blob: 09d823d36d3a4ec71913e235a82e4fd101132728 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * Cryptographic API.
3 *
4 * Support for VIA PadLock hardware crypto engine.
5 *
6 * Copyright (c) 2004 Michal Ludvig <michal@logix.cz>
7 *
8 */
9
10#include <crypto/algapi.h>
11#include <crypto/aes.h>
12#include <crypto/padlock.h>
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/types.h>
16#include <linux/errno.h>
17#include <linux/interrupt.h>
18#include <linux/kernel.h>
19#include <linux/percpu.h>
20#include <linux/smp.h>
21#include <linux/slab.h>
22#include <asm/cpu_device_id.h>
23#include <asm/byteorder.h>
24#include <asm/processor.h>
25#include <asm/fpu/api.h>
26
27/*
28 * Number of data blocks actually fetched for each xcrypt insn.
29 * Processors with prefetch errata will fetch extra blocks.
30 */
31static unsigned int ecb_fetch_blocks = 2;
32#define MAX_ECB_FETCH_BLOCKS (8)
33#define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
34
35static unsigned int cbc_fetch_blocks = 1;
36#define MAX_CBC_FETCH_BLOCKS (4)
37#define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
38
39/* Control word. */
40struct cword {
41 unsigned int __attribute__ ((__packed__))
42 rounds:4,
43 algo:3,
44 keygen:1,
45 interm:1,
46 encdec:1,
47 ksize:2;
48} __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
49
50/* Whenever making any changes to the following
51 * structure *make sure* you keep E, d_data
52 * and cword aligned on 16 Bytes boundaries and
53 * the Hardware can access 16 * 16 bytes of E and d_data
54 * (only the first 15 * 16 bytes matter but the HW reads
55 * more).
56 */
57struct aes_ctx {
58 u32 E[AES_MAX_KEYLENGTH_U32]
59 __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
60 u32 d_data[AES_MAX_KEYLENGTH_U32]
61 __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
62 struct {
63 struct cword encrypt;
64 struct cword decrypt;
65 } cword;
66 u32 *D;
67};
68
69static DEFINE_PER_CPU(struct cword *, paes_last_cword);
70
71/* Tells whether the ACE is capable to generate
72 the extended key for a given key_len. */
73static inline int
74aes_hw_extkey_available(uint8_t key_len)
75{
76 /* TODO: We should check the actual CPU model/stepping
77 as it's possible that the capability will be
78 added in the next CPU revisions. */
79 if (key_len == 16)
80 return 1;
81 return 0;
82}
83
84static inline struct aes_ctx *aes_ctx_common(void *ctx)
85{
86 unsigned long addr = (unsigned long)ctx;
87 unsigned long align = PADLOCK_ALIGNMENT;
88
89 if (align <= crypto_tfm_ctx_alignment())
90 align = 1;
91 return (struct aes_ctx *)ALIGN(addr, align);
92}
93
94static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
95{
96 return aes_ctx_common(crypto_tfm_ctx(tfm));
97}
98
99static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm)
100{
101 return aes_ctx_common(crypto_blkcipher_ctx(tfm));
102}
103
104static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
105 unsigned int key_len)
106{
107 struct aes_ctx *ctx = aes_ctx(tfm);
108 const __le32 *key = (const __le32 *)in_key;
109 u32 *flags = &tfm->crt_flags;
110 struct crypto_aes_ctx gen_aes;
111 int cpu;
112
113 if (key_len % 8) {
114 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
115 return -EINVAL;
116 }
117
118 /*
119 * If the hardware is capable of generating the extended key
120 * itself we must supply the plain key for both encryption
121 * and decryption.
122 */
123 ctx->D = ctx->E;
124
125 ctx->E[0] = le32_to_cpu(key[0]);
126 ctx->E[1] = le32_to_cpu(key[1]);
127 ctx->E[2] = le32_to_cpu(key[2]);
128 ctx->E[3] = le32_to_cpu(key[3]);
129
130 /* Prepare control words. */
131 memset(&ctx->cword, 0, sizeof(ctx->cword));
132
133 ctx->cword.decrypt.encdec = 1;
134 ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
135 ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
136 ctx->cword.encrypt.ksize = (key_len - 16) / 8;
137 ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
138
139 /* Don't generate extended keys if the hardware can do it. */
140 if (aes_hw_extkey_available(key_len))
141 goto ok;
142
143 ctx->D = ctx->d_data;
144 ctx->cword.encrypt.keygen = 1;
145 ctx->cword.decrypt.keygen = 1;
146
147 if (crypto_aes_expand_key(&gen_aes, in_key, key_len)) {
148 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
149 return -EINVAL;
150 }
151
152 memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
153 memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
154
155ok:
156 for_each_online_cpu(cpu)
157 if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
158 &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
159 per_cpu(paes_last_cword, cpu) = NULL;
160
161 return 0;
162}
163
164/* ====== Encryption/decryption routines ====== */
165
166/* These are the real call to PadLock. */
167static inline void padlock_reset_key(struct cword *cword)
168{
169 int cpu = raw_smp_processor_id();
170
171 if (cword != per_cpu(paes_last_cword, cpu))
172#ifndef CONFIG_X86_64
173 asm volatile ("pushfl; popfl");
174#else
175 asm volatile ("pushfq; popfq");
176#endif
177}
178
179static inline void padlock_store_cword(struct cword *cword)
180{
181 per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
182}
183
184/*
185 * While the padlock instructions don't use FP/SSE registers, they
186 * generate a spurious DNA fault when CR0.TS is '1'. Fortunately,
187 * the kernel doesn't use CR0.TS.
188 */
189
190static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
191 struct cword *control_word, int count)
192{
193 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
194 : "+S"(input), "+D"(output)
195 : "d"(control_word), "b"(key), "c"(count));
196}
197
198static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
199 u8 *iv, struct cword *control_word, int count)
200{
201 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
202 : "+S" (input), "+D" (output), "+a" (iv)
203 : "d" (control_word), "b" (key), "c" (count));
204 return iv;
205}
206
207static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
208 struct cword *cword, int count)
209{
210 /*
211 * Padlock prefetches extra data so we must provide mapped input buffers.
212 * Assume there are at least 16 bytes of stack already in use.
213 */
214 u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
215 u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
216
217 memcpy(tmp, in, count * AES_BLOCK_SIZE);
218 rep_xcrypt_ecb(tmp, out, key, cword, count);
219}
220
221static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
222 u8 *iv, struct cword *cword, int count)
223{
224 /*
225 * Padlock prefetches extra data so we must provide mapped input buffers.
226 * Assume there are at least 16 bytes of stack already in use.
227 */
228 u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
229 u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
230
231 memcpy(tmp, in, count * AES_BLOCK_SIZE);
232 return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
233}
234
235static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
236 struct cword *cword, int count)
237{
238 /* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
239 * We could avoid some copying here but it's probably not worth it.
240 */
241 if (unlikely(offset_in_page(in) + ecb_fetch_bytes > PAGE_SIZE)) {
242 ecb_crypt_copy(in, out, key, cword, count);
243 return;
244 }
245
246 rep_xcrypt_ecb(in, out, key, cword, count);
247}
248
249static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
250 u8 *iv, struct cword *cword, int count)
251{
252 /* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
253 if (unlikely(offset_in_page(in) + cbc_fetch_bytes > PAGE_SIZE))
254 return cbc_crypt_copy(in, out, key, iv, cword, count);
255
256 return rep_xcrypt_cbc(in, out, key, iv, cword, count);
257}
258
259static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
260 void *control_word, u32 count)
261{
262 u32 initial = count & (ecb_fetch_blocks - 1);
263
264 if (count < ecb_fetch_blocks) {
265 ecb_crypt(input, output, key, control_word, count);
266 return;
267 }
268
269 count -= initial;
270
271 if (initial)
272 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
273 : "+S"(input), "+D"(output)
274 : "d"(control_word), "b"(key), "c"(initial));
275
276 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
277 : "+S"(input), "+D"(output)
278 : "d"(control_word), "b"(key), "c"(count));
279}
280
281static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
282 u8 *iv, void *control_word, u32 count)
283{
284 u32 initial = count & (cbc_fetch_blocks - 1);
285
286 if (count < cbc_fetch_blocks)
287 return cbc_crypt(input, output, key, iv, control_word, count);
288
289 count -= initial;
290
291 if (initial)
292 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
293 : "+S" (input), "+D" (output), "+a" (iv)
294 : "d" (control_word), "b" (key), "c" (initial));
295
296 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
297 : "+S" (input), "+D" (output), "+a" (iv)
298 : "d" (control_word), "b" (key), "c" (count));
299 return iv;
300}
301
302static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
303{
304 struct aes_ctx *ctx = aes_ctx(tfm);
305
306 padlock_reset_key(&ctx->cword.encrypt);
307 ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
308 padlock_store_cword(&ctx->cword.encrypt);
309}
310
311static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
312{
313 struct aes_ctx *ctx = aes_ctx(tfm);
314
315 padlock_reset_key(&ctx->cword.encrypt);
316 ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
317 padlock_store_cword(&ctx->cword.encrypt);
318}
319
320static struct crypto_alg aes_alg = {
321 .cra_name = "aes",
322 .cra_driver_name = "aes-padlock",
323 .cra_priority = PADLOCK_CRA_PRIORITY,
324 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
325 .cra_blocksize = AES_BLOCK_SIZE,
326 .cra_ctxsize = sizeof(struct aes_ctx),
327 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
328 .cra_module = THIS_MODULE,
329 .cra_u = {
330 .cipher = {
331 .cia_min_keysize = AES_MIN_KEY_SIZE,
332 .cia_max_keysize = AES_MAX_KEY_SIZE,
333 .cia_setkey = aes_set_key,
334 .cia_encrypt = aes_encrypt,
335 .cia_decrypt = aes_decrypt,
336 }
337 }
338};
339
340static int ecb_aes_encrypt(struct blkcipher_desc *desc,
341 struct scatterlist *dst, struct scatterlist *src,
342 unsigned int nbytes)
343{
344 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
345 struct blkcipher_walk walk;
346 int err;
347
348 padlock_reset_key(&ctx->cword.encrypt);
349
350 blkcipher_walk_init(&walk, dst, src, nbytes);
351 err = blkcipher_walk_virt(desc, &walk);
352
353 while ((nbytes = walk.nbytes)) {
354 padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
355 ctx->E, &ctx->cword.encrypt,
356 nbytes / AES_BLOCK_SIZE);
357 nbytes &= AES_BLOCK_SIZE - 1;
358 err = blkcipher_walk_done(desc, &walk, nbytes);
359 }
360
361 padlock_store_cword(&ctx->cword.encrypt);
362
363 return err;
364}
365
366static int ecb_aes_decrypt(struct blkcipher_desc *desc,
367 struct scatterlist *dst, struct scatterlist *src,
368 unsigned int nbytes)
369{
370 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
371 struct blkcipher_walk walk;
372 int err;
373
374 padlock_reset_key(&ctx->cword.decrypt);
375
376 blkcipher_walk_init(&walk, dst, src, nbytes);
377 err = blkcipher_walk_virt(desc, &walk);
378
379 while ((nbytes = walk.nbytes)) {
380 padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
381 ctx->D, &ctx->cword.decrypt,
382 nbytes / AES_BLOCK_SIZE);
383 nbytes &= AES_BLOCK_SIZE - 1;
384 err = blkcipher_walk_done(desc, &walk, nbytes);
385 }
386
387 padlock_store_cword(&ctx->cword.encrypt);
388
389 return err;
390}
391
392static struct crypto_alg ecb_aes_alg = {
393 .cra_name = "ecb(aes)",
394 .cra_driver_name = "ecb-aes-padlock",
395 .cra_priority = PADLOCK_COMPOSITE_PRIORITY,
396 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
397 .cra_blocksize = AES_BLOCK_SIZE,
398 .cra_ctxsize = sizeof(struct aes_ctx),
399 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
400 .cra_type = &crypto_blkcipher_type,
401 .cra_module = THIS_MODULE,
402 .cra_u = {
403 .blkcipher = {
404 .min_keysize = AES_MIN_KEY_SIZE,
405 .max_keysize = AES_MAX_KEY_SIZE,
406 .setkey = aes_set_key,
407 .encrypt = ecb_aes_encrypt,
408 .decrypt = ecb_aes_decrypt,
409 }
410 }
411};
412
413static int cbc_aes_encrypt(struct blkcipher_desc *desc,
414 struct scatterlist *dst, struct scatterlist *src,
415 unsigned int nbytes)
416{
417 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
418 struct blkcipher_walk walk;
419 int err;
420
421 padlock_reset_key(&ctx->cword.encrypt);
422
423 blkcipher_walk_init(&walk, dst, src, nbytes);
424 err = blkcipher_walk_virt(desc, &walk);
425
426 while ((nbytes = walk.nbytes)) {
427 u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
428 walk.dst.virt.addr, ctx->E,
429 walk.iv, &ctx->cword.encrypt,
430 nbytes / AES_BLOCK_SIZE);
431 memcpy(walk.iv, iv, AES_BLOCK_SIZE);
432 nbytes &= AES_BLOCK_SIZE - 1;
433 err = blkcipher_walk_done(desc, &walk, nbytes);
434 }
435
436 padlock_store_cword(&ctx->cword.decrypt);
437
438 return err;
439}
440
441static int cbc_aes_decrypt(struct blkcipher_desc *desc,
442 struct scatterlist *dst, struct scatterlist *src,
443 unsigned int nbytes)
444{
445 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
446 struct blkcipher_walk walk;
447 int err;
448
449 padlock_reset_key(&ctx->cword.encrypt);
450
451 blkcipher_walk_init(&walk, dst, src, nbytes);
452 err = blkcipher_walk_virt(desc, &walk);
453
454 while ((nbytes = walk.nbytes)) {
455 padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
456 ctx->D, walk.iv, &ctx->cword.decrypt,
457 nbytes / AES_BLOCK_SIZE);
458 nbytes &= AES_BLOCK_SIZE - 1;
459 err = blkcipher_walk_done(desc, &walk, nbytes);
460 }
461
462 padlock_store_cword(&ctx->cword.encrypt);
463
464 return err;
465}
466
467static struct crypto_alg cbc_aes_alg = {
468 .cra_name = "cbc(aes)",
469 .cra_driver_name = "cbc-aes-padlock",
470 .cra_priority = PADLOCK_COMPOSITE_PRIORITY,
471 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
472 .cra_blocksize = AES_BLOCK_SIZE,
473 .cra_ctxsize = sizeof(struct aes_ctx),
474 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
475 .cra_type = &crypto_blkcipher_type,
476 .cra_module = THIS_MODULE,
477 .cra_u = {
478 .blkcipher = {
479 .min_keysize = AES_MIN_KEY_SIZE,
480 .max_keysize = AES_MAX_KEY_SIZE,
481 .ivsize = AES_BLOCK_SIZE,
482 .setkey = aes_set_key,
483 .encrypt = cbc_aes_encrypt,
484 .decrypt = cbc_aes_decrypt,
485 }
486 }
487};
488
489static const struct x86_cpu_id padlock_cpu_id[] = {
490 X86_FEATURE_MATCH(X86_FEATURE_XCRYPT),
491 {}
492};
493MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id);
494
495static int __init padlock_init(void)
496{
497 int ret;
498 struct cpuinfo_x86 *c = &cpu_data(0);
499
500 if (!x86_match_cpu(padlock_cpu_id))
501 return -ENODEV;
502
503 if (!boot_cpu_has(X86_FEATURE_XCRYPT_EN)) {
504 printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
505 return -ENODEV;
506 }
507
508 if ((ret = crypto_register_alg(&aes_alg)))
509 goto aes_err;
510
511 if ((ret = crypto_register_alg(&ecb_aes_alg)))
512 goto ecb_aes_err;
513
514 if ((ret = crypto_register_alg(&cbc_aes_alg)))
515 goto cbc_aes_err;
516
517 printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
518
519 if (c->x86 == 6 && c->x86_model == 15 && c->x86_stepping == 2) {
520 ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
521 cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
522 printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
523 }
524
525out:
526 return ret;
527
528cbc_aes_err:
529 crypto_unregister_alg(&ecb_aes_alg);
530ecb_aes_err:
531 crypto_unregister_alg(&aes_alg);
532aes_err:
533 printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
534 goto out;
535}
536
537static void __exit padlock_fini(void)
538{
539 crypto_unregister_alg(&cbc_aes_alg);
540 crypto_unregister_alg(&ecb_aes_alg);
541 crypto_unregister_alg(&aes_alg);
542}
543
544module_init(padlock_init);
545module_exit(padlock_fini);
546
547MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
548MODULE_LICENSE("GPL");
549MODULE_AUTHOR("Michal Ludvig");
550
551MODULE_ALIAS_CRYPTO("aes");