blob: 4ac374b3a99fdf469fa09051c8b54e20ecf56d43 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _PARISC_PGTABLE_H
3#define _PARISC_PGTABLE_H
4
David Brazdil0f672f62019-12-10 10:32:29 +00005#include <asm/page.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006#include <asm-generic/4level-fixup.h>
7
8#include <asm/fixmap.h>
9
10#ifndef __ASSEMBLY__
11/*
12 * we simulate an x86-style page table for the linux mm code
13 */
14
15#include <linux/bitops.h>
16#include <linux/spinlock.h>
17#include <linux/mm_types.h>
18#include <asm/processor.h>
19#include <asm/cache.h>
20
David Brazdil0f672f62019-12-10 10:32:29 +000021static inline spinlock_t *pgd_spinlock(pgd_t *);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000022
23/*
24 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
25 * memory. For the return value to be meaningful, ADDR must be >=
26 * PAGE_OFFSET. This operation can be relatively expensive (e.g.,
27 * require a hash-, or multi-level tree-lookup or something of that
28 * sort) but it guarantees to return TRUE only if accessing the page
29 * at that address does not cause an error. Note that there may be
30 * addresses for which kern_addr_valid() returns FALSE even though an
31 * access would not cause an error (e.g., this is typically true for
32 * memory mapped I/O regions.
33 *
34 * XXX Need to implement this for parisc.
35 */
36#define kern_addr_valid(addr) (1)
37
David Brazdil0f672f62019-12-10 10:32:29 +000038/* This is for the serialization of PxTLB broadcasts. At least on the N class
39 * systems, only one PxTLB inter processor broadcast can be active at any one
40 * time on the Merced bus.
41
42 * PTE updates are protected by locks in the PMD.
43 */
44extern spinlock_t pa_tlb_flush_lock;
45extern spinlock_t pa_swapper_pg_lock;
46#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
47extern int pa_serialize_tlb_flushes;
48#else
49#define pa_serialize_tlb_flushes (0)
50#endif
51
52#define purge_tlb_start(flags) do { \
53 if (pa_serialize_tlb_flushes) \
54 spin_lock_irqsave(&pa_tlb_flush_lock, flags); \
55 else \
56 local_irq_save(flags); \
57 } while (0)
58#define purge_tlb_end(flags) do { \
59 if (pa_serialize_tlb_flushes) \
60 spin_unlock_irqrestore(&pa_tlb_flush_lock, flags); \
61 else \
62 local_irq_restore(flags); \
63 } while (0)
64
65/* Purge data and instruction TLB entries. The TLB purge instructions
66 * are slow on SMP machines since the purge must be broadcast to all CPUs.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000067 */
68
69static inline void purge_tlb_entries(struct mm_struct *mm, unsigned long addr)
70{
David Brazdil0f672f62019-12-10 10:32:29 +000071 unsigned long flags;
72
73 purge_tlb_start(flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000074 mtsp(mm->context, 1);
75 pdtlb(addr);
David Brazdil0f672f62019-12-10 10:32:29 +000076 pitlb(addr);
77 purge_tlb_end(flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000078}
79
80/* Certain architectures need to do special things when PTEs
81 * within a page table are directly modified. Thus, the following
82 * hook is made available.
83 */
84#define set_pte(pteptr, pteval) \
85 do{ \
86 *(pteptr) = (pteval); \
87 } while(0)
88
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000089#define set_pte_at(mm, addr, ptep, pteval) \
90 do { \
91 pte_t old_pte; \
92 unsigned long flags; \
David Brazdil0f672f62019-12-10 10:32:29 +000093 spin_lock_irqsave(pgd_spinlock((mm)->pgd), flags);\
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000094 old_pte = *ptep; \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000095 set_pte(ptep, pteval); \
David Brazdil0f672f62019-12-10 10:32:29 +000096 purge_tlb_entries(mm, addr); \
97 spin_unlock_irqrestore(pgd_spinlock((mm)->pgd), flags);\
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000098 } while (0)
99
100#endif /* !__ASSEMBLY__ */
101
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000102#define pte_ERROR(e) \
103 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
104#define pmd_ERROR(e) \
105 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e))
106#define pgd_ERROR(e) \
107 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e))
108
109/* This is the size of the initially mapped kernel memory */
110#if defined(CONFIG_64BIT)
111#define KERNEL_INITIAL_ORDER 26 /* 1<<26 = 64MB */
112#else
113#define KERNEL_INITIAL_ORDER 25 /* 1<<25 = 32MB */
114#endif
115#define KERNEL_INITIAL_SIZE (1 << KERNEL_INITIAL_ORDER)
116
117#if CONFIG_PGTABLE_LEVELS == 3
118#define PGD_ORDER 1 /* Number of pages per pgd */
119#define PMD_ORDER 1 /* Number of pages per pmd */
David Brazdil0f672f62019-12-10 10:32:29 +0000120#define PGD_ALLOC_ORDER (2 + 1) /* first pgd contains pmd */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000121#else
122#define PGD_ORDER 1 /* Number of pages per pgd */
David Brazdil0f672f62019-12-10 10:32:29 +0000123#define PGD_ALLOC_ORDER (PGD_ORDER + 1)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000124#endif
125
126/* Definitions for 3rd level (we use PLD here for Page Lower directory
127 * because PTE_SHIFT is used lower down to mean shift that has to be
128 * done to get usable bits out of the PTE) */
129#define PLD_SHIFT PAGE_SHIFT
130#define PLD_SIZE PAGE_SIZE
131#define BITS_PER_PTE (PAGE_SHIFT - BITS_PER_PTE_ENTRY)
132#define PTRS_PER_PTE (1UL << BITS_PER_PTE)
133
134/* Definitions for 2nd level */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000135#define PMD_SHIFT (PLD_SHIFT + BITS_PER_PTE)
136#define PMD_SIZE (1UL << PMD_SHIFT)
137#define PMD_MASK (~(PMD_SIZE-1))
138#if CONFIG_PGTABLE_LEVELS == 3
139#define BITS_PER_PMD (PAGE_SHIFT + PMD_ORDER - BITS_PER_PMD_ENTRY)
140#else
141#define __PAGETABLE_PMD_FOLDED 1
142#define BITS_PER_PMD 0
143#endif
144#define PTRS_PER_PMD (1UL << BITS_PER_PMD)
145
146/* Definitions for 1st level */
147#define PGDIR_SHIFT (PMD_SHIFT + BITS_PER_PMD)
148#if (PGDIR_SHIFT + PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) > BITS_PER_LONG
149#define BITS_PER_PGD (BITS_PER_LONG - PGDIR_SHIFT)
150#else
151#define BITS_PER_PGD (PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY)
152#endif
153#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
154#define PGDIR_MASK (~(PGDIR_SIZE-1))
155#define PTRS_PER_PGD (1UL << BITS_PER_PGD)
156#define USER_PTRS_PER_PGD PTRS_PER_PGD
157
158#ifdef CONFIG_64BIT
159#define MAX_ADDRBITS (PGDIR_SHIFT + BITS_PER_PGD)
160#define MAX_ADDRESS (1UL << MAX_ADDRBITS)
161#define SPACEID_SHIFT (MAX_ADDRBITS - 32)
162#else
163#define MAX_ADDRBITS (BITS_PER_LONG)
164#define MAX_ADDRESS (1UL << MAX_ADDRBITS)
165#define SPACEID_SHIFT 0
166#endif
167
168/* This calculates the number of initial pages we need for the initial
169 * page tables */
170#if (KERNEL_INITIAL_ORDER) >= (PMD_SHIFT)
171# define PT_INITIAL (1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT))
172#else
173# define PT_INITIAL (1) /* all initial PTEs fit into one page */
174#endif
175
176/*
177 * pgd entries used up by user/kernel:
178 */
179
180#define FIRST_USER_ADDRESS 0UL
181
182/* NB: The tlb miss handlers make certain assumptions about the order */
183/* of the following bits, so be careful (One example, bits 25-31 */
184/* are moved together in one instruction). */
185
186#define _PAGE_READ_BIT 31 /* (0x001) read access allowed */
187#define _PAGE_WRITE_BIT 30 /* (0x002) write access allowed */
188#define _PAGE_EXEC_BIT 29 /* (0x004) execute access allowed */
189#define _PAGE_GATEWAY_BIT 28 /* (0x008) privilege promotion allowed */
190#define _PAGE_DMB_BIT 27 /* (0x010) Data Memory Break enable (B bit) */
191#define _PAGE_DIRTY_BIT 26 /* (0x020) Page Dirty (D bit) */
192#define _PAGE_REFTRAP_BIT 25 /* (0x040) Page Ref. Trap enable (T bit) */
193#define _PAGE_NO_CACHE_BIT 24 /* (0x080) Uncached Page (U bit) */
194#define _PAGE_ACCESSED_BIT 23 /* (0x100) Software: Page Accessed */
195#define _PAGE_PRESENT_BIT 22 /* (0x200) Software: translation valid */
196#define _PAGE_HPAGE_BIT 21 /* (0x400) Software: Huge Page */
197#define _PAGE_USER_BIT 20 /* (0x800) Software: User accessible page */
198
199/* N.B. The bits are defined in terms of a 32 bit word above, so the */
200/* following macro is ok for both 32 and 64 bit. */
201
202#define xlate_pabit(x) (31 - x)
203
204/* this defines the shift to the usable bits in the PTE it is set so
205 * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set
206 * to zero */
207#define PTE_SHIFT xlate_pabit(_PAGE_USER_BIT)
208
209/* PFN_PTE_SHIFT defines the shift of a PTE value to access the PFN field */
210#define PFN_PTE_SHIFT 12
211
212#define _PAGE_READ (1 << xlate_pabit(_PAGE_READ_BIT))
213#define _PAGE_WRITE (1 << xlate_pabit(_PAGE_WRITE_BIT))
214#define _PAGE_RW (_PAGE_READ | _PAGE_WRITE)
215#define _PAGE_EXEC (1 << xlate_pabit(_PAGE_EXEC_BIT))
216#define _PAGE_GATEWAY (1 << xlate_pabit(_PAGE_GATEWAY_BIT))
217#define _PAGE_DMB (1 << xlate_pabit(_PAGE_DMB_BIT))
218#define _PAGE_DIRTY (1 << xlate_pabit(_PAGE_DIRTY_BIT))
219#define _PAGE_REFTRAP (1 << xlate_pabit(_PAGE_REFTRAP_BIT))
220#define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT))
221#define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT))
222#define _PAGE_PRESENT (1 << xlate_pabit(_PAGE_PRESENT_BIT))
223#define _PAGE_HUGE (1 << xlate_pabit(_PAGE_HPAGE_BIT))
224#define _PAGE_USER (1 << xlate_pabit(_PAGE_USER_BIT))
225
David Brazdil0f672f62019-12-10 10:32:29 +0000226#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000227#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
228#define _PAGE_KERNEL_RO (_PAGE_PRESENT | _PAGE_READ | _PAGE_DIRTY | _PAGE_ACCESSED)
229#define _PAGE_KERNEL_EXEC (_PAGE_KERNEL_RO | _PAGE_EXEC)
230#define _PAGE_KERNEL_RWX (_PAGE_KERNEL_EXEC | _PAGE_WRITE)
231#define _PAGE_KERNEL (_PAGE_KERNEL_RO | _PAGE_WRITE)
232
233/* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds
234 * are page-aligned, we don't care about the PAGE_OFFSET bits, except
235 * for a few meta-information bits, so we shift the address to be
236 * able to effectively address 40/42/44-bits of physical address space
237 * depending on 4k/16k/64k PAGE_SIZE */
238#define _PxD_PRESENT_BIT 31
239#define _PxD_ATTACHED_BIT 30
240#define _PxD_VALID_BIT 29
241
242#define PxD_FLAG_PRESENT (1 << xlate_pabit(_PxD_PRESENT_BIT))
243#define PxD_FLAG_ATTACHED (1 << xlate_pabit(_PxD_ATTACHED_BIT))
244#define PxD_FLAG_VALID (1 << xlate_pabit(_PxD_VALID_BIT))
245#define PxD_FLAG_MASK (0xf)
246#define PxD_FLAG_SHIFT (4)
247#define PxD_VALUE_SHIFT (PFN_PTE_SHIFT-PxD_FLAG_SHIFT)
248
249#ifndef __ASSEMBLY__
250
David Brazdil0f672f62019-12-10 10:32:29 +0000251#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER)
252#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000253/* Others seem to make this executable, I don't know if that's correct
254 or not. The stack is mapped this way though so this is necessary
255 in the short term - dhd@linuxcare.com, 2000-08-08 */
David Brazdil0f672f62019-12-10 10:32:29 +0000256#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ)
257#define PAGE_WRITEONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE)
258#define PAGE_EXECREAD __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000259#define PAGE_COPY PAGE_EXECREAD
David Brazdil0f672f62019-12-10 10:32:29 +0000260#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000261#define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
262#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL_EXEC)
263#define PAGE_KERNEL_RWX __pgprot(_PAGE_KERNEL_RWX)
264#define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL_RO)
265#define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE)
David Brazdil0f672f62019-12-10 10:32:29 +0000266#define PAGE_GATEWAY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_GATEWAY| _PAGE_READ)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000267
268
269/*
270 * We could have an execute only page using "gateway - promote to priv
271 * level 3", but that is kind of silly. So, the way things are defined
272 * now, we must always have read permission for pages with execute
273 * permission. For the fun of it we'll go ahead and support write only
274 * pages.
275 */
276
277 /*xwr*/
278#define __P000 PAGE_NONE
279#define __P001 PAGE_READONLY
280#define __P010 __P000 /* copy on write */
281#define __P011 __P001 /* copy on write */
282#define __P100 PAGE_EXECREAD
283#define __P101 PAGE_EXECREAD
284#define __P110 __P100 /* copy on write */
285#define __P111 __P101 /* copy on write */
286
287#define __S000 PAGE_NONE
288#define __S001 PAGE_READONLY
289#define __S010 PAGE_WRITEONLY
290#define __S011 PAGE_SHARED
291#define __S100 PAGE_EXECREAD
292#define __S101 PAGE_EXECREAD
293#define __S110 PAGE_RWX
294#define __S111 PAGE_RWX
295
296
297extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */
298
299/* initial page tables for 0-8MB for kernel */
300
301extern pte_t pg0[];
302
303/* zero page used for uninitialized stuff */
304
305extern unsigned long *empty_zero_page;
306
307/*
308 * ZERO_PAGE is a global shared page that is always zero: used
309 * for zero-mapped memory areas etc..
310 */
311
312#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
313
314#define pte_none(x) (pte_val(x) == 0)
315#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
316#define pte_clear(mm, addr, xp) set_pte_at(mm, addr, xp, __pte(0))
317
318#define pmd_flag(x) (pmd_val(x) & PxD_FLAG_MASK)
319#define pmd_address(x) ((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
320#define pgd_flag(x) (pgd_val(x) & PxD_FLAG_MASK)
321#define pgd_address(x) ((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
322
323#if CONFIG_PGTABLE_LEVELS == 3
324/* The first entry of the permanent pmd is not there if it contains
325 * the gateway marker */
326#define pmd_none(x) (!pmd_val(x) || pmd_flag(x) == PxD_FLAG_ATTACHED)
327#else
328#define pmd_none(x) (!pmd_val(x))
329#endif
330#define pmd_bad(x) (!(pmd_flag(x) & PxD_FLAG_VALID))
331#define pmd_present(x) (pmd_flag(x) & PxD_FLAG_PRESENT)
332static inline void pmd_clear(pmd_t *pmd) {
333#if CONFIG_PGTABLE_LEVELS == 3
334 if (pmd_flag(*pmd) & PxD_FLAG_ATTACHED)
335 /* This is the entry pointing to the permanent pmd
336 * attached to the pgd; cannot clear it */
337 __pmd_val_set(*pmd, PxD_FLAG_ATTACHED);
338 else
339#endif
340 __pmd_val_set(*pmd, 0);
341}
342
343
344
345#if CONFIG_PGTABLE_LEVELS == 3
346#define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_address(pgd)))
347#define pgd_page(pgd) virt_to_page((void *)pgd_page_vaddr(pgd))
348
349/* For 64 bit we have three level tables */
350
351#define pgd_none(x) (!pgd_val(x))
352#define pgd_bad(x) (!(pgd_flag(x) & PxD_FLAG_VALID))
353#define pgd_present(x) (pgd_flag(x) & PxD_FLAG_PRESENT)
354static inline void pgd_clear(pgd_t *pgd) {
355#if CONFIG_PGTABLE_LEVELS == 3
356 if(pgd_flag(*pgd) & PxD_FLAG_ATTACHED)
357 /* This is the permanent pmd attached to the pgd; cannot
358 * free it */
359 return;
360#endif
361 __pgd_val_set(*pgd, 0);
362}
363#else
364/*
365 * The "pgd_xxx()" functions here are trivial for a folded two-level
366 * setup: the pgd is never bad, and a pmd always exists (as it's folded
367 * into the pgd entry)
368 */
369static inline int pgd_none(pgd_t pgd) { return 0; }
370static inline int pgd_bad(pgd_t pgd) { return 0; }
371static inline int pgd_present(pgd_t pgd) { return 1; }
372static inline void pgd_clear(pgd_t * pgdp) { }
373#endif
374
375/*
376 * The following only work if pte_present() is true.
377 * Undefined behaviour if not..
378 */
379static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
380static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
381static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
382static inline int pte_special(pte_t pte) { return 0; }
383
384static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
385static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
386static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; return pte; }
387static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
388static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
389static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; }
390static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
391
392/*
393 * Huge pte definitions.
394 */
395#ifdef CONFIG_HUGETLB_PAGE
396#define pte_huge(pte) (pte_val(pte) & _PAGE_HUGE)
397#define pte_mkhuge(pte) (__pte(pte_val(pte) | \
398 (parisc_requires_coherency() ? 0 : _PAGE_HUGE)))
399#else
400#define pte_huge(pte) (0)
401#define pte_mkhuge(pte) (pte)
402#endif
403
404
405/*
406 * Conversion functions: convert a page and protection to a page entry,
407 * and a page entry and page directory to the page they refer to.
408 */
409#define __mk_pte(addr,pgprot) \
410({ \
411 pte_t __pte; \
412 \
413 pte_val(__pte) = ((((addr)>>PAGE_SHIFT)<<PFN_PTE_SHIFT) + pgprot_val(pgprot)); \
414 \
415 __pte; \
416})
417
418#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
419
420static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
421{
422 pte_t pte;
423 pte_val(pte) = (pfn << PFN_PTE_SHIFT) | pgprot_val(pgprot);
424 return pte;
425}
426
427static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
428{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
429
430/* Permanent address of a page. On parisc we don't have highmem. */
431
432#define pte_pfn(x) (pte_val(x) >> PFN_PTE_SHIFT)
433
434#define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
435
436#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_address(pmd)))
437
438#define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd)))
439#define pmd_page(pmd) virt_to_page((void *)__pmd_page(pmd))
440
441#define pgd_index(address) ((address) >> PGDIR_SHIFT)
442
443/* to find an entry in a page-table-directory */
444#define pgd_offset(mm, address) \
445((mm)->pgd + ((address) >> PGDIR_SHIFT))
446
447/* to find an entry in a kernel page-table-directory */
448#define pgd_offset_k(address) pgd_offset(&init_mm, address)
449
450/* Find an entry in the second-level page table.. */
451
452#if CONFIG_PGTABLE_LEVELS == 3
453#define pmd_index(addr) (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
454#define pmd_offset(dir,address) \
455((pmd_t *) pgd_page_vaddr(*(dir)) + pmd_index(address))
456#else
457#define pmd_offset(dir,addr) ((pmd_t *) dir)
458#endif
459
460/* Find an entry in the third-level page table.. */
461#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
462#define pte_offset_kernel(pmd, address) \
463 ((pte_t *) pmd_page_vaddr(*(pmd)) + pte_index(address))
464#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
465#define pte_unmap(pte) do { } while (0)
466
467#define pte_unmap(pte) do { } while (0)
468#define pte_unmap_nested(pte) do { } while (0)
469
470extern void paging_init (void);
471
472/* Used for deferring calls to flush_dcache_page() */
473
474#define PG_dcache_dirty PG_arch_1
475
476extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *);
477
478/* Encode and de-code a swap entry */
479
480#define __swp_type(x) ((x).val & 0x1f)
481#define __swp_offset(x) ( (((x).val >> 6) & 0x7) | \
482 (((x).val >> 8) & ~0x7) )
483#define __swp_entry(type, offset) ((swp_entry_t) { (type) | \
484 ((offset & 0x7) << 6) | \
485 ((offset & ~0x7) << 8) })
486#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
487#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
488
David Brazdil0f672f62019-12-10 10:32:29 +0000489
490static inline spinlock_t *pgd_spinlock(pgd_t *pgd)
491{
492 if (unlikely(pgd == swapper_pg_dir))
493 return &pa_swapper_pg_lock;
494 return (spinlock_t *)((char *)pgd + (PAGE_SIZE << (PGD_ALLOC_ORDER - 1)));
495}
496
497
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000498static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
499{
500 pte_t pte;
501 unsigned long flags;
502
503 if (!pte_young(*ptep))
504 return 0;
505
David Brazdil0f672f62019-12-10 10:32:29 +0000506 spin_lock_irqsave(pgd_spinlock(vma->vm_mm->pgd), flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000507 pte = *ptep;
508 if (!pte_young(pte)) {
David Brazdil0f672f62019-12-10 10:32:29 +0000509 spin_unlock_irqrestore(pgd_spinlock(vma->vm_mm->pgd), flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000510 return 0;
511 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000512 set_pte(ptep, pte_mkold(pte));
David Brazdil0f672f62019-12-10 10:32:29 +0000513 purge_tlb_entries(vma->vm_mm, addr);
514 spin_unlock_irqrestore(pgd_spinlock(vma->vm_mm->pgd), flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000515 return 1;
516}
517
518struct mm_struct;
519static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
520{
521 pte_t old_pte;
522 unsigned long flags;
523
David Brazdil0f672f62019-12-10 10:32:29 +0000524 spin_lock_irqsave(pgd_spinlock(mm->pgd), flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000525 old_pte = *ptep;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000526 set_pte(ptep, __pte(0));
David Brazdil0f672f62019-12-10 10:32:29 +0000527 purge_tlb_entries(mm, addr);
528 spin_unlock_irqrestore(pgd_spinlock(mm->pgd), flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000529
530 return old_pte;
531}
532
533static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
534{
535 unsigned long flags;
David Brazdil0f672f62019-12-10 10:32:29 +0000536 spin_lock_irqsave(pgd_spinlock(mm->pgd), flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000537 set_pte(ptep, pte_wrprotect(*ptep));
David Brazdil0f672f62019-12-10 10:32:29 +0000538 purge_tlb_entries(mm, addr);
539 spin_unlock_irqrestore(pgd_spinlock(mm->pgd), flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000540}
541
542#define pte_same(A,B) (pte_val(A) == pte_val(B))
543
544struct seq_file;
545extern void arch_report_meminfo(struct seq_file *m);
546
547#endif /* !__ASSEMBLY__ */
548
549
550/* TLB page size encoding - see table 3-1 in parisc20.pdf */
551#define _PAGE_SIZE_ENCODING_4K 0
552#define _PAGE_SIZE_ENCODING_16K 1
553#define _PAGE_SIZE_ENCODING_64K 2
554#define _PAGE_SIZE_ENCODING_256K 3
555#define _PAGE_SIZE_ENCODING_1M 4
556#define _PAGE_SIZE_ENCODING_4M 5
557#define _PAGE_SIZE_ENCODING_16M 6
558#define _PAGE_SIZE_ENCODING_64M 7
559
560#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
561# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_4K
562#elif defined(CONFIG_PARISC_PAGE_SIZE_16KB)
563# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_16K
564#elif defined(CONFIG_PARISC_PAGE_SIZE_64KB)
565# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_64K
566#endif
567
568
569#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_NO_CACHE)
570
571/* We provide our own get_unmapped_area to provide cache coherency */
572
573#define HAVE_ARCH_UNMAPPED_AREA
574#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
575
576#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
577#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
578#define __HAVE_ARCH_PTEP_SET_WRPROTECT
579#define __HAVE_ARCH_PTE_SAME
580#include <asm-generic/pgtable.h>
581
582#endif /* _PARISC_PGTABLE_H */