blob: 11f28342f6410ef83357e3b30071c8f64ef5bfd1 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/buffer_head.h>
14#include <linux/mpage.h>
15#include <linux/writeback.h>
16#include <linux/backing-dev.h>
17#include <linux/pagevec.h>
18#include <linux/blkdev.h>
19#include <linux/bio.h>
20#include <linux/prefetch.h>
21#include <linux/uio.h>
22#include <linux/cleancache.h>
23#include <linux/sched/signal.h>
24
25#include "f2fs.h"
26#include "node.h"
27#include "segment.h"
28#include "trace.h"
29#include <trace/events/f2fs.h>
30
31#define NUM_PREALLOC_POST_READ_CTXS 128
32
33static struct kmem_cache *bio_post_read_ctx_cache;
34static mempool_t *bio_post_read_ctx_pool;
35
36static bool __is_cp_guaranteed(struct page *page)
37{
38 struct address_space *mapping = page->mapping;
39 struct inode *inode;
40 struct f2fs_sb_info *sbi;
41
42 if (!mapping)
43 return false;
44
45 inode = mapping->host;
46 sbi = F2FS_I_SB(inode);
47
48 if (inode->i_ino == F2FS_META_INO(sbi) ||
49 inode->i_ino == F2FS_NODE_INO(sbi) ||
50 S_ISDIR(inode->i_mode) ||
51 (S_ISREG(inode->i_mode) &&
52 is_inode_flag_set(inode, FI_ATOMIC_FILE)) ||
53 is_cold_data(page))
54 return true;
55 return false;
56}
57
58/* postprocessing steps for read bios */
59enum bio_post_read_step {
60 STEP_INITIAL = 0,
61 STEP_DECRYPT,
62};
63
64struct bio_post_read_ctx {
65 struct bio *bio;
66 struct work_struct work;
67 unsigned int cur_step;
68 unsigned int enabled_steps;
69};
70
71static void __read_end_io(struct bio *bio)
72{
73 struct page *page;
74 struct bio_vec *bv;
75 int i;
76
77 bio_for_each_segment_all(bv, bio, i) {
78 page = bv->bv_page;
79
80 /* PG_error was set if any post_read step failed */
81 if (bio->bi_status || PageError(page)) {
82 ClearPageUptodate(page);
83 /* will re-read again later */
84 ClearPageError(page);
85 } else {
86 SetPageUptodate(page);
87 }
88 unlock_page(page);
89 }
90 if (bio->bi_private)
91 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
92 bio_put(bio);
93}
94
95static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
96
97static void decrypt_work(struct work_struct *work)
98{
99 struct bio_post_read_ctx *ctx =
100 container_of(work, struct bio_post_read_ctx, work);
101
102 fscrypt_decrypt_bio(ctx->bio);
103
104 bio_post_read_processing(ctx);
105}
106
107static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
108{
109 switch (++ctx->cur_step) {
110 case STEP_DECRYPT:
111 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
112 INIT_WORK(&ctx->work, decrypt_work);
113 fscrypt_enqueue_decrypt_work(&ctx->work);
114 return;
115 }
116 ctx->cur_step++;
117 /* fall-through */
118 default:
119 __read_end_io(ctx->bio);
120 }
121}
122
123static bool f2fs_bio_post_read_required(struct bio *bio)
124{
125 return bio->bi_private && !bio->bi_status;
126}
127
128static void f2fs_read_end_io(struct bio *bio)
129{
130 if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)), FAULT_IO)) {
131 f2fs_show_injection_info(FAULT_IO);
132 bio->bi_status = BLK_STS_IOERR;
133 }
134
135 if (f2fs_bio_post_read_required(bio)) {
136 struct bio_post_read_ctx *ctx = bio->bi_private;
137
138 ctx->cur_step = STEP_INITIAL;
139 bio_post_read_processing(ctx);
140 return;
141 }
142
143 __read_end_io(bio);
144}
145
146static void f2fs_write_end_io(struct bio *bio)
147{
148 struct f2fs_sb_info *sbi = bio->bi_private;
149 struct bio_vec *bvec;
150 int i;
151
152 bio_for_each_segment_all(bvec, bio, i) {
153 struct page *page = bvec->bv_page;
154 enum count_type type = WB_DATA_TYPE(page);
155
156 if (IS_DUMMY_WRITTEN_PAGE(page)) {
157 set_page_private(page, (unsigned long)NULL);
158 ClearPagePrivate(page);
159 unlock_page(page);
160 mempool_free(page, sbi->write_io_dummy);
161
162 if (unlikely(bio->bi_status))
163 f2fs_stop_checkpoint(sbi, true);
164 continue;
165 }
166
167 fscrypt_pullback_bio_page(&page, true);
168
169 if (unlikely(bio->bi_status)) {
170 mapping_set_error(page->mapping, -EIO);
171 if (type == F2FS_WB_CP_DATA)
172 f2fs_stop_checkpoint(sbi, true);
173 }
174
175 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
176 page->index != nid_of_node(page));
177
178 dec_page_count(sbi, type);
179 if (f2fs_in_warm_node_list(sbi, page))
180 f2fs_del_fsync_node_entry(sbi, page);
181 clear_cold_data(page);
182 end_page_writeback(page);
183 }
184 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
185 wq_has_sleeper(&sbi->cp_wait))
186 wake_up(&sbi->cp_wait);
187
188 bio_put(bio);
189}
190
191/*
192 * Return true, if pre_bio's bdev is same as its target device.
193 */
194struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
195 block_t blk_addr, struct bio *bio)
196{
197 struct block_device *bdev = sbi->sb->s_bdev;
198 int i;
199
200 for (i = 0; i < sbi->s_ndevs; i++) {
201 if (FDEV(i).start_blk <= blk_addr &&
202 FDEV(i).end_blk >= blk_addr) {
203 blk_addr -= FDEV(i).start_blk;
204 bdev = FDEV(i).bdev;
205 break;
206 }
207 }
208 if (bio) {
209 bio_set_dev(bio, bdev);
210 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
211 }
212 return bdev;
213}
214
215int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
216{
217 int i;
218
219 for (i = 0; i < sbi->s_ndevs; i++)
220 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
221 return i;
222 return 0;
223}
224
225static bool __same_bdev(struct f2fs_sb_info *sbi,
226 block_t blk_addr, struct bio *bio)
227{
228 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
229 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
230}
231
232/*
233 * Low-level block read/write IO operations.
234 */
235static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
236 struct writeback_control *wbc,
237 int npages, bool is_read,
238 enum page_type type, enum temp_type temp)
239{
240 struct bio *bio;
241
242 bio = f2fs_bio_alloc(sbi, npages, true);
243
244 f2fs_target_device(sbi, blk_addr, bio);
245 if (is_read) {
246 bio->bi_end_io = f2fs_read_end_io;
247 bio->bi_private = NULL;
248 } else {
249 bio->bi_end_io = f2fs_write_end_io;
250 bio->bi_private = sbi;
251 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp);
252 }
253 if (wbc)
254 wbc_init_bio(wbc, bio);
255
256 return bio;
257}
258
259static inline void __submit_bio(struct f2fs_sb_info *sbi,
260 struct bio *bio, enum page_type type)
261{
262 if (!is_read_io(bio_op(bio))) {
263 unsigned int start;
264
265 if (type != DATA && type != NODE)
266 goto submit_io;
267
268 if (test_opt(sbi, LFS) && current->plug)
269 blk_finish_plug(current->plug);
270
271 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
272 start %= F2FS_IO_SIZE(sbi);
273
274 if (start == 0)
275 goto submit_io;
276
277 /* fill dummy pages */
278 for (; start < F2FS_IO_SIZE(sbi); start++) {
279 struct page *page =
280 mempool_alloc(sbi->write_io_dummy,
281 GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
282 f2fs_bug_on(sbi, !page);
283
284 SetPagePrivate(page);
285 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
286 lock_page(page);
287 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
288 f2fs_bug_on(sbi, 1);
289 }
290 /*
291 * In the NODE case, we lose next block address chain. So, we
292 * need to do checkpoint in f2fs_sync_file.
293 */
294 if (type == NODE)
295 set_sbi_flag(sbi, SBI_NEED_CP);
296 }
297submit_io:
298 if (is_read_io(bio_op(bio)))
299 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
300 else
301 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
302 submit_bio(bio);
303}
304
305static void __submit_merged_bio(struct f2fs_bio_info *io)
306{
307 struct f2fs_io_info *fio = &io->fio;
308
309 if (!io->bio)
310 return;
311
312 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
313
314 if (is_read_io(fio->op))
315 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
316 else
317 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
318
319 __submit_bio(io->sbi, io->bio, fio->type);
320 io->bio = NULL;
321}
322
323static bool __has_merged_page(struct f2fs_bio_info *io,
324 struct inode *inode, nid_t ino, pgoff_t idx)
325{
326 struct bio_vec *bvec;
327 struct page *target;
328 int i;
329
330 if (!io->bio)
331 return false;
332
333 if (!inode && !ino)
334 return true;
335
336 bio_for_each_segment_all(bvec, io->bio, i) {
337
338 if (bvec->bv_page->mapping)
339 target = bvec->bv_page;
340 else
341 target = fscrypt_control_page(bvec->bv_page);
342
343 if (idx != target->index)
344 continue;
345
346 if (inode && inode == target->mapping->host)
347 return true;
348 if (ino && ino == ino_of_node(target))
349 return true;
350 }
351
352 return false;
353}
354
355static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
356 nid_t ino, pgoff_t idx, enum page_type type)
357{
358 enum page_type btype = PAGE_TYPE_OF_BIO(type);
359 enum temp_type temp;
360 struct f2fs_bio_info *io;
361 bool ret = false;
362
363 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
364 io = sbi->write_io[btype] + temp;
365
366 down_read(&io->io_rwsem);
367 ret = __has_merged_page(io, inode, ino, idx);
368 up_read(&io->io_rwsem);
369
370 /* TODO: use HOT temp only for meta pages now. */
371 if (ret || btype == META)
372 break;
373 }
374 return ret;
375}
376
377static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
378 enum page_type type, enum temp_type temp)
379{
380 enum page_type btype = PAGE_TYPE_OF_BIO(type);
381 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
382
383 down_write(&io->io_rwsem);
384
385 /* change META to META_FLUSH in the checkpoint procedure */
386 if (type >= META_FLUSH) {
387 io->fio.type = META_FLUSH;
388 io->fio.op = REQ_OP_WRITE;
389 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
390 if (!test_opt(sbi, NOBARRIER))
391 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
392 }
393 __submit_merged_bio(io);
394 up_write(&io->io_rwsem);
395}
396
397static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
398 struct inode *inode, nid_t ino, pgoff_t idx,
399 enum page_type type, bool force)
400{
401 enum temp_type temp;
402
403 if (!force && !has_merged_page(sbi, inode, ino, idx, type))
404 return;
405
406 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
407
408 __f2fs_submit_merged_write(sbi, type, temp);
409
410 /* TODO: use HOT temp only for meta pages now. */
411 if (type >= META)
412 break;
413 }
414}
415
416void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
417{
418 __submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
419}
420
421void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
422 struct inode *inode, nid_t ino, pgoff_t idx,
423 enum page_type type)
424{
425 __submit_merged_write_cond(sbi, inode, ino, idx, type, false);
426}
427
428void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
429{
430 f2fs_submit_merged_write(sbi, DATA);
431 f2fs_submit_merged_write(sbi, NODE);
432 f2fs_submit_merged_write(sbi, META);
433}
434
435/*
436 * Fill the locked page with data located in the block address.
437 * A caller needs to unlock the page on failure.
438 */
439int f2fs_submit_page_bio(struct f2fs_io_info *fio)
440{
441 struct bio *bio;
442 struct page *page = fio->encrypted_page ?
443 fio->encrypted_page : fio->page;
444
445 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
446 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
447 return -EFAULT;
448
449 trace_f2fs_submit_page_bio(page, fio);
450 f2fs_trace_ios(fio, 0);
451
452 /* Allocate a new bio */
453 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
454 1, is_read_io(fio->op), fio->type, fio->temp);
455
456 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
457 bio_put(bio);
458 return -EFAULT;
459 }
460
461 if (fio->io_wbc && !is_read_io(fio->op))
462 wbc_account_io(fio->io_wbc, page, PAGE_SIZE);
463
464 bio_set_op_attrs(bio, fio->op, fio->op_flags);
465
466 if (!is_read_io(fio->op))
467 inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page));
468
469 __submit_bio(fio->sbi, bio, fio->type);
470 return 0;
471}
472
473void f2fs_submit_page_write(struct f2fs_io_info *fio)
474{
475 struct f2fs_sb_info *sbi = fio->sbi;
476 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
477 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
478 struct page *bio_page;
479
480 f2fs_bug_on(sbi, is_read_io(fio->op));
481
482 down_write(&io->io_rwsem);
483next:
484 if (fio->in_list) {
485 spin_lock(&io->io_lock);
486 if (list_empty(&io->io_list)) {
487 spin_unlock(&io->io_lock);
488 goto out;
489 }
490 fio = list_first_entry(&io->io_list,
491 struct f2fs_io_info, list);
492 list_del(&fio->list);
493 spin_unlock(&io->io_lock);
494 }
495
496 if (__is_valid_data_blkaddr(fio->old_blkaddr))
497 verify_block_addr(fio, fio->old_blkaddr);
498 verify_block_addr(fio, fio->new_blkaddr);
499
500 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
501
502 /* set submitted = true as a return value */
503 fio->submitted = true;
504
505 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
506
507 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
508 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
509 !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
510 __submit_merged_bio(io);
511alloc_new:
512 if (io->bio == NULL) {
513 if ((fio->type == DATA || fio->type == NODE) &&
514 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
515 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
516 fio->retry = true;
517 goto skip;
518 }
519 io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
520 BIO_MAX_PAGES, false,
521 fio->type, fio->temp);
522 io->fio = *fio;
523 }
524
525 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
526 __submit_merged_bio(io);
527 goto alloc_new;
528 }
529
530 if (fio->io_wbc)
531 wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE);
532
533 io->last_block_in_bio = fio->new_blkaddr;
534 f2fs_trace_ios(fio, 0);
535
536 trace_f2fs_submit_page_write(fio->page, fio);
537skip:
538 if (fio->in_list)
539 goto next;
540out:
541 up_write(&io->io_rwsem);
542}
543
544static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
545 unsigned nr_pages, unsigned op_flag)
546{
547 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
548 struct bio *bio;
549 struct bio_post_read_ctx *ctx;
550 unsigned int post_read_steps = 0;
551
552 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC))
553 return ERR_PTR(-EFAULT);
554
555 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
556 if (!bio)
557 return ERR_PTR(-ENOMEM);
558 f2fs_target_device(sbi, blkaddr, bio);
559 bio->bi_end_io = f2fs_read_end_io;
560 bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
561
562 if (f2fs_encrypted_file(inode))
563 post_read_steps |= 1 << STEP_DECRYPT;
564 if (post_read_steps) {
565 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
566 if (!ctx) {
567 bio_put(bio);
568 return ERR_PTR(-ENOMEM);
569 }
570 ctx->bio = bio;
571 ctx->enabled_steps = post_read_steps;
572 bio->bi_private = ctx;
573
574 /* wait the page to be moved by cleaning */
575 f2fs_wait_on_block_writeback(sbi, blkaddr);
576 }
577
578 return bio;
579}
580
581/* This can handle encryption stuffs */
582static int f2fs_submit_page_read(struct inode *inode, struct page *page,
583 block_t blkaddr)
584{
585 struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0);
586
587 if (IS_ERR(bio))
588 return PTR_ERR(bio);
589
590 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
591 bio_put(bio);
592 return -EFAULT;
593 }
594 ClearPageError(page);
595 __submit_bio(F2FS_I_SB(inode), bio, DATA);
596 return 0;
597}
598
599static void __set_data_blkaddr(struct dnode_of_data *dn)
600{
601 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
602 __le32 *addr_array;
603 int base = 0;
604
605 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
606 base = get_extra_isize(dn->inode);
607
608 /* Get physical address of data block */
609 addr_array = blkaddr_in_node(rn);
610 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
611}
612
613/*
614 * Lock ordering for the change of data block address:
615 * ->data_page
616 * ->node_page
617 * update block addresses in the node page
618 */
619void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
620{
621 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
622 __set_data_blkaddr(dn);
623 if (set_page_dirty(dn->node_page))
624 dn->node_changed = true;
625}
626
627void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
628{
629 dn->data_blkaddr = blkaddr;
630 f2fs_set_data_blkaddr(dn);
631 f2fs_update_extent_cache(dn);
632}
633
634/* dn->ofs_in_node will be returned with up-to-date last block pointer */
635int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
636{
637 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
638 int err;
639
640 if (!count)
641 return 0;
642
643 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
644 return -EPERM;
645 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
646 return err;
647
648 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
649 dn->ofs_in_node, count);
650
651 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
652
653 for (; count > 0; dn->ofs_in_node++) {
654 block_t blkaddr = datablock_addr(dn->inode,
655 dn->node_page, dn->ofs_in_node);
656 if (blkaddr == NULL_ADDR) {
657 dn->data_blkaddr = NEW_ADDR;
658 __set_data_blkaddr(dn);
659 count--;
660 }
661 }
662
663 if (set_page_dirty(dn->node_page))
664 dn->node_changed = true;
665 return 0;
666}
667
668/* Should keep dn->ofs_in_node unchanged */
669int f2fs_reserve_new_block(struct dnode_of_data *dn)
670{
671 unsigned int ofs_in_node = dn->ofs_in_node;
672 int ret;
673
674 ret = f2fs_reserve_new_blocks(dn, 1);
675 dn->ofs_in_node = ofs_in_node;
676 return ret;
677}
678
679int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
680{
681 bool need_put = dn->inode_page ? false : true;
682 int err;
683
684 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
685 if (err)
686 return err;
687
688 if (dn->data_blkaddr == NULL_ADDR)
689 err = f2fs_reserve_new_block(dn);
690 if (err || need_put)
691 f2fs_put_dnode(dn);
692 return err;
693}
694
695int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
696{
697 struct extent_info ei = {0,0,0};
698 struct inode *inode = dn->inode;
699
700 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
701 dn->data_blkaddr = ei.blk + index - ei.fofs;
702 return 0;
703 }
704
705 return f2fs_reserve_block(dn, index);
706}
707
708struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
709 int op_flags, bool for_write)
710{
711 struct address_space *mapping = inode->i_mapping;
712 struct dnode_of_data dn;
713 struct page *page;
714 struct extent_info ei = {0,0,0};
715 int err;
716
717 page = f2fs_grab_cache_page(mapping, index, for_write);
718 if (!page)
719 return ERR_PTR(-ENOMEM);
720
721 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
722 dn.data_blkaddr = ei.blk + index - ei.fofs;
723 goto got_it;
724 }
725
726 set_new_dnode(&dn, inode, NULL, NULL, 0);
727 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
728 if (err)
729 goto put_err;
730 f2fs_put_dnode(&dn);
731
732 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
733 err = -ENOENT;
734 goto put_err;
735 }
736got_it:
737 if (PageUptodate(page)) {
738 unlock_page(page);
739 return page;
740 }
741
742 /*
743 * A new dentry page is allocated but not able to be written, since its
744 * new inode page couldn't be allocated due to -ENOSPC.
745 * In such the case, its blkaddr can be remained as NEW_ADDR.
746 * see, f2fs_add_link -> f2fs_get_new_data_page ->
747 * f2fs_init_inode_metadata.
748 */
749 if (dn.data_blkaddr == NEW_ADDR) {
750 zero_user_segment(page, 0, PAGE_SIZE);
751 if (!PageUptodate(page))
752 SetPageUptodate(page);
753 unlock_page(page);
754 return page;
755 }
756
757 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
758 if (err)
759 goto put_err;
760 return page;
761
762put_err:
763 f2fs_put_page(page, 1);
764 return ERR_PTR(err);
765}
766
767struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
768{
769 struct address_space *mapping = inode->i_mapping;
770 struct page *page;
771
772 page = find_get_page(mapping, index);
773 if (page && PageUptodate(page))
774 return page;
775 f2fs_put_page(page, 0);
776
777 page = f2fs_get_read_data_page(inode, index, 0, false);
778 if (IS_ERR(page))
779 return page;
780
781 if (PageUptodate(page))
782 return page;
783
784 wait_on_page_locked(page);
785 if (unlikely(!PageUptodate(page))) {
786 f2fs_put_page(page, 0);
787 return ERR_PTR(-EIO);
788 }
789 return page;
790}
791
792/*
793 * If it tries to access a hole, return an error.
794 * Because, the callers, functions in dir.c and GC, should be able to know
795 * whether this page exists or not.
796 */
797struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
798 bool for_write)
799{
800 struct address_space *mapping = inode->i_mapping;
801 struct page *page;
802repeat:
803 page = f2fs_get_read_data_page(inode, index, 0, for_write);
804 if (IS_ERR(page))
805 return page;
806
807 /* wait for read completion */
808 lock_page(page);
809 if (unlikely(page->mapping != mapping)) {
810 f2fs_put_page(page, 1);
811 goto repeat;
812 }
813 if (unlikely(!PageUptodate(page))) {
814 f2fs_put_page(page, 1);
815 return ERR_PTR(-EIO);
816 }
817 return page;
818}
819
820/*
821 * Caller ensures that this data page is never allocated.
822 * A new zero-filled data page is allocated in the page cache.
823 *
824 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
825 * f2fs_unlock_op().
826 * Note that, ipage is set only by make_empty_dir, and if any error occur,
827 * ipage should be released by this function.
828 */
829struct page *f2fs_get_new_data_page(struct inode *inode,
830 struct page *ipage, pgoff_t index, bool new_i_size)
831{
832 struct address_space *mapping = inode->i_mapping;
833 struct page *page;
834 struct dnode_of_data dn;
835 int err;
836
837 page = f2fs_grab_cache_page(mapping, index, true);
838 if (!page) {
839 /*
840 * before exiting, we should make sure ipage will be released
841 * if any error occur.
842 */
843 f2fs_put_page(ipage, 1);
844 return ERR_PTR(-ENOMEM);
845 }
846
847 set_new_dnode(&dn, inode, ipage, NULL, 0);
848 err = f2fs_reserve_block(&dn, index);
849 if (err) {
850 f2fs_put_page(page, 1);
851 return ERR_PTR(err);
852 }
853 if (!ipage)
854 f2fs_put_dnode(&dn);
855
856 if (PageUptodate(page))
857 goto got_it;
858
859 if (dn.data_blkaddr == NEW_ADDR) {
860 zero_user_segment(page, 0, PAGE_SIZE);
861 if (!PageUptodate(page))
862 SetPageUptodate(page);
863 } else {
864 f2fs_put_page(page, 1);
865
866 /* if ipage exists, blkaddr should be NEW_ADDR */
867 f2fs_bug_on(F2FS_I_SB(inode), ipage);
868 page = f2fs_get_lock_data_page(inode, index, true);
869 if (IS_ERR(page))
870 return page;
871 }
872got_it:
873 if (new_i_size && i_size_read(inode) <
874 ((loff_t)(index + 1) << PAGE_SHIFT))
875 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
876 return page;
877}
878
879static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
880{
881 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
882 struct f2fs_summary sum;
883 struct node_info ni;
884 block_t old_blkaddr;
885 pgoff_t fofs;
886 blkcnt_t count = 1;
887 int err;
888
889 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
890 return -EPERM;
891
892 err = f2fs_get_node_info(sbi, dn->nid, &ni);
893 if (err)
894 return err;
895
896 dn->data_blkaddr = datablock_addr(dn->inode,
897 dn->node_page, dn->ofs_in_node);
898 if (dn->data_blkaddr == NEW_ADDR)
899 goto alloc;
900
901 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
902 return err;
903
904alloc:
905 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
906 old_blkaddr = dn->data_blkaddr;
907 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
908 &sum, seg_type, NULL, false);
909 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
910 invalidate_mapping_pages(META_MAPPING(sbi),
911 old_blkaddr, old_blkaddr);
912 f2fs_set_data_blkaddr(dn);
913
914 /* update i_size */
915 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
916 dn->ofs_in_node;
917 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
918 f2fs_i_size_write(dn->inode,
919 ((loff_t)(fofs + 1) << PAGE_SHIFT));
920 return 0;
921}
922
923int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
924{
925 struct inode *inode = file_inode(iocb->ki_filp);
926 struct f2fs_map_blocks map;
927 int flag;
928 int err = 0;
929 bool direct_io = iocb->ki_flags & IOCB_DIRECT;
930
931 /* convert inline data for Direct I/O*/
932 if (direct_io) {
933 err = f2fs_convert_inline_inode(inode);
934 if (err)
935 return err;
936 }
937
938 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
939 return 0;
940
941 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
942 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
943 if (map.m_len > map.m_lblk)
944 map.m_len -= map.m_lblk;
945 else
946 map.m_len = 0;
947
948 map.m_next_pgofs = NULL;
949 map.m_next_extent = NULL;
950 map.m_seg_type = NO_CHECK_TYPE;
951
952 if (direct_io) {
953 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
954 flag = f2fs_force_buffered_io(inode, WRITE) ?
955 F2FS_GET_BLOCK_PRE_AIO :
956 F2FS_GET_BLOCK_PRE_DIO;
957 goto map_blocks;
958 }
959 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
960 err = f2fs_convert_inline_inode(inode);
961 if (err)
962 return err;
963 }
964 if (f2fs_has_inline_data(inode))
965 return err;
966
967 flag = F2FS_GET_BLOCK_PRE_AIO;
968
969map_blocks:
970 err = f2fs_map_blocks(inode, &map, 1, flag);
971 if (map.m_len > 0 && err == -ENOSPC) {
972 if (!direct_io)
973 set_inode_flag(inode, FI_NO_PREALLOC);
974 err = 0;
975 }
976 return err;
977}
978
979static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
980{
981 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
982 if (lock)
983 down_read(&sbi->node_change);
984 else
985 up_read(&sbi->node_change);
986 } else {
987 if (lock)
988 f2fs_lock_op(sbi);
989 else
990 f2fs_unlock_op(sbi);
991 }
992}
993
994/*
995 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
996 * f2fs_map_blocks structure.
997 * If original data blocks are allocated, then give them to blockdev.
998 * Otherwise,
999 * a. preallocate requested block addresses
1000 * b. do not use extent cache for better performance
1001 * c. give the block addresses to blockdev
1002 */
1003int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1004 int create, int flag)
1005{
1006 unsigned int maxblocks = map->m_len;
1007 struct dnode_of_data dn;
1008 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1009 int mode = create ? ALLOC_NODE : LOOKUP_NODE;
1010 pgoff_t pgofs, end_offset, end;
1011 int err = 0, ofs = 1;
1012 unsigned int ofs_in_node, last_ofs_in_node;
1013 blkcnt_t prealloc;
1014 struct extent_info ei = {0,0,0};
1015 block_t blkaddr;
1016 unsigned int start_pgofs;
1017
1018 if (!maxblocks)
1019 return 0;
1020
1021 map->m_len = 0;
1022 map->m_flags = 0;
1023
1024 /* it only supports block size == page size */
1025 pgofs = (pgoff_t)map->m_lblk;
1026 end = pgofs + maxblocks;
1027
1028 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1029 map->m_pblk = ei.blk + pgofs - ei.fofs;
1030 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1031 map->m_flags = F2FS_MAP_MAPPED;
1032 if (map->m_next_extent)
1033 *map->m_next_extent = pgofs + map->m_len;
1034 goto out;
1035 }
1036
1037next_dnode:
1038 if (create)
1039 __do_map_lock(sbi, flag, true);
1040
1041 /* When reading holes, we need its node page */
1042 set_new_dnode(&dn, inode, NULL, NULL, 0);
1043 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1044 if (err) {
1045 if (flag == F2FS_GET_BLOCK_BMAP)
1046 map->m_pblk = 0;
1047 if (err == -ENOENT) {
1048 err = 0;
1049 if (map->m_next_pgofs)
1050 *map->m_next_pgofs =
1051 f2fs_get_next_page_offset(&dn, pgofs);
1052 if (map->m_next_extent)
1053 *map->m_next_extent =
1054 f2fs_get_next_page_offset(&dn, pgofs);
1055 }
1056 goto unlock_out;
1057 }
1058
1059 start_pgofs = pgofs;
1060 prealloc = 0;
1061 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1062 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1063
1064next_block:
1065 blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1066
1067 if (__is_valid_data_blkaddr(blkaddr) &&
1068 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
1069 err = -EFAULT;
1070 goto sync_out;
1071 }
1072
1073 if (!is_valid_data_blkaddr(sbi, blkaddr)) {
1074 if (create) {
1075 if (unlikely(f2fs_cp_error(sbi))) {
1076 err = -EIO;
1077 goto sync_out;
1078 }
1079 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1080 if (blkaddr == NULL_ADDR) {
1081 prealloc++;
1082 last_ofs_in_node = dn.ofs_in_node;
1083 }
1084 } else {
1085 err = __allocate_data_block(&dn,
1086 map->m_seg_type);
1087 if (!err)
1088 set_inode_flag(inode, FI_APPEND_WRITE);
1089 }
1090 if (err)
1091 goto sync_out;
1092 map->m_flags |= F2FS_MAP_NEW;
1093 blkaddr = dn.data_blkaddr;
1094 } else {
1095 if (flag == F2FS_GET_BLOCK_BMAP) {
1096 map->m_pblk = 0;
1097 goto sync_out;
1098 }
1099 if (flag == F2FS_GET_BLOCK_PRECACHE)
1100 goto sync_out;
1101 if (flag == F2FS_GET_BLOCK_FIEMAP &&
1102 blkaddr == NULL_ADDR) {
1103 if (map->m_next_pgofs)
1104 *map->m_next_pgofs = pgofs + 1;
1105 goto sync_out;
1106 }
1107 if (flag != F2FS_GET_BLOCK_FIEMAP) {
1108 /* for defragment case */
1109 if (map->m_next_pgofs)
1110 *map->m_next_pgofs = pgofs + 1;
1111 goto sync_out;
1112 }
1113 }
1114 }
1115
1116 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1117 goto skip;
1118
1119 if (map->m_len == 0) {
1120 /* preallocated unwritten block should be mapped for fiemap. */
1121 if (blkaddr == NEW_ADDR)
1122 map->m_flags |= F2FS_MAP_UNWRITTEN;
1123 map->m_flags |= F2FS_MAP_MAPPED;
1124
1125 map->m_pblk = blkaddr;
1126 map->m_len = 1;
1127 } else if ((map->m_pblk != NEW_ADDR &&
1128 blkaddr == (map->m_pblk + ofs)) ||
1129 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1130 flag == F2FS_GET_BLOCK_PRE_DIO) {
1131 ofs++;
1132 map->m_len++;
1133 } else {
1134 goto sync_out;
1135 }
1136
1137skip:
1138 dn.ofs_in_node++;
1139 pgofs++;
1140
1141 /* preallocate blocks in batch for one dnode page */
1142 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1143 (pgofs == end || dn.ofs_in_node == end_offset)) {
1144
1145 dn.ofs_in_node = ofs_in_node;
1146 err = f2fs_reserve_new_blocks(&dn, prealloc);
1147 if (err)
1148 goto sync_out;
1149
1150 map->m_len += dn.ofs_in_node - ofs_in_node;
1151 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1152 err = -ENOSPC;
1153 goto sync_out;
1154 }
1155 dn.ofs_in_node = end_offset;
1156 }
1157
1158 if (pgofs >= end)
1159 goto sync_out;
1160 else if (dn.ofs_in_node < end_offset)
1161 goto next_block;
1162
1163 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1164 if (map->m_flags & F2FS_MAP_MAPPED) {
1165 unsigned int ofs = start_pgofs - map->m_lblk;
1166
1167 f2fs_update_extent_cache_range(&dn,
1168 start_pgofs, map->m_pblk + ofs,
1169 map->m_len - ofs);
1170 }
1171 }
1172
1173 f2fs_put_dnode(&dn);
1174
1175 if (create) {
1176 __do_map_lock(sbi, flag, false);
1177 f2fs_balance_fs(sbi, dn.node_changed);
1178 }
1179 goto next_dnode;
1180
1181sync_out:
1182 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1183 if (map->m_flags & F2FS_MAP_MAPPED) {
1184 unsigned int ofs = start_pgofs - map->m_lblk;
1185
1186 f2fs_update_extent_cache_range(&dn,
1187 start_pgofs, map->m_pblk + ofs,
1188 map->m_len - ofs);
1189 }
1190 if (map->m_next_extent)
1191 *map->m_next_extent = pgofs + 1;
1192 }
1193 f2fs_put_dnode(&dn);
1194unlock_out:
1195 if (create) {
1196 __do_map_lock(sbi, flag, false);
1197 f2fs_balance_fs(sbi, dn.node_changed);
1198 }
1199out:
1200 trace_f2fs_map_blocks(inode, map, err);
1201 return err;
1202}
1203
1204bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1205{
1206 struct f2fs_map_blocks map;
1207 block_t last_lblk;
1208 int err;
1209
1210 if (pos + len > i_size_read(inode))
1211 return false;
1212
1213 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1214 map.m_next_pgofs = NULL;
1215 map.m_next_extent = NULL;
1216 map.m_seg_type = NO_CHECK_TYPE;
1217 last_lblk = F2FS_BLK_ALIGN(pos + len);
1218
1219 while (map.m_lblk < last_lblk) {
1220 map.m_len = last_lblk - map.m_lblk;
1221 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1222 if (err || map.m_len == 0)
1223 return false;
1224 map.m_lblk += map.m_len;
1225 }
1226 return true;
1227}
1228
1229static int __get_data_block(struct inode *inode, sector_t iblock,
1230 struct buffer_head *bh, int create, int flag,
1231 pgoff_t *next_pgofs, int seg_type)
1232{
1233 struct f2fs_map_blocks map;
1234 int err;
1235
1236 map.m_lblk = iblock;
1237 map.m_len = bh->b_size >> inode->i_blkbits;
1238 map.m_next_pgofs = next_pgofs;
1239 map.m_next_extent = NULL;
1240 map.m_seg_type = seg_type;
1241
1242 err = f2fs_map_blocks(inode, &map, create, flag);
1243 if (!err) {
1244 map_bh(bh, inode->i_sb, map.m_pblk);
1245 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1246 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1247 }
1248 return err;
1249}
1250
1251static int get_data_block(struct inode *inode, sector_t iblock,
1252 struct buffer_head *bh_result, int create, int flag,
1253 pgoff_t *next_pgofs)
1254{
1255 return __get_data_block(inode, iblock, bh_result, create,
1256 flag, next_pgofs,
1257 NO_CHECK_TYPE);
1258}
1259
1260static int get_data_block_dio(struct inode *inode, sector_t iblock,
1261 struct buffer_head *bh_result, int create)
1262{
1263 return __get_data_block(inode, iblock, bh_result, create,
1264 F2FS_GET_BLOCK_DEFAULT, NULL,
1265 f2fs_rw_hint_to_seg_type(
1266 inode->i_write_hint));
1267}
1268
1269static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1270 struct buffer_head *bh_result, int create)
1271{
1272 /* Block number less than F2FS MAX BLOCKS */
1273 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1274 return -EFBIG;
1275
1276 return __get_data_block(inode, iblock, bh_result, create,
1277 F2FS_GET_BLOCK_BMAP, NULL,
1278 NO_CHECK_TYPE);
1279}
1280
1281static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1282{
1283 return (offset >> inode->i_blkbits);
1284}
1285
1286static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1287{
1288 return (blk << inode->i_blkbits);
1289}
1290
1291static int f2fs_xattr_fiemap(struct inode *inode,
1292 struct fiemap_extent_info *fieinfo)
1293{
1294 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1295 struct page *page;
1296 struct node_info ni;
1297 __u64 phys = 0, len;
1298 __u32 flags;
1299 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1300 int err = 0;
1301
1302 if (f2fs_has_inline_xattr(inode)) {
1303 int offset;
1304
1305 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1306 inode->i_ino, false);
1307 if (!page)
1308 return -ENOMEM;
1309
1310 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1311 if (err) {
1312 f2fs_put_page(page, 1);
1313 return err;
1314 }
1315
1316 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1317 offset = offsetof(struct f2fs_inode, i_addr) +
1318 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1319 get_inline_xattr_addrs(inode));
1320
1321 phys += offset;
1322 len = inline_xattr_size(inode);
1323
1324 f2fs_put_page(page, 1);
1325
1326 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1327
1328 if (!xnid)
1329 flags |= FIEMAP_EXTENT_LAST;
1330
1331 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1332 if (err || err == 1)
1333 return err;
1334 }
1335
1336 if (xnid) {
1337 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1338 if (!page)
1339 return -ENOMEM;
1340
1341 err = f2fs_get_node_info(sbi, xnid, &ni);
1342 if (err) {
1343 f2fs_put_page(page, 1);
1344 return err;
1345 }
1346
1347 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1348 len = inode->i_sb->s_blocksize;
1349
1350 f2fs_put_page(page, 1);
1351
1352 flags = FIEMAP_EXTENT_LAST;
1353 }
1354
1355 if (phys)
1356 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1357
1358 return (err < 0 ? err : 0);
1359}
1360
1361int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1362 u64 start, u64 len)
1363{
1364 struct buffer_head map_bh;
1365 sector_t start_blk, last_blk;
1366 pgoff_t next_pgofs;
1367 u64 logical = 0, phys = 0, size = 0;
1368 u32 flags = 0;
1369 int ret = 0;
1370
1371 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1372 ret = f2fs_precache_extents(inode);
1373 if (ret)
1374 return ret;
1375 }
1376
1377 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1378 if (ret)
1379 return ret;
1380
1381 inode_lock(inode);
1382
1383 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1384 ret = f2fs_xattr_fiemap(inode, fieinfo);
1385 goto out;
1386 }
1387
1388 if (f2fs_has_inline_data(inode)) {
1389 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1390 if (ret != -EAGAIN)
1391 goto out;
1392 }
1393
1394 if (logical_to_blk(inode, len) == 0)
1395 len = blk_to_logical(inode, 1);
1396
1397 start_blk = logical_to_blk(inode, start);
1398 last_blk = logical_to_blk(inode, start + len - 1);
1399
1400next:
1401 memset(&map_bh, 0, sizeof(struct buffer_head));
1402 map_bh.b_size = len;
1403
1404 ret = get_data_block(inode, start_blk, &map_bh, 0,
1405 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1406 if (ret)
1407 goto out;
1408
1409 /* HOLE */
1410 if (!buffer_mapped(&map_bh)) {
1411 start_blk = next_pgofs;
1412
1413 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1414 F2FS_I_SB(inode)->max_file_blocks))
1415 goto prep_next;
1416
1417 flags |= FIEMAP_EXTENT_LAST;
1418 }
1419
1420 if (size) {
1421 if (f2fs_encrypted_inode(inode))
1422 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1423
1424 ret = fiemap_fill_next_extent(fieinfo, logical,
1425 phys, size, flags);
1426 }
1427
1428 if (start_blk > last_blk || ret)
1429 goto out;
1430
1431 logical = blk_to_logical(inode, start_blk);
1432 phys = blk_to_logical(inode, map_bh.b_blocknr);
1433 size = map_bh.b_size;
1434 flags = 0;
1435 if (buffer_unwritten(&map_bh))
1436 flags = FIEMAP_EXTENT_UNWRITTEN;
1437
1438 start_blk += logical_to_blk(inode, size);
1439
1440prep_next:
1441 cond_resched();
1442 if (fatal_signal_pending(current))
1443 ret = -EINTR;
1444 else
1445 goto next;
1446out:
1447 if (ret == 1)
1448 ret = 0;
1449
1450 inode_unlock(inode);
1451 return ret;
1452}
1453
1454/*
1455 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1456 * Major change was from block_size == page_size in f2fs by default.
1457 *
1458 * Note that the aops->readpages() function is ONLY used for read-ahead. If
1459 * this function ever deviates from doing just read-ahead, it should either
1460 * use ->readpage() or do the necessary surgery to decouple ->readpages()
1461 * from read-ahead.
1462 */
1463static int f2fs_mpage_readpages(struct address_space *mapping,
1464 struct list_head *pages, struct page *page,
1465 unsigned nr_pages, bool is_readahead)
1466{
1467 struct bio *bio = NULL;
1468 sector_t last_block_in_bio = 0;
1469 struct inode *inode = mapping->host;
1470 const unsigned blkbits = inode->i_blkbits;
1471 const unsigned blocksize = 1 << blkbits;
1472 sector_t block_in_file;
1473 sector_t last_block;
1474 sector_t last_block_in_file;
1475 sector_t block_nr;
1476 struct f2fs_map_blocks map;
1477
1478 map.m_pblk = 0;
1479 map.m_lblk = 0;
1480 map.m_len = 0;
1481 map.m_flags = 0;
1482 map.m_next_pgofs = NULL;
1483 map.m_next_extent = NULL;
1484 map.m_seg_type = NO_CHECK_TYPE;
1485
1486 for (; nr_pages; nr_pages--) {
1487 if (pages) {
1488 page = list_last_entry(pages, struct page, lru);
1489
1490 prefetchw(&page->flags);
1491 list_del(&page->lru);
1492 if (add_to_page_cache_lru(page, mapping,
1493 page->index,
1494 readahead_gfp_mask(mapping)))
1495 goto next_page;
1496 }
1497
1498 block_in_file = (sector_t)page->index;
1499 last_block = block_in_file + nr_pages;
1500 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1501 blkbits;
1502 if (last_block > last_block_in_file)
1503 last_block = last_block_in_file;
1504
1505 /*
1506 * Map blocks using the previous result first.
1507 */
1508 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1509 block_in_file > map.m_lblk &&
1510 block_in_file < (map.m_lblk + map.m_len))
1511 goto got_it;
1512
1513 /*
1514 * Then do more f2fs_map_blocks() calls until we are
1515 * done with this page.
1516 */
1517 map.m_flags = 0;
1518
1519 if (block_in_file < last_block) {
1520 map.m_lblk = block_in_file;
1521 map.m_len = last_block - block_in_file;
1522
1523 if (f2fs_map_blocks(inode, &map, 0,
1524 F2FS_GET_BLOCK_DEFAULT))
1525 goto set_error_page;
1526 }
1527got_it:
1528 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1529 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1530 SetPageMappedToDisk(page);
1531
1532 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1533 SetPageUptodate(page);
1534 goto confused;
1535 }
1536
1537 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1538 DATA_GENERIC))
1539 goto set_error_page;
1540 } else {
1541 zero_user_segment(page, 0, PAGE_SIZE);
1542 if (!PageUptodate(page))
1543 SetPageUptodate(page);
1544 unlock_page(page);
1545 goto next_page;
1546 }
1547
1548 /*
1549 * This page will go to BIO. Do we need to send this
1550 * BIO off first?
1551 */
1552 if (bio && (last_block_in_bio != block_nr - 1 ||
1553 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1554submit_and_realloc:
1555 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1556 bio = NULL;
1557 }
1558 if (bio == NULL) {
1559 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1560 is_readahead ? REQ_RAHEAD : 0);
1561 if (IS_ERR(bio)) {
1562 bio = NULL;
1563 goto set_error_page;
1564 }
1565 }
1566
1567 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1568 goto submit_and_realloc;
1569
1570 ClearPageError(page);
1571 last_block_in_bio = block_nr;
1572 goto next_page;
1573set_error_page:
1574 SetPageError(page);
1575 zero_user_segment(page, 0, PAGE_SIZE);
1576 unlock_page(page);
1577 goto next_page;
1578confused:
1579 if (bio) {
1580 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1581 bio = NULL;
1582 }
1583 unlock_page(page);
1584next_page:
1585 if (pages)
1586 put_page(page);
1587 }
1588 BUG_ON(pages && !list_empty(pages));
1589 if (bio)
1590 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1591 return 0;
1592}
1593
1594static int f2fs_read_data_page(struct file *file, struct page *page)
1595{
1596 struct inode *inode = page->mapping->host;
1597 int ret = -EAGAIN;
1598
1599 trace_f2fs_readpage(page, DATA);
1600
1601 /* If the file has inline data, try to read it directly */
1602 if (f2fs_has_inline_data(inode))
1603 ret = f2fs_read_inline_data(inode, page);
1604 if (ret == -EAGAIN)
1605 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1, false);
1606 return ret;
1607}
1608
1609static int f2fs_read_data_pages(struct file *file,
1610 struct address_space *mapping,
1611 struct list_head *pages, unsigned nr_pages)
1612{
1613 struct inode *inode = mapping->host;
1614 struct page *page = list_last_entry(pages, struct page, lru);
1615
1616 trace_f2fs_readpages(inode, page, nr_pages);
1617
1618 /* If the file has inline data, skip readpages */
1619 if (f2fs_has_inline_data(inode))
1620 return 0;
1621
1622 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
1623}
1624
1625static int encrypt_one_page(struct f2fs_io_info *fio)
1626{
1627 struct inode *inode = fio->page->mapping->host;
1628 struct page *mpage;
1629 gfp_t gfp_flags = GFP_NOFS;
1630
1631 if (!f2fs_encrypted_file(inode))
1632 return 0;
1633
1634 /* wait for GCed page writeback via META_MAPPING */
1635 f2fs_wait_on_block_writeback(fio->sbi, fio->old_blkaddr);
1636
1637retry_encrypt:
1638 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1639 PAGE_SIZE, 0, fio->page->index, gfp_flags);
1640 if (IS_ERR(fio->encrypted_page)) {
1641 /* flush pending IOs and wait for a while in the ENOMEM case */
1642 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1643 f2fs_flush_merged_writes(fio->sbi);
1644 congestion_wait(BLK_RW_ASYNC, HZ/50);
1645 gfp_flags |= __GFP_NOFAIL;
1646 goto retry_encrypt;
1647 }
1648 return PTR_ERR(fio->encrypted_page);
1649 }
1650
1651 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
1652 if (mpage) {
1653 if (PageUptodate(mpage))
1654 memcpy(page_address(mpage),
1655 page_address(fio->encrypted_page), PAGE_SIZE);
1656 f2fs_put_page(mpage, 1);
1657 }
1658 return 0;
1659}
1660
1661static inline bool check_inplace_update_policy(struct inode *inode,
1662 struct f2fs_io_info *fio)
1663{
1664 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1665 unsigned int policy = SM_I(sbi)->ipu_policy;
1666
1667 if (policy & (0x1 << F2FS_IPU_FORCE))
1668 return true;
1669 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
1670 return true;
1671 if (policy & (0x1 << F2FS_IPU_UTIL) &&
1672 utilization(sbi) > SM_I(sbi)->min_ipu_util)
1673 return true;
1674 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
1675 utilization(sbi) > SM_I(sbi)->min_ipu_util)
1676 return true;
1677
1678 /*
1679 * IPU for rewrite async pages
1680 */
1681 if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1682 fio && fio->op == REQ_OP_WRITE &&
1683 !(fio->op_flags & REQ_SYNC) &&
1684 !f2fs_encrypted_inode(inode))
1685 return true;
1686
1687 /* this is only set during fdatasync */
1688 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1689 is_inode_flag_set(inode, FI_NEED_IPU))
1690 return true;
1691
1692 return false;
1693}
1694
1695bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1696{
1697 if (f2fs_is_pinned_file(inode))
1698 return true;
1699
1700 /* if this is cold file, we should overwrite to avoid fragmentation */
1701 if (file_is_cold(inode))
1702 return true;
1703
1704 return check_inplace_update_policy(inode, fio);
1705}
1706
1707bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1708{
1709 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1710
1711 if (test_opt(sbi, LFS))
1712 return true;
1713 if (S_ISDIR(inode->i_mode))
1714 return true;
1715 if (f2fs_is_atomic_file(inode))
1716 return true;
1717 if (fio) {
1718 if (is_cold_data(fio->page))
1719 return true;
1720 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1721 return true;
1722 }
1723 return false;
1724}
1725
1726static inline bool need_inplace_update(struct f2fs_io_info *fio)
1727{
1728 struct inode *inode = fio->page->mapping->host;
1729
1730 if (f2fs_should_update_outplace(inode, fio))
1731 return false;
1732
1733 return f2fs_should_update_inplace(inode, fio);
1734}
1735
1736int f2fs_do_write_data_page(struct f2fs_io_info *fio)
1737{
1738 struct page *page = fio->page;
1739 struct inode *inode = page->mapping->host;
1740 struct dnode_of_data dn;
1741 struct extent_info ei = {0,0,0};
1742 struct node_info ni;
1743 bool ipu_force = false;
1744 int err = 0;
1745
1746 set_new_dnode(&dn, inode, NULL, NULL, 0);
1747 if (need_inplace_update(fio) &&
1748 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1749 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1750
1751 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1752 DATA_GENERIC))
1753 return -EFAULT;
1754
1755 ipu_force = true;
1756 fio->need_lock = LOCK_DONE;
1757 goto got_it;
1758 }
1759
1760 /* Deadlock due to between page->lock and f2fs_lock_op */
1761 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1762 return -EAGAIN;
1763
1764 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1765 if (err)
1766 goto out;
1767
1768 fio->old_blkaddr = dn.data_blkaddr;
1769
1770 /* This page is already truncated */
1771 if (fio->old_blkaddr == NULL_ADDR) {
1772 ClearPageUptodate(page);
1773 goto out_writepage;
1774 }
1775got_it:
1776 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
1777 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1778 DATA_GENERIC)) {
1779 err = -EFAULT;
1780 goto out_writepage;
1781 }
1782 /*
1783 * If current allocation needs SSR,
1784 * it had better in-place writes for updated data.
1785 */
1786 if (ipu_force || (is_valid_data_blkaddr(fio->sbi, fio->old_blkaddr) &&
1787 need_inplace_update(fio))) {
1788 err = encrypt_one_page(fio);
1789 if (err)
1790 goto out_writepage;
1791
1792 set_page_writeback(page);
1793 ClearPageError(page);
1794 f2fs_put_dnode(&dn);
1795 if (fio->need_lock == LOCK_REQ)
1796 f2fs_unlock_op(fio->sbi);
1797 err = f2fs_inplace_write_data(fio);
1798 trace_f2fs_do_write_data_page(fio->page, IPU);
1799 set_inode_flag(inode, FI_UPDATE_WRITE);
1800 return err;
1801 }
1802
1803 if (fio->need_lock == LOCK_RETRY) {
1804 if (!f2fs_trylock_op(fio->sbi)) {
1805 err = -EAGAIN;
1806 goto out_writepage;
1807 }
1808 fio->need_lock = LOCK_REQ;
1809 }
1810
1811 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
1812 if (err)
1813 goto out_writepage;
1814
1815 fio->version = ni.version;
1816
1817 err = encrypt_one_page(fio);
1818 if (err)
1819 goto out_writepage;
1820
1821 set_page_writeback(page);
1822 ClearPageError(page);
1823
1824 /* LFS mode write path */
1825 f2fs_outplace_write_data(&dn, fio);
1826 trace_f2fs_do_write_data_page(page, OPU);
1827 set_inode_flag(inode, FI_APPEND_WRITE);
1828 if (page->index == 0)
1829 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1830out_writepage:
1831 f2fs_put_dnode(&dn);
1832out:
1833 if (fio->need_lock == LOCK_REQ)
1834 f2fs_unlock_op(fio->sbi);
1835 return err;
1836}
1837
1838static int __write_data_page(struct page *page, bool *submitted,
1839 struct writeback_control *wbc,
1840 enum iostat_type io_type)
1841{
1842 struct inode *inode = page->mapping->host;
1843 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1844 loff_t i_size = i_size_read(inode);
1845 const pgoff_t end_index = ((unsigned long long) i_size)
1846 >> PAGE_SHIFT;
1847 loff_t psize = (page->index + 1) << PAGE_SHIFT;
1848 unsigned offset = 0;
1849 bool need_balance_fs = false;
1850 int err = 0;
1851 struct f2fs_io_info fio = {
1852 .sbi = sbi,
1853 .ino = inode->i_ino,
1854 .type = DATA,
1855 .op = REQ_OP_WRITE,
1856 .op_flags = wbc_to_write_flags(wbc),
1857 .old_blkaddr = NULL_ADDR,
1858 .page = page,
1859 .encrypted_page = NULL,
1860 .submitted = false,
1861 .need_lock = LOCK_RETRY,
1862 .io_type = io_type,
1863 .io_wbc = wbc,
1864 };
1865
1866 trace_f2fs_writepage(page, DATA);
1867
1868 /* we should bypass data pages to proceed the kworkder jobs */
1869 if (unlikely(f2fs_cp_error(sbi))) {
1870 mapping_set_error(page->mapping, -EIO);
1871 /*
1872 * don't drop any dirty dentry pages for keeping lastest
1873 * directory structure.
1874 */
1875 if (S_ISDIR(inode->i_mode))
1876 goto redirty_out;
1877 goto out;
1878 }
1879
1880 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1881 goto redirty_out;
1882
1883 if (page->index < end_index)
1884 goto write;
1885
1886 /*
1887 * If the offset is out-of-range of file size,
1888 * this page does not have to be written to disk.
1889 */
1890 offset = i_size & (PAGE_SIZE - 1);
1891 if ((page->index >= end_index + 1) || !offset)
1892 goto out;
1893
1894 zero_user_segment(page, offset, PAGE_SIZE);
1895write:
1896 if (f2fs_is_drop_cache(inode))
1897 goto out;
1898 /* we should not write 0'th page having journal header */
1899 if (f2fs_is_volatile_file(inode) && (!page->index ||
1900 (!wbc->for_reclaim &&
1901 f2fs_available_free_memory(sbi, BASE_CHECK))))
1902 goto redirty_out;
1903
1904 /* Dentry blocks are controlled by checkpoint */
1905 if (S_ISDIR(inode->i_mode)) {
1906 fio.need_lock = LOCK_DONE;
1907 err = f2fs_do_write_data_page(&fio);
1908 goto done;
1909 }
1910
1911 if (!wbc->for_reclaim)
1912 need_balance_fs = true;
1913 else if (has_not_enough_free_secs(sbi, 0, 0))
1914 goto redirty_out;
1915 else
1916 set_inode_flag(inode, FI_HOT_DATA);
1917
1918 err = -EAGAIN;
1919 if (f2fs_has_inline_data(inode)) {
1920 err = f2fs_write_inline_data(inode, page);
1921 if (!err)
1922 goto out;
1923 }
1924
1925 if (err == -EAGAIN) {
1926 err = f2fs_do_write_data_page(&fio);
1927 if (err == -EAGAIN) {
1928 fio.need_lock = LOCK_REQ;
1929 err = f2fs_do_write_data_page(&fio);
1930 }
1931 }
1932
1933 if (err) {
1934 file_set_keep_isize(inode);
1935 } else {
1936 down_write(&F2FS_I(inode)->i_sem);
1937 if (F2FS_I(inode)->last_disk_size < psize)
1938 F2FS_I(inode)->last_disk_size = psize;
1939 up_write(&F2FS_I(inode)->i_sem);
1940 }
1941
1942done:
1943 if (err && err != -ENOENT)
1944 goto redirty_out;
1945
1946out:
1947 inode_dec_dirty_pages(inode);
1948 if (err)
1949 ClearPageUptodate(page);
1950
1951 if (wbc->for_reclaim) {
1952 f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA);
1953 clear_inode_flag(inode, FI_HOT_DATA);
1954 f2fs_remove_dirty_inode(inode);
1955 submitted = NULL;
1956 }
1957
1958 unlock_page(page);
1959 if (!S_ISDIR(inode->i_mode))
1960 f2fs_balance_fs(sbi, need_balance_fs);
1961
1962 if (unlikely(f2fs_cp_error(sbi))) {
1963 f2fs_submit_merged_write(sbi, DATA);
1964 submitted = NULL;
1965 }
1966
1967 if (submitted)
1968 *submitted = fio.submitted;
1969
1970 return 0;
1971
1972redirty_out:
1973 redirty_page_for_writepage(wbc, page);
1974 /*
1975 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
1976 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
1977 * file_write_and_wait_range() will see EIO error, which is critical
1978 * to return value of fsync() followed by atomic_write failure to user.
1979 */
1980 if (!err || wbc->for_reclaim)
1981 return AOP_WRITEPAGE_ACTIVATE;
1982 unlock_page(page);
1983 return err;
1984}
1985
1986static int f2fs_write_data_page(struct page *page,
1987 struct writeback_control *wbc)
1988{
1989 return __write_data_page(page, NULL, wbc, FS_DATA_IO);
1990}
1991
1992/*
1993 * This function was copied from write_cche_pages from mm/page-writeback.c.
1994 * The major change is making write step of cold data page separately from
1995 * warm/hot data page.
1996 */
1997static int f2fs_write_cache_pages(struct address_space *mapping,
1998 struct writeback_control *wbc,
1999 enum iostat_type io_type)
2000{
2001 int ret = 0;
2002 int done = 0;
2003 struct pagevec pvec;
2004 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2005 int nr_pages;
2006 pgoff_t uninitialized_var(writeback_index);
2007 pgoff_t index;
2008 pgoff_t end; /* Inclusive */
2009 pgoff_t done_index;
2010 pgoff_t last_idx = ULONG_MAX;
2011 int cycled;
2012 int range_whole = 0;
2013 int tag;
2014
2015 pagevec_init(&pvec);
2016
2017 if (get_dirty_pages(mapping->host) <=
2018 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2019 set_inode_flag(mapping->host, FI_HOT_DATA);
2020 else
2021 clear_inode_flag(mapping->host, FI_HOT_DATA);
2022
2023 if (wbc->range_cyclic) {
2024 writeback_index = mapping->writeback_index; /* prev offset */
2025 index = writeback_index;
2026 if (index == 0)
2027 cycled = 1;
2028 else
2029 cycled = 0;
2030 end = -1;
2031 } else {
2032 index = wbc->range_start >> PAGE_SHIFT;
2033 end = wbc->range_end >> PAGE_SHIFT;
2034 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2035 range_whole = 1;
2036 cycled = 1; /* ignore range_cyclic tests */
2037 }
2038 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2039 tag = PAGECACHE_TAG_TOWRITE;
2040 else
2041 tag = PAGECACHE_TAG_DIRTY;
2042retry:
2043 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2044 tag_pages_for_writeback(mapping, index, end);
2045 done_index = index;
2046 while (!done && (index <= end)) {
2047 int i;
2048
2049 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2050 tag);
2051 if (nr_pages == 0)
2052 break;
2053
2054 for (i = 0; i < nr_pages; i++) {
2055 struct page *page = pvec.pages[i];
2056 bool submitted = false;
2057
2058 /* give a priority to WB_SYNC threads */
2059 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2060 wbc->sync_mode == WB_SYNC_NONE) {
2061 done = 1;
2062 break;
2063 }
2064
2065 done_index = page->index;
2066retry_write:
2067 lock_page(page);
2068
2069 if (unlikely(page->mapping != mapping)) {
2070continue_unlock:
2071 unlock_page(page);
2072 continue;
2073 }
2074
2075 if (!PageDirty(page)) {
2076 /* someone wrote it for us */
2077 goto continue_unlock;
2078 }
2079
2080 if (PageWriteback(page)) {
2081 if (wbc->sync_mode != WB_SYNC_NONE)
2082 f2fs_wait_on_page_writeback(page,
2083 DATA, true);
2084 else
2085 goto continue_unlock;
2086 }
2087
2088 BUG_ON(PageWriteback(page));
2089 if (!clear_page_dirty_for_io(page))
2090 goto continue_unlock;
2091
2092 ret = __write_data_page(page, &submitted, wbc, io_type);
2093 if (unlikely(ret)) {
2094 /*
2095 * keep nr_to_write, since vfs uses this to
2096 * get # of written pages.
2097 */
2098 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2099 unlock_page(page);
2100 ret = 0;
2101 continue;
2102 } else if (ret == -EAGAIN) {
2103 ret = 0;
2104 if (wbc->sync_mode == WB_SYNC_ALL) {
2105 cond_resched();
2106 congestion_wait(BLK_RW_ASYNC,
2107 HZ/50);
2108 goto retry_write;
2109 }
2110 continue;
2111 }
2112 done_index = page->index + 1;
2113 done = 1;
2114 break;
2115 } else if (submitted) {
2116 last_idx = page->index;
2117 }
2118
2119 if (--wbc->nr_to_write <= 0 &&
2120 wbc->sync_mode == WB_SYNC_NONE) {
2121 done = 1;
2122 break;
2123 }
2124 }
2125 pagevec_release(&pvec);
2126 cond_resched();
2127 }
2128
2129 if (!cycled && !done) {
2130 cycled = 1;
2131 index = 0;
2132 end = writeback_index - 1;
2133 goto retry;
2134 }
2135 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2136 mapping->writeback_index = done_index;
2137
2138 if (last_idx != ULONG_MAX)
2139 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2140 0, last_idx, DATA);
2141
2142 return ret;
2143}
2144
2145static inline bool __should_serialize_io(struct inode *inode,
2146 struct writeback_control *wbc)
2147{
2148 if (!S_ISREG(inode->i_mode))
2149 return false;
2150 if (wbc->sync_mode != WB_SYNC_ALL)
2151 return true;
2152 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2153 return true;
2154 return false;
2155}
2156
2157static int __f2fs_write_data_pages(struct address_space *mapping,
2158 struct writeback_control *wbc,
2159 enum iostat_type io_type)
2160{
2161 struct inode *inode = mapping->host;
2162 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2163 struct blk_plug plug;
2164 int ret;
2165 bool locked = false;
2166
2167 /* deal with chardevs and other special file */
2168 if (!mapping->a_ops->writepage)
2169 return 0;
2170
2171 /* skip writing if there is no dirty page in this inode */
2172 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2173 return 0;
2174
2175 /* during POR, we don't need to trigger writepage at all. */
2176 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2177 goto skip_write;
2178
2179 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
2180 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2181 f2fs_available_free_memory(sbi, DIRTY_DENTS))
2182 goto skip_write;
2183
2184 /* skip writing during file defragment */
2185 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2186 goto skip_write;
2187
2188 trace_f2fs_writepages(mapping->host, wbc, DATA);
2189
2190 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2191 if (wbc->sync_mode == WB_SYNC_ALL)
2192 atomic_inc(&sbi->wb_sync_req[DATA]);
2193 else if (atomic_read(&sbi->wb_sync_req[DATA]))
2194 goto skip_write;
2195
2196 if (__should_serialize_io(inode, wbc)) {
2197 mutex_lock(&sbi->writepages);
2198 locked = true;
2199 }
2200
2201 blk_start_plug(&plug);
2202 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2203 blk_finish_plug(&plug);
2204
2205 if (locked)
2206 mutex_unlock(&sbi->writepages);
2207
2208 if (wbc->sync_mode == WB_SYNC_ALL)
2209 atomic_dec(&sbi->wb_sync_req[DATA]);
2210 /*
2211 * if some pages were truncated, we cannot guarantee its mapping->host
2212 * to detect pending bios.
2213 */
2214
2215 f2fs_remove_dirty_inode(inode);
2216 return ret;
2217
2218skip_write:
2219 wbc->pages_skipped += get_dirty_pages(inode);
2220 trace_f2fs_writepages(mapping->host, wbc, DATA);
2221 return 0;
2222}
2223
2224static int f2fs_write_data_pages(struct address_space *mapping,
2225 struct writeback_control *wbc)
2226{
2227 struct inode *inode = mapping->host;
2228
2229 return __f2fs_write_data_pages(mapping, wbc,
2230 F2FS_I(inode)->cp_task == current ?
2231 FS_CP_DATA_IO : FS_DATA_IO);
2232}
2233
2234static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2235{
2236 struct inode *inode = mapping->host;
2237 loff_t i_size = i_size_read(inode);
2238
2239 if (to > i_size) {
2240 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2241 down_write(&F2FS_I(inode)->i_mmap_sem);
2242
2243 truncate_pagecache(inode, i_size);
2244 f2fs_truncate_blocks(inode, i_size, true);
2245
2246 up_write(&F2FS_I(inode)->i_mmap_sem);
2247 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2248 }
2249}
2250
2251static int prepare_write_begin(struct f2fs_sb_info *sbi,
2252 struct page *page, loff_t pos, unsigned len,
2253 block_t *blk_addr, bool *node_changed)
2254{
2255 struct inode *inode = page->mapping->host;
2256 pgoff_t index = page->index;
2257 struct dnode_of_data dn;
2258 struct page *ipage;
2259 bool locked = false;
2260 struct extent_info ei = {0,0,0};
2261 int err = 0;
2262
2263 /*
2264 * we already allocated all the blocks, so we don't need to get
2265 * the block addresses when there is no need to fill the page.
2266 */
2267 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2268 !is_inode_flag_set(inode, FI_NO_PREALLOC))
2269 return 0;
2270
2271 if (f2fs_has_inline_data(inode) ||
2272 (pos & PAGE_MASK) >= i_size_read(inode)) {
2273 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
2274 locked = true;
2275 }
2276restart:
2277 /* check inline_data */
2278 ipage = f2fs_get_node_page(sbi, inode->i_ino);
2279 if (IS_ERR(ipage)) {
2280 err = PTR_ERR(ipage);
2281 goto unlock_out;
2282 }
2283
2284 set_new_dnode(&dn, inode, ipage, ipage, 0);
2285
2286 if (f2fs_has_inline_data(inode)) {
2287 if (pos + len <= MAX_INLINE_DATA(inode)) {
2288 f2fs_do_read_inline_data(page, ipage);
2289 set_inode_flag(inode, FI_DATA_EXIST);
2290 if (inode->i_nlink)
2291 set_inline_node(ipage);
2292 } else {
2293 err = f2fs_convert_inline_page(&dn, page);
2294 if (err)
2295 goto out;
2296 if (dn.data_blkaddr == NULL_ADDR)
2297 err = f2fs_get_block(&dn, index);
2298 }
2299 } else if (locked) {
2300 err = f2fs_get_block(&dn, index);
2301 } else {
2302 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2303 dn.data_blkaddr = ei.blk + index - ei.fofs;
2304 } else {
2305 /* hole case */
2306 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2307 if (err || dn.data_blkaddr == NULL_ADDR) {
2308 f2fs_put_dnode(&dn);
2309 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2310 true);
2311 locked = true;
2312 goto restart;
2313 }
2314 }
2315 }
2316
2317 /* convert_inline_page can make node_changed */
2318 *blk_addr = dn.data_blkaddr;
2319 *node_changed = dn.node_changed;
2320out:
2321 f2fs_put_dnode(&dn);
2322unlock_out:
2323 if (locked)
2324 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
2325 return err;
2326}
2327
2328static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2329 loff_t pos, unsigned len, unsigned flags,
2330 struct page **pagep, void **fsdata)
2331{
2332 struct inode *inode = mapping->host;
2333 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2334 struct page *page = NULL;
2335 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2336 bool need_balance = false, drop_atomic = false;
2337 block_t blkaddr = NULL_ADDR;
2338 int err = 0;
2339
2340 trace_f2fs_write_begin(inode, pos, len, flags);
2341
2342 if ((f2fs_is_atomic_file(inode) &&
2343 !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
2344 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2345 err = -ENOMEM;
2346 drop_atomic = true;
2347 goto fail;
2348 }
2349
2350 /*
2351 * We should check this at this moment to avoid deadlock on inode page
2352 * and #0 page. The locking rule for inline_data conversion should be:
2353 * lock_page(page #0) -> lock_page(inode_page)
2354 */
2355 if (index != 0) {
2356 err = f2fs_convert_inline_inode(inode);
2357 if (err)
2358 goto fail;
2359 }
2360repeat:
2361 /*
2362 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2363 * wait_for_stable_page. Will wait that below with our IO control.
2364 */
2365 page = f2fs_pagecache_get_page(mapping, index,
2366 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2367 if (!page) {
2368 err = -ENOMEM;
2369 goto fail;
2370 }
2371
2372 *pagep = page;
2373
2374 err = prepare_write_begin(sbi, page, pos, len,
2375 &blkaddr, &need_balance);
2376 if (err)
2377 goto fail;
2378
2379 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
2380 unlock_page(page);
2381 f2fs_balance_fs(sbi, true);
2382 lock_page(page);
2383 if (page->mapping != mapping) {
2384 /* The page got truncated from under us */
2385 f2fs_put_page(page, 1);
2386 goto repeat;
2387 }
2388 }
2389
2390 f2fs_wait_on_page_writeback(page, DATA, false);
2391
2392 /* wait for GCed page writeback via META_MAPPING */
2393 if (f2fs_post_read_required(inode))
2394 f2fs_wait_on_block_writeback(sbi, blkaddr);
2395
2396 if (len == PAGE_SIZE || PageUptodate(page))
2397 return 0;
2398
2399 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
2400 zero_user_segment(page, len, PAGE_SIZE);
2401 return 0;
2402 }
2403
2404 if (blkaddr == NEW_ADDR) {
2405 zero_user_segment(page, 0, PAGE_SIZE);
2406 SetPageUptodate(page);
2407 } else {
2408 err = f2fs_submit_page_read(inode, page, blkaddr);
2409 if (err)
2410 goto fail;
2411
2412 lock_page(page);
2413 if (unlikely(page->mapping != mapping)) {
2414 f2fs_put_page(page, 1);
2415 goto repeat;
2416 }
2417 if (unlikely(!PageUptodate(page))) {
2418 err = -EIO;
2419 goto fail;
2420 }
2421 }
2422 return 0;
2423
2424fail:
2425 f2fs_put_page(page, 1);
2426 f2fs_write_failed(mapping, pos + len);
2427 if (drop_atomic)
2428 f2fs_drop_inmem_pages_all(sbi, false);
2429 return err;
2430}
2431
2432static int f2fs_write_end(struct file *file,
2433 struct address_space *mapping,
2434 loff_t pos, unsigned len, unsigned copied,
2435 struct page *page, void *fsdata)
2436{
2437 struct inode *inode = page->mapping->host;
2438
2439 trace_f2fs_write_end(inode, pos, len, copied);
2440
2441 /*
2442 * This should be come from len == PAGE_SIZE, and we expect copied
2443 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2444 * let generic_perform_write() try to copy data again through copied=0.
2445 */
2446 if (!PageUptodate(page)) {
2447 if (unlikely(copied != len))
2448 copied = 0;
2449 else
2450 SetPageUptodate(page);
2451 }
2452 if (!copied)
2453 goto unlock_out;
2454
2455 set_page_dirty(page);
2456
2457 if (pos + copied > i_size_read(inode))
2458 f2fs_i_size_write(inode, pos + copied);
2459unlock_out:
2460 f2fs_put_page(page, 1);
2461 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2462 return copied;
2463}
2464
2465static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2466 loff_t offset)
2467{
2468 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
2469 unsigned blkbits = i_blkbits;
2470 unsigned blocksize_mask = (1 << blkbits) - 1;
2471 unsigned long align = offset | iov_iter_alignment(iter);
2472 struct block_device *bdev = inode->i_sb->s_bdev;
2473
2474 if (align & blocksize_mask) {
2475 if (bdev)
2476 blkbits = blksize_bits(bdev_logical_block_size(bdev));
2477 blocksize_mask = (1 << blkbits) - 1;
2478 if (align & blocksize_mask)
2479 return -EINVAL;
2480 return 1;
2481 }
2482 return 0;
2483}
2484
2485static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2486{
2487 struct address_space *mapping = iocb->ki_filp->f_mapping;
2488 struct inode *inode = mapping->host;
2489 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2490 size_t count = iov_iter_count(iter);
2491 loff_t offset = iocb->ki_pos;
2492 int rw = iov_iter_rw(iter);
2493 int err;
2494 enum rw_hint hint = iocb->ki_hint;
2495 int whint_mode = F2FS_OPTION(sbi).whint_mode;
2496
2497 err = check_direct_IO(inode, iter, offset);
2498 if (err)
2499 return err < 0 ? err : 0;
2500
2501 if (f2fs_force_buffered_io(inode, rw))
2502 return 0;
2503
2504 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2505
2506 if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2507 iocb->ki_hint = WRITE_LIFE_NOT_SET;
2508
2509 if (!down_read_trylock(&F2FS_I(inode)->i_gc_rwsem[rw])) {
2510 if (iocb->ki_flags & IOCB_NOWAIT) {
2511 iocb->ki_hint = hint;
2512 err = -EAGAIN;
2513 goto out;
2514 }
2515 down_read(&F2FS_I(inode)->i_gc_rwsem[rw]);
2516 }
2517
2518 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
2519 up_read(&F2FS_I(inode)->i_gc_rwsem[rw]);
2520
2521 if (rw == WRITE) {
2522 if (whint_mode == WHINT_MODE_OFF)
2523 iocb->ki_hint = hint;
2524 if (err > 0) {
2525 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2526 err);
2527 set_inode_flag(inode, FI_UPDATE_WRITE);
2528 } else if (err < 0) {
2529 f2fs_write_failed(mapping, offset + count);
2530 }
2531 }
2532
2533out:
2534 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2535
2536 return err;
2537}
2538
2539void f2fs_invalidate_page(struct page *page, unsigned int offset,
2540 unsigned int length)
2541{
2542 struct inode *inode = page->mapping->host;
2543 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2544
2545 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2546 (offset % PAGE_SIZE || length != PAGE_SIZE))
2547 return;
2548
2549 if (PageDirty(page)) {
2550 if (inode->i_ino == F2FS_META_INO(sbi)) {
2551 dec_page_count(sbi, F2FS_DIRTY_META);
2552 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2553 dec_page_count(sbi, F2FS_DIRTY_NODES);
2554 } else {
2555 inode_dec_dirty_pages(inode);
2556 f2fs_remove_dirty_inode(inode);
2557 }
2558 }
2559
2560 /* This is atomic written page, keep Private */
2561 if (IS_ATOMIC_WRITTEN_PAGE(page))
2562 return f2fs_drop_inmem_page(inode, page);
2563
2564 set_page_private(page, 0);
2565 ClearPagePrivate(page);
2566}
2567
2568int f2fs_release_page(struct page *page, gfp_t wait)
2569{
2570 /* If this is dirty page, keep PagePrivate */
2571 if (PageDirty(page))
2572 return 0;
2573
2574 /* This is atomic written page, keep Private */
2575 if (IS_ATOMIC_WRITTEN_PAGE(page))
2576 return 0;
2577
2578 set_page_private(page, 0);
2579 ClearPagePrivate(page);
2580 return 1;
2581}
2582
2583static int f2fs_set_data_page_dirty(struct page *page)
2584{
2585 struct address_space *mapping = page->mapping;
2586 struct inode *inode = mapping->host;
2587
2588 trace_f2fs_set_page_dirty(page, DATA);
2589
2590 if (!PageUptodate(page))
2591 SetPageUptodate(page);
2592
2593 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2594 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2595 f2fs_register_inmem_page(inode, page);
2596 return 1;
2597 }
2598 /*
2599 * Previously, this page has been registered, we just
2600 * return here.
2601 */
2602 return 0;
2603 }
2604
2605 if (!PageDirty(page)) {
2606 __set_page_dirty_nobuffers(page);
2607 f2fs_update_dirty_page(inode, page);
2608 return 1;
2609 }
2610 return 0;
2611}
2612
2613static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2614{
2615 struct inode *inode = mapping->host;
2616
2617 if (f2fs_has_inline_data(inode))
2618 return 0;
2619
2620 /* make sure allocating whole blocks */
2621 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2622 filemap_write_and_wait(mapping);
2623
2624 return generic_block_bmap(mapping, block, get_data_block_bmap);
2625}
2626
2627#ifdef CONFIG_MIGRATION
2628#include <linux/migrate.h>
2629
2630int f2fs_migrate_page(struct address_space *mapping,
2631 struct page *newpage, struct page *page, enum migrate_mode mode)
2632{
2633 int rc, extra_count;
2634 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2635 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2636
2637 BUG_ON(PageWriteback(page));
2638
2639 /* migrating an atomic written page is safe with the inmem_lock hold */
2640 if (atomic_written) {
2641 if (mode != MIGRATE_SYNC)
2642 return -EBUSY;
2643 if (!mutex_trylock(&fi->inmem_lock))
2644 return -EAGAIN;
2645 }
2646
2647 /*
2648 * A reference is expected if PagePrivate set when move mapping,
2649 * however F2FS breaks this for maintaining dirty page counts when
2650 * truncating pages. So here adjusting the 'extra_count' make it work.
2651 */
2652 extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2653 rc = migrate_page_move_mapping(mapping, newpage,
2654 page, NULL, mode, extra_count);
2655 if (rc != MIGRATEPAGE_SUCCESS) {
2656 if (atomic_written)
2657 mutex_unlock(&fi->inmem_lock);
2658 return rc;
2659 }
2660
2661 if (atomic_written) {
2662 struct inmem_pages *cur;
2663 list_for_each_entry(cur, &fi->inmem_pages, list)
2664 if (cur->page == page) {
2665 cur->page = newpage;
2666 break;
2667 }
2668 mutex_unlock(&fi->inmem_lock);
2669 put_page(page);
2670 get_page(newpage);
2671 }
2672
2673 if (PagePrivate(page))
2674 SetPagePrivate(newpage);
2675 set_page_private(newpage, page_private(page));
2676
2677 if (mode != MIGRATE_SYNC_NO_COPY)
2678 migrate_page_copy(newpage, page);
2679 else
2680 migrate_page_states(newpage, page);
2681
2682 return MIGRATEPAGE_SUCCESS;
2683}
2684#endif
2685
2686const struct address_space_operations f2fs_dblock_aops = {
2687 .readpage = f2fs_read_data_page,
2688 .readpages = f2fs_read_data_pages,
2689 .writepage = f2fs_write_data_page,
2690 .writepages = f2fs_write_data_pages,
2691 .write_begin = f2fs_write_begin,
2692 .write_end = f2fs_write_end,
2693 .set_page_dirty = f2fs_set_data_page_dirty,
2694 .invalidatepage = f2fs_invalidate_page,
2695 .releasepage = f2fs_release_page,
2696 .direct_IO = f2fs_direct_IO,
2697 .bmap = f2fs_bmap,
2698#ifdef CONFIG_MIGRATION
2699 .migratepage = f2fs_migrate_page,
2700#endif
2701};
2702
2703void f2fs_clear_radix_tree_dirty_tag(struct page *page)
2704{
2705 struct address_space *mapping = page_mapping(page);
2706 unsigned long flags;
2707
2708 xa_lock_irqsave(&mapping->i_pages, flags);
2709 radix_tree_tag_clear(&mapping->i_pages, page_index(page),
2710 PAGECACHE_TAG_DIRTY);
2711 xa_unlock_irqrestore(&mapping->i_pages, flags);
2712}
2713
2714int __init f2fs_init_post_read_processing(void)
2715{
2716 bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0);
2717 if (!bio_post_read_ctx_cache)
2718 goto fail;
2719 bio_post_read_ctx_pool =
2720 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
2721 bio_post_read_ctx_cache);
2722 if (!bio_post_read_ctx_pool)
2723 goto fail_free_cache;
2724 return 0;
2725
2726fail_free_cache:
2727 kmem_cache_destroy(bio_post_read_ctx_cache);
2728fail:
2729 return -ENOMEM;
2730}
2731
2732void __exit f2fs_destroy_post_read_processing(void)
2733{
2734 mempool_destroy(bio_post_read_ctx_pool);
2735 kmem_cache_destroy(bio_post_read_ctx_cache);
2736}