blob: 5c36a99882ed1286a3d30fa178ea8acaacf046e1 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/* SCTP kernel implementation
2 * Copyright (c) 1999-2000 Cisco, Inc.
3 * Copyright (c) 1999-2001 Motorola, Inc.
4 * Copyright (c) 2001-2003 International Business Machines, Corp.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions handle all input from the IP layer into SCTP.
12 *
13 * This SCTP implementation is free software;
14 * you can redistribute it and/or modify it under the terms of
15 * the GNU General Public License as published by
16 * the Free Software Foundation; either version 2, or (at your option)
17 * any later version.
18 *
19 * This SCTP implementation is distributed in the hope that it
20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21 * ************************
22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23 * See the GNU General Public License for more details.
24 *
25 * You should have received a copy of the GNU General Public License
26 * along with GNU CC; see the file COPYING. If not, see
27 * <http://www.gnu.org/licenses/>.
28 *
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 * lksctp developers <linux-sctp@vger.kernel.org>
32 *
33 * Written or modified by:
34 * La Monte H.P. Yarroll <piggy@acm.org>
35 * Karl Knutson <karl@athena.chicago.il.us>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Jon Grimm <jgrimm@us.ibm.com>
38 * Hui Huang <hui.huang@nokia.com>
39 * Daisy Chang <daisyc@us.ibm.com>
40 * Sridhar Samudrala <sri@us.ibm.com>
41 * Ardelle Fan <ardelle.fan@intel.com>
42 */
43
44#include <linux/types.h>
45#include <linux/list.h> /* For struct list_head */
46#include <linux/socket.h>
47#include <linux/ip.h>
48#include <linux/time.h> /* For struct timeval */
49#include <linux/slab.h>
50#include <net/ip.h>
51#include <net/icmp.h>
52#include <net/snmp.h>
53#include <net/sock.h>
54#include <net/xfrm.h>
55#include <net/sctp/sctp.h>
56#include <net/sctp/sm.h>
57#include <net/sctp/checksum.h>
58#include <net/net_namespace.h>
59#include <linux/rhashtable.h>
60
61/* Forward declarations for internal helpers. */
62static int sctp_rcv_ootb(struct sk_buff *);
63static struct sctp_association *__sctp_rcv_lookup(struct net *net,
64 struct sk_buff *skb,
65 const union sctp_addr *paddr,
66 const union sctp_addr *laddr,
67 struct sctp_transport **transportp);
68static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
69 const union sctp_addr *laddr);
70static struct sctp_association *__sctp_lookup_association(
71 struct net *net,
72 const union sctp_addr *local,
73 const union sctp_addr *peer,
74 struct sctp_transport **pt);
75
76static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
77
78
79/* Calculate the SCTP checksum of an SCTP packet. */
80static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
81{
82 struct sctphdr *sh = sctp_hdr(skb);
83 __le32 cmp = sh->checksum;
84 __le32 val = sctp_compute_cksum(skb, 0);
85
86 if (val != cmp) {
87 /* CRC failure, dump it. */
88 __SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
89 return -1;
90 }
91 return 0;
92}
93
94/*
95 * This is the routine which IP calls when receiving an SCTP packet.
96 */
97int sctp_rcv(struct sk_buff *skb)
98{
99 struct sock *sk;
100 struct sctp_association *asoc;
101 struct sctp_endpoint *ep = NULL;
102 struct sctp_ep_common *rcvr;
103 struct sctp_transport *transport = NULL;
104 struct sctp_chunk *chunk;
105 union sctp_addr src;
106 union sctp_addr dest;
107 int family;
108 struct sctp_af *af;
109 struct net *net = dev_net(skb->dev);
110 bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb);
111
112 if (skb->pkt_type != PACKET_HOST)
113 goto discard_it;
114
115 __SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
116
117 /* If packet is too small to contain a single chunk, let's not
118 * waste time on it anymore.
119 */
120 if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
121 skb_transport_offset(skb))
122 goto discard_it;
123
124 /* If the packet is fragmented and we need to do crc checking,
125 * it's better to just linearize it otherwise crc computing
126 * takes longer.
127 */
128 if ((!is_gso && skb_linearize(skb)) ||
129 !pskb_may_pull(skb, sizeof(struct sctphdr)))
130 goto discard_it;
131
132 /* Pull up the IP header. */
133 __skb_pull(skb, skb_transport_offset(skb));
134
135 skb->csum_valid = 0; /* Previous value not applicable */
136 if (skb_csum_unnecessary(skb))
137 __skb_decr_checksum_unnecessary(skb);
138 else if (!sctp_checksum_disable &&
139 !is_gso &&
140 sctp_rcv_checksum(net, skb) < 0)
141 goto discard_it;
142 skb->csum_valid = 1;
143
144 __skb_pull(skb, sizeof(struct sctphdr));
145
146 family = ipver2af(ip_hdr(skb)->version);
147 af = sctp_get_af_specific(family);
148 if (unlikely(!af))
149 goto discard_it;
150 SCTP_INPUT_CB(skb)->af = af;
151
152 /* Initialize local addresses for lookups. */
153 af->from_skb(&src, skb, 1);
154 af->from_skb(&dest, skb, 0);
155
156 /* If the packet is to or from a non-unicast address,
157 * silently discard the packet.
158 *
159 * This is not clearly defined in the RFC except in section
160 * 8.4 - OOTB handling. However, based on the book "Stream Control
161 * Transmission Protocol" 2.1, "It is important to note that the
162 * IP address of an SCTP transport address must be a routable
163 * unicast address. In other words, IP multicast addresses and
164 * IP broadcast addresses cannot be used in an SCTP transport
165 * address."
166 */
167 if (!af->addr_valid(&src, NULL, skb) ||
168 !af->addr_valid(&dest, NULL, skb))
169 goto discard_it;
170
171 asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
172
173 if (!asoc)
174 ep = __sctp_rcv_lookup_endpoint(net, &dest);
175
176 /* Retrieve the common input handling substructure. */
177 rcvr = asoc ? &asoc->base : &ep->base;
178 sk = rcvr->sk;
179
180 /*
181 * If a frame arrives on an interface and the receiving socket is
182 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
183 */
184 if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
185 if (transport) {
186 sctp_transport_put(transport);
187 asoc = NULL;
188 transport = NULL;
189 } else {
190 sctp_endpoint_put(ep);
191 ep = NULL;
192 }
193 sk = net->sctp.ctl_sock;
194 ep = sctp_sk(sk)->ep;
195 sctp_endpoint_hold(ep);
196 rcvr = &ep->base;
197 }
198
199 /*
200 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
201 * An SCTP packet is called an "out of the blue" (OOTB)
202 * packet if it is correctly formed, i.e., passed the
203 * receiver's checksum check, but the receiver is not
204 * able to identify the association to which this
205 * packet belongs.
206 */
207 if (!asoc) {
208 if (sctp_rcv_ootb(skb)) {
209 __SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
210 goto discard_release;
211 }
212 }
213
214 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
215 goto discard_release;
216 nf_reset(skb);
217
218 if (sk_filter(sk, skb))
219 goto discard_release;
220
221 /* Create an SCTP packet structure. */
222 chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
223 if (!chunk)
224 goto discard_release;
225 SCTP_INPUT_CB(skb)->chunk = chunk;
226
227 /* Remember what endpoint is to handle this packet. */
228 chunk->rcvr = rcvr;
229
230 /* Remember the SCTP header. */
231 chunk->sctp_hdr = sctp_hdr(skb);
232
233 /* Set the source and destination addresses of the incoming chunk. */
234 sctp_init_addrs(chunk, &src, &dest);
235
236 /* Remember where we came from. */
237 chunk->transport = transport;
238
239 /* Acquire access to the sock lock. Note: We are safe from other
240 * bottom halves on this lock, but a user may be in the lock too,
241 * so check if it is busy.
242 */
243 bh_lock_sock(sk);
244
245 if (sk != rcvr->sk) {
246 /* Our cached sk is different from the rcvr->sk. This is
247 * because migrate()/accept() may have moved the association
248 * to a new socket and released all the sockets. So now we
249 * are holding a lock on the old socket while the user may
250 * be doing something with the new socket. Switch our veiw
251 * of the current sk.
252 */
253 bh_unlock_sock(sk);
254 sk = rcvr->sk;
255 bh_lock_sock(sk);
256 }
257
258 if (sock_owned_by_user(sk)) {
259 if (sctp_add_backlog(sk, skb)) {
260 bh_unlock_sock(sk);
261 sctp_chunk_free(chunk);
262 skb = NULL; /* sctp_chunk_free already freed the skb */
263 goto discard_release;
264 }
265 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
266 } else {
267 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
268 sctp_inq_push(&chunk->rcvr->inqueue, chunk);
269 }
270
271 bh_unlock_sock(sk);
272
273 /* Release the asoc/ep ref we took in the lookup calls. */
274 if (transport)
275 sctp_transport_put(transport);
276 else
277 sctp_endpoint_put(ep);
278
279 return 0;
280
281discard_it:
282 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
283 kfree_skb(skb);
284 return 0;
285
286discard_release:
287 /* Release the asoc/ep ref we took in the lookup calls. */
288 if (transport)
289 sctp_transport_put(transport);
290 else
291 sctp_endpoint_put(ep);
292
293 goto discard_it;
294}
295
296/* Process the backlog queue of the socket. Every skb on
297 * the backlog holds a ref on an association or endpoint.
298 * We hold this ref throughout the state machine to make
299 * sure that the structure we need is still around.
300 */
301int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
302{
303 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
304 struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
305 struct sctp_transport *t = chunk->transport;
306 struct sctp_ep_common *rcvr = NULL;
307 int backloged = 0;
308
309 rcvr = chunk->rcvr;
310
311 /* If the rcvr is dead then the association or endpoint
312 * has been deleted and we can safely drop the chunk
313 * and refs that we are holding.
314 */
315 if (rcvr->dead) {
316 sctp_chunk_free(chunk);
317 goto done;
318 }
319
320 if (unlikely(rcvr->sk != sk)) {
321 /* In this case, the association moved from one socket to
322 * another. We are currently sitting on the backlog of the
323 * old socket, so we need to move.
324 * However, since we are here in the process context we
325 * need to take make sure that the user doesn't own
326 * the new socket when we process the packet.
327 * If the new socket is user-owned, queue the chunk to the
328 * backlog of the new socket without dropping any refs.
329 * Otherwise, we can safely push the chunk on the inqueue.
330 */
331
332 sk = rcvr->sk;
333 local_bh_disable();
334 bh_lock_sock(sk);
335
336 if (sock_owned_by_user(sk)) {
337 if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
338 sctp_chunk_free(chunk);
339 else
340 backloged = 1;
341 } else
342 sctp_inq_push(inqueue, chunk);
343
344 bh_unlock_sock(sk);
345 local_bh_enable();
346
347 /* If the chunk was backloged again, don't drop refs */
348 if (backloged)
349 return 0;
350 } else {
351 sctp_inq_push(inqueue, chunk);
352 }
353
354done:
355 /* Release the refs we took in sctp_add_backlog */
356 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
357 sctp_transport_put(t);
358 else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
359 sctp_endpoint_put(sctp_ep(rcvr));
360 else
361 BUG();
362
363 return 0;
364}
365
366static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
367{
368 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
369 struct sctp_transport *t = chunk->transport;
370 struct sctp_ep_common *rcvr = chunk->rcvr;
371 int ret;
372
373 ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
374 if (!ret) {
375 /* Hold the assoc/ep while hanging on the backlog queue.
376 * This way, we know structures we need will not disappear
377 * from us
378 */
379 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
380 sctp_transport_hold(t);
381 else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
382 sctp_endpoint_hold(sctp_ep(rcvr));
383 else
384 BUG();
385 }
386 return ret;
387
388}
389
390/* Handle icmp frag needed error. */
391void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
392 struct sctp_transport *t, __u32 pmtu)
393{
394 if (!t || (t->pathmtu <= pmtu))
395 return;
396
397 if (sock_owned_by_user(sk)) {
398 atomic_set(&t->mtu_info, pmtu);
399 asoc->pmtu_pending = 1;
400 t->pmtu_pending = 1;
401 return;
402 }
403
404 if (!(t->param_flags & SPP_PMTUD_ENABLE))
405 /* We can't allow retransmitting in such case, as the
406 * retransmission would be sized just as before, and thus we
407 * would get another icmp, and retransmit again.
408 */
409 return;
410
411 /* Update transports view of the MTU. Return if no update was needed.
412 * If an update wasn't needed/possible, it also doesn't make sense to
413 * try to retransmit now.
414 */
415 if (!sctp_transport_update_pmtu(t, pmtu))
416 return;
417
418 /* Update association pmtu. */
419 sctp_assoc_sync_pmtu(asoc);
420
421 /* Retransmit with the new pmtu setting. */
422 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
423}
424
425void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
426 struct sk_buff *skb)
427{
428 struct dst_entry *dst;
429
430 if (sock_owned_by_user(sk) || !t)
431 return;
432 dst = sctp_transport_dst_check(t);
433 if (dst)
434 dst->ops->redirect(dst, sk, skb);
435}
436
437/*
438 * SCTP Implementer's Guide, 2.37 ICMP handling procedures
439 *
440 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
441 * or a "Protocol Unreachable" treat this message as an abort
442 * with the T bit set.
443 *
444 * This function sends an event to the state machine, which will abort the
445 * association.
446 *
447 */
448void sctp_icmp_proto_unreachable(struct sock *sk,
449 struct sctp_association *asoc,
450 struct sctp_transport *t)
451{
452 if (sock_owned_by_user(sk)) {
453 if (timer_pending(&t->proto_unreach_timer))
454 return;
455 else {
456 if (!mod_timer(&t->proto_unreach_timer,
457 jiffies + (HZ/20)))
458 sctp_association_hold(asoc);
459 }
460 } else {
461 struct net *net = sock_net(sk);
462
463 pr_debug("%s: unrecognized next header type "
464 "encountered!\n", __func__);
465
466 if (del_timer(&t->proto_unreach_timer))
467 sctp_association_put(asoc);
468
469 sctp_do_sm(net, SCTP_EVENT_T_OTHER,
470 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
471 asoc->state, asoc->ep, asoc, t,
472 GFP_ATOMIC);
473 }
474}
475
476/* Common lookup code for icmp/icmpv6 error handler. */
477struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
478 struct sctphdr *sctphdr,
479 struct sctp_association **app,
480 struct sctp_transport **tpp)
481{
482 struct sctp_init_chunk *chunkhdr, _chunkhdr;
483 union sctp_addr saddr;
484 union sctp_addr daddr;
485 struct sctp_af *af;
486 struct sock *sk = NULL;
487 struct sctp_association *asoc;
488 struct sctp_transport *transport = NULL;
489 __u32 vtag = ntohl(sctphdr->vtag);
490
491 *app = NULL; *tpp = NULL;
492
493 af = sctp_get_af_specific(family);
494 if (unlikely(!af)) {
495 return NULL;
496 }
497
498 /* Initialize local addresses for lookups. */
499 af->from_skb(&saddr, skb, 1);
500 af->from_skb(&daddr, skb, 0);
501
502 /* Look for an association that matches the incoming ICMP error
503 * packet.
504 */
505 asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
506 if (!asoc)
507 return NULL;
508
509 sk = asoc->base.sk;
510
511 /* RFC 4960, Appendix C. ICMP Handling
512 *
513 * ICMP6) An implementation MUST validate that the Verification Tag
514 * contained in the ICMP message matches the Verification Tag of
515 * the peer. If the Verification Tag is not 0 and does NOT
516 * match, discard the ICMP message. If it is 0 and the ICMP
517 * message contains enough bytes to verify that the chunk type is
518 * an INIT chunk and that the Initiate Tag matches the tag of the
519 * peer, continue with ICMP7. If the ICMP message is too short
520 * or the chunk type or the Initiate Tag does not match, silently
521 * discard the packet.
522 */
523 if (vtag == 0) {
524 /* chunk header + first 4 octects of init header */
525 chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
526 sizeof(struct sctphdr),
527 sizeof(struct sctp_chunkhdr) +
528 sizeof(__be32), &_chunkhdr);
529 if (!chunkhdr ||
530 chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
531 ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
532 goto out;
533
534 } else if (vtag != asoc->c.peer_vtag) {
535 goto out;
536 }
537
538 bh_lock_sock(sk);
539
540 /* If too many ICMPs get dropped on busy
541 * servers this needs to be solved differently.
542 */
543 if (sock_owned_by_user(sk))
544 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
545
546 *app = asoc;
547 *tpp = transport;
548 return sk;
549
550out:
551 sctp_transport_put(transport);
552 return NULL;
553}
554
555/* Common cleanup code for icmp/icmpv6 error handler. */
556void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
557{
558 bh_unlock_sock(sk);
559 sctp_transport_put(t);
560}
561
562/*
563 * This routine is called by the ICMP module when it gets some
564 * sort of error condition. If err < 0 then the socket should
565 * be closed and the error returned to the user. If err > 0
566 * it's just the icmp type << 8 | icmp code. After adjustment
567 * header points to the first 8 bytes of the sctp header. We need
568 * to find the appropriate port.
569 *
570 * The locking strategy used here is very "optimistic". When
571 * someone else accesses the socket the ICMP is just dropped
572 * and for some paths there is no check at all.
573 * A more general error queue to queue errors for later handling
574 * is probably better.
575 *
576 */
577void sctp_v4_err(struct sk_buff *skb, __u32 info)
578{
579 const struct iphdr *iph = (const struct iphdr *)skb->data;
580 const int ihlen = iph->ihl * 4;
581 const int type = icmp_hdr(skb)->type;
582 const int code = icmp_hdr(skb)->code;
583 struct sock *sk;
584 struct sctp_association *asoc = NULL;
585 struct sctp_transport *transport;
586 struct inet_sock *inet;
587 __u16 saveip, savesctp;
588 int err;
589 struct net *net = dev_net(skb->dev);
590
591 /* Fix up skb to look at the embedded net header. */
592 saveip = skb->network_header;
593 savesctp = skb->transport_header;
594 skb_reset_network_header(skb);
595 skb_set_transport_header(skb, ihlen);
596 sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
597 /* Put back, the original values. */
598 skb->network_header = saveip;
599 skb->transport_header = savesctp;
600 if (!sk) {
601 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
602 return;
603 }
604 /* Warning: The sock lock is held. Remember to call
605 * sctp_err_finish!
606 */
607
608 switch (type) {
609 case ICMP_PARAMETERPROB:
610 err = EPROTO;
611 break;
612 case ICMP_DEST_UNREACH:
613 if (code > NR_ICMP_UNREACH)
614 goto out_unlock;
615
616 /* PMTU discovery (RFC1191) */
617 if (ICMP_FRAG_NEEDED == code) {
618 sctp_icmp_frag_needed(sk, asoc, transport,
619 SCTP_TRUNC4(info));
620 goto out_unlock;
621 } else {
622 if (ICMP_PROT_UNREACH == code) {
623 sctp_icmp_proto_unreachable(sk, asoc,
624 transport);
625 goto out_unlock;
626 }
627 }
628 err = icmp_err_convert[code].errno;
629 break;
630 case ICMP_TIME_EXCEEDED:
631 /* Ignore any time exceeded errors due to fragment reassembly
632 * timeouts.
633 */
634 if (ICMP_EXC_FRAGTIME == code)
635 goto out_unlock;
636
637 err = EHOSTUNREACH;
638 break;
639 case ICMP_REDIRECT:
640 sctp_icmp_redirect(sk, transport, skb);
641 /* Fall through to out_unlock. */
642 default:
643 goto out_unlock;
644 }
645
646 inet = inet_sk(sk);
647 if (!sock_owned_by_user(sk) && inet->recverr) {
648 sk->sk_err = err;
649 sk->sk_error_report(sk);
650 } else { /* Only an error on timeout */
651 sk->sk_err_soft = err;
652 }
653
654out_unlock:
655 sctp_err_finish(sk, transport);
656}
657
658/*
659 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
660 *
661 * This function scans all the chunks in the OOTB packet to determine if
662 * the packet should be discarded right away. If a response might be needed
663 * for this packet, or, if further processing is possible, the packet will
664 * be queued to a proper inqueue for the next phase of handling.
665 *
666 * Output:
667 * Return 0 - If further processing is needed.
668 * Return 1 - If the packet can be discarded right away.
669 */
670static int sctp_rcv_ootb(struct sk_buff *skb)
671{
672 struct sctp_chunkhdr *ch, _ch;
673 int ch_end, offset = 0;
674
675 /* Scan through all the chunks in the packet. */
676 do {
677 /* Make sure we have at least the header there */
678 if (offset + sizeof(_ch) > skb->len)
679 break;
680
681 ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
682
683 /* Break out if chunk length is less then minimal. */
684 if (ntohs(ch->length) < sizeof(_ch))
685 break;
686
687 ch_end = offset + SCTP_PAD4(ntohs(ch->length));
688 if (ch_end > skb->len)
689 break;
690
691 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
692 * receiver MUST silently discard the OOTB packet and take no
693 * further action.
694 */
695 if (SCTP_CID_ABORT == ch->type)
696 goto discard;
697
698 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
699 * chunk, the receiver should silently discard the packet
700 * and take no further action.
701 */
702 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
703 goto discard;
704
705 /* RFC 4460, 2.11.2
706 * This will discard packets with INIT chunk bundled as
707 * subsequent chunks in the packet. When INIT is first,
708 * the normal INIT processing will discard the chunk.
709 */
710 if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
711 goto discard;
712
713 offset = ch_end;
714 } while (ch_end < skb->len);
715
716 return 0;
717
718discard:
719 return 1;
720}
721
722/* Insert endpoint into the hash table. */
723static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
724{
725 struct net *net = sock_net(ep->base.sk);
726 struct sctp_ep_common *epb;
727 struct sctp_hashbucket *head;
728
729 epb = &ep->base;
730
731 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
732 head = &sctp_ep_hashtable[epb->hashent];
733
734 write_lock(&head->lock);
735 hlist_add_head(&epb->node, &head->chain);
736 write_unlock(&head->lock);
737}
738
739/* Add an endpoint to the hash. Local BH-safe. */
740void sctp_hash_endpoint(struct sctp_endpoint *ep)
741{
742 local_bh_disable();
743 __sctp_hash_endpoint(ep);
744 local_bh_enable();
745}
746
747/* Remove endpoint from the hash table. */
748static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
749{
750 struct net *net = sock_net(ep->base.sk);
751 struct sctp_hashbucket *head;
752 struct sctp_ep_common *epb;
753
754 epb = &ep->base;
755
756 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
757
758 head = &sctp_ep_hashtable[epb->hashent];
759
760 write_lock(&head->lock);
761 hlist_del_init(&epb->node);
762 write_unlock(&head->lock);
763}
764
765/* Remove endpoint from the hash. Local BH-safe. */
766void sctp_unhash_endpoint(struct sctp_endpoint *ep)
767{
768 local_bh_disable();
769 __sctp_unhash_endpoint(ep);
770 local_bh_enable();
771}
772
773/* Look up an endpoint. */
774static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
775 const union sctp_addr *laddr)
776{
777 struct sctp_hashbucket *head;
778 struct sctp_ep_common *epb;
779 struct sctp_endpoint *ep;
780 int hash;
781
782 hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port));
783 head = &sctp_ep_hashtable[hash];
784 read_lock(&head->lock);
785 sctp_for_each_hentry(epb, &head->chain) {
786 ep = sctp_ep(epb);
787 if (sctp_endpoint_is_match(ep, net, laddr))
788 goto hit;
789 }
790
791 ep = sctp_sk(net->sctp.ctl_sock)->ep;
792
793hit:
794 sctp_endpoint_hold(ep);
795 read_unlock(&head->lock);
796 return ep;
797}
798
799/* rhashtable for transport */
800struct sctp_hash_cmp_arg {
801 const union sctp_addr *paddr;
802 const struct net *net;
803 __be16 lport;
804};
805
806static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
807 const void *ptr)
808{
809 struct sctp_transport *t = (struct sctp_transport *)ptr;
810 const struct sctp_hash_cmp_arg *x = arg->key;
811 int err = 1;
812
813 if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
814 return err;
815 if (!sctp_transport_hold(t))
816 return err;
817
818 if (!net_eq(sock_net(t->asoc->base.sk), x->net))
819 goto out;
820 if (x->lport != htons(t->asoc->base.bind_addr.port))
821 goto out;
822
823 err = 0;
824out:
825 sctp_transport_put(t);
826 return err;
827}
828
829static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
830{
831 const struct sctp_transport *t = data;
832 const union sctp_addr *paddr = &t->ipaddr;
833 const struct net *net = sock_net(t->asoc->base.sk);
834 __be16 lport = htons(t->asoc->base.bind_addr.port);
835 __u32 addr;
836
837 if (paddr->sa.sa_family == AF_INET6)
838 addr = jhash(&paddr->v6.sin6_addr, 16, seed);
839 else
840 addr = (__force __u32)paddr->v4.sin_addr.s_addr;
841
842 return jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
843 (__force __u32)lport, net_hash_mix(net), seed);
844}
845
846static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed)
847{
848 const struct sctp_hash_cmp_arg *x = data;
849 const union sctp_addr *paddr = x->paddr;
850 const struct net *net = x->net;
851 __be16 lport = x->lport;
852 __u32 addr;
853
854 if (paddr->sa.sa_family == AF_INET6)
855 addr = jhash(&paddr->v6.sin6_addr, 16, seed);
856 else
857 addr = (__force __u32)paddr->v4.sin_addr.s_addr;
858
859 return jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
860 (__force __u32)lport, net_hash_mix(net), seed);
861}
862
863static const struct rhashtable_params sctp_hash_params = {
864 .head_offset = offsetof(struct sctp_transport, node),
865 .hashfn = sctp_hash_key,
866 .obj_hashfn = sctp_hash_obj,
867 .obj_cmpfn = sctp_hash_cmp,
868 .automatic_shrinking = true,
869};
870
871int sctp_transport_hashtable_init(void)
872{
873 return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
874}
875
876void sctp_transport_hashtable_destroy(void)
877{
878 rhltable_destroy(&sctp_transport_hashtable);
879}
880
881int sctp_hash_transport(struct sctp_transport *t)
882{
883 struct sctp_transport *transport;
884 struct rhlist_head *tmp, *list;
885 struct sctp_hash_cmp_arg arg;
886 int err;
887
888 if (t->asoc->temp)
889 return 0;
890
891 arg.net = sock_net(t->asoc->base.sk);
892 arg.paddr = &t->ipaddr;
893 arg.lport = htons(t->asoc->base.bind_addr.port);
894
895 rcu_read_lock();
896 list = rhltable_lookup(&sctp_transport_hashtable, &arg,
897 sctp_hash_params);
898
899 rhl_for_each_entry_rcu(transport, tmp, list, node)
900 if (transport->asoc->ep == t->asoc->ep) {
901 rcu_read_unlock();
902 return -EEXIST;
903 }
904 rcu_read_unlock();
905
906 err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
907 &t->node, sctp_hash_params);
908 if (err)
909 pr_err_once("insert transport fail, errno %d\n", err);
910
911 return err;
912}
913
914void sctp_unhash_transport(struct sctp_transport *t)
915{
916 if (t->asoc->temp)
917 return;
918
919 rhltable_remove(&sctp_transport_hashtable, &t->node,
920 sctp_hash_params);
921}
922
923/* return a transport with holding it */
924struct sctp_transport *sctp_addrs_lookup_transport(
925 struct net *net,
926 const union sctp_addr *laddr,
927 const union sctp_addr *paddr)
928{
929 struct rhlist_head *tmp, *list;
930 struct sctp_transport *t;
931 struct sctp_hash_cmp_arg arg = {
932 .paddr = paddr,
933 .net = net,
934 .lport = laddr->v4.sin_port,
935 };
936
937 list = rhltable_lookup(&sctp_transport_hashtable, &arg,
938 sctp_hash_params);
939
940 rhl_for_each_entry_rcu(t, tmp, list, node) {
941 if (!sctp_transport_hold(t))
942 continue;
943
944 if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
945 laddr, sctp_sk(t->asoc->base.sk)))
946 return t;
947 sctp_transport_put(t);
948 }
949
950 return NULL;
951}
952
953/* return a transport without holding it, as it's only used under sock lock */
954struct sctp_transport *sctp_epaddr_lookup_transport(
955 const struct sctp_endpoint *ep,
956 const union sctp_addr *paddr)
957{
958 struct net *net = sock_net(ep->base.sk);
959 struct rhlist_head *tmp, *list;
960 struct sctp_transport *t;
961 struct sctp_hash_cmp_arg arg = {
962 .paddr = paddr,
963 .net = net,
964 .lport = htons(ep->base.bind_addr.port),
965 };
966
967 list = rhltable_lookup(&sctp_transport_hashtable, &arg,
968 sctp_hash_params);
969
970 rhl_for_each_entry_rcu(t, tmp, list, node)
971 if (ep == t->asoc->ep)
972 return t;
973
974 return NULL;
975}
976
977/* Look up an association. */
978static struct sctp_association *__sctp_lookup_association(
979 struct net *net,
980 const union sctp_addr *local,
981 const union sctp_addr *peer,
982 struct sctp_transport **pt)
983{
984 struct sctp_transport *t;
985 struct sctp_association *asoc = NULL;
986
987 t = sctp_addrs_lookup_transport(net, local, peer);
988 if (!t)
989 goto out;
990
991 asoc = t->asoc;
992 *pt = t;
993
994out:
995 return asoc;
996}
997
998/* Look up an association. protected by RCU read lock */
999static
1000struct sctp_association *sctp_lookup_association(struct net *net,
1001 const union sctp_addr *laddr,
1002 const union sctp_addr *paddr,
1003 struct sctp_transport **transportp)
1004{
1005 struct sctp_association *asoc;
1006
1007 rcu_read_lock();
1008 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1009 rcu_read_unlock();
1010
1011 return asoc;
1012}
1013
1014/* Is there an association matching the given local and peer addresses? */
1015bool sctp_has_association(struct net *net,
1016 const union sctp_addr *laddr,
1017 const union sctp_addr *paddr)
1018{
1019 struct sctp_transport *transport;
1020
1021 if (sctp_lookup_association(net, laddr, paddr, &transport)) {
1022 sctp_transport_put(transport);
1023 return true;
1024 }
1025
1026 return false;
1027}
1028
1029/*
1030 * SCTP Implementors Guide, 2.18 Handling of address
1031 * parameters within the INIT or INIT-ACK.
1032 *
1033 * D) When searching for a matching TCB upon reception of an INIT
1034 * or INIT-ACK chunk the receiver SHOULD use not only the
1035 * source address of the packet (containing the INIT or
1036 * INIT-ACK) but the receiver SHOULD also use all valid
1037 * address parameters contained within the chunk.
1038 *
1039 * 2.18.3 Solution description
1040 *
1041 * This new text clearly specifies to an implementor the need
1042 * to look within the INIT or INIT-ACK. Any implementation that
1043 * does not do this, may not be able to establish associations
1044 * in certain circumstances.
1045 *
1046 */
1047static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1048 struct sk_buff *skb,
1049 const union sctp_addr *laddr, struct sctp_transport **transportp)
1050{
1051 struct sctp_association *asoc;
1052 union sctp_addr addr;
1053 union sctp_addr *paddr = &addr;
1054 struct sctphdr *sh = sctp_hdr(skb);
1055 union sctp_params params;
1056 struct sctp_init_chunk *init;
1057 struct sctp_af *af;
1058
1059 /*
1060 * This code will NOT touch anything inside the chunk--it is
1061 * strictly READ-ONLY.
1062 *
1063 * RFC 2960 3 SCTP packet Format
1064 *
1065 * Multiple chunks can be bundled into one SCTP packet up to
1066 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1067 * COMPLETE chunks. These chunks MUST NOT be bundled with any
1068 * other chunk in a packet. See Section 6.10 for more details
1069 * on chunk bundling.
1070 */
1071
1072 /* Find the start of the TLVs and the end of the chunk. This is
1073 * the region we search for address parameters.
1074 */
1075 init = (struct sctp_init_chunk *)skb->data;
1076
1077 /* Walk the parameters looking for embedded addresses. */
1078 sctp_walk_params(params, init, init_hdr.params) {
1079
1080 /* Note: Ignoring hostname addresses. */
1081 af = sctp_get_af_specific(param_type2af(params.p->type));
1082 if (!af)
1083 continue;
1084
1085 af->from_addr_param(paddr, params.addr, sh->source, 0);
1086
1087 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1088 if (asoc)
1089 return asoc;
1090 }
1091
1092 return NULL;
1093}
1094
1095/* ADD-IP, Section 5.2
1096 * When an endpoint receives an ASCONF Chunk from the remote peer
1097 * special procedures may be needed to identify the association the
1098 * ASCONF Chunk is associated with. To properly find the association
1099 * the following procedures SHOULD be followed:
1100 *
1101 * D2) If the association is not found, use the address found in the
1102 * Address Parameter TLV combined with the port number found in the
1103 * SCTP common header. If found proceed to rule D4.
1104 *
1105 * D2-ext) If more than one ASCONF Chunks are packed together, use the
1106 * address found in the ASCONF Address Parameter TLV of each of the
1107 * subsequent ASCONF Chunks. If found, proceed to rule D4.
1108 */
1109static struct sctp_association *__sctp_rcv_asconf_lookup(
1110 struct net *net,
1111 struct sctp_chunkhdr *ch,
1112 const union sctp_addr *laddr,
1113 __be16 peer_port,
1114 struct sctp_transport **transportp)
1115{
1116 struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch;
1117 struct sctp_af *af;
1118 union sctp_addr_param *param;
1119 union sctp_addr paddr;
1120
1121 /* Skip over the ADDIP header and find the Address parameter */
1122 param = (union sctp_addr_param *)(asconf + 1);
1123
1124 af = sctp_get_af_specific(param_type2af(param->p.type));
1125 if (unlikely(!af))
1126 return NULL;
1127
1128 af->from_addr_param(&paddr, param, peer_port, 0);
1129
1130 return __sctp_lookup_association(net, laddr, &paddr, transportp);
1131}
1132
1133
1134/* SCTP-AUTH, Section 6.3:
1135* If the receiver does not find a STCB for a packet containing an AUTH
1136* chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1137* chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1138* association.
1139*
1140* This means that any chunks that can help us identify the association need
1141* to be looked at to find this association.
1142*/
1143static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1144 struct sk_buff *skb,
1145 const union sctp_addr *laddr,
1146 struct sctp_transport **transportp)
1147{
1148 struct sctp_association *asoc = NULL;
1149 struct sctp_chunkhdr *ch;
1150 int have_auth = 0;
1151 unsigned int chunk_num = 1;
1152 __u8 *ch_end;
1153
1154 /* Walk through the chunks looking for AUTH or ASCONF chunks
1155 * to help us find the association.
1156 */
1157 ch = (struct sctp_chunkhdr *)skb->data;
1158 do {
1159 /* Break out if chunk length is less then minimal. */
1160 if (ntohs(ch->length) < sizeof(*ch))
1161 break;
1162
1163 ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1164 if (ch_end > skb_tail_pointer(skb))
1165 break;
1166
1167 switch (ch->type) {
1168 case SCTP_CID_AUTH:
1169 have_auth = chunk_num;
1170 break;
1171
1172 case SCTP_CID_COOKIE_ECHO:
1173 /* If a packet arrives containing an AUTH chunk as
1174 * a first chunk, a COOKIE-ECHO chunk as the second
1175 * chunk, and possibly more chunks after them, and
1176 * the receiver does not have an STCB for that
1177 * packet, then authentication is based on
1178 * the contents of the COOKIE- ECHO chunk.
1179 */
1180 if (have_auth == 1 && chunk_num == 2)
1181 return NULL;
1182 break;
1183
1184 case SCTP_CID_ASCONF:
1185 if (have_auth || net->sctp.addip_noauth)
1186 asoc = __sctp_rcv_asconf_lookup(
1187 net, ch, laddr,
1188 sctp_hdr(skb)->source,
1189 transportp);
1190 default:
1191 break;
1192 }
1193
1194 if (asoc)
1195 break;
1196
1197 ch = (struct sctp_chunkhdr *)ch_end;
1198 chunk_num++;
1199 } while (ch_end < skb_tail_pointer(skb));
1200
1201 return asoc;
1202}
1203
1204/*
1205 * There are circumstances when we need to look inside the SCTP packet
1206 * for information to help us find the association. Examples
1207 * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1208 * chunks.
1209 */
1210static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1211 struct sk_buff *skb,
1212 const union sctp_addr *laddr,
1213 struct sctp_transport **transportp)
1214{
1215 struct sctp_chunkhdr *ch;
1216
1217 /* We do not allow GSO frames here as we need to linearize and
1218 * then cannot guarantee frame boundaries. This shouldn't be an
1219 * issue as packets hitting this are mostly INIT or INIT-ACK and
1220 * those cannot be on GSO-style anyway.
1221 */
1222 if (skb_is_gso(skb) && skb_is_gso_sctp(skb))
1223 return NULL;
1224
1225 ch = (struct sctp_chunkhdr *)skb->data;
1226
1227 /* The code below will attempt to walk the chunk and extract
1228 * parameter information. Before we do that, we need to verify
1229 * that the chunk length doesn't cause overflow. Otherwise, we'll
1230 * walk off the end.
1231 */
1232 if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1233 return NULL;
1234
1235 /* If this is INIT/INIT-ACK look inside the chunk too. */
1236 if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1237 return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1238
1239 return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1240}
1241
1242/* Lookup an association for an inbound skb. */
1243static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1244 struct sk_buff *skb,
1245 const union sctp_addr *paddr,
1246 const union sctp_addr *laddr,
1247 struct sctp_transport **transportp)
1248{
1249 struct sctp_association *asoc;
1250
1251 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1252 if (asoc)
1253 goto out;
1254
1255 /* Further lookup for INIT/INIT-ACK packets.
1256 * SCTP Implementors Guide, 2.18 Handling of address
1257 * parameters within the INIT or INIT-ACK.
1258 */
1259 asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1260 if (asoc)
1261 goto out;
1262
1263 if (paddr->sa.sa_family == AF_INET)
1264 pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
1265 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
1266 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
1267 else
1268 pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
1269 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
1270 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
1271
1272out:
1273 return asoc;
1274}