |
| 222 | return NULL; |
| 223 | } |
| 224 | |
| 225 | /** |
| 226 | * eeh_pe_dev_traverse - Traverse the devices from the PE |
| 227 | * @root: EEH PE |
| 228 | * @fn: function callback |
| 229 | * @flag: extra parameter to callback |
| 230 | * |
| 231 | * The function is used to traverse the devices of the specified |
| 232 | * PE and its child PEs. |
| 233 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 234 | void eeh_pe_dev_traverse(struct eeh_pe *root, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 235 | eeh_edev_traverse_func fn, void *flag) |
| 236 | { |
| 237 | struct eeh_pe *pe; |
| 238 | struct eeh_dev *edev, *tmp; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 239 | |
| 240 | if (!root) { |
| 241 | pr_warn("%s: Invalid PE %p\n", |
| 242 | __func__, root); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 243 | return; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 244 | } |
| 245 | |
| 246 | /* Traverse root PE */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 247 | eeh_for_each_pe(root, pe) |
| 248 | eeh_pe_for_each_dev(pe, edev, tmp) |
| 249 | fn(edev, flag); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 250 | } |
| 251 | |
| 252 | /** |
| 253 | * __eeh_pe_get - Check the PE address |
| 254 | * @data: EEH PE |
| 255 | * @flag: EEH device |
| 256 | * |
| 257 | * For one particular PE, it can be identified by PE address |
| 258 | * or tranditional BDF address. BDF address is composed of |
| 259 | * Bus/Device/Function number. The extra data referred by flag |
| 260 | * indicates which type of address should be used. |
| 261 | */ |
| 262 | struct eeh_pe_get_flag { |
| 263 | int pe_no; |
| 264 | int config_addr; |
| 265 | }; |
| 266 | |
| 267 | static void *__eeh_pe_get(struct eeh_pe *pe, void *flag) |
| 268 | { |
| 269 | struct eeh_pe_get_flag *tmp = (struct eeh_pe_get_flag *) flag; |
| 270 | |
| 271 | /* Unexpected PHB PE */ |
| 272 | if (pe->type & EEH_PE_PHB) |
| 273 | return NULL; |
| 274 | |
| 275 | /* |
| 276 | * We prefer PE address. For most cases, we should |
| 277 | * have non-zero PE address |
| 278 | */ |
| 279 | if (eeh_has_flag(EEH_VALID_PE_ZERO)) { |
| 280 | if (tmp->pe_no == pe->addr) |
| 281 | return pe; |
| 282 | } else { |
| 283 | if (tmp->pe_no && |
| 284 | (tmp->pe_no == pe->addr)) |
| 285 | return pe; |
| 286 | } |
| 287 | |
| 288 | /* Try BDF address */ |
| 289 | if (tmp->config_addr && |
| 290 | (tmp->config_addr == pe->config_addr)) |
| 291 | return pe; |
| 292 | |
| 293 | return NULL; |
| 294 | } |
| 295 | |
| 296 | /** |
| 297 | * eeh_pe_get - Search PE based on the given address |
| 298 | * @phb: PCI controller |
| 299 | * @pe_no: PE number |
| 300 | * @config_addr: Config address |
| 301 | * |
| 302 | * Search the corresponding PE based on the specified address which |
| 303 | * is included in the eeh device. The function is used to check if |
| 304 | * the associated PE has been created against the PE address. It's |
| 305 | * notable that the PE address has 2 format: traditional PE address |
| 306 | * which is composed of PCI bus/device/function number, or unified |
| 307 | * PE address. |
| 308 | */ |
| 309 | struct eeh_pe *eeh_pe_get(struct pci_controller *phb, |
| 310 | int pe_no, int config_addr) |
| 311 | { |
| 312 | struct eeh_pe *root = eeh_phb_pe_get(phb); |
| 313 | struct eeh_pe_get_flag tmp = { pe_no, config_addr }; |
| 314 | struct eeh_pe *pe; |
| 315 | |
| 316 | pe = eeh_pe_traverse(root, __eeh_pe_get, &tmp); |
| 317 | |
| 318 | return pe; |
| 319 | } |
| 320 | |
| 321 | /** |
| 322 | * eeh_pe_get_parent - Retrieve the parent PE |
| 323 | * @edev: EEH device |
| 324 | * |
| 325 | * The whole PEs existing in the system are organized as hierarchy |
| 326 | * tree. The function is used to retrieve the parent PE according |
| 327 | * to the parent EEH device. |
| 328 | */ |
| 329 | static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev) |
| 330 | { |
| 331 | struct eeh_dev *parent; |
| 332 | struct pci_dn *pdn = eeh_dev_to_pdn(edev); |
| 333 | |
| 334 | /* |
| 335 | * It might have the case for the indirect parent |
| 336 | * EEH device already having associated PE, but |
| 337 | * the direct parent EEH device doesn't have yet. |
| 338 | */ |
| 339 | if (edev->physfn) |
| 340 | pdn = pci_get_pdn(edev->physfn); |
| 341 | else |
| 342 | pdn = pdn ? pdn->parent : NULL; |
| 343 | while (pdn) { |
| 344 | /* We're poking out of PCI territory */ |
| 345 | parent = pdn_to_eeh_dev(pdn); |
| 346 | if (!parent) |
| 347 | return NULL; |
| 348 | |
| 349 | if (parent->pe) |
| 350 | return parent->pe; |
| 351 | |
| 352 | pdn = pdn->parent; |
| 353 | } |
| 354 | |
| 355 | return NULL; |
| 356 | } |
| 357 | |
| 358 | /** |
| 359 | * eeh_add_to_parent_pe - Add EEH device to parent PE |
| 360 | * @edev: EEH device |
| 361 | * |
| 362 | * Add EEH device to the parent PE. If the parent PE already |
| 363 | * exists, the PE type will be changed to EEH_PE_BUS. Otherwise, |
| 364 | * we have to create new PE to hold the EEH device and the new |
| 365 | * PE will be linked to its parent PE as well. |
| 366 | */ |
| 367 | int eeh_add_to_parent_pe(struct eeh_dev *edev) |
| 368 | { |
| 369 | struct eeh_pe *pe, *parent; |
| 370 | struct pci_dn *pdn = eeh_dev_to_pdn(edev); |
| 371 | int config_addr = (pdn->busno << 8) | (pdn->devfn); |
| 372 | |
| 373 | /* Check if the PE number is valid */ |
| 374 | if (!eeh_has_flag(EEH_VALID_PE_ZERO) && !edev->pe_config_addr) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 375 | eeh_edev_err(edev, "PE#0 is invalid for this PHB!\n"); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 376 | return -EINVAL; |
| 377 | } |
| 378 | |
| 379 | /* |
| 380 | * Search the PE has been existing or not according |
| 381 | * to the PE address. If that has been existing, the |
| 382 | * PE should be composed of PCI bus and its subordinate |
| 383 | * components. |
| 384 | */ |
| 385 | pe = eeh_pe_get(pdn->phb, edev->pe_config_addr, config_addr); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 386 | if (pe) { |
| 387 | if (pe->type & EEH_PE_INVALID) { |
| 388 | list_add_tail(&edev->entry, &pe->edevs); |
| 389 | edev->pe = pe; |
| 390 | /* |
| 391 | * We're running to here because of PCI hotplug caused by |
| 392 | * EEH recovery. We need clear EEH_PE_INVALID until the top. |
| 393 | */ |
| 394 | parent = pe; |
| 395 | while (parent) { |
| 396 | if (!(parent->type & EEH_PE_INVALID)) |
| 397 | break; |
| 398 | parent->type &= ~EEH_PE_INVALID; |
| 399 | parent = parent->parent; |
| 400 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 401 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 402 | eeh_edev_dbg(edev, |
| 403 | "Added to device PE (parent: PE#%x)\n", |
| 404 | pe->parent->addr); |
| 405 | } else { |
| 406 | /* Mark the PE as type of PCI bus */ |
| 407 | pe->type = EEH_PE_BUS; |
| 408 | edev->pe = pe; |
| 409 | |
| 410 | /* Put the edev to PE */ |
| 411 | list_add_tail(&edev->entry, &pe->edevs); |
| 412 | eeh_edev_dbg(edev, "Added to bus PE\n"); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 413 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 414 | return 0; |
| 415 | } |
| 416 | |
| 417 | /* Create a new EEH PE */ |
| 418 | if (edev->physfn) |
| 419 | pe = eeh_pe_alloc(pdn->phb, EEH_PE_VF); |
| 420 | else |
| 421 | pe = eeh_pe_alloc(pdn->phb, EEH_PE_DEVICE); |
| 422 | if (!pe) { |
| 423 | pr_err("%s: out of memory!\n", __func__); |
| 424 | return -ENOMEM; |
| 425 | } |
| 426 | pe->addr = edev->pe_config_addr; |
| 427 | pe->config_addr = config_addr; |
| 428 | |
| 429 | /* |
| 430 | * Put the new EEH PE into hierarchy tree. If the parent |
| 431 | * can't be found, the newly created PE will be attached |
| 432 | * to PHB directly. Otherwise, we have to associate the |
| 433 | * PE with its parent. |
| 434 | */ |
| 435 | parent = eeh_pe_get_parent(edev); |
| 436 | if (!parent) { |
| 437 | parent = eeh_phb_pe_get(pdn->phb); |
| 438 | if (!parent) { |
| 439 | pr_err("%s: No PHB PE is found (PHB Domain=%d)\n", |
| 440 | __func__, pdn->phb->global_number); |
| 441 | edev->pe = NULL; |
| 442 | kfree(pe); |
| 443 | return -EEXIST; |
| 444 | } |
| 445 | } |
| 446 | pe->parent = parent; |
| 447 | |
| 448 | /* |
| 449 | * Put the newly created PE into the child list and |
| 450 | * link the EEH device accordingly. |
| 451 | */ |
| 452 | list_add_tail(&pe->child, &parent->child_list); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 453 | list_add_tail(&edev->entry, &pe->edevs); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 454 | edev->pe = pe; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 455 | eeh_edev_dbg(edev, "Added to device PE (parent: PE#%x)\n", |
| 456 | pe->parent->addr); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 457 | |
| 458 | return 0; |
| 459 | } |
| 460 | |
| 461 | /** |
| 462 | * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE |
| 463 | * @edev: EEH device |
| 464 | * |
| 465 | * The PE hierarchy tree might be changed when doing PCI hotplug. |
| 466 | * Also, the PCI devices or buses could be removed from the system |
| 467 | * during EEH recovery. So we have to call the function remove the |
| 468 | * corresponding PE accordingly if necessary. |
| 469 | */ |
| 470 | int eeh_rmv_from_parent_pe(struct eeh_dev *edev) |
| 471 | { |
| 472 | struct eeh_pe *pe, *parent, *child; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 473 | bool keep, recover; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 474 | int cnt; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 475 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 476 | pe = eeh_dev_to_pe(edev); |
| 477 | if (!pe) { |
| 478 | eeh_edev_dbg(edev, "No PE found for device.\n"); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 479 | return -EEXIST; |
| 480 | } |
| 481 | |
| 482 | /* Remove the EEH device */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 483 | edev->pe = NULL; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 484 | list_del(&edev->entry); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 485 | |
| 486 | /* |
| 487 | * Check if the parent PE includes any EEH devices. |
| 488 | * If not, we should delete that. Also, we should |
| 489 | * delete the parent PE if it doesn't have associated |
| 490 | * child PEs and EEH devices. |
| 491 | */ |
| 492 | while (1) { |
| 493 | parent = pe->parent; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 494 | |
| 495 | /* PHB PEs should never be removed */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 496 | if (pe->type & EEH_PE_PHB) |
| 497 | break; |
| 498 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 499 | /* |
| 500 | * XXX: KEEP is set while resetting a PE. I don't think it's |
| 501 | * ever set without RECOVERING also being set. I could |
| 502 | * be wrong though so catch that with a WARN. |
| 503 | */ |
| 504 | keep = !!(pe->state & EEH_PE_KEEP); |
| 505 | recover = !!(pe->state & EEH_PE_RECOVERING); |
| 506 | WARN_ON(keep && !recover); |
| 507 | |
| 508 | if (!keep && !recover) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 509 | if (list_empty(&pe->edevs) && |
| 510 | list_empty(&pe->child_list)) { |
| 511 | list_del(&pe->child); |
| 512 | kfree(pe); |
| 513 | } else { |
| 514 | break; |
| 515 | } |
| 516 | } else { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 517 | /* |
| 518 | * Mark the PE as invalid. At the end of the recovery |
| 519 | * process any invalid PEs will be garbage collected. |
| 520 | * |
| 521 | * We need to delay the free()ing of them since we can |
| 522 | * remove edev's while traversing the PE tree which |
| 523 | * might trigger the removal of a PE and we can't |
| 524 | * deal with that (yet). |
| 525 | */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 526 | if (list_empty(&pe->edevs)) { |
| 527 | cnt = 0; |
| 528 | list_for_each_entry(child, &pe->child_list, child) { |
| 529 | if (!(child->type & EEH_PE_INVALID)) { |
| 530 | cnt++; |
| 531 | break; |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | if (!cnt) |
| 536 | pe->type |= EEH_PE_INVALID; |
| 537 | else |
| 538 | break; |
| 539 | } |
| 540 | } |
| 541 | |
| 542 | pe = parent; |
| 543 | } |
| 544 | |
| 545 | return 0; |
| 546 | } |
| 547 | |
| 548 | /** |
| 549 | * eeh_pe_update_time_stamp - Update PE's frozen time stamp |
| 550 | * @pe: EEH PE |
| 551 | * |
| 552 | * We have time stamp for each PE to trace its time of getting |
| 553 | * frozen in last hour. The function should be called to update |
| 554 | * the time stamp on first error of the specific PE. On the other |
| 555 | * handle, we needn't account for errors happened in last hour. |
| 556 | */ |
| 557 | void eeh_pe_update_time_stamp(struct eeh_pe *pe) |
| 558 | { |
| 559 | time64_t tstamp; |
| 560 | |
| 561 | if (!pe) return; |
| 562 | |
| 563 | if (pe->freeze_count <= 0) { |
| 564 | pe->freeze_count = 0; |
| 565 | pe->tstamp = ktime_get_seconds(); |
| 566 | } else { |
| 567 | tstamp = ktime_get_seconds(); |
| 568 | if (tstamp - pe->tstamp > 3600) { |
| 569 | pe->tstamp = tstamp; |
| 570 | pe->freeze_count = 0; |
| 571 | } |
| 572 | } |
| 573 | } |
| 574 | |
| 575 | /** |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 576 | * eeh_pe_state_mark - Mark specified state for PE and its associated device |
| 577 | * @pe: EEH PE |
| 578 | * |
| 579 | * EEH error affects the current PE and its child PEs. The function |
| 580 | * is used to mark appropriate state for the affected PEs and the |
| 581 | * associated devices. |
| 582 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 583 | void eeh_pe_state_mark(struct eeh_pe *root, int state) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 584 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 585 | struct eeh_pe *pe; |
| 586 | |
| 587 | eeh_for_each_pe(root, pe) |
| 588 | if (!(pe->state & EEH_PE_REMOVED)) |
| 589 | pe->state |= state; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 590 | } |
| 591 | EXPORT_SYMBOL_GPL(eeh_pe_state_mark); |
| 592 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 593 | /** |
| 594 | * eeh_pe_mark_isolated |
| 595 | * @pe: EEH PE |
| 596 | * |
| 597 | * Record that a PE has been isolated by marking the PE and it's children as |
| 598 | * EEH_PE_ISOLATED (and EEH_PE_CFG_BLOCKED, if required) and their PCI devices |
| 599 | * as pci_channel_io_frozen. |
| 600 | */ |
| 601 | void eeh_pe_mark_isolated(struct eeh_pe *root) |
| 602 | { |
| 603 | struct eeh_pe *pe; |
| 604 | struct eeh_dev *edev; |
| 605 | struct pci_dev *pdev; |
| 606 | |
| 607 | eeh_pe_state_mark(root, EEH_PE_ISOLATED); |
| 608 | eeh_for_each_pe(root, pe) { |
| 609 | list_for_each_entry(edev, &pe->edevs, entry) { |
| 610 | pdev = eeh_dev_to_pci_dev(edev); |
| 611 | if (pdev) |
| 612 | pdev->error_state = pci_channel_io_frozen; |
| 613 | } |
| 614 | /* Block PCI config access if required */ |
| 615 | if (pe->state & EEH_PE_CFG_RESTRICTED) |
| 616 | pe->state |= EEH_PE_CFG_BLOCKED; |
| 617 | } |
| 618 | } |
| 619 | EXPORT_SYMBOL_GPL(eeh_pe_mark_isolated); |
| 620 | |
| 621 | static void __eeh_pe_dev_mode_mark(struct eeh_dev *edev, void *flag) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 622 | { |
| 623 | int mode = *((int *)flag); |
| 624 | |
| 625 | edev->mode |= mode; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 626 | } |
| 627 | |
| 628 | /** |
| 629 | * eeh_pe_dev_state_mark - Mark state for all device under the PE |
| 630 | * @pe: EEH PE |
| 631 | * |
| 632 | * Mark specific state for all child devices of the PE. |
| 633 | */ |
| 634 | void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode) |
| 635 | { |
| 636 | eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode); |
| 637 | } |
| 638 | |
| 639 | /** |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 640 | * eeh_pe_state_clear - Clear state for the PE |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 641 | * @data: EEH PE |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 642 | * @state: state |
| 643 | * @include_passed: include passed-through devices? |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 644 | * |
| 645 | * The function is used to clear the indicated state from the |
| 646 | * given PE. Besides, we also clear the check count of the PE |
| 647 | * as well. |
| 648 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 649 | void eeh_pe_state_clear(struct eeh_pe *root, int state, bool include_passed) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 650 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 651 | struct eeh_pe *pe; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 652 | struct eeh_dev *edev, *tmp; |
| 653 | struct pci_dev *pdev; |
| 654 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 655 | eeh_for_each_pe(root, pe) { |
| 656 | /* Keep the state of permanently removed PE intact */ |
| 657 | if (pe->state & EEH_PE_REMOVED) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 658 | continue; |
| 659 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 660 | if (!include_passed && eeh_pe_passed(pe)) |
| 661 | continue; |
| 662 | |
| 663 | pe->state &= ~state; |
| 664 | |
| 665 | /* |
| 666 | * Special treatment on clearing isolated state. Clear |
| 667 | * check count since last isolation and put all affected |
| 668 | * devices to normal state. |
| 669 | */ |
| 670 | if (!(state & EEH_PE_ISOLATED)) |
| 671 | continue; |
| 672 | |
| 673 | pe->check_count = 0; |
| 674 | eeh_pe_for_each_dev(pe, edev, tmp) { |
| 675 | pdev = eeh_dev_to_pci_dev(edev); |
| 676 | if (!pdev) |
| 677 | continue; |
| 678 | |
| 679 | pdev->error_state = pci_channel_io_normal; |
| 680 | } |
| 681 | |
| 682 | /* Unblock PCI config access if required */ |
| 683 | if (pe->state & EEH_PE_CFG_RESTRICTED) |
| 684 | pe->state &= ~EEH_PE_CFG_BLOCKED; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 685 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 686 | } |
| 687 | |
| 688 | /* |
| 689 | * Some PCI bridges (e.g. PLX bridges) have primary/secondary |
| 690 | * buses assigned explicitly by firmware, and we probably have |
| 691 | * lost that after reset. So we have to delay the check until |
| 692 | * the PCI-CFG registers have been restored for the parent |
| 693 | * bridge. |
| 694 | * |
| 695 | * Don't use normal PCI-CFG accessors, which probably has been |
| 696 | * blocked on normal path during the stage. So we need utilize |
| 697 | * eeh operations, which is always permitted. |
| 698 | */ |
| 699 | static void eeh_bridge_check_link(struct eeh_dev *edev) |
| 700 | { |
| 701 | struct pci_dn *pdn = eeh_dev_to_pdn(edev); |
| 702 | int cap; |
| 703 | uint32_t val; |
| 704 | int timeout = 0; |
| 705 | |
| 706 | /* |
| 707 | * We only check root port and downstream ports of |
| 708 | * PCIe switches |
| 709 | */ |
| 710 | if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT))) |
| 711 | return; |
| 712 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 713 | eeh_edev_dbg(edev, "Checking PCIe link...\n"); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 714 | |
| 715 | /* Check slot status */ |
| 716 | cap = edev->pcie_cap; |
| 717 | eeh_ops->read_config(pdn, cap + PCI_EXP_SLTSTA, 2, &val); |
| 718 | if (!(val & PCI_EXP_SLTSTA_PDS)) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 719 | eeh_edev_dbg(edev, "No card in the slot (0x%04x) !\n", val); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 720 | return; |
| 721 | } |
| 722 | |
| 723 | /* Check power status if we have the capability */ |
| 724 | eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCAP, 2, &val); |
| 725 | if (val & PCI_EXP_SLTCAP_PCP) { |
| 726 | eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCTL, 2, &val); |
| 727 | if (val & PCI_EXP_SLTCTL_PCC) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 728 | eeh_edev_dbg(edev, "In power-off state, power it on ...\n"); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 729 | val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC); |
| 730 | val |= (0x0100 & PCI_EXP_SLTCTL_PIC); |
| 731 | eeh_ops->write_config(pdn, cap + PCI_EXP_SLTCTL, 2, val); |
| 732 | msleep(2 * 1000); |
| 733 | } |
| 734 | } |
| 735 | |
| 736 | /* Enable link */ |
| 737 | eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCTL, 2, &val); |
| 738 | val &= ~PCI_EXP_LNKCTL_LD; |
| 739 | eeh_ops->write_config(pdn, cap + PCI_EXP_LNKCTL, 2, val); |
| 740 | |
| 741 | /* Check link */ |
| 742 | eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCAP, 4, &val); |
| 743 | if (!(val & PCI_EXP_LNKCAP_DLLLARC)) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 744 | eeh_edev_dbg(edev, "No link reporting capability (0x%08x) \n", val); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 745 | msleep(1000); |
| 746 | return; |
| 747 | } |
| 748 | |
| 749 | /* Wait the link is up until timeout (5s) */ |
| 750 | timeout = 0; |
| 751 | while (timeout < 5000) { |
| 752 | msleep(20); |
| 753 | timeout += 20; |
| 754 | |
| 755 | eeh_ops->read_config(pdn, cap + PCI_EXP_LNKSTA, 2, &val); |
| 756 | if (val & PCI_EXP_LNKSTA_DLLLA) |
| 757 | break; |
| 758 | } |
| 759 | |
| 760 | if (val & PCI_EXP_LNKSTA_DLLLA) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 761 | eeh_edev_dbg(edev, "Link up (%s)\n", |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 762 | (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB"); |
| 763 | else |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 764 | eeh_edev_dbg(edev, "Link not ready (0x%04x)\n", val); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 765 | } |
| 766 | |
| 767 | #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF)) |
| 768 | #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)]) |
| 769 | |
| 770 | static void eeh_restore_bridge_bars(struct eeh_dev *edev) |
| 771 | { |
| 772 | struct pci_dn *pdn = eeh_dev_to_pdn(edev); |
| 773 | int i; |
| 774 | |
| 775 | /* |
| 776 | * Device BARs: 0x10 - 0x18 |
| 777 | * Bus numbers and windows: 0x18 - 0x30 |
| 778 | */ |
| 779 | for (i = 4; i < 13; i++) |
| 780 | eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]); |
| 781 | /* Rom: 0x38 */ |
| 782 | eeh_ops->write_config(pdn, 14*4, 4, edev->config_space[14]); |
| 783 | |
| 784 | /* Cache line & Latency timer: 0xC 0xD */ |
| 785 | eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1, |
| 786 | SAVED_BYTE(PCI_CACHE_LINE_SIZE)); |
| 787 | eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1, |
| 788 | SAVED_BYTE(PCI_LATENCY_TIMER)); |
| 789 | /* Max latency, min grant, interrupt ping and line: 0x3C */ |
| 790 | eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]); |
| 791 | |
| 792 | /* PCI Command: 0x4 */ |
| 793 | eeh_ops->write_config(pdn, PCI_COMMAND, 4, edev->config_space[1] | |
| 794 | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); |
| 795 | |
| 796 | /* Check the PCIe link is ready */ |
| 797 | eeh_bridge_check_link(edev); |
| 798 | } |
| 799 | |
| 800 | static void eeh_restore_device_bars(struct eeh_dev *edev) |
| 801 | { |
| 802 | struct pci_dn *pdn = eeh_dev_to_pdn(edev); |
| 803 | int i; |
| 804 | u32 cmd; |
| 805 | |
| 806 | for (i = 4; i < 10; i++) |
| 807 | eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]); |
| 808 | /* 12 == Expansion ROM Address */ |
| 809 | eeh_ops->write_config(pdn, 12*4, 4, edev->config_space[12]); |
| 810 | |
| 811 | eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1, |
| 812 | SAVED_BYTE(PCI_CACHE_LINE_SIZE)); |
| 813 | eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1, |
| 814 | SAVED_BYTE(PCI_LATENCY_TIMER)); |
| 815 | |
| 816 | /* max latency, min grant, interrupt pin and line */ |
| 817 | eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]); |
| 818 | |
| 819 | /* |
| 820 | * Restore PERR & SERR bits, some devices require it, |
| 821 | * don't touch the other command bits |
| 822 | */ |
| 823 | eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cmd); |
| 824 | if (edev->config_space[1] & PCI_COMMAND_PARITY) |
| 825 | cmd |= PCI_COMMAND_PARITY; |
| 826 | else |
| 827 | cmd &= ~PCI_COMMAND_PARITY; |
| 828 | if (edev->config_space[1] & PCI_COMMAND_SERR) |
| 829 | cmd |= PCI_COMMAND_SERR; |
| 830 | else |
| 831 | cmd &= ~PCI_COMMAND_SERR; |
| 832 | eeh_ops->write_config(pdn, PCI_COMMAND, 4, cmd); |
| 833 | } |
| 834 | |
| 835 | /** |
| 836 | * eeh_restore_one_device_bars - Restore the Base Address Registers for one device |
| 837 | * @data: EEH device |
| 838 | * @flag: Unused |
| 839 | * |
| 840 | * Loads the PCI configuration space base address registers, |
| 841 | * the expansion ROM base address, the latency timer, and etc. |
| 842 | * from the saved values in the device node. |
| 843 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 844 | static void eeh_restore_one_device_bars(struct eeh_dev *edev, void *flag) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 845 | { |
| 846 | struct pci_dn *pdn = eeh_dev_to_pdn(edev); |
| 847 | |
| 848 | /* Do special restore for bridges */ |
| 849 | if (edev->mode & EEH_DEV_BRIDGE) |
| 850 | eeh_restore_bridge_bars(edev); |
| 851 | else |
| 852 | eeh_restore_device_bars(edev); |
| 853 | |
| 854 | if (eeh_ops->restore_config && pdn) |
| 855 | eeh_ops->restore_config(pdn); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 856 | } |
| 857 | |
| 858 | /** |
| 859 | * eeh_pe_restore_bars - Restore the PCI config space info |
| 860 | * @pe: EEH PE |
| 861 | * |
| 862 | * This routine performs a recursive walk to the children |
| 863 | * of this device as well. |
| 864 | */ |
| 865 | void eeh_pe_restore_bars(struct eeh_pe *pe) |
| 866 | { |
| 867 | /* |
| 868 | * We needn't take the EEH lock since eeh_pe_dev_traverse() |
| 869 | * will take that. |
| 870 | */ |
| 871 | eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL); |
| 872 | } |
| 873 | |
| 874 | /** |
| 875 | * eeh_pe_loc_get - Retrieve location code binding to the given PE |
| 876 | * @pe: EEH PE |
| 877 | * |
| 878 | * Retrieve the location code of the given PE. If the primary PE bus |
| 879 | * is root bus, we will grab location code from PHB device tree node |
| 880 | * or root port. Otherwise, the upstream bridge's device tree node |
| 881 | * of the primary PE bus will be checked for the location code. |
| 882 | */ |
| 883 | const char *eeh_pe_loc_get(struct eeh_pe *pe) |
| 884 | { |
| 885 | struct pci_bus *bus = eeh_pe_bus_get(pe); |
| 886 | struct device_node *dn; |
| 887 | const char *loc = NULL; |
| 888 | |
| 889 | while (bus) { |
| 890 | dn = pci_bus_to_OF_node(bus); |
| 891 | if (!dn) { |
| 892 | bus = bus->parent; |
| 893 | continue; |
| 894 | } |
| 895 | |
| 896 | if (pci_is_root_bus(bus)) |
| 897 | loc = of_get_property(dn, "ibm,io-base-loc-code", NULL); |
| 898 | else |
| 899 | loc = of_get_property(dn, "ibm,slot-location-code", |
| 900 | NULL); |
| 901 | |
| 902 | if (loc) |
| 903 | return loc; |
| 904 | |
| 905 | bus = bus->parent; |
| 906 | } |
| 907 | |
| 908 | return "N/A"; |
| 909 | } |
| 910 | |
| 911 | /** |
| 912 | * eeh_pe_bus_get - Retrieve PCI bus according to the given PE |
| 913 | * @pe: EEH PE |
| 914 | * |
| 915 | * Retrieve the PCI bus according to the given PE. Basically, |
| 916 | * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the |
| 917 | * primary PCI bus will be retrieved. The parent bus will be |
| 918 | * returned for BUS PE. However, we don't have associated PCI |
| 919 | * bus for DEVICE PE. |
| 920 | */ |
| 921 | struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe) |
| 922 | { |
| 923 | struct eeh_dev *edev; |
| 924 | struct pci_dev *pdev; |
| 925 | |
| 926 | if (pe->type & EEH_PE_PHB) |
| 927 | return pe->phb->bus; |
| 928 | |
| 929 | /* The primary bus might be cached during probe time */ |
| 930 | if (pe->state & EEH_PE_PRI_BUS) |
| 931 | return pe->bus; |
| 932 | |
| 933 | /* Retrieve the parent PCI bus of first (top) PCI device */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 934 | edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 935 | pdev = eeh_dev_to_pci_dev(edev); |
| 936 | if (pdev) |
| 937 | return pdev->bus; |
| 938 | |
| 939 | return NULL; |
| 940 | } |