blob: d4a7f7ca41451c02dd890c215bf086a85b1afa7b [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/blkdev.h>
8#include <linux/radix-tree.h>
9#include <linux/writeback.h>
10#include <linux/buffer_head.h>
11#include <linux/workqueue.h>
12#include <linux/kthread.h>
13#include <linux/slab.h>
14#include <linux/migrate.h>
15#include <linux/ratelimit.h>
16#include <linux/uuid.h>
17#include <linux/semaphore.h>
18#include <linux/error-injection.h>
19#include <linux/crc32c.h>
20#include <asm/unaligned.h>
21#include "ctree.h"
22#include "disk-io.h"
23#include "transaction.h"
24#include "btrfs_inode.h"
25#include "volumes.h"
26#include "print-tree.h"
27#include "locking.h"
28#include "tree-log.h"
29#include "free-space-cache.h"
30#include "free-space-tree.h"
31#include "inode-map.h"
32#include "check-integrity.h"
33#include "rcu-string.h"
34#include "dev-replace.h"
35#include "raid56.h"
36#include "sysfs.h"
37#include "qgroup.h"
38#include "compression.h"
39#include "tree-checker.h"
40#include "ref-verify.h"
41
42#ifdef CONFIG_X86
43#include <asm/cpufeature.h>
44#endif
45
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
52
53static const struct extent_io_ops btree_extent_io_ops;
54static void end_workqueue_fn(struct btrfs_work *work);
55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_fs_info *fs_info);
58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60 struct extent_io_tree *dirty_pages,
61 int mark);
62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63 struct extent_io_tree *pinned_extents);
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67/*
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
72struct btrfs_end_io_wq {
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
77 blk_status_t status;
78 enum btrfs_wq_endio_type metadata;
79 struct btrfs_work work;
80};
81
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
89 SLAB_MEM_SPREAD,
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
96void __cold btrfs_end_io_wq_exit(void)
97{
98 kmem_cache_destroy(btrfs_end_io_wq_cache);
99}
100
101/*
102 * async submit bios are used to offload expensive checksumming
103 * onto the worker threads. They checksum file and metadata bios
104 * just before they are sent down the IO stack.
105 */
106struct async_submit_bio {
107 void *private_data;
108 struct bio *bio;
109 extent_submit_bio_start_t *submit_bio_start;
110 int mirror_num;
111 /*
112 * bio_offset is optional, can be used if the pages in the bio
113 * can't tell us where in the file the bio should go
114 */
115 u64 bio_offset;
116 struct btrfs_work work;
117 blk_status_t status;
118};
119
120/*
121 * Lockdep class keys for extent_buffer->lock's in this root. For a given
122 * eb, the lockdep key is determined by the btrfs_root it belongs to and
123 * the level the eb occupies in the tree.
124 *
125 * Different roots are used for different purposes and may nest inside each
126 * other and they require separate keysets. As lockdep keys should be
127 * static, assign keysets according to the purpose of the root as indicated
128 * by btrfs_root->objectid. This ensures that all special purpose roots
129 * have separate keysets.
130 *
131 * Lock-nesting across peer nodes is always done with the immediate parent
132 * node locked thus preventing deadlock. As lockdep doesn't know this, use
133 * subclass to avoid triggering lockdep warning in such cases.
134 *
135 * The key is set by the readpage_end_io_hook after the buffer has passed
136 * csum validation but before the pages are unlocked. It is also set by
137 * btrfs_init_new_buffer on freshly allocated blocks.
138 *
139 * We also add a check to make sure the highest level of the tree is the
140 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
141 * needs update as well.
142 */
143#ifdef CONFIG_DEBUG_LOCK_ALLOC
144# if BTRFS_MAX_LEVEL != 8
145# error
146# endif
147
148static struct btrfs_lockdep_keyset {
149 u64 id; /* root objectid */
150 const char *name_stem; /* lock name stem */
151 char names[BTRFS_MAX_LEVEL + 1][20];
152 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
153} btrfs_lockdep_keysets[] = {
154 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
155 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
156 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
157 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
158 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
159 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
160 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
161 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
162 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
163 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
164 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
165 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
166 { .id = 0, .name_stem = "tree" },
167};
168
169void __init btrfs_init_lockdep(void)
170{
171 int i, j;
172
173 /* initialize lockdep class names */
174 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
175 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
176
177 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
178 snprintf(ks->names[j], sizeof(ks->names[j]),
179 "btrfs-%s-%02d", ks->name_stem, j);
180 }
181}
182
183void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
184 int level)
185{
186 struct btrfs_lockdep_keyset *ks;
187
188 BUG_ON(level >= ARRAY_SIZE(ks->keys));
189
190 /* find the matching keyset, id 0 is the default entry */
191 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
192 if (ks->id == objectid)
193 break;
194
195 lockdep_set_class_and_name(&eb->lock,
196 &ks->keys[level], ks->names[level]);
197}
198
199#endif
200
201/*
202 * extents on the btree inode are pretty simple, there's one extent
203 * that covers the entire device
204 */
205struct extent_map *btree_get_extent(struct btrfs_inode *inode,
206 struct page *page, size_t pg_offset, u64 start, u64 len,
207 int create)
208{
209 struct btrfs_fs_info *fs_info = inode->root->fs_info;
210 struct extent_map_tree *em_tree = &inode->extent_tree;
211 struct extent_map *em;
212 int ret;
213
214 read_lock(&em_tree->lock);
215 em = lookup_extent_mapping(em_tree, start, len);
216 if (em) {
217 em->bdev = fs_info->fs_devices->latest_bdev;
218 read_unlock(&em_tree->lock);
219 goto out;
220 }
221 read_unlock(&em_tree->lock);
222
223 em = alloc_extent_map();
224 if (!em) {
225 em = ERR_PTR(-ENOMEM);
226 goto out;
227 }
228 em->start = 0;
229 em->len = (u64)-1;
230 em->block_len = (u64)-1;
231 em->block_start = 0;
232 em->bdev = fs_info->fs_devices->latest_bdev;
233
234 write_lock(&em_tree->lock);
235 ret = add_extent_mapping(em_tree, em, 0);
236 if (ret == -EEXIST) {
237 free_extent_map(em);
238 em = lookup_extent_mapping(em_tree, start, len);
239 if (!em)
240 em = ERR_PTR(-EIO);
241 } else if (ret) {
242 free_extent_map(em);
243 em = ERR_PTR(ret);
244 }
245 write_unlock(&em_tree->lock);
246
247out:
248 return em;
249}
250
251u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
252{
253 return crc32c(seed, data, len);
254}
255
256void btrfs_csum_final(u32 crc, u8 *result)
257{
258 put_unaligned_le32(~crc, result);
259}
260
261/*
262 * compute the csum for a btree block, and either verify it or write it
263 * into the csum field of the block.
264 */
265static int csum_tree_block(struct btrfs_fs_info *fs_info,
266 struct extent_buffer *buf,
267 int verify)
268{
269 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
270 char result[BTRFS_CSUM_SIZE];
271 unsigned long len;
272 unsigned long cur_len;
273 unsigned long offset = BTRFS_CSUM_SIZE;
274 char *kaddr;
275 unsigned long map_start;
276 unsigned long map_len;
277 int err;
278 u32 crc = ~(u32)0;
279
280 len = buf->len - offset;
281 while (len > 0) {
282 err = map_private_extent_buffer(buf, offset, 32,
283 &kaddr, &map_start, &map_len);
284 if (err)
285 return err;
286 cur_len = min(len, map_len - (offset - map_start));
287 crc = btrfs_csum_data(kaddr + offset - map_start,
288 crc, cur_len);
289 len -= cur_len;
290 offset += cur_len;
291 }
292 memset(result, 0, BTRFS_CSUM_SIZE);
293
294 btrfs_csum_final(crc, result);
295
296 if (verify) {
297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298 u32 val;
299 u32 found = 0;
300 memcpy(&found, result, csum_size);
301
302 read_extent_buffer(buf, &val, 0, csum_size);
303 btrfs_warn_rl(fs_info,
304 "%s checksum verify failed on %llu wanted %X found %X level %d",
305 fs_info->sb->s_id, buf->start,
306 val, found, btrfs_header_level(buf));
307 return -EUCLEAN;
308 }
309 } else {
310 write_extent_buffer(buf, result, 0, csum_size);
311 }
312
313 return 0;
314}
315
316/*
317 * we can't consider a given block up to date unless the transid of the
318 * block matches the transid in the parent node's pointer. This is how we
319 * detect blocks that either didn't get written at all or got written
320 * in the wrong place.
321 */
322static int verify_parent_transid(struct extent_io_tree *io_tree,
323 struct extent_buffer *eb, u64 parent_transid,
324 int atomic)
325{
326 struct extent_state *cached_state = NULL;
327 int ret;
328 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
329
330 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331 return 0;
332
333 if (atomic)
334 return -EAGAIN;
335
336 if (need_lock) {
337 btrfs_tree_read_lock(eb);
338 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
339 }
340
341 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
342 &cached_state);
343 if (extent_buffer_uptodate(eb) &&
344 btrfs_header_generation(eb) == parent_transid) {
345 ret = 0;
346 goto out;
347 }
348 btrfs_err_rl(eb->fs_info,
349 "parent transid verify failed on %llu wanted %llu found %llu",
350 eb->start,
351 parent_transid, btrfs_header_generation(eb));
352 ret = 1;
353
354 /*
355 * Things reading via commit roots that don't have normal protection,
356 * like send, can have a really old block in cache that may point at a
357 * block that has been freed and re-allocated. So don't clear uptodate
358 * if we find an eb that is under IO (dirty/writeback) because we could
359 * end up reading in the stale data and then writing it back out and
360 * making everybody very sad.
361 */
362 if (!extent_buffer_under_io(eb))
363 clear_extent_buffer_uptodate(eb);
364out:
365 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
366 &cached_state);
367 if (need_lock)
368 btrfs_tree_read_unlock_blocking(eb);
369 return ret;
370}
371
372/*
373 * Return 0 if the superblock checksum type matches the checksum value of that
374 * algorithm. Pass the raw disk superblock data.
375 */
376static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
377 char *raw_disk_sb)
378{
379 struct btrfs_super_block *disk_sb =
380 (struct btrfs_super_block *)raw_disk_sb;
381 u16 csum_type = btrfs_super_csum_type(disk_sb);
382 int ret = 0;
383
384 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
385 u32 crc = ~(u32)0;
386 char result[sizeof(crc)];
387
388 /*
389 * The super_block structure does not span the whole
390 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
391 * is filled with zeros and is included in the checksum.
392 */
393 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
394 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
395 btrfs_csum_final(crc, result);
396
397 if (memcmp(raw_disk_sb, result, sizeof(result)))
398 ret = 1;
399 }
400
401 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
402 btrfs_err(fs_info, "unsupported checksum algorithm %u",
403 csum_type);
404 ret = 1;
405 }
406
407 return ret;
408}
409
410static int verify_level_key(struct btrfs_fs_info *fs_info,
411 struct extent_buffer *eb, int level,
412 struct btrfs_key *first_key, u64 parent_transid)
413{
414 int found_level;
415 struct btrfs_key found_key;
416 int ret;
417
418 found_level = btrfs_header_level(eb);
419 if (found_level != level) {
420#ifdef CONFIG_BTRFS_DEBUG
421 WARN_ON(1);
422 btrfs_err(fs_info,
423"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
424 eb->start, level, found_level);
425#endif
426 return -EIO;
427 }
428
429 if (!first_key)
430 return 0;
431
432 /*
433 * For live tree block (new tree blocks in current transaction),
434 * we need proper lock context to avoid race, which is impossible here.
435 * So we only checks tree blocks which is read from disk, whose
436 * generation <= fs_info->last_trans_committed.
437 */
438 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
439 return 0;
440 if (found_level)
441 btrfs_node_key_to_cpu(eb, &found_key, 0);
442 else
443 btrfs_item_key_to_cpu(eb, &found_key, 0);
444 ret = btrfs_comp_cpu_keys(first_key, &found_key);
445
446#ifdef CONFIG_BTRFS_DEBUG
447 if (ret) {
448 WARN_ON(1);
449 btrfs_err(fs_info,
450"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
451 eb->start, parent_transid, first_key->objectid,
452 first_key->type, first_key->offset,
453 found_key.objectid, found_key.type,
454 found_key.offset);
455 }
456#endif
457 return ret;
458}
459
460/*
461 * helper to read a given tree block, doing retries as required when
462 * the checksums don't match and we have alternate mirrors to try.
463 *
464 * @parent_transid: expected transid, skip check if 0
465 * @level: expected level, mandatory check
466 * @first_key: expected key of first slot, skip check if NULL
467 */
468static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
469 struct extent_buffer *eb,
470 u64 parent_transid, int level,
471 struct btrfs_key *first_key)
472{
473 struct extent_io_tree *io_tree;
474 int failed = 0;
475 int ret;
476 int num_copies = 0;
477 int mirror_num = 0;
478 int failed_mirror = 0;
479
480 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
481 while (1) {
482 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
483 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
484 mirror_num);
485 if (!ret) {
486 if (verify_parent_transid(io_tree, eb,
487 parent_transid, 0))
488 ret = -EIO;
489 else if (verify_level_key(fs_info, eb, level,
490 first_key, parent_transid))
491 ret = -EUCLEAN;
492 else
493 break;
494 }
495
496 num_copies = btrfs_num_copies(fs_info,
497 eb->start, eb->len);
498 if (num_copies == 1)
499 break;
500
501 if (!failed_mirror) {
502 failed = 1;
503 failed_mirror = eb->read_mirror;
504 }
505
506 mirror_num++;
507 if (mirror_num == failed_mirror)
508 mirror_num++;
509
510 if (mirror_num > num_copies)
511 break;
512 }
513
514 if (failed && !ret && failed_mirror)
515 repair_eb_io_failure(fs_info, eb, failed_mirror);
516
517 return ret;
518}
519
520/*
521 * checksum a dirty tree block before IO. This has extra checks to make sure
522 * we only fill in the checksum field in the first page of a multi-page block
523 */
524
525static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
526{
527 u64 start = page_offset(page);
528 u64 found_start;
529 struct extent_buffer *eb;
530
531 eb = (struct extent_buffer *)page->private;
532 if (page != eb->pages[0])
533 return 0;
534
535 found_start = btrfs_header_bytenr(eb);
536 /*
537 * Please do not consolidate these warnings into a single if.
538 * It is useful to know what went wrong.
539 */
540 if (WARN_ON(found_start != start))
541 return -EUCLEAN;
542 if (WARN_ON(!PageUptodate(page)))
543 return -EUCLEAN;
544
545 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
546 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
547
548 return csum_tree_block(fs_info, eb, 0);
549}
550
551static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
552 struct extent_buffer *eb)
553{
554 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
555 u8 fsid[BTRFS_FSID_SIZE];
556 int ret = 1;
557
558 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
559 while (fs_devices) {
560 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
561 ret = 0;
562 break;
563 }
564 fs_devices = fs_devices->seed;
565 }
566 return ret;
567}
568
569static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
570 u64 phy_offset, struct page *page,
571 u64 start, u64 end, int mirror)
572{
573 u64 found_start;
574 int found_level;
575 struct extent_buffer *eb;
576 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
577 struct btrfs_fs_info *fs_info = root->fs_info;
578 int ret = 0;
579 int reads_done;
580
581 if (!page->private)
582 goto out;
583
584 eb = (struct extent_buffer *)page->private;
585
586 /* the pending IO might have been the only thing that kept this buffer
587 * in memory. Make sure we have a ref for all this other checks
588 */
589 extent_buffer_get(eb);
590
591 reads_done = atomic_dec_and_test(&eb->io_pages);
592 if (!reads_done)
593 goto err;
594
595 eb->read_mirror = mirror;
596 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
597 ret = -EIO;
598 goto err;
599 }
600
601 found_start = btrfs_header_bytenr(eb);
602 if (found_start != eb->start) {
603 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
604 eb->start, found_start);
605 ret = -EIO;
606 goto err;
607 }
608 if (check_tree_block_fsid(fs_info, eb)) {
609 btrfs_err_rl(fs_info, "bad fsid on block %llu",
610 eb->start);
611 ret = -EIO;
612 goto err;
613 }
614 found_level = btrfs_header_level(eb);
615 if (found_level >= BTRFS_MAX_LEVEL) {
616 btrfs_err(fs_info, "bad tree block level %d on %llu",
617 (int)btrfs_header_level(eb), eb->start);
618 ret = -EIO;
619 goto err;
620 }
621
622 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
623 eb, found_level);
624
625 ret = csum_tree_block(fs_info, eb, 1);
626 if (ret)
627 goto err;
628
629 /*
630 * If this is a leaf block and it is corrupt, set the corrupt bit so
631 * that we don't try and read the other copies of this block, just
632 * return -EIO.
633 */
634 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
635 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636 ret = -EIO;
637 }
638
639 if (found_level > 0 && btrfs_check_node(fs_info, eb))
640 ret = -EIO;
641
642 if (!ret)
643 set_extent_buffer_uptodate(eb);
644err:
645 if (reads_done &&
646 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
647 btree_readahead_hook(eb, ret);
648
649 if (ret) {
650 /*
651 * our io error hook is going to dec the io pages
652 * again, we have to make sure it has something
653 * to decrement
654 */
655 atomic_inc(&eb->io_pages);
656 clear_extent_buffer_uptodate(eb);
657 }
658 free_extent_buffer(eb);
659out:
660 return ret;
661}
662
663static int btree_io_failed_hook(struct page *page, int failed_mirror)
664{
665 struct extent_buffer *eb;
666
667 eb = (struct extent_buffer *)page->private;
668 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
669 eb->read_mirror = failed_mirror;
670 atomic_dec(&eb->io_pages);
671 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
672 btree_readahead_hook(eb, -EIO);
673 return -EIO; /* we fixed nothing */
674}
675
676static void end_workqueue_bio(struct bio *bio)
677{
678 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
679 struct btrfs_fs_info *fs_info;
680 struct btrfs_workqueue *wq;
681 btrfs_work_func_t func;
682
683 fs_info = end_io_wq->info;
684 end_io_wq->status = bio->bi_status;
685
686 if (bio_op(bio) == REQ_OP_WRITE) {
687 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
688 wq = fs_info->endio_meta_write_workers;
689 func = btrfs_endio_meta_write_helper;
690 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
691 wq = fs_info->endio_freespace_worker;
692 func = btrfs_freespace_write_helper;
693 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
694 wq = fs_info->endio_raid56_workers;
695 func = btrfs_endio_raid56_helper;
696 } else {
697 wq = fs_info->endio_write_workers;
698 func = btrfs_endio_write_helper;
699 }
700 } else {
701 if (unlikely(end_io_wq->metadata ==
702 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
703 wq = fs_info->endio_repair_workers;
704 func = btrfs_endio_repair_helper;
705 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
706 wq = fs_info->endio_raid56_workers;
707 func = btrfs_endio_raid56_helper;
708 } else if (end_io_wq->metadata) {
709 wq = fs_info->endio_meta_workers;
710 func = btrfs_endio_meta_helper;
711 } else {
712 wq = fs_info->endio_workers;
713 func = btrfs_endio_helper;
714 }
715 }
716
717 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
718 btrfs_queue_work(wq, &end_io_wq->work);
719}
720
721blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
722 enum btrfs_wq_endio_type metadata)
723{
724 struct btrfs_end_io_wq *end_io_wq;
725
726 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
727 if (!end_io_wq)
728 return BLK_STS_RESOURCE;
729
730 end_io_wq->private = bio->bi_private;
731 end_io_wq->end_io = bio->bi_end_io;
732 end_io_wq->info = info;
733 end_io_wq->status = 0;
734 end_io_wq->bio = bio;
735 end_io_wq->metadata = metadata;
736
737 bio->bi_private = end_io_wq;
738 bio->bi_end_io = end_workqueue_bio;
739 return 0;
740}
741
742static void run_one_async_start(struct btrfs_work *work)
743{
744 struct async_submit_bio *async;
745 blk_status_t ret;
746
747 async = container_of(work, struct async_submit_bio, work);
748 ret = async->submit_bio_start(async->private_data, async->bio,
749 async->bio_offset);
750 if (ret)
751 async->status = ret;
752}
753
754static void run_one_async_done(struct btrfs_work *work)
755{
756 struct async_submit_bio *async;
757
758 async = container_of(work, struct async_submit_bio, work);
759
760 /* If an error occurred we just want to clean up the bio and move on */
761 if (async->status) {
762 async->bio->bi_status = async->status;
763 bio_endio(async->bio);
764 return;
765 }
766
767 btrfs_submit_bio_done(async->private_data, async->bio, async->mirror_num);
768}
769
770static void run_one_async_free(struct btrfs_work *work)
771{
772 struct async_submit_bio *async;
773
774 async = container_of(work, struct async_submit_bio, work);
775 kfree(async);
776}
777
778blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
779 int mirror_num, unsigned long bio_flags,
780 u64 bio_offset, void *private_data,
781 extent_submit_bio_start_t *submit_bio_start)
782{
783 struct async_submit_bio *async;
784
785 async = kmalloc(sizeof(*async), GFP_NOFS);
786 if (!async)
787 return BLK_STS_RESOURCE;
788
789 async->private_data = private_data;
790 async->bio = bio;
791 async->mirror_num = mirror_num;
792 async->submit_bio_start = submit_bio_start;
793
794 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
795 run_one_async_done, run_one_async_free);
796
797 async->bio_offset = bio_offset;
798
799 async->status = 0;
800
801 if (op_is_sync(bio->bi_opf))
802 btrfs_set_work_high_priority(&async->work);
803
804 btrfs_queue_work(fs_info->workers, &async->work);
805 return 0;
806}
807
808static blk_status_t btree_csum_one_bio(struct bio *bio)
809{
810 struct bio_vec *bvec;
811 struct btrfs_root *root;
812 int i, ret = 0;
813
814 ASSERT(!bio_flagged(bio, BIO_CLONED));
815 bio_for_each_segment_all(bvec, bio, i) {
816 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
817 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
818 if (ret)
819 break;
820 }
821
822 return errno_to_blk_status(ret);
823}
824
825static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
826 u64 bio_offset)
827{
828 /*
829 * when we're called for a write, we're already in the async
830 * submission context. Just jump into btrfs_map_bio
831 */
832 return btree_csum_one_bio(bio);
833}
834
835static int check_async_write(struct btrfs_inode *bi)
836{
837 if (atomic_read(&bi->sync_writers))
838 return 0;
839#ifdef CONFIG_X86
840 if (static_cpu_has(X86_FEATURE_XMM4_2))
841 return 0;
842#endif
843 return 1;
844}
845
846static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
847 int mirror_num, unsigned long bio_flags,
848 u64 bio_offset)
849{
850 struct inode *inode = private_data;
851 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
852 int async = check_async_write(BTRFS_I(inode));
853 blk_status_t ret;
854
855 if (bio_op(bio) != REQ_OP_WRITE) {
856 /*
857 * called for a read, do the setup so that checksum validation
858 * can happen in the async kernel threads
859 */
860 ret = btrfs_bio_wq_end_io(fs_info, bio,
861 BTRFS_WQ_ENDIO_METADATA);
862 if (ret)
863 goto out_w_error;
864 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
865 } else if (!async) {
866 ret = btree_csum_one_bio(bio);
867 if (ret)
868 goto out_w_error;
869 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
870 } else {
871 /*
872 * kthread helpers are used to submit writes so that
873 * checksumming can happen in parallel across all CPUs
874 */
875 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
876 bio_offset, private_data,
877 btree_submit_bio_start);
878 }
879
880 if (ret)
881 goto out_w_error;
882 return 0;
883
884out_w_error:
885 bio->bi_status = ret;
886 bio_endio(bio);
887 return ret;
888}
889
890#ifdef CONFIG_MIGRATION
891static int btree_migratepage(struct address_space *mapping,
892 struct page *newpage, struct page *page,
893 enum migrate_mode mode)
894{
895 /*
896 * we can't safely write a btree page from here,
897 * we haven't done the locking hook
898 */
899 if (PageDirty(page))
900 return -EAGAIN;
901 /*
902 * Buffers may be managed in a filesystem specific way.
903 * We must have no buffers or drop them.
904 */
905 if (page_has_private(page) &&
906 !try_to_release_page(page, GFP_KERNEL))
907 return -EAGAIN;
908 return migrate_page(mapping, newpage, page, mode);
909}
910#endif
911
912
913static int btree_writepages(struct address_space *mapping,
914 struct writeback_control *wbc)
915{
916 struct btrfs_fs_info *fs_info;
917 int ret;
918
919 if (wbc->sync_mode == WB_SYNC_NONE) {
920
921 if (wbc->for_kupdate)
922 return 0;
923
924 fs_info = BTRFS_I(mapping->host)->root->fs_info;
925 /* this is a bit racy, but that's ok */
926 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
927 BTRFS_DIRTY_METADATA_THRESH,
928 fs_info->dirty_metadata_batch);
929 if (ret < 0)
930 return 0;
931 }
932 return btree_write_cache_pages(mapping, wbc);
933}
934
935static int btree_readpage(struct file *file, struct page *page)
936{
937 struct extent_io_tree *tree;
938 tree = &BTRFS_I(page->mapping->host)->io_tree;
939 return extent_read_full_page(tree, page, btree_get_extent, 0);
940}
941
942static int btree_releasepage(struct page *page, gfp_t gfp_flags)
943{
944 if (PageWriteback(page) || PageDirty(page))
945 return 0;
946
947 return try_release_extent_buffer(page);
948}
949
950static void btree_invalidatepage(struct page *page, unsigned int offset,
951 unsigned int length)
952{
953 struct extent_io_tree *tree;
954 tree = &BTRFS_I(page->mapping->host)->io_tree;
955 extent_invalidatepage(tree, page, offset);
956 btree_releasepage(page, GFP_NOFS);
957 if (PagePrivate(page)) {
958 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
959 "page private not zero on page %llu",
960 (unsigned long long)page_offset(page));
961 ClearPagePrivate(page);
962 set_page_private(page, 0);
963 put_page(page);
964 }
965}
966
967static int btree_set_page_dirty(struct page *page)
968{
969#ifdef DEBUG
970 struct extent_buffer *eb;
971
972 BUG_ON(!PagePrivate(page));
973 eb = (struct extent_buffer *)page->private;
974 BUG_ON(!eb);
975 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
976 BUG_ON(!atomic_read(&eb->refs));
977 btrfs_assert_tree_locked(eb);
978#endif
979 return __set_page_dirty_nobuffers(page);
980}
981
982static const struct address_space_operations btree_aops = {
983 .readpage = btree_readpage,
984 .writepages = btree_writepages,
985 .releasepage = btree_releasepage,
986 .invalidatepage = btree_invalidatepage,
987#ifdef CONFIG_MIGRATION
988 .migratepage = btree_migratepage,
989#endif
990 .set_page_dirty = btree_set_page_dirty,
991};
992
993void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
994{
995 struct extent_buffer *buf = NULL;
996 struct inode *btree_inode = fs_info->btree_inode;
997
998 buf = btrfs_find_create_tree_block(fs_info, bytenr);
999 if (IS_ERR(buf))
1000 return;
1001 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1002 buf, WAIT_NONE, 0);
1003 free_extent_buffer(buf);
1004}
1005
1006int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1007 int mirror_num, struct extent_buffer **eb)
1008{
1009 struct extent_buffer *buf = NULL;
1010 struct inode *btree_inode = fs_info->btree_inode;
1011 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1012 int ret;
1013
1014 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1015 if (IS_ERR(buf))
1016 return 0;
1017
1018 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1019
1020 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1021 mirror_num);
1022 if (ret) {
1023 free_extent_buffer(buf);
1024 return ret;
1025 }
1026
1027 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1028 free_extent_buffer(buf);
1029 return -EIO;
1030 } else if (extent_buffer_uptodate(buf)) {
1031 *eb = buf;
1032 } else {
1033 free_extent_buffer(buf);
1034 }
1035 return 0;
1036}
1037
1038struct extent_buffer *btrfs_find_create_tree_block(
1039 struct btrfs_fs_info *fs_info,
1040 u64 bytenr)
1041{
1042 if (btrfs_is_testing(fs_info))
1043 return alloc_test_extent_buffer(fs_info, bytenr);
1044 return alloc_extent_buffer(fs_info, bytenr);
1045}
1046
1047
1048int btrfs_write_tree_block(struct extent_buffer *buf)
1049{
1050 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1051 buf->start + buf->len - 1);
1052}
1053
1054void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1055{
1056 filemap_fdatawait_range(buf->pages[0]->mapping,
1057 buf->start, buf->start + buf->len - 1);
1058}
1059
1060/*
1061 * Read tree block at logical address @bytenr and do variant basic but critical
1062 * verification.
1063 *
1064 * @parent_transid: expected transid of this tree block, skip check if 0
1065 * @level: expected level, mandatory check
1066 * @first_key: expected key in slot 0, skip check if NULL
1067 */
1068struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1069 u64 parent_transid, int level,
1070 struct btrfs_key *first_key)
1071{
1072 struct extent_buffer *buf = NULL;
1073 int ret;
1074
1075 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1076 if (IS_ERR(buf))
1077 return buf;
1078
1079 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1080 level, first_key);
1081 if (ret) {
1082 free_extent_buffer(buf);
1083 return ERR_PTR(ret);
1084 }
1085 return buf;
1086
1087}
1088
1089void clean_tree_block(struct btrfs_fs_info *fs_info,
1090 struct extent_buffer *buf)
1091{
1092 if (btrfs_header_generation(buf) ==
1093 fs_info->running_transaction->transid) {
1094 btrfs_assert_tree_locked(buf);
1095
1096 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1097 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1098 -buf->len,
1099 fs_info->dirty_metadata_batch);
1100 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1101 btrfs_set_lock_blocking(buf);
1102 clear_extent_buffer_dirty(buf);
1103 }
1104 }
1105}
1106
1107static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1108{
1109 struct btrfs_subvolume_writers *writers;
1110 int ret;
1111
1112 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1113 if (!writers)
1114 return ERR_PTR(-ENOMEM);
1115
1116 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1117 if (ret < 0) {
1118 kfree(writers);
1119 return ERR_PTR(ret);
1120 }
1121
1122 init_waitqueue_head(&writers->wait);
1123 return writers;
1124}
1125
1126static void
1127btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1128{
1129 percpu_counter_destroy(&writers->counter);
1130 kfree(writers);
1131}
1132
1133static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1134 u64 objectid)
1135{
1136 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1137 root->node = NULL;
1138 root->commit_root = NULL;
1139 root->state = 0;
1140 root->orphan_cleanup_state = 0;
1141
1142 root->objectid = objectid;
1143 root->last_trans = 0;
1144 root->highest_objectid = 0;
1145 root->nr_delalloc_inodes = 0;
1146 root->nr_ordered_extents = 0;
1147 root->inode_tree = RB_ROOT;
1148 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1149 root->block_rsv = NULL;
1150
1151 INIT_LIST_HEAD(&root->dirty_list);
1152 INIT_LIST_HEAD(&root->root_list);
1153 INIT_LIST_HEAD(&root->delalloc_inodes);
1154 INIT_LIST_HEAD(&root->delalloc_root);
1155 INIT_LIST_HEAD(&root->ordered_extents);
1156 INIT_LIST_HEAD(&root->ordered_root);
1157 INIT_LIST_HEAD(&root->logged_list[0]);
1158 INIT_LIST_HEAD(&root->logged_list[1]);
1159 spin_lock_init(&root->inode_lock);
1160 spin_lock_init(&root->delalloc_lock);
1161 spin_lock_init(&root->ordered_extent_lock);
1162 spin_lock_init(&root->accounting_lock);
1163 spin_lock_init(&root->log_extents_lock[0]);
1164 spin_lock_init(&root->log_extents_lock[1]);
1165 spin_lock_init(&root->qgroup_meta_rsv_lock);
1166 mutex_init(&root->objectid_mutex);
1167 mutex_init(&root->log_mutex);
1168 mutex_init(&root->ordered_extent_mutex);
1169 mutex_init(&root->delalloc_mutex);
1170 init_waitqueue_head(&root->log_writer_wait);
1171 init_waitqueue_head(&root->log_commit_wait[0]);
1172 init_waitqueue_head(&root->log_commit_wait[1]);
1173 INIT_LIST_HEAD(&root->log_ctxs[0]);
1174 INIT_LIST_HEAD(&root->log_ctxs[1]);
1175 atomic_set(&root->log_commit[0], 0);
1176 atomic_set(&root->log_commit[1], 0);
1177 atomic_set(&root->log_writers, 0);
1178 atomic_set(&root->log_batch, 0);
1179 refcount_set(&root->refs, 1);
1180 atomic_set(&root->will_be_snapshotted, 0);
1181 atomic_set(&root->snapshot_force_cow, 0);
1182 root->log_transid = 0;
1183 root->log_transid_committed = -1;
1184 root->last_log_commit = 0;
1185 if (!dummy)
1186 extent_io_tree_init(&root->dirty_log_pages, NULL);
1187
1188 memset(&root->root_key, 0, sizeof(root->root_key));
1189 memset(&root->root_item, 0, sizeof(root->root_item));
1190 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1191 if (!dummy)
1192 root->defrag_trans_start = fs_info->generation;
1193 else
1194 root->defrag_trans_start = 0;
1195 root->root_key.objectid = objectid;
1196 root->anon_dev = 0;
1197
1198 spin_lock_init(&root->root_item_lock);
1199}
1200
1201static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1202 gfp_t flags)
1203{
1204 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1205 if (root)
1206 root->fs_info = fs_info;
1207 return root;
1208}
1209
1210#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1211/* Should only be used by the testing infrastructure */
1212struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1213{
1214 struct btrfs_root *root;
1215
1216 if (!fs_info)
1217 return ERR_PTR(-EINVAL);
1218
1219 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1220 if (!root)
1221 return ERR_PTR(-ENOMEM);
1222
1223 /* We don't use the stripesize in selftest, set it as sectorsize */
1224 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1225 root->alloc_bytenr = 0;
1226
1227 return root;
1228}
1229#endif
1230
1231struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1232 struct btrfs_fs_info *fs_info,
1233 u64 objectid)
1234{
1235 struct extent_buffer *leaf;
1236 struct btrfs_root *tree_root = fs_info->tree_root;
1237 struct btrfs_root *root;
1238 struct btrfs_key key;
1239 int ret = 0;
1240 uuid_le uuid = NULL_UUID_LE;
1241
1242 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1243 if (!root)
1244 return ERR_PTR(-ENOMEM);
1245
1246 __setup_root(root, fs_info, objectid);
1247 root->root_key.objectid = objectid;
1248 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1249 root->root_key.offset = 0;
1250
1251 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1252 if (IS_ERR(leaf)) {
1253 ret = PTR_ERR(leaf);
1254 leaf = NULL;
1255 goto fail;
1256 }
1257
1258 root->node = leaf;
1259 btrfs_mark_buffer_dirty(leaf);
1260
1261 root->commit_root = btrfs_root_node(root);
1262 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1263
1264 root->root_item.flags = 0;
1265 root->root_item.byte_limit = 0;
1266 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1267 btrfs_set_root_generation(&root->root_item, trans->transid);
1268 btrfs_set_root_level(&root->root_item, 0);
1269 btrfs_set_root_refs(&root->root_item, 1);
1270 btrfs_set_root_used(&root->root_item, leaf->len);
1271 btrfs_set_root_last_snapshot(&root->root_item, 0);
1272 btrfs_set_root_dirid(&root->root_item, 0);
1273 if (is_fstree(objectid))
1274 uuid_le_gen(&uuid);
1275 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1276 root->root_item.drop_level = 0;
1277
1278 key.objectid = objectid;
1279 key.type = BTRFS_ROOT_ITEM_KEY;
1280 key.offset = 0;
1281 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1282 if (ret)
1283 goto fail;
1284
1285 btrfs_tree_unlock(leaf);
1286
1287 return root;
1288
1289fail:
1290 if (leaf) {
1291 btrfs_tree_unlock(leaf);
1292 free_extent_buffer(root->commit_root);
1293 free_extent_buffer(leaf);
1294 }
1295 kfree(root);
1296
1297 return ERR_PTR(ret);
1298}
1299
1300static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1301 struct btrfs_fs_info *fs_info)
1302{
1303 struct btrfs_root *root;
1304 struct extent_buffer *leaf;
1305
1306 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1307 if (!root)
1308 return ERR_PTR(-ENOMEM);
1309
1310 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1311
1312 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1313 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1314 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1315
1316 /*
1317 * DON'T set REF_COWS for log trees
1318 *
1319 * log trees do not get reference counted because they go away
1320 * before a real commit is actually done. They do store pointers
1321 * to file data extents, and those reference counts still get
1322 * updated (along with back refs to the log tree).
1323 */
1324
1325 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1326 NULL, 0, 0, 0);
1327 if (IS_ERR(leaf)) {
1328 kfree(root);
1329 return ERR_CAST(leaf);
1330 }
1331
1332 root->node = leaf;
1333
1334 btrfs_mark_buffer_dirty(root->node);
1335 btrfs_tree_unlock(root->node);
1336 return root;
1337}
1338
1339int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1340 struct btrfs_fs_info *fs_info)
1341{
1342 struct btrfs_root *log_root;
1343
1344 log_root = alloc_log_tree(trans, fs_info);
1345 if (IS_ERR(log_root))
1346 return PTR_ERR(log_root);
1347 WARN_ON(fs_info->log_root_tree);
1348 fs_info->log_root_tree = log_root;
1349 return 0;
1350}
1351
1352int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1353 struct btrfs_root *root)
1354{
1355 struct btrfs_fs_info *fs_info = root->fs_info;
1356 struct btrfs_root *log_root;
1357 struct btrfs_inode_item *inode_item;
1358
1359 log_root = alloc_log_tree(trans, fs_info);
1360 if (IS_ERR(log_root))
1361 return PTR_ERR(log_root);
1362
1363 log_root->last_trans = trans->transid;
1364 log_root->root_key.offset = root->root_key.objectid;
1365
1366 inode_item = &log_root->root_item.inode;
1367 btrfs_set_stack_inode_generation(inode_item, 1);
1368 btrfs_set_stack_inode_size(inode_item, 3);
1369 btrfs_set_stack_inode_nlink(inode_item, 1);
1370 btrfs_set_stack_inode_nbytes(inode_item,
1371 fs_info->nodesize);
1372 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1373
1374 btrfs_set_root_node(&log_root->root_item, log_root->node);
1375
1376 WARN_ON(root->log_root);
1377 root->log_root = log_root;
1378 root->log_transid = 0;
1379 root->log_transid_committed = -1;
1380 root->last_log_commit = 0;
1381 return 0;
1382}
1383
1384static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1385 struct btrfs_key *key)
1386{
1387 struct btrfs_root *root;
1388 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1389 struct btrfs_path *path;
1390 u64 generation;
1391 int ret;
1392 int level;
1393
1394 path = btrfs_alloc_path();
1395 if (!path)
1396 return ERR_PTR(-ENOMEM);
1397
1398 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1399 if (!root) {
1400 ret = -ENOMEM;
1401 goto alloc_fail;
1402 }
1403
1404 __setup_root(root, fs_info, key->objectid);
1405
1406 ret = btrfs_find_root(tree_root, key, path,
1407 &root->root_item, &root->root_key);
1408 if (ret) {
1409 if (ret > 0)
1410 ret = -ENOENT;
1411 goto find_fail;
1412 }
1413
1414 generation = btrfs_root_generation(&root->root_item);
1415 level = btrfs_root_level(&root->root_item);
1416 root->node = read_tree_block(fs_info,
1417 btrfs_root_bytenr(&root->root_item),
1418 generation, level, NULL);
1419 if (IS_ERR(root->node)) {
1420 ret = PTR_ERR(root->node);
1421 goto find_fail;
1422 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1423 ret = -EIO;
1424 free_extent_buffer(root->node);
1425 goto find_fail;
1426 }
1427 root->commit_root = btrfs_root_node(root);
1428out:
1429 btrfs_free_path(path);
1430 return root;
1431
1432find_fail:
1433 kfree(root);
1434alloc_fail:
1435 root = ERR_PTR(ret);
1436 goto out;
1437}
1438
1439struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1440 struct btrfs_key *location)
1441{
1442 struct btrfs_root *root;
1443
1444 root = btrfs_read_tree_root(tree_root, location);
1445 if (IS_ERR(root))
1446 return root;
1447
1448 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1449 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1450 btrfs_check_and_init_root_item(&root->root_item);
1451 }
1452
1453 return root;
1454}
1455
1456int btrfs_init_fs_root(struct btrfs_root *root)
1457{
1458 int ret;
1459 struct btrfs_subvolume_writers *writers;
1460
1461 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1462 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1463 GFP_NOFS);
1464 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1465 ret = -ENOMEM;
1466 goto fail;
1467 }
1468
1469 writers = btrfs_alloc_subvolume_writers();
1470 if (IS_ERR(writers)) {
1471 ret = PTR_ERR(writers);
1472 goto fail;
1473 }
1474 root->subv_writers = writers;
1475
1476 btrfs_init_free_ino_ctl(root);
1477 spin_lock_init(&root->ino_cache_lock);
1478 init_waitqueue_head(&root->ino_cache_wait);
1479
1480 ret = get_anon_bdev(&root->anon_dev);
1481 if (ret)
1482 goto fail;
1483
1484 mutex_lock(&root->objectid_mutex);
1485 ret = btrfs_find_highest_objectid(root,
1486 &root->highest_objectid);
1487 if (ret) {
1488 mutex_unlock(&root->objectid_mutex);
1489 goto fail;
1490 }
1491
1492 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1493
1494 mutex_unlock(&root->objectid_mutex);
1495
1496 return 0;
1497fail:
1498 /* The caller is responsible to call btrfs_free_fs_root */
1499 return ret;
1500}
1501
1502struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1503 u64 root_id)
1504{
1505 struct btrfs_root *root;
1506
1507 spin_lock(&fs_info->fs_roots_radix_lock);
1508 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1509 (unsigned long)root_id);
1510 spin_unlock(&fs_info->fs_roots_radix_lock);
1511 return root;
1512}
1513
1514int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1515 struct btrfs_root *root)
1516{
1517 int ret;
1518
1519 ret = radix_tree_preload(GFP_NOFS);
1520 if (ret)
1521 return ret;
1522
1523 spin_lock(&fs_info->fs_roots_radix_lock);
1524 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1525 (unsigned long)root->root_key.objectid,
1526 root);
1527 if (ret == 0)
1528 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1529 spin_unlock(&fs_info->fs_roots_radix_lock);
1530 radix_tree_preload_end();
1531
1532 return ret;
1533}
1534
1535struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1536 struct btrfs_key *location,
1537 bool check_ref)
1538{
1539 struct btrfs_root *root;
1540 struct btrfs_path *path;
1541 struct btrfs_key key;
1542 int ret;
1543
1544 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1545 return fs_info->tree_root;
1546 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1547 return fs_info->extent_root;
1548 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1549 return fs_info->chunk_root;
1550 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1551 return fs_info->dev_root;
1552 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1553 return fs_info->csum_root;
1554 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1555 return fs_info->quota_root ? fs_info->quota_root :
1556 ERR_PTR(-ENOENT);
1557 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1558 return fs_info->uuid_root ? fs_info->uuid_root :
1559 ERR_PTR(-ENOENT);
1560 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1561 return fs_info->free_space_root ? fs_info->free_space_root :
1562 ERR_PTR(-ENOENT);
1563again:
1564 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1565 if (root) {
1566 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1567 return ERR_PTR(-ENOENT);
1568 return root;
1569 }
1570
1571 root = btrfs_read_fs_root(fs_info->tree_root, location);
1572 if (IS_ERR(root))
1573 return root;
1574
1575 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1576 ret = -ENOENT;
1577 goto fail;
1578 }
1579
1580 ret = btrfs_init_fs_root(root);
1581 if (ret)
1582 goto fail;
1583
1584 path = btrfs_alloc_path();
1585 if (!path) {
1586 ret = -ENOMEM;
1587 goto fail;
1588 }
1589 key.objectid = BTRFS_ORPHAN_OBJECTID;
1590 key.type = BTRFS_ORPHAN_ITEM_KEY;
1591 key.offset = location->objectid;
1592
1593 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1594 btrfs_free_path(path);
1595 if (ret < 0)
1596 goto fail;
1597 if (ret == 0)
1598 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1599
1600 ret = btrfs_insert_fs_root(fs_info, root);
1601 if (ret) {
1602 if (ret == -EEXIST) {
1603 btrfs_free_fs_root(root);
1604 goto again;
1605 }
1606 goto fail;
1607 }
1608 return root;
1609fail:
1610 btrfs_free_fs_root(root);
1611 return ERR_PTR(ret);
1612}
1613
1614static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1615{
1616 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1617 int ret = 0;
1618 struct btrfs_device *device;
1619 struct backing_dev_info *bdi;
1620
1621 rcu_read_lock();
1622 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1623 if (!device->bdev)
1624 continue;
1625 bdi = device->bdev->bd_bdi;
1626 if (bdi_congested(bdi, bdi_bits)) {
1627 ret = 1;
1628 break;
1629 }
1630 }
1631 rcu_read_unlock();
1632 return ret;
1633}
1634
1635/*
1636 * called by the kthread helper functions to finally call the bio end_io
1637 * functions. This is where read checksum verification actually happens
1638 */
1639static void end_workqueue_fn(struct btrfs_work *work)
1640{
1641 struct bio *bio;
1642 struct btrfs_end_io_wq *end_io_wq;
1643
1644 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1645 bio = end_io_wq->bio;
1646
1647 bio->bi_status = end_io_wq->status;
1648 bio->bi_private = end_io_wq->private;
1649 bio->bi_end_io = end_io_wq->end_io;
1650 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1651 bio_endio(bio);
1652}
1653
1654static int cleaner_kthread(void *arg)
1655{
1656 struct btrfs_root *root = arg;
1657 struct btrfs_fs_info *fs_info = root->fs_info;
1658 int again;
1659
1660 while (1) {
1661 again = 0;
1662
1663 /* Make the cleaner go to sleep early. */
1664 if (btrfs_need_cleaner_sleep(fs_info))
1665 goto sleep;
1666
1667 /*
1668 * Do not do anything if we might cause open_ctree() to block
1669 * before we have finished mounting the filesystem.
1670 */
1671 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1672 goto sleep;
1673
1674 if (!mutex_trylock(&fs_info->cleaner_mutex))
1675 goto sleep;
1676
1677 /*
1678 * Avoid the problem that we change the status of the fs
1679 * during the above check and trylock.
1680 */
1681 if (btrfs_need_cleaner_sleep(fs_info)) {
1682 mutex_unlock(&fs_info->cleaner_mutex);
1683 goto sleep;
1684 }
1685
1686 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1687 btrfs_run_delayed_iputs(fs_info);
1688 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1689
1690 again = btrfs_clean_one_deleted_snapshot(root);
1691 mutex_unlock(&fs_info->cleaner_mutex);
1692
1693 /*
1694 * The defragger has dealt with the R/O remount and umount,
1695 * needn't do anything special here.
1696 */
1697 btrfs_run_defrag_inodes(fs_info);
1698
1699 /*
1700 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1701 * with relocation (btrfs_relocate_chunk) and relocation
1702 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1703 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1704 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1705 * unused block groups.
1706 */
1707 btrfs_delete_unused_bgs(fs_info);
1708sleep:
1709 if (kthread_should_park())
1710 kthread_parkme();
1711 if (kthread_should_stop())
1712 return 0;
1713 if (!again) {
1714 set_current_state(TASK_INTERRUPTIBLE);
1715 schedule();
1716 __set_current_state(TASK_RUNNING);
1717 }
1718 }
1719}
1720
1721static int transaction_kthread(void *arg)
1722{
1723 struct btrfs_root *root = arg;
1724 struct btrfs_fs_info *fs_info = root->fs_info;
1725 struct btrfs_trans_handle *trans;
1726 struct btrfs_transaction *cur;
1727 u64 transid;
1728 time64_t now;
1729 unsigned long delay;
1730 bool cannot_commit;
1731
1732 do {
1733 cannot_commit = false;
1734 delay = HZ * fs_info->commit_interval;
1735 mutex_lock(&fs_info->transaction_kthread_mutex);
1736
1737 spin_lock(&fs_info->trans_lock);
1738 cur = fs_info->running_transaction;
1739 if (!cur) {
1740 spin_unlock(&fs_info->trans_lock);
1741 goto sleep;
1742 }
1743
1744 now = ktime_get_seconds();
1745 if (cur->state < TRANS_STATE_BLOCKED &&
1746 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1747 (now < cur->start_time ||
1748 now - cur->start_time < fs_info->commit_interval)) {
1749 spin_unlock(&fs_info->trans_lock);
1750 delay = HZ * 5;
1751 goto sleep;
1752 }
1753 transid = cur->transid;
1754 spin_unlock(&fs_info->trans_lock);
1755
1756 /* If the file system is aborted, this will always fail. */
1757 trans = btrfs_attach_transaction(root);
1758 if (IS_ERR(trans)) {
1759 if (PTR_ERR(trans) != -ENOENT)
1760 cannot_commit = true;
1761 goto sleep;
1762 }
1763 if (transid == trans->transid) {
1764 btrfs_commit_transaction(trans);
1765 } else {
1766 btrfs_end_transaction(trans);
1767 }
1768sleep:
1769 wake_up_process(fs_info->cleaner_kthread);
1770 mutex_unlock(&fs_info->transaction_kthread_mutex);
1771
1772 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1773 &fs_info->fs_state)))
1774 btrfs_cleanup_transaction(fs_info);
1775 if (!kthread_should_stop() &&
1776 (!btrfs_transaction_blocked(fs_info) ||
1777 cannot_commit))
1778 schedule_timeout_interruptible(delay);
1779 } while (!kthread_should_stop());
1780 return 0;
1781}
1782
1783/*
1784 * this will find the highest generation in the array of
1785 * root backups. The index of the highest array is returned,
1786 * or -1 if we can't find anything.
1787 *
1788 * We check to make sure the array is valid by comparing the
1789 * generation of the latest root in the array with the generation
1790 * in the super block. If they don't match we pitch it.
1791 */
1792static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1793{
1794 u64 cur;
1795 int newest_index = -1;
1796 struct btrfs_root_backup *root_backup;
1797 int i;
1798
1799 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1800 root_backup = info->super_copy->super_roots + i;
1801 cur = btrfs_backup_tree_root_gen(root_backup);
1802 if (cur == newest_gen)
1803 newest_index = i;
1804 }
1805
1806 /* check to see if we actually wrapped around */
1807 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1808 root_backup = info->super_copy->super_roots;
1809 cur = btrfs_backup_tree_root_gen(root_backup);
1810 if (cur == newest_gen)
1811 newest_index = 0;
1812 }
1813 return newest_index;
1814}
1815
1816
1817/*
1818 * find the oldest backup so we know where to store new entries
1819 * in the backup array. This will set the backup_root_index
1820 * field in the fs_info struct
1821 */
1822static void find_oldest_super_backup(struct btrfs_fs_info *info,
1823 u64 newest_gen)
1824{
1825 int newest_index = -1;
1826
1827 newest_index = find_newest_super_backup(info, newest_gen);
1828 /* if there was garbage in there, just move along */
1829 if (newest_index == -1) {
1830 info->backup_root_index = 0;
1831 } else {
1832 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1833 }
1834}
1835
1836/*
1837 * copy all the root pointers into the super backup array.
1838 * this will bump the backup pointer by one when it is
1839 * done
1840 */
1841static void backup_super_roots(struct btrfs_fs_info *info)
1842{
1843 int next_backup;
1844 struct btrfs_root_backup *root_backup;
1845 int last_backup;
1846
1847 next_backup = info->backup_root_index;
1848 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1849 BTRFS_NUM_BACKUP_ROOTS;
1850
1851 /*
1852 * just overwrite the last backup if we're at the same generation
1853 * this happens only at umount
1854 */
1855 root_backup = info->super_for_commit->super_roots + last_backup;
1856 if (btrfs_backup_tree_root_gen(root_backup) ==
1857 btrfs_header_generation(info->tree_root->node))
1858 next_backup = last_backup;
1859
1860 root_backup = info->super_for_commit->super_roots + next_backup;
1861
1862 /*
1863 * make sure all of our padding and empty slots get zero filled
1864 * regardless of which ones we use today
1865 */
1866 memset(root_backup, 0, sizeof(*root_backup));
1867
1868 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1869
1870 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1871 btrfs_set_backup_tree_root_gen(root_backup,
1872 btrfs_header_generation(info->tree_root->node));
1873
1874 btrfs_set_backup_tree_root_level(root_backup,
1875 btrfs_header_level(info->tree_root->node));
1876
1877 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1878 btrfs_set_backup_chunk_root_gen(root_backup,
1879 btrfs_header_generation(info->chunk_root->node));
1880 btrfs_set_backup_chunk_root_level(root_backup,
1881 btrfs_header_level(info->chunk_root->node));
1882
1883 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1884 btrfs_set_backup_extent_root_gen(root_backup,
1885 btrfs_header_generation(info->extent_root->node));
1886 btrfs_set_backup_extent_root_level(root_backup,
1887 btrfs_header_level(info->extent_root->node));
1888
1889 /*
1890 * we might commit during log recovery, which happens before we set
1891 * the fs_root. Make sure it is valid before we fill it in.
1892 */
1893 if (info->fs_root && info->fs_root->node) {
1894 btrfs_set_backup_fs_root(root_backup,
1895 info->fs_root->node->start);
1896 btrfs_set_backup_fs_root_gen(root_backup,
1897 btrfs_header_generation(info->fs_root->node));
1898 btrfs_set_backup_fs_root_level(root_backup,
1899 btrfs_header_level(info->fs_root->node));
1900 }
1901
1902 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1903 btrfs_set_backup_dev_root_gen(root_backup,
1904 btrfs_header_generation(info->dev_root->node));
1905 btrfs_set_backup_dev_root_level(root_backup,
1906 btrfs_header_level(info->dev_root->node));
1907
1908 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1909 btrfs_set_backup_csum_root_gen(root_backup,
1910 btrfs_header_generation(info->csum_root->node));
1911 btrfs_set_backup_csum_root_level(root_backup,
1912 btrfs_header_level(info->csum_root->node));
1913
1914 btrfs_set_backup_total_bytes(root_backup,
1915 btrfs_super_total_bytes(info->super_copy));
1916 btrfs_set_backup_bytes_used(root_backup,
1917 btrfs_super_bytes_used(info->super_copy));
1918 btrfs_set_backup_num_devices(root_backup,
1919 btrfs_super_num_devices(info->super_copy));
1920
1921 /*
1922 * if we don't copy this out to the super_copy, it won't get remembered
1923 * for the next commit
1924 */
1925 memcpy(&info->super_copy->super_roots,
1926 &info->super_for_commit->super_roots,
1927 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1928}
1929
1930/*
1931 * this copies info out of the root backup array and back into
1932 * the in-memory super block. It is meant to help iterate through
1933 * the array, so you send it the number of backups you've already
1934 * tried and the last backup index you used.
1935 *
1936 * this returns -1 when it has tried all the backups
1937 */
1938static noinline int next_root_backup(struct btrfs_fs_info *info,
1939 struct btrfs_super_block *super,
1940 int *num_backups_tried, int *backup_index)
1941{
1942 struct btrfs_root_backup *root_backup;
1943 int newest = *backup_index;
1944
1945 if (*num_backups_tried == 0) {
1946 u64 gen = btrfs_super_generation(super);
1947
1948 newest = find_newest_super_backup(info, gen);
1949 if (newest == -1)
1950 return -1;
1951
1952 *backup_index = newest;
1953 *num_backups_tried = 1;
1954 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1955 /* we've tried all the backups, all done */
1956 return -1;
1957 } else {
1958 /* jump to the next oldest backup */
1959 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1960 BTRFS_NUM_BACKUP_ROOTS;
1961 *backup_index = newest;
1962 *num_backups_tried += 1;
1963 }
1964 root_backup = super->super_roots + newest;
1965
1966 btrfs_set_super_generation(super,
1967 btrfs_backup_tree_root_gen(root_backup));
1968 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1969 btrfs_set_super_root_level(super,
1970 btrfs_backup_tree_root_level(root_backup));
1971 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1972
1973 /*
1974 * fixme: the total bytes and num_devices need to match or we should
1975 * need a fsck
1976 */
1977 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1978 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1979 return 0;
1980}
1981
1982/* helper to cleanup workers */
1983static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1984{
1985 btrfs_destroy_workqueue(fs_info->fixup_workers);
1986 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1987 btrfs_destroy_workqueue(fs_info->workers);
1988 btrfs_destroy_workqueue(fs_info->endio_workers);
1989 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1990 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
1991 btrfs_destroy_workqueue(fs_info->rmw_workers);
1992 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1993 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1994 btrfs_destroy_workqueue(fs_info->submit_workers);
1995 btrfs_destroy_workqueue(fs_info->delayed_workers);
1996 btrfs_destroy_workqueue(fs_info->caching_workers);
1997 btrfs_destroy_workqueue(fs_info->readahead_workers);
1998 btrfs_destroy_workqueue(fs_info->flush_workers);
1999 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2000 btrfs_destroy_workqueue(fs_info->extent_workers);
2001 /*
2002 * Now that all other work queues are destroyed, we can safely destroy
2003 * the queues used for metadata I/O, since tasks from those other work
2004 * queues can do metadata I/O operations.
2005 */
2006 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2007 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2008}
2009
2010static void free_root_extent_buffers(struct btrfs_root *root)
2011{
2012 if (root) {
2013 free_extent_buffer(root->node);
2014 free_extent_buffer(root->commit_root);
2015 root->node = NULL;
2016 root->commit_root = NULL;
2017 }
2018}
2019
2020/* helper to cleanup tree roots */
2021static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2022{
2023 free_root_extent_buffers(info->tree_root);
2024
2025 free_root_extent_buffers(info->dev_root);
2026 free_root_extent_buffers(info->extent_root);
2027 free_root_extent_buffers(info->csum_root);
2028 free_root_extent_buffers(info->quota_root);
2029 free_root_extent_buffers(info->uuid_root);
2030 if (chunk_root)
2031 free_root_extent_buffers(info->chunk_root);
2032 free_root_extent_buffers(info->free_space_root);
2033}
2034
2035void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2036{
2037 int ret;
2038 struct btrfs_root *gang[8];
2039 int i;
2040
2041 while (!list_empty(&fs_info->dead_roots)) {
2042 gang[0] = list_entry(fs_info->dead_roots.next,
2043 struct btrfs_root, root_list);
2044 list_del(&gang[0]->root_list);
2045
2046 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2047 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2048 } else {
2049 free_extent_buffer(gang[0]->node);
2050 free_extent_buffer(gang[0]->commit_root);
2051 btrfs_put_fs_root(gang[0]);
2052 }
2053 }
2054
2055 while (1) {
2056 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2057 (void **)gang, 0,
2058 ARRAY_SIZE(gang));
2059 if (!ret)
2060 break;
2061 for (i = 0; i < ret; i++)
2062 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2063 }
2064
2065 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2066 btrfs_free_log_root_tree(NULL, fs_info);
2067 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2068 }
2069}
2070
2071static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2072{
2073 mutex_init(&fs_info->scrub_lock);
2074 atomic_set(&fs_info->scrubs_running, 0);
2075 atomic_set(&fs_info->scrub_pause_req, 0);
2076 atomic_set(&fs_info->scrubs_paused, 0);
2077 atomic_set(&fs_info->scrub_cancel_req, 0);
2078 init_waitqueue_head(&fs_info->scrub_pause_wait);
2079 fs_info->scrub_workers_refcnt = 0;
2080}
2081
2082static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2083{
2084 spin_lock_init(&fs_info->balance_lock);
2085 mutex_init(&fs_info->balance_mutex);
2086 atomic_set(&fs_info->balance_pause_req, 0);
2087 atomic_set(&fs_info->balance_cancel_req, 0);
2088 fs_info->balance_ctl = NULL;
2089 init_waitqueue_head(&fs_info->balance_wait_q);
2090}
2091
2092static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2093{
2094 struct inode *inode = fs_info->btree_inode;
2095
2096 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2097 set_nlink(inode, 1);
2098 /*
2099 * we set the i_size on the btree inode to the max possible int.
2100 * the real end of the address space is determined by all of
2101 * the devices in the system
2102 */
2103 inode->i_size = OFFSET_MAX;
2104 inode->i_mapping->a_ops = &btree_aops;
2105
2106 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2107 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2108 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2109 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2110
2111 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2112
2113 BTRFS_I(inode)->root = fs_info->tree_root;
2114 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2115 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2116 btrfs_insert_inode_hash(inode);
2117}
2118
2119static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2120{
2121 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2122 rwlock_init(&fs_info->dev_replace.lock);
2123 atomic_set(&fs_info->dev_replace.read_locks, 0);
2124 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2125 init_waitqueue_head(&fs_info->replace_wait);
2126 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2127}
2128
2129static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2130{
2131 spin_lock_init(&fs_info->qgroup_lock);
2132 mutex_init(&fs_info->qgroup_ioctl_lock);
2133 fs_info->qgroup_tree = RB_ROOT;
2134 fs_info->qgroup_op_tree = RB_ROOT;
2135 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2136 fs_info->qgroup_seq = 1;
2137 fs_info->qgroup_ulist = NULL;
2138 fs_info->qgroup_rescan_running = false;
2139 mutex_init(&fs_info->qgroup_rescan_lock);
2140}
2141
2142static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2143 struct btrfs_fs_devices *fs_devices)
2144{
2145 u32 max_active = fs_info->thread_pool_size;
2146 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2147
2148 fs_info->workers =
2149 btrfs_alloc_workqueue(fs_info, "worker",
2150 flags | WQ_HIGHPRI, max_active, 16);
2151
2152 fs_info->delalloc_workers =
2153 btrfs_alloc_workqueue(fs_info, "delalloc",
2154 flags, max_active, 2);
2155
2156 fs_info->flush_workers =
2157 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2158 flags, max_active, 0);
2159
2160 fs_info->caching_workers =
2161 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2162
2163 /*
2164 * a higher idle thresh on the submit workers makes it much more
2165 * likely that bios will be send down in a sane order to the
2166 * devices
2167 */
2168 fs_info->submit_workers =
2169 btrfs_alloc_workqueue(fs_info, "submit", flags,
2170 min_t(u64, fs_devices->num_devices,
2171 max_active), 64);
2172
2173 fs_info->fixup_workers =
2174 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2175
2176 /*
2177 * endios are largely parallel and should have a very
2178 * low idle thresh
2179 */
2180 fs_info->endio_workers =
2181 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2182 fs_info->endio_meta_workers =
2183 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2184 max_active, 4);
2185 fs_info->endio_meta_write_workers =
2186 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2187 max_active, 2);
2188 fs_info->endio_raid56_workers =
2189 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2190 max_active, 4);
2191 fs_info->endio_repair_workers =
2192 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2193 fs_info->rmw_workers =
2194 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2195 fs_info->endio_write_workers =
2196 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2197 max_active, 2);
2198 fs_info->endio_freespace_worker =
2199 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2200 max_active, 0);
2201 fs_info->delayed_workers =
2202 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2203 max_active, 0);
2204 fs_info->readahead_workers =
2205 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2206 max_active, 2);
2207 fs_info->qgroup_rescan_workers =
2208 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2209 fs_info->extent_workers =
2210 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2211 min_t(u64, fs_devices->num_devices,
2212 max_active), 8);
2213
2214 if (!(fs_info->workers && fs_info->delalloc_workers &&
2215 fs_info->submit_workers && fs_info->flush_workers &&
2216 fs_info->endio_workers && fs_info->endio_meta_workers &&
2217 fs_info->endio_meta_write_workers &&
2218 fs_info->endio_repair_workers &&
2219 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2220 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2221 fs_info->caching_workers && fs_info->readahead_workers &&
2222 fs_info->fixup_workers && fs_info->delayed_workers &&
2223 fs_info->extent_workers &&
2224 fs_info->qgroup_rescan_workers)) {
2225 return -ENOMEM;
2226 }
2227
2228 return 0;
2229}
2230
2231static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2232 struct btrfs_fs_devices *fs_devices)
2233{
2234 int ret;
2235 struct btrfs_root *log_tree_root;
2236 struct btrfs_super_block *disk_super = fs_info->super_copy;
2237 u64 bytenr = btrfs_super_log_root(disk_super);
2238 int level = btrfs_super_log_root_level(disk_super);
2239
2240 if (fs_devices->rw_devices == 0) {
2241 btrfs_warn(fs_info, "log replay required on RO media");
2242 return -EIO;
2243 }
2244
2245 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2246 if (!log_tree_root)
2247 return -ENOMEM;
2248
2249 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2250
2251 log_tree_root->node = read_tree_block(fs_info, bytenr,
2252 fs_info->generation + 1,
2253 level, NULL);
2254 if (IS_ERR(log_tree_root->node)) {
2255 btrfs_warn(fs_info, "failed to read log tree");
2256 ret = PTR_ERR(log_tree_root->node);
2257 kfree(log_tree_root);
2258 return ret;
2259 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2260 btrfs_err(fs_info, "failed to read log tree");
2261 free_extent_buffer(log_tree_root->node);
2262 kfree(log_tree_root);
2263 return -EIO;
2264 }
2265 /* returns with log_tree_root freed on success */
2266 ret = btrfs_recover_log_trees(log_tree_root);
2267 if (ret) {
2268 btrfs_handle_fs_error(fs_info, ret,
2269 "Failed to recover log tree");
2270 free_extent_buffer(log_tree_root->node);
2271 kfree(log_tree_root);
2272 return ret;
2273 }
2274
2275 if (sb_rdonly(fs_info->sb)) {
2276 ret = btrfs_commit_super(fs_info);
2277 if (ret)
2278 return ret;
2279 }
2280
2281 return 0;
2282}
2283
2284static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2285{
2286 struct btrfs_root *tree_root = fs_info->tree_root;
2287 struct btrfs_root *root;
2288 struct btrfs_key location;
2289 int ret;
2290
2291 BUG_ON(!fs_info->tree_root);
2292
2293 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2294 location.type = BTRFS_ROOT_ITEM_KEY;
2295 location.offset = 0;
2296
2297 root = btrfs_read_tree_root(tree_root, &location);
2298 if (IS_ERR(root)) {
2299 ret = PTR_ERR(root);
2300 goto out;
2301 }
2302 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2303 fs_info->extent_root = root;
2304
2305 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2306 root = btrfs_read_tree_root(tree_root, &location);
2307 if (IS_ERR(root)) {
2308 ret = PTR_ERR(root);
2309 goto out;
2310 }
2311 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2312 fs_info->dev_root = root;
2313 btrfs_init_devices_late(fs_info);
2314
2315 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2316 root = btrfs_read_tree_root(tree_root, &location);
2317 if (IS_ERR(root)) {
2318 ret = PTR_ERR(root);
2319 goto out;
2320 }
2321 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2322 fs_info->csum_root = root;
2323
2324 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2325 root = btrfs_read_tree_root(tree_root, &location);
2326 if (!IS_ERR(root)) {
2327 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2328 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2329 fs_info->quota_root = root;
2330 }
2331
2332 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2333 root = btrfs_read_tree_root(tree_root, &location);
2334 if (IS_ERR(root)) {
2335 ret = PTR_ERR(root);
2336 if (ret != -ENOENT)
2337 goto out;
2338 } else {
2339 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2340 fs_info->uuid_root = root;
2341 }
2342
2343 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2344 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2345 root = btrfs_read_tree_root(tree_root, &location);
2346 if (IS_ERR(root)) {
2347 ret = PTR_ERR(root);
2348 goto out;
2349 }
2350 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2351 fs_info->free_space_root = root;
2352 }
2353
2354 return 0;
2355out:
2356 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2357 location.objectid, ret);
2358 return ret;
2359}
2360
2361/*
2362 * Real super block validation
2363 * NOTE: super csum type and incompat features will not be checked here.
2364 *
2365 * @sb: super block to check
2366 * @mirror_num: the super block number to check its bytenr:
2367 * 0 the primary (1st) sb
2368 * 1, 2 2nd and 3rd backup copy
2369 * -1 skip bytenr check
2370 */
2371static int validate_super(struct btrfs_fs_info *fs_info,
2372 struct btrfs_super_block *sb, int mirror_num)
2373{
2374 u64 nodesize = btrfs_super_nodesize(sb);
2375 u64 sectorsize = btrfs_super_sectorsize(sb);
2376 int ret = 0;
2377
2378 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2379 btrfs_err(fs_info, "no valid FS found");
2380 ret = -EINVAL;
2381 }
2382 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2383 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2384 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2385 ret = -EINVAL;
2386 }
2387 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2388 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2389 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2390 ret = -EINVAL;
2391 }
2392 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2393 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2394 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2395 ret = -EINVAL;
2396 }
2397 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2398 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2399 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2400 ret = -EINVAL;
2401 }
2402
2403 /*
2404 * Check sectorsize and nodesize first, other check will need it.
2405 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2406 */
2407 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2408 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2409 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2410 ret = -EINVAL;
2411 }
2412 /* Only PAGE SIZE is supported yet */
2413 if (sectorsize != PAGE_SIZE) {
2414 btrfs_err(fs_info,
2415 "sectorsize %llu not supported yet, only support %lu",
2416 sectorsize, PAGE_SIZE);
2417 ret = -EINVAL;
2418 }
2419 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2420 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2421 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2422 ret = -EINVAL;
2423 }
2424 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2425 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2426 le32_to_cpu(sb->__unused_leafsize), nodesize);
2427 ret = -EINVAL;
2428 }
2429
2430 /* Root alignment check */
2431 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2432 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2433 btrfs_super_root(sb));
2434 ret = -EINVAL;
2435 }
2436 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2437 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2438 btrfs_super_chunk_root(sb));
2439 ret = -EINVAL;
2440 }
2441 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2442 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2443 btrfs_super_log_root(sb));
2444 ret = -EINVAL;
2445 }
2446
2447 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
2448 btrfs_err(fs_info,
2449 "dev_item UUID does not match fsid: %pU != %pU",
2450 fs_info->fsid, sb->dev_item.fsid);
2451 ret = -EINVAL;
2452 }
2453
2454 /*
2455 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2456 * done later
2457 */
2458 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2459 btrfs_err(fs_info, "bytes_used is too small %llu",
2460 btrfs_super_bytes_used(sb));
2461 ret = -EINVAL;
2462 }
2463 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2464 btrfs_err(fs_info, "invalid stripesize %u",
2465 btrfs_super_stripesize(sb));
2466 ret = -EINVAL;
2467 }
2468 if (btrfs_super_num_devices(sb) > (1UL << 31))
2469 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2470 btrfs_super_num_devices(sb));
2471 if (btrfs_super_num_devices(sb) == 0) {
2472 btrfs_err(fs_info, "number of devices is 0");
2473 ret = -EINVAL;
2474 }
2475
2476 if (mirror_num >= 0 &&
2477 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2478 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2479 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2480 ret = -EINVAL;
2481 }
2482
2483 /*
2484 * Obvious sys_chunk_array corruptions, it must hold at least one key
2485 * and one chunk
2486 */
2487 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2488 btrfs_err(fs_info, "system chunk array too big %u > %u",
2489 btrfs_super_sys_array_size(sb),
2490 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2491 ret = -EINVAL;
2492 }
2493 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2494 + sizeof(struct btrfs_chunk)) {
2495 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2496 btrfs_super_sys_array_size(sb),
2497 sizeof(struct btrfs_disk_key)
2498 + sizeof(struct btrfs_chunk));
2499 ret = -EINVAL;
2500 }
2501
2502 /*
2503 * The generation is a global counter, we'll trust it more than the others
2504 * but it's still possible that it's the one that's wrong.
2505 */
2506 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2507 btrfs_warn(fs_info,
2508 "suspicious: generation < chunk_root_generation: %llu < %llu",
2509 btrfs_super_generation(sb),
2510 btrfs_super_chunk_root_generation(sb));
2511 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2512 && btrfs_super_cache_generation(sb) != (u64)-1)
2513 btrfs_warn(fs_info,
2514 "suspicious: generation < cache_generation: %llu < %llu",
2515 btrfs_super_generation(sb),
2516 btrfs_super_cache_generation(sb));
2517
2518 return ret;
2519}
2520
2521/*
2522 * Validation of super block at mount time.
2523 * Some checks already done early at mount time, like csum type and incompat
2524 * flags will be skipped.
2525 */
2526static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2527{
2528 return validate_super(fs_info, fs_info->super_copy, 0);
2529}
2530
2531/*
2532 * Validation of super block at write time.
2533 * Some checks like bytenr check will be skipped as their values will be
2534 * overwritten soon.
2535 * Extra checks like csum type and incompat flags will be done here.
2536 */
2537static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2538 struct btrfs_super_block *sb)
2539{
2540 int ret;
2541
2542 ret = validate_super(fs_info, sb, -1);
2543 if (ret < 0)
2544 goto out;
2545 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2546 ret = -EUCLEAN;
2547 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2548 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2549 goto out;
2550 }
2551 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2552 ret = -EUCLEAN;
2553 btrfs_err(fs_info,
2554 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2555 btrfs_super_incompat_flags(sb),
2556 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2557 goto out;
2558 }
2559out:
2560 if (ret < 0)
2561 btrfs_err(fs_info,
2562 "super block corruption detected before writing it to disk");
2563 return ret;
2564}
2565
2566int open_ctree(struct super_block *sb,
2567 struct btrfs_fs_devices *fs_devices,
2568 char *options)
2569{
2570 u32 sectorsize;
2571 u32 nodesize;
2572 u32 stripesize;
2573 u64 generation;
2574 u64 features;
2575 struct btrfs_key location;
2576 struct buffer_head *bh;
2577 struct btrfs_super_block *disk_super;
2578 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2579 struct btrfs_root *tree_root;
2580 struct btrfs_root *chunk_root;
2581 int ret;
2582 int err = -EINVAL;
2583 int num_backups_tried = 0;
2584 int backup_index = 0;
2585 int clear_free_space_tree = 0;
2586 int level;
2587
2588 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2589 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2590 if (!tree_root || !chunk_root) {
2591 err = -ENOMEM;
2592 goto fail;
2593 }
2594
2595 ret = init_srcu_struct(&fs_info->subvol_srcu);
2596 if (ret) {
2597 err = ret;
2598 goto fail;
2599 }
2600
2601 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2602 if (ret) {
2603 err = ret;
2604 goto fail_srcu;
2605 }
2606 fs_info->dirty_metadata_batch = PAGE_SIZE *
2607 (1 + ilog2(nr_cpu_ids));
2608
2609 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2610 if (ret) {
2611 err = ret;
2612 goto fail_dirty_metadata_bytes;
2613 }
2614
2615 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2616 if (ret) {
2617 err = ret;
2618 goto fail_delalloc_bytes;
2619 }
2620
2621 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2622 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2623 INIT_LIST_HEAD(&fs_info->trans_list);
2624 INIT_LIST_HEAD(&fs_info->dead_roots);
2625 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2626 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2627 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2628 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2629 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2630 spin_lock_init(&fs_info->delalloc_root_lock);
2631 spin_lock_init(&fs_info->trans_lock);
2632 spin_lock_init(&fs_info->fs_roots_radix_lock);
2633 spin_lock_init(&fs_info->delayed_iput_lock);
2634 spin_lock_init(&fs_info->defrag_inodes_lock);
2635 spin_lock_init(&fs_info->tree_mod_seq_lock);
2636 spin_lock_init(&fs_info->super_lock);
2637 spin_lock_init(&fs_info->qgroup_op_lock);
2638 spin_lock_init(&fs_info->buffer_lock);
2639 spin_lock_init(&fs_info->unused_bgs_lock);
2640 rwlock_init(&fs_info->tree_mod_log_lock);
2641 mutex_init(&fs_info->unused_bg_unpin_mutex);
2642 mutex_init(&fs_info->delete_unused_bgs_mutex);
2643 mutex_init(&fs_info->reloc_mutex);
2644 mutex_init(&fs_info->delalloc_root_mutex);
2645 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2646 seqlock_init(&fs_info->profiles_lock);
2647
2648 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2649 INIT_LIST_HEAD(&fs_info->space_info);
2650 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2651 INIT_LIST_HEAD(&fs_info->unused_bgs);
2652 btrfs_mapping_init(&fs_info->mapping_tree);
2653 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2654 BTRFS_BLOCK_RSV_GLOBAL);
2655 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2656 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2657 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2658 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2659 BTRFS_BLOCK_RSV_DELOPS);
2660 atomic_set(&fs_info->async_delalloc_pages, 0);
2661 atomic_set(&fs_info->defrag_running, 0);
2662 atomic_set(&fs_info->qgroup_op_seq, 0);
2663 atomic_set(&fs_info->reada_works_cnt, 0);
2664 atomic64_set(&fs_info->tree_mod_seq, 0);
2665 fs_info->sb = sb;
2666 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2667 fs_info->metadata_ratio = 0;
2668 fs_info->defrag_inodes = RB_ROOT;
2669 atomic64_set(&fs_info->free_chunk_space, 0);
2670 fs_info->tree_mod_log = RB_ROOT;
2671 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2672 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2673 /* readahead state */
2674 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2675 spin_lock_init(&fs_info->reada_lock);
2676 btrfs_init_ref_verify(fs_info);
2677
2678 fs_info->thread_pool_size = min_t(unsigned long,
2679 num_online_cpus() + 2, 8);
2680
2681 INIT_LIST_HEAD(&fs_info->ordered_roots);
2682 spin_lock_init(&fs_info->ordered_root_lock);
2683
2684 fs_info->btree_inode = new_inode(sb);
2685 if (!fs_info->btree_inode) {
2686 err = -ENOMEM;
2687 goto fail_bio_counter;
2688 }
2689 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2690
2691 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2692 GFP_KERNEL);
2693 if (!fs_info->delayed_root) {
2694 err = -ENOMEM;
2695 goto fail_iput;
2696 }
2697 btrfs_init_delayed_root(fs_info->delayed_root);
2698
2699 btrfs_init_scrub(fs_info);
2700#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2701 fs_info->check_integrity_print_mask = 0;
2702#endif
2703 btrfs_init_balance(fs_info);
2704 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2705
2706 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2707 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2708
2709 btrfs_init_btree_inode(fs_info);
2710
2711 spin_lock_init(&fs_info->block_group_cache_lock);
2712 fs_info->block_group_cache_tree = RB_ROOT;
2713 fs_info->first_logical_byte = (u64)-1;
2714
2715 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2716 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2717 fs_info->pinned_extents = &fs_info->freed_extents[0];
2718 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2719
2720 mutex_init(&fs_info->ordered_operations_mutex);
2721 mutex_init(&fs_info->tree_log_mutex);
2722 mutex_init(&fs_info->chunk_mutex);
2723 mutex_init(&fs_info->transaction_kthread_mutex);
2724 mutex_init(&fs_info->cleaner_mutex);
2725 mutex_init(&fs_info->ro_block_group_mutex);
2726 init_rwsem(&fs_info->commit_root_sem);
2727 init_rwsem(&fs_info->cleanup_work_sem);
2728 init_rwsem(&fs_info->subvol_sem);
2729 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2730
2731 btrfs_init_dev_replace_locks(fs_info);
2732 btrfs_init_qgroup(fs_info);
2733
2734 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2735 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2736
2737 init_waitqueue_head(&fs_info->transaction_throttle);
2738 init_waitqueue_head(&fs_info->transaction_wait);
2739 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2740 init_waitqueue_head(&fs_info->async_submit_wait);
2741
2742 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2743
2744 /* Usable values until the real ones are cached from the superblock */
2745 fs_info->nodesize = 4096;
2746 fs_info->sectorsize = 4096;
2747 fs_info->stripesize = 4096;
2748
2749 ret = btrfs_alloc_stripe_hash_table(fs_info);
2750 if (ret) {
2751 err = ret;
2752 goto fail_alloc;
2753 }
2754
2755 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2756
2757 invalidate_bdev(fs_devices->latest_bdev);
2758
2759 /*
2760 * Read super block and check the signature bytes only
2761 */
2762 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2763 if (IS_ERR(bh)) {
2764 err = PTR_ERR(bh);
2765 goto fail_alloc;
2766 }
2767
2768 /*
2769 * We want to check superblock checksum, the type is stored inside.
2770 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2771 */
2772 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2773 btrfs_err(fs_info, "superblock checksum mismatch");
2774 err = -EINVAL;
2775 brelse(bh);
2776 goto fail_alloc;
2777 }
2778
2779 /*
2780 * super_copy is zeroed at allocation time and we never touch the
2781 * following bytes up to INFO_SIZE, the checksum is calculated from
2782 * the whole block of INFO_SIZE
2783 */
2784 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2785 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2786 sizeof(*fs_info->super_for_commit));
2787 brelse(bh);
2788
2789 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2790
2791 ret = btrfs_validate_mount_super(fs_info);
2792 if (ret) {
2793 btrfs_err(fs_info, "superblock contains fatal errors");
2794 err = -EINVAL;
2795 goto fail_alloc;
2796 }
2797
2798 disk_super = fs_info->super_copy;
2799 if (!btrfs_super_root(disk_super))
2800 goto fail_alloc;
2801
2802 /* check FS state, whether FS is broken. */
2803 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2804 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2805
2806 /*
2807 * run through our array of backup supers and setup
2808 * our ring pointer to the oldest one
2809 */
2810 generation = btrfs_super_generation(disk_super);
2811 find_oldest_super_backup(fs_info, generation);
2812
2813 /*
2814 * In the long term, we'll store the compression type in the super
2815 * block, and it'll be used for per file compression control.
2816 */
2817 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2818
2819 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2820 if (ret) {
2821 err = ret;
2822 goto fail_alloc;
2823 }
2824
2825 features = btrfs_super_incompat_flags(disk_super) &
2826 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2827 if (features) {
2828 btrfs_err(fs_info,
2829 "cannot mount because of unsupported optional features (%llx)",
2830 features);
2831 err = -EINVAL;
2832 goto fail_alloc;
2833 }
2834
2835 features = btrfs_super_incompat_flags(disk_super);
2836 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2837 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2838 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2839 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2840 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2841
2842 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2843 btrfs_info(fs_info, "has skinny extents");
2844
2845 /*
2846 * flag our filesystem as having big metadata blocks if
2847 * they are bigger than the page size
2848 */
2849 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2850 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2851 btrfs_info(fs_info,
2852 "flagging fs with big metadata feature");
2853 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2854 }
2855
2856 nodesize = btrfs_super_nodesize(disk_super);
2857 sectorsize = btrfs_super_sectorsize(disk_super);
2858 stripesize = sectorsize;
2859 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2860 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2861
2862 /* Cache block sizes */
2863 fs_info->nodesize = nodesize;
2864 fs_info->sectorsize = sectorsize;
2865 fs_info->stripesize = stripesize;
2866
2867 /*
2868 * mixed block groups end up with duplicate but slightly offset
2869 * extent buffers for the same range. It leads to corruptions
2870 */
2871 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2872 (sectorsize != nodesize)) {
2873 btrfs_err(fs_info,
2874"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2875 nodesize, sectorsize);
2876 goto fail_alloc;
2877 }
2878
2879 /*
2880 * Needn't use the lock because there is no other task which will
2881 * update the flag.
2882 */
2883 btrfs_set_super_incompat_flags(disk_super, features);
2884
2885 features = btrfs_super_compat_ro_flags(disk_super) &
2886 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2887 if (!sb_rdonly(sb) && features) {
2888 btrfs_err(fs_info,
2889 "cannot mount read-write because of unsupported optional features (%llx)",
2890 features);
2891 err = -EINVAL;
2892 goto fail_alloc;
2893 }
2894
2895 ret = btrfs_init_workqueues(fs_info, fs_devices);
2896 if (ret) {
2897 err = ret;
2898 goto fail_sb_buffer;
2899 }
2900
2901 sb->s_bdi->congested_fn = btrfs_congested_fn;
2902 sb->s_bdi->congested_data = fs_info;
2903 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2904 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2905 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2906 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2907
2908 sb->s_blocksize = sectorsize;
2909 sb->s_blocksize_bits = blksize_bits(sectorsize);
2910 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2911
2912 mutex_lock(&fs_info->chunk_mutex);
2913 ret = btrfs_read_sys_array(fs_info);
2914 mutex_unlock(&fs_info->chunk_mutex);
2915 if (ret) {
2916 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2917 goto fail_sb_buffer;
2918 }
2919
2920 generation = btrfs_super_chunk_root_generation(disk_super);
2921 level = btrfs_super_chunk_root_level(disk_super);
2922
2923 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2924
2925 chunk_root->node = read_tree_block(fs_info,
2926 btrfs_super_chunk_root(disk_super),
2927 generation, level, NULL);
2928 if (IS_ERR(chunk_root->node) ||
2929 !extent_buffer_uptodate(chunk_root->node)) {
2930 btrfs_err(fs_info, "failed to read chunk root");
2931 if (!IS_ERR(chunk_root->node))
2932 free_extent_buffer(chunk_root->node);
2933 chunk_root->node = NULL;
2934 goto fail_tree_roots;
2935 }
2936 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2937 chunk_root->commit_root = btrfs_root_node(chunk_root);
2938
2939 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2940 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2941
2942 ret = btrfs_read_chunk_tree(fs_info);
2943 if (ret) {
2944 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2945 goto fail_tree_roots;
2946 }
2947
2948 /*
2949 * Keep the devid that is marked to be the target device for the
2950 * device replace procedure
2951 */
2952 btrfs_free_extra_devids(fs_devices, 0);
2953
2954 if (!fs_devices->latest_bdev) {
2955 btrfs_err(fs_info, "failed to read devices");
2956 goto fail_tree_roots;
2957 }
2958
2959retry_root_backup:
2960 generation = btrfs_super_generation(disk_super);
2961 level = btrfs_super_root_level(disk_super);
2962
2963 tree_root->node = read_tree_block(fs_info,
2964 btrfs_super_root(disk_super),
2965 generation, level, NULL);
2966 if (IS_ERR(tree_root->node) ||
2967 !extent_buffer_uptodate(tree_root->node)) {
2968 btrfs_warn(fs_info, "failed to read tree root");
2969 if (!IS_ERR(tree_root->node))
2970 free_extent_buffer(tree_root->node);
2971 tree_root->node = NULL;
2972 goto recovery_tree_root;
2973 }
2974
2975 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2976 tree_root->commit_root = btrfs_root_node(tree_root);
2977 btrfs_set_root_refs(&tree_root->root_item, 1);
2978
2979 mutex_lock(&tree_root->objectid_mutex);
2980 ret = btrfs_find_highest_objectid(tree_root,
2981 &tree_root->highest_objectid);
2982 if (ret) {
2983 mutex_unlock(&tree_root->objectid_mutex);
2984 goto recovery_tree_root;
2985 }
2986
2987 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2988
2989 mutex_unlock(&tree_root->objectid_mutex);
2990
2991 ret = btrfs_read_roots(fs_info);
2992 if (ret)
2993 goto recovery_tree_root;
2994
2995 fs_info->generation = generation;
2996 fs_info->last_trans_committed = generation;
2997
2998 ret = btrfs_verify_dev_extents(fs_info);
2999 if (ret) {
3000 btrfs_err(fs_info,
3001 "failed to verify dev extents against chunks: %d",
3002 ret);
3003 goto fail_block_groups;
3004 }
3005 ret = btrfs_recover_balance(fs_info);
3006 if (ret) {
3007 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3008 goto fail_block_groups;
3009 }
3010
3011 ret = btrfs_init_dev_stats(fs_info);
3012 if (ret) {
3013 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3014 goto fail_block_groups;
3015 }
3016
3017 ret = btrfs_init_dev_replace(fs_info);
3018 if (ret) {
3019 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3020 goto fail_block_groups;
3021 }
3022
3023 btrfs_free_extra_devids(fs_devices, 1);
3024
3025 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3026 if (ret) {
3027 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3028 ret);
3029 goto fail_block_groups;
3030 }
3031
3032 ret = btrfs_sysfs_add_device(fs_devices);
3033 if (ret) {
3034 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3035 ret);
3036 goto fail_fsdev_sysfs;
3037 }
3038
3039 ret = btrfs_sysfs_add_mounted(fs_info);
3040 if (ret) {
3041 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3042 goto fail_fsdev_sysfs;
3043 }
3044
3045 ret = btrfs_init_space_info(fs_info);
3046 if (ret) {
3047 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3048 goto fail_sysfs;
3049 }
3050
3051 ret = btrfs_read_block_groups(fs_info);
3052 if (ret) {
3053 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3054 goto fail_sysfs;
3055 }
3056
3057 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3058 btrfs_warn(fs_info,
3059 "writeable mount is not allowed due to too many missing devices");
3060 goto fail_sysfs;
3061 }
3062
3063 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3064 "btrfs-cleaner");
3065 if (IS_ERR(fs_info->cleaner_kthread))
3066 goto fail_sysfs;
3067
3068 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3069 tree_root,
3070 "btrfs-transaction");
3071 if (IS_ERR(fs_info->transaction_kthread))
3072 goto fail_cleaner;
3073
3074 if (!btrfs_test_opt(fs_info, NOSSD) &&
3075 !fs_info->fs_devices->rotating) {
3076 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3077 }
3078
3079 /*
3080 * Mount does not set all options immediately, we can do it now and do
3081 * not have to wait for transaction commit
3082 */
3083 btrfs_apply_pending_changes(fs_info);
3084
3085#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3086 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3087 ret = btrfsic_mount(fs_info, fs_devices,
3088 btrfs_test_opt(fs_info,
3089 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3090 1 : 0,
3091 fs_info->check_integrity_print_mask);
3092 if (ret)
3093 btrfs_warn(fs_info,
3094 "failed to initialize integrity check module: %d",
3095 ret);
3096 }
3097#endif
3098 ret = btrfs_read_qgroup_config(fs_info);
3099 if (ret)
3100 goto fail_trans_kthread;
3101
3102 if (btrfs_build_ref_tree(fs_info))
3103 btrfs_err(fs_info, "couldn't build ref tree");
3104
3105 /* do not make disk changes in broken FS or nologreplay is given */
3106 if (btrfs_super_log_root(disk_super) != 0 &&
3107 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3108 ret = btrfs_replay_log(fs_info, fs_devices);
3109 if (ret) {
3110 err = ret;
3111 goto fail_qgroup;
3112 }
3113 }
3114
3115 ret = btrfs_find_orphan_roots(fs_info);
3116 if (ret)
3117 goto fail_qgroup;
3118
3119 if (!sb_rdonly(sb)) {
3120 ret = btrfs_cleanup_fs_roots(fs_info);
3121 if (ret)
3122 goto fail_qgroup;
3123
3124 mutex_lock(&fs_info->cleaner_mutex);
3125 ret = btrfs_recover_relocation(tree_root);
3126 mutex_unlock(&fs_info->cleaner_mutex);
3127 if (ret < 0) {
3128 btrfs_warn(fs_info, "failed to recover relocation: %d",
3129 ret);
3130 err = -EINVAL;
3131 goto fail_qgroup;
3132 }
3133 }
3134
3135 location.objectid = BTRFS_FS_TREE_OBJECTID;
3136 location.type = BTRFS_ROOT_ITEM_KEY;
3137 location.offset = 0;
3138
3139 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140 if (IS_ERR(fs_info->fs_root)) {
3141 err = PTR_ERR(fs_info->fs_root);
3142 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3143 goto fail_qgroup;
3144 }
3145
3146 if (sb_rdonly(sb))
3147 return 0;
3148
3149 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3150 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3151 clear_free_space_tree = 1;
3152 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3153 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3154 btrfs_warn(fs_info, "free space tree is invalid");
3155 clear_free_space_tree = 1;
3156 }
3157
3158 if (clear_free_space_tree) {
3159 btrfs_info(fs_info, "clearing free space tree");
3160 ret = btrfs_clear_free_space_tree(fs_info);
3161 if (ret) {
3162 btrfs_warn(fs_info,
3163 "failed to clear free space tree: %d", ret);
3164 close_ctree(fs_info);
3165 return ret;
3166 }
3167 }
3168
3169 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3170 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3171 btrfs_info(fs_info, "creating free space tree");
3172 ret = btrfs_create_free_space_tree(fs_info);
3173 if (ret) {
3174 btrfs_warn(fs_info,
3175 "failed to create free space tree: %d", ret);
3176 close_ctree(fs_info);
3177 return ret;
3178 }
3179 }
3180
3181 down_read(&fs_info->cleanup_work_sem);
3182 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3183 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3184 up_read(&fs_info->cleanup_work_sem);
3185 close_ctree(fs_info);
3186 return ret;
3187 }
3188 up_read(&fs_info->cleanup_work_sem);
3189
3190 ret = btrfs_resume_balance_async(fs_info);
3191 if (ret) {
3192 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3193 close_ctree(fs_info);
3194 return ret;
3195 }
3196
3197 ret = btrfs_resume_dev_replace_async(fs_info);
3198 if (ret) {
3199 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3200 close_ctree(fs_info);
3201 return ret;
3202 }
3203
3204 btrfs_qgroup_rescan_resume(fs_info);
3205
3206 if (!fs_info->uuid_root) {
3207 btrfs_info(fs_info, "creating UUID tree");
3208 ret = btrfs_create_uuid_tree(fs_info);
3209 if (ret) {
3210 btrfs_warn(fs_info,
3211 "failed to create the UUID tree: %d", ret);
3212 close_ctree(fs_info);
3213 return ret;
3214 }
3215 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3216 fs_info->generation !=
3217 btrfs_super_uuid_tree_generation(disk_super)) {
3218 btrfs_info(fs_info, "checking UUID tree");
3219 ret = btrfs_check_uuid_tree(fs_info);
3220 if (ret) {
3221 btrfs_warn(fs_info,
3222 "failed to check the UUID tree: %d", ret);
3223 close_ctree(fs_info);
3224 return ret;
3225 }
3226 } else {
3227 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3228 }
3229 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3230
3231 /*
3232 * backuproot only affect mount behavior, and if open_ctree succeeded,
3233 * no need to keep the flag
3234 */
3235 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3236
3237 return 0;
3238
3239fail_qgroup:
3240 btrfs_free_qgroup_config(fs_info);
3241fail_trans_kthread:
3242 kthread_stop(fs_info->transaction_kthread);
3243 btrfs_cleanup_transaction(fs_info);
3244 btrfs_free_fs_roots(fs_info);
3245fail_cleaner:
3246 kthread_stop(fs_info->cleaner_kthread);
3247
3248 /*
3249 * make sure we're done with the btree inode before we stop our
3250 * kthreads
3251 */
3252 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3253
3254fail_sysfs:
3255 btrfs_sysfs_remove_mounted(fs_info);
3256
3257fail_fsdev_sysfs:
3258 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3259
3260fail_block_groups:
3261 btrfs_put_block_group_cache(fs_info);
3262
3263fail_tree_roots:
3264 free_root_pointers(fs_info, 1);
3265 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3266
3267fail_sb_buffer:
3268 btrfs_stop_all_workers(fs_info);
3269 btrfs_free_block_groups(fs_info);
3270fail_alloc:
3271fail_iput:
3272 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3273
3274 iput(fs_info->btree_inode);
3275fail_bio_counter:
3276 percpu_counter_destroy(&fs_info->bio_counter);
3277fail_delalloc_bytes:
3278 percpu_counter_destroy(&fs_info->delalloc_bytes);
3279fail_dirty_metadata_bytes:
3280 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3281fail_srcu:
3282 cleanup_srcu_struct(&fs_info->subvol_srcu);
3283fail:
3284 btrfs_free_stripe_hash_table(fs_info);
3285 btrfs_close_devices(fs_info->fs_devices);
3286 return err;
3287
3288recovery_tree_root:
3289 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3290 goto fail_tree_roots;
3291
3292 free_root_pointers(fs_info, 0);
3293
3294 /* don't use the log in recovery mode, it won't be valid */
3295 btrfs_set_super_log_root(disk_super, 0);
3296
3297 /* we can't trust the free space cache either */
3298 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3299
3300 ret = next_root_backup(fs_info, fs_info->super_copy,
3301 &num_backups_tried, &backup_index);
3302 if (ret == -1)
3303 goto fail_block_groups;
3304 goto retry_root_backup;
3305}
3306ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3307
3308static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3309{
3310 if (uptodate) {
3311 set_buffer_uptodate(bh);
3312 } else {
3313 struct btrfs_device *device = (struct btrfs_device *)
3314 bh->b_private;
3315
3316 btrfs_warn_rl_in_rcu(device->fs_info,
3317 "lost page write due to IO error on %s",
3318 rcu_str_deref(device->name));
3319 /* note, we don't set_buffer_write_io_error because we have
3320 * our own ways of dealing with the IO errors
3321 */
3322 clear_buffer_uptodate(bh);
3323 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3324 }
3325 unlock_buffer(bh);
3326 put_bh(bh);
3327}
3328
3329int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3330 struct buffer_head **bh_ret)
3331{
3332 struct buffer_head *bh;
3333 struct btrfs_super_block *super;
3334 u64 bytenr;
3335
3336 bytenr = btrfs_sb_offset(copy_num);
3337 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3338 return -EINVAL;
3339
3340 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3341 /*
3342 * If we fail to read from the underlying devices, as of now
3343 * the best option we have is to mark it EIO.
3344 */
3345 if (!bh)
3346 return -EIO;
3347
3348 super = (struct btrfs_super_block *)bh->b_data;
3349 if (btrfs_super_bytenr(super) != bytenr ||
3350 btrfs_super_magic(super) != BTRFS_MAGIC) {
3351 brelse(bh);
3352 return -EINVAL;
3353 }
3354
3355 *bh_ret = bh;
3356 return 0;
3357}
3358
3359
3360struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3361{
3362 struct buffer_head *bh;
3363 struct buffer_head *latest = NULL;
3364 struct btrfs_super_block *super;
3365 int i;
3366 u64 transid = 0;
3367 int ret = -EINVAL;
3368
3369 /* we would like to check all the supers, but that would make
3370 * a btrfs mount succeed after a mkfs from a different FS.
3371 * So, we need to add a special mount option to scan for
3372 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3373 */
3374 for (i = 0; i < 1; i++) {
3375 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3376 if (ret)
3377 continue;
3378
3379 super = (struct btrfs_super_block *)bh->b_data;
3380
3381 if (!latest || btrfs_super_generation(super) > transid) {
3382 brelse(latest);
3383 latest = bh;
3384 transid = btrfs_super_generation(super);
3385 } else {
3386 brelse(bh);
3387 }
3388 }
3389
3390 if (!latest)
3391 return ERR_PTR(ret);
3392
3393 return latest;
3394}
3395
3396/*
3397 * Write superblock @sb to the @device. Do not wait for completion, all the
3398 * buffer heads we write are pinned.
3399 *
3400 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3401 * the expected device size at commit time. Note that max_mirrors must be
3402 * same for write and wait phases.
3403 *
3404 * Return number of errors when buffer head is not found or submission fails.
3405 */
3406static int write_dev_supers(struct btrfs_device *device,
3407 struct btrfs_super_block *sb, int max_mirrors)
3408{
3409 struct buffer_head *bh;
3410 int i;
3411 int ret;
3412 int errors = 0;
3413 u32 crc;
3414 u64 bytenr;
3415 int op_flags;
3416
3417 if (max_mirrors == 0)
3418 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3419
3420 for (i = 0; i < max_mirrors; i++) {
3421 bytenr = btrfs_sb_offset(i);
3422 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3423 device->commit_total_bytes)
3424 break;
3425
3426 btrfs_set_super_bytenr(sb, bytenr);
3427
3428 crc = ~(u32)0;
3429 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3430 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3431 btrfs_csum_final(crc, sb->csum);
3432
3433 /* One reference for us, and we leave it for the caller */
3434 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3435 BTRFS_SUPER_INFO_SIZE);
3436 if (!bh) {
3437 btrfs_err(device->fs_info,
3438 "couldn't get super buffer head for bytenr %llu",
3439 bytenr);
3440 errors++;
3441 continue;
3442 }
3443
3444 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3445
3446 /* one reference for submit_bh */
3447 get_bh(bh);
3448
3449 set_buffer_uptodate(bh);
3450 lock_buffer(bh);
3451 bh->b_end_io = btrfs_end_buffer_write_sync;
3452 bh->b_private = device;
3453
3454 /*
3455 * we fua the first super. The others we allow
3456 * to go down lazy.
3457 */
3458 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3459 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3460 op_flags |= REQ_FUA;
3461 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3462 if (ret)
3463 errors++;
3464 }
3465 return errors < i ? 0 : -1;
3466}
3467
3468/*
3469 * Wait for write completion of superblocks done by write_dev_supers,
3470 * @max_mirrors same for write and wait phases.
3471 *
3472 * Return number of errors when buffer head is not found or not marked up to
3473 * date.
3474 */
3475static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3476{
3477 struct buffer_head *bh;
3478 int i;
3479 int errors = 0;
3480 bool primary_failed = false;
3481 u64 bytenr;
3482
3483 if (max_mirrors == 0)
3484 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3485
3486 for (i = 0; i < max_mirrors; i++) {
3487 bytenr = btrfs_sb_offset(i);
3488 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3489 device->commit_total_bytes)
3490 break;
3491
3492 bh = __find_get_block(device->bdev,
3493 bytenr / BTRFS_BDEV_BLOCKSIZE,
3494 BTRFS_SUPER_INFO_SIZE);
3495 if (!bh) {
3496 errors++;
3497 if (i == 0)
3498 primary_failed = true;
3499 continue;
3500 }
3501 wait_on_buffer(bh);
3502 if (!buffer_uptodate(bh)) {
3503 errors++;
3504 if (i == 0)
3505 primary_failed = true;
3506 }
3507
3508 /* drop our reference */
3509 brelse(bh);
3510
3511 /* drop the reference from the writing run */
3512 brelse(bh);
3513 }
3514
3515 /* log error, force error return */
3516 if (primary_failed) {
3517 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3518 device->devid);
3519 return -1;
3520 }
3521
3522 return errors < i ? 0 : -1;
3523}
3524
3525/*
3526 * endio for the write_dev_flush, this will wake anyone waiting
3527 * for the barrier when it is done
3528 */
3529static void btrfs_end_empty_barrier(struct bio *bio)
3530{
3531 complete(bio->bi_private);
3532}
3533
3534/*
3535 * Submit a flush request to the device if it supports it. Error handling is
3536 * done in the waiting counterpart.
3537 */
3538static void write_dev_flush(struct btrfs_device *device)
3539{
3540 struct request_queue *q = bdev_get_queue(device->bdev);
3541 struct bio *bio = device->flush_bio;
3542
3543 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3544 return;
3545
3546 bio_reset(bio);
3547 bio->bi_end_io = btrfs_end_empty_barrier;
3548 bio_set_dev(bio, device->bdev);
3549 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3550 init_completion(&device->flush_wait);
3551 bio->bi_private = &device->flush_wait;
3552
3553 btrfsic_submit_bio(bio);
3554 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3555}
3556
3557/*
3558 * If the flush bio has been submitted by write_dev_flush, wait for it.
3559 */
3560static blk_status_t wait_dev_flush(struct btrfs_device *device)
3561{
3562 struct bio *bio = device->flush_bio;
3563
3564 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3565 return BLK_STS_OK;
3566
3567 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3568 wait_for_completion_io(&device->flush_wait);
3569
3570 return bio->bi_status;
3571}
3572
3573static int check_barrier_error(struct btrfs_fs_info *fs_info)
3574{
3575 if (!btrfs_check_rw_degradable(fs_info, NULL))
3576 return -EIO;
3577 return 0;
3578}
3579
3580/*
3581 * send an empty flush down to each device in parallel,
3582 * then wait for them
3583 */
3584static int barrier_all_devices(struct btrfs_fs_info *info)
3585{
3586 struct list_head *head;
3587 struct btrfs_device *dev;
3588 int errors_wait = 0;
3589 blk_status_t ret;
3590
3591 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3592 /* send down all the barriers */
3593 head = &info->fs_devices->devices;
3594 list_for_each_entry(dev, head, dev_list) {
3595 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3596 continue;
3597 if (!dev->bdev)
3598 continue;
3599 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3600 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3601 continue;
3602
3603 write_dev_flush(dev);
3604 dev->last_flush_error = BLK_STS_OK;
3605 }
3606
3607 /* wait for all the barriers */
3608 list_for_each_entry(dev, head, dev_list) {
3609 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3610 continue;
3611 if (!dev->bdev) {
3612 errors_wait++;
3613 continue;
3614 }
3615 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3616 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3617 continue;
3618
3619 ret = wait_dev_flush(dev);
3620 if (ret) {
3621 dev->last_flush_error = ret;
3622 btrfs_dev_stat_inc_and_print(dev,
3623 BTRFS_DEV_STAT_FLUSH_ERRS);
3624 errors_wait++;
3625 }
3626 }
3627
3628 if (errors_wait) {
3629 /*
3630 * At some point we need the status of all disks
3631 * to arrive at the volume status. So error checking
3632 * is being pushed to a separate loop.
3633 */
3634 return check_barrier_error(info);
3635 }
3636 return 0;
3637}
3638
3639int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3640{
3641 int raid_type;
3642 int min_tolerated = INT_MAX;
3643
3644 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3645 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3646 min_tolerated = min(min_tolerated,
3647 btrfs_raid_array[BTRFS_RAID_SINGLE].
3648 tolerated_failures);
3649
3650 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3651 if (raid_type == BTRFS_RAID_SINGLE)
3652 continue;
3653 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3654 continue;
3655 min_tolerated = min(min_tolerated,
3656 btrfs_raid_array[raid_type].
3657 tolerated_failures);
3658 }
3659
3660 if (min_tolerated == INT_MAX) {
3661 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3662 min_tolerated = 0;
3663 }
3664
3665 return min_tolerated;
3666}
3667
3668int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3669{
3670 struct list_head *head;
3671 struct btrfs_device *dev;
3672 struct btrfs_super_block *sb;
3673 struct btrfs_dev_item *dev_item;
3674 int ret;
3675 int do_barriers;
3676 int max_errors;
3677 int total_errors = 0;
3678 u64 flags;
3679
3680 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3681
3682 /*
3683 * max_mirrors == 0 indicates we're from commit_transaction,
3684 * not from fsync where the tree roots in fs_info have not
3685 * been consistent on disk.
3686 */
3687 if (max_mirrors == 0)
3688 backup_super_roots(fs_info);
3689
3690 sb = fs_info->super_for_commit;
3691 dev_item = &sb->dev_item;
3692
3693 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3694 head = &fs_info->fs_devices->devices;
3695 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3696
3697 if (do_barriers) {
3698 ret = barrier_all_devices(fs_info);
3699 if (ret) {
3700 mutex_unlock(
3701 &fs_info->fs_devices->device_list_mutex);
3702 btrfs_handle_fs_error(fs_info, ret,
3703 "errors while submitting device barriers.");
3704 return ret;
3705 }
3706 }
3707
3708 list_for_each_entry(dev, head, dev_list) {
3709 if (!dev->bdev) {
3710 total_errors++;
3711 continue;
3712 }
3713 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3714 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3715 continue;
3716
3717 btrfs_set_stack_device_generation(dev_item, 0);
3718 btrfs_set_stack_device_type(dev_item, dev->type);
3719 btrfs_set_stack_device_id(dev_item, dev->devid);
3720 btrfs_set_stack_device_total_bytes(dev_item,
3721 dev->commit_total_bytes);
3722 btrfs_set_stack_device_bytes_used(dev_item,
3723 dev->commit_bytes_used);
3724 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3725 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3726 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3727 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3728 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3729
3730 flags = btrfs_super_flags(sb);
3731 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3732
3733 ret = btrfs_validate_write_super(fs_info, sb);
3734 if (ret < 0) {
3735 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3736 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3737 "unexpected superblock corruption detected");
3738 return -EUCLEAN;
3739 }
3740
3741 ret = write_dev_supers(dev, sb, max_mirrors);
3742 if (ret)
3743 total_errors++;
3744 }
3745 if (total_errors > max_errors) {
3746 btrfs_err(fs_info, "%d errors while writing supers",
3747 total_errors);
3748 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3749
3750 /* FUA is masked off if unsupported and can't be the reason */
3751 btrfs_handle_fs_error(fs_info, -EIO,
3752 "%d errors while writing supers",
3753 total_errors);
3754 return -EIO;
3755 }
3756
3757 total_errors = 0;
3758 list_for_each_entry(dev, head, dev_list) {
3759 if (!dev->bdev)
3760 continue;
3761 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3762 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3763 continue;
3764
3765 ret = wait_dev_supers(dev, max_mirrors);
3766 if (ret)
3767 total_errors++;
3768 }
3769 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3770 if (total_errors > max_errors) {
3771 btrfs_handle_fs_error(fs_info, -EIO,
3772 "%d errors while writing supers",
3773 total_errors);
3774 return -EIO;
3775 }
3776 return 0;
3777}
3778
3779/* Drop a fs root from the radix tree and free it. */
3780void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3781 struct btrfs_root *root)
3782{
3783 spin_lock(&fs_info->fs_roots_radix_lock);
3784 radix_tree_delete(&fs_info->fs_roots_radix,
3785 (unsigned long)root->root_key.objectid);
3786 spin_unlock(&fs_info->fs_roots_radix_lock);
3787
3788 if (btrfs_root_refs(&root->root_item) == 0)
3789 synchronize_srcu(&fs_info->subvol_srcu);
3790
3791 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3792 btrfs_free_log(NULL, root);
3793 if (root->reloc_root) {
3794 free_extent_buffer(root->reloc_root->node);
3795 free_extent_buffer(root->reloc_root->commit_root);
3796 btrfs_put_fs_root(root->reloc_root);
3797 root->reloc_root = NULL;
3798 }
3799 }
3800
3801 if (root->free_ino_pinned)
3802 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3803 if (root->free_ino_ctl)
3804 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3805 btrfs_free_fs_root(root);
3806}
3807
3808void btrfs_free_fs_root(struct btrfs_root *root)
3809{
3810 iput(root->ino_cache_inode);
3811 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3812 if (root->anon_dev)
3813 free_anon_bdev(root->anon_dev);
3814 if (root->subv_writers)
3815 btrfs_free_subvolume_writers(root->subv_writers);
3816 free_extent_buffer(root->node);
3817 free_extent_buffer(root->commit_root);
3818 kfree(root->free_ino_ctl);
3819 kfree(root->free_ino_pinned);
3820 btrfs_put_fs_root(root);
3821}
3822
3823int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3824{
3825 u64 root_objectid = 0;
3826 struct btrfs_root *gang[8];
3827 int i = 0;
3828 int err = 0;
3829 unsigned int ret = 0;
3830 int index;
3831
3832 while (1) {
3833 index = srcu_read_lock(&fs_info->subvol_srcu);
3834 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3835 (void **)gang, root_objectid,
3836 ARRAY_SIZE(gang));
3837 if (!ret) {
3838 srcu_read_unlock(&fs_info->subvol_srcu, index);
3839 break;
3840 }
3841 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3842
3843 for (i = 0; i < ret; i++) {
3844 /* Avoid to grab roots in dead_roots */
3845 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3846 gang[i] = NULL;
3847 continue;
3848 }
3849 /* grab all the search result for later use */
3850 gang[i] = btrfs_grab_fs_root(gang[i]);
3851 }
3852 srcu_read_unlock(&fs_info->subvol_srcu, index);
3853
3854 for (i = 0; i < ret; i++) {
3855 if (!gang[i])
3856 continue;
3857 root_objectid = gang[i]->root_key.objectid;
3858 err = btrfs_orphan_cleanup(gang[i]);
3859 if (err)
3860 break;
3861 btrfs_put_fs_root(gang[i]);
3862 }
3863 root_objectid++;
3864 }
3865
3866 /* release the uncleaned roots due to error */
3867 for (; i < ret; i++) {
3868 if (gang[i])
3869 btrfs_put_fs_root(gang[i]);
3870 }
3871 return err;
3872}
3873
3874int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3875{
3876 struct btrfs_root *root = fs_info->tree_root;
3877 struct btrfs_trans_handle *trans;
3878
3879 mutex_lock(&fs_info->cleaner_mutex);
3880 btrfs_run_delayed_iputs(fs_info);
3881 mutex_unlock(&fs_info->cleaner_mutex);
3882 wake_up_process(fs_info->cleaner_kthread);
3883
3884 /* wait until ongoing cleanup work done */
3885 down_write(&fs_info->cleanup_work_sem);
3886 up_write(&fs_info->cleanup_work_sem);
3887
3888 trans = btrfs_join_transaction(root);
3889 if (IS_ERR(trans))
3890 return PTR_ERR(trans);
3891 return btrfs_commit_transaction(trans);
3892}
3893
3894void close_ctree(struct btrfs_fs_info *fs_info)
3895{
3896 int ret;
3897
3898 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3899 /*
3900 * We don't want the cleaner to start new transactions, add more delayed
3901 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3902 * because that frees the task_struct, and the transaction kthread might
3903 * still try to wake up the cleaner.
3904 */
3905 kthread_park(fs_info->cleaner_kthread);
3906
3907 /* wait for the qgroup rescan worker to stop */
3908 btrfs_qgroup_wait_for_completion(fs_info, false);
3909
3910 /* wait for the uuid_scan task to finish */
3911 down(&fs_info->uuid_tree_rescan_sem);
3912 /* avoid complains from lockdep et al., set sem back to initial state */
3913 up(&fs_info->uuid_tree_rescan_sem);
3914
3915 /* pause restriper - we want to resume on mount */
3916 btrfs_pause_balance(fs_info);
3917
3918 btrfs_dev_replace_suspend_for_unmount(fs_info);
3919
3920 btrfs_scrub_cancel(fs_info);
3921
3922 /* wait for any defraggers to finish */
3923 wait_event(fs_info->transaction_wait,
3924 (atomic_read(&fs_info->defrag_running) == 0));
3925
3926 /* clear out the rbtree of defraggable inodes */
3927 btrfs_cleanup_defrag_inodes(fs_info);
3928
3929 cancel_work_sync(&fs_info->async_reclaim_work);
3930
3931 if (!sb_rdonly(fs_info->sb)) {
3932 /*
3933 * The cleaner kthread is stopped, so do one final pass over
3934 * unused block groups.
3935 */
3936 btrfs_delete_unused_bgs(fs_info);
3937
3938 ret = btrfs_commit_super(fs_info);
3939 if (ret)
3940 btrfs_err(fs_info, "commit super ret %d", ret);
3941 }
3942
3943 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3944 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3945 btrfs_error_commit_super(fs_info);
3946
3947 kthread_stop(fs_info->transaction_kthread);
3948 kthread_stop(fs_info->cleaner_kthread);
3949
3950 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3951
3952 btrfs_free_qgroup_config(fs_info);
3953 ASSERT(list_empty(&fs_info->delalloc_roots));
3954
3955 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3956 btrfs_info(fs_info, "at unmount delalloc count %lld",
3957 percpu_counter_sum(&fs_info->delalloc_bytes));
3958 }
3959
3960 btrfs_sysfs_remove_mounted(fs_info);
3961 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3962
3963 btrfs_free_fs_roots(fs_info);
3964
3965 btrfs_put_block_group_cache(fs_info);
3966
3967 /*
3968 * we must make sure there is not any read request to
3969 * submit after we stopping all workers.
3970 */
3971 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3972 btrfs_stop_all_workers(fs_info);
3973
3974 btrfs_free_block_groups(fs_info);
3975
3976 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3977 free_root_pointers(fs_info, 1);
3978
3979 iput(fs_info->btree_inode);
3980
3981#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3982 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
3983 btrfsic_unmount(fs_info->fs_devices);
3984#endif
3985
3986 btrfs_close_devices(fs_info->fs_devices);
3987 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3988
3989 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3990 percpu_counter_destroy(&fs_info->delalloc_bytes);
3991 percpu_counter_destroy(&fs_info->bio_counter);
3992 cleanup_srcu_struct(&fs_info->subvol_srcu);
3993
3994 btrfs_free_stripe_hash_table(fs_info);
3995 btrfs_free_ref_cache(fs_info);
3996
3997 while (!list_empty(&fs_info->pinned_chunks)) {
3998 struct extent_map *em;
3999
4000 em = list_first_entry(&fs_info->pinned_chunks,
4001 struct extent_map, list);
4002 list_del_init(&em->list);
4003 free_extent_map(em);
4004 }
4005}
4006
4007int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4008 int atomic)
4009{
4010 int ret;
4011 struct inode *btree_inode = buf->pages[0]->mapping->host;
4012
4013 ret = extent_buffer_uptodate(buf);
4014 if (!ret)
4015 return ret;
4016
4017 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4018 parent_transid, atomic);
4019 if (ret == -EAGAIN)
4020 return ret;
4021 return !ret;
4022}
4023
4024void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4025{
4026 struct btrfs_fs_info *fs_info;
4027 struct btrfs_root *root;
4028 u64 transid = btrfs_header_generation(buf);
4029 int was_dirty;
4030
4031#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4032 /*
4033 * This is a fast path so only do this check if we have sanity tests
4034 * enabled. Normal people shouldn't be using umapped buffers as dirty
4035 * outside of the sanity tests.
4036 */
4037 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4038 return;
4039#endif
4040 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4041 fs_info = root->fs_info;
4042 btrfs_assert_tree_locked(buf);
4043 if (transid != fs_info->generation)
4044 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4045 buf->start, transid, fs_info->generation);
4046 was_dirty = set_extent_buffer_dirty(buf);
4047 if (!was_dirty)
4048 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4049 buf->len,
4050 fs_info->dirty_metadata_batch);
4051#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4052 /*
4053 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4054 * but item data not updated.
4055 * So here we should only check item pointers, not item data.
4056 */
4057 if (btrfs_header_level(buf) == 0 &&
4058 btrfs_check_leaf_relaxed(fs_info, buf)) {
4059 btrfs_print_leaf(buf);
4060 ASSERT(0);
4061 }
4062#endif
4063}
4064
4065static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4066 int flush_delayed)
4067{
4068 /*
4069 * looks as though older kernels can get into trouble with
4070 * this code, they end up stuck in balance_dirty_pages forever
4071 */
4072 int ret;
4073
4074 if (current->flags & PF_MEMALLOC)
4075 return;
4076
4077 if (flush_delayed)
4078 btrfs_balance_delayed_items(fs_info);
4079
4080 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4081 BTRFS_DIRTY_METADATA_THRESH,
4082 fs_info->dirty_metadata_batch);
4083 if (ret > 0) {
4084 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4085 }
4086}
4087
4088void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4089{
4090 __btrfs_btree_balance_dirty(fs_info, 1);
4091}
4092
4093void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4094{
4095 __btrfs_btree_balance_dirty(fs_info, 0);
4096}
4097
4098int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4099 struct btrfs_key *first_key)
4100{
4101 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4102 struct btrfs_fs_info *fs_info = root->fs_info;
4103
4104 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4105 level, first_key);
4106}
4107
4108static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4109{
4110 /* cleanup FS via transaction */
4111 btrfs_cleanup_transaction(fs_info);
4112
4113 mutex_lock(&fs_info->cleaner_mutex);
4114 btrfs_run_delayed_iputs(fs_info);
4115 mutex_unlock(&fs_info->cleaner_mutex);
4116
4117 down_write(&fs_info->cleanup_work_sem);
4118 up_write(&fs_info->cleanup_work_sem);
4119}
4120
4121static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4122{
4123 struct btrfs_ordered_extent *ordered;
4124
4125 spin_lock(&root->ordered_extent_lock);
4126 /*
4127 * This will just short circuit the ordered completion stuff which will
4128 * make sure the ordered extent gets properly cleaned up.
4129 */
4130 list_for_each_entry(ordered, &root->ordered_extents,
4131 root_extent_list)
4132 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4133 spin_unlock(&root->ordered_extent_lock);
4134}
4135
4136static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4137{
4138 struct btrfs_root *root;
4139 struct list_head splice;
4140
4141 INIT_LIST_HEAD(&splice);
4142
4143 spin_lock(&fs_info->ordered_root_lock);
4144 list_splice_init(&fs_info->ordered_roots, &splice);
4145 while (!list_empty(&splice)) {
4146 root = list_first_entry(&splice, struct btrfs_root,
4147 ordered_root);
4148 list_move_tail(&root->ordered_root,
4149 &fs_info->ordered_roots);
4150
4151 spin_unlock(&fs_info->ordered_root_lock);
4152 btrfs_destroy_ordered_extents(root);
4153
4154 cond_resched();
4155 spin_lock(&fs_info->ordered_root_lock);
4156 }
4157 spin_unlock(&fs_info->ordered_root_lock);
4158}
4159
4160static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4161 struct btrfs_fs_info *fs_info)
4162{
4163 struct rb_node *node;
4164 struct btrfs_delayed_ref_root *delayed_refs;
4165 struct btrfs_delayed_ref_node *ref;
4166 int ret = 0;
4167
4168 delayed_refs = &trans->delayed_refs;
4169
4170 spin_lock(&delayed_refs->lock);
4171 if (atomic_read(&delayed_refs->num_entries) == 0) {
4172 spin_unlock(&delayed_refs->lock);
4173 btrfs_info(fs_info, "delayed_refs has NO entry");
4174 return ret;
4175 }
4176
4177 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4178 struct btrfs_delayed_ref_head *head;
4179 struct rb_node *n;
4180 bool pin_bytes = false;
4181
4182 head = rb_entry(node, struct btrfs_delayed_ref_head,
4183 href_node);
4184 if (!mutex_trylock(&head->mutex)) {
4185 refcount_inc(&head->refs);
4186 spin_unlock(&delayed_refs->lock);
4187
4188 mutex_lock(&head->mutex);
4189 mutex_unlock(&head->mutex);
4190 btrfs_put_delayed_ref_head(head);
4191 spin_lock(&delayed_refs->lock);
4192 continue;
4193 }
4194 spin_lock(&head->lock);
4195 while ((n = rb_first(&head->ref_tree)) != NULL) {
4196 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4197 ref_node);
4198 ref->in_tree = 0;
4199 rb_erase(&ref->ref_node, &head->ref_tree);
4200 RB_CLEAR_NODE(&ref->ref_node);
4201 if (!list_empty(&ref->add_list))
4202 list_del(&ref->add_list);
4203 atomic_dec(&delayed_refs->num_entries);
4204 btrfs_put_delayed_ref(ref);
4205 }
4206 if (head->must_insert_reserved)
4207 pin_bytes = true;
4208 btrfs_free_delayed_extent_op(head->extent_op);
4209 delayed_refs->num_heads--;
4210 if (head->processing == 0)
4211 delayed_refs->num_heads_ready--;
4212 atomic_dec(&delayed_refs->num_entries);
4213 rb_erase(&head->href_node, &delayed_refs->href_root);
4214 RB_CLEAR_NODE(&head->href_node);
4215 spin_unlock(&head->lock);
4216 spin_unlock(&delayed_refs->lock);
4217 mutex_unlock(&head->mutex);
4218
4219 if (pin_bytes)
4220 btrfs_pin_extent(fs_info, head->bytenr,
4221 head->num_bytes, 1);
4222 btrfs_put_delayed_ref_head(head);
4223 cond_resched();
4224 spin_lock(&delayed_refs->lock);
4225 }
4226
4227 spin_unlock(&delayed_refs->lock);
4228
4229 return ret;
4230}
4231
4232static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4233{
4234 struct btrfs_inode *btrfs_inode;
4235 struct list_head splice;
4236
4237 INIT_LIST_HEAD(&splice);
4238
4239 spin_lock(&root->delalloc_lock);
4240 list_splice_init(&root->delalloc_inodes, &splice);
4241
4242 while (!list_empty(&splice)) {
4243 struct inode *inode = NULL;
4244 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4245 delalloc_inodes);
4246 __btrfs_del_delalloc_inode(root, btrfs_inode);
4247 spin_unlock(&root->delalloc_lock);
4248
4249 /*
4250 * Make sure we get a live inode and that it'll not disappear
4251 * meanwhile.
4252 */
4253 inode = igrab(&btrfs_inode->vfs_inode);
4254 if (inode) {
4255 invalidate_inode_pages2(inode->i_mapping);
4256 iput(inode);
4257 }
4258 spin_lock(&root->delalloc_lock);
4259 }
4260 spin_unlock(&root->delalloc_lock);
4261}
4262
4263static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4264{
4265 struct btrfs_root *root;
4266 struct list_head splice;
4267
4268 INIT_LIST_HEAD(&splice);
4269
4270 spin_lock(&fs_info->delalloc_root_lock);
4271 list_splice_init(&fs_info->delalloc_roots, &splice);
4272 while (!list_empty(&splice)) {
4273 root = list_first_entry(&splice, struct btrfs_root,
4274 delalloc_root);
4275 root = btrfs_grab_fs_root(root);
4276 BUG_ON(!root);
4277 spin_unlock(&fs_info->delalloc_root_lock);
4278
4279 btrfs_destroy_delalloc_inodes(root);
4280 btrfs_put_fs_root(root);
4281
4282 spin_lock(&fs_info->delalloc_root_lock);
4283 }
4284 spin_unlock(&fs_info->delalloc_root_lock);
4285}
4286
4287static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4288 struct extent_io_tree *dirty_pages,
4289 int mark)
4290{
4291 int ret;
4292 struct extent_buffer *eb;
4293 u64 start = 0;
4294 u64 end;
4295
4296 while (1) {
4297 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4298 mark, NULL);
4299 if (ret)
4300 break;
4301
4302 clear_extent_bits(dirty_pages, start, end, mark);
4303 while (start <= end) {
4304 eb = find_extent_buffer(fs_info, start);
4305 start += fs_info->nodesize;
4306 if (!eb)
4307 continue;
4308 wait_on_extent_buffer_writeback(eb);
4309
4310 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4311 &eb->bflags))
4312 clear_extent_buffer_dirty(eb);
4313 free_extent_buffer_stale(eb);
4314 }
4315 }
4316
4317 return ret;
4318}
4319
4320static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4321 struct extent_io_tree *pinned_extents)
4322{
4323 struct extent_io_tree *unpin;
4324 u64 start;
4325 u64 end;
4326 int ret;
4327 bool loop = true;
4328
4329 unpin = pinned_extents;
4330again:
4331 while (1) {
4332 /*
4333 * The btrfs_finish_extent_commit() may get the same range as
4334 * ours between find_first_extent_bit and clear_extent_dirty.
4335 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4336 * the same extent range.
4337 */
4338 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4339 ret = find_first_extent_bit(unpin, 0, &start, &end,
4340 EXTENT_DIRTY, NULL);
4341 if (ret) {
4342 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4343 break;
4344 }
4345
4346 clear_extent_dirty(unpin, start, end);
4347 btrfs_error_unpin_extent_range(fs_info, start, end);
4348 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4349 cond_resched();
4350 }
4351
4352 if (loop) {
4353 if (unpin == &fs_info->freed_extents[0])
4354 unpin = &fs_info->freed_extents[1];
4355 else
4356 unpin = &fs_info->freed_extents[0];
4357 loop = false;
4358 goto again;
4359 }
4360
4361 return 0;
4362}
4363
4364static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4365{
4366 struct inode *inode;
4367
4368 inode = cache->io_ctl.inode;
4369 if (inode) {
4370 invalidate_inode_pages2(inode->i_mapping);
4371 BTRFS_I(inode)->generation = 0;
4372 cache->io_ctl.inode = NULL;
4373 iput(inode);
4374 }
4375 btrfs_put_block_group(cache);
4376}
4377
4378void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4379 struct btrfs_fs_info *fs_info)
4380{
4381 struct btrfs_block_group_cache *cache;
4382
4383 spin_lock(&cur_trans->dirty_bgs_lock);
4384 while (!list_empty(&cur_trans->dirty_bgs)) {
4385 cache = list_first_entry(&cur_trans->dirty_bgs,
4386 struct btrfs_block_group_cache,
4387 dirty_list);
4388
4389 if (!list_empty(&cache->io_list)) {
4390 spin_unlock(&cur_trans->dirty_bgs_lock);
4391 list_del_init(&cache->io_list);
4392 btrfs_cleanup_bg_io(cache);
4393 spin_lock(&cur_trans->dirty_bgs_lock);
4394 }
4395
4396 list_del_init(&cache->dirty_list);
4397 spin_lock(&cache->lock);
4398 cache->disk_cache_state = BTRFS_DC_ERROR;
4399 spin_unlock(&cache->lock);
4400
4401 spin_unlock(&cur_trans->dirty_bgs_lock);
4402 btrfs_put_block_group(cache);
4403 spin_lock(&cur_trans->dirty_bgs_lock);
4404 }
4405 spin_unlock(&cur_trans->dirty_bgs_lock);
4406
4407 /*
4408 * Refer to the definition of io_bgs member for details why it's safe
4409 * to use it without any locking
4410 */
4411 while (!list_empty(&cur_trans->io_bgs)) {
4412 cache = list_first_entry(&cur_trans->io_bgs,
4413 struct btrfs_block_group_cache,
4414 io_list);
4415
4416 list_del_init(&cache->io_list);
4417 spin_lock(&cache->lock);
4418 cache->disk_cache_state = BTRFS_DC_ERROR;
4419 spin_unlock(&cache->lock);
4420 btrfs_cleanup_bg_io(cache);
4421 }
4422}
4423
4424void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4425 struct btrfs_fs_info *fs_info)
4426{
4427 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4428 ASSERT(list_empty(&cur_trans->dirty_bgs));
4429 ASSERT(list_empty(&cur_trans->io_bgs));
4430
4431 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4432
4433 cur_trans->state = TRANS_STATE_COMMIT_START;
4434 wake_up(&fs_info->transaction_blocked_wait);
4435
4436 cur_trans->state = TRANS_STATE_UNBLOCKED;
4437 wake_up(&fs_info->transaction_wait);
4438
4439 btrfs_destroy_delayed_inodes(fs_info);
4440 btrfs_assert_delayed_root_empty(fs_info);
4441
4442 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4443 EXTENT_DIRTY);
4444 btrfs_destroy_pinned_extent(fs_info,
4445 fs_info->pinned_extents);
4446
4447 cur_trans->state =TRANS_STATE_COMPLETED;
4448 wake_up(&cur_trans->commit_wait);
4449}
4450
4451static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4452{
4453 struct btrfs_transaction *t;
4454
4455 mutex_lock(&fs_info->transaction_kthread_mutex);
4456
4457 spin_lock(&fs_info->trans_lock);
4458 while (!list_empty(&fs_info->trans_list)) {
4459 t = list_first_entry(&fs_info->trans_list,
4460 struct btrfs_transaction, list);
4461 if (t->state >= TRANS_STATE_COMMIT_START) {
4462 refcount_inc(&t->use_count);
4463 spin_unlock(&fs_info->trans_lock);
4464 btrfs_wait_for_commit(fs_info, t->transid);
4465 btrfs_put_transaction(t);
4466 spin_lock(&fs_info->trans_lock);
4467 continue;
4468 }
4469 if (t == fs_info->running_transaction) {
4470 t->state = TRANS_STATE_COMMIT_DOING;
4471 spin_unlock(&fs_info->trans_lock);
4472 /*
4473 * We wait for 0 num_writers since we don't hold a trans
4474 * handle open currently for this transaction.
4475 */
4476 wait_event(t->writer_wait,
4477 atomic_read(&t->num_writers) == 0);
4478 } else {
4479 spin_unlock(&fs_info->trans_lock);
4480 }
4481 btrfs_cleanup_one_transaction(t, fs_info);
4482
4483 spin_lock(&fs_info->trans_lock);
4484 if (t == fs_info->running_transaction)
4485 fs_info->running_transaction = NULL;
4486 list_del_init(&t->list);
4487 spin_unlock(&fs_info->trans_lock);
4488
4489 btrfs_put_transaction(t);
4490 trace_btrfs_transaction_commit(fs_info->tree_root);
4491 spin_lock(&fs_info->trans_lock);
4492 }
4493 spin_unlock(&fs_info->trans_lock);
4494 btrfs_destroy_all_ordered_extents(fs_info);
4495 btrfs_destroy_delayed_inodes(fs_info);
4496 btrfs_assert_delayed_root_empty(fs_info);
4497 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4498 btrfs_destroy_all_delalloc_inodes(fs_info);
4499 mutex_unlock(&fs_info->transaction_kthread_mutex);
4500
4501 return 0;
4502}
4503
4504static const struct extent_io_ops btree_extent_io_ops = {
4505 /* mandatory callbacks */
4506 .submit_bio_hook = btree_submit_bio_hook,
4507 .readpage_end_io_hook = btree_readpage_end_io_hook,
4508 .readpage_io_failed_hook = btree_io_failed_hook,
4509
4510 /* optional callbacks */
4511};