Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Generic entry points for the idle threads and |
| 3 | * implementation of the idle task scheduling class. |
| 4 | * |
| 5 | * (NOTE: these are not related to SCHED_IDLE batch scheduled |
| 6 | * tasks which are handled in sched/fair.c ) |
| 7 | */ |
| 8 | #include "sched.h" |
| 9 | |
| 10 | #include <trace/events/power.h> |
| 11 | |
| 12 | /* Linker adds these: start and end of __cpuidle functions */ |
| 13 | extern char __cpuidle_text_start[], __cpuidle_text_end[]; |
| 14 | |
| 15 | /** |
| 16 | * sched_idle_set_state - Record idle state for the current CPU. |
| 17 | * @idle_state: State to record. |
| 18 | */ |
| 19 | void sched_idle_set_state(struct cpuidle_state *idle_state) |
| 20 | { |
| 21 | idle_set_state(this_rq(), idle_state); |
| 22 | } |
| 23 | |
| 24 | static int __read_mostly cpu_idle_force_poll; |
| 25 | |
| 26 | void cpu_idle_poll_ctrl(bool enable) |
| 27 | { |
| 28 | if (enable) { |
| 29 | cpu_idle_force_poll++; |
| 30 | } else { |
| 31 | cpu_idle_force_poll--; |
| 32 | WARN_ON_ONCE(cpu_idle_force_poll < 0); |
| 33 | } |
| 34 | } |
| 35 | |
| 36 | #ifdef CONFIG_GENERIC_IDLE_POLL_SETUP |
| 37 | static int __init cpu_idle_poll_setup(char *__unused) |
| 38 | { |
| 39 | cpu_idle_force_poll = 1; |
| 40 | |
| 41 | return 1; |
| 42 | } |
| 43 | __setup("nohlt", cpu_idle_poll_setup); |
| 44 | |
| 45 | static int __init cpu_idle_nopoll_setup(char *__unused) |
| 46 | { |
| 47 | cpu_idle_force_poll = 0; |
| 48 | |
| 49 | return 1; |
| 50 | } |
| 51 | __setup("hlt", cpu_idle_nopoll_setup); |
| 52 | #endif |
| 53 | |
| 54 | static noinline int __cpuidle cpu_idle_poll(void) |
| 55 | { |
| 56 | rcu_idle_enter(); |
| 57 | trace_cpu_idle_rcuidle(0, smp_processor_id()); |
| 58 | local_irq_enable(); |
| 59 | stop_critical_timings(); |
| 60 | |
| 61 | while (!tif_need_resched() && |
| 62 | (cpu_idle_force_poll || tick_check_broadcast_expired())) |
| 63 | cpu_relax(); |
| 64 | start_critical_timings(); |
| 65 | trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); |
| 66 | rcu_idle_exit(); |
| 67 | |
| 68 | return 1; |
| 69 | } |
| 70 | |
| 71 | /* Weak implementations for optional arch specific functions */ |
| 72 | void __weak arch_cpu_idle_prepare(void) { } |
| 73 | void __weak arch_cpu_idle_enter(void) { } |
| 74 | void __weak arch_cpu_idle_exit(void) { } |
| 75 | void __weak arch_cpu_idle_dead(void) { } |
| 76 | void __weak arch_cpu_idle(void) |
| 77 | { |
| 78 | cpu_idle_force_poll = 1; |
| 79 | local_irq_enable(); |
| 80 | } |
| 81 | |
| 82 | /** |
| 83 | * default_idle_call - Default CPU idle routine. |
| 84 | * |
| 85 | * To use when the cpuidle framework cannot be used. |
| 86 | */ |
| 87 | void __cpuidle default_idle_call(void) |
| 88 | { |
| 89 | if (current_clr_polling_and_test()) { |
| 90 | local_irq_enable(); |
| 91 | } else { |
| 92 | stop_critical_timings(); |
| 93 | arch_cpu_idle(); |
| 94 | start_critical_timings(); |
| 95 | } |
| 96 | } |
| 97 | |
| 98 | static int call_cpuidle(struct cpuidle_driver *drv, struct cpuidle_device *dev, |
| 99 | int next_state) |
| 100 | { |
| 101 | /* |
| 102 | * The idle task must be scheduled, it is pointless to go to idle, just |
| 103 | * update no idle residency and return. |
| 104 | */ |
| 105 | if (current_clr_polling_and_test()) { |
| 106 | dev->last_residency = 0; |
| 107 | local_irq_enable(); |
| 108 | return -EBUSY; |
| 109 | } |
| 110 | |
| 111 | /* |
| 112 | * Enter the idle state previously returned by the governor decision. |
| 113 | * This function will block until an interrupt occurs and will take |
| 114 | * care of re-enabling the local interrupts |
| 115 | */ |
| 116 | return cpuidle_enter(drv, dev, next_state); |
| 117 | } |
| 118 | |
| 119 | /** |
| 120 | * cpuidle_idle_call - the main idle function |
| 121 | * |
| 122 | * NOTE: no locks or semaphores should be used here |
| 123 | * |
| 124 | * On archs that support TIF_POLLING_NRFLAG, is called with polling |
| 125 | * set, and it returns with polling set. If it ever stops polling, it |
| 126 | * must clear the polling bit. |
| 127 | */ |
| 128 | static void cpuidle_idle_call(void) |
| 129 | { |
| 130 | struct cpuidle_device *dev = cpuidle_get_device(); |
| 131 | struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev); |
| 132 | int next_state, entered_state; |
| 133 | |
| 134 | /* |
| 135 | * Check if the idle task must be rescheduled. If it is the |
| 136 | * case, exit the function after re-enabling the local irq. |
| 137 | */ |
| 138 | if (need_resched()) { |
| 139 | local_irq_enable(); |
| 140 | return; |
| 141 | } |
| 142 | |
| 143 | /* |
| 144 | * The RCU framework needs to be told that we are entering an idle |
| 145 | * section, so no more rcu read side critical sections and one more |
| 146 | * step to the grace period |
| 147 | */ |
| 148 | |
| 149 | if (cpuidle_not_available(drv, dev)) { |
| 150 | tick_nohz_idle_stop_tick(); |
| 151 | rcu_idle_enter(); |
| 152 | |
| 153 | default_idle_call(); |
| 154 | goto exit_idle; |
| 155 | } |
| 156 | |
| 157 | /* |
| 158 | * Suspend-to-idle ("s2idle") is a system state in which all user space |
| 159 | * has been frozen, all I/O devices have been suspended and the only |
| 160 | * activity happens here and in iterrupts (if any). In that case bypass |
| 161 | * the cpuidle governor and go stratight for the deepest idle state |
| 162 | * available. Possibly also suspend the local tick and the entire |
| 163 | * timekeeping to prevent timer interrupts from kicking us out of idle |
| 164 | * until a proper wakeup interrupt happens. |
| 165 | */ |
| 166 | |
| 167 | if (idle_should_enter_s2idle() || dev->use_deepest_state) { |
| 168 | if (idle_should_enter_s2idle()) { |
| 169 | rcu_idle_enter(); |
| 170 | |
| 171 | entered_state = cpuidle_enter_s2idle(drv, dev); |
| 172 | if (entered_state > 0) { |
| 173 | local_irq_enable(); |
| 174 | goto exit_idle; |
| 175 | } |
| 176 | |
| 177 | rcu_idle_exit(); |
| 178 | } |
| 179 | |
| 180 | tick_nohz_idle_stop_tick(); |
| 181 | rcu_idle_enter(); |
| 182 | |
| 183 | next_state = cpuidle_find_deepest_state(drv, dev); |
| 184 | call_cpuidle(drv, dev, next_state); |
| 185 | } else { |
| 186 | bool stop_tick = true; |
| 187 | |
| 188 | /* |
| 189 | * Ask the cpuidle framework to choose a convenient idle state. |
| 190 | */ |
| 191 | next_state = cpuidle_select(drv, dev, &stop_tick); |
| 192 | |
| 193 | if (stop_tick || tick_nohz_tick_stopped()) |
| 194 | tick_nohz_idle_stop_tick(); |
| 195 | else |
| 196 | tick_nohz_idle_retain_tick(); |
| 197 | |
| 198 | rcu_idle_enter(); |
| 199 | |
| 200 | entered_state = call_cpuidle(drv, dev, next_state); |
| 201 | /* |
| 202 | * Give the governor an opportunity to reflect on the outcome |
| 203 | */ |
| 204 | cpuidle_reflect(dev, entered_state); |
| 205 | } |
| 206 | |
| 207 | exit_idle: |
| 208 | __current_set_polling(); |
| 209 | |
| 210 | /* |
| 211 | * It is up to the idle functions to reenable local interrupts |
| 212 | */ |
| 213 | if (WARN_ON_ONCE(irqs_disabled())) |
| 214 | local_irq_enable(); |
| 215 | |
| 216 | rcu_idle_exit(); |
| 217 | } |
| 218 | |
| 219 | /* |
| 220 | * Generic idle loop implementation |
| 221 | * |
| 222 | * Called with polling cleared. |
| 223 | */ |
| 224 | static void do_idle(void) |
| 225 | { |
| 226 | int cpu = smp_processor_id(); |
| 227 | /* |
| 228 | * If the arch has a polling bit, we maintain an invariant: |
| 229 | * |
| 230 | * Our polling bit is clear if we're not scheduled (i.e. if rq->curr != |
| 231 | * rq->idle). This means that, if rq->idle has the polling bit set, |
| 232 | * then setting need_resched is guaranteed to cause the CPU to |
| 233 | * reschedule. |
| 234 | */ |
| 235 | |
| 236 | __current_set_polling(); |
| 237 | tick_nohz_idle_enter(); |
| 238 | |
| 239 | while (!need_resched()) { |
| 240 | check_pgt_cache(); |
| 241 | rmb(); |
| 242 | |
| 243 | if (cpu_is_offline(cpu)) { |
| 244 | tick_nohz_idle_stop_tick_protected(); |
| 245 | cpuhp_report_idle_dead(); |
| 246 | arch_cpu_idle_dead(); |
| 247 | } |
| 248 | |
| 249 | local_irq_disable(); |
| 250 | arch_cpu_idle_enter(); |
| 251 | |
| 252 | /* |
| 253 | * In poll mode we reenable interrupts and spin. Also if we |
| 254 | * detected in the wakeup from idle path that the tick |
| 255 | * broadcast device expired for us, we don't want to go deep |
| 256 | * idle as we know that the IPI is going to arrive right away. |
| 257 | */ |
| 258 | if (cpu_idle_force_poll || tick_check_broadcast_expired()) { |
| 259 | tick_nohz_idle_restart_tick(); |
| 260 | cpu_idle_poll(); |
| 261 | } else { |
| 262 | cpuidle_idle_call(); |
| 263 | } |
| 264 | arch_cpu_idle_exit(); |
| 265 | } |
| 266 | |
| 267 | /* |
| 268 | * Since we fell out of the loop above, we know TIF_NEED_RESCHED must |
| 269 | * be set, propagate it into PREEMPT_NEED_RESCHED. |
| 270 | * |
| 271 | * This is required because for polling idle loops we will not have had |
| 272 | * an IPI to fold the state for us. |
| 273 | */ |
| 274 | preempt_set_need_resched(); |
| 275 | tick_nohz_idle_exit(); |
| 276 | __current_clr_polling(); |
| 277 | |
| 278 | /* |
| 279 | * We promise to call sched_ttwu_pending() and reschedule if |
| 280 | * need_resched() is set while polling is set. That means that clearing |
| 281 | * polling needs to be visible before doing these things. |
| 282 | */ |
| 283 | smp_mb__after_atomic(); |
| 284 | |
| 285 | sched_ttwu_pending(); |
| 286 | schedule_idle(); |
| 287 | |
| 288 | if (unlikely(klp_patch_pending(current))) |
| 289 | klp_update_patch_state(current); |
| 290 | } |
| 291 | |
| 292 | bool cpu_in_idle(unsigned long pc) |
| 293 | { |
| 294 | return pc >= (unsigned long)__cpuidle_text_start && |
| 295 | pc < (unsigned long)__cpuidle_text_end; |
| 296 | } |
| 297 | |
| 298 | struct idle_timer { |
| 299 | struct hrtimer timer; |
| 300 | int done; |
| 301 | }; |
| 302 | |
| 303 | static enum hrtimer_restart idle_inject_timer_fn(struct hrtimer *timer) |
| 304 | { |
| 305 | struct idle_timer *it = container_of(timer, struct idle_timer, timer); |
| 306 | |
| 307 | WRITE_ONCE(it->done, 1); |
| 308 | set_tsk_need_resched(current); |
| 309 | |
| 310 | return HRTIMER_NORESTART; |
| 311 | } |
| 312 | |
| 313 | void play_idle(unsigned long duration_ms) |
| 314 | { |
| 315 | struct idle_timer it; |
| 316 | |
| 317 | /* |
| 318 | * Only FIFO tasks can disable the tick since they don't need the forced |
| 319 | * preemption. |
| 320 | */ |
| 321 | WARN_ON_ONCE(current->policy != SCHED_FIFO); |
| 322 | WARN_ON_ONCE(current->nr_cpus_allowed != 1); |
| 323 | WARN_ON_ONCE(!(current->flags & PF_KTHREAD)); |
| 324 | WARN_ON_ONCE(!(current->flags & PF_NO_SETAFFINITY)); |
| 325 | WARN_ON_ONCE(!duration_ms); |
| 326 | |
| 327 | rcu_sleep_check(); |
| 328 | preempt_disable(); |
| 329 | current->flags |= PF_IDLE; |
| 330 | cpuidle_use_deepest_state(true); |
| 331 | |
| 332 | it.done = 0; |
| 333 | hrtimer_init_on_stack(&it.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| 334 | it.timer.function = idle_inject_timer_fn; |
| 335 | hrtimer_start(&it.timer, ms_to_ktime(duration_ms), HRTIMER_MODE_REL_PINNED); |
| 336 | |
| 337 | while (!READ_ONCE(it.done)) |
| 338 | do_idle(); |
| 339 | |
| 340 | cpuidle_use_deepest_state(false); |
| 341 | current->flags &= ~PF_IDLE; |
| 342 | |
| 343 | preempt_fold_need_resched(); |
| 344 | preempt_enable(); |
| 345 | } |
| 346 | EXPORT_SYMBOL_GPL(play_idle); |
| 347 | |
| 348 | void cpu_startup_entry(enum cpuhp_state state) |
| 349 | { |
| 350 | /* |
| 351 | * This #ifdef needs to die, but it's too late in the cycle to |
| 352 | * make this generic (ARM and SH have never invoked the canary |
| 353 | * init for the non boot CPUs!). Will be fixed in 3.11 |
| 354 | */ |
| 355 | #ifdef CONFIG_X86 |
| 356 | /* |
| 357 | * If we're the non-boot CPU, nothing set the stack canary up |
| 358 | * for us. The boot CPU already has it initialized but no harm |
| 359 | * in doing it again. This is a good place for updating it, as |
| 360 | * we wont ever return from this function (so the invalid |
| 361 | * canaries already on the stack wont ever trigger). |
| 362 | */ |
| 363 | boot_init_stack_canary(); |
| 364 | #endif |
| 365 | arch_cpu_idle_prepare(); |
| 366 | cpuhp_online_idle(state); |
| 367 | while (1) |
| 368 | do_idle(); |
| 369 | } |
| 370 | |
| 371 | /* |
| 372 | * idle-task scheduling class. |
| 373 | */ |
| 374 | |
| 375 | #ifdef CONFIG_SMP |
| 376 | static int |
| 377 | select_task_rq_idle(struct task_struct *p, int cpu, int sd_flag, int flags) |
| 378 | { |
| 379 | return task_cpu(p); /* IDLE tasks as never migrated */ |
| 380 | } |
| 381 | #endif |
| 382 | |
| 383 | /* |
| 384 | * Idle tasks are unconditionally rescheduled: |
| 385 | */ |
| 386 | static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int flags) |
| 387 | { |
| 388 | resched_curr(rq); |
| 389 | } |
| 390 | |
| 391 | static struct task_struct * |
| 392 | pick_next_task_idle(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) |
| 393 | { |
| 394 | put_prev_task(rq, prev); |
| 395 | update_idle_core(rq); |
| 396 | schedstat_inc(rq->sched_goidle); |
| 397 | |
| 398 | return rq->idle; |
| 399 | } |
| 400 | |
| 401 | /* |
| 402 | * It is not legal to sleep in the idle task - print a warning |
| 403 | * message if some code attempts to do it: |
| 404 | */ |
| 405 | static void |
| 406 | dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags) |
| 407 | { |
| 408 | raw_spin_unlock_irq(&rq->lock); |
| 409 | printk(KERN_ERR "bad: scheduling from the idle thread!\n"); |
| 410 | dump_stack(); |
| 411 | raw_spin_lock_irq(&rq->lock); |
| 412 | } |
| 413 | |
| 414 | static void put_prev_task_idle(struct rq *rq, struct task_struct *prev) |
| 415 | { |
| 416 | } |
| 417 | |
| 418 | /* |
| 419 | * scheduler tick hitting a task of our scheduling class. |
| 420 | * |
| 421 | * NOTE: This function can be called remotely by the tick offload that |
| 422 | * goes along full dynticks. Therefore no local assumption can be made |
| 423 | * and everything must be accessed through the @rq and @curr passed in |
| 424 | * parameters. |
| 425 | */ |
| 426 | static void task_tick_idle(struct rq *rq, struct task_struct *curr, int queued) |
| 427 | { |
| 428 | } |
| 429 | |
| 430 | static void set_curr_task_idle(struct rq *rq) |
| 431 | { |
| 432 | } |
| 433 | |
| 434 | static void switched_to_idle(struct rq *rq, struct task_struct *p) |
| 435 | { |
| 436 | BUG(); |
| 437 | } |
| 438 | |
| 439 | static void |
| 440 | prio_changed_idle(struct rq *rq, struct task_struct *p, int oldprio) |
| 441 | { |
| 442 | BUG(); |
| 443 | } |
| 444 | |
| 445 | static unsigned int get_rr_interval_idle(struct rq *rq, struct task_struct *task) |
| 446 | { |
| 447 | return 0; |
| 448 | } |
| 449 | |
| 450 | static void update_curr_idle(struct rq *rq) |
| 451 | { |
| 452 | } |
| 453 | |
| 454 | /* |
| 455 | * Simple, special scheduling class for the per-CPU idle tasks: |
| 456 | */ |
| 457 | const struct sched_class idle_sched_class = { |
| 458 | /* .next is NULL */ |
| 459 | /* no enqueue/yield_task for idle tasks */ |
| 460 | |
| 461 | /* dequeue is not valid, we print a debug message there: */ |
| 462 | .dequeue_task = dequeue_task_idle, |
| 463 | |
| 464 | .check_preempt_curr = check_preempt_curr_idle, |
| 465 | |
| 466 | .pick_next_task = pick_next_task_idle, |
| 467 | .put_prev_task = put_prev_task_idle, |
| 468 | |
| 469 | #ifdef CONFIG_SMP |
| 470 | .select_task_rq = select_task_rq_idle, |
| 471 | .set_cpus_allowed = set_cpus_allowed_common, |
| 472 | #endif |
| 473 | |
| 474 | .set_curr_task = set_curr_task_idle, |
| 475 | .task_tick = task_tick_idle, |
| 476 | |
| 477 | .get_rr_interval = get_rr_interval_idle, |
| 478 | |
| 479 | .prio_changed = prio_changed_idle, |
| 480 | .switched_to = switched_to_idle, |
| 481 | .update_curr = update_curr_idle, |
| 482 | }; |