blob: 1699ff68c412f60ea55cd4f0929a3cfae7523516 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6#include <linux/proc_fs.h>
7#include <linux/smp.h>
8#include <linux/init.h>
9#include <linux/notifier.h>
10#include <linux/sched/signal.h>
11#include <linux/sched/hotplug.h>
12#include <linux/sched/task.h>
13#include <linux/sched/smt.h>
14#include <linux/unistd.h>
15#include <linux/cpu.h>
16#include <linux/oom.h>
17#include <linux/rcupdate.h>
18#include <linux/export.h>
19#include <linux/bug.h>
20#include <linux/kthread.h>
21#include <linux/stop_machine.h>
22#include <linux/mutex.h>
23#include <linux/gfp.h>
24#include <linux/suspend.h>
25#include <linux/lockdep.h>
26#include <linux/tick.h>
27#include <linux/irq.h>
28#include <linux/nmi.h>
29#include <linux/smpboot.h>
30#include <linux/relay.h>
31#include <linux/slab.h>
32#include <linux/percpu-rwsem.h>
33
34#include <trace/events/power.h>
35#define CREATE_TRACE_POINTS
36#include <trace/events/cpuhp.h>
37
38#include "smpboot.h"
39
40/**
41 * cpuhp_cpu_state - Per cpu hotplug state storage
42 * @state: The current cpu state
43 * @target: The target state
44 * @thread: Pointer to the hotplug thread
45 * @should_run: Thread should execute
46 * @rollback: Perform a rollback
47 * @single: Single callback invocation
48 * @bringup: Single callback bringup or teardown selector
49 * @cb_state: The state for a single callback (install/uninstall)
50 * @result: Result of the operation
51 * @done_up: Signal completion to the issuer of the task for cpu-up
52 * @done_down: Signal completion to the issuer of the task for cpu-down
53 */
54struct cpuhp_cpu_state {
55 enum cpuhp_state state;
56 enum cpuhp_state target;
57 enum cpuhp_state fail;
58#ifdef CONFIG_SMP
59 struct task_struct *thread;
60 bool should_run;
61 bool rollback;
62 bool single;
63 bool bringup;
64 bool booted_once;
65 struct hlist_node *node;
66 struct hlist_node *last;
67 enum cpuhp_state cb_state;
68 int result;
69 struct completion done_up;
70 struct completion done_down;
71#endif
72};
73
74static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
75 .fail = CPUHP_INVALID,
76};
77
78#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
79static struct lockdep_map cpuhp_state_up_map =
80 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
81static struct lockdep_map cpuhp_state_down_map =
82 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
83
84
85static inline void cpuhp_lock_acquire(bool bringup)
86{
87 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
88}
89
90static inline void cpuhp_lock_release(bool bringup)
91{
92 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
93}
94#else
95
96static inline void cpuhp_lock_acquire(bool bringup) { }
97static inline void cpuhp_lock_release(bool bringup) { }
98
99#endif
100
101/**
102 * cpuhp_step - Hotplug state machine step
103 * @name: Name of the step
104 * @startup: Startup function of the step
105 * @teardown: Teardown function of the step
106 * @cant_stop: Bringup/teardown can't be stopped at this step
107 */
108struct cpuhp_step {
109 const char *name;
110 union {
111 int (*single)(unsigned int cpu);
112 int (*multi)(unsigned int cpu,
113 struct hlist_node *node);
114 } startup;
115 union {
116 int (*single)(unsigned int cpu);
117 int (*multi)(unsigned int cpu,
118 struct hlist_node *node);
119 } teardown;
120 struct hlist_head list;
121 bool cant_stop;
122 bool multi_instance;
123};
124
125static DEFINE_MUTEX(cpuhp_state_mutex);
126static struct cpuhp_step cpuhp_hp_states[];
127
128static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
129{
130 return cpuhp_hp_states + state;
131}
132
133/**
134 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
135 * @cpu: The cpu for which the callback should be invoked
136 * @state: The state to do callbacks for
137 * @bringup: True if the bringup callback should be invoked
138 * @node: For multi-instance, do a single entry callback for install/remove
139 * @lastp: For multi-instance rollback, remember how far we got
140 *
141 * Called from cpu hotplug and from the state register machinery.
142 */
143static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
144 bool bringup, struct hlist_node *node,
145 struct hlist_node **lastp)
146{
147 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
148 struct cpuhp_step *step = cpuhp_get_step(state);
149 int (*cbm)(unsigned int cpu, struct hlist_node *node);
150 int (*cb)(unsigned int cpu);
151 int ret, cnt;
152
153 if (st->fail == state) {
154 st->fail = CPUHP_INVALID;
155
156 if (!(bringup ? step->startup.single : step->teardown.single))
157 return 0;
158
159 return -EAGAIN;
160 }
161
162 if (!step->multi_instance) {
163 WARN_ON_ONCE(lastp && *lastp);
164 cb = bringup ? step->startup.single : step->teardown.single;
165 if (!cb)
166 return 0;
167 trace_cpuhp_enter(cpu, st->target, state, cb);
168 ret = cb(cpu);
169 trace_cpuhp_exit(cpu, st->state, state, ret);
170 return ret;
171 }
172 cbm = bringup ? step->startup.multi : step->teardown.multi;
173 if (!cbm)
174 return 0;
175
176 /* Single invocation for instance add/remove */
177 if (node) {
178 WARN_ON_ONCE(lastp && *lastp);
179 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
180 ret = cbm(cpu, node);
181 trace_cpuhp_exit(cpu, st->state, state, ret);
182 return ret;
183 }
184
185 /* State transition. Invoke on all instances */
186 cnt = 0;
187 hlist_for_each(node, &step->list) {
188 if (lastp && node == *lastp)
189 break;
190
191 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
192 ret = cbm(cpu, node);
193 trace_cpuhp_exit(cpu, st->state, state, ret);
194 if (ret) {
195 if (!lastp)
196 goto err;
197
198 *lastp = node;
199 return ret;
200 }
201 cnt++;
202 }
203 if (lastp)
204 *lastp = NULL;
205 return 0;
206err:
207 /* Rollback the instances if one failed */
208 cbm = !bringup ? step->startup.multi : step->teardown.multi;
209 if (!cbm)
210 return ret;
211
212 hlist_for_each(node, &step->list) {
213 if (!cnt--)
214 break;
215
216 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217 ret = cbm(cpu, node);
218 trace_cpuhp_exit(cpu, st->state, state, ret);
219 /*
220 * Rollback must not fail,
221 */
222 WARN_ON_ONCE(ret);
223 }
224 return ret;
225}
226
227#ifdef CONFIG_SMP
228static bool cpuhp_is_ap_state(enum cpuhp_state state)
229{
230 /*
231 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
232 * purposes as that state is handled explicitly in cpu_down.
233 */
234 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
235}
236
237static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
238{
239 struct completion *done = bringup ? &st->done_up : &st->done_down;
240 wait_for_completion(done);
241}
242
243static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
244{
245 struct completion *done = bringup ? &st->done_up : &st->done_down;
246 complete(done);
247}
248
249/*
250 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
251 */
252static bool cpuhp_is_atomic_state(enum cpuhp_state state)
253{
254 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
255}
256
257/* Serializes the updates to cpu_online_mask, cpu_present_mask */
258static DEFINE_MUTEX(cpu_add_remove_lock);
259bool cpuhp_tasks_frozen;
260EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
261
262/*
263 * The following two APIs (cpu_maps_update_begin/done) must be used when
264 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
265 */
266void cpu_maps_update_begin(void)
267{
268 mutex_lock(&cpu_add_remove_lock);
269}
270
271void cpu_maps_update_done(void)
272{
273 mutex_unlock(&cpu_add_remove_lock);
274}
275
276/*
277 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
278 * Should always be manipulated under cpu_add_remove_lock
279 */
280static int cpu_hotplug_disabled;
281
282#ifdef CONFIG_HOTPLUG_CPU
283
284DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
285
286void cpus_read_lock(void)
287{
288 percpu_down_read(&cpu_hotplug_lock);
289}
290EXPORT_SYMBOL_GPL(cpus_read_lock);
291
292int cpus_read_trylock(void)
293{
294 return percpu_down_read_trylock(&cpu_hotplug_lock);
295}
296EXPORT_SYMBOL_GPL(cpus_read_trylock);
297
298void cpus_read_unlock(void)
299{
300 percpu_up_read(&cpu_hotplug_lock);
301}
302EXPORT_SYMBOL_GPL(cpus_read_unlock);
303
304void cpus_write_lock(void)
305{
306 percpu_down_write(&cpu_hotplug_lock);
307}
308
309void cpus_write_unlock(void)
310{
311 percpu_up_write(&cpu_hotplug_lock);
312}
313
314void lockdep_assert_cpus_held(void)
315{
316 percpu_rwsem_assert_held(&cpu_hotplug_lock);
317}
318
319/*
320 * Wait for currently running CPU hotplug operations to complete (if any) and
321 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
322 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
323 * hotplug path before performing hotplug operations. So acquiring that lock
324 * guarantees mutual exclusion from any currently running hotplug operations.
325 */
326void cpu_hotplug_disable(void)
327{
328 cpu_maps_update_begin();
329 cpu_hotplug_disabled++;
330 cpu_maps_update_done();
331}
332EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
333
334static void __cpu_hotplug_enable(void)
335{
336 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
337 return;
338 cpu_hotplug_disabled--;
339}
340
341void cpu_hotplug_enable(void)
342{
343 cpu_maps_update_begin();
344 __cpu_hotplug_enable();
345 cpu_maps_update_done();
346}
347EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
348#endif /* CONFIG_HOTPLUG_CPU */
349
350/*
351 * Architectures that need SMT-specific errata handling during SMT hotplug
352 * should override this.
353 */
354void __weak arch_smt_update(void) { }
355
356#ifdef CONFIG_HOTPLUG_SMT
357enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
358EXPORT_SYMBOL_GPL(cpu_smt_control);
359
360static bool cpu_smt_available __read_mostly;
361
362void __init cpu_smt_disable(bool force)
363{
364 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
365 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
366 return;
367
368 if (force) {
369 pr_info("SMT: Force disabled\n");
370 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
371 } else {
372 cpu_smt_control = CPU_SMT_DISABLED;
373 }
374}
375
376/*
377 * The decision whether SMT is supported can only be done after the full
378 * CPU identification. Called from architecture code before non boot CPUs
379 * are brought up.
380 */
381void __init cpu_smt_check_topology_early(void)
382{
383 if (!topology_smt_supported())
384 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
385}
386
387/*
388 * If SMT was disabled by BIOS, detect it here, after the CPUs have been
389 * brought online. This ensures the smt/l1tf sysfs entries are consistent
390 * with reality. cpu_smt_available is set to true during the bringup of non
391 * boot CPUs when a SMT sibling is detected. Note, this may overwrite
392 * cpu_smt_control's previous setting.
393 */
394void __init cpu_smt_check_topology(void)
395{
396 if (!cpu_smt_available)
397 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
398}
399
400static int __init smt_cmdline_disable(char *str)
401{
402 cpu_smt_disable(str && !strcmp(str, "force"));
403 return 0;
404}
405early_param("nosmt", smt_cmdline_disable);
406
407static inline bool cpu_smt_allowed(unsigned int cpu)
408{
409 if (topology_is_primary_thread(cpu))
410 return true;
411
412 /*
413 * If the CPU is not a 'primary' thread and the booted_once bit is
414 * set then the processor has SMT support. Store this information
415 * for the late check of SMT support in cpu_smt_check_topology().
416 */
417 if (per_cpu(cpuhp_state, cpu).booted_once)
418 cpu_smt_available = true;
419
420 if (cpu_smt_control == CPU_SMT_ENABLED)
421 return true;
422
423 /*
424 * On x86 it's required to boot all logical CPUs at least once so
425 * that the init code can get a chance to set CR4.MCE on each
426 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
427 * core will shutdown the machine.
428 */
429 return !per_cpu(cpuhp_state, cpu).booted_once;
430}
431#else
432static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
433#endif
434
435static inline enum cpuhp_state
436cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
437{
438 enum cpuhp_state prev_state = st->state;
439
440 st->rollback = false;
441 st->last = NULL;
442
443 st->target = target;
444 st->single = false;
445 st->bringup = st->state < target;
446
447 return prev_state;
448}
449
450static inline void
451cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
452{
453 st->rollback = true;
454
455 /*
456 * If we have st->last we need to undo partial multi_instance of this
457 * state first. Otherwise start undo at the previous state.
458 */
459 if (!st->last) {
460 if (st->bringup)
461 st->state--;
462 else
463 st->state++;
464 }
465
466 st->target = prev_state;
467 st->bringup = !st->bringup;
468}
469
470/* Regular hotplug invocation of the AP hotplug thread */
471static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
472{
473 if (!st->single && st->state == st->target)
474 return;
475
476 st->result = 0;
477 /*
478 * Make sure the above stores are visible before should_run becomes
479 * true. Paired with the mb() above in cpuhp_thread_fun()
480 */
481 smp_mb();
482 st->should_run = true;
483 wake_up_process(st->thread);
484 wait_for_ap_thread(st, st->bringup);
485}
486
487static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
488{
489 enum cpuhp_state prev_state;
490 int ret;
491
492 prev_state = cpuhp_set_state(st, target);
493 __cpuhp_kick_ap(st);
494 if ((ret = st->result)) {
495 cpuhp_reset_state(st, prev_state);
496 __cpuhp_kick_ap(st);
497 }
498
499 return ret;
500}
501
502static int bringup_wait_for_ap(unsigned int cpu)
503{
504 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
505
506 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
507 wait_for_ap_thread(st, true);
508 if (WARN_ON_ONCE((!cpu_online(cpu))))
509 return -ECANCELED;
510
511 /* Unpark the stopper thread and the hotplug thread of the target cpu */
512 stop_machine_unpark(cpu);
513 kthread_unpark(st->thread);
514
515 /*
516 * SMT soft disabling on X86 requires to bring the CPU out of the
517 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
518 * CPU marked itself as booted_once in cpu_notify_starting() so the
519 * cpu_smt_allowed() check will now return false if this is not the
520 * primary sibling.
521 */
522 if (!cpu_smt_allowed(cpu))
523 return -ECANCELED;
524
525 if (st->target <= CPUHP_AP_ONLINE_IDLE)
526 return 0;
527
528 return cpuhp_kick_ap(st, st->target);
529}
530
531static int bringup_cpu(unsigned int cpu)
532{
533 struct task_struct *idle = idle_thread_get(cpu);
534 int ret;
535
536 /*
537 * Some architectures have to walk the irq descriptors to
538 * setup the vector space for the cpu which comes online.
539 * Prevent irq alloc/free across the bringup.
540 */
541 irq_lock_sparse();
542
543 /* Arch-specific enabling code. */
544 ret = __cpu_up(cpu, idle);
545 irq_unlock_sparse();
546 if (ret)
547 return ret;
548 return bringup_wait_for_ap(cpu);
549}
550
551/*
552 * Hotplug state machine related functions
553 */
554
555static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
556{
557 for (st->state--; st->state > st->target; st->state--)
558 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
559}
560
561static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
562 enum cpuhp_state target)
563{
564 enum cpuhp_state prev_state = st->state;
565 int ret = 0;
566
567 while (st->state < target) {
568 st->state++;
569 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
570 if (ret) {
571 st->target = prev_state;
572 undo_cpu_up(cpu, st);
573 break;
574 }
575 }
576 return ret;
577}
578
579/*
580 * The cpu hotplug threads manage the bringup and teardown of the cpus
581 */
582static void cpuhp_create(unsigned int cpu)
583{
584 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
585
586 init_completion(&st->done_up);
587 init_completion(&st->done_down);
588}
589
590static int cpuhp_should_run(unsigned int cpu)
591{
592 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
593
594 return st->should_run;
595}
596
597/*
598 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
599 * callbacks when a state gets [un]installed at runtime.
600 *
601 * Each invocation of this function by the smpboot thread does a single AP
602 * state callback.
603 *
604 * It has 3 modes of operation:
605 * - single: runs st->cb_state
606 * - up: runs ++st->state, while st->state < st->target
607 * - down: runs st->state--, while st->state > st->target
608 *
609 * When complete or on error, should_run is cleared and the completion is fired.
610 */
611static void cpuhp_thread_fun(unsigned int cpu)
612{
613 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
614 bool bringup = st->bringup;
615 enum cpuhp_state state;
616
617 if (WARN_ON_ONCE(!st->should_run))
618 return;
619
620 /*
621 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
622 * that if we see ->should_run we also see the rest of the state.
623 */
624 smp_mb();
625
626 cpuhp_lock_acquire(bringup);
627
628 if (st->single) {
629 state = st->cb_state;
630 st->should_run = false;
631 } else {
632 if (bringup) {
633 st->state++;
634 state = st->state;
635 st->should_run = (st->state < st->target);
636 WARN_ON_ONCE(st->state > st->target);
637 } else {
638 state = st->state;
639 st->state--;
640 st->should_run = (st->state > st->target);
641 WARN_ON_ONCE(st->state < st->target);
642 }
643 }
644
645 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
646
647 if (cpuhp_is_atomic_state(state)) {
648 local_irq_disable();
649 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
650 local_irq_enable();
651
652 /*
653 * STARTING/DYING must not fail!
654 */
655 WARN_ON_ONCE(st->result);
656 } else {
657 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
658 }
659
660 if (st->result) {
661 /*
662 * If we fail on a rollback, we're up a creek without no
663 * paddle, no way forward, no way back. We loose, thanks for
664 * playing.
665 */
666 WARN_ON_ONCE(st->rollback);
667 st->should_run = false;
668 }
669
670 cpuhp_lock_release(bringup);
671
672 if (!st->should_run)
673 complete_ap_thread(st, bringup);
674}
675
676/* Invoke a single callback on a remote cpu */
677static int
678cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
679 struct hlist_node *node)
680{
681 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
682 int ret;
683
684 if (!cpu_online(cpu))
685 return 0;
686
687 cpuhp_lock_acquire(false);
688 cpuhp_lock_release(false);
689
690 cpuhp_lock_acquire(true);
691 cpuhp_lock_release(true);
692
693 /*
694 * If we are up and running, use the hotplug thread. For early calls
695 * we invoke the thread function directly.
696 */
697 if (!st->thread)
698 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
699
700 st->rollback = false;
701 st->last = NULL;
702
703 st->node = node;
704 st->bringup = bringup;
705 st->cb_state = state;
706 st->single = true;
707
708 __cpuhp_kick_ap(st);
709
710 /*
711 * If we failed and did a partial, do a rollback.
712 */
713 if ((ret = st->result) && st->last) {
714 st->rollback = true;
715 st->bringup = !bringup;
716
717 __cpuhp_kick_ap(st);
718 }
719
720 /*
721 * Clean up the leftovers so the next hotplug operation wont use stale
722 * data.
723 */
724 st->node = st->last = NULL;
725 return ret;
726}
727
728static int cpuhp_kick_ap_work(unsigned int cpu)
729{
730 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
731 enum cpuhp_state prev_state = st->state;
732 int ret;
733
734 cpuhp_lock_acquire(false);
735 cpuhp_lock_release(false);
736
737 cpuhp_lock_acquire(true);
738 cpuhp_lock_release(true);
739
740 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
741 ret = cpuhp_kick_ap(st, st->target);
742 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
743
744 return ret;
745}
746
747static struct smp_hotplug_thread cpuhp_threads = {
748 .store = &cpuhp_state.thread,
749 .create = &cpuhp_create,
750 .thread_should_run = cpuhp_should_run,
751 .thread_fn = cpuhp_thread_fun,
752 .thread_comm = "cpuhp/%u",
753 .selfparking = true,
754};
755
756void __init cpuhp_threads_init(void)
757{
758 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
759 kthread_unpark(this_cpu_read(cpuhp_state.thread));
760}
761
762#ifdef CONFIG_HOTPLUG_CPU
763/**
764 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
765 * @cpu: a CPU id
766 *
767 * This function walks all processes, finds a valid mm struct for each one and
768 * then clears a corresponding bit in mm's cpumask. While this all sounds
769 * trivial, there are various non-obvious corner cases, which this function
770 * tries to solve in a safe manner.
771 *
772 * Also note that the function uses a somewhat relaxed locking scheme, so it may
773 * be called only for an already offlined CPU.
774 */
775void clear_tasks_mm_cpumask(int cpu)
776{
777 struct task_struct *p;
778
779 /*
780 * This function is called after the cpu is taken down and marked
781 * offline, so its not like new tasks will ever get this cpu set in
782 * their mm mask. -- Peter Zijlstra
783 * Thus, we may use rcu_read_lock() here, instead of grabbing
784 * full-fledged tasklist_lock.
785 */
786 WARN_ON(cpu_online(cpu));
787 rcu_read_lock();
788 for_each_process(p) {
789 struct task_struct *t;
790
791 /*
792 * Main thread might exit, but other threads may still have
793 * a valid mm. Find one.
794 */
795 t = find_lock_task_mm(p);
796 if (!t)
797 continue;
798 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
799 task_unlock(t);
800 }
801 rcu_read_unlock();
802}
803
804/* Take this CPU down. */
805static int take_cpu_down(void *_param)
806{
807 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
808 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
809 int err, cpu = smp_processor_id();
810 int ret;
811
812 /* Ensure this CPU doesn't handle any more interrupts. */
813 err = __cpu_disable();
814 if (err < 0)
815 return err;
816
817 /*
818 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
819 * do this step again.
820 */
821 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
822 st->state--;
823 /* Invoke the former CPU_DYING callbacks */
824 for (; st->state > target; st->state--) {
825 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
826 /*
827 * DYING must not fail!
828 */
829 WARN_ON_ONCE(ret);
830 }
831
832 /* Give up timekeeping duties */
833 tick_handover_do_timer();
834 /* Park the stopper thread */
835 stop_machine_park(cpu);
836 return 0;
837}
838
839static int takedown_cpu(unsigned int cpu)
840{
841 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
842 int err;
843
844 /* Park the smpboot threads */
845 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
846
847 /*
848 * Prevent irq alloc/free while the dying cpu reorganizes the
849 * interrupt affinities.
850 */
851 irq_lock_sparse();
852
853 /*
854 * So now all preempt/rcu users must observe !cpu_active().
855 */
856 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
857 if (err) {
858 /* CPU refused to die */
859 irq_unlock_sparse();
860 /* Unpark the hotplug thread so we can rollback there */
861 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
862 return err;
863 }
864 BUG_ON(cpu_online(cpu));
865
866 /*
867 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
868 * all runnable tasks from the CPU, there's only the idle task left now
869 * that the migration thread is done doing the stop_machine thing.
870 *
871 * Wait for the stop thread to go away.
872 */
873 wait_for_ap_thread(st, false);
874 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
875
876 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
877 irq_unlock_sparse();
878
879 hotplug_cpu__broadcast_tick_pull(cpu);
880 /* This actually kills the CPU. */
881 __cpu_die(cpu);
882
883 tick_cleanup_dead_cpu(cpu);
884 rcutree_migrate_callbacks(cpu);
885 return 0;
886}
887
888static void cpuhp_complete_idle_dead(void *arg)
889{
890 struct cpuhp_cpu_state *st = arg;
891
892 complete_ap_thread(st, false);
893}
894
895void cpuhp_report_idle_dead(void)
896{
897 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
898
899 BUG_ON(st->state != CPUHP_AP_OFFLINE);
900 rcu_report_dead(smp_processor_id());
901 st->state = CPUHP_AP_IDLE_DEAD;
902 /*
903 * We cannot call complete after rcu_report_dead() so we delegate it
904 * to an online cpu.
905 */
906 smp_call_function_single(cpumask_first(cpu_online_mask),
907 cpuhp_complete_idle_dead, st, 0);
908}
909
910static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
911{
912 for (st->state++; st->state < st->target; st->state++)
913 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
914}
915
916static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
917 enum cpuhp_state target)
918{
919 enum cpuhp_state prev_state = st->state;
920 int ret = 0;
921
922 for (; st->state > target; st->state--) {
923 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
924 if (ret) {
925 st->target = prev_state;
926 if (st->state < prev_state)
927 undo_cpu_down(cpu, st);
928 break;
929 }
930 }
931 return ret;
932}
933
934/* Requires cpu_add_remove_lock to be held */
935static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
936 enum cpuhp_state target)
937{
938 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
939 int prev_state, ret = 0;
940
941 if (num_online_cpus() == 1)
942 return -EBUSY;
943
944 if (!cpu_present(cpu))
945 return -EINVAL;
946
947 cpus_write_lock();
948
949 cpuhp_tasks_frozen = tasks_frozen;
950
951 prev_state = cpuhp_set_state(st, target);
952 /*
953 * If the current CPU state is in the range of the AP hotplug thread,
954 * then we need to kick the thread.
955 */
956 if (st->state > CPUHP_TEARDOWN_CPU) {
957 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
958 ret = cpuhp_kick_ap_work(cpu);
959 /*
960 * The AP side has done the error rollback already. Just
961 * return the error code..
962 */
963 if (ret)
964 goto out;
965
966 /*
967 * We might have stopped still in the range of the AP hotplug
968 * thread. Nothing to do anymore.
969 */
970 if (st->state > CPUHP_TEARDOWN_CPU)
971 goto out;
972
973 st->target = target;
974 }
975 /*
976 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
977 * to do the further cleanups.
978 */
979 ret = cpuhp_down_callbacks(cpu, st, target);
980 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
981 cpuhp_reset_state(st, prev_state);
982 __cpuhp_kick_ap(st);
983 }
984
985out:
986 cpus_write_unlock();
987 /*
988 * Do post unplug cleanup. This is still protected against
989 * concurrent CPU hotplug via cpu_add_remove_lock.
990 */
991 lockup_detector_cleanup();
992 arch_smt_update();
993 return ret;
994}
995
996static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
997{
998 if (cpu_hotplug_disabled)
999 return -EBUSY;
1000 return _cpu_down(cpu, 0, target);
1001}
1002
1003static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1004{
1005 int err;
1006
1007 cpu_maps_update_begin();
1008 err = cpu_down_maps_locked(cpu, target);
1009 cpu_maps_update_done();
1010 return err;
1011}
1012
1013int cpu_down(unsigned int cpu)
1014{
1015 return do_cpu_down(cpu, CPUHP_OFFLINE);
1016}
1017EXPORT_SYMBOL(cpu_down);
1018
1019#else
1020#define takedown_cpu NULL
1021#endif /*CONFIG_HOTPLUG_CPU*/
1022
1023/**
1024 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1025 * @cpu: cpu that just started
1026 *
1027 * It must be called by the arch code on the new cpu, before the new cpu
1028 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1029 */
1030void notify_cpu_starting(unsigned int cpu)
1031{
1032 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1033 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1034 int ret;
1035
1036 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1037 st->booted_once = true;
1038 while (st->state < target) {
1039 st->state++;
1040 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1041 /*
1042 * STARTING must not fail!
1043 */
1044 WARN_ON_ONCE(ret);
1045 }
1046}
1047
1048/*
1049 * Called from the idle task. Wake up the controlling task which brings the
1050 * stopper and the hotplug thread of the upcoming CPU up and then delegates
1051 * the rest of the online bringup to the hotplug thread.
1052 */
1053void cpuhp_online_idle(enum cpuhp_state state)
1054{
1055 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1056
1057 /* Happens for the boot cpu */
1058 if (state != CPUHP_AP_ONLINE_IDLE)
1059 return;
1060
1061 st->state = CPUHP_AP_ONLINE_IDLE;
1062 complete_ap_thread(st, true);
1063}
1064
1065/* Requires cpu_add_remove_lock to be held */
1066static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1067{
1068 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1069 struct task_struct *idle;
1070 int ret = 0;
1071
1072 cpus_write_lock();
1073
1074 if (!cpu_present(cpu)) {
1075 ret = -EINVAL;
1076 goto out;
1077 }
1078
1079 /*
1080 * The caller of do_cpu_up might have raced with another
1081 * caller. Ignore it for now.
1082 */
1083 if (st->state >= target)
1084 goto out;
1085
1086 if (st->state == CPUHP_OFFLINE) {
1087 /* Let it fail before we try to bring the cpu up */
1088 idle = idle_thread_get(cpu);
1089 if (IS_ERR(idle)) {
1090 ret = PTR_ERR(idle);
1091 goto out;
1092 }
1093 }
1094
1095 cpuhp_tasks_frozen = tasks_frozen;
1096
1097 cpuhp_set_state(st, target);
1098 /*
1099 * If the current CPU state is in the range of the AP hotplug thread,
1100 * then we need to kick the thread once more.
1101 */
1102 if (st->state > CPUHP_BRINGUP_CPU) {
1103 ret = cpuhp_kick_ap_work(cpu);
1104 /*
1105 * The AP side has done the error rollback already. Just
1106 * return the error code..
1107 */
1108 if (ret)
1109 goto out;
1110 }
1111
1112 /*
1113 * Try to reach the target state. We max out on the BP at
1114 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1115 * responsible for bringing it up to the target state.
1116 */
1117 target = min((int)target, CPUHP_BRINGUP_CPU);
1118 ret = cpuhp_up_callbacks(cpu, st, target);
1119out:
1120 cpus_write_unlock();
1121 arch_smt_update();
1122 return ret;
1123}
1124
1125static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1126{
1127 int err = 0;
1128
1129 if (!cpu_possible(cpu)) {
1130 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1131 cpu);
1132#if defined(CONFIG_IA64)
1133 pr_err("please check additional_cpus= boot parameter\n");
1134#endif
1135 return -EINVAL;
1136 }
1137
1138 err = try_online_node(cpu_to_node(cpu));
1139 if (err)
1140 return err;
1141
1142 cpu_maps_update_begin();
1143
1144 if (cpu_hotplug_disabled) {
1145 err = -EBUSY;
1146 goto out;
1147 }
1148 if (!cpu_smt_allowed(cpu)) {
1149 err = -EPERM;
1150 goto out;
1151 }
1152
1153 err = _cpu_up(cpu, 0, target);
1154out:
1155 cpu_maps_update_done();
1156 return err;
1157}
1158
1159int cpu_up(unsigned int cpu)
1160{
1161 return do_cpu_up(cpu, CPUHP_ONLINE);
1162}
1163EXPORT_SYMBOL_GPL(cpu_up);
1164
1165#ifdef CONFIG_PM_SLEEP_SMP
1166static cpumask_var_t frozen_cpus;
1167
1168int freeze_secondary_cpus(int primary)
1169{
1170 int cpu, error = 0;
1171
1172 cpu_maps_update_begin();
1173 if (!cpu_online(primary))
1174 primary = cpumask_first(cpu_online_mask);
1175 /*
1176 * We take down all of the non-boot CPUs in one shot to avoid races
1177 * with the userspace trying to use the CPU hotplug at the same time
1178 */
1179 cpumask_clear(frozen_cpus);
1180
1181 pr_info("Disabling non-boot CPUs ...\n");
1182 for_each_online_cpu(cpu) {
1183 if (cpu == primary)
1184 continue;
1185 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1186 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1187 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1188 if (!error)
1189 cpumask_set_cpu(cpu, frozen_cpus);
1190 else {
1191 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1192 break;
1193 }
1194 }
1195
1196 if (!error)
1197 BUG_ON(num_online_cpus() > 1);
1198 else
1199 pr_err("Non-boot CPUs are not disabled\n");
1200
1201 /*
1202 * Make sure the CPUs won't be enabled by someone else. We need to do
1203 * this even in case of failure as all disable_nonboot_cpus() users are
1204 * supposed to do enable_nonboot_cpus() on the failure path.
1205 */
1206 cpu_hotplug_disabled++;
1207
1208 cpu_maps_update_done();
1209 return error;
1210}
1211
1212void __weak arch_enable_nonboot_cpus_begin(void)
1213{
1214}
1215
1216void __weak arch_enable_nonboot_cpus_end(void)
1217{
1218}
1219
1220void enable_nonboot_cpus(void)
1221{
1222 int cpu, error;
1223
1224 /* Allow everyone to use the CPU hotplug again */
1225 cpu_maps_update_begin();
1226 __cpu_hotplug_enable();
1227 if (cpumask_empty(frozen_cpus))
1228 goto out;
1229
1230 pr_info("Enabling non-boot CPUs ...\n");
1231
1232 arch_enable_nonboot_cpus_begin();
1233
1234 for_each_cpu(cpu, frozen_cpus) {
1235 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1236 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1237 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1238 if (!error) {
1239 pr_info("CPU%d is up\n", cpu);
1240 continue;
1241 }
1242 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1243 }
1244
1245 arch_enable_nonboot_cpus_end();
1246
1247 cpumask_clear(frozen_cpus);
1248out:
1249 cpu_maps_update_done();
1250}
1251
1252static int __init alloc_frozen_cpus(void)
1253{
1254 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1255 return -ENOMEM;
1256 return 0;
1257}
1258core_initcall(alloc_frozen_cpus);
1259
1260/*
1261 * When callbacks for CPU hotplug notifications are being executed, we must
1262 * ensure that the state of the system with respect to the tasks being frozen
1263 * or not, as reported by the notification, remains unchanged *throughout the
1264 * duration* of the execution of the callbacks.
1265 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1266 *
1267 * This synchronization is implemented by mutually excluding regular CPU
1268 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1269 * Hibernate notifications.
1270 */
1271static int
1272cpu_hotplug_pm_callback(struct notifier_block *nb,
1273 unsigned long action, void *ptr)
1274{
1275 switch (action) {
1276
1277 case PM_SUSPEND_PREPARE:
1278 case PM_HIBERNATION_PREPARE:
1279 cpu_hotplug_disable();
1280 break;
1281
1282 case PM_POST_SUSPEND:
1283 case PM_POST_HIBERNATION:
1284 cpu_hotplug_enable();
1285 break;
1286
1287 default:
1288 return NOTIFY_DONE;
1289 }
1290
1291 return NOTIFY_OK;
1292}
1293
1294
1295static int __init cpu_hotplug_pm_sync_init(void)
1296{
1297 /*
1298 * cpu_hotplug_pm_callback has higher priority than x86
1299 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1300 * to disable cpu hotplug to avoid cpu hotplug race.
1301 */
1302 pm_notifier(cpu_hotplug_pm_callback, 0);
1303 return 0;
1304}
1305core_initcall(cpu_hotplug_pm_sync_init);
1306
1307#endif /* CONFIG_PM_SLEEP_SMP */
1308
1309int __boot_cpu_id;
1310
1311#endif /* CONFIG_SMP */
1312
1313/* Boot processor state steps */
1314static struct cpuhp_step cpuhp_hp_states[] = {
1315 [CPUHP_OFFLINE] = {
1316 .name = "offline",
1317 .startup.single = NULL,
1318 .teardown.single = NULL,
1319 },
1320#ifdef CONFIG_SMP
1321 [CPUHP_CREATE_THREADS]= {
1322 .name = "threads:prepare",
1323 .startup.single = smpboot_create_threads,
1324 .teardown.single = NULL,
1325 .cant_stop = true,
1326 },
1327 [CPUHP_PERF_PREPARE] = {
1328 .name = "perf:prepare",
1329 .startup.single = perf_event_init_cpu,
1330 .teardown.single = perf_event_exit_cpu,
1331 },
1332 [CPUHP_WORKQUEUE_PREP] = {
1333 .name = "workqueue:prepare",
1334 .startup.single = workqueue_prepare_cpu,
1335 .teardown.single = NULL,
1336 },
1337 [CPUHP_HRTIMERS_PREPARE] = {
1338 .name = "hrtimers:prepare",
1339 .startup.single = hrtimers_prepare_cpu,
1340 .teardown.single = hrtimers_dead_cpu,
1341 },
1342 [CPUHP_SMPCFD_PREPARE] = {
1343 .name = "smpcfd:prepare",
1344 .startup.single = smpcfd_prepare_cpu,
1345 .teardown.single = smpcfd_dead_cpu,
1346 },
1347 [CPUHP_RELAY_PREPARE] = {
1348 .name = "relay:prepare",
1349 .startup.single = relay_prepare_cpu,
1350 .teardown.single = NULL,
1351 },
1352 [CPUHP_SLAB_PREPARE] = {
1353 .name = "slab:prepare",
1354 .startup.single = slab_prepare_cpu,
1355 .teardown.single = slab_dead_cpu,
1356 },
1357 [CPUHP_RCUTREE_PREP] = {
1358 .name = "RCU/tree:prepare",
1359 .startup.single = rcutree_prepare_cpu,
1360 .teardown.single = rcutree_dead_cpu,
1361 },
1362 /*
1363 * On the tear-down path, timers_dead_cpu() must be invoked
1364 * before blk_mq_queue_reinit_notify() from notify_dead(),
1365 * otherwise a RCU stall occurs.
1366 */
1367 [CPUHP_TIMERS_PREPARE] = {
1368 .name = "timers:prepare",
1369 .startup.single = timers_prepare_cpu,
1370 .teardown.single = timers_dead_cpu,
1371 },
1372 /* Kicks the plugged cpu into life */
1373 [CPUHP_BRINGUP_CPU] = {
1374 .name = "cpu:bringup",
1375 .startup.single = bringup_cpu,
1376 .teardown.single = NULL,
1377 .cant_stop = true,
1378 },
1379 /* Final state before CPU kills itself */
1380 [CPUHP_AP_IDLE_DEAD] = {
1381 .name = "idle:dead",
1382 },
1383 /*
1384 * Last state before CPU enters the idle loop to die. Transient state
1385 * for synchronization.
1386 */
1387 [CPUHP_AP_OFFLINE] = {
1388 .name = "ap:offline",
1389 .cant_stop = true,
1390 },
1391 /* First state is scheduler control. Interrupts are disabled */
1392 [CPUHP_AP_SCHED_STARTING] = {
1393 .name = "sched:starting",
1394 .startup.single = sched_cpu_starting,
1395 .teardown.single = sched_cpu_dying,
1396 },
1397 [CPUHP_AP_RCUTREE_DYING] = {
1398 .name = "RCU/tree:dying",
1399 .startup.single = NULL,
1400 .teardown.single = rcutree_dying_cpu,
1401 },
1402 [CPUHP_AP_SMPCFD_DYING] = {
1403 .name = "smpcfd:dying",
1404 .startup.single = NULL,
1405 .teardown.single = smpcfd_dying_cpu,
1406 },
1407 /* Entry state on starting. Interrupts enabled from here on. Transient
1408 * state for synchronsization */
1409 [CPUHP_AP_ONLINE] = {
1410 .name = "ap:online",
1411 },
1412 /*
1413 * Handled on controll processor until the plugged processor manages
1414 * this itself.
1415 */
1416 [CPUHP_TEARDOWN_CPU] = {
1417 .name = "cpu:teardown",
1418 .startup.single = NULL,
1419 .teardown.single = takedown_cpu,
1420 .cant_stop = true,
1421 },
1422 /* Handle smpboot threads park/unpark */
1423 [CPUHP_AP_SMPBOOT_THREADS] = {
1424 .name = "smpboot/threads:online",
1425 .startup.single = smpboot_unpark_threads,
1426 .teardown.single = smpboot_park_threads,
1427 },
1428 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1429 .name = "irq/affinity:online",
1430 .startup.single = irq_affinity_online_cpu,
1431 .teardown.single = NULL,
1432 },
1433 [CPUHP_AP_PERF_ONLINE] = {
1434 .name = "perf:online",
1435 .startup.single = perf_event_init_cpu,
1436 .teardown.single = perf_event_exit_cpu,
1437 },
1438 [CPUHP_AP_WATCHDOG_ONLINE] = {
1439 .name = "lockup_detector:online",
1440 .startup.single = lockup_detector_online_cpu,
1441 .teardown.single = lockup_detector_offline_cpu,
1442 },
1443 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1444 .name = "workqueue:online",
1445 .startup.single = workqueue_online_cpu,
1446 .teardown.single = workqueue_offline_cpu,
1447 },
1448 [CPUHP_AP_RCUTREE_ONLINE] = {
1449 .name = "RCU/tree:online",
1450 .startup.single = rcutree_online_cpu,
1451 .teardown.single = rcutree_offline_cpu,
1452 },
1453#endif
1454 /*
1455 * The dynamically registered state space is here
1456 */
1457
1458#ifdef CONFIG_SMP
1459 /* Last state is scheduler control setting the cpu active */
1460 [CPUHP_AP_ACTIVE] = {
1461 .name = "sched:active",
1462 .startup.single = sched_cpu_activate,
1463 .teardown.single = sched_cpu_deactivate,
1464 },
1465#endif
1466
1467 /* CPU is fully up and running. */
1468 [CPUHP_ONLINE] = {
1469 .name = "online",
1470 .startup.single = NULL,
1471 .teardown.single = NULL,
1472 },
1473};
1474
1475/* Sanity check for callbacks */
1476static int cpuhp_cb_check(enum cpuhp_state state)
1477{
1478 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1479 return -EINVAL;
1480 return 0;
1481}
1482
1483/*
1484 * Returns a free for dynamic slot assignment of the Online state. The states
1485 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1486 * by having no name assigned.
1487 */
1488static int cpuhp_reserve_state(enum cpuhp_state state)
1489{
1490 enum cpuhp_state i, end;
1491 struct cpuhp_step *step;
1492
1493 switch (state) {
1494 case CPUHP_AP_ONLINE_DYN:
1495 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1496 end = CPUHP_AP_ONLINE_DYN_END;
1497 break;
1498 case CPUHP_BP_PREPARE_DYN:
1499 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1500 end = CPUHP_BP_PREPARE_DYN_END;
1501 break;
1502 default:
1503 return -EINVAL;
1504 }
1505
1506 for (i = state; i <= end; i++, step++) {
1507 if (!step->name)
1508 return i;
1509 }
1510 WARN(1, "No more dynamic states available for CPU hotplug\n");
1511 return -ENOSPC;
1512}
1513
1514static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1515 int (*startup)(unsigned int cpu),
1516 int (*teardown)(unsigned int cpu),
1517 bool multi_instance)
1518{
1519 /* (Un)Install the callbacks for further cpu hotplug operations */
1520 struct cpuhp_step *sp;
1521 int ret = 0;
1522
1523 /*
1524 * If name is NULL, then the state gets removed.
1525 *
1526 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1527 * the first allocation from these dynamic ranges, so the removal
1528 * would trigger a new allocation and clear the wrong (already
1529 * empty) state, leaving the callbacks of the to be cleared state
1530 * dangling, which causes wreckage on the next hotplug operation.
1531 */
1532 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1533 state == CPUHP_BP_PREPARE_DYN)) {
1534 ret = cpuhp_reserve_state(state);
1535 if (ret < 0)
1536 return ret;
1537 state = ret;
1538 }
1539 sp = cpuhp_get_step(state);
1540 if (name && sp->name)
1541 return -EBUSY;
1542
1543 sp->startup.single = startup;
1544 sp->teardown.single = teardown;
1545 sp->name = name;
1546 sp->multi_instance = multi_instance;
1547 INIT_HLIST_HEAD(&sp->list);
1548 return ret;
1549}
1550
1551static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1552{
1553 return cpuhp_get_step(state)->teardown.single;
1554}
1555
1556/*
1557 * Call the startup/teardown function for a step either on the AP or
1558 * on the current CPU.
1559 */
1560static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1561 struct hlist_node *node)
1562{
1563 struct cpuhp_step *sp = cpuhp_get_step(state);
1564 int ret;
1565
1566 /*
1567 * If there's nothing to do, we done.
1568 * Relies on the union for multi_instance.
1569 */
1570 if ((bringup && !sp->startup.single) ||
1571 (!bringup && !sp->teardown.single))
1572 return 0;
1573 /*
1574 * The non AP bound callbacks can fail on bringup. On teardown
1575 * e.g. module removal we crash for now.
1576 */
1577#ifdef CONFIG_SMP
1578 if (cpuhp_is_ap_state(state))
1579 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1580 else
1581 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1582#else
1583 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1584#endif
1585 BUG_ON(ret && !bringup);
1586 return ret;
1587}
1588
1589/*
1590 * Called from __cpuhp_setup_state on a recoverable failure.
1591 *
1592 * Note: The teardown callbacks for rollback are not allowed to fail!
1593 */
1594static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1595 struct hlist_node *node)
1596{
1597 int cpu;
1598
1599 /* Roll back the already executed steps on the other cpus */
1600 for_each_present_cpu(cpu) {
1601 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1602 int cpustate = st->state;
1603
1604 if (cpu >= failedcpu)
1605 break;
1606
1607 /* Did we invoke the startup call on that cpu ? */
1608 if (cpustate >= state)
1609 cpuhp_issue_call(cpu, state, false, node);
1610 }
1611}
1612
1613int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1614 struct hlist_node *node,
1615 bool invoke)
1616{
1617 struct cpuhp_step *sp;
1618 int cpu;
1619 int ret;
1620
1621 lockdep_assert_cpus_held();
1622
1623 sp = cpuhp_get_step(state);
1624 if (sp->multi_instance == false)
1625 return -EINVAL;
1626
1627 mutex_lock(&cpuhp_state_mutex);
1628
1629 if (!invoke || !sp->startup.multi)
1630 goto add_node;
1631
1632 /*
1633 * Try to call the startup callback for each present cpu
1634 * depending on the hotplug state of the cpu.
1635 */
1636 for_each_present_cpu(cpu) {
1637 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1638 int cpustate = st->state;
1639
1640 if (cpustate < state)
1641 continue;
1642
1643 ret = cpuhp_issue_call(cpu, state, true, node);
1644 if (ret) {
1645 if (sp->teardown.multi)
1646 cpuhp_rollback_install(cpu, state, node);
1647 goto unlock;
1648 }
1649 }
1650add_node:
1651 ret = 0;
1652 hlist_add_head(node, &sp->list);
1653unlock:
1654 mutex_unlock(&cpuhp_state_mutex);
1655 return ret;
1656}
1657
1658int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1659 bool invoke)
1660{
1661 int ret;
1662
1663 cpus_read_lock();
1664 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1665 cpus_read_unlock();
1666 return ret;
1667}
1668EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1669
1670/**
1671 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1672 * @state: The state to setup
1673 * @invoke: If true, the startup function is invoked for cpus where
1674 * cpu state >= @state
1675 * @startup: startup callback function
1676 * @teardown: teardown callback function
1677 * @multi_instance: State is set up for multiple instances which get
1678 * added afterwards.
1679 *
1680 * The caller needs to hold cpus read locked while calling this function.
1681 * Returns:
1682 * On success:
1683 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1684 * 0 for all other states
1685 * On failure: proper (negative) error code
1686 */
1687int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1688 const char *name, bool invoke,
1689 int (*startup)(unsigned int cpu),
1690 int (*teardown)(unsigned int cpu),
1691 bool multi_instance)
1692{
1693 int cpu, ret = 0;
1694 bool dynstate;
1695
1696 lockdep_assert_cpus_held();
1697
1698 if (cpuhp_cb_check(state) || !name)
1699 return -EINVAL;
1700
1701 mutex_lock(&cpuhp_state_mutex);
1702
1703 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1704 multi_instance);
1705
1706 dynstate = state == CPUHP_AP_ONLINE_DYN;
1707 if (ret > 0 && dynstate) {
1708 state = ret;
1709 ret = 0;
1710 }
1711
1712 if (ret || !invoke || !startup)
1713 goto out;
1714
1715 /*
1716 * Try to call the startup callback for each present cpu
1717 * depending on the hotplug state of the cpu.
1718 */
1719 for_each_present_cpu(cpu) {
1720 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1721 int cpustate = st->state;
1722
1723 if (cpustate < state)
1724 continue;
1725
1726 ret = cpuhp_issue_call(cpu, state, true, NULL);
1727 if (ret) {
1728 if (teardown)
1729 cpuhp_rollback_install(cpu, state, NULL);
1730 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1731 goto out;
1732 }
1733 }
1734out:
1735 mutex_unlock(&cpuhp_state_mutex);
1736 /*
1737 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1738 * dynamically allocated state in case of success.
1739 */
1740 if (!ret && dynstate)
1741 return state;
1742 return ret;
1743}
1744EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1745
1746int __cpuhp_setup_state(enum cpuhp_state state,
1747 const char *name, bool invoke,
1748 int (*startup)(unsigned int cpu),
1749 int (*teardown)(unsigned int cpu),
1750 bool multi_instance)
1751{
1752 int ret;
1753
1754 cpus_read_lock();
1755 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1756 teardown, multi_instance);
1757 cpus_read_unlock();
1758 return ret;
1759}
1760EXPORT_SYMBOL(__cpuhp_setup_state);
1761
1762int __cpuhp_state_remove_instance(enum cpuhp_state state,
1763 struct hlist_node *node, bool invoke)
1764{
1765 struct cpuhp_step *sp = cpuhp_get_step(state);
1766 int cpu;
1767
1768 BUG_ON(cpuhp_cb_check(state));
1769
1770 if (!sp->multi_instance)
1771 return -EINVAL;
1772
1773 cpus_read_lock();
1774 mutex_lock(&cpuhp_state_mutex);
1775
1776 if (!invoke || !cpuhp_get_teardown_cb(state))
1777 goto remove;
1778 /*
1779 * Call the teardown callback for each present cpu depending
1780 * on the hotplug state of the cpu. This function is not
1781 * allowed to fail currently!
1782 */
1783 for_each_present_cpu(cpu) {
1784 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1785 int cpustate = st->state;
1786
1787 if (cpustate >= state)
1788 cpuhp_issue_call(cpu, state, false, node);
1789 }
1790
1791remove:
1792 hlist_del(node);
1793 mutex_unlock(&cpuhp_state_mutex);
1794 cpus_read_unlock();
1795
1796 return 0;
1797}
1798EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1799
1800/**
1801 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1802 * @state: The state to remove
1803 * @invoke: If true, the teardown function is invoked for cpus where
1804 * cpu state >= @state
1805 *
1806 * The caller needs to hold cpus read locked while calling this function.
1807 * The teardown callback is currently not allowed to fail. Think
1808 * about module removal!
1809 */
1810void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1811{
1812 struct cpuhp_step *sp = cpuhp_get_step(state);
1813 int cpu;
1814
1815 BUG_ON(cpuhp_cb_check(state));
1816
1817 lockdep_assert_cpus_held();
1818
1819 mutex_lock(&cpuhp_state_mutex);
1820 if (sp->multi_instance) {
1821 WARN(!hlist_empty(&sp->list),
1822 "Error: Removing state %d which has instances left.\n",
1823 state);
1824 goto remove;
1825 }
1826
1827 if (!invoke || !cpuhp_get_teardown_cb(state))
1828 goto remove;
1829
1830 /*
1831 * Call the teardown callback for each present cpu depending
1832 * on the hotplug state of the cpu. This function is not
1833 * allowed to fail currently!
1834 */
1835 for_each_present_cpu(cpu) {
1836 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1837 int cpustate = st->state;
1838
1839 if (cpustate >= state)
1840 cpuhp_issue_call(cpu, state, false, NULL);
1841 }
1842remove:
1843 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1844 mutex_unlock(&cpuhp_state_mutex);
1845}
1846EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1847
1848void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1849{
1850 cpus_read_lock();
1851 __cpuhp_remove_state_cpuslocked(state, invoke);
1852 cpus_read_unlock();
1853}
1854EXPORT_SYMBOL(__cpuhp_remove_state);
1855
1856#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1857static ssize_t show_cpuhp_state(struct device *dev,
1858 struct device_attribute *attr, char *buf)
1859{
1860 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1861
1862 return sprintf(buf, "%d\n", st->state);
1863}
1864static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1865
1866static ssize_t write_cpuhp_target(struct device *dev,
1867 struct device_attribute *attr,
1868 const char *buf, size_t count)
1869{
1870 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1871 struct cpuhp_step *sp;
1872 int target, ret;
1873
1874 ret = kstrtoint(buf, 10, &target);
1875 if (ret)
1876 return ret;
1877
1878#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1879 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1880 return -EINVAL;
1881#else
1882 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1883 return -EINVAL;
1884#endif
1885
1886 ret = lock_device_hotplug_sysfs();
1887 if (ret)
1888 return ret;
1889
1890 mutex_lock(&cpuhp_state_mutex);
1891 sp = cpuhp_get_step(target);
1892 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1893 mutex_unlock(&cpuhp_state_mutex);
1894 if (ret)
1895 goto out;
1896
1897 if (st->state < target)
1898 ret = do_cpu_up(dev->id, target);
1899 else
1900 ret = do_cpu_down(dev->id, target);
1901out:
1902 unlock_device_hotplug();
1903 return ret ? ret : count;
1904}
1905
1906static ssize_t show_cpuhp_target(struct device *dev,
1907 struct device_attribute *attr, char *buf)
1908{
1909 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1910
1911 return sprintf(buf, "%d\n", st->target);
1912}
1913static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1914
1915
1916static ssize_t write_cpuhp_fail(struct device *dev,
1917 struct device_attribute *attr,
1918 const char *buf, size_t count)
1919{
1920 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1921 struct cpuhp_step *sp;
1922 int fail, ret;
1923
1924 ret = kstrtoint(buf, 10, &fail);
1925 if (ret)
1926 return ret;
1927
1928 /*
1929 * Cannot fail STARTING/DYING callbacks.
1930 */
1931 if (cpuhp_is_atomic_state(fail))
1932 return -EINVAL;
1933
1934 /*
1935 * Cannot fail anything that doesn't have callbacks.
1936 */
1937 mutex_lock(&cpuhp_state_mutex);
1938 sp = cpuhp_get_step(fail);
1939 if (!sp->startup.single && !sp->teardown.single)
1940 ret = -EINVAL;
1941 mutex_unlock(&cpuhp_state_mutex);
1942 if (ret)
1943 return ret;
1944
1945 st->fail = fail;
1946
1947 return count;
1948}
1949
1950static ssize_t show_cpuhp_fail(struct device *dev,
1951 struct device_attribute *attr, char *buf)
1952{
1953 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1954
1955 return sprintf(buf, "%d\n", st->fail);
1956}
1957
1958static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1959
1960static struct attribute *cpuhp_cpu_attrs[] = {
1961 &dev_attr_state.attr,
1962 &dev_attr_target.attr,
1963 &dev_attr_fail.attr,
1964 NULL
1965};
1966
1967static const struct attribute_group cpuhp_cpu_attr_group = {
1968 .attrs = cpuhp_cpu_attrs,
1969 .name = "hotplug",
1970 NULL
1971};
1972
1973static ssize_t show_cpuhp_states(struct device *dev,
1974 struct device_attribute *attr, char *buf)
1975{
1976 ssize_t cur, res = 0;
1977 int i;
1978
1979 mutex_lock(&cpuhp_state_mutex);
1980 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1981 struct cpuhp_step *sp = cpuhp_get_step(i);
1982
1983 if (sp->name) {
1984 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1985 buf += cur;
1986 res += cur;
1987 }
1988 }
1989 mutex_unlock(&cpuhp_state_mutex);
1990 return res;
1991}
1992static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1993
1994static struct attribute *cpuhp_cpu_root_attrs[] = {
1995 &dev_attr_states.attr,
1996 NULL
1997};
1998
1999static const struct attribute_group cpuhp_cpu_root_attr_group = {
2000 .attrs = cpuhp_cpu_root_attrs,
2001 .name = "hotplug",
2002 NULL
2003};
2004
2005#ifdef CONFIG_HOTPLUG_SMT
2006
2007static const char *smt_states[] = {
2008 [CPU_SMT_ENABLED] = "on",
2009 [CPU_SMT_DISABLED] = "off",
2010 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2011 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2012};
2013
2014static ssize_t
2015show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2016{
2017 return snprintf(buf, PAGE_SIZE - 2, "%s\n", smt_states[cpu_smt_control]);
2018}
2019
2020static void cpuhp_offline_cpu_device(unsigned int cpu)
2021{
2022 struct device *dev = get_cpu_device(cpu);
2023
2024 dev->offline = true;
2025 /* Tell user space about the state change */
2026 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2027}
2028
2029static void cpuhp_online_cpu_device(unsigned int cpu)
2030{
2031 struct device *dev = get_cpu_device(cpu);
2032
2033 dev->offline = false;
2034 /* Tell user space about the state change */
2035 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2036}
2037
2038static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2039{
2040 int cpu, ret = 0;
2041
2042 cpu_maps_update_begin();
2043 for_each_online_cpu(cpu) {
2044 if (topology_is_primary_thread(cpu))
2045 continue;
2046 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2047 if (ret)
2048 break;
2049 /*
2050 * As this needs to hold the cpu maps lock it's impossible
2051 * to call device_offline() because that ends up calling
2052 * cpu_down() which takes cpu maps lock. cpu maps lock
2053 * needs to be held as this might race against in kernel
2054 * abusers of the hotplug machinery (thermal management).
2055 *
2056 * So nothing would update device:offline state. That would
2057 * leave the sysfs entry stale and prevent onlining after
2058 * smt control has been changed to 'off' again. This is
2059 * called under the sysfs hotplug lock, so it is properly
2060 * serialized against the regular offline usage.
2061 */
2062 cpuhp_offline_cpu_device(cpu);
2063 }
2064 if (!ret) {
2065 cpu_smt_control = ctrlval;
2066 arch_smt_update();
2067 }
2068 cpu_maps_update_done();
2069 return ret;
2070}
2071
2072static int cpuhp_smt_enable(void)
2073{
2074 int cpu, ret = 0;
2075
2076 cpu_maps_update_begin();
2077 cpu_smt_control = CPU_SMT_ENABLED;
2078 arch_smt_update();
2079 for_each_present_cpu(cpu) {
2080 /* Skip online CPUs and CPUs on offline nodes */
2081 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2082 continue;
2083 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2084 if (ret)
2085 break;
2086 /* See comment in cpuhp_smt_disable() */
2087 cpuhp_online_cpu_device(cpu);
2088 }
2089 cpu_maps_update_done();
2090 return ret;
2091}
2092
2093static ssize_t
2094store_smt_control(struct device *dev, struct device_attribute *attr,
2095 const char *buf, size_t count)
2096{
2097 int ctrlval, ret;
2098
2099 if (sysfs_streq(buf, "on"))
2100 ctrlval = CPU_SMT_ENABLED;
2101 else if (sysfs_streq(buf, "off"))
2102 ctrlval = CPU_SMT_DISABLED;
2103 else if (sysfs_streq(buf, "forceoff"))
2104 ctrlval = CPU_SMT_FORCE_DISABLED;
2105 else
2106 return -EINVAL;
2107
2108 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2109 return -EPERM;
2110
2111 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2112 return -ENODEV;
2113
2114 ret = lock_device_hotplug_sysfs();
2115 if (ret)
2116 return ret;
2117
2118 if (ctrlval != cpu_smt_control) {
2119 switch (ctrlval) {
2120 case CPU_SMT_ENABLED:
2121 ret = cpuhp_smt_enable();
2122 break;
2123 case CPU_SMT_DISABLED:
2124 case CPU_SMT_FORCE_DISABLED:
2125 ret = cpuhp_smt_disable(ctrlval);
2126 break;
2127 }
2128 }
2129
2130 unlock_device_hotplug();
2131 return ret ? ret : count;
2132}
2133static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2134
2135static ssize_t
2136show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2137{
2138 bool active = topology_max_smt_threads() > 1;
2139
2140 return snprintf(buf, PAGE_SIZE - 2, "%d\n", active);
2141}
2142static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2143
2144static struct attribute *cpuhp_smt_attrs[] = {
2145 &dev_attr_control.attr,
2146 &dev_attr_active.attr,
2147 NULL
2148};
2149
2150static const struct attribute_group cpuhp_smt_attr_group = {
2151 .attrs = cpuhp_smt_attrs,
2152 .name = "smt",
2153 NULL
2154};
2155
2156static int __init cpu_smt_state_init(void)
2157{
2158 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2159 &cpuhp_smt_attr_group);
2160}
2161
2162#else
2163static inline int cpu_smt_state_init(void) { return 0; }
2164#endif
2165
2166static int __init cpuhp_sysfs_init(void)
2167{
2168 int cpu, ret;
2169
2170 ret = cpu_smt_state_init();
2171 if (ret)
2172 return ret;
2173
2174 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2175 &cpuhp_cpu_root_attr_group);
2176 if (ret)
2177 return ret;
2178
2179 for_each_possible_cpu(cpu) {
2180 struct device *dev = get_cpu_device(cpu);
2181
2182 if (!dev)
2183 continue;
2184 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2185 if (ret)
2186 return ret;
2187 }
2188 return 0;
2189}
2190device_initcall(cpuhp_sysfs_init);
2191#endif
2192
2193/*
2194 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2195 * represents all NR_CPUS bits binary values of 1<<nr.
2196 *
2197 * It is used by cpumask_of() to get a constant address to a CPU
2198 * mask value that has a single bit set only.
2199 */
2200
2201/* cpu_bit_bitmap[0] is empty - so we can back into it */
2202#define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2203#define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2204#define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2205#define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2206
2207const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2208
2209 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2210 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2211#if BITS_PER_LONG > 32
2212 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2213 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2214#endif
2215};
2216EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2217
2218const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2219EXPORT_SYMBOL(cpu_all_bits);
2220
2221#ifdef CONFIG_INIT_ALL_POSSIBLE
2222struct cpumask __cpu_possible_mask __read_mostly
2223 = {CPU_BITS_ALL};
2224#else
2225struct cpumask __cpu_possible_mask __read_mostly;
2226#endif
2227EXPORT_SYMBOL(__cpu_possible_mask);
2228
2229struct cpumask __cpu_online_mask __read_mostly;
2230EXPORT_SYMBOL(__cpu_online_mask);
2231
2232struct cpumask __cpu_present_mask __read_mostly;
2233EXPORT_SYMBOL(__cpu_present_mask);
2234
2235struct cpumask __cpu_active_mask __read_mostly;
2236EXPORT_SYMBOL(__cpu_active_mask);
2237
2238void init_cpu_present(const struct cpumask *src)
2239{
2240 cpumask_copy(&__cpu_present_mask, src);
2241}
2242
2243void init_cpu_possible(const struct cpumask *src)
2244{
2245 cpumask_copy(&__cpu_possible_mask, src);
2246}
2247
2248void init_cpu_online(const struct cpumask *src)
2249{
2250 cpumask_copy(&__cpu_online_mask, src);
2251}
2252
2253/*
2254 * Activate the first processor.
2255 */
2256void __init boot_cpu_init(void)
2257{
2258 int cpu = smp_processor_id();
2259
2260 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2261 set_cpu_online(cpu, true);
2262 set_cpu_active(cpu, true);
2263 set_cpu_present(cpu, true);
2264 set_cpu_possible(cpu, true);
2265
2266#ifdef CONFIG_SMP
2267 __boot_cpu_id = cpu;
2268#endif
2269}
2270
2271/*
2272 * Must be called _AFTER_ setting up the per_cpu areas
2273 */
2274void __init boot_cpu_hotplug_init(void)
2275{
2276#ifdef CONFIG_SMP
2277 this_cpu_write(cpuhp_state.booted_once, true);
2278#endif
2279 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2280}