Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * linux/mm/vmscan.c |
| 4 | * |
| 5 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| 6 | * |
| 7 | * Swap reorganised 29.12.95, Stephen Tweedie. |
| 8 | * kswapd added: 7.1.96 sct |
| 9 | * Removed kswapd_ctl limits, and swap out as many pages as needed |
| 10 | * to bring the system back to freepages.high: 2.4.97, Rik van Riel. |
| 11 | * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). |
| 12 | * Multiqueue VM started 5.8.00, Rik van Riel. |
| 13 | */ |
| 14 | |
| 15 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 16 | |
| 17 | #include <linux/mm.h> |
| 18 | #include <linux/sched/mm.h> |
| 19 | #include <linux/module.h> |
| 20 | #include <linux/gfp.h> |
| 21 | #include <linux/kernel_stat.h> |
| 22 | #include <linux/swap.h> |
| 23 | #include <linux/pagemap.h> |
| 24 | #include <linux/init.h> |
| 25 | #include <linux/highmem.h> |
| 26 | #include <linux/vmpressure.h> |
| 27 | #include <linux/vmstat.h> |
| 28 | #include <linux/file.h> |
| 29 | #include <linux/writeback.h> |
| 30 | #include <linux/blkdev.h> |
| 31 | #include <linux/buffer_head.h> /* for try_to_release_page(), |
| 32 | buffer_heads_over_limit */ |
| 33 | #include <linux/mm_inline.h> |
| 34 | #include <linux/backing-dev.h> |
| 35 | #include <linux/rmap.h> |
| 36 | #include <linux/topology.h> |
| 37 | #include <linux/cpu.h> |
| 38 | #include <linux/cpuset.h> |
| 39 | #include <linux/compaction.h> |
| 40 | #include <linux/notifier.h> |
| 41 | #include <linux/rwsem.h> |
| 42 | #include <linux/delay.h> |
| 43 | #include <linux/kthread.h> |
| 44 | #include <linux/freezer.h> |
| 45 | #include <linux/memcontrol.h> |
| 46 | #include <linux/delayacct.h> |
| 47 | #include <linux/sysctl.h> |
| 48 | #include <linux/oom.h> |
| 49 | #include <linux/prefetch.h> |
| 50 | #include <linux/printk.h> |
| 51 | #include <linux/dax.h> |
| 52 | |
| 53 | #include <asm/tlbflush.h> |
| 54 | #include <asm/div64.h> |
| 55 | |
| 56 | #include <linux/swapops.h> |
| 57 | #include <linux/balloon_compaction.h> |
| 58 | |
| 59 | #include "internal.h" |
| 60 | |
| 61 | #define CREATE_TRACE_POINTS |
| 62 | #include <trace/events/vmscan.h> |
| 63 | |
| 64 | struct scan_control { |
| 65 | /* How many pages shrink_list() should reclaim */ |
| 66 | unsigned long nr_to_reclaim; |
| 67 | |
| 68 | /* |
| 69 | * Nodemask of nodes allowed by the caller. If NULL, all nodes |
| 70 | * are scanned. |
| 71 | */ |
| 72 | nodemask_t *nodemask; |
| 73 | |
| 74 | /* |
| 75 | * The memory cgroup that hit its limit and as a result is the |
| 76 | * primary target of this reclaim invocation. |
| 77 | */ |
| 78 | struct mem_cgroup *target_mem_cgroup; |
| 79 | |
| 80 | /* Writepage batching in laptop mode; RECLAIM_WRITE */ |
| 81 | unsigned int may_writepage:1; |
| 82 | |
| 83 | /* Can mapped pages be reclaimed? */ |
| 84 | unsigned int may_unmap:1; |
| 85 | |
| 86 | /* Can pages be swapped as part of reclaim? */ |
| 87 | unsigned int may_swap:1; |
| 88 | |
| 89 | /* |
| 90 | * Cgroups are not reclaimed below their configured memory.low, |
| 91 | * unless we threaten to OOM. If any cgroups are skipped due to |
| 92 | * memory.low and nothing was reclaimed, go back for memory.low. |
| 93 | */ |
| 94 | unsigned int memcg_low_reclaim:1; |
| 95 | unsigned int memcg_low_skipped:1; |
| 96 | |
| 97 | unsigned int hibernation_mode:1; |
| 98 | |
| 99 | /* One of the zones is ready for compaction */ |
| 100 | unsigned int compaction_ready:1; |
| 101 | |
| 102 | /* Allocation order */ |
| 103 | s8 order; |
| 104 | |
| 105 | /* Scan (total_size >> priority) pages at once */ |
| 106 | s8 priority; |
| 107 | |
| 108 | /* The highest zone to isolate pages for reclaim from */ |
| 109 | s8 reclaim_idx; |
| 110 | |
| 111 | /* This context's GFP mask */ |
| 112 | gfp_t gfp_mask; |
| 113 | |
| 114 | /* Incremented by the number of inactive pages that were scanned */ |
| 115 | unsigned long nr_scanned; |
| 116 | |
| 117 | /* Number of pages freed so far during a call to shrink_zones() */ |
| 118 | unsigned long nr_reclaimed; |
| 119 | |
| 120 | struct { |
| 121 | unsigned int dirty; |
| 122 | unsigned int unqueued_dirty; |
| 123 | unsigned int congested; |
| 124 | unsigned int writeback; |
| 125 | unsigned int immediate; |
| 126 | unsigned int file_taken; |
| 127 | unsigned int taken; |
| 128 | } nr; |
| 129 | }; |
| 130 | |
| 131 | #ifdef ARCH_HAS_PREFETCH |
| 132 | #define prefetch_prev_lru_page(_page, _base, _field) \ |
| 133 | do { \ |
| 134 | if ((_page)->lru.prev != _base) { \ |
| 135 | struct page *prev; \ |
| 136 | \ |
| 137 | prev = lru_to_page(&(_page->lru)); \ |
| 138 | prefetch(&prev->_field); \ |
| 139 | } \ |
| 140 | } while (0) |
| 141 | #else |
| 142 | #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) |
| 143 | #endif |
| 144 | |
| 145 | #ifdef ARCH_HAS_PREFETCHW |
| 146 | #define prefetchw_prev_lru_page(_page, _base, _field) \ |
| 147 | do { \ |
| 148 | if ((_page)->lru.prev != _base) { \ |
| 149 | struct page *prev; \ |
| 150 | \ |
| 151 | prev = lru_to_page(&(_page->lru)); \ |
| 152 | prefetchw(&prev->_field); \ |
| 153 | } \ |
| 154 | } while (0) |
| 155 | #else |
| 156 | #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) |
| 157 | #endif |
| 158 | |
| 159 | /* |
| 160 | * From 0 .. 100. Higher means more swappy. |
| 161 | */ |
| 162 | int vm_swappiness = 60; |
| 163 | /* |
| 164 | * The total number of pages which are beyond the high watermark within all |
| 165 | * zones. |
| 166 | */ |
| 167 | unsigned long vm_total_pages; |
| 168 | |
| 169 | static LIST_HEAD(shrinker_list); |
| 170 | static DECLARE_RWSEM(shrinker_rwsem); |
| 171 | |
| 172 | #ifdef CONFIG_MEMCG_KMEM |
| 173 | |
| 174 | /* |
| 175 | * We allow subsystems to populate their shrinker-related |
| 176 | * LRU lists before register_shrinker_prepared() is called |
| 177 | * for the shrinker, since we don't want to impose |
| 178 | * restrictions on their internal registration order. |
| 179 | * In this case shrink_slab_memcg() may find corresponding |
| 180 | * bit is set in the shrinkers map. |
| 181 | * |
| 182 | * This value is used by the function to detect registering |
| 183 | * shrinkers and to skip do_shrink_slab() calls for them. |
| 184 | */ |
| 185 | #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) |
| 186 | |
| 187 | static DEFINE_IDR(shrinker_idr); |
| 188 | static int shrinker_nr_max; |
| 189 | |
| 190 | static int prealloc_memcg_shrinker(struct shrinker *shrinker) |
| 191 | { |
| 192 | int id, ret = -ENOMEM; |
| 193 | |
| 194 | down_write(&shrinker_rwsem); |
| 195 | /* This may call shrinker, so it must use down_read_trylock() */ |
| 196 | id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); |
| 197 | if (id < 0) |
| 198 | goto unlock; |
| 199 | |
| 200 | if (id >= shrinker_nr_max) { |
| 201 | if (memcg_expand_shrinker_maps(id)) { |
| 202 | idr_remove(&shrinker_idr, id); |
| 203 | goto unlock; |
| 204 | } |
| 205 | |
| 206 | shrinker_nr_max = id + 1; |
| 207 | } |
| 208 | shrinker->id = id; |
| 209 | ret = 0; |
| 210 | unlock: |
| 211 | up_write(&shrinker_rwsem); |
| 212 | return ret; |
| 213 | } |
| 214 | |
| 215 | static void unregister_memcg_shrinker(struct shrinker *shrinker) |
| 216 | { |
| 217 | int id = shrinker->id; |
| 218 | |
| 219 | BUG_ON(id < 0); |
| 220 | |
| 221 | down_write(&shrinker_rwsem); |
| 222 | idr_remove(&shrinker_idr, id); |
| 223 | up_write(&shrinker_rwsem); |
| 224 | } |
| 225 | #else /* CONFIG_MEMCG_KMEM */ |
| 226 | static int prealloc_memcg_shrinker(struct shrinker *shrinker) |
| 227 | { |
| 228 | return 0; |
| 229 | } |
| 230 | |
| 231 | static void unregister_memcg_shrinker(struct shrinker *shrinker) |
| 232 | { |
| 233 | } |
| 234 | #endif /* CONFIG_MEMCG_KMEM */ |
| 235 | |
| 236 | #ifdef CONFIG_MEMCG |
| 237 | static bool global_reclaim(struct scan_control *sc) |
| 238 | { |
| 239 | return !sc->target_mem_cgroup; |
| 240 | } |
| 241 | |
| 242 | /** |
| 243 | * sane_reclaim - is the usual dirty throttling mechanism operational? |
| 244 | * @sc: scan_control in question |
| 245 | * |
| 246 | * The normal page dirty throttling mechanism in balance_dirty_pages() is |
| 247 | * completely broken with the legacy memcg and direct stalling in |
| 248 | * shrink_page_list() is used for throttling instead, which lacks all the |
| 249 | * niceties such as fairness, adaptive pausing, bandwidth proportional |
| 250 | * allocation and configurability. |
| 251 | * |
| 252 | * This function tests whether the vmscan currently in progress can assume |
| 253 | * that the normal dirty throttling mechanism is operational. |
| 254 | */ |
| 255 | static bool sane_reclaim(struct scan_control *sc) |
| 256 | { |
| 257 | struct mem_cgroup *memcg = sc->target_mem_cgroup; |
| 258 | |
| 259 | if (!memcg) |
| 260 | return true; |
| 261 | #ifdef CONFIG_CGROUP_WRITEBACK |
| 262 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
| 263 | return true; |
| 264 | #endif |
| 265 | return false; |
| 266 | } |
| 267 | |
| 268 | static void set_memcg_congestion(pg_data_t *pgdat, |
| 269 | struct mem_cgroup *memcg, |
| 270 | bool congested) |
| 271 | { |
| 272 | struct mem_cgroup_per_node *mn; |
| 273 | |
| 274 | if (!memcg) |
| 275 | return; |
| 276 | |
| 277 | mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); |
| 278 | WRITE_ONCE(mn->congested, congested); |
| 279 | } |
| 280 | |
| 281 | static bool memcg_congested(pg_data_t *pgdat, |
| 282 | struct mem_cgroup *memcg) |
| 283 | { |
| 284 | struct mem_cgroup_per_node *mn; |
| 285 | |
| 286 | mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); |
| 287 | return READ_ONCE(mn->congested); |
| 288 | |
| 289 | } |
| 290 | #else |
| 291 | static bool global_reclaim(struct scan_control *sc) |
| 292 | { |
| 293 | return true; |
| 294 | } |
| 295 | |
| 296 | static bool sane_reclaim(struct scan_control *sc) |
| 297 | { |
| 298 | return true; |
| 299 | } |
| 300 | |
| 301 | static inline void set_memcg_congestion(struct pglist_data *pgdat, |
| 302 | struct mem_cgroup *memcg, bool congested) |
| 303 | { |
| 304 | } |
| 305 | |
| 306 | static inline bool memcg_congested(struct pglist_data *pgdat, |
| 307 | struct mem_cgroup *memcg) |
| 308 | { |
| 309 | return false; |
| 310 | |
| 311 | } |
| 312 | #endif |
| 313 | |
| 314 | /* |
| 315 | * This misses isolated pages which are not accounted for to save counters. |
| 316 | * As the data only determines if reclaim or compaction continues, it is |
| 317 | * not expected that isolated pages will be a dominating factor. |
| 318 | */ |
| 319 | unsigned long zone_reclaimable_pages(struct zone *zone) |
| 320 | { |
| 321 | unsigned long nr; |
| 322 | |
| 323 | nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + |
| 324 | zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); |
| 325 | if (get_nr_swap_pages() > 0) |
| 326 | nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + |
| 327 | zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); |
| 328 | |
| 329 | return nr; |
| 330 | } |
| 331 | |
| 332 | /** |
| 333 | * lruvec_lru_size - Returns the number of pages on the given LRU list. |
| 334 | * @lruvec: lru vector |
| 335 | * @lru: lru to use |
| 336 | * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) |
| 337 | */ |
| 338 | unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) |
| 339 | { |
| 340 | unsigned long lru_size; |
| 341 | int zid; |
| 342 | |
| 343 | if (!mem_cgroup_disabled()) |
| 344 | lru_size = mem_cgroup_get_lru_size(lruvec, lru); |
| 345 | else |
| 346 | lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); |
| 347 | |
| 348 | for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { |
| 349 | struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; |
| 350 | unsigned long size; |
| 351 | |
| 352 | if (!managed_zone(zone)) |
| 353 | continue; |
| 354 | |
| 355 | if (!mem_cgroup_disabled()) |
| 356 | size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); |
| 357 | else |
| 358 | size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], |
| 359 | NR_ZONE_LRU_BASE + lru); |
| 360 | lru_size -= min(size, lru_size); |
| 361 | } |
| 362 | |
| 363 | return lru_size; |
| 364 | |
| 365 | } |
| 366 | |
| 367 | /* |
| 368 | * Add a shrinker callback to be called from the vm. |
| 369 | */ |
| 370 | int prealloc_shrinker(struct shrinker *shrinker) |
| 371 | { |
| 372 | size_t size = sizeof(*shrinker->nr_deferred); |
| 373 | |
| 374 | if (shrinker->flags & SHRINKER_NUMA_AWARE) |
| 375 | size *= nr_node_ids; |
| 376 | |
| 377 | shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); |
| 378 | if (!shrinker->nr_deferred) |
| 379 | return -ENOMEM; |
| 380 | |
| 381 | if (shrinker->flags & SHRINKER_MEMCG_AWARE) { |
| 382 | if (prealloc_memcg_shrinker(shrinker)) |
| 383 | goto free_deferred; |
| 384 | } |
| 385 | |
| 386 | return 0; |
| 387 | |
| 388 | free_deferred: |
| 389 | kfree(shrinker->nr_deferred); |
| 390 | shrinker->nr_deferred = NULL; |
| 391 | return -ENOMEM; |
| 392 | } |
| 393 | |
| 394 | void free_prealloced_shrinker(struct shrinker *shrinker) |
| 395 | { |
| 396 | if (!shrinker->nr_deferred) |
| 397 | return; |
| 398 | |
| 399 | if (shrinker->flags & SHRINKER_MEMCG_AWARE) |
| 400 | unregister_memcg_shrinker(shrinker); |
| 401 | |
| 402 | kfree(shrinker->nr_deferred); |
| 403 | shrinker->nr_deferred = NULL; |
| 404 | } |
| 405 | |
| 406 | void register_shrinker_prepared(struct shrinker *shrinker) |
| 407 | { |
| 408 | down_write(&shrinker_rwsem); |
| 409 | list_add_tail(&shrinker->list, &shrinker_list); |
| 410 | #ifdef CONFIG_MEMCG_KMEM |
| 411 | if (shrinker->flags & SHRINKER_MEMCG_AWARE) |
| 412 | idr_replace(&shrinker_idr, shrinker, shrinker->id); |
| 413 | #endif |
| 414 | up_write(&shrinker_rwsem); |
| 415 | } |
| 416 | |
| 417 | int register_shrinker(struct shrinker *shrinker) |
| 418 | { |
| 419 | int err = prealloc_shrinker(shrinker); |
| 420 | |
| 421 | if (err) |
| 422 | return err; |
| 423 | register_shrinker_prepared(shrinker); |
| 424 | return 0; |
| 425 | } |
| 426 | EXPORT_SYMBOL(register_shrinker); |
| 427 | |
| 428 | /* |
| 429 | * Remove one |
| 430 | */ |
| 431 | void unregister_shrinker(struct shrinker *shrinker) |
| 432 | { |
| 433 | if (!shrinker->nr_deferred) |
| 434 | return; |
| 435 | if (shrinker->flags & SHRINKER_MEMCG_AWARE) |
| 436 | unregister_memcg_shrinker(shrinker); |
| 437 | down_write(&shrinker_rwsem); |
| 438 | list_del(&shrinker->list); |
| 439 | up_write(&shrinker_rwsem); |
| 440 | kfree(shrinker->nr_deferred); |
| 441 | shrinker->nr_deferred = NULL; |
| 442 | } |
| 443 | EXPORT_SYMBOL(unregister_shrinker); |
| 444 | |
| 445 | #define SHRINK_BATCH 128 |
| 446 | |
| 447 | static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, |
| 448 | struct shrinker *shrinker, int priority) |
| 449 | { |
| 450 | unsigned long freed = 0; |
| 451 | unsigned long long delta; |
| 452 | long total_scan; |
| 453 | long freeable; |
| 454 | long nr; |
| 455 | long new_nr; |
| 456 | int nid = shrinkctl->nid; |
| 457 | long batch_size = shrinker->batch ? shrinker->batch |
| 458 | : SHRINK_BATCH; |
| 459 | long scanned = 0, next_deferred; |
| 460 | |
| 461 | if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) |
| 462 | nid = 0; |
| 463 | |
| 464 | freeable = shrinker->count_objects(shrinker, shrinkctl); |
| 465 | if (freeable == 0 || freeable == SHRINK_EMPTY) |
| 466 | return freeable; |
| 467 | |
| 468 | /* |
| 469 | * copy the current shrinker scan count into a local variable |
| 470 | * and zero it so that other concurrent shrinker invocations |
| 471 | * don't also do this scanning work. |
| 472 | */ |
| 473 | nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); |
| 474 | |
| 475 | total_scan = nr; |
| 476 | delta = freeable >> priority; |
| 477 | delta *= 4; |
| 478 | do_div(delta, shrinker->seeks); |
| 479 | |
| 480 | /* |
| 481 | * Make sure we apply some minimal pressure on default priority |
| 482 | * even on small cgroups. Stale objects are not only consuming memory |
| 483 | * by themselves, but can also hold a reference to a dying cgroup, |
| 484 | * preventing it from being reclaimed. A dying cgroup with all |
| 485 | * corresponding structures like per-cpu stats and kmem caches |
| 486 | * can be really big, so it may lead to a significant waste of memory. |
| 487 | */ |
| 488 | delta = max_t(unsigned long long, delta, min(freeable, batch_size)); |
| 489 | |
| 490 | total_scan += delta; |
| 491 | if (total_scan < 0) { |
| 492 | pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", |
| 493 | shrinker->scan_objects, total_scan); |
| 494 | total_scan = freeable; |
| 495 | next_deferred = nr; |
| 496 | } else |
| 497 | next_deferred = total_scan; |
| 498 | |
| 499 | /* |
| 500 | * We need to avoid excessive windup on filesystem shrinkers |
| 501 | * due to large numbers of GFP_NOFS allocations causing the |
| 502 | * shrinkers to return -1 all the time. This results in a large |
| 503 | * nr being built up so when a shrink that can do some work |
| 504 | * comes along it empties the entire cache due to nr >>> |
| 505 | * freeable. This is bad for sustaining a working set in |
| 506 | * memory. |
| 507 | * |
| 508 | * Hence only allow the shrinker to scan the entire cache when |
| 509 | * a large delta change is calculated directly. |
| 510 | */ |
| 511 | if (delta < freeable / 4) |
| 512 | total_scan = min(total_scan, freeable / 2); |
| 513 | |
| 514 | /* |
| 515 | * Avoid risking looping forever due to too large nr value: |
| 516 | * never try to free more than twice the estimate number of |
| 517 | * freeable entries. |
| 518 | */ |
| 519 | if (total_scan > freeable * 2) |
| 520 | total_scan = freeable * 2; |
| 521 | |
| 522 | trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, |
| 523 | freeable, delta, total_scan, priority); |
| 524 | |
| 525 | /* |
| 526 | * Normally, we should not scan less than batch_size objects in one |
| 527 | * pass to avoid too frequent shrinker calls, but if the slab has less |
| 528 | * than batch_size objects in total and we are really tight on memory, |
| 529 | * we will try to reclaim all available objects, otherwise we can end |
| 530 | * up failing allocations although there are plenty of reclaimable |
| 531 | * objects spread over several slabs with usage less than the |
| 532 | * batch_size. |
| 533 | * |
| 534 | * We detect the "tight on memory" situations by looking at the total |
| 535 | * number of objects we want to scan (total_scan). If it is greater |
| 536 | * than the total number of objects on slab (freeable), we must be |
| 537 | * scanning at high prio and therefore should try to reclaim as much as |
| 538 | * possible. |
| 539 | */ |
| 540 | while (total_scan >= batch_size || |
| 541 | total_scan >= freeable) { |
| 542 | unsigned long ret; |
| 543 | unsigned long nr_to_scan = min(batch_size, total_scan); |
| 544 | |
| 545 | shrinkctl->nr_to_scan = nr_to_scan; |
| 546 | shrinkctl->nr_scanned = nr_to_scan; |
| 547 | ret = shrinker->scan_objects(shrinker, shrinkctl); |
| 548 | if (ret == SHRINK_STOP) |
| 549 | break; |
| 550 | freed += ret; |
| 551 | |
| 552 | count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); |
| 553 | total_scan -= shrinkctl->nr_scanned; |
| 554 | scanned += shrinkctl->nr_scanned; |
| 555 | |
| 556 | cond_resched(); |
| 557 | } |
| 558 | |
| 559 | if (next_deferred >= scanned) |
| 560 | next_deferred -= scanned; |
| 561 | else |
| 562 | next_deferred = 0; |
| 563 | /* |
| 564 | * move the unused scan count back into the shrinker in a |
| 565 | * manner that handles concurrent updates. If we exhausted the |
| 566 | * scan, there is no need to do an update. |
| 567 | */ |
| 568 | if (next_deferred > 0) |
| 569 | new_nr = atomic_long_add_return(next_deferred, |
| 570 | &shrinker->nr_deferred[nid]); |
| 571 | else |
| 572 | new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); |
| 573 | |
| 574 | trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); |
| 575 | return freed; |
| 576 | } |
| 577 | |
| 578 | #ifdef CONFIG_MEMCG_KMEM |
| 579 | static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, |
| 580 | struct mem_cgroup *memcg, int priority) |
| 581 | { |
| 582 | struct memcg_shrinker_map *map; |
| 583 | unsigned long ret, freed = 0; |
| 584 | int i; |
| 585 | |
| 586 | if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)) |
| 587 | return 0; |
| 588 | |
| 589 | if (!down_read_trylock(&shrinker_rwsem)) |
| 590 | return 0; |
| 591 | |
| 592 | map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, |
| 593 | true); |
| 594 | if (unlikely(!map)) |
| 595 | goto unlock; |
| 596 | |
| 597 | for_each_set_bit(i, map->map, shrinker_nr_max) { |
| 598 | struct shrink_control sc = { |
| 599 | .gfp_mask = gfp_mask, |
| 600 | .nid = nid, |
| 601 | .memcg = memcg, |
| 602 | }; |
| 603 | struct shrinker *shrinker; |
| 604 | |
| 605 | shrinker = idr_find(&shrinker_idr, i); |
| 606 | if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { |
| 607 | if (!shrinker) |
| 608 | clear_bit(i, map->map); |
| 609 | continue; |
| 610 | } |
| 611 | |
| 612 | ret = do_shrink_slab(&sc, shrinker, priority); |
| 613 | if (ret == SHRINK_EMPTY) { |
| 614 | clear_bit(i, map->map); |
| 615 | /* |
| 616 | * After the shrinker reported that it had no objects to |
| 617 | * free, but before we cleared the corresponding bit in |
| 618 | * the memcg shrinker map, a new object might have been |
| 619 | * added. To make sure, we have the bit set in this |
| 620 | * case, we invoke the shrinker one more time and reset |
| 621 | * the bit if it reports that it is not empty anymore. |
| 622 | * The memory barrier here pairs with the barrier in |
| 623 | * memcg_set_shrinker_bit(): |
| 624 | * |
| 625 | * list_lru_add() shrink_slab_memcg() |
| 626 | * list_add_tail() clear_bit() |
| 627 | * <MB> <MB> |
| 628 | * set_bit() do_shrink_slab() |
| 629 | */ |
| 630 | smp_mb__after_atomic(); |
| 631 | ret = do_shrink_slab(&sc, shrinker, priority); |
| 632 | if (ret == SHRINK_EMPTY) |
| 633 | ret = 0; |
| 634 | else |
| 635 | memcg_set_shrinker_bit(memcg, nid, i); |
| 636 | } |
| 637 | freed += ret; |
| 638 | |
| 639 | if (rwsem_is_contended(&shrinker_rwsem)) { |
| 640 | freed = freed ? : 1; |
| 641 | break; |
| 642 | } |
| 643 | } |
| 644 | unlock: |
| 645 | up_read(&shrinker_rwsem); |
| 646 | return freed; |
| 647 | } |
| 648 | #else /* CONFIG_MEMCG_KMEM */ |
| 649 | static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, |
| 650 | struct mem_cgroup *memcg, int priority) |
| 651 | { |
| 652 | return 0; |
| 653 | } |
| 654 | #endif /* CONFIG_MEMCG_KMEM */ |
| 655 | |
| 656 | /** |
| 657 | * shrink_slab - shrink slab caches |
| 658 | * @gfp_mask: allocation context |
| 659 | * @nid: node whose slab caches to target |
| 660 | * @memcg: memory cgroup whose slab caches to target |
| 661 | * @priority: the reclaim priority |
| 662 | * |
| 663 | * Call the shrink functions to age shrinkable caches. |
| 664 | * |
| 665 | * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, |
| 666 | * unaware shrinkers will receive a node id of 0 instead. |
| 667 | * |
| 668 | * @memcg specifies the memory cgroup to target. Unaware shrinkers |
| 669 | * are called only if it is the root cgroup. |
| 670 | * |
| 671 | * @priority is sc->priority, we take the number of objects and >> by priority |
| 672 | * in order to get the scan target. |
| 673 | * |
| 674 | * Returns the number of reclaimed slab objects. |
| 675 | */ |
| 676 | static unsigned long shrink_slab(gfp_t gfp_mask, int nid, |
| 677 | struct mem_cgroup *memcg, |
| 678 | int priority) |
| 679 | { |
| 680 | unsigned long ret, freed = 0; |
| 681 | struct shrinker *shrinker; |
| 682 | |
| 683 | if (!mem_cgroup_is_root(memcg)) |
| 684 | return shrink_slab_memcg(gfp_mask, nid, memcg, priority); |
| 685 | |
| 686 | if (!down_read_trylock(&shrinker_rwsem)) |
| 687 | goto out; |
| 688 | |
| 689 | list_for_each_entry(shrinker, &shrinker_list, list) { |
| 690 | struct shrink_control sc = { |
| 691 | .gfp_mask = gfp_mask, |
| 692 | .nid = nid, |
| 693 | .memcg = memcg, |
| 694 | }; |
| 695 | |
| 696 | ret = do_shrink_slab(&sc, shrinker, priority); |
| 697 | if (ret == SHRINK_EMPTY) |
| 698 | ret = 0; |
| 699 | freed += ret; |
| 700 | /* |
| 701 | * Bail out if someone want to register a new shrinker to |
| 702 | * prevent the regsitration from being stalled for long periods |
| 703 | * by parallel ongoing shrinking. |
| 704 | */ |
| 705 | if (rwsem_is_contended(&shrinker_rwsem)) { |
| 706 | freed = freed ? : 1; |
| 707 | break; |
| 708 | } |
| 709 | } |
| 710 | |
| 711 | up_read(&shrinker_rwsem); |
| 712 | out: |
| 713 | cond_resched(); |
| 714 | return freed; |
| 715 | } |
| 716 | |
| 717 | void drop_slab_node(int nid) |
| 718 | { |
| 719 | unsigned long freed; |
| 720 | |
| 721 | do { |
| 722 | struct mem_cgroup *memcg = NULL; |
| 723 | |
| 724 | freed = 0; |
| 725 | memcg = mem_cgroup_iter(NULL, NULL, NULL); |
| 726 | do { |
| 727 | freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); |
| 728 | } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); |
| 729 | } while (freed > 10); |
| 730 | } |
| 731 | |
| 732 | void drop_slab(void) |
| 733 | { |
| 734 | int nid; |
| 735 | |
| 736 | for_each_online_node(nid) |
| 737 | drop_slab_node(nid); |
| 738 | } |
| 739 | |
| 740 | static inline int is_page_cache_freeable(struct page *page) |
| 741 | { |
| 742 | /* |
| 743 | * A freeable page cache page is referenced only by the caller |
| 744 | * that isolated the page, the page cache radix tree and |
| 745 | * optional buffer heads at page->private. |
| 746 | */ |
| 747 | int radix_pins = PageTransHuge(page) && PageSwapCache(page) ? |
| 748 | HPAGE_PMD_NR : 1; |
| 749 | return page_count(page) - page_has_private(page) == 1 + radix_pins; |
| 750 | } |
| 751 | |
| 752 | static int may_write_to_inode(struct inode *inode, struct scan_control *sc) |
| 753 | { |
| 754 | if (current->flags & PF_SWAPWRITE) |
| 755 | return 1; |
| 756 | if (!inode_write_congested(inode)) |
| 757 | return 1; |
| 758 | if (inode_to_bdi(inode) == current->backing_dev_info) |
| 759 | return 1; |
| 760 | return 0; |
| 761 | } |
| 762 | |
| 763 | /* |
| 764 | * We detected a synchronous write error writing a page out. Probably |
| 765 | * -ENOSPC. We need to propagate that into the address_space for a subsequent |
| 766 | * fsync(), msync() or close(). |
| 767 | * |
| 768 | * The tricky part is that after writepage we cannot touch the mapping: nothing |
| 769 | * prevents it from being freed up. But we have a ref on the page and once |
| 770 | * that page is locked, the mapping is pinned. |
| 771 | * |
| 772 | * We're allowed to run sleeping lock_page() here because we know the caller has |
| 773 | * __GFP_FS. |
| 774 | */ |
| 775 | static void handle_write_error(struct address_space *mapping, |
| 776 | struct page *page, int error) |
| 777 | { |
| 778 | lock_page(page); |
| 779 | if (page_mapping(page) == mapping) |
| 780 | mapping_set_error(mapping, error); |
| 781 | unlock_page(page); |
| 782 | } |
| 783 | |
| 784 | /* possible outcome of pageout() */ |
| 785 | typedef enum { |
| 786 | /* failed to write page out, page is locked */ |
| 787 | PAGE_KEEP, |
| 788 | /* move page to the active list, page is locked */ |
| 789 | PAGE_ACTIVATE, |
| 790 | /* page has been sent to the disk successfully, page is unlocked */ |
| 791 | PAGE_SUCCESS, |
| 792 | /* page is clean and locked */ |
| 793 | PAGE_CLEAN, |
| 794 | } pageout_t; |
| 795 | |
| 796 | /* |
| 797 | * pageout is called by shrink_page_list() for each dirty page. |
| 798 | * Calls ->writepage(). |
| 799 | */ |
| 800 | static pageout_t pageout(struct page *page, struct address_space *mapping, |
| 801 | struct scan_control *sc) |
| 802 | { |
| 803 | /* |
| 804 | * If the page is dirty, only perform writeback if that write |
| 805 | * will be non-blocking. To prevent this allocation from being |
| 806 | * stalled by pagecache activity. But note that there may be |
| 807 | * stalls if we need to run get_block(). We could test |
| 808 | * PagePrivate for that. |
| 809 | * |
| 810 | * If this process is currently in __generic_file_write_iter() against |
| 811 | * this page's queue, we can perform writeback even if that |
| 812 | * will block. |
| 813 | * |
| 814 | * If the page is swapcache, write it back even if that would |
| 815 | * block, for some throttling. This happens by accident, because |
| 816 | * swap_backing_dev_info is bust: it doesn't reflect the |
| 817 | * congestion state of the swapdevs. Easy to fix, if needed. |
| 818 | */ |
| 819 | if (!is_page_cache_freeable(page)) |
| 820 | return PAGE_KEEP; |
| 821 | if (!mapping) { |
| 822 | /* |
| 823 | * Some data journaling orphaned pages can have |
| 824 | * page->mapping == NULL while being dirty with clean buffers. |
| 825 | */ |
| 826 | if (page_has_private(page)) { |
| 827 | if (try_to_free_buffers(page)) { |
| 828 | ClearPageDirty(page); |
| 829 | pr_info("%s: orphaned page\n", __func__); |
| 830 | return PAGE_CLEAN; |
| 831 | } |
| 832 | } |
| 833 | return PAGE_KEEP; |
| 834 | } |
| 835 | if (mapping->a_ops->writepage == NULL) |
| 836 | return PAGE_ACTIVATE; |
| 837 | if (!may_write_to_inode(mapping->host, sc)) |
| 838 | return PAGE_KEEP; |
| 839 | |
| 840 | if (clear_page_dirty_for_io(page)) { |
| 841 | int res; |
| 842 | struct writeback_control wbc = { |
| 843 | .sync_mode = WB_SYNC_NONE, |
| 844 | .nr_to_write = SWAP_CLUSTER_MAX, |
| 845 | .range_start = 0, |
| 846 | .range_end = LLONG_MAX, |
| 847 | .for_reclaim = 1, |
| 848 | }; |
| 849 | |
| 850 | SetPageReclaim(page); |
| 851 | res = mapping->a_ops->writepage(page, &wbc); |
| 852 | if (res < 0) |
| 853 | handle_write_error(mapping, page, res); |
| 854 | if (res == AOP_WRITEPAGE_ACTIVATE) { |
| 855 | ClearPageReclaim(page); |
| 856 | return PAGE_ACTIVATE; |
| 857 | } |
| 858 | |
| 859 | if (!PageWriteback(page)) { |
| 860 | /* synchronous write or broken a_ops? */ |
| 861 | ClearPageReclaim(page); |
| 862 | } |
| 863 | trace_mm_vmscan_writepage(page); |
| 864 | inc_node_page_state(page, NR_VMSCAN_WRITE); |
| 865 | return PAGE_SUCCESS; |
| 866 | } |
| 867 | |
| 868 | return PAGE_CLEAN; |
| 869 | } |
| 870 | |
| 871 | /* |
| 872 | * Same as remove_mapping, but if the page is removed from the mapping, it |
| 873 | * gets returned with a refcount of 0. |
| 874 | */ |
| 875 | static int __remove_mapping(struct address_space *mapping, struct page *page, |
| 876 | bool reclaimed) |
| 877 | { |
| 878 | unsigned long flags; |
| 879 | int refcount; |
| 880 | |
| 881 | BUG_ON(!PageLocked(page)); |
| 882 | BUG_ON(mapping != page_mapping(page)); |
| 883 | |
| 884 | xa_lock_irqsave(&mapping->i_pages, flags); |
| 885 | /* |
| 886 | * The non racy check for a busy page. |
| 887 | * |
| 888 | * Must be careful with the order of the tests. When someone has |
| 889 | * a ref to the page, it may be possible that they dirty it then |
| 890 | * drop the reference. So if PageDirty is tested before page_count |
| 891 | * here, then the following race may occur: |
| 892 | * |
| 893 | * get_user_pages(&page); |
| 894 | * [user mapping goes away] |
| 895 | * write_to(page); |
| 896 | * !PageDirty(page) [good] |
| 897 | * SetPageDirty(page); |
| 898 | * put_page(page); |
| 899 | * !page_count(page) [good, discard it] |
| 900 | * |
| 901 | * [oops, our write_to data is lost] |
| 902 | * |
| 903 | * Reversing the order of the tests ensures such a situation cannot |
| 904 | * escape unnoticed. The smp_rmb is needed to ensure the page->flags |
| 905 | * load is not satisfied before that of page->_refcount. |
| 906 | * |
| 907 | * Note that if SetPageDirty is always performed via set_page_dirty, |
| 908 | * and thus under the i_pages lock, then this ordering is not required. |
| 909 | */ |
| 910 | if (unlikely(PageTransHuge(page)) && PageSwapCache(page)) |
| 911 | refcount = 1 + HPAGE_PMD_NR; |
| 912 | else |
| 913 | refcount = 2; |
| 914 | if (!page_ref_freeze(page, refcount)) |
| 915 | goto cannot_free; |
| 916 | /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ |
| 917 | if (unlikely(PageDirty(page))) { |
| 918 | page_ref_unfreeze(page, refcount); |
| 919 | goto cannot_free; |
| 920 | } |
| 921 | |
| 922 | if (PageSwapCache(page)) { |
| 923 | swp_entry_t swap = { .val = page_private(page) }; |
| 924 | mem_cgroup_swapout(page, swap); |
| 925 | __delete_from_swap_cache(page); |
| 926 | xa_unlock_irqrestore(&mapping->i_pages, flags); |
| 927 | put_swap_page(page, swap); |
| 928 | } else { |
| 929 | void (*freepage)(struct page *); |
| 930 | void *shadow = NULL; |
| 931 | |
| 932 | freepage = mapping->a_ops->freepage; |
| 933 | /* |
| 934 | * Remember a shadow entry for reclaimed file cache in |
| 935 | * order to detect refaults, thus thrashing, later on. |
| 936 | * |
| 937 | * But don't store shadows in an address space that is |
| 938 | * already exiting. This is not just an optizimation, |
| 939 | * inode reclaim needs to empty out the radix tree or |
| 940 | * the nodes are lost. Don't plant shadows behind its |
| 941 | * back. |
| 942 | * |
| 943 | * We also don't store shadows for DAX mappings because the |
| 944 | * only page cache pages found in these are zero pages |
| 945 | * covering holes, and because we don't want to mix DAX |
| 946 | * exceptional entries and shadow exceptional entries in the |
| 947 | * same address_space. |
| 948 | */ |
| 949 | if (reclaimed && page_is_file_cache(page) && |
| 950 | !mapping_exiting(mapping) && !dax_mapping(mapping)) |
| 951 | shadow = workingset_eviction(mapping, page); |
| 952 | __delete_from_page_cache(page, shadow); |
| 953 | xa_unlock_irqrestore(&mapping->i_pages, flags); |
| 954 | |
| 955 | if (freepage != NULL) |
| 956 | freepage(page); |
| 957 | } |
| 958 | |
| 959 | return 1; |
| 960 | |
| 961 | cannot_free: |
| 962 | xa_unlock_irqrestore(&mapping->i_pages, flags); |
| 963 | return 0; |
| 964 | } |
| 965 | |
| 966 | /* |
| 967 | * Attempt to detach a locked page from its ->mapping. If it is dirty or if |
| 968 | * someone else has a ref on the page, abort and return 0. If it was |
| 969 | * successfully detached, return 1. Assumes the caller has a single ref on |
| 970 | * this page. |
| 971 | */ |
| 972 | int remove_mapping(struct address_space *mapping, struct page *page) |
| 973 | { |
| 974 | if (__remove_mapping(mapping, page, false)) { |
| 975 | /* |
| 976 | * Unfreezing the refcount with 1 rather than 2 effectively |
| 977 | * drops the pagecache ref for us without requiring another |
| 978 | * atomic operation. |
| 979 | */ |
| 980 | page_ref_unfreeze(page, 1); |
| 981 | return 1; |
| 982 | } |
| 983 | return 0; |
| 984 | } |
| 985 | |
| 986 | /** |
| 987 | * putback_lru_page - put previously isolated page onto appropriate LRU list |
| 988 | * @page: page to be put back to appropriate lru list |
| 989 | * |
| 990 | * Add previously isolated @page to appropriate LRU list. |
| 991 | * Page may still be unevictable for other reasons. |
| 992 | * |
| 993 | * lru_lock must not be held, interrupts must be enabled. |
| 994 | */ |
| 995 | void putback_lru_page(struct page *page) |
| 996 | { |
| 997 | lru_cache_add(page); |
| 998 | put_page(page); /* drop ref from isolate */ |
| 999 | } |
| 1000 | |
| 1001 | enum page_references { |
| 1002 | PAGEREF_RECLAIM, |
| 1003 | PAGEREF_RECLAIM_CLEAN, |
| 1004 | PAGEREF_KEEP, |
| 1005 | PAGEREF_ACTIVATE, |
| 1006 | }; |
| 1007 | |
| 1008 | static enum page_references page_check_references(struct page *page, |
| 1009 | struct scan_control *sc) |
| 1010 | { |
| 1011 | int referenced_ptes, referenced_page; |
| 1012 | unsigned long vm_flags; |
| 1013 | |
| 1014 | referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, |
| 1015 | &vm_flags); |
| 1016 | referenced_page = TestClearPageReferenced(page); |
| 1017 | |
| 1018 | /* |
| 1019 | * Mlock lost the isolation race with us. Let try_to_unmap() |
| 1020 | * move the page to the unevictable list. |
| 1021 | */ |
| 1022 | if (vm_flags & VM_LOCKED) |
| 1023 | return PAGEREF_RECLAIM; |
| 1024 | |
| 1025 | if (referenced_ptes) { |
| 1026 | if (PageSwapBacked(page)) |
| 1027 | return PAGEREF_ACTIVATE; |
| 1028 | /* |
| 1029 | * All mapped pages start out with page table |
| 1030 | * references from the instantiating fault, so we need |
| 1031 | * to look twice if a mapped file page is used more |
| 1032 | * than once. |
| 1033 | * |
| 1034 | * Mark it and spare it for another trip around the |
| 1035 | * inactive list. Another page table reference will |
| 1036 | * lead to its activation. |
| 1037 | * |
| 1038 | * Note: the mark is set for activated pages as well |
| 1039 | * so that recently deactivated but used pages are |
| 1040 | * quickly recovered. |
| 1041 | */ |
| 1042 | SetPageReferenced(page); |
| 1043 | |
| 1044 | if (referenced_page || referenced_ptes > 1) |
| 1045 | return PAGEREF_ACTIVATE; |
| 1046 | |
| 1047 | /* |
| 1048 | * Activate file-backed executable pages after first usage. |
| 1049 | */ |
| 1050 | if (vm_flags & VM_EXEC) |
| 1051 | return PAGEREF_ACTIVATE; |
| 1052 | |
| 1053 | return PAGEREF_KEEP; |
| 1054 | } |
| 1055 | |
| 1056 | /* Reclaim if clean, defer dirty pages to writeback */ |
| 1057 | if (referenced_page && !PageSwapBacked(page)) |
| 1058 | return PAGEREF_RECLAIM_CLEAN; |
| 1059 | |
| 1060 | return PAGEREF_RECLAIM; |
| 1061 | } |
| 1062 | |
| 1063 | /* Check if a page is dirty or under writeback */ |
| 1064 | static void page_check_dirty_writeback(struct page *page, |
| 1065 | bool *dirty, bool *writeback) |
| 1066 | { |
| 1067 | struct address_space *mapping; |
| 1068 | |
| 1069 | /* |
| 1070 | * Anonymous pages are not handled by flushers and must be written |
| 1071 | * from reclaim context. Do not stall reclaim based on them |
| 1072 | */ |
| 1073 | if (!page_is_file_cache(page) || |
| 1074 | (PageAnon(page) && !PageSwapBacked(page))) { |
| 1075 | *dirty = false; |
| 1076 | *writeback = false; |
| 1077 | return; |
| 1078 | } |
| 1079 | |
| 1080 | /* By default assume that the page flags are accurate */ |
| 1081 | *dirty = PageDirty(page); |
| 1082 | *writeback = PageWriteback(page); |
| 1083 | |
| 1084 | /* Verify dirty/writeback state if the filesystem supports it */ |
| 1085 | if (!page_has_private(page)) |
| 1086 | return; |
| 1087 | |
| 1088 | mapping = page_mapping(page); |
| 1089 | if (mapping && mapping->a_ops->is_dirty_writeback) |
| 1090 | mapping->a_ops->is_dirty_writeback(page, dirty, writeback); |
| 1091 | } |
| 1092 | |
| 1093 | /* |
| 1094 | * shrink_page_list() returns the number of reclaimed pages |
| 1095 | */ |
| 1096 | static unsigned long shrink_page_list(struct list_head *page_list, |
| 1097 | struct pglist_data *pgdat, |
| 1098 | struct scan_control *sc, |
| 1099 | enum ttu_flags ttu_flags, |
| 1100 | struct reclaim_stat *stat, |
| 1101 | bool force_reclaim) |
| 1102 | { |
| 1103 | LIST_HEAD(ret_pages); |
| 1104 | LIST_HEAD(free_pages); |
| 1105 | int pgactivate = 0; |
| 1106 | unsigned nr_unqueued_dirty = 0; |
| 1107 | unsigned nr_dirty = 0; |
| 1108 | unsigned nr_congested = 0; |
| 1109 | unsigned nr_reclaimed = 0; |
| 1110 | unsigned nr_writeback = 0; |
| 1111 | unsigned nr_immediate = 0; |
| 1112 | unsigned nr_ref_keep = 0; |
| 1113 | unsigned nr_unmap_fail = 0; |
| 1114 | |
| 1115 | cond_resched(); |
| 1116 | |
| 1117 | while (!list_empty(page_list)) { |
| 1118 | struct address_space *mapping; |
| 1119 | struct page *page; |
| 1120 | int may_enter_fs; |
| 1121 | enum page_references references = PAGEREF_RECLAIM_CLEAN; |
| 1122 | bool dirty, writeback; |
| 1123 | |
| 1124 | cond_resched(); |
| 1125 | |
| 1126 | page = lru_to_page(page_list); |
| 1127 | list_del(&page->lru); |
| 1128 | |
| 1129 | if (!trylock_page(page)) |
| 1130 | goto keep; |
| 1131 | |
| 1132 | VM_BUG_ON_PAGE(PageActive(page), page); |
| 1133 | |
| 1134 | sc->nr_scanned++; |
| 1135 | |
| 1136 | if (unlikely(!page_evictable(page))) |
| 1137 | goto activate_locked; |
| 1138 | |
| 1139 | if (!sc->may_unmap && page_mapped(page)) |
| 1140 | goto keep_locked; |
| 1141 | |
| 1142 | /* Double the slab pressure for mapped and swapcache pages */ |
| 1143 | if ((page_mapped(page) || PageSwapCache(page)) && |
| 1144 | !(PageAnon(page) && !PageSwapBacked(page))) |
| 1145 | sc->nr_scanned++; |
| 1146 | |
| 1147 | may_enter_fs = (sc->gfp_mask & __GFP_FS) || |
| 1148 | (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); |
| 1149 | |
| 1150 | /* |
| 1151 | * The number of dirty pages determines if a node is marked |
| 1152 | * reclaim_congested which affects wait_iff_congested. kswapd |
| 1153 | * will stall and start writing pages if the tail of the LRU |
| 1154 | * is all dirty unqueued pages. |
| 1155 | */ |
| 1156 | page_check_dirty_writeback(page, &dirty, &writeback); |
| 1157 | if (dirty || writeback) |
| 1158 | nr_dirty++; |
| 1159 | |
| 1160 | if (dirty && !writeback) |
| 1161 | nr_unqueued_dirty++; |
| 1162 | |
| 1163 | /* |
| 1164 | * Treat this page as congested if the underlying BDI is or if |
| 1165 | * pages are cycling through the LRU so quickly that the |
| 1166 | * pages marked for immediate reclaim are making it to the |
| 1167 | * end of the LRU a second time. |
| 1168 | */ |
| 1169 | mapping = page_mapping(page); |
| 1170 | if (((dirty || writeback) && mapping && |
| 1171 | inode_write_congested(mapping->host)) || |
| 1172 | (writeback && PageReclaim(page))) |
| 1173 | nr_congested++; |
| 1174 | |
| 1175 | /* |
| 1176 | * If a page at the tail of the LRU is under writeback, there |
| 1177 | * are three cases to consider. |
| 1178 | * |
| 1179 | * 1) If reclaim is encountering an excessive number of pages |
| 1180 | * under writeback and this page is both under writeback and |
| 1181 | * PageReclaim then it indicates that pages are being queued |
| 1182 | * for IO but are being recycled through the LRU before the |
| 1183 | * IO can complete. Waiting on the page itself risks an |
| 1184 | * indefinite stall if it is impossible to writeback the |
| 1185 | * page due to IO error or disconnected storage so instead |
| 1186 | * note that the LRU is being scanned too quickly and the |
| 1187 | * caller can stall after page list has been processed. |
| 1188 | * |
| 1189 | * 2) Global or new memcg reclaim encounters a page that is |
| 1190 | * not marked for immediate reclaim, or the caller does not |
| 1191 | * have __GFP_FS (or __GFP_IO if it's simply going to swap, |
| 1192 | * not to fs). In this case mark the page for immediate |
| 1193 | * reclaim and continue scanning. |
| 1194 | * |
| 1195 | * Require may_enter_fs because we would wait on fs, which |
| 1196 | * may not have submitted IO yet. And the loop driver might |
| 1197 | * enter reclaim, and deadlock if it waits on a page for |
| 1198 | * which it is needed to do the write (loop masks off |
| 1199 | * __GFP_IO|__GFP_FS for this reason); but more thought |
| 1200 | * would probably show more reasons. |
| 1201 | * |
| 1202 | * 3) Legacy memcg encounters a page that is already marked |
| 1203 | * PageReclaim. memcg does not have any dirty pages |
| 1204 | * throttling so we could easily OOM just because too many |
| 1205 | * pages are in writeback and there is nothing else to |
| 1206 | * reclaim. Wait for the writeback to complete. |
| 1207 | * |
| 1208 | * In cases 1) and 2) we activate the pages to get them out of |
| 1209 | * the way while we continue scanning for clean pages on the |
| 1210 | * inactive list and refilling from the active list. The |
| 1211 | * observation here is that waiting for disk writes is more |
| 1212 | * expensive than potentially causing reloads down the line. |
| 1213 | * Since they're marked for immediate reclaim, they won't put |
| 1214 | * memory pressure on the cache working set any longer than it |
| 1215 | * takes to write them to disk. |
| 1216 | */ |
| 1217 | if (PageWriteback(page)) { |
| 1218 | /* Case 1 above */ |
| 1219 | if (current_is_kswapd() && |
| 1220 | PageReclaim(page) && |
| 1221 | test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { |
| 1222 | nr_immediate++; |
| 1223 | goto activate_locked; |
| 1224 | |
| 1225 | /* Case 2 above */ |
| 1226 | } else if (sane_reclaim(sc) || |
| 1227 | !PageReclaim(page) || !may_enter_fs) { |
| 1228 | /* |
| 1229 | * This is slightly racy - end_page_writeback() |
| 1230 | * might have just cleared PageReclaim, then |
| 1231 | * setting PageReclaim here end up interpreted |
| 1232 | * as PageReadahead - but that does not matter |
| 1233 | * enough to care. What we do want is for this |
| 1234 | * page to have PageReclaim set next time memcg |
| 1235 | * reclaim reaches the tests above, so it will |
| 1236 | * then wait_on_page_writeback() to avoid OOM; |
| 1237 | * and it's also appropriate in global reclaim. |
| 1238 | */ |
| 1239 | SetPageReclaim(page); |
| 1240 | nr_writeback++; |
| 1241 | goto activate_locked; |
| 1242 | |
| 1243 | /* Case 3 above */ |
| 1244 | } else { |
| 1245 | unlock_page(page); |
| 1246 | wait_on_page_writeback(page); |
| 1247 | /* then go back and try same page again */ |
| 1248 | list_add_tail(&page->lru, page_list); |
| 1249 | continue; |
| 1250 | } |
| 1251 | } |
| 1252 | |
| 1253 | if (!force_reclaim) |
| 1254 | references = page_check_references(page, sc); |
| 1255 | |
| 1256 | switch (references) { |
| 1257 | case PAGEREF_ACTIVATE: |
| 1258 | goto activate_locked; |
| 1259 | case PAGEREF_KEEP: |
| 1260 | nr_ref_keep++; |
| 1261 | goto keep_locked; |
| 1262 | case PAGEREF_RECLAIM: |
| 1263 | case PAGEREF_RECLAIM_CLEAN: |
| 1264 | ; /* try to reclaim the page below */ |
| 1265 | } |
| 1266 | |
| 1267 | /* |
| 1268 | * Anonymous process memory has backing store? |
| 1269 | * Try to allocate it some swap space here. |
| 1270 | * Lazyfree page could be freed directly |
| 1271 | */ |
| 1272 | if (PageAnon(page) && PageSwapBacked(page)) { |
| 1273 | if (!PageSwapCache(page)) { |
| 1274 | if (!(sc->gfp_mask & __GFP_IO)) |
| 1275 | goto keep_locked; |
| 1276 | if (PageTransHuge(page)) { |
| 1277 | /* cannot split THP, skip it */ |
| 1278 | if (!can_split_huge_page(page, NULL)) |
| 1279 | goto activate_locked; |
| 1280 | /* |
| 1281 | * Split pages without a PMD map right |
| 1282 | * away. Chances are some or all of the |
| 1283 | * tail pages can be freed without IO. |
| 1284 | */ |
| 1285 | if (!compound_mapcount(page) && |
| 1286 | split_huge_page_to_list(page, |
| 1287 | page_list)) |
| 1288 | goto activate_locked; |
| 1289 | } |
| 1290 | if (!add_to_swap(page)) { |
| 1291 | if (!PageTransHuge(page)) |
| 1292 | goto activate_locked; |
| 1293 | /* Fallback to swap normal pages */ |
| 1294 | if (split_huge_page_to_list(page, |
| 1295 | page_list)) |
| 1296 | goto activate_locked; |
| 1297 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 1298 | count_vm_event(THP_SWPOUT_FALLBACK); |
| 1299 | #endif |
| 1300 | if (!add_to_swap(page)) |
| 1301 | goto activate_locked; |
| 1302 | } |
| 1303 | |
| 1304 | may_enter_fs = 1; |
| 1305 | |
| 1306 | /* Adding to swap updated mapping */ |
| 1307 | mapping = page_mapping(page); |
| 1308 | } |
| 1309 | } else if (unlikely(PageTransHuge(page))) { |
| 1310 | /* Split file THP */ |
| 1311 | if (split_huge_page_to_list(page, page_list)) |
| 1312 | goto keep_locked; |
| 1313 | } |
| 1314 | |
| 1315 | /* |
| 1316 | * The page is mapped into the page tables of one or more |
| 1317 | * processes. Try to unmap it here. |
| 1318 | */ |
| 1319 | if (page_mapped(page)) { |
| 1320 | enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; |
| 1321 | |
| 1322 | if (unlikely(PageTransHuge(page))) |
| 1323 | flags |= TTU_SPLIT_HUGE_PMD; |
| 1324 | if (!try_to_unmap(page, flags)) { |
| 1325 | nr_unmap_fail++; |
| 1326 | goto activate_locked; |
| 1327 | } |
| 1328 | } |
| 1329 | |
| 1330 | if (PageDirty(page)) { |
| 1331 | /* |
| 1332 | * Only kswapd can writeback filesystem pages |
| 1333 | * to avoid risk of stack overflow. But avoid |
| 1334 | * injecting inefficient single-page IO into |
| 1335 | * flusher writeback as much as possible: only |
| 1336 | * write pages when we've encountered many |
| 1337 | * dirty pages, and when we've already scanned |
| 1338 | * the rest of the LRU for clean pages and see |
| 1339 | * the same dirty pages again (PageReclaim). |
| 1340 | */ |
| 1341 | if (page_is_file_cache(page) && |
| 1342 | (!current_is_kswapd() || !PageReclaim(page) || |
| 1343 | !test_bit(PGDAT_DIRTY, &pgdat->flags))) { |
| 1344 | /* |
| 1345 | * Immediately reclaim when written back. |
| 1346 | * Similar in principal to deactivate_page() |
| 1347 | * except we already have the page isolated |
| 1348 | * and know it's dirty |
| 1349 | */ |
| 1350 | inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); |
| 1351 | SetPageReclaim(page); |
| 1352 | |
| 1353 | goto activate_locked; |
| 1354 | } |
| 1355 | |
| 1356 | if (references == PAGEREF_RECLAIM_CLEAN) |
| 1357 | goto keep_locked; |
| 1358 | if (!may_enter_fs) |
| 1359 | goto keep_locked; |
| 1360 | if (!sc->may_writepage) |
| 1361 | goto keep_locked; |
| 1362 | |
| 1363 | /* |
| 1364 | * Page is dirty. Flush the TLB if a writable entry |
| 1365 | * potentially exists to avoid CPU writes after IO |
| 1366 | * starts and then write it out here. |
| 1367 | */ |
| 1368 | try_to_unmap_flush_dirty(); |
| 1369 | switch (pageout(page, mapping, sc)) { |
| 1370 | case PAGE_KEEP: |
| 1371 | goto keep_locked; |
| 1372 | case PAGE_ACTIVATE: |
| 1373 | goto activate_locked; |
| 1374 | case PAGE_SUCCESS: |
| 1375 | if (PageWriteback(page)) |
| 1376 | goto keep; |
| 1377 | if (PageDirty(page)) |
| 1378 | goto keep; |
| 1379 | |
| 1380 | /* |
| 1381 | * A synchronous write - probably a ramdisk. Go |
| 1382 | * ahead and try to reclaim the page. |
| 1383 | */ |
| 1384 | if (!trylock_page(page)) |
| 1385 | goto keep; |
| 1386 | if (PageDirty(page) || PageWriteback(page)) |
| 1387 | goto keep_locked; |
| 1388 | mapping = page_mapping(page); |
| 1389 | case PAGE_CLEAN: |
| 1390 | ; /* try to free the page below */ |
| 1391 | } |
| 1392 | } |
| 1393 | |
| 1394 | /* |
| 1395 | * If the page has buffers, try to free the buffer mappings |
| 1396 | * associated with this page. If we succeed we try to free |
| 1397 | * the page as well. |
| 1398 | * |
| 1399 | * We do this even if the page is PageDirty(). |
| 1400 | * try_to_release_page() does not perform I/O, but it is |
| 1401 | * possible for a page to have PageDirty set, but it is actually |
| 1402 | * clean (all its buffers are clean). This happens if the |
| 1403 | * buffers were written out directly, with submit_bh(). ext3 |
| 1404 | * will do this, as well as the blockdev mapping. |
| 1405 | * try_to_release_page() will discover that cleanness and will |
| 1406 | * drop the buffers and mark the page clean - it can be freed. |
| 1407 | * |
| 1408 | * Rarely, pages can have buffers and no ->mapping. These are |
| 1409 | * the pages which were not successfully invalidated in |
| 1410 | * truncate_complete_page(). We try to drop those buffers here |
| 1411 | * and if that worked, and the page is no longer mapped into |
| 1412 | * process address space (page_count == 1) it can be freed. |
| 1413 | * Otherwise, leave the page on the LRU so it is swappable. |
| 1414 | */ |
| 1415 | if (page_has_private(page)) { |
| 1416 | if (!try_to_release_page(page, sc->gfp_mask)) |
| 1417 | goto activate_locked; |
| 1418 | if (!mapping && page_count(page) == 1) { |
| 1419 | unlock_page(page); |
| 1420 | if (put_page_testzero(page)) |
| 1421 | goto free_it; |
| 1422 | else { |
| 1423 | /* |
| 1424 | * rare race with speculative reference. |
| 1425 | * the speculative reference will free |
| 1426 | * this page shortly, so we may |
| 1427 | * increment nr_reclaimed here (and |
| 1428 | * leave it off the LRU). |
| 1429 | */ |
| 1430 | nr_reclaimed++; |
| 1431 | continue; |
| 1432 | } |
| 1433 | } |
| 1434 | } |
| 1435 | |
| 1436 | if (PageAnon(page) && !PageSwapBacked(page)) { |
| 1437 | /* follow __remove_mapping for reference */ |
| 1438 | if (!page_ref_freeze(page, 1)) |
| 1439 | goto keep_locked; |
| 1440 | if (PageDirty(page)) { |
| 1441 | page_ref_unfreeze(page, 1); |
| 1442 | goto keep_locked; |
| 1443 | } |
| 1444 | |
| 1445 | count_vm_event(PGLAZYFREED); |
| 1446 | count_memcg_page_event(page, PGLAZYFREED); |
| 1447 | } else if (!mapping || !__remove_mapping(mapping, page, true)) |
| 1448 | goto keep_locked; |
| 1449 | /* |
| 1450 | * At this point, we have no other references and there is |
| 1451 | * no way to pick any more up (removed from LRU, removed |
| 1452 | * from pagecache). Can use non-atomic bitops now (and |
| 1453 | * we obviously don't have to worry about waking up a process |
| 1454 | * waiting on the page lock, because there are no references. |
| 1455 | */ |
| 1456 | __ClearPageLocked(page); |
| 1457 | free_it: |
| 1458 | nr_reclaimed++; |
| 1459 | |
| 1460 | /* |
| 1461 | * Is there need to periodically free_page_list? It would |
| 1462 | * appear not as the counts should be low |
| 1463 | */ |
| 1464 | if (unlikely(PageTransHuge(page))) { |
| 1465 | mem_cgroup_uncharge(page); |
| 1466 | (*get_compound_page_dtor(page))(page); |
| 1467 | } else |
| 1468 | list_add(&page->lru, &free_pages); |
| 1469 | continue; |
| 1470 | |
| 1471 | activate_locked: |
| 1472 | /* Not a candidate for swapping, so reclaim swap space. */ |
| 1473 | if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || |
| 1474 | PageMlocked(page))) |
| 1475 | try_to_free_swap(page); |
| 1476 | VM_BUG_ON_PAGE(PageActive(page), page); |
| 1477 | if (!PageMlocked(page)) { |
| 1478 | SetPageActive(page); |
| 1479 | pgactivate++; |
| 1480 | count_memcg_page_event(page, PGACTIVATE); |
| 1481 | } |
| 1482 | keep_locked: |
| 1483 | unlock_page(page); |
| 1484 | keep: |
| 1485 | list_add(&page->lru, &ret_pages); |
| 1486 | VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); |
| 1487 | } |
| 1488 | |
| 1489 | mem_cgroup_uncharge_list(&free_pages); |
| 1490 | try_to_unmap_flush(); |
| 1491 | free_unref_page_list(&free_pages); |
| 1492 | |
| 1493 | list_splice(&ret_pages, page_list); |
| 1494 | count_vm_events(PGACTIVATE, pgactivate); |
| 1495 | |
| 1496 | if (stat) { |
| 1497 | stat->nr_dirty = nr_dirty; |
| 1498 | stat->nr_congested = nr_congested; |
| 1499 | stat->nr_unqueued_dirty = nr_unqueued_dirty; |
| 1500 | stat->nr_writeback = nr_writeback; |
| 1501 | stat->nr_immediate = nr_immediate; |
| 1502 | stat->nr_activate = pgactivate; |
| 1503 | stat->nr_ref_keep = nr_ref_keep; |
| 1504 | stat->nr_unmap_fail = nr_unmap_fail; |
| 1505 | } |
| 1506 | return nr_reclaimed; |
| 1507 | } |
| 1508 | |
| 1509 | unsigned long reclaim_clean_pages_from_list(struct zone *zone, |
| 1510 | struct list_head *page_list) |
| 1511 | { |
| 1512 | struct scan_control sc = { |
| 1513 | .gfp_mask = GFP_KERNEL, |
| 1514 | .priority = DEF_PRIORITY, |
| 1515 | .may_unmap = 1, |
| 1516 | }; |
| 1517 | unsigned long ret; |
| 1518 | struct page *page, *next; |
| 1519 | LIST_HEAD(clean_pages); |
| 1520 | |
| 1521 | list_for_each_entry_safe(page, next, page_list, lru) { |
| 1522 | if (page_is_file_cache(page) && !PageDirty(page) && |
| 1523 | !__PageMovable(page)) { |
| 1524 | ClearPageActive(page); |
| 1525 | list_move(&page->lru, &clean_pages); |
| 1526 | } |
| 1527 | } |
| 1528 | |
| 1529 | ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, |
| 1530 | TTU_IGNORE_ACCESS, NULL, true); |
| 1531 | list_splice(&clean_pages, page_list); |
| 1532 | mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); |
| 1533 | return ret; |
| 1534 | } |
| 1535 | |
| 1536 | /* |
| 1537 | * Attempt to remove the specified page from its LRU. Only take this page |
| 1538 | * if it is of the appropriate PageActive status. Pages which are being |
| 1539 | * freed elsewhere are also ignored. |
| 1540 | * |
| 1541 | * page: page to consider |
| 1542 | * mode: one of the LRU isolation modes defined above |
| 1543 | * |
| 1544 | * returns 0 on success, -ve errno on failure. |
| 1545 | */ |
| 1546 | int __isolate_lru_page(struct page *page, isolate_mode_t mode) |
| 1547 | { |
| 1548 | int ret = -EINVAL; |
| 1549 | |
| 1550 | /* Only take pages on the LRU. */ |
| 1551 | if (!PageLRU(page)) |
| 1552 | return ret; |
| 1553 | |
| 1554 | /* Compaction should not handle unevictable pages but CMA can do so */ |
| 1555 | if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) |
| 1556 | return ret; |
| 1557 | |
| 1558 | ret = -EBUSY; |
| 1559 | |
| 1560 | /* |
| 1561 | * To minimise LRU disruption, the caller can indicate that it only |
| 1562 | * wants to isolate pages it will be able to operate on without |
| 1563 | * blocking - clean pages for the most part. |
| 1564 | * |
| 1565 | * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages |
| 1566 | * that it is possible to migrate without blocking |
| 1567 | */ |
| 1568 | if (mode & ISOLATE_ASYNC_MIGRATE) { |
| 1569 | /* All the caller can do on PageWriteback is block */ |
| 1570 | if (PageWriteback(page)) |
| 1571 | return ret; |
| 1572 | |
| 1573 | if (PageDirty(page)) { |
| 1574 | struct address_space *mapping; |
| 1575 | bool migrate_dirty; |
| 1576 | |
| 1577 | /* |
| 1578 | * Only pages without mappings or that have a |
| 1579 | * ->migratepage callback are possible to migrate |
| 1580 | * without blocking. However, we can be racing with |
| 1581 | * truncation so it's necessary to lock the page |
| 1582 | * to stabilise the mapping as truncation holds |
| 1583 | * the page lock until after the page is removed |
| 1584 | * from the page cache. |
| 1585 | */ |
| 1586 | if (!trylock_page(page)) |
| 1587 | return ret; |
| 1588 | |
| 1589 | mapping = page_mapping(page); |
| 1590 | migrate_dirty = !mapping || mapping->a_ops->migratepage; |
| 1591 | unlock_page(page); |
| 1592 | if (!migrate_dirty) |
| 1593 | return ret; |
| 1594 | } |
| 1595 | } |
| 1596 | |
| 1597 | if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) |
| 1598 | return ret; |
| 1599 | |
| 1600 | if (likely(get_page_unless_zero(page))) { |
| 1601 | /* |
| 1602 | * Be careful not to clear PageLRU until after we're |
| 1603 | * sure the page is not being freed elsewhere -- the |
| 1604 | * page release code relies on it. |
| 1605 | */ |
| 1606 | ClearPageLRU(page); |
| 1607 | ret = 0; |
| 1608 | } |
| 1609 | |
| 1610 | return ret; |
| 1611 | } |
| 1612 | |
| 1613 | |
| 1614 | /* |
| 1615 | * Update LRU sizes after isolating pages. The LRU size updates must |
| 1616 | * be complete before mem_cgroup_update_lru_size due to a santity check. |
| 1617 | */ |
| 1618 | static __always_inline void update_lru_sizes(struct lruvec *lruvec, |
| 1619 | enum lru_list lru, unsigned long *nr_zone_taken) |
| 1620 | { |
| 1621 | int zid; |
| 1622 | |
| 1623 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
| 1624 | if (!nr_zone_taken[zid]) |
| 1625 | continue; |
| 1626 | |
| 1627 | __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); |
| 1628 | #ifdef CONFIG_MEMCG |
| 1629 | mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); |
| 1630 | #endif |
| 1631 | } |
| 1632 | |
| 1633 | } |
| 1634 | |
| 1635 | /* |
| 1636 | * zone_lru_lock is heavily contended. Some of the functions that |
| 1637 | * shrink the lists perform better by taking out a batch of pages |
| 1638 | * and working on them outside the LRU lock. |
| 1639 | * |
| 1640 | * For pagecache intensive workloads, this function is the hottest |
| 1641 | * spot in the kernel (apart from copy_*_user functions). |
| 1642 | * |
| 1643 | * Appropriate locks must be held before calling this function. |
| 1644 | * |
| 1645 | * @nr_to_scan: The number of eligible pages to look through on the list. |
| 1646 | * @lruvec: The LRU vector to pull pages from. |
| 1647 | * @dst: The temp list to put pages on to. |
| 1648 | * @nr_scanned: The number of pages that were scanned. |
| 1649 | * @sc: The scan_control struct for this reclaim session |
| 1650 | * @mode: One of the LRU isolation modes |
| 1651 | * @lru: LRU list id for isolating |
| 1652 | * |
| 1653 | * returns how many pages were moved onto *@dst. |
| 1654 | */ |
| 1655 | static unsigned long isolate_lru_pages(unsigned long nr_to_scan, |
| 1656 | struct lruvec *lruvec, struct list_head *dst, |
| 1657 | unsigned long *nr_scanned, struct scan_control *sc, |
| 1658 | isolate_mode_t mode, enum lru_list lru) |
| 1659 | { |
| 1660 | struct list_head *src = &lruvec->lists[lru]; |
| 1661 | unsigned long nr_taken = 0; |
| 1662 | unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; |
| 1663 | unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; |
| 1664 | unsigned long skipped = 0; |
| 1665 | unsigned long scan, total_scan, nr_pages; |
| 1666 | LIST_HEAD(pages_skipped); |
| 1667 | |
| 1668 | scan = 0; |
| 1669 | for (total_scan = 0; |
| 1670 | scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src); |
| 1671 | total_scan++) { |
| 1672 | struct page *page; |
| 1673 | |
| 1674 | page = lru_to_page(src); |
| 1675 | prefetchw_prev_lru_page(page, src, flags); |
| 1676 | |
| 1677 | VM_BUG_ON_PAGE(!PageLRU(page), page); |
| 1678 | |
| 1679 | if (page_zonenum(page) > sc->reclaim_idx) { |
| 1680 | list_move(&page->lru, &pages_skipped); |
| 1681 | nr_skipped[page_zonenum(page)]++; |
| 1682 | continue; |
| 1683 | } |
| 1684 | |
| 1685 | /* |
| 1686 | * Do not count skipped pages because that makes the function |
| 1687 | * return with no isolated pages if the LRU mostly contains |
| 1688 | * ineligible pages. This causes the VM to not reclaim any |
| 1689 | * pages, triggering a premature OOM. |
| 1690 | */ |
| 1691 | scan++; |
| 1692 | switch (__isolate_lru_page(page, mode)) { |
| 1693 | case 0: |
| 1694 | nr_pages = hpage_nr_pages(page); |
| 1695 | nr_taken += nr_pages; |
| 1696 | nr_zone_taken[page_zonenum(page)] += nr_pages; |
| 1697 | list_move(&page->lru, dst); |
| 1698 | break; |
| 1699 | |
| 1700 | case -EBUSY: |
| 1701 | /* else it is being freed elsewhere */ |
| 1702 | list_move(&page->lru, src); |
| 1703 | continue; |
| 1704 | |
| 1705 | default: |
| 1706 | BUG(); |
| 1707 | } |
| 1708 | } |
| 1709 | |
| 1710 | /* |
| 1711 | * Splice any skipped pages to the start of the LRU list. Note that |
| 1712 | * this disrupts the LRU order when reclaiming for lower zones but |
| 1713 | * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX |
| 1714 | * scanning would soon rescan the same pages to skip and put the |
| 1715 | * system at risk of premature OOM. |
| 1716 | */ |
| 1717 | if (!list_empty(&pages_skipped)) { |
| 1718 | int zid; |
| 1719 | |
| 1720 | list_splice(&pages_skipped, src); |
| 1721 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
| 1722 | if (!nr_skipped[zid]) |
| 1723 | continue; |
| 1724 | |
| 1725 | __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); |
| 1726 | skipped += nr_skipped[zid]; |
| 1727 | } |
| 1728 | } |
| 1729 | *nr_scanned = total_scan; |
| 1730 | trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, |
| 1731 | total_scan, skipped, nr_taken, mode, lru); |
| 1732 | update_lru_sizes(lruvec, lru, nr_zone_taken); |
| 1733 | return nr_taken; |
| 1734 | } |
| 1735 | |
| 1736 | /** |
| 1737 | * isolate_lru_page - tries to isolate a page from its LRU list |
| 1738 | * @page: page to isolate from its LRU list |
| 1739 | * |
| 1740 | * Isolates a @page from an LRU list, clears PageLRU and adjusts the |
| 1741 | * vmstat statistic corresponding to whatever LRU list the page was on. |
| 1742 | * |
| 1743 | * Returns 0 if the page was removed from an LRU list. |
| 1744 | * Returns -EBUSY if the page was not on an LRU list. |
| 1745 | * |
| 1746 | * The returned page will have PageLRU() cleared. If it was found on |
| 1747 | * the active list, it will have PageActive set. If it was found on |
| 1748 | * the unevictable list, it will have the PageUnevictable bit set. That flag |
| 1749 | * may need to be cleared by the caller before letting the page go. |
| 1750 | * |
| 1751 | * The vmstat statistic corresponding to the list on which the page was |
| 1752 | * found will be decremented. |
| 1753 | * |
| 1754 | * Restrictions: |
| 1755 | * |
| 1756 | * (1) Must be called with an elevated refcount on the page. This is a |
| 1757 | * fundamentnal difference from isolate_lru_pages (which is called |
| 1758 | * without a stable reference). |
| 1759 | * (2) the lru_lock must not be held. |
| 1760 | * (3) interrupts must be enabled. |
| 1761 | */ |
| 1762 | int isolate_lru_page(struct page *page) |
| 1763 | { |
| 1764 | int ret = -EBUSY; |
| 1765 | |
| 1766 | VM_BUG_ON_PAGE(!page_count(page), page); |
| 1767 | WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); |
| 1768 | |
| 1769 | if (PageLRU(page)) { |
| 1770 | struct zone *zone = page_zone(page); |
| 1771 | struct lruvec *lruvec; |
| 1772 | |
| 1773 | spin_lock_irq(zone_lru_lock(zone)); |
| 1774 | lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); |
| 1775 | if (PageLRU(page)) { |
| 1776 | int lru = page_lru(page); |
| 1777 | get_page(page); |
| 1778 | ClearPageLRU(page); |
| 1779 | del_page_from_lru_list(page, lruvec, lru); |
| 1780 | ret = 0; |
| 1781 | } |
| 1782 | spin_unlock_irq(zone_lru_lock(zone)); |
| 1783 | } |
| 1784 | return ret; |
| 1785 | } |
| 1786 | |
| 1787 | /* |
| 1788 | * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and |
| 1789 | * then get resheduled. When there are massive number of tasks doing page |
| 1790 | * allocation, such sleeping direct reclaimers may keep piling up on each CPU, |
| 1791 | * the LRU list will go small and be scanned faster than necessary, leading to |
| 1792 | * unnecessary swapping, thrashing and OOM. |
| 1793 | */ |
| 1794 | static int too_many_isolated(struct pglist_data *pgdat, int file, |
| 1795 | struct scan_control *sc) |
| 1796 | { |
| 1797 | unsigned long inactive, isolated; |
| 1798 | |
| 1799 | if (current_is_kswapd()) |
| 1800 | return 0; |
| 1801 | |
| 1802 | if (!sane_reclaim(sc)) |
| 1803 | return 0; |
| 1804 | |
| 1805 | if (file) { |
| 1806 | inactive = node_page_state(pgdat, NR_INACTIVE_FILE); |
| 1807 | isolated = node_page_state(pgdat, NR_ISOLATED_FILE); |
| 1808 | } else { |
| 1809 | inactive = node_page_state(pgdat, NR_INACTIVE_ANON); |
| 1810 | isolated = node_page_state(pgdat, NR_ISOLATED_ANON); |
| 1811 | } |
| 1812 | |
| 1813 | /* |
| 1814 | * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they |
| 1815 | * won't get blocked by normal direct-reclaimers, forming a circular |
| 1816 | * deadlock. |
| 1817 | */ |
| 1818 | if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) |
| 1819 | inactive >>= 3; |
| 1820 | |
| 1821 | return isolated > inactive; |
| 1822 | } |
| 1823 | |
| 1824 | static noinline_for_stack void |
| 1825 | putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) |
| 1826 | { |
| 1827 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
| 1828 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
| 1829 | LIST_HEAD(pages_to_free); |
| 1830 | |
| 1831 | /* |
| 1832 | * Put back any unfreeable pages. |
| 1833 | */ |
| 1834 | while (!list_empty(page_list)) { |
| 1835 | struct page *page = lru_to_page(page_list); |
| 1836 | int lru; |
| 1837 | |
| 1838 | VM_BUG_ON_PAGE(PageLRU(page), page); |
| 1839 | list_del(&page->lru); |
| 1840 | if (unlikely(!page_evictable(page))) { |
| 1841 | spin_unlock_irq(&pgdat->lru_lock); |
| 1842 | putback_lru_page(page); |
| 1843 | spin_lock_irq(&pgdat->lru_lock); |
| 1844 | continue; |
| 1845 | } |
| 1846 | |
| 1847 | lruvec = mem_cgroup_page_lruvec(page, pgdat); |
| 1848 | |
| 1849 | SetPageLRU(page); |
| 1850 | lru = page_lru(page); |
| 1851 | add_page_to_lru_list(page, lruvec, lru); |
| 1852 | |
| 1853 | if (is_active_lru(lru)) { |
| 1854 | int file = is_file_lru(lru); |
| 1855 | int numpages = hpage_nr_pages(page); |
| 1856 | reclaim_stat->recent_rotated[file] += numpages; |
| 1857 | } |
| 1858 | if (put_page_testzero(page)) { |
| 1859 | __ClearPageLRU(page); |
| 1860 | __ClearPageActive(page); |
| 1861 | del_page_from_lru_list(page, lruvec, lru); |
| 1862 | |
| 1863 | if (unlikely(PageCompound(page))) { |
| 1864 | spin_unlock_irq(&pgdat->lru_lock); |
| 1865 | mem_cgroup_uncharge(page); |
| 1866 | (*get_compound_page_dtor(page))(page); |
| 1867 | spin_lock_irq(&pgdat->lru_lock); |
| 1868 | } else |
| 1869 | list_add(&page->lru, &pages_to_free); |
| 1870 | } |
| 1871 | } |
| 1872 | |
| 1873 | /* |
| 1874 | * To save our caller's stack, now use input list for pages to free. |
| 1875 | */ |
| 1876 | list_splice(&pages_to_free, page_list); |
| 1877 | } |
| 1878 | |
| 1879 | /* |
| 1880 | * If a kernel thread (such as nfsd for loop-back mounts) services |
| 1881 | * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. |
| 1882 | * In that case we should only throttle if the backing device it is |
| 1883 | * writing to is congested. In other cases it is safe to throttle. |
| 1884 | */ |
| 1885 | static int current_may_throttle(void) |
| 1886 | { |
| 1887 | return !(current->flags & PF_LESS_THROTTLE) || |
| 1888 | current->backing_dev_info == NULL || |
| 1889 | bdi_write_congested(current->backing_dev_info); |
| 1890 | } |
| 1891 | |
| 1892 | /* |
| 1893 | * shrink_inactive_list() is a helper for shrink_node(). It returns the number |
| 1894 | * of reclaimed pages |
| 1895 | */ |
| 1896 | static noinline_for_stack unsigned long |
| 1897 | shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, |
| 1898 | struct scan_control *sc, enum lru_list lru) |
| 1899 | { |
| 1900 | LIST_HEAD(page_list); |
| 1901 | unsigned long nr_scanned; |
| 1902 | unsigned long nr_reclaimed = 0; |
| 1903 | unsigned long nr_taken; |
| 1904 | struct reclaim_stat stat = {}; |
| 1905 | isolate_mode_t isolate_mode = 0; |
| 1906 | int file = is_file_lru(lru); |
| 1907 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
| 1908 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
| 1909 | bool stalled = false; |
| 1910 | |
| 1911 | while (unlikely(too_many_isolated(pgdat, file, sc))) { |
| 1912 | if (stalled) |
| 1913 | return 0; |
| 1914 | |
| 1915 | /* wait a bit for the reclaimer. */ |
| 1916 | msleep(100); |
| 1917 | stalled = true; |
| 1918 | |
| 1919 | /* We are about to die and free our memory. Return now. */ |
| 1920 | if (fatal_signal_pending(current)) |
| 1921 | return SWAP_CLUSTER_MAX; |
| 1922 | } |
| 1923 | |
| 1924 | lru_add_drain(); |
| 1925 | |
| 1926 | if (!sc->may_unmap) |
| 1927 | isolate_mode |= ISOLATE_UNMAPPED; |
| 1928 | |
| 1929 | spin_lock_irq(&pgdat->lru_lock); |
| 1930 | |
| 1931 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, |
| 1932 | &nr_scanned, sc, isolate_mode, lru); |
| 1933 | |
| 1934 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); |
| 1935 | reclaim_stat->recent_scanned[file] += nr_taken; |
| 1936 | |
| 1937 | if (current_is_kswapd()) { |
| 1938 | if (global_reclaim(sc)) |
| 1939 | __count_vm_events(PGSCAN_KSWAPD, nr_scanned); |
| 1940 | count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD, |
| 1941 | nr_scanned); |
| 1942 | } else { |
| 1943 | if (global_reclaim(sc)) |
| 1944 | __count_vm_events(PGSCAN_DIRECT, nr_scanned); |
| 1945 | count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT, |
| 1946 | nr_scanned); |
| 1947 | } |
| 1948 | spin_unlock_irq(&pgdat->lru_lock); |
| 1949 | |
| 1950 | if (nr_taken == 0) |
| 1951 | return 0; |
| 1952 | |
| 1953 | nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, |
| 1954 | &stat, false); |
| 1955 | |
| 1956 | spin_lock_irq(&pgdat->lru_lock); |
| 1957 | |
| 1958 | if (current_is_kswapd()) { |
| 1959 | if (global_reclaim(sc)) |
| 1960 | __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); |
| 1961 | count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD, |
| 1962 | nr_reclaimed); |
| 1963 | } else { |
| 1964 | if (global_reclaim(sc)) |
| 1965 | __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); |
| 1966 | count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT, |
| 1967 | nr_reclaimed); |
| 1968 | } |
| 1969 | |
| 1970 | putback_inactive_pages(lruvec, &page_list); |
| 1971 | |
| 1972 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); |
| 1973 | |
| 1974 | spin_unlock_irq(&pgdat->lru_lock); |
| 1975 | |
| 1976 | mem_cgroup_uncharge_list(&page_list); |
| 1977 | free_unref_page_list(&page_list); |
| 1978 | |
| 1979 | /* |
| 1980 | * If dirty pages are scanned that are not queued for IO, it |
| 1981 | * implies that flushers are not doing their job. This can |
| 1982 | * happen when memory pressure pushes dirty pages to the end of |
| 1983 | * the LRU before the dirty limits are breached and the dirty |
| 1984 | * data has expired. It can also happen when the proportion of |
| 1985 | * dirty pages grows not through writes but through memory |
| 1986 | * pressure reclaiming all the clean cache. And in some cases, |
| 1987 | * the flushers simply cannot keep up with the allocation |
| 1988 | * rate. Nudge the flusher threads in case they are asleep. |
| 1989 | */ |
| 1990 | if (stat.nr_unqueued_dirty == nr_taken) |
| 1991 | wakeup_flusher_threads(WB_REASON_VMSCAN); |
| 1992 | |
| 1993 | sc->nr.dirty += stat.nr_dirty; |
| 1994 | sc->nr.congested += stat.nr_congested; |
| 1995 | sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; |
| 1996 | sc->nr.writeback += stat.nr_writeback; |
| 1997 | sc->nr.immediate += stat.nr_immediate; |
| 1998 | sc->nr.taken += nr_taken; |
| 1999 | if (file) |
| 2000 | sc->nr.file_taken += nr_taken; |
| 2001 | |
| 2002 | trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, |
| 2003 | nr_scanned, nr_reclaimed, &stat, sc->priority, file); |
| 2004 | return nr_reclaimed; |
| 2005 | } |
| 2006 | |
| 2007 | /* |
| 2008 | * This moves pages from the active list to the inactive list. |
| 2009 | * |
| 2010 | * We move them the other way if the page is referenced by one or more |
| 2011 | * processes, from rmap. |
| 2012 | * |
| 2013 | * If the pages are mostly unmapped, the processing is fast and it is |
| 2014 | * appropriate to hold zone_lru_lock across the whole operation. But if |
| 2015 | * the pages are mapped, the processing is slow (page_referenced()) so we |
| 2016 | * should drop zone_lru_lock around each page. It's impossible to balance |
| 2017 | * this, so instead we remove the pages from the LRU while processing them. |
| 2018 | * It is safe to rely on PG_active against the non-LRU pages in here because |
| 2019 | * nobody will play with that bit on a non-LRU page. |
| 2020 | * |
| 2021 | * The downside is that we have to touch page->_refcount against each page. |
| 2022 | * But we had to alter page->flags anyway. |
| 2023 | * |
| 2024 | * Returns the number of pages moved to the given lru. |
| 2025 | */ |
| 2026 | |
| 2027 | static unsigned move_active_pages_to_lru(struct lruvec *lruvec, |
| 2028 | struct list_head *list, |
| 2029 | struct list_head *pages_to_free, |
| 2030 | enum lru_list lru) |
| 2031 | { |
| 2032 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
| 2033 | struct page *page; |
| 2034 | int nr_pages; |
| 2035 | int nr_moved = 0; |
| 2036 | |
| 2037 | while (!list_empty(list)) { |
| 2038 | page = lru_to_page(list); |
| 2039 | lruvec = mem_cgroup_page_lruvec(page, pgdat); |
| 2040 | |
| 2041 | VM_BUG_ON_PAGE(PageLRU(page), page); |
| 2042 | SetPageLRU(page); |
| 2043 | |
| 2044 | nr_pages = hpage_nr_pages(page); |
| 2045 | update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); |
| 2046 | list_move(&page->lru, &lruvec->lists[lru]); |
| 2047 | |
| 2048 | if (put_page_testzero(page)) { |
| 2049 | __ClearPageLRU(page); |
| 2050 | __ClearPageActive(page); |
| 2051 | del_page_from_lru_list(page, lruvec, lru); |
| 2052 | |
| 2053 | if (unlikely(PageCompound(page))) { |
| 2054 | spin_unlock_irq(&pgdat->lru_lock); |
| 2055 | mem_cgroup_uncharge(page); |
| 2056 | (*get_compound_page_dtor(page))(page); |
| 2057 | spin_lock_irq(&pgdat->lru_lock); |
| 2058 | } else |
| 2059 | list_add(&page->lru, pages_to_free); |
| 2060 | } else { |
| 2061 | nr_moved += nr_pages; |
| 2062 | } |
| 2063 | } |
| 2064 | |
| 2065 | if (!is_active_lru(lru)) { |
| 2066 | __count_vm_events(PGDEACTIVATE, nr_moved); |
| 2067 | count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, |
| 2068 | nr_moved); |
| 2069 | } |
| 2070 | |
| 2071 | return nr_moved; |
| 2072 | } |
| 2073 | |
| 2074 | static void shrink_active_list(unsigned long nr_to_scan, |
| 2075 | struct lruvec *lruvec, |
| 2076 | struct scan_control *sc, |
| 2077 | enum lru_list lru) |
| 2078 | { |
| 2079 | unsigned long nr_taken; |
| 2080 | unsigned long nr_scanned; |
| 2081 | unsigned long vm_flags; |
| 2082 | LIST_HEAD(l_hold); /* The pages which were snipped off */ |
| 2083 | LIST_HEAD(l_active); |
| 2084 | LIST_HEAD(l_inactive); |
| 2085 | struct page *page; |
| 2086 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
| 2087 | unsigned nr_deactivate, nr_activate; |
| 2088 | unsigned nr_rotated = 0; |
| 2089 | isolate_mode_t isolate_mode = 0; |
| 2090 | int file = is_file_lru(lru); |
| 2091 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
| 2092 | |
| 2093 | lru_add_drain(); |
| 2094 | |
| 2095 | if (!sc->may_unmap) |
| 2096 | isolate_mode |= ISOLATE_UNMAPPED; |
| 2097 | |
| 2098 | spin_lock_irq(&pgdat->lru_lock); |
| 2099 | |
| 2100 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, |
| 2101 | &nr_scanned, sc, isolate_mode, lru); |
| 2102 | |
| 2103 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); |
| 2104 | reclaim_stat->recent_scanned[file] += nr_taken; |
| 2105 | |
| 2106 | __count_vm_events(PGREFILL, nr_scanned); |
| 2107 | count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); |
| 2108 | |
| 2109 | spin_unlock_irq(&pgdat->lru_lock); |
| 2110 | |
| 2111 | while (!list_empty(&l_hold)) { |
| 2112 | cond_resched(); |
| 2113 | page = lru_to_page(&l_hold); |
| 2114 | list_del(&page->lru); |
| 2115 | |
| 2116 | if (unlikely(!page_evictable(page))) { |
| 2117 | putback_lru_page(page); |
| 2118 | continue; |
| 2119 | } |
| 2120 | |
| 2121 | if (unlikely(buffer_heads_over_limit)) { |
| 2122 | if (page_has_private(page) && trylock_page(page)) { |
| 2123 | if (page_has_private(page)) |
| 2124 | try_to_release_page(page, 0); |
| 2125 | unlock_page(page); |
| 2126 | } |
| 2127 | } |
| 2128 | |
| 2129 | if (page_referenced(page, 0, sc->target_mem_cgroup, |
| 2130 | &vm_flags)) { |
| 2131 | nr_rotated += hpage_nr_pages(page); |
| 2132 | /* |
| 2133 | * Identify referenced, file-backed active pages and |
| 2134 | * give them one more trip around the active list. So |
| 2135 | * that executable code get better chances to stay in |
| 2136 | * memory under moderate memory pressure. Anon pages |
| 2137 | * are not likely to be evicted by use-once streaming |
| 2138 | * IO, plus JVM can create lots of anon VM_EXEC pages, |
| 2139 | * so we ignore them here. |
| 2140 | */ |
| 2141 | if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { |
| 2142 | list_add(&page->lru, &l_active); |
| 2143 | continue; |
| 2144 | } |
| 2145 | } |
| 2146 | |
| 2147 | ClearPageActive(page); /* we are de-activating */ |
| 2148 | list_add(&page->lru, &l_inactive); |
| 2149 | } |
| 2150 | |
| 2151 | /* |
| 2152 | * Move pages back to the lru list. |
| 2153 | */ |
| 2154 | spin_lock_irq(&pgdat->lru_lock); |
| 2155 | /* |
| 2156 | * Count referenced pages from currently used mappings as rotated, |
| 2157 | * even though only some of them are actually re-activated. This |
| 2158 | * helps balance scan pressure between file and anonymous pages in |
| 2159 | * get_scan_count. |
| 2160 | */ |
| 2161 | reclaim_stat->recent_rotated[file] += nr_rotated; |
| 2162 | |
| 2163 | nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); |
| 2164 | nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); |
| 2165 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); |
| 2166 | spin_unlock_irq(&pgdat->lru_lock); |
| 2167 | |
| 2168 | mem_cgroup_uncharge_list(&l_hold); |
| 2169 | free_unref_page_list(&l_hold); |
| 2170 | trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, |
| 2171 | nr_deactivate, nr_rotated, sc->priority, file); |
| 2172 | } |
| 2173 | |
| 2174 | /* |
| 2175 | * The inactive anon list should be small enough that the VM never has |
| 2176 | * to do too much work. |
| 2177 | * |
| 2178 | * The inactive file list should be small enough to leave most memory |
| 2179 | * to the established workingset on the scan-resistant active list, |
| 2180 | * but large enough to avoid thrashing the aggregate readahead window. |
| 2181 | * |
| 2182 | * Both inactive lists should also be large enough that each inactive |
| 2183 | * page has a chance to be referenced again before it is reclaimed. |
| 2184 | * |
| 2185 | * If that fails and refaulting is observed, the inactive list grows. |
| 2186 | * |
| 2187 | * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages |
| 2188 | * on this LRU, maintained by the pageout code. An inactive_ratio |
| 2189 | * of 3 means 3:1 or 25% of the pages are kept on the inactive list. |
| 2190 | * |
| 2191 | * total target max |
| 2192 | * memory ratio inactive |
| 2193 | * ------------------------------------- |
| 2194 | * 10MB 1 5MB |
| 2195 | * 100MB 1 50MB |
| 2196 | * 1GB 3 250MB |
| 2197 | * 10GB 10 0.9GB |
| 2198 | * 100GB 31 3GB |
| 2199 | * 1TB 101 10GB |
| 2200 | * 10TB 320 32GB |
| 2201 | */ |
| 2202 | static bool inactive_list_is_low(struct lruvec *lruvec, bool file, |
| 2203 | struct mem_cgroup *memcg, |
| 2204 | struct scan_control *sc, bool actual_reclaim) |
| 2205 | { |
| 2206 | enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; |
| 2207 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
| 2208 | enum lru_list inactive_lru = file * LRU_FILE; |
| 2209 | unsigned long inactive, active; |
| 2210 | unsigned long inactive_ratio; |
| 2211 | unsigned long refaults; |
| 2212 | unsigned long gb; |
| 2213 | |
| 2214 | /* |
| 2215 | * If we don't have swap space, anonymous page deactivation |
| 2216 | * is pointless. |
| 2217 | */ |
| 2218 | if (!file && !total_swap_pages) |
| 2219 | return false; |
| 2220 | |
| 2221 | inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); |
| 2222 | active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); |
| 2223 | |
| 2224 | if (memcg) |
| 2225 | refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); |
| 2226 | else |
| 2227 | refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); |
| 2228 | |
| 2229 | /* |
| 2230 | * When refaults are being observed, it means a new workingset |
| 2231 | * is being established. Disable active list protection to get |
| 2232 | * rid of the stale workingset quickly. |
| 2233 | */ |
| 2234 | if (file && actual_reclaim && lruvec->refaults != refaults) { |
| 2235 | inactive_ratio = 0; |
| 2236 | } else { |
| 2237 | gb = (inactive + active) >> (30 - PAGE_SHIFT); |
| 2238 | if (gb) |
| 2239 | inactive_ratio = int_sqrt(10 * gb); |
| 2240 | else |
| 2241 | inactive_ratio = 1; |
| 2242 | } |
| 2243 | |
| 2244 | if (actual_reclaim) |
| 2245 | trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, |
| 2246 | lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, |
| 2247 | lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, |
| 2248 | inactive_ratio, file); |
| 2249 | |
| 2250 | return inactive * inactive_ratio < active; |
| 2251 | } |
| 2252 | |
| 2253 | static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, |
| 2254 | struct lruvec *lruvec, struct mem_cgroup *memcg, |
| 2255 | struct scan_control *sc) |
| 2256 | { |
| 2257 | if (is_active_lru(lru)) { |
| 2258 | if (inactive_list_is_low(lruvec, is_file_lru(lru), |
| 2259 | memcg, sc, true)) |
| 2260 | shrink_active_list(nr_to_scan, lruvec, sc, lru); |
| 2261 | return 0; |
| 2262 | } |
| 2263 | |
| 2264 | return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); |
| 2265 | } |
| 2266 | |
| 2267 | enum scan_balance { |
| 2268 | SCAN_EQUAL, |
| 2269 | SCAN_FRACT, |
| 2270 | SCAN_ANON, |
| 2271 | SCAN_FILE, |
| 2272 | }; |
| 2273 | |
| 2274 | /* |
| 2275 | * Determine how aggressively the anon and file LRU lists should be |
| 2276 | * scanned. The relative value of each set of LRU lists is determined |
| 2277 | * by looking at the fraction of the pages scanned we did rotate back |
| 2278 | * onto the active list instead of evict. |
| 2279 | * |
| 2280 | * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan |
| 2281 | * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan |
| 2282 | */ |
| 2283 | static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, |
| 2284 | struct scan_control *sc, unsigned long *nr, |
| 2285 | unsigned long *lru_pages) |
| 2286 | { |
| 2287 | int swappiness = mem_cgroup_swappiness(memcg); |
| 2288 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
| 2289 | u64 fraction[2]; |
| 2290 | u64 denominator = 0; /* gcc */ |
| 2291 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
| 2292 | unsigned long anon_prio, file_prio; |
| 2293 | enum scan_balance scan_balance; |
| 2294 | unsigned long anon, file; |
| 2295 | unsigned long ap, fp; |
| 2296 | enum lru_list lru; |
| 2297 | |
| 2298 | /* If we have no swap space, do not bother scanning anon pages. */ |
| 2299 | if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { |
| 2300 | scan_balance = SCAN_FILE; |
| 2301 | goto out; |
| 2302 | } |
| 2303 | |
| 2304 | /* |
| 2305 | * Global reclaim will swap to prevent OOM even with no |
| 2306 | * swappiness, but memcg users want to use this knob to |
| 2307 | * disable swapping for individual groups completely when |
| 2308 | * using the memory controller's swap limit feature would be |
| 2309 | * too expensive. |
| 2310 | */ |
| 2311 | if (!global_reclaim(sc) && !swappiness) { |
| 2312 | scan_balance = SCAN_FILE; |
| 2313 | goto out; |
| 2314 | } |
| 2315 | |
| 2316 | /* |
| 2317 | * Do not apply any pressure balancing cleverness when the |
| 2318 | * system is close to OOM, scan both anon and file equally |
| 2319 | * (unless the swappiness setting disagrees with swapping). |
| 2320 | */ |
| 2321 | if (!sc->priority && swappiness) { |
| 2322 | scan_balance = SCAN_EQUAL; |
| 2323 | goto out; |
| 2324 | } |
| 2325 | |
| 2326 | /* |
| 2327 | * Prevent the reclaimer from falling into the cache trap: as |
| 2328 | * cache pages start out inactive, every cache fault will tip |
| 2329 | * the scan balance towards the file LRU. And as the file LRU |
| 2330 | * shrinks, so does the window for rotation from references. |
| 2331 | * This means we have a runaway feedback loop where a tiny |
| 2332 | * thrashing file LRU becomes infinitely more attractive than |
| 2333 | * anon pages. Try to detect this based on file LRU size. |
| 2334 | */ |
| 2335 | if (global_reclaim(sc)) { |
| 2336 | unsigned long pgdatfile; |
| 2337 | unsigned long pgdatfree; |
| 2338 | int z; |
| 2339 | unsigned long total_high_wmark = 0; |
| 2340 | |
| 2341 | pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); |
| 2342 | pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + |
| 2343 | node_page_state(pgdat, NR_INACTIVE_FILE); |
| 2344 | |
| 2345 | for (z = 0; z < MAX_NR_ZONES; z++) { |
| 2346 | struct zone *zone = &pgdat->node_zones[z]; |
| 2347 | if (!managed_zone(zone)) |
| 2348 | continue; |
| 2349 | |
| 2350 | total_high_wmark += high_wmark_pages(zone); |
| 2351 | } |
| 2352 | |
| 2353 | if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { |
| 2354 | /* |
| 2355 | * Force SCAN_ANON if there are enough inactive |
| 2356 | * anonymous pages on the LRU in eligible zones. |
| 2357 | * Otherwise, the small LRU gets thrashed. |
| 2358 | */ |
| 2359 | if (!inactive_list_is_low(lruvec, false, memcg, sc, false) && |
| 2360 | lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) |
| 2361 | >> sc->priority) { |
| 2362 | scan_balance = SCAN_ANON; |
| 2363 | goto out; |
| 2364 | } |
| 2365 | } |
| 2366 | } |
| 2367 | |
| 2368 | /* |
| 2369 | * If there is enough inactive page cache, i.e. if the size of the |
| 2370 | * inactive list is greater than that of the active list *and* the |
| 2371 | * inactive list actually has some pages to scan on this priority, we |
| 2372 | * do not reclaim anything from the anonymous working set right now. |
| 2373 | * Without the second condition we could end up never scanning an |
| 2374 | * lruvec even if it has plenty of old anonymous pages unless the |
| 2375 | * system is under heavy pressure. |
| 2376 | */ |
| 2377 | if (!inactive_list_is_low(lruvec, true, memcg, sc, false) && |
| 2378 | lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { |
| 2379 | scan_balance = SCAN_FILE; |
| 2380 | goto out; |
| 2381 | } |
| 2382 | |
| 2383 | scan_balance = SCAN_FRACT; |
| 2384 | |
| 2385 | /* |
| 2386 | * With swappiness at 100, anonymous and file have the same priority. |
| 2387 | * This scanning priority is essentially the inverse of IO cost. |
| 2388 | */ |
| 2389 | anon_prio = swappiness; |
| 2390 | file_prio = 200 - anon_prio; |
| 2391 | |
| 2392 | /* |
| 2393 | * OK, so we have swap space and a fair amount of page cache |
| 2394 | * pages. We use the recently rotated / recently scanned |
| 2395 | * ratios to determine how valuable each cache is. |
| 2396 | * |
| 2397 | * Because workloads change over time (and to avoid overflow) |
| 2398 | * we keep these statistics as a floating average, which ends |
| 2399 | * up weighing recent references more than old ones. |
| 2400 | * |
| 2401 | * anon in [0], file in [1] |
| 2402 | */ |
| 2403 | |
| 2404 | anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + |
| 2405 | lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); |
| 2406 | file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + |
| 2407 | lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); |
| 2408 | |
| 2409 | spin_lock_irq(&pgdat->lru_lock); |
| 2410 | if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { |
| 2411 | reclaim_stat->recent_scanned[0] /= 2; |
| 2412 | reclaim_stat->recent_rotated[0] /= 2; |
| 2413 | } |
| 2414 | |
| 2415 | if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { |
| 2416 | reclaim_stat->recent_scanned[1] /= 2; |
| 2417 | reclaim_stat->recent_rotated[1] /= 2; |
| 2418 | } |
| 2419 | |
| 2420 | /* |
| 2421 | * The amount of pressure on anon vs file pages is inversely |
| 2422 | * proportional to the fraction of recently scanned pages on |
| 2423 | * each list that were recently referenced and in active use. |
| 2424 | */ |
| 2425 | ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); |
| 2426 | ap /= reclaim_stat->recent_rotated[0] + 1; |
| 2427 | |
| 2428 | fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); |
| 2429 | fp /= reclaim_stat->recent_rotated[1] + 1; |
| 2430 | spin_unlock_irq(&pgdat->lru_lock); |
| 2431 | |
| 2432 | fraction[0] = ap; |
| 2433 | fraction[1] = fp; |
| 2434 | denominator = ap + fp + 1; |
| 2435 | out: |
| 2436 | *lru_pages = 0; |
| 2437 | for_each_evictable_lru(lru) { |
| 2438 | int file = is_file_lru(lru); |
| 2439 | unsigned long size; |
| 2440 | unsigned long scan; |
| 2441 | |
| 2442 | size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); |
| 2443 | scan = size >> sc->priority; |
| 2444 | /* |
| 2445 | * If the cgroup's already been deleted, make sure to |
| 2446 | * scrape out the remaining cache. |
| 2447 | */ |
| 2448 | if (!scan && !mem_cgroup_online(memcg)) |
| 2449 | scan = min(size, SWAP_CLUSTER_MAX); |
| 2450 | |
| 2451 | switch (scan_balance) { |
| 2452 | case SCAN_EQUAL: |
| 2453 | /* Scan lists relative to size */ |
| 2454 | break; |
| 2455 | case SCAN_FRACT: |
| 2456 | /* |
| 2457 | * Scan types proportional to swappiness and |
| 2458 | * their relative recent reclaim efficiency. |
| 2459 | * Make sure we don't miss the last page |
| 2460 | * because of a round-off error. |
| 2461 | */ |
| 2462 | scan = DIV64_U64_ROUND_UP(scan * fraction[file], |
| 2463 | denominator); |
| 2464 | break; |
| 2465 | case SCAN_FILE: |
| 2466 | case SCAN_ANON: |
| 2467 | /* Scan one type exclusively */ |
| 2468 | if ((scan_balance == SCAN_FILE) != file) { |
| 2469 | size = 0; |
| 2470 | scan = 0; |
| 2471 | } |
| 2472 | break; |
| 2473 | default: |
| 2474 | /* Look ma, no brain */ |
| 2475 | BUG(); |
| 2476 | } |
| 2477 | |
| 2478 | *lru_pages += size; |
| 2479 | nr[lru] = scan; |
| 2480 | } |
| 2481 | } |
| 2482 | |
| 2483 | /* |
| 2484 | * This is a basic per-node page freer. Used by both kswapd and direct reclaim. |
| 2485 | */ |
| 2486 | static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, |
| 2487 | struct scan_control *sc, unsigned long *lru_pages) |
| 2488 | { |
| 2489 | struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); |
| 2490 | unsigned long nr[NR_LRU_LISTS]; |
| 2491 | unsigned long targets[NR_LRU_LISTS]; |
| 2492 | unsigned long nr_to_scan; |
| 2493 | enum lru_list lru; |
| 2494 | unsigned long nr_reclaimed = 0; |
| 2495 | unsigned long nr_to_reclaim = sc->nr_to_reclaim; |
| 2496 | struct blk_plug plug; |
| 2497 | bool scan_adjusted; |
| 2498 | |
| 2499 | get_scan_count(lruvec, memcg, sc, nr, lru_pages); |
| 2500 | |
| 2501 | /* Record the original scan target for proportional adjustments later */ |
| 2502 | memcpy(targets, nr, sizeof(nr)); |
| 2503 | |
| 2504 | /* |
| 2505 | * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal |
| 2506 | * event that can occur when there is little memory pressure e.g. |
| 2507 | * multiple streaming readers/writers. Hence, we do not abort scanning |
| 2508 | * when the requested number of pages are reclaimed when scanning at |
| 2509 | * DEF_PRIORITY on the assumption that the fact we are direct |
| 2510 | * reclaiming implies that kswapd is not keeping up and it is best to |
| 2511 | * do a batch of work at once. For memcg reclaim one check is made to |
| 2512 | * abort proportional reclaim if either the file or anon lru has already |
| 2513 | * dropped to zero at the first pass. |
| 2514 | */ |
| 2515 | scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && |
| 2516 | sc->priority == DEF_PRIORITY); |
| 2517 | |
| 2518 | blk_start_plug(&plug); |
| 2519 | while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || |
| 2520 | nr[LRU_INACTIVE_FILE]) { |
| 2521 | unsigned long nr_anon, nr_file, percentage; |
| 2522 | unsigned long nr_scanned; |
| 2523 | |
| 2524 | for_each_evictable_lru(lru) { |
| 2525 | if (nr[lru]) { |
| 2526 | nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); |
| 2527 | nr[lru] -= nr_to_scan; |
| 2528 | |
| 2529 | nr_reclaimed += shrink_list(lru, nr_to_scan, |
| 2530 | lruvec, memcg, sc); |
| 2531 | } |
| 2532 | } |
| 2533 | |
| 2534 | cond_resched(); |
| 2535 | |
| 2536 | if (nr_reclaimed < nr_to_reclaim || scan_adjusted) |
| 2537 | continue; |
| 2538 | |
| 2539 | /* |
| 2540 | * For kswapd and memcg, reclaim at least the number of pages |
| 2541 | * requested. Ensure that the anon and file LRUs are scanned |
| 2542 | * proportionally what was requested by get_scan_count(). We |
| 2543 | * stop reclaiming one LRU and reduce the amount scanning |
| 2544 | * proportional to the original scan target. |
| 2545 | */ |
| 2546 | nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; |
| 2547 | nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; |
| 2548 | |
| 2549 | /* |
| 2550 | * It's just vindictive to attack the larger once the smaller |
| 2551 | * has gone to zero. And given the way we stop scanning the |
| 2552 | * smaller below, this makes sure that we only make one nudge |
| 2553 | * towards proportionality once we've got nr_to_reclaim. |
| 2554 | */ |
| 2555 | if (!nr_file || !nr_anon) |
| 2556 | break; |
| 2557 | |
| 2558 | if (nr_file > nr_anon) { |
| 2559 | unsigned long scan_target = targets[LRU_INACTIVE_ANON] + |
| 2560 | targets[LRU_ACTIVE_ANON] + 1; |
| 2561 | lru = LRU_BASE; |
| 2562 | percentage = nr_anon * 100 / scan_target; |
| 2563 | } else { |
| 2564 | unsigned long scan_target = targets[LRU_INACTIVE_FILE] + |
| 2565 | targets[LRU_ACTIVE_FILE] + 1; |
| 2566 | lru = LRU_FILE; |
| 2567 | percentage = nr_file * 100 / scan_target; |
| 2568 | } |
| 2569 | |
| 2570 | /* Stop scanning the smaller of the LRU */ |
| 2571 | nr[lru] = 0; |
| 2572 | nr[lru + LRU_ACTIVE] = 0; |
| 2573 | |
| 2574 | /* |
| 2575 | * Recalculate the other LRU scan count based on its original |
| 2576 | * scan target and the percentage scanning already complete |
| 2577 | */ |
| 2578 | lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; |
| 2579 | nr_scanned = targets[lru] - nr[lru]; |
| 2580 | nr[lru] = targets[lru] * (100 - percentage) / 100; |
| 2581 | nr[lru] -= min(nr[lru], nr_scanned); |
| 2582 | |
| 2583 | lru += LRU_ACTIVE; |
| 2584 | nr_scanned = targets[lru] - nr[lru]; |
| 2585 | nr[lru] = targets[lru] * (100 - percentage) / 100; |
| 2586 | nr[lru] -= min(nr[lru], nr_scanned); |
| 2587 | |
| 2588 | scan_adjusted = true; |
| 2589 | } |
| 2590 | blk_finish_plug(&plug); |
| 2591 | sc->nr_reclaimed += nr_reclaimed; |
| 2592 | |
| 2593 | /* |
| 2594 | * Even if we did not try to evict anon pages at all, we want to |
| 2595 | * rebalance the anon lru active/inactive ratio. |
| 2596 | */ |
| 2597 | if (inactive_list_is_low(lruvec, false, memcg, sc, true)) |
| 2598 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, |
| 2599 | sc, LRU_ACTIVE_ANON); |
| 2600 | } |
| 2601 | |
| 2602 | /* Use reclaim/compaction for costly allocs or under memory pressure */ |
| 2603 | static bool in_reclaim_compaction(struct scan_control *sc) |
| 2604 | { |
| 2605 | if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && |
| 2606 | (sc->order > PAGE_ALLOC_COSTLY_ORDER || |
| 2607 | sc->priority < DEF_PRIORITY - 2)) |
| 2608 | return true; |
| 2609 | |
| 2610 | return false; |
| 2611 | } |
| 2612 | |
| 2613 | /* |
| 2614 | * Reclaim/compaction is used for high-order allocation requests. It reclaims |
| 2615 | * order-0 pages before compacting the zone. should_continue_reclaim() returns |
| 2616 | * true if more pages should be reclaimed such that when the page allocator |
| 2617 | * calls try_to_compact_zone() that it will have enough free pages to succeed. |
| 2618 | * It will give up earlier than that if there is difficulty reclaiming pages. |
| 2619 | */ |
| 2620 | static inline bool should_continue_reclaim(struct pglist_data *pgdat, |
| 2621 | unsigned long nr_reclaimed, |
| 2622 | unsigned long nr_scanned, |
| 2623 | struct scan_control *sc) |
| 2624 | { |
| 2625 | unsigned long pages_for_compaction; |
| 2626 | unsigned long inactive_lru_pages; |
| 2627 | int z; |
| 2628 | |
| 2629 | /* If not in reclaim/compaction mode, stop */ |
| 2630 | if (!in_reclaim_compaction(sc)) |
| 2631 | return false; |
| 2632 | |
| 2633 | /* Consider stopping depending on scan and reclaim activity */ |
| 2634 | if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) { |
| 2635 | /* |
| 2636 | * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the |
| 2637 | * full LRU list has been scanned and we are still failing |
| 2638 | * to reclaim pages. This full LRU scan is potentially |
| 2639 | * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed |
| 2640 | */ |
| 2641 | if (!nr_reclaimed && !nr_scanned) |
| 2642 | return false; |
| 2643 | } else { |
| 2644 | /* |
| 2645 | * For non-__GFP_RETRY_MAYFAIL allocations which can presumably |
| 2646 | * fail without consequence, stop if we failed to reclaim |
| 2647 | * any pages from the last SWAP_CLUSTER_MAX number of |
| 2648 | * pages that were scanned. This will return to the |
| 2649 | * caller faster at the risk reclaim/compaction and |
| 2650 | * the resulting allocation attempt fails |
| 2651 | */ |
| 2652 | if (!nr_reclaimed) |
| 2653 | return false; |
| 2654 | } |
| 2655 | |
| 2656 | /* |
| 2657 | * If we have not reclaimed enough pages for compaction and the |
| 2658 | * inactive lists are large enough, continue reclaiming |
| 2659 | */ |
| 2660 | pages_for_compaction = compact_gap(sc->order); |
| 2661 | inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); |
| 2662 | if (get_nr_swap_pages() > 0) |
| 2663 | inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); |
| 2664 | if (sc->nr_reclaimed < pages_for_compaction && |
| 2665 | inactive_lru_pages > pages_for_compaction) |
| 2666 | return true; |
| 2667 | |
| 2668 | /* If compaction would go ahead or the allocation would succeed, stop */ |
| 2669 | for (z = 0; z <= sc->reclaim_idx; z++) { |
| 2670 | struct zone *zone = &pgdat->node_zones[z]; |
| 2671 | if (!managed_zone(zone)) |
| 2672 | continue; |
| 2673 | |
| 2674 | switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { |
| 2675 | case COMPACT_SUCCESS: |
| 2676 | case COMPACT_CONTINUE: |
| 2677 | return false; |
| 2678 | default: |
| 2679 | /* check next zone */ |
| 2680 | ; |
| 2681 | } |
| 2682 | } |
| 2683 | return true; |
| 2684 | } |
| 2685 | |
| 2686 | static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg) |
| 2687 | { |
| 2688 | return test_bit(PGDAT_CONGESTED, &pgdat->flags) || |
| 2689 | (memcg && memcg_congested(pgdat, memcg)); |
| 2690 | } |
| 2691 | |
| 2692 | static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) |
| 2693 | { |
| 2694 | struct reclaim_state *reclaim_state = current->reclaim_state; |
| 2695 | unsigned long nr_reclaimed, nr_scanned; |
| 2696 | bool reclaimable = false; |
| 2697 | |
| 2698 | do { |
| 2699 | struct mem_cgroup *root = sc->target_mem_cgroup; |
| 2700 | struct mem_cgroup_reclaim_cookie reclaim = { |
| 2701 | .pgdat = pgdat, |
| 2702 | .priority = sc->priority, |
| 2703 | }; |
| 2704 | unsigned long node_lru_pages = 0; |
| 2705 | struct mem_cgroup *memcg; |
| 2706 | |
| 2707 | memset(&sc->nr, 0, sizeof(sc->nr)); |
| 2708 | |
| 2709 | nr_reclaimed = sc->nr_reclaimed; |
| 2710 | nr_scanned = sc->nr_scanned; |
| 2711 | |
| 2712 | memcg = mem_cgroup_iter(root, NULL, &reclaim); |
| 2713 | do { |
| 2714 | unsigned long lru_pages; |
| 2715 | unsigned long reclaimed; |
| 2716 | unsigned long scanned; |
| 2717 | |
| 2718 | switch (mem_cgroup_protected(root, memcg)) { |
| 2719 | case MEMCG_PROT_MIN: |
| 2720 | /* |
| 2721 | * Hard protection. |
| 2722 | * If there is no reclaimable memory, OOM. |
| 2723 | */ |
| 2724 | continue; |
| 2725 | case MEMCG_PROT_LOW: |
| 2726 | /* |
| 2727 | * Soft protection. |
| 2728 | * Respect the protection only as long as |
| 2729 | * there is an unprotected supply |
| 2730 | * of reclaimable memory from other cgroups. |
| 2731 | */ |
| 2732 | if (!sc->memcg_low_reclaim) { |
| 2733 | sc->memcg_low_skipped = 1; |
| 2734 | continue; |
| 2735 | } |
| 2736 | memcg_memory_event(memcg, MEMCG_LOW); |
| 2737 | break; |
| 2738 | case MEMCG_PROT_NONE: |
| 2739 | break; |
| 2740 | } |
| 2741 | |
| 2742 | reclaimed = sc->nr_reclaimed; |
| 2743 | scanned = sc->nr_scanned; |
| 2744 | shrink_node_memcg(pgdat, memcg, sc, &lru_pages); |
| 2745 | node_lru_pages += lru_pages; |
| 2746 | |
| 2747 | shrink_slab(sc->gfp_mask, pgdat->node_id, |
| 2748 | memcg, sc->priority); |
| 2749 | |
| 2750 | /* Record the group's reclaim efficiency */ |
| 2751 | vmpressure(sc->gfp_mask, memcg, false, |
| 2752 | sc->nr_scanned - scanned, |
| 2753 | sc->nr_reclaimed - reclaimed); |
| 2754 | |
| 2755 | /* |
| 2756 | * Direct reclaim and kswapd have to scan all memory |
| 2757 | * cgroups to fulfill the overall scan target for the |
| 2758 | * node. |
| 2759 | * |
| 2760 | * Limit reclaim, on the other hand, only cares about |
| 2761 | * nr_to_reclaim pages to be reclaimed and it will |
| 2762 | * retry with decreasing priority if one round over the |
| 2763 | * whole hierarchy is not sufficient. |
| 2764 | */ |
| 2765 | if (!global_reclaim(sc) && |
| 2766 | sc->nr_reclaimed >= sc->nr_to_reclaim) { |
| 2767 | mem_cgroup_iter_break(root, memcg); |
| 2768 | break; |
| 2769 | } |
| 2770 | } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); |
| 2771 | |
| 2772 | if (reclaim_state) { |
| 2773 | sc->nr_reclaimed += reclaim_state->reclaimed_slab; |
| 2774 | reclaim_state->reclaimed_slab = 0; |
| 2775 | } |
| 2776 | |
| 2777 | /* Record the subtree's reclaim efficiency */ |
| 2778 | vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, |
| 2779 | sc->nr_scanned - nr_scanned, |
| 2780 | sc->nr_reclaimed - nr_reclaimed); |
| 2781 | |
| 2782 | if (sc->nr_reclaimed - nr_reclaimed) |
| 2783 | reclaimable = true; |
| 2784 | |
| 2785 | if (current_is_kswapd()) { |
| 2786 | /* |
| 2787 | * If reclaim is isolating dirty pages under writeback, |
| 2788 | * it implies that the long-lived page allocation rate |
| 2789 | * is exceeding the page laundering rate. Either the |
| 2790 | * global limits are not being effective at throttling |
| 2791 | * processes due to the page distribution throughout |
| 2792 | * zones or there is heavy usage of a slow backing |
| 2793 | * device. The only option is to throttle from reclaim |
| 2794 | * context which is not ideal as there is no guarantee |
| 2795 | * the dirtying process is throttled in the same way |
| 2796 | * balance_dirty_pages() manages. |
| 2797 | * |
| 2798 | * Once a node is flagged PGDAT_WRITEBACK, kswapd will |
| 2799 | * count the number of pages under pages flagged for |
| 2800 | * immediate reclaim and stall if any are encountered |
| 2801 | * in the nr_immediate check below. |
| 2802 | */ |
| 2803 | if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) |
| 2804 | set_bit(PGDAT_WRITEBACK, &pgdat->flags); |
| 2805 | |
| 2806 | /* |
| 2807 | * Tag a node as congested if all the dirty pages |
| 2808 | * scanned were backed by a congested BDI and |
| 2809 | * wait_iff_congested will stall. |
| 2810 | */ |
| 2811 | if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) |
| 2812 | set_bit(PGDAT_CONGESTED, &pgdat->flags); |
| 2813 | |
| 2814 | /* Allow kswapd to start writing pages during reclaim.*/ |
| 2815 | if (sc->nr.unqueued_dirty == sc->nr.file_taken) |
| 2816 | set_bit(PGDAT_DIRTY, &pgdat->flags); |
| 2817 | |
| 2818 | /* |
| 2819 | * If kswapd scans pages marked marked for immediate |
| 2820 | * reclaim and under writeback (nr_immediate), it |
| 2821 | * implies that pages are cycling through the LRU |
| 2822 | * faster than they are written so also forcibly stall. |
| 2823 | */ |
| 2824 | if (sc->nr.immediate) |
| 2825 | congestion_wait(BLK_RW_ASYNC, HZ/10); |
| 2826 | } |
| 2827 | |
| 2828 | /* |
| 2829 | * Legacy memcg will stall in page writeback so avoid forcibly |
| 2830 | * stalling in wait_iff_congested(). |
| 2831 | */ |
| 2832 | if (!global_reclaim(sc) && sane_reclaim(sc) && |
| 2833 | sc->nr.dirty && sc->nr.dirty == sc->nr.congested) |
| 2834 | set_memcg_congestion(pgdat, root, true); |
| 2835 | |
| 2836 | /* |
| 2837 | * Stall direct reclaim for IO completions if underlying BDIs |
| 2838 | * and node is congested. Allow kswapd to continue until it |
| 2839 | * starts encountering unqueued dirty pages or cycling through |
| 2840 | * the LRU too quickly. |
| 2841 | */ |
| 2842 | if (!sc->hibernation_mode && !current_is_kswapd() && |
| 2843 | current_may_throttle() && pgdat_memcg_congested(pgdat, root)) |
| 2844 | wait_iff_congested(BLK_RW_ASYNC, HZ/10); |
| 2845 | |
| 2846 | } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, |
| 2847 | sc->nr_scanned - nr_scanned, sc)); |
| 2848 | |
| 2849 | /* |
| 2850 | * Kswapd gives up on balancing particular nodes after too |
| 2851 | * many failures to reclaim anything from them and goes to |
| 2852 | * sleep. On reclaim progress, reset the failure counter. A |
| 2853 | * successful direct reclaim run will revive a dormant kswapd. |
| 2854 | */ |
| 2855 | if (reclaimable) |
| 2856 | pgdat->kswapd_failures = 0; |
| 2857 | |
| 2858 | return reclaimable; |
| 2859 | } |
| 2860 | |
| 2861 | /* |
| 2862 | * Returns true if compaction should go ahead for a costly-order request, or |
| 2863 | * the allocation would already succeed without compaction. Return false if we |
| 2864 | * should reclaim first. |
| 2865 | */ |
| 2866 | static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) |
| 2867 | { |
| 2868 | unsigned long watermark; |
| 2869 | enum compact_result suitable; |
| 2870 | |
| 2871 | suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); |
| 2872 | if (suitable == COMPACT_SUCCESS) |
| 2873 | /* Allocation should succeed already. Don't reclaim. */ |
| 2874 | return true; |
| 2875 | if (suitable == COMPACT_SKIPPED) |
| 2876 | /* Compaction cannot yet proceed. Do reclaim. */ |
| 2877 | return false; |
| 2878 | |
| 2879 | /* |
| 2880 | * Compaction is already possible, but it takes time to run and there |
| 2881 | * are potentially other callers using the pages just freed. So proceed |
| 2882 | * with reclaim to make a buffer of free pages available to give |
| 2883 | * compaction a reasonable chance of completing and allocating the page. |
| 2884 | * Note that we won't actually reclaim the whole buffer in one attempt |
| 2885 | * as the target watermark in should_continue_reclaim() is lower. But if |
| 2886 | * we are already above the high+gap watermark, don't reclaim at all. |
| 2887 | */ |
| 2888 | watermark = high_wmark_pages(zone) + compact_gap(sc->order); |
| 2889 | |
| 2890 | return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); |
| 2891 | } |
| 2892 | |
| 2893 | /* |
| 2894 | * This is the direct reclaim path, for page-allocating processes. We only |
| 2895 | * try to reclaim pages from zones which will satisfy the caller's allocation |
| 2896 | * request. |
| 2897 | * |
| 2898 | * If a zone is deemed to be full of pinned pages then just give it a light |
| 2899 | * scan then give up on it. |
| 2900 | */ |
| 2901 | static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) |
| 2902 | { |
| 2903 | struct zoneref *z; |
| 2904 | struct zone *zone; |
| 2905 | unsigned long nr_soft_reclaimed; |
| 2906 | unsigned long nr_soft_scanned; |
| 2907 | gfp_t orig_mask; |
| 2908 | pg_data_t *last_pgdat = NULL; |
| 2909 | |
| 2910 | /* |
| 2911 | * If the number of buffer_heads in the machine exceeds the maximum |
| 2912 | * allowed level, force direct reclaim to scan the highmem zone as |
| 2913 | * highmem pages could be pinning lowmem pages storing buffer_heads |
| 2914 | */ |
| 2915 | orig_mask = sc->gfp_mask; |
| 2916 | if (buffer_heads_over_limit) { |
| 2917 | sc->gfp_mask |= __GFP_HIGHMEM; |
| 2918 | sc->reclaim_idx = gfp_zone(sc->gfp_mask); |
| 2919 | } |
| 2920 | |
| 2921 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
| 2922 | sc->reclaim_idx, sc->nodemask) { |
| 2923 | /* |
| 2924 | * Take care memory controller reclaiming has small influence |
| 2925 | * to global LRU. |
| 2926 | */ |
| 2927 | if (global_reclaim(sc)) { |
| 2928 | if (!cpuset_zone_allowed(zone, |
| 2929 | GFP_KERNEL | __GFP_HARDWALL)) |
| 2930 | continue; |
| 2931 | |
| 2932 | /* |
| 2933 | * If we already have plenty of memory free for |
| 2934 | * compaction in this zone, don't free any more. |
| 2935 | * Even though compaction is invoked for any |
| 2936 | * non-zero order, only frequent costly order |
| 2937 | * reclamation is disruptive enough to become a |
| 2938 | * noticeable problem, like transparent huge |
| 2939 | * page allocations. |
| 2940 | */ |
| 2941 | if (IS_ENABLED(CONFIG_COMPACTION) && |
| 2942 | sc->order > PAGE_ALLOC_COSTLY_ORDER && |
| 2943 | compaction_ready(zone, sc)) { |
| 2944 | sc->compaction_ready = true; |
| 2945 | continue; |
| 2946 | } |
| 2947 | |
| 2948 | /* |
| 2949 | * Shrink each node in the zonelist once. If the |
| 2950 | * zonelist is ordered by zone (not the default) then a |
| 2951 | * node may be shrunk multiple times but in that case |
| 2952 | * the user prefers lower zones being preserved. |
| 2953 | */ |
| 2954 | if (zone->zone_pgdat == last_pgdat) |
| 2955 | continue; |
| 2956 | |
| 2957 | /* |
| 2958 | * This steals pages from memory cgroups over softlimit |
| 2959 | * and returns the number of reclaimed pages and |
| 2960 | * scanned pages. This works for global memory pressure |
| 2961 | * and balancing, not for a memcg's limit. |
| 2962 | */ |
| 2963 | nr_soft_scanned = 0; |
| 2964 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, |
| 2965 | sc->order, sc->gfp_mask, |
| 2966 | &nr_soft_scanned); |
| 2967 | sc->nr_reclaimed += nr_soft_reclaimed; |
| 2968 | sc->nr_scanned += nr_soft_scanned; |
| 2969 | /* need some check for avoid more shrink_zone() */ |
| 2970 | } |
| 2971 | |
| 2972 | /* See comment about same check for global reclaim above */ |
| 2973 | if (zone->zone_pgdat == last_pgdat) |
| 2974 | continue; |
| 2975 | last_pgdat = zone->zone_pgdat; |
| 2976 | shrink_node(zone->zone_pgdat, sc); |
| 2977 | } |
| 2978 | |
| 2979 | /* |
| 2980 | * Restore to original mask to avoid the impact on the caller if we |
| 2981 | * promoted it to __GFP_HIGHMEM. |
| 2982 | */ |
| 2983 | sc->gfp_mask = orig_mask; |
| 2984 | } |
| 2985 | |
| 2986 | static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) |
| 2987 | { |
| 2988 | struct mem_cgroup *memcg; |
| 2989 | |
| 2990 | memcg = mem_cgroup_iter(root_memcg, NULL, NULL); |
| 2991 | do { |
| 2992 | unsigned long refaults; |
| 2993 | struct lruvec *lruvec; |
| 2994 | |
| 2995 | if (memcg) |
| 2996 | refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); |
| 2997 | else |
| 2998 | refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); |
| 2999 | |
| 3000 | lruvec = mem_cgroup_lruvec(pgdat, memcg); |
| 3001 | lruvec->refaults = refaults; |
| 3002 | } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); |
| 3003 | } |
| 3004 | |
| 3005 | /* |
| 3006 | * This is the main entry point to direct page reclaim. |
| 3007 | * |
| 3008 | * If a full scan of the inactive list fails to free enough memory then we |
| 3009 | * are "out of memory" and something needs to be killed. |
| 3010 | * |
| 3011 | * If the caller is !__GFP_FS then the probability of a failure is reasonably |
| 3012 | * high - the zone may be full of dirty or under-writeback pages, which this |
| 3013 | * caller can't do much about. We kick the writeback threads and take explicit |
| 3014 | * naps in the hope that some of these pages can be written. But if the |
| 3015 | * allocating task holds filesystem locks which prevent writeout this might not |
| 3016 | * work, and the allocation attempt will fail. |
| 3017 | * |
| 3018 | * returns: 0, if no pages reclaimed |
| 3019 | * else, the number of pages reclaimed |
| 3020 | */ |
| 3021 | static unsigned long do_try_to_free_pages(struct zonelist *zonelist, |
| 3022 | struct scan_control *sc) |
| 3023 | { |
| 3024 | int initial_priority = sc->priority; |
| 3025 | pg_data_t *last_pgdat; |
| 3026 | struct zoneref *z; |
| 3027 | struct zone *zone; |
| 3028 | retry: |
| 3029 | delayacct_freepages_start(); |
| 3030 | |
| 3031 | if (global_reclaim(sc)) |
| 3032 | __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); |
| 3033 | |
| 3034 | do { |
| 3035 | vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, |
| 3036 | sc->priority); |
| 3037 | sc->nr_scanned = 0; |
| 3038 | shrink_zones(zonelist, sc); |
| 3039 | |
| 3040 | if (sc->nr_reclaimed >= sc->nr_to_reclaim) |
| 3041 | break; |
| 3042 | |
| 3043 | if (sc->compaction_ready) |
| 3044 | break; |
| 3045 | |
| 3046 | /* |
| 3047 | * If we're getting trouble reclaiming, start doing |
| 3048 | * writepage even in laptop mode. |
| 3049 | */ |
| 3050 | if (sc->priority < DEF_PRIORITY - 2) |
| 3051 | sc->may_writepage = 1; |
| 3052 | } while (--sc->priority >= 0); |
| 3053 | |
| 3054 | last_pgdat = NULL; |
| 3055 | for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, |
| 3056 | sc->nodemask) { |
| 3057 | if (zone->zone_pgdat == last_pgdat) |
| 3058 | continue; |
| 3059 | last_pgdat = zone->zone_pgdat; |
| 3060 | snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); |
| 3061 | set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false); |
| 3062 | } |
| 3063 | |
| 3064 | delayacct_freepages_end(); |
| 3065 | |
| 3066 | if (sc->nr_reclaimed) |
| 3067 | return sc->nr_reclaimed; |
| 3068 | |
| 3069 | /* Aborted reclaim to try compaction? don't OOM, then */ |
| 3070 | if (sc->compaction_ready) |
| 3071 | return 1; |
| 3072 | |
| 3073 | /* Untapped cgroup reserves? Don't OOM, retry. */ |
| 3074 | if (sc->memcg_low_skipped) { |
| 3075 | sc->priority = initial_priority; |
| 3076 | sc->memcg_low_reclaim = 1; |
| 3077 | sc->memcg_low_skipped = 0; |
| 3078 | goto retry; |
| 3079 | } |
| 3080 | |
| 3081 | return 0; |
| 3082 | } |
| 3083 | |
| 3084 | static bool allow_direct_reclaim(pg_data_t *pgdat) |
| 3085 | { |
| 3086 | struct zone *zone; |
| 3087 | unsigned long pfmemalloc_reserve = 0; |
| 3088 | unsigned long free_pages = 0; |
| 3089 | int i; |
| 3090 | bool wmark_ok; |
| 3091 | |
| 3092 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) |
| 3093 | return true; |
| 3094 | |
| 3095 | for (i = 0; i <= ZONE_NORMAL; i++) { |
| 3096 | zone = &pgdat->node_zones[i]; |
| 3097 | if (!managed_zone(zone)) |
| 3098 | continue; |
| 3099 | |
| 3100 | if (!zone_reclaimable_pages(zone)) |
| 3101 | continue; |
| 3102 | |
| 3103 | pfmemalloc_reserve += min_wmark_pages(zone); |
| 3104 | free_pages += zone_page_state(zone, NR_FREE_PAGES); |
| 3105 | } |
| 3106 | |
| 3107 | /* If there are no reserves (unexpected config) then do not throttle */ |
| 3108 | if (!pfmemalloc_reserve) |
| 3109 | return true; |
| 3110 | |
| 3111 | wmark_ok = free_pages > pfmemalloc_reserve / 2; |
| 3112 | |
| 3113 | /* kswapd must be awake if processes are being throttled */ |
| 3114 | if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { |
| 3115 | pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, |
| 3116 | (enum zone_type)ZONE_NORMAL); |
| 3117 | wake_up_interruptible(&pgdat->kswapd_wait); |
| 3118 | } |
| 3119 | |
| 3120 | return wmark_ok; |
| 3121 | } |
| 3122 | |
| 3123 | /* |
| 3124 | * Throttle direct reclaimers if backing storage is backed by the network |
| 3125 | * and the PFMEMALLOC reserve for the preferred node is getting dangerously |
| 3126 | * depleted. kswapd will continue to make progress and wake the processes |
| 3127 | * when the low watermark is reached. |
| 3128 | * |
| 3129 | * Returns true if a fatal signal was delivered during throttling. If this |
| 3130 | * happens, the page allocator should not consider triggering the OOM killer. |
| 3131 | */ |
| 3132 | static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, |
| 3133 | nodemask_t *nodemask) |
| 3134 | { |
| 3135 | struct zoneref *z; |
| 3136 | struct zone *zone; |
| 3137 | pg_data_t *pgdat = NULL; |
| 3138 | |
| 3139 | /* |
| 3140 | * Kernel threads should not be throttled as they may be indirectly |
| 3141 | * responsible for cleaning pages necessary for reclaim to make forward |
| 3142 | * progress. kjournald for example may enter direct reclaim while |
| 3143 | * committing a transaction where throttling it could forcing other |
| 3144 | * processes to block on log_wait_commit(). |
| 3145 | */ |
| 3146 | if (current->flags & PF_KTHREAD) |
| 3147 | goto out; |
| 3148 | |
| 3149 | /* |
| 3150 | * If a fatal signal is pending, this process should not throttle. |
| 3151 | * It should return quickly so it can exit and free its memory |
| 3152 | */ |
| 3153 | if (fatal_signal_pending(current)) |
| 3154 | goto out; |
| 3155 | |
| 3156 | /* |
| 3157 | * Check if the pfmemalloc reserves are ok by finding the first node |
| 3158 | * with a usable ZONE_NORMAL or lower zone. The expectation is that |
| 3159 | * GFP_KERNEL will be required for allocating network buffers when |
| 3160 | * swapping over the network so ZONE_HIGHMEM is unusable. |
| 3161 | * |
| 3162 | * Throttling is based on the first usable node and throttled processes |
| 3163 | * wait on a queue until kswapd makes progress and wakes them. There |
| 3164 | * is an affinity then between processes waking up and where reclaim |
| 3165 | * progress has been made assuming the process wakes on the same node. |
| 3166 | * More importantly, processes running on remote nodes will not compete |
| 3167 | * for remote pfmemalloc reserves and processes on different nodes |
| 3168 | * should make reasonable progress. |
| 3169 | */ |
| 3170 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
| 3171 | gfp_zone(gfp_mask), nodemask) { |
| 3172 | if (zone_idx(zone) > ZONE_NORMAL) |
| 3173 | continue; |
| 3174 | |
| 3175 | /* Throttle based on the first usable node */ |
| 3176 | pgdat = zone->zone_pgdat; |
| 3177 | if (allow_direct_reclaim(pgdat)) |
| 3178 | goto out; |
| 3179 | break; |
| 3180 | } |
| 3181 | |
| 3182 | /* If no zone was usable by the allocation flags then do not throttle */ |
| 3183 | if (!pgdat) |
| 3184 | goto out; |
| 3185 | |
| 3186 | /* Account for the throttling */ |
| 3187 | count_vm_event(PGSCAN_DIRECT_THROTTLE); |
| 3188 | |
| 3189 | /* |
| 3190 | * If the caller cannot enter the filesystem, it's possible that it |
| 3191 | * is due to the caller holding an FS lock or performing a journal |
| 3192 | * transaction in the case of a filesystem like ext[3|4]. In this case, |
| 3193 | * it is not safe to block on pfmemalloc_wait as kswapd could be |
| 3194 | * blocked waiting on the same lock. Instead, throttle for up to a |
| 3195 | * second before continuing. |
| 3196 | */ |
| 3197 | if (!(gfp_mask & __GFP_FS)) { |
| 3198 | wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, |
| 3199 | allow_direct_reclaim(pgdat), HZ); |
| 3200 | |
| 3201 | goto check_pending; |
| 3202 | } |
| 3203 | |
| 3204 | /* Throttle until kswapd wakes the process */ |
| 3205 | wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, |
| 3206 | allow_direct_reclaim(pgdat)); |
| 3207 | |
| 3208 | check_pending: |
| 3209 | if (fatal_signal_pending(current)) |
| 3210 | return true; |
| 3211 | |
| 3212 | out: |
| 3213 | return false; |
| 3214 | } |
| 3215 | |
| 3216 | unsigned long try_to_free_pages(struct zonelist *zonelist, int order, |
| 3217 | gfp_t gfp_mask, nodemask_t *nodemask) |
| 3218 | { |
| 3219 | unsigned long nr_reclaimed; |
| 3220 | struct scan_control sc = { |
| 3221 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
| 3222 | .gfp_mask = current_gfp_context(gfp_mask), |
| 3223 | .reclaim_idx = gfp_zone(gfp_mask), |
| 3224 | .order = order, |
| 3225 | .nodemask = nodemask, |
| 3226 | .priority = DEF_PRIORITY, |
| 3227 | .may_writepage = !laptop_mode, |
| 3228 | .may_unmap = 1, |
| 3229 | .may_swap = 1, |
| 3230 | }; |
| 3231 | |
| 3232 | /* |
| 3233 | * scan_control uses s8 fields for order, priority, and reclaim_idx. |
| 3234 | * Confirm they are large enough for max values. |
| 3235 | */ |
| 3236 | BUILD_BUG_ON(MAX_ORDER > S8_MAX); |
| 3237 | BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); |
| 3238 | BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); |
| 3239 | |
| 3240 | /* |
| 3241 | * Do not enter reclaim if fatal signal was delivered while throttled. |
| 3242 | * 1 is returned so that the page allocator does not OOM kill at this |
| 3243 | * point. |
| 3244 | */ |
| 3245 | if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) |
| 3246 | return 1; |
| 3247 | |
| 3248 | trace_mm_vmscan_direct_reclaim_begin(order, |
| 3249 | sc.may_writepage, |
| 3250 | sc.gfp_mask, |
| 3251 | sc.reclaim_idx); |
| 3252 | |
| 3253 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); |
| 3254 | |
| 3255 | trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); |
| 3256 | |
| 3257 | return nr_reclaimed; |
| 3258 | } |
| 3259 | |
| 3260 | #ifdef CONFIG_MEMCG |
| 3261 | |
| 3262 | unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, |
| 3263 | gfp_t gfp_mask, bool noswap, |
| 3264 | pg_data_t *pgdat, |
| 3265 | unsigned long *nr_scanned) |
| 3266 | { |
| 3267 | struct scan_control sc = { |
| 3268 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
| 3269 | .target_mem_cgroup = memcg, |
| 3270 | .may_writepage = !laptop_mode, |
| 3271 | .may_unmap = 1, |
| 3272 | .reclaim_idx = MAX_NR_ZONES - 1, |
| 3273 | .may_swap = !noswap, |
| 3274 | }; |
| 3275 | unsigned long lru_pages; |
| 3276 | |
| 3277 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | |
| 3278 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); |
| 3279 | |
| 3280 | trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, |
| 3281 | sc.may_writepage, |
| 3282 | sc.gfp_mask, |
| 3283 | sc.reclaim_idx); |
| 3284 | |
| 3285 | /* |
| 3286 | * NOTE: Although we can get the priority field, using it |
| 3287 | * here is not a good idea, since it limits the pages we can scan. |
| 3288 | * if we don't reclaim here, the shrink_node from balance_pgdat |
| 3289 | * will pick up pages from other mem cgroup's as well. We hack |
| 3290 | * the priority and make it zero. |
| 3291 | */ |
| 3292 | shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); |
| 3293 | |
| 3294 | trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); |
| 3295 | |
| 3296 | *nr_scanned = sc.nr_scanned; |
| 3297 | return sc.nr_reclaimed; |
| 3298 | } |
| 3299 | |
| 3300 | unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, |
| 3301 | unsigned long nr_pages, |
| 3302 | gfp_t gfp_mask, |
| 3303 | bool may_swap) |
| 3304 | { |
| 3305 | struct zonelist *zonelist; |
| 3306 | unsigned long nr_reclaimed; |
| 3307 | int nid; |
| 3308 | unsigned int noreclaim_flag; |
| 3309 | struct scan_control sc = { |
| 3310 | .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), |
| 3311 | .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | |
| 3312 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), |
| 3313 | .reclaim_idx = MAX_NR_ZONES - 1, |
| 3314 | .target_mem_cgroup = memcg, |
| 3315 | .priority = DEF_PRIORITY, |
| 3316 | .may_writepage = !laptop_mode, |
| 3317 | .may_unmap = 1, |
| 3318 | .may_swap = may_swap, |
| 3319 | }; |
| 3320 | |
| 3321 | /* |
| 3322 | * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't |
| 3323 | * take care of from where we get pages. So the node where we start the |
| 3324 | * scan does not need to be the current node. |
| 3325 | */ |
| 3326 | nid = mem_cgroup_select_victim_node(memcg); |
| 3327 | |
| 3328 | zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; |
| 3329 | |
| 3330 | trace_mm_vmscan_memcg_reclaim_begin(0, |
| 3331 | sc.may_writepage, |
| 3332 | sc.gfp_mask, |
| 3333 | sc.reclaim_idx); |
| 3334 | |
| 3335 | noreclaim_flag = memalloc_noreclaim_save(); |
| 3336 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); |
| 3337 | memalloc_noreclaim_restore(noreclaim_flag); |
| 3338 | |
| 3339 | trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); |
| 3340 | |
| 3341 | return nr_reclaimed; |
| 3342 | } |
| 3343 | #endif |
| 3344 | |
| 3345 | static void age_active_anon(struct pglist_data *pgdat, |
| 3346 | struct scan_control *sc) |
| 3347 | { |
| 3348 | struct mem_cgroup *memcg; |
| 3349 | |
| 3350 | if (!total_swap_pages) |
| 3351 | return; |
| 3352 | |
| 3353 | memcg = mem_cgroup_iter(NULL, NULL, NULL); |
| 3354 | do { |
| 3355 | struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); |
| 3356 | |
| 3357 | if (inactive_list_is_low(lruvec, false, memcg, sc, true)) |
| 3358 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, |
| 3359 | sc, LRU_ACTIVE_ANON); |
| 3360 | |
| 3361 | memcg = mem_cgroup_iter(NULL, memcg, NULL); |
| 3362 | } while (memcg); |
| 3363 | } |
| 3364 | |
| 3365 | /* |
| 3366 | * Returns true if there is an eligible zone balanced for the request order |
| 3367 | * and classzone_idx |
| 3368 | */ |
| 3369 | static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) |
| 3370 | { |
| 3371 | int i; |
| 3372 | unsigned long mark = -1; |
| 3373 | struct zone *zone; |
| 3374 | |
| 3375 | for (i = 0; i <= classzone_idx; i++) { |
| 3376 | zone = pgdat->node_zones + i; |
| 3377 | |
| 3378 | if (!managed_zone(zone)) |
| 3379 | continue; |
| 3380 | |
| 3381 | mark = high_wmark_pages(zone); |
| 3382 | if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) |
| 3383 | return true; |
| 3384 | } |
| 3385 | |
| 3386 | /* |
| 3387 | * If a node has no populated zone within classzone_idx, it does not |
| 3388 | * need balancing by definition. This can happen if a zone-restricted |
| 3389 | * allocation tries to wake a remote kswapd. |
| 3390 | */ |
| 3391 | if (mark == -1) |
| 3392 | return true; |
| 3393 | |
| 3394 | return false; |
| 3395 | } |
| 3396 | |
| 3397 | /* Clear pgdat state for congested, dirty or under writeback. */ |
| 3398 | static void clear_pgdat_congested(pg_data_t *pgdat) |
| 3399 | { |
| 3400 | clear_bit(PGDAT_CONGESTED, &pgdat->flags); |
| 3401 | clear_bit(PGDAT_DIRTY, &pgdat->flags); |
| 3402 | clear_bit(PGDAT_WRITEBACK, &pgdat->flags); |
| 3403 | } |
| 3404 | |
| 3405 | /* |
| 3406 | * Prepare kswapd for sleeping. This verifies that there are no processes |
| 3407 | * waiting in throttle_direct_reclaim() and that watermarks have been met. |
| 3408 | * |
| 3409 | * Returns true if kswapd is ready to sleep |
| 3410 | */ |
| 3411 | static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) |
| 3412 | { |
| 3413 | /* |
| 3414 | * The throttled processes are normally woken up in balance_pgdat() as |
| 3415 | * soon as allow_direct_reclaim() is true. But there is a potential |
| 3416 | * race between when kswapd checks the watermarks and a process gets |
| 3417 | * throttled. There is also a potential race if processes get |
| 3418 | * throttled, kswapd wakes, a large process exits thereby balancing the |
| 3419 | * zones, which causes kswapd to exit balance_pgdat() before reaching |
| 3420 | * the wake up checks. If kswapd is going to sleep, no process should |
| 3421 | * be sleeping on pfmemalloc_wait, so wake them now if necessary. If |
| 3422 | * the wake up is premature, processes will wake kswapd and get |
| 3423 | * throttled again. The difference from wake ups in balance_pgdat() is |
| 3424 | * that here we are under prepare_to_wait(). |
| 3425 | */ |
| 3426 | if (waitqueue_active(&pgdat->pfmemalloc_wait)) |
| 3427 | wake_up_all(&pgdat->pfmemalloc_wait); |
| 3428 | |
| 3429 | /* Hopeless node, leave it to direct reclaim */ |
| 3430 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) |
| 3431 | return true; |
| 3432 | |
| 3433 | if (pgdat_balanced(pgdat, order, classzone_idx)) { |
| 3434 | clear_pgdat_congested(pgdat); |
| 3435 | return true; |
| 3436 | } |
| 3437 | |
| 3438 | return false; |
| 3439 | } |
| 3440 | |
| 3441 | /* |
| 3442 | * kswapd shrinks a node of pages that are at or below the highest usable |
| 3443 | * zone that is currently unbalanced. |
| 3444 | * |
| 3445 | * Returns true if kswapd scanned at least the requested number of pages to |
| 3446 | * reclaim or if the lack of progress was due to pages under writeback. |
| 3447 | * This is used to determine if the scanning priority needs to be raised. |
| 3448 | */ |
| 3449 | static bool kswapd_shrink_node(pg_data_t *pgdat, |
| 3450 | struct scan_control *sc) |
| 3451 | { |
| 3452 | struct zone *zone; |
| 3453 | int z; |
| 3454 | |
| 3455 | /* Reclaim a number of pages proportional to the number of zones */ |
| 3456 | sc->nr_to_reclaim = 0; |
| 3457 | for (z = 0; z <= sc->reclaim_idx; z++) { |
| 3458 | zone = pgdat->node_zones + z; |
| 3459 | if (!managed_zone(zone)) |
| 3460 | continue; |
| 3461 | |
| 3462 | sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); |
| 3463 | } |
| 3464 | |
| 3465 | /* |
| 3466 | * Historically care was taken to put equal pressure on all zones but |
| 3467 | * now pressure is applied based on node LRU order. |
| 3468 | */ |
| 3469 | shrink_node(pgdat, sc); |
| 3470 | |
| 3471 | /* |
| 3472 | * Fragmentation may mean that the system cannot be rebalanced for |
| 3473 | * high-order allocations. If twice the allocation size has been |
| 3474 | * reclaimed then recheck watermarks only at order-0 to prevent |
| 3475 | * excessive reclaim. Assume that a process requested a high-order |
| 3476 | * can direct reclaim/compact. |
| 3477 | */ |
| 3478 | if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) |
| 3479 | sc->order = 0; |
| 3480 | |
| 3481 | return sc->nr_scanned >= sc->nr_to_reclaim; |
| 3482 | } |
| 3483 | |
| 3484 | /* |
| 3485 | * For kswapd, balance_pgdat() will reclaim pages across a node from zones |
| 3486 | * that are eligible for use by the caller until at least one zone is |
| 3487 | * balanced. |
| 3488 | * |
| 3489 | * Returns the order kswapd finished reclaiming at. |
| 3490 | * |
| 3491 | * kswapd scans the zones in the highmem->normal->dma direction. It skips |
| 3492 | * zones which have free_pages > high_wmark_pages(zone), but once a zone is |
| 3493 | * found to have free_pages <= high_wmark_pages(zone), any page is that zone |
| 3494 | * or lower is eligible for reclaim until at least one usable zone is |
| 3495 | * balanced. |
| 3496 | */ |
| 3497 | static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) |
| 3498 | { |
| 3499 | int i; |
| 3500 | unsigned long nr_soft_reclaimed; |
| 3501 | unsigned long nr_soft_scanned; |
| 3502 | struct zone *zone; |
| 3503 | struct scan_control sc = { |
| 3504 | .gfp_mask = GFP_KERNEL, |
| 3505 | .order = order, |
| 3506 | .priority = DEF_PRIORITY, |
| 3507 | .may_writepage = !laptop_mode, |
| 3508 | .may_unmap = 1, |
| 3509 | .may_swap = 1, |
| 3510 | }; |
| 3511 | |
| 3512 | __fs_reclaim_acquire(); |
| 3513 | |
| 3514 | count_vm_event(PAGEOUTRUN); |
| 3515 | |
| 3516 | do { |
| 3517 | unsigned long nr_reclaimed = sc.nr_reclaimed; |
| 3518 | bool raise_priority = true; |
| 3519 | bool ret; |
| 3520 | |
| 3521 | sc.reclaim_idx = classzone_idx; |
| 3522 | |
| 3523 | /* |
| 3524 | * If the number of buffer_heads exceeds the maximum allowed |
| 3525 | * then consider reclaiming from all zones. This has a dual |
| 3526 | * purpose -- on 64-bit systems it is expected that |
| 3527 | * buffer_heads are stripped during active rotation. On 32-bit |
| 3528 | * systems, highmem pages can pin lowmem memory and shrinking |
| 3529 | * buffers can relieve lowmem pressure. Reclaim may still not |
| 3530 | * go ahead if all eligible zones for the original allocation |
| 3531 | * request are balanced to avoid excessive reclaim from kswapd. |
| 3532 | */ |
| 3533 | if (buffer_heads_over_limit) { |
| 3534 | for (i = MAX_NR_ZONES - 1; i >= 0; i--) { |
| 3535 | zone = pgdat->node_zones + i; |
| 3536 | if (!managed_zone(zone)) |
| 3537 | continue; |
| 3538 | |
| 3539 | sc.reclaim_idx = i; |
| 3540 | break; |
| 3541 | } |
| 3542 | } |
| 3543 | |
| 3544 | /* |
| 3545 | * Only reclaim if there are no eligible zones. Note that |
| 3546 | * sc.reclaim_idx is not used as buffer_heads_over_limit may |
| 3547 | * have adjusted it. |
| 3548 | */ |
| 3549 | if (pgdat_balanced(pgdat, sc.order, classzone_idx)) |
| 3550 | goto out; |
| 3551 | |
| 3552 | /* |
| 3553 | * Do some background aging of the anon list, to give |
| 3554 | * pages a chance to be referenced before reclaiming. All |
| 3555 | * pages are rotated regardless of classzone as this is |
| 3556 | * about consistent aging. |
| 3557 | */ |
| 3558 | age_active_anon(pgdat, &sc); |
| 3559 | |
| 3560 | /* |
| 3561 | * If we're getting trouble reclaiming, start doing writepage |
| 3562 | * even in laptop mode. |
| 3563 | */ |
| 3564 | if (sc.priority < DEF_PRIORITY - 2) |
| 3565 | sc.may_writepage = 1; |
| 3566 | |
| 3567 | /* Call soft limit reclaim before calling shrink_node. */ |
| 3568 | sc.nr_scanned = 0; |
| 3569 | nr_soft_scanned = 0; |
| 3570 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, |
| 3571 | sc.gfp_mask, &nr_soft_scanned); |
| 3572 | sc.nr_reclaimed += nr_soft_reclaimed; |
| 3573 | |
| 3574 | /* |
| 3575 | * There should be no need to raise the scanning priority if |
| 3576 | * enough pages are already being scanned that that high |
| 3577 | * watermark would be met at 100% efficiency. |
| 3578 | */ |
| 3579 | if (kswapd_shrink_node(pgdat, &sc)) |
| 3580 | raise_priority = false; |
| 3581 | |
| 3582 | /* |
| 3583 | * If the low watermark is met there is no need for processes |
| 3584 | * to be throttled on pfmemalloc_wait as they should not be |
| 3585 | * able to safely make forward progress. Wake them |
| 3586 | */ |
| 3587 | if (waitqueue_active(&pgdat->pfmemalloc_wait) && |
| 3588 | allow_direct_reclaim(pgdat)) |
| 3589 | wake_up_all(&pgdat->pfmemalloc_wait); |
| 3590 | |
| 3591 | /* Check if kswapd should be suspending */ |
| 3592 | __fs_reclaim_release(); |
| 3593 | ret = try_to_freeze(); |
| 3594 | __fs_reclaim_acquire(); |
| 3595 | if (ret || kthread_should_stop()) |
| 3596 | break; |
| 3597 | |
| 3598 | /* |
| 3599 | * Raise priority if scanning rate is too low or there was no |
| 3600 | * progress in reclaiming pages |
| 3601 | */ |
| 3602 | nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; |
| 3603 | if (raise_priority || !nr_reclaimed) |
| 3604 | sc.priority--; |
| 3605 | } while (sc.priority >= 1); |
| 3606 | |
| 3607 | if (!sc.nr_reclaimed) |
| 3608 | pgdat->kswapd_failures++; |
| 3609 | |
| 3610 | out: |
| 3611 | snapshot_refaults(NULL, pgdat); |
| 3612 | __fs_reclaim_release(); |
| 3613 | /* |
| 3614 | * Return the order kswapd stopped reclaiming at as |
| 3615 | * prepare_kswapd_sleep() takes it into account. If another caller |
| 3616 | * entered the allocator slow path while kswapd was awake, order will |
| 3617 | * remain at the higher level. |
| 3618 | */ |
| 3619 | return sc.order; |
| 3620 | } |
| 3621 | |
| 3622 | /* |
| 3623 | * pgdat->kswapd_classzone_idx is the highest zone index that a recent |
| 3624 | * allocation request woke kswapd for. When kswapd has not woken recently, |
| 3625 | * the value is MAX_NR_ZONES which is not a valid index. This compares a |
| 3626 | * given classzone and returns it or the highest classzone index kswapd |
| 3627 | * was recently woke for. |
| 3628 | */ |
| 3629 | static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, |
| 3630 | enum zone_type classzone_idx) |
| 3631 | { |
| 3632 | if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) |
| 3633 | return classzone_idx; |
| 3634 | |
| 3635 | return max(pgdat->kswapd_classzone_idx, classzone_idx); |
| 3636 | } |
| 3637 | |
| 3638 | static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, |
| 3639 | unsigned int classzone_idx) |
| 3640 | { |
| 3641 | long remaining = 0; |
| 3642 | DEFINE_WAIT(wait); |
| 3643 | |
| 3644 | if (freezing(current) || kthread_should_stop()) |
| 3645 | return; |
| 3646 | |
| 3647 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); |
| 3648 | |
| 3649 | /* |
| 3650 | * Try to sleep for a short interval. Note that kcompactd will only be |
| 3651 | * woken if it is possible to sleep for a short interval. This is |
| 3652 | * deliberate on the assumption that if reclaim cannot keep an |
| 3653 | * eligible zone balanced that it's also unlikely that compaction will |
| 3654 | * succeed. |
| 3655 | */ |
| 3656 | if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { |
| 3657 | /* |
| 3658 | * Compaction records what page blocks it recently failed to |
| 3659 | * isolate pages from and skips them in the future scanning. |
| 3660 | * When kswapd is going to sleep, it is reasonable to assume |
| 3661 | * that pages and compaction may succeed so reset the cache. |
| 3662 | */ |
| 3663 | reset_isolation_suitable(pgdat); |
| 3664 | |
| 3665 | /* |
| 3666 | * We have freed the memory, now we should compact it to make |
| 3667 | * allocation of the requested order possible. |
| 3668 | */ |
| 3669 | wakeup_kcompactd(pgdat, alloc_order, classzone_idx); |
| 3670 | |
| 3671 | remaining = schedule_timeout(HZ/10); |
| 3672 | |
| 3673 | /* |
| 3674 | * If woken prematurely then reset kswapd_classzone_idx and |
| 3675 | * order. The values will either be from a wakeup request or |
| 3676 | * the previous request that slept prematurely. |
| 3677 | */ |
| 3678 | if (remaining) { |
| 3679 | pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); |
| 3680 | pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); |
| 3681 | } |
| 3682 | |
| 3683 | finish_wait(&pgdat->kswapd_wait, &wait); |
| 3684 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); |
| 3685 | } |
| 3686 | |
| 3687 | /* |
| 3688 | * After a short sleep, check if it was a premature sleep. If not, then |
| 3689 | * go fully to sleep until explicitly woken up. |
| 3690 | */ |
| 3691 | if (!remaining && |
| 3692 | prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { |
| 3693 | trace_mm_vmscan_kswapd_sleep(pgdat->node_id); |
| 3694 | |
| 3695 | /* |
| 3696 | * vmstat counters are not perfectly accurate and the estimated |
| 3697 | * value for counters such as NR_FREE_PAGES can deviate from the |
| 3698 | * true value by nr_online_cpus * threshold. To avoid the zone |
| 3699 | * watermarks being breached while under pressure, we reduce the |
| 3700 | * per-cpu vmstat threshold while kswapd is awake and restore |
| 3701 | * them before going back to sleep. |
| 3702 | */ |
| 3703 | set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); |
| 3704 | |
| 3705 | if (!kthread_should_stop()) |
| 3706 | schedule(); |
| 3707 | |
| 3708 | set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); |
| 3709 | } else { |
| 3710 | if (remaining) |
| 3711 | count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); |
| 3712 | else |
| 3713 | count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); |
| 3714 | } |
| 3715 | finish_wait(&pgdat->kswapd_wait, &wait); |
| 3716 | } |
| 3717 | |
| 3718 | /* |
| 3719 | * The background pageout daemon, started as a kernel thread |
| 3720 | * from the init process. |
| 3721 | * |
| 3722 | * This basically trickles out pages so that we have _some_ |
| 3723 | * free memory available even if there is no other activity |
| 3724 | * that frees anything up. This is needed for things like routing |
| 3725 | * etc, where we otherwise might have all activity going on in |
| 3726 | * asynchronous contexts that cannot page things out. |
| 3727 | * |
| 3728 | * If there are applications that are active memory-allocators |
| 3729 | * (most normal use), this basically shouldn't matter. |
| 3730 | */ |
| 3731 | static int kswapd(void *p) |
| 3732 | { |
| 3733 | unsigned int alloc_order, reclaim_order; |
| 3734 | unsigned int classzone_idx = MAX_NR_ZONES - 1; |
| 3735 | pg_data_t *pgdat = (pg_data_t*)p; |
| 3736 | struct task_struct *tsk = current; |
| 3737 | |
| 3738 | struct reclaim_state reclaim_state = { |
| 3739 | .reclaimed_slab = 0, |
| 3740 | }; |
| 3741 | const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); |
| 3742 | |
| 3743 | if (!cpumask_empty(cpumask)) |
| 3744 | set_cpus_allowed_ptr(tsk, cpumask); |
| 3745 | current->reclaim_state = &reclaim_state; |
| 3746 | |
| 3747 | /* |
| 3748 | * Tell the memory management that we're a "memory allocator", |
| 3749 | * and that if we need more memory we should get access to it |
| 3750 | * regardless (see "__alloc_pages()"). "kswapd" should |
| 3751 | * never get caught in the normal page freeing logic. |
| 3752 | * |
| 3753 | * (Kswapd normally doesn't need memory anyway, but sometimes |
| 3754 | * you need a small amount of memory in order to be able to |
| 3755 | * page out something else, and this flag essentially protects |
| 3756 | * us from recursively trying to free more memory as we're |
| 3757 | * trying to free the first piece of memory in the first place). |
| 3758 | */ |
| 3759 | tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; |
| 3760 | set_freezable(); |
| 3761 | |
| 3762 | pgdat->kswapd_order = 0; |
| 3763 | pgdat->kswapd_classzone_idx = MAX_NR_ZONES; |
| 3764 | for ( ; ; ) { |
| 3765 | bool ret; |
| 3766 | |
| 3767 | alloc_order = reclaim_order = pgdat->kswapd_order; |
| 3768 | classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); |
| 3769 | |
| 3770 | kswapd_try_sleep: |
| 3771 | kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, |
| 3772 | classzone_idx); |
| 3773 | |
| 3774 | /* Read the new order and classzone_idx */ |
| 3775 | alloc_order = reclaim_order = pgdat->kswapd_order; |
| 3776 | classzone_idx = kswapd_classzone_idx(pgdat, 0); |
| 3777 | pgdat->kswapd_order = 0; |
| 3778 | pgdat->kswapd_classzone_idx = MAX_NR_ZONES; |
| 3779 | |
| 3780 | ret = try_to_freeze(); |
| 3781 | if (kthread_should_stop()) |
| 3782 | break; |
| 3783 | |
| 3784 | /* |
| 3785 | * We can speed up thawing tasks if we don't call balance_pgdat |
| 3786 | * after returning from the refrigerator |
| 3787 | */ |
| 3788 | if (ret) |
| 3789 | continue; |
| 3790 | |
| 3791 | /* |
| 3792 | * Reclaim begins at the requested order but if a high-order |
| 3793 | * reclaim fails then kswapd falls back to reclaiming for |
| 3794 | * order-0. If that happens, kswapd will consider sleeping |
| 3795 | * for the order it finished reclaiming at (reclaim_order) |
| 3796 | * but kcompactd is woken to compact for the original |
| 3797 | * request (alloc_order). |
| 3798 | */ |
| 3799 | trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, |
| 3800 | alloc_order); |
| 3801 | reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); |
| 3802 | if (reclaim_order < alloc_order) |
| 3803 | goto kswapd_try_sleep; |
| 3804 | } |
| 3805 | |
| 3806 | tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); |
| 3807 | current->reclaim_state = NULL; |
| 3808 | |
| 3809 | return 0; |
| 3810 | } |
| 3811 | |
| 3812 | /* |
| 3813 | * A zone is low on free memory or too fragmented for high-order memory. If |
| 3814 | * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's |
| 3815 | * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim |
| 3816 | * has failed or is not needed, still wake up kcompactd if only compaction is |
| 3817 | * needed. |
| 3818 | */ |
| 3819 | void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, |
| 3820 | enum zone_type classzone_idx) |
| 3821 | { |
| 3822 | pg_data_t *pgdat; |
| 3823 | |
| 3824 | if (!managed_zone(zone)) |
| 3825 | return; |
| 3826 | |
| 3827 | if (!cpuset_zone_allowed(zone, gfp_flags)) |
| 3828 | return; |
| 3829 | pgdat = zone->zone_pgdat; |
| 3830 | pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, |
| 3831 | classzone_idx); |
| 3832 | pgdat->kswapd_order = max(pgdat->kswapd_order, order); |
| 3833 | if (!waitqueue_active(&pgdat->kswapd_wait)) |
| 3834 | return; |
| 3835 | |
| 3836 | /* Hopeless node, leave it to direct reclaim if possible */ |
| 3837 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || |
| 3838 | pgdat_balanced(pgdat, order, classzone_idx)) { |
| 3839 | /* |
| 3840 | * There may be plenty of free memory available, but it's too |
| 3841 | * fragmented for high-order allocations. Wake up kcompactd |
| 3842 | * and rely on compaction_suitable() to determine if it's |
| 3843 | * needed. If it fails, it will defer subsequent attempts to |
| 3844 | * ratelimit its work. |
| 3845 | */ |
| 3846 | if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) |
| 3847 | wakeup_kcompactd(pgdat, order, classzone_idx); |
| 3848 | return; |
| 3849 | } |
| 3850 | |
| 3851 | trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order, |
| 3852 | gfp_flags); |
| 3853 | wake_up_interruptible(&pgdat->kswapd_wait); |
| 3854 | } |
| 3855 | |
| 3856 | #ifdef CONFIG_HIBERNATION |
| 3857 | /* |
| 3858 | * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of |
| 3859 | * freed pages. |
| 3860 | * |
| 3861 | * Rather than trying to age LRUs the aim is to preserve the overall |
| 3862 | * LRU order by reclaiming preferentially |
| 3863 | * inactive > active > active referenced > active mapped |
| 3864 | */ |
| 3865 | unsigned long shrink_all_memory(unsigned long nr_to_reclaim) |
| 3866 | { |
| 3867 | struct reclaim_state reclaim_state; |
| 3868 | struct scan_control sc = { |
| 3869 | .nr_to_reclaim = nr_to_reclaim, |
| 3870 | .gfp_mask = GFP_HIGHUSER_MOVABLE, |
| 3871 | .reclaim_idx = MAX_NR_ZONES - 1, |
| 3872 | .priority = DEF_PRIORITY, |
| 3873 | .may_writepage = 1, |
| 3874 | .may_unmap = 1, |
| 3875 | .may_swap = 1, |
| 3876 | .hibernation_mode = 1, |
| 3877 | }; |
| 3878 | struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); |
| 3879 | struct task_struct *p = current; |
| 3880 | unsigned long nr_reclaimed; |
| 3881 | unsigned int noreclaim_flag; |
| 3882 | |
| 3883 | fs_reclaim_acquire(sc.gfp_mask); |
| 3884 | noreclaim_flag = memalloc_noreclaim_save(); |
| 3885 | reclaim_state.reclaimed_slab = 0; |
| 3886 | p->reclaim_state = &reclaim_state; |
| 3887 | |
| 3888 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); |
| 3889 | |
| 3890 | p->reclaim_state = NULL; |
| 3891 | memalloc_noreclaim_restore(noreclaim_flag); |
| 3892 | fs_reclaim_release(sc.gfp_mask); |
| 3893 | |
| 3894 | return nr_reclaimed; |
| 3895 | } |
| 3896 | #endif /* CONFIG_HIBERNATION */ |
| 3897 | |
| 3898 | /* It's optimal to keep kswapds on the same CPUs as their memory, but |
| 3899 | not required for correctness. So if the last cpu in a node goes |
| 3900 | away, we get changed to run anywhere: as the first one comes back, |
| 3901 | restore their cpu bindings. */ |
| 3902 | static int kswapd_cpu_online(unsigned int cpu) |
| 3903 | { |
| 3904 | int nid; |
| 3905 | |
| 3906 | for_each_node_state(nid, N_MEMORY) { |
| 3907 | pg_data_t *pgdat = NODE_DATA(nid); |
| 3908 | const struct cpumask *mask; |
| 3909 | |
| 3910 | mask = cpumask_of_node(pgdat->node_id); |
| 3911 | |
| 3912 | if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) |
| 3913 | /* One of our CPUs online: restore mask */ |
| 3914 | set_cpus_allowed_ptr(pgdat->kswapd, mask); |
| 3915 | } |
| 3916 | return 0; |
| 3917 | } |
| 3918 | |
| 3919 | /* |
| 3920 | * This kswapd start function will be called by init and node-hot-add. |
| 3921 | * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. |
| 3922 | */ |
| 3923 | int kswapd_run(int nid) |
| 3924 | { |
| 3925 | pg_data_t *pgdat = NODE_DATA(nid); |
| 3926 | int ret = 0; |
| 3927 | |
| 3928 | if (pgdat->kswapd) |
| 3929 | return 0; |
| 3930 | |
| 3931 | pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); |
| 3932 | if (IS_ERR(pgdat->kswapd)) { |
| 3933 | /* failure at boot is fatal */ |
| 3934 | BUG_ON(system_state < SYSTEM_RUNNING); |
| 3935 | pr_err("Failed to start kswapd on node %d\n", nid); |
| 3936 | ret = PTR_ERR(pgdat->kswapd); |
| 3937 | pgdat->kswapd = NULL; |
| 3938 | } |
| 3939 | return ret; |
| 3940 | } |
| 3941 | |
| 3942 | /* |
| 3943 | * Called by memory hotplug when all memory in a node is offlined. Caller must |
| 3944 | * hold mem_hotplug_begin/end(). |
| 3945 | */ |
| 3946 | void kswapd_stop(int nid) |
| 3947 | { |
| 3948 | struct task_struct *kswapd = NODE_DATA(nid)->kswapd; |
| 3949 | |
| 3950 | if (kswapd) { |
| 3951 | kthread_stop(kswapd); |
| 3952 | NODE_DATA(nid)->kswapd = NULL; |
| 3953 | } |
| 3954 | } |
| 3955 | |
| 3956 | static int __init kswapd_init(void) |
| 3957 | { |
| 3958 | int nid, ret; |
| 3959 | |
| 3960 | swap_setup(); |
| 3961 | for_each_node_state(nid, N_MEMORY) |
| 3962 | kswapd_run(nid); |
| 3963 | ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, |
| 3964 | "mm/vmscan:online", kswapd_cpu_online, |
| 3965 | NULL); |
| 3966 | WARN_ON(ret < 0); |
| 3967 | return 0; |
| 3968 | } |
| 3969 | |
| 3970 | module_init(kswapd_init) |
| 3971 | |
| 3972 | #ifdef CONFIG_NUMA |
| 3973 | /* |
| 3974 | * Node reclaim mode |
| 3975 | * |
| 3976 | * If non-zero call node_reclaim when the number of free pages falls below |
| 3977 | * the watermarks. |
| 3978 | */ |
| 3979 | int node_reclaim_mode __read_mostly; |
| 3980 | |
| 3981 | #define RECLAIM_OFF 0 |
| 3982 | #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ |
| 3983 | #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ |
| 3984 | #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ |
| 3985 | |
| 3986 | /* |
| 3987 | * Priority for NODE_RECLAIM. This determines the fraction of pages |
| 3988 | * of a node considered for each zone_reclaim. 4 scans 1/16th of |
| 3989 | * a zone. |
| 3990 | */ |
| 3991 | #define NODE_RECLAIM_PRIORITY 4 |
| 3992 | |
| 3993 | /* |
| 3994 | * Percentage of pages in a zone that must be unmapped for node_reclaim to |
| 3995 | * occur. |
| 3996 | */ |
| 3997 | int sysctl_min_unmapped_ratio = 1; |
| 3998 | |
| 3999 | /* |
| 4000 | * If the number of slab pages in a zone grows beyond this percentage then |
| 4001 | * slab reclaim needs to occur. |
| 4002 | */ |
| 4003 | int sysctl_min_slab_ratio = 5; |
| 4004 | |
| 4005 | static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) |
| 4006 | { |
| 4007 | unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); |
| 4008 | unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + |
| 4009 | node_page_state(pgdat, NR_ACTIVE_FILE); |
| 4010 | |
| 4011 | /* |
| 4012 | * It's possible for there to be more file mapped pages than |
| 4013 | * accounted for by the pages on the file LRU lists because |
| 4014 | * tmpfs pages accounted for as ANON can also be FILE_MAPPED |
| 4015 | */ |
| 4016 | return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; |
| 4017 | } |
| 4018 | |
| 4019 | /* Work out how many page cache pages we can reclaim in this reclaim_mode */ |
| 4020 | static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) |
| 4021 | { |
| 4022 | unsigned long nr_pagecache_reclaimable; |
| 4023 | unsigned long delta = 0; |
| 4024 | |
| 4025 | /* |
| 4026 | * If RECLAIM_UNMAP is set, then all file pages are considered |
| 4027 | * potentially reclaimable. Otherwise, we have to worry about |
| 4028 | * pages like swapcache and node_unmapped_file_pages() provides |
| 4029 | * a better estimate |
| 4030 | */ |
| 4031 | if (node_reclaim_mode & RECLAIM_UNMAP) |
| 4032 | nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); |
| 4033 | else |
| 4034 | nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); |
| 4035 | |
| 4036 | /* If we can't clean pages, remove dirty pages from consideration */ |
| 4037 | if (!(node_reclaim_mode & RECLAIM_WRITE)) |
| 4038 | delta += node_page_state(pgdat, NR_FILE_DIRTY); |
| 4039 | |
| 4040 | /* Watch for any possible underflows due to delta */ |
| 4041 | if (unlikely(delta > nr_pagecache_reclaimable)) |
| 4042 | delta = nr_pagecache_reclaimable; |
| 4043 | |
| 4044 | return nr_pagecache_reclaimable - delta; |
| 4045 | } |
| 4046 | |
| 4047 | /* |
| 4048 | * Try to free up some pages from this node through reclaim. |
| 4049 | */ |
| 4050 | static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) |
| 4051 | { |
| 4052 | /* Minimum pages needed in order to stay on node */ |
| 4053 | const unsigned long nr_pages = 1 << order; |
| 4054 | struct task_struct *p = current; |
| 4055 | struct reclaim_state reclaim_state; |
| 4056 | unsigned int noreclaim_flag; |
| 4057 | struct scan_control sc = { |
| 4058 | .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), |
| 4059 | .gfp_mask = current_gfp_context(gfp_mask), |
| 4060 | .order = order, |
| 4061 | .priority = NODE_RECLAIM_PRIORITY, |
| 4062 | .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), |
| 4063 | .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), |
| 4064 | .may_swap = 1, |
| 4065 | .reclaim_idx = gfp_zone(gfp_mask), |
| 4066 | }; |
| 4067 | |
| 4068 | cond_resched(); |
| 4069 | fs_reclaim_acquire(sc.gfp_mask); |
| 4070 | /* |
| 4071 | * We need to be able to allocate from the reserves for RECLAIM_UNMAP |
| 4072 | * and we also need to be able to write out pages for RECLAIM_WRITE |
| 4073 | * and RECLAIM_UNMAP. |
| 4074 | */ |
| 4075 | noreclaim_flag = memalloc_noreclaim_save(); |
| 4076 | p->flags |= PF_SWAPWRITE; |
| 4077 | reclaim_state.reclaimed_slab = 0; |
| 4078 | p->reclaim_state = &reclaim_state; |
| 4079 | |
| 4080 | if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { |
| 4081 | /* |
| 4082 | * Free memory by calling shrink node with increasing |
| 4083 | * priorities until we have enough memory freed. |
| 4084 | */ |
| 4085 | do { |
| 4086 | shrink_node(pgdat, &sc); |
| 4087 | } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); |
| 4088 | } |
| 4089 | |
| 4090 | p->reclaim_state = NULL; |
| 4091 | current->flags &= ~PF_SWAPWRITE; |
| 4092 | memalloc_noreclaim_restore(noreclaim_flag); |
| 4093 | fs_reclaim_release(sc.gfp_mask); |
| 4094 | return sc.nr_reclaimed >= nr_pages; |
| 4095 | } |
| 4096 | |
| 4097 | int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) |
| 4098 | { |
| 4099 | int ret; |
| 4100 | |
| 4101 | /* |
| 4102 | * Node reclaim reclaims unmapped file backed pages and |
| 4103 | * slab pages if we are over the defined limits. |
| 4104 | * |
| 4105 | * A small portion of unmapped file backed pages is needed for |
| 4106 | * file I/O otherwise pages read by file I/O will be immediately |
| 4107 | * thrown out if the node is overallocated. So we do not reclaim |
| 4108 | * if less than a specified percentage of the node is used by |
| 4109 | * unmapped file backed pages. |
| 4110 | */ |
| 4111 | if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && |
| 4112 | node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) |
| 4113 | return NODE_RECLAIM_FULL; |
| 4114 | |
| 4115 | /* |
| 4116 | * Do not scan if the allocation should not be delayed. |
| 4117 | */ |
| 4118 | if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) |
| 4119 | return NODE_RECLAIM_NOSCAN; |
| 4120 | |
| 4121 | /* |
| 4122 | * Only run node reclaim on the local node or on nodes that do not |
| 4123 | * have associated processors. This will favor the local processor |
| 4124 | * over remote processors and spread off node memory allocations |
| 4125 | * as wide as possible. |
| 4126 | */ |
| 4127 | if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) |
| 4128 | return NODE_RECLAIM_NOSCAN; |
| 4129 | |
| 4130 | if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) |
| 4131 | return NODE_RECLAIM_NOSCAN; |
| 4132 | |
| 4133 | ret = __node_reclaim(pgdat, gfp_mask, order); |
| 4134 | clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); |
| 4135 | |
| 4136 | if (!ret) |
| 4137 | count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); |
| 4138 | |
| 4139 | return ret; |
| 4140 | } |
| 4141 | #endif |
| 4142 | |
| 4143 | /* |
| 4144 | * page_evictable - test whether a page is evictable |
| 4145 | * @page: the page to test |
| 4146 | * |
| 4147 | * Test whether page is evictable--i.e., should be placed on active/inactive |
| 4148 | * lists vs unevictable list. |
| 4149 | * |
| 4150 | * Reasons page might not be evictable: |
| 4151 | * (1) page's mapping marked unevictable |
| 4152 | * (2) page is part of an mlocked VMA |
| 4153 | * |
| 4154 | */ |
| 4155 | int page_evictable(struct page *page) |
| 4156 | { |
| 4157 | int ret; |
| 4158 | |
| 4159 | /* Prevent address_space of inode and swap cache from being freed */ |
| 4160 | rcu_read_lock(); |
| 4161 | ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); |
| 4162 | rcu_read_unlock(); |
| 4163 | return ret; |
| 4164 | } |
| 4165 | |
| 4166 | #ifdef CONFIG_SHMEM |
| 4167 | /** |
| 4168 | * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list |
| 4169 | * @pages: array of pages to check |
| 4170 | * @nr_pages: number of pages to check |
| 4171 | * |
| 4172 | * Checks pages for evictability and moves them to the appropriate lru list. |
| 4173 | * |
| 4174 | * This function is only used for SysV IPC SHM_UNLOCK. |
| 4175 | */ |
| 4176 | void check_move_unevictable_pages(struct page **pages, int nr_pages) |
| 4177 | { |
| 4178 | struct lruvec *lruvec; |
| 4179 | struct pglist_data *pgdat = NULL; |
| 4180 | int pgscanned = 0; |
| 4181 | int pgrescued = 0; |
| 4182 | int i; |
| 4183 | |
| 4184 | for (i = 0; i < nr_pages; i++) { |
| 4185 | struct page *page = pages[i]; |
| 4186 | struct pglist_data *pagepgdat = page_pgdat(page); |
| 4187 | |
| 4188 | pgscanned++; |
| 4189 | if (pagepgdat != pgdat) { |
| 4190 | if (pgdat) |
| 4191 | spin_unlock_irq(&pgdat->lru_lock); |
| 4192 | pgdat = pagepgdat; |
| 4193 | spin_lock_irq(&pgdat->lru_lock); |
| 4194 | } |
| 4195 | lruvec = mem_cgroup_page_lruvec(page, pgdat); |
| 4196 | |
| 4197 | if (!PageLRU(page) || !PageUnevictable(page)) |
| 4198 | continue; |
| 4199 | |
| 4200 | if (page_evictable(page)) { |
| 4201 | enum lru_list lru = page_lru_base_type(page); |
| 4202 | |
| 4203 | VM_BUG_ON_PAGE(PageActive(page), page); |
| 4204 | ClearPageUnevictable(page); |
| 4205 | del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); |
| 4206 | add_page_to_lru_list(page, lruvec, lru); |
| 4207 | pgrescued++; |
| 4208 | } |
| 4209 | } |
| 4210 | |
| 4211 | if (pgdat) { |
| 4212 | __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); |
| 4213 | __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); |
| 4214 | spin_unlock_irq(&pgdat->lru_lock); |
| 4215 | } |
| 4216 | } |
| 4217 | #endif /* CONFIG_SHMEM */ |