Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * |
| 3 | * Copyright (c) 2009, Microsoft Corporation. |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify it |
| 6 | * under the terms and conditions of the GNU General Public License, |
| 7 | * version 2, as published by the Free Software Foundation. |
| 8 | * |
| 9 | * This program is distributed in the hope it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 12 | * more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License along with |
| 15 | * this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
| 16 | * Place - Suite 330, Boston, MA 02111-1307 USA. |
| 17 | * |
| 18 | * Authors: |
| 19 | * Haiyang Zhang <haiyangz@microsoft.com> |
| 20 | * Hank Janssen <hjanssen@microsoft.com> |
| 21 | * K. Y. Srinivasan <kys@microsoft.com> |
| 22 | * |
| 23 | */ |
| 24 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 25 | |
| 26 | #include <linux/kernel.h> |
| 27 | #include <linux/mm.h> |
| 28 | #include <linux/hyperv.h> |
| 29 | #include <linux/uio.h> |
| 30 | #include <linux/vmalloc.h> |
| 31 | #include <linux/slab.h> |
| 32 | #include <linux/prefetch.h> |
| 33 | |
| 34 | #include "hyperv_vmbus.h" |
| 35 | |
| 36 | #define VMBUS_PKT_TRAILER 8 |
| 37 | |
| 38 | /* |
| 39 | * When we write to the ring buffer, check if the host needs to |
| 40 | * be signaled. Here is the details of this protocol: |
| 41 | * |
| 42 | * 1. The host guarantees that while it is draining the |
| 43 | * ring buffer, it will set the interrupt_mask to |
| 44 | * indicate it does not need to be interrupted when |
| 45 | * new data is placed. |
| 46 | * |
| 47 | * 2. The host guarantees that it will completely drain |
| 48 | * the ring buffer before exiting the read loop. Further, |
| 49 | * once the ring buffer is empty, it will clear the |
| 50 | * interrupt_mask and re-check to see if new data has |
| 51 | * arrived. |
| 52 | * |
| 53 | * KYS: Oct. 30, 2016: |
| 54 | * It looks like Windows hosts have logic to deal with DOS attacks that |
| 55 | * can be triggered if it receives interrupts when it is not expecting |
| 56 | * the interrupt. The host expects interrupts only when the ring |
| 57 | * transitions from empty to non-empty (or full to non full on the guest |
| 58 | * to host ring). |
| 59 | * So, base the signaling decision solely on the ring state until the |
| 60 | * host logic is fixed. |
| 61 | */ |
| 62 | |
| 63 | static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel) |
| 64 | { |
| 65 | struct hv_ring_buffer_info *rbi = &channel->outbound; |
| 66 | |
| 67 | virt_mb(); |
| 68 | if (READ_ONCE(rbi->ring_buffer->interrupt_mask)) |
| 69 | return; |
| 70 | |
| 71 | /* check interrupt_mask before read_index */ |
| 72 | virt_rmb(); |
| 73 | /* |
| 74 | * This is the only case we need to signal when the |
| 75 | * ring transitions from being empty to non-empty. |
| 76 | */ |
| 77 | if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) |
| 78 | vmbus_setevent(channel); |
| 79 | } |
| 80 | |
| 81 | /* Get the next write location for the specified ring buffer. */ |
| 82 | static inline u32 |
| 83 | hv_get_next_write_location(struct hv_ring_buffer_info *ring_info) |
| 84 | { |
| 85 | u32 next = ring_info->ring_buffer->write_index; |
| 86 | |
| 87 | return next; |
| 88 | } |
| 89 | |
| 90 | /* Set the next write location for the specified ring buffer. */ |
| 91 | static inline void |
| 92 | hv_set_next_write_location(struct hv_ring_buffer_info *ring_info, |
| 93 | u32 next_write_location) |
| 94 | { |
| 95 | ring_info->ring_buffer->write_index = next_write_location; |
| 96 | } |
| 97 | |
| 98 | /* Set the next read location for the specified ring buffer. */ |
| 99 | static inline void |
| 100 | hv_set_next_read_location(struct hv_ring_buffer_info *ring_info, |
| 101 | u32 next_read_location) |
| 102 | { |
| 103 | ring_info->ring_buffer->read_index = next_read_location; |
| 104 | ring_info->priv_read_index = next_read_location; |
| 105 | } |
| 106 | |
| 107 | /* Get the size of the ring buffer. */ |
| 108 | static inline u32 |
| 109 | hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info) |
| 110 | { |
| 111 | return ring_info->ring_datasize; |
| 112 | } |
| 113 | |
| 114 | /* Get the read and write indices as u64 of the specified ring buffer. */ |
| 115 | static inline u64 |
| 116 | hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info) |
| 117 | { |
| 118 | return (u64)ring_info->ring_buffer->write_index << 32; |
| 119 | } |
| 120 | |
| 121 | /* |
| 122 | * Helper routine to copy from source to ring buffer. |
| 123 | * Assume there is enough room. Handles wrap-around in dest case only!! |
| 124 | */ |
| 125 | static u32 hv_copyto_ringbuffer( |
| 126 | struct hv_ring_buffer_info *ring_info, |
| 127 | u32 start_write_offset, |
| 128 | const void *src, |
| 129 | u32 srclen) |
| 130 | { |
| 131 | void *ring_buffer = hv_get_ring_buffer(ring_info); |
| 132 | u32 ring_buffer_size = hv_get_ring_buffersize(ring_info); |
| 133 | |
| 134 | memcpy(ring_buffer + start_write_offset, src, srclen); |
| 135 | |
| 136 | start_write_offset += srclen; |
| 137 | if (start_write_offset >= ring_buffer_size) |
| 138 | start_write_offset -= ring_buffer_size; |
| 139 | |
| 140 | return start_write_offset; |
| 141 | } |
| 142 | |
| 143 | /* |
| 144 | * |
| 145 | * hv_get_ringbuffer_availbytes() |
| 146 | * |
| 147 | * Get number of bytes available to read and to write to |
| 148 | * for the specified ring buffer |
| 149 | */ |
| 150 | static void |
| 151 | hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi, |
| 152 | u32 *read, u32 *write) |
| 153 | { |
| 154 | u32 read_loc, write_loc, dsize; |
| 155 | |
| 156 | /* Capture the read/write indices before they changed */ |
| 157 | read_loc = READ_ONCE(rbi->ring_buffer->read_index); |
| 158 | write_loc = READ_ONCE(rbi->ring_buffer->write_index); |
| 159 | dsize = rbi->ring_datasize; |
| 160 | |
| 161 | *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : |
| 162 | read_loc - write_loc; |
| 163 | *read = dsize - *write; |
| 164 | } |
| 165 | |
| 166 | /* Get various debug metrics for the specified ring buffer. */ |
| 167 | void hv_ringbuffer_get_debuginfo(const struct hv_ring_buffer_info *ring_info, |
| 168 | struct hv_ring_buffer_debug_info *debug_info) |
| 169 | { |
| 170 | u32 bytes_avail_towrite; |
| 171 | u32 bytes_avail_toread; |
| 172 | |
| 173 | if (ring_info->ring_buffer) { |
| 174 | hv_get_ringbuffer_availbytes(ring_info, |
| 175 | &bytes_avail_toread, |
| 176 | &bytes_avail_towrite); |
| 177 | |
| 178 | debug_info->bytes_avail_toread = bytes_avail_toread; |
| 179 | debug_info->bytes_avail_towrite = bytes_avail_towrite; |
| 180 | debug_info->current_read_index = |
| 181 | ring_info->ring_buffer->read_index; |
| 182 | debug_info->current_write_index = |
| 183 | ring_info->ring_buffer->write_index; |
| 184 | debug_info->current_interrupt_mask = |
| 185 | ring_info->ring_buffer->interrupt_mask; |
| 186 | } |
| 187 | } |
| 188 | EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo); |
| 189 | |
| 190 | /* Initialize the ring buffer. */ |
| 191 | int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info, |
| 192 | struct page *pages, u32 page_cnt) |
| 193 | { |
| 194 | int i; |
| 195 | struct page **pages_wraparound; |
| 196 | |
| 197 | BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE)); |
| 198 | |
| 199 | memset(ring_info, 0, sizeof(struct hv_ring_buffer_info)); |
| 200 | |
| 201 | /* |
| 202 | * First page holds struct hv_ring_buffer, do wraparound mapping for |
| 203 | * the rest. |
| 204 | */ |
| 205 | pages_wraparound = kcalloc(page_cnt * 2 - 1, sizeof(struct page *), |
| 206 | GFP_KERNEL); |
| 207 | if (!pages_wraparound) |
| 208 | return -ENOMEM; |
| 209 | |
| 210 | pages_wraparound[0] = pages; |
| 211 | for (i = 0; i < 2 * (page_cnt - 1); i++) |
| 212 | pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1]; |
| 213 | |
| 214 | ring_info->ring_buffer = (struct hv_ring_buffer *) |
| 215 | vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL); |
| 216 | |
| 217 | kfree(pages_wraparound); |
| 218 | |
| 219 | |
| 220 | if (!ring_info->ring_buffer) |
| 221 | return -ENOMEM; |
| 222 | |
| 223 | ring_info->ring_buffer->read_index = |
| 224 | ring_info->ring_buffer->write_index = 0; |
| 225 | |
| 226 | /* Set the feature bit for enabling flow control. */ |
| 227 | ring_info->ring_buffer->feature_bits.value = 1; |
| 228 | |
| 229 | ring_info->ring_size = page_cnt << PAGE_SHIFT; |
| 230 | ring_info->ring_size_div10_reciprocal = |
| 231 | reciprocal_value(ring_info->ring_size / 10); |
| 232 | ring_info->ring_datasize = ring_info->ring_size - |
| 233 | sizeof(struct hv_ring_buffer); |
| 234 | |
| 235 | spin_lock_init(&ring_info->ring_lock); |
| 236 | |
| 237 | return 0; |
| 238 | } |
| 239 | |
| 240 | /* Cleanup the ring buffer. */ |
| 241 | void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info) |
| 242 | { |
| 243 | vunmap(ring_info->ring_buffer); |
| 244 | } |
| 245 | |
| 246 | /* Write to the ring buffer. */ |
| 247 | int hv_ringbuffer_write(struct vmbus_channel *channel, |
| 248 | const struct kvec *kv_list, u32 kv_count) |
| 249 | { |
| 250 | int i; |
| 251 | u32 bytes_avail_towrite; |
| 252 | u32 totalbytes_towrite = sizeof(u64); |
| 253 | u32 next_write_location; |
| 254 | u32 old_write; |
| 255 | u64 prev_indices; |
| 256 | unsigned long flags; |
| 257 | struct hv_ring_buffer_info *outring_info = &channel->outbound; |
| 258 | |
| 259 | if (channel->rescind) |
| 260 | return -ENODEV; |
| 261 | |
| 262 | for (i = 0; i < kv_count; i++) |
| 263 | totalbytes_towrite += kv_list[i].iov_len; |
| 264 | |
| 265 | spin_lock_irqsave(&outring_info->ring_lock, flags); |
| 266 | |
| 267 | bytes_avail_towrite = hv_get_bytes_to_write(outring_info); |
| 268 | |
| 269 | /* |
| 270 | * If there is only room for the packet, assume it is full. |
| 271 | * Otherwise, the next time around, we think the ring buffer |
| 272 | * is empty since the read index == write index. |
| 273 | */ |
| 274 | if (bytes_avail_towrite <= totalbytes_towrite) { |
| 275 | spin_unlock_irqrestore(&outring_info->ring_lock, flags); |
| 276 | return -EAGAIN; |
| 277 | } |
| 278 | |
| 279 | /* Write to the ring buffer */ |
| 280 | next_write_location = hv_get_next_write_location(outring_info); |
| 281 | |
| 282 | old_write = next_write_location; |
| 283 | |
| 284 | for (i = 0; i < kv_count; i++) { |
| 285 | next_write_location = hv_copyto_ringbuffer(outring_info, |
| 286 | next_write_location, |
| 287 | kv_list[i].iov_base, |
| 288 | kv_list[i].iov_len); |
| 289 | } |
| 290 | |
| 291 | /* Set previous packet start */ |
| 292 | prev_indices = hv_get_ring_bufferindices(outring_info); |
| 293 | |
| 294 | next_write_location = hv_copyto_ringbuffer(outring_info, |
| 295 | next_write_location, |
| 296 | &prev_indices, |
| 297 | sizeof(u64)); |
| 298 | |
| 299 | /* Issue a full memory barrier before updating the write index */ |
| 300 | virt_mb(); |
| 301 | |
| 302 | /* Now, update the write location */ |
| 303 | hv_set_next_write_location(outring_info, next_write_location); |
| 304 | |
| 305 | |
| 306 | spin_unlock_irqrestore(&outring_info->ring_lock, flags); |
| 307 | |
| 308 | hv_signal_on_write(old_write, channel); |
| 309 | |
| 310 | if (channel->rescind) |
| 311 | return -ENODEV; |
| 312 | |
| 313 | return 0; |
| 314 | } |
| 315 | |
| 316 | int hv_ringbuffer_read(struct vmbus_channel *channel, |
| 317 | void *buffer, u32 buflen, u32 *buffer_actual_len, |
| 318 | u64 *requestid, bool raw) |
| 319 | { |
| 320 | struct vmpacket_descriptor *desc; |
| 321 | u32 packetlen, offset; |
| 322 | |
| 323 | if (unlikely(buflen == 0)) |
| 324 | return -EINVAL; |
| 325 | |
| 326 | *buffer_actual_len = 0; |
| 327 | *requestid = 0; |
| 328 | |
| 329 | /* Make sure there is something to read */ |
| 330 | desc = hv_pkt_iter_first(channel); |
| 331 | if (desc == NULL) { |
| 332 | /* |
| 333 | * No error is set when there is even no header, drivers are |
| 334 | * supposed to analyze buffer_actual_len. |
| 335 | */ |
| 336 | return 0; |
| 337 | } |
| 338 | |
| 339 | offset = raw ? 0 : (desc->offset8 << 3); |
| 340 | packetlen = (desc->len8 << 3) - offset; |
| 341 | *buffer_actual_len = packetlen; |
| 342 | *requestid = desc->trans_id; |
| 343 | |
| 344 | if (unlikely(packetlen > buflen)) |
| 345 | return -ENOBUFS; |
| 346 | |
| 347 | /* since ring is double mapped, only one copy is necessary */ |
| 348 | memcpy(buffer, (const char *)desc + offset, packetlen); |
| 349 | |
| 350 | /* Advance ring index to next packet descriptor */ |
| 351 | __hv_pkt_iter_next(channel, desc); |
| 352 | |
| 353 | /* Notify host of update */ |
| 354 | hv_pkt_iter_close(channel); |
| 355 | |
| 356 | return 0; |
| 357 | } |
| 358 | |
| 359 | /* |
| 360 | * Determine number of bytes available in ring buffer after |
| 361 | * the current iterator (priv_read_index) location. |
| 362 | * |
| 363 | * This is similar to hv_get_bytes_to_read but with private |
| 364 | * read index instead. |
| 365 | */ |
| 366 | static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi) |
| 367 | { |
| 368 | u32 priv_read_loc = rbi->priv_read_index; |
| 369 | u32 write_loc = READ_ONCE(rbi->ring_buffer->write_index); |
| 370 | |
| 371 | if (write_loc >= priv_read_loc) |
| 372 | return write_loc - priv_read_loc; |
| 373 | else |
| 374 | return (rbi->ring_datasize - priv_read_loc) + write_loc; |
| 375 | } |
| 376 | |
| 377 | /* |
| 378 | * Get first vmbus packet from ring buffer after read_index |
| 379 | * |
| 380 | * If ring buffer is empty, returns NULL and no other action needed. |
| 381 | */ |
| 382 | struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel) |
| 383 | { |
| 384 | struct hv_ring_buffer_info *rbi = &channel->inbound; |
| 385 | struct vmpacket_descriptor *desc; |
| 386 | |
| 387 | if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor)) |
| 388 | return NULL; |
| 389 | |
| 390 | desc = hv_get_ring_buffer(rbi) + rbi->priv_read_index; |
| 391 | if (desc) |
| 392 | prefetch((char *)desc + (desc->len8 << 3)); |
| 393 | |
| 394 | return desc; |
| 395 | } |
| 396 | EXPORT_SYMBOL_GPL(hv_pkt_iter_first); |
| 397 | |
| 398 | /* |
| 399 | * Get next vmbus packet from ring buffer. |
| 400 | * |
| 401 | * Advances the current location (priv_read_index) and checks for more |
| 402 | * data. If the end of the ring buffer is reached, then return NULL. |
| 403 | */ |
| 404 | struct vmpacket_descriptor * |
| 405 | __hv_pkt_iter_next(struct vmbus_channel *channel, |
| 406 | const struct vmpacket_descriptor *desc) |
| 407 | { |
| 408 | struct hv_ring_buffer_info *rbi = &channel->inbound; |
| 409 | u32 packetlen = desc->len8 << 3; |
| 410 | u32 dsize = rbi->ring_datasize; |
| 411 | |
| 412 | /* bump offset to next potential packet */ |
| 413 | rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER; |
| 414 | if (rbi->priv_read_index >= dsize) |
| 415 | rbi->priv_read_index -= dsize; |
| 416 | |
| 417 | /* more data? */ |
| 418 | return hv_pkt_iter_first(channel); |
| 419 | } |
| 420 | EXPORT_SYMBOL_GPL(__hv_pkt_iter_next); |
| 421 | |
| 422 | /* How many bytes were read in this iterator cycle */ |
| 423 | static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi, |
| 424 | u32 start_read_index) |
| 425 | { |
| 426 | if (rbi->priv_read_index >= start_read_index) |
| 427 | return rbi->priv_read_index - start_read_index; |
| 428 | else |
| 429 | return rbi->ring_datasize - start_read_index + |
| 430 | rbi->priv_read_index; |
| 431 | } |
| 432 | |
| 433 | /* |
| 434 | * Update host ring buffer after iterating over packets. If the host has |
| 435 | * stopped queuing new entries because it found the ring buffer full, and |
| 436 | * sufficient space is being freed up, signal the host. But be careful to |
| 437 | * only signal the host when necessary, both for performance reasons and |
| 438 | * because Hyper-V protects itself by throttling guests that signal |
| 439 | * inappropriately. |
| 440 | * |
| 441 | * Determining when to signal is tricky. There are three key data inputs |
| 442 | * that must be handled in this order to avoid race conditions: |
| 443 | * |
| 444 | * 1. Update the read_index |
| 445 | * 2. Read the pending_send_sz |
| 446 | * 3. Read the current write_index |
| 447 | * |
| 448 | * The interrupt_mask is not used to determine when to signal. The |
| 449 | * interrupt_mask is used only on the guest->host ring buffer when |
| 450 | * sending requests to the host. The host does not use it on the host-> |
| 451 | * guest ring buffer to indicate whether it should be signaled. |
| 452 | */ |
| 453 | void hv_pkt_iter_close(struct vmbus_channel *channel) |
| 454 | { |
| 455 | struct hv_ring_buffer_info *rbi = &channel->inbound; |
| 456 | u32 curr_write_sz, pending_sz, bytes_read, start_read_index; |
| 457 | |
| 458 | /* |
| 459 | * Make sure all reads are done before we update the read index since |
| 460 | * the writer may start writing to the read area once the read index |
| 461 | * is updated. |
| 462 | */ |
| 463 | virt_rmb(); |
| 464 | start_read_index = rbi->ring_buffer->read_index; |
| 465 | rbi->ring_buffer->read_index = rbi->priv_read_index; |
| 466 | |
| 467 | /* |
| 468 | * Older versions of Hyper-V (before WS2102 and Win8) do not |
| 469 | * implement pending_send_sz and simply poll if the host->guest |
| 470 | * ring buffer is full. No signaling is needed or expected. |
| 471 | */ |
| 472 | if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz) |
| 473 | return; |
| 474 | |
| 475 | /* |
| 476 | * Issue a full memory barrier before making the signaling decision. |
| 477 | * If reading pending_send_sz were to be reordered and happen |
| 478 | * before we commit the new read_index, a race could occur. If the |
| 479 | * host were to set the pending_send_sz after we have sampled |
| 480 | * pending_send_sz, and the ring buffer blocks before we commit the |
| 481 | * read index, we could miss sending the interrupt. Issue a full |
| 482 | * memory barrier to address this. |
| 483 | */ |
| 484 | virt_mb(); |
| 485 | |
| 486 | /* |
| 487 | * If the pending_send_sz is zero, then the ring buffer is not |
| 488 | * blocked and there is no need to signal. This is far by the |
| 489 | * most common case, so exit quickly for best performance. |
| 490 | */ |
| 491 | pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz); |
| 492 | if (!pending_sz) |
| 493 | return; |
| 494 | |
| 495 | /* |
| 496 | * Ensure the read of write_index in hv_get_bytes_to_write() |
| 497 | * happens after the read of pending_send_sz. |
| 498 | */ |
| 499 | virt_rmb(); |
| 500 | curr_write_sz = hv_get_bytes_to_write(rbi); |
| 501 | bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index); |
| 502 | |
| 503 | /* |
| 504 | * We want to signal the host only if we're transitioning |
| 505 | * from a "not enough free space" state to a "enough free |
| 506 | * space" state. For example, it's possible that this function |
| 507 | * could run and free up enough space to signal the host, and then |
| 508 | * run again and free up additional space before the host has a |
| 509 | * chance to clear the pending_send_sz. The 2nd invocation would |
| 510 | * be a null transition from "enough free space" to "enough free |
| 511 | * space", which doesn't warrant a signal. |
| 512 | * |
| 513 | * Exactly filling the ring buffer is treated as "not enough |
| 514 | * space". The ring buffer always must have at least one byte |
| 515 | * empty so the empty and full conditions are distinguishable. |
| 516 | * hv_get_bytes_to_write() doesn't fully tell the truth in |
| 517 | * this regard. |
| 518 | * |
| 519 | * So first check if we were in the "enough free space" state |
| 520 | * before we began the iteration. If so, the host was not |
| 521 | * blocked, and there's no need to signal. |
| 522 | */ |
| 523 | if (curr_write_sz - bytes_read > pending_sz) |
| 524 | return; |
| 525 | |
| 526 | /* |
| 527 | * Similarly, if the new state is "not enough space", then |
| 528 | * there's no need to signal. |
| 529 | */ |
| 530 | if (curr_write_sz <= pending_sz) |
| 531 | return; |
| 532 | |
| 533 | vmbus_setevent(channel); |
| 534 | } |
| 535 | EXPORT_SYMBOL_GPL(hv_pkt_iter_close); |