Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * RTC subsystem, interface functions |
| 3 | * |
| 4 | * Copyright (C) 2005 Tower Technologies |
| 5 | * Author: Alessandro Zummo <a.zummo@towertech.it> |
| 6 | * |
| 7 | * based on arch/arm/common/rtctime.c |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or modify |
| 10 | * it under the terms of the GNU General Public License version 2 as |
| 11 | * published by the Free Software Foundation. |
| 12 | */ |
| 13 | |
| 14 | #include <linux/rtc.h> |
| 15 | #include <linux/sched.h> |
| 16 | #include <linux/module.h> |
| 17 | #include <linux/log2.h> |
| 18 | #include <linux/workqueue.h> |
| 19 | |
| 20 | #define CREATE_TRACE_POINTS |
| 21 | #include <trace/events/rtc.h> |
| 22 | |
| 23 | static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer); |
| 24 | static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer); |
| 25 | |
| 26 | static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm) |
| 27 | { |
| 28 | time64_t secs; |
| 29 | |
| 30 | if (!rtc->offset_secs) |
| 31 | return; |
| 32 | |
| 33 | secs = rtc_tm_to_time64(tm); |
| 34 | |
| 35 | /* |
| 36 | * Since the reading time values from RTC device are always in the RTC |
| 37 | * original valid range, but we need to skip the overlapped region |
| 38 | * between expanded range and original range, which is no need to add |
| 39 | * the offset. |
| 40 | */ |
| 41 | if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) || |
| 42 | (rtc->start_secs < rtc->range_min && |
| 43 | secs <= (rtc->start_secs + rtc->range_max - rtc->range_min))) |
| 44 | return; |
| 45 | |
| 46 | rtc_time64_to_tm(secs + rtc->offset_secs, tm); |
| 47 | } |
| 48 | |
| 49 | static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm) |
| 50 | { |
| 51 | time64_t secs; |
| 52 | |
| 53 | if (!rtc->offset_secs) |
| 54 | return; |
| 55 | |
| 56 | secs = rtc_tm_to_time64(tm); |
| 57 | |
| 58 | /* |
| 59 | * If the setting time values are in the valid range of RTC hardware |
| 60 | * device, then no need to subtract the offset when setting time to RTC |
| 61 | * device. Otherwise we need to subtract the offset to make the time |
| 62 | * values are valid for RTC hardware device. |
| 63 | */ |
| 64 | if (secs >= rtc->range_min && secs <= rtc->range_max) |
| 65 | return; |
| 66 | |
| 67 | rtc_time64_to_tm(secs - rtc->offset_secs, tm); |
| 68 | } |
| 69 | |
| 70 | static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm) |
| 71 | { |
| 72 | if (rtc->range_min != rtc->range_max) { |
| 73 | time64_t time = rtc_tm_to_time64(tm); |
| 74 | time64_t range_min = rtc->set_start_time ? rtc->start_secs : |
| 75 | rtc->range_min; |
| 76 | time64_t range_max = rtc->set_start_time ? |
| 77 | (rtc->start_secs + rtc->range_max - rtc->range_min) : |
| 78 | rtc->range_max; |
| 79 | |
| 80 | if (time < range_min || time > range_max) |
| 81 | return -ERANGE; |
| 82 | } |
| 83 | |
| 84 | return 0; |
| 85 | } |
| 86 | |
| 87 | static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) |
| 88 | { |
| 89 | int err; |
| 90 | if (!rtc->ops) |
| 91 | err = -ENODEV; |
| 92 | else if (!rtc->ops->read_time) |
| 93 | err = -EINVAL; |
| 94 | else { |
| 95 | memset(tm, 0, sizeof(struct rtc_time)); |
| 96 | err = rtc->ops->read_time(rtc->dev.parent, tm); |
| 97 | if (err < 0) { |
| 98 | dev_dbg(&rtc->dev, "read_time: fail to read: %d\n", |
| 99 | err); |
| 100 | return err; |
| 101 | } |
| 102 | |
| 103 | rtc_add_offset(rtc, tm); |
| 104 | |
| 105 | err = rtc_valid_tm(tm); |
| 106 | if (err < 0) |
| 107 | dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n"); |
| 108 | } |
| 109 | return err; |
| 110 | } |
| 111 | |
| 112 | int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) |
| 113 | { |
| 114 | int err; |
| 115 | |
| 116 | err = mutex_lock_interruptible(&rtc->ops_lock); |
| 117 | if (err) |
| 118 | return err; |
| 119 | |
| 120 | err = __rtc_read_time(rtc, tm); |
| 121 | mutex_unlock(&rtc->ops_lock); |
| 122 | |
| 123 | trace_rtc_read_time(rtc_tm_to_time64(tm), err); |
| 124 | return err; |
| 125 | } |
| 126 | EXPORT_SYMBOL_GPL(rtc_read_time); |
| 127 | |
| 128 | int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm) |
| 129 | { |
| 130 | int err; |
| 131 | |
| 132 | err = rtc_valid_tm(tm); |
| 133 | if (err != 0) |
| 134 | return err; |
| 135 | |
| 136 | err = rtc_valid_range(rtc, tm); |
| 137 | if (err) |
| 138 | return err; |
| 139 | |
| 140 | rtc_subtract_offset(rtc, tm); |
| 141 | |
| 142 | err = mutex_lock_interruptible(&rtc->ops_lock); |
| 143 | if (err) |
| 144 | return err; |
| 145 | |
| 146 | if (!rtc->ops) |
| 147 | err = -ENODEV; |
| 148 | else if (rtc->ops->set_time) |
| 149 | err = rtc->ops->set_time(rtc->dev.parent, tm); |
| 150 | else if (rtc->ops->set_mmss64) { |
| 151 | time64_t secs64 = rtc_tm_to_time64(tm); |
| 152 | |
| 153 | err = rtc->ops->set_mmss64(rtc->dev.parent, secs64); |
| 154 | } else if (rtc->ops->set_mmss) { |
| 155 | time64_t secs64 = rtc_tm_to_time64(tm); |
| 156 | err = rtc->ops->set_mmss(rtc->dev.parent, secs64); |
| 157 | } else |
| 158 | err = -EINVAL; |
| 159 | |
| 160 | pm_stay_awake(rtc->dev.parent); |
| 161 | mutex_unlock(&rtc->ops_lock); |
| 162 | /* A timer might have just expired */ |
| 163 | schedule_work(&rtc->irqwork); |
| 164 | |
| 165 | trace_rtc_set_time(rtc_tm_to_time64(tm), err); |
| 166 | return err; |
| 167 | } |
| 168 | EXPORT_SYMBOL_GPL(rtc_set_time); |
| 169 | |
| 170 | static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm) |
| 171 | { |
| 172 | int err; |
| 173 | |
| 174 | err = mutex_lock_interruptible(&rtc->ops_lock); |
| 175 | if (err) |
| 176 | return err; |
| 177 | |
| 178 | if (rtc->ops == NULL) |
| 179 | err = -ENODEV; |
| 180 | else if (!rtc->ops->read_alarm) |
| 181 | err = -EINVAL; |
| 182 | else { |
| 183 | alarm->enabled = 0; |
| 184 | alarm->pending = 0; |
| 185 | alarm->time.tm_sec = -1; |
| 186 | alarm->time.tm_min = -1; |
| 187 | alarm->time.tm_hour = -1; |
| 188 | alarm->time.tm_mday = -1; |
| 189 | alarm->time.tm_mon = -1; |
| 190 | alarm->time.tm_year = -1; |
| 191 | alarm->time.tm_wday = -1; |
| 192 | alarm->time.tm_yday = -1; |
| 193 | alarm->time.tm_isdst = -1; |
| 194 | err = rtc->ops->read_alarm(rtc->dev.parent, alarm); |
| 195 | } |
| 196 | |
| 197 | mutex_unlock(&rtc->ops_lock); |
| 198 | |
| 199 | trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err); |
| 200 | return err; |
| 201 | } |
| 202 | |
| 203 | int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) |
| 204 | { |
| 205 | int err; |
| 206 | struct rtc_time before, now; |
| 207 | int first_time = 1; |
| 208 | time64_t t_now, t_alm; |
| 209 | enum { none, day, month, year } missing = none; |
| 210 | unsigned days; |
| 211 | |
| 212 | /* The lower level RTC driver may return -1 in some fields, |
| 213 | * creating invalid alarm->time values, for reasons like: |
| 214 | * |
| 215 | * - The hardware may not be capable of filling them in; |
| 216 | * many alarms match only on time-of-day fields, not |
| 217 | * day/month/year calendar data. |
| 218 | * |
| 219 | * - Some hardware uses illegal values as "wildcard" match |
| 220 | * values, which non-Linux firmware (like a BIOS) may try |
| 221 | * to set up as e.g. "alarm 15 minutes after each hour". |
| 222 | * Linux uses only oneshot alarms. |
| 223 | * |
| 224 | * When we see that here, we deal with it by using values from |
| 225 | * a current RTC timestamp for any missing (-1) values. The |
| 226 | * RTC driver prevents "periodic alarm" modes. |
| 227 | * |
| 228 | * But this can be racey, because some fields of the RTC timestamp |
| 229 | * may have wrapped in the interval since we read the RTC alarm, |
| 230 | * which would lead to us inserting inconsistent values in place |
| 231 | * of the -1 fields. |
| 232 | * |
| 233 | * Reading the alarm and timestamp in the reverse sequence |
| 234 | * would have the same race condition, and not solve the issue. |
| 235 | * |
| 236 | * So, we must first read the RTC timestamp, |
| 237 | * then read the RTC alarm value, |
| 238 | * and then read a second RTC timestamp. |
| 239 | * |
| 240 | * If any fields of the second timestamp have changed |
| 241 | * when compared with the first timestamp, then we know |
| 242 | * our timestamp may be inconsistent with that used by |
| 243 | * the low-level rtc_read_alarm_internal() function. |
| 244 | * |
| 245 | * So, when the two timestamps disagree, we just loop and do |
| 246 | * the process again to get a fully consistent set of values. |
| 247 | * |
| 248 | * This could all instead be done in the lower level driver, |
| 249 | * but since more than one lower level RTC implementation needs it, |
| 250 | * then it's probably best best to do it here instead of there.. |
| 251 | */ |
| 252 | |
| 253 | /* Get the "before" timestamp */ |
| 254 | err = rtc_read_time(rtc, &before); |
| 255 | if (err < 0) |
| 256 | return err; |
| 257 | do { |
| 258 | if (!first_time) |
| 259 | memcpy(&before, &now, sizeof(struct rtc_time)); |
| 260 | first_time = 0; |
| 261 | |
| 262 | /* get the RTC alarm values, which may be incomplete */ |
| 263 | err = rtc_read_alarm_internal(rtc, alarm); |
| 264 | if (err) |
| 265 | return err; |
| 266 | |
| 267 | /* full-function RTCs won't have such missing fields */ |
| 268 | if (rtc_valid_tm(&alarm->time) == 0) { |
| 269 | rtc_add_offset(rtc, &alarm->time); |
| 270 | return 0; |
| 271 | } |
| 272 | |
| 273 | /* get the "after" timestamp, to detect wrapped fields */ |
| 274 | err = rtc_read_time(rtc, &now); |
| 275 | if (err < 0) |
| 276 | return err; |
| 277 | |
| 278 | /* note that tm_sec is a "don't care" value here: */ |
| 279 | } while ( before.tm_min != now.tm_min |
| 280 | || before.tm_hour != now.tm_hour |
| 281 | || before.tm_mon != now.tm_mon |
| 282 | || before.tm_year != now.tm_year); |
| 283 | |
| 284 | /* Fill in the missing alarm fields using the timestamp; we |
| 285 | * know there's at least one since alarm->time is invalid. |
| 286 | */ |
| 287 | if (alarm->time.tm_sec == -1) |
| 288 | alarm->time.tm_sec = now.tm_sec; |
| 289 | if (alarm->time.tm_min == -1) |
| 290 | alarm->time.tm_min = now.tm_min; |
| 291 | if (alarm->time.tm_hour == -1) |
| 292 | alarm->time.tm_hour = now.tm_hour; |
| 293 | |
| 294 | /* For simplicity, only support date rollover for now */ |
| 295 | if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) { |
| 296 | alarm->time.tm_mday = now.tm_mday; |
| 297 | missing = day; |
| 298 | } |
| 299 | if ((unsigned)alarm->time.tm_mon >= 12) { |
| 300 | alarm->time.tm_mon = now.tm_mon; |
| 301 | if (missing == none) |
| 302 | missing = month; |
| 303 | } |
| 304 | if (alarm->time.tm_year == -1) { |
| 305 | alarm->time.tm_year = now.tm_year; |
| 306 | if (missing == none) |
| 307 | missing = year; |
| 308 | } |
| 309 | |
| 310 | /* Can't proceed if alarm is still invalid after replacing |
| 311 | * missing fields. |
| 312 | */ |
| 313 | err = rtc_valid_tm(&alarm->time); |
| 314 | if (err) |
| 315 | goto done; |
| 316 | |
| 317 | /* with luck, no rollover is needed */ |
| 318 | t_now = rtc_tm_to_time64(&now); |
| 319 | t_alm = rtc_tm_to_time64(&alarm->time); |
| 320 | if (t_now < t_alm) |
| 321 | goto done; |
| 322 | |
| 323 | switch (missing) { |
| 324 | |
| 325 | /* 24 hour rollover ... if it's now 10am Monday, an alarm that |
| 326 | * that will trigger at 5am will do so at 5am Tuesday, which |
| 327 | * could also be in the next month or year. This is a common |
| 328 | * case, especially for PCs. |
| 329 | */ |
| 330 | case day: |
| 331 | dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day"); |
| 332 | t_alm += 24 * 60 * 60; |
| 333 | rtc_time64_to_tm(t_alm, &alarm->time); |
| 334 | break; |
| 335 | |
| 336 | /* Month rollover ... if it's the 31th, an alarm on the 3rd will |
| 337 | * be next month. An alarm matching on the 30th, 29th, or 28th |
| 338 | * may end up in the month after that! Many newer PCs support |
| 339 | * this type of alarm. |
| 340 | */ |
| 341 | case month: |
| 342 | dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month"); |
| 343 | do { |
| 344 | if (alarm->time.tm_mon < 11) |
| 345 | alarm->time.tm_mon++; |
| 346 | else { |
| 347 | alarm->time.tm_mon = 0; |
| 348 | alarm->time.tm_year++; |
| 349 | } |
| 350 | days = rtc_month_days(alarm->time.tm_mon, |
| 351 | alarm->time.tm_year); |
| 352 | } while (days < alarm->time.tm_mday); |
| 353 | break; |
| 354 | |
| 355 | /* Year rollover ... easy except for leap years! */ |
| 356 | case year: |
| 357 | dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year"); |
| 358 | do { |
| 359 | alarm->time.tm_year++; |
| 360 | } while (!is_leap_year(alarm->time.tm_year + 1900) |
| 361 | && rtc_valid_tm(&alarm->time) != 0); |
| 362 | break; |
| 363 | |
| 364 | default: |
| 365 | dev_warn(&rtc->dev, "alarm rollover not handled\n"); |
| 366 | } |
| 367 | |
| 368 | err = rtc_valid_tm(&alarm->time); |
| 369 | |
| 370 | done: |
| 371 | if (err) { |
| 372 | dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n", |
| 373 | alarm->time.tm_year + 1900, alarm->time.tm_mon + 1, |
| 374 | alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min, |
| 375 | alarm->time.tm_sec); |
| 376 | } |
| 377 | |
| 378 | return err; |
| 379 | } |
| 380 | |
| 381 | int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) |
| 382 | { |
| 383 | int err; |
| 384 | |
| 385 | err = mutex_lock_interruptible(&rtc->ops_lock); |
| 386 | if (err) |
| 387 | return err; |
| 388 | if (rtc->ops == NULL) |
| 389 | err = -ENODEV; |
| 390 | else if (!rtc->ops->read_alarm) |
| 391 | err = -EINVAL; |
| 392 | else { |
| 393 | memset(alarm, 0, sizeof(struct rtc_wkalrm)); |
| 394 | alarm->enabled = rtc->aie_timer.enabled; |
| 395 | alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires); |
| 396 | } |
| 397 | mutex_unlock(&rtc->ops_lock); |
| 398 | |
| 399 | trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err); |
| 400 | return err; |
| 401 | } |
| 402 | EXPORT_SYMBOL_GPL(rtc_read_alarm); |
| 403 | |
| 404 | static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) |
| 405 | { |
| 406 | struct rtc_time tm; |
| 407 | time64_t now, scheduled; |
| 408 | int err; |
| 409 | |
| 410 | err = rtc_valid_tm(&alarm->time); |
| 411 | if (err) |
| 412 | return err; |
| 413 | |
| 414 | scheduled = rtc_tm_to_time64(&alarm->time); |
| 415 | |
| 416 | /* Make sure we're not setting alarms in the past */ |
| 417 | err = __rtc_read_time(rtc, &tm); |
| 418 | if (err) |
| 419 | return err; |
| 420 | now = rtc_tm_to_time64(&tm); |
| 421 | if (scheduled <= now) |
| 422 | return -ETIME; |
| 423 | /* |
| 424 | * XXX - We just checked to make sure the alarm time is not |
| 425 | * in the past, but there is still a race window where if |
| 426 | * the is alarm set for the next second and the second ticks |
| 427 | * over right here, before we set the alarm. |
| 428 | */ |
| 429 | |
| 430 | rtc_subtract_offset(rtc, &alarm->time); |
| 431 | |
| 432 | if (!rtc->ops) |
| 433 | err = -ENODEV; |
| 434 | else if (!rtc->ops->set_alarm) |
| 435 | err = -EINVAL; |
| 436 | else |
| 437 | err = rtc->ops->set_alarm(rtc->dev.parent, alarm); |
| 438 | |
| 439 | trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err); |
| 440 | return err; |
| 441 | } |
| 442 | |
| 443 | int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) |
| 444 | { |
| 445 | int err; |
| 446 | |
| 447 | if (!rtc->ops) |
| 448 | return -ENODEV; |
| 449 | else if (!rtc->ops->set_alarm) |
| 450 | return -EINVAL; |
| 451 | |
| 452 | err = rtc_valid_tm(&alarm->time); |
| 453 | if (err != 0) |
| 454 | return err; |
| 455 | |
| 456 | err = rtc_valid_range(rtc, &alarm->time); |
| 457 | if (err) |
| 458 | return err; |
| 459 | |
| 460 | err = mutex_lock_interruptible(&rtc->ops_lock); |
| 461 | if (err) |
| 462 | return err; |
| 463 | if (rtc->aie_timer.enabled) |
| 464 | rtc_timer_remove(rtc, &rtc->aie_timer); |
| 465 | |
| 466 | rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); |
| 467 | rtc->aie_timer.period = 0; |
| 468 | if (alarm->enabled) |
| 469 | err = rtc_timer_enqueue(rtc, &rtc->aie_timer); |
| 470 | |
| 471 | mutex_unlock(&rtc->ops_lock); |
| 472 | |
| 473 | return err; |
| 474 | } |
| 475 | EXPORT_SYMBOL_GPL(rtc_set_alarm); |
| 476 | |
| 477 | /* Called once per device from rtc_device_register */ |
| 478 | int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) |
| 479 | { |
| 480 | int err; |
| 481 | struct rtc_time now; |
| 482 | |
| 483 | err = rtc_valid_tm(&alarm->time); |
| 484 | if (err != 0) |
| 485 | return err; |
| 486 | |
| 487 | err = rtc_read_time(rtc, &now); |
| 488 | if (err) |
| 489 | return err; |
| 490 | |
| 491 | err = mutex_lock_interruptible(&rtc->ops_lock); |
| 492 | if (err) |
| 493 | return err; |
| 494 | |
| 495 | rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); |
| 496 | rtc->aie_timer.period = 0; |
| 497 | |
| 498 | /* Alarm has to be enabled & in the future for us to enqueue it */ |
| 499 | if (alarm->enabled && (rtc_tm_to_ktime(now) < |
| 500 | rtc->aie_timer.node.expires)) { |
| 501 | |
| 502 | rtc->aie_timer.enabled = 1; |
| 503 | timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node); |
| 504 | trace_rtc_timer_enqueue(&rtc->aie_timer); |
| 505 | } |
| 506 | mutex_unlock(&rtc->ops_lock); |
| 507 | return err; |
| 508 | } |
| 509 | EXPORT_SYMBOL_GPL(rtc_initialize_alarm); |
| 510 | |
| 511 | int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled) |
| 512 | { |
| 513 | int err = mutex_lock_interruptible(&rtc->ops_lock); |
| 514 | if (err) |
| 515 | return err; |
| 516 | |
| 517 | if (rtc->aie_timer.enabled != enabled) { |
| 518 | if (enabled) |
| 519 | err = rtc_timer_enqueue(rtc, &rtc->aie_timer); |
| 520 | else |
| 521 | rtc_timer_remove(rtc, &rtc->aie_timer); |
| 522 | } |
| 523 | |
| 524 | if (err) |
| 525 | /* nothing */; |
| 526 | else if (!rtc->ops) |
| 527 | err = -ENODEV; |
| 528 | else if (!rtc->ops->alarm_irq_enable) |
| 529 | err = -EINVAL; |
| 530 | else |
| 531 | err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled); |
| 532 | |
| 533 | mutex_unlock(&rtc->ops_lock); |
| 534 | |
| 535 | trace_rtc_alarm_irq_enable(enabled, err); |
| 536 | return err; |
| 537 | } |
| 538 | EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable); |
| 539 | |
| 540 | int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled) |
| 541 | { |
| 542 | int err = mutex_lock_interruptible(&rtc->ops_lock); |
| 543 | if (err) |
| 544 | return err; |
| 545 | |
| 546 | #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL |
| 547 | if (enabled == 0 && rtc->uie_irq_active) { |
| 548 | mutex_unlock(&rtc->ops_lock); |
| 549 | return rtc_dev_update_irq_enable_emul(rtc, 0); |
| 550 | } |
| 551 | #endif |
| 552 | /* make sure we're changing state */ |
| 553 | if (rtc->uie_rtctimer.enabled == enabled) |
| 554 | goto out; |
| 555 | |
| 556 | if (rtc->uie_unsupported) { |
| 557 | err = -EINVAL; |
| 558 | goto out; |
| 559 | } |
| 560 | |
| 561 | if (enabled) { |
| 562 | struct rtc_time tm; |
| 563 | ktime_t now, onesec; |
| 564 | |
| 565 | __rtc_read_time(rtc, &tm); |
| 566 | onesec = ktime_set(1, 0); |
| 567 | now = rtc_tm_to_ktime(tm); |
| 568 | rtc->uie_rtctimer.node.expires = ktime_add(now, onesec); |
| 569 | rtc->uie_rtctimer.period = ktime_set(1, 0); |
| 570 | err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer); |
| 571 | } else |
| 572 | rtc_timer_remove(rtc, &rtc->uie_rtctimer); |
| 573 | |
| 574 | out: |
| 575 | mutex_unlock(&rtc->ops_lock); |
| 576 | #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL |
| 577 | /* |
| 578 | * Enable emulation if the driver did not provide |
| 579 | * the update_irq_enable function pointer or if returned |
| 580 | * -EINVAL to signal that it has been configured without |
| 581 | * interrupts or that are not available at the moment. |
| 582 | */ |
| 583 | if (err == -EINVAL) |
| 584 | err = rtc_dev_update_irq_enable_emul(rtc, enabled); |
| 585 | #endif |
| 586 | return err; |
| 587 | |
| 588 | } |
| 589 | EXPORT_SYMBOL_GPL(rtc_update_irq_enable); |
| 590 | |
| 591 | |
| 592 | /** |
| 593 | * rtc_handle_legacy_irq - AIE, UIE and PIE event hook |
| 594 | * @rtc: pointer to the rtc device |
| 595 | * |
| 596 | * This function is called when an AIE, UIE or PIE mode interrupt |
| 597 | * has occurred (or been emulated). |
| 598 | * |
| 599 | * Triggers the registered irq_task function callback. |
| 600 | */ |
| 601 | void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode) |
| 602 | { |
| 603 | unsigned long flags; |
| 604 | |
| 605 | /* mark one irq of the appropriate mode */ |
| 606 | spin_lock_irqsave(&rtc->irq_lock, flags); |
| 607 | rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode); |
| 608 | spin_unlock_irqrestore(&rtc->irq_lock, flags); |
| 609 | |
| 610 | wake_up_interruptible(&rtc->irq_queue); |
| 611 | kill_fasync(&rtc->async_queue, SIGIO, POLL_IN); |
| 612 | } |
| 613 | |
| 614 | |
| 615 | /** |
| 616 | * rtc_aie_update_irq - AIE mode rtctimer hook |
| 617 | * @private: pointer to the rtc_device |
| 618 | * |
| 619 | * This functions is called when the aie_timer expires. |
| 620 | */ |
| 621 | void rtc_aie_update_irq(void *private) |
| 622 | { |
| 623 | struct rtc_device *rtc = (struct rtc_device *)private; |
| 624 | rtc_handle_legacy_irq(rtc, 1, RTC_AF); |
| 625 | } |
| 626 | |
| 627 | |
| 628 | /** |
| 629 | * rtc_uie_update_irq - UIE mode rtctimer hook |
| 630 | * @private: pointer to the rtc_device |
| 631 | * |
| 632 | * This functions is called when the uie_timer expires. |
| 633 | */ |
| 634 | void rtc_uie_update_irq(void *private) |
| 635 | { |
| 636 | struct rtc_device *rtc = (struct rtc_device *)private; |
| 637 | rtc_handle_legacy_irq(rtc, 1, RTC_UF); |
| 638 | } |
| 639 | |
| 640 | |
| 641 | /** |
| 642 | * rtc_pie_update_irq - PIE mode hrtimer hook |
| 643 | * @timer: pointer to the pie mode hrtimer |
| 644 | * |
| 645 | * This function is used to emulate PIE mode interrupts |
| 646 | * using an hrtimer. This function is called when the periodic |
| 647 | * hrtimer expires. |
| 648 | */ |
| 649 | enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer) |
| 650 | { |
| 651 | struct rtc_device *rtc; |
| 652 | ktime_t period; |
| 653 | int count; |
| 654 | rtc = container_of(timer, struct rtc_device, pie_timer); |
| 655 | |
| 656 | period = NSEC_PER_SEC / rtc->irq_freq; |
| 657 | count = hrtimer_forward_now(timer, period); |
| 658 | |
| 659 | rtc_handle_legacy_irq(rtc, count, RTC_PF); |
| 660 | |
| 661 | return HRTIMER_RESTART; |
| 662 | } |
| 663 | |
| 664 | /** |
| 665 | * rtc_update_irq - Triggered when a RTC interrupt occurs. |
| 666 | * @rtc: the rtc device |
| 667 | * @num: how many irqs are being reported (usually one) |
| 668 | * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF |
| 669 | * Context: any |
| 670 | */ |
| 671 | void rtc_update_irq(struct rtc_device *rtc, |
| 672 | unsigned long num, unsigned long events) |
| 673 | { |
| 674 | if (IS_ERR_OR_NULL(rtc)) |
| 675 | return; |
| 676 | |
| 677 | pm_stay_awake(rtc->dev.parent); |
| 678 | schedule_work(&rtc->irqwork); |
| 679 | } |
| 680 | EXPORT_SYMBOL_GPL(rtc_update_irq); |
| 681 | |
| 682 | static int __rtc_match(struct device *dev, const void *data) |
| 683 | { |
| 684 | const char *name = data; |
| 685 | |
| 686 | if (strcmp(dev_name(dev), name) == 0) |
| 687 | return 1; |
| 688 | return 0; |
| 689 | } |
| 690 | |
| 691 | struct rtc_device *rtc_class_open(const char *name) |
| 692 | { |
| 693 | struct device *dev; |
| 694 | struct rtc_device *rtc = NULL; |
| 695 | |
| 696 | dev = class_find_device(rtc_class, NULL, name, __rtc_match); |
| 697 | if (dev) |
| 698 | rtc = to_rtc_device(dev); |
| 699 | |
| 700 | if (rtc) { |
| 701 | if (!try_module_get(rtc->owner)) { |
| 702 | put_device(dev); |
| 703 | rtc = NULL; |
| 704 | } |
| 705 | } |
| 706 | |
| 707 | return rtc; |
| 708 | } |
| 709 | EXPORT_SYMBOL_GPL(rtc_class_open); |
| 710 | |
| 711 | void rtc_class_close(struct rtc_device *rtc) |
| 712 | { |
| 713 | module_put(rtc->owner); |
| 714 | put_device(&rtc->dev); |
| 715 | } |
| 716 | EXPORT_SYMBOL_GPL(rtc_class_close); |
| 717 | |
| 718 | static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled) |
| 719 | { |
| 720 | /* |
| 721 | * We always cancel the timer here first, because otherwise |
| 722 | * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); |
| 723 | * when we manage to start the timer before the callback |
| 724 | * returns HRTIMER_RESTART. |
| 725 | * |
| 726 | * We cannot use hrtimer_cancel() here as a running callback |
| 727 | * could be blocked on rtc->irq_task_lock and hrtimer_cancel() |
| 728 | * would spin forever. |
| 729 | */ |
| 730 | if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0) |
| 731 | return -1; |
| 732 | |
| 733 | if (enabled) { |
| 734 | ktime_t period = NSEC_PER_SEC / rtc->irq_freq; |
| 735 | |
| 736 | hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL); |
| 737 | } |
| 738 | return 0; |
| 739 | } |
| 740 | |
| 741 | /** |
| 742 | * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs |
| 743 | * @rtc: the rtc device |
| 744 | * @task: currently registered with rtc_irq_register() |
| 745 | * @enabled: true to enable periodic IRQs |
| 746 | * Context: any |
| 747 | * |
| 748 | * Note that rtc_irq_set_freq() should previously have been used to |
| 749 | * specify the desired frequency of periodic IRQ. |
| 750 | */ |
| 751 | int rtc_irq_set_state(struct rtc_device *rtc, int enabled) |
| 752 | { |
| 753 | int err = 0; |
| 754 | |
| 755 | while (rtc_update_hrtimer(rtc, enabled) < 0) |
| 756 | cpu_relax(); |
| 757 | |
| 758 | rtc->pie_enabled = enabled; |
| 759 | |
| 760 | trace_rtc_irq_set_state(enabled, err); |
| 761 | return err; |
| 762 | } |
| 763 | |
| 764 | /** |
| 765 | * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ |
| 766 | * @rtc: the rtc device |
| 767 | * @task: currently registered with rtc_irq_register() |
| 768 | * @freq: positive frequency |
| 769 | * Context: any |
| 770 | * |
| 771 | * Note that rtc_irq_set_state() is used to enable or disable the |
| 772 | * periodic IRQs. |
| 773 | */ |
| 774 | int rtc_irq_set_freq(struct rtc_device *rtc, int freq) |
| 775 | { |
| 776 | int err = 0; |
| 777 | |
| 778 | if (freq <= 0 || freq > RTC_MAX_FREQ) |
| 779 | return -EINVAL; |
| 780 | |
| 781 | rtc->irq_freq = freq; |
| 782 | while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) |
| 783 | cpu_relax(); |
| 784 | |
| 785 | trace_rtc_irq_set_freq(freq, err); |
| 786 | return err; |
| 787 | } |
| 788 | |
| 789 | /** |
| 790 | * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue |
| 791 | * @rtc rtc device |
| 792 | * @timer timer being added. |
| 793 | * |
| 794 | * Enqueues a timer onto the rtc devices timerqueue and sets |
| 795 | * the next alarm event appropriately. |
| 796 | * |
| 797 | * Sets the enabled bit on the added timer. |
| 798 | * |
| 799 | * Must hold ops_lock for proper serialization of timerqueue |
| 800 | */ |
| 801 | static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer) |
| 802 | { |
| 803 | struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); |
| 804 | struct rtc_time tm; |
| 805 | ktime_t now; |
| 806 | |
| 807 | timer->enabled = 1; |
| 808 | __rtc_read_time(rtc, &tm); |
| 809 | now = rtc_tm_to_ktime(tm); |
| 810 | |
| 811 | /* Skip over expired timers */ |
| 812 | while (next) { |
| 813 | if (next->expires >= now) |
| 814 | break; |
| 815 | next = timerqueue_iterate_next(next); |
| 816 | } |
| 817 | |
| 818 | timerqueue_add(&rtc->timerqueue, &timer->node); |
| 819 | trace_rtc_timer_enqueue(timer); |
| 820 | if (!next || ktime_before(timer->node.expires, next->expires)) { |
| 821 | struct rtc_wkalrm alarm; |
| 822 | int err; |
| 823 | alarm.time = rtc_ktime_to_tm(timer->node.expires); |
| 824 | alarm.enabled = 1; |
| 825 | err = __rtc_set_alarm(rtc, &alarm); |
| 826 | if (err == -ETIME) { |
| 827 | pm_stay_awake(rtc->dev.parent); |
| 828 | schedule_work(&rtc->irqwork); |
| 829 | } else if (err) { |
| 830 | timerqueue_del(&rtc->timerqueue, &timer->node); |
| 831 | trace_rtc_timer_dequeue(timer); |
| 832 | timer->enabled = 0; |
| 833 | return err; |
| 834 | } |
| 835 | } |
| 836 | return 0; |
| 837 | } |
| 838 | |
| 839 | static void rtc_alarm_disable(struct rtc_device *rtc) |
| 840 | { |
| 841 | if (!rtc->ops || !rtc->ops->alarm_irq_enable) |
| 842 | return; |
| 843 | |
| 844 | rtc->ops->alarm_irq_enable(rtc->dev.parent, false); |
| 845 | trace_rtc_alarm_irq_enable(0, 0); |
| 846 | } |
| 847 | |
| 848 | /** |
| 849 | * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue |
| 850 | * @rtc rtc device |
| 851 | * @timer timer being removed. |
| 852 | * |
| 853 | * Removes a timer onto the rtc devices timerqueue and sets |
| 854 | * the next alarm event appropriately. |
| 855 | * |
| 856 | * Clears the enabled bit on the removed timer. |
| 857 | * |
| 858 | * Must hold ops_lock for proper serialization of timerqueue |
| 859 | */ |
| 860 | static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer) |
| 861 | { |
| 862 | struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); |
| 863 | timerqueue_del(&rtc->timerqueue, &timer->node); |
| 864 | trace_rtc_timer_dequeue(timer); |
| 865 | timer->enabled = 0; |
| 866 | if (next == &timer->node) { |
| 867 | struct rtc_wkalrm alarm; |
| 868 | int err; |
| 869 | next = timerqueue_getnext(&rtc->timerqueue); |
| 870 | if (!next) { |
| 871 | rtc_alarm_disable(rtc); |
| 872 | return; |
| 873 | } |
| 874 | alarm.time = rtc_ktime_to_tm(next->expires); |
| 875 | alarm.enabled = 1; |
| 876 | err = __rtc_set_alarm(rtc, &alarm); |
| 877 | if (err == -ETIME) { |
| 878 | pm_stay_awake(rtc->dev.parent); |
| 879 | schedule_work(&rtc->irqwork); |
| 880 | } |
| 881 | } |
| 882 | } |
| 883 | |
| 884 | /** |
| 885 | * rtc_timer_do_work - Expires rtc timers |
| 886 | * @rtc rtc device |
| 887 | * @timer timer being removed. |
| 888 | * |
| 889 | * Expires rtc timers. Reprograms next alarm event if needed. |
| 890 | * Called via worktask. |
| 891 | * |
| 892 | * Serializes access to timerqueue via ops_lock mutex |
| 893 | */ |
| 894 | void rtc_timer_do_work(struct work_struct *work) |
| 895 | { |
| 896 | struct rtc_timer *timer; |
| 897 | struct timerqueue_node *next; |
| 898 | ktime_t now; |
| 899 | struct rtc_time tm; |
| 900 | |
| 901 | struct rtc_device *rtc = |
| 902 | container_of(work, struct rtc_device, irqwork); |
| 903 | |
| 904 | mutex_lock(&rtc->ops_lock); |
| 905 | again: |
| 906 | __rtc_read_time(rtc, &tm); |
| 907 | now = rtc_tm_to_ktime(tm); |
| 908 | while ((next = timerqueue_getnext(&rtc->timerqueue))) { |
| 909 | if (next->expires > now) |
| 910 | break; |
| 911 | |
| 912 | /* expire timer */ |
| 913 | timer = container_of(next, struct rtc_timer, node); |
| 914 | timerqueue_del(&rtc->timerqueue, &timer->node); |
| 915 | trace_rtc_timer_dequeue(timer); |
| 916 | timer->enabled = 0; |
| 917 | if (timer->func) |
| 918 | timer->func(timer->private_data); |
| 919 | |
| 920 | trace_rtc_timer_fired(timer); |
| 921 | /* Re-add/fwd periodic timers */ |
| 922 | if (ktime_to_ns(timer->period)) { |
| 923 | timer->node.expires = ktime_add(timer->node.expires, |
| 924 | timer->period); |
| 925 | timer->enabled = 1; |
| 926 | timerqueue_add(&rtc->timerqueue, &timer->node); |
| 927 | trace_rtc_timer_enqueue(timer); |
| 928 | } |
| 929 | } |
| 930 | |
| 931 | /* Set next alarm */ |
| 932 | if (next) { |
| 933 | struct rtc_wkalrm alarm; |
| 934 | int err; |
| 935 | int retry = 3; |
| 936 | |
| 937 | alarm.time = rtc_ktime_to_tm(next->expires); |
| 938 | alarm.enabled = 1; |
| 939 | reprogram: |
| 940 | err = __rtc_set_alarm(rtc, &alarm); |
| 941 | if (err == -ETIME) |
| 942 | goto again; |
| 943 | else if (err) { |
| 944 | if (retry-- > 0) |
| 945 | goto reprogram; |
| 946 | |
| 947 | timer = container_of(next, struct rtc_timer, node); |
| 948 | timerqueue_del(&rtc->timerqueue, &timer->node); |
| 949 | trace_rtc_timer_dequeue(timer); |
| 950 | timer->enabled = 0; |
| 951 | dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err); |
| 952 | goto again; |
| 953 | } |
| 954 | } else |
| 955 | rtc_alarm_disable(rtc); |
| 956 | |
| 957 | pm_relax(rtc->dev.parent); |
| 958 | mutex_unlock(&rtc->ops_lock); |
| 959 | } |
| 960 | |
| 961 | |
| 962 | /* rtc_timer_init - Initializes an rtc_timer |
| 963 | * @timer: timer to be intiialized |
| 964 | * @f: function pointer to be called when timer fires |
| 965 | * @data: private data passed to function pointer |
| 966 | * |
| 967 | * Kernel interface to initializing an rtc_timer. |
| 968 | */ |
| 969 | void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data) |
| 970 | { |
| 971 | timerqueue_init(&timer->node); |
| 972 | timer->enabled = 0; |
| 973 | timer->func = f; |
| 974 | timer->private_data = data; |
| 975 | } |
| 976 | |
| 977 | /* rtc_timer_start - Sets an rtc_timer to fire in the future |
| 978 | * @ rtc: rtc device to be used |
| 979 | * @ timer: timer being set |
| 980 | * @ expires: time at which to expire the timer |
| 981 | * @ period: period that the timer will recur |
| 982 | * |
| 983 | * Kernel interface to set an rtc_timer |
| 984 | */ |
| 985 | int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer, |
| 986 | ktime_t expires, ktime_t period) |
| 987 | { |
| 988 | int ret = 0; |
| 989 | mutex_lock(&rtc->ops_lock); |
| 990 | if (timer->enabled) |
| 991 | rtc_timer_remove(rtc, timer); |
| 992 | |
| 993 | timer->node.expires = expires; |
| 994 | timer->period = period; |
| 995 | |
| 996 | ret = rtc_timer_enqueue(rtc, timer); |
| 997 | |
| 998 | mutex_unlock(&rtc->ops_lock); |
| 999 | return ret; |
| 1000 | } |
| 1001 | |
| 1002 | /* rtc_timer_cancel - Stops an rtc_timer |
| 1003 | * @ rtc: rtc device to be used |
| 1004 | * @ timer: timer being set |
| 1005 | * |
| 1006 | * Kernel interface to cancel an rtc_timer |
| 1007 | */ |
| 1008 | void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer) |
| 1009 | { |
| 1010 | mutex_lock(&rtc->ops_lock); |
| 1011 | if (timer->enabled) |
| 1012 | rtc_timer_remove(rtc, timer); |
| 1013 | mutex_unlock(&rtc->ops_lock); |
| 1014 | } |
| 1015 | |
| 1016 | /** |
| 1017 | * rtc_read_offset - Read the amount of rtc offset in parts per billion |
| 1018 | * @ rtc: rtc device to be used |
| 1019 | * @ offset: the offset in parts per billion |
| 1020 | * |
| 1021 | * see below for details. |
| 1022 | * |
| 1023 | * Kernel interface to read rtc clock offset |
| 1024 | * Returns 0 on success, or a negative number on error. |
| 1025 | * If read_offset() is not implemented for the rtc, return -EINVAL |
| 1026 | */ |
| 1027 | int rtc_read_offset(struct rtc_device *rtc, long *offset) |
| 1028 | { |
| 1029 | int ret; |
| 1030 | |
| 1031 | if (!rtc->ops) |
| 1032 | return -ENODEV; |
| 1033 | |
| 1034 | if (!rtc->ops->read_offset) |
| 1035 | return -EINVAL; |
| 1036 | |
| 1037 | mutex_lock(&rtc->ops_lock); |
| 1038 | ret = rtc->ops->read_offset(rtc->dev.parent, offset); |
| 1039 | mutex_unlock(&rtc->ops_lock); |
| 1040 | |
| 1041 | trace_rtc_read_offset(*offset, ret); |
| 1042 | return ret; |
| 1043 | } |
| 1044 | |
| 1045 | /** |
| 1046 | * rtc_set_offset - Adjusts the duration of the average second |
| 1047 | * @ rtc: rtc device to be used |
| 1048 | * @ offset: the offset in parts per billion |
| 1049 | * |
| 1050 | * Some rtc's allow an adjustment to the average duration of a second |
| 1051 | * to compensate for differences in the actual clock rate due to temperature, |
| 1052 | * the crystal, capacitor, etc. |
| 1053 | * |
| 1054 | * The adjustment applied is as follows: |
| 1055 | * t = t0 * (1 + offset * 1e-9) |
| 1056 | * where t0 is the measured length of 1 RTC second with offset = 0 |
| 1057 | * |
| 1058 | * Kernel interface to adjust an rtc clock offset. |
| 1059 | * Return 0 on success, or a negative number on error. |
| 1060 | * If the rtc offset is not setable (or not implemented), return -EINVAL |
| 1061 | */ |
| 1062 | int rtc_set_offset(struct rtc_device *rtc, long offset) |
| 1063 | { |
| 1064 | int ret; |
| 1065 | |
| 1066 | if (!rtc->ops) |
| 1067 | return -ENODEV; |
| 1068 | |
| 1069 | if (!rtc->ops->set_offset) |
| 1070 | return -EINVAL; |
| 1071 | |
| 1072 | mutex_lock(&rtc->ops_lock); |
| 1073 | ret = rtc->ops->set_offset(rtc->dev.parent, offset); |
| 1074 | mutex_unlock(&rtc->ops_lock); |
| 1075 | |
| 1076 | trace_rtc_set_offset(offset, ret); |
| 1077 | return ret; |
| 1078 | } |